xref: /freebsd/sys/dev/bce/if_bce.c (revision 6c05f3a74f30934ee60919cc97e16ec69b542b06)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2006-2014 QLogic Corporation
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * The following controllers are supported by this driver:
32  *   BCM5706C A2, A3
33  *   BCM5706S A2, A3
34  *   BCM5708C B1, B2
35  *   BCM5708S B1, B2
36  *   BCM5709C A1, C0
37  *   BCM5709S A1, C0
38  *   BCM5716C C0
39  *   BCM5716S C0
40  *
41  * The following controllers are not supported by this driver:
42  *   BCM5706C A0, A1 (pre-production)
43  *   BCM5706S A0, A1 (pre-production)
44  *   BCM5708C A0, B0 (pre-production)
45  *   BCM5708S A0, B0 (pre-production)
46  *   BCM5709C A0  B0, B1, B2 (pre-production)
47  *   BCM5709S A0, B0, B1, B2 (pre-production)
48  */
49 
50 #include "opt_bce.h"
51 
52 #include <sys/param.h>
53 #include <sys/endian.h>
54 #include <sys/systm.h>
55 #include <sys/sockio.h>
56 #include <sys/lock.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/kernel.h>
61 #include <sys/module.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/queue.h>
65 
66 #include <net/bpf.h>
67 #include <net/ethernet.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 
74 #include <net/if_types.h>
75 #include <net/if_vlan_var.h>
76 
77 #include <netinet/in_systm.h>
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip6.h>
82 #include <netinet/tcp.h>
83 #include <netinet/udp.h>
84 
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <sys/bus.h>
88 #include <sys/rman.h>
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include "miidevs.h"
93 #include <dev/mii/brgphyreg.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include "miibus_if.h"
99 
100 #include <dev/bce/if_bcereg.h>
101 #include <dev/bce/if_bcefw.h>
102 
103 /****************************************************************************/
104 /* BCE Debug Options                                                        */
105 /****************************************************************************/
106 #ifdef BCE_DEBUG
107 	u32 bce_debug = BCE_WARN;
108 
109 	/*          0 = Never              */
110 	/*          1 = 1 in 2,147,483,648 */
111 	/*        256 = 1 in     8,388,608 */
112 	/*       2048 = 1 in     1,048,576 */
113 	/*      65536 = 1 in        32,768 */
114 	/*    1048576 = 1 in         2,048 */
115 	/*  268435456 =	1 in             8 */
116 	/*  536870912 = 1 in             4 */
117 	/* 1073741824 = 1 in             2 */
118 
119 	/* Controls how often the l2_fhdr frame error check will fail. */
120 	int l2fhdr_error_sim_control = 0;
121 
122 	/* Controls how often the unexpected attention check will fail. */
123 	int unexpected_attention_sim_control = 0;
124 
125 	/* Controls how often to simulate an mbuf allocation failure. */
126 	int mbuf_alloc_failed_sim_control = 0;
127 
128 	/* Controls how often to simulate a DMA mapping failure. */
129 	int dma_map_addr_failed_sim_control = 0;
130 
131 	/* Controls how often to simulate a bootcode failure. */
132 	int bootcode_running_failure_sim_control = 0;
133 #endif
134 
135 /****************************************************************************/
136 /* PCI Device ID Table                                                      */
137 /*                                                                          */
138 /* Used by bce_probe() to identify the devices supported by this driver.    */
139 /****************************************************************************/
140 #define BCE_DEVDESC_MAX		64
141 
142 static const struct bce_type bce_devs[] = {
143 	/* BCM5706C Controllers and OEM boards. */
144 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
145 		"HP NC370T Multifunction Gigabit Server Adapter" },
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
147 		"HP NC370i Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
149 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
151 		"HP NC371i Multifunction Gigabit Server Adapter" },
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
153 		"QLogic NetXtreme II BCM5706 1000Base-T" },
154 
155 	/* BCM5706S controllers and OEM boards. */
156 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
157 		"HP NC370F Multifunction Gigabit Server Adapter" },
158 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
159 		"QLogic NetXtreme II BCM5706 1000Base-SX" },
160 
161 	/* BCM5708C controllers and OEM boards. */
162 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
163 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
164 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
165 		"HP NC373i Multifunction Gigabit Server Adapter" },
166 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
167 		"HP NC374m PCIe Multifunction Adapter" },
168 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
169 		"QLogic NetXtreme II BCM5708 1000Base-T" },
170 
171 	/* BCM5708S controllers and OEM boards. */
172 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
173 		"HP NC373m Multifunction Gigabit Server Adapter" },
174 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
175 		"HP NC373i Multifunction Gigabit Server Adapter" },
176 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
177 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
178 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
179 		"QLogic NetXtreme II BCM5708 1000Base-SX" },
180 
181 	/* BCM5709C controllers and OEM boards. */
182 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
183 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
184 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
185 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
186 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
187 		"QLogic NetXtreme II BCM5709 1000Base-T" },
188 
189 	/* BCM5709S controllers and OEM boards. */
190 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
191 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
192 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
193 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
194 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
195 		"QLogic NetXtreme II BCM5709 1000Base-SX" },
196 
197 	/* BCM5716 controllers and OEM boards. */
198 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
199 		"QLogic NetXtreme II BCM5716 1000Base-T" },
200 	{ 0, 0, 0, 0, NULL }
201 };
202 
203 /****************************************************************************/
204 /* Supported Flash NVRAM device data.                                       */
205 /****************************************************************************/
206 static const struct flash_spec flash_table[] =
207 {
208 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
209 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
210 
211 	/* Slow EEPROM */
212 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
213 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
214 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
215 	 "EEPROM - slow"},
216 	/* Expansion entry 0001 */
217 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
218 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
219 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
220 	 "Entry 0001"},
221 	/* Saifun SA25F010 (non-buffered flash) */
222 	/* strap, cfg1, & write1 need updates */
223 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
226 	 "Non-buffered flash (128kB)"},
227 	/* Saifun SA25F020 (non-buffered flash) */
228 	/* strap, cfg1, & write1 need updates */
229 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
230 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
232 	 "Non-buffered flash (256kB)"},
233 	/* Expansion entry 0100 */
234 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
235 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
236 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
237 	 "Entry 0100"},
238 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
239 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
240 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
241 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
242 	 "Entry 0101: ST M45PE10 (128kB non-buffered)"},
243 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
244 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
245 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
246 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
247 	 "Entry 0110: ST M45PE20 (256kB non-buffered)"},
248 	/* Saifun SA25F005 (non-buffered flash) */
249 	/* strap, cfg1, & write1 need updates */
250 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
253 	 "Non-buffered flash (64kB)"},
254 	/* Fast EEPROM */
255 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
256 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
257 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
258 	 "EEPROM - fast"},
259 	/* Expansion entry 1001 */
260 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
261 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
262 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
263 	 "Entry 1001"},
264 	/* Expansion entry 1010 */
265 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
266 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
267 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
268 	 "Entry 1010"},
269 	/* ATMEL AT45DB011B (buffered flash) */
270 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
271 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
272 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
273 	 "Buffered flash (128kB)"},
274 	/* Expansion entry 1100 */
275 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
276 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
277 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
278 	 "Entry 1100"},
279 	/* Expansion entry 1101 */
280 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
281 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
282 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
283 	 "Entry 1101"},
284 	/* Ateml Expansion entry 1110 */
285 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
286 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
287 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
288 	 "Entry 1110 (Atmel)"},
289 	/* ATMEL AT45DB021B (buffered flash) */
290 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
291 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
292 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
293 	 "Buffered flash (256kB)"},
294 };
295 
296 /*
297  * The BCM5709 controllers transparently handle the
298  * differences between Atmel 264 byte pages and all
299  * flash devices which use 256 byte pages, so no
300  * logical-to-physical mapping is required in the
301  * driver.
302  */
303 static const struct flash_spec flash_5709 = {
304 	.flags		= BCE_NV_BUFFERED,
305 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
306 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
307 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
308 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
309 	.name		= "5709/5716 buffered flash (256kB)",
310 };
311 
312 /****************************************************************************/
313 /* FreeBSD device entry points.                                             */
314 /****************************************************************************/
315 static int  bce_probe			(device_t);
316 static int  bce_attach			(device_t);
317 static int  bce_detach			(device_t);
318 static int  bce_shutdown		(device_t);
319 
320 /****************************************************************************/
321 /* BCE Debug Data Structure Dump Routines                                   */
322 /****************************************************************************/
323 #ifdef BCE_DEBUG
324 static u32  bce_reg_rd				(struct bce_softc *, u32);
325 static void bce_reg_wr				(struct bce_softc *, u32, u32);
326 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
327 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
328 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
329 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
330 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
331 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
332 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
333 static void bce_dump_txbd			(struct bce_softc *,
334     int, struct tx_bd *);
335 static void bce_dump_rxbd			(struct bce_softc *,
336     int, struct rx_bd *);
337 static void bce_dump_pgbd			(struct bce_softc *,
338     int, struct rx_bd *);
339 static void bce_dump_l2fhdr		(struct bce_softc *,
340     int, struct l2_fhdr *);
341 static void bce_dump_ctx			(struct bce_softc *, u16);
342 static void bce_dump_ftqs			(struct bce_softc *);
343 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
344 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
345 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
346 static void bce_dump_status_block	(struct bce_softc *);
347 static void bce_dump_stats_block	(struct bce_softc *);
348 static void bce_dump_driver_state	(struct bce_softc *);
349 static void bce_dump_hw_state		(struct bce_softc *);
350 static void bce_dump_shmem_state	(struct bce_softc *);
351 static void bce_dump_mq_regs		(struct bce_softc *);
352 static void bce_dump_bc_state		(struct bce_softc *);
353 static void bce_dump_txp_state		(struct bce_softc *, int);
354 static void bce_dump_rxp_state		(struct bce_softc *, int);
355 static void bce_dump_tpat_state	(struct bce_softc *, int);
356 static void bce_dump_cp_state		(struct bce_softc *, int);
357 static void bce_dump_com_state		(struct bce_softc *, int);
358 static void bce_dump_rv2p_state	(struct bce_softc *);
359 static void bce_breakpoint			(struct bce_softc *);
360 #endif /*BCE_DEBUG */
361 
362 /****************************************************************************/
363 /* BCE Register/Memory Access Routines                                      */
364 /****************************************************************************/
365 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
366 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
367 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
368 static u32  bce_shmem_rd		(struct bce_softc *, u32);
369 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
370 static int  bce_miibus_read_reg		(device_t, int, int);
371 static int  bce_miibus_write_reg	(device_t, int, int, int);
372 static void bce_miibus_statchg		(device_t);
373 
374 #ifdef BCE_DEBUG
375 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
376 #ifdef BCE_NVRAM_WRITE_SUPPORT
377 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
378 #endif
379 #endif
380 
381 /****************************************************************************/
382 /* BCE NVRAM Access Routines                                                */
383 /****************************************************************************/
384 static int  bce_acquire_nvram_lock	(struct bce_softc *);
385 static int  bce_release_nvram_lock	(struct bce_softc *);
386 static void bce_enable_nvram_access(struct bce_softc *);
387 static void bce_disable_nvram_access(struct bce_softc *);
388 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
389 static int  bce_init_nvram			(struct bce_softc *);
390 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
391 static int  bce_nvram_test			(struct bce_softc *);
392 #ifdef BCE_NVRAM_WRITE_SUPPORT
393 static int  bce_enable_nvram_write	(struct bce_softc *);
394 static void bce_disable_nvram_write(struct bce_softc *);
395 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
396 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
397 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
398 #endif
399 
400 /****************************************************************************/
401 /*                                                                          */
402 /****************************************************************************/
403 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
404 static void bce_get_media			(struct bce_softc *);
405 static void bce_init_media			(struct bce_softc *);
406 static u32 bce_get_rphy_link		(struct bce_softc *);
407 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
408 static int  bce_dma_alloc			(device_t);
409 static void bce_dma_free			(struct bce_softc *);
410 static void bce_release_resources	(struct bce_softc *);
411 
412 /****************************************************************************/
413 /* BCE Firmware Synchronization and Load                                    */
414 /****************************************************************************/
415 static void bce_fw_cap_init			(struct bce_softc *);
416 static int  bce_fw_sync			(struct bce_softc *, u32);
417 static void bce_load_rv2p_fw		(struct bce_softc *, const u32 *, u32,
418     u32);
419 static void bce_load_cpu_fw		(struct bce_softc *,
420     struct cpu_reg *, struct fw_info *);
421 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
422 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
423 static void bce_start_rxp_cpu		(struct bce_softc *);
424 static void bce_init_rxp_cpu		(struct bce_softc *);
425 static void bce_init_txp_cpu 		(struct bce_softc *);
426 static void bce_init_tpat_cpu		(struct bce_softc *);
427 static void bce_init_cp_cpu	  	(struct bce_softc *);
428 static void bce_init_com_cpu	  	(struct bce_softc *);
429 static void bce_init_cpus			(struct bce_softc *);
430 
431 static void bce_print_adapter_info	(struct bce_softc *);
432 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
433 static void bce_stop				(struct bce_softc *);
434 static int  bce_reset				(struct bce_softc *, u32);
435 static int  bce_chipinit 			(struct bce_softc *);
436 static int  bce_blockinit 			(struct bce_softc *);
437 
438 static int  bce_init_tx_chain		(struct bce_softc *);
439 static void bce_free_tx_chain		(struct bce_softc *);
440 
441 static int  bce_get_rx_buf		(struct bce_softc *, u16, u16, u32 *);
442 static int  bce_init_rx_chain		(struct bce_softc *);
443 static void bce_fill_rx_chain		(struct bce_softc *);
444 static void bce_free_rx_chain		(struct bce_softc *);
445 
446 static int  bce_get_pg_buf		(struct bce_softc *, u16, u16);
447 static int  bce_init_pg_chain		(struct bce_softc *);
448 static void bce_fill_pg_chain		(struct bce_softc *);
449 static void bce_free_pg_chain		(struct bce_softc *);
450 
451 static struct mbuf *bce_tso_setup	(struct bce_softc *,
452     struct mbuf **, u16 *);
453 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
454 static void bce_start_locked		(if_t);
455 static void bce_start			(if_t);
456 static int  bce_ioctl			(if_t, u_long, caddr_t);
457 static uint64_t bce_get_counter		(if_t, ift_counter);
458 static void bce_watchdog		(struct bce_softc *);
459 static int  bce_ifmedia_upd		(if_t);
460 static int  bce_ifmedia_upd_locked	(if_t);
461 static void bce_ifmedia_sts		(if_t, struct ifmediareq *);
462 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
463 static void bce_init_locked		(struct bce_softc *);
464 static void bce_init				(void *);
465 static void bce_mgmt_init_locked	(struct bce_softc *sc);
466 
467 static int  bce_init_ctx			(struct bce_softc *);
468 static void bce_get_mac_addr		(struct bce_softc *);
469 static void bce_set_mac_addr		(struct bce_softc *);
470 static void bce_phy_intr			(struct bce_softc *);
471 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
472 static void bce_rx_intr			(struct bce_softc *);
473 static void bce_tx_intr			(struct bce_softc *);
474 static void bce_disable_intr		(struct bce_softc *);
475 static void bce_enable_intr		(struct bce_softc *, int);
476 
477 static void bce_intr				(void *);
478 static void bce_set_rx_mode		(struct bce_softc *);
479 static void bce_stats_update		(struct bce_softc *);
480 static void bce_tick				(void *);
481 static void bce_pulse				(void *);
482 static void bce_add_sysctls		(struct bce_softc *);
483 
484 /****************************************************************************/
485 /* FreeBSD device dispatch table.                                           */
486 /****************************************************************************/
487 static device_method_t bce_methods[] = {
488 	/* Device interface (device_if.h) */
489 	DEVMETHOD(device_probe,		bce_probe),
490 	DEVMETHOD(device_attach,	bce_attach),
491 	DEVMETHOD(device_detach,	bce_detach),
492 	DEVMETHOD(device_shutdown,	bce_shutdown),
493 /* Supported by device interface but not used here. */
494 /*	DEVMETHOD(device_identify,	bce_identify),      */
495 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
496 /*	DEVMETHOD(device_resume,	bce_resume),        */
497 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
498 
499 	/* MII interface (miibus_if.h) */
500 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
501 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
502 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
503 /* Supported by MII interface but not used here.       */
504 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
505 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
506 
507 	DEVMETHOD_END
508 };
509 
510 static driver_t bce_driver = {
511 	"bce",
512 	bce_methods,
513 	sizeof(struct bce_softc)
514 };
515 
516 MODULE_DEPEND(bce, pci, 1, 1, 1);
517 MODULE_DEPEND(bce, ether, 1, 1, 1);
518 MODULE_DEPEND(bce, miibus, 1, 1, 1);
519 
520 DRIVER_MODULE(bce, pci, bce_driver, NULL, NULL);
521 DRIVER_MODULE(miibus, bce, miibus_driver, NULL, NULL);
522 MODULE_PNP_INFO("U16:vendor;U16:device;U16:#;U16:#;D:#", pci, bce,
523     bce_devs, nitems(bce_devs) - 1);
524 
525 /****************************************************************************/
526 /* Tunable device values                                                    */
527 /****************************************************************************/
528 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
529     "bce driver parameters");
530 
531 /* Allowable values are TRUE or FALSE */
532 static int bce_verbose = TRUE;
533 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
534     "Verbose output enable/disable");
535 
536 /* Allowable values are TRUE or FALSE */
537 static int bce_tso_enable = TRUE;
538 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
539     "TSO Enable/Disable");
540 
541 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
542 /* ToDo: Add MSI-X support. */
543 static int bce_msi_enable = 1;
544 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
545     "MSI-X|MSI|INTx selector");
546 
547 /* Allowable values are 1, 2, 4, 8. */
548 static int bce_rx_pages = DEFAULT_RX_PAGES;
549 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
550     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
551 
552 /* Allowable values are 1, 2, 4, 8. */
553 static int bce_tx_pages = DEFAULT_TX_PAGES;
554 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
555     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
556 
557 /* Allowable values are TRUE or FALSE. */
558 static int bce_hdr_split = TRUE;
559 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
560     "Frame header/payload splitting Enable/Disable");
561 
562 /* Allowable values are TRUE or FALSE. */
563 static int bce_strict_rx_mtu = FALSE;
564 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
565     &bce_strict_rx_mtu, 0,
566     "Enable/Disable strict RX frame size checking");
567 
568 /* Allowable values are 0 ... 100 */
569 #ifdef BCE_DEBUG
570 /* Generate 1 interrupt for every transmit completion. */
571 static int bce_tx_quick_cons_trip_int = 1;
572 #else
573 /* Generate 1 interrupt for every 20 transmit completions. */
574 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
575 #endif
576 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
577     &bce_tx_quick_cons_trip_int, 0,
578     "Transmit BD trip point during interrupts");
579 
580 /* Allowable values are 0 ... 100 */
581 /* Generate 1 interrupt for every transmit completion. */
582 #ifdef BCE_DEBUG
583 static int bce_tx_quick_cons_trip = 1;
584 #else
585 /* Generate 1 interrupt for every 20 transmit completions. */
586 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
587 #endif
588 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
589     &bce_tx_quick_cons_trip, 0,
590     "Transmit BD trip point");
591 
592 /* Allowable values are 0 ... 100 */
593 #ifdef BCE_DEBUG
594 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
595 static int bce_tx_ticks_int = 0;
596 #else
597 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
598 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
599 #endif
600 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
601     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
602 
603 /* Allowable values are 0 ... 100 */
604 #ifdef BCE_DEBUG
605 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
606 static int bce_tx_ticks = 0;
607 #else
608 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
609 static int bce_tx_ticks = DEFAULT_TX_TICKS;
610 #endif
611 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
612     &bce_tx_ticks, 0, "Transmit ticks count");
613 
614 /* Allowable values are 1 ... 100 */
615 #ifdef BCE_DEBUG
616 /* Generate 1 interrupt for every received frame. */
617 static int bce_rx_quick_cons_trip_int = 1;
618 #else
619 /* Generate 1 interrupt for every 6 received frames. */
620 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
621 #endif
622 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
623     &bce_rx_quick_cons_trip_int, 0,
624     "Receive BD trip point during interrupts");
625 
626 /* Allowable values are 1 ... 100 */
627 #ifdef BCE_DEBUG
628 /* Generate 1 interrupt for every received frame. */
629 static int bce_rx_quick_cons_trip = 1;
630 #else
631 /* Generate 1 interrupt for every 6 received frames. */
632 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
633 #endif
634 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
635     &bce_rx_quick_cons_trip, 0,
636     "Receive BD trip point");
637 
638 /* Allowable values are 0 ... 100 */
639 #ifdef BCE_DEBUG
640 /* Generate an int. if 0us have elapsed since the last received frame. */
641 static int bce_rx_ticks_int = 0;
642 #else
643 /* Generate an int. if 18us have elapsed since the last received frame. */
644 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
645 #endif
646 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
647     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
648 
649 /* Allowable values are 0 ... 100 */
650 #ifdef BCE_DEBUG
651 /* Generate an int. if 0us have elapsed since the last received frame. */
652 static int bce_rx_ticks = 0;
653 #else
654 /* Generate an int. if 18us have elapsed since the last received frame. */
655 static int bce_rx_ticks = DEFAULT_RX_TICKS;
656 #endif
657 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
658     &bce_rx_ticks, 0, "Receive ticks count");
659 
660 /****************************************************************************/
661 /* Device probe function.                                                   */
662 /*                                                                          */
663 /* Compares the device to the driver's list of supported devices and        */
664 /* reports back to the OS whether this is the right driver for the device.  */
665 /*                                                                          */
666 /* Returns:                                                                 */
667 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
668 /****************************************************************************/
669 static int
670 bce_probe(device_t dev)
671 {
672 	const struct bce_type *t;
673 	struct bce_softc *sc;
674 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
675 
676 	t = bce_devs;
677 
678 	sc = device_get_softc(dev);
679 	sc->bce_unit = device_get_unit(dev);
680 	sc->bce_dev = dev;
681 
682 	/* Get the data for the device to be probed. */
683 	vid  = pci_get_vendor(dev);
684 	did  = pci_get_device(dev);
685 	svid = pci_get_subvendor(dev);
686 	sdid = pci_get_subdevice(dev);
687 
688 	DBPRINT(sc, BCE_EXTREME_LOAD,
689 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
690 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
691 
692 	/* Look through the list of known devices for a match. */
693 	while(t->bce_name != NULL) {
694 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
695 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
696 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
697 			device_set_descf(dev, "%s (%c%d)",
698 			    t->bce_name, (((pci_read_config(dev,
699 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
700 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
701 			return(BUS_PROBE_DEFAULT);
702 		}
703 		t++;
704 	}
705 
706 	return(ENXIO);
707 }
708 
709 /****************************************************************************/
710 /* PCI Capabilities Probe Function.                                         */
711 /*                                                                          */
712 /* Walks the PCI capabiites list for the device to find what features are   */
713 /* supported.                                                               */
714 /*                                                                          */
715 /* Returns:                                                                 */
716 /*   None.                                                                  */
717 /****************************************************************************/
718 static void
719 bce_print_adapter_info(struct bce_softc *sc)
720 {
721 	int i = 0;
722 
723 	DBENTER(BCE_VERBOSE_LOAD);
724 
725 	if (bce_verbose || bootverbose) {
726 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
727 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
728 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
729 
730 		/* Bus info. */
731 		if (sc->bce_flags & BCE_PCIE_FLAG) {
732 			printf("Bus (PCIe x%d, ", sc->link_width);
733 			switch (sc->link_speed) {
734 			case 1: printf("2.5Gbps); "); break;
735 			case 2:	printf("5Gbps); "); break;
736 			default: printf("Unknown link speed); ");
737 			}
738 		} else {
739 			printf("Bus (PCI%s, %s, %dMHz); ",
740 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
741 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
742 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
743 		}
744 
745 		/* Firmware version and device features. */
746 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
747 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
748 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
749 
750 		if (bce_hdr_split == TRUE) {
751 			printf("SPLT");
752 			i++;
753 		}
754 
755 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
756 			if (i > 0) printf("|");
757 			printf("MSI"); i++;
758 		}
759 
760 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
761 			if (i > 0) printf("|");
762 			printf("MSI-X"); i++;
763 		}
764 
765 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
766 			if (i > 0) printf("|");
767 			printf("2.5G"); i++;
768 		}
769 
770 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
771 			if (i > 0) printf("|");
772 			printf("Remote PHY(%s)",
773 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
774 			    "FIBER" : "TP"); i++;
775 		}
776 
777 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
778 			if (i > 0) printf("|");
779 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
780 		} else {
781 			printf(")\n");
782 		}
783 
784 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
785 		    sc->bce_rx_quick_cons_trip_int,
786 		    sc->bce_rx_quick_cons_trip,
787 		    sc->bce_rx_ticks_int,
788 		    sc->bce_rx_ticks,
789 		    sc->bce_tx_quick_cons_trip_int,
790 		    sc->bce_tx_quick_cons_trip,
791 		    sc->bce_tx_ticks_int,
792 		    sc->bce_tx_ticks);
793 	}
794 
795 	DBEXIT(BCE_VERBOSE_LOAD);
796 }
797 
798 /****************************************************************************/
799 /* PCI Capabilities Probe Function.                                         */
800 /*                                                                          */
801 /* Walks the PCI capabiites list for the device to find what features are   */
802 /* supported.                                                               */
803 /*                                                                          */
804 /* Returns:                                                                 */
805 /*   None.                                                                  */
806 /****************************************************************************/
807 static void
808 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
809 {
810 	u32 reg;
811 
812 	DBENTER(BCE_VERBOSE_LOAD);
813 
814 	/* Check if PCI-X capability is enabled. */
815 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
816 		if (reg != 0)
817 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
818 	}
819 
820 	/* Check if PCIe capability is enabled. */
821 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
822 		if (reg != 0) {
823 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
824 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
825 			    "0x%08X\n",	link_status);
826 			sc->link_speed = link_status & 0xf;
827 			sc->link_width = (link_status >> 4) & 0x3f;
828 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
829 			sc->bce_flags |= BCE_PCIE_FLAG;
830 		}
831 	}
832 
833 	/* Check if MSI capability is enabled. */
834 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
835 		if (reg != 0)
836 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
837 	}
838 
839 	/* Check if MSI-X capability is enabled. */
840 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
841 		if (reg != 0)
842 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
843 	}
844 
845 	DBEXIT(BCE_VERBOSE_LOAD);
846 }
847 
848 /****************************************************************************/
849 /* Load and validate user tunable settings.                                 */
850 /*                                                                          */
851 /* Returns:                                                                 */
852 /*   Nothing.                                                               */
853 /****************************************************************************/
854 static void
855 bce_set_tunables(struct bce_softc *sc)
856 {
857 	/* Set sysctl values for RX page count. */
858 	switch (bce_rx_pages) {
859 	case 1:
860 		/* fall-through */
861 	case 2:
862 		/* fall-through */
863 	case 4:
864 		/* fall-through */
865 	case 8:
866 		sc->rx_pages = bce_rx_pages;
867 		break;
868 	default:
869 		sc->rx_pages = DEFAULT_RX_PAGES;
870 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
871 		    "hw.bce.rx_pages!  Setting default of %d.\n",
872 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
873 	}
874 
875 	/* ToDo: Consider allowing user setting for pg_pages. */
876 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
877 
878 	/* Set sysctl values for TX page count. */
879 	switch (bce_tx_pages) {
880 	case 1:
881 		/* fall-through */
882 	case 2:
883 		/* fall-through */
884 	case 4:
885 		/* fall-through */
886 	case 8:
887 		sc->tx_pages = bce_tx_pages;
888 		break;
889 	default:
890 		sc->tx_pages = DEFAULT_TX_PAGES;
891 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
892 		    "hw.bce.tx_pages!  Setting default of %d.\n",
893 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
894 	}
895 
896 	/*
897 	 * Validate the TX trip point (i.e. the number of
898 	 * TX completions before a status block update is
899 	 * generated and an interrupt is asserted.
900 	 */
901 	if (bce_tx_quick_cons_trip_int <= 100) {
902 		sc->bce_tx_quick_cons_trip_int =
903 		    bce_tx_quick_cons_trip_int;
904 	} else {
905 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
906 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
907 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
908 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
909 		sc->bce_tx_quick_cons_trip_int =
910 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
911 	}
912 
913 	if (bce_tx_quick_cons_trip <= 100) {
914 		sc->bce_tx_quick_cons_trip =
915 		    bce_tx_quick_cons_trip;
916 	} else {
917 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
918 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
919 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
920 		    DEFAULT_TX_QUICK_CONS_TRIP);
921 		sc->bce_tx_quick_cons_trip =
922 		    DEFAULT_TX_QUICK_CONS_TRIP;
923 	}
924 
925 	/*
926 	 * Validate the TX ticks count (i.e. the maximum amount
927 	 * of time to wait after the last TX completion has
928 	 * occurred before a status block update is generated
929 	 * and an interrupt is asserted.
930 	 */
931 	if (bce_tx_ticks_int <= 100) {
932 		sc->bce_tx_ticks_int =
933 		    bce_tx_ticks_int;
934 	} else {
935 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
936 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
937 		    __FILE__, __LINE__, bce_tx_ticks_int,
938 		    DEFAULT_TX_TICKS_INT);
939 		sc->bce_tx_ticks_int =
940 		    DEFAULT_TX_TICKS_INT;
941 	   }
942 
943 	if (bce_tx_ticks <= 100) {
944 		sc->bce_tx_ticks =
945 		    bce_tx_ticks;
946 	} else {
947 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
948 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
949 		    __FILE__, __LINE__, bce_tx_ticks,
950 		    DEFAULT_TX_TICKS);
951 		sc->bce_tx_ticks =
952 		    DEFAULT_TX_TICKS;
953 	}
954 
955 	/*
956 	 * Validate the RX trip point (i.e. the number of
957 	 * RX frames received before a status block update is
958 	 * generated and an interrupt is asserted.
959 	 */
960 	if (bce_rx_quick_cons_trip_int <= 100) {
961 		sc->bce_rx_quick_cons_trip_int =
962 		    bce_rx_quick_cons_trip_int;
963 	} else {
964 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
965 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
966 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
967 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
968 		sc->bce_rx_quick_cons_trip_int =
969 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
970 	}
971 
972 	if (bce_rx_quick_cons_trip <= 100) {
973 		sc->bce_rx_quick_cons_trip =
974 		    bce_rx_quick_cons_trip;
975 	} else {
976 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
977 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
978 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
979 		    DEFAULT_RX_QUICK_CONS_TRIP);
980 		sc->bce_rx_quick_cons_trip =
981 		    DEFAULT_RX_QUICK_CONS_TRIP;
982 	}
983 
984 	/*
985 	 * Validate the RX ticks count (i.e. the maximum amount
986 	 * of time to wait after the last RX frame has been
987 	 * received before a status block update is generated
988 	 * and an interrupt is asserted.
989 	 */
990 	if (bce_rx_ticks_int <= 100) {
991 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
992 	} else {
993 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
994 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
995 		    __FILE__, __LINE__, bce_rx_ticks_int,
996 		    DEFAULT_RX_TICKS_INT);
997 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
998 	}
999 
1000 	if (bce_rx_ticks <= 100) {
1001 		sc->bce_rx_ticks = bce_rx_ticks;
1002 	} else {
1003 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1004 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1005 		    __FILE__, __LINE__, bce_rx_ticks,
1006 		    DEFAULT_RX_TICKS);
1007 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1008 	}
1009 
1010 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1011 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1012 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1013 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1014 		   __FILE__, __LINE__);
1015 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1016 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1017 	}
1018 
1019 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1020 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1021 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1022 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1023 		   __FILE__, __LINE__);
1024 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1025 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1026 	}
1027 }
1028 
1029 /****************************************************************************/
1030 /* Device attach function.                                                  */
1031 /*                                                                          */
1032 /* Allocates device resources, performs secondary chip identification,      */
1033 /* resets and initializes the hardware, and initializes driver instance     */
1034 /* variables.                                                               */
1035 /*                                                                          */
1036 /* Returns:                                                                 */
1037 /*   0 on success, positive value on failure.                               */
1038 /****************************************************************************/
1039 static int
1040 bce_attach(device_t dev)
1041 {
1042 	struct bce_softc *sc;
1043 	if_t ifp;
1044 	u32 val;
1045 	int count, error, rc = 0, rid;
1046 
1047 	sc = device_get_softc(dev);
1048 	sc->bce_dev = dev;
1049 
1050 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1051 
1052 	sc->bce_unit = device_get_unit(dev);
1053 
1054 	/* Set initial device and PHY flags */
1055 	sc->bce_flags = 0;
1056 	sc->bce_phy_flags = 0;
1057 
1058 	bce_set_tunables(sc);
1059 
1060 	pci_enable_busmaster(dev);
1061 
1062 	/* Allocate PCI memory resources. */
1063 	rid = PCIR_BAR(0);
1064 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1065 		&rid, RF_ACTIVE);
1066 
1067 	if (sc->bce_res_mem == NULL) {
1068 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1069 		    __FILE__, __LINE__);
1070 		rc = ENXIO;
1071 		goto bce_attach_fail;
1072 	}
1073 
1074 	/* Get various resource handles. */
1075 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1076 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1077 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1078 
1079 	bce_probe_pci_caps(dev, sc);
1080 
1081 	rid = 1;
1082 	count = 0;
1083 #if 0
1084 	/* Try allocating MSI-X interrupts. */
1085 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1086 		(bce_msi_enable >= 2) &&
1087 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1088 		&rid, RF_ACTIVE)) != NULL)) {
1089 		msi_needed = count = 1;
1090 
1091 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1092 			(count != msi_needed)) {
1093 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1094 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1095 				msi_needed, count, error);
1096 			count = 0;
1097 			pci_release_msi(dev);
1098 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1099 				sc->bce_res_irq);
1100 			sc->bce_res_irq = NULL;
1101 		} else {
1102 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1103 				__FUNCTION__);
1104 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1105 		}
1106 	}
1107 #endif
1108 
1109 	/* Try allocating a MSI interrupt. */
1110 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1111 		(bce_msi_enable >= 1) && (count == 0)) {
1112 		count = 1;
1113 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1114 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1115 			    "error = %d\n", __FILE__, __LINE__, error);
1116 			count = 0;
1117 			pci_release_msi(dev);
1118 		} else {
1119 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1120 			    "interrupt.\n", __FUNCTION__);
1121 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1122 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1123 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1124 			rid = 1;
1125 		}
1126 	}
1127 
1128 	/* Try allocating a legacy interrupt. */
1129 	if (count == 0) {
1130 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1131 			__FUNCTION__);
1132 		rid = 0;
1133 	}
1134 
1135 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1136 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1137 
1138 	/* Report any IRQ allocation errors. */
1139 	if (sc->bce_res_irq == NULL) {
1140 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1141 		    __FILE__, __LINE__);
1142 		rc = ENXIO;
1143 		goto bce_attach_fail;
1144 	}
1145 
1146 	/* Initialize mutex for the current device instance. */
1147 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1148 
1149 	/*
1150 	 * Configure byte swap and enable indirect register access.
1151 	 * Rely on CPU to do target byte swapping on big endian systems.
1152 	 * Access to registers outside of PCI configurtion space are not
1153 	 * valid until this is done.
1154 	 */
1155 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1156 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1157 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1158 
1159 	/* Save ASIC revsion info. */
1160 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1161 
1162 	/* Weed out any non-production controller revisions. */
1163 	switch(BCE_CHIP_ID(sc)) {
1164 	case BCE_CHIP_ID_5706_A0:
1165 	case BCE_CHIP_ID_5706_A1:
1166 	case BCE_CHIP_ID_5708_A0:
1167 	case BCE_CHIP_ID_5708_B0:
1168 	case BCE_CHIP_ID_5709_A0:
1169 	case BCE_CHIP_ID_5709_B0:
1170 	case BCE_CHIP_ID_5709_B1:
1171 	case BCE_CHIP_ID_5709_B2:
1172 		BCE_PRINTF("%s(%d): Unsupported controller "
1173 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1174 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1175 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1176 		    PCIR_REVID, 4) & 0xf));
1177 		rc = ENODEV;
1178 		goto bce_attach_fail;
1179 	}
1180 
1181 	/*
1182 	 * The embedded PCIe to PCI-X bridge (EPB)
1183 	 * in the 5708 cannot address memory above
1184 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1185 	 */
1186 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1187 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1188 	else
1189 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1190 
1191 	/*
1192 	 * Find the base address for shared memory access.
1193 	 * Newer versions of bootcode use a signature and offset
1194 	 * while older versions use a fixed address.
1195 	 */
1196 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1197 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1198 		/* Multi-port devices use different offsets in shared memory. */
1199 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1200 		    (pci_get_function(sc->bce_dev) << 2));
1201 	else
1202 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1203 
1204 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1205 	    __FUNCTION__, sc->bce_shmem_base);
1206 
1207 	/* Fetch the bootcode revision. */
1208 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1209 	for (int i = 0, j = 0; i < 3; i++) {
1210 		u8 num;
1211 
1212 		num = (u8) (val >> (24 - (i * 8)));
1213 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1214 			if (num >= k || !skip0 || k == 1) {
1215 				sc->bce_bc_ver[j++] = (num / k) + '0';
1216 				skip0 = 0;
1217 			}
1218 		}
1219 
1220 		if (i != 2)
1221 			sc->bce_bc_ver[j++] = '.';
1222 	}
1223 
1224 	/* Check if any management firwmare is enabled. */
1225 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1226 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1227 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1228 
1229 		/* Allow time for firmware to enter the running state. */
1230 		for (int i = 0; i < 30; i++) {
1231 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1232 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1233 				break;
1234 			DELAY(10000);
1235 		}
1236 
1237 		/* Check if management firmware is running. */
1238 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1239 		val &= BCE_CONDITION_MFW_RUN_MASK;
1240 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1241 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1242 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1243 			int i = 0;
1244 
1245 			/* Read the management firmware version string. */
1246 			for (int j = 0; j < 3; j++) {
1247 				val = bce_reg_rd_ind(sc, addr + j * 4);
1248 				val = bswap32(val);
1249 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1250 				i += 4;
1251 			}
1252 		} else {
1253 			/* May cause firmware synchronization timeouts. */
1254 			BCE_PRINTF("%s(%d): Management firmware enabled "
1255 			    "but not running!\n", __FILE__, __LINE__);
1256 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1257 
1258 			/* ToDo: Any action the driver should take? */
1259 		}
1260 	}
1261 
1262 	/* Get PCI bus information (speed and type). */
1263 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1264 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1265 		u32 clkreg;
1266 
1267 		sc->bce_flags |= BCE_PCIX_FLAG;
1268 
1269 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1270 
1271 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1272 		switch (clkreg) {
1273 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1274 			sc->bus_speed_mhz = 133;
1275 			break;
1276 
1277 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1278 			sc->bus_speed_mhz = 100;
1279 			break;
1280 
1281 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1282 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1283 			sc->bus_speed_mhz = 66;
1284 			break;
1285 
1286 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1287 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1288 			sc->bus_speed_mhz = 50;
1289 			break;
1290 
1291 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1292 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1293 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1294 			sc->bus_speed_mhz = 33;
1295 			break;
1296 		}
1297 	} else {
1298 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1299 			sc->bus_speed_mhz = 66;
1300 		else
1301 			sc->bus_speed_mhz = 33;
1302 	}
1303 
1304 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1305 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1306 
1307 	/* Find the media type for the adapter. */
1308 	bce_get_media(sc);
1309 
1310 	/* Reset controller and announce to bootcode that driver is present. */
1311 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1312 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1313 		    __FILE__, __LINE__);
1314 		rc = ENXIO;
1315 		goto bce_attach_fail;
1316 	}
1317 
1318 	/* Initialize the controller. */
1319 	if (bce_chipinit(sc)) {
1320 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1321 		    __FILE__, __LINE__);
1322 		rc = ENXIO;
1323 		goto bce_attach_fail;
1324 	}
1325 
1326 	/* Perform NVRAM test. */
1327 	if (bce_nvram_test(sc)) {
1328 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1329 		    __FILE__, __LINE__);
1330 		rc = ENXIO;
1331 		goto bce_attach_fail;
1332 	}
1333 
1334 	/* Fetch the permanent Ethernet MAC address. */
1335 	bce_get_mac_addr(sc);
1336 
1337 	/* Update statistics once every second. */
1338 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1339 
1340 	/* Store data needed by PHY driver for backplane applications */
1341 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1342 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1343 
1344 	/* Allocate DMA memory resources. */
1345 	if (bce_dma_alloc(dev)) {
1346 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1347 		    __FILE__, __LINE__);
1348 		rc = ENXIO;
1349 		goto bce_attach_fail;
1350 	}
1351 
1352 	/* Allocate an ifnet structure. */
1353 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1354 
1355 	/* Initialize the ifnet interface. */
1356 	if_setsoftc(ifp, sc);
1357 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1358 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1359 	if_setioctlfn(ifp, bce_ioctl);
1360 	if_setstartfn(ifp, bce_start);
1361 	if_setgetcounterfn(ifp, bce_get_counter);
1362 	if_setinitfn(ifp, bce_init);
1363 	if_setmtu(ifp, ETHERMTU);
1364 
1365 	if (bce_tso_enable) {
1366 		if_sethwassist(ifp, BCE_IF_HWASSIST | CSUM_TSO);
1367 		if_setcapabilities(ifp, BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1368 		    IFCAP_VLAN_HWTSO);
1369 	} else {
1370 		if_sethwassist(ifp, BCE_IF_HWASSIST);
1371 		if_setcapabilities(ifp, BCE_IF_CAPABILITIES);
1372 	}
1373 
1374 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1375 		if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0);
1376 
1377 	if_setcapenable(ifp, if_getcapabilities(ifp));
1378 
1379 	/*
1380 	 * Assume standard mbuf sizes for buffer allocation.
1381 	 * This may change later if the MTU size is set to
1382 	 * something other than 1500.
1383 	 */
1384 	bce_get_rx_buffer_sizes(sc,
1385 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1386 
1387 	/* Recalculate our buffer allocation sizes. */
1388 	if_setsendqlen(ifp, USABLE_TX_BD_ALLOC);
1389 	if_setsendqready(ifp);
1390 
1391 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1392 		if_setbaudrate(ifp, IF_Mbps(2500ULL));
1393 	else
1394 		if_setbaudrate(ifp, IF_Mbps(1000));
1395 
1396 	/* Handle any special PHY initialization for SerDes PHYs. */
1397 	bce_init_media(sc);
1398 
1399 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1400 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1401 		    bce_ifmedia_sts);
1402 		/*
1403 		 * We can't manually override remote PHY's link and assume
1404 		 * PHY port configuration(Fiber or TP) is not changed after
1405 		 * device attach.  This may not be correct though.
1406 		 */
1407 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1408 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1409 				ifmedia_add(&sc->bce_ifmedia,
1410 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1411 				ifmedia_add(&sc->bce_ifmedia,
1412 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1413 			}
1414 			ifmedia_add(&sc->bce_ifmedia,
1415 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1416 			ifmedia_add(&sc->bce_ifmedia,
1417 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1418 		} else {
1419 			ifmedia_add(&sc->bce_ifmedia,
1420 			    IFM_ETHER | IFM_10_T, 0, NULL);
1421 			ifmedia_add(&sc->bce_ifmedia,
1422 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1423 			ifmedia_add(&sc->bce_ifmedia,
1424 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1425 			ifmedia_add(&sc->bce_ifmedia,
1426 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1427 			ifmedia_add(&sc->bce_ifmedia,
1428 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1429 			ifmedia_add(&sc->bce_ifmedia,
1430 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1431 		}
1432 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1433 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1434 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1435 	} else {
1436 		/* MII child bus by attaching the PHY. */
1437 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1438 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1439 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1440 		if (rc != 0) {
1441 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1442 			    __LINE__);
1443 			goto bce_attach_fail;
1444 		}
1445 	}
1446 
1447 	/* Attach to the Ethernet interface list. */
1448 	ether_ifattach(ifp, sc->eaddr);
1449 
1450 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1451 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1452 
1453 	/* Hookup IRQ last. */
1454 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1455 		NULL, bce_intr, sc, &sc->bce_intrhand);
1456 
1457 	if (rc) {
1458 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1459 		    __FILE__, __LINE__);
1460 		bce_detach(dev);
1461 		goto bce_attach_exit;
1462 	}
1463 
1464 	/*
1465 	 * At this point we've acquired all the resources
1466 	 * we need to run so there's no turning back, we're
1467 	 * cleared for launch.
1468 	 */
1469 
1470 	/* Print some important debugging info. */
1471 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1472 
1473 	/* Add the supported sysctls to the kernel. */
1474 	bce_add_sysctls(sc);
1475 
1476 	BCE_LOCK(sc);
1477 
1478 	/*
1479 	 * The chip reset earlier notified the bootcode that
1480 	 * a driver is present.  We now need to start our pulse
1481 	 * routine so that the bootcode is reminded that we're
1482 	 * still running.
1483 	 */
1484 	bce_pulse(sc);
1485 
1486 	bce_mgmt_init_locked(sc);
1487 	BCE_UNLOCK(sc);
1488 
1489 	/* Finally, print some useful adapter info */
1490 	bce_print_adapter_info(sc);
1491 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1492 		__FUNCTION__, sc);
1493 
1494 	goto bce_attach_exit;
1495 
1496 bce_attach_fail:
1497 	bce_release_resources(sc);
1498 
1499 bce_attach_exit:
1500 
1501 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1502 
1503 	return(rc);
1504 }
1505 
1506 /****************************************************************************/
1507 /* Device detach function.                                                  */
1508 /*                                                                          */
1509 /* Stops the controller, resets the controller, and releases resources.     */
1510 /*                                                                          */
1511 /* Returns:                                                                 */
1512 /*   0 on success, positive value on failure.                               */
1513 /****************************************************************************/
1514 static int
1515 bce_detach(device_t dev)
1516 {
1517 	struct bce_softc *sc = device_get_softc(dev);
1518 	if_t ifp;
1519 	u32 msg;
1520 
1521 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1522 
1523 	ifp = sc->bce_ifp;
1524 
1525 	/* Stop and reset the controller. */
1526 	BCE_LOCK(sc);
1527 
1528 	/* Stop the pulse so the bootcode can go to driver absent state. */
1529 	callout_stop(&sc->bce_pulse_callout);
1530 
1531 	bce_stop(sc);
1532 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1533 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1534 	else
1535 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1536 	bce_reset(sc, msg);
1537 
1538 	BCE_UNLOCK(sc);
1539 
1540 	ether_ifdetach(ifp);
1541 
1542 	/* If we have a child device on the MII bus remove it too. */
1543 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1544 		ifmedia_removeall(&sc->bce_ifmedia);
1545 	else {
1546 		bus_generic_detach(dev);
1547 	}
1548 
1549 	/* Release all remaining resources. */
1550 	bce_release_resources(sc);
1551 
1552 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1553 
1554 	return(0);
1555 }
1556 
1557 /****************************************************************************/
1558 /* Device shutdown function.                                                */
1559 /*                                                                          */
1560 /* Stops and resets the controller.                                         */
1561 /*                                                                          */
1562 /* Returns:                                                                 */
1563 /*   0 on success, positive value on failure.                               */
1564 /****************************************************************************/
1565 static int
1566 bce_shutdown(device_t dev)
1567 {
1568 	struct bce_softc *sc = device_get_softc(dev);
1569 	u32 msg;
1570 
1571 	DBENTER(BCE_VERBOSE);
1572 
1573 	BCE_LOCK(sc);
1574 	bce_stop(sc);
1575 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1576 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1577 	else
1578 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1579 	bce_reset(sc, msg);
1580 	BCE_UNLOCK(sc);
1581 
1582 	DBEXIT(BCE_VERBOSE);
1583 
1584 	return (0);
1585 }
1586 
1587 #ifdef BCE_DEBUG
1588 /****************************************************************************/
1589 /* Register read.                                                           */
1590 /*                                                                          */
1591 /* Returns:                                                                 */
1592 /*   The value of the register.                                             */
1593 /****************************************************************************/
1594 static u32
1595 bce_reg_rd(struct bce_softc *sc, u32 offset)
1596 {
1597 	u32 val = REG_RD(sc, offset);
1598 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1599 		__FUNCTION__, offset, val);
1600 	return val;
1601 }
1602 
1603 /****************************************************************************/
1604 /* Register write (16 bit).                                                 */
1605 /*                                                                          */
1606 /* Returns:                                                                 */
1607 /*   Nothing.                                                               */
1608 /****************************************************************************/
1609 static void
1610 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1611 {
1612 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1613 		__FUNCTION__, offset, val);
1614 	REG_WR16(sc, offset, val);
1615 }
1616 
1617 /****************************************************************************/
1618 /* Register write.                                                          */
1619 /*                                                                          */
1620 /* Returns:                                                                 */
1621 /*   Nothing.                                                               */
1622 /****************************************************************************/
1623 static void
1624 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1625 {
1626 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1627 		__FUNCTION__, offset, val);
1628 	REG_WR(sc, offset, val);
1629 }
1630 #endif
1631 
1632 /****************************************************************************/
1633 /* Indirect register read.                                                  */
1634 /*                                                                          */
1635 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1636 /* configuration space.  Using this mechanism avoids issues with posted     */
1637 /* reads but is much slower than memory-mapped I/O.                         */
1638 /*                                                                          */
1639 /* Returns:                                                                 */
1640 /*   The value of the register.                                             */
1641 /****************************************************************************/
1642 static u32
1643 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1644 {
1645 	device_t dev;
1646 	dev = sc->bce_dev;
1647 
1648 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1649 #ifdef BCE_DEBUG
1650 	{
1651 		u32 val;
1652 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1653 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1654 			__FUNCTION__, offset, val);
1655 		return val;
1656 	}
1657 #else
1658 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1659 #endif
1660 }
1661 
1662 /****************************************************************************/
1663 /* Indirect register write.                                                 */
1664 /*                                                                          */
1665 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1666 /* configuration space.  Using this mechanism avoids issues with posted     */
1667 /* writes but is muchh slower than memory-mapped I/O.                       */
1668 /*                                                                          */
1669 /* Returns:                                                                 */
1670 /*   Nothing.                                                               */
1671 /****************************************************************************/
1672 static void
1673 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1674 {
1675 	device_t dev;
1676 	dev = sc->bce_dev;
1677 
1678 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1679 		__FUNCTION__, offset, val);
1680 
1681 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1682 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1683 }
1684 
1685 /****************************************************************************/
1686 /* Shared memory write.                                                     */
1687 /*                                                                          */
1688 /* Writes NetXtreme II shared memory region.                                */
1689 /*                                                                          */
1690 /* Returns:                                                                 */
1691 /*   Nothing.                                                               */
1692 /****************************************************************************/
1693 static void
1694 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1695 {
1696 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1697 	    "0x%08X\n",	__FUNCTION__, val, offset);
1698 
1699 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1700 }
1701 
1702 /****************************************************************************/
1703 /* Shared memory read.                                                      */
1704 /*                                                                          */
1705 /* Reads NetXtreme II shared memory region.                                 */
1706 /*                                                                          */
1707 /* Returns:                                                                 */
1708 /*   The 32 bit value read.                                                 */
1709 /****************************************************************************/
1710 static u32
1711 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1712 {
1713 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1714 
1715 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1716 	    "0x%08X\n",	__FUNCTION__, val, offset);
1717 
1718 	return val;
1719 }
1720 
1721 #ifdef BCE_DEBUG
1722 /****************************************************************************/
1723 /* Context memory read.                                                     */
1724 /*                                                                          */
1725 /* The NetXtreme II controller uses context memory to track connection      */
1726 /* information for L2 and higher network protocols.                         */
1727 /*                                                                          */
1728 /* Returns:                                                                 */
1729 /*   The requested 32 bit value of context memory.                          */
1730 /****************************************************************************/
1731 static u32
1732 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1733 {
1734 	u32 idx, offset, retry_cnt = 5, val;
1735 
1736 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1737 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1738 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1739 
1740 	offset = ctx_offset + cid_addr;
1741 
1742 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1743 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1744 
1745 		for (idx = 0; idx < retry_cnt; idx++) {
1746 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1747 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1748 				break;
1749 			DELAY(5);
1750 		}
1751 
1752 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1753 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1754 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1755 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1756 
1757 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1758 	} else {
1759 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1760 		val = REG_RD(sc, BCE_CTX_DATA);
1761 	}
1762 
1763 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1764 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1765 
1766 	return(val);
1767 }
1768 #endif
1769 
1770 /****************************************************************************/
1771 /* Context memory write.                                                    */
1772 /*                                                                          */
1773 /* The NetXtreme II controller uses context memory to track connection      */
1774 /* information for L2 and higher network protocols.                         */
1775 /*                                                                          */
1776 /* Returns:                                                                 */
1777 /*   Nothing.                                                               */
1778 /****************************************************************************/
1779 static void
1780 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1781 {
1782 	u32 idx, offset = ctx_offset + cid_addr;
1783 	u32 val, retry_cnt = 5;
1784 
1785 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1786 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1787 
1788 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1789 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1790 		    __FUNCTION__, cid_addr));
1791 
1792 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1793 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1794 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1795 
1796 		for (idx = 0; idx < retry_cnt; idx++) {
1797 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1798 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1799 				break;
1800 			DELAY(5);
1801 		}
1802 
1803 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1804 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1805 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1806 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1807 
1808 	} else {
1809 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1810 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1811 	}
1812 }
1813 
1814 /****************************************************************************/
1815 /* PHY register read.                                                       */
1816 /*                                                                          */
1817 /* Implements register reads on the MII bus.                                */
1818 /*                                                                          */
1819 /* Returns:                                                                 */
1820 /*   The value of the register.                                             */
1821 /****************************************************************************/
1822 static int
1823 bce_miibus_read_reg(device_t dev, int phy, int reg)
1824 {
1825 	struct bce_softc *sc;
1826 	u32 val;
1827 	int i;
1828 
1829 	sc = device_get_softc(dev);
1830 
1831     /*
1832      * The 5709S PHY is an IEEE Clause 45 PHY
1833      * with special mappings to work with IEEE
1834      * Clause 22 register accesses.
1835      */
1836 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1837 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1838 			reg += 0x10;
1839 	}
1840 
1841     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1842 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1843 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1844 
1845 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1846 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1847 
1848 		DELAY(40);
1849 	}
1850 
1851 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1852 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1853 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1854 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1855 
1856 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1857 		DELAY(10);
1858 
1859 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1860 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1861 			DELAY(5);
1862 
1863 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1864 			val &= BCE_EMAC_MDIO_COMM_DATA;
1865 
1866 			break;
1867 		}
1868 	}
1869 
1870 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1871 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1872 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1873 		val = 0x0;
1874 	} else {
1875 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1876 	}
1877 
1878 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1879 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1880 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1881 
1882 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1883 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1884 
1885 		DELAY(40);
1886 	}
1887 
1888 	DB_PRINT_PHY_REG(reg, val);
1889 	return (val & 0xffff);
1890 }
1891 
1892 /****************************************************************************/
1893 /* PHY register write.                                                      */
1894 /*                                                                          */
1895 /* Implements register writes on the MII bus.                               */
1896 /*                                                                          */
1897 /* Returns:                                                                 */
1898 /*   The value of the register.                                             */
1899 /****************************************************************************/
1900 static int
1901 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1902 {
1903 	struct bce_softc *sc;
1904 	u32 val1;
1905 	int i;
1906 
1907 	sc = device_get_softc(dev);
1908 
1909 	DB_PRINT_PHY_REG(reg, val);
1910 
1911 	/*
1912 	 * The 5709S PHY is an IEEE Clause 45 PHY
1913 	 * with special mappings to work with IEEE
1914 	 * Clause 22 register accesses.
1915 	 */
1916 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1917 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1918 			reg += 0x10;
1919 	}
1920 
1921 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1922 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1923 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1924 
1925 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1926 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1927 
1928 		DELAY(40);
1929 	}
1930 
1931 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1932 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1933 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1934 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1935 
1936 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1937 		DELAY(10);
1938 
1939 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1940 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1941 			DELAY(5);
1942 			break;
1943 		}
1944 	}
1945 
1946 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1947 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1948 		    __FILE__, __LINE__);
1949 
1950 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1951 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1952 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1953 
1954 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1955 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1956 
1957 		DELAY(40);
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 /****************************************************************************/
1964 /* MII bus status change.                                                   */
1965 /*                                                                          */
1966 /* Called by the MII bus driver when the PHY establishes link to set the    */
1967 /* MAC interface registers.                                                 */
1968 /*                                                                          */
1969 /* Returns:                                                                 */
1970 /*   Nothing.                                                               */
1971 /****************************************************************************/
1972 static void
1973 bce_miibus_statchg(device_t dev)
1974 {
1975 	struct bce_softc *sc;
1976 	struct mii_data *mii;
1977 	struct ifmediareq ifmr;
1978 	int media_active, media_status, val;
1979 
1980 	sc = device_get_softc(dev);
1981 
1982 	DBENTER(BCE_VERBOSE_PHY);
1983 
1984 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1985 		bzero(&ifmr, sizeof(ifmr));
1986 		bce_ifmedia_sts_rphy(sc, &ifmr);
1987 		media_active = ifmr.ifm_active;
1988 		media_status = ifmr.ifm_status;
1989 	} else {
1990 		mii = device_get_softc(sc->bce_miibus);
1991 		media_active = mii->mii_media_active;
1992 		media_status = mii->mii_media_status;
1993 	}
1994 
1995 	/* Ignore invalid media status. */
1996 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
1997 	    (IFM_ACTIVE | IFM_AVALID))
1998 		goto bce_miibus_statchg_exit;
1999 
2000 	val = REG_RD(sc, BCE_EMAC_MODE);
2001 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2002 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2003 	    BCE_EMAC_MODE_25G);
2004 
2005 	/* Set MII or GMII interface based on the PHY speed. */
2006 	switch (IFM_SUBTYPE(media_active)) {
2007 	case IFM_10_T:
2008 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2009 			DBPRINT(sc, BCE_INFO_PHY,
2010 			    "Enabling 10Mb interface.\n");
2011 			val |= BCE_EMAC_MODE_PORT_MII_10;
2012 			break;
2013 		}
2014 		/* fall-through */
2015 	case IFM_100_TX:
2016 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2017 		val |= BCE_EMAC_MODE_PORT_MII;
2018 		break;
2019 	case IFM_2500_SX:
2020 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2021 		val |= BCE_EMAC_MODE_25G;
2022 		/* fall-through */
2023 	case IFM_1000_T:
2024 	case IFM_1000_SX:
2025 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2026 		val |= BCE_EMAC_MODE_PORT_GMII;
2027 		break;
2028 	default:
2029 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2030 		    "default GMII interface.\n");
2031 		val |= BCE_EMAC_MODE_PORT_GMII;
2032 	}
2033 
2034 	/* Set half or full duplex based on PHY settings. */
2035 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2036 		DBPRINT(sc, BCE_INFO_PHY,
2037 		    "Setting Half-Duplex interface.\n");
2038 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2039 	} else
2040 		DBPRINT(sc, BCE_INFO_PHY,
2041 		    "Setting Full-Duplex interface.\n");
2042 
2043 	REG_WR(sc, BCE_EMAC_MODE, val);
2044 
2045 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2046 		DBPRINT(sc, BCE_INFO_PHY,
2047 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2048 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2049 		sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2050 	} else {
2051 		DBPRINT(sc, BCE_INFO_PHY,
2052 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2053 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2054 		sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2055 	}
2056 
2057 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2058 		DBPRINT(sc, BCE_INFO_PHY,
2059 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2060 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2061 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2062 	} else {
2063 		DBPRINT(sc, BCE_INFO_PHY,
2064 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2065 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2066 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2067 	}
2068 
2069 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2070 
2071 bce_miibus_statchg_exit:
2072 	DBEXIT(BCE_VERBOSE_PHY);
2073 }
2074 
2075 /****************************************************************************/
2076 /* Acquire NVRAM lock.                                                      */
2077 /*                                                                          */
2078 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2079 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2080 /* for use by the driver.                                                   */
2081 /*                                                                          */
2082 /* Returns:                                                                 */
2083 /*   0 on success, positive value on failure.                               */
2084 /****************************************************************************/
2085 static int
2086 bce_acquire_nvram_lock(struct bce_softc *sc)
2087 {
2088 	u32 val;
2089 	int j, rc = 0;
2090 
2091 	DBENTER(BCE_VERBOSE_NVRAM);
2092 
2093 	/* Request access to the flash interface. */
2094 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2095 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2096 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2097 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2098 			break;
2099 
2100 		DELAY(5);
2101 	}
2102 
2103 	if (j >= NVRAM_TIMEOUT_COUNT) {
2104 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2105 		rc = EBUSY;
2106 	}
2107 
2108 	DBEXIT(BCE_VERBOSE_NVRAM);
2109 	return (rc);
2110 }
2111 
2112 /****************************************************************************/
2113 /* Release NVRAM lock.                                                      */
2114 /*                                                                          */
2115 /* When the caller is finished accessing NVRAM the lock must be released.   */
2116 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2117 /* for use by the driver.                                                   */
2118 /*                                                                          */
2119 /* Returns:                                                                 */
2120 /*   0 on success, positive value on failure.                               */
2121 /****************************************************************************/
2122 static int
2123 bce_release_nvram_lock(struct bce_softc *sc)
2124 {
2125 	u32 val;
2126 	int j, rc = 0;
2127 
2128 	DBENTER(BCE_VERBOSE_NVRAM);
2129 
2130 	/*
2131 	 * Relinquish nvram interface.
2132 	 */
2133 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2134 
2135 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2136 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2137 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2138 			break;
2139 
2140 		DELAY(5);
2141 	}
2142 
2143 	if (j >= NVRAM_TIMEOUT_COUNT) {
2144 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2145 		rc = EBUSY;
2146 	}
2147 
2148 	DBEXIT(BCE_VERBOSE_NVRAM);
2149 	return (rc);
2150 }
2151 
2152 #ifdef BCE_NVRAM_WRITE_SUPPORT
2153 /****************************************************************************/
2154 /* Enable NVRAM write access.                                               */
2155 /*                                                                          */
2156 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2157 /*                                                                          */
2158 /* Returns:                                                                 */
2159 /*   0 on success, positive value on failure.                               */
2160 /****************************************************************************/
2161 static int
2162 bce_enable_nvram_write(struct bce_softc *sc)
2163 {
2164 	u32 val;
2165 	int rc = 0;
2166 
2167 	DBENTER(BCE_VERBOSE_NVRAM);
2168 
2169 	val = REG_RD(sc, BCE_MISC_CFG);
2170 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2171 
2172 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2173 		int j;
2174 
2175 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2176 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2177 
2178 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2179 			DELAY(5);
2180 
2181 			val = REG_RD(sc, BCE_NVM_COMMAND);
2182 			if (val & BCE_NVM_COMMAND_DONE)
2183 				break;
2184 		}
2185 
2186 		if (j >= NVRAM_TIMEOUT_COUNT) {
2187 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2188 			rc = EBUSY;
2189 		}
2190 	}
2191 
2192 	DBENTER(BCE_VERBOSE_NVRAM);
2193 	return (rc);
2194 }
2195 
2196 /****************************************************************************/
2197 /* Disable NVRAM write access.                                              */
2198 /*                                                                          */
2199 /* When the caller is finished writing to NVRAM write access must be        */
2200 /* disabled.                                                                */
2201 /*                                                                          */
2202 /* Returns:                                                                 */
2203 /*   Nothing.                                                               */
2204 /****************************************************************************/
2205 static void
2206 bce_disable_nvram_write(struct bce_softc *sc)
2207 {
2208 	u32 val;
2209 
2210 	DBENTER(BCE_VERBOSE_NVRAM);
2211 
2212 	val = REG_RD(sc, BCE_MISC_CFG);
2213 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2214 
2215 	DBEXIT(BCE_VERBOSE_NVRAM);
2216 
2217 }
2218 #endif
2219 
2220 /****************************************************************************/
2221 /* Enable NVRAM access.                                                     */
2222 /*                                                                          */
2223 /* Before accessing NVRAM for read or write operations the caller must      */
2224 /* enabled NVRAM access.                                                    */
2225 /*                                                                          */
2226 /* Returns:                                                                 */
2227 /*   Nothing.                                                               */
2228 /****************************************************************************/
2229 static void
2230 bce_enable_nvram_access(struct bce_softc *sc)
2231 {
2232 	u32 val;
2233 
2234 	DBENTER(BCE_VERBOSE_NVRAM);
2235 
2236 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2237 	/* Enable both bits, even on read. */
2238 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2239 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2240 
2241 	DBEXIT(BCE_VERBOSE_NVRAM);
2242 }
2243 
2244 /****************************************************************************/
2245 /* Disable NVRAM access.                                                    */
2246 /*                                                                          */
2247 /* When the caller is finished accessing NVRAM access must be disabled.     */
2248 /*                                                                          */
2249 /* Returns:                                                                 */
2250 /*   Nothing.                                                               */
2251 /****************************************************************************/
2252 static void
2253 bce_disable_nvram_access(struct bce_softc *sc)
2254 {
2255 	u32 val;
2256 
2257 	DBENTER(BCE_VERBOSE_NVRAM);
2258 
2259 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2260 
2261 	/* Disable both bits, even after read. */
2262 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2263 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2264 
2265 	DBEXIT(BCE_VERBOSE_NVRAM);
2266 }
2267 
2268 #ifdef BCE_NVRAM_WRITE_SUPPORT
2269 /****************************************************************************/
2270 /* Erase NVRAM page before writing.                                         */
2271 /*                                                                          */
2272 /* Non-buffered flash parts require that a page be erased before it is      */
2273 /* written.                                                                 */
2274 /*                                                                          */
2275 /* Returns:                                                                 */
2276 /*   0 on success, positive value on failure.                               */
2277 /****************************************************************************/
2278 static int
2279 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2280 {
2281 	u32 cmd;
2282 	int j, rc = 0;
2283 
2284 	DBENTER(BCE_VERBOSE_NVRAM);
2285 
2286 	/* Buffered flash doesn't require an erase. */
2287 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2288 		goto bce_nvram_erase_page_exit;
2289 
2290 	/* Build an erase command. */
2291 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2292 	    BCE_NVM_COMMAND_DOIT;
2293 
2294 	/*
2295 	 * Clear the DONE bit separately, set the NVRAM address to erase,
2296 	 * and issue the erase command.
2297 	 */
2298 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2299 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2300 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2301 
2302 	/* Wait for completion. */
2303 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2304 		u32 val;
2305 
2306 		DELAY(5);
2307 
2308 		val = REG_RD(sc, BCE_NVM_COMMAND);
2309 		if (val & BCE_NVM_COMMAND_DONE)
2310 			break;
2311 	}
2312 
2313 	if (j >= NVRAM_TIMEOUT_COUNT) {
2314 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2315 		rc = EBUSY;
2316 	}
2317 
2318 bce_nvram_erase_page_exit:
2319 	DBEXIT(BCE_VERBOSE_NVRAM);
2320 	return (rc);
2321 }
2322 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2323 
2324 /****************************************************************************/
2325 /* Read a dword (32 bits) from NVRAM.                                       */
2326 /*                                                                          */
2327 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2328 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2329 /*                                                                          */
2330 /* Returns:                                                                 */
2331 /*   0 on success and the 32 bit value read, positive value on failure.     */
2332 /****************************************************************************/
2333 static int
2334 bce_nvram_read_dword(struct bce_softc *sc,
2335     u32 offset, u8 *ret_val, u32 cmd_flags)
2336 {
2337 	u32 cmd;
2338 	int i, rc = 0;
2339 
2340 	DBENTER(BCE_EXTREME_NVRAM);
2341 
2342 	/* Build the command word. */
2343 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2344 
2345 	/* Calculate the offset for buffered flash if translation is used. */
2346 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2347 		offset = ((offset / sc->bce_flash_info->page_size) <<
2348 		    sc->bce_flash_info->page_bits) +
2349 		    (offset % sc->bce_flash_info->page_size);
2350 	}
2351 
2352 	/*
2353 	 * Clear the DONE bit separately, set the address to read,
2354 	 * and issue the read.
2355 	 */
2356 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2357 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2358 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2359 
2360 	/* Wait for completion. */
2361 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2362 		u32 val;
2363 
2364 		DELAY(5);
2365 
2366 		val = REG_RD(sc, BCE_NVM_COMMAND);
2367 		if (val & BCE_NVM_COMMAND_DONE) {
2368 			val = REG_RD(sc, BCE_NVM_READ);
2369 
2370 			val = bce_be32toh(val);
2371 			memcpy(ret_val, &val, 4);
2372 			break;
2373 		}
2374 	}
2375 
2376 	/* Check for errors. */
2377 	if (i >= NVRAM_TIMEOUT_COUNT) {
2378 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2379 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2380 		rc = EBUSY;
2381 	}
2382 
2383 	DBEXIT(BCE_EXTREME_NVRAM);
2384 	return(rc);
2385 }
2386 
2387 #ifdef BCE_NVRAM_WRITE_SUPPORT
2388 /****************************************************************************/
2389 /* Write a dword (32 bits) to NVRAM.                                        */
2390 /*                                                                          */
2391 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2392 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2393 /* enabled NVRAM write access.                                              */
2394 /*                                                                          */
2395 /* Returns:                                                                 */
2396 /*   0 on success, positive value on failure.                               */
2397 /****************************************************************************/
2398 static int
2399 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2400 	u32 cmd_flags)
2401 {
2402 	u32 cmd, val32;
2403 	int j, rc = 0;
2404 
2405 	DBENTER(BCE_VERBOSE_NVRAM);
2406 
2407 	/* Build the command word. */
2408 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2409 
2410 	/* Calculate the offset for buffered flash if translation is used. */
2411 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2412 		offset = ((offset / sc->bce_flash_info->page_size) <<
2413 		    sc->bce_flash_info->page_bits) +
2414 		    (offset % sc->bce_flash_info->page_size);
2415 	}
2416 
2417 	/*
2418 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2419 	 * set the NVRAM address to write, and issue the write command
2420 	 */
2421 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2422 	memcpy(&val32, val, 4);
2423 	val32 = htobe32(val32);
2424 	REG_WR(sc, BCE_NVM_WRITE, val32);
2425 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2426 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2427 
2428 	/* Wait for completion. */
2429 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2430 		DELAY(5);
2431 
2432 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2433 			break;
2434 	}
2435 	if (j >= NVRAM_TIMEOUT_COUNT) {
2436 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2437 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2438 		rc = EBUSY;
2439 	}
2440 
2441 	DBEXIT(BCE_VERBOSE_NVRAM);
2442 	return (rc);
2443 }
2444 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2445 
2446 /****************************************************************************/
2447 /* Initialize NVRAM access.                                                 */
2448 /*                                                                          */
2449 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2450 /* access that device.                                                      */
2451 /*                                                                          */
2452 /* Returns:                                                                 */
2453 /*   0 on success, positive value on failure.                               */
2454 /****************************************************************************/
2455 static int
2456 bce_init_nvram(struct bce_softc *sc)
2457 {
2458 	u32 val;
2459 	int j, entry_count, rc = 0;
2460 	const struct flash_spec *flash;
2461 
2462 	DBENTER(BCE_VERBOSE_NVRAM);
2463 
2464 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2465 		sc->bce_flash_info = &flash_5709;
2466 		goto bce_init_nvram_get_flash_size;
2467 	}
2468 
2469 	/* Determine the selected interface. */
2470 	val = REG_RD(sc, BCE_NVM_CFG1);
2471 
2472 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2473 
2474 	/*
2475 	 * Flash reconfiguration is required to support additional
2476 	 * NVRAM devices not directly supported in hardware.
2477 	 * Check if the flash interface was reconfigured
2478 	 * by the bootcode.
2479 	 */
2480 
2481 	if (val & 0x40000000) {
2482 		/* Flash interface reconfigured by bootcode. */
2483 
2484 		DBPRINT(sc,BCE_INFO_LOAD,
2485 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2486 
2487 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2488 		     j++, flash++) {
2489 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2490 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2491 				sc->bce_flash_info = flash;
2492 				break;
2493 			}
2494 		}
2495 	} else {
2496 		/* Flash interface not yet reconfigured. */
2497 		u32 mask;
2498 
2499 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2500 			__FUNCTION__);
2501 
2502 		if (val & (1 << 23))
2503 			mask = FLASH_BACKUP_STRAP_MASK;
2504 		else
2505 			mask = FLASH_STRAP_MASK;
2506 
2507 		/* Look for the matching NVRAM device configuration data. */
2508 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2509 			/* Check if the device matches any of the known devices. */
2510 			if ((val & mask) == (flash->strapping & mask)) {
2511 				/* Found a device match. */
2512 				sc->bce_flash_info = flash;
2513 
2514 				/* Request access to the flash interface. */
2515 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2516 					return rc;
2517 
2518 				/* Reconfigure the flash interface. */
2519 				bce_enable_nvram_access(sc);
2520 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2521 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2522 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2523 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2524 				bce_disable_nvram_access(sc);
2525 				bce_release_nvram_lock(sc);
2526 
2527 				break;
2528 			}
2529 		}
2530 	}
2531 
2532 	/* Check if a matching device was found. */
2533 	if (j == entry_count) {
2534 		sc->bce_flash_info = NULL;
2535 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2536 		    __FILE__, __LINE__);
2537 		DBEXIT(BCE_VERBOSE_NVRAM);
2538 		return (ENODEV);
2539 	}
2540 
2541 bce_init_nvram_get_flash_size:
2542 	/* Write the flash config data to the shared memory interface. */
2543 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2544 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2545 	if (val)
2546 		sc->bce_flash_size = val;
2547 	else
2548 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2549 
2550 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2551 	    __FUNCTION__, sc->bce_flash_info->name,
2552 	    sc->bce_flash_info->total_size);
2553 
2554 	DBEXIT(BCE_VERBOSE_NVRAM);
2555 	return rc;
2556 }
2557 
2558 /****************************************************************************/
2559 /* Read an arbitrary range of data from NVRAM.                              */
2560 /*                                                                          */
2561 /* Prepares the NVRAM interface for access and reads the requested data     */
2562 /* into the supplied buffer.                                                */
2563 /*                                                                          */
2564 /* Returns:                                                                 */
2565 /*   0 on success and the data read, positive value on failure.             */
2566 /****************************************************************************/
2567 static int
2568 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2569 	int buf_size)
2570 {
2571 	int rc = 0;
2572 	u32 cmd_flags, offset32, len32, extra;
2573 
2574 	DBENTER(BCE_VERBOSE_NVRAM);
2575 
2576 	if (buf_size == 0)
2577 		goto bce_nvram_read_exit;
2578 
2579 	/* Request access to the flash interface. */
2580 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2581 		goto bce_nvram_read_exit;
2582 
2583 	/* Enable access to flash interface */
2584 	bce_enable_nvram_access(sc);
2585 
2586 	len32 = buf_size;
2587 	offset32 = offset;
2588 	extra = 0;
2589 
2590 	cmd_flags = 0;
2591 
2592 	if (offset32 & 3) {
2593 		u8 buf[4];
2594 		u32 pre_len;
2595 
2596 		offset32 &= ~3;
2597 		pre_len = 4 - (offset & 3);
2598 
2599 		if (pre_len >= len32) {
2600 			pre_len = len32;
2601 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2602 		}
2603 		else {
2604 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2605 		}
2606 
2607 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2608 
2609 		if (rc)
2610 			return rc;
2611 
2612 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2613 
2614 		offset32 += 4;
2615 		ret_buf += pre_len;
2616 		len32 -= pre_len;
2617 	}
2618 
2619 	if (len32 & 3) {
2620 		extra = 4 - (len32 & 3);
2621 		len32 = (len32 + 4) & ~3;
2622 	}
2623 
2624 	if (len32 == 4) {
2625 		u8 buf[4];
2626 
2627 		if (cmd_flags)
2628 			cmd_flags = BCE_NVM_COMMAND_LAST;
2629 		else
2630 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2631 				    BCE_NVM_COMMAND_LAST;
2632 
2633 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2634 
2635 		memcpy(ret_buf, buf, 4 - extra);
2636 	}
2637 	else if (len32 > 0) {
2638 		u8 buf[4];
2639 
2640 		/* Read the first word. */
2641 		if (cmd_flags)
2642 			cmd_flags = 0;
2643 		else
2644 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2645 
2646 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2647 
2648 		/* Advance to the next dword. */
2649 		offset32 += 4;
2650 		ret_buf += 4;
2651 		len32 -= 4;
2652 
2653 		while (len32 > 4 && rc == 0) {
2654 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2655 
2656 			/* Advance to the next dword. */
2657 			offset32 += 4;
2658 			ret_buf += 4;
2659 			len32 -= 4;
2660 		}
2661 
2662 		if (rc)
2663 			goto bce_nvram_read_locked_exit;
2664 
2665 		cmd_flags = BCE_NVM_COMMAND_LAST;
2666 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2667 
2668 		memcpy(ret_buf, buf, 4 - extra);
2669 	}
2670 
2671 bce_nvram_read_locked_exit:
2672 	/* Disable access to flash interface and release the lock. */
2673 	bce_disable_nvram_access(sc);
2674 	bce_release_nvram_lock(sc);
2675 
2676 bce_nvram_read_exit:
2677 	DBEXIT(BCE_VERBOSE_NVRAM);
2678 	return rc;
2679 }
2680 
2681 #ifdef BCE_NVRAM_WRITE_SUPPORT
2682 /****************************************************************************/
2683 /* Write an arbitrary range of data from NVRAM.                             */
2684 /*                                                                          */
2685 /* Prepares the NVRAM interface for write access and writes the requested   */
2686 /* data from the supplied buffer.  The caller is responsible for            */
2687 /* calculating any appropriate CRCs.                                        */
2688 /*                                                                          */
2689 /* Returns:                                                                 */
2690 /*   0 on success, positive value on failure.                               */
2691 /****************************************************************************/
2692 static int
2693 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2694 	int buf_size)
2695 {
2696 	u32 written, offset32, len32;
2697 	u8 *buf, start[4], end[4];
2698 	int rc = 0;
2699 	int align_start, align_end;
2700 
2701 	DBENTER(BCE_VERBOSE_NVRAM);
2702 
2703 	buf = data_buf;
2704 	offset32 = offset;
2705 	len32 = buf_size;
2706 	align_start = align_end = 0;
2707 
2708 	if ((align_start = (offset32 & 3))) {
2709 		offset32 &= ~3;
2710 		len32 += align_start;
2711 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2712 			goto bce_nvram_write_exit;
2713 	}
2714 
2715 	if (len32 & 3) {
2716 	       	if ((len32 > 4) || !align_start) {
2717 			align_end = 4 - (len32 & 3);
2718 			len32 += align_end;
2719 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2720 				end, 4))) {
2721 				goto bce_nvram_write_exit;
2722 			}
2723 		}
2724 	}
2725 
2726 	if (align_start || align_end) {
2727 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2728 		if (buf == NULL) {
2729 			rc = ENOMEM;
2730 			goto bce_nvram_write_exit;
2731 		}
2732 
2733 		if (align_start) {
2734 			memcpy(buf, start, 4);
2735 		}
2736 
2737 		if (align_end) {
2738 			memcpy(buf + len32 - 4, end, 4);
2739 		}
2740 		memcpy(buf + align_start, data_buf, buf_size);
2741 	}
2742 
2743 	written = 0;
2744 	while ((written < len32) && (rc == 0)) {
2745 		u32 page_start, page_end, data_start, data_end;
2746 		u32 addr, cmd_flags;
2747 		int i;
2748 		u8 flash_buffer[264];
2749 
2750 	    /* Find the page_start addr */
2751 		page_start = offset32 + written;
2752 		page_start -= (page_start % sc->bce_flash_info->page_size);
2753 		/* Find the page_end addr */
2754 		page_end = page_start + sc->bce_flash_info->page_size;
2755 		/* Find the data_start addr */
2756 		data_start = (written == 0) ? offset32 : page_start;
2757 		/* Find the data_end addr */
2758 		data_end = (page_end > offset32 + len32) ?
2759 			(offset32 + len32) : page_end;
2760 
2761 		/* Request access to the flash interface. */
2762 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2763 			goto bce_nvram_write_exit;
2764 
2765 		/* Enable access to flash interface */
2766 		bce_enable_nvram_access(sc);
2767 
2768 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2769 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2770 			int j;
2771 
2772 			/* Read the whole page into the buffer
2773 			 * (non-buffer flash only) */
2774 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2775 				if (j == (sc->bce_flash_info->page_size - 4)) {
2776 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2777 				}
2778 				rc = bce_nvram_read_dword(sc,
2779 					page_start + j,
2780 					&flash_buffer[j],
2781 					cmd_flags);
2782 
2783 				if (rc)
2784 					goto bce_nvram_write_locked_exit;
2785 
2786 				cmd_flags = 0;
2787 			}
2788 		}
2789 
2790 		/* Enable writes to flash interface (unlock write-protect) */
2791 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2792 			goto bce_nvram_write_locked_exit;
2793 
2794 		/* Erase the page */
2795 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2796 			goto bce_nvram_write_locked_exit;
2797 
2798 		/* Re-enable the write again for the actual write */
2799 		bce_enable_nvram_write(sc);
2800 
2801 		/* Loop to write back the buffer data from page_start to
2802 		 * data_start */
2803 		i = 0;
2804 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2805 			for (addr = page_start; addr < data_start;
2806 				addr += 4, i += 4) {
2807 				rc = bce_nvram_write_dword(sc, addr,
2808 					&flash_buffer[i], cmd_flags);
2809 
2810 				if (rc != 0)
2811 					goto bce_nvram_write_locked_exit;
2812 
2813 				cmd_flags = 0;
2814 			}
2815 		}
2816 
2817 		/* Loop to write the new data from data_start to data_end */
2818 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2819 			if ((addr == page_end - 4) ||
2820 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2821 				(addr == data_end - 4))) {
2822 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2823 			}
2824 			rc = bce_nvram_write_dword(sc, addr, buf,
2825 				cmd_flags);
2826 
2827 			if (rc != 0)
2828 				goto bce_nvram_write_locked_exit;
2829 
2830 			cmd_flags = 0;
2831 			buf += 4;
2832 		}
2833 
2834 		/* Loop to write back the buffer data from data_end
2835 		 * to page_end */
2836 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2837 			for (addr = data_end; addr < page_end;
2838 				addr += 4, i += 4) {
2839 				if (addr == page_end-4) {
2840 					cmd_flags = BCE_NVM_COMMAND_LAST;
2841                 		}
2842 				rc = bce_nvram_write_dword(sc, addr,
2843 					&flash_buffer[i], cmd_flags);
2844 
2845 				if (rc != 0)
2846 					goto bce_nvram_write_locked_exit;
2847 
2848 				cmd_flags = 0;
2849 			}
2850 		}
2851 
2852 		/* Disable writes to flash interface (lock write-protect) */
2853 		bce_disable_nvram_write(sc);
2854 
2855 		/* Disable access to flash interface */
2856 		bce_disable_nvram_access(sc);
2857 		bce_release_nvram_lock(sc);
2858 
2859 		/* Increment written */
2860 		written += data_end - data_start;
2861 	}
2862 
2863 	goto bce_nvram_write_exit;
2864 
2865 bce_nvram_write_locked_exit:
2866 	bce_disable_nvram_write(sc);
2867 	bce_disable_nvram_access(sc);
2868 	bce_release_nvram_lock(sc);
2869 
2870 bce_nvram_write_exit:
2871 	if (align_start || align_end)
2872 		free(buf, M_DEVBUF);
2873 
2874 	DBEXIT(BCE_VERBOSE_NVRAM);
2875 	return (rc);
2876 }
2877 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2878 
2879 /****************************************************************************/
2880 /* Verifies that NVRAM is accessible and contains valid data.               */
2881 /*                                                                          */
2882 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2883 /* correct.                                                                 */
2884 /*                                                                          */
2885 /* Returns:                                                                 */
2886 /*   0 on success, positive value on failure.                               */
2887 /****************************************************************************/
2888 static int
2889 bce_nvram_test(struct bce_softc *sc)
2890 {
2891 	u32 buf[BCE_NVRAM_SIZE / 4];
2892 	u8 *data = (u8 *) buf;
2893 	int rc = 0;
2894 	u32 magic, csum;
2895 
2896 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2897 
2898 	/*
2899 	 * Check that the device NVRAM is valid by reading
2900 	 * the magic value at offset 0.
2901 	 */
2902 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2903 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2904 		    __FILE__, __LINE__);
2905 		goto bce_nvram_test_exit;
2906 	}
2907 
2908 	/*
2909 	 * Verify that offset 0 of the NVRAM contains
2910 	 * a valid magic number.
2911 	 */
2912 	magic = bce_be32toh(buf[0]);
2913 	if (magic != BCE_NVRAM_MAGIC) {
2914 		rc = ENODEV;
2915 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2916 		    "Expected: 0x%08X, Found: 0x%08X\n",
2917 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2918 		goto bce_nvram_test_exit;
2919 	}
2920 
2921 	/*
2922 	 * Verify that the device NVRAM includes valid
2923 	 * configuration data.
2924 	 */
2925 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2926 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2927 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2928 		goto bce_nvram_test_exit;
2929 	}
2930 
2931 	csum = ether_crc32_le(data, 0x100);
2932 	if (csum != BCE_CRC32_RESIDUAL) {
2933 		rc = ENODEV;
2934 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2935 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2936 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2937 		goto bce_nvram_test_exit;
2938 	}
2939 
2940 	csum = ether_crc32_le(data + 0x100, 0x100);
2941 	if (csum != BCE_CRC32_RESIDUAL) {
2942 		rc = ENODEV;
2943 		BCE_PRINTF("%s(%d): Invalid feature configuration "
2944 		    "information NVRAM CRC! Expected: 0x%08X, "
2945 		    "Found: 08%08X\n", __FILE__, __LINE__,
2946 		    BCE_CRC32_RESIDUAL, csum);
2947 	}
2948 
2949 bce_nvram_test_exit:
2950 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2951 	return rc;
2952 }
2953 
2954 /****************************************************************************/
2955 /* Calculates the size of the buffers to allocate based on the MTU.         */
2956 /*                                                                          */
2957 /* Returns:                                                                 */
2958 /*   Nothing.                                                               */
2959 /****************************************************************************/
2960 static void
2961 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
2962 {
2963 	DBENTER(BCE_VERBOSE_LOAD);
2964 
2965 	/* Use a single allocation type when header splitting enabled. */
2966 	if (bce_hdr_split == TRUE) {
2967 		sc->rx_bd_mbuf_alloc_size = MHLEN;
2968 		/* Make sure offset is 16 byte aligned for hardware. */
2969 		sc->rx_bd_mbuf_align_pad =
2970 			roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN);
2971 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
2972 			sc->rx_bd_mbuf_align_pad;
2973 	} else {
2974 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2975 		    ETHER_CRC_LEN) > MCLBYTES) {
2976 			/* Setup for jumbo RX buffer allocations. */
2977 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
2978 			sc->rx_bd_mbuf_align_pad  =
2979 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
2980 			sc->rx_bd_mbuf_data_len =
2981 			    sc->rx_bd_mbuf_alloc_size -
2982 			    sc->rx_bd_mbuf_align_pad;
2983 		} else {
2984 			/* Setup for standard RX buffer allocations. */
2985 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
2986 			sc->rx_bd_mbuf_align_pad  =
2987 			    roundup2(MCLBYTES, 16) - MCLBYTES;
2988 			sc->rx_bd_mbuf_data_len =
2989 			    sc->rx_bd_mbuf_alloc_size -
2990 			    sc->rx_bd_mbuf_align_pad;
2991 		}
2992 	}
2993 
2994 //	DBPRINT(sc, BCE_INFO_LOAD,
2995 	DBPRINT(sc, BCE_WARN,
2996 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
2997 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
2998 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
2999 	   sc->rx_bd_mbuf_align_pad);
3000 
3001 	DBEXIT(BCE_VERBOSE_LOAD);
3002 }
3003 
3004 /****************************************************************************/
3005 /* Identifies the current media type of the controller and sets the PHY     */
3006 /* address.                                                                 */
3007 /*                                                                          */
3008 /* Returns:                                                                 */
3009 /*   Nothing.                                                               */
3010 /****************************************************************************/
3011 static void
3012 bce_get_media(struct bce_softc *sc)
3013 {
3014 	u32 val;
3015 
3016 	DBENTER(BCE_VERBOSE_PHY);
3017 
3018 	/* Assume PHY address for copper controllers. */
3019 	sc->bce_phy_addr = 1;
3020 
3021 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3022  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3023 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3024 		u32 strap;
3025 
3026 		/*
3027 		 * The BCM5709S is software configurable
3028 		 * for Copper or SerDes operation.
3029 		 */
3030 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3031 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3032 			    "for copper.\n");
3033 			goto bce_get_media_exit;
3034 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3035 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3036 			    "for dual media.\n");
3037 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3038 			goto bce_get_media_exit;
3039 		}
3040 
3041 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3042 			strap = (val &
3043 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3044 		else
3045 			strap = (val &
3046 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3047 
3048 		if (pci_get_function(sc->bce_dev) == 0) {
3049 			switch (strap) {
3050 			case 0x4:
3051 			case 0x5:
3052 			case 0x6:
3053 				DBPRINT(sc, BCE_INFO_LOAD,
3054 				    "BCM5709 s/w configured for SerDes.\n");
3055 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3056 				break;
3057 			default:
3058 				DBPRINT(sc, BCE_INFO_LOAD,
3059 				    "BCM5709 s/w configured for Copper.\n");
3060 				break;
3061 			}
3062 		} else {
3063 			switch (strap) {
3064 			case 0x1:
3065 			case 0x2:
3066 			case 0x4:
3067 				DBPRINT(sc, BCE_INFO_LOAD,
3068 				    "BCM5709 s/w configured for SerDes.\n");
3069 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3070 				break;
3071 			default:
3072 				DBPRINT(sc, BCE_INFO_LOAD,
3073 				    "BCM5709 s/w configured for Copper.\n");
3074 				break;
3075 			}
3076 		}
3077 
3078 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3079 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3080 
3081 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3082 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3083 
3084 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3085 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3086 
3087 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3088 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3089 			sc->bce_phy_addr = 2;
3090 
3091 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3092 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3093 				sc->bce_phy_flags |=
3094 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3095 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3096 				    "capable adapter\n");
3097 			}
3098 		}
3099 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3100 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3101 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3102 
3103 bce_get_media_exit:
3104 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3105 		"Using PHY address %d.\n", sc->bce_phy_addr);
3106 
3107 	DBEXIT(BCE_VERBOSE_PHY);
3108 }
3109 
3110 /****************************************************************************/
3111 /* Performs PHY initialization required before MII drivers access the       */
3112 /* device.                                                                  */
3113 /*                                                                          */
3114 /* Returns:                                                                 */
3115 /*   Nothing.                                                               */
3116 /****************************************************************************/
3117 static void
3118 bce_init_media(struct bce_softc *sc)
3119 {
3120 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3121 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3122 		/*
3123 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3124 		 * Clause 22 method. Otherwise we have no way to attach
3125 		 * the PHY in mii(4) layer. PHY specific configuration
3126 		 * is done in mii layer.
3127 		 */
3128 
3129 		/* Select auto-negotiation MMD of the PHY. */
3130 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3131 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3132 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3133 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3134 
3135 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3136 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3137 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3138 	}
3139 }
3140 
3141 /****************************************************************************/
3142 /* Free any DMA memory owned by the driver.                                 */
3143 /*                                                                          */
3144 /* Scans through each data structure that requires DMA memory and frees     */
3145 /* the memory if allocated.                                                 */
3146 /*                                                                          */
3147 /* Returns:                                                                 */
3148 /*   Nothing.                                                               */
3149 /****************************************************************************/
3150 static void
3151 bce_dma_free(struct bce_softc *sc)
3152 {
3153 	int i;
3154 
3155 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3156 
3157 	/* Free, unmap, and destroy the status block. */
3158 	if (sc->status_block_paddr != 0) {
3159 		bus_dmamap_unload(
3160 		    sc->status_tag,
3161 		    sc->status_map);
3162 		sc->status_block_paddr = 0;
3163 	}
3164 
3165 	if (sc->status_block != NULL) {
3166 		bus_dmamem_free(
3167 		   sc->status_tag,
3168 		    sc->status_block,
3169 		    sc->status_map);
3170 		sc->status_block = NULL;
3171 	}
3172 
3173 	if (sc->status_tag != NULL) {
3174 		bus_dma_tag_destroy(sc->status_tag);
3175 		sc->status_tag = NULL;
3176 	}
3177 
3178 	/* Free, unmap, and destroy the statistics block. */
3179 	if (sc->stats_block_paddr != 0) {
3180 		bus_dmamap_unload(
3181 		    sc->stats_tag,
3182 		    sc->stats_map);
3183 		sc->stats_block_paddr = 0;
3184 	}
3185 
3186 	if (sc->stats_block != NULL) {
3187 		bus_dmamem_free(
3188 		    sc->stats_tag,
3189 		    sc->stats_block,
3190 		    sc->stats_map);
3191 		sc->stats_block = NULL;
3192 	}
3193 
3194 	if (sc->stats_tag != NULL) {
3195 		bus_dma_tag_destroy(sc->stats_tag);
3196 		sc->stats_tag = NULL;
3197 	}
3198 
3199 	/* Free, unmap and destroy all context memory pages. */
3200 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3201 		for (i = 0; i < sc->ctx_pages; i++ ) {
3202 			if (sc->ctx_paddr[i] != 0) {
3203 				bus_dmamap_unload(
3204 				    sc->ctx_tag,
3205 				    sc->ctx_map[i]);
3206 				sc->ctx_paddr[i] = 0;
3207 			}
3208 
3209 			if (sc->ctx_block[i] != NULL) {
3210 				bus_dmamem_free(
3211 				    sc->ctx_tag,
3212 				    sc->ctx_block[i],
3213 				    sc->ctx_map[i]);
3214 				sc->ctx_block[i] = NULL;
3215 			}
3216 		}
3217 
3218 		/* Destroy the context memory tag. */
3219 		if (sc->ctx_tag != NULL) {
3220 			bus_dma_tag_destroy(sc->ctx_tag);
3221 			sc->ctx_tag = NULL;
3222 		}
3223 	}
3224 
3225 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3226 	for (i = 0; i < sc->tx_pages; i++ ) {
3227 		if (sc->tx_bd_chain_paddr[i] != 0) {
3228 			bus_dmamap_unload(
3229 			    sc->tx_bd_chain_tag,
3230 			    sc->tx_bd_chain_map[i]);
3231 			sc->tx_bd_chain_paddr[i] = 0;
3232 		}
3233 
3234 		if (sc->tx_bd_chain[i] != NULL) {
3235 			bus_dmamem_free(
3236 			    sc->tx_bd_chain_tag,
3237 			    sc->tx_bd_chain[i],
3238 			    sc->tx_bd_chain_map[i]);
3239 			sc->tx_bd_chain[i] = NULL;
3240 		}
3241 	}
3242 
3243 	/* Destroy the TX buffer descriptor tag. */
3244 	if (sc->tx_bd_chain_tag != NULL) {
3245 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3246 		sc->tx_bd_chain_tag = NULL;
3247 	}
3248 
3249 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3250 	for (i = 0; i < sc->rx_pages; i++ ) {
3251 		if (sc->rx_bd_chain_paddr[i] != 0) {
3252 			bus_dmamap_unload(
3253 			    sc->rx_bd_chain_tag,
3254 			    sc->rx_bd_chain_map[i]);
3255 			sc->rx_bd_chain_paddr[i] = 0;
3256 		}
3257 
3258 		if (sc->rx_bd_chain[i] != NULL) {
3259 			bus_dmamem_free(
3260 			    sc->rx_bd_chain_tag,
3261 			    sc->rx_bd_chain[i],
3262 			    sc->rx_bd_chain_map[i]);
3263 			sc->rx_bd_chain[i] = NULL;
3264 		}
3265 	}
3266 
3267 	/* Destroy the RX buffer descriptor tag. */
3268 	if (sc->rx_bd_chain_tag != NULL) {
3269 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3270 		sc->rx_bd_chain_tag = NULL;
3271 	}
3272 
3273 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3274 	if (bce_hdr_split == TRUE) {
3275 		for (i = 0; i < sc->pg_pages; i++ ) {
3276 			if (sc->pg_bd_chain_paddr[i] != 0) {
3277 				bus_dmamap_unload(
3278 				    sc->pg_bd_chain_tag,
3279 				    sc->pg_bd_chain_map[i]);
3280 				sc->pg_bd_chain_paddr[i] = 0;
3281 			}
3282 
3283 			if (sc->pg_bd_chain[i] != NULL) {
3284 				bus_dmamem_free(
3285 				    sc->pg_bd_chain_tag,
3286 				    sc->pg_bd_chain[i],
3287 				    sc->pg_bd_chain_map[i]);
3288 				sc->pg_bd_chain[i] = NULL;
3289 			}
3290 		}
3291 
3292 		/* Destroy the page buffer descriptor tag. */
3293 		if (sc->pg_bd_chain_tag != NULL) {
3294 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3295 			sc->pg_bd_chain_tag = NULL;
3296 		}
3297 	}
3298 
3299 	/* Unload and destroy the TX mbuf maps. */
3300 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3301 		if (sc->tx_mbuf_map[i] != NULL) {
3302 			bus_dmamap_unload(sc->tx_mbuf_tag,
3303 			    sc->tx_mbuf_map[i]);
3304 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3305 	 		    sc->tx_mbuf_map[i]);
3306 			sc->tx_mbuf_map[i] = NULL;
3307 		}
3308 	}
3309 
3310 	/* Destroy the TX mbuf tag. */
3311 	if (sc->tx_mbuf_tag != NULL) {
3312 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3313 		sc->tx_mbuf_tag = NULL;
3314 	}
3315 
3316 	/* Unload and destroy the RX mbuf maps. */
3317 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3318 		if (sc->rx_mbuf_map[i] != NULL) {
3319 			bus_dmamap_unload(sc->rx_mbuf_tag,
3320 			    sc->rx_mbuf_map[i]);
3321 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3322 	 		    sc->rx_mbuf_map[i]);
3323 			sc->rx_mbuf_map[i] = NULL;
3324 		}
3325 	}
3326 
3327 	/* Destroy the RX mbuf tag. */
3328 	if (sc->rx_mbuf_tag != NULL) {
3329 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3330 		sc->rx_mbuf_tag = NULL;
3331 	}
3332 
3333 	/* Unload and destroy the page mbuf maps. */
3334 	if (bce_hdr_split == TRUE) {
3335 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3336 			if (sc->pg_mbuf_map[i] != NULL) {
3337 				bus_dmamap_unload(sc->pg_mbuf_tag,
3338 				    sc->pg_mbuf_map[i]);
3339 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3340 				    sc->pg_mbuf_map[i]);
3341 				sc->pg_mbuf_map[i] = NULL;
3342 			}
3343 		}
3344 
3345 		/* Destroy the page mbuf tag. */
3346 		if (sc->pg_mbuf_tag != NULL) {
3347 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3348 			sc->pg_mbuf_tag = NULL;
3349 		}
3350 	}
3351 
3352 	/* Destroy the parent tag */
3353 	if (sc->parent_tag != NULL) {
3354 		bus_dma_tag_destroy(sc->parent_tag);
3355 		sc->parent_tag = NULL;
3356 	}
3357 
3358 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3359 }
3360 
3361 /****************************************************************************/
3362 /* Get DMA memory from the OS.                                              */
3363 /*                                                                          */
3364 /* Validates that the OS has provided DMA buffers in response to a          */
3365 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3366 /* When the callback is used the OS will return 0 for the mapping function  */
3367 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3368 /* failures back to the caller.                                             */
3369 /*                                                                          */
3370 /* Returns:                                                                 */
3371 /*   Nothing.                                                               */
3372 /****************************************************************************/
3373 static void
3374 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3375 {
3376 	bus_addr_t *busaddr = arg;
3377 
3378 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3379 	    __FUNCTION__, nseg));
3380 	/* Simulate a mapping failure. */
3381 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3382 	    error = ENOMEM);
3383 
3384 	/* ToDo: How to increment debug sim_count variable here? */
3385 
3386 	/* Check for an error and signal the caller that an error occurred. */
3387 	if (error) {
3388 		*busaddr = 0;
3389 	} else {
3390 		*busaddr = segs->ds_addr;
3391 	}
3392 }
3393 
3394 /****************************************************************************/
3395 /* Allocate any DMA memory needed by the driver.                            */
3396 /*                                                                          */
3397 /* Allocates DMA memory needed for the various global structures needed by  */
3398 /* hardware.                                                                */
3399 /*                                                                          */
3400 /* Memory alignment requirements:                                           */
3401 /* +-----------------+----------+----------+----------+----------+          */
3402 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3403 /* +-----------------+----------+----------+----------+----------+          */
3404 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3405 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3406 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3407 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3408 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3409 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3410 /* |Context Memory   |          |          |          |          |          */
3411 /* +-----------------+----------+----------+----------+----------+          */
3412 /*                                                                          */
3413 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3414 /*                                                                          */
3415 /* Returns:                                                                 */
3416 /*   0 for success, positive value for failure.                             */
3417 /****************************************************************************/
3418 static int
3419 bce_dma_alloc(device_t dev)
3420 {
3421 	struct bce_softc *sc;
3422 	int i, error, rc = 0;
3423 	bus_size_t max_size, max_seg_size;
3424 	int max_segments;
3425 
3426 	sc = device_get_softc(dev);
3427 
3428 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3429 
3430 	/*
3431 	 * Allocate the parent bus DMA tag appropriate for PCI.
3432 	 */
3433 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3434 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3435 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3436 	    &sc->parent_tag)) {
3437 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3438 		    __FILE__, __LINE__);
3439 		rc = ENOMEM;
3440 		goto bce_dma_alloc_exit;
3441 	}
3442 
3443 	/*
3444 	 * Create a DMA tag for the status block, allocate and clear the
3445 	 * memory, map the memory into DMA space, and fetch the physical
3446 	 * address of the block.
3447 	 */
3448 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3449 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3450 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3451 	    0, NULL, NULL, &sc->status_tag)) {
3452 		BCE_PRINTF("%s(%d): Could not allocate status block "
3453 		    "DMA tag!\n", __FILE__, __LINE__);
3454 		rc = ENOMEM;
3455 		goto bce_dma_alloc_exit;
3456 	}
3457 
3458 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3459 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3460 	    &sc->status_map)) {
3461 		BCE_PRINTF("%s(%d): Could not allocate status block "
3462 		    "DMA memory!\n", __FILE__, __LINE__);
3463 		rc = ENOMEM;
3464 		goto bce_dma_alloc_exit;
3465 	}
3466 
3467 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3468 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3469 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3470 
3471 	if (error || sc->status_block_paddr == 0) {
3472 		BCE_PRINTF("%s(%d): Could not map status block "
3473 		    "DMA memory!\n", __FILE__, __LINE__);
3474 		rc = ENOMEM;
3475 		goto bce_dma_alloc_exit;
3476 	}
3477 
3478 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3479 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3480 
3481 	/*
3482 	 * Create a DMA tag for the statistics block, allocate and clear the
3483 	 * memory, map the memory into DMA space, and fetch the physical
3484 	 * address of the block.
3485 	 */
3486 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3487 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3488 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3489 	    0, NULL, NULL, &sc->stats_tag)) {
3490 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3491 		    "DMA tag!\n", __FILE__, __LINE__);
3492 		rc = ENOMEM;
3493 		goto bce_dma_alloc_exit;
3494 	}
3495 
3496 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3497 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3498 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3499 		    "DMA memory!\n", __FILE__, __LINE__);
3500 		rc = ENOMEM;
3501 		goto bce_dma_alloc_exit;
3502 	}
3503 
3504 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3505 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3506 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3507 
3508 	if (error || sc->stats_block_paddr == 0) {
3509 		BCE_PRINTF("%s(%d): Could not map statistics block "
3510 		    "DMA memory!\n", __FILE__, __LINE__);
3511 		rc = ENOMEM;
3512 		goto bce_dma_alloc_exit;
3513 	}
3514 
3515 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3516 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3517 
3518 	/* BCM5709 uses host memory as cache for context memory. */
3519 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3520 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3521 		if (sc->ctx_pages == 0)
3522 			sc->ctx_pages = 1;
3523 
3524 		DBRUNIF((sc->ctx_pages > 512),
3525 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3526 		    __FILE__, __LINE__, sc->ctx_pages));
3527 
3528 		/*
3529 		 * Create a DMA tag for the context pages,
3530 		 * allocate and clear the memory, map the
3531 		 * memory into DMA space, and fetch the
3532 		 * physical address of the block.
3533 		 */
3534 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3535 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3536 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3537 		    0, NULL, NULL, &sc->ctx_tag)) {
3538 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3539 			    "DMA tag!\n", __FILE__, __LINE__);
3540 			rc = ENOMEM;
3541 			goto bce_dma_alloc_exit;
3542 		}
3543 
3544 		for (i = 0; i < sc->ctx_pages; i++) {
3545 			if(bus_dmamem_alloc(sc->ctx_tag,
3546 			    (void **)&sc->ctx_block[i],
3547 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3548 			    &sc->ctx_map[i])) {
3549 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3550 				    "DMA memory!\n", __FILE__, __LINE__);
3551 				rc = ENOMEM;
3552 				goto bce_dma_alloc_exit;
3553 			}
3554 
3555 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3556 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3557 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3558 
3559 			if (error || sc->ctx_paddr[i] == 0) {
3560 				BCE_PRINTF("%s(%d): Could not map CTX "
3561 				    "DMA memory!\n", __FILE__, __LINE__);
3562 				rc = ENOMEM;
3563 				goto bce_dma_alloc_exit;
3564 			}
3565 
3566 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3567 			    "= 0x%jX\n", __FUNCTION__, i,
3568 			    (uintmax_t) sc->ctx_paddr[i]);
3569 		}
3570 	}
3571 
3572 	/*
3573 	 * Create a DMA tag for the TX buffer descriptor chain,
3574 	 * allocate and clear the  memory, and fetch the
3575 	 * physical address of the block.
3576 	 */
3577 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3578 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3579 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3580 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3581 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3582 		    "chain DMA tag!\n", __FILE__, __LINE__);
3583 		rc = ENOMEM;
3584 		goto bce_dma_alloc_exit;
3585 	}
3586 
3587 	for (i = 0; i < sc->tx_pages; i++) {
3588 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3589 		    (void **)&sc->tx_bd_chain[i],
3590 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3591 		    &sc->tx_bd_chain_map[i])) {
3592 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3593 			    "chain DMA memory!\n", __FILE__, __LINE__);
3594 			rc = ENOMEM;
3595 			goto bce_dma_alloc_exit;
3596 		}
3597 
3598 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3599 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3600 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3601 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3602 
3603 		if (error || sc->tx_bd_chain_paddr[i] == 0) {
3604 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3605 			    "chain DMA memory!\n", __FILE__, __LINE__);
3606 			rc = ENOMEM;
3607 			goto bce_dma_alloc_exit;
3608 		}
3609 
3610 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3611 		    "0x%jX\n", __FUNCTION__, i,
3612 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3613 	}
3614 
3615 	/* Check the required size before mapping to conserve resources. */
3616 	if (bce_tso_enable) {
3617 		max_size     = BCE_TSO_MAX_SIZE;
3618 		max_segments = BCE_MAX_SEGMENTS;
3619 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3620 	} else {
3621 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3622 		max_segments = BCE_MAX_SEGMENTS;
3623 		max_seg_size = MCLBYTES;
3624 	}
3625 
3626 	/* Create a DMA tag for TX mbufs. */
3627 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3628 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3629 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3630 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3631 		    __FILE__, __LINE__);
3632 		rc = ENOMEM;
3633 		goto bce_dma_alloc_exit;
3634 	}
3635 
3636 	/* Create DMA maps for the TX mbufs clusters. */
3637 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3638 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3639 			&sc->tx_mbuf_map[i])) {
3640 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3641 			    "map!\n", __FILE__, __LINE__);
3642 			rc = ENOMEM;
3643 			goto bce_dma_alloc_exit;
3644 		}
3645 	}
3646 
3647 	/*
3648 	 * Create a DMA tag for the RX buffer descriptor chain,
3649 	 * allocate and clear the memory, and fetch the physical
3650 	 * address of the blocks.
3651 	 */
3652 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3653 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3654 			sc->max_bus_addr, NULL, NULL,
3655 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3656 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3657 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3658 		    "DMA tag!\n", __FILE__, __LINE__);
3659 		rc = ENOMEM;
3660 		goto bce_dma_alloc_exit;
3661 	}
3662 
3663 	for (i = 0; i < sc->rx_pages; i++) {
3664 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3665 		    (void **)&sc->rx_bd_chain[i],
3666 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3667 		    &sc->rx_bd_chain_map[i])) {
3668 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3669 			    "chain DMA memory!\n", __FILE__, __LINE__);
3670 			rc = ENOMEM;
3671 			goto bce_dma_alloc_exit;
3672 		}
3673 
3674 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3675 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3676 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3677 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3678 
3679 		if (error || sc->rx_bd_chain_paddr[i] == 0) {
3680 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3681 			    "chain DMA memory!\n", __FILE__, __LINE__);
3682 			rc = ENOMEM;
3683 			goto bce_dma_alloc_exit;
3684 		}
3685 
3686 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3687 		    "0x%jX\n", __FUNCTION__, i,
3688 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3689 	}
3690 
3691 	/*
3692 	 * Create a DMA tag for RX mbufs.
3693 	 */
3694 	if (bce_hdr_split == TRUE)
3695 		max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3696 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3697 	else
3698 		max_size = MJUM9BYTES;
3699 
3700 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3701 	    "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3702 
3703 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3704 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3705 	    max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3706 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3707 		    __FILE__, __LINE__);
3708 		rc = ENOMEM;
3709 		goto bce_dma_alloc_exit;
3710 	}
3711 
3712 	/* Create DMA maps for the RX mbuf clusters. */
3713 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3714 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3715 		    &sc->rx_mbuf_map[i])) {
3716 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3717 			    "DMA map!\n", __FILE__, __LINE__);
3718 			rc = ENOMEM;
3719 			goto bce_dma_alloc_exit;
3720 		}
3721 	}
3722 
3723 	if (bce_hdr_split == TRUE) {
3724 		/*
3725 		 * Create a DMA tag for the page buffer descriptor chain,
3726 		 * allocate and clear the memory, and fetch the physical
3727 		 * address of the blocks.
3728 		 */
3729 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3730 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3731 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3732 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3733 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3734 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3735 			rc = ENOMEM;
3736 			goto bce_dma_alloc_exit;
3737 		}
3738 
3739 		for (i = 0; i < sc->pg_pages; i++) {
3740 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3741 			    (void **)&sc->pg_bd_chain[i],
3742 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3743 			    &sc->pg_bd_chain_map[i])) {
3744 				BCE_PRINTF("%s(%d): Could not allocate page "
3745 				    "descriptor chain DMA memory!\n",
3746 				    __FILE__, __LINE__);
3747 				rc = ENOMEM;
3748 				goto bce_dma_alloc_exit;
3749 			}
3750 
3751 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3752 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3753 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3754 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3755 
3756 			if (error || sc->pg_bd_chain_paddr[i] == 0) {
3757 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3758 					"chain DMA memory!\n", __FILE__, __LINE__);
3759 				rc = ENOMEM;
3760 				goto bce_dma_alloc_exit;
3761 			}
3762 
3763 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3764 				"0x%jX\n", __FUNCTION__, i,
3765 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3766 		}
3767 
3768 		/*
3769 		 * Create a DMA tag for page mbufs.
3770 		 */
3771 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3772 		    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3773 		    1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3774 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3775 				"DMA tag!\n", __FILE__, __LINE__);
3776 			rc = ENOMEM;
3777 			goto bce_dma_alloc_exit;
3778 		}
3779 
3780 		/* Create DMA maps for the page mbuf clusters. */
3781 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3782 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3783 				&sc->pg_mbuf_map[i])) {
3784 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3785 					"DMA map!\n", __FILE__, __LINE__);
3786 				rc = ENOMEM;
3787 				goto bce_dma_alloc_exit;
3788 			}
3789 		}
3790 	}
3791 
3792 bce_dma_alloc_exit:
3793 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3794 	return(rc);
3795 }
3796 
3797 /****************************************************************************/
3798 /* Release all resources used by the driver.                                */
3799 /*                                                                          */
3800 /* Releases all resources acquired by the driver including interrupts,      */
3801 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3802 /*                                                                          */
3803 /* Returns:                                                                 */
3804 /*   Nothing.                                                               */
3805 /****************************************************************************/
3806 static void
3807 bce_release_resources(struct bce_softc *sc)
3808 {
3809 	device_t dev;
3810 
3811 	DBENTER(BCE_VERBOSE_RESET);
3812 
3813 	dev = sc->bce_dev;
3814 
3815 	bce_dma_free(sc);
3816 
3817 	if (sc->bce_intrhand != NULL) {
3818 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3819 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3820 	}
3821 
3822 	if (sc->bce_res_irq != NULL) {
3823 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3824 		bus_release_resource(dev, SYS_RES_IRQ,
3825 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3826 	}
3827 
3828 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3829 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3830 		pci_release_msi(dev);
3831 	}
3832 
3833 	if (sc->bce_res_mem != NULL) {
3834 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3835 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3836 		    sc->bce_res_mem);
3837 	}
3838 
3839 	if (sc->bce_ifp != NULL) {
3840 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3841 		if_free(sc->bce_ifp);
3842 	}
3843 
3844 	if (mtx_initialized(&sc->bce_mtx))
3845 		BCE_LOCK_DESTROY(sc);
3846 
3847 	DBEXIT(BCE_VERBOSE_RESET);
3848 }
3849 
3850 /****************************************************************************/
3851 /* Firmware synchronization.                                                */
3852 /*                                                                          */
3853 /* Before performing certain events such as a chip reset, synchronize with  */
3854 /* the firmware first.                                                      */
3855 /*                                                                          */
3856 /* Returns:                                                                 */
3857 /*   0 for success, positive value for failure.                             */
3858 /****************************************************************************/
3859 static int
3860 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3861 {
3862 	int i, rc = 0;
3863 	u32 val;
3864 
3865 	DBENTER(BCE_VERBOSE_RESET);
3866 
3867 	/* Don't waste any time if we've timed out before. */
3868 	if (sc->bce_fw_timed_out == TRUE) {
3869 		rc = EBUSY;
3870 		goto bce_fw_sync_exit;
3871 	}
3872 
3873 	/* Increment the message sequence number. */
3874 	sc->bce_fw_wr_seq++;
3875 	msg_data |= sc->bce_fw_wr_seq;
3876 
3877  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3878 	    "0x%08X\n",	msg_data);
3879 
3880 	/* Send the message to the bootcode driver mailbox. */
3881 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3882 
3883 	/* Wait for the bootcode to acknowledge the message. */
3884 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3885 		/* Check for a response in the bootcode firmware mailbox. */
3886 		val = bce_shmem_rd(sc, BCE_FW_MB);
3887 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3888 			break;
3889 		DELAY(1000);
3890 	}
3891 
3892 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3893 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3894 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3895 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3896 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3897 
3898 		msg_data &= ~BCE_DRV_MSG_CODE;
3899 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3900 
3901 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3902 
3903 		sc->bce_fw_timed_out = TRUE;
3904 		rc = EBUSY;
3905 	}
3906 
3907 bce_fw_sync_exit:
3908 	DBEXIT(BCE_VERBOSE_RESET);
3909 	return (rc);
3910 }
3911 
3912 /****************************************************************************/
3913 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3914 /*                                                                          */
3915 /* Returns:                                                                 */
3916 /*   Nothing.                                                               */
3917 /****************************************************************************/
3918 static void
3919 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
3920 	u32 rv2p_code_len, u32 rv2p_proc)
3921 {
3922 	int i;
3923 	u32 val;
3924 
3925 	DBENTER(BCE_VERBOSE_RESET);
3926 
3927 	/* Set the page size used by RV2P. */
3928 	if (rv2p_proc == RV2P_PROC2) {
3929 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3930 	}
3931 
3932 	for (i = 0; i < rv2p_code_len; i += 8) {
3933 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3934 		rv2p_code++;
3935 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3936 		rv2p_code++;
3937 
3938 		if (rv2p_proc == RV2P_PROC1) {
3939 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3940 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3941 		}
3942 		else {
3943 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3944 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3945 		}
3946 	}
3947 
3948 	/* Reset the processor, un-stall is done later. */
3949 	if (rv2p_proc == RV2P_PROC1) {
3950 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3951 	}
3952 	else {
3953 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3954 	}
3955 
3956 	DBEXIT(BCE_VERBOSE_RESET);
3957 }
3958 
3959 /****************************************************************************/
3960 /* Load RISC processor firmware.                                            */
3961 /*                                                                          */
3962 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
3963 /* associated with a particular processor.                                  */
3964 /*                                                                          */
3965 /* Returns:                                                                 */
3966 /*   Nothing.                                                               */
3967 /****************************************************************************/
3968 static void
3969 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3970 	struct fw_info *fw)
3971 {
3972 	u32 offset;
3973 
3974 	DBENTER(BCE_VERBOSE_RESET);
3975 
3976     bce_halt_cpu(sc, cpu_reg);
3977 
3978 	/* Load the Text area. */
3979 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3980 	if (fw->text) {
3981 		int j;
3982 
3983 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3984 			REG_WR_IND(sc, offset, fw->text[j]);
3985 	        }
3986 	}
3987 
3988 	/* Load the Data area. */
3989 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3990 	if (fw->data) {
3991 		int j;
3992 
3993 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3994 			REG_WR_IND(sc, offset, fw->data[j]);
3995 		}
3996 	}
3997 
3998 	/* Load the SBSS area. */
3999 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4000 	if (fw->sbss) {
4001 		int j;
4002 
4003 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4004 			REG_WR_IND(sc, offset, fw->sbss[j]);
4005 		}
4006 	}
4007 
4008 	/* Load the BSS area. */
4009 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4010 	if (fw->bss) {
4011 		int j;
4012 
4013 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4014 			REG_WR_IND(sc, offset, fw->bss[j]);
4015 		}
4016 	}
4017 
4018 	/* Load the Read-Only area. */
4019 	offset = cpu_reg->spad_base +
4020 		(fw->rodata_addr - cpu_reg->mips_view_base);
4021 	if (fw->rodata) {
4022 		int j;
4023 
4024 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4025 			REG_WR_IND(sc, offset, fw->rodata[j]);
4026 		}
4027 	}
4028 
4029 	/* Clear the pre-fetch instruction and set the FW start address. */
4030 	REG_WR_IND(sc, cpu_reg->inst, 0);
4031 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4032 
4033 	DBEXIT(BCE_VERBOSE_RESET);
4034 }
4035 
4036 /****************************************************************************/
4037 /* Starts the RISC processor.                                               */
4038 /*                                                                          */
4039 /* Assumes the CPU starting address has already been set.                   */
4040 /*                                                                          */
4041 /* Returns:                                                                 */
4042 /*   Nothing.                                                               */
4043 /****************************************************************************/
4044 static void
4045 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4046 {
4047 	u32 val;
4048 
4049 	DBENTER(BCE_VERBOSE_RESET);
4050 
4051 	/* Start the CPU. */
4052 	val = REG_RD_IND(sc, cpu_reg->mode);
4053 	val &= ~cpu_reg->mode_value_halt;
4054 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4055 	REG_WR_IND(sc, cpu_reg->mode, val);
4056 
4057 	DBEXIT(BCE_VERBOSE_RESET);
4058 }
4059 
4060 /****************************************************************************/
4061 /* Halts the RISC processor.                                                */
4062 /*                                                                          */
4063 /* Returns:                                                                 */
4064 /*   Nothing.                                                               */
4065 /****************************************************************************/
4066 static void
4067 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4068 {
4069 	u32 val;
4070 
4071 	DBENTER(BCE_VERBOSE_RESET);
4072 
4073 	/* Halt the CPU. */
4074 	val = REG_RD_IND(sc, cpu_reg->mode);
4075 	val |= cpu_reg->mode_value_halt;
4076 	REG_WR_IND(sc, cpu_reg->mode, val);
4077 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4078 
4079 	DBEXIT(BCE_VERBOSE_RESET);
4080 }
4081 
4082 /****************************************************************************/
4083 /* Initialize the RX CPU.                                                   */
4084 /*                                                                          */
4085 /* Returns:                                                                 */
4086 /*   Nothing.                                                               */
4087 /****************************************************************************/
4088 static void
4089 bce_start_rxp_cpu(struct bce_softc *sc)
4090 {
4091 	struct cpu_reg cpu_reg;
4092 
4093 	DBENTER(BCE_VERBOSE_RESET);
4094 
4095 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4096 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4097 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4098 	cpu_reg.state = BCE_RXP_CPU_STATE;
4099 	cpu_reg.state_value_clear = 0xffffff;
4100 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4101 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4102 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4103 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4104 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4105 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4106 	cpu_reg.mips_view_base = 0x8000000;
4107 
4108 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4109 	bce_start_cpu(sc, &cpu_reg);
4110 
4111 	DBEXIT(BCE_VERBOSE_RESET);
4112 }
4113 
4114 /****************************************************************************/
4115 /* Initialize the RX CPU.                                                   */
4116 /*                                                                          */
4117 /* Returns:                                                                 */
4118 /*   Nothing.                                                               */
4119 /****************************************************************************/
4120 static void
4121 bce_init_rxp_cpu(struct bce_softc *sc)
4122 {
4123 	struct cpu_reg cpu_reg;
4124 	struct fw_info fw;
4125 
4126 	DBENTER(BCE_VERBOSE_RESET);
4127 
4128 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4129 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4130 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4131 	cpu_reg.state = BCE_RXP_CPU_STATE;
4132 	cpu_reg.state_value_clear = 0xffffff;
4133 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4134 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4135 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4136 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4137 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4138 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4139 	cpu_reg.mips_view_base = 0x8000000;
4140 
4141 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4142  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4143 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4144 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4145 		fw.start_addr = bce_RXP_b09FwStartAddr;
4146 
4147 		fw.text_addr = bce_RXP_b09FwTextAddr;
4148 		fw.text_len = bce_RXP_b09FwTextLen;
4149 		fw.text_index = 0;
4150 		fw.text = bce_RXP_b09FwText;
4151 
4152 		fw.data_addr = bce_RXP_b09FwDataAddr;
4153 		fw.data_len = bce_RXP_b09FwDataLen;
4154 		fw.data_index = 0;
4155 		fw.data = bce_RXP_b09FwData;
4156 
4157 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4158 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4159 		fw.sbss_index = 0;
4160 		fw.sbss = bce_RXP_b09FwSbss;
4161 
4162 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4163 		fw.bss_len = bce_RXP_b09FwBssLen;
4164 		fw.bss_index = 0;
4165 		fw.bss = bce_RXP_b09FwBss;
4166 
4167 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4168 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4169 		fw.rodata_index = 0;
4170 		fw.rodata = bce_RXP_b09FwRodata;
4171 	} else {
4172 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4173 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4174 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4175 		fw.start_addr = bce_RXP_b06FwStartAddr;
4176 
4177 		fw.text_addr = bce_RXP_b06FwTextAddr;
4178 		fw.text_len = bce_RXP_b06FwTextLen;
4179 		fw.text_index = 0;
4180 		fw.text = bce_RXP_b06FwText;
4181 
4182 		fw.data_addr = bce_RXP_b06FwDataAddr;
4183 		fw.data_len = bce_RXP_b06FwDataLen;
4184 		fw.data_index = 0;
4185 		fw.data = bce_RXP_b06FwData;
4186 
4187 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4188 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4189 		fw.sbss_index = 0;
4190 		fw.sbss = bce_RXP_b06FwSbss;
4191 
4192 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4193 		fw.bss_len = bce_RXP_b06FwBssLen;
4194 		fw.bss_index = 0;
4195 		fw.bss = bce_RXP_b06FwBss;
4196 
4197 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4198 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4199 		fw.rodata_index = 0;
4200 		fw.rodata = bce_RXP_b06FwRodata;
4201 	}
4202 
4203 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4204 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4205 
4206     /* Delay RXP start until initialization is complete. */
4207 
4208 	DBEXIT(BCE_VERBOSE_RESET);
4209 }
4210 
4211 /****************************************************************************/
4212 /* Initialize the TX CPU.                                                   */
4213 /*                                                                          */
4214 /* Returns:                                                                 */
4215 /*   Nothing.                                                               */
4216 /****************************************************************************/
4217 static void
4218 bce_init_txp_cpu(struct bce_softc *sc)
4219 {
4220 	struct cpu_reg cpu_reg;
4221 	struct fw_info fw;
4222 
4223 	DBENTER(BCE_VERBOSE_RESET);
4224 
4225 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4226 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4227 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4228 	cpu_reg.state = BCE_TXP_CPU_STATE;
4229 	cpu_reg.state_value_clear = 0xffffff;
4230 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4231 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4232 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4233 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4234 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4235 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4236 	cpu_reg.mips_view_base = 0x8000000;
4237 
4238 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4239 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4240 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4241 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4242 		fw.start_addr = bce_TXP_b09FwStartAddr;
4243 
4244 		fw.text_addr = bce_TXP_b09FwTextAddr;
4245 		fw.text_len = bce_TXP_b09FwTextLen;
4246 		fw.text_index = 0;
4247 		fw.text = bce_TXP_b09FwText;
4248 
4249 		fw.data_addr = bce_TXP_b09FwDataAddr;
4250 		fw.data_len = bce_TXP_b09FwDataLen;
4251 		fw.data_index = 0;
4252 		fw.data = bce_TXP_b09FwData;
4253 
4254 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4255 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4256 		fw.sbss_index = 0;
4257 		fw.sbss = bce_TXP_b09FwSbss;
4258 
4259 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4260 		fw.bss_len = bce_TXP_b09FwBssLen;
4261 		fw.bss_index = 0;
4262 		fw.bss = bce_TXP_b09FwBss;
4263 
4264 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4265 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4266 		fw.rodata_index = 0;
4267 		fw.rodata = bce_TXP_b09FwRodata;
4268 	} else {
4269 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4270 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4271 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4272 		fw.start_addr = bce_TXP_b06FwStartAddr;
4273 
4274 		fw.text_addr = bce_TXP_b06FwTextAddr;
4275 		fw.text_len = bce_TXP_b06FwTextLen;
4276 		fw.text_index = 0;
4277 		fw.text = bce_TXP_b06FwText;
4278 
4279 		fw.data_addr = bce_TXP_b06FwDataAddr;
4280 		fw.data_len = bce_TXP_b06FwDataLen;
4281 		fw.data_index = 0;
4282 		fw.data = bce_TXP_b06FwData;
4283 
4284 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4285 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4286 		fw.sbss_index = 0;
4287 		fw.sbss = bce_TXP_b06FwSbss;
4288 
4289 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4290 		fw.bss_len = bce_TXP_b06FwBssLen;
4291 		fw.bss_index = 0;
4292 		fw.bss = bce_TXP_b06FwBss;
4293 
4294 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4295 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4296 		fw.rodata_index = 0;
4297 		fw.rodata = bce_TXP_b06FwRodata;
4298 	}
4299 
4300 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4301 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4302     bce_start_cpu(sc, &cpu_reg);
4303 
4304 	DBEXIT(BCE_VERBOSE_RESET);
4305 }
4306 
4307 /****************************************************************************/
4308 /* Initialize the TPAT CPU.                                                 */
4309 /*                                                                          */
4310 /* Returns:                                                                 */
4311 /*   Nothing.                                                               */
4312 /****************************************************************************/
4313 static void
4314 bce_init_tpat_cpu(struct bce_softc *sc)
4315 {
4316 	struct cpu_reg cpu_reg;
4317 	struct fw_info fw;
4318 
4319 	DBENTER(BCE_VERBOSE_RESET);
4320 
4321 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4322 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4323 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4324 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4325 	cpu_reg.state_value_clear = 0xffffff;
4326 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4327 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4328 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4329 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4330 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4331 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4332 	cpu_reg.mips_view_base = 0x8000000;
4333 
4334 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4335 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4336 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4337 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4338 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4339 
4340 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4341 		fw.text_len = bce_TPAT_b09FwTextLen;
4342 		fw.text_index = 0;
4343 		fw.text = bce_TPAT_b09FwText;
4344 
4345 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4346 		fw.data_len = bce_TPAT_b09FwDataLen;
4347 		fw.data_index = 0;
4348 		fw.data = bce_TPAT_b09FwData;
4349 
4350 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4351 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4352 		fw.sbss_index = 0;
4353 		fw.sbss = bce_TPAT_b09FwSbss;
4354 
4355 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4356 		fw.bss_len = bce_TPAT_b09FwBssLen;
4357 		fw.bss_index = 0;
4358 		fw.bss = bce_TPAT_b09FwBss;
4359 
4360 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4361 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4362 		fw.rodata_index = 0;
4363 		fw.rodata = bce_TPAT_b09FwRodata;
4364 	} else {
4365 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4366 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4367 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4368 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4369 
4370 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4371 		fw.text_len = bce_TPAT_b06FwTextLen;
4372 		fw.text_index = 0;
4373 		fw.text = bce_TPAT_b06FwText;
4374 
4375 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4376 		fw.data_len = bce_TPAT_b06FwDataLen;
4377 		fw.data_index = 0;
4378 		fw.data = bce_TPAT_b06FwData;
4379 
4380 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4381 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4382 		fw.sbss_index = 0;
4383 		fw.sbss = bce_TPAT_b06FwSbss;
4384 
4385 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4386 		fw.bss_len = bce_TPAT_b06FwBssLen;
4387 		fw.bss_index = 0;
4388 		fw.bss = bce_TPAT_b06FwBss;
4389 
4390 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4391 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4392 		fw.rodata_index = 0;
4393 		fw.rodata = bce_TPAT_b06FwRodata;
4394 	}
4395 
4396 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4397 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4398 	bce_start_cpu(sc, &cpu_reg);
4399 
4400 	DBEXIT(BCE_VERBOSE_RESET);
4401 }
4402 
4403 /****************************************************************************/
4404 /* Initialize the CP CPU.                                                   */
4405 /*                                                                          */
4406 /* Returns:                                                                 */
4407 /*   Nothing.                                                               */
4408 /****************************************************************************/
4409 static void
4410 bce_init_cp_cpu(struct bce_softc *sc)
4411 {
4412 	struct cpu_reg cpu_reg;
4413 	struct fw_info fw;
4414 
4415 	DBENTER(BCE_VERBOSE_RESET);
4416 
4417 	cpu_reg.mode = BCE_CP_CPU_MODE;
4418 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4419 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4420 	cpu_reg.state = BCE_CP_CPU_STATE;
4421 	cpu_reg.state_value_clear = 0xffffff;
4422 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4423 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4424 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4425 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4426 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4427 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4428 	cpu_reg.mips_view_base = 0x8000000;
4429 
4430 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4431 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4432 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4433 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4434 		fw.start_addr = bce_CP_b09FwStartAddr;
4435 
4436 		fw.text_addr = bce_CP_b09FwTextAddr;
4437 		fw.text_len = bce_CP_b09FwTextLen;
4438 		fw.text_index = 0;
4439 		fw.text = bce_CP_b09FwText;
4440 
4441 		fw.data_addr = bce_CP_b09FwDataAddr;
4442 		fw.data_len = bce_CP_b09FwDataLen;
4443 		fw.data_index = 0;
4444 		fw.data = bce_CP_b09FwData;
4445 
4446 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4447 		fw.sbss_len = bce_CP_b09FwSbssLen;
4448 		fw.sbss_index = 0;
4449 		fw.sbss = bce_CP_b09FwSbss;
4450 
4451 		fw.bss_addr = bce_CP_b09FwBssAddr;
4452 		fw.bss_len = bce_CP_b09FwBssLen;
4453 		fw.bss_index = 0;
4454 		fw.bss = bce_CP_b09FwBss;
4455 
4456 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4457 		fw.rodata_len = bce_CP_b09FwRodataLen;
4458 		fw.rodata_index = 0;
4459 		fw.rodata = bce_CP_b09FwRodata;
4460 	} else {
4461 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4462 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4463 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4464 		fw.start_addr = bce_CP_b06FwStartAddr;
4465 
4466 		fw.text_addr = bce_CP_b06FwTextAddr;
4467 		fw.text_len = bce_CP_b06FwTextLen;
4468 		fw.text_index = 0;
4469 		fw.text = bce_CP_b06FwText;
4470 
4471 		fw.data_addr = bce_CP_b06FwDataAddr;
4472 		fw.data_len = bce_CP_b06FwDataLen;
4473 		fw.data_index = 0;
4474 		fw.data = bce_CP_b06FwData;
4475 
4476 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4477 		fw.sbss_len = bce_CP_b06FwSbssLen;
4478 		fw.sbss_index = 0;
4479 		fw.sbss = bce_CP_b06FwSbss;
4480 
4481 		fw.bss_addr = bce_CP_b06FwBssAddr;
4482 		fw.bss_len = bce_CP_b06FwBssLen;
4483 		fw.bss_index = 0;
4484 		fw.bss = bce_CP_b06FwBss;
4485 
4486 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4487 		fw.rodata_len = bce_CP_b06FwRodataLen;
4488 		fw.rodata_index = 0;
4489 		fw.rodata = bce_CP_b06FwRodata;
4490 	}
4491 
4492 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4493 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4494 	bce_start_cpu(sc, &cpu_reg);
4495 
4496 	DBEXIT(BCE_VERBOSE_RESET);
4497 }
4498 
4499 /****************************************************************************/
4500 /* Initialize the COM CPU.                                                 */
4501 /*                                                                          */
4502 /* Returns:                                                                 */
4503 /*   Nothing.                                                               */
4504 /****************************************************************************/
4505 static void
4506 bce_init_com_cpu(struct bce_softc *sc)
4507 {
4508 	struct cpu_reg cpu_reg;
4509 	struct fw_info fw;
4510 
4511 	DBENTER(BCE_VERBOSE_RESET);
4512 
4513 	cpu_reg.mode = BCE_COM_CPU_MODE;
4514 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4515 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4516 	cpu_reg.state = BCE_COM_CPU_STATE;
4517 	cpu_reg.state_value_clear = 0xffffff;
4518 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4519 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4520 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4521 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4522 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4523 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4524 	cpu_reg.mips_view_base = 0x8000000;
4525 
4526 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4527 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4528 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4529 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4530 		fw.start_addr = bce_COM_b09FwStartAddr;
4531 
4532 		fw.text_addr = bce_COM_b09FwTextAddr;
4533 		fw.text_len = bce_COM_b09FwTextLen;
4534 		fw.text_index = 0;
4535 		fw.text = bce_COM_b09FwText;
4536 
4537 		fw.data_addr = bce_COM_b09FwDataAddr;
4538 		fw.data_len = bce_COM_b09FwDataLen;
4539 		fw.data_index = 0;
4540 		fw.data = bce_COM_b09FwData;
4541 
4542 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4543 		fw.sbss_len = bce_COM_b09FwSbssLen;
4544 		fw.sbss_index = 0;
4545 		fw.sbss = bce_COM_b09FwSbss;
4546 
4547 		fw.bss_addr = bce_COM_b09FwBssAddr;
4548 		fw.bss_len = bce_COM_b09FwBssLen;
4549 		fw.bss_index = 0;
4550 		fw.bss = bce_COM_b09FwBss;
4551 
4552 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4553 		fw.rodata_len = bce_COM_b09FwRodataLen;
4554 		fw.rodata_index = 0;
4555 		fw.rodata = bce_COM_b09FwRodata;
4556 	} else {
4557 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4558 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4559 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4560 		fw.start_addr = bce_COM_b06FwStartAddr;
4561 
4562 		fw.text_addr = bce_COM_b06FwTextAddr;
4563 		fw.text_len = bce_COM_b06FwTextLen;
4564 		fw.text_index = 0;
4565 		fw.text = bce_COM_b06FwText;
4566 
4567 		fw.data_addr = bce_COM_b06FwDataAddr;
4568 		fw.data_len = bce_COM_b06FwDataLen;
4569 		fw.data_index = 0;
4570 		fw.data = bce_COM_b06FwData;
4571 
4572 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4573 		fw.sbss_len = bce_COM_b06FwSbssLen;
4574 		fw.sbss_index = 0;
4575 		fw.sbss = bce_COM_b06FwSbss;
4576 
4577 		fw.bss_addr = bce_COM_b06FwBssAddr;
4578 		fw.bss_len = bce_COM_b06FwBssLen;
4579 		fw.bss_index = 0;
4580 		fw.bss = bce_COM_b06FwBss;
4581 
4582 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4583 		fw.rodata_len = bce_COM_b06FwRodataLen;
4584 		fw.rodata_index = 0;
4585 		fw.rodata = bce_COM_b06FwRodata;
4586 	}
4587 
4588 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4589 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4590 	bce_start_cpu(sc, &cpu_reg);
4591 
4592 	DBEXIT(BCE_VERBOSE_RESET);
4593 }
4594 
4595 /****************************************************************************/
4596 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4597 /*                                                                          */
4598 /* Loads the firmware for each CPU and starts the CPU.                      */
4599 /*                                                                          */
4600 /* Returns:                                                                 */
4601 /*   Nothing.                                                               */
4602 /****************************************************************************/
4603 static void
4604 bce_init_cpus(struct bce_softc *sc)
4605 {
4606 	DBENTER(BCE_VERBOSE_RESET);
4607 
4608 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4609 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4610 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4611 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4612 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4613 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4614 		} else {
4615 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4616 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4617 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4618 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4619 		}
4620 
4621 	} else {
4622 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4623 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4624 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4625 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4626 	}
4627 
4628 	bce_init_rxp_cpu(sc);
4629 	bce_init_txp_cpu(sc);
4630 	bce_init_tpat_cpu(sc);
4631 	bce_init_com_cpu(sc);
4632 	bce_init_cp_cpu(sc);
4633 
4634 	DBEXIT(BCE_VERBOSE_RESET);
4635 }
4636 
4637 /****************************************************************************/
4638 /* Initialize context memory.                                               */
4639 /*                                                                          */
4640 /* Clears the memory associated with each Context ID (CID).                 */
4641 /*                                                                          */
4642 /* Returns:                                                                 */
4643 /*   Nothing.                                                               */
4644 /****************************************************************************/
4645 static int
4646 bce_init_ctx(struct bce_softc *sc)
4647 {
4648 	u32 offset, val, vcid_addr;
4649 	int i, j, rc, retry_cnt;
4650 
4651 	rc = 0;
4652 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4653 
4654 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4655 		retry_cnt = CTX_INIT_RETRY_COUNT;
4656 
4657 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4658 
4659 		/*
4660 		 * BCM5709 context memory may be cached
4661 		 * in host memory so prepare the host memory
4662 		 * for access.
4663 		 */
4664 		val = BCE_CTX_COMMAND_ENABLED |
4665 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4666 		val |= (BCM_PAGE_BITS - 8) << 16;
4667 		REG_WR(sc, BCE_CTX_COMMAND, val);
4668 
4669 		/* Wait for mem init command to complete. */
4670 		for (i = 0; i < retry_cnt; i++) {
4671 			val = REG_RD(sc, BCE_CTX_COMMAND);
4672 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4673 				break;
4674 			DELAY(2);
4675 		}
4676 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4677 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4678 			    __FUNCTION__);
4679 			rc = EBUSY;
4680 			goto init_ctx_fail;
4681 		}
4682 
4683 		for (i = 0; i < sc->ctx_pages; i++) {
4684 			/* Set the physical address of the context memory. */
4685 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4686 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4687 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4688 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4689 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4690 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4691 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4692 
4693 			/* Verify the context memory write was successful. */
4694 			for (j = 0; j < retry_cnt; j++) {
4695 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4696 				if ((val &
4697 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4698 					break;
4699 				DELAY(5);
4700 			}
4701 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4702 				BCE_PRINTF("%s(): Failed to initialize "
4703 				    "context page %d!\n", __FUNCTION__, i);
4704 				rc = EBUSY;
4705 				goto init_ctx_fail;
4706 			}
4707 		}
4708 	} else {
4709 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4710 
4711 		/*
4712 		 * For the 5706/5708, context memory is local to
4713 		 * the controller, so initialize the controller
4714 		 * context memory.
4715 		 */
4716 
4717 		vcid_addr = GET_CID_ADDR(96);
4718 		while (vcid_addr) {
4719 			vcid_addr -= PHY_CTX_SIZE;
4720 
4721 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4722 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4723 
4724 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4725 				CTX_WR(sc, 0x00, offset, 0);
4726 			}
4727 
4728 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4729 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4730 		}
4731 	}
4732 init_ctx_fail:
4733 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4734 	return (rc);
4735 }
4736 
4737 /****************************************************************************/
4738 /* Fetch the permanent MAC address of the controller.                       */
4739 /*                                                                          */
4740 /* Returns:                                                                 */
4741 /*   Nothing.                                                               */
4742 /****************************************************************************/
4743 static void
4744 bce_get_mac_addr(struct bce_softc *sc)
4745 {
4746 	u32 mac_lo = 0, mac_hi = 0;
4747 
4748 	DBENTER(BCE_VERBOSE_RESET);
4749 
4750 	/*
4751 	 * The NetXtreme II bootcode populates various NIC
4752 	 * power-on and runtime configuration items in a
4753 	 * shared memory area.  The factory configured MAC
4754 	 * address is available from both NVRAM and the
4755 	 * shared memory area so we'll read the value from
4756 	 * shared memory for speed.
4757 	 */
4758 
4759 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4760 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4761 
4762 	if ((mac_lo == 0) && (mac_hi == 0)) {
4763 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4764 		    __FILE__, __LINE__);
4765 	} else {
4766 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4767 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4768 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4769 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4770 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4771 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4772 	}
4773 
4774 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4775 	    "address = %6D\n", sc->eaddr, ":");
4776 	DBEXIT(BCE_VERBOSE_RESET);
4777 }
4778 
4779 /****************************************************************************/
4780 /* Program the MAC address.                                                 */
4781 /*                                                                          */
4782 /* Returns:                                                                 */
4783 /*   Nothing.                                                               */
4784 /****************************************************************************/
4785 static void
4786 bce_set_mac_addr(struct bce_softc *sc)
4787 {
4788 	u32 val;
4789 	u8 *mac_addr = sc->eaddr;
4790 
4791 	/* ToDo: Add support for setting multiple MAC addresses. */
4792 
4793 	DBENTER(BCE_VERBOSE_RESET);
4794 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4795 	    "%6D\n", sc->eaddr, ":");
4796 
4797 	val = (mac_addr[0] << 8) | mac_addr[1];
4798 
4799 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4800 
4801 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4802 	    (mac_addr[4] << 8) | mac_addr[5];
4803 
4804 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4805 
4806 	DBEXIT(BCE_VERBOSE_RESET);
4807 }
4808 
4809 /****************************************************************************/
4810 /* Stop the controller.                                                     */
4811 /*                                                                          */
4812 /* Returns:                                                                 */
4813 /*   Nothing.                                                               */
4814 /****************************************************************************/
4815 static void
4816 bce_stop(struct bce_softc *sc)
4817 {
4818 	if_t ifp;
4819 
4820 	DBENTER(BCE_VERBOSE_RESET);
4821 
4822 	BCE_LOCK_ASSERT(sc);
4823 
4824 	ifp = sc->bce_ifp;
4825 
4826 	callout_stop(&sc->bce_tick_callout);
4827 
4828 	/* Disable the transmit/receive blocks. */
4829 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4830 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4831 	DELAY(20);
4832 
4833 	bce_disable_intr(sc);
4834 
4835 	/* Free RX buffers. */
4836 	if (bce_hdr_split == TRUE) {
4837 		bce_free_pg_chain(sc);
4838 	}
4839 	bce_free_rx_chain(sc);
4840 
4841 	/* Free TX buffers. */
4842 	bce_free_tx_chain(sc);
4843 
4844 	sc->watchdog_timer = 0;
4845 
4846 	sc->bce_link_up = FALSE;
4847 
4848 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
4849 
4850 	DBEXIT(BCE_VERBOSE_RESET);
4851 }
4852 
4853 static int
4854 bce_reset(struct bce_softc *sc, u32 reset_code)
4855 {
4856 	u32 emac_mode_save, val;
4857 	int i, rc = 0;
4858 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4859 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4860 
4861 	DBENTER(BCE_VERBOSE_RESET);
4862 
4863 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4864 	    __FUNCTION__, reset_code);
4865 
4866 	/*
4867 	 * If ASF/IPMI is operational, then the EMAC Mode register already
4868 	 * contains appropriate values for the link settings that have
4869 	 * been auto-negotiated.  Resetting the chip will clobber those
4870 	 * values.  Save the important bits so we can restore them after
4871 	 * the reset.
4872 	 */
4873 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4874 
4875 	/* Wait for pending PCI transactions to complete. */
4876 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4877 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4878 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4879 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4880 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4881 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4882 	DELAY(5);
4883 
4884 	/* Disable DMA */
4885 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4886 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4887 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4888 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4889 	}
4890 
4891 	/* Assume bootcode is running. */
4892 	sc->bce_fw_timed_out = FALSE;
4893 	sc->bce_drv_cardiac_arrest = FALSE;
4894 
4895 	/* Give the firmware a chance to prepare for the reset. */
4896 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4897 	if (rc)
4898 		goto bce_reset_exit;
4899 
4900 	/* Set a firmware reminder that this is a soft reset. */
4901 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4902 
4903 	/* Dummy read to force the chip to complete all current transactions. */
4904 	val = REG_RD(sc, BCE_MISC_ID);
4905 
4906 	/* Chip reset. */
4907 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4908 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4909 		REG_RD(sc, BCE_MISC_COMMAND);
4910 		DELAY(5);
4911 
4912 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4913 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4914 
4915 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4916 	} else {
4917 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4918 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4919 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4920 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4921 
4922 		/* Allow up to 30us for reset to complete. */
4923 		for (i = 0; i < 10; i++) {
4924 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4925 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4926 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4927 				break;
4928 			}
4929 			DELAY(10);
4930 		}
4931 
4932 		/* Check that reset completed successfully. */
4933 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4934 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4935 			BCE_PRINTF("%s(%d): Reset failed!\n",
4936 			    __FILE__, __LINE__);
4937 			rc = EBUSY;
4938 			goto bce_reset_exit;
4939 		}
4940 	}
4941 
4942 	/* Make sure byte swapping is properly configured. */
4943 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4944 	if (val != 0x01020304) {
4945 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4946 		    __FILE__, __LINE__);
4947 		rc = ENODEV;
4948 		goto bce_reset_exit;
4949 	}
4950 
4951 	/* Just completed a reset, assume that firmware is running again. */
4952 	sc->bce_fw_timed_out = FALSE;
4953 	sc->bce_drv_cardiac_arrest = FALSE;
4954 
4955 	/* Wait for the firmware to finish its initialization. */
4956 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4957 	if (rc)
4958 		BCE_PRINTF("%s(%d): Firmware did not complete "
4959 		    "initialization!\n", __FILE__, __LINE__);
4960 	/* Get firmware capabilities. */
4961 	bce_fw_cap_init(sc);
4962 
4963 bce_reset_exit:
4964 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
4965 	if (reset_code == BCE_DRV_MSG_CODE_RESET) {
4966 		val = REG_RD(sc, BCE_EMAC_MODE);
4967 		val = (val & ~emac_mode_mask) | emac_mode_save;
4968 		REG_WR(sc, BCE_EMAC_MODE, val);
4969 	}
4970 
4971 	DBEXIT(BCE_VERBOSE_RESET);
4972 	return (rc);
4973 }
4974 
4975 static int
4976 bce_chipinit(struct bce_softc *sc)
4977 {
4978 	u32 val;
4979 	int rc = 0;
4980 
4981 	DBENTER(BCE_VERBOSE_RESET);
4982 
4983 	bce_disable_intr(sc);
4984 
4985 	/*
4986 	 * Initialize DMA byte/word swapping, configure the number of DMA
4987 	 * channels and PCI clock compensation delay.
4988 	 */
4989 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
4990 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
4991 #if BYTE_ORDER == BIG_ENDIAN
4992 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
4993 #endif
4994 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
4995 	    DMA_READ_CHANS << 12 |
4996 	    DMA_WRITE_CHANS << 16;
4997 
4998 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
4999 
5000 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5001 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5002 
5003 	/*
5004 	 * This setting resolves a problem observed on certain Intel PCI
5005 	 * chipsets that cannot handle multiple outstanding DMA operations.
5006 	 * See errata E9_5706A1_65.
5007 	 */
5008 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5009 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5010 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5011 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5012 
5013 	REG_WR(sc, BCE_DMA_CONFIG, val);
5014 
5015 	/* Enable the RX_V2P and Context state machines before access. */
5016 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5017 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5018 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5019 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5020 
5021 	/* Initialize context mapping and zero out the quick contexts. */
5022 	if ((rc = bce_init_ctx(sc)) != 0)
5023 		goto bce_chipinit_exit;
5024 
5025 	/* Initialize the on-boards CPUs */
5026 	bce_init_cpus(sc);
5027 
5028 	/* Enable management frames (NC-SI) to flow to the MCP. */
5029 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5030 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5031 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5032 	}
5033 
5034 	/* Prepare NVRAM for access. */
5035 	if ((rc = bce_init_nvram(sc)) != 0)
5036 		goto bce_chipinit_exit;
5037 
5038 	/* Set the kernel bypass block size */
5039 	val = REG_RD(sc, BCE_MQ_CONFIG);
5040 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5041 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5042 
5043 	/* Enable bins used on the 5709. */
5044 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5045 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5046 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5047 			val |= BCE_MQ_CONFIG_HALT_DIS;
5048 	}
5049 
5050 	REG_WR(sc, BCE_MQ_CONFIG, val);
5051 
5052 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5053 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5054 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5055 
5056 	/* Set the page size and clear the RV2P processor stall bits. */
5057 	val = (BCM_PAGE_BITS - 8) << 24;
5058 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5059 
5060 	/* Configure page size. */
5061 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5062 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5063 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5064 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5065 
5066 	/* Set the perfect match control register to default. */
5067 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5068 
5069 bce_chipinit_exit:
5070 	DBEXIT(BCE_VERBOSE_RESET);
5071 
5072 	return(rc);
5073 }
5074 
5075 /****************************************************************************/
5076 /* Initialize the controller in preparation to send/receive traffic.        */
5077 /*                                                                          */
5078 /* Returns:                                                                 */
5079 /*   0 for success, positive value for failure.                             */
5080 /****************************************************************************/
5081 static int
5082 bce_blockinit(struct bce_softc *sc)
5083 {
5084 	u32 reg, val;
5085 	int rc = 0;
5086 
5087 	DBENTER(BCE_VERBOSE_RESET);
5088 
5089 	/* Load the hardware default MAC address. */
5090 	bce_set_mac_addr(sc);
5091 
5092 	/* Set the Ethernet backoff seed value */
5093 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5094 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5095 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5096 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5097 
5098 	sc->last_status_idx = 0;
5099 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5100 
5101 	/* Set up link change interrupt generation. */
5102 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5103 
5104 	/* Program the physical address of the status block. */
5105 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5106 	    BCE_ADDR_LO(sc->status_block_paddr));
5107 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5108 	    BCE_ADDR_HI(sc->status_block_paddr));
5109 
5110 	/* Program the physical address of the statistics block. */
5111 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5112 	    BCE_ADDR_LO(sc->stats_block_paddr));
5113 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5114 	    BCE_ADDR_HI(sc->stats_block_paddr));
5115 
5116 	/*
5117 	 * Program various host coalescing parameters.
5118 	 * Trip points control how many BDs should be ready before generating
5119 	 * an interrupt while ticks control how long a BD can sit in the chain
5120 	 * before generating an interrupt.
5121 	 */
5122 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5123 	    (sc->bce_tx_quick_cons_trip_int << 16) |
5124 	    sc->bce_tx_quick_cons_trip);
5125 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5126 	    (sc->bce_rx_quick_cons_trip_int << 16) |
5127 	    sc->bce_rx_quick_cons_trip);
5128 	REG_WR(sc, BCE_HC_TX_TICKS,
5129 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5130 	REG_WR(sc, BCE_HC_RX_TICKS,
5131 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5132 	REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5133 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5134 	/* Not used for L2. */
5135 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5136 	REG_WR(sc, BCE_HC_COM_TICKS, 0);
5137 	REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5138 
5139 	/* Configure the Host Coalescing block. */
5140 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5141 	    BCE_HC_CONFIG_COLLECT_STATS;
5142 
5143 #if 0
5144 	/* ToDo: Add MSI-X support. */
5145 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5146 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5147 		    BCE_HC_SB_CONFIG_1;
5148 
5149 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5150 
5151 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5152 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5153 
5154 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5155 		    (sc->tx_quick_cons_trip_int << 16) |
5156 		     sc->tx_quick_cons_trip);
5157 
5158 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5159 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5160 
5161 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5162 	}
5163 
5164 	/*
5165 	 * Tell the HC block to automatically set the
5166 	 * INT_MASK bit after an MSI/MSI-X interrupt
5167 	 * is generated so the driver doesn't have to.
5168 	 */
5169 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5170 		val |= BCE_HC_CONFIG_ONE_SHOT;
5171 
5172 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5173 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5174 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5175 #endif
5176 
5177 	REG_WR(sc, BCE_HC_CONFIG, val);
5178 
5179 	/* Clear the internal statistics counters. */
5180 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5181 
5182 	/* Verify that bootcode is running. */
5183 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5184 
5185 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5186 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5187 	    __FILE__, __LINE__);
5188 	    reg = 0);
5189 
5190 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5191 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5192 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5193 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5194 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5195 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5196 		rc = ENODEV;
5197 		goto bce_blockinit_exit;
5198 	}
5199 
5200 	/* Enable DMA */
5201 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5202 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5203 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5204 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5205 	}
5206 
5207 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5208 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5209 	    BCE_DRV_MSG_CODE_RESET);
5210 
5211 	/* Enable link state change interrupt generation. */
5212 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5213 
5214 	/* Enable the RXP. */
5215 	bce_start_rxp_cpu(sc);
5216 
5217 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5218 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5219 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5220 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5221 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5222 	}
5223 
5224 	/* Enable all remaining blocks in the MAC. */
5225 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5226 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5227 		    BCE_MISC_ENABLE_DEFAULT_XI);
5228 	else
5229 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5230 		    BCE_MISC_ENABLE_DEFAULT);
5231 
5232 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5233 	DELAY(20);
5234 
5235 	/* Save the current host coalescing block settings. */
5236 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5237 
5238 bce_blockinit_exit:
5239 	DBEXIT(BCE_VERBOSE_RESET);
5240 
5241 	return (rc);
5242 }
5243 
5244 /****************************************************************************/
5245 /* Encapsulate an mbuf into the rx_bd chain.                                */
5246 /*                                                                          */
5247 /* Returns:                                                                 */
5248 /*   0 for success, positive value for failure.                             */
5249 /****************************************************************************/
5250 static int
5251 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5252 {
5253 	bus_dma_segment_t segs[1];
5254 	struct mbuf *m_new = NULL;
5255 	struct rx_bd *rxbd;
5256 	int nsegs, error, rc = 0;
5257 #ifdef BCE_DEBUG
5258 	u16 debug_chain_prod = chain_prod;
5259 #endif
5260 
5261 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5262 
5263 	/* Make sure the inputs are valid. */
5264 	DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5265 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5266 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5267 	    chain_prod, (u16)MAX_RX_BD_ALLOC));
5268 
5269 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5270 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5271 	    prod, chain_prod, *prod_bseq);
5272 
5273 	/* Update some debug statistic counters */
5274 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5275 	    sc->rx_low_watermark = sc->free_rx_bd);
5276 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5277 	    sc->rx_empty_count++);
5278 
5279 	/* Simulate an mbuf allocation failure. */
5280 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5281 	    sc->mbuf_alloc_failed_count++;
5282 	    sc->mbuf_alloc_failed_sim_count++;
5283 	    rc = ENOBUFS;
5284 	    goto bce_get_rx_buf_exit);
5285 
5286 	/* This is a new mbuf allocation. */
5287 	if (bce_hdr_split == TRUE)
5288 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
5289 	else
5290 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5291 		    sc->rx_bd_mbuf_alloc_size);
5292 
5293 	if (m_new == NULL) {
5294 		sc->mbuf_alloc_failed_count++;
5295 		rc = ENOBUFS;
5296 		goto bce_get_rx_buf_exit;
5297 	}
5298 
5299 	DBRUN(sc->debug_rx_mbuf_alloc++);
5300 
5301 	/* Make sure we have a valid packet header. */
5302 	M_ASSERTPKTHDR(m_new);
5303 
5304 	/* Initialize the mbuf size and pad if necessary for alignment. */
5305 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5306 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5307 
5308 	/* ToDo: Consider calling m_fragment() to test error handling. */
5309 
5310 	/* Map the mbuf cluster into device memory. */
5311 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5312 	    sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5313 
5314 	/* Handle any mapping errors. */
5315 	if (error) {
5316 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5317 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5318 
5319 		sc->dma_map_addr_rx_failed_count++;
5320 		m_freem(m_new);
5321 
5322 		DBRUN(sc->debug_rx_mbuf_alloc--);
5323 
5324 		rc = ENOBUFS;
5325 		goto bce_get_rx_buf_exit;
5326 	}
5327 
5328 	/* All mbufs must map to a single segment. */
5329 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5330 	    __FUNCTION__, nsegs));
5331 
5332 	/* Setup the rx_bd for the segment. */
5333 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5334 
5335 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5336 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5337 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5338 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5339 	*prod_bseq += segs[0].ds_len;
5340 
5341 	/* Save the mbuf and update our counter. */
5342 	sc->rx_mbuf_ptr[chain_prod] = m_new;
5343 	sc->free_rx_bd -= nsegs;
5344 
5345 	DBRUNMSG(BCE_INSANE_RECV,
5346 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5347 
5348 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5349 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5350 	    chain_prod, *prod_bseq);
5351 
5352 bce_get_rx_buf_exit:
5353 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5354 
5355 	return(rc);
5356 }
5357 
5358 /****************************************************************************/
5359 /* Encapsulate an mbuf cluster into the page chain.                         */
5360 /*                                                                          */
5361 /* Returns:                                                                 */
5362 /*   0 for success, positive value for failure.                             */
5363 /****************************************************************************/
5364 static int
5365 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5366 {
5367 	bus_dma_segment_t segs[1];
5368 	struct mbuf *m_new = NULL;
5369 	struct rx_bd *pgbd;
5370 	int error, nsegs, rc = 0;
5371 #ifdef BCE_DEBUG
5372 	u16 debug_prod_idx = prod_idx;
5373 #endif
5374 
5375 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5376 
5377 	/* Make sure the inputs are valid. */
5378 	DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5379 	    BCE_PRINTF("%s(%d): page producer out of range: "
5380 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5381 	    prod_idx, (u16)MAX_PG_BD_ALLOC));
5382 
5383 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5384 	    "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5385 
5386 	/* Update counters if we've hit a new low or run out of pages. */
5387 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5388 	    sc->pg_low_watermark = sc->free_pg_bd);
5389 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5390 
5391 	/* Simulate an mbuf allocation failure. */
5392 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5393 	    sc->mbuf_alloc_failed_count++;
5394 	    sc->mbuf_alloc_failed_sim_count++;
5395 	    rc = ENOBUFS;
5396 	    goto bce_get_pg_buf_exit);
5397 
5398 	/* This is a new mbuf allocation. */
5399 	m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5400 	if (m_new == NULL) {
5401 		sc->mbuf_alloc_failed_count++;
5402 		rc = ENOBUFS;
5403 		goto bce_get_pg_buf_exit;
5404 	}
5405 
5406 	DBRUN(sc->debug_pg_mbuf_alloc++);
5407 
5408 	m_new->m_len = MCLBYTES;
5409 
5410 	/* ToDo: Consider calling m_fragment() to test error handling. */
5411 
5412 	/* Map the mbuf cluster into device memory. */
5413 	error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5414 	    sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5415 
5416 	/* Handle any mapping errors. */
5417 	if (error) {
5418 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5419 		    __FILE__, __LINE__);
5420 
5421 		m_freem(m_new);
5422 		DBRUN(sc->debug_pg_mbuf_alloc--);
5423 
5424 		rc = ENOBUFS;
5425 		goto bce_get_pg_buf_exit;
5426 	}
5427 
5428 	/* All mbufs must map to a single segment. */
5429 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5430 	    __FUNCTION__, nsegs));
5431 
5432 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5433 
5434 	/*
5435 	 * The page chain uses the same rx_bd data structure
5436 	 * as the receive chain but doesn't require a byte sequence (bseq).
5437 	 */
5438 	pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5439 
5440 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5441 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5442 	pgbd->rx_bd_len       = htole32(MCLBYTES);
5443 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5444 
5445 	/* Save the mbuf and update our counter. */
5446 	sc->pg_mbuf_ptr[prod_idx] = m_new;
5447 	sc->free_pg_bd--;
5448 
5449 	DBRUNMSG(BCE_INSANE_RECV,
5450 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5451 
5452 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5453 	    "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5454 
5455 bce_get_pg_buf_exit:
5456 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5457 
5458 	return(rc);
5459 }
5460 
5461 /****************************************************************************/
5462 /* Initialize the TX context memory.                                        */
5463 /*                                                                          */
5464 /* Returns:                                                                 */
5465 /*   Nothing                                                                */
5466 /****************************************************************************/
5467 static void
5468 bce_init_tx_context(struct bce_softc *sc)
5469 {
5470 	u32 val;
5471 
5472 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5473 
5474 	/* Initialize the context ID for an L2 TX chain. */
5475 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5476 		/* Set the CID type to support an L2 connection. */
5477 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5478 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5479 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5480 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5481 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5482 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5483 
5484 		/* Point the hardware to the first page in the chain. */
5485 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5486 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5487 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5488 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5489 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5490 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5491 	} else {
5492 		/* Set the CID type to support an L2 connection. */
5493 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5494 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5495 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5496 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5497 
5498 		/* Point the hardware to the first page in the chain. */
5499 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5500 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5501 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5502 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5503 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5504 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5505 	}
5506 
5507 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5508 }
5509 
5510 /****************************************************************************/
5511 /* Allocate memory and initialize the TX data structures.                   */
5512 /*                                                                          */
5513 /* Returns:                                                                 */
5514 /*   0 for success, positive value for failure.                             */
5515 /****************************************************************************/
5516 static int
5517 bce_init_tx_chain(struct bce_softc *sc)
5518 {
5519 	struct tx_bd *txbd;
5520 	int i, rc = 0;
5521 
5522 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5523 
5524 	/* Set the initial TX producer/consumer indices. */
5525 	sc->tx_prod        = 0;
5526 	sc->tx_cons        = 0;
5527 	sc->tx_prod_bseq   = 0;
5528 	sc->used_tx_bd     = 0;
5529 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5530 	DBRUN(sc->tx_hi_watermark = 0);
5531 	DBRUN(sc->tx_full_count = 0);
5532 
5533 	/*
5534 	 * The NetXtreme II supports a linked-list structure called
5535 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5536 	 * consists of a series of 1 or more chain pages, each of which
5537 	 * consists of a fixed number of BD entries.
5538 	 * The last BD entry on each page is a pointer to the next page
5539 	 * in the chain, and the last pointer in the BD chain
5540 	 * points back to the beginning of the chain.
5541 	 */
5542 
5543 	/* Set the TX next pointer chain entries. */
5544 	for (i = 0; i < sc->tx_pages; i++) {
5545 		int j;
5546 
5547 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5548 
5549 		/* Check if we've reached the last page. */
5550 		if (i == (sc->tx_pages - 1))
5551 			j = 0;
5552 		else
5553 			j = i + 1;
5554 
5555 		txbd->tx_bd_haddr_hi =
5556 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5557 		txbd->tx_bd_haddr_lo =
5558 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5559 	}
5560 
5561 	bce_init_tx_context(sc);
5562 
5563 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5564 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5565 
5566 	return(rc);
5567 }
5568 
5569 /****************************************************************************/
5570 /* Free memory and clear the TX data structures.                            */
5571 /*                                                                          */
5572 /* Returns:                                                                 */
5573 /*   Nothing.                                                               */
5574 /****************************************************************************/
5575 static void
5576 bce_free_tx_chain(struct bce_softc *sc)
5577 {
5578 	int i;
5579 
5580 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5581 
5582 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5583 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5584 		if (sc->tx_mbuf_ptr[i] != NULL) {
5585 			if (sc->tx_mbuf_map[i] != NULL)
5586 				bus_dmamap_sync(sc->tx_mbuf_tag,
5587 				    sc->tx_mbuf_map[i],
5588 				    BUS_DMASYNC_POSTWRITE);
5589 			m_freem(sc->tx_mbuf_ptr[i]);
5590 			sc->tx_mbuf_ptr[i] = NULL;
5591 			DBRUN(sc->debug_tx_mbuf_alloc--);
5592 		}
5593 	}
5594 
5595 	/* Clear each TX chain page. */
5596 	for (i = 0; i < sc->tx_pages; i++)
5597 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5598 
5599 	sc->used_tx_bd = 0;
5600 
5601 	/* Check if we lost any mbufs in the process. */
5602 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5603 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5604 	    "from tx chain!\n",	__FILE__, __LINE__,
5605 	    sc->debug_tx_mbuf_alloc));
5606 
5607 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5608 }
5609 
5610 /****************************************************************************/
5611 /* Initialize the RX context memory.                                        */
5612 /*                                                                          */
5613 /* Returns:                                                                 */
5614 /*   Nothing                                                                */
5615 /****************************************************************************/
5616 static void
5617 bce_init_rx_context(struct bce_softc *sc)
5618 {
5619 	u32 val;
5620 
5621 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5622 
5623 	/* Init the type, size, and BD cache levels for the RX context. */
5624 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5625 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5626 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5627 
5628 	/*
5629 	 * Set the level for generating pause frames
5630 	 * when the number of available rx_bd's gets
5631 	 * too low (the low watermark) and the level
5632 	 * when pause frames can be stopped (the high
5633 	 * watermark).
5634 	 */
5635 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5636 		u32 lo_water, hi_water;
5637 
5638 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5639 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5640 		} else {
5641 			lo_water = 0;
5642 		}
5643 
5644 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5645 			lo_water = 0;
5646 		}
5647 
5648 		hi_water = USABLE_RX_BD_ALLOC / 4;
5649 
5650 		if (hi_water <= lo_water) {
5651 			lo_water = 0;
5652 		}
5653 
5654 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5655 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5656 
5657 		if (hi_water > 0xf)
5658 			hi_water = 0xf;
5659 		else if (hi_water == 0)
5660 			lo_water = 0;
5661 
5662 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5663 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5664 	}
5665 
5666 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5667 
5668 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5669 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5670 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5671 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5672 	}
5673 
5674 	/* Point the hardware to the first page in the chain. */
5675 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5676 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5677 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5678 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5679 
5680 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5681 }
5682 
5683 /****************************************************************************/
5684 /* Allocate memory and initialize the RX data structures.                   */
5685 /*                                                                          */
5686 /* Returns:                                                                 */
5687 /*   0 for success, positive value for failure.                             */
5688 /****************************************************************************/
5689 static int
5690 bce_init_rx_chain(struct bce_softc *sc)
5691 {
5692 	struct rx_bd *rxbd;
5693 	int i, rc = 0;
5694 
5695 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5696 	    BCE_VERBOSE_CTX);
5697 
5698 	/* Initialize the RX producer and consumer indices. */
5699 	sc->rx_prod        = 0;
5700 	sc->rx_cons        = 0;
5701 	sc->rx_prod_bseq   = 0;
5702 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5703 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5704 
5705 	/* Initialize the RX next pointer chain entries. */
5706 	for (i = 0; i < sc->rx_pages; i++) {
5707 		int j;
5708 
5709 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5710 
5711 		/* Check if we've reached the last page. */
5712 		if (i == (sc->rx_pages - 1))
5713 			j = 0;
5714 		else
5715 			j = i + 1;
5716 
5717 		/* Setup the chain page pointers. */
5718 		rxbd->rx_bd_haddr_hi =
5719 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5720 		rxbd->rx_bd_haddr_lo =
5721 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5722 	}
5723 
5724 	/* Fill up the RX chain. */
5725 	bce_fill_rx_chain(sc);
5726 
5727 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5728 	DBRUN(sc->rx_empty_count = 0);
5729 	for (i = 0; i < sc->rx_pages; i++) {
5730 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5731 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5732 	}
5733 
5734 	bce_init_rx_context(sc);
5735 
5736 	DBRUNMSG(BCE_EXTREME_RECV,
5737 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5738 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5739 	    BCE_VERBOSE_CTX);
5740 
5741 	/* ToDo: Are there possible failure modes here? */
5742 
5743 	return(rc);
5744 }
5745 
5746 /****************************************************************************/
5747 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5748 /* occurs.                                                                  */
5749 /*                                                                          */
5750 /* Returns:                                                                 */
5751 /*   Nothing                                                                */
5752 /****************************************************************************/
5753 static void
5754 bce_fill_rx_chain(struct bce_softc *sc)
5755 {
5756 	u16 prod, prod_idx;
5757 	u32 prod_bseq;
5758 
5759 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5760 	    BCE_VERBOSE_CTX);
5761 
5762 	/* Get the RX chain producer indices. */
5763 	prod      = sc->rx_prod;
5764 	prod_bseq = sc->rx_prod_bseq;
5765 
5766 	/* Keep filling the RX chain until it's full. */
5767 	while (sc->free_rx_bd > 0) {
5768 		prod_idx = RX_CHAIN_IDX(prod);
5769 		if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5770 			/* Bail out if we can't add an mbuf to the chain. */
5771 			break;
5772 		}
5773 		prod = NEXT_RX_BD(prod);
5774 	}
5775 
5776 	/* Save the RX chain producer indices. */
5777 	sc->rx_prod      = prod;
5778 	sc->rx_prod_bseq = prod_bseq;
5779 
5780 	/* We should never end up pointing to a next page pointer. */
5781 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5782 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5783 	    __FUNCTION__, rx_prod));
5784 
5785 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5786 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5787 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5788 
5789 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5790 	    BCE_VERBOSE_CTX);
5791 }
5792 
5793 /****************************************************************************/
5794 /* Free memory and clear the RX data structures.                            */
5795 /*                                                                          */
5796 /* Returns:                                                                 */
5797 /*   Nothing.                                                               */
5798 /****************************************************************************/
5799 static void
5800 bce_free_rx_chain(struct bce_softc *sc)
5801 {
5802 	int i;
5803 
5804 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5805 
5806 	/* Free any mbufs still in the RX mbuf chain. */
5807 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5808 		if (sc->rx_mbuf_ptr[i] != NULL) {
5809 			if (sc->rx_mbuf_map[i] != NULL)
5810 				bus_dmamap_sync(sc->rx_mbuf_tag,
5811 				    sc->rx_mbuf_map[i],
5812 				    BUS_DMASYNC_POSTREAD);
5813 			m_freem(sc->rx_mbuf_ptr[i]);
5814 			sc->rx_mbuf_ptr[i] = NULL;
5815 			DBRUN(sc->debug_rx_mbuf_alloc--);
5816 		}
5817 	}
5818 
5819 	/* Clear each RX chain page. */
5820 	for (i = 0; i < sc->rx_pages; i++)
5821 		if (sc->rx_bd_chain[i] != NULL)
5822 			bzero((char *)sc->rx_bd_chain[i],
5823 			    BCE_RX_CHAIN_PAGE_SZ);
5824 
5825 	sc->free_rx_bd = sc->max_rx_bd;
5826 
5827 	/* Check if we lost any mbufs in the process. */
5828 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5829 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5830 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5831 
5832 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5833 }
5834 
5835 /****************************************************************************/
5836 /* Allocate memory and initialize the page data structures.                 */
5837 /* Assumes that bce_init_rx_chain() has not already been called.            */
5838 /*                                                                          */
5839 /* Returns:                                                                 */
5840 /*   0 for success, positive value for failure.                             */
5841 /****************************************************************************/
5842 static int
5843 bce_init_pg_chain(struct bce_softc *sc)
5844 {
5845 	struct rx_bd *pgbd;
5846 	int i, rc = 0;
5847 	u32 val;
5848 
5849 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5850 		BCE_VERBOSE_CTX);
5851 
5852 	/* Initialize the page producer and consumer indices. */
5853 	sc->pg_prod        = 0;
5854 	sc->pg_cons        = 0;
5855 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5856 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5857 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5858 	DBRUN(sc->pg_empty_count = 0);
5859 
5860 	/* Initialize the page next pointer chain entries. */
5861 	for (i = 0; i < sc->pg_pages; i++) {
5862 		int j;
5863 
5864 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5865 
5866 		/* Check if we've reached the last page. */
5867 		if (i == (sc->pg_pages - 1))
5868 			j = 0;
5869 		else
5870 			j = i + 1;
5871 
5872 		/* Setup the chain page pointers. */
5873 		pgbd->rx_bd_haddr_hi =
5874 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5875 		pgbd->rx_bd_haddr_lo =
5876 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5877 	}
5878 
5879 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5880 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5881 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5882 
5883 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5884 
5885 	/* Configure the rx_bd and page chain mbuf cluster size. */
5886 	val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
5887 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5888 
5889 	/* Configure the context reserved for jumbo support. */
5890 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5891 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5892 
5893 	/* Point the hardware to the first page in the page chain. */
5894 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5895 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5896 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5897 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5898 
5899 	/* Fill up the page chain. */
5900 	bce_fill_pg_chain(sc);
5901 
5902 	for (i = 0; i < sc->pg_pages; i++) {
5903 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5904 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5905 	}
5906 
5907 	DBRUNMSG(BCE_EXTREME_RECV,
5908 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
5909 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5910 		BCE_VERBOSE_CTX);
5911 	return(rc);
5912 }
5913 
5914 /****************************************************************************/
5915 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
5916 /* occurs.                                                                  */
5917 /*                                                                          */
5918 /* Returns:                                                                 */
5919 /*   Nothing                                                                */
5920 /****************************************************************************/
5921 static void
5922 bce_fill_pg_chain(struct bce_softc *sc)
5923 {
5924 	u16 prod, prod_idx;
5925 
5926 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5927 	    BCE_VERBOSE_CTX);
5928 
5929 	/* Get the page chain prodcuer index. */
5930 	prod = sc->pg_prod;
5931 
5932 	/* Keep filling the page chain until it's full. */
5933 	while (sc->free_pg_bd > 0) {
5934 		prod_idx = PG_CHAIN_IDX(prod);
5935 		if (bce_get_pg_buf(sc, prod, prod_idx)) {
5936 			/* Bail out if we can't add an mbuf to the chain. */
5937 			break;
5938 		}
5939 		prod = NEXT_PG_BD(prod);
5940 	}
5941 
5942 	/* Save the page chain producer index. */
5943 	sc->pg_prod = prod;
5944 
5945 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5946 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5947 	    __FUNCTION__, pg_prod));
5948 
5949 	/*
5950 	 * Write the mailbox and tell the chip about
5951 	 * the new rx_bd's in the page chain.
5952 	 */
5953 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
5954 	    prod);
5955 
5956 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5957 	    BCE_VERBOSE_CTX);
5958 }
5959 
5960 /****************************************************************************/
5961 /* Free memory and clear the RX data structures.                            */
5962 /*                                                                          */
5963 /* Returns:                                                                 */
5964 /*   Nothing.                                                               */
5965 /****************************************************************************/
5966 static void
5967 bce_free_pg_chain(struct bce_softc *sc)
5968 {
5969 	int i;
5970 
5971 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5972 
5973 	/* Free any mbufs still in the mbuf page chain. */
5974 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
5975 		if (sc->pg_mbuf_ptr[i] != NULL) {
5976 			if (sc->pg_mbuf_map[i] != NULL)
5977 				bus_dmamap_sync(sc->pg_mbuf_tag,
5978 				    sc->pg_mbuf_map[i],
5979 				    BUS_DMASYNC_POSTREAD);
5980 			m_freem(sc->pg_mbuf_ptr[i]);
5981 			sc->pg_mbuf_ptr[i] = NULL;
5982 			DBRUN(sc->debug_pg_mbuf_alloc--);
5983 		}
5984 	}
5985 
5986 	/* Clear each page chain pages. */
5987 	for (i = 0; i < sc->pg_pages; i++)
5988 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
5989 
5990 	sc->free_pg_bd = sc->max_pg_bd;
5991 
5992 	/* Check if we lost any mbufs in the process. */
5993 	DBRUNIF((sc->debug_pg_mbuf_alloc),
5994 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
5995 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
5996 
5997 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5998 }
5999 
6000 static u32
6001 bce_get_rphy_link(struct bce_softc *sc)
6002 {
6003 	u32 advertise, link;
6004 	int fdpx;
6005 
6006 	advertise = 0;
6007 	fdpx = 0;
6008 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6009 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6010 	else
6011 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6012 	if (link & BCE_NETLINK_ANEG_ENB)
6013 		advertise |= BCE_NETLINK_ANEG_ENB;
6014 	if (link & BCE_NETLINK_SPEED_10HALF)
6015 		advertise |= BCE_NETLINK_SPEED_10HALF;
6016 	if (link & BCE_NETLINK_SPEED_10FULL) {
6017 		advertise |= BCE_NETLINK_SPEED_10FULL;
6018 		fdpx++;
6019 	}
6020 	if (link & BCE_NETLINK_SPEED_100HALF)
6021 		advertise |= BCE_NETLINK_SPEED_100HALF;
6022 	if (link & BCE_NETLINK_SPEED_100FULL) {
6023 		advertise |= BCE_NETLINK_SPEED_100FULL;
6024 		fdpx++;
6025 	}
6026 	if (link & BCE_NETLINK_SPEED_1000HALF)
6027 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6028 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6029 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6030 		fdpx++;
6031 	}
6032 	if (link & BCE_NETLINK_SPEED_2500HALF)
6033 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6034 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6035 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6036 		fdpx++;
6037 	}
6038 	if (fdpx)
6039 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6040 		    BCE_NETLINK_FC_PAUSE_ASYM;
6041 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6042 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6043 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6044 
6045 	return (advertise);
6046 }
6047 
6048 /****************************************************************************/
6049 /* Set media options.                                                       */
6050 /*                                                                          */
6051 /* Returns:                                                                 */
6052 /*   0 for success, positive value for failure.                             */
6053 /****************************************************************************/
6054 static int
6055 bce_ifmedia_upd(if_t ifp)
6056 {
6057 	struct bce_softc *sc = if_getsoftc(ifp);
6058 	int error;
6059 
6060 	DBENTER(BCE_VERBOSE);
6061 
6062 	BCE_LOCK(sc);
6063 	error = bce_ifmedia_upd_locked(ifp);
6064 	BCE_UNLOCK(sc);
6065 
6066 	DBEXIT(BCE_VERBOSE);
6067 	return (error);
6068 }
6069 
6070 /****************************************************************************/
6071 /* Set media options.                                                       */
6072 /*                                                                          */
6073 /* Returns:                                                                 */
6074 /*   Nothing.                                                               */
6075 /****************************************************************************/
6076 static int
6077 bce_ifmedia_upd_locked(if_t ifp)
6078 {
6079 	struct bce_softc *sc = if_getsoftc(ifp);
6080 	struct mii_data *mii;
6081 	struct mii_softc *miisc;
6082 	struct ifmedia *ifm;
6083 	u32 link;
6084 	int error, fdx;
6085 
6086 	DBENTER(BCE_VERBOSE_PHY);
6087 
6088 	error = 0;
6089 	BCE_LOCK_ASSERT(sc);
6090 
6091 	sc->bce_link_up = FALSE;
6092 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6093 		ifm = &sc->bce_ifmedia;
6094 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6095 			return (EINVAL);
6096 		link = 0;
6097 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6098 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6099 		case IFM_AUTO:
6100 			/*
6101 			 * Check advertised link of remote PHY by reading
6102 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6103 			 * Always use the same link type of remote PHY.
6104 			 */
6105 			link = bce_get_rphy_link(sc);
6106 			break;
6107 		case IFM_2500_SX:
6108 			if ((sc->bce_phy_flags &
6109 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6110 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6111 				return (EINVAL);
6112 			/*
6113 			 * XXX
6114 			 * Have to enable forced 2.5Gbps configuration.
6115 			 */
6116 			if (fdx != 0)
6117 				link |= BCE_NETLINK_SPEED_2500FULL;
6118 			else
6119 				link |= BCE_NETLINK_SPEED_2500HALF;
6120 			break;
6121 		case IFM_1000_SX:
6122 			if ((sc->bce_phy_flags &
6123 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6124 				return (EINVAL);
6125 			/*
6126 			 * XXX
6127 			 * Have to disable 2.5Gbps configuration.
6128 			 */
6129 			if (fdx != 0)
6130 				link = BCE_NETLINK_SPEED_1000FULL;
6131 			else
6132 				link = BCE_NETLINK_SPEED_1000HALF;
6133 			break;
6134 		case IFM_1000_T:
6135 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6136 				return (EINVAL);
6137 			if (fdx != 0)
6138 				link = BCE_NETLINK_SPEED_1000FULL;
6139 			else
6140 				link = BCE_NETLINK_SPEED_1000HALF;
6141 			break;
6142 		case IFM_100_TX:
6143 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6144 				return (EINVAL);
6145 			if (fdx != 0)
6146 				link = BCE_NETLINK_SPEED_100FULL;
6147 			else
6148 				link = BCE_NETLINK_SPEED_100HALF;
6149 			break;
6150 		case IFM_10_T:
6151 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6152 				return (EINVAL);
6153 			if (fdx != 0)
6154 				link = BCE_NETLINK_SPEED_10FULL;
6155 			else
6156 				link = BCE_NETLINK_SPEED_10HALF;
6157 			break;
6158 		default:
6159 			return (EINVAL);
6160 		}
6161 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6162 			/*
6163 			 * XXX
6164 			 * Advertise pause capability for full-duplex media.
6165 			 */
6166 			if (fdx != 0)
6167 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6168 				    BCE_NETLINK_FC_PAUSE_ASYM;
6169 			if ((sc->bce_phy_flags &
6170 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6171 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6172 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6173 		}
6174 
6175 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6176 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6177 	} else {
6178 		mii = device_get_softc(sc->bce_miibus);
6179 
6180 		/* Make sure the MII bus has been enumerated. */
6181 		if (mii) {
6182 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6183 				PHY_RESET(miisc);
6184 			error = mii_mediachg(mii);
6185 		}
6186 	}
6187 
6188 	DBEXIT(BCE_VERBOSE_PHY);
6189 	return (error);
6190 }
6191 
6192 static void
6193 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6194 {
6195 	if_t ifp;
6196 	u32 link;
6197 
6198 	ifp = sc->bce_ifp;
6199 	BCE_LOCK_ASSERT(sc);
6200 
6201 	ifmr->ifm_status = IFM_AVALID;
6202 	ifmr->ifm_active = IFM_ETHER;
6203 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6204 	/* XXX Handle heart beat status? */
6205 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6206 		ifmr->ifm_status |= IFM_ACTIVE;
6207 	else {
6208 		ifmr->ifm_active |= IFM_NONE;
6209 		if_setbaudrate(ifp, 0);
6210 		return;
6211 	}
6212 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6213 	case BCE_LINK_STATUS_10HALF:
6214 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6215 		if_setbaudrate(ifp, IF_Mbps(10UL));
6216 		break;
6217 	case BCE_LINK_STATUS_10FULL:
6218 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6219 		if_setbaudrate(ifp, IF_Mbps(10UL));
6220 		break;
6221 	case BCE_LINK_STATUS_100HALF:
6222 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6223 		if_setbaudrate(ifp, IF_Mbps(100UL));
6224 		break;
6225 	case BCE_LINK_STATUS_100FULL:
6226 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6227 		if_setbaudrate(ifp, IF_Mbps(100UL));
6228 		break;
6229 	case BCE_LINK_STATUS_1000HALF:
6230 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6231 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6232 		else
6233 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6234 		if_setbaudrate(ifp, IF_Mbps(1000UL));
6235 		break;
6236 	case BCE_LINK_STATUS_1000FULL:
6237 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6238 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6239 		else
6240 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6241 		if_setbaudrate(ifp, IF_Mbps(1000UL));
6242 		break;
6243 	case BCE_LINK_STATUS_2500HALF:
6244 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6245 			ifmr->ifm_active |= IFM_NONE;
6246 			return;
6247 		} else
6248 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6249 		if_setbaudrate(ifp, IF_Mbps(2500UL));
6250 		break;
6251 	case BCE_LINK_STATUS_2500FULL:
6252 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6253 			ifmr->ifm_active |= IFM_NONE;
6254 			return;
6255 		} else
6256 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6257 		if_setbaudrate(ifp, IF_Mbps(2500UL));
6258 		break;
6259 	default:
6260 		ifmr->ifm_active |= IFM_NONE;
6261 		return;
6262 	}
6263 
6264 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6265 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6266 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6267 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6268 }
6269 
6270 /****************************************************************************/
6271 /* Reports current media status.                                            */
6272 /*                                                                          */
6273 /* Returns:                                                                 */
6274 /*   Nothing.                                                               */
6275 /****************************************************************************/
6276 static void
6277 bce_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
6278 {
6279 	struct bce_softc *sc = if_getsoftc(ifp);
6280 	struct mii_data *mii;
6281 
6282 	DBENTER(BCE_VERBOSE_PHY);
6283 
6284 	BCE_LOCK(sc);
6285 
6286 	if ((if_getflags(ifp) & IFF_UP) == 0) {
6287 		BCE_UNLOCK(sc);
6288 		return;
6289 	}
6290 
6291 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6292 		bce_ifmedia_sts_rphy(sc, ifmr);
6293 	else {
6294 		mii = device_get_softc(sc->bce_miibus);
6295 		mii_pollstat(mii);
6296 		ifmr->ifm_active = mii->mii_media_active;
6297 		ifmr->ifm_status = mii->mii_media_status;
6298 	}
6299 
6300 	BCE_UNLOCK(sc);
6301 
6302 	DBEXIT(BCE_VERBOSE_PHY);
6303 }
6304 
6305 /****************************************************************************/
6306 /* Handles PHY generated interrupt events.                                  */
6307 /*                                                                          */
6308 /* Returns:                                                                 */
6309 /*   Nothing.                                                               */
6310 /****************************************************************************/
6311 static void
6312 bce_phy_intr(struct bce_softc *sc)
6313 {
6314 	u32 new_link_state, old_link_state;
6315 
6316 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6317 
6318 	DBRUN(sc->phy_interrupts++);
6319 
6320 	new_link_state = sc->status_block->status_attn_bits &
6321 	    STATUS_ATTN_BITS_LINK_STATE;
6322 	old_link_state = sc->status_block->status_attn_bits_ack &
6323 	    STATUS_ATTN_BITS_LINK_STATE;
6324 
6325 	/* Handle any changes if the link state has changed. */
6326 	if (new_link_state != old_link_state) {
6327 		/* Update the status_attn_bits_ack field. */
6328 		if (new_link_state) {
6329 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6330 			    STATUS_ATTN_BITS_LINK_STATE);
6331 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6332 			    __FUNCTION__);
6333 		} else {
6334 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6335 			    STATUS_ATTN_BITS_LINK_STATE);
6336 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6337 			    __FUNCTION__);
6338 		}
6339 
6340 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6341 			if (new_link_state) {
6342 				if (bootverbose)
6343 					if_printf(sc->bce_ifp, "link UP\n");
6344 				if_link_state_change(sc->bce_ifp,
6345 				    LINK_STATE_UP);
6346 			} else {
6347 				if (bootverbose)
6348 					if_printf(sc->bce_ifp, "link DOWN\n");
6349 				if_link_state_change(sc->bce_ifp,
6350 				    LINK_STATE_DOWN);
6351 			}
6352 		}
6353 		/*
6354 		 * Assume link is down and allow
6355 		 * tick routine to update the state
6356 		 * based on the actual media state.
6357 		 */
6358 		sc->bce_link_up = FALSE;
6359 		callout_stop(&sc->bce_tick_callout);
6360 		bce_tick(sc);
6361 	}
6362 
6363 	/* Acknowledge the link change interrupt. */
6364 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6365 
6366 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6367 }
6368 
6369 /****************************************************************************/
6370 /* Reads the receive consumer value from the status block (skipping over    */
6371 /* chain page pointer if necessary).                                        */
6372 /*                                                                          */
6373 /* Returns:                                                                 */
6374 /*   hw_cons                                                                */
6375 /****************************************************************************/
6376 static inline u16
6377 bce_get_hw_rx_cons(struct bce_softc *sc)
6378 {
6379 	u16 hw_cons;
6380 
6381 	rmb();
6382 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6383 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6384 		hw_cons++;
6385 
6386 	return hw_cons;
6387 }
6388 
6389 /****************************************************************************/
6390 /* Handles received frame interrupt events.                                 */
6391 /*                                                                          */
6392 /* Returns:                                                                 */
6393 /*   Nothing.                                                               */
6394 /****************************************************************************/
6395 static void
6396 bce_rx_intr(struct bce_softc *sc)
6397 {
6398 	if_t ifp = sc->bce_ifp;
6399 	struct l2_fhdr *l2fhdr;
6400 	struct ether_vlan_header *vh;
6401 	unsigned int pkt_len;
6402 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6403 	u32 status;
6404 	unsigned int rem_len;
6405 	u16 sw_pg_cons, sw_pg_cons_idx;
6406 
6407 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6408 	DBRUN(sc->interrupts_rx++);
6409 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6410 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6411 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6412 
6413 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6414 	for (int i = 0; i < sc->rx_pages; i++)
6415 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6416 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6417 
6418 	/* Prepare the page chain pages to be accessed by the host CPU. */
6419 	if (bce_hdr_split == TRUE) {
6420 		for (int i = 0; i < sc->pg_pages; i++)
6421 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6422 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6423 	}
6424 
6425 	/* Get the hardware's view of the RX consumer index. */
6426 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6427 
6428 	/* Get working copies of the driver's view of the consumer indices. */
6429 	sw_rx_cons = sc->rx_cons;
6430 	sw_pg_cons = sc->pg_cons;
6431 
6432 	/* Update some debug statistics counters */
6433 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6434 	    sc->rx_low_watermark = sc->free_rx_bd);
6435 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6436 	    sc->rx_empty_count++);
6437 
6438 	/* Scan through the receive chain as long as there is work to do */
6439 	/* ToDo: Consider setting a limit on the number of packets processed. */
6440 	rmb();
6441 	while (sw_rx_cons != hw_rx_cons) {
6442 		struct mbuf *m0;
6443 
6444 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6445 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6446 
6447 		/* Unmap the mbuf from DMA space. */
6448 		bus_dmamap_sync(sc->rx_mbuf_tag,
6449 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6450 		    BUS_DMASYNC_POSTREAD);
6451 		bus_dmamap_unload(sc->rx_mbuf_tag,
6452 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6453 
6454 		/* Remove the mbuf from the RX chain. */
6455 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6456 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6457 		DBRUN(sc->debug_rx_mbuf_alloc--);
6458 		sc->free_rx_bd++;
6459 
6460 		/*
6461  		 * Frames received on the NetXteme II are prepended
6462  		 * with an l2_fhdr structure which provides status
6463  		 * information about the received frame (including
6464  		 * VLAN tags and checksum info).  The frames are
6465 		 * also automatically adjusted to word align the IP
6466  		 * header (i.e. two null bytes are inserted before
6467  		 * the Ethernet	header).  As a result the data
6468  		 * DMA'd by the controller into	the mbuf looks
6469 		 * like this:
6470 		 *
6471 		 * +---------+-----+---------------------+-----+
6472 		 * | l2_fhdr | pad | packet data         | FCS |
6473 		 * +---------+-----+---------------------+-----+
6474 		 *
6475  		 * The l2_fhdr needs to be checked and skipped and
6476  		 * the FCS needs to be stripped before sending the
6477 		 * packet up the stack.
6478 		 */
6479 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6480 
6481 		/* Get the packet data + FCS length and the status. */
6482 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6483 		status  = l2fhdr->l2_fhdr_status;
6484 
6485 		/*
6486 		 * Skip over the l2_fhdr and pad, resulting in the
6487 		 * following data in the mbuf:
6488 		 * +---------------------+-----+
6489 		 * | packet data         | FCS |
6490 		 * +---------------------+-----+
6491 		 */
6492 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6493 
6494 		/*
6495  		 * When split header mode is used, an ethernet frame
6496  		 * may be split across the receive chain and the
6497  		 * page chain. If that occurs an mbuf cluster must be
6498  		 * reassembled from the individual mbuf pieces.
6499 		 */
6500 		if (bce_hdr_split == TRUE) {
6501 			/*
6502 			 * Check whether the received frame fits in a single
6503 			 * mbuf or not (i.e. packet data + FCS <=
6504 			 * sc->rx_bd_mbuf_data_len bytes).
6505 			 */
6506 			if (pkt_len > m0->m_len) {
6507 				/*
6508 				 * The received frame is larger than a single mbuf.
6509 				 * If the frame was a TCP frame then only the TCP
6510 				 * header is placed in the mbuf, the remaining
6511 				 * payload (including FCS) is placed in the page
6512 				 * chain, the SPLIT flag is set, and the header
6513 				 * length is placed in the IP checksum field.
6514 				 * If the frame is not a TCP frame then the mbuf
6515 				 * is filled and the remaining bytes are placed
6516 				 * in the page chain.
6517 				 */
6518 
6519 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6520 					"packet.\n", __FUNCTION__);
6521 				DBRUN(sc->split_header_frames_rcvd++);
6522 
6523 				/*
6524 				 * When the page chain is enabled and the TCP
6525 				 * header has been split from the TCP payload,
6526 				 * the ip_xsum structure will reflect the length
6527 				 * of the TCP header, not the IP checksum.  Set
6528 				 * the packet length of the mbuf accordingly.
6529 				 */
6530 				if (status & L2_FHDR_STATUS_SPLIT) {
6531 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6532 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6533 				}
6534 
6535 				rem_len = pkt_len - m0->m_len;
6536 
6537 				/* Pull mbufs off the page chain for any remaining data. */
6538 				while (rem_len > 0) {
6539 					struct mbuf *m_pg;
6540 
6541 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6542 
6543 					/* Remove the mbuf from the page chain. */
6544 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6545 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6546 					DBRUN(sc->debug_pg_mbuf_alloc--);
6547 					sc->free_pg_bd++;
6548 
6549 					/* Unmap the page chain mbuf from DMA space. */
6550 					bus_dmamap_sync(sc->pg_mbuf_tag,
6551 						sc->pg_mbuf_map[sw_pg_cons_idx],
6552 						BUS_DMASYNC_POSTREAD);
6553 					bus_dmamap_unload(sc->pg_mbuf_tag,
6554 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6555 
6556 					/* Adjust the mbuf length. */
6557 					if (rem_len < m_pg->m_len) {
6558 						/* The mbuf chain is complete. */
6559 						m_pg->m_len = rem_len;
6560 						rem_len = 0;
6561 					} else {
6562 						/* More packet data is waiting. */
6563 						rem_len -= m_pg->m_len;
6564 					}
6565 
6566 					/* Concatenate the mbuf cluster to the mbuf. */
6567 					m_cat(m0, m_pg);
6568 
6569 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6570 				}
6571 
6572 				/* Set the total packet length. */
6573 				m0->m_pkthdr.len = pkt_len;
6574 
6575 			} else {
6576 				/*
6577 				 * The received packet is small and fits in a
6578 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6579 				 * FCS <= MHLEN).  In other words, the packet is
6580 				 * 154 bytes or less in size.
6581 				 */
6582 
6583 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6584 					"packet.\n", __FUNCTION__);
6585 
6586 				/* Set the total packet length. */
6587 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6588 			}
6589 		} else
6590 			/* Set the total packet length. */
6591 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6592 
6593 		/* Remove the trailing Ethernet FCS. */
6594 		m_adj(m0, -ETHER_CRC_LEN);
6595 
6596 		/* Check that the resulting mbuf chain is valid. */
6597 		DBRUN(m_sanity(m0, FALSE));
6598 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6599 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6600 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6601 		    m_print(m0, 128));
6602 
6603 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6604 		    sc->l2fhdr_error_sim_count++;
6605 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6606 
6607 		/* Check the received frame for errors. */
6608 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6609 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6610 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6611 			/* Log the error and release the mbuf. */
6612 			sc->l2fhdr_error_count++;
6613 			m_freem(m0);
6614 			m0 = NULL;
6615 			goto bce_rx_intr_next_rx;
6616 		}
6617 
6618 		/* Send the packet to the appropriate interface. */
6619 		m0->m_pkthdr.rcvif = ifp;
6620 
6621 		/* Assume no hardware checksum. */
6622 		m0->m_pkthdr.csum_flags = 0;
6623 
6624 		/* Validate the checksum if offload enabled. */
6625 		if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
6626 			/* Check for an IP datagram. */
6627 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6628 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6629 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6630 				DBRUN(sc->csum_offload_ip++);
6631 				/* Check if the IP checksum is valid. */
6632 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6633 					m0->m_pkthdr.csum_flags |=
6634 					    CSUM_IP_VALID;
6635 			}
6636 
6637 			/* Check for a valid TCP/UDP frame. */
6638 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6639 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6640 				/* Check for a good TCP/UDP checksum. */
6641 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6642 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6643 					DBRUN(sc->csum_offload_tcp_udp++);
6644 					m0->m_pkthdr.csum_data =
6645 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6646 					m0->m_pkthdr.csum_flags |=
6647 					    (CSUM_DATA_VALID
6648 					    | CSUM_PSEUDO_HDR);
6649 				}
6650 			}
6651 		}
6652 
6653 		/* Attach the VLAN tag.	*/
6654 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6655 		    !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6656 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6657 			if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
6658 				DBRUN(sc->vlan_tagged_frames_stripped++);
6659 				m0->m_pkthdr.ether_vtag =
6660 				    l2fhdr->l2_fhdr_vlan_tag;
6661 				m0->m_flags |= M_VLANTAG;
6662 			} else {
6663 				/*
6664 				 * bce(4) controllers can't disable VLAN
6665 				 * tag stripping if management firmware
6666 				 * (ASF/IPMI/UMP) is running. So we always
6667 				 * strip VLAN tag and manually reconstruct
6668 				 * the VLAN frame by appending stripped
6669 				 * VLAN tag in driver if VLAN tag stripping
6670 				 * was disabled.
6671 				 *
6672 				 * TODO: LLC SNAP handling.
6673 				 */
6674 				bcopy(mtod(m0, uint8_t *),
6675 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6676 				    ETHER_ADDR_LEN * 2);
6677 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6678 				vh = mtod(m0, struct ether_vlan_header *);
6679 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6680 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6681 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6682 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6683 			}
6684 		}
6685 
6686 		/* Increment received packet statistics. */
6687 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
6688 
6689 bce_rx_intr_next_rx:
6690 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6691 
6692 		/* If we have a packet, pass it up the stack */
6693 		if (m0) {
6694 			/* Make sure we don't lose our place when we release the lock. */
6695 			sc->rx_cons = sw_rx_cons;
6696 			sc->pg_cons = sw_pg_cons;
6697 
6698 			BCE_UNLOCK(sc);
6699 			if_input(ifp, m0);
6700 			BCE_LOCK(sc);
6701 
6702 			/* Recover our place. */
6703 			sw_rx_cons = sc->rx_cons;
6704 			sw_pg_cons = sc->pg_cons;
6705 		}
6706 
6707 		/* Refresh hw_cons to see if there's new work */
6708 		if (sw_rx_cons == hw_rx_cons)
6709 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6710 	}
6711 
6712 	/* No new packets.  Refill the page chain. */
6713 	if (bce_hdr_split == TRUE) {
6714 		sc->pg_cons = sw_pg_cons;
6715 		bce_fill_pg_chain(sc);
6716 	}
6717 
6718 	/* No new packets.  Refill the RX chain. */
6719 	sc->rx_cons = sw_rx_cons;
6720 	bce_fill_rx_chain(sc);
6721 
6722 	/* Prepare the page chain pages to be accessed by the NIC. */
6723 	for (int i = 0; i < sc->rx_pages; i++)
6724 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6725 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6726 
6727 	if (bce_hdr_split == TRUE) {
6728 		for (int i = 0; i < sc->pg_pages; i++)
6729 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6730 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6731 	}
6732 
6733 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6734 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6735 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6736 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6737 }
6738 
6739 /****************************************************************************/
6740 /* Reads the transmit consumer value from the status block (skipping over   */
6741 /* chain page pointer if necessary).                                        */
6742 /*                                                                          */
6743 /* Returns:                                                                 */
6744 /*   hw_cons                                                                */
6745 /****************************************************************************/
6746 static inline u16
6747 bce_get_hw_tx_cons(struct bce_softc *sc)
6748 {
6749 	u16 hw_cons;
6750 
6751 	mb();
6752 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6753 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6754 		hw_cons++;
6755 
6756 	return hw_cons;
6757 }
6758 
6759 /****************************************************************************/
6760 /* Handles transmit completion interrupt events.                            */
6761 /*                                                                          */
6762 /* Returns:                                                                 */
6763 /*   Nothing.                                                               */
6764 /****************************************************************************/
6765 static void
6766 bce_tx_intr(struct bce_softc *sc)
6767 {
6768 	if_t ifp = sc->bce_ifp;
6769 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6770 
6771 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6772 	DBRUN(sc->interrupts_tx++);
6773 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6774 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6775 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6776 
6777 	BCE_LOCK_ASSERT(sc);
6778 
6779 	/* Get the hardware's view of the TX consumer index. */
6780 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6781 	sw_tx_cons = sc->tx_cons;
6782 
6783 	/* Prevent speculative reads of the status block. */
6784 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6785 	    BUS_SPACE_BARRIER_READ);
6786 
6787 	/* Cycle through any completed TX chain page entries. */
6788 	while (sw_tx_cons != hw_tx_cons) {
6789 #ifdef BCE_DEBUG
6790 		struct tx_bd *txbd = NULL;
6791 #endif
6792 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6793 
6794 		DBPRINT(sc, BCE_INFO_SEND,
6795 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6796 		    "sw_tx_chain_cons = 0x%04X\n",
6797 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6798 
6799 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6800 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6801 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6802 		    (int) MAX_TX_BD_ALLOC);
6803 		    bce_breakpoint(sc));
6804 
6805 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6806 		    [TX_IDX(sw_tx_chain_cons)]);
6807 
6808 		DBRUNIF((txbd == NULL),
6809 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6810 		    __FILE__, __LINE__, sw_tx_chain_cons);
6811 		    bce_breakpoint(sc));
6812 
6813 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6814 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6815 
6816 		/*
6817 		 * Free the associated mbuf. Remember
6818 		 * that only the last tx_bd of a packet
6819 		 * has an mbuf pointer and DMA map.
6820 		 */
6821 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6822 			/* Validate that this is the last tx_bd. */
6823 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6824 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6825 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6826 			    bce_breakpoint(sc));
6827 
6828 			DBRUNMSG(BCE_INFO_SEND,
6829 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6830 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6831 			    sw_tx_chain_cons));
6832 
6833 			/* Unmap the mbuf. */
6834 			bus_dmamap_unload(sc->tx_mbuf_tag,
6835 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6836 
6837 			/* Free the mbuf. */
6838 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6839 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6840 			DBRUN(sc->debug_tx_mbuf_alloc--);
6841 
6842 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
6843 		}
6844 
6845 		sc->used_tx_bd--;
6846 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6847 
6848 		/* Refresh hw_cons to see if there's new work. */
6849 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6850 
6851 		/* Prevent speculative reads of the status block. */
6852 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6853 		    BUS_SPACE_BARRIER_READ);
6854 	}
6855 
6856 	/* Clear the TX timeout timer. */
6857 	sc->watchdog_timer = 0;
6858 
6859 	/* Clear the tx hardware queue full flag. */
6860 	if (sc->used_tx_bd < sc->max_tx_bd) {
6861 		DBRUNIF((if_getdrvflags(ifp) & IFF_DRV_OACTIVE),
6862 		    DBPRINT(sc, BCE_INFO_SEND,
6863 		    "%s(): Open TX chain! %d/%d (used/total)\n",
6864 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6865 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
6866 	}
6867 
6868 	sc->tx_cons = sw_tx_cons;
6869 
6870 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6871 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6872 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6873 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6874 }
6875 
6876 /****************************************************************************/
6877 /* Disables interrupt generation.                                           */
6878 /*                                                                          */
6879 /* Returns:                                                                 */
6880 /*   Nothing.                                                               */
6881 /****************************************************************************/
6882 static void
6883 bce_disable_intr(struct bce_softc *sc)
6884 {
6885 	DBENTER(BCE_VERBOSE_INTR);
6886 
6887 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6888 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6889 
6890 	DBEXIT(BCE_VERBOSE_INTR);
6891 }
6892 
6893 /****************************************************************************/
6894 /* Enables interrupt generation.                                            */
6895 /*                                                                          */
6896 /* Returns:                                                                 */
6897 /*   Nothing.                                                               */
6898 /****************************************************************************/
6899 static void
6900 bce_enable_intr(struct bce_softc *sc, int coal_now)
6901 {
6902 	DBENTER(BCE_VERBOSE_INTR);
6903 
6904 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6905 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6906 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6907 
6908 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6909 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6910 
6911 	/* Force an immediate interrupt (whether there is new data or not). */
6912 	if (coal_now)
6913 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6914 
6915 	DBEXIT(BCE_VERBOSE_INTR);
6916 }
6917 
6918 /****************************************************************************/
6919 /* Handles controller initialization.                                       */
6920 /*                                                                          */
6921 /* Returns:                                                                 */
6922 /*   Nothing.                                                               */
6923 /****************************************************************************/
6924 static void
6925 bce_init_locked(struct bce_softc *sc)
6926 {
6927 	if_t ifp;
6928 	u32 ether_mtu = 0;
6929 
6930 	DBENTER(BCE_VERBOSE_RESET);
6931 
6932 	BCE_LOCK_ASSERT(sc);
6933 
6934 	ifp = sc->bce_ifp;
6935 
6936 	/* Check if the driver is still running and bail out if it is. */
6937 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6938 		goto bce_init_locked_exit;
6939 
6940 	bce_stop(sc);
6941 
6942 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6943 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6944 		    __FILE__, __LINE__);
6945 		goto bce_init_locked_exit;
6946 	}
6947 
6948 	if (bce_chipinit(sc)) {
6949 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6950 		    __FILE__, __LINE__);
6951 		goto bce_init_locked_exit;
6952 	}
6953 
6954 	if (bce_blockinit(sc)) {
6955 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6956 		    __FILE__, __LINE__);
6957 		goto bce_init_locked_exit;
6958 	}
6959 
6960 	/* Load our MAC address. */
6961 	bcopy(if_getlladdr(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6962 	bce_set_mac_addr(sc);
6963 
6964 	if (bce_hdr_split == FALSE)
6965 		bce_get_rx_buffer_sizes(sc, if_getmtu(ifp));
6966 	/*
6967 	 * Calculate and program the hardware Ethernet MTU
6968  	 * size. Be generous on the receive if we have room
6969  	 * and allowed by the user.
6970 	 */
6971 	if (bce_strict_rx_mtu == TRUE)
6972 		ether_mtu = if_getmtu(ifp);
6973 	else {
6974 		if (bce_hdr_split == TRUE) {
6975 			if (if_getmtu(ifp) <= sc->rx_bd_mbuf_data_len + MCLBYTES)
6976 				ether_mtu = sc->rx_bd_mbuf_data_len +
6977 				    MCLBYTES;
6978 			else
6979 				ether_mtu = if_getmtu(ifp);
6980 		} else {
6981 			if (if_getmtu(ifp) <= sc->rx_bd_mbuf_data_len)
6982 				ether_mtu = sc->rx_bd_mbuf_data_len;
6983 			else
6984 				ether_mtu = if_getmtu(ifp);
6985 		}
6986 	}
6987 
6988 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6989 
6990 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
6991 	    __FUNCTION__, ether_mtu);
6992 
6993 	/* Program the mtu, enabling jumbo frame support if necessary. */
6994 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6995 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6996 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6997 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6998 	else
6999 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7000 
7001 	/* Program appropriate promiscuous/multicast filtering. */
7002 	bce_set_rx_mode(sc);
7003 
7004 	if (bce_hdr_split == TRUE) {
7005 		/* Init page buffer descriptor chain. */
7006 		bce_init_pg_chain(sc);
7007 	}
7008 
7009 	/* Init RX buffer descriptor chain. */
7010 	bce_init_rx_chain(sc);
7011 
7012 	/* Init TX buffer descriptor chain. */
7013 	bce_init_tx_chain(sc);
7014 
7015 	/* Enable host interrupts. */
7016 	bce_enable_intr(sc, 1);
7017 
7018 	bce_ifmedia_upd_locked(ifp);
7019 
7020 	/* Let the OS know the driver is up and running. */
7021 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
7022 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
7023 
7024 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7025 
7026 bce_init_locked_exit:
7027 	DBEXIT(BCE_VERBOSE_RESET);
7028 }
7029 
7030 /****************************************************************************/
7031 /* Initialize the controller just enough so that any management firmware    */
7032 /* running on the device will continue to operate correctly.                */
7033 /*                                                                          */
7034 /* Returns:                                                                 */
7035 /*   Nothing.                                                               */
7036 /****************************************************************************/
7037 static void
7038 bce_mgmt_init_locked(struct bce_softc *sc)
7039 {
7040 	if_t ifp;
7041 
7042 	DBENTER(BCE_VERBOSE_RESET);
7043 
7044 	BCE_LOCK_ASSERT(sc);
7045 
7046 	/* Bail out if management firmware is not running. */
7047 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7048 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7049 		    "No management firmware running...\n");
7050 		goto bce_mgmt_init_locked_exit;
7051 	}
7052 
7053 	ifp = sc->bce_ifp;
7054 
7055 	/* Enable all critical blocks in the MAC. */
7056 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7057 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7058 	DELAY(20);
7059 
7060 	bce_ifmedia_upd_locked(ifp);
7061 
7062 bce_mgmt_init_locked_exit:
7063 	DBEXIT(BCE_VERBOSE_RESET);
7064 }
7065 
7066 /****************************************************************************/
7067 /* Handles controller initialization when called from an unlocked routine.  */
7068 /*                                                                          */
7069 /* Returns:                                                                 */
7070 /*   Nothing.                                                               */
7071 /****************************************************************************/
7072 static void
7073 bce_init(void *xsc)
7074 {
7075 	struct bce_softc *sc = xsc;
7076 
7077 	DBENTER(BCE_VERBOSE_RESET);
7078 
7079 	BCE_LOCK(sc);
7080 	bce_init_locked(sc);
7081 	BCE_UNLOCK(sc);
7082 
7083 	DBEXIT(BCE_VERBOSE_RESET);
7084 }
7085 
7086 /****************************************************************************/
7087 /* Modifies an mbuf for TSO on the hardware.                                */
7088 /*                                                                          */
7089 /* Returns:                                                                 */
7090 /*   Pointer to a modified mbuf.                                            */
7091 /****************************************************************************/
7092 static struct mbuf *
7093 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7094 {
7095 	struct mbuf *m;
7096 	struct ether_header *eh;
7097 	struct ip *ip;
7098 	struct tcphdr *th;
7099 	u16 etype;
7100 	int hdr_len __unused, ip_len __unused, ip_hlen = 0, tcp_hlen = 0;
7101 
7102 	DBRUN(sc->tso_frames_requested++);
7103 
7104 	ip_len = 0;
7105 	/* Controller may modify mbuf chains. */
7106 	if (M_WRITABLE(*m_head) == 0) {
7107 		m = m_dup(*m_head, M_NOWAIT);
7108 		m_freem(*m_head);
7109 		if (m == NULL) {
7110 			sc->mbuf_alloc_failed_count++;
7111 			*m_head = NULL;
7112 			return (NULL);
7113 		}
7114 		*m_head = m;
7115 	}
7116 
7117 	/*
7118 	 * For TSO the controller needs two pieces of info,
7119 	 * the MSS and the IP+TCP options length.
7120 	 */
7121 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7122 	if (m == NULL) {
7123 		*m_head = NULL;
7124 		return (NULL);
7125 	}
7126 	eh = mtod(m, struct ether_header *);
7127 	etype = ntohs(eh->ether_type);
7128 
7129 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7130 	switch (etype) {
7131 	case ETHERTYPE_IP:
7132 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7133 		/* TSO only supported for TCP protocol. */
7134 		if (ip->ip_p != IPPROTO_TCP) {
7135 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7136 			    __FILE__, __LINE__);
7137 			m_freem(*m_head);
7138 			*m_head = NULL;
7139 			return (NULL);
7140 		}
7141 
7142 		/* Get IP header length in bytes (min 20) */
7143 		ip_hlen = ip->ip_hl << 2;
7144 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7145 		    sizeof(struct tcphdr));
7146 		if (m == NULL) {
7147 			*m_head = NULL;
7148 			return (NULL);
7149 		}
7150 
7151 		/* Get the TCP header length in bytes (min 20) */
7152 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7153 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7154 		tcp_hlen = (th->th_off << 2);
7155 
7156 		/* Make sure all IP/TCP options live in the same buffer. */
7157 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7158 		    tcp_hlen);
7159 		if (m == NULL) {
7160 			*m_head = NULL;
7161 			return (NULL);
7162 		}
7163 
7164 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7165 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7166 		ip_len = ip->ip_len;
7167 		ip->ip_len = 0;
7168 		ip->ip_sum = 0;
7169 		break;
7170 	case ETHERTYPE_IPV6:
7171 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7172 		    __FILE__, __LINE__);
7173 		m_freem(*m_head);
7174 		*m_head = NULL;
7175 		return (NULL);
7176 		/* NOT REACHED */
7177 	default:
7178 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7179 		    __FILE__, __LINE__);
7180 		m_freem(*m_head);
7181 		*m_head = NULL;
7182 		return (NULL);
7183 	}
7184 
7185 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7186 
7187 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7188 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7189 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7190 	    tcp_hlen, ip_len);
7191 
7192 	/* Set the LSO flag in the TX BD */
7193 	*flags |= TX_BD_FLAGS_SW_LSO;
7194 
7195 	/* Set the length of IP + TCP options (in 32 bit words) */
7196 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7197 	    sizeof(struct tcphdr)) >> 2) << 8);
7198 
7199 	DBRUN(sc->tso_frames_completed++);
7200 	return (*m_head);
7201 }
7202 
7203 /****************************************************************************/
7204 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7205 /* memory visible to the controller.                                        */
7206 /*                                                                          */
7207 /* Returns:                                                                 */
7208 /*   0 for success, positive value for failure.                             */
7209 /* Modified:                                                                */
7210 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7211 /****************************************************************************/
7212 static int
7213 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7214 {
7215 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7216 	bus_dmamap_t map;
7217 	struct tx_bd *txbd = NULL;
7218 	struct mbuf *m0;
7219 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7220 	u32 prod_bseq;
7221 
7222 #ifdef BCE_DEBUG
7223 	u16 debug_prod;
7224 #endif
7225 
7226 	int i, error, nsegs, rc = 0;
7227 
7228 	DBENTER(BCE_VERBOSE_SEND);
7229 
7230 	/* Make sure we have room in the TX chain. */
7231 	if (sc->used_tx_bd >= sc->max_tx_bd)
7232 		goto bce_tx_encap_exit;
7233 
7234 	/* Transfer any checksum offload flags to the bd. */
7235 	m0 = *m_head;
7236 	if (m0->m_pkthdr.csum_flags) {
7237 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7238 			m0 = bce_tso_setup(sc, m_head, &flags);
7239 			if (m0 == NULL) {
7240 				DBRUN(sc->tso_frames_failed++);
7241 				goto bce_tx_encap_exit;
7242 			}
7243 			mss = htole16(m0->m_pkthdr.tso_segsz);
7244 		} else {
7245 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7246 				flags |= TX_BD_FLAGS_IP_CKSUM;
7247 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7248 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7249 		}
7250 	}
7251 
7252 	/* Transfer any VLAN tags to the bd. */
7253 	if (m0->m_flags & M_VLANTAG) {
7254 		flags |= TX_BD_FLAGS_VLAN_TAG;
7255 		vlan_tag = m0->m_pkthdr.ether_vtag;
7256 	}
7257 
7258 	/* Map the mbuf into DMAable memory. */
7259 	prod = sc->tx_prod;
7260 	chain_prod = TX_CHAIN_IDX(prod);
7261 	map = sc->tx_mbuf_map[chain_prod];
7262 
7263 	/* Map the mbuf into our DMA address space. */
7264 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7265 	    segs, &nsegs, BUS_DMA_NOWAIT);
7266 
7267 	/* Check if the DMA mapping was successful */
7268 	if (error == EFBIG) {
7269 		sc->mbuf_frag_count++;
7270 
7271 		/* Try to defrag the mbuf. */
7272 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7273 		if (m0 == NULL) {
7274 			/* Defrag was unsuccessful */
7275 			m_freem(*m_head);
7276 			*m_head = NULL;
7277 			sc->mbuf_alloc_failed_count++;
7278 			rc = ENOBUFS;
7279 			goto bce_tx_encap_exit;
7280 		}
7281 
7282 		/* Defrag was successful, try mapping again */
7283 		*m_head = m0;
7284 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7285 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7286 
7287 		/* Still getting an error after a defrag. */
7288 		if (error == ENOMEM) {
7289 			/* Insufficient DMA buffers available. */
7290 			sc->dma_map_addr_tx_failed_count++;
7291 			rc = error;
7292 			goto bce_tx_encap_exit;
7293 		} else if (error != 0) {
7294 			/* Release it and return an error. */
7295 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7296 			    "TX chain!\n", __FILE__, __LINE__);
7297 			m_freem(m0);
7298 			*m_head = NULL;
7299 			sc->dma_map_addr_tx_failed_count++;
7300 			rc = ENOBUFS;
7301 			goto bce_tx_encap_exit;
7302 		}
7303 	} else if (error == ENOMEM) {
7304 		/* Insufficient DMA buffers available. */
7305 		sc->dma_map_addr_tx_failed_count++;
7306 		rc = error;
7307 		goto bce_tx_encap_exit;
7308 	} else if (error != 0) {
7309 		m_freem(m0);
7310 		*m_head = NULL;
7311 		sc->dma_map_addr_tx_failed_count++;
7312 		rc = error;
7313 		goto bce_tx_encap_exit;
7314 	}
7315 
7316 	/* Make sure there's room in the chain */
7317 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7318 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7319 		rc = ENOBUFS;
7320 		goto bce_tx_encap_exit;
7321 	}
7322 
7323 	/* prod points to an empty tx_bd at this point. */
7324 	prod_bseq  = sc->tx_prod_bseq;
7325 
7326 #ifdef BCE_DEBUG
7327 	debug_prod = chain_prod;
7328 #endif
7329 
7330 	DBPRINT(sc, BCE_INFO_SEND,
7331 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7332 	    "prod_bseq = 0x%08X\n",
7333 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7334 
7335 	/*
7336 	 * Cycle through each mbuf segment that makes up
7337 	 * the outgoing frame, gathering the mapping info
7338 	 * for that segment and creating a tx_bd for
7339 	 * the mbuf.
7340 	 */
7341 	for (i = 0; i < nsegs ; i++) {
7342 		chain_prod = TX_CHAIN_IDX(prod);
7343 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7344 		    [TX_IDX(chain_prod)];
7345 
7346 		txbd->tx_bd_haddr_lo =
7347 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7348 		txbd->tx_bd_haddr_hi =
7349 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7350 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7351 		    htole16(segs[i].ds_len);
7352 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7353 		txbd->tx_bd_flags = htole16(flags);
7354 		prod_bseq += segs[i].ds_len;
7355 		if (i == 0)
7356 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7357 		prod = NEXT_TX_BD(prod);
7358 	}
7359 
7360 	/* Set the END flag on the last TX buffer descriptor. */
7361 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7362 
7363 	DBRUNMSG(BCE_EXTREME_SEND,
7364 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7365 
7366 	/*
7367 	 * Ensure that the mbuf pointer for this transmission
7368 	 * is placed at the array index of the last
7369 	 * descriptor in this chain.  This is done
7370 	 * because a single map is used for all
7371 	 * segments of the mbuf and we don't want to
7372 	 * unload the map before all of the segments
7373 	 * have been freed.
7374 	 */
7375 	sc->tx_mbuf_ptr[chain_prod] = m0;
7376 	sc->used_tx_bd += nsegs;
7377 
7378 	/* Update some debug statistic counters */
7379 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7380 	    sc->tx_hi_watermark = sc->used_tx_bd);
7381 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7382 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7383 
7384 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7385 
7386 	/* prod points to the next free tx_bd at this point. */
7387 	sc->tx_prod = prod;
7388 	sc->tx_prod_bseq = prod_bseq;
7389 
7390 	/* Tell the chip about the waiting TX frames. */
7391 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7392 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7393 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7394 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7395 
7396 bce_tx_encap_exit:
7397 	DBEXIT(BCE_VERBOSE_SEND);
7398 	return(rc);
7399 }
7400 
7401 /****************************************************************************/
7402 /* Main transmit routine when called from another routine with a lock.      */
7403 /*                                                                          */
7404 /* Returns:                                                                 */
7405 /*   Nothing.                                                               */
7406 /****************************************************************************/
7407 static void
7408 bce_start_locked(if_t ifp)
7409 {
7410 	struct bce_softc *sc = if_getsoftc(ifp);
7411 	struct mbuf *m_head = NULL;
7412 	int count = 0;
7413 	u16 tx_prod, tx_chain_prod __unused;
7414 
7415 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7416 
7417 	BCE_LOCK_ASSERT(sc);
7418 
7419 	/* prod points to the next free tx_bd. */
7420 	tx_prod = sc->tx_prod;
7421 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7422 
7423 	DBPRINT(sc, BCE_INFO_SEND,
7424 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7425 	    "tx_prod_bseq = 0x%08X\n",
7426 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7427 
7428 	/* If there's no link or the transmit queue is empty then just exit. */
7429 	if (sc->bce_link_up == FALSE) {
7430 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7431 		    __FUNCTION__);
7432 		goto bce_start_locked_exit;
7433 	}
7434 
7435 	if (if_sendq_empty(ifp)) {
7436 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7437 		    __FUNCTION__);
7438 		goto bce_start_locked_exit;
7439 	}
7440 
7441 	/*
7442 	 * Keep adding entries while there is space in the ring.
7443 	 */
7444 	while (sc->used_tx_bd < sc->max_tx_bd) {
7445 		/* Check for any frames to send. */
7446 		m_head = if_dequeue(ifp);
7447 
7448 		/* Stop when the transmit queue is empty. */
7449 		if (m_head == NULL)
7450 			break;
7451 
7452 		/*
7453 		 * Pack the data into the transmit ring. If we
7454 		 * don't have room, place the mbuf back at the
7455 		 * head of the queue and set the OACTIVE flag
7456 		 * to wait for the NIC to drain the chain.
7457 		 */
7458 		if (bce_tx_encap(sc, &m_head)) {
7459 			if (m_head != NULL)
7460 				if_sendq_prepend(ifp, m_head);
7461 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
7462 			DBPRINT(sc, BCE_INFO_SEND,
7463 			    "TX chain is closed for business! Total "
7464 			    "tx_bd used = %d\n", sc->used_tx_bd);
7465 			break;
7466 		}
7467 
7468 		count++;
7469 
7470 		/* Send a copy of the frame to any BPF listeners. */
7471 		ETHER_BPF_MTAP(ifp, m_head);
7472 	}
7473 
7474 	/* Exit if no packets were dequeued. */
7475 	if (count == 0) {
7476 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7477 		    "dequeued\n", __FUNCTION__);
7478 		goto bce_start_locked_exit;
7479 	}
7480 
7481 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7482 	    "send queue.\n", __FUNCTION__, count);
7483 
7484 	/* Set the tx timeout. */
7485 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7486 
7487 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7488 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7489 
7490 bce_start_locked_exit:
7491 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7492 }
7493 
7494 /****************************************************************************/
7495 /* Main transmit routine when called from another routine without a lock.   */
7496 /*                                                                          */
7497 /* Returns:                                                                 */
7498 /*   Nothing.                                                               */
7499 /****************************************************************************/
7500 static void
7501 bce_start(if_t ifp)
7502 {
7503 	struct bce_softc *sc = if_getsoftc(ifp);
7504 
7505 	DBENTER(BCE_VERBOSE_SEND);
7506 
7507 	BCE_LOCK(sc);
7508 	bce_start_locked(ifp);
7509 	BCE_UNLOCK(sc);
7510 
7511 	DBEXIT(BCE_VERBOSE_SEND);
7512 }
7513 
7514 /****************************************************************************/
7515 /* Handles any IOCTL calls from the operating system.                       */
7516 /*                                                                          */
7517 /* Returns:                                                                 */
7518 /*   0 for success, positive value for failure.                             */
7519 /****************************************************************************/
7520 static int
7521 bce_ioctl(if_t ifp, u_long command, caddr_t data)
7522 {
7523 	struct bce_softc *sc = if_getsoftc(ifp);
7524 	struct ifreq *ifr = (struct ifreq *) data;
7525 	struct mii_data *mii;
7526 	int mask, error = 0;
7527 
7528 	DBENTER(BCE_VERBOSE_MISC);
7529 
7530 	switch(command) {
7531 	/* Set the interface MTU. */
7532 	case SIOCSIFMTU:
7533 		/* Check that the MTU setting is supported. */
7534 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7535 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7536 			error = EINVAL;
7537 			break;
7538 		}
7539 
7540 		DBPRINT(sc, BCE_INFO_MISC,
7541 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7542 		    (int) if_getmtu(ifp), (int) ifr->ifr_mtu);
7543 
7544 		BCE_LOCK(sc);
7545 		if_setmtu(ifp, ifr->ifr_mtu);
7546 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
7547 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
7548 			bce_init_locked(sc);
7549 		}
7550 		BCE_UNLOCK(sc);
7551 		break;
7552 
7553 	/* Set interface flags. */
7554 	case SIOCSIFFLAGS:
7555 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7556 
7557 		BCE_LOCK(sc);
7558 
7559 		/* Check if the interface is up. */
7560 		if (if_getflags(ifp) & IFF_UP) {
7561 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
7562 				/* Change promiscuous/multicast flags as necessary. */
7563 				bce_set_rx_mode(sc);
7564 			} else {
7565 				/* Start the HW */
7566 				bce_init_locked(sc);
7567 			}
7568 		} else {
7569 			/* The interface is down, check if driver is running. */
7570 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
7571 				bce_stop(sc);
7572 
7573 				/* If MFW is running, restart the controller a bit. */
7574 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7575 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7576 					bce_chipinit(sc);
7577 					bce_mgmt_init_locked(sc);
7578 				}
7579 			}
7580 		}
7581 
7582 		BCE_UNLOCK(sc);
7583 		break;
7584 
7585 	/* Add/Delete multicast address */
7586 	case SIOCADDMULTI:
7587 	case SIOCDELMULTI:
7588 		DBPRINT(sc, BCE_VERBOSE_MISC,
7589 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7590 
7591 		BCE_LOCK(sc);
7592 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
7593 			bce_set_rx_mode(sc);
7594 		BCE_UNLOCK(sc);
7595 
7596 		break;
7597 
7598 	/* Set/Get Interface media */
7599 	case SIOCSIFMEDIA:
7600 	case SIOCGIFMEDIA:
7601 		DBPRINT(sc, BCE_VERBOSE_MISC,
7602 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7603 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7604 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7605 			    command);
7606 		else {
7607 			mii = device_get_softc(sc->bce_miibus);
7608 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7609 			    command);
7610 		}
7611 		break;
7612 
7613 	/* Set interface capability */
7614 	case SIOCSIFCAP:
7615 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
7616 		DBPRINT(sc, BCE_INFO_MISC,
7617 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7618 
7619 		/* Toggle the TX checksum capabilities enable flag. */
7620 		if (mask & IFCAP_TXCSUM &&
7621 		    if_getcapabilities(ifp) & IFCAP_TXCSUM) {
7622 			if_togglecapenable(ifp, IFCAP_TXCSUM);
7623 			if (IFCAP_TXCSUM & if_getcapenable(ifp))
7624 				if_sethwassistbits(ifp, BCE_IF_HWASSIST, 0);
7625 			else
7626 				if_sethwassistbits(ifp, 0, BCE_IF_HWASSIST);
7627 		}
7628 
7629 		/* Toggle the RX checksum capabilities enable flag. */
7630 		if (mask & IFCAP_RXCSUM &&
7631 		    if_getcapabilities(ifp) & IFCAP_RXCSUM)
7632 			if_togglecapenable(ifp, IFCAP_RXCSUM);
7633 
7634 		/* Toggle the TSO capabilities enable flag. */
7635 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7636 		    if_getcapabilities(ifp) & IFCAP_TSO4) {
7637 			if_togglecapenable(ifp, IFCAP_TSO4);
7638 			if (IFCAP_TSO4 & if_getcapenable(ifp))
7639 				if_sethwassistbits(ifp, CSUM_TSO, 0);
7640 			else
7641 				if_sethwassistbits(ifp, 0, CSUM_TSO);
7642 		}
7643 
7644 		if (mask & IFCAP_VLAN_HWCSUM &&
7645 		    if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM)
7646 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
7647 
7648 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7649 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
7650 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
7651 		/*
7652 		 * Don't actually disable VLAN tag stripping as
7653 		 * management firmware (ASF/IPMI/UMP) requires the
7654 		 * feature. If VLAN tag stripping is disabled driver
7655 		 * will manually reconstruct the VLAN frame by
7656 		 * appending stripped VLAN tag.
7657 		 */
7658 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7659 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING)) {
7660 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
7661 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
7662 			    == 0)
7663 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
7664 		}
7665 		VLAN_CAPABILITIES(ifp);
7666 		break;
7667 	default:
7668 		/* We don't know how to handle the IOCTL, pass it on. */
7669 		error = ether_ioctl(ifp, command, data);
7670 		break;
7671 	}
7672 
7673 	DBEXIT(BCE_VERBOSE_MISC);
7674 	return(error);
7675 }
7676 
7677 /****************************************************************************/
7678 /* Transmit timeout handler.                                                */
7679 /*                                                                          */
7680 /* Returns:                                                                 */
7681 /*   Nothing.                                                               */
7682 /****************************************************************************/
7683 static void
7684 bce_watchdog(struct bce_softc *sc)
7685 {
7686 	uint32_t status;
7687 
7688 	DBENTER(BCE_EXTREME_SEND);
7689 
7690 	BCE_LOCK_ASSERT(sc);
7691 
7692 	status = 0;
7693 	/* If the watchdog timer hasn't expired then just exit. */
7694 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7695 		goto bce_watchdog_exit;
7696 
7697 	status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7698 	/* If pause frames are active then don't reset the hardware. */
7699 	if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7700 		if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7701 			/*
7702 			 * If link partner has us in XOFF state then wait for
7703 			 * the condition to clear.
7704 			 */
7705 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7706 			goto bce_watchdog_exit;
7707 		} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7708 			(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7709 			/*
7710 			 * If we're not currently XOFF'ed but have recently
7711 			 * been XOFF'd/XON'd then assume that's delaying TX
7712 			 * this time around.
7713 			 */
7714 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7715 			goto bce_watchdog_exit;
7716 		}
7717 		/*
7718 		 * Any other condition is unexpected and the controller
7719 		 * should be reset.
7720 		 */
7721 	}
7722 
7723 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7724 	    __FILE__, __LINE__);
7725 
7726 	DBRUNMSG(BCE_INFO,
7727 	    bce_dump_driver_state(sc);
7728 	    bce_dump_status_block(sc);
7729 	    bce_dump_stats_block(sc);
7730 	    bce_dump_ftqs(sc);
7731 	    bce_dump_txp_state(sc, 0);
7732 	    bce_dump_rxp_state(sc, 0);
7733 	    bce_dump_tpat_state(sc, 0);
7734 	    bce_dump_cp_state(sc, 0);
7735 	    bce_dump_com_state(sc, 0));
7736 
7737 	DBRUN(bce_breakpoint(sc));
7738 
7739 	if_setdrvflagbits(sc->bce_ifp, 0, IFF_DRV_RUNNING);
7740 
7741 	bce_init_locked(sc);
7742 	sc->watchdog_timeouts++;
7743 
7744 bce_watchdog_exit:
7745 	REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7746 	DBEXIT(BCE_EXTREME_SEND);
7747 }
7748 
7749 /*
7750  * Interrupt handler.
7751  */
7752 /****************************************************************************/
7753 /* Main interrupt entry point.  Verifies that the controller generated the  */
7754 /* interrupt and then calls a separate routine for handle the various       */
7755 /* interrupt causes (PHY, TX, RX).                                          */
7756 /*                                                                          */
7757 /* Returns:                                                                 */
7758 /*   Nothing.                                                               */
7759 /****************************************************************************/
7760 static void
7761 bce_intr(void *xsc)
7762 {
7763 	struct bce_softc *sc;
7764 	if_t ifp;
7765 	u32 status_attn_bits;
7766 	u16 hw_rx_cons, hw_tx_cons;
7767 
7768 	sc = xsc;
7769 	ifp = sc->bce_ifp;
7770 
7771 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7772 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7773 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7774 
7775 	BCE_LOCK(sc);
7776 
7777 	DBRUN(sc->interrupts_generated++);
7778 
7779 	/* Synchnorize before we read from interface's status block */
7780 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7781 
7782 	/*
7783 	 * If the hardware status block index matches the last value read
7784 	 * by the driver and we haven't asserted our interrupt then there's
7785 	 * nothing to do.  This may only happen in case of INTx due to the
7786 	 * interrupt arriving at the CPU before the status block is updated.
7787 	 */
7788 	if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7789 	    sc->status_block->status_idx == sc->last_status_idx &&
7790 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7791 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7792 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7793 		    __FUNCTION__);
7794 		goto bce_intr_exit;
7795 	}
7796 
7797 	/* Ack the interrupt and stop others from occurring. */
7798 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7799 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7800 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7801 
7802 	/* Check if the hardware has finished any work. */
7803 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7804 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7805 
7806 	/* Keep processing data as long as there is work to do. */
7807 	for (;;) {
7808 		status_attn_bits = sc->status_block->status_attn_bits;
7809 
7810 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7811 		    BCE_PRINTF("Simulating unexpected status attention "
7812 		    "bit set.");
7813 		    sc->unexpected_attention_sim_count++;
7814 		    status_attn_bits = status_attn_bits |
7815 		    STATUS_ATTN_BITS_PARITY_ERROR);
7816 
7817 		/* Was it a link change interrupt? */
7818 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7819 		    (sc->status_block->status_attn_bits_ack &
7820 		     STATUS_ATTN_BITS_LINK_STATE)) {
7821 			bce_phy_intr(sc);
7822 
7823 			/* Clear transient updates during link state change. */
7824 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7825 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7826 			REG_RD(sc, BCE_HC_COMMAND);
7827 		}
7828 
7829 		/* If any other attention is asserted, the chip is toast. */
7830 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7831 		    (sc->status_block->status_attn_bits_ack &
7832 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7833 			sc->unexpected_attention_count++;
7834 
7835 			BCE_PRINTF("%s(%d): Fatal attention detected: "
7836 			    "0x%08X\n",	__FILE__, __LINE__,
7837 			    sc->status_block->status_attn_bits);
7838 
7839 			DBRUNMSG(BCE_FATAL,
7840 			    if (unexpected_attention_sim_control == 0)
7841 				bce_breakpoint(sc));
7842 
7843 			bce_init_locked(sc);
7844 			goto bce_intr_exit;
7845 		}
7846 
7847 		/* Check for any completed RX frames. */
7848 		if (hw_rx_cons != sc->hw_rx_cons)
7849 			bce_rx_intr(sc);
7850 
7851 		/* Check for any completed TX frames. */
7852 		if (hw_tx_cons != sc->hw_tx_cons)
7853 			bce_tx_intr(sc);
7854 
7855 		/* Save status block index value for the next interrupt. */
7856 		sc->last_status_idx = sc->status_block->status_idx;
7857 
7858  		/*
7859  		 * Prevent speculative reads from getting
7860  		 * ahead of the status block.
7861 		 */
7862 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7863 		    BUS_SPACE_BARRIER_READ);
7864 
7865  		/*
7866  		 * If there's no work left then exit the
7867  		 * interrupt service routine.
7868 		 */
7869 		hw_rx_cons = bce_get_hw_rx_cons(sc);
7870 		hw_tx_cons = bce_get_hw_tx_cons(sc);
7871 
7872 		if ((hw_rx_cons == sc->hw_rx_cons) &&
7873 		    (hw_tx_cons == sc->hw_tx_cons))
7874 			break;
7875 	}
7876 
7877 	bus_dmamap_sync(sc->status_tag,	sc->status_map, BUS_DMASYNC_PREREAD);
7878 
7879 	/* Re-enable interrupts. */
7880 	bce_enable_intr(sc, 0);
7881 
7882 	/* Handle any frames that arrived while handling the interrupt. */
7883 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
7884 	    !if_sendq_empty(ifp))
7885 		bce_start_locked(ifp);
7886 
7887 bce_intr_exit:
7888 	BCE_UNLOCK(sc);
7889 
7890 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7891 }
7892 
7893 /****************************************************************************/
7894 /* Programs the various packet receive modes (broadcast and multicast).     */
7895 /*                                                                          */
7896 /* Returns:                                                                 */
7897 /*   Nothing.                                                               */
7898 /****************************************************************************/
7899 static u_int
7900 bce_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
7901 {
7902 	u32 *hashes = arg;
7903 	int h;
7904 
7905 	h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0xFF;
7906 	hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7907 
7908 	return (1);
7909 }
7910 
7911 static void
7912 bce_set_rx_mode(struct bce_softc *sc)
7913 {
7914 	if_t ifp;
7915 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7916 	u32 rx_mode, sort_mode;
7917 	int i;
7918 
7919 	DBENTER(BCE_VERBOSE_MISC);
7920 
7921 	BCE_LOCK_ASSERT(sc);
7922 
7923 	ifp = sc->bce_ifp;
7924 
7925 	/* Initialize receive mode default settings. */
7926 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7927 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7928 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7929 
7930 	/*
7931 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7932 	 * be enbled.
7933 	 */
7934 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7935 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7936 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7937 
7938 	/*
7939 	 * Check for promiscuous, all multicast, or selected
7940 	 * multicast address filtering.
7941 	 */
7942 	if (if_getflags(ifp) & IFF_PROMISC) {
7943 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7944 
7945 		/* Enable promiscuous mode. */
7946 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7947 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7948 	} else if (if_getflags(ifp) & IFF_ALLMULTI) {
7949 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7950 
7951 		/* Enable all multicast addresses. */
7952 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7953 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
7954 			    0xffffffff);
7955 		}
7956 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7957 	} else {
7958 		/* Accept one or more multicast(s). */
7959 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7960 		if_foreach_llmaddr(ifp, bce_hash_maddr, hashes);
7961 
7962 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7963 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7964 
7965 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7966 	}
7967 
7968 	/* Only make changes if the recive mode has actually changed. */
7969 	if (rx_mode != sc->rx_mode) {
7970 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7971 		    "0x%08X\n", rx_mode);
7972 
7973 		sc->rx_mode = rx_mode;
7974 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7975 	}
7976 
7977 	/* Disable and clear the existing sort before enabling a new sort. */
7978 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7979 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7980 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7981 
7982 	DBEXIT(BCE_VERBOSE_MISC);
7983 }
7984 
7985 /****************************************************************************/
7986 /* Called periodically to updates statistics from the controllers           */
7987 /* statistics block.                                                        */
7988 /*                                                                          */
7989 /* Returns:                                                                 */
7990 /*   Nothing.                                                               */
7991 /****************************************************************************/
7992 static void
7993 bce_stats_update(struct bce_softc *sc)
7994 {
7995 	struct statistics_block *stats;
7996 
7997 	DBENTER(BCE_EXTREME_MISC);
7998 
7999 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8000 
8001 	stats = (struct statistics_block *) sc->stats_block;
8002 
8003 	/*
8004 	 * Update the sysctl statistics from the
8005 	 * hardware statistics.
8006 	 */
8007 	sc->stat_IfHCInOctets =
8008 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8009 	     (u64) stats->stat_IfHCInOctets_lo;
8010 
8011 	sc->stat_IfHCInBadOctets =
8012 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8013 	     (u64) stats->stat_IfHCInBadOctets_lo;
8014 
8015 	sc->stat_IfHCOutOctets =
8016 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8017 	     (u64) stats->stat_IfHCOutOctets_lo;
8018 
8019 	sc->stat_IfHCOutBadOctets =
8020 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8021 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8022 
8023 	sc->stat_IfHCInUcastPkts =
8024 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8025 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8026 
8027 	sc->stat_IfHCInMulticastPkts =
8028 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8029 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8030 
8031 	sc->stat_IfHCInBroadcastPkts =
8032 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8033 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8034 
8035 	sc->stat_IfHCOutUcastPkts =
8036 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8037 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8038 
8039 	sc->stat_IfHCOutMulticastPkts =
8040 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8041 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8042 
8043 	sc->stat_IfHCOutBroadcastPkts =
8044 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8045 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8046 
8047 	/* ToDo: Preserve counters beyond 32 bits? */
8048 	/* ToDo: Read the statistics from auto-clear regs? */
8049 
8050 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8051 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8052 
8053 	sc->stat_Dot3StatsCarrierSenseErrors =
8054 	    stats->stat_Dot3StatsCarrierSenseErrors;
8055 
8056 	sc->stat_Dot3StatsFCSErrors =
8057 	    stats->stat_Dot3StatsFCSErrors;
8058 
8059 	sc->stat_Dot3StatsAlignmentErrors =
8060 	    stats->stat_Dot3StatsAlignmentErrors;
8061 
8062 	sc->stat_Dot3StatsSingleCollisionFrames =
8063 	    stats->stat_Dot3StatsSingleCollisionFrames;
8064 
8065 	sc->stat_Dot3StatsMultipleCollisionFrames =
8066 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8067 
8068 	sc->stat_Dot3StatsDeferredTransmissions =
8069 	    stats->stat_Dot3StatsDeferredTransmissions;
8070 
8071 	sc->stat_Dot3StatsExcessiveCollisions =
8072 	    stats->stat_Dot3StatsExcessiveCollisions;
8073 
8074 	sc->stat_Dot3StatsLateCollisions =
8075 	    stats->stat_Dot3StatsLateCollisions;
8076 
8077 	sc->stat_EtherStatsCollisions =
8078 	    stats->stat_EtherStatsCollisions;
8079 
8080 	sc->stat_EtherStatsFragments =
8081 	    stats->stat_EtherStatsFragments;
8082 
8083 	sc->stat_EtherStatsJabbers =
8084 	    stats->stat_EtherStatsJabbers;
8085 
8086 	sc->stat_EtherStatsUndersizePkts =
8087 	    stats->stat_EtherStatsUndersizePkts;
8088 
8089 	sc->stat_EtherStatsOversizePkts =
8090 	     stats->stat_EtherStatsOversizePkts;
8091 
8092 	sc->stat_EtherStatsPktsRx64Octets =
8093 	    stats->stat_EtherStatsPktsRx64Octets;
8094 
8095 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8096 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8097 
8098 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8099 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8100 
8101 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8102 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8103 
8104 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8105 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8106 
8107 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8108 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8109 
8110 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8111 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8112 
8113 	sc->stat_EtherStatsPktsTx64Octets =
8114 	    stats->stat_EtherStatsPktsTx64Octets;
8115 
8116 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8117 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8118 
8119 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8120 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8121 
8122 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8123 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8124 
8125 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8126 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8127 
8128 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8129 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8130 
8131 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8132 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8133 
8134 	sc->stat_XonPauseFramesReceived =
8135 	    stats->stat_XonPauseFramesReceived;
8136 
8137 	sc->stat_XoffPauseFramesReceived =
8138 	    stats->stat_XoffPauseFramesReceived;
8139 
8140 	sc->stat_OutXonSent =
8141 	    stats->stat_OutXonSent;
8142 
8143 	sc->stat_OutXoffSent =
8144 	    stats->stat_OutXoffSent;
8145 
8146 	sc->stat_FlowControlDone =
8147 	    stats->stat_FlowControlDone;
8148 
8149 	sc->stat_MacControlFramesReceived =
8150 	    stats->stat_MacControlFramesReceived;
8151 
8152 	sc->stat_XoffStateEntered =
8153 	    stats->stat_XoffStateEntered;
8154 
8155 	sc->stat_IfInFramesL2FilterDiscards =
8156 	    stats->stat_IfInFramesL2FilterDiscards;
8157 
8158 	sc->stat_IfInRuleCheckerDiscards =
8159 	    stats->stat_IfInRuleCheckerDiscards;
8160 
8161 	sc->stat_IfInFTQDiscards =
8162 	    stats->stat_IfInFTQDiscards;
8163 
8164 	sc->stat_IfInMBUFDiscards =
8165 	    stats->stat_IfInMBUFDiscards;
8166 
8167 	sc->stat_IfInRuleCheckerP4Hit =
8168 	    stats->stat_IfInRuleCheckerP4Hit;
8169 
8170 	sc->stat_CatchupInRuleCheckerDiscards =
8171 	    stats->stat_CatchupInRuleCheckerDiscards;
8172 
8173 	sc->stat_CatchupInFTQDiscards =
8174 	    stats->stat_CatchupInFTQDiscards;
8175 
8176 	sc->stat_CatchupInMBUFDiscards =
8177 	    stats->stat_CatchupInMBUFDiscards;
8178 
8179 	sc->stat_CatchupInRuleCheckerP4Hit =
8180 	    stats->stat_CatchupInRuleCheckerP4Hit;
8181 
8182 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8183 
8184 	/* ToDo: Add additional statistics? */
8185 
8186 	DBEXIT(BCE_EXTREME_MISC);
8187 }
8188 
8189 static uint64_t
8190 bce_get_counter(if_t ifp, ift_counter cnt)
8191 {
8192 	struct bce_softc *sc;
8193 	uint64_t rv;
8194 
8195 	sc = if_getsoftc(ifp);
8196 
8197 	switch (cnt) {
8198 	case IFCOUNTER_COLLISIONS:
8199 		return (sc->stat_EtherStatsCollisions);
8200 	case IFCOUNTER_IERRORS:
8201 		return (sc->stat_EtherStatsUndersizePkts +
8202 		    sc->stat_EtherStatsOversizePkts +
8203 		    sc->stat_IfInMBUFDiscards +
8204 		    sc->stat_Dot3StatsAlignmentErrors +
8205 		    sc->stat_Dot3StatsFCSErrors +
8206 		    sc->stat_IfInRuleCheckerDiscards +
8207 		    sc->stat_IfInFTQDiscards +
8208 		    sc->l2fhdr_error_count +
8209 		    sc->com_no_buffers);
8210 	case IFCOUNTER_OERRORS:
8211 		rv = sc->stat_Dot3StatsExcessiveCollisions +
8212 		    sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8213 		    sc->stat_Dot3StatsLateCollisions +
8214 		    sc->watchdog_timeouts;
8215 		/*
8216 		 * Certain controllers don't report
8217 		 * carrier sense errors correctly.
8218 		 * See errata E11_5708CA0_1165.
8219 		 */
8220 		if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8221 		    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8222 			rv += sc->stat_Dot3StatsCarrierSenseErrors;
8223 		return (rv);
8224 	default:
8225 		return (if_get_counter_default(ifp, cnt));
8226 	}
8227 }
8228 
8229 /****************************************************************************/
8230 /* Periodic function to notify the bootcode that the driver is still        */
8231 /* present.                                                                 */
8232 /*                                                                          */
8233 /* Returns:                                                                 */
8234 /*   Nothing.                                                               */
8235 /****************************************************************************/
8236 static void
8237 bce_pulse(void *xsc)
8238 {
8239 	struct bce_softc *sc = xsc;
8240 	u32 msg;
8241 
8242 	DBENTER(BCE_EXTREME_MISC);
8243 
8244 	BCE_LOCK_ASSERT(sc);
8245 
8246 	/* Tell the firmware that the driver is still running. */
8247 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8248 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8249 
8250 	/* Update the bootcode condition. */
8251 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8252 
8253 	/* Report whether the bootcode still knows the driver is running. */
8254 	if (bce_verbose || bootverbose) {
8255 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8256 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8257 				sc->bce_drv_cardiac_arrest = TRUE;
8258 				BCE_PRINTF("%s(): Warning: bootcode "
8259 				    "thinks driver is absent! "
8260 				    "(bc_state = 0x%08X)\n",
8261 				    __FUNCTION__, sc->bc_state);
8262 			}
8263 		} else {
8264 			/*
8265 			 * Not supported by all bootcode versions.
8266 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8267 			 * will require the driver to reset the
8268 			 * controller to clear this condition.
8269 			 */
8270 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8271 				sc->bce_drv_cardiac_arrest = FALSE;
8272 				BCE_PRINTF("%s(): Bootcode found the "
8273 				    "driver pulse! (bc_state = 0x%08X)\n",
8274 				    __FUNCTION__, sc->bc_state);
8275 			}
8276 		}
8277 	}
8278 
8279 	/* Schedule the next pulse. */
8280 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8281 
8282 	DBEXIT(BCE_EXTREME_MISC);
8283 }
8284 
8285 /****************************************************************************/
8286 /* Periodic function to perform maintenance tasks.                          */
8287 /*                                                                          */
8288 /* Returns:                                                                 */
8289 /*   Nothing.                                                               */
8290 /****************************************************************************/
8291 static void
8292 bce_tick(void *xsc)
8293 {
8294 	struct bce_softc *sc = xsc;
8295 	struct mii_data *mii;
8296 	if_t ifp;
8297 	struct ifmediareq ifmr;
8298 
8299 	ifp = sc->bce_ifp;
8300 
8301 	DBENTER(BCE_EXTREME_MISC);
8302 
8303 	BCE_LOCK_ASSERT(sc);
8304 
8305 	/* Schedule the next tick. */
8306 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8307 
8308 	/* Update the statistics from the hardware statistics block. */
8309 	bce_stats_update(sc);
8310 
8311  	/* Ensure page and RX chains get refilled in low-memory situations. */
8312 	if (bce_hdr_split == TRUE)
8313 		bce_fill_pg_chain(sc);
8314 	bce_fill_rx_chain(sc);
8315 
8316 	/* Check that chip hasn't hung. */
8317 	bce_watchdog(sc);
8318 
8319 	/* If link is up already up then we're done. */
8320 	if (sc->bce_link_up == TRUE)
8321 		goto bce_tick_exit;
8322 
8323 	/* Link is down.  Check what the PHY's doing. */
8324 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8325 		bzero(&ifmr, sizeof(ifmr));
8326 		bce_ifmedia_sts_rphy(sc, &ifmr);
8327 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8328 		    (IFM_ACTIVE | IFM_AVALID)) {
8329 			sc->bce_link_up = TRUE;
8330 			bce_miibus_statchg(sc->bce_dev);
8331 		}
8332 	} else {
8333 		mii = device_get_softc(sc->bce_miibus);
8334 		mii_tick(mii);
8335 		/* Check if the link has come up. */
8336 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8337 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8338 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8339 			    __FUNCTION__);
8340 			sc->bce_link_up = TRUE;
8341 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8342 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8343 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8344 			    (bce_verbose || bootverbose))
8345 				BCE_PRINTF("Gigabit link up!\n");
8346 		}
8347 	}
8348 	if (sc->bce_link_up == TRUE) {
8349 		/* Now that link is up, handle any outstanding TX traffic. */
8350 		if (!if_sendq_empty(ifp)) {
8351 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8352 			    "pending TX traffic.\n", __FUNCTION__);
8353 			bce_start_locked(ifp);
8354 		}
8355 	}
8356 
8357 bce_tick_exit:
8358 	DBEXIT(BCE_EXTREME_MISC);
8359 }
8360 
8361 static void
8362 bce_fw_cap_init(struct bce_softc *sc)
8363 {
8364 	u32 ack, cap, link;
8365 
8366 	ack = 0;
8367 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8368 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8369 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8370 		return;
8371 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8372 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8373 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8374 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8375 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8376 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8377 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8378 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8379 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8380 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8381 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8382 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8383 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8384 	}
8385 
8386 	if (ack != 0)
8387 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8388 }
8389 
8390 #ifdef BCE_DEBUG
8391 /****************************************************************************/
8392 /* Allows the driver state to be dumped through the sysctl interface.       */
8393 /*                                                                          */
8394 /* Returns:                                                                 */
8395 /*   0 for success, positive value for failure.                             */
8396 /****************************************************************************/
8397 static int
8398 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8399 {
8400 	int error;
8401 	int result;
8402 	struct bce_softc *sc;
8403 
8404 	result = -1;
8405 	error = sysctl_handle_int(oidp, &result, 0, req);
8406 
8407 	if (error || !req->newptr)
8408 		return (error);
8409 
8410 	if (result == 1) {
8411 		sc = (struct bce_softc *)arg1;
8412 		bce_dump_driver_state(sc);
8413 	}
8414 
8415 	return error;
8416 }
8417 
8418 /****************************************************************************/
8419 /* Allows the hardware state to be dumped through the sysctl interface.     */
8420 /*                                                                          */
8421 /* Returns:                                                                 */
8422 /*   0 for success, positive value for failure.                             */
8423 /****************************************************************************/
8424 static int
8425 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8426 {
8427 	int error;
8428 	int result;
8429 	struct bce_softc *sc;
8430 
8431 	result = -1;
8432 	error = sysctl_handle_int(oidp, &result, 0, req);
8433 
8434 	if (error || !req->newptr)
8435 		return (error);
8436 
8437 	if (result == 1) {
8438 		sc = (struct bce_softc *)arg1;
8439 		bce_dump_hw_state(sc);
8440 	}
8441 
8442 	return error;
8443 }
8444 
8445 /****************************************************************************/
8446 /* Allows the status block to be dumped through the sysctl interface.       */
8447 /*                                                                          */
8448 /* Returns:                                                                 */
8449 /*   0 for success, positive value for failure.                             */
8450 /****************************************************************************/
8451 static int
8452 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8453 {
8454 	int error;
8455 	int result;
8456 	struct bce_softc *sc;
8457 
8458 	result = -1;
8459 	error = sysctl_handle_int(oidp, &result, 0, req);
8460 
8461 	if (error || !req->newptr)
8462 		return (error);
8463 
8464 	if (result == 1) {
8465 		sc = (struct bce_softc *)arg1;
8466 		bce_dump_status_block(sc);
8467 	}
8468 
8469 	return error;
8470 }
8471 
8472 /****************************************************************************/
8473 /* Allows the stats block to be dumped through the sysctl interface.        */
8474 /*                                                                          */
8475 /* Returns:                                                                 */
8476 /*   0 for success, positive value for failure.                             */
8477 /****************************************************************************/
8478 static int
8479 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8480 {
8481 	int error;
8482 	int result;
8483 	struct bce_softc *sc;
8484 
8485 	result = -1;
8486 	error = sysctl_handle_int(oidp, &result, 0, req);
8487 
8488 	if (error || !req->newptr)
8489 		return (error);
8490 
8491 	if (result == 1) {
8492 		sc = (struct bce_softc *)arg1;
8493 		bce_dump_stats_block(sc);
8494 	}
8495 
8496 	return error;
8497 }
8498 
8499 /****************************************************************************/
8500 /* Allows the stat counters to be cleared without unloading/reloading the   */
8501 /* driver.                                                                  */
8502 /*                                                                          */
8503 /* Returns:                                                                 */
8504 /*   0 for success, positive value for failure.                             */
8505 /****************************************************************************/
8506 static int
8507 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8508 {
8509 	int error;
8510 	int result;
8511 	struct bce_softc *sc;
8512 
8513 	result = -1;
8514 	error = sysctl_handle_int(oidp, &result, 0, req);
8515 
8516 	if (error || !req->newptr)
8517 		return (error);
8518 
8519 	if (result == 1) {
8520 		sc = (struct bce_softc *)arg1;
8521 		struct statistics_block *stats;
8522 
8523 		stats = (struct statistics_block *) sc->stats_block;
8524 		bzero(stats, sizeof(struct statistics_block));
8525 		bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8526 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8527 
8528 		/* Clear the internal H/W statistics counters. */
8529 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8530 
8531 		/* Reset the driver maintained statistics. */
8532 		sc->interrupts_rx =
8533 		    sc->interrupts_tx = 0;
8534 		sc->tso_frames_requested =
8535 		    sc->tso_frames_completed =
8536 		    sc->tso_frames_failed = 0;
8537 		sc->rx_empty_count =
8538 		    sc->tx_full_count = 0;
8539 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8540 		sc->tx_hi_watermark = 0;
8541 		sc->l2fhdr_error_count =
8542 		    sc->l2fhdr_error_sim_count = 0;
8543 		sc->mbuf_alloc_failed_count =
8544 		    sc->mbuf_alloc_failed_sim_count = 0;
8545 		sc->dma_map_addr_rx_failed_count =
8546 		    sc->dma_map_addr_tx_failed_count = 0;
8547 		sc->mbuf_frag_count = 0;
8548 		sc->csum_offload_tcp_udp =
8549 		    sc->csum_offload_ip = 0;
8550 		sc->vlan_tagged_frames_rcvd =
8551 		    sc->vlan_tagged_frames_stripped = 0;
8552 		sc->split_header_frames_rcvd =
8553 		    sc->split_header_tcp_frames_rcvd = 0;
8554 
8555 		/* Clear firmware maintained statistics. */
8556 		REG_WR_IND(sc, 0x120084, 0);
8557 	}
8558 
8559 	return error;
8560 }
8561 
8562 /****************************************************************************/
8563 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8564 /* interface.                                                               */
8565 /*                                                                          */
8566 /* Returns:                                                                 */
8567 /*   0 for success, positive value for failure.                             */
8568 /****************************************************************************/
8569 static int
8570 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8571 {
8572 	int error;
8573 	int result;
8574 	struct bce_softc *sc;
8575 
8576 	result = -1;
8577 	error = sysctl_handle_int(oidp, &result, 0, req);
8578 
8579 	if (error || !req->newptr)
8580 		return (error);
8581 
8582 	if (result == 1) {
8583 		sc = (struct bce_softc *)arg1;
8584 		bce_dump_shmem_state(sc);
8585 	}
8586 
8587 	return error;
8588 }
8589 
8590 /****************************************************************************/
8591 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8592 /*                                                                          */
8593 /* Returns:                                                                 */
8594 /*   0 for success, positive value for failure.                             */
8595 /****************************************************************************/
8596 static int
8597 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8598 {
8599 	int error;
8600 	int result;
8601 	struct bce_softc *sc;
8602 
8603 	result = -1;
8604 	error = sysctl_handle_int(oidp, &result, 0, req);
8605 
8606 	if (error || !req->newptr)
8607 		return (error);
8608 
8609 	if (result == 1) {
8610 		sc = (struct bce_softc *)arg1;
8611 		bce_dump_bc_state(sc);
8612 	}
8613 
8614 	return error;
8615 }
8616 
8617 /****************************************************************************/
8618 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8619 /*                                                                          */
8620 /* Returns:                                                                 */
8621 /*   0 for success, positive value for failure.                             */
8622 /****************************************************************************/
8623 static int
8624 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8625 {
8626 	int error;
8627 	int result;
8628 	struct bce_softc *sc;
8629 
8630 	result = -1;
8631 	error = sysctl_handle_int(oidp, &result, 0, req);
8632 
8633 	if (error || !req->newptr)
8634 		return (error);
8635 
8636 	if (result == 1) {
8637 		sc = (struct bce_softc *)arg1;
8638 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8639 	}
8640 
8641 	return error;
8642 }
8643 
8644 /****************************************************************************/
8645 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8646 /*                                                                          */
8647 /* Returns:                                                                 */
8648 /*   0 for success, positive value for failure.                             */
8649 /****************************************************************************/
8650 static int
8651 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8652 {
8653 	int error;
8654 	int result;
8655 	struct bce_softc *sc;
8656 
8657 	result = -1;
8658 	error = sysctl_handle_int(oidp, &result, 0, req);
8659 
8660 	if (error || !req->newptr)
8661 		return (error);
8662 
8663 	if (result == 1) {
8664 		sc = (struct bce_softc *)arg1;
8665 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8666 	}
8667 
8668 	return error;
8669 }
8670 
8671 /****************************************************************************/
8672 /* Provides a sysctl interface to allow dumping the TX chain.               */
8673 /*                                                                          */
8674 /* Returns:                                                                 */
8675 /*   0 for success, positive value for failure.                             */
8676 /****************************************************************************/
8677 static int
8678 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8679 {
8680 	int error;
8681 	int result;
8682 	struct bce_softc *sc;
8683 
8684 	result = -1;
8685 	error = sysctl_handle_int(oidp, &result, 0, req);
8686 
8687 	if (error || !req->newptr)
8688 		return (error);
8689 
8690 	if (result == 1) {
8691 		sc = (struct bce_softc *)arg1;
8692 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8693 	}
8694 
8695 	return error;
8696 }
8697 
8698 /****************************************************************************/
8699 /* Provides a sysctl interface to allow dumping the page chain.             */
8700 /*                                                                          */
8701 /* Returns:                                                                 */
8702 /*   0 for success, positive value for failure.                             */
8703 /****************************************************************************/
8704 static int
8705 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8706 {
8707 	int error;
8708 	int result;
8709 	struct bce_softc *sc;
8710 
8711 	result = -1;
8712 	error = sysctl_handle_int(oidp, &result, 0, req);
8713 
8714 	if (error || !req->newptr)
8715 		return (error);
8716 
8717 	if (result == 1) {
8718 		sc = (struct bce_softc *)arg1;
8719 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8720 	}
8721 
8722 	return error;
8723 }
8724 
8725 /****************************************************************************/
8726 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8727 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8728 /*                                                                          */
8729 /* Returns:                                                                 */
8730 /*   0 for success, positive value for failure.                             */
8731 /****************************************************************************/
8732 static int
8733 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8734 {
8735 	struct bce_softc *sc = (struct bce_softc *)arg1;
8736 	int error;
8737 	u32 result;
8738 	u32 val[1];
8739 	u8 *data = (u8 *) val;
8740 
8741 	result = -1;
8742 	error = sysctl_handle_int(oidp, &result, 0, req);
8743 	if (error || (req->newptr == NULL))
8744 		return (error);
8745 
8746 	error = bce_nvram_read(sc, result, data, 4);
8747 
8748 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8749 
8750 	return (error);
8751 }
8752 
8753 /****************************************************************************/
8754 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8755 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8756 /*                                                                          */
8757 /* Returns:                                                                 */
8758 /*   0 for success, positive value for failure.                             */
8759 /****************************************************************************/
8760 static int
8761 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8762 {
8763 	struct bce_softc *sc = (struct bce_softc *)arg1;
8764 	int error;
8765 	u32 val, result;
8766 
8767 	result = -1;
8768 	error = sysctl_handle_int(oidp, &result, 0, req);
8769 	if (error || (req->newptr == NULL))
8770 		return (error);
8771 
8772 	/* Make sure the register is accessible. */
8773 	if (result < 0x8000) {
8774 		val = REG_RD(sc, result);
8775 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8776 	} else if (result < 0x0280000) {
8777 		val = REG_RD_IND(sc, result);
8778 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8779 	}
8780 
8781 	return (error);
8782 }
8783 
8784 /****************************************************************************/
8785 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8786 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8787 /*                                                                          */
8788 /* Returns:                                                                 */
8789 /*   0 for success, positive value for failure.                             */
8790 /****************************************************************************/
8791 static int
8792 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8793 {
8794 	struct bce_softc *sc;
8795 	device_t dev;
8796 	int error, result;
8797 	u16 val;
8798 
8799 	result = -1;
8800 	error = sysctl_handle_int(oidp, &result, 0, req);
8801 	if (error || (req->newptr == NULL))
8802 		return (error);
8803 
8804 	/* Make sure the register is accessible. */
8805 	if (result < 0x20) {
8806 		sc = (struct bce_softc *)arg1;
8807 		dev = sc->bce_dev;
8808 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8809 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8810 	}
8811 	return (error);
8812 }
8813 
8814 /****************************************************************************/
8815 /* Provides a sysctl interface for dumping the nvram contents.              */
8816 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8817 /*									    */
8818 /* Returns:								    */
8819 /*   0 for success, positive errno for failure.				    */
8820 /****************************************************************************/
8821 static int
8822 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8823 {
8824 	struct bce_softc *sc = (struct bce_softc *)arg1;
8825 	int error, i;
8826 
8827 	if (sc->nvram_buf == NULL)
8828 		sc->nvram_buf = malloc(sc->bce_flash_size,
8829 				    M_TEMP, M_ZERO | M_WAITOK);
8830 
8831 	error = 0;
8832 	if (req->oldlen == sc->bce_flash_size) {
8833 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8834 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
8835 	}
8836 
8837 	if (error == 0)
8838 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
8839 
8840 	return error;
8841 }
8842 
8843 #ifdef BCE_NVRAM_WRITE_SUPPORT
8844 /****************************************************************************/
8845 /* Provides a sysctl interface for writing to nvram.                        */
8846 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8847 /*									    */
8848 /* Returns:								    */
8849 /*   0 for success, positive errno for failure.				    */
8850 /****************************************************************************/
8851 static int
8852 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
8853 {
8854 	struct bce_softc *sc = (struct bce_softc *)arg1;
8855 	int error;
8856 
8857 	if (sc->nvram_buf == NULL)
8858 		sc->nvram_buf = malloc(sc->bce_flash_size,
8859 				    M_TEMP, M_ZERO | M_WAITOK);
8860 	else
8861 		bzero(sc->nvram_buf, sc->bce_flash_size);
8862 
8863 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
8864 	if (error == 0)
8865 		return (error);
8866 
8867 	if (req->newlen == sc->bce_flash_size)
8868 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
8869 			    sc->bce_flash_size);
8870 
8871 	return error;
8872 }
8873 #endif
8874 
8875 /****************************************************************************/
8876 /* Provides a sysctl interface to allow reading a CID.                      */
8877 /*                                                                          */
8878 /* Returns:                                                                 */
8879 /*   0 for success, positive value for failure.                             */
8880 /****************************************************************************/
8881 static int
8882 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8883 {
8884 	struct bce_softc *sc;
8885 	int error, result;
8886 
8887 	result = -1;
8888 	error = sysctl_handle_int(oidp, &result, 0, req);
8889 	if (error || (req->newptr == NULL))
8890 		return (error);
8891 
8892 	/* Make sure the register is accessible. */
8893 	if (result <= TX_CID) {
8894 		sc = (struct bce_softc *)arg1;
8895 		bce_dump_ctx(sc, result);
8896 	}
8897 
8898 	return (error);
8899 }
8900 
8901 /****************************************************************************/
8902 /* Provides a sysctl interface to forcing the driver to dump state and      */
8903 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8904 /*                                                                          */
8905 /* Returns:                                                                 */
8906 /*   0 for success, positive value for failure.                             */
8907 /****************************************************************************/
8908 static int
8909 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8910 {
8911 	int error;
8912 	int result;
8913 	struct bce_softc *sc;
8914 
8915 	result = -1;
8916 	error = sysctl_handle_int(oidp, &result, 0, req);
8917 
8918 	if (error || !req->newptr)
8919 		return (error);
8920 
8921 	if (result == 1) {
8922 		sc = (struct bce_softc *)arg1;
8923 		bce_breakpoint(sc);
8924 	}
8925 
8926 	return error;
8927 }
8928 #endif
8929 
8930 /****************************************************************************/
8931 /* Adds any sysctl parameters for tuning or debugging purposes.             */
8932 /*                                                                          */
8933 /* Returns:                                                                 */
8934 /*   0 for success, positive value for failure.                             */
8935 /****************************************************************************/
8936 static void
8937 bce_add_sysctls(struct bce_softc *sc)
8938 {
8939 	struct sysctl_ctx_list *ctx;
8940 	struct sysctl_oid_list *children;
8941 
8942 	DBENTER(BCE_VERBOSE_MISC);
8943 
8944 	ctx = device_get_sysctl_ctx(sc->bce_dev);
8945 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8946 
8947 #ifdef BCE_DEBUG
8948 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8949 	    "l2fhdr_error_sim_control",
8950 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8951 	    0, "Debug control to force l2fhdr errors");
8952 
8953 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8954 	    "l2fhdr_error_sim_count",
8955 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8956 	    0, "Number of simulated l2_fhdr errors");
8957 #endif
8958 
8959 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8960 	    "l2fhdr_error_count",
8961 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8962 	    0, "Number of l2_fhdr errors");
8963 
8964 #ifdef BCE_DEBUG
8965 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8966 	    "mbuf_alloc_failed_sim_control",
8967 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8968 	    0, "Debug control to force mbuf allocation failures");
8969 
8970 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8971 	    "mbuf_alloc_failed_sim_count",
8972 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8973 	    0, "Number of simulated mbuf cluster allocation failures");
8974 #endif
8975 
8976 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8977 	    "mbuf_alloc_failed_count",
8978 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8979 	    0, "Number of mbuf allocation failures");
8980 
8981 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8982 	    "mbuf_frag_count",
8983 	    CTLFLAG_RD, &sc->mbuf_frag_count,
8984 	    0, "Number of fragmented mbufs");
8985 
8986 #ifdef BCE_DEBUG
8987 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8988 	    "dma_map_addr_failed_sim_control",
8989 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8990 	    0, "Debug control to force DMA mapping failures");
8991 
8992 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8993 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8994 	    "dma_map_addr_failed_sim_count",
8995 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8996 	    0, "Number of simulated DMA mapping failures");
8997 
8998 #endif
8999 
9000 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9001 	    "dma_map_addr_rx_failed_count",
9002 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9003 	    0, "Number of RX DMA mapping failures");
9004 
9005 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9006 	    "dma_map_addr_tx_failed_count",
9007 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9008 	    0, "Number of TX DMA mapping failures");
9009 
9010 #ifdef BCE_DEBUG
9011 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9012 	    "unexpected_attention_sim_control",
9013 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9014 	    0, "Debug control to simulate unexpected attentions");
9015 
9016 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9017 	    "unexpected_attention_sim_count",
9018 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9019 	    0, "Number of simulated unexpected attentions");
9020 #endif
9021 
9022 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9023 	    "unexpected_attention_count",
9024 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9025 	    0, "Number of unexpected attentions");
9026 
9027 #ifdef BCE_DEBUG
9028 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9029 	    "debug_bootcode_running_failure",
9030 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9031 	    0, "Debug control to force bootcode running failures");
9032 
9033 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9034 	    "rx_low_watermark",
9035 	    CTLFLAG_RD, &sc->rx_low_watermark,
9036 	    0, "Lowest level of free rx_bd's");
9037 
9038 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9039 	    "rx_empty_count",
9040 	    CTLFLAG_RD, &sc->rx_empty_count,
9041 	    "Number of times the RX chain was empty");
9042 
9043 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9044 	    "tx_hi_watermark",
9045 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9046 	    0, "Highest level of used tx_bd's");
9047 
9048 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9049 	    "tx_full_count",
9050 	    CTLFLAG_RD, &sc->tx_full_count,
9051 	    "Number of times the TX chain was full");
9052 
9053 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9054 	    "tso_frames_requested",
9055 	    CTLFLAG_RD, &sc->tso_frames_requested,
9056 	    "Number of TSO frames requested");
9057 
9058 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9059 	    "tso_frames_completed",
9060 	    CTLFLAG_RD, &sc->tso_frames_completed,
9061 	    "Number of TSO frames completed");
9062 
9063 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9064 	    "tso_frames_failed",
9065 	    CTLFLAG_RD, &sc->tso_frames_failed,
9066 	    "Number of TSO frames failed");
9067 
9068 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9069 	    "csum_offload_ip",
9070 	    CTLFLAG_RD, &sc->csum_offload_ip,
9071 	    "Number of IP checksum offload frames");
9072 
9073 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9074 	    "csum_offload_tcp_udp",
9075 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9076 	    "Number of TCP/UDP checksum offload frames");
9077 
9078 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9079 	    "vlan_tagged_frames_rcvd",
9080 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9081 	    "Number of VLAN tagged frames received");
9082 
9083 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9084 	    "vlan_tagged_frames_stripped",
9085 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9086 	    "Number of VLAN tagged frames stripped");
9087 
9088 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9089 	    "interrupts_rx",
9090 	    CTLFLAG_RD, &sc->interrupts_rx,
9091 	    "Number of RX interrupts");
9092 
9093 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9094 	    "interrupts_tx",
9095 	    CTLFLAG_RD, &sc->interrupts_tx,
9096 	    "Number of TX interrupts");
9097 
9098 	if (bce_hdr_split == TRUE) {
9099 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9100 		    "split_header_frames_rcvd",
9101 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9102 		    "Number of split header frames received");
9103 
9104 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9105 		    "split_header_tcp_frames_rcvd",
9106 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9107 		    "Number of split header TCP frames received");
9108 	}
9109 
9110 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9111 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
9112 	    (void *)sc, 0,
9113 	    bce_sysctl_nvram_dump, "S", "");
9114 
9115 #ifdef BCE_NVRAM_WRITE_SUPPORT
9116 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9117 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR | CTLFLAG_NEEDGIANT,
9118 	    (void *)sc, 0,
9119 	    bce_sysctl_nvram_write, "S", "");
9120 #endif
9121 #endif /* BCE_DEBUG */
9122 
9123 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9124 	    "stat_IfHcInOctets",
9125 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9126 	    "Bytes received");
9127 
9128 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9129 	    "stat_IfHCInBadOctets",
9130 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9131 	    "Bad bytes received");
9132 
9133 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9134 	    "stat_IfHCOutOctets",
9135 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9136 	    "Bytes sent");
9137 
9138 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9139 	    "stat_IfHCOutBadOctets",
9140 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9141 	    "Bad bytes sent");
9142 
9143 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9144 	    "stat_IfHCInUcastPkts",
9145 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9146 	    "Unicast packets received");
9147 
9148 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9149 	    "stat_IfHCInMulticastPkts",
9150 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9151 	    "Multicast packets received");
9152 
9153 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9154 	    "stat_IfHCInBroadcastPkts",
9155 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9156 	    "Broadcast packets received");
9157 
9158 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9159 	    "stat_IfHCOutUcastPkts",
9160 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9161 	    "Unicast packets sent");
9162 
9163 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9164 	    "stat_IfHCOutMulticastPkts",
9165 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9166 	    "Multicast packets sent");
9167 
9168 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9169 	    "stat_IfHCOutBroadcastPkts",
9170 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9171 	    "Broadcast packets sent");
9172 
9173 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9174 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9175 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9176 	    0, "Internal MAC transmit errors");
9177 
9178 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9179 	    "stat_Dot3StatsCarrierSenseErrors",
9180 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9181 	    0, "Carrier sense errors");
9182 
9183 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9184 	    "stat_Dot3StatsFCSErrors",
9185 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9186 	    0, "Frame check sequence errors");
9187 
9188 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9189 	    "stat_Dot3StatsAlignmentErrors",
9190 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9191 	    0, "Alignment errors");
9192 
9193 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9194 	    "stat_Dot3StatsSingleCollisionFrames",
9195 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9196 	    0, "Single Collision Frames");
9197 
9198 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9199 	    "stat_Dot3StatsMultipleCollisionFrames",
9200 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9201 	    0, "Multiple Collision Frames");
9202 
9203 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9204 	    "stat_Dot3StatsDeferredTransmissions",
9205 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9206 	    0, "Deferred Transmissions");
9207 
9208 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9209 	    "stat_Dot3StatsExcessiveCollisions",
9210 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9211 	    0, "Excessive Collisions");
9212 
9213 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9214 	    "stat_Dot3StatsLateCollisions",
9215 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9216 	    0, "Late Collisions");
9217 
9218 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9219 	    "stat_EtherStatsCollisions",
9220 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9221 	    0, "Collisions");
9222 
9223 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9224 	    "stat_EtherStatsFragments",
9225 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9226 	    0, "Fragments");
9227 
9228 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9229 	    "stat_EtherStatsJabbers",
9230 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9231 	    0, "Jabbers");
9232 
9233 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9234 	    "stat_EtherStatsUndersizePkts",
9235 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9236 	    0, "Undersize packets");
9237 
9238 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9239 	    "stat_EtherStatsOversizePkts",
9240 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9241 	    0, "stat_EtherStatsOversizePkts");
9242 
9243 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9244 	    "stat_EtherStatsPktsRx64Octets",
9245 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9246 	    0, "Bytes received in 64 byte packets");
9247 
9248 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9249 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9250 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9251 	    0, "Bytes received in 65 to 127 byte packets");
9252 
9253 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9254 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9255 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9256 	    0, "Bytes received in 128 to 255 byte packets");
9257 
9258 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9259 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9260 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9261 	    0, "Bytes received in 256 to 511 byte packets");
9262 
9263 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9264 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9265 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9266 	    0, "Bytes received in 512 to 1023 byte packets");
9267 
9268 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9269 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9270 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9271 	    0, "Bytes received in 1024 t0 1522 byte packets");
9272 
9273 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9274 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9275 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9276 	    0, "Bytes received in 1523 to 9022 byte packets");
9277 
9278 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9279 	    "stat_EtherStatsPktsTx64Octets",
9280 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9281 	    0, "Bytes sent in 64 byte packets");
9282 
9283 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9284 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9285 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9286 	    0, "Bytes sent in 65 to 127 byte packets");
9287 
9288 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9289 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9290 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9291 	    0, "Bytes sent in 128 to 255 byte packets");
9292 
9293 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9294 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9295 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9296 	    0, "Bytes sent in 256 to 511 byte packets");
9297 
9298 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9299 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9300 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9301 	    0, "Bytes sent in 512 to 1023 byte packets");
9302 
9303 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9304 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9305 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9306 	    0, "Bytes sent in 1024 to 1522 byte packets");
9307 
9308 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9309 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9310 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9311 	    0, "Bytes sent in 1523 to 9022 byte packets");
9312 
9313 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9314 	    "stat_XonPauseFramesReceived",
9315 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9316 	    0, "XON pause frames receved");
9317 
9318 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9319 	    "stat_XoffPauseFramesReceived",
9320 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9321 	    0, "XOFF pause frames received");
9322 
9323 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9324 	    "stat_OutXonSent",
9325 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9326 	    0, "XON pause frames sent");
9327 
9328 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9329 	    "stat_OutXoffSent",
9330 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9331 	    0, "XOFF pause frames sent");
9332 
9333 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9334 	    "stat_FlowControlDone",
9335 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9336 	    0, "Flow control done");
9337 
9338 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9339 	    "stat_MacControlFramesReceived",
9340 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9341 	    0, "MAC control frames received");
9342 
9343 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9344 	    "stat_XoffStateEntered",
9345 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9346 	    0, "XOFF state entered");
9347 
9348 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9349 	    "stat_IfInFramesL2FilterDiscards",
9350 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9351 	    0, "Received L2 packets discarded");
9352 
9353 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9354 	    "stat_IfInRuleCheckerDiscards",
9355 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9356 	    0, "Received packets discarded by rule");
9357 
9358 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9359 	    "stat_IfInFTQDiscards",
9360 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9361 	    0, "Received packet FTQ discards");
9362 
9363 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9364 	    "stat_IfInMBUFDiscards",
9365 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9366 	    0, "Received packets discarded due to lack "
9367 	    "of controller buffer memory");
9368 
9369 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9370 	    "stat_IfInRuleCheckerP4Hit",
9371 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9372 	    0, "Received packets rule checker hits");
9373 
9374 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9375 	    "stat_CatchupInRuleCheckerDiscards",
9376 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9377 	    0, "Received packets discarded in Catchup path");
9378 
9379 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9380 	    "stat_CatchupInFTQDiscards",
9381 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9382 	    0, "Received packets discarded in FTQ in Catchup path");
9383 
9384 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9385 	    "stat_CatchupInMBUFDiscards",
9386 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9387 	    0, "Received packets discarded in controller "
9388 	    "buffer memory in Catchup path");
9389 
9390 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9391 	    "stat_CatchupInRuleCheckerP4Hit",
9392 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9393 	    0, "Received packets rule checker hits in Catchup path");
9394 
9395 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9396 	    "com_no_buffers",
9397 	    CTLFLAG_RD, &sc->com_no_buffers,
9398 	    0, "Valid packets received but no RX buffers available");
9399 
9400 #ifdef BCE_DEBUG
9401 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9402 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9403 	    (void *)sc, 0,
9404 	    bce_sysctl_driver_state, "I", "Drive state information");
9405 
9406 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9407 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9408 	    (void *)sc, 0,
9409 	    bce_sysctl_hw_state, "I", "Hardware state information");
9410 
9411 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9412 	    "status_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9413 	    (void *)sc, 0,
9414 	    bce_sysctl_status_block, "I", "Dump status block");
9415 
9416 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9417 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9418 	    (void *)sc, 0,
9419 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9420 
9421 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9422 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9423 	    (void *)sc, 0,
9424 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9425 
9426 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9427 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9428 	    (void *)sc, 0,
9429 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9430 
9431 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9432 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9433 	    (void *)sc, 0,
9434 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9435 
9436 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9437 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9438 	    (void *)sc, 0,
9439 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9440 
9441 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9442 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9443 	    (void *)sc, 0,
9444 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9445 
9446 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9447 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9448 	    (void *)sc, 0,
9449 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9450 
9451 	if (bce_hdr_split == TRUE) {
9452 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9453 		    "dump_pg_chain",
9454 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9455 		    (void *)sc, 0,
9456 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9457 	}
9458 
9459 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9460 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9461 	    (void *)sc, 0,
9462 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9463 
9464 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9465 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9466 	    (void *)sc, 0,
9467 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9468 
9469 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9470 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW| CTLFLAG_NEEDGIANT,
9471 	    (void *)sc, 0,
9472 	    bce_sysctl_reg_read, "I", "Register read");
9473 
9474 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9475 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9476 	    (void *)sc, 0,
9477 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9478 
9479 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9480 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9481 	    (void *)sc, 0,
9482 	    bce_sysctl_phy_read, "I", "PHY register read");
9483 
9484 #endif
9485 
9486 	DBEXIT(BCE_VERBOSE_MISC);
9487 }
9488 
9489 /****************************************************************************/
9490 /* BCE Debug Routines                                                       */
9491 /****************************************************************************/
9492 #ifdef BCE_DEBUG
9493 
9494 /****************************************************************************/
9495 /* Freezes the controller to allow for a cohesive state dump.               */
9496 /*                                                                          */
9497 /* Returns:                                                                 */
9498 /*   Nothing.                                                               */
9499 /****************************************************************************/
9500 static __attribute__ ((noinline)) void
9501 bce_freeze_controller(struct bce_softc *sc)
9502 {
9503 	u32 val;
9504 	val = REG_RD(sc, BCE_MISC_COMMAND);
9505 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9506 	REG_WR(sc, BCE_MISC_COMMAND, val);
9507 }
9508 
9509 /****************************************************************************/
9510 /* Unfreezes the controller after a freeze operation.  This may not always  */
9511 /* work and the controller will require a reset!                            */
9512 /*                                                                          */
9513 /* Returns:                                                                 */
9514 /*   Nothing.                                                               */
9515 /****************************************************************************/
9516 static __attribute__ ((noinline)) void
9517 bce_unfreeze_controller(struct bce_softc *sc)
9518 {
9519 	u32 val;
9520 	val = REG_RD(sc, BCE_MISC_COMMAND);
9521 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9522 	REG_WR(sc, BCE_MISC_COMMAND, val);
9523 }
9524 
9525 /****************************************************************************/
9526 /* Prints out Ethernet frame information from an mbuf.                      */
9527 /*                                                                          */
9528 /* Partially decode an Ethernet frame to look at some important headers.    */
9529 /*                                                                          */
9530 /* Returns:                                                                 */
9531 /*   Nothing.                                                               */
9532 /****************************************************************************/
9533 static __attribute__ ((noinline)) void
9534 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9535 {
9536 	struct ether_vlan_header *eh;
9537 	u16 etype;
9538 	int ehlen;
9539 	struct ip *ip;
9540 	struct tcphdr *th;
9541 	struct udphdr *uh;
9542 	struct arphdr *ah;
9543 
9544 	BCE_PRINTF(
9545 	    "-----------------------------"
9546 	    " Frame Decode "
9547 	    "-----------------------------\n");
9548 
9549 	eh = mtod(m, struct ether_vlan_header *);
9550 
9551 	/* Handle VLAN encapsulation if present. */
9552 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9553 		etype = ntohs(eh->evl_proto);
9554 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9555 	} else {
9556 		etype = ntohs(eh->evl_encap_proto);
9557 		ehlen = ETHER_HDR_LEN;
9558 	}
9559 
9560 	/* ToDo: Add VLAN output. */
9561 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9562 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9563 
9564 	switch (etype) {
9565 	case ETHERTYPE_IP:
9566 		ip = (struct ip *)(m->m_data + ehlen);
9567 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9568 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9569 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9570 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9571 
9572 		switch (ip->ip_p) {
9573 		case IPPROTO_TCP:
9574 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9575 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9576 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9577 			    ntohs(th->th_dport), ntohs(th->th_sport),
9578 			    (th->th_off << 2), th->th_flags,
9579 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9580 			    "\02SYN\01FIN", ntohs(th->th_sum));
9581 			break;
9582 		case IPPROTO_UDP:
9583 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9584 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9585 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9586 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9587 			    ntohs(uh->uh_sum));
9588 			break;
9589 		case IPPROTO_ICMP:
9590 			BCE_PRINTF("icmp:\n");
9591 			break;
9592 		default:
9593 			BCE_PRINTF("----: Other IP protocol.\n");
9594 			}
9595 		break;
9596 	case ETHERTYPE_IPV6:
9597 		BCE_PRINTF("ipv6: No decode supported.\n");
9598 		break;
9599 	case ETHERTYPE_ARP:
9600 		BCE_PRINTF("-arp: ");
9601 		ah = (struct arphdr *) (m->m_data + ehlen);
9602 		switch (ntohs(ah->ar_op)) {
9603 		case ARPOP_REVREQUEST:
9604 			printf("reverse ARP request\n");
9605 			break;
9606 		case ARPOP_REVREPLY:
9607 			printf("reverse ARP reply\n");
9608 			break;
9609 		case ARPOP_REQUEST:
9610 			printf("ARP request\n");
9611 			break;
9612 		case ARPOP_REPLY:
9613 			printf("ARP reply\n");
9614 			break;
9615 		default:
9616 			printf("other ARP operation\n");
9617 		}
9618 		break;
9619 	default:
9620 		BCE_PRINTF("----: Other protocol.\n");
9621 	}
9622 
9623 	BCE_PRINTF(
9624 		"-----------------------------"
9625 		"--------------"
9626 		"-----------------------------\n");
9627 }
9628 
9629 /****************************************************************************/
9630 /* Prints out information about an mbuf.                                    */
9631 /*                                                                          */
9632 /* Returns:                                                                 */
9633 /*   Nothing.                                                               */
9634 /****************************************************************************/
9635 static __attribute__ ((noinline)) void
9636 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9637 {
9638 	struct mbuf *mp = m;
9639 
9640 	if (m == NULL) {
9641 		BCE_PRINTF("mbuf: null pointer\n");
9642 		return;
9643 	}
9644 
9645 	while (mp) {
9646 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9647 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9648 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9649 
9650 		if (mp->m_flags & M_PKTHDR) {
9651 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9652 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9653 			    mp->m_flags, M_FLAG_PRINTF,
9654 			    mp->m_pkthdr.csum_flags, CSUM_BITS);
9655 		}
9656 
9657 		if (mp->m_flags & M_EXT) {
9658 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9659 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9660 			switch (mp->m_ext.ext_type) {
9661 			case EXT_CLUSTER:
9662 				printf("EXT_CLUSTER\n"); break;
9663 			case EXT_SFBUF:
9664 				printf("EXT_SFBUF\n"); break;
9665 			case EXT_JUMBO9:
9666 				printf("EXT_JUMBO9\n"); break;
9667 			case EXT_JUMBO16:
9668 				printf("EXT_JUMBO16\n"); break;
9669 			case EXT_PACKET:
9670 				printf("EXT_PACKET\n"); break;
9671 			case EXT_MBUF:
9672 				printf("EXT_MBUF\n"); break;
9673 			case EXT_NET_DRV:
9674 				printf("EXT_NET_DRV\n"); break;
9675 			case EXT_MOD_TYPE:
9676 				printf("EXT_MDD_TYPE\n"); break;
9677 			case EXT_DISPOSABLE:
9678 				printf("EXT_DISPOSABLE\n"); break;
9679 			case EXT_EXTREF:
9680 				printf("EXT_EXTREF\n"); break;
9681 			default:
9682 				printf("UNKNOWN\n");
9683 			}
9684 		}
9685 
9686 		mp = mp->m_next;
9687 	}
9688 }
9689 
9690 /****************************************************************************/
9691 /* Prints out the mbufs in the TX mbuf chain.                               */
9692 /*                                                                          */
9693 /* Returns:                                                                 */
9694 /*   Nothing.                                                               */
9695 /****************************************************************************/
9696 static __attribute__ ((noinline)) void
9697 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9698 {
9699 	struct mbuf *m;
9700 
9701 	BCE_PRINTF(
9702 		"----------------------------"
9703 		"  tx mbuf data  "
9704 		"----------------------------\n");
9705 
9706 	for (int i = 0; i < count; i++) {
9707 	 	m = sc->tx_mbuf_ptr[chain_prod];
9708 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9709 		bce_dump_mbuf(sc, m);
9710 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9711 	}
9712 
9713 	BCE_PRINTF(
9714 		"----------------------------"
9715 		"----------------"
9716 		"----------------------------\n");
9717 }
9718 
9719 /****************************************************************************/
9720 /* Prints out the mbufs in the RX mbuf chain.                               */
9721 /*                                                                          */
9722 /* Returns:                                                                 */
9723 /*   Nothing.                                                               */
9724 /****************************************************************************/
9725 static __attribute__ ((noinline)) void
9726 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9727 {
9728 	struct mbuf *m;
9729 
9730 	BCE_PRINTF(
9731 		"----------------------------"
9732 		"  rx mbuf data  "
9733 		"----------------------------\n");
9734 
9735 	for (int i = 0; i < count; i++) {
9736 	 	m = sc->rx_mbuf_ptr[chain_prod];
9737 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9738 		bce_dump_mbuf(sc, m);
9739 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9740 	}
9741 
9742 	BCE_PRINTF(
9743 		"----------------------------"
9744 		"----------------"
9745 		"----------------------------\n");
9746 }
9747 
9748 /****************************************************************************/
9749 /* Prints out the mbufs in the mbuf page chain.                             */
9750 /*                                                                          */
9751 /* Returns:                                                                 */
9752 /*   Nothing.                                                               */
9753 /****************************************************************************/
9754 static __attribute__ ((noinline)) void
9755 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9756 {
9757 	struct mbuf *m;
9758 
9759 	BCE_PRINTF(
9760 		"----------------------------"
9761 		"  pg mbuf data  "
9762 		"----------------------------\n");
9763 
9764 	for (int i = 0; i < count; i++) {
9765 	 	m = sc->pg_mbuf_ptr[chain_prod];
9766 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9767 		bce_dump_mbuf(sc, m);
9768 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9769 	}
9770 
9771 	BCE_PRINTF(
9772 		"----------------------------"
9773 		"----------------"
9774 		"----------------------------\n");
9775 }
9776 
9777 /****************************************************************************/
9778 /* Prints out a tx_bd structure.                                            */
9779 /*                                                                          */
9780 /* Returns:                                                                 */
9781 /*   Nothing.                                                               */
9782 /****************************************************************************/
9783 static __attribute__ ((noinline)) void
9784 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9785 {
9786 	int i = 0;
9787 
9788 	if (idx > MAX_TX_BD_ALLOC)
9789 		/* Index out of range. */
9790 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9791 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9792 		/* TX Chain page pointer. */
9793 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9794 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9795 		    txbd->tx_bd_haddr_lo);
9796 	else {
9797 		/* Normal tx_bd entry. */
9798 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9799 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9800 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9801 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9802 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9803 
9804 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9805 			if (i>0)
9806 				printf("|");
9807 			printf("CONN_FAULT");
9808 			i++;
9809 		}
9810 
9811 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9812 			if (i>0)
9813 				printf("|");
9814 			printf("TCP_UDP_CKSUM");
9815 			i++;
9816 		}
9817 
9818 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9819 			if (i>0)
9820 				printf("|");
9821 			printf("IP_CKSUM");
9822 			i++;
9823 		}
9824 
9825 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9826 			if (i>0)
9827 				printf("|");
9828 			printf("VLAN");
9829 			i++;
9830 		}
9831 
9832 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9833 			if (i>0)
9834 				printf("|");
9835 			printf("COAL_NOW");
9836 			i++;
9837 		}
9838 
9839 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9840 			if (i>0)
9841 				printf("|");
9842 			printf("DONT_GEN_CRC");
9843 			i++;
9844 		}
9845 
9846 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9847 			if (i>0)
9848 				printf("|");
9849 			printf("START");
9850 			i++;
9851 		}
9852 
9853 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9854 			if (i>0)
9855 				printf("|");
9856 			printf("END");
9857 			i++;
9858 		}
9859 
9860 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9861 			if (i>0)
9862 				printf("|");
9863 			printf("LSO");
9864 			i++;
9865 		}
9866 
9867 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9868 			if (i>0)
9869 				printf("|");
9870 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9871 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9872 		}
9873 
9874 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9875 			if (i>0)
9876 				printf("|");
9877 			printf("SW_FLAGS");
9878 			i++;
9879 		}
9880 
9881 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9882 			if (i>0)
9883 				printf("|");
9884 			printf("SNAP)");
9885 		} else {
9886 			printf(")\n");
9887 		}
9888 	}
9889 }
9890 
9891 /****************************************************************************/
9892 /* Prints out a rx_bd structure.                                            */
9893 /*                                                                          */
9894 /* Returns:                                                                 */
9895 /*   Nothing.                                                               */
9896 /****************************************************************************/
9897 static __attribute__ ((noinline)) void
9898 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9899 {
9900 	if (idx > MAX_RX_BD_ALLOC)
9901 		/* Index out of range. */
9902 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9903 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9904 		/* RX Chain page pointer. */
9905 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9906 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9907 		    rxbd->rx_bd_haddr_lo);
9908 	else
9909 		/* Normal rx_bd entry. */
9910 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9911 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9912 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9913 		    rxbd->rx_bd_flags);
9914 }
9915 
9916 /****************************************************************************/
9917 /* Prints out a rx_bd structure in the page chain.                          */
9918 /*                                                                          */
9919 /* Returns:                                                                 */
9920 /*   Nothing.                                                               */
9921 /****************************************************************************/
9922 static __attribute__ ((noinline)) void
9923 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9924 {
9925 	if (idx > MAX_PG_BD_ALLOC)
9926 		/* Index out of range. */
9927 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9928 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9929 		/* Page Chain page pointer. */
9930 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9931 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9932 	else
9933 		/* Normal rx_bd entry. */
9934 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9935 			"flags = 0x%08X\n", idx,
9936 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9937 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9938 }
9939 
9940 /****************************************************************************/
9941 /* Prints out a l2_fhdr structure.                                          */
9942 /*                                                                          */
9943 /* Returns:                                                                 */
9944 /*   Nothing.                                                               */
9945 /****************************************************************************/
9946 static __attribute__ ((noinline)) void
9947 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9948 {
9949 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9950 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9951 		"tcp_udp_xsum = 0x%04X\n", idx,
9952 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9953 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9954 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9955 }
9956 
9957 /****************************************************************************/
9958 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9959 /*                                                                          */
9960 /* Returns:                                                                 */
9961 /*   Nothing.                                                               */
9962 /****************************************************************************/
9963 static __attribute__ ((noinline)) void
9964 bce_dump_ctx(struct bce_softc *sc, u16 cid)
9965 {
9966 	if (cid > TX_CID) {
9967 		BCE_PRINTF(" Unknown CID\n");
9968 		return;
9969 	}
9970 
9971 	BCE_PRINTF(
9972 	    "----------------------------"
9973 	    "    CTX Data    "
9974 	    "----------------------------\n");
9975 
9976 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9977 
9978 	if (cid == RX_CID) {
9979 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9980 		   "producer index\n",
9981 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9982 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
9983 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9984 		    BCE_L2CTX_RX_HOST_BSEQ));
9985 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
9986 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
9987 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
9988 		    "descriptor address\n",
9989  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
9990 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
9991 		    "descriptor address\n",
9992 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
9993 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
9994 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9995 		    BCE_L2CTX_RX_NX_BDIDX));
9996 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
9997 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9998 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
9999 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10000 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10001 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10002 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10003 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10004 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10005 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10006 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10007 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10008 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10009 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10010 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10011 	} else if (cid == TX_CID) {
10012 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10013 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10014 			    CTX_RD(sc, GET_CID_ADDR(cid),
10015 			    BCE_L2CTX_TX_TYPE_XI));
10016 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10017 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10018 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10019 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10020 			    "h/w buffer descriptor address\n",
10021 			    CTX_RD(sc, GET_CID_ADDR(cid),
10022 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10023 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10024 			    "h/w buffer	descriptor address\n",
10025 			    CTX_RD(sc, GET_CID_ADDR(cid),
10026 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10027 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10028 			    "host producer index\n",
10029 			    CTX_RD(sc, GET_CID_ADDR(cid),
10030 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10031 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10032 			    "host byte sequence\n",
10033 			    CTX_RD(sc, GET_CID_ADDR(cid),
10034 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10035 		} else {
10036 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10037 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10038 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10039 			    CTX_RD(sc, GET_CID_ADDR(cid),
10040 			    BCE_L2CTX_TX_CMD_TYPE));
10041 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10042 			    "h/w buffer	descriptor address\n",
10043 			    CTX_RD(sc, GET_CID_ADDR(cid),
10044 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10045 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10046 			    "h/w buffer	descriptor address\n",
10047 			    CTX_RD(sc, GET_CID_ADDR(cid),
10048 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10049 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10050 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10051 			    BCE_L2CTX_TX_HOST_BIDX));
10052 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10053 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10054 			    BCE_L2CTX_TX_HOST_BSEQ));
10055 		}
10056 	}
10057 
10058 	BCE_PRINTF(
10059 	   "----------------------------"
10060 	   "    Raw CTX     "
10061 	   "----------------------------\n");
10062 
10063 	for (int i = 0x0; i < 0x300; i += 0x10) {
10064 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10065 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10066 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10067 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10068 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10069 	}
10070 
10071 	BCE_PRINTF(
10072 	   "----------------------------"
10073 	   "----------------"
10074 	   "----------------------------\n");
10075 }
10076 
10077 /****************************************************************************/
10078 /* Prints out the FTQ data.                                                 */
10079 /*                                                                          */
10080 /* Returns:                                                                */
10081 /*   Nothing.                                                               */
10082 /****************************************************************************/
10083 static __attribute__ ((noinline)) void
10084 bce_dump_ftqs(struct bce_softc *sc)
10085 {
10086 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10087 
10088 	BCE_PRINTF(
10089 	    "----------------------------"
10090 	    "    FTQ Data    "
10091 	    "----------------------------\n");
10092 
10093 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10094 	    "Max_Depth  Valid_Cnt \n");
10095 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10096 	    "---------- ----------\n");
10097 
10098 	/* Setup the generic statistic counters for the FTQ valid count. */
10099 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10100 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10101 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10102 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10103 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10104 
10105 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10106 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10107 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10108 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10109 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10110 
10111 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10112 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10113 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10114 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10115 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10116 
10117 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10118 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10119 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10120 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10121 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10122 
10123 	/* Input queue to the Receive Lookup state machine */
10124 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10125 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10126 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10127 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10128 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10129 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10130 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10131 
10132 	/* Input queue to the Receive Processor */
10133 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10134 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10135 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10136 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10137 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10138 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10139 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10140 
10141 	/* Input queue to the Recevie Processor */
10142 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10143 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10144 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10145 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10146 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10147 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10148 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10149 
10150 	/* Input queue to the Receive Virtual to Physical state machine */
10151 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10152 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10153 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10154 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10155 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10156 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10157 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10158 
10159 	/* Input queue to the Recevie Virtual to Physical state machine */
10160 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10161 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10162 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10163 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10164 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10165 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10166 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10167 
10168 	/* Input queue to the Receive Virtual to Physical state machine */
10169 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10170 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10171 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10172 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10173 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10174 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10175 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10176 
10177 	/* Input queue to the Receive DMA state machine */
10178 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10179 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10180 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10181 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10182 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10183 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10184 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10185 
10186 	/* Input queue to the Transmit Scheduler state machine */
10187 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10188 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10189 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10190 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10191 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10192 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10193 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10194 
10195 	/* Input queue to the Transmit Buffer Descriptor state machine */
10196 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10197 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10198 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10199 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10200 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10201 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10202 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10203 
10204 	/* Input queue to the Transmit Processor */
10205 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10206 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10207 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10208 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10209 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10210 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10211 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10212 
10213 	/* Input queue to the Transmit DMA state machine */
10214 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10215 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10216 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10217 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10218 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10219 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10220 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10221 
10222 	/* Input queue to the Transmit Patch-Up Processor */
10223 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10224 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10225 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10226 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10227 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10228 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10229 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10230 
10231 	/* Input queue to the Transmit Assembler state machine */
10232 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10233 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10234 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10235 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10236 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10237 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10238 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10239 
10240 	/* Input queue to the Completion Processor */
10241 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10242 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10243 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10244 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10245 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10246 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10247 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10248 
10249 	/* Input queue to the Completion Processor */
10250 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10251 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10252 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10253 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10254 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10255 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10256 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10257 
10258 	/* Input queue to the Completion Processor */
10259 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10260 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10261 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10262 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10263 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10264 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10265 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10266 
10267 	/* Setup the generic statistic counters for the FTQ valid count. */
10268 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10269 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10270 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10271 
10272 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10273 		val = val |
10274 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10275 		     24);
10276 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10277 
10278 	/* Input queue to the Management Control Processor */
10279 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10280 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10281 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10282 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10283 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10284 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10285 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10286 
10287 	/* Input queue to the Command Processor */
10288 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10289 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10290 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10291 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10292 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10293 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10294 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10295 
10296 	/* Input queue to the Completion Scheduler state machine */
10297 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10298 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10299 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10300 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10301 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10302 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10303 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10304 
10305 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10306 		/* Input queue to the RV2P Command Scheduler */
10307 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10308 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10309 		cur_depth = (ctl & 0xFFC00000) >> 22;
10310 		max_depth = (ctl & 0x003FF000) >> 12;
10311 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10312 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10313 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10314 	}
10315 
10316 	BCE_PRINTF(
10317 	    "----------------------------"
10318 	    "----------------"
10319 	    "----------------------------\n");
10320 }
10321 
10322 /****************************************************************************/
10323 /* Prints out the TX chain.                                                 */
10324 /*                                                                          */
10325 /* Returns:                                                                 */
10326 /*   Nothing.                                                               */
10327 /****************************************************************************/
10328 static __attribute__ ((noinline)) void
10329 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10330 {
10331 	struct tx_bd *txbd;
10332 
10333 	/* First some info about the tx_bd chain structure. */
10334 	BCE_PRINTF(
10335 	    "----------------------------"
10336 	    "  tx_bd  chain  "
10337 	    "----------------------------\n");
10338 
10339 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10340 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10341 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10342 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10343 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10344 
10345 	BCE_PRINTF(
10346 	    "----------------------------"
10347 	    "   tx_bd data   "
10348 	    "----------------------------\n");
10349 
10350 	/* Now print out a decoded list of TX buffer descriptors. */
10351 	for (int i = 0; i < count; i++) {
10352 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10353 		bce_dump_txbd(sc, tx_prod, txbd);
10354 		tx_prod++;
10355 	}
10356 
10357 	BCE_PRINTF(
10358 	    "----------------------------"
10359 	    "----------------"
10360 	    "----------------------------\n");
10361 }
10362 
10363 /****************************************************************************/
10364 /* Prints out the RX chain.                                                 */
10365 /*                                                                          */
10366 /* Returns:                                                                 */
10367 /*   Nothing.                                                               */
10368 /****************************************************************************/
10369 static __attribute__ ((noinline)) void
10370 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10371 {
10372 	struct rx_bd *rxbd;
10373 
10374 	/* First some info about the rx_bd chain structure. */
10375 	BCE_PRINTF(
10376 	    "----------------------------"
10377 	    "  rx_bd  chain  "
10378 	    "----------------------------\n");
10379 
10380 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10381 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10382 
10383 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10384 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10385 
10386 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10387 
10388 	BCE_PRINTF(
10389 	    "----------------------------"
10390 	    "   rx_bd data   "
10391 	    "----------------------------\n");
10392 
10393 	/* Now print out the rx_bd's themselves. */
10394 	for (int i = 0; i < count; i++) {
10395 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10396 		bce_dump_rxbd(sc, rx_prod, rxbd);
10397 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10398 	}
10399 
10400 	BCE_PRINTF(
10401 	    "----------------------------"
10402 	    "----------------"
10403 	    "----------------------------\n");
10404 }
10405 
10406 /****************************************************************************/
10407 /* Prints out the page chain.                                               */
10408 /*                                                                          */
10409 /* Returns:                                                                 */
10410 /*   Nothing.                                                               */
10411 /****************************************************************************/
10412 static __attribute__ ((noinline)) void
10413 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10414 {
10415 	struct rx_bd *pgbd;
10416 
10417 	/* First some info about the page chain structure. */
10418 	BCE_PRINTF(
10419 	    "----------------------------"
10420 	    "   page chain   "
10421 	    "----------------------------\n");
10422 
10423 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10424 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10425 
10426 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10427 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10428 
10429 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10430 
10431 	BCE_PRINTF(
10432 	    "----------------------------"
10433 	    "   page data    "
10434 	    "----------------------------\n");
10435 
10436 	/* Now print out the rx_bd's themselves. */
10437 	for (int i = 0; i < count; i++) {
10438 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10439 		bce_dump_pgbd(sc, pg_prod, pgbd);
10440 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10441 	}
10442 
10443 	BCE_PRINTF(
10444 	    "----------------------------"
10445 	    "----------------"
10446 	    "----------------------------\n");
10447 }
10448 
10449 #define BCE_PRINT_RX_CONS(arg)						\
10450 if (sblk->status_rx_quick_consumer_index##arg)				\
10451 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10452 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10453 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10454 	    arg);
10455 
10456 #define BCE_PRINT_TX_CONS(arg)						\
10457 if (sblk->status_tx_quick_consumer_index##arg)				\
10458 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10459 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10460 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10461 	    arg);
10462 
10463 /****************************************************************************/
10464 /* Prints out the status block from host memory.                            */
10465 /*                                                                          */
10466 /* Returns:                                                                 */
10467 /*   Nothing.                                                               */
10468 /****************************************************************************/
10469 static __attribute__ ((noinline)) void
10470 bce_dump_status_block(struct bce_softc *sc)
10471 {
10472 	struct status_block *sblk;
10473 
10474 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10475 
10476 	sblk = sc->status_block;
10477 
10478 	BCE_PRINTF(
10479 	    "----------------------------"
10480 	    "  Status Block  "
10481 	    "----------------------------\n");
10482 
10483 	/* Theses indices are used for normal L2 drivers. */
10484 	BCE_PRINTF("    0x%08X - attn_bits\n",
10485 	    sblk->status_attn_bits);
10486 
10487 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10488 	    sblk->status_attn_bits_ack);
10489 
10490 	BCE_PRINT_RX_CONS(0);
10491 	BCE_PRINT_TX_CONS(0)
10492 
10493 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10494 
10495 	/* Theses indices are not used for normal L2 drivers. */
10496 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10497 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10498 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10499 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10500 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10501 
10502 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10503 
10504 	if (sblk->status_completion_producer_index ||
10505 	    sblk->status_cmd_consumer_index)
10506 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10507 		    sblk->status_completion_producer_index,
10508 		    sblk->status_cmd_consumer_index);
10509 
10510 	BCE_PRINTF(
10511 	    "----------------------------"
10512 	    "----------------"
10513 	    "----------------------------\n");
10514 }
10515 
10516 #define BCE_PRINT_64BIT_STAT(arg) 				\
10517 if (sblk->arg##_lo || sblk->arg##_hi)				\
10518 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10519 	    sblk->arg##_lo, #arg);
10520 
10521 #define BCE_PRINT_32BIT_STAT(arg)				\
10522 if (sblk->arg)							\
10523 	BCE_PRINTF("         0x%08X : %s\n", 			\
10524 	    sblk->arg, #arg);
10525 
10526 /****************************************************************************/
10527 /* Prints out the statistics block from host memory.                        */
10528 /*                                                                          */
10529 /* Returns:                                                                 */
10530 /*   Nothing.                                                               */
10531 /****************************************************************************/
10532 static __attribute__ ((noinline)) void
10533 bce_dump_stats_block(struct bce_softc *sc)
10534 {
10535 	struct statistics_block *sblk;
10536 
10537 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10538 
10539 	sblk = sc->stats_block;
10540 
10541 	BCE_PRINTF(
10542 	    "---------------"
10543 	    " Stats Block  (All Stats Not Shown Are 0) "
10544 	    "---------------\n");
10545 
10546 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10547 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10548 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10549 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10550 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10551 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10552 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10553 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10554 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10555 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10556 	BCE_PRINT_32BIT_STAT(
10557 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10558 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10559 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10560 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10561 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10562 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10563 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10564 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10565 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10566 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10567 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10568 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10569 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10570 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10571 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10572 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10573 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10574 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10575 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10576 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10577 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10578 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10579 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10580 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10581 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10582 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10583 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10584 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10585 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10586 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10587 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10588 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10589 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10590 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10591 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10592 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10593 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10594 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10595 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10596 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10597 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10598 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10599 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10600 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10601 
10602 	BCE_PRINTF(
10603 	    "----------------------------"
10604 	    "----------------"
10605 	    "----------------------------\n");
10606 }
10607 
10608 /****************************************************************************/
10609 /* Prints out a summary of the driver state.                                */
10610 /*                                                                          */
10611 /* Returns:                                                                 */
10612 /*   Nothing.                                                               */
10613 /****************************************************************************/
10614 static __attribute__ ((noinline)) void
10615 bce_dump_driver_state(struct bce_softc *sc)
10616 {
10617 	u32 val_hi, val_lo;
10618 
10619 	BCE_PRINTF(
10620 	    "-----------------------------"
10621 	    " Driver State "
10622 	    "-----------------------------\n");
10623 
10624 	val_hi = BCE_ADDR_HI(sc);
10625 	val_lo = BCE_ADDR_LO(sc);
10626 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10627 	    "address\n", val_hi, val_lo);
10628 
10629 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10630 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10631 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10632 	    "address\n", val_hi, val_lo);
10633 
10634 	val_hi = BCE_ADDR_HI(sc->status_block);
10635 	val_lo = BCE_ADDR_LO(sc->status_block);
10636 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10637 	    "virtual address\n",	val_hi, val_lo);
10638 
10639 	val_hi = BCE_ADDR_HI(sc->stats_block);
10640 	val_lo = BCE_ADDR_LO(sc->stats_block);
10641 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10642 	    "virtual address\n", val_hi, val_lo);
10643 
10644 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10645 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10646 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10647 	    "virtual address\n", val_hi, val_lo);
10648 
10649 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10650 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10651 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10652 	    "virtual address\n", val_hi, val_lo);
10653 
10654 	if (bce_hdr_split == TRUE) {
10655 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10656 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10657 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10658 		    "virtual address\n", val_hi, val_lo);
10659 	}
10660 
10661 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10662 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10663 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10664 	    "virtual address\n",	val_hi, val_lo);
10665 
10666 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10667 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10668 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10669 	    "virtual address\n", val_hi, val_lo);
10670 
10671 	if (bce_hdr_split == TRUE) {
10672 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10673 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10674 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10675 		    "virtual address\n", val_hi, val_lo);
10676 	}
10677 
10678 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10679 	    "h/w intrs\n",
10680 	    (long long unsigned int) sc->interrupts_generated);
10681 
10682 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10683 	    "rx interrupts handled\n",
10684 	    (long long unsigned int) sc->interrupts_rx);
10685 
10686 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10687 	    "tx interrupts handled\n",
10688 	    (long long unsigned int) sc->interrupts_tx);
10689 
10690 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10691 	    "phy interrupts handled\n",
10692 	    (long long unsigned int) sc->phy_interrupts);
10693 
10694 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10695 	    "status block index\n", sc->last_status_idx);
10696 
10697 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10698 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10699 
10700 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10701 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10702 
10703 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10704 	    "byte seq index\n",	sc->tx_prod_bseq);
10705 
10706 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10707 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10708 
10709 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10710 	    "tx_bd's\n", sc->used_tx_bd);
10711 
10712 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10713 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10714 
10715 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10716 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10717 
10718 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10719 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10720 
10721 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10722 	    "byte seq index\n",	sc->rx_prod_bseq);
10723 
10724 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10725 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10726 
10727 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10728 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10729 
10730 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10731 	    "rx_bd's\n", sc->free_rx_bd);
10732 
10733 	if (bce_hdr_split == TRUE) {
10734 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10735 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10736 
10737 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10738 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10739 
10740 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10741 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10742 	}
10743 
10744 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10745 	    "rx_bd's\n", sc->free_pg_bd);
10746 
10747 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10748 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10749 
10750 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10751 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10752 
10753 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10754 	    "bce mac flags\n", sc->bce_flags);
10755 
10756 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10757 	    "bce phy flags\n", sc->bce_phy_flags);
10758 
10759 	BCE_PRINTF(
10760 	    "----------------------------"
10761 	    "----------------"
10762 	    "----------------------------\n");
10763 }
10764 
10765 /****************************************************************************/
10766 /* Prints out the hardware state through a summary of important register,   */
10767 /* followed by a complete register dump.                                    */
10768 /*                                                                          */
10769 /* Returns:                                                                 */
10770 /*   Nothing.                                                               */
10771 /****************************************************************************/
10772 static __attribute__ ((noinline)) void
10773 bce_dump_hw_state(struct bce_softc *sc)
10774 {
10775 	u32 val;
10776 
10777 	BCE_PRINTF(
10778 	    "----------------------------"
10779 	    " Hardware State "
10780 	    "----------------------------\n");
10781 
10782 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10783 
10784 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10785 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10786 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10787 
10788 	val = REG_RD(sc, BCE_DMA_STATUS);
10789 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10790 	    val, BCE_DMA_STATUS);
10791 
10792 	val = REG_RD(sc, BCE_CTX_STATUS);
10793 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10794 	    val, BCE_CTX_STATUS);
10795 
10796 	val = REG_RD(sc, BCE_EMAC_STATUS);
10797 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10798 	    val, BCE_EMAC_STATUS);
10799 
10800 	val = REG_RD(sc, BCE_RPM_STATUS);
10801 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10802 	    val, BCE_RPM_STATUS);
10803 
10804 	/* ToDo: Create a #define for this constant. */
10805 	val = REG_RD(sc, 0x2004);
10806 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10807 	    val, 0x2004);
10808 
10809 	val = REG_RD(sc, BCE_RV2P_STATUS);
10810 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10811 	    val, BCE_RV2P_STATUS);
10812 
10813 	/* ToDo: Create a #define for this constant. */
10814 	val = REG_RD(sc, 0x2c04);
10815 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10816 	    val, 0x2c04);
10817 
10818 	val = REG_RD(sc, BCE_TBDR_STATUS);
10819 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10820 	    val, BCE_TBDR_STATUS);
10821 
10822 	val = REG_RD(sc, BCE_TDMA_STATUS);
10823 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10824 	    val, BCE_TDMA_STATUS);
10825 
10826 	val = REG_RD(sc, BCE_HC_STATUS);
10827 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10828 	    val, BCE_HC_STATUS);
10829 
10830 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10831 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10832 	    val, BCE_TXP_CPU_STATE);
10833 
10834 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10835 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10836 	    val, BCE_TPAT_CPU_STATE);
10837 
10838 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10839 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10840 	    val, BCE_RXP_CPU_STATE);
10841 
10842 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10843 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10844 	    val, BCE_COM_CPU_STATE);
10845 
10846 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10847 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10848 	    val, BCE_MCP_CPU_STATE);
10849 
10850 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10851 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10852 	    val, BCE_CP_CPU_STATE);
10853 
10854 	BCE_PRINTF(
10855 	    "----------------------------"
10856 	    "----------------"
10857 	    "----------------------------\n");
10858 
10859 	BCE_PRINTF(
10860 	    "----------------------------"
10861 	    " Register  Dump "
10862 	    "----------------------------\n");
10863 
10864 	for (int i = 0x400; i < 0x8000; i += 0x10) {
10865 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10866 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10867 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10868 	}
10869 
10870 	BCE_PRINTF(
10871 	    "----------------------------"
10872 	    "----------------"
10873 	    "----------------------------\n");
10874 }
10875 
10876 /****************************************************************************/
10877 /* Prints out the contentst of shared memory which is used for host driver  */
10878 /* to bootcode firmware communication.                                      */
10879 /*                                                                          */
10880 /* Returns:                                                                 */
10881 /*   Nothing.                                                               */
10882 /****************************************************************************/
10883 static __attribute__ ((noinline)) void
10884 bce_dump_shmem_state(struct bce_softc *sc)
10885 {
10886 	BCE_PRINTF(
10887 	    "----------------------------"
10888 	    " Hardware State "
10889 	    "----------------------------\n");
10890 
10891 	BCE_PRINTF("0x%08X - Shared memory base address\n",
10892 	    sc->bce_shmem_base);
10893 	BCE_PRINTF("%s - bootcode version\n",
10894 	    sc->bce_bc_ver);
10895 
10896 	BCE_PRINTF(
10897 	    "----------------------------"
10898 	    "   Shared Mem   "
10899 	    "----------------------------\n");
10900 
10901 	for (int i = 0x0; i < 0x200; i += 0x10) {
10902 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10903 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
10904 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
10905 	}
10906 
10907 	BCE_PRINTF(
10908 	    "----------------------------"
10909 	    "----------------"
10910 	    "----------------------------\n");
10911 }
10912 
10913 /****************************************************************************/
10914 /* Prints out the mailbox queue registers.                                  */
10915 /*                                                                          */
10916 /* Returns:                                                                 */
10917 /*   Nothing.                                                               */
10918 /****************************************************************************/
10919 static __attribute__ ((noinline)) void
10920 bce_dump_mq_regs(struct bce_softc *sc)
10921 {
10922 	BCE_PRINTF(
10923 	    "----------------------------"
10924 	    "    MQ Regs     "
10925 	    "----------------------------\n");
10926 
10927 	BCE_PRINTF(
10928 	    "----------------------------"
10929 	    "----------------"
10930 	    "----------------------------\n");
10931 
10932 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10933 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10934 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10935 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10936 	}
10937 
10938 	BCE_PRINTF(
10939 	    "----------------------------"
10940 	    "----------------"
10941 	    "----------------------------\n");
10942 }
10943 
10944 /****************************************************************************/
10945 /* Prints out the bootcode state.                                           */
10946 /*                                                                          */
10947 /* Returns:                                                                 */
10948 /*   Nothing.                                                               */
10949 /****************************************************************************/
10950 static __attribute__ ((noinline)) void
10951 bce_dump_bc_state(struct bce_softc *sc)
10952 {
10953 	u32 val;
10954 
10955 	BCE_PRINTF(
10956 	    "----------------------------"
10957 	    " Bootcode State "
10958 	    "----------------------------\n");
10959 
10960 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10961 
10962 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10963 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10964 	    val, BCE_BC_RESET_TYPE);
10965 
10966 	val = bce_shmem_rd(sc, BCE_BC_STATE);
10967 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10968 	    val, BCE_BC_STATE);
10969 
10970 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10971 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10972 	    val, BCE_BC_STATE_CONDITION);
10973 
10974 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10975 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10976 	    val, BCE_BC_STATE_DEBUG_CMD);
10977 
10978 	BCE_PRINTF(
10979 	    "----------------------------"
10980 	    "----------------"
10981 	    "----------------------------\n");
10982 }
10983 
10984 /****************************************************************************/
10985 /* Prints out the TXP processor state.                                      */
10986 /*                                                                          */
10987 /* Returns:                                                                 */
10988 /*   Nothing.                                                               */
10989 /****************************************************************************/
10990 static __attribute__ ((noinline)) void
10991 bce_dump_txp_state(struct bce_softc *sc, int regs)
10992 {
10993 	u32 val;
10994 	u32 fw_version[3];
10995 
10996 	BCE_PRINTF(
10997 	    "----------------------------"
10998 	    "   TXP  State   "
10999 	    "----------------------------\n");
11000 
11001 	for (int i = 0; i < 3; i++)
11002 		fw_version[i] = htonl(REG_RD_IND(sc,
11003 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11004 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11005 
11006 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11007 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11008 	    val, BCE_TXP_CPU_MODE);
11009 
11010 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11011 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11012 	    val, BCE_TXP_CPU_STATE);
11013 
11014 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11015 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11016 	    val, BCE_TXP_CPU_EVENT_MASK);
11017 
11018 	if (regs) {
11019 		BCE_PRINTF(
11020 		    "----------------------------"
11021 		    " Register  Dump "
11022 		    "----------------------------\n");
11023 
11024 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11025 			/* Skip the big blank spaces */
11026 			if (i < 0x454000 && i > 0x5ffff)
11027 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11028 				    "0x%08X 0x%08X\n", i,
11029 				    REG_RD_IND(sc, i),
11030 				    REG_RD_IND(sc, i + 0x4),
11031 				    REG_RD_IND(sc, i + 0x8),
11032 				    REG_RD_IND(sc, i + 0xC));
11033 		}
11034 	}
11035 
11036 	BCE_PRINTF(
11037 	    "----------------------------"
11038 	    "----------------"
11039 	    "----------------------------\n");
11040 }
11041 
11042 /****************************************************************************/
11043 /* Prints out the RXP processor state.                                      */
11044 /*                                                                          */
11045 /* Returns:                                                                 */
11046 /*   Nothing.                                                               */
11047 /****************************************************************************/
11048 static __attribute__ ((noinline)) void
11049 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11050 {
11051 	u32 val;
11052 	u32 fw_version[3];
11053 
11054 	BCE_PRINTF(
11055 	    "----------------------------"
11056 	    "   RXP  State   "
11057 	    "----------------------------\n");
11058 
11059 	for (int i = 0; i < 3; i++)
11060 		fw_version[i] = htonl(REG_RD_IND(sc,
11061 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11062 
11063 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11064 
11065 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11066 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11067 	    val, BCE_RXP_CPU_MODE);
11068 
11069 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11070 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11071 	    val, BCE_RXP_CPU_STATE);
11072 
11073 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11074 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11075 	    val, BCE_RXP_CPU_EVENT_MASK);
11076 
11077 	if (regs) {
11078 		BCE_PRINTF(
11079 		    "----------------------------"
11080 		    " Register  Dump "
11081 		    "----------------------------\n");
11082 
11083 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11084 			/* Skip the big blank sapces */
11085 			if (i < 0xc5400 && i > 0xdffff)
11086 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11087 				    "0x%08X 0x%08X\n", i,
11088 				    REG_RD_IND(sc, i),
11089 				    REG_RD_IND(sc, i + 0x4),
11090 				    REG_RD_IND(sc, i + 0x8),
11091 				    REG_RD_IND(sc, i + 0xC));
11092 		}
11093 	}
11094 
11095 	BCE_PRINTF(
11096 	    "----------------------------"
11097 	    "----------------"
11098 	    "----------------------------\n");
11099 }
11100 
11101 /****************************************************************************/
11102 /* Prints out the TPAT processor state.                                     */
11103 /*                                                                          */
11104 /* Returns:                                                                 */
11105 /*   Nothing.                                                               */
11106 /****************************************************************************/
11107 static __attribute__ ((noinline)) void
11108 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11109 {
11110 	u32 val;
11111 	u32 fw_version[3];
11112 
11113 	BCE_PRINTF(
11114 	    "----------------------------"
11115 	    "   TPAT State   "
11116 	    "----------------------------\n");
11117 
11118 	for (int i = 0; i < 3; i++)
11119 		fw_version[i] = htonl(REG_RD_IND(sc,
11120 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11121 
11122 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11123 
11124 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11125 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11126 	    val, BCE_TPAT_CPU_MODE);
11127 
11128 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11129 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11130 	    val, BCE_TPAT_CPU_STATE);
11131 
11132 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11133 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11134 	    val, BCE_TPAT_CPU_EVENT_MASK);
11135 
11136 	if (regs) {
11137 		BCE_PRINTF(
11138 		    "----------------------------"
11139 		    " Register  Dump "
11140 		    "----------------------------\n");
11141 
11142 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11143 			/* Skip the big blank spaces */
11144 			if (i < 0x854000 && i > 0x9ffff)
11145 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11146 				    "0x%08X 0x%08X\n", i,
11147 				    REG_RD_IND(sc, i),
11148 				    REG_RD_IND(sc, i + 0x4),
11149 				    REG_RD_IND(sc, i + 0x8),
11150 				    REG_RD_IND(sc, i + 0xC));
11151 		}
11152 	}
11153 
11154 	BCE_PRINTF(
11155 		"----------------------------"
11156 		"----------------"
11157 		"----------------------------\n");
11158 }
11159 
11160 /****************************************************************************/
11161 /* Prints out the Command Procesor (CP) state.                              */
11162 /*                                                                          */
11163 /* Returns:                                                                 */
11164 /*   Nothing.                                                               */
11165 /****************************************************************************/
11166 static __attribute__ ((noinline)) void
11167 bce_dump_cp_state(struct bce_softc *sc, int regs)
11168 {
11169 	u32 val;
11170 	u32 fw_version[3];
11171 
11172 	BCE_PRINTF(
11173 	    "----------------------------"
11174 	    "    CP State    "
11175 	    "----------------------------\n");
11176 
11177 	for (int i = 0; i < 3; i++)
11178 		fw_version[i] = htonl(REG_RD_IND(sc,
11179 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11180 
11181 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11182 
11183 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11184 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11185 	    val, BCE_CP_CPU_MODE);
11186 
11187 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11188 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11189 	    val, BCE_CP_CPU_STATE);
11190 
11191 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11192 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11193 	    BCE_CP_CPU_EVENT_MASK);
11194 
11195 	if (regs) {
11196 		BCE_PRINTF(
11197 		    "----------------------------"
11198 		    " Register  Dump "
11199 		    "----------------------------\n");
11200 
11201 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11202 			/* Skip the big blank spaces */
11203 			if (i < 0x185400 && i > 0x19ffff)
11204 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11205 				    "0x%08X 0x%08X\n", i,
11206 				    REG_RD_IND(sc, i),
11207 				    REG_RD_IND(sc, i + 0x4),
11208 				    REG_RD_IND(sc, i + 0x8),
11209 				    REG_RD_IND(sc, i + 0xC));
11210 		}
11211 	}
11212 
11213 	BCE_PRINTF(
11214 	    "----------------------------"
11215 	    "----------------"
11216 	    "----------------------------\n");
11217 }
11218 
11219 /****************************************************************************/
11220 /* Prints out the Completion Procesor (COM) state.                          */
11221 /*                                                                          */
11222 /* Returns:                                                                 */
11223 /*   Nothing.                                                               */
11224 /****************************************************************************/
11225 static __attribute__ ((noinline)) void
11226 bce_dump_com_state(struct bce_softc *sc, int regs)
11227 {
11228 	u32 val;
11229 	u32 fw_version[4];
11230 
11231 	BCE_PRINTF(
11232 	    "----------------------------"
11233 	    "   COM State    "
11234 	    "----------------------------\n");
11235 
11236 	for (int i = 0; i < 3; i++)
11237 		fw_version[i] = htonl(REG_RD_IND(sc,
11238 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11239 
11240 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11241 
11242 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11243 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11244 	    val, BCE_COM_CPU_MODE);
11245 
11246 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11247 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11248 	    val, BCE_COM_CPU_STATE);
11249 
11250 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11251 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11252 	    BCE_COM_CPU_EVENT_MASK);
11253 
11254 	if (regs) {
11255 		BCE_PRINTF(
11256 		    "----------------------------"
11257 		    " Register  Dump "
11258 		    "----------------------------\n");
11259 
11260 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11261 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11262 			    "0x%08X 0x%08X\n", i,
11263 			    REG_RD_IND(sc, i),
11264 			    REG_RD_IND(sc, i + 0x4),
11265 			    REG_RD_IND(sc, i + 0x8),
11266 			    REG_RD_IND(sc, i + 0xC));
11267 		}
11268 	}
11269 
11270 	BCE_PRINTF(
11271 		"----------------------------"
11272 		"----------------"
11273 		"----------------------------\n");
11274 }
11275 
11276 /****************************************************************************/
11277 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11278 /*                                                                          */
11279 /* Returns:                                                                 */
11280 /*   Nothing.                                                               */
11281 /****************************************************************************/
11282 static __attribute__ ((noinline)) void
11283 bce_dump_rv2p_state(struct bce_softc *sc)
11284 {
11285 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11286 
11287 	BCE_PRINTF(
11288 	    "----------------------------"
11289 	    "   RV2P State   "
11290 	    "----------------------------\n");
11291 
11292 	/* Stall the RV2P processors. */
11293 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11294 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11295 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11296 
11297 	/* Read the firmware version. */
11298 	val = 0x00000001;
11299 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11300 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11301 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11302 	    BCE_RV2P_INSTR_HIGH_HIGH;
11303 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11304 	    fw_ver_high, fw_ver_low);
11305 
11306 	val = 0x00000001;
11307 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11308 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11309 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11310 	    BCE_RV2P_INSTR_HIGH_HIGH;
11311 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11312 	    fw_ver_high, fw_ver_low);
11313 
11314 	/* Resume the RV2P processors. */
11315 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11316 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11317 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11318 
11319 	/* Fetch the program counter value. */
11320 	val = 0x68007800;
11321 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11322 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11323 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11324 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11325 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11326 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11327 
11328 	/* Fetch the program counter value again to see if it is advancing. */
11329 	val = 0x68007800;
11330 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11331 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11332 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11333 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11334 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11335 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11336 
11337 	BCE_PRINTF(
11338 	    "----------------------------"
11339 	    "----------------"
11340 	    "----------------------------\n");
11341 }
11342 
11343 /****************************************************************************/
11344 /* Prints out the driver state and then enters the debugger.                */
11345 /*                                                                          */
11346 /* Returns:                                                                 */
11347 /*   Nothing.                                                               */
11348 /****************************************************************************/
11349 static __attribute__ ((noinline)) void
11350 bce_breakpoint(struct bce_softc *sc)
11351 {
11352 
11353 	/*
11354 	 * Unreachable code to silence compiler warnings
11355 	 * about unused functions.
11356 	 */
11357 	if (0) {
11358 		bce_freeze_controller(sc);
11359 		bce_unfreeze_controller(sc);
11360 		bce_dump_enet(sc, NULL);
11361 		bce_dump_txbd(sc, 0, NULL);
11362 		bce_dump_rxbd(sc, 0, NULL);
11363 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11364 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11365 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11366 		bce_dump_l2fhdr(sc, 0, NULL);
11367 		bce_dump_ctx(sc, RX_CID);
11368 		bce_dump_ftqs(sc);
11369 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11370 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11371 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11372 		bce_dump_status_block(sc);
11373 		bce_dump_stats_block(sc);
11374 		bce_dump_driver_state(sc);
11375 		bce_dump_hw_state(sc);
11376 		bce_dump_bc_state(sc);
11377 		bce_dump_txp_state(sc, 0);
11378 		bce_dump_rxp_state(sc, 0);
11379 		bce_dump_tpat_state(sc, 0);
11380 		bce_dump_cp_state(sc, 0);
11381 		bce_dump_com_state(sc, 0);
11382 		bce_dump_rv2p_state(sc);
11383 		bce_dump_pgbd(sc, 0, NULL);
11384 	}
11385 
11386 	bce_dump_status_block(sc);
11387 	bce_dump_driver_state(sc);
11388 
11389 	/* Call the debugger. */
11390 	breakpoint();
11391 }
11392 #endif
11393