xref: /freebsd/sys/dev/bce/if_bce.c (revision 5ae59dec60e3815b621ae87f74a377cf3449ca55)
1 /*-
2  * Copyright (c) 2006-2014 QLogic Corporation
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * The following controllers are supported by this driver:
32  *   BCM5706C A2, A3
33  *   BCM5706S A2, A3
34  *   BCM5708C B1, B2
35  *   BCM5708S B1, B2
36  *   BCM5709C A1, C0
37  *   BCM5709S A1, C0
38  *   BCM5716C C0
39  *   BCM5716S C0
40  *
41  * The following controllers are not supported by this driver:
42  *   BCM5706C A0, A1 (pre-production)
43  *   BCM5706S A0, A1 (pre-production)
44  *   BCM5708C A0, B0 (pre-production)
45  *   BCM5708S A0, B0 (pre-production)
46  *   BCM5709C A0  B0, B1, B2 (pre-production)
47  *   BCM5709S A0, B0, B1, B2 (pre-production)
48  */
49 
50 #include "opt_bce.h"
51 
52 #include <sys/param.h>
53 #include <sys/endian.h>
54 #include <sys/systm.h>
55 #include <sys/sockio.h>
56 #include <sys/lock.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/kernel.h>
61 #include <sys/module.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/queue.h>
65 
66 #include <net/bpf.h>
67 #include <net/ethernet.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 
74 #include <net/if_types.h>
75 #include <net/if_vlan_var.h>
76 
77 #include <netinet/in_systm.h>
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip6.h>
82 #include <netinet/tcp.h>
83 #include <netinet/udp.h>
84 
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <sys/bus.h>
88 #include <sys/rman.h>
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include "miidevs.h"
93 #include <dev/mii/brgphyreg.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include "miibus_if.h"
99 
100 #include <dev/bce/if_bcereg.h>
101 #include <dev/bce/if_bcefw.h>
102 
103 /****************************************************************************/
104 /* BCE Debug Options                                                        */
105 /****************************************************************************/
106 #ifdef BCE_DEBUG
107 	u32 bce_debug = BCE_WARN;
108 
109 	/*          0 = Never              */
110 	/*          1 = 1 in 2,147,483,648 */
111 	/*        256 = 1 in     8,388,608 */
112 	/*       2048 = 1 in     1,048,576 */
113 	/*      65536 = 1 in        32,768 */
114 	/*    1048576 = 1 in         2,048 */
115 	/*  268435456 =	1 in             8 */
116 	/*  536870912 = 1 in             4 */
117 	/* 1073741824 = 1 in             2 */
118 
119 	/* Controls how often the l2_fhdr frame error check will fail. */
120 	int l2fhdr_error_sim_control = 0;
121 
122 	/* Controls how often the unexpected attention check will fail. */
123 	int unexpected_attention_sim_control = 0;
124 
125 	/* Controls how often to simulate an mbuf allocation failure. */
126 	int mbuf_alloc_failed_sim_control = 0;
127 
128 	/* Controls how often to simulate a DMA mapping failure. */
129 	int dma_map_addr_failed_sim_control = 0;
130 
131 	/* Controls how often to simulate a bootcode failure. */
132 	int bootcode_running_failure_sim_control = 0;
133 #endif
134 
135 /****************************************************************************/
136 /* PCI Device ID Table                                                      */
137 /*                                                                          */
138 /* Used by bce_probe() to identify the devices supported by this driver.    */
139 /****************************************************************************/
140 #define BCE_DEVDESC_MAX		64
141 
142 static const struct bce_type bce_devs[] = {
143 	/* BCM5706C Controllers and OEM boards. */
144 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
145 		"HP NC370T Multifunction Gigabit Server Adapter" },
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
147 		"HP NC370i Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
149 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
151 		"HP NC371i Multifunction Gigabit Server Adapter" },
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
153 		"QLogic NetXtreme II BCM5706 1000Base-T" },
154 
155 	/* BCM5706S controllers and OEM boards. */
156 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
157 		"HP NC370F Multifunction Gigabit Server Adapter" },
158 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
159 		"QLogic NetXtreme II BCM5706 1000Base-SX" },
160 
161 	/* BCM5708C controllers and OEM boards. */
162 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
163 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
164 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
165 		"HP NC373i Multifunction Gigabit Server Adapter" },
166 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
167 		"HP NC374m PCIe Multifunction Adapter" },
168 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
169 		"QLogic NetXtreme II BCM5708 1000Base-T" },
170 
171 	/* BCM5708S controllers and OEM boards. */
172 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
173 		"HP NC373m Multifunction Gigabit Server Adapter" },
174 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
175 		"HP NC373i Multifunction Gigabit Server Adapter" },
176 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
177 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
178 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
179 		"QLogic NetXtreme II BCM5708 1000Base-SX" },
180 
181 	/* BCM5709C controllers and OEM boards. */
182 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
183 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
184 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
185 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
186 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
187 		"QLogic NetXtreme II BCM5709 1000Base-T" },
188 
189 	/* BCM5709S controllers and OEM boards. */
190 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
191 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
192 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
193 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
194 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
195 		"QLogic NetXtreme II BCM5709 1000Base-SX" },
196 
197 	/* BCM5716 controllers and OEM boards. */
198 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
199 		"QLogic NetXtreme II BCM5716 1000Base-T" },
200 
201 	{ 0, 0, 0, 0, NULL }
202 };
203 
204 
205 /****************************************************************************/
206 /* Supported Flash NVRAM device data.                                       */
207 /****************************************************************************/
208 static const struct flash_spec flash_table[] =
209 {
210 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
211 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
212 
213 	/* Slow EEPROM */
214 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
215 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
216 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
217 	 "EEPROM - slow"},
218 	/* Expansion entry 0001 */
219 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
221 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
222 	 "Entry 0001"},
223 	/* Saifun SA25F010 (non-buffered flash) */
224 	/* strap, cfg1, & write1 need updates */
225 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
228 	 "Non-buffered flash (128kB)"},
229 	/* Saifun SA25F020 (non-buffered flash) */
230 	/* strap, cfg1, & write1 need updates */
231 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
232 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
233 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
234 	 "Non-buffered flash (256kB)"},
235 	/* Expansion entry 0100 */
236 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 	 "Entry 0100"},
240 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
241 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
242 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
243 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
244 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
245 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
246 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
247 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
248 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
249 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
250 	/* Saifun SA25F005 (non-buffered flash) */
251 	/* strap, cfg1, & write1 need updates */
252 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
255 	 "Non-buffered flash (64kB)"},
256 	/* Fast EEPROM */
257 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
258 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
259 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
260 	 "EEPROM - fast"},
261 	/* Expansion entry 1001 */
262 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
263 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
264 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
265 	 "Entry 1001"},
266 	/* Expansion entry 1010 */
267 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
268 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
269 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
270 	 "Entry 1010"},
271 	/* ATMEL AT45DB011B (buffered flash) */
272 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
273 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
274 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
275 	 "Buffered flash (128kB)"},
276 	/* Expansion entry 1100 */
277 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
278 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
279 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
280 	 "Entry 1100"},
281 	/* Expansion entry 1101 */
282 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
283 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
284 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
285 	 "Entry 1101"},
286 	/* Ateml Expansion entry 1110 */
287 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
288 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
289 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
290 	 "Entry 1110 (Atmel)"},
291 	/* ATMEL AT45DB021B (buffered flash) */
292 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
293 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
294 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
295 	 "Buffered flash (256kB)"},
296 };
297 
298 /*
299  * The BCM5709 controllers transparently handle the
300  * differences between Atmel 264 byte pages and all
301  * flash devices which use 256 byte pages, so no
302  * logical-to-physical mapping is required in the
303  * driver.
304  */
305 static const struct flash_spec flash_5709 = {
306 	.flags		= BCE_NV_BUFFERED,
307 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
308 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
309 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
310 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
311 	.name		= "5709/5716 buffered flash (256kB)",
312 };
313 
314 
315 /****************************************************************************/
316 /* FreeBSD device entry points.                                             */
317 /****************************************************************************/
318 static int  bce_probe			(device_t);
319 static int  bce_attach			(device_t);
320 static int  bce_detach			(device_t);
321 static int  bce_shutdown		(device_t);
322 
323 
324 /****************************************************************************/
325 /* BCE Debug Data Structure Dump Routines                                   */
326 /****************************************************************************/
327 #ifdef BCE_DEBUG
328 static u32  bce_reg_rd				(struct bce_softc *, u32);
329 static void bce_reg_wr				(struct bce_softc *, u32, u32);
330 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
331 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
332 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
333 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
334 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
335 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
336 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
337 static void bce_dump_txbd			(struct bce_softc *,
338     int, struct tx_bd *);
339 static void bce_dump_rxbd			(struct bce_softc *,
340     int, struct rx_bd *);
341 static void bce_dump_pgbd			(struct bce_softc *,
342     int, struct rx_bd *);
343 static void bce_dump_l2fhdr		(struct bce_softc *,
344     int, struct l2_fhdr *);
345 static void bce_dump_ctx			(struct bce_softc *, u16);
346 static void bce_dump_ftqs			(struct bce_softc *);
347 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
348 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
349 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
350 static void bce_dump_status_block	(struct bce_softc *);
351 static void bce_dump_stats_block	(struct bce_softc *);
352 static void bce_dump_driver_state	(struct bce_softc *);
353 static void bce_dump_hw_state		(struct bce_softc *);
354 static void bce_dump_shmem_state	(struct bce_softc *);
355 static void bce_dump_mq_regs		(struct bce_softc *);
356 static void bce_dump_bc_state		(struct bce_softc *);
357 static void bce_dump_txp_state		(struct bce_softc *, int);
358 static void bce_dump_rxp_state		(struct bce_softc *, int);
359 static void bce_dump_tpat_state	(struct bce_softc *, int);
360 static void bce_dump_cp_state		(struct bce_softc *, int);
361 static void bce_dump_com_state		(struct bce_softc *, int);
362 static void bce_dump_rv2p_state	(struct bce_softc *);
363 static void bce_breakpoint			(struct bce_softc *);
364 #endif /*BCE_DEBUG */
365 
366 
367 /****************************************************************************/
368 /* BCE Register/Memory Access Routines                                      */
369 /****************************************************************************/
370 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
371 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
372 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
373 static u32  bce_shmem_rd		(struct bce_softc *, u32);
374 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
375 static int  bce_miibus_read_reg		(device_t, int, int);
376 static int  bce_miibus_write_reg	(device_t, int, int, int);
377 static void bce_miibus_statchg		(device_t);
378 
379 #ifdef BCE_DEBUG
380 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
381 #ifdef BCE_NVRAM_WRITE_SUPPORT
382 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
383 #endif
384 #endif
385 
386 /****************************************************************************/
387 /* BCE NVRAM Access Routines                                                */
388 /****************************************************************************/
389 static int  bce_acquire_nvram_lock	(struct bce_softc *);
390 static int  bce_release_nvram_lock	(struct bce_softc *);
391 static void bce_enable_nvram_access(struct bce_softc *);
392 static void bce_disable_nvram_access(struct bce_softc *);
393 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
394 static int  bce_init_nvram			(struct bce_softc *);
395 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
396 static int  bce_nvram_test			(struct bce_softc *);
397 #ifdef BCE_NVRAM_WRITE_SUPPORT
398 static int  bce_enable_nvram_write	(struct bce_softc *);
399 static void bce_disable_nvram_write(struct bce_softc *);
400 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
401 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
402 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
403 #endif
404 
405 /****************************************************************************/
406 /*                                                                          */
407 /****************************************************************************/
408 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
409 static void bce_get_media			(struct bce_softc *);
410 static void bce_init_media			(struct bce_softc *);
411 static u32 bce_get_rphy_link		(struct bce_softc *);
412 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
413 static int  bce_dma_alloc			(device_t);
414 static void bce_dma_free			(struct bce_softc *);
415 static void bce_release_resources	(struct bce_softc *);
416 
417 /****************************************************************************/
418 /* BCE Firmware Synchronization and Load                                    */
419 /****************************************************************************/
420 static void bce_fw_cap_init			(struct bce_softc *);
421 static int  bce_fw_sync			(struct bce_softc *, u32);
422 static void bce_load_rv2p_fw		(struct bce_softc *, const u32 *, u32,
423     u32);
424 static void bce_load_cpu_fw		(struct bce_softc *,
425     struct cpu_reg *, struct fw_info *);
426 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
427 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
428 static void bce_start_rxp_cpu		(struct bce_softc *);
429 static void bce_init_rxp_cpu		(struct bce_softc *);
430 static void bce_init_txp_cpu 		(struct bce_softc *);
431 static void bce_init_tpat_cpu		(struct bce_softc *);
432 static void bce_init_cp_cpu	  	(struct bce_softc *);
433 static void bce_init_com_cpu	  	(struct bce_softc *);
434 static void bce_init_cpus			(struct bce_softc *);
435 
436 static void bce_print_adapter_info	(struct bce_softc *);
437 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
438 static void bce_stop				(struct bce_softc *);
439 static int  bce_reset				(struct bce_softc *, u32);
440 static int  bce_chipinit 			(struct bce_softc *);
441 static int  bce_blockinit 			(struct bce_softc *);
442 
443 static int  bce_init_tx_chain		(struct bce_softc *);
444 static void bce_free_tx_chain		(struct bce_softc *);
445 
446 static int  bce_get_rx_buf		(struct bce_softc *, u16, u16, u32 *);
447 static int  bce_init_rx_chain		(struct bce_softc *);
448 static void bce_fill_rx_chain		(struct bce_softc *);
449 static void bce_free_rx_chain		(struct bce_softc *);
450 
451 static int  bce_get_pg_buf		(struct bce_softc *, u16, u16);
452 static int  bce_init_pg_chain		(struct bce_softc *);
453 static void bce_fill_pg_chain		(struct bce_softc *);
454 static void bce_free_pg_chain		(struct bce_softc *);
455 
456 static struct mbuf *bce_tso_setup	(struct bce_softc *,
457     struct mbuf **, u16 *);
458 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
459 static void bce_start_locked		(struct ifnet *);
460 static void bce_start				(struct ifnet *);
461 static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
462 static void bce_watchdog			(struct bce_softc *);
463 static int  bce_ifmedia_upd		(struct ifnet *);
464 static int  bce_ifmedia_upd_locked	(struct ifnet *);
465 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
466 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
467 static void bce_init_locked		(struct bce_softc *);
468 static void bce_init				(void *);
469 static void bce_mgmt_init_locked	(struct bce_softc *sc);
470 
471 static int  bce_init_ctx			(struct bce_softc *);
472 static void bce_get_mac_addr		(struct bce_softc *);
473 static void bce_set_mac_addr		(struct bce_softc *);
474 static void bce_phy_intr			(struct bce_softc *);
475 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
476 static void bce_rx_intr			(struct bce_softc *);
477 static void bce_tx_intr			(struct bce_softc *);
478 static void bce_disable_intr		(struct bce_softc *);
479 static void bce_enable_intr		(struct bce_softc *, int);
480 
481 static void bce_intr				(void *);
482 static void bce_set_rx_mode		(struct bce_softc *);
483 static void bce_stats_update		(struct bce_softc *);
484 static void bce_tick				(void *);
485 static void bce_pulse				(void *);
486 static void bce_add_sysctls		(struct bce_softc *);
487 
488 
489 /****************************************************************************/
490 /* FreeBSD device dispatch table.                                           */
491 /****************************************************************************/
492 static device_method_t bce_methods[] = {
493 	/* Device interface (device_if.h) */
494 	DEVMETHOD(device_probe,		bce_probe),
495 	DEVMETHOD(device_attach,	bce_attach),
496 	DEVMETHOD(device_detach,	bce_detach),
497 	DEVMETHOD(device_shutdown,	bce_shutdown),
498 /* Supported by device interface but not used here. */
499 /*	DEVMETHOD(device_identify,	bce_identify),      */
500 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
501 /*	DEVMETHOD(device_resume,	bce_resume),        */
502 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
503 
504 	/* MII interface (miibus_if.h) */
505 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
506 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
507 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
508 /* Supported by MII interface but not used here.       */
509 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
510 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
511 
512 	DEVMETHOD_END
513 };
514 
515 static driver_t bce_driver = {
516 	"bce",
517 	bce_methods,
518 	sizeof(struct bce_softc)
519 };
520 
521 static devclass_t bce_devclass;
522 
523 MODULE_DEPEND(bce, pci, 1, 1, 1);
524 MODULE_DEPEND(bce, ether, 1, 1, 1);
525 MODULE_DEPEND(bce, miibus, 1, 1, 1);
526 
527 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
528 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
529 
530 
531 /****************************************************************************/
532 /* Tunable device values                                                    */
533 /****************************************************************************/
534 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
535 
536 /* Allowable values are TRUE or FALSE */
537 static int bce_verbose = TRUE;
538 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
539 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
540     "Verbose output enable/disable");
541 
542 /* Allowable values are TRUE or FALSE */
543 static int bce_tso_enable = TRUE;
544 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
545 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
546     "TSO Enable/Disable");
547 
548 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
549 /* ToDo: Add MSI-X support. */
550 static int bce_msi_enable = 1;
551 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
552 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
553     "MSI-X|MSI|INTx selector");
554 
555 /* Allowable values are 1, 2, 4, 8. */
556 static int bce_rx_pages = DEFAULT_RX_PAGES;
557 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
558 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
559     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
560 
561 /* Allowable values are 1, 2, 4, 8. */
562 static int bce_tx_pages = DEFAULT_TX_PAGES;
563 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
564 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
565     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
566 
567 /* Allowable values are TRUE or FALSE. */
568 static int bce_hdr_split = TRUE;
569 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
570 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
571     "Frame header/payload splitting Enable/Disable");
572 
573 /* Allowable values are TRUE or FALSE. */
574 static int bce_strict_rx_mtu = FALSE;
575 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
576 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
577     &bce_strict_rx_mtu, 0,
578     "Enable/Disable strict RX frame size checking");
579 
580 /* Allowable values are 0 ... 100 */
581 #ifdef BCE_DEBUG
582 /* Generate 1 interrupt for every transmit completion. */
583 static int bce_tx_quick_cons_trip_int = 1;
584 #else
585 /* Generate 1 interrupt for every 20 transmit completions. */
586 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
587 #endif
588 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
589 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
590     &bce_tx_quick_cons_trip_int, 0,
591     "Transmit BD trip point during interrupts");
592 
593 /* Allowable values are 0 ... 100 */
594 /* Generate 1 interrupt for every transmit completion. */
595 #ifdef BCE_DEBUG
596 static int bce_tx_quick_cons_trip = 1;
597 #else
598 /* Generate 1 interrupt for every 20 transmit completions. */
599 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
600 #endif
601 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
602 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
603     &bce_tx_quick_cons_trip, 0,
604     "Transmit BD trip point");
605 
606 /* Allowable values are 0 ... 100 */
607 #ifdef BCE_DEBUG
608 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
609 static int bce_tx_ticks_int = 0;
610 #else
611 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
612 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
613 #endif
614 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
615 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
616     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
617 
618 /* Allowable values are 0 ... 100 */
619 #ifdef BCE_DEBUG
620 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
621 static int bce_tx_ticks = 0;
622 #else
623 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
624 static int bce_tx_ticks = DEFAULT_TX_TICKS;
625 #endif
626 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
627 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
628     &bce_tx_ticks, 0, "Transmit ticks count");
629 
630 /* Allowable values are 1 ... 100 */
631 #ifdef BCE_DEBUG
632 /* Generate 1 interrupt for every received frame. */
633 static int bce_rx_quick_cons_trip_int = 1;
634 #else
635 /* Generate 1 interrupt for every 6 received frames. */
636 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
637 #endif
638 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
639 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
640     &bce_rx_quick_cons_trip_int, 0,
641     "Receive BD trip point duirng interrupts");
642 
643 /* Allowable values are 1 ... 100 */
644 #ifdef BCE_DEBUG
645 /* Generate 1 interrupt for every received frame. */
646 static int bce_rx_quick_cons_trip = 1;
647 #else
648 /* Generate 1 interrupt for every 6 received frames. */
649 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
650 #endif
651 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
652 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
653     &bce_rx_quick_cons_trip, 0,
654     "Receive BD trip point");
655 
656 /* Allowable values are 0 ... 100 */
657 #ifdef BCE_DEBUG
658 /* Generate an int. if 0us have elapsed since the last received frame. */
659 static int bce_rx_ticks_int = 0;
660 #else
661 /* Generate an int. if 18us have elapsed since the last received frame. */
662 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
663 #endif
664 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
665 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
666     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
667 
668 /* Allowable values are 0 ... 100 */
669 #ifdef BCE_DEBUG
670 /* Generate an int. if 0us have elapsed since the last received frame. */
671 static int bce_rx_ticks = 0;
672 #else
673 /* Generate an int. if 18us have elapsed since the last received frame. */
674 static int bce_rx_ticks = DEFAULT_RX_TICKS;
675 #endif
676 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
677 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
678     &bce_rx_ticks, 0, "Receive ticks count");
679 
680 
681 /****************************************************************************/
682 /* Device probe function.                                                   */
683 /*                                                                          */
684 /* Compares the device to the driver's list of supported devices and        */
685 /* reports back to the OS whether this is the right driver for the device.  */
686 /*                                                                          */
687 /* Returns:                                                                 */
688 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
689 /****************************************************************************/
690 static int
691 bce_probe(device_t dev)
692 {
693 	const struct bce_type *t;
694 	struct bce_softc *sc;
695 	char *descbuf;
696 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
697 
698 	t = bce_devs;
699 
700 	sc = device_get_softc(dev);
701 	sc->bce_unit = device_get_unit(dev);
702 	sc->bce_dev = dev;
703 
704 	/* Get the data for the device to be probed. */
705 	vid  = pci_get_vendor(dev);
706 	did  = pci_get_device(dev);
707 	svid = pci_get_subvendor(dev);
708 	sdid = pci_get_subdevice(dev);
709 
710 	DBPRINT(sc, BCE_EXTREME_LOAD,
711 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
712 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
713 
714 	/* Look through the list of known devices for a match. */
715 	while(t->bce_name != NULL) {
716 
717 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
718 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
719 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
720 
721 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
722 
723 			if (descbuf == NULL)
724 				return(ENOMEM);
725 
726 			/* Print out the device identity. */
727 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
728 			    t->bce_name, (((pci_read_config(dev,
729 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
730 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
731 
732 			device_set_desc_copy(dev, descbuf);
733 			free(descbuf, M_TEMP);
734 			return(BUS_PROBE_DEFAULT);
735 		}
736 		t++;
737 	}
738 
739 	return(ENXIO);
740 }
741 
742 
743 /****************************************************************************/
744 /* PCI Capabilities Probe Function.                                         */
745 /*                                                                          */
746 /* Walks the PCI capabiites list for the device to find what features are   */
747 /* supported.                                                               */
748 /*                                                                          */
749 /* Returns:                                                                 */
750 /*   None.                                                                  */
751 /****************************************************************************/
752 static void
753 bce_print_adapter_info(struct bce_softc *sc)
754 {
755 	int i = 0;
756 
757 	DBENTER(BCE_VERBOSE_LOAD);
758 
759 	if (bce_verbose || bootverbose) {
760 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
761 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
762 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
763 
764 
765 		/* Bus info. */
766 		if (sc->bce_flags & BCE_PCIE_FLAG) {
767 			printf("Bus (PCIe x%d, ", sc->link_width);
768 			switch (sc->link_speed) {
769 			case 1: printf("2.5Gbps); "); break;
770 			case 2:	printf("5Gbps); "); break;
771 			default: printf("Unknown link speed); ");
772 			}
773 		} else {
774 			printf("Bus (PCI%s, %s, %dMHz); ",
775 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
776 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
777 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
778 		}
779 
780 		/* Firmware version and device features. */
781 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
782 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
783 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
784 
785 		if (bce_hdr_split == TRUE) {
786 			printf("SPLT");
787 			i++;
788 		}
789 
790 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
791 			if (i > 0) printf("|");
792 			printf("MSI"); i++;
793 		}
794 
795 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
796 			if (i > 0) printf("|");
797 			printf("MSI-X"); i++;
798 		}
799 
800 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
801 			if (i > 0) printf("|");
802 			printf("2.5G"); i++;
803 		}
804 
805 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
806 			if (i > 0) printf("|");
807 			printf("Remote PHY(%s)",
808 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
809 			    "FIBER" : "TP"); i++;
810 		}
811 
812 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
813 			if (i > 0) printf("|");
814 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
815 		} else {
816 			printf(")\n");
817 		}
818 
819 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
820 		    sc->bce_rx_quick_cons_trip_int,
821 		    sc->bce_rx_quick_cons_trip,
822 		    sc->bce_rx_ticks_int,
823 		    sc->bce_rx_ticks,
824 		    sc->bce_tx_quick_cons_trip_int,
825 		    sc->bce_tx_quick_cons_trip,
826 		    sc->bce_tx_ticks_int,
827 		    sc->bce_tx_ticks);
828 
829 	}
830 
831 	DBEXIT(BCE_VERBOSE_LOAD);
832 }
833 
834 
835 /****************************************************************************/
836 /* PCI Capabilities Probe Function.                                         */
837 /*                                                                          */
838 /* Walks the PCI capabiites list for the device to find what features are   */
839 /* supported.                                                               */
840 /*                                                                          */
841 /* Returns:                                                                 */
842 /*   None.                                                                  */
843 /****************************************************************************/
844 static void
845 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
846 {
847 	u32 reg;
848 
849 	DBENTER(BCE_VERBOSE_LOAD);
850 
851 	/* Check if PCI-X capability is enabled. */
852 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
853 		if (reg != 0)
854 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
855 	}
856 
857 	/* Check if PCIe capability is enabled. */
858 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
859 		if (reg != 0) {
860 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
861 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
862 			    "0x%08X\n",	link_status);
863 			sc->link_speed = link_status & 0xf;
864 			sc->link_width = (link_status >> 4) & 0x3f;
865 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
866 			sc->bce_flags |= BCE_PCIE_FLAG;
867 		}
868 	}
869 
870 	/* Check if MSI capability is enabled. */
871 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
872 		if (reg != 0)
873 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
874 	}
875 
876 	/* Check if MSI-X capability is enabled. */
877 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
878 		if (reg != 0)
879 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
880 	}
881 
882 	DBEXIT(BCE_VERBOSE_LOAD);
883 }
884 
885 
886 /****************************************************************************/
887 /* Load and validate user tunable settings.                                 */
888 /*                                                                          */
889 /* Returns:                                                                 */
890 /*   Nothing.                                                               */
891 /****************************************************************************/
892 static void
893 bce_set_tunables(struct bce_softc *sc)
894 {
895 	/* Set sysctl values for RX page count. */
896 	switch (bce_rx_pages) {
897 	case 1:
898 		/* fall-through */
899 	case 2:
900 		/* fall-through */
901 	case 4:
902 		/* fall-through */
903 	case 8:
904 		sc->rx_pages = bce_rx_pages;
905 		break;
906 	default:
907 		sc->rx_pages = DEFAULT_RX_PAGES;
908 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
909 		    "hw.bce.rx_pages!  Setting default of %d.\n",
910 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
911 	}
912 
913 	/* ToDo: Consider allowing user setting for pg_pages. */
914 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
915 
916 	/* Set sysctl values for TX page count. */
917 	switch (bce_tx_pages) {
918 	case 1:
919 		/* fall-through */
920 	case 2:
921 		/* fall-through */
922 	case 4:
923 		/* fall-through */
924 	case 8:
925 		sc->tx_pages = bce_tx_pages;
926 		break;
927 	default:
928 		sc->tx_pages = DEFAULT_TX_PAGES;
929 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
930 		    "hw.bce.tx_pages!  Setting default of %d.\n",
931 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
932 	}
933 
934 	/*
935 	 * Validate the TX trip point (i.e. the number of
936 	 * TX completions before a status block update is
937 	 * generated and an interrupt is asserted.
938 	 */
939 	if (bce_tx_quick_cons_trip_int <= 100) {
940 		sc->bce_tx_quick_cons_trip_int =
941 		    bce_tx_quick_cons_trip_int;
942 	} else {
943 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
944 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
945 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
946 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
947 		sc->bce_tx_quick_cons_trip_int =
948 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
949 	}
950 
951 	if (bce_tx_quick_cons_trip <= 100) {
952 		sc->bce_tx_quick_cons_trip =
953 		    bce_tx_quick_cons_trip;
954 	} else {
955 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
956 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
957 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
958 		    DEFAULT_TX_QUICK_CONS_TRIP);
959 		sc->bce_tx_quick_cons_trip =
960 		    DEFAULT_TX_QUICK_CONS_TRIP;
961 	}
962 
963 	/*
964 	 * Validate the TX ticks count (i.e. the maximum amount
965 	 * of time to wait after the last TX completion has
966 	 * occurred before a status block update is generated
967 	 * and an interrupt is asserted.
968 	 */
969 	if (bce_tx_ticks_int <= 100) {
970 		sc->bce_tx_ticks_int =
971 		    bce_tx_ticks_int;
972 	} else {
973 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
974 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
975 		    __FILE__, __LINE__, bce_tx_ticks_int,
976 		    DEFAULT_TX_TICKS_INT);
977 		sc->bce_tx_ticks_int =
978 		    DEFAULT_TX_TICKS_INT;
979 	   }
980 
981 	if (bce_tx_ticks <= 100) {
982 		sc->bce_tx_ticks =
983 		    bce_tx_ticks;
984 	} else {
985 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
986 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
987 		    __FILE__, __LINE__, bce_tx_ticks,
988 		    DEFAULT_TX_TICKS);
989 		sc->bce_tx_ticks =
990 		    DEFAULT_TX_TICKS;
991 	}
992 
993 	/*
994 	 * Validate the RX trip point (i.e. the number of
995 	 * RX frames received before a status block update is
996 	 * generated and an interrupt is asserted.
997 	 */
998 	if (bce_rx_quick_cons_trip_int <= 100) {
999 		sc->bce_rx_quick_cons_trip_int =
1000 		    bce_rx_quick_cons_trip_int;
1001 	} else {
1002 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1003 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
1004 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
1005 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
1006 		sc->bce_rx_quick_cons_trip_int =
1007 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
1008 	}
1009 
1010 	if (bce_rx_quick_cons_trip <= 100) {
1011 		sc->bce_rx_quick_cons_trip =
1012 		    bce_rx_quick_cons_trip;
1013 	} else {
1014 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1015 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
1016 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
1017 		    DEFAULT_RX_QUICK_CONS_TRIP);
1018 		sc->bce_rx_quick_cons_trip =
1019 		    DEFAULT_RX_QUICK_CONS_TRIP;
1020 	}
1021 
1022 	/*
1023 	 * Validate the RX ticks count (i.e. the maximum amount
1024 	 * of time to wait after the last RX frame has been
1025 	 * received before a status block update is generated
1026 	 * and an interrupt is asserted.
1027 	 */
1028 	if (bce_rx_ticks_int <= 100) {
1029 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
1030 	} else {
1031 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1032 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
1033 		    __FILE__, __LINE__, bce_rx_ticks_int,
1034 		    DEFAULT_RX_TICKS_INT);
1035 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1036 	}
1037 
1038 	if (bce_rx_ticks <= 100) {
1039 		sc->bce_rx_ticks = bce_rx_ticks;
1040 	} else {
1041 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1042 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1043 		    __FILE__, __LINE__, bce_rx_ticks,
1044 		    DEFAULT_RX_TICKS);
1045 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1046 	}
1047 
1048 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1049 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1050 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1051 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1052 		   __FILE__, __LINE__);
1053 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1054 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1055 	}
1056 
1057 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1058 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1059 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1060 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1061 		   __FILE__, __LINE__);
1062 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1063 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1064 	}
1065 }
1066 
1067 
1068 /****************************************************************************/
1069 /* Device attach function.                                                  */
1070 /*                                                                          */
1071 /* Allocates device resources, performs secondary chip identification,      */
1072 /* resets and initializes the hardware, and initializes driver instance     */
1073 /* variables.                                                               */
1074 /*                                                                          */
1075 /* Returns:                                                                 */
1076 /*   0 on success, positive value on failure.                               */
1077 /****************************************************************************/
1078 static int
1079 bce_attach(device_t dev)
1080 {
1081 	struct bce_softc *sc;
1082 	struct ifnet *ifp;
1083 	u32 val;
1084 	int count, error, rc = 0, rid;
1085 
1086 	sc = device_get_softc(dev);
1087 	sc->bce_dev = dev;
1088 
1089 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1090 
1091 	sc->bce_unit = device_get_unit(dev);
1092 
1093 	/* Set initial device and PHY flags */
1094 	sc->bce_flags = 0;
1095 	sc->bce_phy_flags = 0;
1096 
1097 	bce_set_tunables(sc);
1098 
1099 	pci_enable_busmaster(dev);
1100 
1101 	/* Allocate PCI memory resources. */
1102 	rid = PCIR_BAR(0);
1103 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1104 		&rid, RF_ACTIVE);
1105 
1106 	if (sc->bce_res_mem == NULL) {
1107 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1108 		    __FILE__, __LINE__);
1109 		rc = ENXIO;
1110 		goto bce_attach_fail;
1111 	}
1112 
1113 	/* Get various resource handles. */
1114 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1115 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1116 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1117 
1118 	bce_probe_pci_caps(dev, sc);
1119 
1120 	rid = 1;
1121 	count = 0;
1122 #if 0
1123 	/* Try allocating MSI-X interrupts. */
1124 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1125 		(bce_msi_enable >= 2) &&
1126 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1127 		&rid, RF_ACTIVE)) != NULL)) {
1128 
1129 		msi_needed = count = 1;
1130 
1131 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1132 			(count != msi_needed)) {
1133 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1134 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1135 				msi_needed, count, error);
1136 			count = 0;
1137 			pci_release_msi(dev);
1138 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1139 				sc->bce_res_irq);
1140 			sc->bce_res_irq = NULL;
1141 		} else {
1142 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1143 				__FUNCTION__);
1144 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1145 		}
1146 	}
1147 #endif
1148 
1149 	/* Try allocating a MSI interrupt. */
1150 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1151 		(bce_msi_enable >= 1) && (count == 0)) {
1152 		count = 1;
1153 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1154 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1155 			    "error = %d\n", __FILE__, __LINE__, error);
1156 			count = 0;
1157 			pci_release_msi(dev);
1158 		} else {
1159 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1160 			    "interrupt.\n", __FUNCTION__);
1161 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1162 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1163 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1164 			rid = 1;
1165 		}
1166 	}
1167 
1168 	/* Try allocating a legacy interrupt. */
1169 	if (count == 0) {
1170 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1171 			__FUNCTION__);
1172 		rid = 0;
1173 	}
1174 
1175 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1176 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1177 
1178 	/* Report any IRQ allocation errors. */
1179 	if (sc->bce_res_irq == NULL) {
1180 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1181 		    __FILE__, __LINE__);
1182 		rc = ENXIO;
1183 		goto bce_attach_fail;
1184 	}
1185 
1186 	/* Initialize mutex for the current device instance. */
1187 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1188 
1189 	/*
1190 	 * Configure byte swap and enable indirect register access.
1191 	 * Rely on CPU to do target byte swapping on big endian systems.
1192 	 * Access to registers outside of PCI configurtion space are not
1193 	 * valid until this is done.
1194 	 */
1195 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1196 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1197 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1198 
1199 	/* Save ASIC revsion info. */
1200 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1201 
1202 	/* Weed out any non-production controller revisions. */
1203 	switch(BCE_CHIP_ID(sc)) {
1204 	case BCE_CHIP_ID_5706_A0:
1205 	case BCE_CHIP_ID_5706_A1:
1206 	case BCE_CHIP_ID_5708_A0:
1207 	case BCE_CHIP_ID_5708_B0:
1208 	case BCE_CHIP_ID_5709_A0:
1209 	case BCE_CHIP_ID_5709_B0:
1210 	case BCE_CHIP_ID_5709_B1:
1211 	case BCE_CHIP_ID_5709_B2:
1212 		BCE_PRINTF("%s(%d): Unsupported controller "
1213 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1214 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1215 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1216 		    PCIR_REVID, 4) & 0xf));
1217 		rc = ENODEV;
1218 		goto bce_attach_fail;
1219 	}
1220 
1221 	/*
1222 	 * The embedded PCIe to PCI-X bridge (EPB)
1223 	 * in the 5708 cannot address memory above
1224 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1225 	 */
1226 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1227 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1228 	else
1229 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1230 
1231 	/*
1232 	 * Find the base address for shared memory access.
1233 	 * Newer versions of bootcode use a signature and offset
1234 	 * while older versions use a fixed address.
1235 	 */
1236 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1237 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1238 		/* Multi-port devices use different offsets in shared memory. */
1239 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1240 		    (pci_get_function(sc->bce_dev) << 2));
1241 	else
1242 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1243 
1244 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1245 	    __FUNCTION__, sc->bce_shmem_base);
1246 
1247 	/* Fetch the bootcode revision. */
1248 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1249 	for (int i = 0, j = 0; i < 3; i++) {
1250 		u8 num;
1251 
1252 		num = (u8) (val >> (24 - (i * 8)));
1253 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1254 			if (num >= k || !skip0 || k == 1) {
1255 				sc->bce_bc_ver[j++] = (num / k) + '0';
1256 				skip0 = 0;
1257 			}
1258 		}
1259 
1260 		if (i != 2)
1261 			sc->bce_bc_ver[j++] = '.';
1262 	}
1263 
1264 	/* Check if any management firwmare is enabled. */
1265 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1266 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1267 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1268 
1269 		/* Allow time for firmware to enter the running state. */
1270 		for (int i = 0; i < 30; i++) {
1271 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1272 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1273 				break;
1274 			DELAY(10000);
1275 		}
1276 
1277 		/* Check if management firmware is running. */
1278 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1279 		val &= BCE_CONDITION_MFW_RUN_MASK;
1280 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1281 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1282 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1283 			int i = 0;
1284 
1285 			/* Read the management firmware version string. */
1286 			for (int j = 0; j < 3; j++) {
1287 				val = bce_reg_rd_ind(sc, addr + j * 4);
1288 				val = bswap32(val);
1289 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1290 				i += 4;
1291 			}
1292 		} else {
1293 			/* May cause firmware synchronization timeouts. */
1294 			BCE_PRINTF("%s(%d): Management firmware enabled "
1295 			    "but not running!\n", __FILE__, __LINE__);
1296 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1297 
1298 			/* ToDo: Any action the driver should take? */
1299 		}
1300 	}
1301 
1302 	/* Get PCI bus information (speed and type). */
1303 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1304 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1305 		u32 clkreg;
1306 
1307 		sc->bce_flags |= BCE_PCIX_FLAG;
1308 
1309 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1310 
1311 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1312 		switch (clkreg) {
1313 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1314 			sc->bus_speed_mhz = 133;
1315 			break;
1316 
1317 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1318 			sc->bus_speed_mhz = 100;
1319 			break;
1320 
1321 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1322 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1323 			sc->bus_speed_mhz = 66;
1324 			break;
1325 
1326 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1327 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1328 			sc->bus_speed_mhz = 50;
1329 			break;
1330 
1331 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1332 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1333 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1334 			sc->bus_speed_mhz = 33;
1335 			break;
1336 		}
1337 	} else {
1338 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1339 			sc->bus_speed_mhz = 66;
1340 		else
1341 			sc->bus_speed_mhz = 33;
1342 	}
1343 
1344 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1345 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1346 
1347 	/* Find the media type for the adapter. */
1348 	bce_get_media(sc);
1349 
1350 	/* Reset controller and announce to bootcode that driver is present. */
1351 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1352 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1353 		    __FILE__, __LINE__);
1354 		rc = ENXIO;
1355 		goto bce_attach_fail;
1356 	}
1357 
1358 	/* Initialize the controller. */
1359 	if (bce_chipinit(sc)) {
1360 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1361 		    __FILE__, __LINE__);
1362 		rc = ENXIO;
1363 		goto bce_attach_fail;
1364 	}
1365 
1366 	/* Perform NVRAM test. */
1367 	if (bce_nvram_test(sc)) {
1368 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1369 		    __FILE__, __LINE__);
1370 		rc = ENXIO;
1371 		goto bce_attach_fail;
1372 	}
1373 
1374 	/* Fetch the permanent Ethernet MAC address. */
1375 	bce_get_mac_addr(sc);
1376 
1377 	/* Update statistics once every second. */
1378 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1379 
1380 	/* Store data needed by PHY driver for backplane applications */
1381 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1382 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1383 
1384 	/* Allocate DMA memory resources. */
1385 	if (bce_dma_alloc(dev)) {
1386 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1387 		    __FILE__, __LINE__);
1388 		rc = ENXIO;
1389 		goto bce_attach_fail;
1390 	}
1391 
1392 	/* Allocate an ifnet structure. */
1393 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1394 	if (ifp == NULL) {
1395 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1396 		    __FILE__, __LINE__);
1397 		rc = ENXIO;
1398 		goto bce_attach_fail;
1399 	}
1400 
1401 	/* Initialize the ifnet interface. */
1402 	ifp->if_softc	= sc;
1403 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1404 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1405 	ifp->if_ioctl	= bce_ioctl;
1406 	ifp->if_start	= bce_start;
1407 	ifp->if_init	= bce_init;
1408 	ifp->if_mtu	= ETHERMTU;
1409 
1410 	if (bce_tso_enable) {
1411 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1412 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1413 		    IFCAP_VLAN_HWTSO;
1414 	} else {
1415 		ifp->if_hwassist = BCE_IF_HWASSIST;
1416 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1417 	}
1418 
1419 #if __FreeBSD_version >= 800505
1420 	/*
1421 	 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1422 	 * so it's approximate value.
1423 	 */
1424 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1425 		ifp->if_capabilities |= IFCAP_LINKSTATE;
1426 #endif
1427 
1428 	ifp->if_capenable = ifp->if_capabilities;
1429 
1430 	/*
1431 	 * Assume standard mbuf sizes for buffer allocation.
1432 	 * This may change later if the MTU size is set to
1433 	 * something other than 1500.
1434 	 */
1435 	bce_get_rx_buffer_sizes(sc,
1436 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1437 
1438 	/* Recalculate our buffer allocation sizes. */
1439 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1440 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1441 	IFQ_SET_READY(&ifp->if_snd);
1442 
1443 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1444 		ifp->if_baudrate = IF_Mbps(2500ULL);
1445 	else
1446 		ifp->if_baudrate = IF_Mbps(1000);
1447 
1448 	/* Handle any special PHY initialization for SerDes PHYs. */
1449 	bce_init_media(sc);
1450 
1451 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1452 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1453 		    bce_ifmedia_sts);
1454 		/*
1455 		 * We can't manually override remote PHY's link and assume
1456 		 * PHY port configuration(Fiber or TP) is not changed after
1457 		 * device attach.  This may not be correct though.
1458 		 */
1459 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1460 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1461 				ifmedia_add(&sc->bce_ifmedia,
1462 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1463 				ifmedia_add(&sc->bce_ifmedia,
1464 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1465 			}
1466 			ifmedia_add(&sc->bce_ifmedia,
1467 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1468 			ifmedia_add(&sc->bce_ifmedia,
1469 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1470 		} else {
1471 			ifmedia_add(&sc->bce_ifmedia,
1472 			    IFM_ETHER | IFM_10_T, 0, NULL);
1473 			ifmedia_add(&sc->bce_ifmedia,
1474 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1475 			ifmedia_add(&sc->bce_ifmedia,
1476 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1477 			ifmedia_add(&sc->bce_ifmedia,
1478 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1479 			ifmedia_add(&sc->bce_ifmedia,
1480 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1481 			ifmedia_add(&sc->bce_ifmedia,
1482 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1483 		}
1484 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1485 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1486 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1487 	} else {
1488 		/* MII child bus by attaching the PHY. */
1489 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1490 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1491 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1492 		if (rc != 0) {
1493 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1494 			    __LINE__);
1495 			goto bce_attach_fail;
1496 		}
1497 	}
1498 
1499 	/* Attach to the Ethernet interface list. */
1500 	ether_ifattach(ifp, sc->eaddr);
1501 
1502 #if __FreeBSD_version < 500000
1503 	callout_init(&sc->bce_tick_callout);
1504 	callout_init(&sc->bce_pulse_callout);
1505 #else
1506 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1507 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1508 #endif
1509 
1510 	/* Hookup IRQ last. */
1511 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1512 		NULL, bce_intr, sc, &sc->bce_intrhand);
1513 
1514 	if (rc) {
1515 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1516 		    __FILE__, __LINE__);
1517 		bce_detach(dev);
1518 		goto bce_attach_exit;
1519 	}
1520 
1521 	/*
1522 	 * At this point we've acquired all the resources
1523 	 * we need to run so there's no turning back, we're
1524 	 * cleared for launch.
1525 	 */
1526 
1527 	/* Print some important debugging info. */
1528 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1529 
1530 	/* Add the supported sysctls to the kernel. */
1531 	bce_add_sysctls(sc);
1532 
1533 	BCE_LOCK(sc);
1534 
1535 	/*
1536 	 * The chip reset earlier notified the bootcode that
1537 	 * a driver is present.  We now need to start our pulse
1538 	 * routine so that the bootcode is reminded that we're
1539 	 * still running.
1540 	 */
1541 	bce_pulse(sc);
1542 
1543 	bce_mgmt_init_locked(sc);
1544 	BCE_UNLOCK(sc);
1545 
1546 	/* Finally, print some useful adapter info */
1547 	bce_print_adapter_info(sc);
1548 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1549 		__FUNCTION__, sc);
1550 
1551 	goto bce_attach_exit;
1552 
1553 bce_attach_fail:
1554 	bce_release_resources(sc);
1555 
1556 bce_attach_exit:
1557 
1558 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1559 
1560 	return(rc);
1561 }
1562 
1563 
1564 /****************************************************************************/
1565 /* Device detach function.                                                  */
1566 /*                                                                          */
1567 /* Stops the controller, resets the controller, and releases resources.     */
1568 /*                                                                          */
1569 /* Returns:                                                                 */
1570 /*   0 on success, positive value on failure.                               */
1571 /****************************************************************************/
1572 static int
1573 bce_detach(device_t dev)
1574 {
1575 	struct bce_softc *sc = device_get_softc(dev);
1576 	struct ifnet *ifp;
1577 	u32 msg;
1578 
1579 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1580 
1581 	ifp = sc->bce_ifp;
1582 
1583 	/* Stop and reset the controller. */
1584 	BCE_LOCK(sc);
1585 
1586 	/* Stop the pulse so the bootcode can go to driver absent state. */
1587 	callout_stop(&sc->bce_pulse_callout);
1588 
1589 	bce_stop(sc);
1590 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1591 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1592 	else
1593 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1594 	bce_reset(sc, msg);
1595 
1596 	BCE_UNLOCK(sc);
1597 
1598 	ether_ifdetach(ifp);
1599 
1600 	/* If we have a child device on the MII bus remove it too. */
1601 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1602 		ifmedia_removeall(&sc->bce_ifmedia);
1603 	else {
1604 		bus_generic_detach(dev);
1605 		device_delete_child(dev, sc->bce_miibus);
1606 	}
1607 
1608 	/* Release all remaining resources. */
1609 	bce_release_resources(sc);
1610 
1611 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1612 
1613 	return(0);
1614 }
1615 
1616 
1617 /****************************************************************************/
1618 /* Device shutdown function.                                                */
1619 /*                                                                          */
1620 /* Stops and resets the controller.                                         */
1621 /*                                                                          */
1622 /* Returns:                                                                 */
1623 /*   0 on success, positive value on failure.                               */
1624 /****************************************************************************/
1625 static int
1626 bce_shutdown(device_t dev)
1627 {
1628 	struct bce_softc *sc = device_get_softc(dev);
1629 	u32 msg;
1630 
1631 	DBENTER(BCE_VERBOSE);
1632 
1633 	BCE_LOCK(sc);
1634 	bce_stop(sc);
1635 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1636 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1637 	else
1638 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1639 	bce_reset(sc, msg);
1640 	BCE_UNLOCK(sc);
1641 
1642 	DBEXIT(BCE_VERBOSE);
1643 
1644 	return (0);
1645 }
1646 
1647 
1648 #ifdef BCE_DEBUG
1649 /****************************************************************************/
1650 /* Register read.                                                           */
1651 /*                                                                          */
1652 /* Returns:                                                                 */
1653 /*   The value of the register.                                             */
1654 /****************************************************************************/
1655 static u32
1656 bce_reg_rd(struct bce_softc *sc, u32 offset)
1657 {
1658 	u32 val = REG_RD(sc, offset);
1659 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1660 		__FUNCTION__, offset, val);
1661 	return val;
1662 }
1663 
1664 
1665 /****************************************************************************/
1666 /* Register write (16 bit).                                                 */
1667 /*                                                                          */
1668 /* Returns:                                                                 */
1669 /*   Nothing.                                                               */
1670 /****************************************************************************/
1671 static void
1672 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1673 {
1674 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1675 		__FUNCTION__, offset, val);
1676 	REG_WR16(sc, offset, val);
1677 }
1678 
1679 
1680 /****************************************************************************/
1681 /* Register write.                                                          */
1682 /*                                                                          */
1683 /* Returns:                                                                 */
1684 /*   Nothing.                                                               */
1685 /****************************************************************************/
1686 static void
1687 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1688 {
1689 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1690 		__FUNCTION__, offset, val);
1691 	REG_WR(sc, offset, val);
1692 }
1693 #endif
1694 
1695 /****************************************************************************/
1696 /* Indirect register read.                                                  */
1697 /*                                                                          */
1698 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1699 /* configuration space.  Using this mechanism avoids issues with posted     */
1700 /* reads but is much slower than memory-mapped I/O.                         */
1701 /*                                                                          */
1702 /* Returns:                                                                 */
1703 /*   The value of the register.                                             */
1704 /****************************************************************************/
1705 static u32
1706 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1707 {
1708 	device_t dev;
1709 	dev = sc->bce_dev;
1710 
1711 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1712 #ifdef BCE_DEBUG
1713 	{
1714 		u32 val;
1715 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1716 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1717 			__FUNCTION__, offset, val);
1718 		return val;
1719 	}
1720 #else
1721 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1722 #endif
1723 }
1724 
1725 
1726 /****************************************************************************/
1727 /* Indirect register write.                                                 */
1728 /*                                                                          */
1729 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1730 /* configuration space.  Using this mechanism avoids issues with posted     */
1731 /* writes but is muchh slower than memory-mapped I/O.                       */
1732 /*                                                                          */
1733 /* Returns:                                                                 */
1734 /*   Nothing.                                                               */
1735 /****************************************************************************/
1736 static void
1737 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1738 {
1739 	device_t dev;
1740 	dev = sc->bce_dev;
1741 
1742 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1743 		__FUNCTION__, offset, val);
1744 
1745 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1746 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1747 }
1748 
1749 
1750 /****************************************************************************/
1751 /* Shared memory write.                                                     */
1752 /*                                                                          */
1753 /* Writes NetXtreme II shared memory region.                                */
1754 /*                                                                          */
1755 /* Returns:                                                                 */
1756 /*   Nothing.                                                               */
1757 /****************************************************************************/
1758 static void
1759 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1760 {
1761 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1762 	    "0x%08X\n",	__FUNCTION__, val, offset);
1763 
1764 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1765 }
1766 
1767 
1768 /****************************************************************************/
1769 /* Shared memory read.                                                      */
1770 /*                                                                          */
1771 /* Reads NetXtreme II shared memory region.                                 */
1772 /*                                                                          */
1773 /* Returns:                                                                 */
1774 /*   The 32 bit value read.                                                 */
1775 /****************************************************************************/
1776 static u32
1777 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1778 {
1779 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1780 
1781 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1782 	    "0x%08X\n",	__FUNCTION__, val, offset);
1783 
1784 	return val;
1785 }
1786 
1787 
1788 #ifdef BCE_DEBUG
1789 /****************************************************************************/
1790 /* Context memory read.                                                     */
1791 /*                                                                          */
1792 /* The NetXtreme II controller uses context memory to track connection      */
1793 /* information for L2 and higher network protocols.                         */
1794 /*                                                                          */
1795 /* Returns:                                                                 */
1796 /*   The requested 32 bit value of context memory.                          */
1797 /****************************************************************************/
1798 static u32
1799 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1800 {
1801 	u32 idx, offset, retry_cnt = 5, val;
1802 
1803 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1804 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1805 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1806 
1807 	offset = ctx_offset + cid_addr;
1808 
1809 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1810 
1811 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1812 
1813 		for (idx = 0; idx < retry_cnt; idx++) {
1814 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1815 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1816 				break;
1817 			DELAY(5);
1818 		}
1819 
1820 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1821 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1822 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1823 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1824 
1825 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1826 	} else {
1827 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1828 		val = REG_RD(sc, BCE_CTX_DATA);
1829 	}
1830 
1831 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1832 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1833 
1834 	return(val);
1835 }
1836 #endif
1837 
1838 
1839 /****************************************************************************/
1840 /* Context memory write.                                                    */
1841 /*                                                                          */
1842 /* The NetXtreme II controller uses context memory to track connection      */
1843 /* information for L2 and higher network protocols.                         */
1844 /*                                                                          */
1845 /* Returns:                                                                 */
1846 /*   Nothing.                                                               */
1847 /****************************************************************************/
1848 static void
1849 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1850 {
1851 	u32 idx, offset = ctx_offset + cid_addr;
1852 	u32 val, retry_cnt = 5;
1853 
1854 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1855 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1856 
1857 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1858 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1859 		    __FUNCTION__, cid_addr));
1860 
1861 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1862 
1863 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1864 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1865 
1866 		for (idx = 0; idx < retry_cnt; idx++) {
1867 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1868 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1869 				break;
1870 			DELAY(5);
1871 		}
1872 
1873 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1874 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1875 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1876 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1877 
1878 	} else {
1879 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1880 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1881 	}
1882 }
1883 
1884 
1885 /****************************************************************************/
1886 /* PHY register read.                                                       */
1887 /*                                                                          */
1888 /* Implements register reads on the MII bus.                                */
1889 /*                                                                          */
1890 /* Returns:                                                                 */
1891 /*   The value of the register.                                             */
1892 /****************************************************************************/
1893 static int
1894 bce_miibus_read_reg(device_t dev, int phy, int reg)
1895 {
1896 	struct bce_softc *sc;
1897 	u32 val;
1898 	int i;
1899 
1900 	sc = device_get_softc(dev);
1901 
1902     /*
1903      * The 5709S PHY is an IEEE Clause 45 PHY
1904      * with special mappings to work with IEEE
1905      * Clause 22 register accesses.
1906      */
1907 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1908 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1909 			reg += 0x10;
1910 	}
1911 
1912     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1913 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1914 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1915 
1916 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1917 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1918 
1919 		DELAY(40);
1920 	}
1921 
1922 
1923 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1924 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1925 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1926 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1927 
1928 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1929 		DELAY(10);
1930 
1931 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1932 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1933 			DELAY(5);
1934 
1935 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1936 			val &= BCE_EMAC_MDIO_COMM_DATA;
1937 
1938 			break;
1939 		}
1940 	}
1941 
1942 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1943 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1944 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1945 		val = 0x0;
1946 	} else {
1947 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1948 	}
1949 
1950 
1951 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1952 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1953 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1954 
1955 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1956 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1957 
1958 		DELAY(40);
1959 	}
1960 
1961 	DB_PRINT_PHY_REG(reg, val);
1962 	return (val & 0xffff);
1963 }
1964 
1965 
1966 /****************************************************************************/
1967 /* PHY register write.                                                      */
1968 /*                                                                          */
1969 /* Implements register writes on the MII bus.                               */
1970 /*                                                                          */
1971 /* Returns:                                                                 */
1972 /*   The value of the register.                                             */
1973 /****************************************************************************/
1974 static int
1975 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1976 {
1977 	struct bce_softc *sc;
1978 	u32 val1;
1979 	int i;
1980 
1981 	sc = device_get_softc(dev);
1982 
1983 	DB_PRINT_PHY_REG(reg, val);
1984 
1985 	/*
1986 	 * The 5709S PHY is an IEEE Clause 45 PHY
1987 	 * with special mappings to work with IEEE
1988 	 * Clause 22 register accesses.
1989 	 */
1990 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1991 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1992 			reg += 0x10;
1993 	}
1994 
1995 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1996 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1997 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1998 
1999 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2000 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
2001 
2002 		DELAY(40);
2003 	}
2004 
2005 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
2006 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
2007 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
2008 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
2009 
2010 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
2011 		DELAY(10);
2012 
2013 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
2014 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
2015 			DELAY(5);
2016 			break;
2017 		}
2018 	}
2019 
2020 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
2021 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
2022 		    __FILE__, __LINE__);
2023 
2024 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2025 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2026 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
2027 
2028 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2029 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
2030 
2031 		DELAY(40);
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 
2038 /****************************************************************************/
2039 /* MII bus status change.                                                   */
2040 /*                                                                          */
2041 /* Called by the MII bus driver when the PHY establishes link to set the    */
2042 /* MAC interface registers.                                                 */
2043 /*                                                                          */
2044 /* Returns:                                                                 */
2045 /*   Nothing.                                                               */
2046 /****************************************************************************/
2047 static void
2048 bce_miibus_statchg(device_t dev)
2049 {
2050 	struct bce_softc *sc;
2051 	struct mii_data *mii;
2052 	struct ifmediareq ifmr;
2053 	int media_active, media_status, val;
2054 
2055 	sc = device_get_softc(dev);
2056 
2057 	DBENTER(BCE_VERBOSE_PHY);
2058 
2059 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2060 		bzero(&ifmr, sizeof(ifmr));
2061 		bce_ifmedia_sts_rphy(sc, &ifmr);
2062 		media_active = ifmr.ifm_active;
2063 		media_status = ifmr.ifm_status;
2064 	} else {
2065 		mii = device_get_softc(sc->bce_miibus);
2066 		media_active = mii->mii_media_active;
2067 		media_status = mii->mii_media_status;
2068 	}
2069 
2070 	/* Ignore invalid media status. */
2071 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2072 	    (IFM_ACTIVE | IFM_AVALID))
2073 		goto bce_miibus_statchg_exit;
2074 
2075 	val = REG_RD(sc, BCE_EMAC_MODE);
2076 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2077 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2078 	    BCE_EMAC_MODE_25G);
2079 
2080 	/* Set MII or GMII interface based on the PHY speed. */
2081 	switch (IFM_SUBTYPE(media_active)) {
2082 	case IFM_10_T:
2083 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2084 			DBPRINT(sc, BCE_INFO_PHY,
2085 			    "Enabling 10Mb interface.\n");
2086 			val |= BCE_EMAC_MODE_PORT_MII_10;
2087 			break;
2088 		}
2089 		/* fall-through */
2090 	case IFM_100_TX:
2091 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2092 		val |= BCE_EMAC_MODE_PORT_MII;
2093 		break;
2094 	case IFM_2500_SX:
2095 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2096 		val |= BCE_EMAC_MODE_25G;
2097 		/* fall-through */
2098 	case IFM_1000_T:
2099 	case IFM_1000_SX:
2100 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2101 		val |= BCE_EMAC_MODE_PORT_GMII;
2102 		break;
2103 	default:
2104 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2105 		    "default GMII interface.\n");
2106 		val |= BCE_EMAC_MODE_PORT_GMII;
2107 	}
2108 
2109 	/* Set half or full duplex based on PHY settings. */
2110 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2111 		DBPRINT(sc, BCE_INFO_PHY,
2112 		    "Setting Half-Duplex interface.\n");
2113 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2114 	} else
2115 		DBPRINT(sc, BCE_INFO_PHY,
2116 		    "Setting Full-Duplex interface.\n");
2117 
2118 	REG_WR(sc, BCE_EMAC_MODE, val);
2119 
2120 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2121 		DBPRINT(sc, BCE_INFO_PHY,
2122 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2123 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2124 		sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2125 	} else {
2126 		DBPRINT(sc, BCE_INFO_PHY,
2127 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2128 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2129 		sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2130 	}
2131 
2132 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2133 		DBPRINT(sc, BCE_INFO_PHY,
2134 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2135 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2136 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2137 	} else {
2138 		DBPRINT(sc, BCE_INFO_PHY,
2139 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2140 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2141 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2142 	}
2143 
2144 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2145 
2146 bce_miibus_statchg_exit:
2147 	DBEXIT(BCE_VERBOSE_PHY);
2148 }
2149 
2150 
2151 /****************************************************************************/
2152 /* Acquire NVRAM lock.                                                      */
2153 /*                                                                          */
2154 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2155 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2156 /* for use by the driver.                                                   */
2157 /*                                                                          */
2158 /* Returns:                                                                 */
2159 /*   0 on success, positive value on failure.                               */
2160 /****************************************************************************/
2161 static int
2162 bce_acquire_nvram_lock(struct bce_softc *sc)
2163 {
2164 	u32 val;
2165 	int j, rc = 0;
2166 
2167 	DBENTER(BCE_VERBOSE_NVRAM);
2168 
2169 	/* Request access to the flash interface. */
2170 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2171 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2172 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2173 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2174 			break;
2175 
2176 		DELAY(5);
2177 	}
2178 
2179 	if (j >= NVRAM_TIMEOUT_COUNT) {
2180 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2181 		rc = EBUSY;
2182 	}
2183 
2184 	DBEXIT(BCE_VERBOSE_NVRAM);
2185 	return (rc);
2186 }
2187 
2188 
2189 /****************************************************************************/
2190 /* Release NVRAM lock.                                                      */
2191 /*                                                                          */
2192 /* When the caller is finished accessing NVRAM the lock must be released.   */
2193 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2194 /* for use by the driver.                                                   */
2195 /*                                                                          */
2196 /* Returns:                                                                 */
2197 /*   0 on success, positive value on failure.                               */
2198 /****************************************************************************/
2199 static int
2200 bce_release_nvram_lock(struct bce_softc *sc)
2201 {
2202 	u32 val;
2203 	int j, rc = 0;
2204 
2205 	DBENTER(BCE_VERBOSE_NVRAM);
2206 
2207 	/*
2208 	 * Relinquish nvram interface.
2209 	 */
2210 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2211 
2212 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2213 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2214 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2215 			break;
2216 
2217 		DELAY(5);
2218 	}
2219 
2220 	if (j >= NVRAM_TIMEOUT_COUNT) {
2221 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2222 		rc = EBUSY;
2223 	}
2224 
2225 	DBEXIT(BCE_VERBOSE_NVRAM);
2226 	return (rc);
2227 }
2228 
2229 
2230 #ifdef BCE_NVRAM_WRITE_SUPPORT
2231 /****************************************************************************/
2232 /* Enable NVRAM write access.                                               */
2233 /*                                                                          */
2234 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2235 /*                                                                          */
2236 /* Returns:                                                                 */
2237 /*   0 on success, positive value on failure.                               */
2238 /****************************************************************************/
2239 static int
2240 bce_enable_nvram_write(struct bce_softc *sc)
2241 {
2242 	u32 val;
2243 	int rc = 0;
2244 
2245 	DBENTER(BCE_VERBOSE_NVRAM);
2246 
2247 	val = REG_RD(sc, BCE_MISC_CFG);
2248 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2249 
2250 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2251 		int j;
2252 
2253 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2254 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2255 
2256 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2257 			DELAY(5);
2258 
2259 			val = REG_RD(sc, BCE_NVM_COMMAND);
2260 			if (val & BCE_NVM_COMMAND_DONE)
2261 				break;
2262 		}
2263 
2264 		if (j >= NVRAM_TIMEOUT_COUNT) {
2265 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2266 			rc = EBUSY;
2267 		}
2268 	}
2269 
2270 	DBENTER(BCE_VERBOSE_NVRAM);
2271 	return (rc);
2272 }
2273 
2274 
2275 /****************************************************************************/
2276 /* Disable NVRAM write access.                                              */
2277 /*                                                                          */
2278 /* When the caller is finished writing to NVRAM write access must be        */
2279 /* disabled.                                                                */
2280 /*                                                                          */
2281 /* Returns:                                                                 */
2282 /*   Nothing.                                                               */
2283 /****************************************************************************/
2284 static void
2285 bce_disable_nvram_write(struct bce_softc *sc)
2286 {
2287 	u32 val;
2288 
2289 	DBENTER(BCE_VERBOSE_NVRAM);
2290 
2291 	val = REG_RD(sc, BCE_MISC_CFG);
2292 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2293 
2294 	DBEXIT(BCE_VERBOSE_NVRAM);
2295 
2296 }
2297 #endif
2298 
2299 
2300 /****************************************************************************/
2301 /* Enable NVRAM access.                                                     */
2302 /*                                                                          */
2303 /* Before accessing NVRAM for read or write operations the caller must      */
2304 /* enabled NVRAM access.                                                    */
2305 /*                                                                          */
2306 /* Returns:                                                                 */
2307 /*   Nothing.                                                               */
2308 /****************************************************************************/
2309 static void
2310 bce_enable_nvram_access(struct bce_softc *sc)
2311 {
2312 	u32 val;
2313 
2314 	DBENTER(BCE_VERBOSE_NVRAM);
2315 
2316 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2317 	/* Enable both bits, even on read. */
2318 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2319 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2320 
2321 	DBEXIT(BCE_VERBOSE_NVRAM);
2322 }
2323 
2324 
2325 /****************************************************************************/
2326 /* Disable NVRAM access.                                                    */
2327 /*                                                                          */
2328 /* When the caller is finished accessing NVRAM access must be disabled.     */
2329 /*                                                                          */
2330 /* Returns:                                                                 */
2331 /*   Nothing.                                                               */
2332 /****************************************************************************/
2333 static void
2334 bce_disable_nvram_access(struct bce_softc *sc)
2335 {
2336 	u32 val;
2337 
2338 	DBENTER(BCE_VERBOSE_NVRAM);
2339 
2340 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2341 
2342 	/* Disable both bits, even after read. */
2343 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2344 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2345 
2346 	DBEXIT(BCE_VERBOSE_NVRAM);
2347 }
2348 
2349 
2350 #ifdef BCE_NVRAM_WRITE_SUPPORT
2351 /****************************************************************************/
2352 /* Erase NVRAM page before writing.                                         */
2353 /*                                                                          */
2354 /* Non-buffered flash parts require that a page be erased before it is      */
2355 /* written.                                                                 */
2356 /*                                                                          */
2357 /* Returns:                                                                 */
2358 /*   0 on success, positive value on failure.                               */
2359 /****************************************************************************/
2360 static int
2361 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2362 {
2363 	u32 cmd;
2364 	int j, rc = 0;
2365 
2366 	DBENTER(BCE_VERBOSE_NVRAM);
2367 
2368 	/* Buffered flash doesn't require an erase. */
2369 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2370 		goto bce_nvram_erase_page_exit;
2371 
2372 	/* Build an erase command. */
2373 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2374 	    BCE_NVM_COMMAND_DOIT;
2375 
2376 	/*
2377 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2378 	 * and issue the erase command.
2379 	 */
2380 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2381 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2382 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2383 
2384 	/* Wait for completion. */
2385 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2386 		u32 val;
2387 
2388 		DELAY(5);
2389 
2390 		val = REG_RD(sc, BCE_NVM_COMMAND);
2391 		if (val & BCE_NVM_COMMAND_DONE)
2392 			break;
2393 	}
2394 
2395 	if (j >= NVRAM_TIMEOUT_COUNT) {
2396 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2397 		rc = EBUSY;
2398 	}
2399 
2400 bce_nvram_erase_page_exit:
2401 	DBEXIT(BCE_VERBOSE_NVRAM);
2402 	return (rc);
2403 }
2404 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2405 
2406 
2407 /****************************************************************************/
2408 /* Read a dword (32 bits) from NVRAM.                                       */
2409 /*                                                                          */
2410 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2411 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2412 /*                                                                          */
2413 /* Returns:                                                                 */
2414 /*   0 on success and the 32 bit value read, positive value on failure.     */
2415 /****************************************************************************/
2416 static int
2417 bce_nvram_read_dword(struct bce_softc *sc,
2418     u32 offset, u8 *ret_val, u32 cmd_flags)
2419 {
2420 	u32 cmd;
2421 	int i, rc = 0;
2422 
2423 	DBENTER(BCE_EXTREME_NVRAM);
2424 
2425 	/* Build the command word. */
2426 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2427 
2428 	/* Calculate the offset for buffered flash if translation is used. */
2429 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2430 		offset = ((offset / sc->bce_flash_info->page_size) <<
2431 		    sc->bce_flash_info->page_bits) +
2432 		    (offset % sc->bce_flash_info->page_size);
2433 	}
2434 
2435 	/*
2436 	 * Clear the DONE bit separately, set the address to read,
2437 	 * and issue the read.
2438 	 */
2439 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2440 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2441 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2442 
2443 	/* Wait for completion. */
2444 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2445 		u32 val;
2446 
2447 		DELAY(5);
2448 
2449 		val = REG_RD(sc, BCE_NVM_COMMAND);
2450 		if (val & BCE_NVM_COMMAND_DONE) {
2451 			val = REG_RD(sc, BCE_NVM_READ);
2452 
2453 			val = bce_be32toh(val);
2454 			memcpy(ret_val, &val, 4);
2455 			break;
2456 		}
2457 	}
2458 
2459 	/* Check for errors. */
2460 	if (i >= NVRAM_TIMEOUT_COUNT) {
2461 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2462 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2463 		rc = EBUSY;
2464 	}
2465 
2466 	DBEXIT(BCE_EXTREME_NVRAM);
2467 	return(rc);
2468 }
2469 
2470 
2471 #ifdef BCE_NVRAM_WRITE_SUPPORT
2472 /****************************************************************************/
2473 /* Write a dword (32 bits) to NVRAM.                                        */
2474 /*                                                                          */
2475 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2476 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2477 /* enabled NVRAM write access.                                              */
2478 /*                                                                          */
2479 /* Returns:                                                                 */
2480 /*   0 on success, positive value on failure.                               */
2481 /****************************************************************************/
2482 static int
2483 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2484 	u32 cmd_flags)
2485 {
2486 	u32 cmd, val32;
2487 	int j, rc = 0;
2488 
2489 	DBENTER(BCE_VERBOSE_NVRAM);
2490 
2491 	/* Build the command word. */
2492 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2493 
2494 	/* Calculate the offset for buffered flash if translation is used. */
2495 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2496 		offset = ((offset / sc->bce_flash_info->page_size) <<
2497 		    sc->bce_flash_info->page_bits) +
2498 		    (offset % sc->bce_flash_info->page_size);
2499 	}
2500 
2501 	/*
2502 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2503 	 * set the NVRAM address to write, and issue the write command
2504 	 */
2505 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2506 	memcpy(&val32, val, 4);
2507 	val32 = htobe32(val32);
2508 	REG_WR(sc, BCE_NVM_WRITE, val32);
2509 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2510 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2511 
2512 	/* Wait for completion. */
2513 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2514 		DELAY(5);
2515 
2516 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2517 			break;
2518 	}
2519 	if (j >= NVRAM_TIMEOUT_COUNT) {
2520 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2521 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2522 		rc = EBUSY;
2523 	}
2524 
2525 	DBEXIT(BCE_VERBOSE_NVRAM);
2526 	return (rc);
2527 }
2528 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2529 
2530 
2531 /****************************************************************************/
2532 /* Initialize NVRAM access.                                                 */
2533 /*                                                                          */
2534 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2535 /* access that device.                                                      */
2536 /*                                                                          */
2537 /* Returns:                                                                 */
2538 /*   0 on success, positive value on failure.                               */
2539 /****************************************************************************/
2540 static int
2541 bce_init_nvram(struct bce_softc *sc)
2542 {
2543 	u32 val;
2544 	int j, entry_count, rc = 0;
2545 	const struct flash_spec *flash;
2546 
2547 	DBENTER(BCE_VERBOSE_NVRAM);
2548 
2549 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2550 		sc->bce_flash_info = &flash_5709;
2551 		goto bce_init_nvram_get_flash_size;
2552 	}
2553 
2554 	/* Determine the selected interface. */
2555 	val = REG_RD(sc, BCE_NVM_CFG1);
2556 
2557 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2558 
2559 	/*
2560 	 * Flash reconfiguration is required to support additional
2561 	 * NVRAM devices not directly supported in hardware.
2562 	 * Check if the flash interface was reconfigured
2563 	 * by the bootcode.
2564 	 */
2565 
2566 	if (val & 0x40000000) {
2567 		/* Flash interface reconfigured by bootcode. */
2568 
2569 		DBPRINT(sc,BCE_INFO_LOAD,
2570 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2571 
2572 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2573 		     j++, flash++) {
2574 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2575 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2576 				sc->bce_flash_info = flash;
2577 				break;
2578 			}
2579 		}
2580 	} else {
2581 		/* Flash interface not yet reconfigured. */
2582 		u32 mask;
2583 
2584 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2585 			__FUNCTION__);
2586 
2587 		if (val & (1 << 23))
2588 			mask = FLASH_BACKUP_STRAP_MASK;
2589 		else
2590 			mask = FLASH_STRAP_MASK;
2591 
2592 		/* Look for the matching NVRAM device configuration data. */
2593 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2594 
2595 			/* Check if the device matches any of the known devices. */
2596 			if ((val & mask) == (flash->strapping & mask)) {
2597 				/* Found a device match. */
2598 				sc->bce_flash_info = flash;
2599 
2600 				/* Request access to the flash interface. */
2601 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2602 					return rc;
2603 
2604 				/* Reconfigure the flash interface. */
2605 				bce_enable_nvram_access(sc);
2606 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2607 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2608 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2609 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2610 				bce_disable_nvram_access(sc);
2611 				bce_release_nvram_lock(sc);
2612 
2613 				break;
2614 			}
2615 		}
2616 	}
2617 
2618 	/* Check if a matching device was found. */
2619 	if (j == entry_count) {
2620 		sc->bce_flash_info = NULL;
2621 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2622 		    __FILE__, __LINE__);
2623 		DBEXIT(BCE_VERBOSE_NVRAM);
2624 		return (ENODEV);
2625 	}
2626 
2627 bce_init_nvram_get_flash_size:
2628 	/* Write the flash config data to the shared memory interface. */
2629 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2630 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2631 	if (val)
2632 		sc->bce_flash_size = val;
2633 	else
2634 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2635 
2636 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2637 	    __FUNCTION__, sc->bce_flash_info->name,
2638 	    sc->bce_flash_info->total_size);
2639 
2640 	DBEXIT(BCE_VERBOSE_NVRAM);
2641 	return rc;
2642 }
2643 
2644 
2645 /****************************************************************************/
2646 /* Read an arbitrary range of data from NVRAM.                              */
2647 /*                                                                          */
2648 /* Prepares the NVRAM interface for access and reads the requested data     */
2649 /* into the supplied buffer.                                                */
2650 /*                                                                          */
2651 /* Returns:                                                                 */
2652 /*   0 on success and the data read, positive value on failure.             */
2653 /****************************************************************************/
2654 static int
2655 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2656 	int buf_size)
2657 {
2658 	int rc = 0;
2659 	u32 cmd_flags, offset32, len32, extra;
2660 
2661 	DBENTER(BCE_VERBOSE_NVRAM);
2662 
2663 	if (buf_size == 0)
2664 		goto bce_nvram_read_exit;
2665 
2666 	/* Request access to the flash interface. */
2667 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2668 		goto bce_nvram_read_exit;
2669 
2670 	/* Enable access to flash interface */
2671 	bce_enable_nvram_access(sc);
2672 
2673 	len32 = buf_size;
2674 	offset32 = offset;
2675 	extra = 0;
2676 
2677 	cmd_flags = 0;
2678 
2679 	if (offset32 & 3) {
2680 		u8 buf[4];
2681 		u32 pre_len;
2682 
2683 		offset32 &= ~3;
2684 		pre_len = 4 - (offset & 3);
2685 
2686 		if (pre_len >= len32) {
2687 			pre_len = len32;
2688 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2689 		}
2690 		else {
2691 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2692 		}
2693 
2694 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2695 
2696 		if (rc)
2697 			return rc;
2698 
2699 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2700 
2701 		offset32 += 4;
2702 		ret_buf += pre_len;
2703 		len32 -= pre_len;
2704 	}
2705 
2706 	if (len32 & 3) {
2707 		extra = 4 - (len32 & 3);
2708 		len32 = (len32 + 4) & ~3;
2709 	}
2710 
2711 	if (len32 == 4) {
2712 		u8 buf[4];
2713 
2714 		if (cmd_flags)
2715 			cmd_flags = BCE_NVM_COMMAND_LAST;
2716 		else
2717 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2718 				    BCE_NVM_COMMAND_LAST;
2719 
2720 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2721 
2722 		memcpy(ret_buf, buf, 4 - extra);
2723 	}
2724 	else if (len32 > 0) {
2725 		u8 buf[4];
2726 
2727 		/* Read the first word. */
2728 		if (cmd_flags)
2729 			cmd_flags = 0;
2730 		else
2731 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2732 
2733 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2734 
2735 		/* Advance to the next dword. */
2736 		offset32 += 4;
2737 		ret_buf += 4;
2738 		len32 -= 4;
2739 
2740 		while (len32 > 4 && rc == 0) {
2741 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2742 
2743 			/* Advance to the next dword. */
2744 			offset32 += 4;
2745 			ret_buf += 4;
2746 			len32 -= 4;
2747 		}
2748 
2749 		if (rc)
2750 			goto bce_nvram_read_locked_exit;
2751 
2752 		cmd_flags = BCE_NVM_COMMAND_LAST;
2753 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2754 
2755 		memcpy(ret_buf, buf, 4 - extra);
2756 	}
2757 
2758 bce_nvram_read_locked_exit:
2759 	/* Disable access to flash interface and release the lock. */
2760 	bce_disable_nvram_access(sc);
2761 	bce_release_nvram_lock(sc);
2762 
2763 bce_nvram_read_exit:
2764 	DBEXIT(BCE_VERBOSE_NVRAM);
2765 	return rc;
2766 }
2767 
2768 
2769 #ifdef BCE_NVRAM_WRITE_SUPPORT
2770 /****************************************************************************/
2771 /* Write an arbitrary range of data from NVRAM.                             */
2772 /*                                                                          */
2773 /* Prepares the NVRAM interface for write access and writes the requested   */
2774 /* data from the supplied buffer.  The caller is responsible for            */
2775 /* calculating any appropriate CRCs.                                        */
2776 /*                                                                          */
2777 /* Returns:                                                                 */
2778 /*   0 on success, positive value on failure.                               */
2779 /****************************************************************************/
2780 static int
2781 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2782 	int buf_size)
2783 {
2784 	u32 written, offset32, len32;
2785 	u8 *buf, start[4], end[4];
2786 	int rc = 0;
2787 	int align_start, align_end;
2788 
2789 	DBENTER(BCE_VERBOSE_NVRAM);
2790 
2791 	buf = data_buf;
2792 	offset32 = offset;
2793 	len32 = buf_size;
2794 	align_start = align_end = 0;
2795 
2796 	if ((align_start = (offset32 & 3))) {
2797 		offset32 &= ~3;
2798 		len32 += align_start;
2799 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2800 			goto bce_nvram_write_exit;
2801 	}
2802 
2803 	if (len32 & 3) {
2804 	       	if ((len32 > 4) || !align_start) {
2805 			align_end = 4 - (len32 & 3);
2806 			len32 += align_end;
2807 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2808 				end, 4))) {
2809 				goto bce_nvram_write_exit;
2810 			}
2811 		}
2812 	}
2813 
2814 	if (align_start || align_end) {
2815 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2816 		if (buf == 0) {
2817 			rc = ENOMEM;
2818 			goto bce_nvram_write_exit;
2819 		}
2820 
2821 		if (align_start) {
2822 			memcpy(buf, start, 4);
2823 		}
2824 
2825 		if (align_end) {
2826 			memcpy(buf + len32 - 4, end, 4);
2827 		}
2828 		memcpy(buf + align_start, data_buf, buf_size);
2829 	}
2830 
2831 	written = 0;
2832 	while ((written < len32) && (rc == 0)) {
2833 		u32 page_start, page_end, data_start, data_end;
2834 		u32 addr, cmd_flags;
2835 		int i;
2836 		u8 flash_buffer[264];
2837 
2838 	    /* Find the page_start addr */
2839 		page_start = offset32 + written;
2840 		page_start -= (page_start % sc->bce_flash_info->page_size);
2841 		/* Find the page_end addr */
2842 		page_end = page_start + sc->bce_flash_info->page_size;
2843 		/* Find the data_start addr */
2844 		data_start = (written == 0) ? offset32 : page_start;
2845 		/* Find the data_end addr */
2846 		data_end = (page_end > offset32 + len32) ?
2847 			(offset32 + len32) : page_end;
2848 
2849 		/* Request access to the flash interface. */
2850 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2851 			goto bce_nvram_write_exit;
2852 
2853 		/* Enable access to flash interface */
2854 		bce_enable_nvram_access(sc);
2855 
2856 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2857 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2858 			int j;
2859 
2860 			/* Read the whole page into the buffer
2861 			 * (non-buffer flash only) */
2862 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2863 				if (j == (sc->bce_flash_info->page_size - 4)) {
2864 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2865 				}
2866 				rc = bce_nvram_read_dword(sc,
2867 					page_start + j,
2868 					&flash_buffer[j],
2869 					cmd_flags);
2870 
2871 				if (rc)
2872 					goto bce_nvram_write_locked_exit;
2873 
2874 				cmd_flags = 0;
2875 			}
2876 		}
2877 
2878 		/* Enable writes to flash interface (unlock write-protect) */
2879 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2880 			goto bce_nvram_write_locked_exit;
2881 
2882 		/* Erase the page */
2883 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2884 			goto bce_nvram_write_locked_exit;
2885 
2886 		/* Re-enable the write again for the actual write */
2887 		bce_enable_nvram_write(sc);
2888 
2889 		/* Loop to write back the buffer data from page_start to
2890 		 * data_start */
2891 		i = 0;
2892 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2893 			for (addr = page_start; addr < data_start;
2894 				addr += 4, i += 4) {
2895 
2896 				rc = bce_nvram_write_dword(sc, addr,
2897 					&flash_buffer[i], cmd_flags);
2898 
2899 				if (rc != 0)
2900 					goto bce_nvram_write_locked_exit;
2901 
2902 				cmd_flags = 0;
2903 			}
2904 		}
2905 
2906 		/* Loop to write the new data from data_start to data_end */
2907 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2908 			if ((addr == page_end - 4) ||
2909 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2910 				(addr == data_end - 4))) {
2911 
2912 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2913 			}
2914 			rc = bce_nvram_write_dword(sc, addr, buf,
2915 				cmd_flags);
2916 
2917 			if (rc != 0)
2918 				goto bce_nvram_write_locked_exit;
2919 
2920 			cmd_flags = 0;
2921 			buf += 4;
2922 		}
2923 
2924 		/* Loop to write back the buffer data from data_end
2925 		 * to page_end */
2926 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2927 			for (addr = data_end; addr < page_end;
2928 				addr += 4, i += 4) {
2929 
2930 				if (addr == page_end-4) {
2931 					cmd_flags = BCE_NVM_COMMAND_LAST;
2932                 		}
2933 				rc = bce_nvram_write_dword(sc, addr,
2934 					&flash_buffer[i], cmd_flags);
2935 
2936 				if (rc != 0)
2937 					goto bce_nvram_write_locked_exit;
2938 
2939 				cmd_flags = 0;
2940 			}
2941 		}
2942 
2943 		/* Disable writes to flash interface (lock write-protect) */
2944 		bce_disable_nvram_write(sc);
2945 
2946 		/* Disable access to flash interface */
2947 		bce_disable_nvram_access(sc);
2948 		bce_release_nvram_lock(sc);
2949 
2950 		/* Increment written */
2951 		written += data_end - data_start;
2952 	}
2953 
2954 	goto bce_nvram_write_exit;
2955 
2956 bce_nvram_write_locked_exit:
2957 	bce_disable_nvram_write(sc);
2958 	bce_disable_nvram_access(sc);
2959 	bce_release_nvram_lock(sc);
2960 
2961 bce_nvram_write_exit:
2962 	if (align_start || align_end)
2963 		free(buf, M_DEVBUF);
2964 
2965 	DBEXIT(BCE_VERBOSE_NVRAM);
2966 	return (rc);
2967 }
2968 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2969 
2970 
2971 /****************************************************************************/
2972 /* Verifies that NVRAM is accessible and contains valid data.               */
2973 /*                                                                          */
2974 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2975 /* correct.                                                                 */
2976 /*                                                                          */
2977 /* Returns:                                                                 */
2978 /*   0 on success, positive value on failure.                               */
2979 /****************************************************************************/
2980 static int
2981 bce_nvram_test(struct bce_softc *sc)
2982 {
2983 	u32 buf[BCE_NVRAM_SIZE / 4];
2984 	u8 *data = (u8 *) buf;
2985 	int rc = 0;
2986 	u32 magic, csum;
2987 
2988 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2989 
2990 	/*
2991 	 * Check that the device NVRAM is valid by reading
2992 	 * the magic value at offset 0.
2993 	 */
2994 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2995 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2996 		    __FILE__, __LINE__);
2997 		goto bce_nvram_test_exit;
2998 	}
2999 
3000 	/*
3001 	 * Verify that offset 0 of the NVRAM contains
3002 	 * a valid magic number.
3003 	 */
3004 	magic = bce_be32toh(buf[0]);
3005 	if (magic != BCE_NVRAM_MAGIC) {
3006 		rc = ENODEV;
3007 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
3008 		    "Expected: 0x%08X, Found: 0x%08X\n",
3009 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
3010 		goto bce_nvram_test_exit;
3011 	}
3012 
3013 	/*
3014 	 * Verify that the device NVRAM includes valid
3015 	 * configuration data.
3016 	 */
3017 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
3018 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
3019 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
3020 		goto bce_nvram_test_exit;
3021 	}
3022 
3023 	csum = ether_crc32_le(data, 0x100);
3024 	if (csum != BCE_CRC32_RESIDUAL) {
3025 		rc = ENODEV;
3026 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
3027 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
3028 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
3029 		goto bce_nvram_test_exit;
3030 	}
3031 
3032 	csum = ether_crc32_le(data + 0x100, 0x100);
3033 	if (csum != BCE_CRC32_RESIDUAL) {
3034 		rc = ENODEV;
3035 		BCE_PRINTF("%s(%d): Invalid feature configuration "
3036 		    "information NVRAM CRC! Expected: 0x%08X, "
3037 		    "Found: 08%08X\n", __FILE__, __LINE__,
3038 		    BCE_CRC32_RESIDUAL, csum);
3039 	}
3040 
3041 bce_nvram_test_exit:
3042 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
3043 	return rc;
3044 }
3045 
3046 
3047 /****************************************************************************/
3048 /* Calculates the size of the buffers to allocate based on the MTU.         */
3049 /*                                                                          */
3050 /* Returns:                                                                 */
3051 /*   Nothing.                                                               */
3052 /****************************************************************************/
3053 static void
3054 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3055 {
3056 	DBENTER(BCE_VERBOSE_LOAD);
3057 
3058 	/* Use a single allocation type when header splitting enabled. */
3059 	if (bce_hdr_split == TRUE) {
3060 		sc->rx_bd_mbuf_alloc_size = MHLEN;
3061 		/* Make sure offset is 16 byte aligned for hardware. */
3062 		sc->rx_bd_mbuf_align_pad =
3063 			roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
3064 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3065 			sc->rx_bd_mbuf_align_pad;
3066 	} else {
3067 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3068 		    ETHER_CRC_LEN) > MCLBYTES) {
3069 			/* Setup for jumbo RX buffer allocations. */
3070 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3071 			sc->rx_bd_mbuf_align_pad  =
3072 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3073 			sc->rx_bd_mbuf_data_len =
3074 			    sc->rx_bd_mbuf_alloc_size -
3075 			    sc->rx_bd_mbuf_align_pad;
3076 		} else {
3077 			/* Setup for standard RX buffer allocations. */
3078 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3079 			sc->rx_bd_mbuf_align_pad  =
3080 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3081 			sc->rx_bd_mbuf_data_len =
3082 			    sc->rx_bd_mbuf_alloc_size -
3083 			    sc->rx_bd_mbuf_align_pad;
3084 		}
3085 	}
3086 
3087 //	DBPRINT(sc, BCE_INFO_LOAD,
3088 	DBPRINT(sc, BCE_WARN,
3089 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3090 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3091 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3092 	   sc->rx_bd_mbuf_align_pad);
3093 
3094 	DBEXIT(BCE_VERBOSE_LOAD);
3095 }
3096 
3097 /****************************************************************************/
3098 /* Identifies the current media type of the controller and sets the PHY     */
3099 /* address.                                                                 */
3100 /*                                                                          */
3101 /* Returns:                                                                 */
3102 /*   Nothing.                                                               */
3103 /****************************************************************************/
3104 static void
3105 bce_get_media(struct bce_softc *sc)
3106 {
3107 	u32 val;
3108 
3109 	DBENTER(BCE_VERBOSE_PHY);
3110 
3111 	/* Assume PHY address for copper controllers. */
3112 	sc->bce_phy_addr = 1;
3113 
3114 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3115  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3116 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3117 		u32 strap;
3118 
3119 		/*
3120 		 * The BCM5709S is software configurable
3121 		 * for Copper or SerDes operation.
3122 		 */
3123 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3124 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3125 			    "for copper.\n");
3126 			goto bce_get_media_exit;
3127 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3128 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3129 			    "for dual media.\n");
3130 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3131 			goto bce_get_media_exit;
3132 		}
3133 
3134 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3135 			strap = (val &
3136 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3137 		else
3138 			strap = (val &
3139 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3140 
3141 		if (pci_get_function(sc->bce_dev) == 0) {
3142 			switch (strap) {
3143 			case 0x4:
3144 			case 0x5:
3145 			case 0x6:
3146 				DBPRINT(sc, BCE_INFO_LOAD,
3147 				    "BCM5709 s/w configured for SerDes.\n");
3148 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3149 				break;
3150 			default:
3151 				DBPRINT(sc, BCE_INFO_LOAD,
3152 				    "BCM5709 s/w configured for Copper.\n");
3153 				break;
3154 			}
3155 		} else {
3156 			switch (strap) {
3157 			case 0x1:
3158 			case 0x2:
3159 			case 0x4:
3160 				DBPRINT(sc, BCE_INFO_LOAD,
3161 				    "BCM5709 s/w configured for SerDes.\n");
3162 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3163 				break;
3164 			default:
3165 				DBPRINT(sc, BCE_INFO_LOAD,
3166 				    "BCM5709 s/w configured for Copper.\n");
3167 				break;
3168 			}
3169 		}
3170 
3171 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3172 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3173 
3174 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3175 
3176 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3177 
3178 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3179 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3180 
3181 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3182 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3183 			sc->bce_phy_addr = 2;
3184 
3185 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3186 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3187 				sc->bce_phy_flags |=
3188 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3189 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3190 				    "capable adapter\n");
3191 			}
3192 		}
3193 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3194 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3195 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3196 
3197 bce_get_media_exit:
3198 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3199 		"Using PHY address %d.\n", sc->bce_phy_addr);
3200 
3201 	DBEXIT(BCE_VERBOSE_PHY);
3202 }
3203 
3204 
3205 /****************************************************************************/
3206 /* Performs PHY initialization required before MII drivers access the       */
3207 /* device.                                                                  */
3208 /*                                                                          */
3209 /* Returns:                                                                 */
3210 /*   Nothing.                                                               */
3211 /****************************************************************************/
3212 static void
3213 bce_init_media(struct bce_softc *sc)
3214 {
3215 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3216 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3217 		/*
3218 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3219 		 * Clause 22 method. Otherwise we have no way to attach
3220 		 * the PHY in mii(4) layer. PHY specific configuration
3221 		 * is done in mii layer.
3222 		 */
3223 
3224 		/* Select auto-negotiation MMD of the PHY. */
3225 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3226 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3227 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3228 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3229 
3230 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3231 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3232 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3233 	}
3234 }
3235 
3236 
3237 /****************************************************************************/
3238 /* Free any DMA memory owned by the driver.                                 */
3239 /*                                                                          */
3240 /* Scans through each data structre that requires DMA memory and frees      */
3241 /* the memory if allocated.                                                 */
3242 /*                                                                          */
3243 /* Returns:                                                                 */
3244 /*   Nothing.                                                               */
3245 /****************************************************************************/
3246 static void
3247 bce_dma_free(struct bce_softc *sc)
3248 {
3249 	int i;
3250 
3251 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3252 
3253 	/* Free, unmap, and destroy the status block. */
3254 	if (sc->status_block != NULL) {
3255 		bus_dmamem_free(
3256 		   sc->status_tag,
3257 		    sc->status_block,
3258 		    sc->status_map);
3259 		sc->status_block = NULL;
3260 	}
3261 
3262 	if (sc->status_map != NULL) {
3263 		bus_dmamap_unload(
3264 		    sc->status_tag,
3265 		    sc->status_map);
3266 		bus_dmamap_destroy(sc->status_tag,
3267 		    sc->status_map);
3268 		sc->status_map = NULL;
3269 	}
3270 
3271 	if (sc->status_tag != NULL) {
3272 		bus_dma_tag_destroy(sc->status_tag);
3273 		sc->status_tag = NULL;
3274 	}
3275 
3276 
3277 	/* Free, unmap, and destroy the statistics block. */
3278 	if (sc->stats_block != NULL) {
3279 		bus_dmamem_free(
3280 		    sc->stats_tag,
3281 		    sc->stats_block,
3282 		    sc->stats_map);
3283 		sc->stats_block = NULL;
3284 	}
3285 
3286 	if (sc->stats_map != NULL) {
3287 		bus_dmamap_unload(
3288 		    sc->stats_tag,
3289 		    sc->stats_map);
3290 		bus_dmamap_destroy(sc->stats_tag,
3291 		    sc->stats_map);
3292 		sc->stats_map = NULL;
3293 	}
3294 
3295 	if (sc->stats_tag != NULL) {
3296 		bus_dma_tag_destroy(sc->stats_tag);
3297 		sc->stats_tag = NULL;
3298 	}
3299 
3300 
3301 	/* Free, unmap and destroy all context memory pages. */
3302 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3303 		for (i = 0; i < sc->ctx_pages; i++ ) {
3304 			if (sc->ctx_block[i] != NULL) {
3305 				bus_dmamem_free(
3306 				    sc->ctx_tag,
3307 				    sc->ctx_block[i],
3308 				    sc->ctx_map[i]);
3309 				sc->ctx_block[i] = NULL;
3310 			}
3311 
3312 			if (sc->ctx_map[i] != NULL) {
3313 				bus_dmamap_unload(
3314 				    sc->ctx_tag,
3315 				    sc->ctx_map[i]);
3316 				bus_dmamap_destroy(
3317 				    sc->ctx_tag,
3318 				    sc->ctx_map[i]);
3319 				sc->ctx_map[i] = NULL;
3320 			}
3321 		}
3322 
3323 		/* Destroy the context memory tag. */
3324 		if (sc->ctx_tag != NULL) {
3325 			bus_dma_tag_destroy(sc->ctx_tag);
3326 			sc->ctx_tag = NULL;
3327 		}
3328 	}
3329 
3330 
3331 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3332 	for (i = 0; i < sc->tx_pages; i++ ) {
3333 		if (sc->tx_bd_chain[i] != NULL) {
3334 			bus_dmamem_free(
3335 			    sc->tx_bd_chain_tag,
3336 			    sc->tx_bd_chain[i],
3337 			    sc->tx_bd_chain_map[i]);
3338 			sc->tx_bd_chain[i] = NULL;
3339 		}
3340 
3341 		if (sc->tx_bd_chain_map[i] != NULL) {
3342 			bus_dmamap_unload(
3343 			    sc->tx_bd_chain_tag,
3344 			    sc->tx_bd_chain_map[i]);
3345 			bus_dmamap_destroy(
3346 			    sc->tx_bd_chain_tag,
3347 			    sc->tx_bd_chain_map[i]);
3348 			sc->tx_bd_chain_map[i] = NULL;
3349 		}
3350 	}
3351 
3352 	/* Destroy the TX buffer descriptor tag. */
3353 	if (sc->tx_bd_chain_tag != NULL) {
3354 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3355 		sc->tx_bd_chain_tag = NULL;
3356 	}
3357 
3358 
3359 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3360 	for (i = 0; i < sc->rx_pages; i++ ) {
3361 		if (sc->rx_bd_chain[i] != NULL) {
3362 			bus_dmamem_free(
3363 			    sc->rx_bd_chain_tag,
3364 			    sc->rx_bd_chain[i],
3365 			    sc->rx_bd_chain_map[i]);
3366 			sc->rx_bd_chain[i] = NULL;
3367 		}
3368 
3369 		if (sc->rx_bd_chain_map[i] != NULL) {
3370 			bus_dmamap_unload(
3371 			    sc->rx_bd_chain_tag,
3372 			    sc->rx_bd_chain_map[i]);
3373 			bus_dmamap_destroy(
3374 			    sc->rx_bd_chain_tag,
3375 			    sc->rx_bd_chain_map[i]);
3376 			sc->rx_bd_chain_map[i] = NULL;
3377 		}
3378 	}
3379 
3380 	/* Destroy the RX buffer descriptor tag. */
3381 	if (sc->rx_bd_chain_tag != NULL) {
3382 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3383 		sc->rx_bd_chain_tag = NULL;
3384 	}
3385 
3386 
3387 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3388 	if (bce_hdr_split == TRUE) {
3389 		for (i = 0; i < sc->pg_pages; i++ ) {
3390 			if (sc->pg_bd_chain[i] != NULL) {
3391 				bus_dmamem_free(
3392 				    sc->pg_bd_chain_tag,
3393 				    sc->pg_bd_chain[i],
3394 				    sc->pg_bd_chain_map[i]);
3395 				sc->pg_bd_chain[i] = NULL;
3396 			}
3397 
3398 			if (sc->pg_bd_chain_map[i] != NULL) {
3399 				bus_dmamap_unload(
3400 				    sc->pg_bd_chain_tag,
3401 				    sc->pg_bd_chain_map[i]);
3402 				bus_dmamap_destroy(
3403 				    sc->pg_bd_chain_tag,
3404 				    sc->pg_bd_chain_map[i]);
3405 				sc->pg_bd_chain_map[i] = NULL;
3406 			}
3407 		}
3408 
3409 		/* Destroy the page buffer descriptor tag. */
3410 		if (sc->pg_bd_chain_tag != NULL) {
3411 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3412 			sc->pg_bd_chain_tag = NULL;
3413 		}
3414 	}
3415 
3416 
3417 	/* Unload and destroy the TX mbuf maps. */
3418 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3419 		if (sc->tx_mbuf_map[i] != NULL) {
3420 			bus_dmamap_unload(sc->tx_mbuf_tag,
3421 			    sc->tx_mbuf_map[i]);
3422 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3423 	 		    sc->tx_mbuf_map[i]);
3424 			sc->tx_mbuf_map[i] = NULL;
3425 		}
3426 	}
3427 
3428 	/* Destroy the TX mbuf tag. */
3429 	if (sc->tx_mbuf_tag != NULL) {
3430 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3431 		sc->tx_mbuf_tag = NULL;
3432 	}
3433 
3434 	/* Unload and destroy the RX mbuf maps. */
3435 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3436 		if (sc->rx_mbuf_map[i] != NULL) {
3437 			bus_dmamap_unload(sc->rx_mbuf_tag,
3438 			    sc->rx_mbuf_map[i]);
3439 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3440 	 		    sc->rx_mbuf_map[i]);
3441 			sc->rx_mbuf_map[i] = NULL;
3442 		}
3443 	}
3444 
3445 	/* Destroy the RX mbuf tag. */
3446 	if (sc->rx_mbuf_tag != NULL) {
3447 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3448 		sc->rx_mbuf_tag = NULL;
3449 	}
3450 
3451 	/* Unload and destroy the page mbuf maps. */
3452 	if (bce_hdr_split == TRUE) {
3453 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3454 			if (sc->pg_mbuf_map[i] != NULL) {
3455 				bus_dmamap_unload(sc->pg_mbuf_tag,
3456 				    sc->pg_mbuf_map[i]);
3457 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3458 				    sc->pg_mbuf_map[i]);
3459 				sc->pg_mbuf_map[i] = NULL;
3460 			}
3461 		}
3462 
3463 		/* Destroy the page mbuf tag. */
3464 		if (sc->pg_mbuf_tag != NULL) {
3465 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3466 			sc->pg_mbuf_tag = NULL;
3467 		}
3468 	}
3469 
3470 	/* Destroy the parent tag */
3471 	if (sc->parent_tag != NULL) {
3472 		bus_dma_tag_destroy(sc->parent_tag);
3473 		sc->parent_tag = NULL;
3474 	}
3475 
3476 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3477 }
3478 
3479 
3480 /****************************************************************************/
3481 /* Get DMA memory from the OS.                                              */
3482 /*                                                                          */
3483 /* Validates that the OS has provided DMA buffers in response to a          */
3484 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3485 /* When the callback is used the OS will return 0 for the mapping function  */
3486 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3487 /* failures back to the caller.                                             */
3488 /*                                                                          */
3489 /* Returns:                                                                 */
3490 /*   Nothing.                                                               */
3491 /****************************************************************************/
3492 static void
3493 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3494 {
3495 	bus_addr_t *busaddr = arg;
3496 
3497 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3498 	    __FUNCTION__, nseg));
3499 	/* Simulate a mapping failure. */
3500 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3501 	    error = ENOMEM);
3502 
3503 	/* ToDo: How to increment debug sim_count variable here? */
3504 
3505 	/* Check for an error and signal the caller that an error occurred. */
3506 	if (error) {
3507 		*busaddr = 0;
3508 	} else {
3509 		*busaddr = segs->ds_addr;
3510 	}
3511 }
3512 
3513 
3514 /****************************************************************************/
3515 /* Allocate any DMA memory needed by the driver.                            */
3516 /*                                                                          */
3517 /* Allocates DMA memory needed for the various global structures needed by  */
3518 /* hardware.                                                                */
3519 /*                                                                          */
3520 /* Memory alignment requirements:                                           */
3521 /* +-----------------+----------+----------+----------+----------+          */
3522 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3523 /* +-----------------+----------+----------+----------+----------+          */
3524 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3525 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3526 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3527 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3528 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3529 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3530 /* |Context Memory   |          |          |          |          |          */
3531 /* +-----------------+----------+----------+----------+----------+          */
3532 /*                                                                          */
3533 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3534 /*                                                                          */
3535 /* Returns:                                                                 */
3536 /*   0 for success, positive value for failure.                             */
3537 /****************************************************************************/
3538 static int
3539 bce_dma_alloc(device_t dev)
3540 {
3541 	struct bce_softc *sc;
3542 	int i, error, rc = 0;
3543 	bus_size_t max_size, max_seg_size;
3544 	int max_segments;
3545 
3546 	sc = device_get_softc(dev);
3547 
3548 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3549 
3550 	/*
3551 	 * Allocate the parent bus DMA tag appropriate for PCI.
3552 	 */
3553 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3554 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3555 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3556 	    &sc->parent_tag)) {
3557 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3558 		    __FILE__, __LINE__);
3559 		rc = ENOMEM;
3560 		goto bce_dma_alloc_exit;
3561 	}
3562 
3563 	/*
3564 	 * Create a DMA tag for the status block, allocate and clear the
3565 	 * memory, map the memory into DMA space, and fetch the physical
3566 	 * address of the block.
3567 	 */
3568 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3569 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3570 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3571 	    0, NULL, NULL, &sc->status_tag)) {
3572 		BCE_PRINTF("%s(%d): Could not allocate status block "
3573 		    "DMA tag!\n", __FILE__, __LINE__);
3574 		rc = ENOMEM;
3575 		goto bce_dma_alloc_exit;
3576 	}
3577 
3578 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3579 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3580 	    &sc->status_map)) {
3581 		BCE_PRINTF("%s(%d): Could not allocate status block "
3582 		    "DMA memory!\n", __FILE__, __LINE__);
3583 		rc = ENOMEM;
3584 		goto bce_dma_alloc_exit;
3585 	}
3586 
3587 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3588 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3589 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3590 
3591 	if (error || sc->status_block_paddr == 0) {
3592 		BCE_PRINTF("%s(%d): Could not map status block "
3593 		    "DMA memory!\n", __FILE__, __LINE__);
3594 		rc = ENOMEM;
3595 		goto bce_dma_alloc_exit;
3596 	}
3597 
3598 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3599 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3600 
3601 	/*
3602 	 * Create a DMA tag for the statistics block, allocate and clear the
3603 	 * memory, map the memory into DMA space, and fetch the physical
3604 	 * address of the block.
3605 	 */
3606 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3607 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3608 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3609 	    0, NULL, NULL, &sc->stats_tag)) {
3610 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3611 		    "DMA tag!\n", __FILE__, __LINE__);
3612 		rc = ENOMEM;
3613 		goto bce_dma_alloc_exit;
3614 	}
3615 
3616 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3617 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3618 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3619 		    "DMA memory!\n", __FILE__, __LINE__);
3620 		rc = ENOMEM;
3621 		goto bce_dma_alloc_exit;
3622 	}
3623 
3624 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3625 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3626 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3627 
3628 	if (error || sc->stats_block_paddr == 0) {
3629 		BCE_PRINTF("%s(%d): Could not map statistics block "
3630 		    "DMA memory!\n", __FILE__, __LINE__);
3631 		rc = ENOMEM;
3632 		goto bce_dma_alloc_exit;
3633 	}
3634 
3635 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3636 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3637 
3638 	/* BCM5709 uses host memory as cache for context memory. */
3639 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3640 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3641 		if (sc->ctx_pages == 0)
3642 			sc->ctx_pages = 1;
3643 
3644 		DBRUNIF((sc->ctx_pages > 512),
3645 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3646 		    __FILE__, __LINE__, sc->ctx_pages));
3647 
3648 		/*
3649 		 * Create a DMA tag for the context pages,
3650 		 * allocate and clear the memory, map the
3651 		 * memory into DMA space, and fetch the
3652 		 * physical address of the block.
3653 		 */
3654 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3655 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3656 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3657 		    0, NULL, NULL, &sc->ctx_tag)) {
3658 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3659 			    "DMA tag!\n", __FILE__, __LINE__);
3660 			rc = ENOMEM;
3661 			goto bce_dma_alloc_exit;
3662 		}
3663 
3664 		for (i = 0; i < sc->ctx_pages; i++) {
3665 
3666 			if(bus_dmamem_alloc(sc->ctx_tag,
3667 			    (void **)&sc->ctx_block[i],
3668 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3669 			    &sc->ctx_map[i])) {
3670 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3671 				    "DMA memory!\n", __FILE__, __LINE__);
3672 				rc = ENOMEM;
3673 				goto bce_dma_alloc_exit;
3674 			}
3675 
3676 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3677 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3678 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3679 
3680 			if (error || sc->ctx_paddr[i] == 0) {
3681 				BCE_PRINTF("%s(%d): Could not map CTX "
3682 				    "DMA memory!\n", __FILE__, __LINE__);
3683 				rc = ENOMEM;
3684 				goto bce_dma_alloc_exit;
3685 			}
3686 
3687 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3688 			    "= 0x%jX\n", __FUNCTION__, i,
3689 			    (uintmax_t) sc->ctx_paddr[i]);
3690 		}
3691 	}
3692 
3693 	/*
3694 	 * Create a DMA tag for the TX buffer descriptor chain,
3695 	 * allocate and clear the  memory, and fetch the
3696 	 * physical address of the block.
3697 	 */
3698 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3699 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3700 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3701 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3702 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3703 		    "chain DMA tag!\n", __FILE__, __LINE__);
3704 		rc = ENOMEM;
3705 		goto bce_dma_alloc_exit;
3706 	}
3707 
3708 	for (i = 0; i < sc->tx_pages; i++) {
3709 
3710 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3711 		    (void **)&sc->tx_bd_chain[i],
3712 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3713 		    &sc->tx_bd_chain_map[i])) {
3714 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3715 			    "chain DMA memory!\n", __FILE__, __LINE__);
3716 			rc = ENOMEM;
3717 			goto bce_dma_alloc_exit;
3718 		}
3719 
3720 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3721 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3722 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3723 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3724 
3725 		if (error || sc->tx_bd_chain_paddr[i] == 0) {
3726 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3727 			    "chain DMA memory!\n", __FILE__, __LINE__);
3728 			rc = ENOMEM;
3729 			goto bce_dma_alloc_exit;
3730 		}
3731 
3732 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3733 		    "0x%jX\n", __FUNCTION__, i,
3734 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3735 	}
3736 
3737 	/* Check the required size before mapping to conserve resources. */
3738 	if (bce_tso_enable) {
3739 		max_size     = BCE_TSO_MAX_SIZE;
3740 		max_segments = BCE_MAX_SEGMENTS;
3741 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3742 	} else {
3743 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3744 		max_segments = BCE_MAX_SEGMENTS;
3745 		max_seg_size = MCLBYTES;
3746 	}
3747 
3748 	/* Create a DMA tag for TX mbufs. */
3749 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3750 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3751 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3752 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3753 		    __FILE__, __LINE__);
3754 		rc = ENOMEM;
3755 		goto bce_dma_alloc_exit;
3756 	}
3757 
3758 	/* Create DMA maps for the TX mbufs clusters. */
3759 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3760 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3761 			&sc->tx_mbuf_map[i])) {
3762 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3763 			    "map!\n", __FILE__, __LINE__);
3764 			rc = ENOMEM;
3765 			goto bce_dma_alloc_exit;
3766 		}
3767 	}
3768 
3769 	/*
3770 	 * Create a DMA tag for the RX buffer descriptor chain,
3771 	 * allocate and clear the memory, and fetch the physical
3772 	 * address of the blocks.
3773 	 */
3774 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3775 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3776 			sc->max_bus_addr, NULL, NULL,
3777 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3778 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3779 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3780 		    "DMA tag!\n", __FILE__, __LINE__);
3781 		rc = ENOMEM;
3782 		goto bce_dma_alloc_exit;
3783 	}
3784 
3785 	for (i = 0; i < sc->rx_pages; i++) {
3786 
3787 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3788 		    (void **)&sc->rx_bd_chain[i],
3789 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3790 		    &sc->rx_bd_chain_map[i])) {
3791 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3792 			    "chain DMA memory!\n", __FILE__, __LINE__);
3793 			rc = ENOMEM;
3794 			goto bce_dma_alloc_exit;
3795 		}
3796 
3797 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3798 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3799 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3800 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3801 
3802 		if (error || sc->rx_bd_chain_paddr[i] == 0) {
3803 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3804 			    "chain DMA memory!\n", __FILE__, __LINE__);
3805 			rc = ENOMEM;
3806 			goto bce_dma_alloc_exit;
3807 		}
3808 
3809 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3810 		    "0x%jX\n", __FUNCTION__, i,
3811 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3812 	}
3813 
3814 	/*
3815 	 * Create a DMA tag for RX mbufs.
3816 	 */
3817 	if (bce_hdr_split == TRUE)
3818 		max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3819 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3820 	else
3821 		max_size = MJUM9BYTES;
3822 
3823 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3824 	    "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3825 
3826 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3827 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3828 	    max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3829 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3830 		    __FILE__, __LINE__);
3831 		rc = ENOMEM;
3832 		goto bce_dma_alloc_exit;
3833 	}
3834 
3835 	/* Create DMA maps for the RX mbuf clusters. */
3836 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3837 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3838 		    &sc->rx_mbuf_map[i])) {
3839 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3840 			    "DMA map!\n", __FILE__, __LINE__);
3841 			rc = ENOMEM;
3842 			goto bce_dma_alloc_exit;
3843 		}
3844 	}
3845 
3846 	if (bce_hdr_split == TRUE) {
3847 		/*
3848 		 * Create a DMA tag for the page buffer descriptor chain,
3849 		 * allocate and clear the memory, and fetch the physical
3850 		 * address of the blocks.
3851 		 */
3852 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3853 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3854 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3855 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3856 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3857 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3858 			rc = ENOMEM;
3859 			goto bce_dma_alloc_exit;
3860 		}
3861 
3862 		for (i = 0; i < sc->pg_pages; i++) {
3863 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3864 			    (void **)&sc->pg_bd_chain[i],
3865 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3866 			    &sc->pg_bd_chain_map[i])) {
3867 				BCE_PRINTF("%s(%d): Could not allocate page "
3868 				    "descriptor chain DMA memory!\n",
3869 				    __FILE__, __LINE__);
3870 				rc = ENOMEM;
3871 				goto bce_dma_alloc_exit;
3872 			}
3873 
3874 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3875 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3876 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3877 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3878 
3879 			if (error || sc->pg_bd_chain_paddr[i] == 0) {
3880 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3881 					"chain DMA memory!\n", __FILE__, __LINE__);
3882 				rc = ENOMEM;
3883 				goto bce_dma_alloc_exit;
3884 			}
3885 
3886 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3887 				"0x%jX\n", __FUNCTION__, i,
3888 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3889 		}
3890 
3891 		/*
3892 		 * Create a DMA tag for page mbufs.
3893 		 */
3894 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3895 		    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3896 		    1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3897 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3898 				"DMA tag!\n", __FILE__, __LINE__);
3899 			rc = ENOMEM;
3900 			goto bce_dma_alloc_exit;
3901 		}
3902 
3903 		/* Create DMA maps for the page mbuf clusters. */
3904 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3905 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3906 				&sc->pg_mbuf_map[i])) {
3907 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3908 					"DMA map!\n", __FILE__, __LINE__);
3909 				rc = ENOMEM;
3910 				goto bce_dma_alloc_exit;
3911 			}
3912 		}
3913 	}
3914 
3915 bce_dma_alloc_exit:
3916 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3917 	return(rc);
3918 }
3919 
3920 
3921 /****************************************************************************/
3922 /* Release all resources used by the driver.                                */
3923 /*                                                                          */
3924 /* Releases all resources acquired by the driver including interrupts,      */
3925 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3926 /*                                                                          */
3927 /* Returns:                                                                 */
3928 /*   Nothing.                                                               */
3929 /****************************************************************************/
3930 static void
3931 bce_release_resources(struct bce_softc *sc)
3932 {
3933 	device_t dev;
3934 
3935 	DBENTER(BCE_VERBOSE_RESET);
3936 
3937 	dev = sc->bce_dev;
3938 
3939 	bce_dma_free(sc);
3940 
3941 	if (sc->bce_intrhand != NULL) {
3942 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3943 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3944 	}
3945 
3946 	if (sc->bce_res_irq != NULL) {
3947 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3948 		bus_release_resource(dev, SYS_RES_IRQ,
3949 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3950 	}
3951 
3952 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3953 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3954 		pci_release_msi(dev);
3955 	}
3956 
3957 	if (sc->bce_res_mem != NULL) {
3958 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3959 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3960 		    sc->bce_res_mem);
3961 	}
3962 
3963 	if (sc->bce_ifp != NULL) {
3964 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3965 		if_free(sc->bce_ifp);
3966 	}
3967 
3968 	if (mtx_initialized(&sc->bce_mtx))
3969 		BCE_LOCK_DESTROY(sc);
3970 
3971 	DBEXIT(BCE_VERBOSE_RESET);
3972 }
3973 
3974 
3975 /****************************************************************************/
3976 /* Firmware synchronization.                                                */
3977 /*                                                                          */
3978 /* Before performing certain events such as a chip reset, synchronize with  */
3979 /* the firmware first.                                                      */
3980 /*                                                                          */
3981 /* Returns:                                                                 */
3982 /*   0 for success, positive value for failure.                             */
3983 /****************************************************************************/
3984 static int
3985 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3986 {
3987 	int i, rc = 0;
3988 	u32 val;
3989 
3990 	DBENTER(BCE_VERBOSE_RESET);
3991 
3992 	/* Don't waste any time if we've timed out before. */
3993 	if (sc->bce_fw_timed_out == TRUE) {
3994 		rc = EBUSY;
3995 		goto bce_fw_sync_exit;
3996 	}
3997 
3998 	/* Increment the message sequence number. */
3999 	sc->bce_fw_wr_seq++;
4000 	msg_data |= sc->bce_fw_wr_seq;
4001 
4002  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
4003 	    "0x%08X\n",	msg_data);
4004 
4005 	/* Send the message to the bootcode driver mailbox. */
4006 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
4007 
4008 	/* Wait for the bootcode to acknowledge the message. */
4009 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
4010 		/* Check for a response in the bootcode firmware mailbox. */
4011 		val = bce_shmem_rd(sc, BCE_FW_MB);
4012 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
4013 			break;
4014 		DELAY(1000);
4015 	}
4016 
4017 	/* If we've timed out, tell bootcode that we've stopped waiting. */
4018 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
4019 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
4020 
4021 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
4022 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
4023 
4024 		msg_data &= ~BCE_DRV_MSG_CODE;
4025 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
4026 
4027 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
4028 
4029 		sc->bce_fw_timed_out = TRUE;
4030 		rc = EBUSY;
4031 	}
4032 
4033 bce_fw_sync_exit:
4034 	DBEXIT(BCE_VERBOSE_RESET);
4035 	return (rc);
4036 }
4037 
4038 
4039 /****************************************************************************/
4040 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
4041 /*                                                                          */
4042 /* Returns:                                                                 */
4043 /*   Nothing.                                                               */
4044 /****************************************************************************/
4045 static void
4046 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
4047 	u32 rv2p_code_len, u32 rv2p_proc)
4048 {
4049 	int i;
4050 	u32 val;
4051 
4052 	DBENTER(BCE_VERBOSE_RESET);
4053 
4054 	/* Set the page size used by RV2P. */
4055 	if (rv2p_proc == RV2P_PROC2) {
4056 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4057 	}
4058 
4059 	for (i = 0; i < rv2p_code_len; i += 8) {
4060 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4061 		rv2p_code++;
4062 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4063 		rv2p_code++;
4064 
4065 		if (rv2p_proc == RV2P_PROC1) {
4066 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4067 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4068 		}
4069 		else {
4070 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4071 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4072 		}
4073 	}
4074 
4075 	/* Reset the processor, un-stall is done later. */
4076 	if (rv2p_proc == RV2P_PROC1) {
4077 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4078 	}
4079 	else {
4080 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4081 	}
4082 
4083 	DBEXIT(BCE_VERBOSE_RESET);
4084 }
4085 
4086 
4087 /****************************************************************************/
4088 /* Load RISC processor firmware.                                            */
4089 /*                                                                          */
4090 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4091 /* associated with a particular processor.                                  */
4092 /*                                                                          */
4093 /* Returns:                                                                 */
4094 /*   Nothing.                                                               */
4095 /****************************************************************************/
4096 static void
4097 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4098 	struct fw_info *fw)
4099 {
4100 	u32 offset;
4101 
4102 	DBENTER(BCE_VERBOSE_RESET);
4103 
4104     bce_halt_cpu(sc, cpu_reg);
4105 
4106 	/* Load the Text area. */
4107 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4108 	if (fw->text) {
4109 		int j;
4110 
4111 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4112 			REG_WR_IND(sc, offset, fw->text[j]);
4113 	        }
4114 	}
4115 
4116 	/* Load the Data area. */
4117 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4118 	if (fw->data) {
4119 		int j;
4120 
4121 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4122 			REG_WR_IND(sc, offset, fw->data[j]);
4123 		}
4124 	}
4125 
4126 	/* Load the SBSS area. */
4127 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4128 	if (fw->sbss) {
4129 		int j;
4130 
4131 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4132 			REG_WR_IND(sc, offset, fw->sbss[j]);
4133 		}
4134 	}
4135 
4136 	/* Load the BSS area. */
4137 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4138 	if (fw->bss) {
4139 		int j;
4140 
4141 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4142 			REG_WR_IND(sc, offset, fw->bss[j]);
4143 		}
4144 	}
4145 
4146 	/* Load the Read-Only area. */
4147 	offset = cpu_reg->spad_base +
4148 		(fw->rodata_addr - cpu_reg->mips_view_base);
4149 	if (fw->rodata) {
4150 		int j;
4151 
4152 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4153 			REG_WR_IND(sc, offset, fw->rodata[j]);
4154 		}
4155 	}
4156 
4157 	/* Clear the pre-fetch instruction and set the FW start address. */
4158 	REG_WR_IND(sc, cpu_reg->inst, 0);
4159 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4160 
4161 	DBEXIT(BCE_VERBOSE_RESET);
4162 }
4163 
4164 
4165 /****************************************************************************/
4166 /* Starts the RISC processor.                                               */
4167 /*                                                                          */
4168 /* Assumes the CPU starting address has already been set.                   */
4169 /*                                                                          */
4170 /* Returns:                                                                 */
4171 /*   Nothing.                                                               */
4172 /****************************************************************************/
4173 static void
4174 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4175 {
4176 	u32 val;
4177 
4178 	DBENTER(BCE_VERBOSE_RESET);
4179 
4180 	/* Start the CPU. */
4181 	val = REG_RD_IND(sc, cpu_reg->mode);
4182 	val &= ~cpu_reg->mode_value_halt;
4183 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4184 	REG_WR_IND(sc, cpu_reg->mode, val);
4185 
4186 	DBEXIT(BCE_VERBOSE_RESET);
4187 }
4188 
4189 
4190 /****************************************************************************/
4191 /* Halts the RISC processor.                                                */
4192 /*                                                                          */
4193 /* Returns:                                                                 */
4194 /*   Nothing.                                                               */
4195 /****************************************************************************/
4196 static void
4197 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4198 {
4199 	u32 val;
4200 
4201 	DBENTER(BCE_VERBOSE_RESET);
4202 
4203 	/* Halt the CPU. */
4204 	val = REG_RD_IND(sc, cpu_reg->mode);
4205 	val |= cpu_reg->mode_value_halt;
4206 	REG_WR_IND(sc, cpu_reg->mode, val);
4207 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4208 
4209 	DBEXIT(BCE_VERBOSE_RESET);
4210 }
4211 
4212 
4213 /****************************************************************************/
4214 /* Initialize the RX CPU.                                                   */
4215 /*                                                                          */
4216 /* Returns:                                                                 */
4217 /*   Nothing.                                                               */
4218 /****************************************************************************/
4219 static void
4220 bce_start_rxp_cpu(struct bce_softc *sc)
4221 {
4222 	struct cpu_reg cpu_reg;
4223 
4224 	DBENTER(BCE_VERBOSE_RESET);
4225 
4226 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4227 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4228 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4229 	cpu_reg.state = BCE_RXP_CPU_STATE;
4230 	cpu_reg.state_value_clear = 0xffffff;
4231 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4232 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4233 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4234 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4235 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4236 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4237 	cpu_reg.mips_view_base = 0x8000000;
4238 
4239 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4240 	bce_start_cpu(sc, &cpu_reg);
4241 
4242 	DBEXIT(BCE_VERBOSE_RESET);
4243 }
4244 
4245 
4246 /****************************************************************************/
4247 /* Initialize the RX CPU.                                                   */
4248 /*                                                                          */
4249 /* Returns:                                                                 */
4250 /*   Nothing.                                                               */
4251 /****************************************************************************/
4252 static void
4253 bce_init_rxp_cpu(struct bce_softc *sc)
4254 {
4255 	struct cpu_reg cpu_reg;
4256 	struct fw_info fw;
4257 
4258 	DBENTER(BCE_VERBOSE_RESET);
4259 
4260 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4261 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4262 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4263 	cpu_reg.state = BCE_RXP_CPU_STATE;
4264 	cpu_reg.state_value_clear = 0xffffff;
4265 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4266 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4267 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4268 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4269 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4270 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4271 	cpu_reg.mips_view_base = 0x8000000;
4272 
4273 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4274  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4275 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4276 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4277 		fw.start_addr = bce_RXP_b09FwStartAddr;
4278 
4279 		fw.text_addr = bce_RXP_b09FwTextAddr;
4280 		fw.text_len = bce_RXP_b09FwTextLen;
4281 		fw.text_index = 0;
4282 		fw.text = bce_RXP_b09FwText;
4283 
4284 		fw.data_addr = bce_RXP_b09FwDataAddr;
4285 		fw.data_len = bce_RXP_b09FwDataLen;
4286 		fw.data_index = 0;
4287 		fw.data = bce_RXP_b09FwData;
4288 
4289 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4290 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4291 		fw.sbss_index = 0;
4292 		fw.sbss = bce_RXP_b09FwSbss;
4293 
4294 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4295 		fw.bss_len = bce_RXP_b09FwBssLen;
4296 		fw.bss_index = 0;
4297 		fw.bss = bce_RXP_b09FwBss;
4298 
4299 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4300 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4301 		fw.rodata_index = 0;
4302 		fw.rodata = bce_RXP_b09FwRodata;
4303 	} else {
4304 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4305 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4306 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4307 		fw.start_addr = bce_RXP_b06FwStartAddr;
4308 
4309 		fw.text_addr = bce_RXP_b06FwTextAddr;
4310 		fw.text_len = bce_RXP_b06FwTextLen;
4311 		fw.text_index = 0;
4312 		fw.text = bce_RXP_b06FwText;
4313 
4314 		fw.data_addr = bce_RXP_b06FwDataAddr;
4315 		fw.data_len = bce_RXP_b06FwDataLen;
4316 		fw.data_index = 0;
4317 		fw.data = bce_RXP_b06FwData;
4318 
4319 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4320 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4321 		fw.sbss_index = 0;
4322 		fw.sbss = bce_RXP_b06FwSbss;
4323 
4324 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4325 		fw.bss_len = bce_RXP_b06FwBssLen;
4326 		fw.bss_index = 0;
4327 		fw.bss = bce_RXP_b06FwBss;
4328 
4329 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4330 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4331 		fw.rodata_index = 0;
4332 		fw.rodata = bce_RXP_b06FwRodata;
4333 	}
4334 
4335 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4336 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4337 
4338     /* Delay RXP start until initialization is complete. */
4339 
4340 	DBEXIT(BCE_VERBOSE_RESET);
4341 }
4342 
4343 
4344 /****************************************************************************/
4345 /* Initialize the TX CPU.                                                   */
4346 /*                                                                          */
4347 /* Returns:                                                                 */
4348 /*   Nothing.                                                               */
4349 /****************************************************************************/
4350 static void
4351 bce_init_txp_cpu(struct bce_softc *sc)
4352 {
4353 	struct cpu_reg cpu_reg;
4354 	struct fw_info fw;
4355 
4356 	DBENTER(BCE_VERBOSE_RESET);
4357 
4358 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4359 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4360 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4361 	cpu_reg.state = BCE_TXP_CPU_STATE;
4362 	cpu_reg.state_value_clear = 0xffffff;
4363 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4364 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4365 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4366 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4367 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4368 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4369 	cpu_reg.mips_view_base = 0x8000000;
4370 
4371 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4372 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4373 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4374 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4375 		fw.start_addr = bce_TXP_b09FwStartAddr;
4376 
4377 		fw.text_addr = bce_TXP_b09FwTextAddr;
4378 		fw.text_len = bce_TXP_b09FwTextLen;
4379 		fw.text_index = 0;
4380 		fw.text = bce_TXP_b09FwText;
4381 
4382 		fw.data_addr = bce_TXP_b09FwDataAddr;
4383 		fw.data_len = bce_TXP_b09FwDataLen;
4384 		fw.data_index = 0;
4385 		fw.data = bce_TXP_b09FwData;
4386 
4387 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4388 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4389 		fw.sbss_index = 0;
4390 		fw.sbss = bce_TXP_b09FwSbss;
4391 
4392 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4393 		fw.bss_len = bce_TXP_b09FwBssLen;
4394 		fw.bss_index = 0;
4395 		fw.bss = bce_TXP_b09FwBss;
4396 
4397 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4398 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4399 		fw.rodata_index = 0;
4400 		fw.rodata = bce_TXP_b09FwRodata;
4401 	} else {
4402 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4403 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4404 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4405 		fw.start_addr = bce_TXP_b06FwStartAddr;
4406 
4407 		fw.text_addr = bce_TXP_b06FwTextAddr;
4408 		fw.text_len = bce_TXP_b06FwTextLen;
4409 		fw.text_index = 0;
4410 		fw.text = bce_TXP_b06FwText;
4411 
4412 		fw.data_addr = bce_TXP_b06FwDataAddr;
4413 		fw.data_len = bce_TXP_b06FwDataLen;
4414 		fw.data_index = 0;
4415 		fw.data = bce_TXP_b06FwData;
4416 
4417 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4418 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4419 		fw.sbss_index = 0;
4420 		fw.sbss = bce_TXP_b06FwSbss;
4421 
4422 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4423 		fw.bss_len = bce_TXP_b06FwBssLen;
4424 		fw.bss_index = 0;
4425 		fw.bss = bce_TXP_b06FwBss;
4426 
4427 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4428 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4429 		fw.rodata_index = 0;
4430 		fw.rodata = bce_TXP_b06FwRodata;
4431 	}
4432 
4433 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4434 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4435     bce_start_cpu(sc, &cpu_reg);
4436 
4437 	DBEXIT(BCE_VERBOSE_RESET);
4438 }
4439 
4440 
4441 /****************************************************************************/
4442 /* Initialize the TPAT CPU.                                                 */
4443 /*                                                                          */
4444 /* Returns:                                                                 */
4445 /*   Nothing.                                                               */
4446 /****************************************************************************/
4447 static void
4448 bce_init_tpat_cpu(struct bce_softc *sc)
4449 {
4450 	struct cpu_reg cpu_reg;
4451 	struct fw_info fw;
4452 
4453 	DBENTER(BCE_VERBOSE_RESET);
4454 
4455 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4456 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4457 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4458 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4459 	cpu_reg.state_value_clear = 0xffffff;
4460 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4461 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4462 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4463 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4464 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4465 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4466 	cpu_reg.mips_view_base = 0x8000000;
4467 
4468 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4469 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4470 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4471 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4472 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4473 
4474 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4475 		fw.text_len = bce_TPAT_b09FwTextLen;
4476 		fw.text_index = 0;
4477 		fw.text = bce_TPAT_b09FwText;
4478 
4479 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4480 		fw.data_len = bce_TPAT_b09FwDataLen;
4481 		fw.data_index = 0;
4482 		fw.data = bce_TPAT_b09FwData;
4483 
4484 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4485 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4486 		fw.sbss_index = 0;
4487 		fw.sbss = bce_TPAT_b09FwSbss;
4488 
4489 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4490 		fw.bss_len = bce_TPAT_b09FwBssLen;
4491 		fw.bss_index = 0;
4492 		fw.bss = bce_TPAT_b09FwBss;
4493 
4494 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4495 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4496 		fw.rodata_index = 0;
4497 		fw.rodata = bce_TPAT_b09FwRodata;
4498 	} else {
4499 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4500 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4501 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4502 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4503 
4504 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4505 		fw.text_len = bce_TPAT_b06FwTextLen;
4506 		fw.text_index = 0;
4507 		fw.text = bce_TPAT_b06FwText;
4508 
4509 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4510 		fw.data_len = bce_TPAT_b06FwDataLen;
4511 		fw.data_index = 0;
4512 		fw.data = bce_TPAT_b06FwData;
4513 
4514 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4515 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4516 		fw.sbss_index = 0;
4517 		fw.sbss = bce_TPAT_b06FwSbss;
4518 
4519 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4520 		fw.bss_len = bce_TPAT_b06FwBssLen;
4521 		fw.bss_index = 0;
4522 		fw.bss = bce_TPAT_b06FwBss;
4523 
4524 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4525 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4526 		fw.rodata_index = 0;
4527 		fw.rodata = bce_TPAT_b06FwRodata;
4528 	}
4529 
4530 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4531 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4532 	bce_start_cpu(sc, &cpu_reg);
4533 
4534 	DBEXIT(BCE_VERBOSE_RESET);
4535 }
4536 
4537 
4538 /****************************************************************************/
4539 /* Initialize the CP CPU.                                                   */
4540 /*                                                                          */
4541 /* Returns:                                                                 */
4542 /*   Nothing.                                                               */
4543 /****************************************************************************/
4544 static void
4545 bce_init_cp_cpu(struct bce_softc *sc)
4546 {
4547 	struct cpu_reg cpu_reg;
4548 	struct fw_info fw;
4549 
4550 	DBENTER(BCE_VERBOSE_RESET);
4551 
4552 	cpu_reg.mode = BCE_CP_CPU_MODE;
4553 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4554 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4555 	cpu_reg.state = BCE_CP_CPU_STATE;
4556 	cpu_reg.state_value_clear = 0xffffff;
4557 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4558 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4559 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4560 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4561 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4562 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4563 	cpu_reg.mips_view_base = 0x8000000;
4564 
4565 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4566 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4567 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4568 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4569 		fw.start_addr = bce_CP_b09FwStartAddr;
4570 
4571 		fw.text_addr = bce_CP_b09FwTextAddr;
4572 		fw.text_len = bce_CP_b09FwTextLen;
4573 		fw.text_index = 0;
4574 		fw.text = bce_CP_b09FwText;
4575 
4576 		fw.data_addr = bce_CP_b09FwDataAddr;
4577 		fw.data_len = bce_CP_b09FwDataLen;
4578 		fw.data_index = 0;
4579 		fw.data = bce_CP_b09FwData;
4580 
4581 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4582 		fw.sbss_len = bce_CP_b09FwSbssLen;
4583 		fw.sbss_index = 0;
4584 		fw.sbss = bce_CP_b09FwSbss;
4585 
4586 		fw.bss_addr = bce_CP_b09FwBssAddr;
4587 		fw.bss_len = bce_CP_b09FwBssLen;
4588 		fw.bss_index = 0;
4589 		fw.bss = bce_CP_b09FwBss;
4590 
4591 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4592 		fw.rodata_len = bce_CP_b09FwRodataLen;
4593 		fw.rodata_index = 0;
4594 		fw.rodata = bce_CP_b09FwRodata;
4595 	} else {
4596 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4597 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4598 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4599 		fw.start_addr = bce_CP_b06FwStartAddr;
4600 
4601 		fw.text_addr = bce_CP_b06FwTextAddr;
4602 		fw.text_len = bce_CP_b06FwTextLen;
4603 		fw.text_index = 0;
4604 		fw.text = bce_CP_b06FwText;
4605 
4606 		fw.data_addr = bce_CP_b06FwDataAddr;
4607 		fw.data_len = bce_CP_b06FwDataLen;
4608 		fw.data_index = 0;
4609 		fw.data = bce_CP_b06FwData;
4610 
4611 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4612 		fw.sbss_len = bce_CP_b06FwSbssLen;
4613 		fw.sbss_index = 0;
4614 		fw.sbss = bce_CP_b06FwSbss;
4615 
4616 		fw.bss_addr = bce_CP_b06FwBssAddr;
4617 		fw.bss_len = bce_CP_b06FwBssLen;
4618 		fw.bss_index = 0;
4619 		fw.bss = bce_CP_b06FwBss;
4620 
4621 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4622 		fw.rodata_len = bce_CP_b06FwRodataLen;
4623 		fw.rodata_index = 0;
4624 		fw.rodata = bce_CP_b06FwRodata;
4625 	}
4626 
4627 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4628 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4629 	bce_start_cpu(sc, &cpu_reg);
4630 
4631 	DBEXIT(BCE_VERBOSE_RESET);
4632 }
4633 
4634 
4635 /****************************************************************************/
4636 /* Initialize the COM CPU.                                                 */
4637 /*                                                                          */
4638 /* Returns:                                                                 */
4639 /*   Nothing.                                                               */
4640 /****************************************************************************/
4641 static void
4642 bce_init_com_cpu(struct bce_softc *sc)
4643 {
4644 	struct cpu_reg cpu_reg;
4645 	struct fw_info fw;
4646 
4647 	DBENTER(BCE_VERBOSE_RESET);
4648 
4649 	cpu_reg.mode = BCE_COM_CPU_MODE;
4650 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4651 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4652 	cpu_reg.state = BCE_COM_CPU_STATE;
4653 	cpu_reg.state_value_clear = 0xffffff;
4654 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4655 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4656 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4657 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4658 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4659 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4660 	cpu_reg.mips_view_base = 0x8000000;
4661 
4662 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4663 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4664 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4665 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4666 		fw.start_addr = bce_COM_b09FwStartAddr;
4667 
4668 		fw.text_addr = bce_COM_b09FwTextAddr;
4669 		fw.text_len = bce_COM_b09FwTextLen;
4670 		fw.text_index = 0;
4671 		fw.text = bce_COM_b09FwText;
4672 
4673 		fw.data_addr = bce_COM_b09FwDataAddr;
4674 		fw.data_len = bce_COM_b09FwDataLen;
4675 		fw.data_index = 0;
4676 		fw.data = bce_COM_b09FwData;
4677 
4678 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4679 		fw.sbss_len = bce_COM_b09FwSbssLen;
4680 		fw.sbss_index = 0;
4681 		fw.sbss = bce_COM_b09FwSbss;
4682 
4683 		fw.bss_addr = bce_COM_b09FwBssAddr;
4684 		fw.bss_len = bce_COM_b09FwBssLen;
4685 		fw.bss_index = 0;
4686 		fw.bss = bce_COM_b09FwBss;
4687 
4688 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4689 		fw.rodata_len = bce_COM_b09FwRodataLen;
4690 		fw.rodata_index = 0;
4691 		fw.rodata = bce_COM_b09FwRodata;
4692 	} else {
4693 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4694 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4695 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4696 		fw.start_addr = bce_COM_b06FwStartAddr;
4697 
4698 		fw.text_addr = bce_COM_b06FwTextAddr;
4699 		fw.text_len = bce_COM_b06FwTextLen;
4700 		fw.text_index = 0;
4701 		fw.text = bce_COM_b06FwText;
4702 
4703 		fw.data_addr = bce_COM_b06FwDataAddr;
4704 		fw.data_len = bce_COM_b06FwDataLen;
4705 		fw.data_index = 0;
4706 		fw.data = bce_COM_b06FwData;
4707 
4708 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4709 		fw.sbss_len = bce_COM_b06FwSbssLen;
4710 		fw.sbss_index = 0;
4711 		fw.sbss = bce_COM_b06FwSbss;
4712 
4713 		fw.bss_addr = bce_COM_b06FwBssAddr;
4714 		fw.bss_len = bce_COM_b06FwBssLen;
4715 		fw.bss_index = 0;
4716 		fw.bss = bce_COM_b06FwBss;
4717 
4718 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4719 		fw.rodata_len = bce_COM_b06FwRodataLen;
4720 		fw.rodata_index = 0;
4721 		fw.rodata = bce_COM_b06FwRodata;
4722 	}
4723 
4724 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4725 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4726 	bce_start_cpu(sc, &cpu_reg);
4727 
4728 	DBEXIT(BCE_VERBOSE_RESET);
4729 }
4730 
4731 
4732 /****************************************************************************/
4733 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4734 /*                                                                          */
4735 /* Loads the firmware for each CPU and starts the CPU.                      */
4736 /*                                                                          */
4737 /* Returns:                                                                 */
4738 /*   Nothing.                                                               */
4739 /****************************************************************************/
4740 static void
4741 bce_init_cpus(struct bce_softc *sc)
4742 {
4743 	DBENTER(BCE_VERBOSE_RESET);
4744 
4745 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4746 
4747 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4748 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4749 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4750 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4751 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4752 		} else {
4753 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4754 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4755 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4756 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4757 		}
4758 
4759 	} else {
4760 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4761 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4762 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4763 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4764 	}
4765 
4766 	bce_init_rxp_cpu(sc);
4767 	bce_init_txp_cpu(sc);
4768 	bce_init_tpat_cpu(sc);
4769 	bce_init_com_cpu(sc);
4770 	bce_init_cp_cpu(sc);
4771 
4772 	DBEXIT(BCE_VERBOSE_RESET);
4773 }
4774 
4775 
4776 /****************************************************************************/
4777 /* Initialize context memory.                                               */
4778 /*                                                                          */
4779 /* Clears the memory associated with each Context ID (CID).                 */
4780 /*                                                                          */
4781 /* Returns:                                                                 */
4782 /*   Nothing.                                                               */
4783 /****************************************************************************/
4784 static int
4785 bce_init_ctx(struct bce_softc *sc)
4786 {
4787 	u32 offset, val, vcid_addr;
4788 	int i, j, rc, retry_cnt;
4789 
4790 	rc = 0;
4791 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4792 
4793 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4794 		retry_cnt = CTX_INIT_RETRY_COUNT;
4795 
4796 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4797 
4798 		/*
4799 		 * BCM5709 context memory may be cached
4800 		 * in host memory so prepare the host memory
4801 		 * for access.
4802 		 */
4803 		val = BCE_CTX_COMMAND_ENABLED |
4804 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4805 		val |= (BCM_PAGE_BITS - 8) << 16;
4806 		REG_WR(sc, BCE_CTX_COMMAND, val);
4807 
4808 		/* Wait for mem init command to complete. */
4809 		for (i = 0; i < retry_cnt; i++) {
4810 			val = REG_RD(sc, BCE_CTX_COMMAND);
4811 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4812 				break;
4813 			DELAY(2);
4814 		}
4815 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4816 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4817 			    __FUNCTION__);
4818 			rc = EBUSY;
4819 			goto init_ctx_fail;
4820 		}
4821 
4822 		for (i = 0; i < sc->ctx_pages; i++) {
4823 			/* Set the physical address of the context memory. */
4824 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4825 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4826 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4827 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4828 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4829 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4830 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4831 
4832 			/* Verify the context memory write was successful. */
4833 			for (j = 0; j < retry_cnt; j++) {
4834 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4835 				if ((val &
4836 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4837 					break;
4838 				DELAY(5);
4839 			}
4840 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4841 				BCE_PRINTF("%s(): Failed to initialize "
4842 				    "context page %d!\n", __FUNCTION__, i);
4843 				rc = EBUSY;
4844 				goto init_ctx_fail;
4845 			}
4846 		}
4847 	} else {
4848 
4849 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4850 
4851 		/*
4852 		 * For the 5706/5708, context memory is local to
4853 		 * the controller, so initialize the controller
4854 		 * context memory.
4855 		 */
4856 
4857 		vcid_addr = GET_CID_ADDR(96);
4858 		while (vcid_addr) {
4859 
4860 			vcid_addr -= PHY_CTX_SIZE;
4861 
4862 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4863 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4864 
4865 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4866 				CTX_WR(sc, 0x00, offset, 0);
4867 			}
4868 
4869 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4870 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4871 		}
4872 
4873 	}
4874 init_ctx_fail:
4875 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4876 	return (rc);
4877 }
4878 
4879 
4880 /****************************************************************************/
4881 /* Fetch the permanent MAC address of the controller.                       */
4882 /*                                                                          */
4883 /* Returns:                                                                 */
4884 /*   Nothing.                                                               */
4885 /****************************************************************************/
4886 static void
4887 bce_get_mac_addr(struct bce_softc *sc)
4888 {
4889 	u32 mac_lo = 0, mac_hi = 0;
4890 
4891 	DBENTER(BCE_VERBOSE_RESET);
4892 
4893 	/*
4894 	 * The NetXtreme II bootcode populates various NIC
4895 	 * power-on and runtime configuration items in a
4896 	 * shared memory area.  The factory configured MAC
4897 	 * address is available from both NVRAM and the
4898 	 * shared memory area so we'll read the value from
4899 	 * shared memory for speed.
4900 	 */
4901 
4902 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4903 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4904 
4905 	if ((mac_lo == 0) && (mac_hi == 0)) {
4906 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4907 		    __FILE__, __LINE__);
4908 	} else {
4909 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4910 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4911 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4912 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4913 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4914 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4915 	}
4916 
4917 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4918 	    "address = %6D\n", sc->eaddr, ":");
4919 	DBEXIT(BCE_VERBOSE_RESET);
4920 }
4921 
4922 
4923 /****************************************************************************/
4924 /* Program the MAC address.                                                 */
4925 /*                                                                          */
4926 /* Returns:                                                                 */
4927 /*   Nothing.                                                               */
4928 /****************************************************************************/
4929 static void
4930 bce_set_mac_addr(struct bce_softc *sc)
4931 {
4932 	u32 val;
4933 	u8 *mac_addr = sc->eaddr;
4934 
4935 	/* ToDo: Add support for setting multiple MAC addresses. */
4936 
4937 	DBENTER(BCE_VERBOSE_RESET);
4938 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4939 	    "%6D\n", sc->eaddr, ":");
4940 
4941 	val = (mac_addr[0] << 8) | mac_addr[1];
4942 
4943 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4944 
4945 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4946 	    (mac_addr[4] << 8) | mac_addr[5];
4947 
4948 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4949 
4950 	DBEXIT(BCE_VERBOSE_RESET);
4951 }
4952 
4953 
4954 /****************************************************************************/
4955 /* Stop the controller.                                                     */
4956 /*                                                                          */
4957 /* Returns:                                                                 */
4958 /*   Nothing.                                                               */
4959 /****************************************************************************/
4960 static void
4961 bce_stop(struct bce_softc *sc)
4962 {
4963 	struct ifnet *ifp;
4964 
4965 	DBENTER(BCE_VERBOSE_RESET);
4966 
4967 	BCE_LOCK_ASSERT(sc);
4968 
4969 	ifp = sc->bce_ifp;
4970 
4971 	callout_stop(&sc->bce_tick_callout);
4972 
4973 	/* Disable the transmit/receive blocks. */
4974 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4975 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4976 	DELAY(20);
4977 
4978 	bce_disable_intr(sc);
4979 
4980 	/* Free RX buffers. */
4981 	if (bce_hdr_split == TRUE) {
4982 		bce_free_pg_chain(sc);
4983 	}
4984 	bce_free_rx_chain(sc);
4985 
4986 	/* Free TX buffers. */
4987 	bce_free_tx_chain(sc);
4988 
4989 	sc->watchdog_timer = 0;
4990 
4991 	sc->bce_link_up = FALSE;
4992 
4993 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4994 
4995 	DBEXIT(BCE_VERBOSE_RESET);
4996 }
4997 
4998 
4999 static int
5000 bce_reset(struct bce_softc *sc, u32 reset_code)
5001 {
5002 	u32 emac_mode_save, val;
5003 	int i, rc = 0;
5004 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
5005 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
5006 
5007 	DBENTER(BCE_VERBOSE_RESET);
5008 
5009 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
5010 	    __FUNCTION__, reset_code);
5011 
5012 	/*
5013 	 * If ASF/IPMI is operational, then the EMAC Mode register already
5014 	 * contains appropriate values for the link settings that have
5015 	 * been auto-negotiated.  Resetting the chip will clobber those
5016 	 * values.  Save the important bits so we can restore them after
5017 	 * the reset.
5018 	 */
5019 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
5020 
5021 	/* Wait for pending PCI transactions to complete. */
5022 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
5023 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
5024 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
5025 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
5026 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
5027 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
5028 	DELAY(5);
5029 
5030 	/* Disable DMA */
5031 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5032 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5033 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5034 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5035 	}
5036 
5037 	/* Assume bootcode is running. */
5038 	sc->bce_fw_timed_out = FALSE;
5039 	sc->bce_drv_cardiac_arrest = FALSE;
5040 
5041 	/* Give the firmware a chance to prepare for the reset. */
5042 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
5043 	if (rc)
5044 		goto bce_reset_exit;
5045 
5046 	/* Set a firmware reminder that this is a soft reset. */
5047 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5048 
5049 	/* Dummy read to force the chip to complete all current transactions. */
5050 	val = REG_RD(sc, BCE_MISC_ID);
5051 
5052 	/* Chip reset. */
5053 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5054 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5055 		REG_RD(sc, BCE_MISC_COMMAND);
5056 		DELAY(5);
5057 
5058 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5059 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5060 
5061 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5062 	} else {
5063 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5064 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5065 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5066 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5067 
5068 		/* Allow up to 30us for reset to complete. */
5069 		for (i = 0; i < 10; i++) {
5070 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5071 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5072 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5073 				break;
5074 			}
5075 			DELAY(10);
5076 		}
5077 
5078 		/* Check that reset completed successfully. */
5079 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5080 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5081 			BCE_PRINTF("%s(%d): Reset failed!\n",
5082 			    __FILE__, __LINE__);
5083 			rc = EBUSY;
5084 			goto bce_reset_exit;
5085 		}
5086 	}
5087 
5088 	/* Make sure byte swapping is properly configured. */
5089 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5090 	if (val != 0x01020304) {
5091 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5092 		    __FILE__, __LINE__);
5093 		rc = ENODEV;
5094 		goto bce_reset_exit;
5095 	}
5096 
5097 	/* Just completed a reset, assume that firmware is running again. */
5098 	sc->bce_fw_timed_out = FALSE;
5099 	sc->bce_drv_cardiac_arrest = FALSE;
5100 
5101 	/* Wait for the firmware to finish its initialization. */
5102 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5103 	if (rc)
5104 		BCE_PRINTF("%s(%d): Firmware did not complete "
5105 		    "initialization!\n", __FILE__, __LINE__);
5106 	/* Get firmware capabilities. */
5107 	bce_fw_cap_init(sc);
5108 
5109 bce_reset_exit:
5110 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5111 	if (reset_code == BCE_DRV_MSG_CODE_RESET) {
5112 		val = REG_RD(sc, BCE_EMAC_MODE);
5113 		val = (val & ~emac_mode_mask) | emac_mode_save;
5114 		REG_WR(sc, BCE_EMAC_MODE, val);
5115 	}
5116 
5117 	DBEXIT(BCE_VERBOSE_RESET);
5118 	return (rc);
5119 }
5120 
5121 
5122 static int
5123 bce_chipinit(struct bce_softc *sc)
5124 {
5125 	u32 val;
5126 	int rc = 0;
5127 
5128 	DBENTER(BCE_VERBOSE_RESET);
5129 
5130 	bce_disable_intr(sc);
5131 
5132 	/*
5133 	 * Initialize DMA byte/word swapping, configure the number of DMA
5134 	 * channels and PCI clock compensation delay.
5135 	 */
5136 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5137 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5138 #if BYTE_ORDER == BIG_ENDIAN
5139 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5140 #endif
5141 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5142 	    DMA_READ_CHANS << 12 |
5143 	    DMA_WRITE_CHANS << 16;
5144 
5145 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5146 
5147 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5148 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5149 
5150 	/*
5151 	 * This setting resolves a problem observed on certain Intel PCI
5152 	 * chipsets that cannot handle multiple outstanding DMA operations.
5153 	 * See errata E9_5706A1_65.
5154 	 */
5155 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5156 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5157 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5158 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5159 
5160 	REG_WR(sc, BCE_DMA_CONFIG, val);
5161 
5162 	/* Enable the RX_V2P and Context state machines before access. */
5163 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5164 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5165 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5166 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5167 
5168 	/* Initialize context mapping and zero out the quick contexts. */
5169 	if ((rc = bce_init_ctx(sc)) != 0)
5170 		goto bce_chipinit_exit;
5171 
5172 	/* Initialize the on-boards CPUs */
5173 	bce_init_cpus(sc);
5174 
5175 	/* Enable management frames (NC-SI) to flow to the MCP. */
5176 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5177 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5178 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5179 	}
5180 
5181 	/* Prepare NVRAM for access. */
5182 	if ((rc = bce_init_nvram(sc)) != 0)
5183 		goto bce_chipinit_exit;
5184 
5185 	/* Set the kernel bypass block size */
5186 	val = REG_RD(sc, BCE_MQ_CONFIG);
5187 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5188 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5189 
5190 	/* Enable bins used on the 5709. */
5191 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5192 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5193 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5194 			val |= BCE_MQ_CONFIG_HALT_DIS;
5195 	}
5196 
5197 	REG_WR(sc, BCE_MQ_CONFIG, val);
5198 
5199 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5200 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5201 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5202 
5203 	/* Set the page size and clear the RV2P processor stall bits. */
5204 	val = (BCM_PAGE_BITS - 8) << 24;
5205 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5206 
5207 	/* Configure page size. */
5208 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5209 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5210 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5211 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5212 
5213 	/* Set the perfect match control register to default. */
5214 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5215 
5216 bce_chipinit_exit:
5217 	DBEXIT(BCE_VERBOSE_RESET);
5218 
5219 	return(rc);
5220 }
5221 
5222 
5223 /****************************************************************************/
5224 /* Initialize the controller in preparation to send/receive traffic.        */
5225 /*                                                                          */
5226 /* Returns:                                                                 */
5227 /*   0 for success, positive value for failure.                             */
5228 /****************************************************************************/
5229 static int
5230 bce_blockinit(struct bce_softc *sc)
5231 {
5232 	u32 reg, val;
5233 	int rc = 0;
5234 
5235 	DBENTER(BCE_VERBOSE_RESET);
5236 
5237 	/* Load the hardware default MAC address. */
5238 	bce_set_mac_addr(sc);
5239 
5240 	/* Set the Ethernet backoff seed value */
5241 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5242 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5243 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5244 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5245 
5246 	sc->last_status_idx = 0;
5247 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5248 
5249 	/* Set up link change interrupt generation. */
5250 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5251 
5252 	/* Program the physical address of the status block. */
5253 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5254 	    BCE_ADDR_LO(sc->status_block_paddr));
5255 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5256 	    BCE_ADDR_HI(sc->status_block_paddr));
5257 
5258 	/* Program the physical address of the statistics block. */
5259 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5260 	    BCE_ADDR_LO(sc->stats_block_paddr));
5261 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5262 	    BCE_ADDR_HI(sc->stats_block_paddr));
5263 
5264 	/*
5265 	 * Program various host coalescing parameters.
5266 	 * Trip points control how many BDs should be ready before generating
5267 	 * an interrupt while ticks control how long a BD can sit in the chain
5268 	 * before generating an interrupt.
5269 	 */
5270 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5271 	    (sc->bce_tx_quick_cons_trip_int << 16) |
5272 	    sc->bce_tx_quick_cons_trip);
5273 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5274 	    (sc->bce_rx_quick_cons_trip_int << 16) |
5275 	    sc->bce_rx_quick_cons_trip);
5276 	REG_WR(sc, BCE_HC_TX_TICKS,
5277 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5278 	REG_WR(sc, BCE_HC_RX_TICKS,
5279 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5280 	REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5281 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5282 	/* Not used for L2. */
5283 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5284 	REG_WR(sc, BCE_HC_COM_TICKS, 0);
5285 	REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5286 
5287 	/* Configure the Host Coalescing block. */
5288 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5289 	    BCE_HC_CONFIG_COLLECT_STATS;
5290 
5291 #if 0
5292 	/* ToDo: Add MSI-X support. */
5293 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5294 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5295 		    BCE_HC_SB_CONFIG_1;
5296 
5297 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5298 
5299 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5300 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5301 
5302 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5303 		    (sc->tx_quick_cons_trip_int << 16) |
5304 		     sc->tx_quick_cons_trip);
5305 
5306 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5307 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5308 
5309 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5310 	}
5311 
5312 	/*
5313 	 * Tell the HC block to automatically set the
5314 	 * INT_MASK bit after an MSI/MSI-X interrupt
5315 	 * is generated so the driver doesn't have to.
5316 	 */
5317 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5318 		val |= BCE_HC_CONFIG_ONE_SHOT;
5319 
5320 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5321 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5322 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5323 #endif
5324 
5325 	REG_WR(sc, BCE_HC_CONFIG, val);
5326 
5327 	/* Clear the internal statistics counters. */
5328 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5329 
5330 	/* Verify that bootcode is running. */
5331 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5332 
5333 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5334 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5335 	    __FILE__, __LINE__);
5336 	    reg = 0);
5337 
5338 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5339 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5340 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5341 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5342 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5343 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5344 		rc = ENODEV;
5345 		goto bce_blockinit_exit;
5346 	}
5347 
5348 	/* Enable DMA */
5349 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5350 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5351 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5352 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5353 	}
5354 
5355 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5356 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5357 	    BCE_DRV_MSG_CODE_RESET);
5358 
5359 	/* Enable link state change interrupt generation. */
5360 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5361 
5362 	/* Enable the RXP. */
5363 	bce_start_rxp_cpu(sc);
5364 
5365 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5366 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5367 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5368 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5369 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5370 	}
5371 
5372 	/* Enable all remaining blocks in the MAC. */
5373 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5374 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5375 		    BCE_MISC_ENABLE_DEFAULT_XI);
5376 	else
5377 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5378 		    BCE_MISC_ENABLE_DEFAULT);
5379 
5380 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5381 	DELAY(20);
5382 
5383 	/* Save the current host coalescing block settings. */
5384 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5385 
5386 bce_blockinit_exit:
5387 	DBEXIT(BCE_VERBOSE_RESET);
5388 
5389 	return (rc);
5390 }
5391 
5392 
5393 /****************************************************************************/
5394 /* Encapsulate an mbuf into the rx_bd chain.                                */
5395 /*                                                                          */
5396 /* Returns:                                                                 */
5397 /*   0 for success, positive value for failure.                             */
5398 /****************************************************************************/
5399 static int
5400 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5401 {
5402 	bus_dma_segment_t segs[1];
5403 	struct mbuf *m_new = NULL;
5404 	struct rx_bd *rxbd;
5405 	int nsegs, error, rc = 0;
5406 #ifdef BCE_DEBUG
5407 	u16 debug_chain_prod = chain_prod;
5408 #endif
5409 
5410 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5411 
5412 	/* Make sure the inputs are valid. */
5413 	DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5414 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5415 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5416 	    chain_prod, (u16)MAX_RX_BD_ALLOC));
5417 
5418 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5419 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5420 	    prod, chain_prod, *prod_bseq);
5421 
5422 	/* Update some debug statistic counters */
5423 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5424 	    sc->rx_low_watermark = sc->free_rx_bd);
5425 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5426 	    sc->rx_empty_count++);
5427 
5428 	/* Simulate an mbuf allocation failure. */
5429 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5430 	    sc->mbuf_alloc_failed_count++;
5431 	    sc->mbuf_alloc_failed_sim_count++;
5432 	    rc = ENOBUFS;
5433 	    goto bce_get_rx_buf_exit);
5434 
5435 	/* This is a new mbuf allocation. */
5436 	if (bce_hdr_split == TRUE)
5437 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
5438 	else
5439 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5440 		    sc->rx_bd_mbuf_alloc_size);
5441 
5442 	if (m_new == NULL) {
5443 		sc->mbuf_alloc_failed_count++;
5444 		rc = ENOBUFS;
5445 		goto bce_get_rx_buf_exit;
5446 	}
5447 
5448 	DBRUN(sc->debug_rx_mbuf_alloc++);
5449 
5450 	/* Make sure we have a valid packet header. */
5451 	M_ASSERTPKTHDR(m_new);
5452 
5453 	/* Initialize the mbuf size and pad if necessary for alignment. */
5454 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5455 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5456 
5457 	/* ToDo: Consider calling m_fragment() to test error handling. */
5458 
5459 	/* Map the mbuf cluster into device memory. */
5460 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5461 	    sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5462 
5463 	/* Handle any mapping errors. */
5464 	if (error) {
5465 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5466 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5467 
5468 		sc->dma_map_addr_rx_failed_count++;
5469 		m_freem(m_new);
5470 
5471 		DBRUN(sc->debug_rx_mbuf_alloc--);
5472 
5473 		rc = ENOBUFS;
5474 		goto bce_get_rx_buf_exit;
5475 	}
5476 
5477 	/* All mbufs must map to a single segment. */
5478 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5479 	    __FUNCTION__, nsegs));
5480 
5481 	/* Setup the rx_bd for the segment. */
5482 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5483 
5484 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5485 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5486 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5487 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5488 	*prod_bseq += segs[0].ds_len;
5489 
5490 	/* Save the mbuf and update our counter. */
5491 	sc->rx_mbuf_ptr[chain_prod] = m_new;
5492 	sc->free_rx_bd -= nsegs;
5493 
5494 	DBRUNMSG(BCE_INSANE_RECV,
5495 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5496 
5497 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5498 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5499 	    chain_prod, *prod_bseq);
5500 
5501 bce_get_rx_buf_exit:
5502 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5503 
5504 	return(rc);
5505 }
5506 
5507 
5508 /****************************************************************************/
5509 /* Encapsulate an mbuf cluster into the page chain.                         */
5510 /*                                                                          */
5511 /* Returns:                                                                 */
5512 /*   0 for success, positive value for failure.                             */
5513 /****************************************************************************/
5514 static int
5515 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5516 {
5517 	bus_dma_segment_t segs[1];
5518 	struct mbuf *m_new = NULL;
5519 	struct rx_bd *pgbd;
5520 	int error, nsegs, rc = 0;
5521 #ifdef BCE_DEBUG
5522 	u16 debug_prod_idx = prod_idx;
5523 #endif
5524 
5525 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5526 
5527 	/* Make sure the inputs are valid. */
5528 	DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5529 	    BCE_PRINTF("%s(%d): page producer out of range: "
5530 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5531 	    prod_idx, (u16)MAX_PG_BD_ALLOC));
5532 
5533 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5534 	    "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5535 
5536 	/* Update counters if we've hit a new low or run out of pages. */
5537 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5538 	    sc->pg_low_watermark = sc->free_pg_bd);
5539 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5540 
5541 	/* Simulate an mbuf allocation failure. */
5542 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5543 	    sc->mbuf_alloc_failed_count++;
5544 	    sc->mbuf_alloc_failed_sim_count++;
5545 	    rc = ENOBUFS;
5546 	    goto bce_get_pg_buf_exit);
5547 
5548 	/* This is a new mbuf allocation. */
5549 	m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5550 	if (m_new == NULL) {
5551 		sc->mbuf_alloc_failed_count++;
5552 		rc = ENOBUFS;
5553 		goto bce_get_pg_buf_exit;
5554 	}
5555 
5556 	DBRUN(sc->debug_pg_mbuf_alloc++);
5557 
5558 	m_new->m_len = MCLBYTES;
5559 
5560 	/* ToDo: Consider calling m_fragment() to test error handling. */
5561 
5562 	/* Map the mbuf cluster into device memory. */
5563 	error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5564 	    sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5565 
5566 	/* Handle any mapping errors. */
5567 	if (error) {
5568 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5569 		    __FILE__, __LINE__);
5570 
5571 		m_freem(m_new);
5572 		DBRUN(sc->debug_pg_mbuf_alloc--);
5573 
5574 		rc = ENOBUFS;
5575 		goto bce_get_pg_buf_exit;
5576 	}
5577 
5578 	/* All mbufs must map to a single segment. */
5579 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5580 	    __FUNCTION__, nsegs));
5581 
5582 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5583 
5584 	/*
5585 	 * The page chain uses the same rx_bd data structure
5586 	 * as the receive chain but doesn't require a byte sequence (bseq).
5587 	 */
5588 	pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5589 
5590 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5591 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5592 	pgbd->rx_bd_len       = htole32(MCLBYTES);
5593 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5594 
5595 	/* Save the mbuf and update our counter. */
5596 	sc->pg_mbuf_ptr[prod_idx] = m_new;
5597 	sc->free_pg_bd--;
5598 
5599 	DBRUNMSG(BCE_INSANE_RECV,
5600 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5601 
5602 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5603 	    "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5604 
5605 bce_get_pg_buf_exit:
5606 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5607 
5608 	return(rc);
5609 }
5610 
5611 
5612 /****************************************************************************/
5613 /* Initialize the TX context memory.                                        */
5614 /*                                                                          */
5615 /* Returns:                                                                 */
5616 /*   Nothing                                                                */
5617 /****************************************************************************/
5618 static void
5619 bce_init_tx_context(struct bce_softc *sc)
5620 {
5621 	u32 val;
5622 
5623 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5624 
5625 	/* Initialize the context ID for an L2 TX chain. */
5626 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5627 		/* Set the CID type to support an L2 connection. */
5628 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5629 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5630 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5631 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5632 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5633 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5634 
5635 		/* Point the hardware to the first page in the chain. */
5636 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5637 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5638 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5639 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5640 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5641 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5642 	} else {
5643 		/* Set the CID type to support an L2 connection. */
5644 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5645 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5646 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5647 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5648 
5649 		/* Point the hardware to the first page in the chain. */
5650 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5651 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5652 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5653 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5654 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5655 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5656 	}
5657 
5658 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5659 }
5660 
5661 
5662 /****************************************************************************/
5663 /* Allocate memory and initialize the TX data structures.                   */
5664 /*                                                                          */
5665 /* Returns:                                                                 */
5666 /*   0 for success, positive value for failure.                             */
5667 /****************************************************************************/
5668 static int
5669 bce_init_tx_chain(struct bce_softc *sc)
5670 {
5671 	struct tx_bd *txbd;
5672 	int i, rc = 0;
5673 
5674 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5675 
5676 	/* Set the initial TX producer/consumer indices. */
5677 	sc->tx_prod        = 0;
5678 	sc->tx_cons        = 0;
5679 	sc->tx_prod_bseq   = 0;
5680 	sc->used_tx_bd     = 0;
5681 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5682 	DBRUN(sc->tx_hi_watermark = 0);
5683 	DBRUN(sc->tx_full_count = 0);
5684 
5685 	/*
5686 	 * The NetXtreme II supports a linked-list structre called
5687 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5688 	 * consists of a series of 1 or more chain pages, each of which
5689 	 * consists of a fixed number of BD entries.
5690 	 * The last BD entry on each page is a pointer to the next page
5691 	 * in the chain, and the last pointer in the BD chain
5692 	 * points back to the beginning of the chain.
5693 	 */
5694 
5695 	/* Set the TX next pointer chain entries. */
5696 	for (i = 0; i < sc->tx_pages; i++) {
5697 		int j;
5698 
5699 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5700 
5701 		/* Check if we've reached the last page. */
5702 		if (i == (sc->tx_pages - 1))
5703 			j = 0;
5704 		else
5705 			j = i + 1;
5706 
5707 		txbd->tx_bd_haddr_hi =
5708 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5709 		txbd->tx_bd_haddr_lo =
5710 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5711 	}
5712 
5713 	bce_init_tx_context(sc);
5714 
5715 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5716 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5717 
5718 	return(rc);
5719 }
5720 
5721 
5722 /****************************************************************************/
5723 /* Free memory and clear the TX data structures.                            */
5724 /*                                                                          */
5725 /* Returns:                                                                 */
5726 /*   Nothing.                                                               */
5727 /****************************************************************************/
5728 static void
5729 bce_free_tx_chain(struct bce_softc *sc)
5730 {
5731 	int i;
5732 
5733 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5734 
5735 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5736 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5737 		if (sc->tx_mbuf_ptr[i] != NULL) {
5738 			if (sc->tx_mbuf_map[i] != NULL)
5739 				bus_dmamap_sync(sc->tx_mbuf_tag,
5740 				    sc->tx_mbuf_map[i],
5741 				    BUS_DMASYNC_POSTWRITE);
5742 			m_freem(sc->tx_mbuf_ptr[i]);
5743 			sc->tx_mbuf_ptr[i] = NULL;
5744 			DBRUN(sc->debug_tx_mbuf_alloc--);
5745 		}
5746 	}
5747 
5748 	/* Clear each TX chain page. */
5749 	for (i = 0; i < sc->tx_pages; i++)
5750 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5751 
5752 	sc->used_tx_bd = 0;
5753 
5754 	/* Check if we lost any mbufs in the process. */
5755 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5756 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5757 	    "from tx chain!\n",	__FILE__, __LINE__,
5758 	    sc->debug_tx_mbuf_alloc));
5759 
5760 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5761 }
5762 
5763 
5764 /****************************************************************************/
5765 /* Initialize the RX context memory.                                        */
5766 /*                                                                          */
5767 /* Returns:                                                                 */
5768 /*   Nothing                                                                */
5769 /****************************************************************************/
5770 static void
5771 bce_init_rx_context(struct bce_softc *sc)
5772 {
5773 	u32 val;
5774 
5775 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5776 
5777 	/* Init the type, size, and BD cache levels for the RX context. */
5778 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5779 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5780 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5781 
5782 	/*
5783 	 * Set the level for generating pause frames
5784 	 * when the number of available rx_bd's gets
5785 	 * too low (the low watermark) and the level
5786 	 * when pause frames can be stopped (the high
5787 	 * watermark).
5788 	 */
5789 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5790 		u32 lo_water, hi_water;
5791 
5792 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5793 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5794 		} else {
5795 			lo_water = 0;
5796 		}
5797 
5798 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5799 			lo_water = 0;
5800 		}
5801 
5802 		hi_water = USABLE_RX_BD_ALLOC / 4;
5803 
5804 		if (hi_water <= lo_water) {
5805 			lo_water = 0;
5806 		}
5807 
5808 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5809 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5810 
5811 		if (hi_water > 0xf)
5812 			hi_water = 0xf;
5813 		else if (hi_water == 0)
5814 			lo_water = 0;
5815 
5816 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5817 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5818 	}
5819 
5820 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5821 
5822 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5823 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5824 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5825 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5826 	}
5827 
5828 	/* Point the hardware to the first page in the chain. */
5829 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5830 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5831 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5832 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5833 
5834 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5835 }
5836 
5837 
5838 /****************************************************************************/
5839 /* Allocate memory and initialize the RX data structures.                   */
5840 /*                                                                          */
5841 /* Returns:                                                                 */
5842 /*   0 for success, positive value for failure.                             */
5843 /****************************************************************************/
5844 static int
5845 bce_init_rx_chain(struct bce_softc *sc)
5846 {
5847 	struct rx_bd *rxbd;
5848 	int i, rc = 0;
5849 
5850 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5851 	    BCE_VERBOSE_CTX);
5852 
5853 	/* Initialize the RX producer and consumer indices. */
5854 	sc->rx_prod        = 0;
5855 	sc->rx_cons        = 0;
5856 	sc->rx_prod_bseq   = 0;
5857 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5858 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5859 
5860 	/* Initialize the RX next pointer chain entries. */
5861 	for (i = 0; i < sc->rx_pages; i++) {
5862 		int j;
5863 
5864 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5865 
5866 		/* Check if we've reached the last page. */
5867 		if (i == (sc->rx_pages - 1))
5868 			j = 0;
5869 		else
5870 			j = i + 1;
5871 
5872 		/* Setup the chain page pointers. */
5873 		rxbd->rx_bd_haddr_hi =
5874 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5875 		rxbd->rx_bd_haddr_lo =
5876 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5877 	}
5878 
5879 	/* Fill up the RX chain. */
5880 	bce_fill_rx_chain(sc);
5881 
5882 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5883 	DBRUN(sc->rx_empty_count = 0);
5884 	for (i = 0; i < sc->rx_pages; i++) {
5885 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5886 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5887 	}
5888 
5889 	bce_init_rx_context(sc);
5890 
5891 	DBRUNMSG(BCE_EXTREME_RECV,
5892 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5893 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5894 	    BCE_VERBOSE_CTX);
5895 
5896 	/* ToDo: Are there possible failure modes here? */
5897 
5898 	return(rc);
5899 }
5900 
5901 
5902 /****************************************************************************/
5903 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5904 /* occurs.                                                                  */
5905 /*                                                                          */
5906 /* Returns:                                                                 */
5907 /*   Nothing                                                                */
5908 /****************************************************************************/
5909 static void
5910 bce_fill_rx_chain(struct bce_softc *sc)
5911 {
5912 	u16 prod, prod_idx;
5913 	u32 prod_bseq;
5914 
5915 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5916 	    BCE_VERBOSE_CTX);
5917 
5918 	/* Get the RX chain producer indices. */
5919 	prod      = sc->rx_prod;
5920 	prod_bseq = sc->rx_prod_bseq;
5921 
5922 	/* Keep filling the RX chain until it's full. */
5923 	while (sc->free_rx_bd > 0) {
5924 		prod_idx = RX_CHAIN_IDX(prod);
5925 		if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5926 			/* Bail out if we can't add an mbuf to the chain. */
5927 			break;
5928 		}
5929 		prod = NEXT_RX_BD(prod);
5930 	}
5931 
5932 	/* Save the RX chain producer indices. */
5933 	sc->rx_prod      = prod;
5934 	sc->rx_prod_bseq = prod_bseq;
5935 
5936 	/* We should never end up pointing to a next page pointer. */
5937 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5938 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5939 	    __FUNCTION__, rx_prod));
5940 
5941 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5942 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5943 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5944 
5945 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5946 	    BCE_VERBOSE_CTX);
5947 }
5948 
5949 
5950 /****************************************************************************/
5951 /* Free memory and clear the RX data structures.                            */
5952 /*                                                                          */
5953 /* Returns:                                                                 */
5954 /*   Nothing.                                                               */
5955 /****************************************************************************/
5956 static void
5957 bce_free_rx_chain(struct bce_softc *sc)
5958 {
5959 	int i;
5960 
5961 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5962 
5963 	/* Free any mbufs still in the RX mbuf chain. */
5964 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5965 		if (sc->rx_mbuf_ptr[i] != NULL) {
5966 			if (sc->rx_mbuf_map[i] != NULL)
5967 				bus_dmamap_sync(sc->rx_mbuf_tag,
5968 				    sc->rx_mbuf_map[i],
5969 				    BUS_DMASYNC_POSTREAD);
5970 			m_freem(sc->rx_mbuf_ptr[i]);
5971 			sc->rx_mbuf_ptr[i] = NULL;
5972 			DBRUN(sc->debug_rx_mbuf_alloc--);
5973 		}
5974 	}
5975 
5976 	/* Clear each RX chain page. */
5977 	for (i = 0; i < sc->rx_pages; i++)
5978 		if (sc->rx_bd_chain[i] != NULL)
5979 			bzero((char *)sc->rx_bd_chain[i],
5980 			    BCE_RX_CHAIN_PAGE_SZ);
5981 
5982 	sc->free_rx_bd = sc->max_rx_bd;
5983 
5984 	/* Check if we lost any mbufs in the process. */
5985 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5986 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5987 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5988 
5989 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5990 }
5991 
5992 
5993 /****************************************************************************/
5994 /* Allocate memory and initialize the page data structures.                 */
5995 /* Assumes that bce_init_rx_chain() has not already been called.            */
5996 /*                                                                          */
5997 /* Returns:                                                                 */
5998 /*   0 for success, positive value for failure.                             */
5999 /****************************************************************************/
6000 static int
6001 bce_init_pg_chain(struct bce_softc *sc)
6002 {
6003 	struct rx_bd *pgbd;
6004 	int i, rc = 0;
6005 	u32 val;
6006 
6007 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6008 		BCE_VERBOSE_CTX);
6009 
6010 	/* Initialize the page producer and consumer indices. */
6011 	sc->pg_prod        = 0;
6012 	sc->pg_cons        = 0;
6013 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
6014 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
6015 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
6016 	DBRUN(sc->pg_empty_count = 0);
6017 
6018 	/* Initialize the page next pointer chain entries. */
6019 	for (i = 0; i < sc->pg_pages; i++) {
6020 		int j;
6021 
6022 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
6023 
6024 		/* Check if we've reached the last page. */
6025 		if (i == (sc->pg_pages - 1))
6026 			j = 0;
6027 		else
6028 			j = i + 1;
6029 
6030 		/* Setup the chain page pointers. */
6031 		pgbd->rx_bd_haddr_hi =
6032 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
6033 		pgbd->rx_bd_haddr_lo =
6034 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
6035 	}
6036 
6037 	/* Setup the MQ BIN mapping for host_pg_bidx. */
6038 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
6039 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
6040 
6041 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
6042 
6043 	/* Configure the rx_bd and page chain mbuf cluster size. */
6044 	val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
6045 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6046 
6047 	/* Configure the context reserved for jumbo support. */
6048 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6049 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6050 
6051 	/* Point the hardware to the first page in the page chain. */
6052 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6053 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6054 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6055 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6056 
6057 	/* Fill up the page chain. */
6058 	bce_fill_pg_chain(sc);
6059 
6060 	for (i = 0; i < sc->pg_pages; i++) {
6061 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6062 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6063 	}
6064 
6065 	DBRUNMSG(BCE_EXTREME_RECV,
6066 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6067 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6068 		BCE_VERBOSE_CTX);
6069 	return(rc);
6070 }
6071 
6072 
6073 /****************************************************************************/
6074 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6075 /* occurs.                                                                  */
6076 /*                                                                          */
6077 /* Returns:                                                                 */
6078 /*   Nothing                                                                */
6079 /****************************************************************************/
6080 static void
6081 bce_fill_pg_chain(struct bce_softc *sc)
6082 {
6083 	u16 prod, prod_idx;
6084 
6085 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6086 	    BCE_VERBOSE_CTX);
6087 
6088 	/* Get the page chain prodcuer index. */
6089 	prod = sc->pg_prod;
6090 
6091 	/* Keep filling the page chain until it's full. */
6092 	while (sc->free_pg_bd > 0) {
6093 		prod_idx = PG_CHAIN_IDX(prod);
6094 		if (bce_get_pg_buf(sc, prod, prod_idx)) {
6095 			/* Bail out if we can't add an mbuf to the chain. */
6096 			break;
6097 		}
6098 		prod = NEXT_PG_BD(prod);
6099 	}
6100 
6101 	/* Save the page chain producer index. */
6102 	sc->pg_prod = prod;
6103 
6104 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6105 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6106 	    __FUNCTION__, pg_prod));
6107 
6108 	/*
6109 	 * Write the mailbox and tell the chip about
6110 	 * the new rx_bd's in the page chain.
6111 	 */
6112 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6113 	    prod);
6114 
6115 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6116 	    BCE_VERBOSE_CTX);
6117 }
6118 
6119 
6120 /****************************************************************************/
6121 /* Free memory and clear the RX data structures.                            */
6122 /*                                                                          */
6123 /* Returns:                                                                 */
6124 /*   Nothing.                                                               */
6125 /****************************************************************************/
6126 static void
6127 bce_free_pg_chain(struct bce_softc *sc)
6128 {
6129 	int i;
6130 
6131 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6132 
6133 	/* Free any mbufs still in the mbuf page chain. */
6134 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6135 		if (sc->pg_mbuf_ptr[i] != NULL) {
6136 			if (sc->pg_mbuf_map[i] != NULL)
6137 				bus_dmamap_sync(sc->pg_mbuf_tag,
6138 				    sc->pg_mbuf_map[i],
6139 				    BUS_DMASYNC_POSTREAD);
6140 			m_freem(sc->pg_mbuf_ptr[i]);
6141 			sc->pg_mbuf_ptr[i] = NULL;
6142 			DBRUN(sc->debug_pg_mbuf_alloc--);
6143 		}
6144 	}
6145 
6146 	/* Clear each page chain pages. */
6147 	for (i = 0; i < sc->pg_pages; i++)
6148 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6149 
6150 	sc->free_pg_bd = sc->max_pg_bd;
6151 
6152 	/* Check if we lost any mbufs in the process. */
6153 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6154 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6155 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6156 
6157 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6158 }
6159 
6160 
6161 static u32
6162 bce_get_rphy_link(struct bce_softc *sc)
6163 {
6164 	u32 advertise, link;
6165 	int fdpx;
6166 
6167 	advertise = 0;
6168 	fdpx = 0;
6169 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6170 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6171 	else
6172 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6173 	if (link & BCE_NETLINK_ANEG_ENB)
6174 		advertise |= BCE_NETLINK_ANEG_ENB;
6175 	if (link & BCE_NETLINK_SPEED_10HALF)
6176 		advertise |= BCE_NETLINK_SPEED_10HALF;
6177 	if (link & BCE_NETLINK_SPEED_10FULL) {
6178 		advertise |= BCE_NETLINK_SPEED_10FULL;
6179 		fdpx++;
6180 	}
6181 	if (link & BCE_NETLINK_SPEED_100HALF)
6182 		advertise |= BCE_NETLINK_SPEED_100HALF;
6183 	if (link & BCE_NETLINK_SPEED_100FULL) {
6184 		advertise |= BCE_NETLINK_SPEED_100FULL;
6185 		fdpx++;
6186 	}
6187 	if (link & BCE_NETLINK_SPEED_1000HALF)
6188 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6189 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6190 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6191 		fdpx++;
6192 	}
6193 	if (link & BCE_NETLINK_SPEED_2500HALF)
6194 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6195 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6196 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6197 		fdpx++;
6198 	}
6199 	if (fdpx)
6200 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6201 		    BCE_NETLINK_FC_PAUSE_ASYM;
6202 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6203 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6204 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6205 
6206 	return (advertise);
6207 }
6208 
6209 
6210 /****************************************************************************/
6211 /* Set media options.                                                       */
6212 /*                                                                          */
6213 /* Returns:                                                                 */
6214 /*   0 for success, positive value for failure.                             */
6215 /****************************************************************************/
6216 static int
6217 bce_ifmedia_upd(struct ifnet *ifp)
6218 {
6219 	struct bce_softc *sc = ifp->if_softc;
6220 	int error;
6221 
6222 	DBENTER(BCE_VERBOSE);
6223 
6224 	BCE_LOCK(sc);
6225 	error = bce_ifmedia_upd_locked(ifp);
6226 	BCE_UNLOCK(sc);
6227 
6228 	DBEXIT(BCE_VERBOSE);
6229 	return (error);
6230 }
6231 
6232 
6233 /****************************************************************************/
6234 /* Set media options.                                                       */
6235 /*                                                                          */
6236 /* Returns:                                                                 */
6237 /*   Nothing.                                                               */
6238 /****************************************************************************/
6239 static int
6240 bce_ifmedia_upd_locked(struct ifnet *ifp)
6241 {
6242 	struct bce_softc *sc = ifp->if_softc;
6243 	struct mii_data *mii;
6244 	struct mii_softc *miisc;
6245 	struct ifmedia *ifm;
6246 	u32 link;
6247 	int error, fdx;
6248 
6249 	DBENTER(BCE_VERBOSE_PHY);
6250 
6251 	error = 0;
6252 	BCE_LOCK_ASSERT(sc);
6253 
6254 	sc->bce_link_up = FALSE;
6255 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6256 		ifm = &sc->bce_ifmedia;
6257 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6258 			return (EINVAL);
6259 		link = 0;
6260 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6261 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6262 		case IFM_AUTO:
6263 			/*
6264 			 * Check advertised link of remote PHY by reading
6265 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6266 			 * Always use the same link type of remote PHY.
6267 			 */
6268 			link = bce_get_rphy_link(sc);
6269 			break;
6270 		case IFM_2500_SX:
6271 			if ((sc->bce_phy_flags &
6272 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6273 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6274 				return (EINVAL);
6275 			/*
6276 			 * XXX
6277 			 * Have to enable forced 2.5Gbps configuration.
6278 			 */
6279 			if (fdx != 0)
6280 				link |= BCE_NETLINK_SPEED_2500FULL;
6281 			else
6282 				link |= BCE_NETLINK_SPEED_2500HALF;
6283 			break;
6284 		case IFM_1000_SX:
6285 			if ((sc->bce_phy_flags &
6286 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6287 				return (EINVAL);
6288 			/*
6289 			 * XXX
6290 			 * Have to disable 2.5Gbps configuration.
6291 			 */
6292 			if (fdx != 0)
6293 				link = BCE_NETLINK_SPEED_1000FULL;
6294 			else
6295 				link = BCE_NETLINK_SPEED_1000HALF;
6296 			break;
6297 		case IFM_1000_T:
6298 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6299 				return (EINVAL);
6300 			if (fdx != 0)
6301 				link = BCE_NETLINK_SPEED_1000FULL;
6302 			else
6303 				link = BCE_NETLINK_SPEED_1000HALF;
6304 			break;
6305 		case IFM_100_TX:
6306 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6307 				return (EINVAL);
6308 			if (fdx != 0)
6309 				link = BCE_NETLINK_SPEED_100FULL;
6310 			else
6311 				link = BCE_NETLINK_SPEED_100HALF;
6312 			break;
6313 		case IFM_10_T:
6314 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6315 				return (EINVAL);
6316 			if (fdx != 0)
6317 				link = BCE_NETLINK_SPEED_10FULL;
6318 			else
6319 				link = BCE_NETLINK_SPEED_10HALF;
6320 			break;
6321 		default:
6322 			return (EINVAL);
6323 		}
6324 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6325 			/*
6326 			 * XXX
6327 			 * Advertise pause capability for full-duplex media.
6328 			 */
6329 			if (fdx != 0)
6330 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6331 				    BCE_NETLINK_FC_PAUSE_ASYM;
6332 			if ((sc->bce_phy_flags &
6333 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6334 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6335 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6336 		}
6337 
6338 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6339 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6340 	} else {
6341 		mii = device_get_softc(sc->bce_miibus);
6342 
6343 		/* Make sure the MII bus has been enumerated. */
6344 		if (mii) {
6345 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6346 				PHY_RESET(miisc);
6347 			error = mii_mediachg(mii);
6348 		}
6349 	}
6350 
6351 	DBEXIT(BCE_VERBOSE_PHY);
6352 	return (error);
6353 }
6354 
6355 
6356 static void
6357 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6358 {
6359 	struct ifnet *ifp;
6360 	u32 link;
6361 
6362 	ifp = sc->bce_ifp;
6363 	BCE_LOCK_ASSERT(sc);
6364 
6365 	ifmr->ifm_status = IFM_AVALID;
6366 	ifmr->ifm_active = IFM_ETHER;
6367 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6368 	/* XXX Handle heart beat status? */
6369 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6370 		ifmr->ifm_status |= IFM_ACTIVE;
6371 	else {
6372 		ifmr->ifm_active |= IFM_NONE;
6373 		ifp->if_baudrate = 0;
6374 		return;
6375 	}
6376 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6377 	case BCE_LINK_STATUS_10HALF:
6378 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6379 		ifp->if_baudrate = IF_Mbps(10UL);
6380 		break;
6381 	case BCE_LINK_STATUS_10FULL:
6382 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6383 		ifp->if_baudrate = IF_Mbps(10UL);
6384 		break;
6385 	case BCE_LINK_STATUS_100HALF:
6386 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6387 		ifp->if_baudrate = IF_Mbps(100UL);
6388 		break;
6389 	case BCE_LINK_STATUS_100FULL:
6390 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6391 		ifp->if_baudrate = IF_Mbps(100UL);
6392 		break;
6393 	case BCE_LINK_STATUS_1000HALF:
6394 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6395 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6396 		else
6397 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6398 		ifp->if_baudrate = IF_Mbps(1000UL);
6399 		break;
6400 	case BCE_LINK_STATUS_1000FULL:
6401 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6402 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6403 		else
6404 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6405 		ifp->if_baudrate = IF_Mbps(1000UL);
6406 		break;
6407 	case BCE_LINK_STATUS_2500HALF:
6408 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6409 			ifmr->ifm_active |= IFM_NONE;
6410 			return;
6411 		} else
6412 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6413 		ifp->if_baudrate = IF_Mbps(2500UL);
6414 		break;
6415 	case BCE_LINK_STATUS_2500FULL:
6416 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6417 			ifmr->ifm_active |= IFM_NONE;
6418 			return;
6419 		} else
6420 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6421 		ifp->if_baudrate = IF_Mbps(2500UL);
6422 		break;
6423 	default:
6424 		ifmr->ifm_active |= IFM_NONE;
6425 		return;
6426 	}
6427 
6428 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6429 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6430 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6431 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6432 }
6433 
6434 
6435 /****************************************************************************/
6436 /* Reports current media status.                                            */
6437 /*                                                                          */
6438 /* Returns:                                                                 */
6439 /*   Nothing.                                                               */
6440 /****************************************************************************/
6441 static void
6442 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6443 {
6444 	struct bce_softc *sc = ifp->if_softc;
6445 	struct mii_data *mii;
6446 
6447 	DBENTER(BCE_VERBOSE_PHY);
6448 
6449 	BCE_LOCK(sc);
6450 
6451 	if ((ifp->if_flags & IFF_UP) == 0) {
6452 		BCE_UNLOCK(sc);
6453 		return;
6454 	}
6455 
6456 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6457 		bce_ifmedia_sts_rphy(sc, ifmr);
6458 	else {
6459 		mii = device_get_softc(sc->bce_miibus);
6460 		mii_pollstat(mii);
6461 		ifmr->ifm_active = mii->mii_media_active;
6462 		ifmr->ifm_status = mii->mii_media_status;
6463 	}
6464 
6465 	BCE_UNLOCK(sc);
6466 
6467 	DBEXIT(BCE_VERBOSE_PHY);
6468 }
6469 
6470 
6471 /****************************************************************************/
6472 /* Handles PHY generated interrupt events.                                  */
6473 /*                                                                          */
6474 /* Returns:                                                                 */
6475 /*   Nothing.                                                               */
6476 /****************************************************************************/
6477 static void
6478 bce_phy_intr(struct bce_softc *sc)
6479 {
6480 	u32 new_link_state, old_link_state;
6481 
6482 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6483 
6484 	DBRUN(sc->phy_interrupts++);
6485 
6486 	new_link_state = sc->status_block->status_attn_bits &
6487 	    STATUS_ATTN_BITS_LINK_STATE;
6488 	old_link_state = sc->status_block->status_attn_bits_ack &
6489 	    STATUS_ATTN_BITS_LINK_STATE;
6490 
6491 	/* Handle any changes if the link state has changed. */
6492 	if (new_link_state != old_link_state) {
6493 
6494 		/* Update the status_attn_bits_ack field. */
6495 		if (new_link_state) {
6496 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6497 			    STATUS_ATTN_BITS_LINK_STATE);
6498 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6499 			    __FUNCTION__);
6500 		} else {
6501 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6502 			    STATUS_ATTN_BITS_LINK_STATE);
6503 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6504 			    __FUNCTION__);
6505 		}
6506 
6507 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6508 			if (new_link_state) {
6509 				if (bootverbose)
6510 					if_printf(sc->bce_ifp, "link UP\n");
6511 				if_link_state_change(sc->bce_ifp,
6512 				    LINK_STATE_UP);
6513 			} else {
6514 				if (bootverbose)
6515 					if_printf(sc->bce_ifp, "link DOWN\n");
6516 				if_link_state_change(sc->bce_ifp,
6517 				    LINK_STATE_DOWN);
6518 			}
6519 		}
6520 		/*
6521 		 * Assume link is down and allow
6522 		 * tick routine to update the state
6523 		 * based on the actual media state.
6524 		 */
6525 		sc->bce_link_up = FALSE;
6526 		callout_stop(&sc->bce_tick_callout);
6527 		bce_tick(sc);
6528 	}
6529 
6530 	/* Acknowledge the link change interrupt. */
6531 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6532 
6533 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6534 }
6535 
6536 
6537 /****************************************************************************/
6538 /* Reads the receive consumer value from the status block (skipping over    */
6539 /* chain page pointer if necessary).                                        */
6540 /*                                                                          */
6541 /* Returns:                                                                 */
6542 /*   hw_cons                                                                */
6543 /****************************************************************************/
6544 static inline u16
6545 bce_get_hw_rx_cons(struct bce_softc *sc)
6546 {
6547 	u16 hw_cons;
6548 
6549 	rmb();
6550 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6551 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6552 		hw_cons++;
6553 
6554 	return hw_cons;
6555 }
6556 
6557 /****************************************************************************/
6558 /* Handles received frame interrupt events.                                 */
6559 /*                                                                          */
6560 /* Returns:                                                                 */
6561 /*   Nothing.                                                               */
6562 /****************************************************************************/
6563 static void
6564 bce_rx_intr(struct bce_softc *sc)
6565 {
6566 	struct ifnet *ifp = sc->bce_ifp;
6567 	struct l2_fhdr *l2fhdr;
6568 	struct ether_vlan_header *vh;
6569 	unsigned int pkt_len;
6570 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6571 	u32 status;
6572 	unsigned int rem_len;
6573 	u16 sw_pg_cons, sw_pg_cons_idx;
6574 
6575 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6576 	DBRUN(sc->interrupts_rx++);
6577 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6578 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6579 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6580 
6581 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6582 	for (int i = 0; i < sc->rx_pages; i++)
6583 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6584 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6585 
6586 	/* Prepare the page chain pages to be accessed by the host CPU. */
6587 	if (bce_hdr_split == TRUE) {
6588 		for (int i = 0; i < sc->pg_pages; i++)
6589 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6590 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6591 	}
6592 
6593 	/* Get the hardware's view of the RX consumer index. */
6594 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6595 
6596 	/* Get working copies of the driver's view of the consumer indices. */
6597 	sw_rx_cons = sc->rx_cons;
6598 	sw_pg_cons = sc->pg_cons;
6599 
6600 	/* Update some debug statistics counters */
6601 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6602 	    sc->rx_low_watermark = sc->free_rx_bd);
6603 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6604 	    sc->rx_empty_count++);
6605 
6606 	/* Scan through the receive chain as long as there is work to do */
6607 	/* ToDo: Consider setting a limit on the number of packets processed. */
6608 	rmb();
6609 	while (sw_rx_cons != hw_rx_cons) {
6610 		struct mbuf *m0;
6611 
6612 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6613 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6614 
6615 		/* Unmap the mbuf from DMA space. */
6616 		bus_dmamap_sync(sc->rx_mbuf_tag,
6617 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6618 		    BUS_DMASYNC_POSTREAD);
6619 		bus_dmamap_unload(sc->rx_mbuf_tag,
6620 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6621 
6622 		/* Remove the mbuf from the RX chain. */
6623 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6624 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6625 		DBRUN(sc->debug_rx_mbuf_alloc--);
6626 		sc->free_rx_bd++;
6627 
6628 		/*
6629  		 * Frames received on the NetXteme II are prepended
6630  		 * with an l2_fhdr structure which provides status
6631  		 * information about the received frame (including
6632  		 * VLAN tags and checksum info).  The frames are
6633 		 * also automatically adjusted to word align the IP
6634  		 * header (i.e. two null bytes are inserted before
6635  		 * the Ethernet	header).  As a result the data
6636  		 * DMA'd by the controller into	the mbuf looks
6637 		 * like this:
6638 		 *
6639 		 * +---------+-----+---------------------+-----+
6640 		 * | l2_fhdr | pad | packet data         | FCS |
6641 		 * +---------+-----+---------------------+-----+
6642 		 *
6643  		 * The l2_fhdr needs to be checked and skipped and
6644  		 * the FCS needs to be stripped before sending the
6645 		 * packet up the stack.
6646 		 */
6647 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6648 
6649 		/* Get the packet data + FCS length and the status. */
6650 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6651 		status  = l2fhdr->l2_fhdr_status;
6652 
6653 		/*
6654 		 * Skip over the l2_fhdr and pad, resulting in the
6655 		 * following data in the mbuf:
6656 		 * +---------------------+-----+
6657 		 * | packet data         | FCS |
6658 		 * +---------------------+-----+
6659 		 */
6660 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6661 
6662 		/*
6663  		 * When split header mode is used, an ethernet frame
6664  		 * may be split across the receive chain and the
6665  		 * page chain. If that occurs an mbuf cluster must be
6666  		 * reassembled from the individual mbuf pieces.
6667 		 */
6668 		if (bce_hdr_split == TRUE) {
6669 			/*
6670 			 * Check whether the received frame fits in a single
6671 			 * mbuf or not (i.e. packet data + FCS <=
6672 			 * sc->rx_bd_mbuf_data_len bytes).
6673 			 */
6674 			if (pkt_len > m0->m_len) {
6675 				/*
6676 				 * The received frame is larger than a single mbuf.
6677 				 * If the frame was a TCP frame then only the TCP
6678 				 * header is placed in the mbuf, the remaining
6679 				 * payload (including FCS) is placed in the page
6680 				 * chain, the SPLIT flag is set, and the header
6681 				 * length is placed in the IP checksum field.
6682 				 * If the frame is not a TCP frame then the mbuf
6683 				 * is filled and the remaining bytes are placed
6684 				 * in the page chain.
6685 				 */
6686 
6687 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6688 					"packet.\n", __FUNCTION__);
6689 				DBRUN(sc->split_header_frames_rcvd++);
6690 
6691 				/*
6692 				 * When the page chain is enabled and the TCP
6693 				 * header has been split from the TCP payload,
6694 				 * the ip_xsum structure will reflect the length
6695 				 * of the TCP header, not the IP checksum.  Set
6696 				 * the packet length of the mbuf accordingly.
6697 				 */
6698 				if (status & L2_FHDR_STATUS_SPLIT) {
6699 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6700 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6701 				}
6702 
6703 				rem_len = pkt_len - m0->m_len;
6704 
6705 				/* Pull mbufs off the page chain for any remaining data. */
6706 				while (rem_len > 0) {
6707 					struct mbuf *m_pg;
6708 
6709 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6710 
6711 					/* Remove the mbuf from the page chain. */
6712 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6713 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6714 					DBRUN(sc->debug_pg_mbuf_alloc--);
6715 					sc->free_pg_bd++;
6716 
6717 					/* Unmap the page chain mbuf from DMA space. */
6718 					bus_dmamap_sync(sc->pg_mbuf_tag,
6719 						sc->pg_mbuf_map[sw_pg_cons_idx],
6720 						BUS_DMASYNC_POSTREAD);
6721 					bus_dmamap_unload(sc->pg_mbuf_tag,
6722 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6723 
6724 					/* Adjust the mbuf length. */
6725 					if (rem_len < m_pg->m_len) {
6726 						/* The mbuf chain is complete. */
6727 						m_pg->m_len = rem_len;
6728 						rem_len = 0;
6729 					} else {
6730 						/* More packet data is waiting. */
6731 						rem_len -= m_pg->m_len;
6732 					}
6733 
6734 					/* Concatenate the mbuf cluster to the mbuf. */
6735 					m_cat(m0, m_pg);
6736 
6737 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6738 				}
6739 
6740 				/* Set the total packet length. */
6741 				m0->m_pkthdr.len = pkt_len;
6742 
6743 			} else {
6744 				/*
6745 				 * The received packet is small and fits in a
6746 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6747 				 * FCS <= MHLEN).  In other words, the packet is
6748 				 * 154 bytes or less in size.
6749 				 */
6750 
6751 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6752 					"packet.\n", __FUNCTION__);
6753 
6754 				/* Set the total packet length. */
6755 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6756 			}
6757 		} else
6758 			/* Set the total packet length. */
6759 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6760 
6761 		/* Remove the trailing Ethernet FCS. */
6762 		m_adj(m0, -ETHER_CRC_LEN);
6763 
6764 		/* Check that the resulting mbuf chain is valid. */
6765 		DBRUN(m_sanity(m0, FALSE));
6766 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6767 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6768 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6769 		    m_print(m0, 128));
6770 
6771 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6772 		    sc->l2fhdr_error_sim_count++;
6773 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6774 
6775 		/* Check the received frame for errors. */
6776 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6777 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6778 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6779 
6780 			/* Log the error and release the mbuf. */
6781 			ifp->if_ierrors++;
6782 			sc->l2fhdr_error_count++;
6783 
6784 			m_freem(m0);
6785 			m0 = NULL;
6786 			goto bce_rx_intr_next_rx;
6787 		}
6788 
6789 		/* Send the packet to the appropriate interface. */
6790 		m0->m_pkthdr.rcvif = ifp;
6791 
6792 		/* Assume no hardware checksum. */
6793 		m0->m_pkthdr.csum_flags = 0;
6794 
6795 		/* Validate the checksum if offload enabled. */
6796 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6797 			/* Check for an IP datagram. */
6798 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6799 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6800 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6801 				DBRUN(sc->csum_offload_ip++);
6802 				/* Check if the IP checksum is valid. */
6803 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6804 					m0->m_pkthdr.csum_flags |=
6805 					    CSUM_IP_VALID;
6806 			}
6807 
6808 			/* Check for a valid TCP/UDP frame. */
6809 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6810 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6811 
6812 				/* Check for a good TCP/UDP checksum. */
6813 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6814 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6815 					DBRUN(sc->csum_offload_tcp_udp++);
6816 					m0->m_pkthdr.csum_data =
6817 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6818 					m0->m_pkthdr.csum_flags |=
6819 					    (CSUM_DATA_VALID
6820 					    | CSUM_PSEUDO_HDR);
6821 				}
6822 			}
6823 		}
6824 
6825 		/* Attach the VLAN tag.	*/
6826 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6827 		    !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6828 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6829 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6830 				DBRUN(sc->vlan_tagged_frames_stripped++);
6831 #if __FreeBSD_version < 700000
6832 				VLAN_INPUT_TAG(ifp, m0,
6833 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6834 #else
6835 				m0->m_pkthdr.ether_vtag =
6836 				    l2fhdr->l2_fhdr_vlan_tag;
6837 				m0->m_flags |= M_VLANTAG;
6838 #endif
6839 			} else {
6840 				/*
6841 				 * bce(4) controllers can't disable VLAN
6842 				 * tag stripping if management firmware
6843 				 * (ASF/IPMI/UMP) is running. So we always
6844 				 * strip VLAN tag and manually reconstruct
6845 				 * the VLAN frame by appending stripped
6846 				 * VLAN tag in driver if VLAN tag stripping
6847 				 * was disabled.
6848 				 *
6849 				 * TODO: LLC SNAP handling.
6850 				 */
6851 				bcopy(mtod(m0, uint8_t *),
6852 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6853 				    ETHER_ADDR_LEN * 2);
6854 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6855 				vh = mtod(m0, struct ether_vlan_header *);
6856 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6857 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6858 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6859 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6860 			}
6861 		}
6862 
6863 		/* Increment received packet statistics. */
6864 		ifp->if_ipackets++;
6865 
6866 bce_rx_intr_next_rx:
6867 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6868 
6869 		/* If we have a packet, pass it up the stack */
6870 		if (m0) {
6871 			/* Make sure we don't lose our place when we release the lock. */
6872 			sc->rx_cons = sw_rx_cons;
6873 			sc->pg_cons = sw_pg_cons;
6874 
6875 			BCE_UNLOCK(sc);
6876 			(*ifp->if_input)(ifp, m0);
6877 			BCE_LOCK(sc);
6878 
6879 			/* Recover our place. */
6880 			sw_rx_cons = sc->rx_cons;
6881 			sw_pg_cons = sc->pg_cons;
6882 		}
6883 
6884 		/* Refresh hw_cons to see if there's new work */
6885 		if (sw_rx_cons == hw_rx_cons)
6886 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6887 	}
6888 
6889 	/* No new packets.  Refill the page chain. */
6890 	if (bce_hdr_split == TRUE) {
6891 		sc->pg_cons = sw_pg_cons;
6892 		bce_fill_pg_chain(sc);
6893 	}
6894 
6895 	/* No new packets.  Refill the RX chain. */
6896 	sc->rx_cons = sw_rx_cons;
6897 	bce_fill_rx_chain(sc);
6898 
6899 	/* Prepare the page chain pages to be accessed by the NIC. */
6900 	for (int i = 0; i < sc->rx_pages; i++)
6901 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6902 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6903 
6904 	if (bce_hdr_split == TRUE) {
6905 		for (int i = 0; i < sc->pg_pages; i++)
6906 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6907 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6908 	}
6909 
6910 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6911 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6912 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6913 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6914 }
6915 
6916 
6917 /****************************************************************************/
6918 /* Reads the transmit consumer value from the status block (skipping over   */
6919 /* chain page pointer if necessary).                                        */
6920 /*                                                                          */
6921 /* Returns:                                                                 */
6922 /*   hw_cons                                                                */
6923 /****************************************************************************/
6924 static inline u16
6925 bce_get_hw_tx_cons(struct bce_softc *sc)
6926 {
6927 	u16 hw_cons;
6928 
6929 	mb();
6930 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6931 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6932 		hw_cons++;
6933 
6934 	return hw_cons;
6935 }
6936 
6937 
6938 /****************************************************************************/
6939 /* Handles transmit completion interrupt events.                            */
6940 /*                                                                          */
6941 /* Returns:                                                                 */
6942 /*   Nothing.                                                               */
6943 /****************************************************************************/
6944 static void
6945 bce_tx_intr(struct bce_softc *sc)
6946 {
6947 	struct ifnet *ifp = sc->bce_ifp;
6948 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6949 
6950 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6951 	DBRUN(sc->interrupts_tx++);
6952 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6953 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6954 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6955 
6956 	BCE_LOCK_ASSERT(sc);
6957 
6958 	/* Get the hardware's view of the TX consumer index. */
6959 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6960 	sw_tx_cons = sc->tx_cons;
6961 
6962 	/* Prevent speculative reads of the status block. */
6963 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6964 	    BUS_SPACE_BARRIER_READ);
6965 
6966 	/* Cycle through any completed TX chain page entries. */
6967 	while (sw_tx_cons != hw_tx_cons) {
6968 #ifdef BCE_DEBUG
6969 		struct tx_bd *txbd = NULL;
6970 #endif
6971 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6972 
6973 		DBPRINT(sc, BCE_INFO_SEND,
6974 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6975 		    "sw_tx_chain_cons = 0x%04X\n",
6976 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6977 
6978 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6979 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6980 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6981 		    (int) MAX_TX_BD_ALLOC);
6982 		    bce_breakpoint(sc));
6983 
6984 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6985 		    [TX_IDX(sw_tx_chain_cons)]);
6986 
6987 		DBRUNIF((txbd == NULL),
6988 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6989 		    __FILE__, __LINE__, sw_tx_chain_cons);
6990 		    bce_breakpoint(sc));
6991 
6992 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6993 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6994 
6995 		/*
6996 		 * Free the associated mbuf. Remember
6997 		 * that only the last tx_bd of a packet
6998 		 * has an mbuf pointer and DMA map.
6999 		 */
7000 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
7001 
7002 			/* Validate that this is the last tx_bd. */
7003 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
7004 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
7005 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
7006 			    bce_breakpoint(sc));
7007 
7008 			DBRUNMSG(BCE_INFO_SEND,
7009 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
7010 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
7011 			    sw_tx_chain_cons));
7012 
7013 			/* Unmap the mbuf. */
7014 			bus_dmamap_unload(sc->tx_mbuf_tag,
7015 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
7016 
7017 			/* Free the mbuf. */
7018 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
7019 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
7020 			DBRUN(sc->debug_tx_mbuf_alloc--);
7021 
7022 			ifp->if_opackets++;
7023 		}
7024 
7025 		sc->used_tx_bd--;
7026 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
7027 
7028 		/* Refresh hw_cons to see if there's new work. */
7029 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
7030 
7031 		/* Prevent speculative reads of the status block. */
7032 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7033 		    BUS_SPACE_BARRIER_READ);
7034 	}
7035 
7036 	/* Clear the TX timeout timer. */
7037 	sc->watchdog_timer = 0;
7038 
7039 	/* Clear the tx hardware queue full flag. */
7040 	if (sc->used_tx_bd < sc->max_tx_bd) {
7041 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
7042 		    DBPRINT(sc, BCE_INFO_SEND,
7043 		    "%s(): Open TX chain! %d/%d (used/total)\n",
7044 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
7045 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7046 	}
7047 
7048 	sc->tx_cons = sw_tx_cons;
7049 
7050 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7051 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7052 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7053 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7054 }
7055 
7056 
7057 /****************************************************************************/
7058 /* Disables interrupt generation.                                           */
7059 /*                                                                          */
7060 /* Returns:                                                                 */
7061 /*   Nothing.                                                               */
7062 /****************************************************************************/
7063 static void
7064 bce_disable_intr(struct bce_softc *sc)
7065 {
7066 	DBENTER(BCE_VERBOSE_INTR);
7067 
7068 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7069 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7070 
7071 	DBEXIT(BCE_VERBOSE_INTR);
7072 }
7073 
7074 
7075 /****************************************************************************/
7076 /* Enables interrupt generation.                                            */
7077 /*                                                                          */
7078 /* Returns:                                                                 */
7079 /*   Nothing.                                                               */
7080 /****************************************************************************/
7081 static void
7082 bce_enable_intr(struct bce_softc *sc, int coal_now)
7083 {
7084 	DBENTER(BCE_VERBOSE_INTR);
7085 
7086 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7087 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7088 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7089 
7090 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7091 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7092 
7093 	/* Force an immediate interrupt (whether there is new data or not). */
7094 	if (coal_now)
7095 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7096 
7097 	DBEXIT(BCE_VERBOSE_INTR);
7098 }
7099 
7100 
7101 /****************************************************************************/
7102 /* Handles controller initialization.                                       */
7103 /*                                                                          */
7104 /* Returns:                                                                 */
7105 /*   Nothing.                                                               */
7106 /****************************************************************************/
7107 static void
7108 bce_init_locked(struct bce_softc *sc)
7109 {
7110 	struct ifnet *ifp;
7111 	u32 ether_mtu = 0;
7112 
7113 	DBENTER(BCE_VERBOSE_RESET);
7114 
7115 	BCE_LOCK_ASSERT(sc);
7116 
7117 	ifp = sc->bce_ifp;
7118 
7119 	/* Check if the driver is still running and bail out if it is. */
7120 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7121 		goto bce_init_locked_exit;
7122 
7123 	bce_stop(sc);
7124 
7125 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7126 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
7127 		    __FILE__, __LINE__);
7128 		goto bce_init_locked_exit;
7129 	}
7130 
7131 	if (bce_chipinit(sc)) {
7132 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7133 		    __FILE__, __LINE__);
7134 		goto bce_init_locked_exit;
7135 	}
7136 
7137 	if (bce_blockinit(sc)) {
7138 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
7139 		    __FILE__, __LINE__);
7140 		goto bce_init_locked_exit;
7141 	}
7142 
7143 	/* Load our MAC address. */
7144 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7145 	bce_set_mac_addr(sc);
7146 
7147 	if (bce_hdr_split == FALSE)
7148 		bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7149 	/*
7150 	 * Calculate and program the hardware Ethernet MTU
7151  	 * size. Be generous on the receive if we have room
7152  	 * and allowed by the user.
7153 	 */
7154 	if (bce_strict_rx_mtu == TRUE)
7155 		ether_mtu = ifp->if_mtu;
7156 	else {
7157 		if (bce_hdr_split == TRUE) {
7158 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7159 				ether_mtu = sc->rx_bd_mbuf_data_len +
7160 				    MCLBYTES;
7161 			else
7162 				ether_mtu = ifp->if_mtu;
7163 		} else {
7164 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7165 				ether_mtu = sc->rx_bd_mbuf_data_len;
7166 			else
7167 				ether_mtu = ifp->if_mtu;
7168 		}
7169 	}
7170 
7171 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7172 
7173 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7174 	    __FUNCTION__, ether_mtu);
7175 
7176 	/* Program the mtu, enabling jumbo frame support if necessary. */
7177 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7178 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7179 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7180 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7181 	else
7182 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7183 
7184 	/* Program appropriate promiscuous/multicast filtering. */
7185 	bce_set_rx_mode(sc);
7186 
7187 	if (bce_hdr_split == TRUE) {
7188 		/* Init page buffer descriptor chain. */
7189 		bce_init_pg_chain(sc);
7190 	}
7191 
7192 	/* Init RX buffer descriptor chain. */
7193 	bce_init_rx_chain(sc);
7194 
7195 	/* Init TX buffer descriptor chain. */
7196 	bce_init_tx_chain(sc);
7197 
7198 	/* Enable host interrupts. */
7199 	bce_enable_intr(sc, 1);
7200 
7201 	bce_ifmedia_upd_locked(ifp);
7202 
7203 	/* Let the OS know the driver is up and running. */
7204 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7205 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7206 
7207 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7208 
7209 bce_init_locked_exit:
7210 	DBEXIT(BCE_VERBOSE_RESET);
7211 }
7212 
7213 
7214 /****************************************************************************/
7215 /* Initialize the controller just enough so that any management firmware    */
7216 /* running on the device will continue to operate correctly.                */
7217 /*                                                                          */
7218 /* Returns:                                                                 */
7219 /*   Nothing.                                                               */
7220 /****************************************************************************/
7221 static void
7222 bce_mgmt_init_locked(struct bce_softc *sc)
7223 {
7224 	struct ifnet *ifp;
7225 
7226 	DBENTER(BCE_VERBOSE_RESET);
7227 
7228 	BCE_LOCK_ASSERT(sc);
7229 
7230 	/* Bail out if management firmware is not running. */
7231 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7232 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7233 		    "No management firmware running...\n");
7234 		goto bce_mgmt_init_locked_exit;
7235 	}
7236 
7237 	ifp = sc->bce_ifp;
7238 
7239 	/* Enable all critical blocks in the MAC. */
7240 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7241 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7242 	DELAY(20);
7243 
7244 	bce_ifmedia_upd_locked(ifp);
7245 
7246 bce_mgmt_init_locked_exit:
7247 	DBEXIT(BCE_VERBOSE_RESET);
7248 }
7249 
7250 
7251 /****************************************************************************/
7252 /* Handles controller initialization when called from an unlocked routine.  */
7253 /*                                                                          */
7254 /* Returns:                                                                 */
7255 /*   Nothing.                                                               */
7256 /****************************************************************************/
7257 static void
7258 bce_init(void *xsc)
7259 {
7260 	struct bce_softc *sc = xsc;
7261 
7262 	DBENTER(BCE_VERBOSE_RESET);
7263 
7264 	BCE_LOCK(sc);
7265 	bce_init_locked(sc);
7266 	BCE_UNLOCK(sc);
7267 
7268 	DBEXIT(BCE_VERBOSE_RESET);
7269 }
7270 
7271 
7272 /****************************************************************************/
7273 /* Modifies an mbuf for TSO on the hardware.                                */
7274 /*                                                                          */
7275 /* Returns:                                                                 */
7276 /*   Pointer to a modified mbuf.                                            */
7277 /****************************************************************************/
7278 static struct mbuf *
7279 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7280 {
7281 	struct mbuf *m;
7282 	struct ether_header *eh;
7283 	struct ip *ip;
7284 	struct tcphdr *th;
7285 	u16 etype;
7286 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7287 
7288 	DBRUN(sc->tso_frames_requested++);
7289 
7290 	/* Controller may modify mbuf chains. */
7291 	if (M_WRITABLE(*m_head) == 0) {
7292 		m = m_dup(*m_head, M_NOWAIT);
7293 		m_freem(*m_head);
7294 		if (m == NULL) {
7295 			sc->mbuf_alloc_failed_count++;
7296 			*m_head = NULL;
7297 			return (NULL);
7298 		}
7299 		*m_head = m;
7300 	}
7301 
7302 	/*
7303 	 * For TSO the controller needs two pieces of info,
7304 	 * the MSS and the IP+TCP options length.
7305 	 */
7306 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7307 	if (m == NULL) {
7308 		*m_head = NULL;
7309 		return (NULL);
7310 	}
7311 	eh = mtod(m, struct ether_header *);
7312 	etype = ntohs(eh->ether_type);
7313 
7314 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7315 	switch (etype) {
7316 	case ETHERTYPE_IP:
7317 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7318 		/* TSO only supported for TCP protocol. */
7319 		if (ip->ip_p != IPPROTO_TCP) {
7320 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7321 			    __FILE__, __LINE__);
7322 			m_freem(*m_head);
7323 			*m_head = NULL;
7324 			return (NULL);
7325 		}
7326 
7327 		/* Get IP header length in bytes (min 20) */
7328 		ip_hlen = ip->ip_hl << 2;
7329 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7330 		    sizeof(struct tcphdr));
7331 		if (m == NULL) {
7332 			*m_head = NULL;
7333 			return (NULL);
7334 		}
7335 
7336 		/* Get the TCP header length in bytes (min 20) */
7337 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7338 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7339 		tcp_hlen = (th->th_off << 2);
7340 
7341 		/* Make sure all IP/TCP options live in the same buffer. */
7342 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7343 		    tcp_hlen);
7344 		if (m == NULL) {
7345 			*m_head = NULL;
7346 			return (NULL);
7347 		}
7348 
7349 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7350 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7351 		ip_len = ip->ip_len;
7352 		ip->ip_len = 0;
7353 		ip->ip_sum = 0;
7354 		break;
7355 	case ETHERTYPE_IPV6:
7356 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7357 		    __FILE__, __LINE__);
7358 		m_freem(*m_head);
7359 		*m_head = NULL;
7360 		return (NULL);
7361 		/* NOT REACHED */
7362 	default:
7363 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7364 		    __FILE__, __LINE__);
7365 		m_freem(*m_head);
7366 		*m_head = NULL;
7367 		return (NULL);
7368 	}
7369 
7370 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7371 
7372 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7373 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7374 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7375 	    tcp_hlen, ip_len);
7376 
7377 	/* Set the LSO flag in the TX BD */
7378 	*flags |= TX_BD_FLAGS_SW_LSO;
7379 
7380 	/* Set the length of IP + TCP options (in 32 bit words) */
7381 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7382 	    sizeof(struct tcphdr)) >> 2) << 8);
7383 
7384 	DBRUN(sc->tso_frames_completed++);
7385 	return (*m_head);
7386 }
7387 
7388 
7389 /****************************************************************************/
7390 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7391 /* memory visible to the controller.                                        */
7392 /*                                                                          */
7393 /* Returns:                                                                 */
7394 /*   0 for success, positive value for failure.                             */
7395 /* Modified:                                                                */
7396 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7397 /****************************************************************************/
7398 static int
7399 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7400 {
7401 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7402 	bus_dmamap_t map;
7403 	struct tx_bd *txbd = NULL;
7404 	struct mbuf *m0;
7405 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7406 	u32 prod_bseq;
7407 
7408 #ifdef BCE_DEBUG
7409 	u16 debug_prod;
7410 #endif
7411 
7412 	int i, error, nsegs, rc = 0;
7413 
7414 	DBENTER(BCE_VERBOSE_SEND);
7415 
7416 	/* Make sure we have room in the TX chain. */
7417 	if (sc->used_tx_bd >= sc->max_tx_bd)
7418 		goto bce_tx_encap_exit;
7419 
7420 	/* Transfer any checksum offload flags to the bd. */
7421 	m0 = *m_head;
7422 	if (m0->m_pkthdr.csum_flags) {
7423 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7424 			m0 = bce_tso_setup(sc, m_head, &flags);
7425 			if (m0 == NULL) {
7426 				DBRUN(sc->tso_frames_failed++);
7427 				goto bce_tx_encap_exit;
7428 			}
7429 			mss = htole16(m0->m_pkthdr.tso_segsz);
7430 		} else {
7431 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7432 				flags |= TX_BD_FLAGS_IP_CKSUM;
7433 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7434 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7435 		}
7436 	}
7437 
7438 	/* Transfer any VLAN tags to the bd. */
7439 	if (m0->m_flags & M_VLANTAG) {
7440 		flags |= TX_BD_FLAGS_VLAN_TAG;
7441 		vlan_tag = m0->m_pkthdr.ether_vtag;
7442 	}
7443 
7444 	/* Map the mbuf into DMAable memory. */
7445 	prod = sc->tx_prod;
7446 	chain_prod = TX_CHAIN_IDX(prod);
7447 	map = sc->tx_mbuf_map[chain_prod];
7448 
7449 	/* Map the mbuf into our DMA address space. */
7450 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7451 	    segs, &nsegs, BUS_DMA_NOWAIT);
7452 
7453 	/* Check if the DMA mapping was successful */
7454 	if (error == EFBIG) {
7455 		sc->mbuf_frag_count++;
7456 
7457 		/* Try to defrag the mbuf. */
7458 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7459 		if (m0 == NULL) {
7460 			/* Defrag was unsuccessful */
7461 			m_freem(*m_head);
7462 			*m_head = NULL;
7463 			sc->mbuf_alloc_failed_count++;
7464 			rc = ENOBUFS;
7465 			goto bce_tx_encap_exit;
7466 		}
7467 
7468 		/* Defrag was successful, try mapping again */
7469 		*m_head = m0;
7470 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7471 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7472 
7473 		/* Still getting an error after a defrag. */
7474 		if (error == ENOMEM) {
7475 			/* Insufficient DMA buffers available. */
7476 			sc->dma_map_addr_tx_failed_count++;
7477 			rc = error;
7478 			goto bce_tx_encap_exit;
7479 		} else if (error != 0) {
7480 			/* Release it and return an error. */
7481 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7482 			    "TX chain!\n", __FILE__, __LINE__);
7483 			m_freem(m0);
7484 			*m_head = NULL;
7485 			sc->dma_map_addr_tx_failed_count++;
7486 			rc = ENOBUFS;
7487 			goto bce_tx_encap_exit;
7488 		}
7489 	} else if (error == ENOMEM) {
7490 		/* Insufficient DMA buffers available. */
7491 		sc->dma_map_addr_tx_failed_count++;
7492 		rc = error;
7493 		goto bce_tx_encap_exit;
7494 	} else if (error != 0) {
7495 		m_freem(m0);
7496 		*m_head = NULL;
7497 		sc->dma_map_addr_tx_failed_count++;
7498 		rc = error;
7499 		goto bce_tx_encap_exit;
7500 	}
7501 
7502 	/* Make sure there's room in the chain */
7503 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7504 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7505 		rc = ENOBUFS;
7506 		goto bce_tx_encap_exit;
7507 	}
7508 
7509 	/* prod points to an empty tx_bd at this point. */
7510 	prod_bseq  = sc->tx_prod_bseq;
7511 
7512 #ifdef BCE_DEBUG
7513 	debug_prod = chain_prod;
7514 #endif
7515 
7516 	DBPRINT(sc, BCE_INFO_SEND,
7517 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7518 	    "prod_bseq = 0x%08X\n",
7519 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7520 
7521 	/*
7522 	 * Cycle through each mbuf segment that makes up
7523 	 * the outgoing frame, gathering the mapping info
7524 	 * for that segment and creating a tx_bd for
7525 	 * the mbuf.
7526 	 */
7527 	for (i = 0; i < nsegs ; i++) {
7528 
7529 		chain_prod = TX_CHAIN_IDX(prod);
7530 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7531 		    [TX_IDX(chain_prod)];
7532 
7533 		txbd->tx_bd_haddr_lo =
7534 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7535 		txbd->tx_bd_haddr_hi =
7536 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7537 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7538 		    htole16(segs[i].ds_len);
7539 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7540 		txbd->tx_bd_flags = htole16(flags);
7541 		prod_bseq += segs[i].ds_len;
7542 		if (i == 0)
7543 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7544 		prod = NEXT_TX_BD(prod);
7545 	}
7546 
7547 	/* Set the END flag on the last TX buffer descriptor. */
7548 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7549 
7550 	DBRUNMSG(BCE_EXTREME_SEND,
7551 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7552 
7553 	/*
7554 	 * Ensure that the mbuf pointer for this transmission
7555 	 * is placed at the array index of the last
7556 	 * descriptor in this chain.  This is done
7557 	 * because a single map is used for all
7558 	 * segments of the mbuf and we don't want to
7559 	 * unload the map before all of the segments
7560 	 * have been freed.
7561 	 */
7562 	sc->tx_mbuf_ptr[chain_prod] = m0;
7563 	sc->used_tx_bd += nsegs;
7564 
7565 	/* Update some debug statistic counters */
7566 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7567 	    sc->tx_hi_watermark = sc->used_tx_bd);
7568 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7569 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7570 
7571 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7572 
7573 	/* prod points to the next free tx_bd at this point. */
7574 	sc->tx_prod = prod;
7575 	sc->tx_prod_bseq = prod_bseq;
7576 
7577 	/* Tell the chip about the waiting TX frames. */
7578 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7579 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7580 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7581 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7582 
7583 bce_tx_encap_exit:
7584 	DBEXIT(BCE_VERBOSE_SEND);
7585 	return(rc);
7586 }
7587 
7588 
7589 /****************************************************************************/
7590 /* Main transmit routine when called from another routine with a lock.      */
7591 /*                                                                          */
7592 /* Returns:                                                                 */
7593 /*   Nothing.                                                               */
7594 /****************************************************************************/
7595 static void
7596 bce_start_locked(struct ifnet *ifp)
7597 {
7598 	struct bce_softc *sc = ifp->if_softc;
7599 	struct mbuf *m_head = NULL;
7600 	int count = 0;
7601 	u16 tx_prod, tx_chain_prod;
7602 
7603 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7604 
7605 	BCE_LOCK_ASSERT(sc);
7606 
7607 	/* prod points to the next free tx_bd. */
7608 	tx_prod = sc->tx_prod;
7609 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7610 
7611 	DBPRINT(sc, BCE_INFO_SEND,
7612 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7613 	    "tx_prod_bseq = 0x%08X\n",
7614 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7615 
7616 	/* If there's no link or the transmit queue is empty then just exit. */
7617 	if (sc->bce_link_up == FALSE) {
7618 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7619 		    __FUNCTION__);
7620 		goto bce_start_locked_exit;
7621 	}
7622 
7623 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7624 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7625 		    __FUNCTION__);
7626 		goto bce_start_locked_exit;
7627 	}
7628 
7629 	/*
7630 	 * Keep adding entries while there is space in the ring.
7631 	 */
7632 	while (sc->used_tx_bd < sc->max_tx_bd) {
7633 
7634 		/* Check for any frames to send. */
7635 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7636 
7637 		/* Stop when the transmit queue is empty. */
7638 		if (m_head == NULL)
7639 			break;
7640 
7641 		/*
7642 		 * Pack the data into the transmit ring. If we
7643 		 * don't have room, place the mbuf back at the
7644 		 * head of the queue and set the OACTIVE flag
7645 		 * to wait for the NIC to drain the chain.
7646 		 */
7647 		if (bce_tx_encap(sc, &m_head)) {
7648 			if (m_head != NULL)
7649 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7650 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7651 			DBPRINT(sc, BCE_INFO_SEND,
7652 			    "TX chain is closed for business! Total "
7653 			    "tx_bd used = %d\n", sc->used_tx_bd);
7654 			break;
7655 		}
7656 
7657 		count++;
7658 
7659 		/* Send a copy of the frame to any BPF listeners. */
7660 		ETHER_BPF_MTAP(ifp, m_head);
7661 	}
7662 
7663 	/* Exit if no packets were dequeued. */
7664 	if (count == 0) {
7665 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7666 		    "dequeued\n", __FUNCTION__);
7667 		goto bce_start_locked_exit;
7668 	}
7669 
7670 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7671 	    "send queue.\n", __FUNCTION__, count);
7672 
7673 	/* Set the tx timeout. */
7674 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7675 
7676 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7677 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7678 
7679 bce_start_locked_exit:
7680 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7681 }
7682 
7683 
7684 /****************************************************************************/
7685 /* Main transmit routine when called from another routine without a lock.   */
7686 /*                                                                          */
7687 /* Returns:                                                                 */
7688 /*   Nothing.                                                               */
7689 /****************************************************************************/
7690 static void
7691 bce_start(struct ifnet *ifp)
7692 {
7693 	struct bce_softc *sc = ifp->if_softc;
7694 
7695 	DBENTER(BCE_VERBOSE_SEND);
7696 
7697 	BCE_LOCK(sc);
7698 	bce_start_locked(ifp);
7699 	BCE_UNLOCK(sc);
7700 
7701 	DBEXIT(BCE_VERBOSE_SEND);
7702 }
7703 
7704 
7705 /****************************************************************************/
7706 /* Handles any IOCTL calls from the operating system.                       */
7707 /*                                                                          */
7708 /* Returns:                                                                 */
7709 /*   0 for success, positive value for failure.                             */
7710 /****************************************************************************/
7711 static int
7712 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7713 {
7714 	struct bce_softc *sc = ifp->if_softc;
7715 	struct ifreq *ifr = (struct ifreq *) data;
7716 	struct mii_data *mii;
7717 	int mask, error = 0;
7718 
7719 	DBENTER(BCE_VERBOSE_MISC);
7720 
7721 	switch(command) {
7722 
7723 	/* Set the interface MTU. */
7724 	case SIOCSIFMTU:
7725 		/* Check that the MTU setting is supported. */
7726 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7727 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7728 			error = EINVAL;
7729 			break;
7730 		}
7731 
7732 		DBPRINT(sc, BCE_INFO_MISC,
7733 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7734 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7735 
7736 		BCE_LOCK(sc);
7737 		ifp->if_mtu = ifr->ifr_mtu;
7738 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7739 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7740 			bce_init_locked(sc);
7741 		}
7742 		BCE_UNLOCK(sc);
7743 		break;
7744 
7745 	/* Set interface flags. */
7746 	case SIOCSIFFLAGS:
7747 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7748 
7749 		BCE_LOCK(sc);
7750 
7751 		/* Check if the interface is up. */
7752 		if (ifp->if_flags & IFF_UP) {
7753 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7754 				/* Change promiscuous/multicast flags as necessary. */
7755 				bce_set_rx_mode(sc);
7756 			} else {
7757 				/* Start the HW */
7758 				bce_init_locked(sc);
7759 			}
7760 		} else {
7761 			/* The interface is down, check if driver is running. */
7762 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7763 				bce_stop(sc);
7764 
7765 				/* If MFW is running, restart the controller a bit. */
7766 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7767 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7768 					bce_chipinit(sc);
7769 					bce_mgmt_init_locked(sc);
7770 				}
7771 			}
7772 		}
7773 
7774 		BCE_UNLOCK(sc);
7775 		break;
7776 
7777 	/* Add/Delete multicast address */
7778 	case SIOCADDMULTI:
7779 	case SIOCDELMULTI:
7780 		DBPRINT(sc, BCE_VERBOSE_MISC,
7781 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7782 
7783 		BCE_LOCK(sc);
7784 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7785 			bce_set_rx_mode(sc);
7786 		BCE_UNLOCK(sc);
7787 
7788 		break;
7789 
7790 	/* Set/Get Interface media */
7791 	case SIOCSIFMEDIA:
7792 	case SIOCGIFMEDIA:
7793 		DBPRINT(sc, BCE_VERBOSE_MISC,
7794 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7795 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7796 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7797 			    command);
7798 		else {
7799 			mii = device_get_softc(sc->bce_miibus);
7800 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7801 			    command);
7802 		}
7803 		break;
7804 
7805 	/* Set interface capability */
7806 	case SIOCSIFCAP:
7807 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7808 		DBPRINT(sc, BCE_INFO_MISC,
7809 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7810 
7811 		/* Toggle the TX checksum capabilities enable flag. */
7812 		if (mask & IFCAP_TXCSUM &&
7813 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7814 			ifp->if_capenable ^= IFCAP_TXCSUM;
7815 			if (IFCAP_TXCSUM & ifp->if_capenable)
7816 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7817 			else
7818 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7819 		}
7820 
7821 		/* Toggle the RX checksum capabilities enable flag. */
7822 		if (mask & IFCAP_RXCSUM &&
7823 		    ifp->if_capabilities & IFCAP_RXCSUM)
7824 			ifp->if_capenable ^= IFCAP_RXCSUM;
7825 
7826 		/* Toggle the TSO capabilities enable flag. */
7827 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7828 		    ifp->if_capabilities & IFCAP_TSO4) {
7829 			ifp->if_capenable ^= IFCAP_TSO4;
7830 			if (IFCAP_TSO4 & ifp->if_capenable)
7831 				ifp->if_hwassist |= CSUM_TSO;
7832 			else
7833 				ifp->if_hwassist &= ~CSUM_TSO;
7834 		}
7835 
7836 		if (mask & IFCAP_VLAN_HWCSUM &&
7837 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7838 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7839 
7840 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7841 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7842 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7843 		/*
7844 		 * Don't actually disable VLAN tag stripping as
7845 		 * management firmware (ASF/IPMI/UMP) requires the
7846 		 * feature. If VLAN tag stripping is disabled driver
7847 		 * will manually reconstruct the VLAN frame by
7848 		 * appending stripped VLAN tag.
7849 		 */
7850 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7851 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7852 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7853 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7854 			    == 0)
7855 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7856 		}
7857 		VLAN_CAPABILITIES(ifp);
7858 		break;
7859 	default:
7860 		/* We don't know how to handle the IOCTL, pass it on. */
7861 		error = ether_ioctl(ifp, command, data);
7862 		break;
7863 	}
7864 
7865 	DBEXIT(BCE_VERBOSE_MISC);
7866 	return(error);
7867 }
7868 
7869 
7870 /****************************************************************************/
7871 /* Transmit timeout handler.                                                */
7872 /*                                                                          */
7873 /* Returns:                                                                 */
7874 /*   Nothing.                                                               */
7875 /****************************************************************************/
7876 static void
7877 bce_watchdog(struct bce_softc *sc)
7878 {
7879 	uint32_t status;
7880 
7881 	DBENTER(BCE_EXTREME_SEND);
7882 
7883 	BCE_LOCK_ASSERT(sc);
7884 
7885 	status = 0;
7886 	/* If the watchdog timer hasn't expired then just exit. */
7887 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7888 		goto bce_watchdog_exit;
7889 
7890 	status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7891 	/* If pause frames are active then don't reset the hardware. */
7892 	if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7893 		if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7894 			/*
7895 			 * If link partner has us in XOFF state then wait for
7896 			 * the condition to clear.
7897 			 */
7898 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7899 			goto bce_watchdog_exit;
7900 		} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7901 			(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7902 			/*
7903 			 * If we're not currently XOFF'ed but have recently
7904 			 * been XOFF'd/XON'd then assume that's delaying TX
7905 			 * this time around.
7906 			 */
7907 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7908 			goto bce_watchdog_exit;
7909 		}
7910 		/*
7911 		 * Any other condition is unexpected and the controller
7912 		 * should be reset.
7913 		 */
7914 	}
7915 
7916 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7917 	    __FILE__, __LINE__);
7918 
7919 	DBRUNMSG(BCE_INFO,
7920 	    bce_dump_driver_state(sc);
7921 	    bce_dump_status_block(sc);
7922 	    bce_dump_stats_block(sc);
7923 	    bce_dump_ftqs(sc);
7924 	    bce_dump_txp_state(sc, 0);
7925 	    bce_dump_rxp_state(sc, 0);
7926 	    bce_dump_tpat_state(sc, 0);
7927 	    bce_dump_cp_state(sc, 0);
7928 	    bce_dump_com_state(sc, 0));
7929 
7930 	DBRUN(bce_breakpoint(sc));
7931 
7932 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7933 
7934 	bce_init_locked(sc);
7935 	sc->bce_ifp->if_oerrors++;
7936 
7937 bce_watchdog_exit:
7938 	REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7939 	DBEXIT(BCE_EXTREME_SEND);
7940 }
7941 
7942 
7943 /*
7944  * Interrupt handler.
7945  */
7946 /****************************************************************************/
7947 /* Main interrupt entry point.  Verifies that the controller generated the  */
7948 /* interrupt and then calls a separate routine for handle the various       */
7949 /* interrupt causes (PHY, TX, RX).                                          */
7950 /*                                                                          */
7951 /* Returns:                                                                 */
7952 /*   Nothing.                                                               */
7953 /****************************************************************************/
7954 static void
7955 bce_intr(void *xsc)
7956 {
7957 	struct bce_softc *sc;
7958 	struct ifnet *ifp;
7959 	u32 status_attn_bits;
7960 	u16 hw_rx_cons, hw_tx_cons;
7961 
7962 	sc = xsc;
7963 	ifp = sc->bce_ifp;
7964 
7965 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7966 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7967 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7968 
7969 	BCE_LOCK(sc);
7970 
7971 	DBRUN(sc->interrupts_generated++);
7972 
7973 	/* Synchnorize before we read from interface's status block */
7974 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7975 
7976 	/*
7977 	 * If the hardware status block index matches the last value read
7978 	 * by the driver and we haven't asserted our interrupt then there's
7979 	 * nothing to do.  This may only happen in case of INTx due to the
7980 	 * interrupt arriving at the CPU before the status block is updated.
7981 	 */
7982 	if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7983 	    sc->status_block->status_idx == sc->last_status_idx &&
7984 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7985 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7986 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7987 		    __FUNCTION__);
7988 		goto bce_intr_exit;
7989 	}
7990 
7991 	/* Ack the interrupt and stop others from occuring. */
7992 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7993 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7994 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7995 
7996 	/* Check if the hardware has finished any work. */
7997 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7998 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7999 
8000 	/* Keep processing data as long as there is work to do. */
8001 	for (;;) {
8002 
8003 		status_attn_bits = sc->status_block->status_attn_bits;
8004 
8005 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
8006 		    BCE_PRINTF("Simulating unexpected status attention "
8007 		    "bit set.");
8008 		    sc->unexpected_attention_sim_count++;
8009 		    status_attn_bits = status_attn_bits |
8010 		    STATUS_ATTN_BITS_PARITY_ERROR);
8011 
8012 		/* Was it a link change interrupt? */
8013 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
8014 		    (sc->status_block->status_attn_bits_ack &
8015 		     STATUS_ATTN_BITS_LINK_STATE)) {
8016 			bce_phy_intr(sc);
8017 
8018 			/* Clear transient updates during link state change. */
8019 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
8020 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
8021 			REG_RD(sc, BCE_HC_COMMAND);
8022 		}
8023 
8024 		/* If any other attention is asserted, the chip is toast. */
8025 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
8026 		    (sc->status_block->status_attn_bits_ack &
8027 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
8028 
8029 			sc->unexpected_attention_count++;
8030 
8031 			BCE_PRINTF("%s(%d): Fatal attention detected: "
8032 			    "0x%08X\n",	__FILE__, __LINE__,
8033 			    sc->status_block->status_attn_bits);
8034 
8035 			DBRUNMSG(BCE_FATAL,
8036 			    if (unexpected_attention_sim_control == 0)
8037 				bce_breakpoint(sc));
8038 
8039 			bce_init_locked(sc);
8040 			goto bce_intr_exit;
8041 		}
8042 
8043 		/* Check for any completed RX frames. */
8044 		if (hw_rx_cons != sc->hw_rx_cons)
8045 			bce_rx_intr(sc);
8046 
8047 		/* Check for any completed TX frames. */
8048 		if (hw_tx_cons != sc->hw_tx_cons)
8049 			bce_tx_intr(sc);
8050 
8051 		/* Save status block index value for the next interrupt. */
8052 		sc->last_status_idx = sc->status_block->status_idx;
8053 
8054  		/*
8055  		 * Prevent speculative reads from getting
8056  		 * ahead of the status block.
8057 		 */
8058 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8059 		    BUS_SPACE_BARRIER_READ);
8060 
8061  		/*
8062  		 * If there's no work left then exit the
8063  		 * interrupt service routine.
8064 		 */
8065 		hw_rx_cons = bce_get_hw_rx_cons(sc);
8066 		hw_tx_cons = bce_get_hw_tx_cons(sc);
8067 
8068 		if ((hw_rx_cons == sc->hw_rx_cons) &&
8069 		    (hw_tx_cons == sc->hw_tx_cons))
8070 			break;
8071 	}
8072 
8073 	bus_dmamap_sync(sc->status_tag,	sc->status_map, BUS_DMASYNC_PREREAD);
8074 
8075 	/* Re-enable interrupts. */
8076 	bce_enable_intr(sc, 0);
8077 
8078 	/* Handle any frames that arrived while handling the interrupt. */
8079 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8080 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8081 		bce_start_locked(ifp);
8082 
8083 bce_intr_exit:
8084 	BCE_UNLOCK(sc);
8085 
8086 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8087 }
8088 
8089 
8090 /****************************************************************************/
8091 /* Programs the various packet receive modes (broadcast and multicast).     */
8092 /*                                                                          */
8093 /* Returns:                                                                 */
8094 /*   Nothing.                                                               */
8095 /****************************************************************************/
8096 static void
8097 bce_set_rx_mode(struct bce_softc *sc)
8098 {
8099 	struct ifnet *ifp;
8100 	struct ifmultiaddr *ifma;
8101 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8102 	u32 rx_mode, sort_mode;
8103 	int h, i;
8104 
8105 	DBENTER(BCE_VERBOSE_MISC);
8106 
8107 	BCE_LOCK_ASSERT(sc);
8108 
8109 	ifp = sc->bce_ifp;
8110 
8111 	/* Initialize receive mode default settings. */
8112 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8113 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8114 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8115 
8116 	/*
8117 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8118 	 * be enbled.
8119 	 */
8120 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8121 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8122 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8123 
8124 	/*
8125 	 * Check for promiscuous, all multicast, or selected
8126 	 * multicast address filtering.
8127 	 */
8128 	if (ifp->if_flags & IFF_PROMISC) {
8129 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8130 
8131 		/* Enable promiscuous mode. */
8132 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8133 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8134 	} else if (ifp->if_flags & IFF_ALLMULTI) {
8135 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8136 
8137 		/* Enable all multicast addresses. */
8138 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8139 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8140 			    0xffffffff);
8141 		}
8142 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8143 	} else {
8144 		/* Accept one or more multicast(s). */
8145 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8146 
8147 		if_maddr_rlock(ifp);
8148 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8149 			if (ifma->ifma_addr->sa_family != AF_LINK)
8150 				continue;
8151 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8152 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8153 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8154 		}
8155 		if_maddr_runlock(ifp);
8156 
8157 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8158 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8159 
8160 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8161 	}
8162 
8163 	/* Only make changes if the recive mode has actually changed. */
8164 	if (rx_mode != sc->rx_mode) {
8165 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8166 		    "0x%08X\n", rx_mode);
8167 
8168 		sc->rx_mode = rx_mode;
8169 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8170 	}
8171 
8172 	/* Disable and clear the exisitng sort before enabling a new sort. */
8173 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8174 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8175 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8176 
8177 	DBEXIT(BCE_VERBOSE_MISC);
8178 }
8179 
8180 
8181 /****************************************************************************/
8182 /* Called periodically to updates statistics from the controllers           */
8183 /* statistics block.                                                        */
8184 /*                                                                          */
8185 /* Returns:                                                                 */
8186 /*   Nothing.                                                               */
8187 /****************************************************************************/
8188 static void
8189 bce_stats_update(struct bce_softc *sc)
8190 {
8191 	struct ifnet *ifp;
8192 	struct statistics_block *stats;
8193 
8194 	DBENTER(BCE_EXTREME_MISC);
8195 
8196 	ifp = sc->bce_ifp;
8197 
8198 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8199 
8200 	stats = (struct statistics_block *) sc->stats_block;
8201 
8202 	/*
8203 	 * Certain controllers don't report
8204 	 * carrier sense errors correctly.
8205 	 * See errata E11_5708CA0_1165.
8206 	 */
8207 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8208 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8209 		ifp->if_oerrors +=
8210 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
8211 
8212 	/*
8213 	 * Update the sysctl statistics from the
8214 	 * hardware statistics.
8215 	 */
8216 	sc->stat_IfHCInOctets =
8217 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8218 	     (u64) stats->stat_IfHCInOctets_lo;
8219 
8220 	sc->stat_IfHCInBadOctets =
8221 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8222 	     (u64) stats->stat_IfHCInBadOctets_lo;
8223 
8224 	sc->stat_IfHCOutOctets =
8225 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8226 	     (u64) stats->stat_IfHCOutOctets_lo;
8227 
8228 	sc->stat_IfHCOutBadOctets =
8229 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8230 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8231 
8232 	sc->stat_IfHCInUcastPkts =
8233 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8234 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8235 
8236 	sc->stat_IfHCInMulticastPkts =
8237 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8238 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8239 
8240 	sc->stat_IfHCInBroadcastPkts =
8241 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8242 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8243 
8244 	sc->stat_IfHCOutUcastPkts =
8245 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8246 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8247 
8248 	sc->stat_IfHCOutMulticastPkts =
8249 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8250 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8251 
8252 	sc->stat_IfHCOutBroadcastPkts =
8253 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8254 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8255 
8256 	/* ToDo: Preserve counters beyond 32 bits? */
8257 	/* ToDo: Read the statistics from auto-clear regs? */
8258 
8259 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8260 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8261 
8262 	sc->stat_Dot3StatsCarrierSenseErrors =
8263 	    stats->stat_Dot3StatsCarrierSenseErrors;
8264 
8265 	sc->stat_Dot3StatsFCSErrors =
8266 	    stats->stat_Dot3StatsFCSErrors;
8267 
8268 	sc->stat_Dot3StatsAlignmentErrors =
8269 	    stats->stat_Dot3StatsAlignmentErrors;
8270 
8271 	sc->stat_Dot3StatsSingleCollisionFrames =
8272 	    stats->stat_Dot3StatsSingleCollisionFrames;
8273 
8274 	sc->stat_Dot3StatsMultipleCollisionFrames =
8275 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8276 
8277 	sc->stat_Dot3StatsDeferredTransmissions =
8278 	    stats->stat_Dot3StatsDeferredTransmissions;
8279 
8280 	sc->stat_Dot3StatsExcessiveCollisions =
8281 	    stats->stat_Dot3StatsExcessiveCollisions;
8282 
8283 	sc->stat_Dot3StatsLateCollisions =
8284 	    stats->stat_Dot3StatsLateCollisions;
8285 
8286 	sc->stat_EtherStatsCollisions =
8287 	    stats->stat_EtherStatsCollisions;
8288 
8289 	sc->stat_EtherStatsFragments =
8290 	    stats->stat_EtherStatsFragments;
8291 
8292 	sc->stat_EtherStatsJabbers =
8293 	    stats->stat_EtherStatsJabbers;
8294 
8295 	sc->stat_EtherStatsUndersizePkts =
8296 	    stats->stat_EtherStatsUndersizePkts;
8297 
8298 	sc->stat_EtherStatsOversizePkts =
8299 	     stats->stat_EtherStatsOversizePkts;
8300 
8301 	sc->stat_EtherStatsPktsRx64Octets =
8302 	    stats->stat_EtherStatsPktsRx64Octets;
8303 
8304 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8305 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8306 
8307 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8308 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8309 
8310 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8311 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8312 
8313 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8314 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8315 
8316 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8317 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8318 
8319 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8320 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8321 
8322 	sc->stat_EtherStatsPktsTx64Octets =
8323 	    stats->stat_EtherStatsPktsTx64Octets;
8324 
8325 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8326 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8327 
8328 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8329 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8330 
8331 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8332 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8333 
8334 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8335 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8336 
8337 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8338 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8339 
8340 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8341 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8342 
8343 	sc->stat_XonPauseFramesReceived =
8344 	    stats->stat_XonPauseFramesReceived;
8345 
8346 	sc->stat_XoffPauseFramesReceived =
8347 	    stats->stat_XoffPauseFramesReceived;
8348 
8349 	sc->stat_OutXonSent =
8350 	    stats->stat_OutXonSent;
8351 
8352 	sc->stat_OutXoffSent =
8353 	    stats->stat_OutXoffSent;
8354 
8355 	sc->stat_FlowControlDone =
8356 	    stats->stat_FlowControlDone;
8357 
8358 	sc->stat_MacControlFramesReceived =
8359 	    stats->stat_MacControlFramesReceived;
8360 
8361 	sc->stat_XoffStateEntered =
8362 	    stats->stat_XoffStateEntered;
8363 
8364 	sc->stat_IfInFramesL2FilterDiscards =
8365 	    stats->stat_IfInFramesL2FilterDiscards;
8366 
8367 	sc->stat_IfInRuleCheckerDiscards =
8368 	    stats->stat_IfInRuleCheckerDiscards;
8369 
8370 	sc->stat_IfInFTQDiscards =
8371 	    stats->stat_IfInFTQDiscards;
8372 
8373 	sc->stat_IfInMBUFDiscards =
8374 	    stats->stat_IfInMBUFDiscards;
8375 
8376 	sc->stat_IfInRuleCheckerP4Hit =
8377 	    stats->stat_IfInRuleCheckerP4Hit;
8378 
8379 	sc->stat_CatchupInRuleCheckerDiscards =
8380 	    stats->stat_CatchupInRuleCheckerDiscards;
8381 
8382 	sc->stat_CatchupInFTQDiscards =
8383 	    stats->stat_CatchupInFTQDiscards;
8384 
8385 	sc->stat_CatchupInMBUFDiscards =
8386 	    stats->stat_CatchupInMBUFDiscards;
8387 
8388 	sc->stat_CatchupInRuleCheckerP4Hit =
8389 	    stats->stat_CatchupInRuleCheckerP4Hit;
8390 
8391 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8392 
8393 	/*
8394 	 * Update the interface statistics from the
8395 	 * hardware statistics.
8396 	 */
8397 	ifp->if_collisions =
8398 	    (u_long) sc->stat_EtherStatsCollisions;
8399 
8400 	/* ToDo: This method loses soft errors. */
8401 	ifp->if_ierrors =
8402 	    (u_long) sc->stat_EtherStatsUndersizePkts +
8403 	    (u_long) sc->stat_EtherStatsOversizePkts +
8404 	    (u_long) sc->stat_IfInMBUFDiscards +
8405 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
8406 	    (u_long) sc->stat_Dot3StatsFCSErrors +
8407 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
8408 	    (u_long) sc->stat_IfInFTQDiscards +
8409 	    (u_long) sc->com_no_buffers;
8410 
8411 	/* ToDo: This method loses soft errors. */
8412 	ifp->if_oerrors =
8413 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8414 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8415 	    (u_long) sc->stat_Dot3StatsLateCollisions;
8416 
8417 	/* ToDo: Add additional statistics? */
8418 
8419 	DBEXIT(BCE_EXTREME_MISC);
8420 }
8421 
8422 
8423 /****************************************************************************/
8424 /* Periodic function to notify the bootcode that the driver is still        */
8425 /* present.                                                                 */
8426 /*                                                                          */
8427 /* Returns:                                                                 */
8428 /*   Nothing.                                                               */
8429 /****************************************************************************/
8430 static void
8431 bce_pulse(void *xsc)
8432 {
8433 	struct bce_softc *sc = xsc;
8434 	u32 msg;
8435 
8436 	DBENTER(BCE_EXTREME_MISC);
8437 
8438 	BCE_LOCK_ASSERT(sc);
8439 
8440 	/* Tell the firmware that the driver is still running. */
8441 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8442 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8443 
8444 	/* Update the bootcode condition. */
8445 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8446 
8447 	/* Report whether the bootcode still knows the driver is running. */
8448 	if (bce_verbose || bootverbose) {
8449 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8450 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8451 				sc->bce_drv_cardiac_arrest = TRUE;
8452 				BCE_PRINTF("%s(): Warning: bootcode "
8453 				    "thinks driver is absent! "
8454 				    "(bc_state = 0x%08X)\n",
8455 				    __FUNCTION__, sc->bc_state);
8456 			}
8457 		} else {
8458 			/*
8459 			 * Not supported by all bootcode versions.
8460 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8461 			 * will require the driver to reset the
8462 			 * controller to clear this condition.
8463 			 */
8464 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8465 				sc->bce_drv_cardiac_arrest = FALSE;
8466 				BCE_PRINTF("%s(): Bootcode found the "
8467 				    "driver pulse! (bc_state = 0x%08X)\n",
8468 				    __FUNCTION__, sc->bc_state);
8469 			}
8470 		}
8471 	}
8472 
8473 
8474 	/* Schedule the next pulse. */
8475 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8476 
8477 	DBEXIT(BCE_EXTREME_MISC);
8478 }
8479 
8480 
8481 /****************************************************************************/
8482 /* Periodic function to perform maintenance tasks.                          */
8483 /*                                                                          */
8484 /* Returns:                                                                 */
8485 /*   Nothing.                                                               */
8486 /****************************************************************************/
8487 static void
8488 bce_tick(void *xsc)
8489 {
8490 	struct bce_softc *sc = xsc;
8491 	struct mii_data *mii;
8492 	struct ifnet *ifp;
8493 	struct ifmediareq ifmr;
8494 
8495 	ifp = sc->bce_ifp;
8496 
8497 	DBENTER(BCE_EXTREME_MISC);
8498 
8499 	BCE_LOCK_ASSERT(sc);
8500 
8501 	/* Schedule the next tick. */
8502 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8503 
8504 	/* Update the statistics from the hardware statistics block. */
8505 	bce_stats_update(sc);
8506 
8507  	/* Ensure page and RX chains get refilled in low-memory situations. */
8508 	if (bce_hdr_split == TRUE)
8509 		bce_fill_pg_chain(sc);
8510 	bce_fill_rx_chain(sc);
8511 
8512 	/* Check that chip hasn't hung. */
8513 	bce_watchdog(sc);
8514 
8515 	/* If link is up already up then we're done. */
8516 	if (sc->bce_link_up == TRUE)
8517 		goto bce_tick_exit;
8518 
8519 	/* Link is down.  Check what the PHY's doing. */
8520 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8521 		bzero(&ifmr, sizeof(ifmr));
8522 		bce_ifmedia_sts_rphy(sc, &ifmr);
8523 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8524 		    (IFM_ACTIVE | IFM_AVALID)) {
8525 			sc->bce_link_up = TRUE;
8526 			bce_miibus_statchg(sc->bce_dev);
8527 		}
8528 	} else {
8529 		mii = device_get_softc(sc->bce_miibus);
8530 		mii_tick(mii);
8531 		/* Check if the link has come up. */
8532 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8533 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8534 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8535 			    __FUNCTION__);
8536 			sc->bce_link_up = TRUE;
8537 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8538 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8539 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8540 			    (bce_verbose || bootverbose))
8541 				BCE_PRINTF("Gigabit link up!\n");
8542 		}
8543 
8544 	}
8545 	if (sc->bce_link_up == TRUE) {
8546 		/* Now that link is up, handle any outstanding TX traffic. */
8547 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8548 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8549 			    "pending TX traffic.\n", __FUNCTION__);
8550 			bce_start_locked(ifp);
8551 		}
8552 	}
8553 
8554 bce_tick_exit:
8555 	DBEXIT(BCE_EXTREME_MISC);
8556 }
8557 
8558 static void
8559 bce_fw_cap_init(struct bce_softc *sc)
8560 {
8561 	u32 ack, cap, link;
8562 
8563 	ack = 0;
8564 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8565 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8566 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8567 		return;
8568 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8569 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8570 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8571 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8572 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8573 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8574 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8575 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8576 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8577 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8578 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8579 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8580 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8581 	}
8582 
8583 	if (ack != 0)
8584 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8585 }
8586 
8587 
8588 #ifdef BCE_DEBUG
8589 /****************************************************************************/
8590 /* Allows the driver state to be dumped through the sysctl interface.       */
8591 /*                                                                          */
8592 /* Returns:                                                                 */
8593 /*   0 for success, positive value for failure.                             */
8594 /****************************************************************************/
8595 static int
8596 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8597 {
8598 	int error;
8599 	int result;
8600 	struct bce_softc *sc;
8601 
8602 	result = -1;
8603 	error = sysctl_handle_int(oidp, &result, 0, req);
8604 
8605 	if (error || !req->newptr)
8606 		return (error);
8607 
8608 	if (result == 1) {
8609 		sc = (struct bce_softc *)arg1;
8610 		bce_dump_driver_state(sc);
8611 	}
8612 
8613 	return error;
8614 }
8615 
8616 
8617 /****************************************************************************/
8618 /* Allows the hardware state to be dumped through the sysctl interface.     */
8619 /*                                                                          */
8620 /* Returns:                                                                 */
8621 /*   0 for success, positive value for failure.                             */
8622 /****************************************************************************/
8623 static int
8624 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8625 {
8626 	int error;
8627 	int result;
8628 	struct bce_softc *sc;
8629 
8630 	result = -1;
8631 	error = sysctl_handle_int(oidp, &result, 0, req);
8632 
8633 	if (error || !req->newptr)
8634 		return (error);
8635 
8636 	if (result == 1) {
8637 		sc = (struct bce_softc *)arg1;
8638 		bce_dump_hw_state(sc);
8639 	}
8640 
8641 	return error;
8642 }
8643 
8644 
8645 /****************************************************************************/
8646 /* Allows the status block to be dumped through the sysctl interface.       */
8647 /*                                                                          */
8648 /* Returns:                                                                 */
8649 /*   0 for success, positive value for failure.                             */
8650 /****************************************************************************/
8651 static int
8652 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8653 {
8654 	int error;
8655 	int result;
8656 	struct bce_softc *sc;
8657 
8658 	result = -1;
8659 	error = sysctl_handle_int(oidp, &result, 0, req);
8660 
8661 	if (error || !req->newptr)
8662 		return (error);
8663 
8664 	if (result == 1) {
8665 		sc = (struct bce_softc *)arg1;
8666 		bce_dump_status_block(sc);
8667 	}
8668 
8669 	return error;
8670 }
8671 
8672 
8673 /****************************************************************************/
8674 /* Allows the stats block to be dumped through the sysctl interface.        */
8675 /*                                                                          */
8676 /* Returns:                                                                 */
8677 /*   0 for success, positive value for failure.                             */
8678 /****************************************************************************/
8679 static int
8680 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8681 {
8682 	int error;
8683 	int result;
8684 	struct bce_softc *sc;
8685 
8686 	result = -1;
8687 	error = sysctl_handle_int(oidp, &result, 0, req);
8688 
8689 	if (error || !req->newptr)
8690 		return (error);
8691 
8692 	if (result == 1) {
8693 		sc = (struct bce_softc *)arg1;
8694 		bce_dump_stats_block(sc);
8695 	}
8696 
8697 	return error;
8698 }
8699 
8700 
8701 /****************************************************************************/
8702 /* Allows the stat counters to be cleared without unloading/reloading the   */
8703 /* driver.                                                                  */
8704 /*                                                                          */
8705 /* Returns:                                                                 */
8706 /*   0 for success, positive value for failure.                             */
8707 /****************************************************************************/
8708 static int
8709 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8710 {
8711 	int error;
8712 	int result;
8713 	struct bce_softc *sc;
8714 
8715 	result = -1;
8716 	error = sysctl_handle_int(oidp, &result, 0, req);
8717 
8718 	if (error || !req->newptr)
8719 		return (error);
8720 
8721 	if (result == 1) {
8722 		sc = (struct bce_softc *)arg1;
8723 		struct statistics_block *stats;
8724 
8725 		stats = (struct statistics_block *) sc->stats_block;
8726 		bzero(stats, sizeof(struct statistics_block));
8727 		bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8728 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8729 
8730 		/* Clear the internal H/W statistics counters. */
8731 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8732 
8733 		/* Reset the driver maintained statistics. */
8734 		sc->interrupts_rx =
8735 		    sc->interrupts_tx = 0;
8736 		sc->tso_frames_requested =
8737 		    sc->tso_frames_completed =
8738 		    sc->tso_frames_failed = 0;
8739 		sc->rx_empty_count =
8740 		    sc->tx_full_count = 0;
8741 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8742 		sc->tx_hi_watermark = 0;
8743 		sc->l2fhdr_error_count =
8744 		    sc->l2fhdr_error_sim_count = 0;
8745 		sc->mbuf_alloc_failed_count =
8746 		    sc->mbuf_alloc_failed_sim_count = 0;
8747 		sc->dma_map_addr_rx_failed_count =
8748 		    sc->dma_map_addr_tx_failed_count = 0;
8749 		sc->mbuf_frag_count = 0;
8750 		sc->csum_offload_tcp_udp =
8751 		    sc->csum_offload_ip = 0;
8752 		sc->vlan_tagged_frames_rcvd =
8753 		    sc->vlan_tagged_frames_stripped = 0;
8754 		sc->split_header_frames_rcvd =
8755 		    sc->split_header_tcp_frames_rcvd = 0;
8756 
8757 		/* Clear firmware maintained statistics. */
8758 		REG_WR_IND(sc, 0x120084, 0);
8759 	}
8760 
8761 	return error;
8762 }
8763 
8764 
8765 /****************************************************************************/
8766 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8767 /* interface.                                                               */
8768 /*                                                                          */
8769 /* Returns:                                                                 */
8770 /*   0 for success, positive value for failure.                             */
8771 /****************************************************************************/
8772 static int
8773 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8774 {
8775 	int error;
8776 	int result;
8777 	struct bce_softc *sc;
8778 
8779 	result = -1;
8780 	error = sysctl_handle_int(oidp, &result, 0, req);
8781 
8782 	if (error || !req->newptr)
8783 		return (error);
8784 
8785 	if (result == 1) {
8786 		sc = (struct bce_softc *)arg1;
8787 		bce_dump_shmem_state(sc);
8788 	}
8789 
8790 	return error;
8791 }
8792 
8793 
8794 /****************************************************************************/
8795 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8796 /*                                                                          */
8797 /* Returns:                                                                 */
8798 /*   0 for success, positive value for failure.                             */
8799 /****************************************************************************/
8800 static int
8801 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8802 {
8803 	int error;
8804 	int result;
8805 	struct bce_softc *sc;
8806 
8807 	result = -1;
8808 	error = sysctl_handle_int(oidp, &result, 0, req);
8809 
8810 	if (error || !req->newptr)
8811 		return (error);
8812 
8813 	if (result == 1) {
8814 		sc = (struct bce_softc *)arg1;
8815 		bce_dump_bc_state(sc);
8816 	}
8817 
8818 	return error;
8819 }
8820 
8821 
8822 /****************************************************************************/
8823 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8824 /*                                                                          */
8825 /* Returns:                                                                 */
8826 /*   0 for success, positive value for failure.                             */
8827 /****************************************************************************/
8828 static int
8829 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8830 {
8831 	int error;
8832 	int result;
8833 	struct bce_softc *sc;
8834 
8835 	result = -1;
8836 	error = sysctl_handle_int(oidp, &result, 0, req);
8837 
8838 	if (error || !req->newptr)
8839 		return (error);
8840 
8841 	if (result == 1) {
8842 		sc = (struct bce_softc *)arg1;
8843 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8844 	}
8845 
8846 	return error;
8847 }
8848 
8849 
8850 /****************************************************************************/
8851 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8852 /*                                                                          */
8853 /* Returns:                                                                 */
8854 /*   0 for success, positive value for failure.                             */
8855 /****************************************************************************/
8856 static int
8857 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8858 {
8859 	int error;
8860 	int result;
8861 	struct bce_softc *sc;
8862 
8863 	result = -1;
8864 	error = sysctl_handle_int(oidp, &result, 0, req);
8865 
8866 	if (error || !req->newptr)
8867 		return (error);
8868 
8869 	if (result == 1) {
8870 		sc = (struct bce_softc *)arg1;
8871 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8872 	}
8873 
8874 	return error;
8875 }
8876 
8877 
8878 /****************************************************************************/
8879 /* Provides a sysctl interface to allow dumping the TX chain.               */
8880 /*                                                                          */
8881 /* Returns:                                                                 */
8882 /*   0 for success, positive value for failure.                             */
8883 /****************************************************************************/
8884 static int
8885 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8886 {
8887 	int error;
8888 	int result;
8889 	struct bce_softc *sc;
8890 
8891 	result = -1;
8892 	error = sysctl_handle_int(oidp, &result, 0, req);
8893 
8894 	if (error || !req->newptr)
8895 		return (error);
8896 
8897 	if (result == 1) {
8898 		sc = (struct bce_softc *)arg1;
8899 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8900 	}
8901 
8902 	return error;
8903 }
8904 
8905 
8906 /****************************************************************************/
8907 /* Provides a sysctl interface to allow dumping the page chain.             */
8908 /*                                                                          */
8909 /* Returns:                                                                 */
8910 /*   0 for success, positive value for failure.                             */
8911 /****************************************************************************/
8912 static int
8913 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8914 {
8915 	int error;
8916 	int result;
8917 	struct bce_softc *sc;
8918 
8919 	result = -1;
8920 	error = sysctl_handle_int(oidp, &result, 0, req);
8921 
8922 	if (error || !req->newptr)
8923 		return (error);
8924 
8925 	if (result == 1) {
8926 		sc = (struct bce_softc *)arg1;
8927 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8928 	}
8929 
8930 	return error;
8931 }
8932 
8933 /****************************************************************************/
8934 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8935 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8936 /*                                                                          */
8937 /* Returns:                                                                 */
8938 /*   0 for success, positive value for failure.                             */
8939 /****************************************************************************/
8940 static int
8941 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8942 {
8943 	struct bce_softc *sc = (struct bce_softc *)arg1;
8944 	int error;
8945 	u32 result;
8946 	u32 val[1];
8947 	u8 *data = (u8 *) val;
8948 
8949 	result = -1;
8950 	error = sysctl_handle_int(oidp, &result, 0, req);
8951 	if (error || (req->newptr == NULL))
8952 		return (error);
8953 
8954 	error = bce_nvram_read(sc, result, data, 4);
8955 
8956 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8957 
8958 	return (error);
8959 }
8960 
8961 
8962 /****************************************************************************/
8963 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8964 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8965 /*                                                                          */
8966 /* Returns:                                                                 */
8967 /*   0 for success, positive value for failure.                             */
8968 /****************************************************************************/
8969 static int
8970 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8971 {
8972 	struct bce_softc *sc = (struct bce_softc *)arg1;
8973 	int error;
8974 	u32 val, result;
8975 
8976 	result = -1;
8977 	error = sysctl_handle_int(oidp, &result, 0, req);
8978 	if (error || (req->newptr == NULL))
8979 		return (error);
8980 
8981 	/* Make sure the register is accessible. */
8982 	if (result < 0x8000) {
8983 		val = REG_RD(sc, result);
8984 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8985 	} else if (result < 0x0280000) {
8986 		val = REG_RD_IND(sc, result);
8987 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8988 	}
8989 
8990 	return (error);
8991 }
8992 
8993 
8994 /****************************************************************************/
8995 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8996 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8997 /*                                                                          */
8998 /* Returns:                                                                 */
8999 /*   0 for success, positive value for failure.                             */
9000 /****************************************************************************/
9001 static int
9002 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
9003 {
9004 	struct bce_softc *sc;
9005 	device_t dev;
9006 	int error, result;
9007 	u16 val;
9008 
9009 	result = -1;
9010 	error = sysctl_handle_int(oidp, &result, 0, req);
9011 	if (error || (req->newptr == NULL))
9012 		return (error);
9013 
9014 	/* Make sure the register is accessible. */
9015 	if (result < 0x20) {
9016 		sc = (struct bce_softc *)arg1;
9017 		dev = sc->bce_dev;
9018 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
9019 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
9020 	}
9021 	return (error);
9022 }
9023 
9024 
9025 /****************************************************************************/
9026 /* Provides a sysctl interface for dumping the nvram contents.              */
9027 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9028 /*									    */
9029 /* Returns:								    */
9030 /*   0 for success, positive errno for failure.				    */
9031 /****************************************************************************/
9032 static int
9033 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
9034 {
9035 	struct bce_softc *sc = (struct bce_softc *)arg1;
9036 	int error, i;
9037 
9038 	if (sc->nvram_buf == NULL)
9039 		sc->nvram_buf = malloc(sc->bce_flash_size,
9040 				    M_TEMP, M_ZERO | M_WAITOK);
9041 
9042 	error = 0;
9043 	if (req->oldlen == sc->bce_flash_size) {
9044 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
9045 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9046 	}
9047 
9048 	if (error == 0)
9049 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9050 
9051 	return error;
9052 }
9053 
9054 #ifdef BCE_NVRAM_WRITE_SUPPORT
9055 /****************************************************************************/
9056 /* Provides a sysctl interface for writing to nvram.                        */
9057 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9058 /*									    */
9059 /* Returns:								    */
9060 /*   0 for success, positive errno for failure.				    */
9061 /****************************************************************************/
9062 static int
9063 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9064 {
9065 	struct bce_softc *sc = (struct bce_softc *)arg1;
9066 	int error;
9067 
9068 	if (sc->nvram_buf == NULL)
9069 		sc->nvram_buf = malloc(sc->bce_flash_size,
9070 				    M_TEMP, M_ZERO | M_WAITOK);
9071 	else
9072 		bzero(sc->nvram_buf, sc->bce_flash_size);
9073 
9074 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9075 	if (error == 0)
9076 		return (error);
9077 
9078 	if (req->newlen == sc->bce_flash_size)
9079 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
9080 			    sc->bce_flash_size);
9081 
9082 
9083 	return error;
9084 }
9085 #endif
9086 
9087 
9088 /****************************************************************************/
9089 /* Provides a sysctl interface to allow reading a CID.                      */
9090 /*                                                                          */
9091 /* Returns:                                                                 */
9092 /*   0 for success, positive value for failure.                             */
9093 /****************************************************************************/
9094 static int
9095 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9096 {
9097 	struct bce_softc *sc;
9098 	int error, result;
9099 
9100 	result = -1;
9101 	error = sysctl_handle_int(oidp, &result, 0, req);
9102 	if (error || (req->newptr == NULL))
9103 		return (error);
9104 
9105 	/* Make sure the register is accessible. */
9106 	if (result <= TX_CID) {
9107 		sc = (struct bce_softc *)arg1;
9108 		bce_dump_ctx(sc, result);
9109 	}
9110 
9111 	return (error);
9112 }
9113 
9114 
9115 /****************************************************************************/
9116 /* Provides a sysctl interface to forcing the driver to dump state and      */
9117 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9118 /*                                                                          */
9119 /* Returns:                                                                 */
9120 /*   0 for success, positive value for failure.                             */
9121 /****************************************************************************/
9122 static int
9123 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9124 {
9125 	int error;
9126 	int result;
9127 	struct bce_softc *sc;
9128 
9129 	result = -1;
9130 	error = sysctl_handle_int(oidp, &result, 0, req);
9131 
9132 	if (error || !req->newptr)
9133 		return (error);
9134 
9135 	if (result == 1) {
9136 		sc = (struct bce_softc *)arg1;
9137 		bce_breakpoint(sc);
9138 	}
9139 
9140 	return error;
9141 }
9142 #endif
9143 
9144 /****************************************************************************/
9145 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9146 /*                                                                          */
9147 /* Returns:                                                                 */
9148 /*   0 for success, positive value for failure.                             */
9149 /****************************************************************************/
9150 static void
9151 bce_add_sysctls(struct bce_softc *sc)
9152 {
9153 	struct sysctl_ctx_list *ctx;
9154 	struct sysctl_oid_list *children;
9155 
9156 	DBENTER(BCE_VERBOSE_MISC);
9157 
9158 	ctx = device_get_sysctl_ctx(sc->bce_dev);
9159 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9160 
9161 #ifdef BCE_DEBUG
9162 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9163 	    "l2fhdr_error_sim_control",
9164 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
9165 	    0, "Debug control to force l2fhdr errors");
9166 
9167 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9168 	    "l2fhdr_error_sim_count",
9169 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9170 	    0, "Number of simulated l2_fhdr errors");
9171 #endif
9172 
9173 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9174 	    "l2fhdr_error_count",
9175 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
9176 	    0, "Number of l2_fhdr errors");
9177 
9178 #ifdef BCE_DEBUG
9179 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9180 	    "mbuf_alloc_failed_sim_control",
9181 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9182 	    0, "Debug control to force mbuf allocation failures");
9183 
9184 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9185 	    "mbuf_alloc_failed_sim_count",
9186 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9187 	    0, "Number of simulated mbuf cluster allocation failures");
9188 #endif
9189 
9190 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9191 	    "mbuf_alloc_failed_count",
9192 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9193 	    0, "Number of mbuf allocation failures");
9194 
9195 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9196 	    "mbuf_frag_count",
9197 	    CTLFLAG_RD, &sc->mbuf_frag_count,
9198 	    0, "Number of fragmented mbufs");
9199 
9200 #ifdef BCE_DEBUG
9201 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9202 	    "dma_map_addr_failed_sim_control",
9203 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9204 	    0, "Debug control to force DMA mapping failures");
9205 
9206 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9207 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9208 	    "dma_map_addr_failed_sim_count",
9209 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9210 	    0, "Number of simulated DMA mapping failures");
9211 
9212 #endif
9213 
9214 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9215 	    "dma_map_addr_rx_failed_count",
9216 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9217 	    0, "Number of RX DMA mapping failures");
9218 
9219 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9220 	    "dma_map_addr_tx_failed_count",
9221 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9222 	    0, "Number of TX DMA mapping failures");
9223 
9224 #ifdef BCE_DEBUG
9225 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9226 	    "unexpected_attention_sim_control",
9227 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9228 	    0, "Debug control to simulate unexpected attentions");
9229 
9230 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9231 	    "unexpected_attention_sim_count",
9232 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9233 	    0, "Number of simulated unexpected attentions");
9234 #endif
9235 
9236 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9237 	    "unexpected_attention_count",
9238 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9239 	    0, "Number of unexpected attentions");
9240 
9241 #ifdef BCE_DEBUG
9242 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9243 	    "debug_bootcode_running_failure",
9244 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9245 	    0, "Debug control to force bootcode running failures");
9246 
9247 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9248 	    "rx_low_watermark",
9249 	    CTLFLAG_RD, &sc->rx_low_watermark,
9250 	    0, "Lowest level of free rx_bd's");
9251 
9252 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9253 	    "rx_empty_count",
9254 	    CTLFLAG_RD, &sc->rx_empty_count,
9255 	    "Number of times the RX chain was empty");
9256 
9257 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9258 	    "tx_hi_watermark",
9259 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9260 	    0, "Highest level of used tx_bd's");
9261 
9262 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9263 	    "tx_full_count",
9264 	    CTLFLAG_RD, &sc->tx_full_count,
9265 	    "Number of times the TX chain was full");
9266 
9267 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9268 	    "tso_frames_requested",
9269 	    CTLFLAG_RD, &sc->tso_frames_requested,
9270 	    "Number of TSO frames requested");
9271 
9272 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9273 	    "tso_frames_completed",
9274 	    CTLFLAG_RD, &sc->tso_frames_completed,
9275 	    "Number of TSO frames completed");
9276 
9277 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9278 	    "tso_frames_failed",
9279 	    CTLFLAG_RD, &sc->tso_frames_failed,
9280 	    "Number of TSO frames failed");
9281 
9282 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9283 	    "csum_offload_ip",
9284 	    CTLFLAG_RD, &sc->csum_offload_ip,
9285 	    "Number of IP checksum offload frames");
9286 
9287 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9288 	    "csum_offload_tcp_udp",
9289 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9290 	    "Number of TCP/UDP checksum offload frames");
9291 
9292 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9293 	    "vlan_tagged_frames_rcvd",
9294 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9295 	    "Number of VLAN tagged frames received");
9296 
9297 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9298 	    "vlan_tagged_frames_stripped",
9299 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9300 	    "Number of VLAN tagged frames stripped");
9301 
9302 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9303 	    "interrupts_rx",
9304 	    CTLFLAG_RD, &sc->interrupts_rx,
9305 	    "Number of RX interrupts");
9306 
9307 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9308 	    "interrupts_tx",
9309 	    CTLFLAG_RD, &sc->interrupts_tx,
9310 	    "Number of TX interrupts");
9311 
9312 	if (bce_hdr_split == TRUE) {
9313 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9314 		    "split_header_frames_rcvd",
9315 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9316 		    "Number of split header frames received");
9317 
9318 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9319 		    "split_header_tcp_frames_rcvd",
9320 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9321 		    "Number of split header TCP frames received");
9322 	}
9323 
9324 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9325 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9326 	    (void *)sc, 0,
9327 	    bce_sysctl_nvram_dump, "S", "");
9328 
9329 #ifdef BCE_NVRAM_WRITE_SUPPORT
9330 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9331 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9332 	    (void *)sc, 0,
9333 	    bce_sysctl_nvram_write, "S", "");
9334 #endif
9335 #endif /* BCE_DEBUG */
9336 
9337 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9338 	    "stat_IfHcInOctets",
9339 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9340 	    "Bytes received");
9341 
9342 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9343 	    "stat_IfHCInBadOctets",
9344 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9345 	    "Bad bytes received");
9346 
9347 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9348 	    "stat_IfHCOutOctets",
9349 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9350 	    "Bytes sent");
9351 
9352 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9353 	    "stat_IfHCOutBadOctets",
9354 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9355 	    "Bad bytes sent");
9356 
9357 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9358 	    "stat_IfHCInUcastPkts",
9359 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9360 	    "Unicast packets received");
9361 
9362 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9363 	    "stat_IfHCInMulticastPkts",
9364 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9365 	    "Multicast packets received");
9366 
9367 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9368 	    "stat_IfHCInBroadcastPkts",
9369 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9370 	    "Broadcast packets received");
9371 
9372 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9373 	    "stat_IfHCOutUcastPkts",
9374 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9375 	    "Unicast packets sent");
9376 
9377 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9378 	    "stat_IfHCOutMulticastPkts",
9379 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9380 	    "Multicast packets sent");
9381 
9382 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9383 	    "stat_IfHCOutBroadcastPkts",
9384 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9385 	    "Broadcast packets sent");
9386 
9387 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9388 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9389 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9390 	    0, "Internal MAC transmit errors");
9391 
9392 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9393 	    "stat_Dot3StatsCarrierSenseErrors",
9394 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9395 	    0, "Carrier sense errors");
9396 
9397 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9398 	    "stat_Dot3StatsFCSErrors",
9399 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9400 	    0, "Frame check sequence errors");
9401 
9402 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9403 	    "stat_Dot3StatsAlignmentErrors",
9404 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9405 	    0, "Alignment errors");
9406 
9407 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9408 	    "stat_Dot3StatsSingleCollisionFrames",
9409 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9410 	    0, "Single Collision Frames");
9411 
9412 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9413 	    "stat_Dot3StatsMultipleCollisionFrames",
9414 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9415 	    0, "Multiple Collision Frames");
9416 
9417 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9418 	    "stat_Dot3StatsDeferredTransmissions",
9419 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9420 	    0, "Deferred Transmissions");
9421 
9422 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9423 	    "stat_Dot3StatsExcessiveCollisions",
9424 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9425 	    0, "Excessive Collisions");
9426 
9427 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9428 	    "stat_Dot3StatsLateCollisions",
9429 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9430 	    0, "Late Collisions");
9431 
9432 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9433 	    "stat_EtherStatsCollisions",
9434 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9435 	    0, "Collisions");
9436 
9437 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9438 	    "stat_EtherStatsFragments",
9439 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9440 	    0, "Fragments");
9441 
9442 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9443 	    "stat_EtherStatsJabbers",
9444 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9445 	    0, "Jabbers");
9446 
9447 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9448 	    "stat_EtherStatsUndersizePkts",
9449 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9450 	    0, "Undersize packets");
9451 
9452 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9453 	    "stat_EtherStatsOversizePkts",
9454 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9455 	    0, "stat_EtherStatsOversizePkts");
9456 
9457 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9458 	    "stat_EtherStatsPktsRx64Octets",
9459 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9460 	    0, "Bytes received in 64 byte packets");
9461 
9462 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9463 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9464 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9465 	    0, "Bytes received in 65 to 127 byte packets");
9466 
9467 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9468 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9469 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9470 	    0, "Bytes received in 128 to 255 byte packets");
9471 
9472 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9473 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9474 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9475 	    0, "Bytes received in 256 to 511 byte packets");
9476 
9477 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9478 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9479 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9480 	    0, "Bytes received in 512 to 1023 byte packets");
9481 
9482 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9483 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9484 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9485 	    0, "Bytes received in 1024 t0 1522 byte packets");
9486 
9487 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9488 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9489 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9490 	    0, "Bytes received in 1523 to 9022 byte packets");
9491 
9492 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9493 	    "stat_EtherStatsPktsTx64Octets",
9494 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9495 	    0, "Bytes sent in 64 byte packets");
9496 
9497 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9498 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9499 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9500 	    0, "Bytes sent in 65 to 127 byte packets");
9501 
9502 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9503 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9504 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9505 	    0, "Bytes sent in 128 to 255 byte packets");
9506 
9507 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9508 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9509 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9510 	    0, "Bytes sent in 256 to 511 byte packets");
9511 
9512 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9513 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9514 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9515 	    0, "Bytes sent in 512 to 1023 byte packets");
9516 
9517 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9518 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9519 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9520 	    0, "Bytes sent in 1024 to 1522 byte packets");
9521 
9522 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9523 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9524 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9525 	    0, "Bytes sent in 1523 to 9022 byte packets");
9526 
9527 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9528 	    "stat_XonPauseFramesReceived",
9529 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9530 	    0, "XON pause frames receved");
9531 
9532 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9533 	    "stat_XoffPauseFramesReceived",
9534 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9535 	    0, "XOFF pause frames received");
9536 
9537 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9538 	    "stat_OutXonSent",
9539 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9540 	    0, "XON pause frames sent");
9541 
9542 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9543 	    "stat_OutXoffSent",
9544 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9545 	    0, "XOFF pause frames sent");
9546 
9547 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9548 	    "stat_FlowControlDone",
9549 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9550 	    0, "Flow control done");
9551 
9552 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9553 	    "stat_MacControlFramesReceived",
9554 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9555 	    0, "MAC control frames received");
9556 
9557 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9558 	    "stat_XoffStateEntered",
9559 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9560 	    0, "XOFF state entered");
9561 
9562 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9563 	    "stat_IfInFramesL2FilterDiscards",
9564 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9565 	    0, "Received L2 packets discarded");
9566 
9567 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9568 	    "stat_IfInRuleCheckerDiscards",
9569 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9570 	    0, "Received packets discarded by rule");
9571 
9572 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9573 	    "stat_IfInFTQDiscards",
9574 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9575 	    0, "Received packet FTQ discards");
9576 
9577 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9578 	    "stat_IfInMBUFDiscards",
9579 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9580 	    0, "Received packets discarded due to lack "
9581 	    "of controller buffer memory");
9582 
9583 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9584 	    "stat_IfInRuleCheckerP4Hit",
9585 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9586 	    0, "Received packets rule checker hits");
9587 
9588 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9589 	    "stat_CatchupInRuleCheckerDiscards",
9590 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9591 	    0, "Received packets discarded in Catchup path");
9592 
9593 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9594 	    "stat_CatchupInFTQDiscards",
9595 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9596 	    0, "Received packets discarded in FTQ in Catchup path");
9597 
9598 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9599 	    "stat_CatchupInMBUFDiscards",
9600 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9601 	    0, "Received packets discarded in controller "
9602 	    "buffer memory in Catchup path");
9603 
9604 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9605 	    "stat_CatchupInRuleCheckerP4Hit",
9606 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9607 	    0, "Received packets rule checker hits in Catchup path");
9608 
9609 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9610 	    "com_no_buffers",
9611 	    CTLFLAG_RD, &sc->com_no_buffers,
9612 	    0, "Valid packets received but no RX buffers available");
9613 
9614 #ifdef BCE_DEBUG
9615 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9616 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9617 	    (void *)sc, 0,
9618 	    bce_sysctl_driver_state, "I", "Drive state information");
9619 
9620 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9621 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9622 	    (void *)sc, 0,
9623 	    bce_sysctl_hw_state, "I", "Hardware state information");
9624 
9625 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9626 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9627 	    (void *)sc, 0,
9628 	    bce_sysctl_status_block, "I", "Dump status block");
9629 
9630 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9631 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9632 	    (void *)sc, 0,
9633 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9634 
9635 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9636 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9637 	    (void *)sc, 0,
9638 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9639 
9640 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9641 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9642 	    (void *)sc, 0,
9643 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9644 
9645 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9646 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9647 	    (void *)sc, 0,
9648 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9649 
9650 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9651 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9652 	    (void *)sc, 0,
9653 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9654 
9655 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9656 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9657 	    (void *)sc, 0,
9658 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9659 
9660 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9661 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9662 	    (void *)sc, 0,
9663 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9664 
9665 	if (bce_hdr_split == TRUE) {
9666 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9667 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9668 		    (void *)sc, 0,
9669 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9670 	}
9671 
9672 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9673 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9674 	    (void *)sc, 0,
9675 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9676 
9677 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9678 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9679 	    (void *)sc, 0,
9680 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9681 
9682 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9683 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9684 	    (void *)sc, 0,
9685 	    bce_sysctl_reg_read, "I", "Register read");
9686 
9687 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9688 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9689 	    (void *)sc, 0,
9690 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9691 
9692 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9693 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9694 	    (void *)sc, 0,
9695 	    bce_sysctl_phy_read, "I", "PHY register read");
9696 
9697 #endif
9698 
9699 	DBEXIT(BCE_VERBOSE_MISC);
9700 }
9701 
9702 
9703 /****************************************************************************/
9704 /* BCE Debug Routines                                                       */
9705 /****************************************************************************/
9706 #ifdef BCE_DEBUG
9707 
9708 /****************************************************************************/
9709 /* Freezes the controller to allow for a cohesive state dump.               */
9710 /*                                                                          */
9711 /* Returns:                                                                 */
9712 /*   Nothing.                                                               */
9713 /****************************************************************************/
9714 static __attribute__ ((noinline)) void
9715 bce_freeze_controller(struct bce_softc *sc)
9716 {
9717 	u32 val;
9718 	val = REG_RD(sc, BCE_MISC_COMMAND);
9719 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9720 	REG_WR(sc, BCE_MISC_COMMAND, val);
9721 }
9722 
9723 
9724 /****************************************************************************/
9725 /* Unfreezes the controller after a freeze operation.  This may not always  */
9726 /* work and the controller will require a reset!                            */
9727 /*                                                                          */
9728 /* Returns:                                                                 */
9729 /*   Nothing.                                                               */
9730 /****************************************************************************/
9731 static __attribute__ ((noinline)) void
9732 bce_unfreeze_controller(struct bce_softc *sc)
9733 {
9734 	u32 val;
9735 	val = REG_RD(sc, BCE_MISC_COMMAND);
9736 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9737 	REG_WR(sc, BCE_MISC_COMMAND, val);
9738 }
9739 
9740 
9741 /****************************************************************************/
9742 /* Prints out Ethernet frame information from an mbuf.                      */
9743 /*                                                                          */
9744 /* Partially decode an Ethernet frame to look at some important headers.    */
9745 /*                                                                          */
9746 /* Returns:                                                                 */
9747 /*   Nothing.                                                               */
9748 /****************************************************************************/
9749 static __attribute__ ((noinline)) void
9750 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9751 {
9752 	struct ether_vlan_header *eh;
9753 	u16 etype;
9754 	int ehlen;
9755 	struct ip *ip;
9756 	struct tcphdr *th;
9757 	struct udphdr *uh;
9758 	struct arphdr *ah;
9759 
9760 	BCE_PRINTF(
9761 	    "-----------------------------"
9762 	    " Frame Decode "
9763 	    "-----------------------------\n");
9764 
9765 	eh = mtod(m, struct ether_vlan_header *);
9766 
9767 	/* Handle VLAN encapsulation if present. */
9768 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9769 		etype = ntohs(eh->evl_proto);
9770 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9771 	} else {
9772 		etype = ntohs(eh->evl_encap_proto);
9773 		ehlen = ETHER_HDR_LEN;
9774 	}
9775 
9776 	/* ToDo: Add VLAN output. */
9777 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9778 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9779 
9780 	switch (etype) {
9781 	case ETHERTYPE_IP:
9782 		ip = (struct ip *)(m->m_data + ehlen);
9783 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9784 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9785 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9786 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9787 
9788 		switch (ip->ip_p) {
9789 		case IPPROTO_TCP:
9790 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9791 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9792 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9793 			    ntohs(th->th_dport), ntohs(th->th_sport),
9794 			    (th->th_off << 2), th->th_flags,
9795 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9796 			    "\02SYN\01FIN", ntohs(th->th_sum));
9797 			break;
9798 		case IPPROTO_UDP:
9799 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9800 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9801 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9802 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9803 			    ntohs(uh->uh_sum));
9804 			break;
9805 		case IPPROTO_ICMP:
9806 			BCE_PRINTF("icmp:\n");
9807 			break;
9808 		default:
9809 			BCE_PRINTF("----: Other IP protocol.\n");
9810 			}
9811 		break;
9812 	case ETHERTYPE_IPV6:
9813 		BCE_PRINTF("ipv6: No decode supported.\n");
9814 		break;
9815 	case ETHERTYPE_ARP:
9816 		BCE_PRINTF("-arp: ");
9817 		ah = (struct arphdr *) (m->m_data + ehlen);
9818 		switch (ntohs(ah->ar_op)) {
9819 		case ARPOP_REVREQUEST:
9820 			printf("reverse ARP request\n");
9821 			break;
9822 		case ARPOP_REVREPLY:
9823 			printf("reverse ARP reply\n");
9824 			break;
9825 		case ARPOP_REQUEST:
9826 			printf("ARP request\n");
9827 			break;
9828 		case ARPOP_REPLY:
9829 			printf("ARP reply\n");
9830 			break;
9831 		default:
9832 			printf("other ARP operation\n");
9833 		}
9834 		break;
9835 	default:
9836 		BCE_PRINTF("----: Other protocol.\n");
9837 	}
9838 
9839 	BCE_PRINTF(
9840 		"-----------------------------"
9841 		"--------------"
9842 		"-----------------------------\n");
9843 }
9844 
9845 
9846 /****************************************************************************/
9847 /* Prints out information about an mbuf.                                    */
9848 /*                                                                          */
9849 /* Returns:                                                                 */
9850 /*   Nothing.                                                               */
9851 /****************************************************************************/
9852 static __attribute__ ((noinline)) void
9853 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9854 {
9855 	struct mbuf *mp = m;
9856 
9857 	if (m == NULL) {
9858 		BCE_PRINTF("mbuf: null pointer\n");
9859 		return;
9860 	}
9861 
9862 	while (mp) {
9863 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9864 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9865 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9866 
9867 		if (mp->m_flags & M_PKTHDR) {
9868 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9869 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9870 			    mp->m_flags, M_FLAG_PRINTF,
9871 			    mp->m_pkthdr.csum_flags,
9872 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP"
9873 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9874 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9875 			    "\14CSUM_PSEUDO_HDR");
9876 		}
9877 
9878 		if (mp->m_flags & M_EXT) {
9879 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9880 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9881 			switch (mp->m_ext.ext_type) {
9882 			case EXT_CLUSTER:
9883 				printf("EXT_CLUSTER\n"); break;
9884 			case EXT_SFBUF:
9885 				printf("EXT_SFBUF\n"); break;
9886 			case EXT_JUMBO9:
9887 				printf("EXT_JUMBO9\n"); break;
9888 			case EXT_JUMBO16:
9889 				printf("EXT_JUMBO16\n"); break;
9890 			case EXT_PACKET:
9891 				printf("EXT_PACKET\n"); break;
9892 			case EXT_MBUF:
9893 				printf("EXT_MBUF\n"); break;
9894 			case EXT_NET_DRV:
9895 				printf("EXT_NET_DRV\n"); break;
9896 			case EXT_MOD_TYPE:
9897 				printf("EXT_MDD_TYPE\n"); break;
9898 			case EXT_DISPOSABLE:
9899 				printf("EXT_DISPOSABLE\n"); break;
9900 			case EXT_EXTREF:
9901 				printf("EXT_EXTREF\n"); break;
9902 			default:
9903 				printf("UNKNOWN\n");
9904 			}
9905 		}
9906 
9907 		mp = mp->m_next;
9908 	}
9909 }
9910 
9911 
9912 /****************************************************************************/
9913 /* Prints out the mbufs in the TX mbuf chain.                               */
9914 /*                                                                          */
9915 /* Returns:                                                                 */
9916 /*   Nothing.                                                               */
9917 /****************************************************************************/
9918 static __attribute__ ((noinline)) void
9919 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9920 {
9921 	struct mbuf *m;
9922 
9923 	BCE_PRINTF(
9924 		"----------------------------"
9925 		"  tx mbuf data  "
9926 		"----------------------------\n");
9927 
9928 	for (int i = 0; i < count; i++) {
9929 	 	m = sc->tx_mbuf_ptr[chain_prod];
9930 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9931 		bce_dump_mbuf(sc, m);
9932 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9933 	}
9934 
9935 	BCE_PRINTF(
9936 		"----------------------------"
9937 		"----------------"
9938 		"----------------------------\n");
9939 }
9940 
9941 
9942 /****************************************************************************/
9943 /* Prints out the mbufs in the RX mbuf chain.                               */
9944 /*                                                                          */
9945 /* Returns:                                                                 */
9946 /*   Nothing.                                                               */
9947 /****************************************************************************/
9948 static __attribute__ ((noinline)) void
9949 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9950 {
9951 	struct mbuf *m;
9952 
9953 	BCE_PRINTF(
9954 		"----------------------------"
9955 		"  rx mbuf data  "
9956 		"----------------------------\n");
9957 
9958 	for (int i = 0; i < count; i++) {
9959 	 	m = sc->rx_mbuf_ptr[chain_prod];
9960 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9961 		bce_dump_mbuf(sc, m);
9962 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9963 	}
9964 
9965 
9966 	BCE_PRINTF(
9967 		"----------------------------"
9968 		"----------------"
9969 		"----------------------------\n");
9970 }
9971 
9972 
9973 /****************************************************************************/
9974 /* Prints out the mbufs in the mbuf page chain.                             */
9975 /*                                                                          */
9976 /* Returns:                                                                 */
9977 /*   Nothing.                                                               */
9978 /****************************************************************************/
9979 static __attribute__ ((noinline)) void
9980 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9981 {
9982 	struct mbuf *m;
9983 
9984 	BCE_PRINTF(
9985 		"----------------------------"
9986 		"  pg mbuf data  "
9987 		"----------------------------\n");
9988 
9989 	for (int i = 0; i < count; i++) {
9990 	 	m = sc->pg_mbuf_ptr[chain_prod];
9991 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9992 		bce_dump_mbuf(sc, m);
9993 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9994 	}
9995 
9996 
9997 	BCE_PRINTF(
9998 		"----------------------------"
9999 		"----------------"
10000 		"----------------------------\n");
10001 }
10002 
10003 
10004 /****************************************************************************/
10005 /* Prints out a tx_bd structure.                                            */
10006 /*                                                                          */
10007 /* Returns:                                                                 */
10008 /*   Nothing.                                                               */
10009 /****************************************************************************/
10010 static __attribute__ ((noinline)) void
10011 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
10012 {
10013 	int i = 0;
10014 
10015 	if (idx > MAX_TX_BD_ALLOC)
10016 		/* Index out of range. */
10017 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
10018 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
10019 		/* TX Chain page pointer. */
10020 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10021 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
10022 		    txbd->tx_bd_haddr_lo);
10023 	else {
10024 		/* Normal tx_bd entry. */
10025 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
10026 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
10027 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
10028 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
10029 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
10030 
10031 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
10032 			if (i>0)
10033 				printf("|");
10034 			printf("CONN_FAULT");
10035 			i++;
10036 		}
10037 
10038 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
10039 			if (i>0)
10040 				printf("|");
10041 			printf("TCP_UDP_CKSUM");
10042 			i++;
10043 		}
10044 
10045 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10046 			if (i>0)
10047 				printf("|");
10048 			printf("IP_CKSUM");
10049 			i++;
10050 		}
10051 
10052 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10053 			if (i>0)
10054 				printf("|");
10055 			printf("VLAN");
10056 			i++;
10057 		}
10058 
10059 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10060 			if (i>0)
10061 				printf("|");
10062 			printf("COAL_NOW");
10063 			i++;
10064 		}
10065 
10066 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10067 			if (i>0)
10068 				printf("|");
10069 			printf("DONT_GEN_CRC");
10070 			i++;
10071 		}
10072 
10073 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10074 			if (i>0)
10075 				printf("|");
10076 			printf("START");
10077 			i++;
10078 		}
10079 
10080 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10081 			if (i>0)
10082 				printf("|");
10083 			printf("END");
10084 			i++;
10085 		}
10086 
10087 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10088 			if (i>0)
10089 				printf("|");
10090 			printf("LSO");
10091 			i++;
10092 		}
10093 
10094 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10095 			if (i>0)
10096 				printf("|");
10097 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10098 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10099 		}
10100 
10101 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10102 			if (i>0)
10103 				printf("|");
10104 			printf("SW_FLAGS");
10105 			i++;
10106 		}
10107 
10108 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10109 			if (i>0)
10110 				printf("|");
10111 			printf("SNAP)");
10112 		} else {
10113 			printf(")\n");
10114 		}
10115 	}
10116 }
10117 
10118 
10119 /****************************************************************************/
10120 /* Prints out a rx_bd structure.                                            */
10121 /*                                                                          */
10122 /* Returns:                                                                 */
10123 /*   Nothing.                                                               */
10124 /****************************************************************************/
10125 static __attribute__ ((noinline)) void
10126 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10127 {
10128 	if (idx > MAX_RX_BD_ALLOC)
10129 		/* Index out of range. */
10130 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10131 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10132 		/* RX Chain page pointer. */
10133 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10134 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10135 		    rxbd->rx_bd_haddr_lo);
10136 	else
10137 		/* Normal rx_bd entry. */
10138 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10139 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10140 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10141 		    rxbd->rx_bd_flags);
10142 }
10143 
10144 
10145 /****************************************************************************/
10146 /* Prints out a rx_bd structure in the page chain.                          */
10147 /*                                                                          */
10148 /* Returns:                                                                 */
10149 /*   Nothing.                                                               */
10150 /****************************************************************************/
10151 static __attribute__ ((noinline)) void
10152 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10153 {
10154 	if (idx > MAX_PG_BD_ALLOC)
10155 		/* Index out of range. */
10156 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10157 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10158 		/* Page Chain page pointer. */
10159 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10160 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10161 	else
10162 		/* Normal rx_bd entry. */
10163 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10164 			"flags = 0x%08X\n", idx,
10165 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10166 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
10167 }
10168 
10169 
10170 /****************************************************************************/
10171 /* Prints out a l2_fhdr structure.                                          */
10172 /*                                                                          */
10173 /* Returns:                                                                 */
10174 /*   Nothing.                                                               */
10175 /****************************************************************************/
10176 static __attribute__ ((noinline)) void
10177 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10178 {
10179 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10180 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10181 		"tcp_udp_xsum = 0x%04X\n", idx,
10182 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10183 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10184 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10185 }
10186 
10187 
10188 /****************************************************************************/
10189 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10190 /*                                                                          */
10191 /* Returns:                                                                 */
10192 /*   Nothing.                                                               */
10193 /****************************************************************************/
10194 static __attribute__ ((noinline)) void
10195 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10196 {
10197 	if (cid > TX_CID) {
10198 		BCE_PRINTF(" Unknown CID\n");
10199 		return;
10200 	}
10201 
10202 	BCE_PRINTF(
10203 	    "----------------------------"
10204 	    "    CTX Data    "
10205 	    "----------------------------\n");
10206 
10207 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10208 
10209 	if (cid == RX_CID) {
10210 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10211 		   "producer index\n",
10212 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10213 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10214 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10215 		    BCE_L2CTX_RX_HOST_BSEQ));
10216 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10217 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10218 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10219 		    "descriptor address\n",
10220  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10221 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10222 		    "descriptor address\n",
10223 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10224 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10225 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10226 		    BCE_L2CTX_RX_NX_BDIDX));
10227 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10228 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10229 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10230 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10231 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10232 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10233 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10234 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10235 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10236 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10237 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10238 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10239 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10240 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10241 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10242 	} else if (cid == TX_CID) {
10243 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10244 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10245 			    CTX_RD(sc, GET_CID_ADDR(cid),
10246 			    BCE_L2CTX_TX_TYPE_XI));
10247 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10248 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10249 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10250 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10251 			    "h/w buffer descriptor address\n",
10252 			    CTX_RD(sc, GET_CID_ADDR(cid),
10253 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10254 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10255 			    "h/w buffer	descriptor address\n",
10256 			    CTX_RD(sc, GET_CID_ADDR(cid),
10257 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10258 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10259 			    "host producer index\n",
10260 			    CTX_RD(sc, GET_CID_ADDR(cid),
10261 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10262 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10263 			    "host byte sequence\n",
10264 			    CTX_RD(sc, GET_CID_ADDR(cid),
10265 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10266 		} else {
10267 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10268 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10269 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10270 			    CTX_RD(sc, GET_CID_ADDR(cid),
10271 			    BCE_L2CTX_TX_CMD_TYPE));
10272 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10273 			    "h/w buffer	descriptor address\n",
10274 			    CTX_RD(sc, GET_CID_ADDR(cid),
10275 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10276 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10277 			    "h/w buffer	descriptor address\n",
10278 			    CTX_RD(sc, GET_CID_ADDR(cid),
10279 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10280 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10281 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10282 			    BCE_L2CTX_TX_HOST_BIDX));
10283 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10284 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10285 			    BCE_L2CTX_TX_HOST_BSEQ));
10286 		}
10287 	}
10288 
10289 	BCE_PRINTF(
10290 	   "----------------------------"
10291 	   "    Raw CTX     "
10292 	   "----------------------------\n");
10293 
10294 	for (int i = 0x0; i < 0x300; i += 0x10) {
10295 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10296 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10297 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10298 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10299 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10300 	}
10301 
10302 
10303 	BCE_PRINTF(
10304 	   "----------------------------"
10305 	   "----------------"
10306 	   "----------------------------\n");
10307 }
10308 
10309 
10310 /****************************************************************************/
10311 /* Prints out the FTQ data.                                                 */
10312 /*                                                                          */
10313 /* Returns:                                                                */
10314 /*   Nothing.                                                               */
10315 /****************************************************************************/
10316 static __attribute__ ((noinline)) void
10317 bce_dump_ftqs(struct bce_softc *sc)
10318 {
10319 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10320 
10321 	BCE_PRINTF(
10322 	    "----------------------------"
10323 	    "    FTQ Data    "
10324 	    "----------------------------\n");
10325 
10326 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10327 	    "Max_Depth  Valid_Cnt \n");
10328 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10329 	    "---------- ----------\n");
10330 
10331 	/* Setup the generic statistic counters for the FTQ valid count. */
10332 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10333 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10334 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10335 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10336 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10337 
10338 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10339 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10340 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10341 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10342 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10343 
10344 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10345 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10346 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10347 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10348 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10349 
10350 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10351 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10352 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10353 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10354 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10355 
10356 	/* Input queue to the Receive Lookup state machine */
10357 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10358 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10359 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10360 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10361 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10362 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10363 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10364 
10365 	/* Input queue to the Receive Processor */
10366 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10367 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10368 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10369 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10370 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10371 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10372 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10373 
10374 	/* Input queue to the Recevie Processor */
10375 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10376 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10377 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10378 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10379 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10380 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10381 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10382 
10383 	/* Input queue to the Receive Virtual to Physical state machine */
10384 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10385 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10386 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10387 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10388 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10389 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10390 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10391 
10392 	/* Input queue to the Recevie Virtual to Physical state machine */
10393 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10394 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10395 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10396 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10397 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10398 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10399 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10400 
10401 	/* Input queue to the Receive Virtual to Physical state machine */
10402 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10403 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10404 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10405 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10406 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10407 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10408 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10409 
10410 	/* Input queue to the Receive DMA state machine */
10411 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10412 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10413 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10414 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10415 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10416 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10417 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10418 
10419 	/* Input queue to the Transmit Scheduler state machine */
10420 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10421 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10422 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10423 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10424 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10425 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10426 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10427 
10428 	/* Input queue to the Transmit Buffer Descriptor state machine */
10429 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10430 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10431 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10432 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10433 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10434 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10435 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10436 
10437 	/* Input queue to the Transmit Processor */
10438 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10439 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10440 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10441 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10442 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10443 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10444 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10445 
10446 	/* Input queue to the Transmit DMA state machine */
10447 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10448 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10449 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10450 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10451 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10452 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10453 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10454 
10455 	/* Input queue to the Transmit Patch-Up Processor */
10456 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10457 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10458 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10459 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10460 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10461 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10462 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10463 
10464 	/* Input queue to the Transmit Assembler state machine */
10465 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10466 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10467 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10468 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10469 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10470 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10471 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10472 
10473 	/* Input queue to the Completion Processor */
10474 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10475 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10476 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10477 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10478 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10479 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10480 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10481 
10482 	/* Input queue to the Completion Processor */
10483 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10484 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10485 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10486 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10487 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10488 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10489 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10490 
10491 	/* Input queue to the Completion Processor */
10492 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10493 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10494 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10495 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10496 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10497 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10498 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10499 
10500 	/* Setup the generic statistic counters for the FTQ valid count. */
10501 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10502 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10503 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10504 
10505 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10506 		val = val |
10507 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10508 		     24);
10509 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10510 
10511 	/* Input queue to the Management Control Processor */
10512 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10513 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10514 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10515 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10516 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10517 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10518 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10519 
10520 	/* Input queue to the Command Processor */
10521 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10522 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10523 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10524 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10525 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10526 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10527 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10528 
10529 	/* Input queue to the Completion Scheduler state machine */
10530 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10531 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10532 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10533 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10534 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10535 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10536 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10537 
10538 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10539 		/* Input queue to the RV2P Command Scheduler */
10540 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10541 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10542 		cur_depth = (ctl & 0xFFC00000) >> 22;
10543 		max_depth = (ctl & 0x003FF000) >> 12;
10544 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10545 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10546 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10547 	}
10548 
10549 	BCE_PRINTF(
10550 	    "----------------------------"
10551 	    "----------------"
10552 	    "----------------------------\n");
10553 }
10554 
10555 
10556 /****************************************************************************/
10557 /* Prints out the TX chain.                                                 */
10558 /*                                                                          */
10559 /* Returns:                                                                 */
10560 /*   Nothing.                                                               */
10561 /****************************************************************************/
10562 static __attribute__ ((noinline)) void
10563 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10564 {
10565 	struct tx_bd *txbd;
10566 
10567 	/* First some info about the tx_bd chain structure. */
10568 	BCE_PRINTF(
10569 	    "----------------------------"
10570 	    "  tx_bd  chain  "
10571 	    "----------------------------\n");
10572 
10573 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10574 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10575 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10576 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10577 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10578 
10579 	BCE_PRINTF(
10580 	    "----------------------------"
10581 	    "   tx_bd data   "
10582 	    "----------------------------\n");
10583 
10584 	/* Now print out a decoded list of TX buffer descriptors. */
10585 	for (int i = 0; i < count; i++) {
10586 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10587 		bce_dump_txbd(sc, tx_prod, txbd);
10588 		tx_prod++;
10589 	}
10590 
10591 	BCE_PRINTF(
10592 	    "----------------------------"
10593 	    "----------------"
10594 	    "----------------------------\n");
10595 }
10596 
10597 
10598 /****************************************************************************/
10599 /* Prints out the RX chain.                                                 */
10600 /*                                                                          */
10601 /* Returns:                                                                 */
10602 /*   Nothing.                                                               */
10603 /****************************************************************************/
10604 static __attribute__ ((noinline)) void
10605 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10606 {
10607 	struct rx_bd *rxbd;
10608 
10609 	/* First some info about the rx_bd chain structure. */
10610 	BCE_PRINTF(
10611 	    "----------------------------"
10612 	    "  rx_bd  chain  "
10613 	    "----------------------------\n");
10614 
10615 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10616 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10617 
10618 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10619 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10620 
10621 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10622 
10623 	BCE_PRINTF(
10624 	    "----------------------------"
10625 	    "   rx_bd data   "
10626 	    "----------------------------\n");
10627 
10628 	/* Now print out the rx_bd's themselves. */
10629 	for (int i = 0; i < count; i++) {
10630 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10631 		bce_dump_rxbd(sc, rx_prod, rxbd);
10632 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10633 	}
10634 
10635 	BCE_PRINTF(
10636 	    "----------------------------"
10637 	    "----------------"
10638 	    "----------------------------\n");
10639 }
10640 
10641 
10642 /****************************************************************************/
10643 /* Prints out the page chain.                                               */
10644 /*                                                                          */
10645 /* Returns:                                                                 */
10646 /*   Nothing.                                                               */
10647 /****************************************************************************/
10648 static __attribute__ ((noinline)) void
10649 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10650 {
10651 	struct rx_bd *pgbd;
10652 
10653 	/* First some info about the page chain structure. */
10654 	BCE_PRINTF(
10655 	    "----------------------------"
10656 	    "   page chain   "
10657 	    "----------------------------\n");
10658 
10659 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10660 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10661 
10662 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10663 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10664 
10665 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10666 
10667 	BCE_PRINTF(
10668 	    "----------------------------"
10669 	    "   page data    "
10670 	    "----------------------------\n");
10671 
10672 	/* Now print out the rx_bd's themselves. */
10673 	for (int i = 0; i < count; i++) {
10674 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10675 		bce_dump_pgbd(sc, pg_prod, pgbd);
10676 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10677 	}
10678 
10679 	BCE_PRINTF(
10680 	    "----------------------------"
10681 	    "----------------"
10682 	    "----------------------------\n");
10683 }
10684 
10685 
10686 #define BCE_PRINT_RX_CONS(arg)						\
10687 if (sblk->status_rx_quick_consumer_index##arg)				\
10688 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10689 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10690 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10691 	    arg);
10692 
10693 
10694 #define BCE_PRINT_TX_CONS(arg)						\
10695 if (sblk->status_tx_quick_consumer_index##arg)				\
10696 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10697 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10698 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10699 	    arg);
10700 
10701 /****************************************************************************/
10702 /* Prints out the status block from host memory.                            */
10703 /*                                                                          */
10704 /* Returns:                                                                 */
10705 /*   Nothing.                                                               */
10706 /****************************************************************************/
10707 static __attribute__ ((noinline)) void
10708 bce_dump_status_block(struct bce_softc *sc)
10709 {
10710 	struct status_block *sblk;
10711 
10712 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10713 
10714 	sblk = sc->status_block;
10715 
10716 	BCE_PRINTF(
10717 	    "----------------------------"
10718 	    "  Status Block  "
10719 	    "----------------------------\n");
10720 
10721 	/* Theses indices are used for normal L2 drivers. */
10722 	BCE_PRINTF("    0x%08X - attn_bits\n",
10723 	    sblk->status_attn_bits);
10724 
10725 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10726 	    sblk->status_attn_bits_ack);
10727 
10728 	BCE_PRINT_RX_CONS(0);
10729 	BCE_PRINT_TX_CONS(0)
10730 
10731 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10732 
10733 	/* Theses indices are not used for normal L2 drivers. */
10734 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10735 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10736 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10737 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10738 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10739 
10740 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10741 
10742 	if (sblk->status_completion_producer_index ||
10743 	    sblk->status_cmd_consumer_index)
10744 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10745 		    sblk->status_completion_producer_index,
10746 		    sblk->status_cmd_consumer_index);
10747 
10748 	BCE_PRINTF(
10749 	    "----------------------------"
10750 	    "----------------"
10751 	    "----------------------------\n");
10752 }
10753 
10754 
10755 #define BCE_PRINT_64BIT_STAT(arg) 				\
10756 if (sblk->arg##_lo || sblk->arg##_hi)				\
10757 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10758 	    sblk->arg##_lo, #arg);
10759 
10760 #define BCE_PRINT_32BIT_STAT(arg)				\
10761 if (sblk->arg)							\
10762 	BCE_PRINTF("         0x%08X : %s\n", 			\
10763 	    sblk->arg, #arg);
10764 
10765 /****************************************************************************/
10766 /* Prints out the statistics block from host memory.                        */
10767 /*                                                                          */
10768 /* Returns:                                                                 */
10769 /*   Nothing.                                                               */
10770 /****************************************************************************/
10771 static __attribute__ ((noinline)) void
10772 bce_dump_stats_block(struct bce_softc *sc)
10773 {
10774 	struct statistics_block *sblk;
10775 
10776 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10777 
10778 	sblk = sc->stats_block;
10779 
10780 	BCE_PRINTF(
10781 	    "---------------"
10782 	    " Stats Block  (All Stats Not Shown Are 0) "
10783 	    "---------------\n");
10784 
10785 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10786 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10787 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10788 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10789 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10790 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10791 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10792 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10793 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10794 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10795 	BCE_PRINT_32BIT_STAT(
10796 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10797 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10798 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10799 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10800 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10801 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10802 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10803 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10804 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10805 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10806 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10807 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10808 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10809 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10810 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10811 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10812 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10813 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10814 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10815 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10816 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10817 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10818 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10819 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10820 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10821 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10822 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10823 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10824 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10825 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10826 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10827 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10828 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10829 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10830 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10831 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10832 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10833 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10834 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10835 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10836 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10837 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10838 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10839 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10840 
10841 	BCE_PRINTF(
10842 	    "----------------------------"
10843 	    "----------------"
10844 	    "----------------------------\n");
10845 }
10846 
10847 
10848 /****************************************************************************/
10849 /* Prints out a summary of the driver state.                                */
10850 /*                                                                          */
10851 /* Returns:                                                                 */
10852 /*   Nothing.                                                               */
10853 /****************************************************************************/
10854 static __attribute__ ((noinline)) void
10855 bce_dump_driver_state(struct bce_softc *sc)
10856 {
10857 	u32 val_hi, val_lo;
10858 
10859 	BCE_PRINTF(
10860 	    "-----------------------------"
10861 	    " Driver State "
10862 	    "-----------------------------\n");
10863 
10864 	val_hi = BCE_ADDR_HI(sc);
10865 	val_lo = BCE_ADDR_LO(sc);
10866 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10867 	    "address\n", val_hi, val_lo);
10868 
10869 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10870 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10871 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10872 	    "address\n", val_hi, val_lo);
10873 
10874 	val_hi = BCE_ADDR_HI(sc->status_block);
10875 	val_lo = BCE_ADDR_LO(sc->status_block);
10876 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10877 	    "virtual address\n",	val_hi, val_lo);
10878 
10879 	val_hi = BCE_ADDR_HI(sc->stats_block);
10880 	val_lo = BCE_ADDR_LO(sc->stats_block);
10881 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10882 	    "virtual address\n", val_hi, val_lo);
10883 
10884 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10885 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10886 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10887 	    "virtual adddress\n", val_hi, val_lo);
10888 
10889 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10890 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10891 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10892 	    "virtual address\n", val_hi, val_lo);
10893 
10894 	if (bce_hdr_split == TRUE) {
10895 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10896 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10897 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10898 		    "virtual address\n", val_hi, val_lo);
10899 	}
10900 
10901 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10902 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10903 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10904 	    "virtual address\n",	val_hi, val_lo);
10905 
10906 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10907 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10908 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10909 	    "virtual address\n", val_hi, val_lo);
10910 
10911 	if (bce_hdr_split == TRUE) {
10912 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10913 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10914 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10915 		    "virtual address\n", val_hi, val_lo);
10916 	}
10917 
10918 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10919 	    "h/w intrs\n",
10920 	    (long long unsigned int) sc->interrupts_generated);
10921 
10922 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10923 	    "rx interrupts handled\n",
10924 	    (long long unsigned int) sc->interrupts_rx);
10925 
10926 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10927 	    "tx interrupts handled\n",
10928 	    (long long unsigned int) sc->interrupts_tx);
10929 
10930 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10931 	    "phy interrupts handled\n",
10932 	    (long long unsigned int) sc->phy_interrupts);
10933 
10934 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10935 	    "status block index\n", sc->last_status_idx);
10936 
10937 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10938 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10939 
10940 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10941 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10942 
10943 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10944 	    "byte seq index\n",	sc->tx_prod_bseq);
10945 
10946 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10947 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10948 
10949 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10950 	    "tx_bd's\n", sc->used_tx_bd);
10951 
10952 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10953 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10954 
10955 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10956 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10957 
10958 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10959 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10960 
10961 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10962 	    "byte seq index\n",	sc->rx_prod_bseq);
10963 
10964 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10965 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10966 
10967 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10968 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10969 
10970 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10971 	    "rx_bd's\n", sc->free_rx_bd);
10972 
10973 	if (bce_hdr_split == TRUE) {
10974 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10975 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10976 
10977 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10978 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10979 
10980 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10981 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10982 	}
10983 
10984 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10985 	    "rx_bd's\n", sc->free_pg_bd);
10986 
10987 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10988 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10989 
10990 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10991 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10992 
10993 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10994 	    "bce mac flags\n", sc->bce_flags);
10995 
10996 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10997 	    "bce phy flags\n", sc->bce_phy_flags);
10998 
10999 	BCE_PRINTF(
11000 	    "----------------------------"
11001 	    "----------------"
11002 	    "----------------------------\n");
11003 }
11004 
11005 
11006 /****************************************************************************/
11007 /* Prints out the hardware state through a summary of important register,   */
11008 /* followed by a complete register dump.                                    */
11009 /*                                                                          */
11010 /* Returns:                                                                 */
11011 /*   Nothing.                                                               */
11012 /****************************************************************************/
11013 static __attribute__ ((noinline)) void
11014 bce_dump_hw_state(struct bce_softc *sc)
11015 {
11016 	u32 val;
11017 
11018 	BCE_PRINTF(
11019 	    "----------------------------"
11020 	    " Hardware State "
11021 	    "----------------------------\n");
11022 
11023 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11024 
11025 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
11026 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
11027 	    val, BCE_MISC_ENABLE_STATUS_BITS);
11028 
11029 	val = REG_RD(sc, BCE_DMA_STATUS);
11030 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
11031 	    val, BCE_DMA_STATUS);
11032 
11033 	val = REG_RD(sc, BCE_CTX_STATUS);
11034 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
11035 	    val, BCE_CTX_STATUS);
11036 
11037 	val = REG_RD(sc, BCE_EMAC_STATUS);
11038 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
11039 	    val, BCE_EMAC_STATUS);
11040 
11041 	val = REG_RD(sc, BCE_RPM_STATUS);
11042 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
11043 	    val, BCE_RPM_STATUS);
11044 
11045 	/* ToDo: Create a #define for this constant. */
11046 	val = REG_RD(sc, 0x2004);
11047 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11048 	    val, 0x2004);
11049 
11050 	val = REG_RD(sc, BCE_RV2P_STATUS);
11051 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11052 	    val, BCE_RV2P_STATUS);
11053 
11054 	/* ToDo: Create a #define for this constant. */
11055 	val = REG_RD(sc, 0x2c04);
11056 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11057 	    val, 0x2c04);
11058 
11059 	val = REG_RD(sc, BCE_TBDR_STATUS);
11060 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11061 	    val, BCE_TBDR_STATUS);
11062 
11063 	val = REG_RD(sc, BCE_TDMA_STATUS);
11064 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11065 	    val, BCE_TDMA_STATUS);
11066 
11067 	val = REG_RD(sc, BCE_HC_STATUS);
11068 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11069 	    val, BCE_HC_STATUS);
11070 
11071 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11072 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11073 	    val, BCE_TXP_CPU_STATE);
11074 
11075 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11076 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11077 	    val, BCE_TPAT_CPU_STATE);
11078 
11079 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11080 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11081 	    val, BCE_RXP_CPU_STATE);
11082 
11083 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11084 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11085 	    val, BCE_COM_CPU_STATE);
11086 
11087 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11088 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11089 	    val, BCE_MCP_CPU_STATE);
11090 
11091 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11092 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11093 	    val, BCE_CP_CPU_STATE);
11094 
11095 	BCE_PRINTF(
11096 	    "----------------------------"
11097 	    "----------------"
11098 	    "----------------------------\n");
11099 
11100 	BCE_PRINTF(
11101 	    "----------------------------"
11102 	    " Register  Dump "
11103 	    "----------------------------\n");
11104 
11105 	for (int i = 0x400; i < 0x8000; i += 0x10) {
11106 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11107 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11108 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11109 	}
11110 
11111 	BCE_PRINTF(
11112 	    "----------------------------"
11113 	    "----------------"
11114 	    "----------------------------\n");
11115 }
11116 
11117 
11118 /****************************************************************************/
11119 /* Prints out the contentst of shared memory which is used for host driver  */
11120 /* to bootcode firmware communication.                                      */
11121 /*                                                                          */
11122 /* Returns:                                                                 */
11123 /*   Nothing.                                                               */
11124 /****************************************************************************/
11125 static __attribute__ ((noinline)) void
11126 bce_dump_shmem_state(struct bce_softc *sc)
11127 {
11128 	BCE_PRINTF(
11129 	    "----------------------------"
11130 	    " Hardware State "
11131 	    "----------------------------\n");
11132 
11133 	BCE_PRINTF("0x%08X - Shared memory base address\n",
11134 	    sc->bce_shmem_base);
11135 	BCE_PRINTF("%s - bootcode version\n",
11136 	    sc->bce_bc_ver);
11137 
11138 	BCE_PRINTF(
11139 	    "----------------------------"
11140 	    "   Shared Mem   "
11141 	    "----------------------------\n");
11142 
11143 	for (int i = 0x0; i < 0x200; i += 0x10) {
11144 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11145 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11146 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11147 	}
11148 
11149 	BCE_PRINTF(
11150 	    "----------------------------"
11151 	    "----------------"
11152 	    "----------------------------\n");
11153 }
11154 
11155 
11156 /****************************************************************************/
11157 /* Prints out the mailbox queue registers.                                  */
11158 /*                                                                          */
11159 /* Returns:                                                                 */
11160 /*   Nothing.                                                               */
11161 /****************************************************************************/
11162 static __attribute__ ((noinline)) void
11163 bce_dump_mq_regs(struct bce_softc *sc)
11164 {
11165 	BCE_PRINTF(
11166 	    "----------------------------"
11167 	    "    MQ Regs     "
11168 	    "----------------------------\n");
11169 
11170 	BCE_PRINTF(
11171 	    "----------------------------"
11172 	    "----------------"
11173 	    "----------------------------\n");
11174 
11175 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11176 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11177 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11178 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11179 	}
11180 
11181 	BCE_PRINTF(
11182 	    "----------------------------"
11183 	    "----------------"
11184 	    "----------------------------\n");
11185 }
11186 
11187 
11188 /****************************************************************************/
11189 /* Prints out the bootcode state.                                           */
11190 /*                                                                          */
11191 /* Returns:                                                                 */
11192 /*   Nothing.                                                               */
11193 /****************************************************************************/
11194 static __attribute__ ((noinline)) void
11195 bce_dump_bc_state(struct bce_softc *sc)
11196 {
11197 	u32 val;
11198 
11199 	BCE_PRINTF(
11200 	    "----------------------------"
11201 	    " Bootcode State "
11202 	    "----------------------------\n");
11203 
11204 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11205 
11206 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11207 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11208 	    val, BCE_BC_RESET_TYPE);
11209 
11210 	val = bce_shmem_rd(sc, BCE_BC_STATE);
11211 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
11212 	    val, BCE_BC_STATE);
11213 
11214 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11215 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11216 	    val, BCE_BC_STATE_CONDITION);
11217 
11218 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11219 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11220 	    val, BCE_BC_STATE_DEBUG_CMD);
11221 
11222 	BCE_PRINTF(
11223 	    "----------------------------"
11224 	    "----------------"
11225 	    "----------------------------\n");
11226 }
11227 
11228 
11229 /****************************************************************************/
11230 /* Prints out the TXP processor state.                                      */
11231 /*                                                                          */
11232 /* Returns:                                                                 */
11233 /*   Nothing.                                                               */
11234 /****************************************************************************/
11235 static __attribute__ ((noinline)) void
11236 bce_dump_txp_state(struct bce_softc *sc, int regs)
11237 {
11238 	u32 val;
11239 	u32 fw_version[3];
11240 
11241 	BCE_PRINTF(
11242 	    "----------------------------"
11243 	    "   TXP  State   "
11244 	    "----------------------------\n");
11245 
11246 	for (int i = 0; i < 3; i++)
11247 		fw_version[i] = htonl(REG_RD_IND(sc,
11248 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11249 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11250 
11251 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11252 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11253 	    val, BCE_TXP_CPU_MODE);
11254 
11255 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11256 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11257 	    val, BCE_TXP_CPU_STATE);
11258 
11259 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11260 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11261 	    val, BCE_TXP_CPU_EVENT_MASK);
11262 
11263 	if (regs) {
11264 		BCE_PRINTF(
11265 		    "----------------------------"
11266 		    " Register  Dump "
11267 		    "----------------------------\n");
11268 
11269 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11270 			/* Skip the big blank spaces */
11271 			if (i < 0x454000 && i > 0x5ffff)
11272 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11273 				    "0x%08X 0x%08X\n", i,
11274 				    REG_RD_IND(sc, i),
11275 				    REG_RD_IND(sc, i + 0x4),
11276 				    REG_RD_IND(sc, i + 0x8),
11277 				    REG_RD_IND(sc, i + 0xC));
11278 		}
11279 	}
11280 
11281 	BCE_PRINTF(
11282 	    "----------------------------"
11283 	    "----------------"
11284 	    "----------------------------\n");
11285 }
11286 
11287 
11288 /****************************************************************************/
11289 /* Prints out the RXP processor state.                                      */
11290 /*                                                                          */
11291 /* Returns:                                                                 */
11292 /*   Nothing.                                                               */
11293 /****************************************************************************/
11294 static __attribute__ ((noinline)) void
11295 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11296 {
11297 	u32 val;
11298 	u32 fw_version[3];
11299 
11300 	BCE_PRINTF(
11301 	    "----------------------------"
11302 	    "   RXP  State   "
11303 	    "----------------------------\n");
11304 
11305 	for (int i = 0; i < 3; i++)
11306 		fw_version[i] = htonl(REG_RD_IND(sc,
11307 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11308 
11309 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11310 
11311 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11312 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11313 	    val, BCE_RXP_CPU_MODE);
11314 
11315 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11316 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11317 	    val, BCE_RXP_CPU_STATE);
11318 
11319 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11320 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11321 	    val, BCE_RXP_CPU_EVENT_MASK);
11322 
11323 	if (regs) {
11324 		BCE_PRINTF(
11325 		    "----------------------------"
11326 		    " Register  Dump "
11327 		    "----------------------------\n");
11328 
11329 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11330 			/* Skip the big blank sapces */
11331 			if (i < 0xc5400 && i > 0xdffff)
11332 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11333 				    "0x%08X 0x%08X\n", i,
11334 				    REG_RD_IND(sc, i),
11335 				    REG_RD_IND(sc, i + 0x4),
11336 				    REG_RD_IND(sc, i + 0x8),
11337 				    REG_RD_IND(sc, i + 0xC));
11338 		}
11339 	}
11340 
11341 	BCE_PRINTF(
11342 	    "----------------------------"
11343 	    "----------------"
11344 	    "----------------------------\n");
11345 }
11346 
11347 
11348 /****************************************************************************/
11349 /* Prints out the TPAT processor state.                                     */
11350 /*                                                                          */
11351 /* Returns:                                                                 */
11352 /*   Nothing.                                                               */
11353 /****************************************************************************/
11354 static __attribute__ ((noinline)) void
11355 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11356 {
11357 	u32 val;
11358 	u32 fw_version[3];
11359 
11360 	BCE_PRINTF(
11361 	    "----------------------------"
11362 	    "   TPAT State   "
11363 	    "----------------------------\n");
11364 
11365 	for (int i = 0; i < 3; i++)
11366 		fw_version[i] = htonl(REG_RD_IND(sc,
11367 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11368 
11369 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11370 
11371 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11372 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11373 	    val, BCE_TPAT_CPU_MODE);
11374 
11375 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11376 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11377 	    val, BCE_TPAT_CPU_STATE);
11378 
11379 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11380 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11381 	    val, BCE_TPAT_CPU_EVENT_MASK);
11382 
11383 	if (regs) {
11384 		BCE_PRINTF(
11385 		    "----------------------------"
11386 		    " Register  Dump "
11387 		    "----------------------------\n");
11388 
11389 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11390 			/* Skip the big blank spaces */
11391 			if (i < 0x854000 && i > 0x9ffff)
11392 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11393 				    "0x%08X 0x%08X\n", i,
11394 				    REG_RD_IND(sc, i),
11395 				    REG_RD_IND(sc, i + 0x4),
11396 				    REG_RD_IND(sc, i + 0x8),
11397 				    REG_RD_IND(sc, i + 0xC));
11398 		}
11399 	}
11400 
11401 	BCE_PRINTF(
11402 		"----------------------------"
11403 		"----------------"
11404 		"----------------------------\n");
11405 }
11406 
11407 
11408 /****************************************************************************/
11409 /* Prints out the Command Procesor (CP) state.                              */
11410 /*                                                                          */
11411 /* Returns:                                                                 */
11412 /*   Nothing.                                                               */
11413 /****************************************************************************/
11414 static __attribute__ ((noinline)) void
11415 bce_dump_cp_state(struct bce_softc *sc, int regs)
11416 {
11417 	u32 val;
11418 	u32 fw_version[3];
11419 
11420 	BCE_PRINTF(
11421 	    "----------------------------"
11422 	    "    CP State    "
11423 	    "----------------------------\n");
11424 
11425 	for (int i = 0; i < 3; i++)
11426 		fw_version[i] = htonl(REG_RD_IND(sc,
11427 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11428 
11429 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11430 
11431 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11432 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11433 	    val, BCE_CP_CPU_MODE);
11434 
11435 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11436 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11437 	    val, BCE_CP_CPU_STATE);
11438 
11439 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11440 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11441 	    BCE_CP_CPU_EVENT_MASK);
11442 
11443 	if (regs) {
11444 		BCE_PRINTF(
11445 		    "----------------------------"
11446 		    " Register  Dump "
11447 		    "----------------------------\n");
11448 
11449 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11450 			/* Skip the big blank spaces */
11451 			if (i < 0x185400 && i > 0x19ffff)
11452 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11453 				    "0x%08X 0x%08X\n", i,
11454 				    REG_RD_IND(sc, i),
11455 				    REG_RD_IND(sc, i + 0x4),
11456 				    REG_RD_IND(sc, i + 0x8),
11457 				    REG_RD_IND(sc, i + 0xC));
11458 		}
11459 	}
11460 
11461 	BCE_PRINTF(
11462 	    "----------------------------"
11463 	    "----------------"
11464 	    "----------------------------\n");
11465 }
11466 
11467 
11468 /****************************************************************************/
11469 /* Prints out the Completion Procesor (COM) state.                          */
11470 /*                                                                          */
11471 /* Returns:                                                                 */
11472 /*   Nothing.                                                               */
11473 /****************************************************************************/
11474 static __attribute__ ((noinline)) void
11475 bce_dump_com_state(struct bce_softc *sc, int regs)
11476 {
11477 	u32 val;
11478 	u32 fw_version[4];
11479 
11480 	BCE_PRINTF(
11481 	    "----------------------------"
11482 	    "   COM State    "
11483 	    "----------------------------\n");
11484 
11485 	for (int i = 0; i < 3; i++)
11486 		fw_version[i] = htonl(REG_RD_IND(sc,
11487 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11488 
11489 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11490 
11491 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11492 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11493 	    val, BCE_COM_CPU_MODE);
11494 
11495 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11496 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11497 	    val, BCE_COM_CPU_STATE);
11498 
11499 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11500 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11501 	    BCE_COM_CPU_EVENT_MASK);
11502 
11503 	if (regs) {
11504 		BCE_PRINTF(
11505 		    "----------------------------"
11506 		    " Register  Dump "
11507 		    "----------------------------\n");
11508 
11509 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11510 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11511 			    "0x%08X 0x%08X\n", i,
11512 			    REG_RD_IND(sc, i),
11513 			    REG_RD_IND(sc, i + 0x4),
11514 			    REG_RD_IND(sc, i + 0x8),
11515 			    REG_RD_IND(sc, i + 0xC));
11516 		}
11517 	}
11518 
11519 	BCE_PRINTF(
11520 		"----------------------------"
11521 		"----------------"
11522 		"----------------------------\n");
11523 }
11524 
11525 
11526 /****************************************************************************/
11527 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11528 /*                                                                          */
11529 /* Returns:                                                                 */
11530 /*   Nothing.                                                               */
11531 /****************************************************************************/
11532 static __attribute__ ((noinline)) void
11533 bce_dump_rv2p_state(struct bce_softc *sc)
11534 {
11535 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11536 
11537 	BCE_PRINTF(
11538 	    "----------------------------"
11539 	    "   RV2P State   "
11540 	    "----------------------------\n");
11541 
11542 	/* Stall the RV2P processors. */
11543 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11544 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11545 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11546 
11547 	/* Read the firmware version. */
11548 	val = 0x00000001;
11549 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11550 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11551 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11552 	    BCE_RV2P_INSTR_HIGH_HIGH;
11553 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11554 	    fw_ver_high, fw_ver_low);
11555 
11556 	val = 0x00000001;
11557 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11558 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11559 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11560 	    BCE_RV2P_INSTR_HIGH_HIGH;
11561 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11562 	    fw_ver_high, fw_ver_low);
11563 
11564 	/* Resume the RV2P processors. */
11565 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11566 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11567 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11568 
11569 	/* Fetch the program counter value. */
11570 	val = 0x68007800;
11571 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11572 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11573 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11574 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11575 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11576 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11577 
11578 	/* Fetch the program counter value again to see if it is advancing. */
11579 	val = 0x68007800;
11580 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11581 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11582 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11583 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11584 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11585 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11586 
11587 	BCE_PRINTF(
11588 	    "----------------------------"
11589 	    "----------------"
11590 	    "----------------------------\n");
11591 }
11592 
11593 
11594 /****************************************************************************/
11595 /* Prints out the driver state and then enters the debugger.                */
11596 /*                                                                          */
11597 /* Returns:                                                                 */
11598 /*   Nothing.                                                               */
11599 /****************************************************************************/
11600 static __attribute__ ((noinline)) void
11601 bce_breakpoint(struct bce_softc *sc)
11602 {
11603 
11604 	/*
11605 	 * Unreachable code to silence compiler warnings
11606 	 * about unused functions.
11607 	 */
11608 	if (0) {
11609 		bce_freeze_controller(sc);
11610 		bce_unfreeze_controller(sc);
11611 		bce_dump_enet(sc, NULL);
11612 		bce_dump_txbd(sc, 0, NULL);
11613 		bce_dump_rxbd(sc, 0, NULL);
11614 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11615 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11616 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11617 		bce_dump_l2fhdr(sc, 0, NULL);
11618 		bce_dump_ctx(sc, RX_CID);
11619 		bce_dump_ftqs(sc);
11620 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11621 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11622 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11623 		bce_dump_status_block(sc);
11624 		bce_dump_stats_block(sc);
11625 		bce_dump_driver_state(sc);
11626 		bce_dump_hw_state(sc);
11627 		bce_dump_bc_state(sc);
11628 		bce_dump_txp_state(sc, 0);
11629 		bce_dump_rxp_state(sc, 0);
11630 		bce_dump_tpat_state(sc, 0);
11631 		bce_dump_cp_state(sc, 0);
11632 		bce_dump_com_state(sc, 0);
11633 		bce_dump_rv2p_state(sc);
11634 		bce_dump_pgbd(sc, 0, NULL);
11635 	}
11636 
11637 	bce_dump_status_block(sc);
11638 	bce_dump_driver_state(sc);
11639 
11640 	/* Call the debugger. */
11641 	breakpoint();
11642 }
11643 #endif
11644