1 /*- 2 * Copyright (c) 2006-2008 Broadcom Corporation 3 * David Christensen <davidch@broadcom.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written consent. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * The following controllers are supported by this driver: 36 * BCM5706C A2, A3 37 * BCM5706S A2, A3 38 * BCM5708C B1, B2 39 * BCM5708S B1, B2 40 * BCM5709C A1, C0 41 * BCM5716 C0 42 * 43 * The following controllers are not supported by this driver: 44 * BCM5706C A0, A1 (pre-production) 45 * BCM5706S A0, A1 (pre-production) 46 * BCM5708C A0, B0 (pre-production) 47 * BCM5708S A0, B0 (pre-production) 48 * BCM5709C A0 B0, B1, B2 (pre-production) 49 * BCM5709S A0, A1, B0, B1, B2, C0 (pre-production) 50 */ 51 52 #include "opt_bce.h" 53 54 #include <dev/bce/if_bcereg.h> 55 #include <dev/bce/if_bcefw.h> 56 57 /****************************************************************************/ 58 /* BCE Debug Options */ 59 /****************************************************************************/ 60 #ifdef BCE_DEBUG 61 u32 bce_debug = BCE_WARN; 62 63 /* 0 = Never */ 64 /* 1 = 1 in 2,147,483,648 */ 65 /* 256 = 1 in 8,388,608 */ 66 /* 2048 = 1 in 1,048,576 */ 67 /* 65536 = 1 in 32,768 */ 68 /* 1048576 = 1 in 2,048 */ 69 /* 268435456 = 1 in 8 */ 70 /* 536870912 = 1 in 4 */ 71 /* 1073741824 = 1 in 2 */ 72 73 /* Controls how often the l2_fhdr frame error check will fail. */ 74 int bce_debug_l2fhdr_status_check = 0; 75 76 /* Controls how often the unexpected attention check will fail. */ 77 int bce_debug_unexpected_attention = 0; 78 79 /* Controls how often to simulate an mbuf allocation failure. */ 80 int bce_debug_mbuf_allocation_failure = 0; 81 82 /* Controls how often to simulate a DMA mapping failure. */ 83 int bce_debug_dma_map_addr_failure = 0; 84 85 /* Controls how often to simulate a bootcode failure. */ 86 int bce_debug_bootcode_running_failure = 0; 87 #endif 88 89 /****************************************************************************/ 90 /* BCE Build Time Options */ 91 /****************************************************************************/ 92 #define BCE_USE_SPLIT_HEADER 1 93 /* #define BCE_NVRAM_WRITE_SUPPORT 1 */ 94 95 96 /****************************************************************************/ 97 /* PCI Device ID Table */ 98 /* */ 99 /* Used by bce_probe() to identify the devices supported by this driver. */ 100 /****************************************************************************/ 101 #define BCE_DEVDESC_MAX 64 102 103 static struct bce_type bce_devs[] = { 104 /* BCM5706C Controllers and OEM boards. */ 105 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 106 "HP NC370T Multifunction Gigabit Server Adapter" }, 107 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 108 "HP NC370i Multifunction Gigabit Server Adapter" }, 109 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 110 "Broadcom NetXtreme II BCM5706 1000Base-T" }, 111 112 /* BCM5706S controllers and OEM boards. */ 113 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 114 "HP NC370F Multifunction Gigabit Server Adapter" }, 115 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 116 "Broadcom NetXtreme II BCM5706 1000Base-SX" }, 117 118 /* BCM5708C controllers and OEM boards. */ 119 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 120 "Broadcom NetXtreme II BCM5708 1000Base-T" }, 121 122 /* BCM5708S controllers and OEM boards. */ 123 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 124 "Broadcom NetXtreme II BCM5708 1000Base-SX" }, 125 126 /* BCM5709C controllers and OEM boards. */ 127 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, 128 "Broadcom NetXtreme II BCM5709 1000Base-T" }, 129 130 /* BCM5709S controllers and OEM boards. */ 131 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, 132 "Broadcom NetXtreme II BCM5709 1000Base-SX" }, 133 134 /* BCM5716 controllers and OEM boards. */ 135 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, 136 "Broadcom NetXtreme II BCM5716 1000Base-T" }, 137 138 { 0, 0, 0, 0, NULL } 139 }; 140 141 142 /****************************************************************************/ 143 /* Supported Flash NVRAM device data. */ 144 /****************************************************************************/ 145 static struct flash_spec flash_table[] = 146 { 147 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) 148 #define NONBUFFERED_FLAGS (BCE_NV_WREN) 149 150 /* Slow EEPROM */ 151 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 152 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 153 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 154 "EEPROM - slow"}, 155 /* Expansion entry 0001 */ 156 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 157 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 158 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 159 "Entry 0001"}, 160 /* Saifun SA25F010 (non-buffered flash) */ 161 /* strap, cfg1, & write1 need updates */ 162 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 163 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 164 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 165 "Non-buffered flash (128kB)"}, 166 /* Saifun SA25F020 (non-buffered flash) */ 167 /* strap, cfg1, & write1 need updates */ 168 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 169 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 170 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 171 "Non-buffered flash (256kB)"}, 172 /* Expansion entry 0100 */ 173 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 174 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 175 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 176 "Entry 0100"}, 177 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 178 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 179 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 180 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 181 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 182 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 183 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 184 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 185 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 186 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 187 /* Saifun SA25F005 (non-buffered flash) */ 188 /* strap, cfg1, & write1 need updates */ 189 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 190 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 191 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 192 "Non-buffered flash (64kB)"}, 193 /* Fast EEPROM */ 194 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 195 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 196 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 197 "EEPROM - fast"}, 198 /* Expansion entry 1001 */ 199 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 200 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 201 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 202 "Entry 1001"}, 203 /* Expansion entry 1010 */ 204 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 205 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 206 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 207 "Entry 1010"}, 208 /* ATMEL AT45DB011B (buffered flash) */ 209 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 210 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 211 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 212 "Buffered flash (128kB)"}, 213 /* Expansion entry 1100 */ 214 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 215 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 216 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 217 "Entry 1100"}, 218 /* Expansion entry 1101 */ 219 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 220 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 221 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 222 "Entry 1101"}, 223 /* Ateml Expansion entry 1110 */ 224 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 225 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 226 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 227 "Entry 1110 (Atmel)"}, 228 /* ATMEL AT45DB021B (buffered flash) */ 229 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 230 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 231 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 232 "Buffered flash (256kB)"}, 233 }; 234 235 /* 236 * The BCM5709 controllers transparently handle the 237 * differences between Atmel 264 byte pages and all 238 * flash devices which use 256 byte pages, so no 239 * logical-to-physical mapping is required in the 240 * driver. 241 */ 242 static struct flash_spec flash_5709 = { 243 .flags = BCE_NV_BUFFERED, 244 .page_bits = BCM5709_FLASH_PAGE_BITS, 245 .page_size = BCM5709_FLASH_PAGE_SIZE, 246 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 247 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 248 .name = "5709/5716 buffered flash (256kB)", 249 }; 250 251 252 /****************************************************************************/ 253 /* FreeBSD device entry points. */ 254 /****************************************************************************/ 255 static int bce_probe (device_t); 256 static int bce_attach (device_t); 257 static int bce_detach (device_t); 258 static int bce_shutdown (device_t); 259 260 261 /****************************************************************************/ 262 /* BCE Debug Data Structure Dump Routines */ 263 /****************************************************************************/ 264 #ifdef BCE_DEBUG 265 static u32 bce_reg_rd (struct bce_softc *, u32); 266 static void bce_reg_wr (struct bce_softc *, u32, u32); 267 static void bce_reg_wr16 (struct bce_softc *, u32, u16); 268 static u32 bce_ctx_rd (struct bce_softc *, u32, u32); 269 static void bce_dump_enet (struct bce_softc *, struct mbuf *); 270 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 271 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); 272 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); 273 #ifdef BCE_USE_SPLIT_HEADER 274 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); 275 #endif 276 static void bce_dump_txbd (struct bce_softc *, int, struct tx_bd *); 277 static void bce_dump_rxbd (struct bce_softc *, int, struct rx_bd *); 278 #ifdef BCE_USE_SPLIT_HEADER 279 static void bce_dump_pgbd (struct bce_softc *, int, struct rx_bd *); 280 #endif 281 static void bce_dump_l2fhdr (struct bce_softc *, int, struct l2_fhdr *); 282 static void bce_dump_ctx (struct bce_softc *, u16); 283 static void bce_dump_ftqs (struct bce_softc *); 284 static void bce_dump_tx_chain (struct bce_softc *, u16, int); 285 static void bce_dump_rx_chain (struct bce_softc *, u16, int); 286 #ifdef BCE_USE_SPLIT_HEADER 287 static void bce_dump_pg_chain (struct bce_softc *, u16, int); 288 #endif 289 static void bce_dump_status_block (struct bce_softc *); 290 static void bce_dump_stats_block (struct bce_softc *); 291 static void bce_dump_driver_state (struct bce_softc *); 292 static void bce_dump_hw_state (struct bce_softc *); 293 static void bce_dump_mq_regs (struct bce_softc *); 294 static void bce_dump_bc_state (struct bce_softc *); 295 static void bce_dump_txp_state (struct bce_softc *, int); 296 static void bce_dump_rxp_state (struct bce_softc *, int); 297 static void bce_dump_tpat_state (struct bce_softc *, int); 298 static void bce_dump_cp_state (struct bce_softc *, int); 299 static void bce_dump_com_state (struct bce_softc *, int); 300 static void bce_breakpoint (struct bce_softc *); 301 #endif 302 303 304 /****************************************************************************/ 305 /* BCE Register/Memory Access Routines */ 306 /****************************************************************************/ 307 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 308 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 309 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 310 static int bce_miibus_read_reg (device_t, int, int); 311 static int bce_miibus_write_reg (device_t, int, int, int); 312 static void bce_miibus_statchg (device_t); 313 314 315 /****************************************************************************/ 316 /* BCE NVRAM Access Routines */ 317 /****************************************************************************/ 318 static int bce_acquire_nvram_lock (struct bce_softc *); 319 static int bce_release_nvram_lock (struct bce_softc *); 320 static void bce_enable_nvram_access (struct bce_softc *); 321 static void bce_disable_nvram_access(struct bce_softc *); 322 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 323 static int bce_init_nvram (struct bce_softc *); 324 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 325 static int bce_nvram_test (struct bce_softc *); 326 #ifdef BCE_NVRAM_WRITE_SUPPORT 327 static int bce_enable_nvram_write (struct bce_softc *); 328 static void bce_disable_nvram_write (struct bce_softc *); 329 static int bce_nvram_erase_page (struct bce_softc *, u32); 330 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 331 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 332 #endif 333 334 /****************************************************************************/ 335 /* */ 336 /****************************************************************************/ 337 static void bce_get_media (struct bce_softc *); 338 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); 339 static int bce_dma_alloc (device_t); 340 static void bce_dma_free (struct bce_softc *); 341 static void bce_release_resources (struct bce_softc *); 342 343 /****************************************************************************/ 344 /* BCE Firmware Synchronization and Load */ 345 /****************************************************************************/ 346 static int bce_fw_sync (struct bce_softc *, u32); 347 static void bce_load_rv2p_fw (struct bce_softc *, u32 *, u32, u32); 348 static void bce_load_cpu_fw (struct bce_softc *, struct cpu_reg *, struct fw_info *); 349 static void bce_init_rxp_cpu (struct bce_softc *); 350 static void bce_init_txp_cpu (struct bce_softc *); 351 static void bce_init_tpat_cpu (struct bce_softc *); 352 static void bce_init_cp_cpu (struct bce_softc *); 353 static void bce_init_com_cpu (struct bce_softc *); 354 static void bce_init_cpus (struct bce_softc *); 355 356 static void bce_print_adapter_info (struct bce_softc *); 357 static void bce_probe_pci_caps (device_t, struct bce_softc *); 358 static void bce_stop (struct bce_softc *); 359 static int bce_reset (struct bce_softc *, u32); 360 static int bce_chipinit (struct bce_softc *); 361 static int bce_blockinit (struct bce_softc *); 362 363 static int bce_init_tx_chain (struct bce_softc *); 364 static void bce_free_tx_chain (struct bce_softc *); 365 366 static int bce_get_rx_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *); 367 static int bce_init_rx_chain (struct bce_softc *); 368 static void bce_fill_rx_chain (struct bce_softc *); 369 static void bce_free_rx_chain (struct bce_softc *); 370 371 #ifdef BCE_USE_SPLIT_HEADER 372 static int bce_get_pg_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *); 373 static int bce_init_pg_chain (struct bce_softc *); 374 static void bce_fill_pg_chain (struct bce_softc *); 375 static void bce_free_pg_chain (struct bce_softc *); 376 #endif 377 378 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 379 static void bce_start_locked (struct ifnet *); 380 static void bce_start (struct ifnet *); 381 static int bce_ioctl (struct ifnet *, u_long, caddr_t); 382 static void bce_watchdog (struct bce_softc *); 383 static int bce_ifmedia_upd (struct ifnet *); 384 static void bce_ifmedia_upd_locked (struct ifnet *); 385 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); 386 static void bce_init_locked (struct bce_softc *); 387 static void bce_init (void *); 388 static void bce_mgmt_init_locked (struct bce_softc *sc); 389 390 static void bce_init_ctx (struct bce_softc *); 391 static void bce_get_mac_addr (struct bce_softc *); 392 static void bce_set_mac_addr (struct bce_softc *); 393 static void bce_phy_intr (struct bce_softc *); 394 static inline u16 bce_get_hw_rx_cons(struct bce_softc *); 395 static void bce_rx_intr (struct bce_softc *); 396 static void bce_tx_intr (struct bce_softc *); 397 static void bce_disable_intr (struct bce_softc *); 398 static void bce_enable_intr (struct bce_softc *, int); 399 400 static void bce_intr (void *); 401 static void bce_set_rx_mode (struct bce_softc *); 402 static void bce_stats_update (struct bce_softc *); 403 static void bce_tick (void *); 404 static void bce_pulse (void *); 405 static void bce_add_sysctls (struct bce_softc *); 406 407 408 /****************************************************************************/ 409 /* FreeBSD device dispatch table. */ 410 /****************************************************************************/ 411 static device_method_t bce_methods[] = { 412 /* Device interface (device_if.h) */ 413 DEVMETHOD(device_probe, bce_probe), 414 DEVMETHOD(device_attach, bce_attach), 415 DEVMETHOD(device_detach, bce_detach), 416 DEVMETHOD(device_shutdown, bce_shutdown), 417 /* Supported by device interface but not used here. */ 418 /* DEVMETHOD(device_identify, bce_identify), */ 419 /* DEVMETHOD(device_suspend, bce_suspend), */ 420 /* DEVMETHOD(device_resume, bce_resume), */ 421 /* DEVMETHOD(device_quiesce, bce_quiesce), */ 422 423 /* Bus interface (bus_if.h) */ 424 DEVMETHOD(bus_print_child, bus_generic_print_child), 425 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 426 427 /* MII interface (miibus_if.h) */ 428 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 429 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 430 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 431 /* Supported by MII interface but not used here. */ 432 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ 433 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ 434 435 { 0, 0 } 436 }; 437 438 static driver_t bce_driver = { 439 "bce", 440 bce_methods, 441 sizeof(struct bce_softc) 442 }; 443 444 static devclass_t bce_devclass; 445 446 MODULE_DEPEND(bce, pci, 1, 1, 1); 447 MODULE_DEPEND(bce, ether, 1, 1, 1); 448 MODULE_DEPEND(bce, miibus, 1, 1, 1); 449 450 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0); 451 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0); 452 453 454 /****************************************************************************/ 455 /* Tunable device values */ 456 /****************************************************************************/ 457 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters"); 458 459 /* Allowable values are TRUE or FALSE */ 460 static int bce_tso_enable = TRUE; 461 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable); 462 SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 463 "TSO Enable/Disable"); 464 465 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 466 /* ToDo: Add MSI-X support. */ 467 static int bce_msi_enable = 1; 468 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable); 469 SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 470 "MSI-X|MSI|INTx selector"); 471 472 /* ToDo: Add tunable to enable/disable strict MTU handling. */ 473 /* Currently allows "loose" RX MTU checking (i.e. sets the */ 474 /* H/W RX MTU to the size of the largest receive buffer, or */ 475 /* 2048 bytes). */ 476 477 478 /****************************************************************************/ 479 /* Device probe function. */ 480 /* */ 481 /* Compares the device to the driver's list of supported devices and */ 482 /* reports back to the OS whether this is the right driver for the device. */ 483 /* */ 484 /* Returns: */ 485 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 486 /****************************************************************************/ 487 static int 488 bce_probe(device_t dev) 489 { 490 struct bce_type *t; 491 struct bce_softc *sc; 492 char *descbuf; 493 u16 vid = 0, did = 0, svid = 0, sdid = 0; 494 495 t = bce_devs; 496 497 sc = device_get_softc(dev); 498 bzero(sc, sizeof(struct bce_softc)); 499 sc->bce_unit = device_get_unit(dev); 500 sc->bce_dev = dev; 501 502 /* Get the data for the device to be probed. */ 503 vid = pci_get_vendor(dev); 504 did = pci_get_device(dev); 505 svid = pci_get_subvendor(dev); 506 sdid = pci_get_subdevice(dev); 507 508 DBPRINT(sc, BCE_EXTREME_LOAD, 509 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 510 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 511 512 /* Look through the list of known devices for a match. */ 513 while(t->bce_name != NULL) { 514 515 if ((vid == t->bce_vid) && (did == t->bce_did) && 516 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 517 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 518 519 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 520 521 if (descbuf == NULL) 522 return(ENOMEM); 523 524 /* Print out the device identity. */ 525 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", 526 t->bce_name, 527 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 528 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 529 530 device_set_desc_copy(dev, descbuf); 531 free(descbuf, M_TEMP); 532 return(BUS_PROBE_DEFAULT); 533 } 534 t++; 535 } 536 537 return(ENXIO); 538 } 539 540 541 /****************************************************************************/ 542 /* PCI Capabilities Probe Function. */ 543 /* */ 544 /* Walks the PCI capabiites list for the device to find what features are */ 545 /* supported. */ 546 /* */ 547 /* Returns: */ 548 /* None. */ 549 /****************************************************************************/ 550 static void 551 bce_print_adapter_info(struct bce_softc *sc) 552 { 553 DBENTER(BCE_VERBOSE_LOAD); 554 555 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 556 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A', 557 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 558 559 /* Bus info. */ 560 if (sc->bce_flags & BCE_PCIE_FLAG) { 561 printf("Bus (PCIe x%d, ", sc->link_width); 562 switch (sc->link_speed) { 563 case 1: printf("2.5Gbps); "); break; 564 case 2: printf("5Gbps); "); break; 565 default: printf("Unknown link speed); "); 566 } 567 } else { 568 printf("Bus (PCI%s, %s, %dMHz); ", 569 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 570 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"), 571 sc->bus_speed_mhz); 572 } 573 574 /* Firmware version and device features. */ 575 printf("F/W (0x%08X); Flags( ", sc->bce_fw_ver); 576 #ifdef BCE_USE_SPLIT_HEADER 577 printf("SPLT "); 578 #endif 579 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) 580 printf("MFW "); 581 if (sc->bce_flags & BCE_USING_MSI_FLAG) 582 printf("MSI "); 583 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 584 printf("MSI-X "); 585 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 586 printf("2.5G "); 587 printf(")\n"); 588 589 DBEXIT(BCE_VERBOSE_LOAD); 590 } 591 592 593 /****************************************************************************/ 594 /* PCI Capabilities Probe Function. */ 595 /* */ 596 /* Walks the PCI capabiites list for the device to find what features are */ 597 /* supported. */ 598 /* */ 599 /* Returns: */ 600 /* None. */ 601 /****************************************************************************/ 602 static void 603 bce_probe_pci_caps(device_t dev, struct bce_softc *sc) 604 { 605 u32 reg; 606 607 DBENTER(BCE_VERBOSE_LOAD); 608 609 /* Check if PCI-X capability is enabled. */ 610 if (pci_find_extcap(dev, PCIY_PCIX, ®) == 0) { 611 if (reg != 0) 612 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; 613 } 614 615 /* Check if PCIe capability is enabled. */ 616 if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { 617 if (reg != 0) { 618 u16 link_status = pci_read_config(dev, reg + 0x12, 2); 619 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = 0x%08X\n", 620 link_status); 621 sc->link_speed = link_status & 0xf; 622 sc->link_width = (link_status >> 4) & 0x3f; 623 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; 624 sc->bce_flags |= BCE_PCIE_FLAG; 625 } 626 } 627 628 /* Check if MSI capability is enabled. */ 629 if (pci_find_extcap(dev, PCIY_MSI, ®) == 0) { 630 if (reg != 0) 631 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; 632 } 633 634 /* Check if MSI-X capability is enabled. */ 635 if (pci_find_extcap(dev, PCIY_MSIX, ®) == 0) { 636 if (reg != 0) 637 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; 638 } 639 640 DBEXIT(BCE_VERBOSE_LOAD); 641 } 642 643 644 /****************************************************************************/ 645 /* Device attach function. */ 646 /* */ 647 /* Allocates device resources, performs secondary chip identification, */ 648 /* resets and initializes the hardware, and initializes driver instance */ 649 /* variables. */ 650 /* */ 651 /* Returns: */ 652 /* 0 on success, positive value on failure. */ 653 /****************************************************************************/ 654 static int 655 bce_attach(device_t dev) 656 { 657 struct bce_softc *sc; 658 struct ifnet *ifp; 659 u32 val; 660 int error, rid, rc = 0; 661 662 sc = device_get_softc(dev); 663 sc->bce_dev = dev; 664 665 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 666 667 sc->bce_unit = device_get_unit(dev); 668 669 /* Set initial device and PHY flags */ 670 sc->bce_flags = 0; 671 sc->bce_phy_flags = 0; 672 673 pci_enable_busmaster(dev); 674 675 /* Allocate PCI memory resources. */ 676 rid = PCIR_BAR(0); 677 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 678 &rid, RF_ACTIVE); 679 680 if (sc->bce_res_mem == NULL) { 681 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 682 __FILE__, __LINE__); 683 rc = ENXIO; 684 goto bce_attach_fail; 685 } 686 687 /* Get various resource handles. */ 688 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 689 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 690 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 691 692 bce_probe_pci_caps(dev, sc); 693 694 rid = 1; 695 #if 0 696 /* Try allocating MSI-X interrupts. */ 697 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && 698 (bce_msi_enable >= 2) && 699 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 700 &rid, RF_ACTIVE)) != NULL)) { 701 702 msi_needed = sc->bce_msi_count = 1; 703 704 if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) || 705 (sc->bce_msi_count != msi_needed)) { 706 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," 707 "Received = %d, error = %d\n", __FILE__, __LINE__, 708 msi_needed, sc->bce_msi_count, error); 709 sc->bce_msi_count = 0; 710 pci_release_msi(dev); 711 bus_release_resource(dev, SYS_RES_MEMORY, rid, 712 sc->bce_res_irq); 713 sc->bce_res_irq = NULL; 714 } else { 715 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", 716 __FUNCTION__); 717 sc->bce_flags |= BCE_USING_MSIX_FLAG; 718 sc->bce_intr = bce_intr; 719 } 720 } 721 #endif 722 723 /* Try allocating a MSI interrupt. */ 724 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && 725 (bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) { 726 sc->bce_msi_count = 1; 727 if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) { 728 BCE_PRINTF("%s(%d): MSI allocation failed! error = %d\n", 729 __FILE__, __LINE__, error); 730 sc->bce_msi_count = 0; 731 pci_release_msi(dev); 732 } else { 733 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI interrupt.\n", 734 __FUNCTION__); 735 sc->bce_flags |= BCE_USING_MSI_FLAG; 736 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 737 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 738 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; 739 sc->bce_irq_rid = 1; 740 sc->bce_intr = bce_intr; 741 } 742 } 743 744 /* Try allocating a legacy interrupt. */ 745 if (sc->bce_msi_count == 0) { 746 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", 747 __FUNCTION__); 748 rid = 0; 749 sc->bce_intr = bce_intr; 750 } 751 752 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 753 &rid, RF_SHAREABLE | RF_ACTIVE); 754 755 sc->bce_irq_rid = rid; 756 757 /* Report any IRQ allocation errors. */ 758 if (sc->bce_res_irq == NULL) { 759 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 760 __FILE__, __LINE__); 761 rc = ENXIO; 762 goto bce_attach_fail; 763 } 764 765 /* Initialize mutex for the current device instance. */ 766 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 767 768 /* 769 * Configure byte swap and enable indirect register access. 770 * Rely on CPU to do target byte swapping on big endian systems. 771 * Access to registers outside of PCI configurtion space are not 772 * valid until this is done. 773 */ 774 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 775 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 776 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 777 778 /* Save ASIC revsion info. */ 779 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 780 781 /* Weed out any non-production controller revisions. */ 782 switch(BCE_CHIP_ID(sc)) { 783 case BCE_CHIP_ID_5706_A0: 784 case BCE_CHIP_ID_5706_A1: 785 case BCE_CHIP_ID_5708_A0: 786 case BCE_CHIP_ID_5708_B0: 787 case BCE_CHIP_ID_5709_A0: 788 case BCE_CHIP_ID_5709_B0: 789 case BCE_CHIP_ID_5709_B1: 790 case BCE_CHIP_ID_5709_B2: 791 BCE_PRINTF("%s(%d): Unsupported controller revision (%c%d)!\n", 792 __FILE__, __LINE__, 793 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 794 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 795 rc = ENODEV; 796 goto bce_attach_fail; 797 } 798 799 /* 800 * The embedded PCIe to PCI-X bridge (EPB) 801 * in the 5708 cannot address memory above 802 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 803 */ 804 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 805 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 806 else 807 sc->max_bus_addr = BUS_SPACE_MAXADDR; 808 809 /* 810 * Find the base address for shared memory access. 811 * Newer versions of bootcode use a signature and offset 812 * while older versions use a fixed address. 813 */ 814 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 815 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 816 /* Multi-port devices use different offsets in shared memory. */ 817 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + 818 (pci_get_function(sc->bce_dev) << 2)); 819 else 820 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 821 822 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 823 __FUNCTION__, sc->bce_shmem_base); 824 825 /* Fetch the bootcode revision. */ 826 sc->bce_fw_ver = REG_RD_IND(sc, sc->bce_shmem_base + 827 BCE_DEV_INFO_BC_REV); 828 829 /* Check if any management firmware is running. */ 830 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_PORT_FEATURE); 831 if (val & (BCE_PORT_FEATURE_ASF_ENABLED | BCE_PORT_FEATURE_IMD_ENABLED)) 832 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 833 834 /* Get PCI bus information (speed and type). */ 835 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 836 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 837 u32 clkreg; 838 839 sc->bce_flags |= BCE_PCIX_FLAG; 840 841 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 842 843 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 844 switch (clkreg) { 845 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 846 sc->bus_speed_mhz = 133; 847 break; 848 849 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 850 sc->bus_speed_mhz = 100; 851 break; 852 853 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 854 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 855 sc->bus_speed_mhz = 66; 856 break; 857 858 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 859 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 860 sc->bus_speed_mhz = 50; 861 break; 862 863 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 864 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 865 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 866 sc->bus_speed_mhz = 33; 867 break; 868 } 869 } else { 870 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 871 sc->bus_speed_mhz = 66; 872 else 873 sc->bus_speed_mhz = 33; 874 } 875 876 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 877 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 878 879 /* Reset the controller and announce to bootcode that driver is present. */ 880 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 881 BCE_PRINTF("%s(%d): Controller reset failed!\n", 882 __FILE__, __LINE__); 883 rc = ENXIO; 884 goto bce_attach_fail; 885 } 886 887 /* Initialize the controller. */ 888 if (bce_chipinit(sc)) { 889 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 890 __FILE__, __LINE__); 891 rc = ENXIO; 892 goto bce_attach_fail; 893 } 894 895 /* Perform NVRAM test. */ 896 if (bce_nvram_test(sc)) { 897 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 898 __FILE__, __LINE__); 899 rc = ENXIO; 900 goto bce_attach_fail; 901 } 902 903 /* Fetch the permanent Ethernet MAC address. */ 904 bce_get_mac_addr(sc); 905 906 /* 907 * Trip points control how many BDs 908 * should be ready before generating an 909 * interrupt while ticks control how long 910 * a BD can sit in the chain before 911 * generating an interrupt. Set the default 912 * values for the RX and TX chains. 913 */ 914 915 #ifdef BCE_DEBUG 916 /* Force more frequent interrupts. */ 917 sc->bce_tx_quick_cons_trip_int = 1; 918 sc->bce_tx_quick_cons_trip = 1; 919 sc->bce_tx_ticks_int = 0; 920 sc->bce_tx_ticks = 0; 921 922 sc->bce_rx_quick_cons_trip_int = 1; 923 sc->bce_rx_quick_cons_trip = 1; 924 sc->bce_rx_ticks_int = 0; 925 sc->bce_rx_ticks = 0; 926 #else 927 /* Improve throughput at the expense of increased latency. */ 928 sc->bce_tx_quick_cons_trip_int = 20; 929 sc->bce_tx_quick_cons_trip = 20; 930 sc->bce_tx_ticks_int = 80; 931 sc->bce_tx_ticks = 80; 932 933 sc->bce_rx_quick_cons_trip_int = 6; 934 sc->bce_rx_quick_cons_trip = 6; 935 sc->bce_rx_ticks_int = 18; 936 sc->bce_rx_ticks = 18; 937 #endif 938 939 /* Update statistics once every second. */ 940 sc->bce_stats_ticks = 1000000 & 0xffff00; 941 942 /* Find the media type for the adapter. */ 943 bce_get_media(sc); 944 945 /* Store data needed by PHY driver for backplane applications */ 946 sc->bce_shared_hw_cfg = REG_RD_IND(sc, sc->bce_shmem_base + 947 BCE_SHARED_HW_CFG_CONFIG); 948 sc->bce_port_hw_cfg = REG_RD_IND(sc, sc->bce_shmem_base + 949 BCE_PORT_HW_CFG_CONFIG); 950 951 /* Allocate DMA memory resources. */ 952 if (bce_dma_alloc(dev)) { 953 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 954 __FILE__, __LINE__); 955 rc = ENXIO; 956 goto bce_attach_fail; 957 } 958 959 /* Allocate an ifnet structure. */ 960 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 961 if (ifp == NULL) { 962 BCE_PRINTF("%s(%d): Interface allocation failed!\n", 963 __FILE__, __LINE__); 964 rc = ENXIO; 965 goto bce_attach_fail; 966 } 967 968 /* Initialize the ifnet interface. */ 969 ifp->if_softc = sc; 970 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 971 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 972 ifp->if_ioctl = bce_ioctl; 973 ifp->if_start = bce_start; 974 ifp->if_init = bce_init; 975 ifp->if_mtu = ETHERMTU; 976 977 if (bce_tso_enable) { 978 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; 979 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4; 980 } else { 981 ifp->if_hwassist = BCE_IF_HWASSIST; 982 ifp->if_capabilities = BCE_IF_CAPABILITIES; 983 } 984 985 ifp->if_capenable = ifp->if_capabilities; 986 987 /* 988 * Assume standard mbuf sizes for buffer allocation. 989 * This may change later if the MTU size is set to 990 * something other than 1500. 991 */ 992 #ifdef BCE_USE_SPLIT_HEADER 993 sc->rx_bd_mbuf_alloc_size = MHLEN; 994 /* Make sure offset is 16 byte aligned for hardware. */ 995 sc->rx_bd_mbuf_align_pad = roundup2((MSIZE - MHLEN), 16) - 996 (MSIZE - MHLEN); 997 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 998 sc->rx_bd_mbuf_align_pad; 999 sc->pg_bd_mbuf_alloc_size = MCLBYTES; 1000 #else 1001 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 1002 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES; 1003 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 1004 sc->rx_bd_mbuf_align_pad; 1005 #endif 1006 1007 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD; 1008 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 1009 IFQ_SET_READY(&ifp->if_snd); 1010 1011 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 1012 ifp->if_baudrate = IF_Mbps(2500ULL); 1013 else 1014 ifp->if_baudrate = IF_Mbps(1000); 1015 1016 /* Check for an MII child bus by probing the PHY. */ 1017 if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd, 1018 bce_ifmedia_sts)) { 1019 BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n", 1020 __FILE__, __LINE__); 1021 rc = ENXIO; 1022 goto bce_attach_fail; 1023 } 1024 1025 /* Attach to the Ethernet interface list. */ 1026 ether_ifattach(ifp, sc->eaddr); 1027 1028 #if __FreeBSD_version < 500000 1029 callout_init(&sc->bce_tick_callout); 1030 callout_init(&sc->bce_pulse_callout); 1031 #else 1032 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 1033 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 1034 #endif 1035 1036 /* Hookup IRQ last. */ 1037 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, 1038 NULL, bce_intr, sc, &sc->bce_intrhand); 1039 1040 if (rc) { 1041 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 1042 __FILE__, __LINE__); 1043 bce_detach(dev); 1044 goto bce_attach_exit; 1045 } 1046 1047 /* 1048 * At this point we've acquired all the resources 1049 * we need to run so there's no turning back, we're 1050 * cleared for launch. 1051 */ 1052 1053 /* Print some important debugging info. */ 1054 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); 1055 1056 /* Add the supported sysctls to the kernel. */ 1057 bce_add_sysctls(sc); 1058 1059 BCE_LOCK(sc); 1060 1061 /* 1062 * The chip reset earlier notified the bootcode that 1063 * a driver is present. We now need to start our pulse 1064 * routine so that the bootcode is reminded that we're 1065 * still running. 1066 */ 1067 bce_pulse(sc); 1068 1069 bce_mgmt_init_locked(sc); 1070 BCE_UNLOCK(sc); 1071 1072 /* Finally, print some useful adapter info */ 1073 bce_print_adapter_info(sc); 1074 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", 1075 __FUNCTION__, sc); 1076 1077 goto bce_attach_exit; 1078 1079 bce_attach_fail: 1080 bce_release_resources(sc); 1081 1082 bce_attach_exit: 1083 1084 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1085 1086 return(rc); 1087 } 1088 1089 1090 /****************************************************************************/ 1091 /* Device detach function. */ 1092 /* */ 1093 /* Stops the controller, resets the controller, and releases resources. */ 1094 /* */ 1095 /* Returns: */ 1096 /* 0 on success, positive value on failure. */ 1097 /****************************************************************************/ 1098 static int 1099 bce_detach(device_t dev) 1100 { 1101 struct bce_softc *sc = device_get_softc(dev); 1102 struct ifnet *ifp; 1103 u32 msg; 1104 1105 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1106 1107 ifp = sc->bce_ifp; 1108 1109 /* Stop and reset the controller. */ 1110 BCE_LOCK(sc); 1111 1112 /* Stop the pulse so the bootcode can go to driver absent state. */ 1113 callout_stop(&sc->bce_pulse_callout); 1114 1115 bce_stop(sc); 1116 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1117 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1118 else 1119 msg = BCE_DRV_MSG_CODE_UNLOAD; 1120 bce_reset(sc, msg); 1121 1122 BCE_UNLOCK(sc); 1123 1124 ether_ifdetach(ifp); 1125 1126 /* If we have a child device on the MII bus remove it too. */ 1127 bus_generic_detach(dev); 1128 device_delete_child(dev, sc->bce_miibus); 1129 1130 /* Release all remaining resources. */ 1131 bce_release_resources(sc); 1132 1133 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1134 1135 return(0); 1136 } 1137 1138 1139 /****************************************************************************/ 1140 /* Device shutdown function. */ 1141 /* */ 1142 /* Stops and resets the controller. */ 1143 /* */ 1144 /* Returns: */ 1145 /* 0 on success, positive value on failure. */ 1146 /****************************************************************************/ 1147 static int 1148 bce_shutdown(device_t dev) 1149 { 1150 struct bce_softc *sc = device_get_softc(dev); 1151 u32 msg; 1152 1153 DBENTER(BCE_VERBOSE); 1154 1155 BCE_LOCK(sc); 1156 bce_stop(sc); 1157 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1158 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1159 else 1160 msg = BCE_DRV_MSG_CODE_UNLOAD; 1161 bce_reset(sc, msg); 1162 BCE_UNLOCK(sc); 1163 1164 DBEXIT(BCE_VERBOSE); 1165 1166 return (0); 1167 } 1168 1169 1170 #ifdef BCE_DEBUG 1171 /****************************************************************************/ 1172 /* Register read. */ 1173 /* */ 1174 /* Returns: */ 1175 /* The value of the register. */ 1176 /****************************************************************************/ 1177 static u32 1178 bce_reg_rd(struct bce_softc *sc, u32 offset) 1179 { 1180 u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset); 1181 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1182 __FUNCTION__, offset, val); 1183 return val; 1184 } 1185 1186 1187 /****************************************************************************/ 1188 /* Register write (16 bit). */ 1189 /* */ 1190 /* Returns: */ 1191 /* Nothing. */ 1192 /****************************************************************************/ 1193 static void 1194 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) 1195 { 1196 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", 1197 __FUNCTION__, offset, val); 1198 bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val); 1199 } 1200 1201 1202 /****************************************************************************/ 1203 /* Register write. */ 1204 /* */ 1205 /* Returns: */ 1206 /* Nothing. */ 1207 /****************************************************************************/ 1208 static void 1209 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) 1210 { 1211 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1212 __FUNCTION__, offset, val); 1213 bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val); 1214 } 1215 #endif 1216 1217 /****************************************************************************/ 1218 /* Indirect register read. */ 1219 /* */ 1220 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1221 /* configuration space. Using this mechanism avoids issues with posted */ 1222 /* reads but is much slower than memory-mapped I/O. */ 1223 /* */ 1224 /* Returns: */ 1225 /* The value of the register. */ 1226 /****************************************************************************/ 1227 static u32 1228 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 1229 { 1230 device_t dev; 1231 dev = sc->bce_dev; 1232 1233 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1234 #ifdef BCE_DEBUG 1235 { 1236 u32 val; 1237 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1238 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1239 __FUNCTION__, offset, val); 1240 return val; 1241 } 1242 #else 1243 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1244 #endif 1245 } 1246 1247 1248 /****************************************************************************/ 1249 /* Indirect register write. */ 1250 /* */ 1251 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1252 /* configuration space. Using this mechanism avoids issues with posted */ 1253 /* writes but is muchh slower than memory-mapped I/O. */ 1254 /* */ 1255 /* Returns: */ 1256 /* Nothing. */ 1257 /****************************************************************************/ 1258 static void 1259 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 1260 { 1261 device_t dev; 1262 dev = sc->bce_dev; 1263 1264 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1265 __FUNCTION__, offset, val); 1266 1267 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1268 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 1269 } 1270 1271 1272 #ifdef BCE_DEBUG 1273 /****************************************************************************/ 1274 /* Context memory read. */ 1275 /* */ 1276 /* The NetXtreme II controller uses context memory to track connection */ 1277 /* information for L2 and higher network protocols. */ 1278 /* */ 1279 /* Returns: */ 1280 /* The requested 32 bit value of context memory. */ 1281 /****************************************************************************/ 1282 static u32 1283 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) 1284 { 1285 u32 idx, offset, retry_cnt = 5, val; 1286 1287 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1288 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1289 __FUNCTION__, cid_addr)); 1290 1291 offset = ctx_offset + cid_addr; 1292 1293 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1294 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1295 1296 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); 1297 1298 for (idx = 0; idx < retry_cnt; idx++) { 1299 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1300 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) 1301 break; 1302 DELAY(5); 1303 } 1304 1305 if (val & BCE_CTX_CTX_CTRL_READ_REQ) 1306 BCE_PRINTF("%s(%d); Unable to read CTX memory: " 1307 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1308 __FILE__, __LINE__, cid_addr, ctx_offset); 1309 1310 val = REG_RD(sc, BCE_CTX_CTX_DATA); 1311 } else { 1312 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1313 val = REG_RD(sc, BCE_CTX_DATA); 1314 } 1315 1316 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1317 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); 1318 1319 return(val); 1320 } 1321 #endif 1322 1323 1324 /****************************************************************************/ 1325 /* Context memory write. */ 1326 /* */ 1327 /* The NetXtreme II controller uses context memory to track connection */ 1328 /* information for L2 and higher network protocols. */ 1329 /* */ 1330 /* Returns: */ 1331 /* Nothing. */ 1332 /****************************************************************************/ 1333 static void 1334 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) 1335 { 1336 u32 idx, offset = ctx_offset + cid_addr; 1337 u32 val, retry_cnt = 5; 1338 1339 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1340 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); 1341 1342 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1343 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1344 __FUNCTION__, cid_addr)); 1345 1346 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1347 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1348 1349 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); 1350 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); 1351 1352 for (idx = 0; idx < retry_cnt; idx++) { 1353 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1354 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) 1355 break; 1356 DELAY(5); 1357 } 1358 1359 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) 1360 BCE_PRINTF("%s(%d); Unable to write CTX memory: " 1361 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1362 __FILE__, __LINE__, cid_addr, ctx_offset); 1363 1364 } else { 1365 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1366 REG_WR(sc, BCE_CTX_DATA, ctx_val); 1367 } 1368 } 1369 1370 1371 /****************************************************************************/ 1372 /* PHY register read. */ 1373 /* */ 1374 /* Implements register reads on the MII bus. */ 1375 /* */ 1376 /* Returns: */ 1377 /* The value of the register. */ 1378 /****************************************************************************/ 1379 static int 1380 bce_miibus_read_reg(device_t dev, int phy, int reg) 1381 { 1382 struct bce_softc *sc; 1383 u32 val; 1384 int i; 1385 1386 sc = device_get_softc(dev); 1387 1388 /* Make sure we are accessing the correct PHY address. */ 1389 if (phy != sc->bce_phy_addr) { 1390 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY read!\n", phy); 1391 return(0); 1392 } 1393 1394 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1395 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1396 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1397 1398 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1399 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1400 1401 DELAY(40); 1402 } 1403 1404 1405 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1406 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1407 BCE_EMAC_MDIO_COMM_START_BUSY; 1408 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1409 1410 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1411 DELAY(10); 1412 1413 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1414 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1415 DELAY(5); 1416 1417 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1418 val &= BCE_EMAC_MDIO_COMM_DATA; 1419 1420 break; 1421 } 1422 } 1423 1424 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1425 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, reg = 0x%04X\n", 1426 __FILE__, __LINE__, phy, reg); 1427 val = 0x0; 1428 } else { 1429 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1430 } 1431 1432 1433 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1434 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1435 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1436 1437 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1438 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1439 1440 DELAY(40); 1441 } 1442 1443 DB_PRINT_PHY_REG(reg, val); 1444 return (val & 0xffff); 1445 1446 } 1447 1448 1449 /****************************************************************************/ 1450 /* PHY register write. */ 1451 /* */ 1452 /* Implements register writes on the MII bus. */ 1453 /* */ 1454 /* Returns: */ 1455 /* The value of the register. */ 1456 /****************************************************************************/ 1457 static int 1458 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1459 { 1460 struct bce_softc *sc; 1461 u32 val1; 1462 int i; 1463 1464 sc = device_get_softc(dev); 1465 1466 /* Make sure we are accessing the correct PHY address. */ 1467 if (phy != sc->bce_phy_addr) { 1468 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY write!\n", phy); 1469 return(0); 1470 } 1471 1472 DB_PRINT_PHY_REG(reg, val); 1473 1474 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1475 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1476 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1477 1478 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1479 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1480 1481 DELAY(40); 1482 } 1483 1484 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1485 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1486 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1487 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1488 1489 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1490 DELAY(10); 1491 1492 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1493 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1494 DELAY(5); 1495 break; 1496 } 1497 } 1498 1499 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 1500 BCE_PRINTF("%s(%d): PHY write timeout!\n", 1501 __FILE__, __LINE__); 1502 1503 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1504 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1505 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1506 1507 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1508 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1509 1510 DELAY(40); 1511 } 1512 1513 return 0; 1514 } 1515 1516 1517 /****************************************************************************/ 1518 /* MII bus status change. */ 1519 /* */ 1520 /* Called by the MII bus driver when the PHY establishes link to set the */ 1521 /* MAC interface registers. */ 1522 /* */ 1523 /* Returns: */ 1524 /* Nothing. */ 1525 /****************************************************************************/ 1526 static void 1527 bce_miibus_statchg(device_t dev) 1528 { 1529 struct bce_softc *sc; 1530 struct mii_data *mii; 1531 int val; 1532 1533 sc = device_get_softc(dev); 1534 1535 DBENTER(BCE_VERBOSE_PHY); 1536 1537 mii = device_get_softc(sc->bce_miibus); 1538 1539 val = REG_RD(sc, BCE_EMAC_MODE); 1540 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 1541 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 1542 BCE_EMAC_MODE_25G); 1543 1544 /* Set MII or GMII interface based on the speed negotiated by the PHY. */ 1545 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1546 case IFM_10_T: 1547 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 1548 DBPRINT(sc, BCE_INFO, "Enabling 10Mb interface.\n"); 1549 val |= BCE_EMAC_MODE_PORT_MII_10; 1550 break; 1551 } 1552 /* fall-through */ 1553 case IFM_100_TX: 1554 DBPRINT(sc, BCE_INFO, "Enabling MII interface.\n"); 1555 val |= BCE_EMAC_MODE_PORT_MII; 1556 break; 1557 case IFM_2500_SX: 1558 DBPRINT(sc, BCE_INFO, "Enabling 2.5G MAC mode.\n"); 1559 val |= BCE_EMAC_MODE_25G; 1560 /* fall-through */ 1561 case IFM_1000_T: 1562 case IFM_1000_SX: 1563 DBPRINT(sc, BCE_INFO, "Enabling GMII interface.\n"); 1564 val |= BCE_EMAC_MODE_PORT_GMII; 1565 break; 1566 default: 1567 DBPRINT(sc, BCE_INFO, "Unknown speed, enabling default GMII " 1568 "interface.\n"); 1569 val |= BCE_EMAC_MODE_PORT_GMII; 1570 } 1571 1572 /* Set half or full duplex based on the duplicity negotiated by the PHY. */ 1573 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 1574 DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n"); 1575 val |= BCE_EMAC_MODE_HALF_DUPLEX; 1576 } else 1577 DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n"); 1578 1579 REG_WR(sc, BCE_EMAC_MODE, val); 1580 1581 #if 0 1582 /* ToDo: Enable flow control support in brgphy and bge. */ 1583 /* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */ 1584 if (mii->mii_media_active & IFM_FLAG0) 1585 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 1586 if (mii->mii_media_active & IFM_FLAG1) 1587 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 1588 #endif 1589 1590 DBEXIT(BCE_VERBOSE_PHY); 1591 } 1592 1593 1594 /****************************************************************************/ 1595 /* Acquire NVRAM lock. */ 1596 /* */ 1597 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 1598 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1599 /* for use by the driver. */ 1600 /* */ 1601 /* Returns: */ 1602 /* 0 on success, positive value on failure. */ 1603 /****************************************************************************/ 1604 static int 1605 bce_acquire_nvram_lock(struct bce_softc *sc) 1606 { 1607 u32 val; 1608 int j, rc = 0; 1609 1610 DBENTER(BCE_VERBOSE_NVRAM); 1611 1612 /* Request access to the flash interface. */ 1613 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 1614 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1615 val = REG_RD(sc, BCE_NVM_SW_ARB); 1616 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 1617 break; 1618 1619 DELAY(5); 1620 } 1621 1622 if (j >= NVRAM_TIMEOUT_COUNT) { 1623 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 1624 rc = EBUSY; 1625 } 1626 1627 DBEXIT(BCE_VERBOSE_NVRAM); 1628 return (rc); 1629 } 1630 1631 1632 /****************************************************************************/ 1633 /* Release NVRAM lock. */ 1634 /* */ 1635 /* When the caller is finished accessing NVRAM the lock must be released. */ 1636 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1637 /* for use by the driver. */ 1638 /* */ 1639 /* Returns: */ 1640 /* 0 on success, positive value on failure. */ 1641 /****************************************************************************/ 1642 static int 1643 bce_release_nvram_lock(struct bce_softc *sc) 1644 { 1645 u32 val; 1646 int j, rc = 0; 1647 1648 DBENTER(BCE_VERBOSE_NVRAM); 1649 1650 /* 1651 * Relinquish nvram interface. 1652 */ 1653 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 1654 1655 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1656 val = REG_RD(sc, BCE_NVM_SW_ARB); 1657 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 1658 break; 1659 1660 DELAY(5); 1661 } 1662 1663 if (j >= NVRAM_TIMEOUT_COUNT) { 1664 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); 1665 rc = EBUSY; 1666 } 1667 1668 DBEXIT(BCE_VERBOSE_NVRAM); 1669 return (rc); 1670 } 1671 1672 1673 #ifdef BCE_NVRAM_WRITE_SUPPORT 1674 /****************************************************************************/ 1675 /* Enable NVRAM write access. */ 1676 /* */ 1677 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 1678 /* */ 1679 /* Returns: */ 1680 /* 0 on success, positive value on failure. */ 1681 /****************************************************************************/ 1682 static int 1683 bce_enable_nvram_write(struct bce_softc *sc) 1684 { 1685 u32 val; 1686 int rc = 0; 1687 1688 DBENTER(BCE_VERBOSE_NVRAM); 1689 1690 val = REG_RD(sc, BCE_MISC_CFG); 1691 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 1692 1693 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 1694 int j; 1695 1696 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1697 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 1698 1699 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1700 DELAY(5); 1701 1702 val = REG_RD(sc, BCE_NVM_COMMAND); 1703 if (val & BCE_NVM_COMMAND_DONE) 1704 break; 1705 } 1706 1707 if (j >= NVRAM_TIMEOUT_COUNT) { 1708 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 1709 rc = EBUSY; 1710 } 1711 } 1712 1713 DBENTER(BCE_VERBOSE_NVRAM); 1714 return (rc); 1715 } 1716 1717 1718 /****************************************************************************/ 1719 /* Disable NVRAM write access. */ 1720 /* */ 1721 /* When the caller is finished writing to NVRAM write access must be */ 1722 /* disabled. */ 1723 /* */ 1724 /* Returns: */ 1725 /* Nothing. */ 1726 /****************************************************************************/ 1727 static void 1728 bce_disable_nvram_write(struct bce_softc *sc) 1729 { 1730 u32 val; 1731 1732 DBENTER(BCE_VERBOSE_NVRAM); 1733 1734 val = REG_RD(sc, BCE_MISC_CFG); 1735 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 1736 1737 DBEXIT(BCE_VERBOSE_NVRAM); 1738 1739 } 1740 #endif 1741 1742 1743 /****************************************************************************/ 1744 /* Enable NVRAM access. */ 1745 /* */ 1746 /* Before accessing NVRAM for read or write operations the caller must */ 1747 /* enabled NVRAM access. */ 1748 /* */ 1749 /* Returns: */ 1750 /* Nothing. */ 1751 /****************************************************************************/ 1752 static void 1753 bce_enable_nvram_access(struct bce_softc *sc) 1754 { 1755 u32 val; 1756 1757 DBENTER(BCE_VERBOSE_NVRAM); 1758 1759 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1760 /* Enable both bits, even on read. */ 1761 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1762 val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 1763 1764 DBEXIT(BCE_VERBOSE_NVRAM); 1765 } 1766 1767 1768 /****************************************************************************/ 1769 /* Disable NVRAM access. */ 1770 /* */ 1771 /* When the caller is finished accessing NVRAM access must be disabled. */ 1772 /* */ 1773 /* Returns: */ 1774 /* Nothing. */ 1775 /****************************************************************************/ 1776 static void 1777 bce_disable_nvram_access(struct bce_softc *sc) 1778 { 1779 u32 val; 1780 1781 DBENTER(BCE_VERBOSE_NVRAM); 1782 1783 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1784 1785 /* Disable both bits, even after read. */ 1786 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1787 val & ~(BCE_NVM_ACCESS_ENABLE_EN | 1788 BCE_NVM_ACCESS_ENABLE_WR_EN)); 1789 1790 DBEXIT(BCE_VERBOSE_NVRAM); 1791 } 1792 1793 1794 #ifdef BCE_NVRAM_WRITE_SUPPORT 1795 /****************************************************************************/ 1796 /* Erase NVRAM page before writing. */ 1797 /* */ 1798 /* Non-buffered flash parts require that a page be erased before it is */ 1799 /* written. */ 1800 /* */ 1801 /* Returns: */ 1802 /* 0 on success, positive value on failure. */ 1803 /****************************************************************************/ 1804 static int 1805 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 1806 { 1807 u32 cmd; 1808 int j, rc = 0; 1809 1810 DBENTER(BCE_VERBOSE_NVRAM); 1811 1812 /* Buffered flash doesn't require an erase. */ 1813 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) 1814 goto bce_nvram_erase_page_exit; 1815 1816 /* Build an erase command. */ 1817 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 1818 BCE_NVM_COMMAND_DOIT; 1819 1820 /* 1821 * Clear the DONE bit separately, set the NVRAM adress to erase, 1822 * and issue the erase command. 1823 */ 1824 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1825 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1826 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1827 1828 /* Wait for completion. */ 1829 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1830 u32 val; 1831 1832 DELAY(5); 1833 1834 val = REG_RD(sc, BCE_NVM_COMMAND); 1835 if (val & BCE_NVM_COMMAND_DONE) 1836 break; 1837 } 1838 1839 if (j >= NVRAM_TIMEOUT_COUNT) { 1840 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 1841 rc = EBUSY; 1842 } 1843 1844 bce_nvram_erase_page_exit: 1845 DBEXIT(BCE_VERBOSE_NVRAM); 1846 return (rc); 1847 } 1848 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 1849 1850 1851 /****************************************************************************/ 1852 /* Read a dword (32 bits) from NVRAM. */ 1853 /* */ 1854 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 1855 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 1856 /* */ 1857 /* Returns: */ 1858 /* 0 on success and the 32 bit value read, positive value on failure. */ 1859 /****************************************************************************/ 1860 static int 1861 bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val, 1862 u32 cmd_flags) 1863 { 1864 u32 cmd; 1865 int i, rc = 0; 1866 1867 DBENTER(BCE_EXTREME_NVRAM); 1868 1869 /* Build the command word. */ 1870 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 1871 1872 /* Calculate the offset for buffered flash if translation is used. */ 1873 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 1874 offset = ((offset / sc->bce_flash_info->page_size) << 1875 sc->bce_flash_info->page_bits) + 1876 (offset % sc->bce_flash_info->page_size); 1877 } 1878 1879 /* 1880 * Clear the DONE bit separately, set the address to read, 1881 * and issue the read. 1882 */ 1883 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1884 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1885 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1886 1887 /* Wait for completion. */ 1888 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 1889 u32 val; 1890 1891 DELAY(5); 1892 1893 val = REG_RD(sc, BCE_NVM_COMMAND); 1894 if (val & BCE_NVM_COMMAND_DONE) { 1895 val = REG_RD(sc, BCE_NVM_READ); 1896 1897 val = bce_be32toh(val); 1898 memcpy(ret_val, &val, 4); 1899 break; 1900 } 1901 } 1902 1903 /* Check for errors. */ 1904 if (i >= NVRAM_TIMEOUT_COUNT) { 1905 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n", 1906 __FILE__, __LINE__, offset); 1907 rc = EBUSY; 1908 } 1909 1910 DBEXIT(BCE_EXTREME_NVRAM); 1911 return(rc); 1912 } 1913 1914 1915 #ifdef BCE_NVRAM_WRITE_SUPPORT 1916 /****************************************************************************/ 1917 /* Write a dword (32 bits) to NVRAM. */ 1918 /* */ 1919 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 1920 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 1921 /* enabled NVRAM write access. */ 1922 /* */ 1923 /* Returns: */ 1924 /* 0 on success, positive value on failure. */ 1925 /****************************************************************************/ 1926 static int 1927 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 1928 u32 cmd_flags) 1929 { 1930 u32 cmd, val32; 1931 int j, rc = 0; 1932 1933 DBENTER(BCE_VERBOSE_NVRAM); 1934 1935 /* Build the command word. */ 1936 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 1937 1938 /* Calculate the offset for buffered flash if translation is used. */ 1939 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 1940 offset = ((offset / sc->bce_flash_info->page_size) << 1941 sc->bce_flash_info->page_bits) + 1942 (offset % sc->bce_flash_info->page_size); 1943 } 1944 1945 /* 1946 * Clear the DONE bit separately, convert NVRAM data to big-endian, 1947 * set the NVRAM address to write, and issue the write command 1948 */ 1949 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1950 memcpy(&val32, val, 4); 1951 val32 = htobe32(val32); 1952 REG_WR(sc, BCE_NVM_WRITE, val32); 1953 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1954 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1955 1956 /* Wait for completion. */ 1957 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1958 DELAY(5); 1959 1960 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 1961 break; 1962 } 1963 if (j >= NVRAM_TIMEOUT_COUNT) { 1964 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at offset 0x%08X\n", 1965 __FILE__, __LINE__, offset); 1966 rc = EBUSY; 1967 } 1968 1969 DBEXIT(BCE_VERBOSE_NVRAM); 1970 return (rc); 1971 } 1972 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 1973 1974 1975 /****************************************************************************/ 1976 /* Initialize NVRAM access. */ 1977 /* */ 1978 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 1979 /* access that device. */ 1980 /* */ 1981 /* Returns: */ 1982 /* 0 on success, positive value on failure. */ 1983 /****************************************************************************/ 1984 static int 1985 bce_init_nvram(struct bce_softc *sc) 1986 { 1987 u32 val; 1988 int j, entry_count, rc = 0; 1989 struct flash_spec *flash; 1990 1991 DBENTER(BCE_VERBOSE_NVRAM); 1992 1993 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1994 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1995 sc->bce_flash_info = &flash_5709; 1996 goto bce_init_nvram_get_flash_size; 1997 } 1998 1999 /* Determine the selected interface. */ 2000 val = REG_RD(sc, BCE_NVM_CFG1); 2001 2002 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 2003 2004 /* 2005 * Flash reconfiguration is required to support additional 2006 * NVRAM devices not directly supported in hardware. 2007 * Check if the flash interface was reconfigured 2008 * by the bootcode. 2009 */ 2010 2011 if (val & 0x40000000) { 2012 /* Flash interface reconfigured by bootcode. */ 2013 2014 DBPRINT(sc,BCE_INFO_LOAD, 2015 "bce_init_nvram(): Flash WAS reconfigured.\n"); 2016 2017 for (j = 0, flash = &flash_table[0]; j < entry_count; 2018 j++, flash++) { 2019 if ((val & FLASH_BACKUP_STRAP_MASK) == 2020 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 2021 sc->bce_flash_info = flash; 2022 break; 2023 } 2024 } 2025 } else { 2026 /* Flash interface not yet reconfigured. */ 2027 u32 mask; 2028 2029 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", 2030 __FUNCTION__); 2031 2032 if (val & (1 << 23)) 2033 mask = FLASH_BACKUP_STRAP_MASK; 2034 else 2035 mask = FLASH_STRAP_MASK; 2036 2037 /* Look for the matching NVRAM device configuration data. */ 2038 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 2039 2040 /* Check if the device matches any of the known devices. */ 2041 if ((val & mask) == (flash->strapping & mask)) { 2042 /* Found a device match. */ 2043 sc->bce_flash_info = flash; 2044 2045 /* Request access to the flash interface. */ 2046 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2047 return rc; 2048 2049 /* Reconfigure the flash interface. */ 2050 bce_enable_nvram_access(sc); 2051 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 2052 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 2053 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 2054 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 2055 bce_disable_nvram_access(sc); 2056 bce_release_nvram_lock(sc); 2057 2058 break; 2059 } 2060 } 2061 } 2062 2063 /* Check if a matching device was found. */ 2064 if (j == entry_count) { 2065 sc->bce_flash_info = NULL; 2066 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 2067 __FILE__, __LINE__); 2068 rc = ENODEV; 2069 } 2070 2071 bce_init_nvram_get_flash_size: 2072 /* Write the flash config data to the shared memory interface. */ 2073 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_SHARED_HW_CFG_CONFIG2); 2074 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 2075 if (val) 2076 sc->bce_flash_size = val; 2077 else 2078 sc->bce_flash_size = sc->bce_flash_info->total_size; 2079 2080 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", 2081 __FUNCTION__, sc->bce_flash_info->name, 2082 sc->bce_flash_info->total_size); 2083 2084 DBEXIT(BCE_VERBOSE_NVRAM); 2085 return rc; 2086 } 2087 2088 2089 /****************************************************************************/ 2090 /* Read an arbitrary range of data from NVRAM. */ 2091 /* */ 2092 /* Prepares the NVRAM interface for access and reads the requested data */ 2093 /* into the supplied buffer. */ 2094 /* */ 2095 /* Returns: */ 2096 /* 0 on success and the data read, positive value on failure. */ 2097 /****************************************************************************/ 2098 static int 2099 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 2100 int buf_size) 2101 { 2102 int rc = 0; 2103 u32 cmd_flags, offset32, len32, extra; 2104 2105 DBENTER(BCE_VERBOSE_NVRAM); 2106 2107 if (buf_size == 0) 2108 goto bce_nvram_read_exit; 2109 2110 /* Request access to the flash interface. */ 2111 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2112 goto bce_nvram_read_exit; 2113 2114 /* Enable access to flash interface */ 2115 bce_enable_nvram_access(sc); 2116 2117 len32 = buf_size; 2118 offset32 = offset; 2119 extra = 0; 2120 2121 cmd_flags = 0; 2122 2123 if (offset32 & 3) { 2124 u8 buf[4]; 2125 u32 pre_len; 2126 2127 offset32 &= ~3; 2128 pre_len = 4 - (offset & 3); 2129 2130 if (pre_len >= len32) { 2131 pre_len = len32; 2132 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 2133 } 2134 else { 2135 cmd_flags = BCE_NVM_COMMAND_FIRST; 2136 } 2137 2138 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2139 2140 if (rc) 2141 return rc; 2142 2143 memcpy(ret_buf, buf + (offset & 3), pre_len); 2144 2145 offset32 += 4; 2146 ret_buf += pre_len; 2147 len32 -= pre_len; 2148 } 2149 2150 if (len32 & 3) { 2151 extra = 4 - (len32 & 3); 2152 len32 = (len32 + 4) & ~3; 2153 } 2154 2155 if (len32 == 4) { 2156 u8 buf[4]; 2157 2158 if (cmd_flags) 2159 cmd_flags = BCE_NVM_COMMAND_LAST; 2160 else 2161 cmd_flags = BCE_NVM_COMMAND_FIRST | 2162 BCE_NVM_COMMAND_LAST; 2163 2164 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2165 2166 memcpy(ret_buf, buf, 4 - extra); 2167 } 2168 else if (len32 > 0) { 2169 u8 buf[4]; 2170 2171 /* Read the first word. */ 2172 if (cmd_flags) 2173 cmd_flags = 0; 2174 else 2175 cmd_flags = BCE_NVM_COMMAND_FIRST; 2176 2177 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 2178 2179 /* Advance to the next dword. */ 2180 offset32 += 4; 2181 ret_buf += 4; 2182 len32 -= 4; 2183 2184 while (len32 > 4 && rc == 0) { 2185 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 2186 2187 /* Advance to the next dword. */ 2188 offset32 += 4; 2189 ret_buf += 4; 2190 len32 -= 4; 2191 } 2192 2193 if (rc) 2194 goto bce_nvram_read_locked_exit; 2195 2196 cmd_flags = BCE_NVM_COMMAND_LAST; 2197 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2198 2199 memcpy(ret_buf, buf, 4 - extra); 2200 } 2201 2202 bce_nvram_read_locked_exit: 2203 /* Disable access to flash interface and release the lock. */ 2204 bce_disable_nvram_access(sc); 2205 bce_release_nvram_lock(sc); 2206 2207 bce_nvram_read_exit: 2208 DBEXIT(BCE_VERBOSE_NVRAM); 2209 return rc; 2210 } 2211 2212 2213 #ifdef BCE_NVRAM_WRITE_SUPPORT 2214 /****************************************************************************/ 2215 /* Write an arbitrary range of data from NVRAM. */ 2216 /* */ 2217 /* Prepares the NVRAM interface for write access and writes the requested */ 2218 /* data from the supplied buffer. The caller is responsible for */ 2219 /* calculating any appropriate CRCs. */ 2220 /* */ 2221 /* Returns: */ 2222 /* 0 on success, positive value on failure. */ 2223 /****************************************************************************/ 2224 static int 2225 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 2226 int buf_size) 2227 { 2228 u32 written, offset32, len32; 2229 u8 *buf, start[4], end[4]; 2230 int rc = 0; 2231 int align_start, align_end; 2232 2233 DBENTER(BCE_VERBOSE_NVRAM); 2234 2235 buf = data_buf; 2236 offset32 = offset; 2237 len32 = buf_size; 2238 align_start = align_end = 0; 2239 2240 if ((align_start = (offset32 & 3))) { 2241 offset32 &= ~3; 2242 len32 += align_start; 2243 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 2244 goto bce_nvram_write_exit; 2245 } 2246 2247 if (len32 & 3) { 2248 if ((len32 > 4) || !align_start) { 2249 align_end = 4 - (len32 & 3); 2250 len32 += align_end; 2251 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 2252 end, 4))) { 2253 goto bce_nvram_write_exit; 2254 } 2255 } 2256 } 2257 2258 if (align_start || align_end) { 2259 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 2260 if (buf == 0) { 2261 rc = ENOMEM; 2262 goto bce_nvram_write_exit; 2263 } 2264 2265 if (align_start) { 2266 memcpy(buf, start, 4); 2267 } 2268 2269 if (align_end) { 2270 memcpy(buf + len32 - 4, end, 4); 2271 } 2272 memcpy(buf + align_start, data_buf, buf_size); 2273 } 2274 2275 written = 0; 2276 while ((written < len32) && (rc == 0)) { 2277 u32 page_start, page_end, data_start, data_end; 2278 u32 addr, cmd_flags; 2279 int i; 2280 u8 flash_buffer[264]; 2281 2282 /* Find the page_start addr */ 2283 page_start = offset32 + written; 2284 page_start -= (page_start % sc->bce_flash_info->page_size); 2285 /* Find the page_end addr */ 2286 page_end = page_start + sc->bce_flash_info->page_size; 2287 /* Find the data_start addr */ 2288 data_start = (written == 0) ? offset32 : page_start; 2289 /* Find the data_end addr */ 2290 data_end = (page_end > offset32 + len32) ? 2291 (offset32 + len32) : page_end; 2292 2293 /* Request access to the flash interface. */ 2294 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2295 goto bce_nvram_write_exit; 2296 2297 /* Enable access to flash interface */ 2298 bce_enable_nvram_access(sc); 2299 2300 cmd_flags = BCE_NVM_COMMAND_FIRST; 2301 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2302 int j; 2303 2304 /* Read the whole page into the buffer 2305 * (non-buffer flash only) */ 2306 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 2307 if (j == (sc->bce_flash_info->page_size - 4)) { 2308 cmd_flags |= BCE_NVM_COMMAND_LAST; 2309 } 2310 rc = bce_nvram_read_dword(sc, 2311 page_start + j, 2312 &flash_buffer[j], 2313 cmd_flags); 2314 2315 if (rc) 2316 goto bce_nvram_write_locked_exit; 2317 2318 cmd_flags = 0; 2319 } 2320 } 2321 2322 /* Enable writes to flash interface (unlock write-protect) */ 2323 if ((rc = bce_enable_nvram_write(sc)) != 0) 2324 goto bce_nvram_write_locked_exit; 2325 2326 /* Erase the page */ 2327 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 2328 goto bce_nvram_write_locked_exit; 2329 2330 /* Re-enable the write again for the actual write */ 2331 bce_enable_nvram_write(sc); 2332 2333 /* Loop to write back the buffer data from page_start to 2334 * data_start */ 2335 i = 0; 2336 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2337 for (addr = page_start; addr < data_start; 2338 addr += 4, i += 4) { 2339 2340 rc = bce_nvram_write_dword(sc, addr, 2341 &flash_buffer[i], cmd_flags); 2342 2343 if (rc != 0) 2344 goto bce_nvram_write_locked_exit; 2345 2346 cmd_flags = 0; 2347 } 2348 } 2349 2350 /* Loop to write the new data from data_start to data_end */ 2351 for (addr = data_start; addr < data_end; addr += 4, i++) { 2352 if ((addr == page_end - 4) || 2353 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && 2354 (addr == data_end - 4))) { 2355 2356 cmd_flags |= BCE_NVM_COMMAND_LAST; 2357 } 2358 rc = bce_nvram_write_dword(sc, addr, buf, 2359 cmd_flags); 2360 2361 if (rc != 0) 2362 goto bce_nvram_write_locked_exit; 2363 2364 cmd_flags = 0; 2365 buf += 4; 2366 } 2367 2368 /* Loop to write back the buffer data from data_end 2369 * to page_end */ 2370 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2371 for (addr = data_end; addr < page_end; 2372 addr += 4, i += 4) { 2373 2374 if (addr == page_end-4) { 2375 cmd_flags = BCE_NVM_COMMAND_LAST; 2376 } 2377 rc = bce_nvram_write_dword(sc, addr, 2378 &flash_buffer[i], cmd_flags); 2379 2380 if (rc != 0) 2381 goto bce_nvram_write_locked_exit; 2382 2383 cmd_flags = 0; 2384 } 2385 } 2386 2387 /* Disable writes to flash interface (lock write-protect) */ 2388 bce_disable_nvram_write(sc); 2389 2390 /* Disable access to flash interface */ 2391 bce_disable_nvram_access(sc); 2392 bce_release_nvram_lock(sc); 2393 2394 /* Increment written */ 2395 written += data_end - data_start; 2396 } 2397 2398 goto bce_nvram_write_exit; 2399 2400 bce_nvram_write_locked_exit: 2401 bce_disable_nvram_write(sc); 2402 bce_disable_nvram_access(sc); 2403 bce_release_nvram_lock(sc); 2404 2405 bce_nvram_write_exit: 2406 if (align_start || align_end) 2407 free(buf, M_DEVBUF); 2408 2409 DBEXIT(BCE_VERBOSE_NVRAM); 2410 return (rc); 2411 } 2412 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2413 2414 2415 /****************************************************************************/ 2416 /* Verifies that NVRAM is accessible and contains valid data. */ 2417 /* */ 2418 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2419 /* correct. */ 2420 /* */ 2421 /* Returns: */ 2422 /* 0 on success, positive value on failure. */ 2423 /****************************************************************************/ 2424 static int 2425 bce_nvram_test(struct bce_softc *sc) 2426 { 2427 u32 buf[BCE_NVRAM_SIZE / 4]; 2428 u8 *data = (u8 *) buf; 2429 int rc = 0; 2430 u32 magic, csum; 2431 2432 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2433 2434 /* 2435 * Check that the device NVRAM is valid by reading 2436 * the magic value at offset 0. 2437 */ 2438 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { 2439 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", __FILE__, __LINE__); 2440 goto bce_nvram_test_exit; 2441 } 2442 2443 /* 2444 * Verify that offset 0 of the NVRAM contains 2445 * a valid magic number. 2446 */ 2447 magic = bce_be32toh(buf[0]); 2448 if (magic != BCE_NVRAM_MAGIC) { 2449 rc = ENODEV; 2450 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, " 2451 "Found: 0x%08X\n", 2452 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 2453 goto bce_nvram_test_exit; 2454 } 2455 2456 /* 2457 * Verify that the device NVRAM includes valid 2458 * configuration data. 2459 */ 2460 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { 2461 BCE_PRINTF("%s(%d): Unable to read Manufacturing Information from " 2462 "NVRAM!\n", __FILE__, __LINE__); 2463 goto bce_nvram_test_exit; 2464 } 2465 2466 csum = ether_crc32_le(data, 0x100); 2467 if (csum != BCE_CRC32_RESIDUAL) { 2468 rc = ENODEV; 2469 BCE_PRINTF("%s(%d): Invalid Manufacturing Information NVRAM CRC! " 2470 "Expected: 0x%08X, Found: 0x%08X\n", 2471 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2472 goto bce_nvram_test_exit; 2473 } 2474 2475 csum = ether_crc32_le(data + 0x100, 0x100); 2476 if (csum != BCE_CRC32_RESIDUAL) { 2477 rc = ENODEV; 2478 BCE_PRINTF("%s(%d): Invalid Feature Configuration Information " 2479 "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", 2480 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2481 } 2482 2483 bce_nvram_test_exit: 2484 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2485 return rc; 2486 } 2487 2488 2489 /****************************************************************************/ 2490 /* Identifies the current media type of the controller and sets the PHY */ 2491 /* address. */ 2492 /* */ 2493 /* Returns: */ 2494 /* Nothing. */ 2495 /****************************************************************************/ 2496 static void 2497 bce_get_media(struct bce_softc *sc) 2498 { 2499 u32 val; 2500 2501 DBENTER(BCE_VERBOSE); 2502 2503 /* Assume PHY address for copper controllers. */ 2504 sc->bce_phy_addr = 1; 2505 2506 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 2507 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); 2508 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; 2509 u32 strap; 2510 2511 /* 2512 * The BCM5709S is software configurable 2513 * for Copper or SerDes operation. 2514 */ 2515 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 2516 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for copper.\n"); 2517 goto bce_get_media_exit; 2518 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 2519 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for dual media.\n"); 2520 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2521 goto bce_get_media_exit; 2522 } 2523 2524 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 2525 strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 2526 else 2527 strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 2528 2529 if (pci_get_function(sc->bce_dev) == 0) { 2530 switch (strap) { 2531 case 0x4: 2532 case 0x5: 2533 case 0x6: 2534 DBPRINT(sc, BCE_INFO_LOAD, 2535 "BCM5709 s/w configured for SerDes.\n"); 2536 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2537 default: 2538 DBPRINT(sc, BCE_INFO_LOAD, 2539 "BCM5709 s/w configured for Copper.\n"); 2540 } 2541 } else { 2542 switch (strap) { 2543 case 0x1: 2544 case 0x2: 2545 case 0x4: 2546 DBPRINT(sc, BCE_INFO_LOAD, 2547 "BCM5709 s/w configured for SerDes.\n"); 2548 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2549 default: 2550 DBPRINT(sc, BCE_INFO_LOAD, 2551 "BCM5709 s/w configured for Copper.\n"); 2552 } 2553 } 2554 2555 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) 2556 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2557 2558 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { 2559 sc->bce_flags |= BCE_NO_WOL_FLAG; 2560 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 2561 sc->bce_phy_addr = 2; 2562 val = REG_RD_IND(sc, sc->bce_shmem_base + 2563 BCE_SHARED_HW_CFG_CONFIG); 2564 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 2565 sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG; 2566 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb capable adapter\n"); 2567 } 2568 } 2569 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || 2570 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) 2571 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; 2572 2573 bce_get_media_exit: 2574 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), 2575 "Using PHY address %d.\n", sc->bce_phy_addr); 2576 2577 DBEXIT(BCE_VERBOSE); 2578 } 2579 2580 2581 /****************************************************************************/ 2582 /* Free any DMA memory owned by the driver. */ 2583 /* */ 2584 /* Scans through each data structre that requires DMA memory and frees */ 2585 /* the memory if allocated. */ 2586 /* */ 2587 /* Returns: */ 2588 /* Nothing. */ 2589 /****************************************************************************/ 2590 static void 2591 bce_dma_free(struct bce_softc *sc) 2592 { 2593 int i; 2594 2595 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 2596 2597 /* Free, unmap, and destroy the status block. */ 2598 if (sc->status_block != NULL) { 2599 bus_dmamem_free( 2600 sc->status_tag, 2601 sc->status_block, 2602 sc->status_map); 2603 sc->status_block = NULL; 2604 } 2605 2606 if (sc->status_map != NULL) { 2607 bus_dmamap_unload( 2608 sc->status_tag, 2609 sc->status_map); 2610 bus_dmamap_destroy(sc->status_tag, 2611 sc->status_map); 2612 sc->status_map = NULL; 2613 } 2614 2615 if (sc->status_tag != NULL) { 2616 bus_dma_tag_destroy(sc->status_tag); 2617 sc->status_tag = NULL; 2618 } 2619 2620 2621 /* Free, unmap, and destroy the statistics block. */ 2622 if (sc->stats_block != NULL) { 2623 bus_dmamem_free( 2624 sc->stats_tag, 2625 sc->stats_block, 2626 sc->stats_map); 2627 sc->stats_block = NULL; 2628 } 2629 2630 if (sc->stats_map != NULL) { 2631 bus_dmamap_unload( 2632 sc->stats_tag, 2633 sc->stats_map); 2634 bus_dmamap_destroy(sc->stats_tag, 2635 sc->stats_map); 2636 sc->stats_map = NULL; 2637 } 2638 2639 if (sc->stats_tag != NULL) { 2640 bus_dma_tag_destroy(sc->stats_tag); 2641 sc->stats_tag = NULL; 2642 } 2643 2644 2645 /* Free, unmap and destroy all context memory pages. */ 2646 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 2647 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 2648 for (i = 0; i < sc->ctx_pages; i++ ) { 2649 if (sc->ctx_block[i] != NULL) { 2650 bus_dmamem_free( 2651 sc->ctx_tag, 2652 sc->ctx_block[i], 2653 sc->ctx_map[i]); 2654 sc->ctx_block[i] = NULL; 2655 } 2656 2657 if (sc->ctx_map[i] != NULL) { 2658 bus_dmamap_unload( 2659 sc->ctx_tag, 2660 sc->ctx_map[i]); 2661 bus_dmamap_destroy( 2662 sc->ctx_tag, 2663 sc->ctx_map[i]); 2664 sc->ctx_map[i] = NULL; 2665 } 2666 } 2667 2668 /* Destroy the context memory tag. */ 2669 if (sc->ctx_tag != NULL) { 2670 bus_dma_tag_destroy(sc->ctx_tag); 2671 sc->ctx_tag = NULL; 2672 } 2673 } 2674 2675 2676 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 2677 for (i = 0; i < TX_PAGES; i++ ) { 2678 if (sc->tx_bd_chain[i] != NULL) { 2679 bus_dmamem_free( 2680 sc->tx_bd_chain_tag, 2681 sc->tx_bd_chain[i], 2682 sc->tx_bd_chain_map[i]); 2683 sc->tx_bd_chain[i] = NULL; 2684 } 2685 2686 if (sc->tx_bd_chain_map[i] != NULL) { 2687 bus_dmamap_unload( 2688 sc->tx_bd_chain_tag, 2689 sc->tx_bd_chain_map[i]); 2690 bus_dmamap_destroy( 2691 sc->tx_bd_chain_tag, 2692 sc->tx_bd_chain_map[i]); 2693 sc->tx_bd_chain_map[i] = NULL; 2694 } 2695 } 2696 2697 /* Destroy the TX buffer descriptor tag. */ 2698 if (sc->tx_bd_chain_tag != NULL) { 2699 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 2700 sc->tx_bd_chain_tag = NULL; 2701 } 2702 2703 2704 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 2705 for (i = 0; i < RX_PAGES; i++ ) { 2706 if (sc->rx_bd_chain[i] != NULL) { 2707 bus_dmamem_free( 2708 sc->rx_bd_chain_tag, 2709 sc->rx_bd_chain[i], 2710 sc->rx_bd_chain_map[i]); 2711 sc->rx_bd_chain[i] = NULL; 2712 } 2713 2714 if (sc->rx_bd_chain_map[i] != NULL) { 2715 bus_dmamap_unload( 2716 sc->rx_bd_chain_tag, 2717 sc->rx_bd_chain_map[i]); 2718 bus_dmamap_destroy( 2719 sc->rx_bd_chain_tag, 2720 sc->rx_bd_chain_map[i]); 2721 sc->rx_bd_chain_map[i] = NULL; 2722 } 2723 } 2724 2725 /* Destroy the RX buffer descriptor tag. */ 2726 if (sc->rx_bd_chain_tag != NULL) { 2727 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 2728 sc->rx_bd_chain_tag = NULL; 2729 } 2730 2731 2732 #ifdef BCE_USE_SPLIT_HEADER 2733 /* Free, unmap and destroy all page buffer descriptor chain pages. */ 2734 for (i = 0; i < PG_PAGES; i++ ) { 2735 if (sc->pg_bd_chain[i] != NULL) { 2736 bus_dmamem_free( 2737 sc->pg_bd_chain_tag, 2738 sc->pg_bd_chain[i], 2739 sc->pg_bd_chain_map[i]); 2740 sc->pg_bd_chain[i] = NULL; 2741 } 2742 2743 if (sc->pg_bd_chain_map[i] != NULL) { 2744 bus_dmamap_unload( 2745 sc->pg_bd_chain_tag, 2746 sc->pg_bd_chain_map[i]); 2747 bus_dmamap_destroy( 2748 sc->pg_bd_chain_tag, 2749 sc->pg_bd_chain_map[i]); 2750 sc->pg_bd_chain_map[i] = NULL; 2751 } 2752 } 2753 2754 /* Destroy the page buffer descriptor tag. */ 2755 if (sc->pg_bd_chain_tag != NULL) { 2756 bus_dma_tag_destroy(sc->pg_bd_chain_tag); 2757 sc->pg_bd_chain_tag = NULL; 2758 } 2759 #endif 2760 2761 2762 /* Unload and destroy the TX mbuf maps. */ 2763 for (i = 0; i < TOTAL_TX_BD; i++) { 2764 if (sc->tx_mbuf_map[i] != NULL) { 2765 bus_dmamap_unload(sc->tx_mbuf_tag, 2766 sc->tx_mbuf_map[i]); 2767 bus_dmamap_destroy(sc->tx_mbuf_tag, 2768 sc->tx_mbuf_map[i]); 2769 sc->tx_mbuf_map[i] = NULL; 2770 } 2771 } 2772 2773 /* Destroy the TX mbuf tag. */ 2774 if (sc->tx_mbuf_tag != NULL) { 2775 bus_dma_tag_destroy(sc->tx_mbuf_tag); 2776 sc->tx_mbuf_tag = NULL; 2777 } 2778 2779 /* Unload and destroy the RX mbuf maps. */ 2780 for (i = 0; i < TOTAL_RX_BD; i++) { 2781 if (sc->rx_mbuf_map[i] != NULL) { 2782 bus_dmamap_unload(sc->rx_mbuf_tag, 2783 sc->rx_mbuf_map[i]); 2784 bus_dmamap_destroy(sc->rx_mbuf_tag, 2785 sc->rx_mbuf_map[i]); 2786 sc->rx_mbuf_map[i] = NULL; 2787 } 2788 } 2789 2790 /* Destroy the RX mbuf tag. */ 2791 if (sc->rx_mbuf_tag != NULL) { 2792 bus_dma_tag_destroy(sc->rx_mbuf_tag); 2793 sc->rx_mbuf_tag = NULL; 2794 } 2795 2796 #ifdef BCE_USE_SPLIT_HEADER 2797 /* Unload and destroy the page mbuf maps. */ 2798 for (i = 0; i < TOTAL_PG_BD; i++) { 2799 if (sc->pg_mbuf_map[i] != NULL) { 2800 bus_dmamap_unload(sc->pg_mbuf_tag, 2801 sc->pg_mbuf_map[i]); 2802 bus_dmamap_destroy(sc->pg_mbuf_tag, 2803 sc->pg_mbuf_map[i]); 2804 sc->pg_mbuf_map[i] = NULL; 2805 } 2806 } 2807 2808 /* Destroy the page mbuf tag. */ 2809 if (sc->pg_mbuf_tag != NULL) { 2810 bus_dma_tag_destroy(sc->pg_mbuf_tag); 2811 sc->pg_mbuf_tag = NULL; 2812 } 2813 #endif 2814 2815 /* Destroy the parent tag */ 2816 if (sc->parent_tag != NULL) { 2817 bus_dma_tag_destroy(sc->parent_tag); 2818 sc->parent_tag = NULL; 2819 } 2820 2821 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 2822 } 2823 2824 2825 /****************************************************************************/ 2826 /* Get DMA memory from the OS. */ 2827 /* */ 2828 /* Validates that the OS has provided DMA buffers in response to a */ 2829 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 2830 /* When the callback is used the OS will return 0 for the mapping function */ 2831 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 2832 /* failures back to the caller. */ 2833 /* */ 2834 /* Returns: */ 2835 /* Nothing. */ 2836 /****************************************************************************/ 2837 static void 2838 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2839 { 2840 bus_addr_t *busaddr = arg; 2841 2842 /* Simulate a mapping failure. */ 2843 DBRUNIF(DB_RANDOMTRUE(bce_debug_dma_map_addr_failure), 2844 printf("bce: %s(%d): Simulating DMA mapping error.\n", 2845 __FILE__, __LINE__); 2846 error = ENOMEM); 2847 2848 /* Check for an error and signal the caller that an error occurred. */ 2849 if (error) { 2850 printf("bce %s(%d): DMA mapping error! error = %d, " 2851 "nseg = %d\n", __FILE__, __LINE__, error, nseg); 2852 *busaddr = 0; 2853 return; 2854 } 2855 2856 *busaddr = segs->ds_addr; 2857 return; 2858 } 2859 2860 2861 /****************************************************************************/ 2862 /* Allocate any DMA memory needed by the driver. */ 2863 /* */ 2864 /* Allocates DMA memory needed for the various global structures needed by */ 2865 /* hardware. */ 2866 /* */ 2867 /* Memory alignment requirements: */ 2868 /* +-----------------+----------+----------+----------+----------+ */ 2869 /* | | 5706 | 5708 | 5709 | 5716 | */ 2870 /* +-----------------+----------+----------+----------+----------+ */ 2871 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 2872 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 2873 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ 2874 /* |PG Buffers | none | none | none | none | */ 2875 /* |TX Buffers | none | none | none | none | */ 2876 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ 2877 /* +-----------------+----------+----------+----------+----------+ */ 2878 /* */ 2879 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ 2880 /* */ 2881 /* Returns: */ 2882 /* 0 for success, positive value for failure. */ 2883 /****************************************************************************/ 2884 static int 2885 bce_dma_alloc(device_t dev) 2886 { 2887 struct bce_softc *sc; 2888 int i, error, rc = 0; 2889 bus_addr_t busaddr; 2890 bus_size_t max_size, max_seg_size; 2891 int max_segments; 2892 2893 sc = device_get_softc(dev); 2894 2895 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 2896 2897 /* 2898 * Allocate the parent bus DMA tag appropriate for PCI. 2899 */ 2900 if (bus_dma_tag_create(NULL, 2901 1, 2902 BCE_DMA_BOUNDARY, 2903 sc->max_bus_addr, 2904 BUS_SPACE_MAXADDR, 2905 NULL, NULL, 2906 MAXBSIZE, 2907 BUS_SPACE_UNRESTRICTED, 2908 BUS_SPACE_MAXSIZE_32BIT, 2909 0, 2910 NULL, NULL, 2911 &sc->parent_tag)) { 2912 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 2913 __FILE__, __LINE__); 2914 rc = ENOMEM; 2915 goto bce_dma_alloc_exit; 2916 } 2917 2918 /* 2919 * Create a DMA tag for the status block, allocate and clear the 2920 * memory, map the memory into DMA space, and fetch the physical 2921 * address of the block. 2922 */ 2923 if (bus_dma_tag_create(sc->parent_tag, 2924 BCE_DMA_ALIGN, 2925 BCE_DMA_BOUNDARY, 2926 sc->max_bus_addr, 2927 BUS_SPACE_MAXADDR, 2928 NULL, NULL, 2929 BCE_STATUS_BLK_SZ, 2930 1, 2931 BCE_STATUS_BLK_SZ, 2932 0, 2933 NULL, NULL, 2934 &sc->status_tag)) { 2935 BCE_PRINTF("%s(%d): Could not allocate status block DMA tag!\n", 2936 __FILE__, __LINE__); 2937 rc = ENOMEM; 2938 goto bce_dma_alloc_exit; 2939 } 2940 2941 if(bus_dmamem_alloc(sc->status_tag, 2942 (void **)&sc->status_block, 2943 BUS_DMA_NOWAIT, 2944 &sc->status_map)) { 2945 BCE_PRINTF("%s(%d): Could not allocate status block DMA memory!\n", 2946 __FILE__, __LINE__); 2947 rc = ENOMEM; 2948 goto bce_dma_alloc_exit; 2949 } 2950 2951 bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ); 2952 2953 error = bus_dmamap_load(sc->status_tag, 2954 sc->status_map, 2955 sc->status_block, 2956 BCE_STATUS_BLK_SZ, 2957 bce_dma_map_addr, 2958 &busaddr, 2959 BUS_DMA_NOWAIT); 2960 2961 if (error) { 2962 BCE_PRINTF("%s(%d): Could not map status block DMA memory!\n", 2963 __FILE__, __LINE__); 2964 rc = ENOMEM; 2965 goto bce_dma_alloc_exit; 2966 } 2967 2968 sc->status_block_paddr = busaddr; 2969 DBPRINT(sc, BCE_INFO, "%s(): status_block_paddr = 0x%jX\n", 2970 __FUNCTION__, (uintmax_t) sc->status_block_paddr); 2971 2972 /* 2973 * Create a DMA tag for the statistics block, allocate and clear the 2974 * memory, map the memory into DMA space, and fetch the physical 2975 * address of the block. 2976 */ 2977 if (bus_dma_tag_create(sc->parent_tag, 2978 BCE_DMA_ALIGN, 2979 BCE_DMA_BOUNDARY, 2980 sc->max_bus_addr, 2981 BUS_SPACE_MAXADDR, 2982 NULL, NULL, 2983 BCE_STATS_BLK_SZ, 2984 1, 2985 BCE_STATS_BLK_SZ, 2986 0, 2987 NULL, NULL, 2988 &sc->stats_tag)) { 2989 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA tag!\n", 2990 __FILE__, __LINE__); 2991 rc = ENOMEM; 2992 goto bce_dma_alloc_exit; 2993 } 2994 2995 if (bus_dmamem_alloc(sc->stats_tag, 2996 (void **)&sc->stats_block, 2997 BUS_DMA_NOWAIT, 2998 &sc->stats_map)) { 2999 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA memory!\n", 3000 __FILE__, __LINE__); 3001 rc = ENOMEM; 3002 goto bce_dma_alloc_exit; 3003 } 3004 3005 bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ); 3006 3007 error = bus_dmamap_load(sc->stats_tag, 3008 sc->stats_map, 3009 sc->stats_block, 3010 BCE_STATS_BLK_SZ, 3011 bce_dma_map_addr, 3012 &busaddr, 3013 BUS_DMA_NOWAIT); 3014 3015 if(error) { 3016 BCE_PRINTF("%s(%d): Could not map statistics block DMA memory!\n", 3017 __FILE__, __LINE__); 3018 rc = ENOMEM; 3019 goto bce_dma_alloc_exit; 3020 } 3021 3022 sc->stats_block_paddr = busaddr; 3023 DBPRINT(sc, BCE_INFO, "%s(): stats_block_paddr = 0x%jX\n", 3024 __FUNCTION__, (uintmax_t) sc->stats_block_paddr); 3025 3026 /* BCM5709 uses host memory as cache for context memory. */ 3027 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3028 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3029 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 3030 if (sc->ctx_pages == 0) 3031 sc->ctx_pages = 1; 3032 3033 DBRUNIF((sc->ctx_pages > 512), 3034 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 3035 __FILE__, __LINE__, sc->ctx_pages)); 3036 3037 /* 3038 * Create a DMA tag for the context pages, 3039 * allocate and clear the memory, map the 3040 * memory into DMA space, and fetch the 3041 * physical address of the block. 3042 */ 3043 if(bus_dma_tag_create(sc->parent_tag, 3044 BCM_PAGE_SIZE, 3045 BCE_DMA_BOUNDARY, 3046 sc->max_bus_addr, 3047 BUS_SPACE_MAXADDR, 3048 NULL, NULL, 3049 BCM_PAGE_SIZE, 3050 1, 3051 BCM_PAGE_SIZE, 3052 0, 3053 NULL, NULL, 3054 &sc->ctx_tag)) { 3055 BCE_PRINTF("%s(%d): Could not allocate CTX DMA tag!\n", 3056 __FILE__, __LINE__); 3057 rc = ENOMEM; 3058 goto bce_dma_alloc_exit; 3059 } 3060 3061 for (i = 0; i < sc->ctx_pages; i++) { 3062 3063 if(bus_dmamem_alloc(sc->ctx_tag, 3064 (void **)&sc->ctx_block[i], 3065 BUS_DMA_NOWAIT, 3066 &sc->ctx_map[i])) { 3067 BCE_PRINTF("%s(%d): Could not allocate CTX " 3068 "DMA memory!\n", __FILE__, __LINE__); 3069 rc = ENOMEM; 3070 goto bce_dma_alloc_exit; 3071 } 3072 3073 bzero((char *)sc->ctx_block[i], BCM_PAGE_SIZE); 3074 3075 error = bus_dmamap_load(sc->ctx_tag, 3076 sc->ctx_map[i], 3077 sc->ctx_block[i], 3078 BCM_PAGE_SIZE, 3079 bce_dma_map_addr, 3080 &busaddr, 3081 BUS_DMA_NOWAIT); 3082 3083 if (error) { 3084 BCE_PRINTF("%s(%d): Could not map CTX DMA memory!\n", 3085 __FILE__, __LINE__); 3086 rc = ENOMEM; 3087 goto bce_dma_alloc_exit; 3088 } 3089 3090 sc->ctx_paddr[i] = busaddr; 3091 DBPRINT(sc, BCE_INFO, "%s(): ctx_paddr[%d] = 0x%jX\n", 3092 __FUNCTION__, i, (uintmax_t) sc->ctx_paddr[i]); 3093 } 3094 } 3095 3096 /* 3097 * Create a DMA tag for the TX buffer descriptor chain, 3098 * allocate and clear the memory, and fetch the 3099 * physical address of the block. 3100 */ 3101 if(bus_dma_tag_create(sc->parent_tag, 3102 BCM_PAGE_SIZE, 3103 BCE_DMA_BOUNDARY, 3104 sc->max_bus_addr, 3105 BUS_SPACE_MAXADDR, 3106 NULL, NULL, 3107 BCE_TX_CHAIN_PAGE_SZ, 3108 1, 3109 BCE_TX_CHAIN_PAGE_SZ, 3110 0, 3111 NULL, NULL, 3112 &sc->tx_bd_chain_tag)) { 3113 BCE_PRINTF("%s(%d): Could not allocate TX descriptor chain DMA tag!\n", 3114 __FILE__, __LINE__); 3115 rc = ENOMEM; 3116 goto bce_dma_alloc_exit; 3117 } 3118 3119 for (i = 0; i < TX_PAGES; i++) { 3120 3121 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 3122 (void **)&sc->tx_bd_chain[i], 3123 BUS_DMA_NOWAIT, 3124 &sc->tx_bd_chain_map[i])) { 3125 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3126 "chain DMA memory!\n", __FILE__, __LINE__); 3127 rc = ENOMEM; 3128 goto bce_dma_alloc_exit; 3129 } 3130 3131 error = bus_dmamap_load(sc->tx_bd_chain_tag, 3132 sc->tx_bd_chain_map[i], 3133 sc->tx_bd_chain[i], 3134 BCE_TX_CHAIN_PAGE_SZ, 3135 bce_dma_map_addr, 3136 &busaddr, 3137 BUS_DMA_NOWAIT); 3138 3139 if (error) { 3140 BCE_PRINTF("%s(%d): Could not map TX descriptor chain DMA memory!\n", 3141 __FILE__, __LINE__); 3142 rc = ENOMEM; 3143 goto bce_dma_alloc_exit; 3144 } 3145 3146 sc->tx_bd_chain_paddr[i] = busaddr; 3147 DBPRINT(sc, BCE_INFO, "%s(): tx_bd_chain_paddr[%d] = 0x%jX\n", 3148 __FUNCTION__, i, (uintmax_t) sc->tx_bd_chain_paddr[i]); 3149 } 3150 3151 /* Check the required size before mapping to conserve resources. */ 3152 if (bce_tso_enable) { 3153 max_size = BCE_TSO_MAX_SIZE; 3154 max_segments = BCE_MAX_SEGMENTS; 3155 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 3156 } else { 3157 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 3158 max_segments = BCE_MAX_SEGMENTS; 3159 max_seg_size = MCLBYTES; 3160 } 3161 3162 /* Create a DMA tag for TX mbufs. */ 3163 if (bus_dma_tag_create(sc->parent_tag, 3164 1, 3165 BCE_DMA_BOUNDARY, 3166 sc->max_bus_addr, 3167 BUS_SPACE_MAXADDR, 3168 NULL, NULL, 3169 max_size, 3170 max_segments, 3171 max_seg_size, 3172 0, 3173 NULL, NULL, 3174 &sc->tx_mbuf_tag)) { 3175 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 3176 __FILE__, __LINE__); 3177 rc = ENOMEM; 3178 goto bce_dma_alloc_exit; 3179 } 3180 3181 /* Create DMA maps for the TX mbufs clusters. */ 3182 for (i = 0; i < TOTAL_TX_BD; i++) { 3183 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 3184 &sc->tx_mbuf_map[i])) { 3185 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA map!\n", 3186 __FILE__, __LINE__); 3187 rc = ENOMEM; 3188 goto bce_dma_alloc_exit; 3189 } 3190 } 3191 3192 /* 3193 * Create a DMA tag for the RX buffer descriptor chain, 3194 * allocate and clear the memory, and fetch the physical 3195 * address of the blocks. 3196 */ 3197 if (bus_dma_tag_create(sc->parent_tag, 3198 BCM_PAGE_SIZE, 3199 BCE_DMA_BOUNDARY, 3200 BUS_SPACE_MAXADDR, 3201 sc->max_bus_addr, 3202 NULL, NULL, 3203 BCE_RX_CHAIN_PAGE_SZ, 3204 1, 3205 BCE_RX_CHAIN_PAGE_SZ, 3206 0, 3207 NULL, NULL, 3208 &sc->rx_bd_chain_tag)) { 3209 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain DMA tag!\n", 3210 __FILE__, __LINE__); 3211 rc = ENOMEM; 3212 goto bce_dma_alloc_exit; 3213 } 3214 3215 for (i = 0; i < RX_PAGES; i++) { 3216 3217 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 3218 (void **)&sc->rx_bd_chain[i], 3219 BUS_DMA_NOWAIT, 3220 &sc->rx_bd_chain_map[i])) { 3221 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 3222 "DMA memory!\n", __FILE__, __LINE__); 3223 rc = ENOMEM; 3224 goto bce_dma_alloc_exit; 3225 } 3226 3227 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 3228 3229 error = bus_dmamap_load(sc->rx_bd_chain_tag, 3230 sc->rx_bd_chain_map[i], 3231 sc->rx_bd_chain[i], 3232 BCE_RX_CHAIN_PAGE_SZ, 3233 bce_dma_map_addr, 3234 &busaddr, 3235 BUS_DMA_NOWAIT); 3236 3237 if (error) { 3238 BCE_PRINTF("%s(%d): Could not map RX descriptor chain DMA memory!\n", 3239 __FILE__, __LINE__); 3240 rc = ENOMEM; 3241 goto bce_dma_alloc_exit; 3242 } 3243 3244 sc->rx_bd_chain_paddr[i] = busaddr; 3245 DBPRINT(sc, BCE_INFO, "%s(): rx_bd_chain_paddr[%d] = 0x%jX\n", 3246 __FUNCTION__, i, (uintmax_t) sc->rx_bd_chain_paddr[i]); 3247 } 3248 3249 /* 3250 * Create a DMA tag for RX mbufs. 3251 */ 3252 #ifdef BCE_USE_SPLIT_HEADER 3253 max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? 3254 MCLBYTES : sc->rx_bd_mbuf_alloc_size); 3255 #else 3256 max_size = max_seg_size = MJUM9BYTES; 3257 #endif 3258 3259 if (bus_dma_tag_create(sc->parent_tag, 3260 1, 3261 BCE_DMA_BOUNDARY, 3262 sc->max_bus_addr, 3263 BUS_SPACE_MAXADDR, 3264 NULL, NULL, 3265 max_size, 3266 1, 3267 max_seg_size, 3268 0, 3269 NULL, NULL, 3270 &sc->rx_mbuf_tag)) { 3271 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 3272 __FILE__, __LINE__); 3273 rc = ENOMEM; 3274 goto bce_dma_alloc_exit; 3275 } 3276 3277 /* Create DMA maps for the RX mbuf clusters. */ 3278 for (i = 0; i < TOTAL_RX_BD; i++) { 3279 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 3280 &sc->rx_mbuf_map[i])) { 3281 BCE_PRINTF("%s(%d): Unable to create RX mbuf DMA map!\n", 3282 __FILE__, __LINE__); 3283 rc = ENOMEM; 3284 goto bce_dma_alloc_exit; 3285 } 3286 } 3287 3288 #ifdef BCE_USE_SPLIT_HEADER 3289 /* 3290 * Create a DMA tag for the page buffer descriptor chain, 3291 * allocate and clear the memory, and fetch the physical 3292 * address of the blocks. 3293 */ 3294 if (bus_dma_tag_create(sc->parent_tag, 3295 BCM_PAGE_SIZE, 3296 BCE_DMA_BOUNDARY, 3297 BUS_SPACE_MAXADDR, 3298 sc->max_bus_addr, 3299 NULL, NULL, 3300 BCE_PG_CHAIN_PAGE_SZ, 3301 1, 3302 BCE_PG_CHAIN_PAGE_SZ, 3303 0, 3304 NULL, NULL, 3305 &sc->pg_bd_chain_tag)) { 3306 BCE_PRINTF("%s(%d): Could not allocate page descriptor chain DMA tag!\n", 3307 __FILE__, __LINE__); 3308 rc = ENOMEM; 3309 goto bce_dma_alloc_exit; 3310 } 3311 3312 for (i = 0; i < PG_PAGES; i++) { 3313 3314 if (bus_dmamem_alloc(sc->pg_bd_chain_tag, 3315 (void **)&sc->pg_bd_chain[i], 3316 BUS_DMA_NOWAIT, 3317 &sc->pg_bd_chain_map[i])) { 3318 BCE_PRINTF("%s(%d): Could not allocate page descriptor chain " 3319 "DMA memory!\n", __FILE__, __LINE__); 3320 rc = ENOMEM; 3321 goto bce_dma_alloc_exit; 3322 } 3323 3324 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 3325 3326 error = bus_dmamap_load(sc->pg_bd_chain_tag, 3327 sc->pg_bd_chain_map[i], 3328 sc->pg_bd_chain[i], 3329 BCE_PG_CHAIN_PAGE_SZ, 3330 bce_dma_map_addr, 3331 &busaddr, 3332 BUS_DMA_NOWAIT); 3333 3334 if (error) { 3335 BCE_PRINTF("%s(%d): Could not map page descriptor chain DMA memory!\n", 3336 __FILE__, __LINE__); 3337 rc = ENOMEM; 3338 goto bce_dma_alloc_exit; 3339 } 3340 3341 sc->pg_bd_chain_paddr[i] = busaddr; 3342 DBPRINT(sc, BCE_INFO, "%s(): pg_bd_chain_paddr[%d] = 0x%jX\n", 3343 __FUNCTION__, i, (uintmax_t) sc->pg_bd_chain_paddr[i]); 3344 } 3345 3346 /* 3347 * Create a DMA tag for page mbufs. 3348 */ 3349 max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ? 3350 MCLBYTES : sc->pg_bd_mbuf_alloc_size); 3351 3352 if (bus_dma_tag_create(sc->parent_tag, 3353 1, 3354 BCE_DMA_BOUNDARY, 3355 sc->max_bus_addr, 3356 BUS_SPACE_MAXADDR, 3357 NULL, NULL, 3358 max_size, 3359 1, 3360 max_seg_size, 3361 0, 3362 NULL, NULL, 3363 &sc->pg_mbuf_tag)) { 3364 BCE_PRINTF("%s(%d): Could not allocate page mbuf DMA tag!\n", 3365 __FILE__, __LINE__); 3366 rc = ENOMEM; 3367 goto bce_dma_alloc_exit; 3368 } 3369 3370 /* Create DMA maps for the page mbuf clusters. */ 3371 for (i = 0; i < TOTAL_PG_BD; i++) { 3372 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, 3373 &sc->pg_mbuf_map[i])) { 3374 BCE_PRINTF("%s(%d): Unable to create page mbuf DMA map!\n", 3375 __FILE__, __LINE__); 3376 rc = ENOMEM; 3377 goto bce_dma_alloc_exit; 3378 } 3379 } 3380 #endif 3381 3382 bce_dma_alloc_exit: 3383 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3384 return(rc); 3385 } 3386 3387 3388 /****************************************************************************/ 3389 /* Release all resources used by the driver. */ 3390 /* */ 3391 /* Releases all resources acquired by the driver including interrupts, */ 3392 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 3393 /* */ 3394 /* Returns: */ 3395 /* Nothing. */ 3396 /****************************************************************************/ 3397 static void 3398 bce_release_resources(struct bce_softc *sc) 3399 { 3400 device_t dev; 3401 3402 DBENTER(BCE_VERBOSE_RESET); 3403 3404 dev = sc->bce_dev; 3405 3406 bce_dma_free(sc); 3407 3408 if (sc->bce_intrhand != NULL) { 3409 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 3410 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 3411 } 3412 3413 if (sc->bce_res_irq != NULL) { 3414 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 3415 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid, 3416 sc->bce_res_irq); 3417 } 3418 3419 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { 3420 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); 3421 pci_release_msi(dev); 3422 } 3423 3424 if (sc->bce_res_mem != NULL) { 3425 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 3426 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->bce_res_mem); 3427 } 3428 3429 if (sc->bce_ifp != NULL) { 3430 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 3431 if_free(sc->bce_ifp); 3432 } 3433 3434 if (mtx_initialized(&sc->bce_mtx)) 3435 BCE_LOCK_DESTROY(sc); 3436 3437 DBEXIT(BCE_VERBOSE_RESET); 3438 } 3439 3440 3441 /****************************************************************************/ 3442 /* Firmware synchronization. */ 3443 /* */ 3444 /* Before performing certain events such as a chip reset, synchronize with */ 3445 /* the firmware first. */ 3446 /* */ 3447 /* Returns: */ 3448 /* 0 for success, positive value for failure. */ 3449 /****************************************************************************/ 3450 static int 3451 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 3452 { 3453 int i, rc = 0; 3454 u32 val; 3455 3456 DBENTER(BCE_VERBOSE_RESET); 3457 3458 /* Don't waste any time if we've timed out before. */ 3459 if (sc->bce_fw_timed_out) { 3460 rc = EBUSY; 3461 goto bce_fw_sync_exit; 3462 } 3463 3464 /* Increment the message sequence number. */ 3465 sc->bce_fw_wr_seq++; 3466 msg_data |= sc->bce_fw_wr_seq; 3467 3468 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = 0x%08X\n", 3469 msg_data); 3470 3471 /* Send the message to the bootcode driver mailbox. */ 3472 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data); 3473 3474 /* Wait for the bootcode to acknowledge the message. */ 3475 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 3476 /* Check for a response in the bootcode firmware mailbox. */ 3477 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_FW_MB); 3478 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 3479 break; 3480 DELAY(1000); 3481 } 3482 3483 /* If we've timed out, tell the bootcode that we've stopped waiting. */ 3484 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 3485 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 3486 3487 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 3488 "msg_data = 0x%08X\n", 3489 __FILE__, __LINE__, msg_data); 3490 3491 msg_data &= ~BCE_DRV_MSG_CODE; 3492 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 3493 3494 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data); 3495 3496 sc->bce_fw_timed_out = 1; 3497 rc = EBUSY; 3498 } 3499 3500 bce_fw_sync_exit: 3501 DBEXIT(BCE_VERBOSE_RESET); 3502 return (rc); 3503 } 3504 3505 3506 /****************************************************************************/ 3507 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 3508 /* */ 3509 /* Returns: */ 3510 /* Nothing. */ 3511 /****************************************************************************/ 3512 static void 3513 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code, 3514 u32 rv2p_code_len, u32 rv2p_proc) 3515 { 3516 int i; 3517 u32 val; 3518 3519 DBENTER(BCE_VERBOSE_RESET); 3520 3521 /* Set the page size used by RV2P. */ 3522 if (rv2p_proc == RV2P_PROC2) { 3523 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); 3524 } 3525 3526 for (i = 0; i < rv2p_code_len; i += 8) { 3527 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 3528 rv2p_code++; 3529 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 3530 rv2p_code++; 3531 3532 if (rv2p_proc == RV2P_PROC1) { 3533 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 3534 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 3535 } 3536 else { 3537 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 3538 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 3539 } 3540 } 3541 3542 /* Reset the processor, un-stall is done later. */ 3543 if (rv2p_proc == RV2P_PROC1) { 3544 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 3545 } 3546 else { 3547 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 3548 } 3549 3550 DBEXIT(BCE_VERBOSE_RESET); 3551 } 3552 3553 3554 /****************************************************************************/ 3555 /* Load RISC processor firmware. */ 3556 /* */ 3557 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 3558 /* associated with a particular processor. */ 3559 /* */ 3560 /* Returns: */ 3561 /* Nothing. */ 3562 /****************************************************************************/ 3563 static void 3564 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 3565 struct fw_info *fw) 3566 { 3567 u32 offset; 3568 u32 val; 3569 3570 DBENTER(BCE_VERBOSE_RESET); 3571 3572 /* Halt the CPU. */ 3573 val = REG_RD_IND(sc, cpu_reg->mode); 3574 val |= cpu_reg->mode_value_halt; 3575 REG_WR_IND(sc, cpu_reg->mode, val); 3576 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 3577 3578 /* Load the Text area. */ 3579 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 3580 if (fw->text) { 3581 int j; 3582 3583 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 3584 REG_WR_IND(sc, offset, fw->text[j]); 3585 } 3586 } 3587 3588 /* Load the Data area. */ 3589 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 3590 if (fw->data) { 3591 int j; 3592 3593 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 3594 REG_WR_IND(sc, offset, fw->data[j]); 3595 } 3596 } 3597 3598 /* Load the SBSS area. */ 3599 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 3600 if (fw->sbss) { 3601 int j; 3602 3603 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 3604 REG_WR_IND(sc, offset, fw->sbss[j]); 3605 } 3606 } 3607 3608 /* Load the BSS area. */ 3609 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 3610 if (fw->bss) { 3611 int j; 3612 3613 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 3614 REG_WR_IND(sc, offset, fw->bss[j]); 3615 } 3616 } 3617 3618 /* Load the Read-Only area. */ 3619 offset = cpu_reg->spad_base + 3620 (fw->rodata_addr - cpu_reg->mips_view_base); 3621 if (fw->rodata) { 3622 int j; 3623 3624 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 3625 REG_WR_IND(sc, offset, fw->rodata[j]); 3626 } 3627 } 3628 3629 /* Clear the pre-fetch instruction. */ 3630 REG_WR_IND(sc, cpu_reg->inst, 0); 3631 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 3632 3633 /* Start the CPU. */ 3634 val = REG_RD_IND(sc, cpu_reg->mode); 3635 val &= ~cpu_reg->mode_value_halt; 3636 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 3637 REG_WR_IND(sc, cpu_reg->mode, val); 3638 3639 DBEXIT(BCE_VERBOSE_RESET); 3640 } 3641 3642 3643 /****************************************************************************/ 3644 /* Initialize the RX CPU. */ 3645 /* */ 3646 /* Returns: */ 3647 /* Nothing. */ 3648 /****************************************************************************/ 3649 static void 3650 bce_init_rxp_cpu(struct bce_softc *sc) 3651 { 3652 struct cpu_reg cpu_reg; 3653 struct fw_info fw; 3654 3655 DBENTER(BCE_VERBOSE_RESET); 3656 3657 cpu_reg.mode = BCE_RXP_CPU_MODE; 3658 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 3659 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 3660 cpu_reg.state = BCE_RXP_CPU_STATE; 3661 cpu_reg.state_value_clear = 0xffffff; 3662 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 3663 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 3664 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 3665 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 3666 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 3667 cpu_reg.spad_base = BCE_RXP_SCRATCH; 3668 cpu_reg.mips_view_base = 0x8000000; 3669 3670 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3671 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3672 fw.ver_major = bce_RXP_b09FwReleaseMajor; 3673 fw.ver_minor = bce_RXP_b09FwReleaseMinor; 3674 fw.ver_fix = bce_RXP_b09FwReleaseFix; 3675 fw.start_addr = bce_RXP_b09FwStartAddr; 3676 3677 fw.text_addr = bce_RXP_b09FwTextAddr; 3678 fw.text_len = bce_RXP_b09FwTextLen; 3679 fw.text_index = 0; 3680 fw.text = bce_RXP_b09FwText; 3681 3682 fw.data_addr = bce_RXP_b09FwDataAddr; 3683 fw.data_len = bce_RXP_b09FwDataLen; 3684 fw.data_index = 0; 3685 fw.data = bce_RXP_b09FwData; 3686 3687 fw.sbss_addr = bce_RXP_b09FwSbssAddr; 3688 fw.sbss_len = bce_RXP_b09FwSbssLen; 3689 fw.sbss_index = 0; 3690 fw.sbss = bce_RXP_b09FwSbss; 3691 3692 fw.bss_addr = bce_RXP_b09FwBssAddr; 3693 fw.bss_len = bce_RXP_b09FwBssLen; 3694 fw.bss_index = 0; 3695 fw.bss = bce_RXP_b09FwBss; 3696 3697 fw.rodata_addr = bce_RXP_b09FwRodataAddr; 3698 fw.rodata_len = bce_RXP_b09FwRodataLen; 3699 fw.rodata_index = 0; 3700 fw.rodata = bce_RXP_b09FwRodata; 3701 } else { 3702 fw.ver_major = bce_RXP_b06FwReleaseMajor; 3703 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 3704 fw.ver_fix = bce_RXP_b06FwReleaseFix; 3705 fw.start_addr = bce_RXP_b06FwStartAddr; 3706 3707 fw.text_addr = bce_RXP_b06FwTextAddr; 3708 fw.text_len = bce_RXP_b06FwTextLen; 3709 fw.text_index = 0; 3710 fw.text = bce_RXP_b06FwText; 3711 3712 fw.data_addr = bce_RXP_b06FwDataAddr; 3713 fw.data_len = bce_RXP_b06FwDataLen; 3714 fw.data_index = 0; 3715 fw.data = bce_RXP_b06FwData; 3716 3717 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 3718 fw.sbss_len = bce_RXP_b06FwSbssLen; 3719 fw.sbss_index = 0; 3720 fw.sbss = bce_RXP_b06FwSbss; 3721 3722 fw.bss_addr = bce_RXP_b06FwBssAddr; 3723 fw.bss_len = bce_RXP_b06FwBssLen; 3724 fw.bss_index = 0; 3725 fw.bss = bce_RXP_b06FwBss; 3726 3727 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 3728 fw.rodata_len = bce_RXP_b06FwRodataLen; 3729 fw.rodata_index = 0; 3730 fw.rodata = bce_RXP_b06FwRodata; 3731 } 3732 3733 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 3734 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3735 3736 DBEXIT(BCE_VERBOSE_RESET); 3737 } 3738 3739 3740 /****************************************************************************/ 3741 /* Initialize the TX CPU. */ 3742 /* */ 3743 /* Returns: */ 3744 /* Nothing. */ 3745 /****************************************************************************/ 3746 static void 3747 bce_init_txp_cpu(struct bce_softc *sc) 3748 { 3749 struct cpu_reg cpu_reg; 3750 struct fw_info fw; 3751 3752 DBENTER(BCE_VERBOSE_RESET); 3753 3754 cpu_reg.mode = BCE_TXP_CPU_MODE; 3755 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 3756 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 3757 cpu_reg.state = BCE_TXP_CPU_STATE; 3758 cpu_reg.state_value_clear = 0xffffff; 3759 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 3760 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 3761 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 3762 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 3763 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 3764 cpu_reg.spad_base = BCE_TXP_SCRATCH; 3765 cpu_reg.mips_view_base = 0x8000000; 3766 3767 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3768 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3769 fw.ver_major = bce_TXP_b09FwReleaseMajor; 3770 fw.ver_minor = bce_TXP_b09FwReleaseMinor; 3771 fw.ver_fix = bce_TXP_b09FwReleaseFix; 3772 fw.start_addr = bce_TXP_b09FwStartAddr; 3773 3774 fw.text_addr = bce_TXP_b09FwTextAddr; 3775 fw.text_len = bce_TXP_b09FwTextLen; 3776 fw.text_index = 0; 3777 fw.text = bce_TXP_b09FwText; 3778 3779 fw.data_addr = bce_TXP_b09FwDataAddr; 3780 fw.data_len = bce_TXP_b09FwDataLen; 3781 fw.data_index = 0; 3782 fw.data = bce_TXP_b09FwData; 3783 3784 fw.sbss_addr = bce_TXP_b09FwSbssAddr; 3785 fw.sbss_len = bce_TXP_b09FwSbssLen; 3786 fw.sbss_index = 0; 3787 fw.sbss = bce_TXP_b09FwSbss; 3788 3789 fw.bss_addr = bce_TXP_b09FwBssAddr; 3790 fw.bss_len = bce_TXP_b09FwBssLen; 3791 fw.bss_index = 0; 3792 fw.bss = bce_TXP_b09FwBss; 3793 3794 fw.rodata_addr = bce_TXP_b09FwRodataAddr; 3795 fw.rodata_len = bce_TXP_b09FwRodataLen; 3796 fw.rodata_index = 0; 3797 fw.rodata = bce_TXP_b09FwRodata; 3798 } else { 3799 fw.ver_major = bce_TXP_b06FwReleaseMajor; 3800 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 3801 fw.ver_fix = bce_TXP_b06FwReleaseFix; 3802 fw.start_addr = bce_TXP_b06FwStartAddr; 3803 3804 fw.text_addr = bce_TXP_b06FwTextAddr; 3805 fw.text_len = bce_TXP_b06FwTextLen; 3806 fw.text_index = 0; 3807 fw.text = bce_TXP_b06FwText; 3808 3809 fw.data_addr = bce_TXP_b06FwDataAddr; 3810 fw.data_len = bce_TXP_b06FwDataLen; 3811 fw.data_index = 0; 3812 fw.data = bce_TXP_b06FwData; 3813 3814 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 3815 fw.sbss_len = bce_TXP_b06FwSbssLen; 3816 fw.sbss_index = 0; 3817 fw.sbss = bce_TXP_b06FwSbss; 3818 3819 fw.bss_addr = bce_TXP_b06FwBssAddr; 3820 fw.bss_len = bce_TXP_b06FwBssLen; 3821 fw.bss_index = 0; 3822 fw.bss = bce_TXP_b06FwBss; 3823 3824 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 3825 fw.rodata_len = bce_TXP_b06FwRodataLen; 3826 fw.rodata_index = 0; 3827 fw.rodata = bce_TXP_b06FwRodata; 3828 } 3829 3830 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 3831 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3832 3833 DBEXIT(BCE_VERBOSE_RESET); 3834 } 3835 3836 3837 /****************************************************************************/ 3838 /* Initialize the TPAT CPU. */ 3839 /* */ 3840 /* Returns: */ 3841 /* Nothing. */ 3842 /****************************************************************************/ 3843 static void 3844 bce_init_tpat_cpu(struct bce_softc *sc) 3845 { 3846 struct cpu_reg cpu_reg; 3847 struct fw_info fw; 3848 3849 DBENTER(BCE_VERBOSE_RESET); 3850 3851 cpu_reg.mode = BCE_TPAT_CPU_MODE; 3852 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 3853 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 3854 cpu_reg.state = BCE_TPAT_CPU_STATE; 3855 cpu_reg.state_value_clear = 0xffffff; 3856 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 3857 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 3858 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 3859 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 3860 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 3861 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 3862 cpu_reg.mips_view_base = 0x8000000; 3863 3864 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3865 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3866 fw.ver_major = bce_TPAT_b09FwReleaseMajor; 3867 fw.ver_minor = bce_TPAT_b09FwReleaseMinor; 3868 fw.ver_fix = bce_TPAT_b09FwReleaseFix; 3869 fw.start_addr = bce_TPAT_b09FwStartAddr; 3870 3871 fw.text_addr = bce_TPAT_b09FwTextAddr; 3872 fw.text_len = bce_TPAT_b09FwTextLen; 3873 fw.text_index = 0; 3874 fw.text = bce_TPAT_b09FwText; 3875 3876 fw.data_addr = bce_TPAT_b09FwDataAddr; 3877 fw.data_len = bce_TPAT_b09FwDataLen; 3878 fw.data_index = 0; 3879 fw.data = bce_TPAT_b09FwData; 3880 3881 fw.sbss_addr = bce_TPAT_b09FwSbssAddr; 3882 fw.sbss_len = bce_TPAT_b09FwSbssLen; 3883 fw.sbss_index = 0; 3884 fw.sbss = bce_TPAT_b09FwSbss; 3885 3886 fw.bss_addr = bce_TPAT_b09FwBssAddr; 3887 fw.bss_len = bce_TPAT_b09FwBssLen; 3888 fw.bss_index = 0; 3889 fw.bss = bce_TPAT_b09FwBss; 3890 3891 fw.rodata_addr = bce_TPAT_b09FwRodataAddr; 3892 fw.rodata_len = bce_TPAT_b09FwRodataLen; 3893 fw.rodata_index = 0; 3894 fw.rodata = bce_TPAT_b09FwRodata; 3895 } else { 3896 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 3897 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 3898 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 3899 fw.start_addr = bce_TPAT_b06FwStartAddr; 3900 3901 fw.text_addr = bce_TPAT_b06FwTextAddr; 3902 fw.text_len = bce_TPAT_b06FwTextLen; 3903 fw.text_index = 0; 3904 fw.text = bce_TPAT_b06FwText; 3905 3906 fw.data_addr = bce_TPAT_b06FwDataAddr; 3907 fw.data_len = bce_TPAT_b06FwDataLen; 3908 fw.data_index = 0; 3909 fw.data = bce_TPAT_b06FwData; 3910 3911 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 3912 fw.sbss_len = bce_TPAT_b06FwSbssLen; 3913 fw.sbss_index = 0; 3914 fw.sbss = bce_TPAT_b06FwSbss; 3915 3916 fw.bss_addr = bce_TPAT_b06FwBssAddr; 3917 fw.bss_len = bce_TPAT_b06FwBssLen; 3918 fw.bss_index = 0; 3919 fw.bss = bce_TPAT_b06FwBss; 3920 3921 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 3922 fw.rodata_len = bce_TPAT_b06FwRodataLen; 3923 fw.rodata_index = 0; 3924 fw.rodata = bce_TPAT_b06FwRodata; 3925 } 3926 3927 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 3928 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3929 3930 DBEXIT(BCE_VERBOSE_RESET); 3931 } 3932 3933 3934 /****************************************************************************/ 3935 /* Initialize the CP CPU. */ 3936 /* */ 3937 /* Returns: */ 3938 /* Nothing. */ 3939 /****************************************************************************/ 3940 static void 3941 bce_init_cp_cpu(struct bce_softc *sc) 3942 { 3943 struct cpu_reg cpu_reg; 3944 struct fw_info fw; 3945 3946 DBENTER(BCE_VERBOSE_RESET); 3947 3948 cpu_reg.mode = BCE_CP_CPU_MODE; 3949 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; 3950 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; 3951 cpu_reg.state = BCE_CP_CPU_STATE; 3952 cpu_reg.state_value_clear = 0xffffff; 3953 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; 3954 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; 3955 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; 3956 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; 3957 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; 3958 cpu_reg.spad_base = BCE_CP_SCRATCH; 3959 cpu_reg.mips_view_base = 0x8000000; 3960 3961 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3962 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3963 fw.ver_major = bce_CP_b09FwReleaseMajor; 3964 fw.ver_minor = bce_CP_b09FwReleaseMinor; 3965 fw.ver_fix = bce_CP_b09FwReleaseFix; 3966 fw.start_addr = bce_CP_b09FwStartAddr; 3967 3968 fw.text_addr = bce_CP_b09FwTextAddr; 3969 fw.text_len = bce_CP_b09FwTextLen; 3970 fw.text_index = 0; 3971 fw.text = bce_CP_b09FwText; 3972 3973 fw.data_addr = bce_CP_b09FwDataAddr; 3974 fw.data_len = bce_CP_b09FwDataLen; 3975 fw.data_index = 0; 3976 fw.data = bce_CP_b09FwData; 3977 3978 fw.sbss_addr = bce_CP_b09FwSbssAddr; 3979 fw.sbss_len = bce_CP_b09FwSbssLen; 3980 fw.sbss_index = 0; 3981 fw.sbss = bce_CP_b09FwSbss; 3982 3983 fw.bss_addr = bce_CP_b09FwBssAddr; 3984 fw.bss_len = bce_CP_b09FwBssLen; 3985 fw.bss_index = 0; 3986 fw.bss = bce_CP_b09FwBss; 3987 3988 fw.rodata_addr = bce_CP_b09FwRodataAddr; 3989 fw.rodata_len = bce_CP_b09FwRodataLen; 3990 fw.rodata_index = 0; 3991 fw.rodata = bce_CP_b09FwRodata; 3992 } else { 3993 fw.ver_major = bce_CP_b06FwReleaseMajor; 3994 fw.ver_minor = bce_CP_b06FwReleaseMinor; 3995 fw.ver_fix = bce_CP_b06FwReleaseFix; 3996 fw.start_addr = bce_CP_b06FwStartAddr; 3997 3998 fw.text_addr = bce_CP_b06FwTextAddr; 3999 fw.text_len = bce_CP_b06FwTextLen; 4000 fw.text_index = 0; 4001 fw.text = bce_CP_b06FwText; 4002 4003 fw.data_addr = bce_CP_b06FwDataAddr; 4004 fw.data_len = bce_CP_b06FwDataLen; 4005 fw.data_index = 0; 4006 fw.data = bce_CP_b06FwData; 4007 4008 fw.sbss_addr = bce_CP_b06FwSbssAddr; 4009 fw.sbss_len = bce_CP_b06FwSbssLen; 4010 fw.sbss_index = 0; 4011 fw.sbss = bce_CP_b06FwSbss; 4012 4013 fw.bss_addr = bce_CP_b06FwBssAddr; 4014 fw.bss_len = bce_CP_b06FwBssLen; 4015 fw.bss_index = 0; 4016 fw.bss = bce_CP_b06FwBss; 4017 4018 fw.rodata_addr = bce_CP_b06FwRodataAddr; 4019 fw.rodata_len = bce_CP_b06FwRodataLen; 4020 fw.rodata_index = 0; 4021 fw.rodata = bce_CP_b06FwRodata; 4022 } 4023 4024 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); 4025 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4026 4027 DBEXIT(BCE_VERBOSE_RESET); 4028 } 4029 4030 4031 /****************************************************************************/ 4032 /* Initialize the COM CPU. */ 4033 /* */ 4034 /* Returns: */ 4035 /* Nothing. */ 4036 /****************************************************************************/ 4037 static void 4038 bce_init_com_cpu(struct bce_softc *sc) 4039 { 4040 struct cpu_reg cpu_reg; 4041 struct fw_info fw; 4042 4043 DBENTER(BCE_VERBOSE_RESET); 4044 4045 cpu_reg.mode = BCE_COM_CPU_MODE; 4046 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 4047 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 4048 cpu_reg.state = BCE_COM_CPU_STATE; 4049 cpu_reg.state_value_clear = 0xffffff; 4050 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 4051 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 4052 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 4053 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 4054 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 4055 cpu_reg.spad_base = BCE_COM_SCRATCH; 4056 cpu_reg.mips_view_base = 0x8000000; 4057 4058 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4059 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4060 fw.ver_major = bce_COM_b09FwReleaseMajor; 4061 fw.ver_minor = bce_COM_b09FwReleaseMinor; 4062 fw.ver_fix = bce_COM_b09FwReleaseFix; 4063 fw.start_addr = bce_COM_b09FwStartAddr; 4064 4065 fw.text_addr = bce_COM_b09FwTextAddr; 4066 fw.text_len = bce_COM_b09FwTextLen; 4067 fw.text_index = 0; 4068 fw.text = bce_COM_b09FwText; 4069 4070 fw.data_addr = bce_COM_b09FwDataAddr; 4071 fw.data_len = bce_COM_b09FwDataLen; 4072 fw.data_index = 0; 4073 fw.data = bce_COM_b09FwData; 4074 4075 fw.sbss_addr = bce_COM_b09FwSbssAddr; 4076 fw.sbss_len = bce_COM_b09FwSbssLen; 4077 fw.sbss_index = 0; 4078 fw.sbss = bce_COM_b09FwSbss; 4079 4080 fw.bss_addr = bce_COM_b09FwBssAddr; 4081 fw.bss_len = bce_COM_b09FwBssLen; 4082 fw.bss_index = 0; 4083 fw.bss = bce_COM_b09FwBss; 4084 4085 fw.rodata_addr = bce_COM_b09FwRodataAddr; 4086 fw.rodata_len = bce_COM_b09FwRodataLen; 4087 fw.rodata_index = 0; 4088 fw.rodata = bce_COM_b09FwRodata; 4089 } else { 4090 fw.ver_major = bce_COM_b06FwReleaseMajor; 4091 fw.ver_minor = bce_COM_b06FwReleaseMinor; 4092 fw.ver_fix = bce_COM_b06FwReleaseFix; 4093 fw.start_addr = bce_COM_b06FwStartAddr; 4094 4095 fw.text_addr = bce_COM_b06FwTextAddr; 4096 fw.text_len = bce_COM_b06FwTextLen; 4097 fw.text_index = 0; 4098 fw.text = bce_COM_b06FwText; 4099 4100 fw.data_addr = bce_COM_b06FwDataAddr; 4101 fw.data_len = bce_COM_b06FwDataLen; 4102 fw.data_index = 0; 4103 fw.data = bce_COM_b06FwData; 4104 4105 fw.sbss_addr = bce_COM_b06FwSbssAddr; 4106 fw.sbss_len = bce_COM_b06FwSbssLen; 4107 fw.sbss_index = 0; 4108 fw.sbss = bce_COM_b06FwSbss; 4109 4110 fw.bss_addr = bce_COM_b06FwBssAddr; 4111 fw.bss_len = bce_COM_b06FwBssLen; 4112 fw.bss_index = 0; 4113 fw.bss = bce_COM_b06FwBss; 4114 4115 fw.rodata_addr = bce_COM_b06FwRodataAddr; 4116 fw.rodata_len = bce_COM_b06FwRodataLen; 4117 fw.rodata_index = 0; 4118 fw.rodata = bce_COM_b06FwRodata; 4119 } 4120 4121 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 4122 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4123 4124 DBEXIT(BCE_VERBOSE_RESET); 4125 } 4126 4127 4128 /****************************************************************************/ 4129 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ 4130 /* */ 4131 /* Loads the firmware for each CPU and starts the CPU. */ 4132 /* */ 4133 /* Returns: */ 4134 /* Nothing. */ 4135 /****************************************************************************/ 4136 static void 4137 bce_init_cpus(struct bce_softc *sc) 4138 { 4139 DBENTER(BCE_VERBOSE_RESET); 4140 4141 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4142 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4143 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, sizeof(bce_xi_rv2p_proc1), 4144 RV2P_PROC1); 4145 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, sizeof(bce_xi_rv2p_proc2), 4146 RV2P_PROC2); 4147 } else { 4148 bce_load_rv2p_fw(sc, bce_rv2p_proc1, sizeof(bce_rv2p_proc1), 4149 RV2P_PROC1); 4150 bce_load_rv2p_fw(sc, bce_rv2p_proc2, sizeof(bce_rv2p_proc2), 4151 RV2P_PROC2); 4152 } 4153 4154 bce_init_rxp_cpu(sc); 4155 bce_init_txp_cpu(sc); 4156 bce_init_tpat_cpu(sc); 4157 bce_init_com_cpu(sc); 4158 bce_init_cp_cpu(sc); 4159 4160 DBEXIT(BCE_VERBOSE_RESET); 4161 } 4162 4163 4164 /****************************************************************************/ 4165 /* Initialize context memory. */ 4166 /* */ 4167 /* Clears the memory associated with each Context ID (CID). */ 4168 /* */ 4169 /* Returns: */ 4170 /* Nothing. */ 4171 /****************************************************************************/ 4172 static void 4173 bce_init_ctx(struct bce_softc *sc) 4174 { 4175 4176 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4177 4178 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4179 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4180 /* DRC: Replace this constant value with a #define. */ 4181 int i, retry_cnt = 10; 4182 u32 val; 4183 4184 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); 4185 4186 /* 4187 * BCM5709 context memory may be cached 4188 * in host memory so prepare the host memory 4189 * for access. 4190 */ 4191 val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT | (1 << 12); 4192 val |= (BCM_PAGE_BITS - 8) << 16; 4193 REG_WR(sc, BCE_CTX_COMMAND, val); 4194 4195 /* Wait for mem init command to complete. */ 4196 for (i = 0; i < retry_cnt; i++) { 4197 val = REG_RD(sc, BCE_CTX_COMMAND); 4198 if (!(val & BCE_CTX_COMMAND_MEM_INIT)) 4199 break; 4200 DELAY(2); 4201 } 4202 4203 /* ToDo: Consider returning an error here. */ 4204 DBRUNIF((val & BCE_CTX_COMMAND_MEM_INIT), 4205 BCE_PRINTF("%s(): Context memory initialization failed!\n", 4206 __FUNCTION__)); 4207 4208 for (i = 0; i < sc->ctx_pages; i++) { 4209 int j; 4210 4211 /* Set the physical address of the context memory cache. */ 4212 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, 4213 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | 4214 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); 4215 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, 4216 BCE_ADDR_HI(sc->ctx_paddr[i])); 4217 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | 4218 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 4219 4220 /* Verify that the context memory write was successful. */ 4221 for (j = 0; j < retry_cnt; j++) { 4222 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); 4223 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 4224 break; 4225 DELAY(5); 4226 } 4227 4228 /* ToDo: Consider returning an error here. */ 4229 DBRUNIF((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ), 4230 BCE_PRINTF("%s(): Failed to initialize context page %d!\n", 4231 __FUNCTION__, i)); 4232 } 4233 } else { 4234 u32 vcid_addr, offset; 4235 4236 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); 4237 4238 /* 4239 * For the 5706/5708, context memory is local to 4240 * the controller, so initialize the controller 4241 * context memory. 4242 */ 4243 4244 vcid_addr = GET_CID_ADDR(96); 4245 while (vcid_addr) { 4246 4247 vcid_addr -= PHY_CTX_SIZE; 4248 4249 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); 4250 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4251 4252 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 4253 CTX_WR(sc, 0x00, offset, 0); 4254 } 4255 4256 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 4257 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4258 } 4259 4260 } 4261 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4262 } 4263 4264 4265 /****************************************************************************/ 4266 /* Fetch the permanent MAC address of the controller. */ 4267 /* */ 4268 /* Returns: */ 4269 /* Nothing. */ 4270 /****************************************************************************/ 4271 static void 4272 bce_get_mac_addr(struct bce_softc *sc) 4273 { 4274 u32 mac_lo = 0, mac_hi = 0; 4275 4276 DBENTER(BCE_VERBOSE_RESET); 4277 /* 4278 * The NetXtreme II bootcode populates various NIC 4279 * power-on and runtime configuration items in a 4280 * shared memory area. The factory configured MAC 4281 * address is available from both NVRAM and the 4282 * shared memory area so we'll read the value from 4283 * shared memory for speed. 4284 */ 4285 4286 mac_hi = REG_RD_IND(sc, sc->bce_shmem_base + 4287 BCE_PORT_HW_CFG_MAC_UPPER); 4288 mac_lo = REG_RD_IND(sc, sc->bce_shmem_base + 4289 BCE_PORT_HW_CFG_MAC_LOWER); 4290 4291 if ((mac_lo == 0) && (mac_hi == 0)) { 4292 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 4293 __FILE__, __LINE__); 4294 } else { 4295 sc->eaddr[0] = (u_char)(mac_hi >> 8); 4296 sc->eaddr[1] = (u_char)(mac_hi >> 0); 4297 sc->eaddr[2] = (u_char)(mac_lo >> 24); 4298 sc->eaddr[3] = (u_char)(mac_lo >> 16); 4299 sc->eaddr[4] = (u_char)(mac_lo >> 8); 4300 sc->eaddr[5] = (u_char)(mac_lo >> 0); 4301 } 4302 4303 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet address = %6D\n", sc->eaddr, ":"); 4304 DBEXIT(BCE_VERBOSE_RESET); 4305 } 4306 4307 4308 /****************************************************************************/ 4309 /* Program the MAC address. */ 4310 /* */ 4311 /* Returns: */ 4312 /* Nothing. */ 4313 /****************************************************************************/ 4314 static void 4315 bce_set_mac_addr(struct bce_softc *sc) 4316 { 4317 u32 val; 4318 u8 *mac_addr = sc->eaddr; 4319 4320 /* ToDo: Add support for setting multiple MAC addresses. */ 4321 4322 DBENTER(BCE_VERBOSE_RESET); 4323 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = %6D\n", sc->eaddr, ":"); 4324 4325 val = (mac_addr[0] << 8) | mac_addr[1]; 4326 4327 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 4328 4329 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4330 (mac_addr[4] << 8) | mac_addr[5]; 4331 4332 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 4333 4334 DBEXIT(BCE_VERBOSE_RESET); 4335 } 4336 4337 4338 /****************************************************************************/ 4339 /* Stop the controller. */ 4340 /* */ 4341 /* Returns: */ 4342 /* Nothing. */ 4343 /****************************************************************************/ 4344 static void 4345 bce_stop(struct bce_softc *sc) 4346 { 4347 struct ifnet *ifp; 4348 struct ifmedia_entry *ifm; 4349 struct mii_data *mii = NULL; 4350 int mtmp, itmp; 4351 4352 DBENTER(BCE_VERBOSE_RESET); 4353 4354 BCE_LOCK_ASSERT(sc); 4355 4356 ifp = sc->bce_ifp; 4357 4358 mii = device_get_softc(sc->bce_miibus); 4359 4360 callout_stop(&sc->bce_tick_callout); 4361 4362 /* Disable the transmit/receive blocks. */ 4363 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); 4364 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4365 DELAY(20); 4366 4367 bce_disable_intr(sc); 4368 4369 /* Free RX buffers. */ 4370 #ifdef BCE_USE_SPLIT_HEADER 4371 bce_free_pg_chain(sc); 4372 #endif 4373 bce_free_rx_chain(sc); 4374 4375 /* Free TX buffers. */ 4376 bce_free_tx_chain(sc); 4377 4378 /* 4379 * Isolate/power down the PHY, but leave the media selection 4380 * unchanged so that things will be put back to normal when 4381 * we bring the interface back up. 4382 */ 4383 4384 itmp = ifp->if_flags; 4385 ifp->if_flags |= IFF_UP; 4386 4387 /* If we are called from bce_detach(), mii is already NULL. */ 4388 if (mii != NULL) { 4389 ifm = mii->mii_media.ifm_cur; 4390 mtmp = ifm->ifm_media; 4391 ifm->ifm_media = IFM_ETHER | IFM_NONE; 4392 mii_mediachg(mii); 4393 ifm->ifm_media = mtmp; 4394 } 4395 4396 ifp->if_flags = itmp; 4397 sc->watchdog_timer = 0; 4398 4399 sc->bce_link = 0; 4400 4401 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4402 4403 DBEXIT(BCE_VERBOSE_RESET); 4404 } 4405 4406 4407 static int 4408 bce_reset(struct bce_softc *sc, u32 reset_code) 4409 { 4410 u32 val; 4411 int i, rc = 0; 4412 4413 DBENTER(BCE_VERBOSE_RESET); 4414 4415 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 4416 __FUNCTION__, reset_code); 4417 4418 /* Wait for pending PCI transactions to complete. */ 4419 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 4420 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 4421 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 4422 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 4423 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 4424 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4425 DELAY(5); 4426 4427 /* Disable DMA */ 4428 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4429 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4430 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4431 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4432 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4433 } 4434 4435 /* Assume bootcode is running. */ 4436 sc->bce_fw_timed_out = 0; 4437 4438 /* Give the firmware a chance to prepare for the reset. */ 4439 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 4440 if (rc) 4441 goto bce_reset_exit; 4442 4443 /* Set a firmware reminder that this is a soft reset. */ 4444 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_RESET_SIGNATURE, 4445 BCE_DRV_RESET_SIGNATURE_MAGIC); 4446 4447 /* Dummy read to force the chip to complete all current transactions. */ 4448 val = REG_RD(sc, BCE_MISC_ID); 4449 4450 /* Chip reset. */ 4451 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4452 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4453 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); 4454 REG_RD(sc, BCE_MISC_COMMAND); 4455 DELAY(5); 4456 4457 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4458 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4459 4460 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); 4461 } else { 4462 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4463 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4464 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4465 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 4466 4467 /* Allow up to 30us for reset to complete. */ 4468 for (i = 0; i < 10; i++) { 4469 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 4470 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4471 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 4472 break; 4473 } 4474 DELAY(10); 4475 } 4476 4477 /* Check that reset completed successfully. */ 4478 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4479 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 4480 BCE_PRINTF("%s(%d): Reset failed!\n", 4481 __FILE__, __LINE__); 4482 rc = EBUSY; 4483 goto bce_reset_exit; 4484 } 4485 } 4486 4487 /* Make sure byte swapping is properly configured. */ 4488 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 4489 if (val != 0x01020304) { 4490 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 4491 __FILE__, __LINE__); 4492 rc = ENODEV; 4493 goto bce_reset_exit; 4494 } 4495 4496 /* Just completed a reset, assume that firmware is running again. */ 4497 sc->bce_fw_timed_out = 0; 4498 4499 /* Wait for the firmware to finish its initialization. */ 4500 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 4501 if (rc) 4502 BCE_PRINTF("%s(%d): Firmware did not complete initialization!\n", 4503 __FILE__, __LINE__); 4504 4505 bce_reset_exit: 4506 DBEXIT(BCE_VERBOSE_RESET); 4507 return (rc); 4508 } 4509 4510 4511 static int 4512 bce_chipinit(struct bce_softc *sc) 4513 { 4514 u32 val; 4515 int rc = 0; 4516 4517 DBENTER(BCE_VERBOSE_RESET); 4518 4519 bce_disable_intr(sc); 4520 4521 /* 4522 * Initialize DMA byte/word swapping, configure the number of DMA 4523 * channels and PCI clock compensation delay. 4524 */ 4525 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 4526 BCE_DMA_CONFIG_DATA_WORD_SWAP | 4527 #if BYTE_ORDER == BIG_ENDIAN 4528 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 4529 #endif 4530 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 4531 DMA_READ_CHANS << 12 | 4532 DMA_WRITE_CHANS << 16; 4533 4534 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 4535 4536 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 4537 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 4538 4539 /* 4540 * This setting resolves a problem observed on certain Intel PCI 4541 * chipsets that cannot handle multiple outstanding DMA operations. 4542 * See errata E9_5706A1_65. 4543 */ 4544 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 4545 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 4546 !(sc->bce_flags & BCE_PCIX_FLAG)) 4547 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 4548 4549 REG_WR(sc, BCE_DMA_CONFIG, val); 4550 4551 /* Enable the RX_V2P and Context state machines before access. */ 4552 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 4553 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 4554 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 4555 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 4556 4557 /* Initialize context mapping and zero out the quick contexts. */ 4558 bce_init_ctx(sc); 4559 4560 /* Initialize the on-boards CPUs */ 4561 bce_init_cpus(sc); 4562 4563 /* Prepare NVRAM for access. */ 4564 if (bce_init_nvram(sc)) { 4565 rc = ENODEV; 4566 goto bce_chipinit_exit; 4567 } 4568 4569 /* Set the kernel bypass block size */ 4570 val = REG_RD(sc, BCE_MQ_CONFIG); 4571 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 4572 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 4573 4574 /* Enable bins used on the 5709. */ 4575 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4576 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4577 val |= BCE_MQ_CONFIG_BIN_MQ_MODE; 4578 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) 4579 val |= BCE_MQ_CONFIG_HALT_DIS; 4580 } 4581 4582 REG_WR(sc, BCE_MQ_CONFIG, val); 4583 4584 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 4585 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 4586 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 4587 4588 /* Set the page size and clear the RV2P processor stall bits. */ 4589 val = (BCM_PAGE_BITS - 8) << 24; 4590 REG_WR(sc, BCE_RV2P_CONFIG, val); 4591 4592 /* Configure page size. */ 4593 val = REG_RD(sc, BCE_TBDR_CONFIG); 4594 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 4595 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 4596 REG_WR(sc, BCE_TBDR_CONFIG, val); 4597 4598 /* Set the perfect match control register to default. */ 4599 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); 4600 4601 bce_chipinit_exit: 4602 DBEXIT(BCE_VERBOSE_RESET); 4603 4604 return(rc); 4605 } 4606 4607 4608 /****************************************************************************/ 4609 /* Initialize the controller in preparation to send/receive traffic. */ 4610 /* */ 4611 /* Returns: */ 4612 /* 0 for success, positive value for failure. */ 4613 /****************************************************************************/ 4614 static int 4615 bce_blockinit(struct bce_softc *sc) 4616 { 4617 u32 reg, val; 4618 int rc = 0; 4619 4620 DBENTER(BCE_VERBOSE_RESET); 4621 4622 /* Load the hardware default MAC address. */ 4623 bce_set_mac_addr(sc); 4624 4625 /* Set the Ethernet backoff seed value */ 4626 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 4627 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 4628 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 4629 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 4630 4631 sc->last_status_idx = 0; 4632 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 4633 4634 /* Set up link change interrupt generation. */ 4635 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 4636 4637 /* Program the physical address of the status block. */ 4638 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 4639 BCE_ADDR_LO(sc->status_block_paddr)); 4640 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 4641 BCE_ADDR_HI(sc->status_block_paddr)); 4642 4643 /* Program the physical address of the statistics block. */ 4644 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 4645 BCE_ADDR_LO(sc->stats_block_paddr)); 4646 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 4647 BCE_ADDR_HI(sc->stats_block_paddr)); 4648 4649 /* Program various host coalescing parameters. */ 4650 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 4651 (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); 4652 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 4653 (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); 4654 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 4655 (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip); 4656 REG_WR(sc, BCE_HC_TX_TICKS, 4657 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 4658 REG_WR(sc, BCE_HC_RX_TICKS, 4659 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 4660 REG_WR(sc, BCE_HC_COM_TICKS, 4661 (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks); 4662 REG_WR(sc, BCE_HC_CMD_TICKS, 4663 (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks); 4664 REG_WR(sc, BCE_HC_STATS_TICKS, 4665 (sc->bce_stats_ticks & 0xffff00)); 4666 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 4667 4668 /* Configure the Host Coalescing block. */ 4669 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 4670 BCE_HC_CONFIG_COLLECT_STATS; 4671 4672 #if 0 4673 /* ToDo: Add MSI-X support. */ 4674 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 4675 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + 4676 BCE_HC_SB_CONFIG_1; 4677 4678 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); 4679 4680 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | 4681 BCE_HC_SB_CONFIG_1_ONE_SHOT); 4682 4683 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, 4684 (sc->tx_quick_cons_trip_int << 16) | 4685 sc->tx_quick_cons_trip); 4686 4687 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, 4688 (sc->tx_ticks_int << 16) | sc->tx_ticks); 4689 4690 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 4691 } 4692 4693 /* 4694 * Tell the HC block to automatically set the 4695 * INT_MASK bit after an MSI/MSI-X interrupt 4696 * is generated so the driver doesn't have to. 4697 */ 4698 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) 4699 val |= BCE_HC_CONFIG_ONE_SHOT; 4700 4701 /* Set the MSI-X status blocks to 128 byte boundaries. */ 4702 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 4703 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 4704 #endif 4705 4706 REG_WR(sc, BCE_HC_CONFIG, val); 4707 4708 /* Clear the internal statistics counters. */ 4709 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 4710 4711 /* Verify that bootcode is running. */ 4712 reg = REG_RD_IND(sc, sc->bce_shmem_base + BCE_DEV_INFO_SIGNATURE); 4713 4714 DBRUNIF(DB_RANDOMTRUE(bce_debug_bootcode_running_failure), 4715 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 4716 __FILE__, __LINE__); 4717 reg = 0); 4718 4719 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 4720 BCE_DEV_INFO_SIGNATURE_MAGIC) { 4721 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 4722 "Expected: 08%08X\n", __FILE__, __LINE__, 4723 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 4724 BCE_DEV_INFO_SIGNATURE_MAGIC); 4725 rc = ENODEV; 4726 goto bce_blockinit_exit; 4727 } 4728 4729 /* Enable DMA */ 4730 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4731 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4732 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4733 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4734 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4735 } 4736 4737 /* Allow bootcode to apply any additional fixes before enabling MAC. */ 4738 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET); 4739 4740 /* Enable link state change interrupt generation. */ 4741 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 4742 4743 /* Enable all remaining blocks in the MAC. */ 4744 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4745 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 4746 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT_XI); 4747 else 4748 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 4749 4750 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 4751 DELAY(20); 4752 4753 /* Save the current host coalescing block settings. */ 4754 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); 4755 4756 bce_blockinit_exit: 4757 DBEXIT(BCE_VERBOSE_RESET); 4758 4759 return (rc); 4760 } 4761 4762 4763 /****************************************************************************/ 4764 /* Encapsulate an mbuf into the rx_bd chain. */ 4765 /* */ 4766 /* Returns: */ 4767 /* 0 for success, positive value for failure. */ 4768 /****************************************************************************/ 4769 static int 4770 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 4771 u16 *chain_prod, u32 *prod_bseq) 4772 { 4773 bus_dmamap_t map; 4774 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 4775 struct mbuf *m_new = NULL; 4776 struct rx_bd *rxbd; 4777 int nsegs, error, rc = 0; 4778 #ifdef BCE_DEBUG 4779 u16 debug_chain_prod = *chain_prod; 4780 #endif 4781 4782 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4783 4784 /* Make sure the inputs are valid. */ 4785 DBRUNIF((*chain_prod > MAX_RX_BD), 4786 BCE_PRINTF("%s(%d): RX producer out of range: 0x%04X > 0x%04X\n", 4787 __FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD)); 4788 4789 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, " 4790 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); 4791 4792 /* Update some debug statistic counters */ 4793 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 4794 sc->rx_low_watermark = sc->free_rx_bd); 4795 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 4796 4797 /* Check whether this is a new mbuf allocation. */ 4798 if (m == NULL) { 4799 4800 /* Simulate an mbuf allocation failure. */ 4801 DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure), 4802 sc->mbuf_alloc_failed++; 4803 sc->debug_mbuf_sim_alloc_failed++; 4804 rc = ENOBUFS; 4805 goto bce_get_rx_buf_exit); 4806 4807 /* This is a new mbuf allocation. */ 4808 #ifdef BCE_USE_SPLIT_HEADER 4809 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 4810 #else 4811 if (sc->rx_bd_mbuf_alloc_size <= MCLBYTES) 4812 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 4813 else 4814 m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, sc->rx_bd_mbuf_alloc_size); 4815 #endif 4816 4817 if (m_new == NULL) { 4818 sc->mbuf_alloc_failed++; 4819 rc = ENOBUFS; 4820 goto bce_get_rx_buf_exit; 4821 } 4822 4823 DBRUN(sc->debug_rx_mbuf_alloc++); 4824 } else { 4825 /* Reuse an existing mbuf. */ 4826 m_new = m; 4827 } 4828 4829 /* Make sure we have a valid packet header. */ 4830 M_ASSERTPKTHDR(m_new); 4831 4832 /* Initialize the mbuf size and pad if necessary for alignment. */ 4833 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; 4834 m_adj(m_new, sc->rx_bd_mbuf_align_pad); 4835 4836 /* ToDo: Consider calling m_fragment() to test error handling. */ 4837 4838 /* Map the mbuf cluster into device memory. */ 4839 map = sc->rx_mbuf_map[*chain_prod]; 4840 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new, 4841 segs, &nsegs, BUS_DMA_NOWAIT); 4842 4843 /* Handle any mapping errors. */ 4844 if (error) { 4845 BCE_PRINTF("%s(%d): Error mapping mbuf into RX chain (%d)!\n", 4846 __FILE__, __LINE__, error); 4847 4848 m_freem(m_new); 4849 DBRUN(sc->debug_rx_mbuf_alloc--); 4850 4851 rc = ENOBUFS; 4852 goto bce_get_rx_buf_exit; 4853 } 4854 4855 /* All mbufs must map to a single segment. */ 4856 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 4857 __FUNCTION__, nsegs)); 4858 4859 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREWRITE) here? */ 4860 4861 /* Setup the rx_bd for the segment. */ 4862 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 4863 4864 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 4865 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 4866 rxbd->rx_bd_len = htole32(segs[0].ds_len); 4867 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 4868 *prod_bseq += segs[0].ds_len; 4869 4870 /* Save the mbuf and update our counter. */ 4871 sc->rx_mbuf_ptr[*chain_prod] = m_new; 4872 sc->free_rx_bd -= nsegs; 4873 4874 DBRUNMSG(BCE_INSANE_RECV, bce_dump_rx_mbuf_chain(sc, debug_chain_prod, 4875 nsegs)); 4876 4877 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, " 4878 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); 4879 4880 bce_get_rx_buf_exit: 4881 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4882 4883 return(rc); 4884 } 4885 4886 4887 #ifdef BCE_USE_SPLIT_HEADER 4888 /****************************************************************************/ 4889 /* Encapsulate an mbuf cluster into the page chain. */ 4890 /* */ 4891 /* Returns: */ 4892 /* 0 for success, positive value for failure. */ 4893 /****************************************************************************/ 4894 static int 4895 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 4896 u16 *prod_idx) 4897 { 4898 bus_dmamap_t map; 4899 bus_addr_t busaddr; 4900 struct mbuf *m_new = NULL; 4901 struct rx_bd *pgbd; 4902 int error, rc = 0; 4903 #ifdef BCE_DEBUG 4904 u16 debug_prod_idx = *prod_idx; 4905 #endif 4906 4907 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4908 4909 /* Make sure the inputs are valid. */ 4910 DBRUNIF((*prod_idx > MAX_PG_BD), 4911 BCE_PRINTF("%s(%d): page producer out of range: 0x%04X > 0x%04X\n", 4912 __FILE__, __LINE__, *prod_idx, (u16) MAX_PG_BD)); 4913 4914 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 4915 "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 4916 4917 /* Update counters if we've hit a new low or run out of pages. */ 4918 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), 4919 sc->pg_low_watermark = sc->free_pg_bd); 4920 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); 4921 4922 /* Check whether this is a new mbuf allocation. */ 4923 if (m == NULL) { 4924 4925 /* Simulate an mbuf allocation failure. */ 4926 DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure), 4927 sc->mbuf_alloc_failed++; 4928 sc->debug_mbuf_sim_alloc_failed++; 4929 rc = ENOBUFS; 4930 goto bce_get_pg_buf_exit); 4931 4932 /* This is a new mbuf allocation. */ 4933 m_new = m_getcl(M_DONTWAIT, MT_DATA, 0); 4934 if (m_new == NULL) { 4935 sc->mbuf_alloc_failed++; 4936 rc = ENOBUFS; 4937 goto bce_get_pg_buf_exit; 4938 } 4939 4940 DBRUN(sc->debug_pg_mbuf_alloc++); 4941 } else { 4942 /* Reuse an existing mbuf. */ 4943 m_new = m; 4944 m_new->m_data = m_new->m_ext.ext_buf; 4945 } 4946 4947 m_new->m_len = sc->pg_bd_mbuf_alloc_size; 4948 4949 /* ToDo: Consider calling m_fragment() to test error handling. */ 4950 4951 /* Map the mbuf cluster into device memory. */ 4952 map = sc->pg_mbuf_map[*prod_idx]; 4953 error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *), 4954 sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr, &busaddr, BUS_DMA_NOWAIT); 4955 4956 /* Handle any mapping errors. */ 4957 if (error) { 4958 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", 4959 __FILE__, __LINE__); 4960 4961 m_freem(m_new); 4962 DBRUN(sc->debug_pg_mbuf_alloc--); 4963 4964 rc = ENOBUFS; 4965 goto bce_get_pg_buf_exit; 4966 } 4967 4968 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREWRITE) here? */ 4969 4970 /* 4971 * The page chain uses the same rx_bd data structure 4972 * as the receive chain but doesn't require a byte sequence (bseq). 4973 */ 4974 pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)]; 4975 4976 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(busaddr)); 4977 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(busaddr)); 4978 pgbd->rx_bd_len = htole32(sc->pg_bd_mbuf_alloc_size); 4979 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 4980 4981 /* Save the mbuf and update our counter. */ 4982 sc->pg_mbuf_ptr[*prod_idx] = m_new; 4983 sc->free_pg_bd--; 4984 4985 DBRUNMSG(BCE_INSANE_RECV, bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 4986 1)); 4987 4988 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 4989 "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 4990 4991 bce_get_pg_buf_exit: 4992 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4993 4994 return(rc); 4995 } 4996 #endif /* BCE_USE_SPLIT_HEADER */ 4997 4998 /****************************************************************************/ 4999 /* Initialize the TX context memory. */ 5000 /* */ 5001 /* Returns: */ 5002 /* Nothing */ 5003 /****************************************************************************/ 5004 static void 5005 bce_init_tx_context(struct bce_softc *sc) 5006 { 5007 u32 val; 5008 5009 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5010 5011 /* Initialize the context ID for an L2 TX chain. */ 5012 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5013 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5014 /* Set the CID type to support an L2 connection. */ 5015 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | BCE_L2CTX_TX_TYPE_SIZE_L2_XI; 5016 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); 5017 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); 5018 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val); 5019 5020 /* Point the hardware to the first page in the chain. */ 5021 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5022 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); 5023 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5024 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); 5025 } else { 5026 /* Set the CID type to support an L2 connection. */ 5027 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; 5028 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); 5029 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); 5030 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); 5031 5032 /* Point the hardware to the first page in the chain. */ 5033 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5034 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI, val); 5035 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5036 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO, val); 5037 } 5038 5039 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5040 } 5041 5042 5043 /****************************************************************************/ 5044 /* Allocate memory and initialize the TX data structures. */ 5045 /* */ 5046 /* Returns: */ 5047 /* 0 for success, positive value for failure. */ 5048 /****************************************************************************/ 5049 static int 5050 bce_init_tx_chain(struct bce_softc *sc) 5051 { 5052 struct tx_bd *txbd; 5053 int i, rc = 0; 5054 5055 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5056 5057 /* Set the initial TX producer/consumer indices. */ 5058 sc->tx_prod = 0; 5059 sc->tx_cons = 0; 5060 sc->tx_prod_bseq = 0; 5061 sc->used_tx_bd = 0; 5062 sc->max_tx_bd = USABLE_TX_BD; 5063 DBRUN(sc->tx_hi_watermark = USABLE_TX_BD); 5064 DBRUN(sc->tx_full_count = 0); 5065 5066 /* 5067 * The NetXtreme II supports a linked-list structre called 5068 * a Buffer Descriptor Chain (or BD chain). A BD chain 5069 * consists of a series of 1 or more chain pages, each of which 5070 * consists of a fixed number of BD entries. 5071 * The last BD entry on each page is a pointer to the next page 5072 * in the chain, and the last pointer in the BD chain 5073 * points back to the beginning of the chain. 5074 */ 5075 5076 /* Set the TX next pointer chain entries. */ 5077 for (i = 0; i < TX_PAGES; i++) { 5078 int j; 5079 5080 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 5081 5082 /* Check if we've reached the last page. */ 5083 if (i == (TX_PAGES - 1)) 5084 j = 0; 5085 else 5086 j = i + 1; 5087 5088 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 5089 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 5090 } 5091 5092 bce_init_tx_context(sc); 5093 5094 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD)); 5095 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5096 5097 return(rc); 5098 } 5099 5100 5101 /****************************************************************************/ 5102 /* Free memory and clear the TX data structures. */ 5103 /* */ 5104 /* Returns: */ 5105 /* Nothing. */ 5106 /****************************************************************************/ 5107 static void 5108 bce_free_tx_chain(struct bce_softc *sc) 5109 { 5110 int i; 5111 5112 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5113 5114 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 5115 for (i = 0; i < TOTAL_TX_BD; i++) { 5116 if (sc->tx_mbuf_ptr[i] != NULL) { 5117 if (sc->tx_mbuf_map != NULL) 5118 bus_dmamap_sync(sc->tx_mbuf_tag, sc->tx_mbuf_map[i], 5119 BUS_DMASYNC_POSTWRITE); 5120 m_freem(sc->tx_mbuf_ptr[i]); 5121 sc->tx_mbuf_ptr[i] = NULL; 5122 DBRUN(sc->debug_tx_mbuf_alloc--); 5123 } 5124 } 5125 5126 /* Clear each TX chain page. */ 5127 for (i = 0; i < TX_PAGES; i++) 5128 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 5129 5130 sc->used_tx_bd = 0; 5131 5132 /* Check if we lost any mbufs in the process. */ 5133 DBRUNIF((sc->debug_tx_mbuf_alloc), 5134 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 5135 "from tx chain!\n", 5136 __FILE__, __LINE__, sc->debug_tx_mbuf_alloc)); 5137 5138 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5139 } 5140 5141 5142 /****************************************************************************/ 5143 /* Initialize the RX context memory. */ 5144 /* */ 5145 /* Returns: */ 5146 /* Nothing */ 5147 /****************************************************************************/ 5148 static void 5149 bce_init_rx_context(struct bce_softc *sc) 5150 { 5151 u32 val; 5152 5153 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5154 5155 /* Initialize the type, size, and BD cache levels for the RX context. */ 5156 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 5157 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | 5158 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); 5159 5160 /* 5161 * Set the level for generating pause frames 5162 * when the number of available rx_bd's gets 5163 * too low (the low watermark) and the level 5164 * when pause frames can be stopped (the high 5165 * watermark). 5166 */ 5167 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5168 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5169 u32 lo_water, hi_water; 5170 5171 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; 5172 hi_water = USABLE_RX_BD / 4; 5173 5174 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; 5175 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; 5176 5177 if (hi_water > 0xf) 5178 hi_water = 0xf; 5179 else if (hi_water == 0) 5180 lo_water = 0; 5181 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | 5182 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); 5183 } 5184 5185 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); 5186 5187 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 5188 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5189 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5190 val = REG_RD(sc, BCE_MQ_MAP_L2_5); 5191 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); 5192 } 5193 5194 /* Point the hardware to the first page in the chain. */ 5195 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 5196 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); 5197 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 5198 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); 5199 5200 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5201 } 5202 5203 5204 /****************************************************************************/ 5205 /* Allocate memory and initialize the RX data structures. */ 5206 /* */ 5207 /* Returns: */ 5208 /* 0 for success, positive value for failure. */ 5209 /****************************************************************************/ 5210 static int 5211 bce_init_rx_chain(struct bce_softc *sc) 5212 { 5213 struct rx_bd *rxbd; 5214 int i, rc = 0; 5215 5216 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5217 BCE_VERBOSE_CTX); 5218 5219 /* Initialize the RX producer and consumer indices. */ 5220 sc->rx_prod = 0; 5221 sc->rx_cons = 0; 5222 sc->rx_prod_bseq = 0; 5223 sc->free_rx_bd = USABLE_RX_BD; 5224 sc->max_rx_bd = USABLE_RX_BD; 5225 DBRUN(sc->rx_low_watermark = sc->max_rx_bd); 5226 DBRUN(sc->rx_empty_count = 0); 5227 5228 /* Initialize the RX next pointer chain entries. */ 5229 for (i = 0; i < RX_PAGES; i++) { 5230 int j; 5231 5232 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 5233 5234 /* Check if we've reached the last page. */ 5235 if (i == (RX_PAGES - 1)) 5236 j = 0; 5237 else 5238 j = i + 1; 5239 5240 /* Setup the chain page pointers. */ 5241 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 5242 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 5243 } 5244 5245 /* Fill up the RX chain. */ 5246 bce_fill_rx_chain(sc); 5247 5248 for (i = 0; i < RX_PAGES; i++) { 5249 bus_dmamap_sync( 5250 sc->rx_bd_chain_tag, 5251 sc->rx_bd_chain_map[i], 5252 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5253 } 5254 5255 bce_init_rx_context(sc); 5256 5257 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_chain(sc, 0, TOTAL_RX_BD)); 5258 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5259 BCE_VERBOSE_CTX); 5260 /* ToDo: Are there possible failure modes here? */ 5261 return(rc); 5262 } 5263 5264 5265 /****************************************************************************/ 5266 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 5267 /* occurs. */ 5268 /* */ 5269 /* Returns: */ 5270 /* Nothing */ 5271 /****************************************************************************/ 5272 static void 5273 bce_fill_rx_chain(struct bce_softc *sc) 5274 { 5275 u16 prod, prod_idx; 5276 u32 prod_bseq; 5277 5278 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5279 BCE_VERBOSE_CTX); 5280 5281 /* Get the RX chain producer indices. */ 5282 prod = sc->rx_prod; 5283 prod_bseq = sc->rx_prod_bseq; 5284 5285 /* Keep filling the RX chain until it's full. */ 5286 while (sc->free_rx_bd > 0) { 5287 prod_idx = RX_CHAIN_IDX(prod); 5288 if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) { 5289 /* Bail out if we can't add an mbuf to the chain. */ 5290 break; 5291 } 5292 prod = NEXT_RX_BD(prod); 5293 } 5294 5295 /* Save the RX chain producer indices. */ 5296 sc->rx_prod = prod; 5297 sc->rx_prod_bseq = prod_bseq; 5298 5299 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5300 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", 5301 __FUNCTION__, sc->rx_prod)); 5302 5303 /* Write the mailbox and tell the chip about the waiting rx_bd's. */ 5304 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, 5305 sc->rx_prod); 5306 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, 5307 sc->rx_prod_bseq); 5308 5309 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5310 BCE_VERBOSE_CTX); 5311 } 5312 5313 5314 /****************************************************************************/ 5315 /* Free memory and clear the RX data structures. */ 5316 /* */ 5317 /* Returns: */ 5318 /* Nothing. */ 5319 /****************************************************************************/ 5320 static void 5321 bce_free_rx_chain(struct bce_softc *sc) 5322 { 5323 int i; 5324 5325 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5326 5327 /* Free any mbufs still in the RX mbuf chain. */ 5328 for (i = 0; i < TOTAL_RX_BD; i++) { 5329 if (sc->rx_mbuf_ptr[i] != NULL) { 5330 if (sc->rx_mbuf_map[i] != NULL) 5331 bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[i], 5332 BUS_DMASYNC_POSTREAD); 5333 m_freem(sc->rx_mbuf_ptr[i]); 5334 sc->rx_mbuf_ptr[i] = NULL; 5335 DBRUN(sc->debug_rx_mbuf_alloc--); 5336 } 5337 } 5338 5339 /* Clear each RX chain page. */ 5340 for (i = 0; i < RX_PAGES; i++) 5341 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 5342 5343 sc->free_rx_bd = sc->max_rx_bd; 5344 5345 /* Check if we lost any mbufs in the process. */ 5346 DBRUNIF((sc->debug_rx_mbuf_alloc), 5347 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", 5348 __FUNCTION__, sc->debug_rx_mbuf_alloc)); 5349 5350 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5351 } 5352 5353 5354 #ifdef BCE_USE_SPLIT_HEADER 5355 /****************************************************************************/ 5356 /* Allocate memory and initialize the page data structures. */ 5357 /* Assumes that bce_init_rx_chain() has not already been called. */ 5358 /* */ 5359 /* Returns: */ 5360 /* 0 for success, positive value for failure. */ 5361 /****************************************************************************/ 5362 static int 5363 bce_init_pg_chain(struct bce_softc *sc) 5364 { 5365 struct rx_bd *pgbd; 5366 int i, rc = 0; 5367 u32 val; 5368 5369 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5370 BCE_VERBOSE_CTX); 5371 5372 /* Initialize the page producer and consumer indices. */ 5373 sc->pg_prod = 0; 5374 sc->pg_cons = 0; 5375 sc->free_pg_bd = USABLE_PG_BD; 5376 sc->max_pg_bd = USABLE_PG_BD; 5377 DBRUN(sc->pg_low_watermark = sc->max_pg_bd); 5378 DBRUN(sc->pg_empty_count = 0); 5379 5380 /* Initialize the page next pointer chain entries. */ 5381 for (i = 0; i < PG_PAGES; i++) { 5382 int j; 5383 5384 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; 5385 5386 /* Check if we've reached the last page. */ 5387 if (i == (PG_PAGES - 1)) 5388 j = 0; 5389 else 5390 j = i + 1; 5391 5392 /* Setup the chain page pointers. */ 5393 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); 5394 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); 5395 } 5396 5397 /* Setup the MQ BIN mapping for host_pg_bidx. */ 5398 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5399 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 5400 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); 5401 5402 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); 5403 5404 /* Configure the rx_bd and page chain mbuf cluster size. */ 5405 val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size; 5406 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); 5407 5408 /* Configure the context reserved for jumbo support. */ 5409 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, 5410 BCE_L2CTX_RX_RBDC_JUMBO_KEY); 5411 5412 /* Point the hardware to the first page in the page chain. */ 5413 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); 5414 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); 5415 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); 5416 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); 5417 5418 /* Fill up the page chain. */ 5419 bce_fill_pg_chain(sc); 5420 5421 for (i = 0; i < PG_PAGES; i++) { 5422 bus_dmamap_sync( 5423 sc->pg_bd_chain_tag, 5424 sc->pg_bd_chain_map[i], 5425 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5426 } 5427 5428 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD)); 5429 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5430 BCE_VERBOSE_CTX); 5431 return(rc); 5432 } 5433 5434 5435 /****************************************************************************/ 5436 /* Add mbufs to the page chain until its full or an mbuf allocation error */ 5437 /* occurs. */ 5438 /* */ 5439 /* Returns: */ 5440 /* Nothing */ 5441 /****************************************************************************/ 5442 static void 5443 bce_fill_pg_chain(struct bce_softc *sc) 5444 { 5445 u16 prod, prod_idx; 5446 5447 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5448 BCE_VERBOSE_CTX); 5449 5450 /* Get the page chain prodcuer index. */ 5451 prod = sc->pg_prod; 5452 5453 /* Keep filling the page chain until it's full. */ 5454 while (sc->free_pg_bd > 0) { 5455 prod_idx = PG_CHAIN_IDX(prod); 5456 if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) { 5457 /* Bail out if we can't add an mbuf to the chain. */ 5458 break; 5459 } 5460 prod = NEXT_PG_BD(prod); 5461 } 5462 5463 /* Save the page chain producer index. */ 5464 sc->pg_prod = prod; 5465 5466 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5467 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", 5468 __FUNCTION__, sc->pg_prod)); 5469 5470 /* 5471 * Write the mailbox and tell the chip about 5472 * the new rx_bd's in the page chain. 5473 */ 5474 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX, 5475 sc->pg_prod); 5476 5477 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5478 BCE_VERBOSE_CTX); 5479 } 5480 5481 5482 /****************************************************************************/ 5483 /* Free memory and clear the RX data structures. */ 5484 /* */ 5485 /* Returns: */ 5486 /* Nothing. */ 5487 /****************************************************************************/ 5488 static void 5489 bce_free_pg_chain(struct bce_softc *sc) 5490 { 5491 int i; 5492 5493 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5494 5495 /* Free any mbufs still in the mbuf page chain. */ 5496 for (i = 0; i < TOTAL_PG_BD; i++) { 5497 if (sc->pg_mbuf_ptr[i] != NULL) { 5498 if (sc->pg_mbuf_map[i] != NULL) 5499 bus_dmamap_sync(sc->pg_mbuf_tag, sc->pg_mbuf_map[i], 5500 BUS_DMASYNC_POSTREAD); 5501 m_freem(sc->pg_mbuf_ptr[i]); 5502 sc->pg_mbuf_ptr[i] = NULL; 5503 DBRUN(sc->debug_pg_mbuf_alloc--); 5504 } 5505 } 5506 5507 /* Clear each page chain pages. */ 5508 for (i = 0; i < PG_PAGES; i++) 5509 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 5510 5511 sc->free_pg_bd = sc->max_pg_bd; 5512 5513 /* Check if we lost any mbufs in the process. */ 5514 DBRUNIF((sc->debug_pg_mbuf_alloc), 5515 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", 5516 __FUNCTION__, sc->debug_pg_mbuf_alloc)); 5517 5518 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5519 } 5520 #endif /* BCE_USE_SPLIT_HEADER */ 5521 5522 5523 /****************************************************************************/ 5524 /* Set media options. */ 5525 /* */ 5526 /* Returns: */ 5527 /* 0 for success, positive value for failure. */ 5528 /****************************************************************************/ 5529 static int 5530 bce_ifmedia_upd(struct ifnet *ifp) 5531 { 5532 struct bce_softc *sc = ifp->if_softc; 5533 5534 DBENTER(BCE_VERBOSE); 5535 5536 BCE_LOCK(sc); 5537 bce_ifmedia_upd_locked(ifp); 5538 BCE_UNLOCK(sc); 5539 5540 DBEXIT(BCE_VERBOSE); 5541 return (0); 5542 } 5543 5544 5545 /****************************************************************************/ 5546 /* Set media options. */ 5547 /* */ 5548 /* Returns: */ 5549 /* Nothing. */ 5550 /****************************************************************************/ 5551 static void 5552 bce_ifmedia_upd_locked(struct ifnet *ifp) 5553 { 5554 struct bce_softc *sc = ifp->if_softc; 5555 struct mii_data *mii; 5556 5557 DBENTER(BCE_VERBOSE); 5558 5559 BCE_LOCK_ASSERT(sc); 5560 5561 mii = device_get_softc(sc->bce_miibus); 5562 5563 /* Make sure the MII bus has been enumerated. */ 5564 if (mii) { 5565 sc->bce_link = 0; 5566 if (mii->mii_instance) { 5567 struct mii_softc *miisc; 5568 5569 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5570 mii_phy_reset(miisc); 5571 } 5572 mii_mediachg(mii); 5573 } 5574 5575 DBEXIT(BCE_VERBOSE); 5576 } 5577 5578 5579 /****************************************************************************/ 5580 /* Reports current media status. */ 5581 /* */ 5582 /* Returns: */ 5583 /* Nothing. */ 5584 /****************************************************************************/ 5585 static void 5586 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5587 { 5588 struct bce_softc *sc = ifp->if_softc; 5589 struct mii_data *mii; 5590 5591 DBENTER(BCE_VERBOSE); 5592 5593 BCE_LOCK(sc); 5594 5595 mii = device_get_softc(sc->bce_miibus); 5596 5597 mii_pollstat(mii); 5598 ifmr->ifm_active = mii->mii_media_active; 5599 ifmr->ifm_status = mii->mii_media_status; 5600 5601 BCE_UNLOCK(sc); 5602 5603 DBEXIT(BCE_VERBOSE); 5604 } 5605 5606 5607 /****************************************************************************/ 5608 /* Handles PHY generated interrupt events. */ 5609 /* */ 5610 /* Returns: */ 5611 /* Nothing. */ 5612 /****************************************************************************/ 5613 static void 5614 bce_phy_intr(struct bce_softc *sc) 5615 { 5616 u32 new_link_state, old_link_state; 5617 5618 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 5619 5620 new_link_state = sc->status_block->status_attn_bits & 5621 STATUS_ATTN_BITS_LINK_STATE; 5622 old_link_state = sc->status_block->status_attn_bits_ack & 5623 STATUS_ATTN_BITS_LINK_STATE; 5624 5625 /* Handle any changes if the link state has changed. */ 5626 if (new_link_state != old_link_state) { 5627 5628 /* Update the status_attn_bits_ack field in the status block. */ 5629 if (new_link_state) { 5630 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 5631 STATUS_ATTN_BITS_LINK_STATE); 5632 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", 5633 __FUNCTION__); 5634 } 5635 else { 5636 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 5637 STATUS_ATTN_BITS_LINK_STATE); 5638 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", 5639 __FUNCTION__); 5640 } 5641 5642 /* 5643 * Assume link is down and allow 5644 * tick routine to update the state 5645 * based on the actual media state. 5646 */ 5647 sc->bce_link = 0; 5648 callout_stop(&sc->bce_tick_callout); 5649 bce_tick(sc); 5650 } 5651 5652 /* Acknowledge the link change interrupt. */ 5653 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 5654 5655 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 5656 } 5657 5658 5659 /****************************************************************************/ 5660 /* Reads the receive consumer value from the status block (skipping over */ 5661 /* chain page pointer if necessary). */ 5662 /* */ 5663 /* Returns: */ 5664 /* hw_cons */ 5665 /****************************************************************************/ 5666 static inline u16 5667 bce_get_hw_rx_cons(struct bce_softc *sc) 5668 { 5669 u16 hw_cons; 5670 5671 rmb(); 5672 hw_cons = sc->status_block->status_rx_quick_consumer_index0; 5673 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 5674 hw_cons++; 5675 5676 return hw_cons; 5677 } 5678 5679 /****************************************************************************/ 5680 /* Handles received frame interrupt events. */ 5681 /* */ 5682 /* Returns: */ 5683 /* Nothing. */ 5684 /****************************************************************************/ 5685 static void 5686 bce_rx_intr(struct bce_softc *sc) 5687 { 5688 struct ifnet *ifp = sc->bce_ifp; 5689 struct l2_fhdr *l2fhdr; 5690 unsigned int pkt_len; 5691 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; 5692 u32 status; 5693 #ifdef BCE_USE_SPLIT_HEADER 5694 unsigned int rem_len; 5695 u16 sw_pg_cons, sw_pg_cons_idx; 5696 #endif 5697 5698 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 5699 DBRUN(sc->rx_interrupts++); 5700 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " 5701 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 5702 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 5703 5704 /* Prepare the RX chain pages to be accessed by the host CPU. */ 5705 for (int i = 0; i < RX_PAGES; i++) 5706 bus_dmamap_sync(sc->rx_bd_chain_tag, 5707 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTWRITE); 5708 5709 #ifdef BCE_USE_SPLIT_HEADER 5710 /* Prepare the page chain pages to be accessed by the host CPU. */ 5711 for (int i = 0; i < PG_PAGES; i++) 5712 bus_dmamap_sync(sc->pg_bd_chain_tag, 5713 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTWRITE); 5714 #endif 5715 5716 /* Get the hardware's view of the RX consumer index. */ 5717 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 5718 5719 /* Get working copies of the driver's view of the consumer indices. */ 5720 sw_rx_cons = sc->rx_cons; 5721 #ifdef BCE_USE_SPLIT_HEADER 5722 sw_pg_cons = sc->pg_cons; 5723 #endif 5724 5725 /* Update some debug statistics counters */ 5726 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5727 sc->rx_low_watermark = sc->free_rx_bd); 5728 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 5729 5730 /* Scan through the receive chain as long as there is work to do */ 5731 /* ToDo: Consider setting a limit on the number of packets processed. */ 5732 rmb(); 5733 while (sw_rx_cons != hw_rx_cons) { 5734 struct mbuf *m0; 5735 5736 /* Convert the producer/consumer indices to an actual rx_bd index. */ 5737 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); 5738 5739 /* Unmap the mbuf from DMA space. */ 5740 bus_dmamap_sync(sc->rx_mbuf_tag, 5741 sc->rx_mbuf_map[sw_rx_cons_idx], 5742 BUS_DMASYNC_POSTREAD); 5743 bus_dmamap_unload(sc->rx_mbuf_tag, 5744 sc->rx_mbuf_map[sw_rx_cons_idx]); 5745 5746 /* Remove the mbuf from the RX chain. */ 5747 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; 5748 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; 5749 DBRUN(sc->debug_rx_mbuf_alloc--); 5750 sc->free_rx_bd++; 5751 5752 /* 5753 * Frames received on the NetXteme II are prepended 5754 * with an l2_fhdr structure which provides status 5755 * information about the received frame (including 5756 * VLAN tags and checksum info). The frames are also 5757 * automatically adjusted to align the IP header 5758 * (i.e. two null bytes are inserted before the 5759 * Ethernet header). As a result the data DMA'd by 5760 * the controller into the mbuf is as follows: 5761 * +---------+-----+---------------------+-----+ 5762 * | l2_fhdr | pad | packet data | FCS | 5763 * +---------+-----+---------------------+-----+ 5764 * The l2_fhdr needs to be checked and skipped and 5765 * the FCS needs to be stripped before sending the 5766 * packet up the stack. 5767 */ 5768 l2fhdr = mtod(m0, struct l2_fhdr *); 5769 5770 /* Get the packet data + FCS length and the status. */ 5771 pkt_len = l2fhdr->l2_fhdr_pkt_len; 5772 status = l2fhdr->l2_fhdr_status; 5773 5774 /* 5775 * Skip over the l2_fhdr and pad, resulting in the 5776 * following data in the mbuf: 5777 * +---------------------+-----+ 5778 * | packet data | FCS | 5779 * +---------------------+-----+ 5780 */ 5781 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); 5782 5783 #ifdef BCE_USE_SPLIT_HEADER 5784 /* 5785 * Check whether the received frame fits in a single 5786 * mbuf or not (i.e. packet data + FCS <= 5787 * sc->rx_bd_mbuf_data_len bytes). 5788 */ 5789 if (pkt_len > m0->m_len) { 5790 /* 5791 * The received frame is larger than a single mbuf. 5792 * If the frame was a TCP frame then only the TCP 5793 * header is placed in the mbuf, the remaining 5794 * payload (including FCS) is placed in the page 5795 * chain, the SPLIT flag is set, and the header 5796 * length is placed in the IP checksum field. 5797 * If the frame is not a TCP frame then the mbuf 5798 * is filled and the remaining bytes are placed 5799 * in the page chain. 5800 */ 5801 5802 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large packet.\n", 5803 __FUNCTION__); 5804 5805 /* 5806 * When the page chain is enabled and the TCP 5807 * header has been split from the TCP payload, 5808 * the ip_xsum structure will reflect the length 5809 * of the TCP header, not the IP checksum. Set 5810 * the packet length of the mbuf accordingly. 5811 */ 5812 if (status & L2_FHDR_STATUS_SPLIT) 5813 m0->m_len = l2fhdr->l2_fhdr_ip_xsum; 5814 5815 rem_len = pkt_len - m0->m_len; 5816 5817 /* Pull mbufs off the page chain for the remaining data. */ 5818 while (rem_len > 0) { 5819 struct mbuf *m_pg; 5820 5821 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); 5822 5823 /* Remove the mbuf from the page chain. */ 5824 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; 5825 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; 5826 DBRUN(sc->debug_pg_mbuf_alloc--); 5827 sc->free_pg_bd++; 5828 5829 /* Unmap the page chain mbuf from DMA space. */ 5830 bus_dmamap_sync(sc->pg_mbuf_tag, 5831 sc->pg_mbuf_map[sw_pg_cons_idx], 5832 BUS_DMASYNC_POSTREAD); 5833 bus_dmamap_unload(sc->pg_mbuf_tag, 5834 sc->pg_mbuf_map[sw_pg_cons_idx]); 5835 5836 /* Adjust the mbuf length. */ 5837 if (rem_len < m_pg->m_len) { 5838 /* The mbuf chain is complete. */ 5839 m_pg->m_len = rem_len; 5840 rem_len = 0; 5841 } else { 5842 /* More packet data is waiting. */ 5843 rem_len -= m_pg->m_len; 5844 } 5845 5846 /* Concatenate the mbuf cluster to the mbuf. */ 5847 m_cat(m0, m_pg); 5848 5849 sw_pg_cons = NEXT_PG_BD(sw_pg_cons); 5850 } 5851 5852 /* Set the total packet length. */ 5853 m0->m_pkthdr.len = pkt_len; 5854 5855 } else { 5856 /* 5857 * The received packet is small and fits in a 5858 * single mbuf (i.e. the l2_fhdr + pad + packet + 5859 * FCS <= MHLEN). In other words, the packet is 5860 * 154 bytes or less in size. 5861 */ 5862 5863 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small packet.\n", 5864 __FUNCTION__); 5865 5866 /* Set the total packet length. */ 5867 m0->m_pkthdr.len = m0->m_len = pkt_len; 5868 } 5869 #endif 5870 5871 /* Remove the trailing Ethernet FCS. */ 5872 m_adj(m0, -ETHER_CRC_LEN); 5873 5874 /* Check that the resulting mbuf chain is valid. */ 5875 DBRUN(m_sanity(m0, FALSE)); 5876 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | 5877 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 5878 BCE_PRINTF("Invalid Ethernet frame size!\n"); 5879 m_print(m0, 128)); 5880 5881 DBRUNIF(DB_RANDOMTRUE(bce_debug_l2fhdr_status_check), 5882 BCE_PRINTF("Simulating l2_fhdr status error.\n"); 5883 status = status | L2_FHDR_ERRORS_PHY_DECODE); 5884 5885 /* Check the received frame for errors. */ 5886 if (status & (L2_FHDR_ERRORS_BAD_CRC | 5887 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 5888 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 5889 5890 /* Log the error and release the mbuf. */ 5891 ifp->if_ierrors++; 5892 DBRUN(sc->l2fhdr_status_errors++); 5893 5894 m_freem(m0); 5895 m0 = NULL; 5896 goto bce_rx_int_next_rx; 5897 } 5898 5899 /* Send the packet to the appropriate interface. */ 5900 m0->m_pkthdr.rcvif = ifp; 5901 5902 /* Assume no hardware checksum. */ 5903 m0->m_pkthdr.csum_flags = 0; 5904 5905 /* Validate the checksum if offload enabled. */ 5906 if (ifp->if_capenable & IFCAP_RXCSUM) { 5907 5908 /* Check for an IP datagram. */ 5909 if (!(status & L2_FHDR_STATUS_SPLIT) && 5910 (status & L2_FHDR_STATUS_IP_DATAGRAM)) { 5911 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 5912 5913 /* Check if the IP checksum is valid. */ 5914 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 5915 m0->m_pkthdr.csum_flags |= CSUM_IP_VALID; 5916 } 5917 5918 /* Check for a valid TCP/UDP frame. */ 5919 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 5920 L2_FHDR_STATUS_UDP_DATAGRAM)) { 5921 5922 /* Check for a good TCP/UDP checksum. */ 5923 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 5924 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 5925 m0->m_pkthdr.csum_data = 5926 l2fhdr->l2_fhdr_tcp_udp_xsum; 5927 m0->m_pkthdr.csum_flags |= (CSUM_DATA_VALID 5928 | CSUM_PSEUDO_HDR); 5929 } 5930 } 5931 } 5932 5933 /* 5934 * If we received a packet with a vlan tag, 5935 * attach that information to the packet. 5936 */ 5937 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) { 5938 #if __FreeBSD_version < 700000 5939 VLAN_INPUT_TAG(ifp, m0, l2fhdr->l2_fhdr_vlan_tag, continue); 5940 #else 5941 m0->m_pkthdr.ether_vtag = l2fhdr->l2_fhdr_vlan_tag; 5942 m0->m_flags |= M_VLANTAG; 5943 #endif 5944 } 5945 5946 /* Pass the mbuf off to the upper layers. */ 5947 ifp->if_ipackets++; 5948 5949 bce_rx_int_next_rx: 5950 sw_rx_cons = NEXT_RX_BD(sw_rx_cons); 5951 5952 /* If we have a packet, pass it up the stack */ 5953 if (m0) { 5954 /* Make sure we don't lose our place when we release the lock. */ 5955 sc->rx_cons = sw_rx_cons; 5956 #ifdef BCE_USE_SPLIT_HEADER 5957 sc->pg_cons = sw_pg_cons; 5958 #endif 5959 5960 BCE_UNLOCK(sc); 5961 (*ifp->if_input)(ifp, m0); 5962 BCE_LOCK(sc); 5963 5964 /* Recover our place. */ 5965 sw_rx_cons = sc->rx_cons; 5966 #ifdef BCE_USE_SPLIT_HEADER 5967 sw_pg_cons = sc->pg_cons; 5968 #endif 5969 } 5970 5971 /* Refresh hw_cons to see if there's new work */ 5972 if (sw_rx_cons == hw_rx_cons) 5973 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 5974 } 5975 5976 /* No new packets to process. Refill the RX and page chains and exit. */ 5977 #ifdef BCE_USE_SPLIT_HEADER 5978 sc->pg_cons = sw_pg_cons; 5979 bce_fill_pg_chain(sc); 5980 #endif 5981 5982 sc->rx_cons = sw_rx_cons; 5983 bce_fill_rx_chain(sc); 5984 5985 for (int i = 0; i < RX_PAGES; i++) 5986 bus_dmamap_sync(sc->rx_bd_chain_tag, 5987 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 5988 5989 #ifdef BCE_USE_SPLIT_HEADER 5990 for (int i = 0; i < PG_PAGES; i++) 5991 bus_dmamap_sync(sc->pg_bd_chain_tag, 5992 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 5993 #endif 5994 5995 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " 5996 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 5997 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 5998 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 5999 } 6000 6001 6002 /****************************************************************************/ 6003 /* Reads the transmit consumer value from the status block (skipping over */ 6004 /* chain page pointer if necessary). */ 6005 /* */ 6006 /* Returns: */ 6007 /* hw_cons */ 6008 /****************************************************************************/ 6009 static inline u16 6010 bce_get_hw_tx_cons(struct bce_softc *sc) 6011 { 6012 u16 hw_cons; 6013 6014 mb(); 6015 hw_cons = sc->status_block->status_tx_quick_consumer_index0; 6016 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6017 hw_cons++; 6018 6019 return hw_cons; 6020 } 6021 6022 6023 /****************************************************************************/ 6024 /* Handles transmit completion interrupt events. */ 6025 /* */ 6026 /* Returns: */ 6027 /* Nothing. */ 6028 /****************************************************************************/ 6029 static void 6030 bce_tx_intr(struct bce_softc *sc) 6031 { 6032 struct ifnet *ifp = sc->bce_ifp; 6033 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 6034 6035 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6036 DBRUN(sc->tx_interrupts++); 6037 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " 6038 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6039 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6040 6041 BCE_LOCK_ASSERT(sc); 6042 6043 /* Get the hardware's view of the TX consumer index. */ 6044 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6045 sw_tx_cons = sc->tx_cons; 6046 6047 /* Prevent speculative reads from getting ahead of the status block. */ 6048 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6049 BUS_SPACE_BARRIER_READ); 6050 6051 /* Cycle through any completed TX chain page entries. */ 6052 while (sw_tx_cons != hw_tx_cons) { 6053 #ifdef BCE_DEBUG 6054 struct tx_bd *txbd = NULL; 6055 #endif 6056 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 6057 6058 DBPRINT(sc, BCE_INFO_SEND, 6059 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 6060 "sw_tx_chain_cons = 0x%04X\n", 6061 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 6062 6063 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), 6064 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 6065 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 6066 (int) MAX_TX_BD); 6067 bce_breakpoint(sc)); 6068 6069 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 6070 [TX_IDX(sw_tx_chain_cons)]); 6071 6072 DBRUNIF((txbd == NULL), 6073 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 6074 __FILE__, __LINE__, sw_tx_chain_cons); 6075 bce_breakpoint(sc)); 6076 6077 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 6078 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 6079 6080 /* 6081 * Free the associated mbuf. Remember 6082 * that only the last tx_bd of a packet 6083 * has an mbuf pointer and DMA map. 6084 */ 6085 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 6086 6087 /* Validate that this is the last tx_bd. */ 6088 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 6089 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 6090 "txmbuf == NULL!\n", __FILE__, __LINE__); 6091 bce_breakpoint(sc)); 6092 6093 DBRUNMSG(BCE_INFO_SEND, 6094 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 6095 "from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons)); 6096 6097 /* Unmap the mbuf. */ 6098 bus_dmamap_unload(sc->tx_mbuf_tag, 6099 sc->tx_mbuf_map[sw_tx_chain_cons]); 6100 6101 /* Free the mbuf. */ 6102 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 6103 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 6104 DBRUN(sc->debug_tx_mbuf_alloc--); 6105 6106 ifp->if_opackets++; 6107 } 6108 6109 sc->used_tx_bd--; 6110 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 6111 6112 /* Refresh hw_cons to see if there's new work. */ 6113 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6114 6115 /* Prevent speculative reads from getting ahead of the status block. */ 6116 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6117 BUS_SPACE_BARRIER_READ); 6118 } 6119 6120 /* Clear the TX timeout timer. */ 6121 sc->watchdog_timer = 0; 6122 6123 /* Clear the tx hardware queue full flag. */ 6124 if (sc->used_tx_bd < sc->max_tx_bd) { 6125 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), 6126 DBPRINT(sc, BCE_INFO_SEND, 6127 "%s(): Open TX chain! %d/%d (used/total)\n", 6128 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 6129 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6130 } 6131 6132 sc->tx_cons = sw_tx_cons; 6133 6134 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " 6135 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6136 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6137 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6138 } 6139 6140 6141 /****************************************************************************/ 6142 /* Disables interrupt generation. */ 6143 /* */ 6144 /* Returns: */ 6145 /* Nothing. */ 6146 /****************************************************************************/ 6147 static void 6148 bce_disable_intr(struct bce_softc *sc) 6149 { 6150 DBENTER(BCE_VERBOSE_INTR); 6151 6152 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 6153 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 6154 6155 DBEXIT(BCE_VERBOSE_INTR); 6156 } 6157 6158 6159 /****************************************************************************/ 6160 /* Enables interrupt generation. */ 6161 /* */ 6162 /* Returns: */ 6163 /* Nothing. */ 6164 /****************************************************************************/ 6165 static void 6166 bce_enable_intr(struct bce_softc *sc, int coal_now) 6167 { 6168 DBENTER(BCE_VERBOSE_INTR); 6169 6170 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6171 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 6172 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 6173 6174 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6175 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 6176 6177 /* Force an immediate interrupt (whether there is new data or not). */ 6178 if (coal_now) 6179 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); 6180 6181 DBEXIT(BCE_VERBOSE_INTR); 6182 } 6183 6184 6185 /****************************************************************************/ 6186 /* Handles controller initialization. */ 6187 /* */ 6188 /* Returns: */ 6189 /* Nothing. */ 6190 /****************************************************************************/ 6191 static void 6192 bce_init_locked(struct bce_softc *sc) 6193 { 6194 struct ifnet *ifp; 6195 u32 ether_mtu = 0; 6196 6197 DBENTER(BCE_VERBOSE_RESET); 6198 6199 BCE_LOCK_ASSERT(sc); 6200 6201 ifp = sc->bce_ifp; 6202 6203 /* Check if the driver is still running and bail out if it is. */ 6204 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6205 goto bce_init_locked_exit; 6206 6207 bce_stop(sc); 6208 6209 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 6210 BCE_PRINTF("%s(%d): Controller reset failed!\n", 6211 __FILE__, __LINE__); 6212 goto bce_init_locked_exit; 6213 } 6214 6215 if (bce_chipinit(sc)) { 6216 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 6217 __FILE__, __LINE__); 6218 goto bce_init_locked_exit; 6219 } 6220 6221 if (bce_blockinit(sc)) { 6222 BCE_PRINTF("%s(%d): Block initialization failed!\n", 6223 __FILE__, __LINE__); 6224 goto bce_init_locked_exit; 6225 } 6226 6227 /* Load our MAC address. */ 6228 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 6229 bce_set_mac_addr(sc); 6230 6231 /* 6232 * Calculate and program the hardware Ethernet MTU 6233 * size. Be generous on the receive if we have room. 6234 */ 6235 #ifdef BCE_USE_SPLIT_HEADER 6236 if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size)) 6237 ether_mtu = sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size; 6238 #else 6239 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len) 6240 ether_mtu = sc->rx_bd_mbuf_data_len; 6241 #endif 6242 else 6243 ether_mtu = ifp->if_mtu; 6244 6245 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 6246 6247 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", __FUNCTION__, 6248 ether_mtu); 6249 6250 /* Program the mtu, enabling jumbo frame support if necessary. */ 6251 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) 6252 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, 6253 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 6254 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 6255 else 6256 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 6257 6258 DBPRINT(sc, BCE_INFO_LOAD, 6259 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, " 6260 "rx_bd_mbuf_align_pad = %d, pg_bd_mbuf_alloc_size = %d\n", 6261 __FUNCTION__, sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, 6262 sc->rx_bd_mbuf_align_pad, sc->pg_bd_mbuf_alloc_size); 6263 6264 /* Program appropriate promiscuous/multicast filtering. */ 6265 bce_set_rx_mode(sc); 6266 6267 #ifdef BCE_USE_SPLIT_HEADER 6268 /* Init page buffer descriptor chain. */ 6269 bce_init_pg_chain(sc); 6270 #endif 6271 6272 /* Init RX buffer descriptor chain. */ 6273 bce_init_rx_chain(sc); 6274 6275 /* Init TX buffer descriptor chain. */ 6276 bce_init_tx_chain(sc); 6277 6278 /* Enable host interrupts. */ 6279 bce_enable_intr(sc, 1); 6280 6281 bce_ifmedia_upd_locked(ifp); 6282 6283 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6284 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6285 6286 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 6287 6288 bce_init_locked_exit: 6289 DBEXIT(BCE_VERBOSE_RESET); 6290 } 6291 6292 6293 /****************************************************************************/ 6294 /* Initialize the controller just enough so that any management firmware */ 6295 /* running on the device will continue to operate correctly. */ 6296 /* */ 6297 /* Returns: */ 6298 /* Nothing. */ 6299 /****************************************************************************/ 6300 static void 6301 bce_mgmt_init_locked(struct bce_softc *sc) 6302 { 6303 struct ifnet *ifp; 6304 6305 DBENTER(BCE_VERBOSE_RESET); 6306 6307 BCE_LOCK_ASSERT(sc); 6308 6309 /* Bail out if management firmware is not running. */ 6310 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 6311 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 6312 "No management firmware running...\n"); 6313 goto bce_mgmt_init_locked_exit; 6314 } 6315 6316 ifp = sc->bce_ifp; 6317 6318 /* Enable all critical blocks in the MAC. */ 6319 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 6320 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 6321 DELAY(20); 6322 6323 bce_ifmedia_upd_locked(ifp); 6324 6325 bce_mgmt_init_locked_exit: 6326 DBEXIT(BCE_VERBOSE_RESET); 6327 } 6328 6329 6330 /****************************************************************************/ 6331 /* Handles controller initialization when called from an unlocked routine. */ 6332 /* */ 6333 /* Returns: */ 6334 /* Nothing. */ 6335 /****************************************************************************/ 6336 static void 6337 bce_init(void *xsc) 6338 { 6339 struct bce_softc *sc = xsc; 6340 6341 DBENTER(BCE_VERBOSE_RESET); 6342 6343 BCE_LOCK(sc); 6344 bce_init_locked(sc); 6345 BCE_UNLOCK(sc); 6346 6347 DBEXIT(BCE_VERBOSE_RESET); 6348 } 6349 6350 6351 /****************************************************************************/ 6352 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 6353 /* memory visible to the controller. */ 6354 /* */ 6355 /* Returns: */ 6356 /* 0 for success, positive value for failure. */ 6357 /* Modified: */ 6358 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 6359 /****************************************************************************/ 6360 static int 6361 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 6362 { 6363 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 6364 bus_dmamap_t map; 6365 struct tx_bd *txbd = NULL; 6366 struct mbuf *m0; 6367 struct ether_vlan_header *eh; 6368 struct ip *ip; 6369 struct tcphdr *th; 6370 u16 prod, chain_prod, etype, mss = 0, vlan_tag = 0, flags = 0; 6371 u32 prod_bseq; 6372 int hdr_len = 0, e_hlen = 0, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; 6373 6374 #ifdef BCE_DEBUG 6375 u16 debug_prod; 6376 #endif 6377 int i, error, nsegs, rc = 0; 6378 6379 DBENTER(BCE_VERBOSE_SEND); 6380 DBPRINT(sc, BCE_INFO_SEND, 6381 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = %04X, " 6382 "tx_prod_bseq = 0x%08X\n", 6383 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod), 6384 sc->tx_prod_bseq); 6385 6386 /* Transfer any checksum offload flags to the bd. */ 6387 m0 = *m_head; 6388 if (m0->m_pkthdr.csum_flags) { 6389 if (m0->m_pkthdr.csum_flags & CSUM_IP) 6390 flags |= TX_BD_FLAGS_IP_CKSUM; 6391 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 6392 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 6393 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 6394 /* For TSO the controller needs two pieces of info, */ 6395 /* the MSS and the IP+TCP options length. */ 6396 mss = htole16(m0->m_pkthdr.tso_segsz); 6397 6398 /* Map the header and find the Ethernet type & header length */ 6399 eh = mtod(m0, struct ether_vlan_header *); 6400 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 6401 etype = ntohs(eh->evl_proto); 6402 e_hlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 6403 } else { 6404 etype = ntohs(eh->evl_encap_proto); 6405 e_hlen = ETHER_HDR_LEN; 6406 } 6407 6408 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 6409 switch (etype) { 6410 case ETHERTYPE_IP: 6411 ip = (struct ip *)(m0->m_data + e_hlen); 6412 6413 /* TSO only supported for TCP protocol */ 6414 if (ip->ip_p != IPPROTO_TCP) { 6415 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 6416 __FILE__, __LINE__); 6417 goto bce_tx_encap_skip_tso; 6418 } 6419 6420 /* Get IP header length in bytes (min 20) */ 6421 ip_hlen = ip->ip_hl << 2; 6422 6423 /* Get the TCP header length in bytes (min 20) */ 6424 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 6425 tcp_hlen = (th->th_off << 2); 6426 6427 /* IP header length and checksum will be calc'd by hardware */ 6428 ip_len = ip->ip_len; 6429 ip->ip_len = 0; 6430 ip->ip_sum = 0; 6431 break; 6432 case ETHERTYPE_IPV6: 6433 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 6434 __FILE__, __LINE__); 6435 goto bce_tx_encap_skip_tso; 6436 default: 6437 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 6438 __FILE__, __LINE__); 6439 goto bce_tx_encap_skip_tso; 6440 } 6441 6442 hdr_len = e_hlen + ip_hlen + tcp_hlen; 6443 6444 DBPRINT(sc, BCE_EXTREME_SEND, 6445 "%s(): hdr_len = %d, e_hlen = %d, ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 6446 __FUNCTION__, hdr_len, e_hlen, ip_hlen, tcp_hlen, ip_len); 6447 6448 /* Set the LSO flag in the TX BD */ 6449 flags |= TX_BD_FLAGS_SW_LSO; 6450 /* Set the length of IP + TCP options (in 32 bit words) */ 6451 flags |= (((ip_hlen + tcp_hlen - 40) >> 2) << 8); 6452 6453 bce_tx_encap_skip_tso: 6454 DBRUN(sc->requested_tso_frames++); 6455 } 6456 } 6457 6458 /* Transfer any VLAN tags to the bd. */ 6459 if (m0->m_flags & M_VLANTAG) { 6460 flags |= TX_BD_FLAGS_VLAN_TAG; 6461 vlan_tag = m0->m_pkthdr.ether_vtag; 6462 } 6463 6464 /* Map the mbuf into DMAable memory. */ 6465 prod = sc->tx_prod; 6466 chain_prod = TX_CHAIN_IDX(prod); 6467 map = sc->tx_mbuf_map[chain_prod]; 6468 6469 /* Map the mbuf into our DMA address space. */ 6470 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 6471 segs, &nsegs, BUS_DMA_NOWAIT); 6472 6473 /* Check if the DMA mapping was successful */ 6474 if (error == EFBIG) { 6475 6476 /* The mbuf is too fragmented for our DMA mapping. */ 6477 DBPRINT(sc, BCE_WARN, "%s(): fragmented mbuf (%d pieces)\n", 6478 __FUNCTION__, nsegs); 6479 DBRUN(bce_dump_mbuf(sc, m0);); 6480 6481 /* Try to defrag the mbuf. */ 6482 m0 = m_defrag(*m_head, M_DONTWAIT); 6483 if (m0 == NULL) { 6484 /* Defrag was unsuccessful */ 6485 m_freem(*m_head); 6486 *m_head = NULL; 6487 sc->mbuf_alloc_failed++; 6488 rc = ENOBUFS; 6489 goto bce_tx_encap_exit; 6490 } 6491 6492 /* Defrag was successful, try mapping again */ 6493 *m_head = m0; 6494 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 6495 segs, &nsegs, BUS_DMA_NOWAIT); 6496 6497 /* Still getting an error after a defrag. */ 6498 if (error == ENOMEM) { 6499 /* Insufficient DMA buffers available. */ 6500 sc->tx_dma_map_failures++; 6501 rc = error; 6502 goto bce_tx_encap_exit; 6503 } else if (error != 0) { 6504 /* Still can't map the mbuf, release it and return an error. */ 6505 BCE_PRINTF( 6506 "%s(%d): Unknown error mapping mbuf into TX chain!\n", 6507 __FILE__, __LINE__); 6508 m_freem(m0); 6509 *m_head = NULL; 6510 sc->tx_dma_map_failures++; 6511 rc = ENOBUFS; 6512 goto bce_tx_encap_exit; 6513 } 6514 } else if (error == ENOMEM) { 6515 /* Insufficient DMA buffers available. */ 6516 sc->tx_dma_map_failures++; 6517 rc = error; 6518 goto bce_tx_encap_exit; 6519 } else if (error != 0) { 6520 m_freem(m0); 6521 *m_head = NULL; 6522 sc->tx_dma_map_failures++; 6523 rc = error; 6524 goto bce_tx_encap_exit; 6525 } 6526 6527 /* Make sure there's room in the chain */ 6528 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 6529 bus_dmamap_unload(sc->tx_mbuf_tag, map); 6530 rc = ENOBUFS; 6531 goto bce_tx_encap_exit; 6532 } 6533 6534 /* prod points to an empty tx_bd at this point. */ 6535 prod_bseq = sc->tx_prod_bseq; 6536 6537 #ifdef BCE_DEBUG 6538 debug_prod = chain_prod; 6539 #endif 6540 6541 DBPRINT(sc, BCE_INFO_SEND, 6542 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " 6543 "prod_bseq = 0x%08X\n", 6544 __FUNCTION__, prod, chain_prod, prod_bseq); 6545 6546 /* 6547 * Cycle through each mbuf segment that makes up 6548 * the outgoing frame, gathering the mapping info 6549 * for that segment and creating a tx_bd for 6550 * the mbuf. 6551 */ 6552 for (i = 0; i < nsegs ; i++) { 6553 6554 chain_prod = TX_CHAIN_IDX(prod); 6555 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; 6556 6557 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr)); 6558 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr)); 6559 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | htole16(segs[i].ds_len); 6560 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 6561 txbd->tx_bd_flags = htole16(flags); 6562 prod_bseq += segs[i].ds_len; 6563 if (i == 0) 6564 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 6565 prod = NEXT_TX_BD(prod); 6566 } 6567 6568 /* Set the END flag on the last TX buffer descriptor. */ 6569 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 6570 6571 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_chain(sc, debug_prod, nsegs)); 6572 6573 DBPRINT(sc, BCE_INFO_SEND, 6574 "%s( end ): prod = 0x%04X, chain_prod = 0x%04X, " 6575 "prod_bseq = 0x%08X\n", 6576 __FUNCTION__, prod, chain_prod, prod_bseq); 6577 6578 /* 6579 * Ensure that the mbuf pointer for this transmission 6580 * is placed at the array index of the last 6581 * descriptor in this chain. This is done 6582 * because a single map is used for all 6583 * segments of the mbuf and we don't want to 6584 * unload the map before all of the segments 6585 * have been freed. 6586 */ 6587 sc->tx_mbuf_ptr[chain_prod] = m0; 6588 sc->used_tx_bd += nsegs; 6589 6590 /* Update some debug statistic counters */ 6591 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 6592 sc->tx_hi_watermark = sc->used_tx_bd); 6593 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 6594 DBRUNIF(sc->debug_tx_mbuf_alloc++); 6595 6596 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); 6597 6598 /* prod points to the next free tx_bd at this point. */ 6599 sc->tx_prod = prod; 6600 sc->tx_prod_bseq = prod_bseq; 6601 6602 DBPRINT(sc, BCE_INFO_SEND, 6603 "%s(exit): prod = 0x%04X, chain_prod = %04X, " 6604 "prod_bseq = 0x%08X\n", 6605 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod), 6606 sc->tx_prod_bseq); 6607 6608 bce_tx_encap_exit: 6609 DBEXIT(BCE_VERBOSE_SEND); 6610 return(rc); 6611 } 6612 6613 6614 /****************************************************************************/ 6615 /* Main transmit routine when called from another routine with a lock. */ 6616 /* */ 6617 /* Returns: */ 6618 /* Nothing. */ 6619 /****************************************************************************/ 6620 static void 6621 bce_start_locked(struct ifnet *ifp) 6622 { 6623 struct bce_softc *sc = ifp->if_softc; 6624 struct mbuf *m_head = NULL; 6625 int count = 0; 6626 u16 tx_prod, tx_chain_prod; 6627 6628 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 6629 6630 BCE_LOCK_ASSERT(sc); 6631 6632 /* prod points to the next free tx_bd. */ 6633 tx_prod = sc->tx_prod; 6634 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 6635 6636 DBPRINT(sc, BCE_INFO_SEND, 6637 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 6638 "tx_prod_bseq = 0x%08X\n", 6639 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 6640 6641 /* If there's no link or the transmit queue is empty then just exit. */ 6642 if (!sc->bce_link) { 6643 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", 6644 __FUNCTION__); 6645 goto bce_start_locked_exit; 6646 } 6647 6648 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 6649 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", 6650 __FUNCTION__); 6651 goto bce_start_locked_exit; 6652 } 6653 6654 /* 6655 * Keep adding entries while there is space in the ring. 6656 */ 6657 while (sc->used_tx_bd < sc->max_tx_bd) { 6658 6659 /* Check for any frames to send. */ 6660 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 6661 6662 /* Stop when the transmit queue is empty. */ 6663 if (m_head == NULL) 6664 break; 6665 6666 /* 6667 * Pack the data into the transmit ring. If we 6668 * don't have room, place the mbuf back at the 6669 * head of the queue and set the OACTIVE flag 6670 * to wait for the NIC to drain the chain. 6671 */ 6672 if (bce_tx_encap(sc, &m_head)) { 6673 /* No room, put the frame back on the transmit queue. */ 6674 if (m_head != NULL) 6675 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 6676 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 6677 DBPRINT(sc, BCE_INFO_SEND, 6678 "TX chain is closed for business! Total tx_bd used = %d\n", 6679 sc->used_tx_bd); 6680 break; 6681 } 6682 6683 count++; 6684 6685 /* Send a copy of the frame to any BPF listeners. */ 6686 ETHER_BPF_MTAP(ifp, m_head); 6687 } 6688 6689 /* Exit if no packets were dequeued. */ 6690 if (count == 0) { 6691 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were dequeued\n", 6692 __FUNCTION__); 6693 goto bce_start_locked_exit; 6694 } 6695 6696 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into send queue.\n", 6697 __FUNCTION__, count); 6698 6699 REG_WR(sc, BCE_MQ_COMMAND, REG_RD(sc, BCE_MQ_COMMAND) | BCE_MQ_COMMAND_NO_MAP_ERROR); 6700 6701 /* Write the mailbox and tell the chip about the waiting tx_bd's. */ 6702 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; " 6703 "BCE_L2MQ_TX_HOST_BIDX = 0x%08X, sc->tx_prod = 0x%04X\n", 6704 __FUNCTION__, 6705 MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 6706 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 6707 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; " 6708 "BCE_L2MQ_TX_HOST_BSEQ = 0x%08X, sc->tx_prod_bseq = 0x%04X\n", 6709 __FUNCTION__, 6710 MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 6711 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 6712 6713 /* Set the tx timeout. */ 6714 sc->watchdog_timer = BCE_TX_TIMEOUT; 6715 6716 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); 6717 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); 6718 6719 bce_start_locked_exit: 6720 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 6721 return; 6722 } 6723 6724 6725 /****************************************************************************/ 6726 /* Main transmit routine when called from another routine without a lock. */ 6727 /* */ 6728 /* Returns: */ 6729 /* Nothing. */ 6730 /****************************************************************************/ 6731 static void 6732 bce_start(struct ifnet *ifp) 6733 { 6734 struct bce_softc *sc = ifp->if_softc; 6735 6736 DBENTER(BCE_VERBOSE_SEND); 6737 6738 BCE_LOCK(sc); 6739 bce_start_locked(ifp); 6740 BCE_UNLOCK(sc); 6741 6742 DBEXIT(BCE_VERBOSE_SEND); 6743 } 6744 6745 6746 /****************************************************************************/ 6747 /* Handles any IOCTL calls from the operating system. */ 6748 /* */ 6749 /* Returns: */ 6750 /* 0 for success, positive value for failure. */ 6751 /****************************************************************************/ 6752 static int 6753 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 6754 { 6755 struct bce_softc *sc = ifp->if_softc; 6756 struct ifreq *ifr = (struct ifreq *) data; 6757 struct mii_data *mii; 6758 int mask, error = 0; 6759 6760 DBENTER(BCE_VERBOSE_MISC); 6761 6762 switch(command) { 6763 6764 /* Set the interface MTU. */ 6765 case SIOCSIFMTU: 6766 /* Check that the MTU setting is supported. */ 6767 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 6768 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 6769 error = EINVAL; 6770 break; 6771 } 6772 6773 DBPRINT(sc, BCE_INFO_MISC, 6774 "SIOCSIFMTU: Changing MTU from %d to %d\n", 6775 (int) ifp->if_mtu, (int) ifr->ifr_mtu); 6776 6777 BCE_LOCK(sc); 6778 ifp->if_mtu = ifr->ifr_mtu; 6779 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6780 #ifdef BCE_USE_SPLIT_HEADER 6781 /* No buffer allocation size changes are necessary. */ 6782 #else 6783 /* Recalculate our buffer allocation sizes. */ 6784 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN) > MCLBYTES) { 6785 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; 6786 sc->rx_bd_mbuf_align_pad = roundup2(MJUM9BYTES, 16) - MJUM9BYTES; 6787 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 6788 sc->rx_bd_mbuf_align_pad; 6789 } else { 6790 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 6791 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES; 6792 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 6793 sc->rx_bd_mbuf_align_pad; 6794 } 6795 #endif 6796 6797 bce_init_locked(sc); 6798 BCE_UNLOCK(sc); 6799 break; 6800 6801 /* Set interface flags. */ 6802 case SIOCSIFFLAGS: 6803 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 6804 6805 BCE_LOCK(sc); 6806 6807 /* Check if the interface is up. */ 6808 if (ifp->if_flags & IFF_UP) { 6809 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 6810 /* Change promiscuous/multicast flags as necessary. */ 6811 bce_set_rx_mode(sc); 6812 } else { 6813 /* Start the HW */ 6814 bce_init_locked(sc); 6815 } 6816 } else { 6817 /* The interface is down, check if driver is running. */ 6818 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 6819 bce_stop(sc); 6820 6821 /* If MFW is running, restart the controller a bit. */ 6822 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 6823 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 6824 bce_chipinit(sc); 6825 bce_mgmt_init_locked(sc); 6826 } 6827 } 6828 } 6829 6830 BCE_UNLOCK(sc); 6831 error = 0; 6832 6833 break; 6834 6835 /* Add/Delete multicast address */ 6836 case SIOCADDMULTI: 6837 case SIOCDELMULTI: 6838 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCADDMULTI/SIOCDELMULTI\n"); 6839 6840 BCE_LOCK(sc); 6841 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 6842 bce_set_rx_mode(sc); 6843 error = 0; 6844 } 6845 BCE_UNLOCK(sc); 6846 6847 break; 6848 6849 /* Set/Get Interface media */ 6850 case SIOCSIFMEDIA: 6851 case SIOCGIFMEDIA: 6852 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 6853 6854 mii = device_get_softc(sc->bce_miibus); 6855 error = ifmedia_ioctl(ifp, ifr, 6856 &mii->mii_media, command); 6857 break; 6858 6859 /* Set interface capability */ 6860 case SIOCSIFCAP: 6861 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 6862 DBPRINT(sc, BCE_INFO_MISC, "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 6863 6864 /* Toggle the TX checksum capabilites enable flag. */ 6865 if (mask & IFCAP_TXCSUM) { 6866 ifp->if_capenable ^= IFCAP_TXCSUM; 6867 if (IFCAP_TXCSUM & ifp->if_capenable) 6868 ifp->if_hwassist = BCE_IF_HWASSIST; 6869 else 6870 ifp->if_hwassist = 0; 6871 } 6872 6873 /* Toggle the RX checksum capabilities enable flag. */ 6874 if (mask & IFCAP_RXCSUM) { 6875 ifp->if_capenable ^= IFCAP_RXCSUM; 6876 if (IFCAP_RXCSUM & ifp->if_capenable) 6877 ifp->if_hwassist = BCE_IF_HWASSIST; 6878 else 6879 ifp->if_hwassist = 0; 6880 } 6881 6882 /* Toggle the TSO capabilities enable flag. */ 6883 if (bce_tso_enable && (mask & IFCAP_TSO4)) { 6884 ifp->if_capenable ^= IFCAP_TSO4; 6885 if (IFCAP_RXCSUM & ifp->if_capenable) 6886 ifp->if_hwassist = BCE_IF_HWASSIST; 6887 else 6888 ifp->if_hwassist = 0; 6889 } 6890 6891 /* Toggle VLAN_MTU capabilities enable flag. */ 6892 if (mask & IFCAP_VLAN_MTU) { 6893 BCE_PRINTF("%s(%d): Changing VLAN_MTU not supported.\n", 6894 __FILE__, __LINE__); 6895 } 6896 6897 /* Toggle VLANHWTAG capabilities enabled flag. */ 6898 if (mask & IFCAP_VLAN_HWTAGGING) { 6899 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) 6900 BCE_PRINTF("%s(%d): Cannot change VLAN_HWTAGGING while " 6901 "management firmware (ASF/IPMI/UMP) is running!\n", 6902 __FILE__, __LINE__); 6903 else 6904 BCE_PRINTF("%s(%d): Changing VLAN_HWTAGGING not supported!\n", 6905 __FILE__, __LINE__); 6906 } 6907 6908 break; 6909 default: 6910 /* We don't know how to handle the IOCTL, pass it on. */ 6911 error = ether_ioctl(ifp, command, data); 6912 break; 6913 } 6914 6915 DBEXIT(BCE_VERBOSE_MISC); 6916 return(error); 6917 } 6918 6919 6920 /****************************************************************************/ 6921 /* Transmit timeout handler. */ 6922 /* */ 6923 /* Returns: */ 6924 /* Nothing. */ 6925 /****************************************************************************/ 6926 static void 6927 bce_watchdog(struct bce_softc *sc) 6928 { 6929 DBENTER(BCE_EXTREME_SEND); 6930 6931 BCE_LOCK_ASSERT(sc); 6932 6933 /* If the watchdog timer hasn't expired then just exit. */ 6934 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 6935 goto bce_watchdog_exit; 6936 6937 /* If pause frames are active then don't reset the hardware. */ 6938 /* ToDo: Should we reset the timer here? */ 6939 if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 6940 goto bce_watchdog_exit; 6941 6942 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 6943 __FILE__, __LINE__); 6944 6945 DBRUNMSG(BCE_INFO, 6946 bce_dump_driver_state(sc); 6947 bce_dump_status_block(sc); 6948 bce_dump_stats_block(sc); 6949 bce_dump_ftqs(sc); 6950 bce_dump_txp_state(sc, 0); 6951 bce_dump_rxp_state(sc, 0); 6952 bce_dump_tpat_state(sc, 0); 6953 bce_dump_cp_state(sc, 0); 6954 bce_dump_com_state(sc, 0)); 6955 6956 DBRUN(bce_breakpoint(sc)); 6957 6958 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6959 6960 bce_init_locked(sc); 6961 sc->bce_ifp->if_oerrors++; 6962 6963 bce_watchdog_exit: 6964 DBEXIT(BCE_EXTREME_SEND); 6965 } 6966 6967 6968 /* 6969 * Interrupt handler. 6970 */ 6971 /****************************************************************************/ 6972 /* Main interrupt entry point. Verifies that the controller generated the */ 6973 /* interrupt and then calls a separate routine for handle the various */ 6974 /* interrupt causes (PHY, TX, RX). */ 6975 /* */ 6976 /* Returns: */ 6977 /* 0 for success, positive value for failure. */ 6978 /****************************************************************************/ 6979 static void 6980 bce_intr(void *xsc) 6981 { 6982 struct bce_softc *sc; 6983 struct ifnet *ifp; 6984 u32 status_attn_bits; 6985 u16 hw_rx_cons, hw_tx_cons; 6986 6987 sc = xsc; 6988 ifp = sc->bce_ifp; 6989 6990 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6991 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 6992 6993 BCE_LOCK(sc); 6994 6995 DBRUN(sc->interrupts_generated++); 6996 6997 bus_dmamap_sync(sc->status_tag, sc->status_map, 6998 BUS_DMASYNC_POSTWRITE); 6999 7000 /* 7001 * If the hardware status block index 7002 * matches the last value read by the 7003 * driver and we haven't asserted our 7004 * interrupt then there's nothing to do. 7005 */ 7006 if ((sc->status_block->status_idx == sc->last_status_idx) && 7007 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { 7008 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", 7009 __FUNCTION__); 7010 goto bce_intr_exit; 7011 } 7012 7013 /* Ack the interrupt and stop others from occuring. */ 7014 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7015 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 7016 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7017 7018 /* Check if the hardware has finished any work. */ 7019 hw_rx_cons = bce_get_hw_rx_cons(sc); 7020 hw_tx_cons = bce_get_hw_tx_cons(sc); 7021 7022 /* Keep processing data as long as there is work to do. */ 7023 for (;;) { 7024 7025 status_attn_bits = sc->status_block->status_attn_bits; 7026 7027 DBRUNIF(DB_RANDOMTRUE(bce_debug_unexpected_attention), 7028 BCE_PRINTF("Simulating unexpected status attention bit set."); 7029 status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR); 7030 7031 /* Was it a link change interrupt? */ 7032 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 7033 (sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) { 7034 bce_phy_intr(sc); 7035 7036 /* Clear any transient status updates during link state change. */ 7037 REG_WR(sc, BCE_HC_COMMAND, 7038 sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT); 7039 REG_RD(sc, BCE_HC_COMMAND); 7040 } 7041 7042 /* If any other attention is asserted then the chip is toast. */ 7043 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 7044 (sc->status_block->status_attn_bits_ack & 7045 ~STATUS_ATTN_BITS_LINK_STATE))) { 7046 7047 DBRUN(sc->unexpected_attentions++); 7048 7049 BCE_PRINTF("%s(%d): Fatal attention detected: 0x%08X\n", 7050 __FILE__, __LINE__, sc->status_block->status_attn_bits); 7051 7052 DBRUNMSG(BCE_FATAL, 7053 if (bce_debug_unexpected_attention == 0) 7054 bce_breakpoint(sc)); 7055 7056 bce_init_locked(sc); 7057 goto bce_intr_exit; 7058 } 7059 7060 /* Check for any completed RX frames. */ 7061 if (hw_rx_cons != sc->hw_rx_cons) 7062 bce_rx_intr(sc); 7063 7064 /* Check for any completed TX frames. */ 7065 if (hw_tx_cons != sc->hw_tx_cons) 7066 bce_tx_intr(sc); 7067 7068 /* Save the status block index value for use during the next interrupt. */ 7069 sc->last_status_idx = sc->status_block->status_idx; 7070 7071 /* Prevent speculative reads from getting ahead of the status block. */ 7072 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 7073 BUS_SPACE_BARRIER_READ); 7074 7075 /* If there's no work left then exit the interrupt service routine. */ 7076 hw_rx_cons = bce_get_hw_rx_cons(sc); 7077 hw_tx_cons = bce_get_hw_tx_cons(sc); 7078 7079 if ((hw_rx_cons == sc->hw_rx_cons) && (hw_tx_cons == sc->hw_tx_cons)) 7080 break; 7081 7082 } 7083 7084 bus_dmamap_sync(sc->status_tag, sc->status_map, 7085 BUS_DMASYNC_PREWRITE); 7086 7087 /* Re-enable interrupts. */ 7088 bce_enable_intr(sc, 0); 7089 7090 /* Handle any frames that arrived while handling the interrupt. */ 7091 if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 7092 bce_start_locked(ifp); 7093 7094 bce_intr_exit: 7095 BCE_UNLOCK(sc); 7096 7097 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7098 } 7099 7100 7101 /****************************************************************************/ 7102 /* Programs the various packet receive modes (broadcast and multicast). */ 7103 /* */ 7104 /* Returns: */ 7105 /* Nothing. */ 7106 /****************************************************************************/ 7107 static void 7108 bce_set_rx_mode(struct bce_softc *sc) 7109 { 7110 struct ifnet *ifp; 7111 struct ifmultiaddr *ifma; 7112 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 7113 u32 rx_mode, sort_mode; 7114 int h, i; 7115 7116 DBENTER(BCE_VERBOSE_MISC); 7117 7118 BCE_LOCK_ASSERT(sc); 7119 7120 ifp = sc->bce_ifp; 7121 7122 /* Initialize receive mode default settings. */ 7123 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 7124 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 7125 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 7126 7127 /* 7128 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 7129 * be enbled. 7130 */ 7131 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 7132 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 7133 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 7134 7135 /* 7136 * Check for promiscuous, all multicast, or selected 7137 * multicast address filtering. 7138 */ 7139 if (ifp->if_flags & IFF_PROMISC) { 7140 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 7141 7142 /* Enable promiscuous mode. */ 7143 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 7144 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 7145 } else if (ifp->if_flags & IFF_ALLMULTI) { 7146 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 7147 7148 /* Enable all multicast addresses. */ 7149 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 7150 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); 7151 } 7152 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 7153 } else { 7154 /* Accept one or more multicast(s). */ 7155 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 7156 7157 IF_ADDR_LOCK(ifp); 7158 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 7159 if (ifma->ifma_addr->sa_family != AF_LINK) 7160 continue; 7161 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 7162 ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; 7163 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 7164 } 7165 IF_ADDR_UNLOCK(ifp); 7166 7167 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 7168 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 7169 7170 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 7171 } 7172 7173 /* Only make changes if the recive mode has actually changed. */ 7174 if (rx_mode != sc->rx_mode) { 7175 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: 0x%08X\n", 7176 rx_mode); 7177 7178 sc->rx_mode = rx_mode; 7179 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 7180 } 7181 7182 /* Disable and clear the exisitng sort before enabling a new sort. */ 7183 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 7184 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 7185 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 7186 7187 DBEXIT(BCE_VERBOSE_MISC); 7188 } 7189 7190 7191 /****************************************************************************/ 7192 /* Called periodically to updates statistics from the controllers */ 7193 /* statistics block. */ 7194 /* */ 7195 /* Returns: */ 7196 /* Nothing. */ 7197 /****************************************************************************/ 7198 static void 7199 bce_stats_update(struct bce_softc *sc) 7200 { 7201 struct ifnet *ifp; 7202 struct statistics_block *stats; 7203 7204 DBENTER(BCE_EXTREME_MISC); 7205 7206 ifp = sc->bce_ifp; 7207 7208 stats = (struct statistics_block *) sc->stats_block; 7209 7210 /* 7211 * Certain controllers don't report 7212 * carrier sense errors correctly. 7213 * See errata E11_5708CA0_1165. 7214 */ 7215 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 7216 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 7217 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 7218 7219 /* 7220 * Update the sysctl statistics from the 7221 * hardware statistics. 7222 */ 7223 sc->stat_IfHCInOctets = 7224 ((u64) stats->stat_IfHCInOctets_hi << 32) + 7225 (u64) stats->stat_IfHCInOctets_lo; 7226 7227 sc->stat_IfHCInBadOctets = 7228 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 7229 (u64) stats->stat_IfHCInBadOctets_lo; 7230 7231 sc->stat_IfHCOutOctets = 7232 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 7233 (u64) stats->stat_IfHCOutOctets_lo; 7234 7235 sc->stat_IfHCOutBadOctets = 7236 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 7237 (u64) stats->stat_IfHCOutBadOctets_lo; 7238 7239 sc->stat_IfHCInUcastPkts = 7240 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 7241 (u64) stats->stat_IfHCInUcastPkts_lo; 7242 7243 sc->stat_IfHCInMulticastPkts = 7244 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 7245 (u64) stats->stat_IfHCInMulticastPkts_lo; 7246 7247 sc->stat_IfHCInBroadcastPkts = 7248 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 7249 (u64) stats->stat_IfHCInBroadcastPkts_lo; 7250 7251 sc->stat_IfHCOutUcastPkts = 7252 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 7253 (u64) stats->stat_IfHCOutUcastPkts_lo; 7254 7255 sc->stat_IfHCOutMulticastPkts = 7256 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 7257 (u64) stats->stat_IfHCOutMulticastPkts_lo; 7258 7259 sc->stat_IfHCOutBroadcastPkts = 7260 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 7261 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 7262 7263 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 7264 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 7265 7266 sc->stat_Dot3StatsCarrierSenseErrors = 7267 stats->stat_Dot3StatsCarrierSenseErrors; 7268 7269 sc->stat_Dot3StatsFCSErrors = 7270 stats->stat_Dot3StatsFCSErrors; 7271 7272 sc->stat_Dot3StatsAlignmentErrors = 7273 stats->stat_Dot3StatsAlignmentErrors; 7274 7275 sc->stat_Dot3StatsSingleCollisionFrames = 7276 stats->stat_Dot3StatsSingleCollisionFrames; 7277 7278 sc->stat_Dot3StatsMultipleCollisionFrames = 7279 stats->stat_Dot3StatsMultipleCollisionFrames; 7280 7281 sc->stat_Dot3StatsDeferredTransmissions = 7282 stats->stat_Dot3StatsDeferredTransmissions; 7283 7284 sc->stat_Dot3StatsExcessiveCollisions = 7285 stats->stat_Dot3StatsExcessiveCollisions; 7286 7287 sc->stat_Dot3StatsLateCollisions = 7288 stats->stat_Dot3StatsLateCollisions; 7289 7290 sc->stat_EtherStatsCollisions = 7291 stats->stat_EtherStatsCollisions; 7292 7293 sc->stat_EtherStatsFragments = 7294 stats->stat_EtherStatsFragments; 7295 7296 sc->stat_EtherStatsJabbers = 7297 stats->stat_EtherStatsJabbers; 7298 7299 sc->stat_EtherStatsUndersizePkts = 7300 stats->stat_EtherStatsUndersizePkts; 7301 7302 sc->stat_EtherStatsOverrsizePkts = 7303 stats->stat_EtherStatsOverrsizePkts; 7304 7305 sc->stat_EtherStatsPktsRx64Octets = 7306 stats->stat_EtherStatsPktsRx64Octets; 7307 7308 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 7309 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 7310 7311 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 7312 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 7313 7314 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 7315 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 7316 7317 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 7318 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 7319 7320 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 7321 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 7322 7323 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 7324 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 7325 7326 sc->stat_EtherStatsPktsTx64Octets = 7327 stats->stat_EtherStatsPktsTx64Octets; 7328 7329 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 7330 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 7331 7332 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 7333 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 7334 7335 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 7336 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 7337 7338 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 7339 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 7340 7341 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 7342 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 7343 7344 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 7345 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 7346 7347 sc->stat_XonPauseFramesReceived = 7348 stats->stat_XonPauseFramesReceived; 7349 7350 sc->stat_XoffPauseFramesReceived = 7351 stats->stat_XoffPauseFramesReceived; 7352 7353 sc->stat_OutXonSent = 7354 stats->stat_OutXonSent; 7355 7356 sc->stat_OutXoffSent = 7357 stats->stat_OutXoffSent; 7358 7359 sc->stat_FlowControlDone = 7360 stats->stat_FlowControlDone; 7361 7362 sc->stat_MacControlFramesReceived = 7363 stats->stat_MacControlFramesReceived; 7364 7365 sc->stat_XoffStateEntered = 7366 stats->stat_XoffStateEntered; 7367 7368 sc->stat_IfInFramesL2FilterDiscards = 7369 stats->stat_IfInFramesL2FilterDiscards; 7370 7371 sc->stat_IfInRuleCheckerDiscards = 7372 stats->stat_IfInRuleCheckerDiscards; 7373 7374 sc->stat_IfInFTQDiscards = 7375 stats->stat_IfInFTQDiscards; 7376 7377 sc->stat_IfInMBUFDiscards = 7378 stats->stat_IfInMBUFDiscards; 7379 7380 sc->stat_IfInRuleCheckerP4Hit = 7381 stats->stat_IfInRuleCheckerP4Hit; 7382 7383 sc->stat_CatchupInRuleCheckerDiscards = 7384 stats->stat_CatchupInRuleCheckerDiscards; 7385 7386 sc->stat_CatchupInFTQDiscards = 7387 stats->stat_CatchupInFTQDiscards; 7388 7389 sc->stat_CatchupInMBUFDiscards = 7390 stats->stat_CatchupInMBUFDiscards; 7391 7392 sc->stat_CatchupInRuleCheckerP4Hit = 7393 stats->stat_CatchupInRuleCheckerP4Hit; 7394 7395 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 7396 7397 /* 7398 * Update the interface statistics from the 7399 * hardware statistics. 7400 */ 7401 ifp->if_collisions = 7402 (u_long) sc->stat_EtherStatsCollisions; 7403 7404 /* ToDo: This method loses soft errors. */ 7405 ifp->if_ierrors = 7406 (u_long) sc->stat_EtherStatsUndersizePkts + 7407 (u_long) sc->stat_EtherStatsOverrsizePkts + 7408 (u_long) sc->stat_IfInMBUFDiscards + 7409 (u_long) sc->stat_Dot3StatsAlignmentErrors + 7410 (u_long) sc->stat_Dot3StatsFCSErrors + 7411 (u_long) sc->stat_IfInFramesL2FilterDiscards + 7412 (u_long) sc->stat_IfInRuleCheckerDiscards + 7413 (u_long) sc->stat_IfInFTQDiscards + 7414 (u_long) sc->com_no_buffers; 7415 7416 /* ToDo: This method loses soft errors. */ 7417 ifp->if_oerrors = 7418 (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 7419 (u_long) sc->stat_Dot3StatsExcessiveCollisions + 7420 (u_long) sc->stat_Dot3StatsLateCollisions; 7421 7422 /* ToDo: Add additional statistics. */ 7423 7424 DBEXIT(BCE_EXTREME_MISC); 7425 } 7426 7427 7428 /****************************************************************************/ 7429 /* Periodic function to notify the bootcode that the driver is still */ 7430 /* present. */ 7431 /* */ 7432 /* Returns: */ 7433 /* Nothing. */ 7434 /****************************************************************************/ 7435 static void 7436 bce_pulse(void *xsc) 7437 { 7438 struct bce_softc *sc = xsc; 7439 u32 msg; 7440 7441 DBENTER(BCE_EXTREME_MISC); 7442 7443 BCE_LOCK_ASSERT(sc); 7444 7445 /* Tell the firmware that the driver is still running. */ 7446 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 7447 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_PULSE_MB, msg); 7448 7449 /* Schedule the next pulse. */ 7450 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 7451 7452 DBEXIT(BCE_EXTREME_MISC); 7453 } 7454 7455 7456 /****************************************************************************/ 7457 /* Periodic function to perform maintenance tasks. */ 7458 /* */ 7459 /* Returns: */ 7460 /* Nothing. */ 7461 /****************************************************************************/ 7462 static void 7463 bce_tick(void *xsc) 7464 { 7465 struct bce_softc *sc = xsc; 7466 struct mii_data *mii; 7467 struct ifnet *ifp; 7468 7469 ifp = sc->bce_ifp; 7470 7471 DBENTER(BCE_EXTREME_MISC); 7472 7473 BCE_LOCK_ASSERT(sc); 7474 7475 /* Schedule the next tick. */ 7476 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 7477 7478 /* Update the statistics from the hardware statistics block. */ 7479 bce_stats_update(sc); 7480 7481 /* Top off the receive and page chains. */ 7482 #ifdef BCE_USE_SPLIT_HEADER 7483 bce_fill_pg_chain(sc); 7484 #endif 7485 bce_fill_rx_chain(sc); 7486 7487 /* Check that chip hasn't hung. */ 7488 bce_watchdog(sc); 7489 7490 /* If link is up already up then we're done. */ 7491 if (sc->bce_link) 7492 goto bce_tick_exit; 7493 7494 /* Link is down. Check what the PHY's doing. */ 7495 mii = device_get_softc(sc->bce_miibus); 7496 mii_tick(mii); 7497 7498 /* Check if the link has come up. */ 7499 if ((mii->mii_media_status & IFM_ACTIVE) && 7500 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { 7501 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", __FUNCTION__); 7502 sc->bce_link++; 7503 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 7504 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) && 7505 bootverbose) 7506 BCE_PRINTF("Gigabit link up!\n"); 7507 /* Now that link is up, handle any outstanding TX traffic. */ 7508 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 7509 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found pending TX traffic.\n", 7510 __FUNCTION__); 7511 bce_start_locked(ifp); 7512 } 7513 } 7514 7515 bce_tick_exit: 7516 DBEXIT(BCE_EXTREME_MISC); 7517 return; 7518 } 7519 7520 7521 #ifdef BCE_DEBUG 7522 /****************************************************************************/ 7523 /* Allows the driver state to be dumped through the sysctl interface. */ 7524 /* */ 7525 /* Returns: */ 7526 /* 0 for success, positive value for failure. */ 7527 /****************************************************************************/ 7528 static int 7529 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 7530 { 7531 int error; 7532 int result; 7533 struct bce_softc *sc; 7534 7535 result = -1; 7536 error = sysctl_handle_int(oidp, &result, 0, req); 7537 7538 if (error || !req->newptr) 7539 return (error); 7540 7541 if (result == 1) { 7542 sc = (struct bce_softc *)arg1; 7543 bce_dump_driver_state(sc); 7544 } 7545 7546 return error; 7547 } 7548 7549 7550 /****************************************************************************/ 7551 /* Allows the hardware state to be dumped through the sysctl interface. */ 7552 /* */ 7553 /* Returns: */ 7554 /* 0 for success, positive value for failure. */ 7555 /****************************************************************************/ 7556 static int 7557 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 7558 { 7559 int error; 7560 int result; 7561 struct bce_softc *sc; 7562 7563 result = -1; 7564 error = sysctl_handle_int(oidp, &result, 0, req); 7565 7566 if (error || !req->newptr) 7567 return (error); 7568 7569 if (result == 1) { 7570 sc = (struct bce_softc *)arg1; 7571 bce_dump_hw_state(sc); 7572 } 7573 7574 return error; 7575 } 7576 7577 7578 /****************************************************************************/ 7579 /* Allows the bootcode state to be dumped through the sysctl interface. */ 7580 /* */ 7581 /* Returns: */ 7582 /* 0 for success, positive value for failure. */ 7583 /****************************************************************************/ 7584 static int 7585 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 7586 { 7587 int error; 7588 int result; 7589 struct bce_softc *sc; 7590 7591 result = -1; 7592 error = sysctl_handle_int(oidp, &result, 0, req); 7593 7594 if (error || !req->newptr) 7595 return (error); 7596 7597 if (result == 1) { 7598 sc = (struct bce_softc *)arg1; 7599 bce_dump_bc_state(sc); 7600 } 7601 7602 return error; 7603 } 7604 7605 7606 /****************************************************************************/ 7607 /* Provides a sysctl interface to allow dumping the RX chain. */ 7608 /* */ 7609 /* Returns: */ 7610 /* 0 for success, positive value for failure. */ 7611 /****************************************************************************/ 7612 static int 7613 bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS) 7614 { 7615 int error; 7616 int result; 7617 struct bce_softc *sc; 7618 7619 result = -1; 7620 error = sysctl_handle_int(oidp, &result, 0, req); 7621 7622 if (error || !req->newptr) 7623 return (error); 7624 7625 if (result == 1) { 7626 sc = (struct bce_softc *)arg1; 7627 bce_dump_rx_chain(sc, 0, TOTAL_RX_BD); 7628 } 7629 7630 return error; 7631 } 7632 7633 7634 /****************************************************************************/ 7635 /* Provides a sysctl interface to allow dumping the TX chain. */ 7636 /* */ 7637 /* Returns: */ 7638 /* 0 for success, positive value for failure. */ 7639 /****************************************************************************/ 7640 static int 7641 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 7642 { 7643 int error; 7644 int result; 7645 struct bce_softc *sc; 7646 7647 result = -1; 7648 error = sysctl_handle_int(oidp, &result, 0, req); 7649 7650 if (error || !req->newptr) 7651 return (error); 7652 7653 if (result == 1) { 7654 sc = (struct bce_softc *)arg1; 7655 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 7656 } 7657 7658 return error; 7659 } 7660 7661 7662 #ifdef BCE_USE_SPLIT_HEADER 7663 /****************************************************************************/ 7664 /* Provides a sysctl interface to allow dumping the page chain. */ 7665 /* */ 7666 /* Returns: */ 7667 /* 0 for success, positive value for failure. */ 7668 /****************************************************************************/ 7669 static int 7670 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) 7671 { 7672 int error; 7673 int result; 7674 struct bce_softc *sc; 7675 7676 result = -1; 7677 error = sysctl_handle_int(oidp, &result, 0, req); 7678 7679 if (error || !req->newptr) 7680 return (error); 7681 7682 if (result == 1) { 7683 sc = (struct bce_softc *)arg1; 7684 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD); 7685 } 7686 7687 return error; 7688 } 7689 #endif 7690 7691 /****************************************************************************/ 7692 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ 7693 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7694 /* */ 7695 /* Returns: */ 7696 /* 0 for success, positive value for failure. */ 7697 /****************************************************************************/ 7698 static int 7699 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) 7700 { 7701 struct bce_softc *sc = (struct bce_softc *)arg1; 7702 int error; 7703 u32 result; 7704 u32 val[1]; 7705 u8 *data = (u8 *) val; 7706 7707 result = -1; 7708 error = sysctl_handle_int(oidp, &result, 0, req); 7709 if (error || (req->newptr == NULL)) 7710 return (error); 7711 7712 bce_nvram_read(sc, result, data, 4); 7713 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); 7714 7715 return (error); 7716 } 7717 7718 7719 /****************************************************************************/ 7720 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 7721 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7722 /* */ 7723 /* Returns: */ 7724 /* 0 for success, positive value for failure. */ 7725 /****************************************************************************/ 7726 static int 7727 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 7728 { 7729 struct bce_softc *sc = (struct bce_softc *)arg1; 7730 int error; 7731 u32 val, result; 7732 7733 result = -1; 7734 error = sysctl_handle_int(oidp, &result, 0, req); 7735 if (error || (req->newptr == NULL)) 7736 return (error); 7737 7738 /* Make sure the register is accessible. */ 7739 if (result < 0x8000) { 7740 val = REG_RD(sc, result); 7741 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 7742 } else if (result < 0x0280000) { 7743 val = REG_RD_IND(sc, result); 7744 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 7745 } 7746 7747 return (error); 7748 } 7749 7750 7751 /****************************************************************************/ 7752 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 7753 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7754 /* */ 7755 /* Returns: */ 7756 /* 0 for success, positive value for failure. */ 7757 /****************************************************************************/ 7758 static int 7759 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 7760 { 7761 struct bce_softc *sc; 7762 device_t dev; 7763 int error, result; 7764 u16 val; 7765 7766 result = -1; 7767 error = sysctl_handle_int(oidp, &result, 0, req); 7768 if (error || (req->newptr == NULL)) 7769 return (error); 7770 7771 /* Make sure the register is accessible. */ 7772 if (result < 0x20) { 7773 sc = (struct bce_softc *)arg1; 7774 dev = sc->bce_dev; 7775 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 7776 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 7777 } 7778 return (error); 7779 } 7780 7781 7782 /****************************************************************************/ 7783 /* Provides a sysctl interface to allow reading a CID. */ 7784 /* */ 7785 /* Returns: */ 7786 /* 0 for success, positive value for failure. */ 7787 /****************************************************************************/ 7788 static int 7789 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) 7790 { 7791 struct bce_softc *sc; 7792 int error; 7793 u16 result; 7794 7795 result = -1; 7796 error = sysctl_handle_int(oidp, &result, 0, req); 7797 if (error || (req->newptr == NULL)) 7798 return (error); 7799 7800 /* Make sure the register is accessible. */ 7801 if (result <= TX_CID) { 7802 sc = (struct bce_softc *)arg1; 7803 bce_dump_ctx(sc, result); 7804 } 7805 7806 return (error); 7807 } 7808 7809 7810 /****************************************************************************/ 7811 /* Provides a sysctl interface to forcing the driver to dump state and */ 7812 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7813 /* */ 7814 /* Returns: */ 7815 /* 0 for success, positive value for failure. */ 7816 /****************************************************************************/ 7817 static int 7818 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 7819 { 7820 int error; 7821 int result; 7822 struct bce_softc *sc; 7823 7824 result = -1; 7825 error = sysctl_handle_int(oidp, &result, 0, req); 7826 7827 if (error || !req->newptr) 7828 return (error); 7829 7830 if (result == 1) { 7831 sc = (struct bce_softc *)arg1; 7832 bce_breakpoint(sc); 7833 } 7834 7835 return error; 7836 } 7837 #endif 7838 7839 7840 /****************************************************************************/ 7841 /* Adds any sysctl parameters for tuning or debugging purposes. */ 7842 /* */ 7843 /* Returns: */ 7844 /* 0 for success, positive value for failure. */ 7845 /****************************************************************************/ 7846 static void 7847 bce_add_sysctls(struct bce_softc *sc) 7848 { 7849 struct sysctl_ctx_list *ctx; 7850 struct sysctl_oid_list *children; 7851 7852 DBENTER(BCE_VERBOSE_MISC); 7853 7854 ctx = device_get_sysctl_ctx(sc->bce_dev); 7855 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 7856 7857 #ifdef BCE_DEBUG 7858 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7859 "rx_low_watermark", 7860 CTLFLAG_RD, &sc->rx_low_watermark, 7861 0, "Lowest level of free rx_bd's"); 7862 7863 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7864 "rx_empty_count", 7865 CTLFLAG_RD, &sc->rx_empty_count, 7866 0, "Number of times the RX chain was empty"); 7867 7868 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7869 "tx_hi_watermark", 7870 CTLFLAG_RD, &sc->tx_hi_watermark, 7871 0, "Highest level of used tx_bd's"); 7872 7873 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7874 "tx_full_count", 7875 CTLFLAG_RD, &sc->tx_full_count, 7876 0, "Number of times the TX chain was full"); 7877 7878 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7879 "l2fhdr_status_errors", 7880 CTLFLAG_RD, &sc->l2fhdr_status_errors, 7881 0, "l2_fhdr status errors"); 7882 7883 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7884 "unexpected_attentions", 7885 CTLFLAG_RD, &sc->unexpected_attentions, 7886 0, "Unexpected attentions"); 7887 7888 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7889 "lost_status_block_updates", 7890 CTLFLAG_RD, &sc->lost_status_block_updates, 7891 0, "Lost status block updates"); 7892 7893 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7894 "debug_mbuf_sim_alloc_failed", 7895 CTLFLAG_RD, &sc->debug_mbuf_sim_alloc_failed, 7896 0, "Simulated mbuf cluster allocation failures"); 7897 7898 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7899 "requested_tso_frames", 7900 CTLFLAG_RD, &sc->requested_tso_frames, 7901 0, "Number of TSO frames received"); 7902 7903 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 7904 "rx_interrupts", 7905 CTLFLAG_RD, &sc->rx_interrupts, 7906 0, "Number of RX interrupts"); 7907 7908 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 7909 "tx_interrupts", 7910 CTLFLAG_RD, &sc->tx_interrupts, 7911 0, "Number of TX interrupts"); 7912 7913 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7914 "rx_intr_time", 7915 CTLFLAG_RD, &sc->rx_intr_time, 7916 "RX interrupt time"); 7917 7918 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7919 "tx_intr_time", 7920 CTLFLAG_RD, &sc->tx_intr_time, 7921 "TX interrupt time"); 7922 #endif 7923 7924 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7925 "mbuf_alloc_failed", 7926 CTLFLAG_RD, &sc->mbuf_alloc_failed, 7927 0, "mbuf cluster allocation failures"); 7928 7929 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7930 "tx_dma_map_failures", 7931 CTLFLAG_RD, &sc->tx_dma_map_failures, 7932 0, "tx dma mapping failures"); 7933 7934 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7935 "stat_IfHcInOctets", 7936 CTLFLAG_RD, &sc->stat_IfHCInOctets, 7937 "Bytes received"); 7938 7939 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7940 "stat_IfHCInBadOctets", 7941 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 7942 "Bad bytes received"); 7943 7944 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7945 "stat_IfHCOutOctets", 7946 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 7947 "Bytes sent"); 7948 7949 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7950 "stat_IfHCOutBadOctets", 7951 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 7952 "Bad bytes sent"); 7953 7954 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7955 "stat_IfHCInUcastPkts", 7956 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 7957 "Unicast packets received"); 7958 7959 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7960 "stat_IfHCInMulticastPkts", 7961 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 7962 "Multicast packets received"); 7963 7964 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7965 "stat_IfHCInBroadcastPkts", 7966 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 7967 "Broadcast packets received"); 7968 7969 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7970 "stat_IfHCOutUcastPkts", 7971 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 7972 "Unicast packets sent"); 7973 7974 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7975 "stat_IfHCOutMulticastPkts", 7976 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 7977 "Multicast packets sent"); 7978 7979 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7980 "stat_IfHCOutBroadcastPkts", 7981 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 7982 "Broadcast packets sent"); 7983 7984 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 7985 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 7986 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 7987 0, "Internal MAC transmit errors"); 7988 7989 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 7990 "stat_Dot3StatsCarrierSenseErrors", 7991 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 7992 0, "Carrier sense errors"); 7993 7994 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 7995 "stat_Dot3StatsFCSErrors", 7996 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 7997 0, "Frame check sequence errors"); 7998 7999 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8000 "stat_Dot3StatsAlignmentErrors", 8001 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 8002 0, "Alignment errors"); 8003 8004 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8005 "stat_Dot3StatsSingleCollisionFrames", 8006 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 8007 0, "Single Collision Frames"); 8008 8009 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8010 "stat_Dot3StatsMultipleCollisionFrames", 8011 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 8012 0, "Multiple Collision Frames"); 8013 8014 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8015 "stat_Dot3StatsDeferredTransmissions", 8016 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 8017 0, "Deferred Transmissions"); 8018 8019 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8020 "stat_Dot3StatsExcessiveCollisions", 8021 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 8022 0, "Excessive Collisions"); 8023 8024 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8025 "stat_Dot3StatsLateCollisions", 8026 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 8027 0, "Late Collisions"); 8028 8029 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8030 "stat_EtherStatsCollisions", 8031 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 8032 0, "Collisions"); 8033 8034 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8035 "stat_EtherStatsFragments", 8036 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 8037 0, "Fragments"); 8038 8039 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8040 "stat_EtherStatsJabbers", 8041 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 8042 0, "Jabbers"); 8043 8044 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8045 "stat_EtherStatsUndersizePkts", 8046 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 8047 0, "Undersize packets"); 8048 8049 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8050 "stat_EtherStatsOverrsizePkts", 8051 CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts, 8052 0, "stat_EtherStatsOverrsizePkts"); 8053 8054 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8055 "stat_EtherStatsPktsRx64Octets", 8056 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 8057 0, "Bytes received in 64 byte packets"); 8058 8059 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8060 "stat_EtherStatsPktsRx65Octetsto127Octets", 8061 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 8062 0, "Bytes received in 65 to 127 byte packets"); 8063 8064 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8065 "stat_EtherStatsPktsRx128Octetsto255Octets", 8066 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 8067 0, "Bytes received in 128 to 255 byte packets"); 8068 8069 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8070 "stat_EtherStatsPktsRx256Octetsto511Octets", 8071 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 8072 0, "Bytes received in 256 to 511 byte packets"); 8073 8074 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8075 "stat_EtherStatsPktsRx512Octetsto1023Octets", 8076 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 8077 0, "Bytes received in 512 to 1023 byte packets"); 8078 8079 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8080 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 8081 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 8082 0, "Bytes received in 1024 t0 1522 byte packets"); 8083 8084 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8085 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 8086 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 8087 0, "Bytes received in 1523 to 9022 byte packets"); 8088 8089 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8090 "stat_EtherStatsPktsTx64Octets", 8091 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 8092 0, "Bytes sent in 64 byte packets"); 8093 8094 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8095 "stat_EtherStatsPktsTx65Octetsto127Octets", 8096 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 8097 0, "Bytes sent in 65 to 127 byte packets"); 8098 8099 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8100 "stat_EtherStatsPktsTx128Octetsto255Octets", 8101 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 8102 0, "Bytes sent in 128 to 255 byte packets"); 8103 8104 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8105 "stat_EtherStatsPktsTx256Octetsto511Octets", 8106 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 8107 0, "Bytes sent in 256 to 511 byte packets"); 8108 8109 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8110 "stat_EtherStatsPktsTx512Octetsto1023Octets", 8111 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 8112 0, "Bytes sent in 512 to 1023 byte packets"); 8113 8114 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8115 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 8116 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 8117 0, "Bytes sent in 1024 to 1522 byte packets"); 8118 8119 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8120 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 8121 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 8122 0, "Bytes sent in 1523 to 9022 byte packets"); 8123 8124 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8125 "stat_XonPauseFramesReceived", 8126 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 8127 0, "XON pause frames receved"); 8128 8129 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8130 "stat_XoffPauseFramesReceived", 8131 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 8132 0, "XOFF pause frames received"); 8133 8134 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8135 "stat_OutXonSent", 8136 CTLFLAG_RD, &sc->stat_OutXonSent, 8137 0, "XON pause frames sent"); 8138 8139 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8140 "stat_OutXoffSent", 8141 CTLFLAG_RD, &sc->stat_OutXoffSent, 8142 0, "XOFF pause frames sent"); 8143 8144 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8145 "stat_FlowControlDone", 8146 CTLFLAG_RD, &sc->stat_FlowControlDone, 8147 0, "Flow control done"); 8148 8149 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8150 "stat_MacControlFramesReceived", 8151 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 8152 0, "MAC control frames received"); 8153 8154 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8155 "stat_XoffStateEntered", 8156 CTLFLAG_RD, &sc->stat_XoffStateEntered, 8157 0, "XOFF state entered"); 8158 8159 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8160 "stat_IfInFramesL2FilterDiscards", 8161 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 8162 0, "Received L2 packets discarded"); 8163 8164 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8165 "stat_IfInRuleCheckerDiscards", 8166 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 8167 0, "Received packets discarded by rule"); 8168 8169 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8170 "stat_IfInFTQDiscards", 8171 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 8172 0, "Received packet FTQ discards"); 8173 8174 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8175 "stat_IfInMBUFDiscards", 8176 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 8177 0, "Received packets discarded due to lack of controller buffer memory"); 8178 8179 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8180 "stat_IfInRuleCheckerP4Hit", 8181 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 8182 0, "Received packets rule checker hits"); 8183 8184 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8185 "stat_CatchupInRuleCheckerDiscards", 8186 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 8187 0, "Received packets discarded in Catchup path"); 8188 8189 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8190 "stat_CatchupInFTQDiscards", 8191 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 8192 0, "Received packets discarded in FTQ in Catchup path"); 8193 8194 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8195 "stat_CatchupInMBUFDiscards", 8196 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 8197 0, "Received packets discarded in controller buffer memory in Catchup path"); 8198 8199 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8200 "stat_CatchupInRuleCheckerP4Hit", 8201 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 8202 0, "Received packets rule checker hits in Catchup path"); 8203 8204 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8205 "com_no_buffers", 8206 CTLFLAG_RD, &sc->com_no_buffers, 8207 0, "Valid packets received but no RX buffers available"); 8208 8209 #ifdef BCE_DEBUG 8210 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8211 "driver_state", CTLTYPE_INT | CTLFLAG_RW, 8212 (void *)sc, 0, 8213 bce_sysctl_driver_state, "I", "Drive state information"); 8214 8215 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8216 "hw_state", CTLTYPE_INT | CTLFLAG_RW, 8217 (void *)sc, 0, 8218 bce_sysctl_hw_state, "I", "Hardware state information"); 8219 8220 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8221 "bc_state", CTLTYPE_INT | CTLFLAG_RW, 8222 (void *)sc, 0, 8223 bce_sysctl_bc_state, "I", "Bootcode state information"); 8224 8225 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8226 "dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW, 8227 (void *)sc, 0, 8228 bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain"); 8229 8230 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8231 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW, 8232 (void *)sc, 0, 8233 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 8234 8235 #ifdef BCE_USE_SPLIT_HEADER 8236 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8237 "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW, 8238 (void *)sc, 0, 8239 bce_sysctl_dump_pg_chain, "I", "Dump page chain"); 8240 #endif 8241 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8242 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW, 8243 (void *)sc, 0, 8244 bce_sysctl_dump_ctx, "I", "Dump context memory"); 8245 8246 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8247 "breakpoint", CTLTYPE_INT | CTLFLAG_RW, 8248 (void *)sc, 0, 8249 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 8250 8251 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8252 "reg_read", CTLTYPE_INT | CTLFLAG_RW, 8253 (void *)sc, 0, 8254 bce_sysctl_reg_read, "I", "Register read"); 8255 8256 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8257 "nvram_read", CTLTYPE_INT | CTLFLAG_RW, 8258 (void *)sc, 0, 8259 bce_sysctl_nvram_read, "I", "NVRAM read"); 8260 8261 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8262 "phy_read", CTLTYPE_INT | CTLFLAG_RW, 8263 (void *)sc, 0, 8264 bce_sysctl_phy_read, "I", "PHY register read"); 8265 8266 #endif 8267 8268 DBEXIT(BCE_VERBOSE_MISC); 8269 } 8270 8271 8272 /****************************************************************************/ 8273 /* BCE Debug Routines */ 8274 /****************************************************************************/ 8275 #ifdef BCE_DEBUG 8276 8277 /****************************************************************************/ 8278 /* Freezes the controller to allow for a cohesive state dump. */ 8279 /* */ 8280 /* Returns: */ 8281 /* Nothing. */ 8282 /****************************************************************************/ 8283 static void 8284 bce_freeze_controller(struct bce_softc *sc) 8285 { 8286 u32 val; 8287 val = REG_RD(sc, BCE_MISC_COMMAND); 8288 val |= BCE_MISC_COMMAND_DISABLE_ALL; 8289 REG_WR(sc, BCE_MISC_COMMAND, val); 8290 } 8291 8292 8293 /****************************************************************************/ 8294 /* Unfreezes the controller after a freeze operation. This may not always */ 8295 /* work and the controller will require a reset! */ 8296 /* */ 8297 /* Returns: */ 8298 /* Nothing. */ 8299 /****************************************************************************/ 8300 static void 8301 bce_unfreeze_controller(struct bce_softc *sc) 8302 { 8303 u32 val; 8304 val = REG_RD(sc, BCE_MISC_COMMAND); 8305 val |= BCE_MISC_COMMAND_ENABLE_ALL; 8306 REG_WR(sc, BCE_MISC_COMMAND, val); 8307 } 8308 8309 8310 /****************************************************************************/ 8311 /* Prints out Ethernet frame information from an mbuf. */ 8312 /* */ 8313 /* Partially decode an Ethernet frame to look at some important headers. */ 8314 /* */ 8315 /* Returns: */ 8316 /* Nothing. */ 8317 /****************************************************************************/ 8318 static void 8319 bce_dump_enet(struct bce_softc *sc, struct mbuf *m) 8320 { 8321 struct ether_vlan_header *eh; 8322 u16 etype; 8323 int ehlen; 8324 struct ip *ip; 8325 struct tcphdr *th; 8326 struct udphdr *uh; 8327 struct arphdr *ah; 8328 8329 BCE_PRINTF( 8330 "-----------------------------" 8331 " Frame Decode " 8332 "-----------------------------\n"); 8333 8334 eh = mtod(m, struct ether_vlan_header *); 8335 8336 /* Handle VLAN encapsulation if present. */ 8337 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 8338 etype = ntohs(eh->evl_proto); 8339 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 8340 } else { 8341 etype = ntohs(eh->evl_encap_proto); 8342 ehlen = ETHER_HDR_LEN; 8343 } 8344 8345 /* ToDo: Add VLAN output. */ 8346 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", 8347 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); 8348 8349 switch (etype) { 8350 case ETHERTYPE_IP: 8351 ip = (struct ip *)(m->m_data + ehlen); 8352 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, len = %d bytes, " 8353 "protocol = 0x%02X, xsum = 0x%04X\n", 8354 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), 8355 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); 8356 8357 switch (ip->ip_p) { 8358 case IPPROTO_TCP: 8359 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 8360 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = %d bytes, " 8361 "flags = 0x%b, csum = 0x%04X\n", 8362 ntohs(th->th_dport), ntohs(th->th_sport), (th->th_off << 2), 8363 th->th_flags, "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST\02SYN\01FIN", 8364 ntohs(th->th_sum)); 8365 break; 8366 case IPPROTO_UDP: 8367 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 8368 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d bytes, " 8369 "csum = 0x%04X\n", ntohs(uh->uh_dport), ntohs(uh->uh_sport), 8370 ntohs(uh->uh_ulen), ntohs(uh->uh_sum)); 8371 break; 8372 case IPPROTO_ICMP: 8373 BCE_PRINTF("icmp:\n"); 8374 break; 8375 default: 8376 BCE_PRINTF("----: Other IP protocol.\n"); 8377 } 8378 break; 8379 case ETHERTYPE_IPV6: 8380 BCE_PRINTF("ipv6: No decode supported.\n"); 8381 break; 8382 case ETHERTYPE_ARP: 8383 BCE_PRINTF("-arp: "); 8384 ah = (struct arphdr *) (m->m_data + ehlen); 8385 switch (ntohs(ah->ar_op)) { 8386 case ARPOP_REVREQUEST: 8387 printf("reverse ARP request\n"); 8388 break; 8389 case ARPOP_REVREPLY: 8390 printf("reverse ARP reply\n"); 8391 break; 8392 case ARPOP_REQUEST: 8393 printf("ARP request\n"); 8394 break; 8395 case ARPOP_REPLY: 8396 printf("ARP reply\n"); 8397 break; 8398 default: 8399 printf("other ARP operation\n"); 8400 } 8401 break; 8402 default: 8403 BCE_PRINTF("----: Other protocol.\n"); 8404 } 8405 8406 BCE_PRINTF( 8407 "-----------------------------" 8408 "--------------" 8409 "-----------------------------\n"); 8410 } 8411 8412 8413 /****************************************************************************/ 8414 /* Prints out information about an mbuf. */ 8415 /* */ 8416 /* Returns: */ 8417 /* Nothing. */ 8418 /****************************************************************************/ 8419 static __attribute__ ((noinline)) void 8420 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 8421 { 8422 struct mbuf *mp = m; 8423 8424 if (m == NULL) { 8425 BCE_PRINTF("mbuf: null pointer\n"); 8426 return; 8427 } 8428 8429 while (mp) { 8430 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, m_data = %p\n", 8431 mp, mp->m_len, mp->m_flags, 8432 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", 8433 mp->m_data); 8434 8435 if (mp->m_flags & M_PKTHDR) { 8436 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, csum_flags = %b\n", 8437 mp->m_pkthdr.len, mp->m_flags, 8438 "\20\12M_BCAST\13M_MCAST\14M_FRAG\15M_FIRSTFRAG" 8439 "\16M_LASTFRAG\21M_VLANTAG\22M_PROMISC\23M_NOFREE", 8440 mp->m_pkthdr.csum_flags, 8441 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 8442 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 8443 "\12CSUM_IP_VALID\13CSUM_DATA_VALID\14CSUM_PSEUDO_HDR"); 8444 } 8445 8446 if (mp->m_flags & M_EXT) { 8447 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", 8448 mp->m_ext.ext_buf, mp->m_ext.ext_size); 8449 switch (mp->m_ext.ext_type) { 8450 case EXT_CLUSTER: printf("EXT_CLUSTER\n"); break; 8451 case EXT_SFBUF: printf("EXT_SFBUF\n"); break; 8452 case EXT_JUMBO9: printf("EXT_JUMBO9\n"); break; 8453 case EXT_JUMBO16: printf("EXT_JUMBO16\n"); break; 8454 case EXT_PACKET: printf("EXT_PACKET\n"); break; 8455 case EXT_MBUF: printf("EXT_MBUF\n"); break; 8456 case EXT_NET_DRV: printf("EXT_NET_DRV\n"); break; 8457 case EXT_MOD_TYPE: printf("EXT_MDD_TYPE\n"); break; 8458 case EXT_DISPOSABLE: printf("EXT_DISPOSABLE\n"); break; 8459 case EXT_EXTREF: printf("EXT_EXTREF\n"); break; 8460 default: printf("UNKNOWN\n"); 8461 } 8462 } 8463 8464 mp = mp->m_next; 8465 } 8466 } 8467 8468 8469 /****************************************************************************/ 8470 /* Prints out the mbufs in the TX mbuf chain. */ 8471 /* */ 8472 /* Returns: */ 8473 /* Nothing. */ 8474 /****************************************************************************/ 8475 static __attribute__ ((noinline)) void 8476 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8477 { 8478 struct mbuf *m; 8479 8480 BCE_PRINTF( 8481 "----------------------------" 8482 " tx mbuf data " 8483 "----------------------------\n"); 8484 8485 for (int i = 0; i < count; i++) { 8486 m = sc->tx_mbuf_ptr[chain_prod]; 8487 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); 8488 bce_dump_mbuf(sc, m); 8489 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 8490 } 8491 8492 BCE_PRINTF( 8493 "----------------------------" 8494 "----------------" 8495 "----------------------------\n"); 8496 } 8497 8498 8499 /****************************************************************************/ 8500 /* Prints out the mbufs in the RX mbuf chain. */ 8501 /* */ 8502 /* Returns: */ 8503 /* Nothing. */ 8504 /****************************************************************************/ 8505 static __attribute__ ((noinline)) void 8506 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8507 { 8508 struct mbuf *m; 8509 8510 BCE_PRINTF( 8511 "----------------------------" 8512 " rx mbuf data " 8513 "----------------------------\n"); 8514 8515 for (int i = 0; i < count; i++) { 8516 m = sc->rx_mbuf_ptr[chain_prod]; 8517 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 8518 bce_dump_mbuf(sc, m); 8519 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 8520 } 8521 8522 8523 BCE_PRINTF( 8524 "----------------------------" 8525 "----------------" 8526 "----------------------------\n"); 8527 } 8528 8529 8530 #ifdef BCE_USE_SPLIT_HEADER 8531 /****************************************************************************/ 8532 /* Prints out the mbufs in the mbuf page chain. */ 8533 /* */ 8534 /* Returns: */ 8535 /* Nothing. */ 8536 /****************************************************************************/ 8537 static __attribute__ ((noinline)) void 8538 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8539 { 8540 struct mbuf *m; 8541 8542 BCE_PRINTF( 8543 "----------------------------" 8544 " pg mbuf data " 8545 "----------------------------\n"); 8546 8547 for (int i = 0; i < count; i++) { 8548 m = sc->pg_mbuf_ptr[chain_prod]; 8549 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); 8550 bce_dump_mbuf(sc, m); 8551 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); 8552 } 8553 8554 8555 BCE_PRINTF( 8556 "----------------------------" 8557 "----------------" 8558 "----------------------------\n"); 8559 } 8560 #endif 8561 8562 8563 /****************************************************************************/ 8564 /* Prints out a tx_bd structure. */ 8565 /* */ 8566 /* Returns: */ 8567 /* Nothing. */ 8568 /****************************************************************************/ 8569 static __attribute__ ((noinline)) void 8570 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 8571 { 8572 if (idx > MAX_TX_BD) 8573 /* Index out of range. */ 8574 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 8575 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 8576 /* TX Chain page pointer. */ 8577 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8578 idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo); 8579 else { 8580 /* Normal tx_bd entry. */ 8581 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8582 "vlan tag= 0x%04X, flags = 0x%04X (", idx, 8583 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, 8584 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, 8585 txbd->tx_bd_flags); 8586 8587 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) 8588 printf(" CONN_FAULT"); 8589 8590 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) 8591 printf(" TCP_UDP_CKSUM"); 8592 8593 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) 8594 printf(" IP_CKSUM"); 8595 8596 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) 8597 printf(" VLAN"); 8598 8599 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) 8600 printf(" COAL_NOW"); 8601 8602 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) 8603 printf(" DONT_GEN_CRC"); 8604 8605 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) 8606 printf(" START"); 8607 8608 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) 8609 printf(" END"); 8610 8611 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) 8612 printf(" LSO"); 8613 8614 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) 8615 printf(" OPTION_WORD"); 8616 8617 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) 8618 printf(" FLAGS"); 8619 8620 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) 8621 printf(" SNAP"); 8622 8623 printf(" )\n"); 8624 } 8625 8626 } 8627 8628 8629 /****************************************************************************/ 8630 /* Prints out a rx_bd structure. */ 8631 /* */ 8632 /* Returns: */ 8633 /* Nothing. */ 8634 /****************************************************************************/ 8635 static __attribute__ ((noinline)) void 8636 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 8637 { 8638 if (idx > MAX_RX_BD) 8639 /* Index out of range. */ 8640 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 8641 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 8642 /* RX Chain page pointer. */ 8643 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8644 idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo); 8645 else 8646 /* Normal rx_bd entry. */ 8647 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8648 "flags = 0x%08X\n", idx, 8649 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, 8650 rxbd->rx_bd_len, rxbd->rx_bd_flags); 8651 } 8652 8653 8654 #ifdef BCE_USE_SPLIT_HEADER 8655 /****************************************************************************/ 8656 /* Prints out a rx_bd structure in the page chain. */ 8657 /* */ 8658 /* Returns: */ 8659 /* Nothing. */ 8660 /****************************************************************************/ 8661 static __attribute__ ((noinline)) void 8662 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) 8663 { 8664 if (idx > MAX_PG_BD) 8665 /* Index out of range. */ 8666 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); 8667 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) 8668 /* Page Chain page pointer. */ 8669 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8670 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); 8671 else 8672 /* Normal rx_bd entry. */ 8673 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8674 "flags = 0x%08X\n", idx, 8675 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, 8676 pgbd->rx_bd_len, pgbd->rx_bd_flags); 8677 } 8678 #endif 8679 8680 8681 /****************************************************************************/ 8682 /* Prints out a l2_fhdr structure. */ 8683 /* */ 8684 /* Returns: */ 8685 /* Nothing. */ 8686 /****************************************************************************/ 8687 static __attribute__ ((noinline)) void 8688 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 8689 { 8690 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " 8691 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " 8692 "tcp_udp_xsum = 0x%04X\n", idx, 8693 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, 8694 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, 8695 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); 8696 } 8697 8698 8699 /****************************************************************************/ 8700 /* Prints out context memory info. (Only useful for CID 0 to 16.) */ 8701 /* */ 8702 /* Returns: */ 8703 /* Nothing. */ 8704 /****************************************************************************/ 8705 static __attribute__ ((noinline)) void 8706 bce_dump_ctx(struct bce_softc *sc, u16 cid) 8707 { 8708 if (cid <= TX_CID) { 8709 BCE_PRINTF( 8710 "----------------------------" 8711 " CTX Data " 8712 "----------------------------\n"); 8713 8714 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); 8715 8716 if (cid == RX_CID) { 8717 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " 8718 "producer index\n", 8719 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); 8720 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host byte sequence\n", 8721 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BSEQ)); 8722 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", 8723 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); 8724 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " 8725 "descriptor address\n", 8726 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); 8727 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " 8728 "descriptor address\n", 8729 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); 8730 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer index\n", 8731 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDIDX)); 8732 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " 8733 "producer index\n", 8734 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_PG_BDIDX)); 8735 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " 8736 "buffer size\n", 8737 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_PG_BUF_SIZE)); 8738 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " 8739 "chain address\n", 8740 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); 8741 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " 8742 "chain address\n", 8743 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); 8744 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " 8745 "consumer index\n", 8746 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDIDX)); 8747 } else if (cid == TX_CID) { 8748 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 8749 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 8750 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", 8751 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE_XI)); 8752 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx cmd\n", 8753 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE_XI)); 8754 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) h/w buffer " 8755 "descriptor address\n", CTX_RD(sc, 8756 GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); 8757 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) h/w buffer " 8758 "descriptor address\n", CTX_RD(sc, 8759 GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); 8760 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) host producer " 8761 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 8762 BCE_L2CTX_TX_HOST_BIDX_XI)); 8763 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) host byte " 8764 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 8765 BCE_L2CTX_TX_HOST_BSEQ_XI)); 8766 } else { 8767 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", 8768 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); 8769 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", 8770 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE)); 8771 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) h/w buffer " 8772 "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), 8773 BCE_L2CTX_TX_TBDR_BHADDR_HI)); 8774 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) h/w buffer " 8775 "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), 8776 BCE_L2CTX_TX_TBDR_BHADDR_LO)); 8777 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host producer " 8778 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 8779 BCE_L2CTX_TX_HOST_BIDX)); 8780 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " 8781 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 8782 BCE_L2CTX_TX_HOST_BSEQ)); 8783 } 8784 } else 8785 BCE_PRINTF(" Unknown CID\n"); 8786 8787 BCE_PRINTF( 8788 "----------------------------" 8789 " Raw CTX " 8790 "----------------------------\n"); 8791 8792 for (int i = 0x0; i < 0x300; i += 0x10) { 8793 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, 8794 CTX_RD(sc, GET_CID_ADDR(cid), i), 8795 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), 8796 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), 8797 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); 8798 } 8799 8800 8801 BCE_PRINTF( 8802 "----------------------------" 8803 "----------------" 8804 "----------------------------\n"); 8805 } 8806 } 8807 8808 8809 /****************************************************************************/ 8810 /* Prints out the FTQ data. */ 8811 /* */ 8812 /* Returns: */ 8813 /* Nothing. */ 8814 /****************************************************************************/ 8815 static __attribute__ ((noinline)) void 8816 bce_dump_ftqs(struct bce_softc *sc) 8817 { 8818 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; 8819 8820 BCE_PRINTF( 8821 "----------------------------" 8822 " FTQ Data " 8823 "----------------------------\n"); 8824 8825 BCE_PRINTF(" FTQ Command Control Depth_Now Max_Depth Valid_Cnt \n"); 8826 BCE_PRINTF(" ------- ---------- ---------- ---------- ---------- ----------\n"); 8827 8828 /* Setup the generic statistic counters for the FTQ valid count. */ 8829 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | 8830 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | 8831 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | 8832 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); 8833 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 8834 8835 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | 8836 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | 8837 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | 8838 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); 8839 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); 8840 8841 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | 8842 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | 8843 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | 8844 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); 8845 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); 8846 8847 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | 8848 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | 8849 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | 8850 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); 8851 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); 8852 8853 /* Input queue to the Receive Lookup state machine */ 8854 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); 8855 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); 8856 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; 8857 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; 8858 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 8859 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8860 cmd, ctl, cur_depth, max_depth, valid_cnt); 8861 8862 /* Input queue to the Receive Processor */ 8863 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); 8864 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); 8865 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; 8866 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; 8867 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 8868 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8869 cmd, ctl, cur_depth, max_depth, valid_cnt); 8870 8871 /* Input queue to the Recevie Processor */ 8872 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); 8873 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); 8874 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; 8875 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; 8876 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 8877 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8878 cmd, ctl, cur_depth, max_depth, valid_cnt); 8879 8880 /* Input queue to the Receive Virtual to Physical state machine */ 8881 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); 8882 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); 8883 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; 8884 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; 8885 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 8886 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8887 cmd, ctl, cur_depth, max_depth, valid_cnt); 8888 8889 /* Input queue to the Recevie Virtual to Physical state machine */ 8890 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); 8891 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); 8892 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; 8893 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; 8894 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); 8895 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8896 cmd, ctl, cur_depth, max_depth, valid_cnt); 8897 8898 /* Input queue to the Receive Virtual to Physical state machine */ 8899 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); 8900 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); 8901 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; 8902 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; 8903 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); 8904 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8905 cmd, ctl, cur_depth, max_depth, valid_cnt); 8906 8907 /* Input queue to the Receive DMA state machine */ 8908 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); 8909 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); 8910 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; 8911 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; 8912 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); 8913 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8914 cmd, ctl, cur_depth, max_depth, valid_cnt); 8915 8916 /* Input queue to the Transmit Scheduler state machine */ 8917 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); 8918 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); 8919 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; 8920 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; 8921 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); 8922 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8923 cmd, ctl, cur_depth, max_depth, valid_cnt); 8924 8925 /* Input queue to the Transmit Buffer Descriptor state machine */ 8926 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); 8927 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); 8928 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; 8929 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; 8930 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); 8931 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8932 cmd, ctl, cur_depth, max_depth, valid_cnt); 8933 8934 /* Input queue to the Transmit Processor */ 8935 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); 8936 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); 8937 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; 8938 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; 8939 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); 8940 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8941 cmd, ctl, cur_depth, max_depth, valid_cnt); 8942 8943 /* Input queue to the Transmit DMA state machine */ 8944 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); 8945 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); 8946 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; 8947 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; 8948 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); 8949 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8950 cmd, ctl, cur_depth, max_depth, valid_cnt); 8951 8952 /* Input queue to the Transmit Patch-Up Processor */ 8953 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); 8954 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); 8955 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; 8956 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; 8957 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); 8958 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8959 cmd, ctl, cur_depth, max_depth, valid_cnt); 8960 8961 /* Input queue to the Transmit Assembler state machine */ 8962 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); 8963 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); 8964 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; 8965 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; 8966 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); 8967 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8968 cmd, ctl, cur_depth, max_depth, valid_cnt); 8969 8970 /* Input queue to the Completion Processor */ 8971 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); 8972 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); 8973 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; 8974 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; 8975 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); 8976 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8977 cmd, ctl, cur_depth, max_depth, valid_cnt); 8978 8979 /* Input queue to the Completion Processor */ 8980 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); 8981 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); 8982 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; 8983 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; 8984 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); 8985 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8986 cmd, ctl, cur_depth, max_depth, valid_cnt); 8987 8988 /* Input queue to the Completion Processor */ 8989 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); 8990 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); 8991 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; 8992 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; 8993 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); 8994 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8995 cmd, ctl, cur_depth, max_depth, valid_cnt); 8996 8997 /* Setup the generic statistic counters for the FTQ valid count. */ 8998 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | 8999 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | 9000 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); 9001 9002 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9003 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 9004 val = val | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 24); 9005 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 9006 9007 /* Input queue to the Management Control Processor */ 9008 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); 9009 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); 9010 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; 9011 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; 9012 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 9013 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9014 cmd, ctl, cur_depth, max_depth, valid_cnt); 9015 9016 /* Input queue to the Command Processor */ 9017 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); 9018 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); 9019 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; 9020 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; 9021 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 9022 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9023 cmd, ctl, cur_depth, max_depth, valid_cnt); 9024 9025 /* Input queue to the Completion Scheduler state machine */ 9026 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); 9027 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); 9028 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; 9029 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; 9030 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 9031 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9032 cmd, ctl, cur_depth, max_depth, valid_cnt); 9033 9034 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9035 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 9036 /* Input queue to the Receive Virtual to Physical Command Scheduler */ 9037 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); 9038 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); 9039 cur_depth = (ctl & 0xFFC00000) >> 22; 9040 max_depth = (ctl & 0x003FF000) >> 12; 9041 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 9042 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9043 cmd, ctl, cur_depth, max_depth, valid_cnt); 9044 } 9045 9046 BCE_PRINTF( 9047 "----------------------------" 9048 "----------------" 9049 "----------------------------\n"); 9050 } 9051 9052 9053 /****************************************************************************/ 9054 /* Prints out the TX chain. */ 9055 /* */ 9056 /* Returns: */ 9057 /* Nothing. */ 9058 /****************************************************************************/ 9059 static __attribute__ ((noinline)) void 9060 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) 9061 { 9062 struct tx_bd *txbd; 9063 9064 /* First some info about the tx_bd chain structure. */ 9065 BCE_PRINTF( 9066 "----------------------------" 9067 " tx_bd chain " 9068 "----------------------------\n"); 9069 9070 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 9071 (u32) BCM_PAGE_SIZE, (u32) TX_PAGES); 9072 9073 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 9074 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 9075 9076 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD); 9077 9078 BCE_PRINTF( 9079 "----------------------------" 9080 " tx_bd data " 9081 "----------------------------\n"); 9082 9083 /* Now print out the tx_bd's themselves. */ 9084 for (int i = 0; i < count; i++) { 9085 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 9086 bce_dump_txbd(sc, tx_prod, txbd); 9087 tx_prod = NEXT_TX_BD(tx_prod); 9088 } 9089 9090 BCE_PRINTF( 9091 "----------------------------" 9092 "----------------" 9093 "----------------------------\n"); 9094 } 9095 9096 9097 /****************************************************************************/ 9098 /* Prints out the RX chain. */ 9099 /* */ 9100 /* Returns: */ 9101 /* Nothing. */ 9102 /****************************************************************************/ 9103 static __attribute__ ((noinline)) void 9104 bce_dump_rx_chain(struct bce_softc *sc, u16 rx_prod, int count) 9105 { 9106 struct rx_bd *rxbd; 9107 9108 /* First some info about the rx_bd chain structure. */ 9109 BCE_PRINTF( 9110 "----------------------------" 9111 " rx_bd chain " 9112 "----------------------------\n"); 9113 9114 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 9115 (u32) BCM_PAGE_SIZE, (u32) RX_PAGES); 9116 9117 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 9118 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 9119 9120 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD); 9121 9122 BCE_PRINTF( 9123 "----------------------------" 9124 " rx_bd data " 9125 "----------------------------\n"); 9126 9127 /* Now print out the rx_bd's themselves. */ 9128 for (int i = 0; i < count; i++) { 9129 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 9130 bce_dump_rxbd(sc, rx_prod, rxbd); 9131 rx_prod = RX_CHAIN_IDX(rx_prod + 1); 9132 } 9133 9134 BCE_PRINTF( 9135 "----------------------------" 9136 "----------------" 9137 "----------------------------\n"); 9138 } 9139 9140 9141 #ifdef BCE_USE_SPLIT_HEADER 9142 /****************************************************************************/ 9143 /* Prints out the page chain. */ 9144 /* */ 9145 /* Returns: */ 9146 /* Nothing. */ 9147 /****************************************************************************/ 9148 static __attribute__ ((noinline)) void 9149 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) 9150 { 9151 struct rx_bd *pgbd; 9152 9153 /* First some info about the page chain structure. */ 9154 BCE_PRINTF( 9155 "----------------------------" 9156 " page chain " 9157 "----------------------------\n"); 9158 9159 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", 9160 (u32) BCM_PAGE_SIZE, (u32) PG_PAGES); 9161 9162 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 9163 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); 9164 9165 BCE_PRINTF("total rx_bd = 0x%08X, max_pg_bd = 0x%08X\n", 9166 (u32) TOTAL_PG_BD, (u32) MAX_PG_BD); 9167 9168 BCE_PRINTF( 9169 "----------------------------" 9170 " page data " 9171 "----------------------------\n"); 9172 9173 /* Now print out the rx_bd's themselves. */ 9174 for (int i = 0; i < count; i++) { 9175 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; 9176 bce_dump_pgbd(sc, pg_prod, pgbd); 9177 pg_prod = PG_CHAIN_IDX(pg_prod + 1); 9178 } 9179 9180 BCE_PRINTF( 9181 "----------------------------" 9182 "----------------" 9183 "----------------------------\n"); 9184 } 9185 #endif 9186 9187 9188 /****************************************************************************/ 9189 /* Prints out the status block from host memory. */ 9190 /* */ 9191 /* Returns: */ 9192 /* Nothing. */ 9193 /****************************************************************************/ 9194 static __attribute__ ((noinline)) void 9195 bce_dump_status_block(struct bce_softc *sc) 9196 { 9197 struct status_block *sblk; 9198 9199 sblk = sc->status_block; 9200 9201 BCE_PRINTF( 9202 "----------------------------" 9203 " Status Block " 9204 "----------------------------\n"); 9205 9206 BCE_PRINTF(" 0x%08X - attn_bits\n", 9207 sblk->status_attn_bits); 9208 9209 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 9210 sblk->status_attn_bits_ack); 9211 9212 BCE_PRINTF("0x%04X(0x%04X) - rx_cons0\n", 9213 sblk->status_rx_quick_consumer_index0, 9214 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index0)); 9215 9216 BCE_PRINTF("0x%04X(0x%04X) - tx_cons0\n", 9217 sblk->status_tx_quick_consumer_index0, 9218 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index0)); 9219 9220 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 9221 9222 /* Theses indices are not used for normal L2 drivers. */ 9223 if (sblk->status_rx_quick_consumer_index1) 9224 BCE_PRINTF("0x%04X(0x%04X) - rx_cons1\n", 9225 sblk->status_rx_quick_consumer_index1, 9226 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index1)); 9227 9228 if (sblk->status_tx_quick_consumer_index1) 9229 BCE_PRINTF("0x%04X(0x%04X) - tx_cons1\n", 9230 sblk->status_tx_quick_consumer_index1, 9231 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index1)); 9232 9233 if (sblk->status_rx_quick_consumer_index2) 9234 BCE_PRINTF("0x%04X(0x%04X)- rx_cons2\n", 9235 sblk->status_rx_quick_consumer_index2, 9236 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index2)); 9237 9238 if (sblk->status_tx_quick_consumer_index2) 9239 BCE_PRINTF("0x%04X(0x%04X) - tx_cons2\n", 9240 sblk->status_tx_quick_consumer_index2, 9241 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index2)); 9242 9243 if (sblk->status_rx_quick_consumer_index3) 9244 BCE_PRINTF("0x%04X(0x%04X) - rx_cons3\n", 9245 sblk->status_rx_quick_consumer_index3, 9246 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index3)); 9247 9248 if (sblk->status_tx_quick_consumer_index3) 9249 BCE_PRINTF("0x%04X(0x%04X) - tx_cons3\n", 9250 sblk->status_tx_quick_consumer_index3, 9251 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index3)); 9252 9253 if (sblk->status_rx_quick_consumer_index4 || 9254 sblk->status_rx_quick_consumer_index5) 9255 BCE_PRINTF("rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", 9256 sblk->status_rx_quick_consumer_index4, 9257 sblk->status_rx_quick_consumer_index5); 9258 9259 if (sblk->status_rx_quick_consumer_index6 || 9260 sblk->status_rx_quick_consumer_index7) 9261 BCE_PRINTF("rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", 9262 sblk->status_rx_quick_consumer_index6, 9263 sblk->status_rx_quick_consumer_index7); 9264 9265 if (sblk->status_rx_quick_consumer_index8 || 9266 sblk->status_rx_quick_consumer_index9) 9267 BCE_PRINTF("rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", 9268 sblk->status_rx_quick_consumer_index8, 9269 sblk->status_rx_quick_consumer_index9); 9270 9271 if (sblk->status_rx_quick_consumer_index10 || 9272 sblk->status_rx_quick_consumer_index11) 9273 BCE_PRINTF("rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", 9274 sblk->status_rx_quick_consumer_index10, 9275 sblk->status_rx_quick_consumer_index11); 9276 9277 if (sblk->status_rx_quick_consumer_index12 || 9278 sblk->status_rx_quick_consumer_index13) 9279 BCE_PRINTF("rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", 9280 sblk->status_rx_quick_consumer_index12, 9281 sblk->status_rx_quick_consumer_index13); 9282 9283 if (sblk->status_rx_quick_consumer_index14 || 9284 sblk->status_rx_quick_consumer_index15) 9285 BCE_PRINTF("rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", 9286 sblk->status_rx_quick_consumer_index14, 9287 sblk->status_rx_quick_consumer_index15); 9288 9289 if (sblk->status_completion_producer_index || 9290 sblk->status_cmd_consumer_index) 9291 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 9292 sblk->status_completion_producer_index, 9293 sblk->status_cmd_consumer_index); 9294 9295 BCE_PRINTF( 9296 "----------------------------" 9297 "----------------" 9298 "----------------------------\n"); 9299 } 9300 9301 9302 /****************************************************************************/ 9303 /* Prints out the statistics block from host memory. */ 9304 /* */ 9305 /* Returns: */ 9306 /* Nothing. */ 9307 /****************************************************************************/ 9308 static __attribute__ ((noinline)) void 9309 bce_dump_stats_block(struct bce_softc *sc) 9310 { 9311 struct statistics_block *sblk; 9312 9313 sblk = sc->stats_block; 9314 9315 BCE_PRINTF( 9316 "---------------" 9317 " Stats Block (All Stats Not Shown Are 0) " 9318 "---------------\n"); 9319 9320 if (sblk->stat_IfHCInOctets_hi 9321 || sblk->stat_IfHCInOctets_lo) 9322 BCE_PRINTF("0x%08X:%08X : " 9323 "IfHcInOctets\n", 9324 sblk->stat_IfHCInOctets_hi, 9325 sblk->stat_IfHCInOctets_lo); 9326 9327 if (sblk->stat_IfHCInBadOctets_hi 9328 || sblk->stat_IfHCInBadOctets_lo) 9329 BCE_PRINTF("0x%08X:%08X : " 9330 "IfHcInBadOctets\n", 9331 sblk->stat_IfHCInBadOctets_hi, 9332 sblk->stat_IfHCInBadOctets_lo); 9333 9334 if (sblk->stat_IfHCOutOctets_hi 9335 || sblk->stat_IfHCOutOctets_lo) 9336 BCE_PRINTF("0x%08X:%08X : " 9337 "IfHcOutOctets\n", 9338 sblk->stat_IfHCOutOctets_hi, 9339 sblk->stat_IfHCOutOctets_lo); 9340 9341 if (sblk->stat_IfHCOutBadOctets_hi 9342 || sblk->stat_IfHCOutBadOctets_lo) 9343 BCE_PRINTF("0x%08X:%08X : " 9344 "IfHcOutBadOctets\n", 9345 sblk->stat_IfHCOutBadOctets_hi, 9346 sblk->stat_IfHCOutBadOctets_lo); 9347 9348 if (sblk->stat_IfHCInUcastPkts_hi 9349 || sblk->stat_IfHCInUcastPkts_lo) 9350 BCE_PRINTF("0x%08X:%08X : " 9351 "IfHcInUcastPkts\n", 9352 sblk->stat_IfHCInUcastPkts_hi, 9353 sblk->stat_IfHCInUcastPkts_lo); 9354 9355 if (sblk->stat_IfHCInBroadcastPkts_hi 9356 || sblk->stat_IfHCInBroadcastPkts_lo) 9357 BCE_PRINTF("0x%08X:%08X : " 9358 "IfHcInBroadcastPkts\n", 9359 sblk->stat_IfHCInBroadcastPkts_hi, 9360 sblk->stat_IfHCInBroadcastPkts_lo); 9361 9362 if (sblk->stat_IfHCInMulticastPkts_hi 9363 || sblk->stat_IfHCInMulticastPkts_lo) 9364 BCE_PRINTF("0x%08X:%08X : " 9365 "IfHcInMulticastPkts\n", 9366 sblk->stat_IfHCInMulticastPkts_hi, 9367 sblk->stat_IfHCInMulticastPkts_lo); 9368 9369 if (sblk->stat_IfHCOutUcastPkts_hi 9370 || sblk->stat_IfHCOutUcastPkts_lo) 9371 BCE_PRINTF("0x%08X:%08X : " 9372 "IfHcOutUcastPkts\n", 9373 sblk->stat_IfHCOutUcastPkts_hi, 9374 sblk->stat_IfHCOutUcastPkts_lo); 9375 9376 if (sblk->stat_IfHCOutBroadcastPkts_hi 9377 || sblk->stat_IfHCOutBroadcastPkts_lo) 9378 BCE_PRINTF("0x%08X:%08X : " 9379 "IfHcOutBroadcastPkts\n", 9380 sblk->stat_IfHCOutBroadcastPkts_hi, 9381 sblk->stat_IfHCOutBroadcastPkts_lo); 9382 9383 if (sblk->stat_IfHCOutMulticastPkts_hi 9384 || sblk->stat_IfHCOutMulticastPkts_lo) 9385 BCE_PRINTF("0x%08X:%08X : " 9386 "IfHcOutMulticastPkts\n", 9387 sblk->stat_IfHCOutMulticastPkts_hi, 9388 sblk->stat_IfHCOutMulticastPkts_lo); 9389 9390 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) 9391 BCE_PRINTF(" 0x%08X : " 9392 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 9393 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 9394 9395 if (sblk->stat_Dot3StatsCarrierSenseErrors) 9396 BCE_PRINTF(" 0x%08X : Dot3StatsCarrierSenseErrors\n", 9397 sblk->stat_Dot3StatsCarrierSenseErrors); 9398 9399 if (sblk->stat_Dot3StatsFCSErrors) 9400 BCE_PRINTF(" 0x%08X : Dot3StatsFCSErrors\n", 9401 sblk->stat_Dot3StatsFCSErrors); 9402 9403 if (sblk->stat_Dot3StatsAlignmentErrors) 9404 BCE_PRINTF(" 0x%08X : Dot3StatsAlignmentErrors\n", 9405 sblk->stat_Dot3StatsAlignmentErrors); 9406 9407 if (sblk->stat_Dot3StatsSingleCollisionFrames) 9408 BCE_PRINTF(" 0x%08X : Dot3StatsSingleCollisionFrames\n", 9409 sblk->stat_Dot3StatsSingleCollisionFrames); 9410 9411 if (sblk->stat_Dot3StatsMultipleCollisionFrames) 9412 BCE_PRINTF(" 0x%08X : Dot3StatsMultipleCollisionFrames\n", 9413 sblk->stat_Dot3StatsMultipleCollisionFrames); 9414 9415 if (sblk->stat_Dot3StatsDeferredTransmissions) 9416 BCE_PRINTF(" 0x%08X : Dot3StatsDeferredTransmissions\n", 9417 sblk->stat_Dot3StatsDeferredTransmissions); 9418 9419 if (sblk->stat_Dot3StatsExcessiveCollisions) 9420 BCE_PRINTF(" 0x%08X : Dot3StatsExcessiveCollisions\n", 9421 sblk->stat_Dot3StatsExcessiveCollisions); 9422 9423 if (sblk->stat_Dot3StatsLateCollisions) 9424 BCE_PRINTF(" 0x%08X : Dot3StatsLateCollisions\n", 9425 sblk->stat_Dot3StatsLateCollisions); 9426 9427 if (sblk->stat_EtherStatsCollisions) 9428 BCE_PRINTF(" 0x%08X : EtherStatsCollisions\n", 9429 sblk->stat_EtherStatsCollisions); 9430 9431 if (sblk->stat_EtherStatsFragments) 9432 BCE_PRINTF(" 0x%08X : EtherStatsFragments\n", 9433 sblk->stat_EtherStatsFragments); 9434 9435 if (sblk->stat_EtherStatsJabbers) 9436 BCE_PRINTF(" 0x%08X : EtherStatsJabbers\n", 9437 sblk->stat_EtherStatsJabbers); 9438 9439 if (sblk->stat_EtherStatsUndersizePkts) 9440 BCE_PRINTF(" 0x%08X : EtherStatsUndersizePkts\n", 9441 sblk->stat_EtherStatsUndersizePkts); 9442 9443 if (sblk->stat_EtherStatsOverrsizePkts) 9444 BCE_PRINTF(" 0x%08X : EtherStatsOverrsizePkts\n", 9445 sblk->stat_EtherStatsOverrsizePkts); 9446 9447 if (sblk->stat_EtherStatsPktsRx64Octets) 9448 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx64Octets\n", 9449 sblk->stat_EtherStatsPktsRx64Octets); 9450 9451 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) 9452 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx65Octetsto127Octets\n", 9453 sblk->stat_EtherStatsPktsRx65Octetsto127Octets); 9454 9455 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) 9456 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx128Octetsto255Octets\n", 9457 sblk->stat_EtherStatsPktsRx128Octetsto255Octets); 9458 9459 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) 9460 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx256Octetsto511Octets\n", 9461 sblk->stat_EtherStatsPktsRx256Octetsto511Octets); 9462 9463 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) 9464 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx512Octetsto1023Octets\n", 9465 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets); 9466 9467 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) 9468 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1024Octetsto1522Octets\n", 9469 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets); 9470 9471 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) 9472 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1523Octetsto9022Octets\n", 9473 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets); 9474 9475 if (sblk->stat_EtherStatsPktsTx64Octets) 9476 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx64Octets\n", 9477 sblk->stat_EtherStatsPktsTx64Octets); 9478 9479 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) 9480 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx65Octetsto127Octets\n", 9481 sblk->stat_EtherStatsPktsTx65Octetsto127Octets); 9482 9483 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) 9484 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx128Octetsto255Octets\n", 9485 sblk->stat_EtherStatsPktsTx128Octetsto255Octets); 9486 9487 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) 9488 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx256Octetsto511Octets\n", 9489 sblk->stat_EtherStatsPktsTx256Octetsto511Octets); 9490 9491 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) 9492 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx512Octetsto1023Octets\n", 9493 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets); 9494 9495 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) 9496 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1024Octetsto1522Octets\n", 9497 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets); 9498 9499 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) 9500 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1523Octetsto9022Octets\n", 9501 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets); 9502 9503 if (sblk->stat_XonPauseFramesReceived) 9504 BCE_PRINTF(" 0x%08X : XonPauseFramesReceived\n", 9505 sblk->stat_XonPauseFramesReceived); 9506 9507 if (sblk->stat_XoffPauseFramesReceived) 9508 BCE_PRINTF(" 0x%08X : XoffPauseFramesReceived\n", 9509 sblk->stat_XoffPauseFramesReceived); 9510 9511 if (sblk->stat_OutXonSent) 9512 BCE_PRINTF(" 0x%08X : OutXonSent\n", 9513 sblk->stat_OutXonSent); 9514 9515 if (sblk->stat_OutXoffSent) 9516 BCE_PRINTF(" 0x%08X : OutXoffSent\n", 9517 sblk->stat_OutXoffSent); 9518 9519 if (sblk->stat_FlowControlDone) 9520 BCE_PRINTF(" 0x%08X : FlowControlDone\n", 9521 sblk->stat_FlowControlDone); 9522 9523 if (sblk->stat_MacControlFramesReceived) 9524 BCE_PRINTF(" 0x%08X : MacControlFramesReceived\n", 9525 sblk->stat_MacControlFramesReceived); 9526 9527 if (sblk->stat_XoffStateEntered) 9528 BCE_PRINTF(" 0x%08X : XoffStateEntered\n", 9529 sblk->stat_XoffStateEntered); 9530 9531 if (sblk->stat_IfInFramesL2FilterDiscards) 9532 BCE_PRINTF(" 0x%08X : IfInFramesL2FilterDiscards\n", 9533 sblk->stat_IfInFramesL2FilterDiscards); 9534 9535 if (sblk->stat_IfInRuleCheckerDiscards) 9536 BCE_PRINTF(" 0x%08X : IfInRuleCheckerDiscards\n", 9537 sblk->stat_IfInRuleCheckerDiscards); 9538 9539 if (sblk->stat_IfInFTQDiscards) 9540 BCE_PRINTF(" 0x%08X : IfInFTQDiscards\n", 9541 sblk->stat_IfInFTQDiscards); 9542 9543 if (sblk->stat_IfInMBUFDiscards) 9544 BCE_PRINTF(" 0x%08X : IfInMBUFDiscards\n", 9545 sblk->stat_IfInMBUFDiscards); 9546 9547 if (sblk->stat_IfInRuleCheckerP4Hit) 9548 BCE_PRINTF(" 0x%08X : IfInRuleCheckerP4Hit\n", 9549 sblk->stat_IfInRuleCheckerP4Hit); 9550 9551 if (sblk->stat_CatchupInRuleCheckerDiscards) 9552 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerDiscards\n", 9553 sblk->stat_CatchupInRuleCheckerDiscards); 9554 9555 if (sblk->stat_CatchupInFTQDiscards) 9556 BCE_PRINTF(" 0x%08X : CatchupInFTQDiscards\n", 9557 sblk->stat_CatchupInFTQDiscards); 9558 9559 if (sblk->stat_CatchupInMBUFDiscards) 9560 BCE_PRINTF(" 0x%08X : CatchupInMBUFDiscards\n", 9561 sblk->stat_CatchupInMBUFDiscards); 9562 9563 if (sblk->stat_CatchupInRuleCheckerP4Hit) 9564 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerP4Hit\n", 9565 sblk->stat_CatchupInRuleCheckerP4Hit); 9566 9567 BCE_PRINTF( 9568 "----------------------------" 9569 "----------------" 9570 "----------------------------\n"); 9571 } 9572 9573 9574 /****************************************************************************/ 9575 /* Prints out a summary of the driver state. */ 9576 /* */ 9577 /* Returns: */ 9578 /* Nothing. */ 9579 /****************************************************************************/ 9580 static __attribute__ ((noinline)) void 9581 bce_dump_driver_state(struct bce_softc *sc) 9582 { 9583 u32 val_hi, val_lo; 9584 9585 BCE_PRINTF( 9586 "-----------------------------" 9587 " Driver State " 9588 "-----------------------------\n"); 9589 9590 val_hi = BCE_ADDR_HI(sc); 9591 val_lo = BCE_ADDR_LO(sc); 9592 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual address\n", 9593 val_hi, val_lo); 9594 9595 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 9596 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 9597 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual address\n", 9598 val_hi, val_lo); 9599 9600 val_hi = BCE_ADDR_HI(sc->status_block); 9601 val_lo = BCE_ADDR_LO(sc->status_block); 9602 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block virtual address\n", 9603 val_hi, val_lo); 9604 9605 val_hi = BCE_ADDR_HI(sc->stats_block); 9606 val_lo = BCE_ADDR_LO(sc->stats_block); 9607 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block virtual address\n", 9608 val_hi, val_lo); 9609 9610 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 9611 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 9612 BCE_PRINTF( 9613 "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain virtual adddress\n", 9614 val_hi, val_lo); 9615 9616 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 9617 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 9618 BCE_PRINTF( 9619 "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain virtual address\n", 9620 val_hi, val_lo); 9621 9622 #ifdef BCE_USE_SPLIT_HEADER 9623 val_hi = BCE_ADDR_HI(sc->pg_bd_chain); 9624 val_lo = BCE_ADDR_LO(sc->pg_bd_chain); 9625 BCE_PRINTF( 9626 "0x%08X:%08X - (sc->pg_bd_chain) page chain virtual address\n", 9627 val_hi, val_lo); 9628 #endif 9629 9630 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 9631 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 9632 BCE_PRINTF( 9633 "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n", 9634 val_hi, val_lo); 9635 9636 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 9637 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 9638 BCE_PRINTF( 9639 "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n", 9640 val_hi, val_lo); 9641 9642 #ifdef BCE_USE_SPLIT_HEADER 9643 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); 9644 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); 9645 BCE_PRINTF( 9646 "0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain virtual address\n", 9647 val_hi, val_lo); 9648 #endif 9649 9650 BCE_PRINTF(" 0x%08X - (sc->interrupts_generated) h/w intrs\n", 9651 sc->interrupts_generated); 9652 9653 BCE_PRINTF(" 0x%08X - (sc->rx_interrupts) rx interrupts handled\n", 9654 sc->rx_interrupts); 9655 9656 BCE_PRINTF(" 0x%08X - (sc->tx_interrupts) tx interrupts handled\n", 9657 sc->tx_interrupts); 9658 9659 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) status block index\n", 9660 sc->last_status_idx); 9661 9662 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer index\n", 9663 sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 9664 9665 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer index\n", 9666 sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 9667 9668 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n", 9669 sc->tx_prod_bseq); 9670 9671 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx mbufs allocated\n", 9672 sc->debug_tx_mbuf_alloc); 9673 9674 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used tx_bd's\n", 9675 sc->used_tx_bd); 9676 9677 BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n", 9678 sc->tx_hi_watermark, sc->max_tx_bd); 9679 9680 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer index\n", 9681 sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 9682 9683 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer index\n", 9684 sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 9685 9686 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n", 9687 sc->rx_prod_bseq); 9688 9689 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx mbufs allocated\n", 9690 sc->debug_rx_mbuf_alloc); 9691 9692 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free rx_bd's\n", 9693 sc->free_rx_bd); 9694 9695 #ifdef BCE_USE_SPLIT_HEADER 9696 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer index\n", 9697 sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); 9698 9699 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer index\n", 9700 sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); 9701 9702 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page mbufs allocated\n", 9703 sc->debug_pg_mbuf_alloc); 9704 9705 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page rx_bd's\n", 9706 sc->free_pg_bd); 9707 9708 BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low watermark\n", 9709 sc->pg_low_watermark, sc->max_pg_bd); 9710 #endif 9711 9712 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed) " 9713 "mbuf alloc failures\n", 9714 sc->mbuf_alloc_failed); 9715 9716 BCE_PRINTF(" 0x%08X - (sc->debug_mbuf_sim_alloc_failed) " 9717 "simulated mbuf alloc failures\n", 9718 sc->debug_mbuf_sim_alloc_failed); 9719 9720 BCE_PRINTF(" 0x%08X - (sc->bce_flags) bce mac flags\n", 9721 sc->bce_flags); 9722 9723 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) bce phy flags\n", 9724 sc->bce_phy_flags); 9725 9726 BCE_PRINTF( 9727 "----------------------------" 9728 "----------------" 9729 "----------------------------\n"); 9730 } 9731 9732 9733 /****************************************************************************/ 9734 /* Prints out the hardware state through a summary of important register, */ 9735 /* followed by a complete register dump. */ 9736 /* */ 9737 /* Returns: */ 9738 /* Nothing. */ 9739 /****************************************************************************/ 9740 static __attribute__ ((noinline)) void 9741 bce_dump_hw_state(struct bce_softc *sc) 9742 { 9743 u32 val; 9744 9745 BCE_PRINTF( 9746 "----------------------------" 9747 " Hardware State " 9748 "----------------------------\n"); 9749 9750 BCE_PRINTF("0x%08X - bootcode version\n", sc->bce_fw_ver); 9751 9752 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 9753 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 9754 val, BCE_MISC_ENABLE_STATUS_BITS); 9755 9756 val = REG_RD(sc, BCE_DMA_STATUS); 9757 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", val, BCE_DMA_STATUS); 9758 9759 val = REG_RD(sc, BCE_CTX_STATUS); 9760 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", val, BCE_CTX_STATUS); 9761 9762 val = REG_RD(sc, BCE_EMAC_STATUS); 9763 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", val, BCE_EMAC_STATUS); 9764 9765 val = REG_RD(sc, BCE_RPM_STATUS); 9766 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", val, BCE_RPM_STATUS); 9767 9768 val = REG_RD(sc, 0x2004); 9769 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", val, 0x2004); 9770 9771 val = REG_RD(sc, BCE_RV2P_STATUS); 9772 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", val, BCE_RV2P_STATUS); 9773 9774 val = REG_RD(sc, 0x2c04); 9775 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", val, 0x2c04); 9776 9777 val = REG_RD(sc, BCE_TBDR_STATUS); 9778 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", val, BCE_TBDR_STATUS); 9779 9780 val = REG_RD(sc, BCE_TDMA_STATUS); 9781 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", val, BCE_TDMA_STATUS); 9782 9783 val = REG_RD(sc, BCE_HC_STATUS); 9784 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", val, BCE_HC_STATUS); 9785 9786 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 9787 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE); 9788 9789 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 9790 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE); 9791 9792 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 9793 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE); 9794 9795 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 9796 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE); 9797 9798 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 9799 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", val, BCE_MCP_CPU_STATE); 9800 9801 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 9802 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE); 9803 9804 BCE_PRINTF( 9805 "----------------------------" 9806 "----------------" 9807 "----------------------------\n"); 9808 9809 BCE_PRINTF( 9810 "----------------------------" 9811 " Register Dump " 9812 "----------------------------\n"); 9813 9814 for (int i = 0x400; i < 0x8000; i += 0x10) { 9815 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 9816 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 9817 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 9818 } 9819 9820 BCE_PRINTF( 9821 "----------------------------" 9822 "----------------" 9823 "----------------------------\n"); 9824 } 9825 9826 9827 /****************************************************************************/ 9828 /* Prints out the mailbox queue registers. */ 9829 /* */ 9830 /* Returns: */ 9831 /* Nothing. */ 9832 /****************************************************************************/ 9833 static __attribute__ ((noinline)) void 9834 bce_dump_mq_regs(struct bce_softc *sc) 9835 { 9836 BCE_PRINTF( 9837 "----------------------------" 9838 " MQ Regs " 9839 "----------------------------\n"); 9840 9841 BCE_PRINTF( 9842 "----------------------------" 9843 "----------------" 9844 "----------------------------\n"); 9845 9846 for (int i = 0x3c00; i < 0x4000; i += 0x10) { 9847 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 9848 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 9849 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 9850 } 9851 9852 BCE_PRINTF( 9853 "----------------------------" 9854 "----------------" 9855 "----------------------------\n"); 9856 } 9857 9858 9859 /****************************************************************************/ 9860 /* Prints out the bootcode state. */ 9861 /* */ 9862 /* Returns: */ 9863 /* Nothing. */ 9864 /****************************************************************************/ 9865 static __attribute__ ((noinline)) void 9866 bce_dump_bc_state(struct bce_softc *sc) 9867 { 9868 u32 val; 9869 9870 BCE_PRINTF( 9871 "----------------------------" 9872 " Bootcode State " 9873 "----------------------------\n"); 9874 9875 BCE_PRINTF("0x%08X - bootcode version\n", sc->bce_fw_ver); 9876 9877 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_RESET_TYPE); 9878 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 9879 val, BCE_BC_RESET_TYPE); 9880 9881 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_STATE); 9882 BCE_PRINTF("0x%08X - (0x%06X) state\n", 9883 val, BCE_BC_STATE); 9884 9885 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_CONDITION); 9886 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 9887 val, BCE_BC_CONDITION); 9888 9889 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_STATE_DEBUG_CMD); 9890 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 9891 val, BCE_BC_STATE_DEBUG_CMD); 9892 9893 BCE_PRINTF( 9894 "----------------------------" 9895 "----------------" 9896 "----------------------------\n"); 9897 } 9898 9899 9900 /****************************************************************************/ 9901 /* Prints out the TXP processor state. */ 9902 /* */ 9903 /* Returns: */ 9904 /* Nothing. */ 9905 /****************************************************************************/ 9906 static __attribute__ ((noinline)) void 9907 bce_dump_txp_state(struct bce_softc *sc, int regs) 9908 { 9909 u32 val; 9910 u32 fw_version[3]; 9911 9912 BCE_PRINTF( 9913 "----------------------------" 9914 " TXP State " 9915 "----------------------------\n"); 9916 9917 for (int i = 0; i < 3; i++) 9918 fw_version[i] = htonl(REG_RD_IND(sc, 9919 (BCE_TXP_SCRATCH + 0x10 + i * 4))); 9920 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 9921 9922 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 9923 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", val, BCE_TXP_CPU_MODE); 9924 9925 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 9926 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE); 9927 9928 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 9929 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", val, 9930 BCE_TXP_CPU_EVENT_MASK); 9931 9932 if (regs) { 9933 BCE_PRINTF( 9934 "----------------------------" 9935 " Register Dump " 9936 "----------------------------\n"); 9937 9938 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 9939 /* Skip the big blank spaces */ 9940 if (i < 0x454000 && i > 0x5ffff) 9941 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 9942 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 9943 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 9944 } 9945 } 9946 9947 BCE_PRINTF( 9948 "----------------------------" 9949 "----------------" 9950 "----------------------------\n"); 9951 } 9952 9953 9954 /****************************************************************************/ 9955 /* Prints out the RXP processor state. */ 9956 /* */ 9957 /* Returns: */ 9958 /* Nothing. */ 9959 /****************************************************************************/ 9960 static __attribute__ ((noinline)) void 9961 bce_dump_rxp_state(struct bce_softc *sc, int regs) 9962 { 9963 u32 val; 9964 u32 fw_version[3]; 9965 9966 BCE_PRINTF( 9967 "----------------------------" 9968 " RXP State " 9969 "----------------------------\n"); 9970 9971 for (int i = 0; i < 3; i++) 9972 fw_version[i] = htonl(REG_RD_IND(sc, 9973 (BCE_RXP_SCRATCH + 0x10 + i * 4))); 9974 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 9975 9976 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 9977 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", val, BCE_RXP_CPU_MODE); 9978 9979 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 9980 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE); 9981 9982 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 9983 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", val, 9984 BCE_RXP_CPU_EVENT_MASK); 9985 9986 if (regs) { 9987 BCE_PRINTF( 9988 "----------------------------" 9989 " Register Dump " 9990 "----------------------------\n"); 9991 9992 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 9993 /* Skip the big blank sapces */ 9994 if (i < 0xc5400 && i > 0xdffff) 9995 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 9996 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 9997 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 9998 } 9999 } 10000 10001 BCE_PRINTF( 10002 "----------------------------" 10003 "----------------" 10004 "----------------------------\n"); 10005 } 10006 10007 10008 /****************************************************************************/ 10009 /* Prints out the TPAT processor state. */ 10010 /* */ 10011 /* Returns: */ 10012 /* Nothing. */ 10013 /****************************************************************************/ 10014 static __attribute__ ((noinline)) void 10015 bce_dump_tpat_state(struct bce_softc *sc, int regs) 10016 { 10017 u32 val; 10018 u32 fw_version[3]; 10019 10020 BCE_PRINTF( 10021 "----------------------------" 10022 " TPAT State " 10023 "----------------------------\n"); 10024 10025 for (int i = 0; i < 3; i++) 10026 fw_version[i] = htonl(REG_RD_IND(sc, 10027 (BCE_TPAT_SCRATCH + 0x410 + i * 4))); 10028 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10029 10030 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 10031 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", val, BCE_TPAT_CPU_MODE); 10032 10033 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 10034 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE); 10035 10036 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 10037 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", val, 10038 BCE_TPAT_CPU_EVENT_MASK); 10039 10040 if (regs) { 10041 BCE_PRINTF( 10042 "----------------------------" 10043 " Register Dump " 10044 "----------------------------\n"); 10045 10046 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 10047 /* Skip the big blank spaces */ 10048 if (i < 0x854000 && i > 0x9ffff) 10049 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10050 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10051 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10052 } 10053 } 10054 10055 BCE_PRINTF( 10056 "----------------------------" 10057 "----------------" 10058 "----------------------------\n"); 10059 } 10060 10061 10062 /****************************************************************************/ 10063 /* Prints out the Command Procesor (CP) state. */ 10064 /* */ 10065 /* Returns: */ 10066 /* Nothing. */ 10067 /****************************************************************************/ 10068 static __attribute__ ((noinline)) void 10069 bce_dump_cp_state(struct bce_softc *sc, int regs) 10070 { 10071 u32 val; 10072 u32 fw_version[3]; 10073 10074 BCE_PRINTF( 10075 "----------------------------" 10076 " CP State " 10077 "----------------------------\n"); 10078 10079 for (int i = 0; i < 3; i++) 10080 fw_version[i] = htonl(REG_RD_IND(sc, 10081 (BCE_CP_SCRATCH + 0x10 + i * 4))); 10082 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10083 10084 val = REG_RD_IND(sc, BCE_CP_CPU_MODE); 10085 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", val, BCE_CP_CPU_MODE); 10086 10087 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 10088 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE); 10089 10090 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); 10091 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, 10092 BCE_CP_CPU_EVENT_MASK); 10093 10094 if (regs) { 10095 BCE_PRINTF( 10096 "----------------------------" 10097 " Register Dump " 10098 "----------------------------\n"); 10099 10100 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { 10101 /* Skip the big blank spaces */ 10102 if (i < 0x185400 && i > 0x19ffff) 10103 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10104 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10105 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10106 } 10107 } 10108 10109 BCE_PRINTF( 10110 "----------------------------" 10111 "----------------" 10112 "----------------------------\n"); 10113 } 10114 10115 10116 /****************************************************************************/ 10117 /* Prints out the Completion Procesor (COM) state. */ 10118 /* */ 10119 /* Returns: */ 10120 /* Nothing. */ 10121 /****************************************************************************/ 10122 static __attribute__ ((noinline)) void 10123 bce_dump_com_state(struct bce_softc *sc, int regs) 10124 { 10125 u32 val; 10126 u32 fw_version[3]; 10127 10128 BCE_PRINTF( 10129 "----------------------------" 10130 " COM State " 10131 "----------------------------\n"); 10132 10133 for (int i = 0; i < 3; i++) 10134 fw_version[i] = htonl(REG_RD_IND(sc, 10135 (BCE_COM_SCRATCH + 0x10 + i * 4))); 10136 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10137 10138 val = REG_RD_IND(sc, BCE_COM_CPU_MODE); 10139 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", val, BCE_COM_CPU_MODE); 10140 10141 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 10142 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE); 10143 10144 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); 10145 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, 10146 BCE_COM_CPU_EVENT_MASK); 10147 10148 if (regs) { 10149 BCE_PRINTF( 10150 "----------------------------" 10151 " Register Dump " 10152 "----------------------------\n"); 10153 10154 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { 10155 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10156 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10157 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10158 } 10159 } 10160 10161 BCE_PRINTF( 10162 "----------------------------" 10163 "----------------" 10164 "----------------------------\n"); 10165 } 10166 10167 10168 /****************************************************************************/ 10169 /* Prints out the driver state and then enters the debugger. */ 10170 /* */ 10171 /* Returns: */ 10172 /* Nothing. */ 10173 /****************************************************************************/ 10174 static void 10175 bce_breakpoint(struct bce_softc *sc) 10176 { 10177 10178 /* 10179 * Unreachable code to silence compiler warnings 10180 * about unused functions. 10181 */ 10182 if (0) { 10183 bce_freeze_controller(sc); 10184 bce_unfreeze_controller(sc); 10185 bce_dump_enet(sc, NULL); 10186 bce_dump_txbd(sc, 0, NULL); 10187 bce_dump_rxbd(sc, 0, NULL); 10188 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); 10189 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD); 10190 bce_dump_l2fhdr(sc, 0, NULL); 10191 bce_dump_ctx(sc, RX_CID); 10192 bce_dump_ftqs(sc); 10193 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 10194 bce_dump_rx_chain(sc, 0, USABLE_RX_BD); 10195 bce_dump_status_block(sc); 10196 bce_dump_stats_block(sc); 10197 bce_dump_driver_state(sc); 10198 bce_dump_hw_state(sc); 10199 bce_dump_bc_state(sc); 10200 bce_dump_txp_state(sc, 0); 10201 bce_dump_rxp_state(sc, 0); 10202 bce_dump_tpat_state(sc, 0); 10203 bce_dump_cp_state(sc, 0); 10204 bce_dump_com_state(sc, 0); 10205 #ifdef BCE_USE_SPLIT_HEADER 10206 bce_dump_pgbd(sc, 0, NULL); 10207 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD); 10208 bce_dump_pg_chain(sc, 0, USABLE_PG_BD); 10209 #endif 10210 } 10211 10212 bce_dump_status_block(sc); 10213 bce_dump_driver_state(sc); 10214 10215 /* Call the debugger. */ 10216 breakpoint(); 10217 10218 return; 10219 } 10220 #endif 10221 10222