1 /*- 2 * Copyright (c) 2006-2014 QLogic Corporation 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * The following controllers are supported by this driver: 32 * BCM5706C A2, A3 33 * BCM5706S A2, A3 34 * BCM5708C B1, B2 35 * BCM5708S B1, B2 36 * BCM5709C A1, C0 37 * BCM5709S A1, C0 38 * BCM5716C C0 39 * BCM5716S C0 40 * 41 * The following controllers are not supported by this driver: 42 * BCM5706C A0, A1 (pre-production) 43 * BCM5706S A0, A1 (pre-production) 44 * BCM5708C A0, B0 (pre-production) 45 * BCM5708S A0, B0 (pre-production) 46 * BCM5709C A0 B0, B1, B2 (pre-production) 47 * BCM5709S A0, B0, B1, B2 (pre-production) 48 */ 49 50 #include "opt_bce.h" 51 52 #include <sys/param.h> 53 #include <sys/endian.h> 54 #include <sys/systm.h> 55 #include <sys/sockio.h> 56 #include <sys/lock.h> 57 #include <sys/mbuf.h> 58 #include <sys/malloc.h> 59 #include <sys/mutex.h> 60 #include <sys/kernel.h> 61 #include <sys/module.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/queue.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_arp.h> 71 #include <net/if_dl.h> 72 #include <net/if_media.h> 73 74 #include <net/if_types.h> 75 #include <net/if_vlan_var.h> 76 77 #include <netinet/in_systm.h> 78 #include <netinet/in.h> 79 #include <netinet/if_ether.h> 80 #include <netinet/ip.h> 81 #include <netinet/ip6.h> 82 #include <netinet/tcp.h> 83 #include <netinet/udp.h> 84 85 #include <machine/bus.h> 86 #include <machine/resource.h> 87 #include <sys/bus.h> 88 #include <sys/rman.h> 89 90 #include <dev/mii/mii.h> 91 #include <dev/mii/miivar.h> 92 #include "miidevs.h" 93 #include <dev/mii/brgphyreg.h> 94 95 #include <dev/pci/pcireg.h> 96 #include <dev/pci/pcivar.h> 97 98 #include "miibus_if.h" 99 100 #include <dev/bce/if_bcereg.h> 101 #include <dev/bce/if_bcefw.h> 102 103 /****************************************************************************/ 104 /* BCE Debug Options */ 105 /****************************************************************************/ 106 #ifdef BCE_DEBUG 107 u32 bce_debug = BCE_WARN; 108 109 /* 0 = Never */ 110 /* 1 = 1 in 2,147,483,648 */ 111 /* 256 = 1 in 8,388,608 */ 112 /* 2048 = 1 in 1,048,576 */ 113 /* 65536 = 1 in 32,768 */ 114 /* 1048576 = 1 in 2,048 */ 115 /* 268435456 = 1 in 8 */ 116 /* 536870912 = 1 in 4 */ 117 /* 1073741824 = 1 in 2 */ 118 119 /* Controls how often the l2_fhdr frame error check will fail. */ 120 int l2fhdr_error_sim_control = 0; 121 122 /* Controls how often the unexpected attention check will fail. */ 123 int unexpected_attention_sim_control = 0; 124 125 /* Controls how often to simulate an mbuf allocation failure. */ 126 int mbuf_alloc_failed_sim_control = 0; 127 128 /* Controls how often to simulate a DMA mapping failure. */ 129 int dma_map_addr_failed_sim_control = 0; 130 131 /* Controls how often to simulate a bootcode failure. */ 132 int bootcode_running_failure_sim_control = 0; 133 #endif 134 135 /****************************************************************************/ 136 /* PCI Device ID Table */ 137 /* */ 138 /* Used by bce_probe() to identify the devices supported by this driver. */ 139 /****************************************************************************/ 140 #define BCE_DEVDESC_MAX 64 141 142 static const struct bce_type bce_devs[] = { 143 /* BCM5706C Controllers and OEM boards. */ 144 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 145 "HP NC370T Multifunction Gigabit Server Adapter" }, 146 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 147 "HP NC370i Multifunction Gigabit Server Adapter" }, 148 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, 149 "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, 150 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, 151 "HP NC371i Multifunction Gigabit Server Adapter" }, 152 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 153 "QLogic NetXtreme II BCM5706 1000Base-T" }, 154 155 /* BCM5706S controllers and OEM boards. */ 156 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 157 "HP NC370F Multifunction Gigabit Server Adapter" }, 158 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 159 "QLogic NetXtreme II BCM5706 1000Base-SX" }, 160 161 /* BCM5708C controllers and OEM boards. */ 162 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, 163 "HP NC373T PCIe Multifunction Gig Server Adapter" }, 164 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, 165 "HP NC373i Multifunction Gigabit Server Adapter" }, 166 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, 167 "HP NC374m PCIe Multifunction Adapter" }, 168 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 169 "QLogic NetXtreme II BCM5708 1000Base-T" }, 170 171 /* BCM5708S controllers and OEM boards. */ 172 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, 173 "HP NC373m Multifunction Gigabit Server Adapter" }, 174 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, 175 "HP NC373i Multifunction Gigabit Server Adapter" }, 176 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, 177 "HP NC373F PCIe Multifunc Giga Server Adapter" }, 178 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM5708 1000Base-SX" }, 180 181 /* BCM5709C controllers and OEM boards. */ 182 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, 183 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 184 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, 185 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, 186 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, 187 "QLogic NetXtreme II BCM5709 1000Base-T" }, 188 189 /* BCM5709S controllers and OEM boards. */ 190 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, 191 "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, 192 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, 193 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 194 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, 195 "QLogic NetXtreme II BCM5709 1000Base-SX" }, 196 197 /* BCM5716 controllers and OEM boards. */ 198 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, 199 "QLogic NetXtreme II BCM5716 1000Base-T" }, 200 201 { 0, 0, 0, 0, NULL } 202 }; 203 204 205 /****************************************************************************/ 206 /* Supported Flash NVRAM device data. */ 207 /****************************************************************************/ 208 static const struct flash_spec flash_table[] = 209 { 210 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) 211 #define NONBUFFERED_FLAGS (BCE_NV_WREN) 212 213 /* Slow EEPROM */ 214 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 215 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 216 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 217 "EEPROM - slow"}, 218 /* Expansion entry 0001 */ 219 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 220 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 221 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 222 "Entry 0001"}, 223 /* Saifun SA25F010 (non-buffered flash) */ 224 /* strap, cfg1, & write1 need updates */ 225 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 228 "Non-buffered flash (128kB)"}, 229 /* Saifun SA25F020 (non-buffered flash) */ 230 /* strap, cfg1, & write1 need updates */ 231 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 232 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 233 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 234 "Non-buffered flash (256kB)"}, 235 /* Expansion entry 0100 */ 236 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 237 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 238 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 239 "Entry 0100"}, 240 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 241 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 242 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 243 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 244 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 245 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 246 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 247 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 248 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 249 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 250 /* Saifun SA25F005 (non-buffered flash) */ 251 /* strap, cfg1, & write1 need updates */ 252 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 254 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 255 "Non-buffered flash (64kB)"}, 256 /* Fast EEPROM */ 257 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 258 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 259 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 260 "EEPROM - fast"}, 261 /* Expansion entry 1001 */ 262 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 263 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 264 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 265 "Entry 1001"}, 266 /* Expansion entry 1010 */ 267 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 268 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 269 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 270 "Entry 1010"}, 271 /* ATMEL AT45DB011B (buffered flash) */ 272 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 273 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 274 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 275 "Buffered flash (128kB)"}, 276 /* Expansion entry 1100 */ 277 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 278 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 279 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 280 "Entry 1100"}, 281 /* Expansion entry 1101 */ 282 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 283 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 284 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 285 "Entry 1101"}, 286 /* Ateml Expansion entry 1110 */ 287 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 288 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 289 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 290 "Entry 1110 (Atmel)"}, 291 /* ATMEL AT45DB021B (buffered flash) */ 292 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 293 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 294 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 295 "Buffered flash (256kB)"}, 296 }; 297 298 /* 299 * The BCM5709 controllers transparently handle the 300 * differences between Atmel 264 byte pages and all 301 * flash devices which use 256 byte pages, so no 302 * logical-to-physical mapping is required in the 303 * driver. 304 */ 305 static const struct flash_spec flash_5709 = { 306 .flags = BCE_NV_BUFFERED, 307 .page_bits = BCM5709_FLASH_PAGE_BITS, 308 .page_size = BCM5709_FLASH_PAGE_SIZE, 309 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 310 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 311 .name = "5709/5716 buffered flash (256kB)", 312 }; 313 314 315 /****************************************************************************/ 316 /* FreeBSD device entry points. */ 317 /****************************************************************************/ 318 static int bce_probe (device_t); 319 static int bce_attach (device_t); 320 static int bce_detach (device_t); 321 static int bce_shutdown (device_t); 322 323 324 /****************************************************************************/ 325 /* BCE Debug Data Structure Dump Routines */ 326 /****************************************************************************/ 327 #ifdef BCE_DEBUG 328 static u32 bce_reg_rd (struct bce_softc *, u32); 329 static void bce_reg_wr (struct bce_softc *, u32, u32); 330 static void bce_reg_wr16 (struct bce_softc *, u32, u16); 331 static u32 bce_ctx_rd (struct bce_softc *, u32, u32); 332 static void bce_dump_enet (struct bce_softc *, struct mbuf *); 333 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 334 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); 335 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); 336 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); 337 static void bce_dump_txbd (struct bce_softc *, 338 int, struct tx_bd *); 339 static void bce_dump_rxbd (struct bce_softc *, 340 int, struct rx_bd *); 341 static void bce_dump_pgbd (struct bce_softc *, 342 int, struct rx_bd *); 343 static void bce_dump_l2fhdr (struct bce_softc *, 344 int, struct l2_fhdr *); 345 static void bce_dump_ctx (struct bce_softc *, u16); 346 static void bce_dump_ftqs (struct bce_softc *); 347 static void bce_dump_tx_chain (struct bce_softc *, u16, int); 348 static void bce_dump_rx_bd_chain (struct bce_softc *, u16, int); 349 static void bce_dump_pg_chain (struct bce_softc *, u16, int); 350 static void bce_dump_status_block (struct bce_softc *); 351 static void bce_dump_stats_block (struct bce_softc *); 352 static void bce_dump_driver_state (struct bce_softc *); 353 static void bce_dump_hw_state (struct bce_softc *); 354 static void bce_dump_shmem_state (struct bce_softc *); 355 static void bce_dump_mq_regs (struct bce_softc *); 356 static void bce_dump_bc_state (struct bce_softc *); 357 static void bce_dump_txp_state (struct bce_softc *, int); 358 static void bce_dump_rxp_state (struct bce_softc *, int); 359 static void bce_dump_tpat_state (struct bce_softc *, int); 360 static void bce_dump_cp_state (struct bce_softc *, int); 361 static void bce_dump_com_state (struct bce_softc *, int); 362 static void bce_dump_rv2p_state (struct bce_softc *); 363 static void bce_breakpoint (struct bce_softc *); 364 #endif /*BCE_DEBUG */ 365 366 367 /****************************************************************************/ 368 /* BCE Register/Memory Access Routines */ 369 /****************************************************************************/ 370 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 371 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 372 static void bce_shmem_wr (struct bce_softc *, u32, u32); 373 static u32 bce_shmem_rd (struct bce_softc *, u32); 374 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 375 static int bce_miibus_read_reg (device_t, int, int); 376 static int bce_miibus_write_reg (device_t, int, int, int); 377 static void bce_miibus_statchg (device_t); 378 379 #ifdef BCE_DEBUG 380 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS); 381 #ifdef BCE_NVRAM_WRITE_SUPPORT 382 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS); 383 #endif 384 #endif 385 386 /****************************************************************************/ 387 /* BCE NVRAM Access Routines */ 388 /****************************************************************************/ 389 static int bce_acquire_nvram_lock (struct bce_softc *); 390 static int bce_release_nvram_lock (struct bce_softc *); 391 static void bce_enable_nvram_access(struct bce_softc *); 392 static void bce_disable_nvram_access(struct bce_softc *); 393 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 394 static int bce_init_nvram (struct bce_softc *); 395 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 396 static int bce_nvram_test (struct bce_softc *); 397 #ifdef BCE_NVRAM_WRITE_SUPPORT 398 static int bce_enable_nvram_write (struct bce_softc *); 399 static void bce_disable_nvram_write(struct bce_softc *); 400 static int bce_nvram_erase_page (struct bce_softc *, u32); 401 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 402 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 403 #endif 404 405 /****************************************************************************/ 406 /* */ 407 /****************************************************************************/ 408 static void bce_get_rx_buffer_sizes(struct bce_softc *, int); 409 static void bce_get_media (struct bce_softc *); 410 static void bce_init_media (struct bce_softc *); 411 static u32 bce_get_rphy_link (struct bce_softc *); 412 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); 413 static int bce_dma_alloc (device_t); 414 static void bce_dma_free (struct bce_softc *); 415 static void bce_release_resources (struct bce_softc *); 416 417 /****************************************************************************/ 418 /* BCE Firmware Synchronization and Load */ 419 /****************************************************************************/ 420 static void bce_fw_cap_init (struct bce_softc *); 421 static int bce_fw_sync (struct bce_softc *, u32); 422 static void bce_load_rv2p_fw (struct bce_softc *, const u32 *, u32, 423 u32); 424 static void bce_load_cpu_fw (struct bce_softc *, 425 struct cpu_reg *, struct fw_info *); 426 static void bce_start_cpu (struct bce_softc *, struct cpu_reg *); 427 static void bce_halt_cpu (struct bce_softc *, struct cpu_reg *); 428 static void bce_start_rxp_cpu (struct bce_softc *); 429 static void bce_init_rxp_cpu (struct bce_softc *); 430 static void bce_init_txp_cpu (struct bce_softc *); 431 static void bce_init_tpat_cpu (struct bce_softc *); 432 static void bce_init_cp_cpu (struct bce_softc *); 433 static void bce_init_com_cpu (struct bce_softc *); 434 static void bce_init_cpus (struct bce_softc *); 435 436 static void bce_print_adapter_info (struct bce_softc *); 437 static void bce_probe_pci_caps (device_t, struct bce_softc *); 438 static void bce_stop (struct bce_softc *); 439 static int bce_reset (struct bce_softc *, u32); 440 static int bce_chipinit (struct bce_softc *); 441 static int bce_blockinit (struct bce_softc *); 442 443 static int bce_init_tx_chain (struct bce_softc *); 444 static void bce_free_tx_chain (struct bce_softc *); 445 446 static int bce_get_rx_buf (struct bce_softc *, u16, u16, u32 *); 447 static int bce_init_rx_chain (struct bce_softc *); 448 static void bce_fill_rx_chain (struct bce_softc *); 449 static void bce_free_rx_chain (struct bce_softc *); 450 451 static int bce_get_pg_buf (struct bce_softc *, u16, u16); 452 static int bce_init_pg_chain (struct bce_softc *); 453 static void bce_fill_pg_chain (struct bce_softc *); 454 static void bce_free_pg_chain (struct bce_softc *); 455 456 static struct mbuf *bce_tso_setup (struct bce_softc *, 457 struct mbuf **, u16 *); 458 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 459 static void bce_start_locked (struct ifnet *); 460 static void bce_start (struct ifnet *); 461 static int bce_ioctl (struct ifnet *, u_long, caddr_t); 462 static uint64_t bce_get_counter (struct ifnet *, ift_counter); 463 static void bce_watchdog (struct bce_softc *); 464 static int bce_ifmedia_upd (struct ifnet *); 465 static int bce_ifmedia_upd_locked (struct ifnet *); 466 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); 467 static void bce_ifmedia_sts_rphy (struct bce_softc *, struct ifmediareq *); 468 static void bce_init_locked (struct bce_softc *); 469 static void bce_init (void *); 470 static void bce_mgmt_init_locked (struct bce_softc *sc); 471 472 static int bce_init_ctx (struct bce_softc *); 473 static void bce_get_mac_addr (struct bce_softc *); 474 static void bce_set_mac_addr (struct bce_softc *); 475 static void bce_phy_intr (struct bce_softc *); 476 static inline u16 bce_get_hw_rx_cons (struct bce_softc *); 477 static void bce_rx_intr (struct bce_softc *); 478 static void bce_tx_intr (struct bce_softc *); 479 static void bce_disable_intr (struct bce_softc *); 480 static void bce_enable_intr (struct bce_softc *, int); 481 482 static void bce_intr (void *); 483 static void bce_set_rx_mode (struct bce_softc *); 484 static void bce_stats_update (struct bce_softc *); 485 static void bce_tick (void *); 486 static void bce_pulse (void *); 487 static void bce_add_sysctls (struct bce_softc *); 488 489 490 /****************************************************************************/ 491 /* FreeBSD device dispatch table. */ 492 /****************************************************************************/ 493 static device_method_t bce_methods[] = { 494 /* Device interface (device_if.h) */ 495 DEVMETHOD(device_probe, bce_probe), 496 DEVMETHOD(device_attach, bce_attach), 497 DEVMETHOD(device_detach, bce_detach), 498 DEVMETHOD(device_shutdown, bce_shutdown), 499 /* Supported by device interface but not used here. */ 500 /* DEVMETHOD(device_identify, bce_identify), */ 501 /* DEVMETHOD(device_suspend, bce_suspend), */ 502 /* DEVMETHOD(device_resume, bce_resume), */ 503 /* DEVMETHOD(device_quiesce, bce_quiesce), */ 504 505 /* MII interface (miibus_if.h) */ 506 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 507 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 508 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 509 /* Supported by MII interface but not used here. */ 510 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ 511 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ 512 513 DEVMETHOD_END 514 }; 515 516 static driver_t bce_driver = { 517 "bce", 518 bce_methods, 519 sizeof(struct bce_softc) 520 }; 521 522 static devclass_t bce_devclass; 523 524 MODULE_DEPEND(bce, pci, 1, 1, 1); 525 MODULE_DEPEND(bce, ether, 1, 1, 1); 526 MODULE_DEPEND(bce, miibus, 1, 1, 1); 527 528 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL); 529 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL); 530 531 532 /****************************************************************************/ 533 /* Tunable device values */ 534 /****************************************************************************/ 535 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters"); 536 537 /* Allowable values are TRUE or FALSE */ 538 static int bce_verbose = TRUE; 539 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0, 540 "Verbose output enable/disable"); 541 542 /* Allowable values are TRUE or FALSE */ 543 static int bce_tso_enable = TRUE; 544 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 545 "TSO Enable/Disable"); 546 547 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 548 /* ToDo: Add MSI-X support. */ 549 static int bce_msi_enable = 1; 550 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 551 "MSI-X|MSI|INTx selector"); 552 553 /* Allowable values are 1, 2, 4, 8. */ 554 static int bce_rx_pages = DEFAULT_RX_PAGES; 555 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0, 556 "Receive buffer descriptor pages (1 page = 255 buffer descriptors)"); 557 558 /* Allowable values are 1, 2, 4, 8. */ 559 static int bce_tx_pages = DEFAULT_TX_PAGES; 560 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0, 561 "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)"); 562 563 /* Allowable values are TRUE or FALSE. */ 564 static int bce_hdr_split = TRUE; 565 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0, 566 "Frame header/payload splitting Enable/Disable"); 567 568 /* Allowable values are TRUE or FALSE. */ 569 static int bce_strict_rx_mtu = FALSE; 570 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN, 571 &bce_strict_rx_mtu, 0, 572 "Enable/Disable strict RX frame size checking"); 573 574 /* Allowable values are 0 ... 100 */ 575 #ifdef BCE_DEBUG 576 /* Generate 1 interrupt for every transmit completion. */ 577 static int bce_tx_quick_cons_trip_int = 1; 578 #else 579 /* Generate 1 interrupt for every 20 transmit completions. */ 580 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT; 581 #endif 582 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN, 583 &bce_tx_quick_cons_trip_int, 0, 584 "Transmit BD trip point during interrupts"); 585 586 /* Allowable values are 0 ... 100 */ 587 /* Generate 1 interrupt for every transmit completion. */ 588 #ifdef BCE_DEBUG 589 static int bce_tx_quick_cons_trip = 1; 590 #else 591 /* Generate 1 interrupt for every 20 transmit completions. */ 592 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; 593 #endif 594 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN, 595 &bce_tx_quick_cons_trip, 0, 596 "Transmit BD trip point"); 597 598 /* Allowable values are 0 ... 100 */ 599 #ifdef BCE_DEBUG 600 /* Generate an interrupt if 0us have elapsed since the last TX completion. */ 601 static int bce_tx_ticks_int = 0; 602 #else 603 /* Generate an interrupt if 80us have elapsed since the last TX completion. */ 604 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT; 605 #endif 606 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN, 607 &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt"); 608 609 /* Allowable values are 0 ... 100 */ 610 #ifdef BCE_DEBUG 611 /* Generate an interrupt if 0us have elapsed since the last TX completion. */ 612 static int bce_tx_ticks = 0; 613 #else 614 /* Generate an interrupt if 80us have elapsed since the last TX completion. */ 615 static int bce_tx_ticks = DEFAULT_TX_TICKS; 616 #endif 617 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN, 618 &bce_tx_ticks, 0, "Transmit ticks count"); 619 620 /* Allowable values are 1 ... 100 */ 621 #ifdef BCE_DEBUG 622 /* Generate 1 interrupt for every received frame. */ 623 static int bce_rx_quick_cons_trip_int = 1; 624 #else 625 /* Generate 1 interrupt for every 6 received frames. */ 626 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT; 627 #endif 628 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN, 629 &bce_rx_quick_cons_trip_int, 0, 630 "Receive BD trip point duirng interrupts"); 631 632 /* Allowable values are 1 ... 100 */ 633 #ifdef BCE_DEBUG 634 /* Generate 1 interrupt for every received frame. */ 635 static int bce_rx_quick_cons_trip = 1; 636 #else 637 /* Generate 1 interrupt for every 6 received frames. */ 638 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; 639 #endif 640 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN, 641 &bce_rx_quick_cons_trip, 0, 642 "Receive BD trip point"); 643 644 /* Allowable values are 0 ... 100 */ 645 #ifdef BCE_DEBUG 646 /* Generate an int. if 0us have elapsed since the last received frame. */ 647 static int bce_rx_ticks_int = 0; 648 #else 649 /* Generate an int. if 18us have elapsed since the last received frame. */ 650 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; 651 #endif 652 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN, 653 &bce_rx_ticks_int, 0, "Receive ticks count during interrupt"); 654 655 /* Allowable values are 0 ... 100 */ 656 #ifdef BCE_DEBUG 657 /* Generate an int. if 0us have elapsed since the last received frame. */ 658 static int bce_rx_ticks = 0; 659 #else 660 /* Generate an int. if 18us have elapsed since the last received frame. */ 661 static int bce_rx_ticks = DEFAULT_RX_TICKS; 662 #endif 663 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN, 664 &bce_rx_ticks, 0, "Receive ticks count"); 665 666 667 /****************************************************************************/ 668 /* Device probe function. */ 669 /* */ 670 /* Compares the device to the driver's list of supported devices and */ 671 /* reports back to the OS whether this is the right driver for the device. */ 672 /* */ 673 /* Returns: */ 674 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 675 /****************************************************************************/ 676 static int 677 bce_probe(device_t dev) 678 { 679 const struct bce_type *t; 680 struct bce_softc *sc; 681 char *descbuf; 682 u16 vid = 0, did = 0, svid = 0, sdid = 0; 683 684 t = bce_devs; 685 686 sc = device_get_softc(dev); 687 sc->bce_unit = device_get_unit(dev); 688 sc->bce_dev = dev; 689 690 /* Get the data for the device to be probed. */ 691 vid = pci_get_vendor(dev); 692 did = pci_get_device(dev); 693 svid = pci_get_subvendor(dev); 694 sdid = pci_get_subdevice(dev); 695 696 DBPRINT(sc, BCE_EXTREME_LOAD, 697 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 698 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 699 700 /* Look through the list of known devices for a match. */ 701 while(t->bce_name != NULL) { 702 703 if ((vid == t->bce_vid) && (did == t->bce_did) && 704 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 705 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 706 707 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 708 709 if (descbuf == NULL) 710 return(ENOMEM); 711 712 /* Print out the device identity. */ 713 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", 714 t->bce_name, (((pci_read_config(dev, 715 PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 716 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 717 718 device_set_desc_copy(dev, descbuf); 719 free(descbuf, M_TEMP); 720 return(BUS_PROBE_DEFAULT); 721 } 722 t++; 723 } 724 725 return(ENXIO); 726 } 727 728 729 /****************************************************************************/ 730 /* PCI Capabilities Probe Function. */ 731 /* */ 732 /* Walks the PCI capabiites list for the device to find what features are */ 733 /* supported. */ 734 /* */ 735 /* Returns: */ 736 /* None. */ 737 /****************************************************************************/ 738 static void 739 bce_print_adapter_info(struct bce_softc *sc) 740 { 741 int i = 0; 742 743 DBENTER(BCE_VERBOSE_LOAD); 744 745 if (bce_verbose || bootverbose) { 746 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 747 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 748 12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 749 750 751 /* Bus info. */ 752 if (sc->bce_flags & BCE_PCIE_FLAG) { 753 printf("Bus (PCIe x%d, ", sc->link_width); 754 switch (sc->link_speed) { 755 case 1: printf("2.5Gbps); "); break; 756 case 2: printf("5Gbps); "); break; 757 default: printf("Unknown link speed); "); 758 } 759 } else { 760 printf("Bus (PCI%s, %s, %dMHz); ", 761 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 762 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? 763 "32-bit" : "64-bit"), sc->bus_speed_mhz); 764 } 765 766 /* Firmware version and device features. */ 767 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (", 768 sc->bce_bc_ver, sc->rx_pages, sc->tx_pages, 769 (bce_hdr_split == TRUE ? sc->pg_pages: 0)); 770 771 if (bce_hdr_split == TRUE) { 772 printf("SPLT"); 773 i++; 774 } 775 776 if (sc->bce_flags & BCE_USING_MSI_FLAG) { 777 if (i > 0) printf("|"); 778 printf("MSI"); i++; 779 } 780 781 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 782 if (i > 0) printf("|"); 783 printf("MSI-X"); i++; 784 } 785 786 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 787 if (i > 0) printf("|"); 788 printf("2.5G"); i++; 789 } 790 791 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) { 792 if (i > 0) printf("|"); 793 printf("Remote PHY(%s)", 794 sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ? 795 "FIBER" : "TP"); i++; 796 } 797 798 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 799 if (i > 0) printf("|"); 800 printf("MFW); MFW (%s)\n", sc->bce_mfw_ver); 801 } else { 802 printf(")\n"); 803 } 804 805 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n", 806 sc->bce_rx_quick_cons_trip_int, 807 sc->bce_rx_quick_cons_trip, 808 sc->bce_rx_ticks_int, 809 sc->bce_rx_ticks, 810 sc->bce_tx_quick_cons_trip_int, 811 sc->bce_tx_quick_cons_trip, 812 sc->bce_tx_ticks_int, 813 sc->bce_tx_ticks); 814 815 } 816 817 DBEXIT(BCE_VERBOSE_LOAD); 818 } 819 820 821 /****************************************************************************/ 822 /* PCI Capabilities Probe Function. */ 823 /* */ 824 /* Walks the PCI capabiites list for the device to find what features are */ 825 /* supported. */ 826 /* */ 827 /* Returns: */ 828 /* None. */ 829 /****************************************************************************/ 830 static void 831 bce_probe_pci_caps(device_t dev, struct bce_softc *sc) 832 { 833 u32 reg; 834 835 DBENTER(BCE_VERBOSE_LOAD); 836 837 /* Check if PCI-X capability is enabled. */ 838 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) { 839 if (reg != 0) 840 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; 841 } 842 843 /* Check if PCIe capability is enabled. */ 844 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 845 if (reg != 0) { 846 u16 link_status = pci_read_config(dev, reg + 0x12, 2); 847 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = " 848 "0x%08X\n", link_status); 849 sc->link_speed = link_status & 0xf; 850 sc->link_width = (link_status >> 4) & 0x3f; 851 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; 852 sc->bce_flags |= BCE_PCIE_FLAG; 853 } 854 } 855 856 /* Check if MSI capability is enabled. */ 857 if (pci_find_cap(dev, PCIY_MSI, ®) == 0) { 858 if (reg != 0) 859 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; 860 } 861 862 /* Check if MSI-X capability is enabled. */ 863 if (pci_find_cap(dev, PCIY_MSIX, ®) == 0) { 864 if (reg != 0) 865 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; 866 } 867 868 DBEXIT(BCE_VERBOSE_LOAD); 869 } 870 871 872 /****************************************************************************/ 873 /* Load and validate user tunable settings. */ 874 /* */ 875 /* Returns: */ 876 /* Nothing. */ 877 /****************************************************************************/ 878 static void 879 bce_set_tunables(struct bce_softc *sc) 880 { 881 /* Set sysctl values for RX page count. */ 882 switch (bce_rx_pages) { 883 case 1: 884 /* fall-through */ 885 case 2: 886 /* fall-through */ 887 case 4: 888 /* fall-through */ 889 case 8: 890 sc->rx_pages = bce_rx_pages; 891 break; 892 default: 893 sc->rx_pages = DEFAULT_RX_PAGES; 894 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 895 "hw.bce.rx_pages! Setting default of %d.\n", 896 __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES); 897 } 898 899 /* ToDo: Consider allowing user setting for pg_pages. */ 900 sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES); 901 902 /* Set sysctl values for TX page count. */ 903 switch (bce_tx_pages) { 904 case 1: 905 /* fall-through */ 906 case 2: 907 /* fall-through */ 908 case 4: 909 /* fall-through */ 910 case 8: 911 sc->tx_pages = bce_tx_pages; 912 break; 913 default: 914 sc->tx_pages = DEFAULT_TX_PAGES; 915 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 916 "hw.bce.tx_pages! Setting default of %d.\n", 917 __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES); 918 } 919 920 /* 921 * Validate the TX trip point (i.e. the number of 922 * TX completions before a status block update is 923 * generated and an interrupt is asserted. 924 */ 925 if (bce_tx_quick_cons_trip_int <= 100) { 926 sc->bce_tx_quick_cons_trip_int = 927 bce_tx_quick_cons_trip_int; 928 } else { 929 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 930 "hw.bce.tx_quick_cons_trip_int! Setting default of %d.\n", 931 __FILE__, __LINE__, bce_tx_quick_cons_trip_int, 932 DEFAULT_TX_QUICK_CONS_TRIP_INT); 933 sc->bce_tx_quick_cons_trip_int = 934 DEFAULT_TX_QUICK_CONS_TRIP_INT; 935 } 936 937 if (bce_tx_quick_cons_trip <= 100) { 938 sc->bce_tx_quick_cons_trip = 939 bce_tx_quick_cons_trip; 940 } else { 941 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 942 "hw.bce.tx_quick_cons_trip! Setting default of %d.\n", 943 __FILE__, __LINE__, bce_tx_quick_cons_trip, 944 DEFAULT_TX_QUICK_CONS_TRIP); 945 sc->bce_tx_quick_cons_trip = 946 DEFAULT_TX_QUICK_CONS_TRIP; 947 } 948 949 /* 950 * Validate the TX ticks count (i.e. the maximum amount 951 * of time to wait after the last TX completion has 952 * occurred before a status block update is generated 953 * and an interrupt is asserted. 954 */ 955 if (bce_tx_ticks_int <= 100) { 956 sc->bce_tx_ticks_int = 957 bce_tx_ticks_int; 958 } else { 959 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 960 "hw.bce.tx_ticks_int! Setting default of %d.\n", 961 __FILE__, __LINE__, bce_tx_ticks_int, 962 DEFAULT_TX_TICKS_INT); 963 sc->bce_tx_ticks_int = 964 DEFAULT_TX_TICKS_INT; 965 } 966 967 if (bce_tx_ticks <= 100) { 968 sc->bce_tx_ticks = 969 bce_tx_ticks; 970 } else { 971 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 972 "hw.bce.tx_ticks! Setting default of %d.\n", 973 __FILE__, __LINE__, bce_tx_ticks, 974 DEFAULT_TX_TICKS); 975 sc->bce_tx_ticks = 976 DEFAULT_TX_TICKS; 977 } 978 979 /* 980 * Validate the RX trip point (i.e. the number of 981 * RX frames received before a status block update is 982 * generated and an interrupt is asserted. 983 */ 984 if (bce_rx_quick_cons_trip_int <= 100) { 985 sc->bce_rx_quick_cons_trip_int = 986 bce_rx_quick_cons_trip_int; 987 } else { 988 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 989 "hw.bce.rx_quick_cons_trip_int! Setting default of %d.\n", 990 __FILE__, __LINE__, bce_rx_quick_cons_trip_int, 991 DEFAULT_RX_QUICK_CONS_TRIP_INT); 992 sc->bce_rx_quick_cons_trip_int = 993 DEFAULT_RX_QUICK_CONS_TRIP_INT; 994 } 995 996 if (bce_rx_quick_cons_trip <= 100) { 997 sc->bce_rx_quick_cons_trip = 998 bce_rx_quick_cons_trip; 999 } else { 1000 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 1001 "hw.bce.rx_quick_cons_trip! Setting default of %d.\n", 1002 __FILE__, __LINE__, bce_rx_quick_cons_trip, 1003 DEFAULT_RX_QUICK_CONS_TRIP); 1004 sc->bce_rx_quick_cons_trip = 1005 DEFAULT_RX_QUICK_CONS_TRIP; 1006 } 1007 1008 /* 1009 * Validate the RX ticks count (i.e. the maximum amount 1010 * of time to wait after the last RX frame has been 1011 * received before a status block update is generated 1012 * and an interrupt is asserted. 1013 */ 1014 if (bce_rx_ticks_int <= 100) { 1015 sc->bce_rx_ticks_int = bce_rx_ticks_int; 1016 } else { 1017 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 1018 "hw.bce.rx_ticks_int! Setting default of %d.\n", 1019 __FILE__, __LINE__, bce_rx_ticks_int, 1020 DEFAULT_RX_TICKS_INT); 1021 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; 1022 } 1023 1024 if (bce_rx_ticks <= 100) { 1025 sc->bce_rx_ticks = bce_rx_ticks; 1026 } else { 1027 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 1028 "hw.bce.rx_ticks! Setting default of %d.\n", 1029 __FILE__, __LINE__, bce_rx_ticks, 1030 DEFAULT_RX_TICKS); 1031 sc->bce_rx_ticks = DEFAULT_RX_TICKS; 1032 } 1033 1034 /* Disabling both RX ticks and RX trips will prevent interrupts. */ 1035 if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) { 1036 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and " 1037 "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n", 1038 __FILE__, __LINE__); 1039 sc->bce_rx_ticks = DEFAULT_RX_TICKS; 1040 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; 1041 } 1042 1043 /* Disabling both TX ticks and TX trips will prevent interrupts. */ 1044 if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) { 1045 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and " 1046 "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n", 1047 __FILE__, __LINE__); 1048 sc->bce_tx_ticks = DEFAULT_TX_TICKS; 1049 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; 1050 } 1051 } 1052 1053 1054 /****************************************************************************/ 1055 /* Device attach function. */ 1056 /* */ 1057 /* Allocates device resources, performs secondary chip identification, */ 1058 /* resets and initializes the hardware, and initializes driver instance */ 1059 /* variables. */ 1060 /* */ 1061 /* Returns: */ 1062 /* 0 on success, positive value on failure. */ 1063 /****************************************************************************/ 1064 static int 1065 bce_attach(device_t dev) 1066 { 1067 struct bce_softc *sc; 1068 struct ifnet *ifp; 1069 u32 val; 1070 int count, error, rc = 0, rid; 1071 1072 sc = device_get_softc(dev); 1073 sc->bce_dev = dev; 1074 1075 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1076 1077 sc->bce_unit = device_get_unit(dev); 1078 1079 /* Set initial device and PHY flags */ 1080 sc->bce_flags = 0; 1081 sc->bce_phy_flags = 0; 1082 1083 bce_set_tunables(sc); 1084 1085 pci_enable_busmaster(dev); 1086 1087 /* Allocate PCI memory resources. */ 1088 rid = PCIR_BAR(0); 1089 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1090 &rid, RF_ACTIVE); 1091 1092 if (sc->bce_res_mem == NULL) { 1093 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 1094 __FILE__, __LINE__); 1095 rc = ENXIO; 1096 goto bce_attach_fail; 1097 } 1098 1099 /* Get various resource handles. */ 1100 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 1101 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 1102 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 1103 1104 bce_probe_pci_caps(dev, sc); 1105 1106 rid = 1; 1107 count = 0; 1108 #if 0 1109 /* Try allocating MSI-X interrupts. */ 1110 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && 1111 (bce_msi_enable >= 2) && 1112 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1113 &rid, RF_ACTIVE)) != NULL)) { 1114 1115 msi_needed = count = 1; 1116 1117 if (((error = pci_alloc_msix(dev, &count)) != 0) || 1118 (count != msi_needed)) { 1119 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," 1120 "Received = %d, error = %d\n", __FILE__, __LINE__, 1121 msi_needed, count, error); 1122 count = 0; 1123 pci_release_msi(dev); 1124 bus_release_resource(dev, SYS_RES_MEMORY, rid, 1125 sc->bce_res_irq); 1126 sc->bce_res_irq = NULL; 1127 } else { 1128 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", 1129 __FUNCTION__); 1130 sc->bce_flags |= BCE_USING_MSIX_FLAG; 1131 } 1132 } 1133 #endif 1134 1135 /* Try allocating a MSI interrupt. */ 1136 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && 1137 (bce_msi_enable >= 1) && (count == 0)) { 1138 count = 1; 1139 if ((error = pci_alloc_msi(dev, &count)) != 0) { 1140 BCE_PRINTF("%s(%d): MSI allocation failed! " 1141 "error = %d\n", __FILE__, __LINE__, error); 1142 count = 0; 1143 pci_release_msi(dev); 1144 } else { 1145 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI " 1146 "interrupt.\n", __FUNCTION__); 1147 sc->bce_flags |= BCE_USING_MSI_FLAG; 1148 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 1149 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; 1150 rid = 1; 1151 } 1152 } 1153 1154 /* Try allocating a legacy interrupt. */ 1155 if (count == 0) { 1156 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", 1157 __FUNCTION__); 1158 rid = 0; 1159 } 1160 1161 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 1162 &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE)); 1163 1164 /* Report any IRQ allocation errors. */ 1165 if (sc->bce_res_irq == NULL) { 1166 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 1167 __FILE__, __LINE__); 1168 rc = ENXIO; 1169 goto bce_attach_fail; 1170 } 1171 1172 /* Initialize mutex for the current device instance. */ 1173 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 1174 1175 /* 1176 * Configure byte swap and enable indirect register access. 1177 * Rely on CPU to do target byte swapping on big endian systems. 1178 * Access to registers outside of PCI configurtion space are not 1179 * valid until this is done. 1180 */ 1181 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 1182 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 1183 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 1184 1185 /* Save ASIC revsion info. */ 1186 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 1187 1188 /* Weed out any non-production controller revisions. */ 1189 switch(BCE_CHIP_ID(sc)) { 1190 case BCE_CHIP_ID_5706_A0: 1191 case BCE_CHIP_ID_5706_A1: 1192 case BCE_CHIP_ID_5708_A0: 1193 case BCE_CHIP_ID_5708_B0: 1194 case BCE_CHIP_ID_5709_A0: 1195 case BCE_CHIP_ID_5709_B0: 1196 case BCE_CHIP_ID_5709_B1: 1197 case BCE_CHIP_ID_5709_B2: 1198 BCE_PRINTF("%s(%d): Unsupported controller " 1199 "revision (%c%d)!\n", __FILE__, __LINE__, 1200 (((pci_read_config(dev, PCIR_REVID, 4) & 1201 0xf0) >> 4) + 'A'), (pci_read_config(dev, 1202 PCIR_REVID, 4) & 0xf)); 1203 rc = ENODEV; 1204 goto bce_attach_fail; 1205 } 1206 1207 /* 1208 * The embedded PCIe to PCI-X bridge (EPB) 1209 * in the 5708 cannot address memory above 1210 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 1211 */ 1212 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 1213 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 1214 else 1215 sc->max_bus_addr = BUS_SPACE_MAXADDR; 1216 1217 /* 1218 * Find the base address for shared memory access. 1219 * Newer versions of bootcode use a signature and offset 1220 * while older versions use a fixed address. 1221 */ 1222 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 1223 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 1224 /* Multi-port devices use different offsets in shared memory. */ 1225 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + 1226 (pci_get_function(sc->bce_dev) << 2)); 1227 else 1228 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 1229 1230 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 1231 __FUNCTION__, sc->bce_shmem_base); 1232 1233 /* Fetch the bootcode revision. */ 1234 val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV); 1235 for (int i = 0, j = 0; i < 3; i++) { 1236 u8 num; 1237 1238 num = (u8) (val >> (24 - (i * 8))); 1239 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { 1240 if (num >= k || !skip0 || k == 1) { 1241 sc->bce_bc_ver[j++] = (num / k) + '0'; 1242 skip0 = 0; 1243 } 1244 } 1245 1246 if (i != 2) 1247 sc->bce_bc_ver[j++] = '.'; 1248 } 1249 1250 /* Check if any management firwmare is enabled. */ 1251 val = bce_shmem_rd(sc, BCE_PORT_FEATURE); 1252 if (val & BCE_PORT_FEATURE_ASF_ENABLED) { 1253 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 1254 1255 /* Allow time for firmware to enter the running state. */ 1256 for (int i = 0; i < 30; i++) { 1257 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 1258 if (val & BCE_CONDITION_MFW_RUN_MASK) 1259 break; 1260 DELAY(10000); 1261 } 1262 1263 /* Check if management firmware is running. */ 1264 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 1265 val &= BCE_CONDITION_MFW_RUN_MASK; 1266 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) && 1267 (val != BCE_CONDITION_MFW_RUN_NONE)) { 1268 u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR); 1269 int i = 0; 1270 1271 /* Read the management firmware version string. */ 1272 for (int j = 0; j < 3; j++) { 1273 val = bce_reg_rd_ind(sc, addr + j * 4); 1274 val = bswap32(val); 1275 memcpy(&sc->bce_mfw_ver[i], &val, 4); 1276 i += 4; 1277 } 1278 } else { 1279 /* May cause firmware synchronization timeouts. */ 1280 BCE_PRINTF("%s(%d): Management firmware enabled " 1281 "but not running!\n", __FILE__, __LINE__); 1282 strcpy(sc->bce_mfw_ver, "NOT RUNNING!"); 1283 1284 /* ToDo: Any action the driver should take? */ 1285 } 1286 } 1287 1288 /* Get PCI bus information (speed and type). */ 1289 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 1290 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 1291 u32 clkreg; 1292 1293 sc->bce_flags |= BCE_PCIX_FLAG; 1294 1295 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 1296 1297 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 1298 switch (clkreg) { 1299 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 1300 sc->bus_speed_mhz = 133; 1301 break; 1302 1303 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 1304 sc->bus_speed_mhz = 100; 1305 break; 1306 1307 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 1308 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 1309 sc->bus_speed_mhz = 66; 1310 break; 1311 1312 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 1313 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 1314 sc->bus_speed_mhz = 50; 1315 break; 1316 1317 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 1318 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 1319 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 1320 sc->bus_speed_mhz = 33; 1321 break; 1322 } 1323 } else { 1324 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 1325 sc->bus_speed_mhz = 66; 1326 else 1327 sc->bus_speed_mhz = 33; 1328 } 1329 1330 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 1331 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 1332 1333 /* Find the media type for the adapter. */ 1334 bce_get_media(sc); 1335 1336 /* Reset controller and announce to bootcode that driver is present. */ 1337 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 1338 BCE_PRINTF("%s(%d): Controller reset failed!\n", 1339 __FILE__, __LINE__); 1340 rc = ENXIO; 1341 goto bce_attach_fail; 1342 } 1343 1344 /* Initialize the controller. */ 1345 if (bce_chipinit(sc)) { 1346 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 1347 __FILE__, __LINE__); 1348 rc = ENXIO; 1349 goto bce_attach_fail; 1350 } 1351 1352 /* Perform NVRAM test. */ 1353 if (bce_nvram_test(sc)) { 1354 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 1355 __FILE__, __LINE__); 1356 rc = ENXIO; 1357 goto bce_attach_fail; 1358 } 1359 1360 /* Fetch the permanent Ethernet MAC address. */ 1361 bce_get_mac_addr(sc); 1362 1363 /* Update statistics once every second. */ 1364 sc->bce_stats_ticks = 1000000 & 0xffff00; 1365 1366 /* Store data needed by PHY driver for backplane applications */ 1367 sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 1368 sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG); 1369 1370 /* Allocate DMA memory resources. */ 1371 if (bce_dma_alloc(dev)) { 1372 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 1373 __FILE__, __LINE__); 1374 rc = ENXIO; 1375 goto bce_attach_fail; 1376 } 1377 1378 /* Allocate an ifnet structure. */ 1379 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 1380 if (ifp == NULL) { 1381 BCE_PRINTF("%s(%d): Interface allocation failed!\n", 1382 __FILE__, __LINE__); 1383 rc = ENXIO; 1384 goto bce_attach_fail; 1385 } 1386 1387 /* Initialize the ifnet interface. */ 1388 ifp->if_softc = sc; 1389 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1390 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1391 ifp->if_ioctl = bce_ioctl; 1392 ifp->if_start = bce_start; 1393 ifp->if_get_counter = bce_get_counter; 1394 ifp->if_init = bce_init; 1395 ifp->if_mtu = ETHERMTU; 1396 1397 if (bce_tso_enable) { 1398 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; 1399 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 | 1400 IFCAP_VLAN_HWTSO; 1401 } else { 1402 ifp->if_hwassist = BCE_IF_HWASSIST; 1403 ifp->if_capabilities = BCE_IF_CAPABILITIES; 1404 } 1405 1406 #if __FreeBSD_version >= 800505 1407 /* 1408 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version 1409 * so it's approximate value. 1410 */ 1411 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 1412 ifp->if_capabilities |= IFCAP_LINKSTATE; 1413 #endif 1414 1415 ifp->if_capenable = ifp->if_capabilities; 1416 1417 /* 1418 * Assume standard mbuf sizes for buffer allocation. 1419 * This may change later if the MTU size is set to 1420 * something other than 1500. 1421 */ 1422 bce_get_rx_buffer_sizes(sc, 1423 (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)); 1424 1425 /* Recalculate our buffer allocation sizes. */ 1426 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC; 1427 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 1428 IFQ_SET_READY(&ifp->if_snd); 1429 1430 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 1431 ifp->if_baudrate = IF_Mbps(2500ULL); 1432 else 1433 ifp->if_baudrate = IF_Mbps(1000); 1434 1435 /* Handle any special PHY initialization for SerDes PHYs. */ 1436 bce_init_media(sc); 1437 1438 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 1439 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd, 1440 bce_ifmedia_sts); 1441 /* 1442 * We can't manually override remote PHY's link and assume 1443 * PHY port configuration(Fiber or TP) is not changed after 1444 * device attach. This may not be correct though. 1445 */ 1446 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) { 1447 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 1448 ifmedia_add(&sc->bce_ifmedia, 1449 IFM_ETHER | IFM_2500_SX, 0, NULL); 1450 ifmedia_add(&sc->bce_ifmedia, 1451 IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL); 1452 } 1453 ifmedia_add(&sc->bce_ifmedia, 1454 IFM_ETHER | IFM_1000_SX, 0, NULL); 1455 ifmedia_add(&sc->bce_ifmedia, 1456 IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); 1457 } else { 1458 ifmedia_add(&sc->bce_ifmedia, 1459 IFM_ETHER | IFM_10_T, 0, NULL); 1460 ifmedia_add(&sc->bce_ifmedia, 1461 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 1462 ifmedia_add(&sc->bce_ifmedia, 1463 IFM_ETHER | IFM_100_TX, 0, NULL); 1464 ifmedia_add(&sc->bce_ifmedia, 1465 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 1466 ifmedia_add(&sc->bce_ifmedia, 1467 IFM_ETHER | IFM_1000_T, 0, NULL); 1468 ifmedia_add(&sc->bce_ifmedia, 1469 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 1470 } 1471 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 1472 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO); 1473 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media; 1474 } else { 1475 /* MII child bus by attaching the PHY. */ 1476 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd, 1477 bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr, 1478 MII_OFFSET_ANY, MIIF_DOPAUSE); 1479 if (rc != 0) { 1480 BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__, 1481 __LINE__); 1482 goto bce_attach_fail; 1483 } 1484 } 1485 1486 /* Attach to the Ethernet interface list. */ 1487 ether_ifattach(ifp, sc->eaddr); 1488 1489 #if __FreeBSD_version < 500000 1490 callout_init(&sc->bce_tick_callout); 1491 callout_init(&sc->bce_pulse_callout); 1492 #else 1493 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 1494 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 1495 #endif 1496 1497 /* Hookup IRQ last. */ 1498 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, 1499 NULL, bce_intr, sc, &sc->bce_intrhand); 1500 1501 if (rc) { 1502 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 1503 __FILE__, __LINE__); 1504 bce_detach(dev); 1505 goto bce_attach_exit; 1506 } 1507 1508 /* 1509 * At this point we've acquired all the resources 1510 * we need to run so there's no turning back, we're 1511 * cleared for launch. 1512 */ 1513 1514 /* Print some important debugging info. */ 1515 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); 1516 1517 /* Add the supported sysctls to the kernel. */ 1518 bce_add_sysctls(sc); 1519 1520 BCE_LOCK(sc); 1521 1522 /* 1523 * The chip reset earlier notified the bootcode that 1524 * a driver is present. We now need to start our pulse 1525 * routine so that the bootcode is reminded that we're 1526 * still running. 1527 */ 1528 bce_pulse(sc); 1529 1530 bce_mgmt_init_locked(sc); 1531 BCE_UNLOCK(sc); 1532 1533 /* Finally, print some useful adapter info */ 1534 bce_print_adapter_info(sc); 1535 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", 1536 __FUNCTION__, sc); 1537 1538 goto bce_attach_exit; 1539 1540 bce_attach_fail: 1541 bce_release_resources(sc); 1542 1543 bce_attach_exit: 1544 1545 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1546 1547 return(rc); 1548 } 1549 1550 1551 /****************************************************************************/ 1552 /* Device detach function. */ 1553 /* */ 1554 /* Stops the controller, resets the controller, and releases resources. */ 1555 /* */ 1556 /* Returns: */ 1557 /* 0 on success, positive value on failure. */ 1558 /****************************************************************************/ 1559 static int 1560 bce_detach(device_t dev) 1561 { 1562 struct bce_softc *sc = device_get_softc(dev); 1563 struct ifnet *ifp; 1564 u32 msg; 1565 1566 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1567 1568 ifp = sc->bce_ifp; 1569 1570 /* Stop and reset the controller. */ 1571 BCE_LOCK(sc); 1572 1573 /* Stop the pulse so the bootcode can go to driver absent state. */ 1574 callout_stop(&sc->bce_pulse_callout); 1575 1576 bce_stop(sc); 1577 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1578 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1579 else 1580 msg = BCE_DRV_MSG_CODE_UNLOAD; 1581 bce_reset(sc, msg); 1582 1583 BCE_UNLOCK(sc); 1584 1585 ether_ifdetach(ifp); 1586 1587 /* If we have a child device on the MII bus remove it too. */ 1588 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 1589 ifmedia_removeall(&sc->bce_ifmedia); 1590 else { 1591 bus_generic_detach(dev); 1592 device_delete_child(dev, sc->bce_miibus); 1593 } 1594 1595 /* Release all remaining resources. */ 1596 bce_release_resources(sc); 1597 1598 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1599 1600 return(0); 1601 } 1602 1603 1604 /****************************************************************************/ 1605 /* Device shutdown function. */ 1606 /* */ 1607 /* Stops and resets the controller. */ 1608 /* */ 1609 /* Returns: */ 1610 /* 0 on success, positive value on failure. */ 1611 /****************************************************************************/ 1612 static int 1613 bce_shutdown(device_t dev) 1614 { 1615 struct bce_softc *sc = device_get_softc(dev); 1616 u32 msg; 1617 1618 DBENTER(BCE_VERBOSE); 1619 1620 BCE_LOCK(sc); 1621 bce_stop(sc); 1622 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1623 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1624 else 1625 msg = BCE_DRV_MSG_CODE_UNLOAD; 1626 bce_reset(sc, msg); 1627 BCE_UNLOCK(sc); 1628 1629 DBEXIT(BCE_VERBOSE); 1630 1631 return (0); 1632 } 1633 1634 1635 #ifdef BCE_DEBUG 1636 /****************************************************************************/ 1637 /* Register read. */ 1638 /* */ 1639 /* Returns: */ 1640 /* The value of the register. */ 1641 /****************************************************************************/ 1642 static u32 1643 bce_reg_rd(struct bce_softc *sc, u32 offset) 1644 { 1645 u32 val = REG_RD(sc, offset); 1646 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1647 __FUNCTION__, offset, val); 1648 return val; 1649 } 1650 1651 1652 /****************************************************************************/ 1653 /* Register write (16 bit). */ 1654 /* */ 1655 /* Returns: */ 1656 /* Nothing. */ 1657 /****************************************************************************/ 1658 static void 1659 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) 1660 { 1661 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", 1662 __FUNCTION__, offset, val); 1663 REG_WR16(sc, offset, val); 1664 } 1665 1666 1667 /****************************************************************************/ 1668 /* Register write. */ 1669 /* */ 1670 /* Returns: */ 1671 /* Nothing. */ 1672 /****************************************************************************/ 1673 static void 1674 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) 1675 { 1676 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1677 __FUNCTION__, offset, val); 1678 REG_WR(sc, offset, val); 1679 } 1680 #endif 1681 1682 /****************************************************************************/ 1683 /* Indirect register read. */ 1684 /* */ 1685 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1686 /* configuration space. Using this mechanism avoids issues with posted */ 1687 /* reads but is much slower than memory-mapped I/O. */ 1688 /* */ 1689 /* Returns: */ 1690 /* The value of the register. */ 1691 /****************************************************************************/ 1692 static u32 1693 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 1694 { 1695 device_t dev; 1696 dev = sc->bce_dev; 1697 1698 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1699 #ifdef BCE_DEBUG 1700 { 1701 u32 val; 1702 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1703 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1704 __FUNCTION__, offset, val); 1705 return val; 1706 } 1707 #else 1708 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1709 #endif 1710 } 1711 1712 1713 /****************************************************************************/ 1714 /* Indirect register write. */ 1715 /* */ 1716 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1717 /* configuration space. Using this mechanism avoids issues with posted */ 1718 /* writes but is muchh slower than memory-mapped I/O. */ 1719 /* */ 1720 /* Returns: */ 1721 /* Nothing. */ 1722 /****************************************************************************/ 1723 static void 1724 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 1725 { 1726 device_t dev; 1727 dev = sc->bce_dev; 1728 1729 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1730 __FUNCTION__, offset, val); 1731 1732 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1733 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 1734 } 1735 1736 1737 /****************************************************************************/ 1738 /* Shared memory write. */ 1739 /* */ 1740 /* Writes NetXtreme II shared memory region. */ 1741 /* */ 1742 /* Returns: */ 1743 /* Nothing. */ 1744 /****************************************************************************/ 1745 static void 1746 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val) 1747 { 1748 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X to " 1749 "0x%08X\n", __FUNCTION__, val, offset); 1750 1751 bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val); 1752 } 1753 1754 1755 /****************************************************************************/ 1756 /* Shared memory read. */ 1757 /* */ 1758 /* Reads NetXtreme II shared memory region. */ 1759 /* */ 1760 /* Returns: */ 1761 /* The 32 bit value read. */ 1762 /****************************************************************************/ 1763 static u32 1764 bce_shmem_rd(struct bce_softc *sc, u32 offset) 1765 { 1766 u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset); 1767 1768 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from " 1769 "0x%08X\n", __FUNCTION__, val, offset); 1770 1771 return val; 1772 } 1773 1774 1775 #ifdef BCE_DEBUG 1776 /****************************************************************************/ 1777 /* Context memory read. */ 1778 /* */ 1779 /* The NetXtreme II controller uses context memory to track connection */ 1780 /* information for L2 and higher network protocols. */ 1781 /* */ 1782 /* Returns: */ 1783 /* The requested 32 bit value of context memory. */ 1784 /****************************************************************************/ 1785 static u32 1786 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) 1787 { 1788 u32 idx, offset, retry_cnt = 5, val; 1789 1790 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || 1791 cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID " 1792 "address: 0x%08X.\n", __FUNCTION__, cid_addr)); 1793 1794 offset = ctx_offset + cid_addr; 1795 1796 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 1797 1798 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); 1799 1800 for (idx = 0; idx < retry_cnt; idx++) { 1801 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1802 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) 1803 break; 1804 DELAY(5); 1805 } 1806 1807 if (val & BCE_CTX_CTX_CTRL_READ_REQ) 1808 BCE_PRINTF("%s(%d); Unable to read CTX memory: " 1809 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1810 __FILE__, __LINE__, cid_addr, ctx_offset); 1811 1812 val = REG_RD(sc, BCE_CTX_CTX_DATA); 1813 } else { 1814 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1815 val = REG_RD(sc, BCE_CTX_DATA); 1816 } 1817 1818 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1819 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); 1820 1821 return(val); 1822 } 1823 #endif 1824 1825 1826 /****************************************************************************/ 1827 /* Context memory write. */ 1828 /* */ 1829 /* The NetXtreme II controller uses context memory to track connection */ 1830 /* information for L2 and higher network protocols. */ 1831 /* */ 1832 /* Returns: */ 1833 /* Nothing. */ 1834 /****************************************************************************/ 1835 static void 1836 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) 1837 { 1838 u32 idx, offset = ctx_offset + cid_addr; 1839 u32 val, retry_cnt = 5; 1840 1841 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1842 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); 1843 1844 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1845 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1846 __FUNCTION__, cid_addr)); 1847 1848 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 1849 1850 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); 1851 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); 1852 1853 for (idx = 0; idx < retry_cnt; idx++) { 1854 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1855 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) 1856 break; 1857 DELAY(5); 1858 } 1859 1860 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) 1861 BCE_PRINTF("%s(%d); Unable to write CTX memory: " 1862 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1863 __FILE__, __LINE__, cid_addr, ctx_offset); 1864 1865 } else { 1866 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1867 REG_WR(sc, BCE_CTX_DATA, ctx_val); 1868 } 1869 } 1870 1871 1872 /****************************************************************************/ 1873 /* PHY register read. */ 1874 /* */ 1875 /* Implements register reads on the MII bus. */ 1876 /* */ 1877 /* Returns: */ 1878 /* The value of the register. */ 1879 /****************************************************************************/ 1880 static int 1881 bce_miibus_read_reg(device_t dev, int phy, int reg) 1882 { 1883 struct bce_softc *sc; 1884 u32 val; 1885 int i; 1886 1887 sc = device_get_softc(dev); 1888 1889 /* 1890 * The 5709S PHY is an IEEE Clause 45 PHY 1891 * with special mappings to work with IEEE 1892 * Clause 22 register accesses. 1893 */ 1894 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1895 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1896 reg += 0x10; 1897 } 1898 1899 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1900 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1901 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1902 1903 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1904 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1905 1906 DELAY(40); 1907 } 1908 1909 1910 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1911 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1912 BCE_EMAC_MDIO_COMM_START_BUSY; 1913 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1914 1915 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1916 DELAY(10); 1917 1918 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1919 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1920 DELAY(5); 1921 1922 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1923 val &= BCE_EMAC_MDIO_COMM_DATA; 1924 1925 break; 1926 } 1927 } 1928 1929 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1930 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, " 1931 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); 1932 val = 0x0; 1933 } else { 1934 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1935 } 1936 1937 1938 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1939 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1940 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1941 1942 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1943 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1944 1945 DELAY(40); 1946 } 1947 1948 DB_PRINT_PHY_REG(reg, val); 1949 return (val & 0xffff); 1950 } 1951 1952 1953 /****************************************************************************/ 1954 /* PHY register write. */ 1955 /* */ 1956 /* Implements register writes on the MII bus. */ 1957 /* */ 1958 /* Returns: */ 1959 /* The value of the register. */ 1960 /****************************************************************************/ 1961 static int 1962 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1963 { 1964 struct bce_softc *sc; 1965 u32 val1; 1966 int i; 1967 1968 sc = device_get_softc(dev); 1969 1970 DB_PRINT_PHY_REG(reg, val); 1971 1972 /* 1973 * The 5709S PHY is an IEEE Clause 45 PHY 1974 * with special mappings to work with IEEE 1975 * Clause 22 register accesses. 1976 */ 1977 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1978 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1979 reg += 0x10; 1980 } 1981 1982 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1983 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1984 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1985 1986 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1987 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1988 1989 DELAY(40); 1990 } 1991 1992 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1993 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1994 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1995 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1996 1997 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1998 DELAY(10); 1999 2000 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 2001 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 2002 DELAY(5); 2003 break; 2004 } 2005 } 2006 2007 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 2008 BCE_PRINTF("%s(%d): PHY write timeout!\n", 2009 __FILE__, __LINE__); 2010 2011 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 2012 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 2013 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 2014 2015 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 2016 REG_RD(sc, BCE_EMAC_MDIO_MODE); 2017 2018 DELAY(40); 2019 } 2020 2021 return 0; 2022 } 2023 2024 2025 /****************************************************************************/ 2026 /* MII bus status change. */ 2027 /* */ 2028 /* Called by the MII bus driver when the PHY establishes link to set the */ 2029 /* MAC interface registers. */ 2030 /* */ 2031 /* Returns: */ 2032 /* Nothing. */ 2033 /****************************************************************************/ 2034 static void 2035 bce_miibus_statchg(device_t dev) 2036 { 2037 struct bce_softc *sc; 2038 struct mii_data *mii; 2039 struct ifmediareq ifmr; 2040 int media_active, media_status, val; 2041 2042 sc = device_get_softc(dev); 2043 2044 DBENTER(BCE_VERBOSE_PHY); 2045 2046 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 2047 bzero(&ifmr, sizeof(ifmr)); 2048 bce_ifmedia_sts_rphy(sc, &ifmr); 2049 media_active = ifmr.ifm_active; 2050 media_status = ifmr.ifm_status; 2051 } else { 2052 mii = device_get_softc(sc->bce_miibus); 2053 media_active = mii->mii_media_active; 2054 media_status = mii->mii_media_status; 2055 } 2056 2057 /* Ignore invalid media status. */ 2058 if ((media_status & (IFM_ACTIVE | IFM_AVALID)) != 2059 (IFM_ACTIVE | IFM_AVALID)) 2060 goto bce_miibus_statchg_exit; 2061 2062 val = REG_RD(sc, BCE_EMAC_MODE); 2063 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 2064 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 2065 BCE_EMAC_MODE_25G); 2066 2067 /* Set MII or GMII interface based on the PHY speed. */ 2068 switch (IFM_SUBTYPE(media_active)) { 2069 case IFM_10_T: 2070 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 2071 DBPRINT(sc, BCE_INFO_PHY, 2072 "Enabling 10Mb interface.\n"); 2073 val |= BCE_EMAC_MODE_PORT_MII_10; 2074 break; 2075 } 2076 /* fall-through */ 2077 case IFM_100_TX: 2078 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n"); 2079 val |= BCE_EMAC_MODE_PORT_MII; 2080 break; 2081 case IFM_2500_SX: 2082 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n"); 2083 val |= BCE_EMAC_MODE_25G; 2084 /* fall-through */ 2085 case IFM_1000_T: 2086 case IFM_1000_SX: 2087 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n"); 2088 val |= BCE_EMAC_MODE_PORT_GMII; 2089 break; 2090 default: 2091 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling " 2092 "default GMII interface.\n"); 2093 val |= BCE_EMAC_MODE_PORT_GMII; 2094 } 2095 2096 /* Set half or full duplex based on PHY settings. */ 2097 if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) { 2098 DBPRINT(sc, BCE_INFO_PHY, 2099 "Setting Half-Duplex interface.\n"); 2100 val |= BCE_EMAC_MODE_HALF_DUPLEX; 2101 } else 2102 DBPRINT(sc, BCE_INFO_PHY, 2103 "Setting Full-Duplex interface.\n"); 2104 2105 REG_WR(sc, BCE_EMAC_MODE, val); 2106 2107 if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) { 2108 DBPRINT(sc, BCE_INFO_PHY, 2109 "%s(): Enabling RX flow control.\n", __FUNCTION__); 2110 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 2111 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL; 2112 } else { 2113 DBPRINT(sc, BCE_INFO_PHY, 2114 "%s(): Disabling RX flow control.\n", __FUNCTION__); 2115 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 2116 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL; 2117 } 2118 2119 if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) { 2120 DBPRINT(sc, BCE_INFO_PHY, 2121 "%s(): Enabling TX flow control.\n", __FUNCTION__); 2122 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 2123 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL; 2124 } else { 2125 DBPRINT(sc, BCE_INFO_PHY, 2126 "%s(): Disabling TX flow control.\n", __FUNCTION__); 2127 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 2128 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL; 2129 } 2130 2131 /* ToDo: Update watermarks in bce_init_rx_context(). */ 2132 2133 bce_miibus_statchg_exit: 2134 DBEXIT(BCE_VERBOSE_PHY); 2135 } 2136 2137 2138 /****************************************************************************/ 2139 /* Acquire NVRAM lock. */ 2140 /* */ 2141 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 2142 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 2143 /* for use by the driver. */ 2144 /* */ 2145 /* Returns: */ 2146 /* 0 on success, positive value on failure. */ 2147 /****************************************************************************/ 2148 static int 2149 bce_acquire_nvram_lock(struct bce_softc *sc) 2150 { 2151 u32 val; 2152 int j, rc = 0; 2153 2154 DBENTER(BCE_VERBOSE_NVRAM); 2155 2156 /* Request access to the flash interface. */ 2157 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 2158 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2159 val = REG_RD(sc, BCE_NVM_SW_ARB); 2160 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 2161 break; 2162 2163 DELAY(5); 2164 } 2165 2166 if (j >= NVRAM_TIMEOUT_COUNT) { 2167 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 2168 rc = EBUSY; 2169 } 2170 2171 DBEXIT(BCE_VERBOSE_NVRAM); 2172 return (rc); 2173 } 2174 2175 2176 /****************************************************************************/ 2177 /* Release NVRAM lock. */ 2178 /* */ 2179 /* When the caller is finished accessing NVRAM the lock must be released. */ 2180 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 2181 /* for use by the driver. */ 2182 /* */ 2183 /* Returns: */ 2184 /* 0 on success, positive value on failure. */ 2185 /****************************************************************************/ 2186 static int 2187 bce_release_nvram_lock(struct bce_softc *sc) 2188 { 2189 u32 val; 2190 int j, rc = 0; 2191 2192 DBENTER(BCE_VERBOSE_NVRAM); 2193 2194 /* 2195 * Relinquish nvram interface. 2196 */ 2197 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 2198 2199 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2200 val = REG_RD(sc, BCE_NVM_SW_ARB); 2201 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 2202 break; 2203 2204 DELAY(5); 2205 } 2206 2207 if (j >= NVRAM_TIMEOUT_COUNT) { 2208 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); 2209 rc = EBUSY; 2210 } 2211 2212 DBEXIT(BCE_VERBOSE_NVRAM); 2213 return (rc); 2214 } 2215 2216 2217 #ifdef BCE_NVRAM_WRITE_SUPPORT 2218 /****************************************************************************/ 2219 /* Enable NVRAM write access. */ 2220 /* */ 2221 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 2222 /* */ 2223 /* Returns: */ 2224 /* 0 on success, positive value on failure. */ 2225 /****************************************************************************/ 2226 static int 2227 bce_enable_nvram_write(struct bce_softc *sc) 2228 { 2229 u32 val; 2230 int rc = 0; 2231 2232 DBENTER(BCE_VERBOSE_NVRAM); 2233 2234 val = REG_RD(sc, BCE_MISC_CFG); 2235 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 2236 2237 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2238 int j; 2239 2240 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2241 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 2242 2243 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2244 DELAY(5); 2245 2246 val = REG_RD(sc, BCE_NVM_COMMAND); 2247 if (val & BCE_NVM_COMMAND_DONE) 2248 break; 2249 } 2250 2251 if (j >= NVRAM_TIMEOUT_COUNT) { 2252 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 2253 rc = EBUSY; 2254 } 2255 } 2256 2257 DBENTER(BCE_VERBOSE_NVRAM); 2258 return (rc); 2259 } 2260 2261 2262 /****************************************************************************/ 2263 /* Disable NVRAM write access. */ 2264 /* */ 2265 /* When the caller is finished writing to NVRAM write access must be */ 2266 /* disabled. */ 2267 /* */ 2268 /* Returns: */ 2269 /* Nothing. */ 2270 /****************************************************************************/ 2271 static void 2272 bce_disable_nvram_write(struct bce_softc *sc) 2273 { 2274 u32 val; 2275 2276 DBENTER(BCE_VERBOSE_NVRAM); 2277 2278 val = REG_RD(sc, BCE_MISC_CFG); 2279 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 2280 2281 DBEXIT(BCE_VERBOSE_NVRAM); 2282 2283 } 2284 #endif 2285 2286 2287 /****************************************************************************/ 2288 /* Enable NVRAM access. */ 2289 /* */ 2290 /* Before accessing NVRAM for read or write operations the caller must */ 2291 /* enabled NVRAM access. */ 2292 /* */ 2293 /* Returns: */ 2294 /* Nothing. */ 2295 /****************************************************************************/ 2296 static void 2297 bce_enable_nvram_access(struct bce_softc *sc) 2298 { 2299 u32 val; 2300 2301 DBENTER(BCE_VERBOSE_NVRAM); 2302 2303 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 2304 /* Enable both bits, even on read. */ 2305 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val | 2306 BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 2307 2308 DBEXIT(BCE_VERBOSE_NVRAM); 2309 } 2310 2311 2312 /****************************************************************************/ 2313 /* Disable NVRAM access. */ 2314 /* */ 2315 /* When the caller is finished accessing NVRAM access must be disabled. */ 2316 /* */ 2317 /* Returns: */ 2318 /* Nothing. */ 2319 /****************************************************************************/ 2320 static void 2321 bce_disable_nvram_access(struct bce_softc *sc) 2322 { 2323 u32 val; 2324 2325 DBENTER(BCE_VERBOSE_NVRAM); 2326 2327 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 2328 2329 /* Disable both bits, even after read. */ 2330 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val & 2331 ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN)); 2332 2333 DBEXIT(BCE_VERBOSE_NVRAM); 2334 } 2335 2336 2337 #ifdef BCE_NVRAM_WRITE_SUPPORT 2338 /****************************************************************************/ 2339 /* Erase NVRAM page before writing. */ 2340 /* */ 2341 /* Non-buffered flash parts require that a page be erased before it is */ 2342 /* written. */ 2343 /* */ 2344 /* Returns: */ 2345 /* 0 on success, positive value on failure. */ 2346 /****************************************************************************/ 2347 static int 2348 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 2349 { 2350 u32 cmd; 2351 int j, rc = 0; 2352 2353 DBENTER(BCE_VERBOSE_NVRAM); 2354 2355 /* Buffered flash doesn't require an erase. */ 2356 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) 2357 goto bce_nvram_erase_page_exit; 2358 2359 /* Build an erase command. */ 2360 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 2361 BCE_NVM_COMMAND_DOIT; 2362 2363 /* 2364 * Clear the DONE bit separately, set the NVRAM address to erase, 2365 * and issue the erase command. 2366 */ 2367 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2368 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2369 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2370 2371 /* Wait for completion. */ 2372 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2373 u32 val; 2374 2375 DELAY(5); 2376 2377 val = REG_RD(sc, BCE_NVM_COMMAND); 2378 if (val & BCE_NVM_COMMAND_DONE) 2379 break; 2380 } 2381 2382 if (j >= NVRAM_TIMEOUT_COUNT) { 2383 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 2384 rc = EBUSY; 2385 } 2386 2387 bce_nvram_erase_page_exit: 2388 DBEXIT(BCE_VERBOSE_NVRAM); 2389 return (rc); 2390 } 2391 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2392 2393 2394 /****************************************************************************/ 2395 /* Read a dword (32 bits) from NVRAM. */ 2396 /* */ 2397 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 2398 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 2399 /* */ 2400 /* Returns: */ 2401 /* 0 on success and the 32 bit value read, positive value on failure. */ 2402 /****************************************************************************/ 2403 static int 2404 bce_nvram_read_dword(struct bce_softc *sc, 2405 u32 offset, u8 *ret_val, u32 cmd_flags) 2406 { 2407 u32 cmd; 2408 int i, rc = 0; 2409 2410 DBENTER(BCE_EXTREME_NVRAM); 2411 2412 /* Build the command word. */ 2413 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 2414 2415 /* Calculate the offset for buffered flash if translation is used. */ 2416 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2417 offset = ((offset / sc->bce_flash_info->page_size) << 2418 sc->bce_flash_info->page_bits) + 2419 (offset % sc->bce_flash_info->page_size); 2420 } 2421 2422 /* 2423 * Clear the DONE bit separately, set the address to read, 2424 * and issue the read. 2425 */ 2426 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2427 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2428 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2429 2430 /* Wait for completion. */ 2431 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 2432 u32 val; 2433 2434 DELAY(5); 2435 2436 val = REG_RD(sc, BCE_NVM_COMMAND); 2437 if (val & BCE_NVM_COMMAND_DONE) { 2438 val = REG_RD(sc, BCE_NVM_READ); 2439 2440 val = bce_be32toh(val); 2441 memcpy(ret_val, &val, 4); 2442 break; 2443 } 2444 } 2445 2446 /* Check for errors. */ 2447 if (i >= NVRAM_TIMEOUT_COUNT) { 2448 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at " 2449 "offset 0x%08X!\n", __FILE__, __LINE__, offset); 2450 rc = EBUSY; 2451 } 2452 2453 DBEXIT(BCE_EXTREME_NVRAM); 2454 return(rc); 2455 } 2456 2457 2458 #ifdef BCE_NVRAM_WRITE_SUPPORT 2459 /****************************************************************************/ 2460 /* Write a dword (32 bits) to NVRAM. */ 2461 /* */ 2462 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 2463 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 2464 /* enabled NVRAM write access. */ 2465 /* */ 2466 /* Returns: */ 2467 /* 0 on success, positive value on failure. */ 2468 /****************************************************************************/ 2469 static int 2470 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 2471 u32 cmd_flags) 2472 { 2473 u32 cmd, val32; 2474 int j, rc = 0; 2475 2476 DBENTER(BCE_VERBOSE_NVRAM); 2477 2478 /* Build the command word. */ 2479 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 2480 2481 /* Calculate the offset for buffered flash if translation is used. */ 2482 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2483 offset = ((offset / sc->bce_flash_info->page_size) << 2484 sc->bce_flash_info->page_bits) + 2485 (offset % sc->bce_flash_info->page_size); 2486 } 2487 2488 /* 2489 * Clear the DONE bit separately, convert NVRAM data to big-endian, 2490 * set the NVRAM address to write, and issue the write command 2491 */ 2492 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2493 memcpy(&val32, val, 4); 2494 val32 = htobe32(val32); 2495 REG_WR(sc, BCE_NVM_WRITE, val32); 2496 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2497 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2498 2499 /* Wait for completion. */ 2500 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2501 DELAY(5); 2502 2503 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 2504 break; 2505 } 2506 if (j >= NVRAM_TIMEOUT_COUNT) { 2507 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at " 2508 "offset 0x%08X\n", __FILE__, __LINE__, offset); 2509 rc = EBUSY; 2510 } 2511 2512 DBEXIT(BCE_VERBOSE_NVRAM); 2513 return (rc); 2514 } 2515 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2516 2517 2518 /****************************************************************************/ 2519 /* Initialize NVRAM access. */ 2520 /* */ 2521 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 2522 /* access that device. */ 2523 /* */ 2524 /* Returns: */ 2525 /* 0 on success, positive value on failure. */ 2526 /****************************************************************************/ 2527 static int 2528 bce_init_nvram(struct bce_softc *sc) 2529 { 2530 u32 val; 2531 int j, entry_count, rc = 0; 2532 const struct flash_spec *flash; 2533 2534 DBENTER(BCE_VERBOSE_NVRAM); 2535 2536 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 2537 sc->bce_flash_info = &flash_5709; 2538 goto bce_init_nvram_get_flash_size; 2539 } 2540 2541 /* Determine the selected interface. */ 2542 val = REG_RD(sc, BCE_NVM_CFG1); 2543 2544 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 2545 2546 /* 2547 * Flash reconfiguration is required to support additional 2548 * NVRAM devices not directly supported in hardware. 2549 * Check if the flash interface was reconfigured 2550 * by the bootcode. 2551 */ 2552 2553 if (val & 0x40000000) { 2554 /* Flash interface reconfigured by bootcode. */ 2555 2556 DBPRINT(sc,BCE_INFO_LOAD, 2557 "bce_init_nvram(): Flash WAS reconfigured.\n"); 2558 2559 for (j = 0, flash = &flash_table[0]; j < entry_count; 2560 j++, flash++) { 2561 if ((val & FLASH_BACKUP_STRAP_MASK) == 2562 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 2563 sc->bce_flash_info = flash; 2564 break; 2565 } 2566 } 2567 } else { 2568 /* Flash interface not yet reconfigured. */ 2569 u32 mask; 2570 2571 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", 2572 __FUNCTION__); 2573 2574 if (val & (1 << 23)) 2575 mask = FLASH_BACKUP_STRAP_MASK; 2576 else 2577 mask = FLASH_STRAP_MASK; 2578 2579 /* Look for the matching NVRAM device configuration data. */ 2580 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 2581 2582 /* Check if the device matches any of the known devices. */ 2583 if ((val & mask) == (flash->strapping & mask)) { 2584 /* Found a device match. */ 2585 sc->bce_flash_info = flash; 2586 2587 /* Request access to the flash interface. */ 2588 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2589 return rc; 2590 2591 /* Reconfigure the flash interface. */ 2592 bce_enable_nvram_access(sc); 2593 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 2594 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 2595 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 2596 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 2597 bce_disable_nvram_access(sc); 2598 bce_release_nvram_lock(sc); 2599 2600 break; 2601 } 2602 } 2603 } 2604 2605 /* Check if a matching device was found. */ 2606 if (j == entry_count) { 2607 sc->bce_flash_info = NULL; 2608 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 2609 __FILE__, __LINE__); 2610 DBEXIT(BCE_VERBOSE_NVRAM); 2611 return (ENODEV); 2612 } 2613 2614 bce_init_nvram_get_flash_size: 2615 /* Write the flash config data to the shared memory interface. */ 2616 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2); 2617 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 2618 if (val) 2619 sc->bce_flash_size = val; 2620 else 2621 sc->bce_flash_size = sc->bce_flash_info->total_size; 2622 2623 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", 2624 __FUNCTION__, sc->bce_flash_info->name, 2625 sc->bce_flash_info->total_size); 2626 2627 DBEXIT(BCE_VERBOSE_NVRAM); 2628 return rc; 2629 } 2630 2631 2632 /****************************************************************************/ 2633 /* Read an arbitrary range of data from NVRAM. */ 2634 /* */ 2635 /* Prepares the NVRAM interface for access and reads the requested data */ 2636 /* into the supplied buffer. */ 2637 /* */ 2638 /* Returns: */ 2639 /* 0 on success and the data read, positive value on failure. */ 2640 /****************************************************************************/ 2641 static int 2642 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 2643 int buf_size) 2644 { 2645 int rc = 0; 2646 u32 cmd_flags, offset32, len32, extra; 2647 2648 DBENTER(BCE_VERBOSE_NVRAM); 2649 2650 if (buf_size == 0) 2651 goto bce_nvram_read_exit; 2652 2653 /* Request access to the flash interface. */ 2654 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2655 goto bce_nvram_read_exit; 2656 2657 /* Enable access to flash interface */ 2658 bce_enable_nvram_access(sc); 2659 2660 len32 = buf_size; 2661 offset32 = offset; 2662 extra = 0; 2663 2664 cmd_flags = 0; 2665 2666 if (offset32 & 3) { 2667 u8 buf[4]; 2668 u32 pre_len; 2669 2670 offset32 &= ~3; 2671 pre_len = 4 - (offset & 3); 2672 2673 if (pre_len >= len32) { 2674 pre_len = len32; 2675 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 2676 } 2677 else { 2678 cmd_flags = BCE_NVM_COMMAND_FIRST; 2679 } 2680 2681 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2682 2683 if (rc) 2684 return rc; 2685 2686 memcpy(ret_buf, buf + (offset & 3), pre_len); 2687 2688 offset32 += 4; 2689 ret_buf += pre_len; 2690 len32 -= pre_len; 2691 } 2692 2693 if (len32 & 3) { 2694 extra = 4 - (len32 & 3); 2695 len32 = (len32 + 4) & ~3; 2696 } 2697 2698 if (len32 == 4) { 2699 u8 buf[4]; 2700 2701 if (cmd_flags) 2702 cmd_flags = BCE_NVM_COMMAND_LAST; 2703 else 2704 cmd_flags = BCE_NVM_COMMAND_FIRST | 2705 BCE_NVM_COMMAND_LAST; 2706 2707 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2708 2709 memcpy(ret_buf, buf, 4 - extra); 2710 } 2711 else if (len32 > 0) { 2712 u8 buf[4]; 2713 2714 /* Read the first word. */ 2715 if (cmd_flags) 2716 cmd_flags = 0; 2717 else 2718 cmd_flags = BCE_NVM_COMMAND_FIRST; 2719 2720 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 2721 2722 /* Advance to the next dword. */ 2723 offset32 += 4; 2724 ret_buf += 4; 2725 len32 -= 4; 2726 2727 while (len32 > 4 && rc == 0) { 2728 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 2729 2730 /* Advance to the next dword. */ 2731 offset32 += 4; 2732 ret_buf += 4; 2733 len32 -= 4; 2734 } 2735 2736 if (rc) 2737 goto bce_nvram_read_locked_exit; 2738 2739 cmd_flags = BCE_NVM_COMMAND_LAST; 2740 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2741 2742 memcpy(ret_buf, buf, 4 - extra); 2743 } 2744 2745 bce_nvram_read_locked_exit: 2746 /* Disable access to flash interface and release the lock. */ 2747 bce_disable_nvram_access(sc); 2748 bce_release_nvram_lock(sc); 2749 2750 bce_nvram_read_exit: 2751 DBEXIT(BCE_VERBOSE_NVRAM); 2752 return rc; 2753 } 2754 2755 2756 #ifdef BCE_NVRAM_WRITE_SUPPORT 2757 /****************************************************************************/ 2758 /* Write an arbitrary range of data from NVRAM. */ 2759 /* */ 2760 /* Prepares the NVRAM interface for write access and writes the requested */ 2761 /* data from the supplied buffer. The caller is responsible for */ 2762 /* calculating any appropriate CRCs. */ 2763 /* */ 2764 /* Returns: */ 2765 /* 0 on success, positive value on failure. */ 2766 /****************************************************************************/ 2767 static int 2768 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 2769 int buf_size) 2770 { 2771 u32 written, offset32, len32; 2772 u8 *buf, start[4], end[4]; 2773 int rc = 0; 2774 int align_start, align_end; 2775 2776 DBENTER(BCE_VERBOSE_NVRAM); 2777 2778 buf = data_buf; 2779 offset32 = offset; 2780 len32 = buf_size; 2781 align_start = align_end = 0; 2782 2783 if ((align_start = (offset32 & 3))) { 2784 offset32 &= ~3; 2785 len32 += align_start; 2786 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 2787 goto bce_nvram_write_exit; 2788 } 2789 2790 if (len32 & 3) { 2791 if ((len32 > 4) || !align_start) { 2792 align_end = 4 - (len32 & 3); 2793 len32 += align_end; 2794 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 2795 end, 4))) { 2796 goto bce_nvram_write_exit; 2797 } 2798 } 2799 } 2800 2801 if (align_start || align_end) { 2802 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 2803 if (buf == NULL) { 2804 rc = ENOMEM; 2805 goto bce_nvram_write_exit; 2806 } 2807 2808 if (align_start) { 2809 memcpy(buf, start, 4); 2810 } 2811 2812 if (align_end) { 2813 memcpy(buf + len32 - 4, end, 4); 2814 } 2815 memcpy(buf + align_start, data_buf, buf_size); 2816 } 2817 2818 written = 0; 2819 while ((written < len32) && (rc == 0)) { 2820 u32 page_start, page_end, data_start, data_end; 2821 u32 addr, cmd_flags; 2822 int i; 2823 u8 flash_buffer[264]; 2824 2825 /* Find the page_start addr */ 2826 page_start = offset32 + written; 2827 page_start -= (page_start % sc->bce_flash_info->page_size); 2828 /* Find the page_end addr */ 2829 page_end = page_start + sc->bce_flash_info->page_size; 2830 /* Find the data_start addr */ 2831 data_start = (written == 0) ? offset32 : page_start; 2832 /* Find the data_end addr */ 2833 data_end = (page_end > offset32 + len32) ? 2834 (offset32 + len32) : page_end; 2835 2836 /* Request access to the flash interface. */ 2837 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2838 goto bce_nvram_write_exit; 2839 2840 /* Enable access to flash interface */ 2841 bce_enable_nvram_access(sc); 2842 2843 cmd_flags = BCE_NVM_COMMAND_FIRST; 2844 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2845 int j; 2846 2847 /* Read the whole page into the buffer 2848 * (non-buffer flash only) */ 2849 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 2850 if (j == (sc->bce_flash_info->page_size - 4)) { 2851 cmd_flags |= BCE_NVM_COMMAND_LAST; 2852 } 2853 rc = bce_nvram_read_dword(sc, 2854 page_start + j, 2855 &flash_buffer[j], 2856 cmd_flags); 2857 2858 if (rc) 2859 goto bce_nvram_write_locked_exit; 2860 2861 cmd_flags = 0; 2862 } 2863 } 2864 2865 /* Enable writes to flash interface (unlock write-protect) */ 2866 if ((rc = bce_enable_nvram_write(sc)) != 0) 2867 goto bce_nvram_write_locked_exit; 2868 2869 /* Erase the page */ 2870 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 2871 goto bce_nvram_write_locked_exit; 2872 2873 /* Re-enable the write again for the actual write */ 2874 bce_enable_nvram_write(sc); 2875 2876 /* Loop to write back the buffer data from page_start to 2877 * data_start */ 2878 i = 0; 2879 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2880 for (addr = page_start; addr < data_start; 2881 addr += 4, i += 4) { 2882 2883 rc = bce_nvram_write_dword(sc, addr, 2884 &flash_buffer[i], cmd_flags); 2885 2886 if (rc != 0) 2887 goto bce_nvram_write_locked_exit; 2888 2889 cmd_flags = 0; 2890 } 2891 } 2892 2893 /* Loop to write the new data from data_start to data_end */ 2894 for (addr = data_start; addr < data_end; addr += 4, i++) { 2895 if ((addr == page_end - 4) || 2896 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && 2897 (addr == data_end - 4))) { 2898 2899 cmd_flags |= BCE_NVM_COMMAND_LAST; 2900 } 2901 rc = bce_nvram_write_dword(sc, addr, buf, 2902 cmd_flags); 2903 2904 if (rc != 0) 2905 goto bce_nvram_write_locked_exit; 2906 2907 cmd_flags = 0; 2908 buf += 4; 2909 } 2910 2911 /* Loop to write back the buffer data from data_end 2912 * to page_end */ 2913 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2914 for (addr = data_end; addr < page_end; 2915 addr += 4, i += 4) { 2916 2917 if (addr == page_end-4) { 2918 cmd_flags = BCE_NVM_COMMAND_LAST; 2919 } 2920 rc = bce_nvram_write_dword(sc, addr, 2921 &flash_buffer[i], cmd_flags); 2922 2923 if (rc != 0) 2924 goto bce_nvram_write_locked_exit; 2925 2926 cmd_flags = 0; 2927 } 2928 } 2929 2930 /* Disable writes to flash interface (lock write-protect) */ 2931 bce_disable_nvram_write(sc); 2932 2933 /* Disable access to flash interface */ 2934 bce_disable_nvram_access(sc); 2935 bce_release_nvram_lock(sc); 2936 2937 /* Increment written */ 2938 written += data_end - data_start; 2939 } 2940 2941 goto bce_nvram_write_exit; 2942 2943 bce_nvram_write_locked_exit: 2944 bce_disable_nvram_write(sc); 2945 bce_disable_nvram_access(sc); 2946 bce_release_nvram_lock(sc); 2947 2948 bce_nvram_write_exit: 2949 if (align_start || align_end) 2950 free(buf, M_DEVBUF); 2951 2952 DBEXIT(BCE_VERBOSE_NVRAM); 2953 return (rc); 2954 } 2955 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2956 2957 2958 /****************************************************************************/ 2959 /* Verifies that NVRAM is accessible and contains valid data. */ 2960 /* */ 2961 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2962 /* correct. */ 2963 /* */ 2964 /* Returns: */ 2965 /* 0 on success, positive value on failure. */ 2966 /****************************************************************************/ 2967 static int 2968 bce_nvram_test(struct bce_softc *sc) 2969 { 2970 u32 buf[BCE_NVRAM_SIZE / 4]; 2971 u8 *data = (u8 *) buf; 2972 int rc = 0; 2973 u32 magic, csum; 2974 2975 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2976 2977 /* 2978 * Check that the device NVRAM is valid by reading 2979 * the magic value at offset 0. 2980 */ 2981 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { 2982 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", 2983 __FILE__, __LINE__); 2984 goto bce_nvram_test_exit; 2985 } 2986 2987 /* 2988 * Verify that offset 0 of the NVRAM contains 2989 * a valid magic number. 2990 */ 2991 magic = bce_be32toh(buf[0]); 2992 if (magic != BCE_NVRAM_MAGIC) { 2993 rc = ENODEV; 2994 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! " 2995 "Expected: 0x%08X, Found: 0x%08X\n", 2996 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 2997 goto bce_nvram_test_exit; 2998 } 2999 3000 /* 3001 * Verify that the device NVRAM includes valid 3002 * configuration data. 3003 */ 3004 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { 3005 BCE_PRINTF("%s(%d): Unable to read manufacturing " 3006 "Information from NVRAM!\n", __FILE__, __LINE__); 3007 goto bce_nvram_test_exit; 3008 } 3009 3010 csum = ether_crc32_le(data, 0x100); 3011 if (csum != BCE_CRC32_RESIDUAL) { 3012 rc = ENODEV; 3013 BCE_PRINTF("%s(%d): Invalid manufacturing information " 3014 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n", 3015 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 3016 goto bce_nvram_test_exit; 3017 } 3018 3019 csum = ether_crc32_le(data + 0x100, 0x100); 3020 if (csum != BCE_CRC32_RESIDUAL) { 3021 rc = ENODEV; 3022 BCE_PRINTF("%s(%d): Invalid feature configuration " 3023 "information NVRAM CRC! Expected: 0x%08X, " 3024 "Found: 08%08X\n", __FILE__, __LINE__, 3025 BCE_CRC32_RESIDUAL, csum); 3026 } 3027 3028 bce_nvram_test_exit: 3029 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 3030 return rc; 3031 } 3032 3033 3034 /****************************************************************************/ 3035 /* Calculates the size of the buffers to allocate based on the MTU. */ 3036 /* */ 3037 /* Returns: */ 3038 /* Nothing. */ 3039 /****************************************************************************/ 3040 static void 3041 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu) 3042 { 3043 DBENTER(BCE_VERBOSE_LOAD); 3044 3045 /* Use a single allocation type when header splitting enabled. */ 3046 if (bce_hdr_split == TRUE) { 3047 sc->rx_bd_mbuf_alloc_size = MHLEN; 3048 /* Make sure offset is 16 byte aligned for hardware. */ 3049 sc->rx_bd_mbuf_align_pad = 3050 roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN); 3051 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 3052 sc->rx_bd_mbuf_align_pad; 3053 } else { 3054 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 3055 ETHER_CRC_LEN) > MCLBYTES) { 3056 /* Setup for jumbo RX buffer allocations. */ 3057 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; 3058 sc->rx_bd_mbuf_align_pad = 3059 roundup2(MJUM9BYTES, 16) - MJUM9BYTES; 3060 sc->rx_bd_mbuf_data_len = 3061 sc->rx_bd_mbuf_alloc_size - 3062 sc->rx_bd_mbuf_align_pad; 3063 } else { 3064 /* Setup for standard RX buffer allocations. */ 3065 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 3066 sc->rx_bd_mbuf_align_pad = 3067 roundup2(MCLBYTES, 16) - MCLBYTES; 3068 sc->rx_bd_mbuf_data_len = 3069 sc->rx_bd_mbuf_alloc_size - 3070 sc->rx_bd_mbuf_align_pad; 3071 } 3072 } 3073 3074 // DBPRINT(sc, BCE_INFO_LOAD, 3075 DBPRINT(sc, BCE_WARN, 3076 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, " 3077 "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__, 3078 sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, 3079 sc->rx_bd_mbuf_align_pad); 3080 3081 DBEXIT(BCE_VERBOSE_LOAD); 3082 } 3083 3084 /****************************************************************************/ 3085 /* Identifies the current media type of the controller and sets the PHY */ 3086 /* address. */ 3087 /* */ 3088 /* Returns: */ 3089 /* Nothing. */ 3090 /****************************************************************************/ 3091 static void 3092 bce_get_media(struct bce_softc *sc) 3093 { 3094 u32 val; 3095 3096 DBENTER(BCE_VERBOSE_PHY); 3097 3098 /* Assume PHY address for copper controllers. */ 3099 sc->bce_phy_addr = 1; 3100 3101 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3102 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); 3103 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; 3104 u32 strap; 3105 3106 /* 3107 * The BCM5709S is software configurable 3108 * for Copper or SerDes operation. 3109 */ 3110 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 3111 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 3112 "for copper.\n"); 3113 goto bce_get_media_exit; 3114 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 3115 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 3116 "for dual media.\n"); 3117 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3118 goto bce_get_media_exit; 3119 } 3120 3121 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 3122 strap = (val & 3123 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 3124 else 3125 strap = (val & 3126 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 3127 3128 if (pci_get_function(sc->bce_dev) == 0) { 3129 switch (strap) { 3130 case 0x4: 3131 case 0x5: 3132 case 0x6: 3133 DBPRINT(sc, BCE_INFO_LOAD, 3134 "BCM5709 s/w configured for SerDes.\n"); 3135 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3136 break; 3137 default: 3138 DBPRINT(sc, BCE_INFO_LOAD, 3139 "BCM5709 s/w configured for Copper.\n"); 3140 break; 3141 } 3142 } else { 3143 switch (strap) { 3144 case 0x1: 3145 case 0x2: 3146 case 0x4: 3147 DBPRINT(sc, BCE_INFO_LOAD, 3148 "BCM5709 s/w configured for SerDes.\n"); 3149 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3150 break; 3151 default: 3152 DBPRINT(sc, BCE_INFO_LOAD, 3153 "BCM5709 s/w configured for Copper.\n"); 3154 break; 3155 } 3156 } 3157 3158 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) 3159 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3160 3161 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { 3162 3163 sc->bce_flags |= BCE_NO_WOL_FLAG; 3164 3165 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 3166 sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG; 3167 3168 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 3169 /* 5708S/09S/16S use a separate PHY for SerDes. */ 3170 sc->bce_phy_addr = 2; 3171 3172 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 3173 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 3174 sc->bce_phy_flags |= 3175 BCE_PHY_2_5G_CAPABLE_FLAG; 3176 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb " 3177 "capable adapter\n"); 3178 } 3179 } 3180 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || 3181 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) 3182 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; 3183 3184 bce_get_media_exit: 3185 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), 3186 "Using PHY address %d.\n", sc->bce_phy_addr); 3187 3188 DBEXIT(BCE_VERBOSE_PHY); 3189 } 3190 3191 3192 /****************************************************************************/ 3193 /* Performs PHY initialization required before MII drivers access the */ 3194 /* device. */ 3195 /* */ 3196 /* Returns: */ 3197 /* Nothing. */ 3198 /****************************************************************************/ 3199 static void 3200 bce_init_media(struct bce_softc *sc) 3201 { 3202 if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG | 3203 BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) { 3204 /* 3205 * Configure 5709S/5716S PHYs to use traditional IEEE 3206 * Clause 22 method. Otherwise we have no way to attach 3207 * the PHY in mii(4) layer. PHY specific configuration 3208 * is done in mii layer. 3209 */ 3210 3211 /* Select auto-negotiation MMD of the PHY. */ 3212 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3213 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT); 3214 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3215 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD); 3216 3217 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */ 3218 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3219 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0); 3220 } 3221 } 3222 3223 3224 /****************************************************************************/ 3225 /* Free any DMA memory owned by the driver. */ 3226 /* */ 3227 /* Scans through each data structre that requires DMA memory and frees */ 3228 /* the memory if allocated. */ 3229 /* */ 3230 /* Returns: */ 3231 /* Nothing. */ 3232 /****************************************************************************/ 3233 static void 3234 bce_dma_free(struct bce_softc *sc) 3235 { 3236 int i; 3237 3238 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3239 3240 /* Free, unmap, and destroy the status block. */ 3241 if (sc->status_block_paddr != 0) { 3242 bus_dmamap_unload( 3243 sc->status_tag, 3244 sc->status_map); 3245 sc->status_block_paddr = 0; 3246 } 3247 3248 if (sc->status_block != NULL) { 3249 bus_dmamem_free( 3250 sc->status_tag, 3251 sc->status_block, 3252 sc->status_map); 3253 sc->status_block = NULL; 3254 } 3255 3256 if (sc->status_tag != NULL) { 3257 bus_dma_tag_destroy(sc->status_tag); 3258 sc->status_tag = NULL; 3259 } 3260 3261 3262 /* Free, unmap, and destroy the statistics block. */ 3263 if (sc->stats_block_paddr != 0) { 3264 bus_dmamap_unload( 3265 sc->stats_tag, 3266 sc->stats_map); 3267 sc->stats_block_paddr = 0; 3268 } 3269 3270 if (sc->stats_block != NULL) { 3271 bus_dmamem_free( 3272 sc->stats_tag, 3273 sc->stats_block, 3274 sc->stats_map); 3275 sc->stats_block = NULL; 3276 } 3277 3278 if (sc->stats_tag != NULL) { 3279 bus_dma_tag_destroy(sc->stats_tag); 3280 sc->stats_tag = NULL; 3281 } 3282 3283 3284 /* Free, unmap and destroy all context memory pages. */ 3285 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3286 for (i = 0; i < sc->ctx_pages; i++ ) { 3287 if (sc->ctx_paddr[i] != 0) { 3288 bus_dmamap_unload( 3289 sc->ctx_tag, 3290 sc->ctx_map[i]); 3291 sc->ctx_paddr[i] = 0; 3292 } 3293 3294 if (sc->ctx_block[i] != NULL) { 3295 bus_dmamem_free( 3296 sc->ctx_tag, 3297 sc->ctx_block[i], 3298 sc->ctx_map[i]); 3299 sc->ctx_block[i] = NULL; 3300 } 3301 } 3302 3303 /* Destroy the context memory tag. */ 3304 if (sc->ctx_tag != NULL) { 3305 bus_dma_tag_destroy(sc->ctx_tag); 3306 sc->ctx_tag = NULL; 3307 } 3308 } 3309 3310 3311 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 3312 for (i = 0; i < sc->tx_pages; i++ ) { 3313 if (sc->tx_bd_chain_paddr[i] != 0) { 3314 bus_dmamap_unload( 3315 sc->tx_bd_chain_tag, 3316 sc->tx_bd_chain_map[i]); 3317 sc->tx_bd_chain_paddr[i] = 0; 3318 } 3319 3320 if (sc->tx_bd_chain[i] != NULL) { 3321 bus_dmamem_free( 3322 sc->tx_bd_chain_tag, 3323 sc->tx_bd_chain[i], 3324 sc->tx_bd_chain_map[i]); 3325 sc->tx_bd_chain[i] = NULL; 3326 } 3327 } 3328 3329 /* Destroy the TX buffer descriptor tag. */ 3330 if (sc->tx_bd_chain_tag != NULL) { 3331 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 3332 sc->tx_bd_chain_tag = NULL; 3333 } 3334 3335 3336 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 3337 for (i = 0; i < sc->rx_pages; i++ ) { 3338 if (sc->rx_bd_chain_paddr[i] != 0) { 3339 bus_dmamap_unload( 3340 sc->rx_bd_chain_tag, 3341 sc->rx_bd_chain_map[i]); 3342 sc->rx_bd_chain_paddr[i] = 0; 3343 } 3344 3345 if (sc->rx_bd_chain[i] != NULL) { 3346 bus_dmamem_free( 3347 sc->rx_bd_chain_tag, 3348 sc->rx_bd_chain[i], 3349 sc->rx_bd_chain_map[i]); 3350 sc->rx_bd_chain[i] = NULL; 3351 } 3352 } 3353 3354 /* Destroy the RX buffer descriptor tag. */ 3355 if (sc->rx_bd_chain_tag != NULL) { 3356 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 3357 sc->rx_bd_chain_tag = NULL; 3358 } 3359 3360 3361 /* Free, unmap and destroy all page buffer descriptor chain pages. */ 3362 if (bce_hdr_split == TRUE) { 3363 for (i = 0; i < sc->pg_pages; i++ ) { 3364 if (sc->pg_bd_chain_paddr[i] != 0) { 3365 bus_dmamap_unload( 3366 sc->pg_bd_chain_tag, 3367 sc->pg_bd_chain_map[i]); 3368 sc->pg_bd_chain_paddr[i] = 0; 3369 } 3370 3371 if (sc->pg_bd_chain[i] != NULL) { 3372 bus_dmamem_free( 3373 sc->pg_bd_chain_tag, 3374 sc->pg_bd_chain[i], 3375 sc->pg_bd_chain_map[i]); 3376 sc->pg_bd_chain[i] = NULL; 3377 } 3378 } 3379 3380 /* Destroy the page buffer descriptor tag. */ 3381 if (sc->pg_bd_chain_tag != NULL) { 3382 bus_dma_tag_destroy(sc->pg_bd_chain_tag); 3383 sc->pg_bd_chain_tag = NULL; 3384 } 3385 } 3386 3387 3388 /* Unload and destroy the TX mbuf maps. */ 3389 for (i = 0; i < MAX_TX_BD_AVAIL; i++) { 3390 if (sc->tx_mbuf_map[i] != NULL) { 3391 bus_dmamap_unload(sc->tx_mbuf_tag, 3392 sc->tx_mbuf_map[i]); 3393 bus_dmamap_destroy(sc->tx_mbuf_tag, 3394 sc->tx_mbuf_map[i]); 3395 sc->tx_mbuf_map[i] = NULL; 3396 } 3397 } 3398 3399 /* Destroy the TX mbuf tag. */ 3400 if (sc->tx_mbuf_tag != NULL) { 3401 bus_dma_tag_destroy(sc->tx_mbuf_tag); 3402 sc->tx_mbuf_tag = NULL; 3403 } 3404 3405 /* Unload and destroy the RX mbuf maps. */ 3406 for (i = 0; i < MAX_RX_BD_AVAIL; i++) { 3407 if (sc->rx_mbuf_map[i] != NULL) { 3408 bus_dmamap_unload(sc->rx_mbuf_tag, 3409 sc->rx_mbuf_map[i]); 3410 bus_dmamap_destroy(sc->rx_mbuf_tag, 3411 sc->rx_mbuf_map[i]); 3412 sc->rx_mbuf_map[i] = NULL; 3413 } 3414 } 3415 3416 /* Destroy the RX mbuf tag. */ 3417 if (sc->rx_mbuf_tag != NULL) { 3418 bus_dma_tag_destroy(sc->rx_mbuf_tag); 3419 sc->rx_mbuf_tag = NULL; 3420 } 3421 3422 /* Unload and destroy the page mbuf maps. */ 3423 if (bce_hdr_split == TRUE) { 3424 for (i = 0; i < MAX_PG_BD_AVAIL; i++) { 3425 if (sc->pg_mbuf_map[i] != NULL) { 3426 bus_dmamap_unload(sc->pg_mbuf_tag, 3427 sc->pg_mbuf_map[i]); 3428 bus_dmamap_destroy(sc->pg_mbuf_tag, 3429 sc->pg_mbuf_map[i]); 3430 sc->pg_mbuf_map[i] = NULL; 3431 } 3432 } 3433 3434 /* Destroy the page mbuf tag. */ 3435 if (sc->pg_mbuf_tag != NULL) { 3436 bus_dma_tag_destroy(sc->pg_mbuf_tag); 3437 sc->pg_mbuf_tag = NULL; 3438 } 3439 } 3440 3441 /* Destroy the parent tag */ 3442 if (sc->parent_tag != NULL) { 3443 bus_dma_tag_destroy(sc->parent_tag); 3444 sc->parent_tag = NULL; 3445 } 3446 3447 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3448 } 3449 3450 3451 /****************************************************************************/ 3452 /* Get DMA memory from the OS. */ 3453 /* */ 3454 /* Validates that the OS has provided DMA buffers in response to a */ 3455 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 3456 /* When the callback is used the OS will return 0 for the mapping function */ 3457 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 3458 /* failures back to the caller. */ 3459 /* */ 3460 /* Returns: */ 3461 /* Nothing. */ 3462 /****************************************************************************/ 3463 static void 3464 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3465 { 3466 bus_addr_t *busaddr = arg; 3467 3468 KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!", 3469 __FUNCTION__, nseg)); 3470 /* Simulate a mapping failure. */ 3471 DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control), 3472 error = ENOMEM); 3473 3474 /* ToDo: How to increment debug sim_count variable here? */ 3475 3476 /* Check for an error and signal the caller that an error occurred. */ 3477 if (error) { 3478 *busaddr = 0; 3479 } else { 3480 *busaddr = segs->ds_addr; 3481 } 3482 } 3483 3484 3485 /****************************************************************************/ 3486 /* Allocate any DMA memory needed by the driver. */ 3487 /* */ 3488 /* Allocates DMA memory needed for the various global structures needed by */ 3489 /* hardware. */ 3490 /* */ 3491 /* Memory alignment requirements: */ 3492 /* +-----------------+----------+----------+----------+----------+ */ 3493 /* | | 5706 | 5708 | 5709 | 5716 | */ 3494 /* +-----------------+----------+----------+----------+----------+ */ 3495 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3496 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3497 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ 3498 /* |PG Buffers | none | none | none | none | */ 3499 /* |TX Buffers | none | none | none | none | */ 3500 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ 3501 /* |Context Memory | | | | | */ 3502 /* +-----------------+----------+----------+----------+----------+ */ 3503 /* */ 3504 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ 3505 /* */ 3506 /* Returns: */ 3507 /* 0 for success, positive value for failure. */ 3508 /****************************************************************************/ 3509 static int 3510 bce_dma_alloc(device_t dev) 3511 { 3512 struct bce_softc *sc; 3513 int i, error, rc = 0; 3514 bus_size_t max_size, max_seg_size; 3515 int max_segments; 3516 3517 sc = device_get_softc(dev); 3518 3519 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3520 3521 /* 3522 * Allocate the parent bus DMA tag appropriate for PCI. 3523 */ 3524 if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY, 3525 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3526 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 3527 &sc->parent_tag)) { 3528 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 3529 __FILE__, __LINE__); 3530 rc = ENOMEM; 3531 goto bce_dma_alloc_exit; 3532 } 3533 3534 /* 3535 * Create a DMA tag for the status block, allocate and clear the 3536 * memory, map the memory into DMA space, and fetch the physical 3537 * address of the block. 3538 */ 3539 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3540 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3541 NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ, 3542 0, NULL, NULL, &sc->status_tag)) { 3543 BCE_PRINTF("%s(%d): Could not allocate status block " 3544 "DMA tag!\n", __FILE__, __LINE__); 3545 rc = ENOMEM; 3546 goto bce_dma_alloc_exit; 3547 } 3548 3549 if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block, 3550 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3551 &sc->status_map)) { 3552 BCE_PRINTF("%s(%d): Could not allocate status block " 3553 "DMA memory!\n", __FILE__, __LINE__); 3554 rc = ENOMEM; 3555 goto bce_dma_alloc_exit; 3556 } 3557 3558 error = bus_dmamap_load(sc->status_tag, sc->status_map, 3559 sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr, 3560 &sc->status_block_paddr, BUS_DMA_NOWAIT); 3561 3562 if (error || sc->status_block_paddr == 0) { 3563 BCE_PRINTF("%s(%d): Could not map status block " 3564 "DMA memory!\n", __FILE__, __LINE__); 3565 rc = ENOMEM; 3566 goto bce_dma_alloc_exit; 3567 } 3568 3569 DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n", 3570 __FUNCTION__, (uintmax_t) sc->status_block_paddr); 3571 3572 /* 3573 * Create a DMA tag for the statistics block, allocate and clear the 3574 * memory, map the memory into DMA space, and fetch the physical 3575 * address of the block. 3576 */ 3577 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3578 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3579 NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ, 3580 0, NULL, NULL, &sc->stats_tag)) { 3581 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3582 "DMA tag!\n", __FILE__, __LINE__); 3583 rc = ENOMEM; 3584 goto bce_dma_alloc_exit; 3585 } 3586 3587 if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block, 3588 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) { 3589 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3590 "DMA memory!\n", __FILE__, __LINE__); 3591 rc = ENOMEM; 3592 goto bce_dma_alloc_exit; 3593 } 3594 3595 error = bus_dmamap_load(sc->stats_tag, sc->stats_map, 3596 sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr, 3597 &sc->stats_block_paddr, BUS_DMA_NOWAIT); 3598 3599 if (error || sc->stats_block_paddr == 0) { 3600 BCE_PRINTF("%s(%d): Could not map statistics block " 3601 "DMA memory!\n", __FILE__, __LINE__); 3602 rc = ENOMEM; 3603 goto bce_dma_alloc_exit; 3604 } 3605 3606 DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n", 3607 __FUNCTION__, (uintmax_t) sc->stats_block_paddr); 3608 3609 /* BCM5709 uses host memory as cache for context memory. */ 3610 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3611 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 3612 if (sc->ctx_pages == 0) 3613 sc->ctx_pages = 1; 3614 3615 DBRUNIF((sc->ctx_pages > 512), 3616 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 3617 __FILE__, __LINE__, sc->ctx_pages)); 3618 3619 /* 3620 * Create a DMA tag for the context pages, 3621 * allocate and clear the memory, map the 3622 * memory into DMA space, and fetch the 3623 * physical address of the block. 3624 */ 3625 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3626 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3627 NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE, 3628 0, NULL, NULL, &sc->ctx_tag)) { 3629 BCE_PRINTF("%s(%d): Could not allocate CTX " 3630 "DMA tag!\n", __FILE__, __LINE__); 3631 rc = ENOMEM; 3632 goto bce_dma_alloc_exit; 3633 } 3634 3635 for (i = 0; i < sc->ctx_pages; i++) { 3636 3637 if(bus_dmamem_alloc(sc->ctx_tag, 3638 (void **)&sc->ctx_block[i], 3639 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3640 &sc->ctx_map[i])) { 3641 BCE_PRINTF("%s(%d): Could not allocate CTX " 3642 "DMA memory!\n", __FILE__, __LINE__); 3643 rc = ENOMEM; 3644 goto bce_dma_alloc_exit; 3645 } 3646 3647 error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i], 3648 sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr, 3649 &sc->ctx_paddr[i], BUS_DMA_NOWAIT); 3650 3651 if (error || sc->ctx_paddr[i] == 0) { 3652 BCE_PRINTF("%s(%d): Could not map CTX " 3653 "DMA memory!\n", __FILE__, __LINE__); 3654 rc = ENOMEM; 3655 goto bce_dma_alloc_exit; 3656 } 3657 3658 DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] " 3659 "= 0x%jX\n", __FUNCTION__, i, 3660 (uintmax_t) sc->ctx_paddr[i]); 3661 } 3662 } 3663 3664 /* 3665 * Create a DMA tag for the TX buffer descriptor chain, 3666 * allocate and clear the memory, and fetch the 3667 * physical address of the block. 3668 */ 3669 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY, 3670 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3671 BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0, 3672 NULL, NULL, &sc->tx_bd_chain_tag)) { 3673 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3674 "chain DMA tag!\n", __FILE__, __LINE__); 3675 rc = ENOMEM; 3676 goto bce_dma_alloc_exit; 3677 } 3678 3679 for (i = 0; i < sc->tx_pages; i++) { 3680 3681 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 3682 (void **)&sc->tx_bd_chain[i], 3683 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3684 &sc->tx_bd_chain_map[i])) { 3685 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3686 "chain DMA memory!\n", __FILE__, __LINE__); 3687 rc = ENOMEM; 3688 goto bce_dma_alloc_exit; 3689 } 3690 3691 error = bus_dmamap_load(sc->tx_bd_chain_tag, 3692 sc->tx_bd_chain_map[i], sc->tx_bd_chain[i], 3693 BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3694 &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3695 3696 if (error || sc->tx_bd_chain_paddr[i] == 0) { 3697 BCE_PRINTF("%s(%d): Could not map TX descriptor " 3698 "chain DMA memory!\n", __FILE__, __LINE__); 3699 rc = ENOMEM; 3700 goto bce_dma_alloc_exit; 3701 } 3702 3703 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = " 3704 "0x%jX\n", __FUNCTION__, i, 3705 (uintmax_t) sc->tx_bd_chain_paddr[i]); 3706 } 3707 3708 /* Check the required size before mapping to conserve resources. */ 3709 if (bce_tso_enable) { 3710 max_size = BCE_TSO_MAX_SIZE; 3711 max_segments = BCE_MAX_SEGMENTS; 3712 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 3713 } else { 3714 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 3715 max_segments = BCE_MAX_SEGMENTS; 3716 max_seg_size = MCLBYTES; 3717 } 3718 3719 /* Create a DMA tag for TX mbufs. */ 3720 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3721 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size, 3722 max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) { 3723 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 3724 __FILE__, __LINE__); 3725 rc = ENOMEM; 3726 goto bce_dma_alloc_exit; 3727 } 3728 3729 /* Create DMA maps for the TX mbufs clusters. */ 3730 for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) { 3731 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 3732 &sc->tx_mbuf_map[i])) { 3733 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA " 3734 "map!\n", __FILE__, __LINE__); 3735 rc = ENOMEM; 3736 goto bce_dma_alloc_exit; 3737 } 3738 } 3739 3740 /* 3741 * Create a DMA tag for the RX buffer descriptor chain, 3742 * allocate and clear the memory, and fetch the physical 3743 * address of the blocks. 3744 */ 3745 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3746 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, 3747 sc->max_bus_addr, NULL, NULL, 3748 BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ, 3749 0, NULL, NULL, &sc->rx_bd_chain_tag)) { 3750 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 3751 "DMA tag!\n", __FILE__, __LINE__); 3752 rc = ENOMEM; 3753 goto bce_dma_alloc_exit; 3754 } 3755 3756 for (i = 0; i < sc->rx_pages; i++) { 3757 3758 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 3759 (void **)&sc->rx_bd_chain[i], 3760 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3761 &sc->rx_bd_chain_map[i])) { 3762 BCE_PRINTF("%s(%d): Could not allocate RX descriptor " 3763 "chain DMA memory!\n", __FILE__, __LINE__); 3764 rc = ENOMEM; 3765 goto bce_dma_alloc_exit; 3766 } 3767 3768 error = bus_dmamap_load(sc->rx_bd_chain_tag, 3769 sc->rx_bd_chain_map[i], sc->rx_bd_chain[i], 3770 BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3771 &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3772 3773 if (error || sc->rx_bd_chain_paddr[i] == 0) { 3774 BCE_PRINTF("%s(%d): Could not map RX descriptor " 3775 "chain DMA memory!\n", __FILE__, __LINE__); 3776 rc = ENOMEM; 3777 goto bce_dma_alloc_exit; 3778 } 3779 3780 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = " 3781 "0x%jX\n", __FUNCTION__, i, 3782 (uintmax_t) sc->rx_bd_chain_paddr[i]); 3783 } 3784 3785 /* 3786 * Create a DMA tag for RX mbufs. 3787 */ 3788 if (bce_hdr_split == TRUE) 3789 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? 3790 MCLBYTES : sc->rx_bd_mbuf_alloc_size); 3791 else 3792 max_size = MJUM9BYTES; 3793 3794 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag " 3795 "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size); 3796 3797 if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN, 3798 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3799 max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) { 3800 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 3801 __FILE__, __LINE__); 3802 rc = ENOMEM; 3803 goto bce_dma_alloc_exit; 3804 } 3805 3806 /* Create DMA maps for the RX mbuf clusters. */ 3807 for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) { 3808 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 3809 &sc->rx_mbuf_map[i])) { 3810 BCE_PRINTF("%s(%d): Unable to create RX mbuf " 3811 "DMA map!\n", __FILE__, __LINE__); 3812 rc = ENOMEM; 3813 goto bce_dma_alloc_exit; 3814 } 3815 } 3816 3817 if (bce_hdr_split == TRUE) { 3818 /* 3819 * Create a DMA tag for the page buffer descriptor chain, 3820 * allocate and clear the memory, and fetch the physical 3821 * address of the blocks. 3822 */ 3823 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3824 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr, 3825 NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ, 3826 0, NULL, NULL, &sc->pg_bd_chain_tag)) { 3827 BCE_PRINTF("%s(%d): Could not allocate page descriptor " 3828 "chain DMA tag!\n", __FILE__, __LINE__); 3829 rc = ENOMEM; 3830 goto bce_dma_alloc_exit; 3831 } 3832 3833 for (i = 0; i < sc->pg_pages; i++) { 3834 if (bus_dmamem_alloc(sc->pg_bd_chain_tag, 3835 (void **)&sc->pg_bd_chain[i], 3836 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3837 &sc->pg_bd_chain_map[i])) { 3838 BCE_PRINTF("%s(%d): Could not allocate page " 3839 "descriptor chain DMA memory!\n", 3840 __FILE__, __LINE__); 3841 rc = ENOMEM; 3842 goto bce_dma_alloc_exit; 3843 } 3844 3845 error = bus_dmamap_load(sc->pg_bd_chain_tag, 3846 sc->pg_bd_chain_map[i], sc->pg_bd_chain[i], 3847 BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr, 3848 &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3849 3850 if (error || sc->pg_bd_chain_paddr[i] == 0) { 3851 BCE_PRINTF("%s(%d): Could not map page descriptor " 3852 "chain DMA memory!\n", __FILE__, __LINE__); 3853 rc = ENOMEM; 3854 goto bce_dma_alloc_exit; 3855 } 3856 3857 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = " 3858 "0x%jX\n", __FUNCTION__, i, 3859 (uintmax_t) sc->pg_bd_chain_paddr[i]); 3860 } 3861 3862 /* 3863 * Create a DMA tag for page mbufs. 3864 */ 3865 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3866 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 3867 1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) { 3868 BCE_PRINTF("%s(%d): Could not allocate page mbuf " 3869 "DMA tag!\n", __FILE__, __LINE__); 3870 rc = ENOMEM; 3871 goto bce_dma_alloc_exit; 3872 } 3873 3874 /* Create DMA maps for the page mbuf clusters. */ 3875 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) { 3876 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, 3877 &sc->pg_mbuf_map[i])) { 3878 BCE_PRINTF("%s(%d): Unable to create page mbuf " 3879 "DMA map!\n", __FILE__, __LINE__); 3880 rc = ENOMEM; 3881 goto bce_dma_alloc_exit; 3882 } 3883 } 3884 } 3885 3886 bce_dma_alloc_exit: 3887 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3888 return(rc); 3889 } 3890 3891 3892 /****************************************************************************/ 3893 /* Release all resources used by the driver. */ 3894 /* */ 3895 /* Releases all resources acquired by the driver including interrupts, */ 3896 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 3897 /* */ 3898 /* Returns: */ 3899 /* Nothing. */ 3900 /****************************************************************************/ 3901 static void 3902 bce_release_resources(struct bce_softc *sc) 3903 { 3904 device_t dev; 3905 3906 DBENTER(BCE_VERBOSE_RESET); 3907 3908 dev = sc->bce_dev; 3909 3910 bce_dma_free(sc); 3911 3912 if (sc->bce_intrhand != NULL) { 3913 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 3914 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 3915 } 3916 3917 if (sc->bce_res_irq != NULL) { 3918 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 3919 bus_release_resource(dev, SYS_RES_IRQ, 3920 rman_get_rid(sc->bce_res_irq), sc->bce_res_irq); 3921 } 3922 3923 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { 3924 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); 3925 pci_release_msi(dev); 3926 } 3927 3928 if (sc->bce_res_mem != NULL) { 3929 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 3930 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 3931 sc->bce_res_mem); 3932 } 3933 3934 if (sc->bce_ifp != NULL) { 3935 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 3936 if_free(sc->bce_ifp); 3937 } 3938 3939 if (mtx_initialized(&sc->bce_mtx)) 3940 BCE_LOCK_DESTROY(sc); 3941 3942 DBEXIT(BCE_VERBOSE_RESET); 3943 } 3944 3945 3946 /****************************************************************************/ 3947 /* Firmware synchronization. */ 3948 /* */ 3949 /* Before performing certain events such as a chip reset, synchronize with */ 3950 /* the firmware first. */ 3951 /* */ 3952 /* Returns: */ 3953 /* 0 for success, positive value for failure. */ 3954 /****************************************************************************/ 3955 static int 3956 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 3957 { 3958 int i, rc = 0; 3959 u32 val; 3960 3961 DBENTER(BCE_VERBOSE_RESET); 3962 3963 /* Don't waste any time if we've timed out before. */ 3964 if (sc->bce_fw_timed_out == TRUE) { 3965 rc = EBUSY; 3966 goto bce_fw_sync_exit; 3967 } 3968 3969 /* Increment the message sequence number. */ 3970 sc->bce_fw_wr_seq++; 3971 msg_data |= sc->bce_fw_wr_seq; 3972 3973 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = " 3974 "0x%08X\n", msg_data); 3975 3976 /* Send the message to the bootcode driver mailbox. */ 3977 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3978 3979 /* Wait for the bootcode to acknowledge the message. */ 3980 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 3981 /* Check for a response in the bootcode firmware mailbox. */ 3982 val = bce_shmem_rd(sc, BCE_FW_MB); 3983 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 3984 break; 3985 DELAY(1000); 3986 } 3987 3988 /* If we've timed out, tell bootcode that we've stopped waiting. */ 3989 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 3990 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 3991 3992 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 3993 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); 3994 3995 msg_data &= ~BCE_DRV_MSG_CODE; 3996 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 3997 3998 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3999 4000 sc->bce_fw_timed_out = TRUE; 4001 rc = EBUSY; 4002 } 4003 4004 bce_fw_sync_exit: 4005 DBEXIT(BCE_VERBOSE_RESET); 4006 return (rc); 4007 } 4008 4009 4010 /****************************************************************************/ 4011 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 4012 /* */ 4013 /* Returns: */ 4014 /* Nothing. */ 4015 /****************************************************************************/ 4016 static void 4017 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code, 4018 u32 rv2p_code_len, u32 rv2p_proc) 4019 { 4020 int i; 4021 u32 val; 4022 4023 DBENTER(BCE_VERBOSE_RESET); 4024 4025 /* Set the page size used by RV2P. */ 4026 if (rv2p_proc == RV2P_PROC2) { 4027 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); 4028 } 4029 4030 for (i = 0; i < rv2p_code_len; i += 8) { 4031 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 4032 rv2p_code++; 4033 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 4034 rv2p_code++; 4035 4036 if (rv2p_proc == RV2P_PROC1) { 4037 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 4038 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 4039 } 4040 else { 4041 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 4042 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 4043 } 4044 } 4045 4046 /* Reset the processor, un-stall is done later. */ 4047 if (rv2p_proc == RV2P_PROC1) { 4048 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 4049 } 4050 else { 4051 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 4052 } 4053 4054 DBEXIT(BCE_VERBOSE_RESET); 4055 } 4056 4057 4058 /****************************************************************************/ 4059 /* Load RISC processor firmware. */ 4060 /* */ 4061 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 4062 /* associated with a particular processor. */ 4063 /* */ 4064 /* Returns: */ 4065 /* Nothing. */ 4066 /****************************************************************************/ 4067 static void 4068 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 4069 struct fw_info *fw) 4070 { 4071 u32 offset; 4072 4073 DBENTER(BCE_VERBOSE_RESET); 4074 4075 bce_halt_cpu(sc, cpu_reg); 4076 4077 /* Load the Text area. */ 4078 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 4079 if (fw->text) { 4080 int j; 4081 4082 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 4083 REG_WR_IND(sc, offset, fw->text[j]); 4084 } 4085 } 4086 4087 /* Load the Data area. */ 4088 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 4089 if (fw->data) { 4090 int j; 4091 4092 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 4093 REG_WR_IND(sc, offset, fw->data[j]); 4094 } 4095 } 4096 4097 /* Load the SBSS area. */ 4098 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 4099 if (fw->sbss) { 4100 int j; 4101 4102 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 4103 REG_WR_IND(sc, offset, fw->sbss[j]); 4104 } 4105 } 4106 4107 /* Load the BSS area. */ 4108 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 4109 if (fw->bss) { 4110 int j; 4111 4112 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 4113 REG_WR_IND(sc, offset, fw->bss[j]); 4114 } 4115 } 4116 4117 /* Load the Read-Only area. */ 4118 offset = cpu_reg->spad_base + 4119 (fw->rodata_addr - cpu_reg->mips_view_base); 4120 if (fw->rodata) { 4121 int j; 4122 4123 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 4124 REG_WR_IND(sc, offset, fw->rodata[j]); 4125 } 4126 } 4127 4128 /* Clear the pre-fetch instruction and set the FW start address. */ 4129 REG_WR_IND(sc, cpu_reg->inst, 0); 4130 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 4131 4132 DBEXIT(BCE_VERBOSE_RESET); 4133 } 4134 4135 4136 /****************************************************************************/ 4137 /* Starts the RISC processor. */ 4138 /* */ 4139 /* Assumes the CPU starting address has already been set. */ 4140 /* */ 4141 /* Returns: */ 4142 /* Nothing. */ 4143 /****************************************************************************/ 4144 static void 4145 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 4146 { 4147 u32 val; 4148 4149 DBENTER(BCE_VERBOSE_RESET); 4150 4151 /* Start the CPU. */ 4152 val = REG_RD_IND(sc, cpu_reg->mode); 4153 val &= ~cpu_reg->mode_value_halt; 4154 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 4155 REG_WR_IND(sc, cpu_reg->mode, val); 4156 4157 DBEXIT(BCE_VERBOSE_RESET); 4158 } 4159 4160 4161 /****************************************************************************/ 4162 /* Halts the RISC processor. */ 4163 /* */ 4164 /* Returns: */ 4165 /* Nothing. */ 4166 /****************************************************************************/ 4167 static void 4168 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 4169 { 4170 u32 val; 4171 4172 DBENTER(BCE_VERBOSE_RESET); 4173 4174 /* Halt the CPU. */ 4175 val = REG_RD_IND(sc, cpu_reg->mode); 4176 val |= cpu_reg->mode_value_halt; 4177 REG_WR_IND(sc, cpu_reg->mode, val); 4178 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 4179 4180 DBEXIT(BCE_VERBOSE_RESET); 4181 } 4182 4183 4184 /****************************************************************************/ 4185 /* Initialize the RX CPU. */ 4186 /* */ 4187 /* Returns: */ 4188 /* Nothing. */ 4189 /****************************************************************************/ 4190 static void 4191 bce_start_rxp_cpu(struct bce_softc *sc) 4192 { 4193 struct cpu_reg cpu_reg; 4194 4195 DBENTER(BCE_VERBOSE_RESET); 4196 4197 cpu_reg.mode = BCE_RXP_CPU_MODE; 4198 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 4199 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 4200 cpu_reg.state = BCE_RXP_CPU_STATE; 4201 cpu_reg.state_value_clear = 0xffffff; 4202 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 4203 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 4204 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 4205 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 4206 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 4207 cpu_reg.spad_base = BCE_RXP_SCRATCH; 4208 cpu_reg.mips_view_base = 0x8000000; 4209 4210 DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n"); 4211 bce_start_cpu(sc, &cpu_reg); 4212 4213 DBEXIT(BCE_VERBOSE_RESET); 4214 } 4215 4216 4217 /****************************************************************************/ 4218 /* Initialize the RX CPU. */ 4219 /* */ 4220 /* Returns: */ 4221 /* Nothing. */ 4222 /****************************************************************************/ 4223 static void 4224 bce_init_rxp_cpu(struct bce_softc *sc) 4225 { 4226 struct cpu_reg cpu_reg; 4227 struct fw_info fw; 4228 4229 DBENTER(BCE_VERBOSE_RESET); 4230 4231 cpu_reg.mode = BCE_RXP_CPU_MODE; 4232 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 4233 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 4234 cpu_reg.state = BCE_RXP_CPU_STATE; 4235 cpu_reg.state_value_clear = 0xffffff; 4236 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 4237 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 4238 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 4239 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 4240 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 4241 cpu_reg.spad_base = BCE_RXP_SCRATCH; 4242 cpu_reg.mips_view_base = 0x8000000; 4243 4244 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4245 fw.ver_major = bce_RXP_b09FwReleaseMajor; 4246 fw.ver_minor = bce_RXP_b09FwReleaseMinor; 4247 fw.ver_fix = bce_RXP_b09FwReleaseFix; 4248 fw.start_addr = bce_RXP_b09FwStartAddr; 4249 4250 fw.text_addr = bce_RXP_b09FwTextAddr; 4251 fw.text_len = bce_RXP_b09FwTextLen; 4252 fw.text_index = 0; 4253 fw.text = bce_RXP_b09FwText; 4254 4255 fw.data_addr = bce_RXP_b09FwDataAddr; 4256 fw.data_len = bce_RXP_b09FwDataLen; 4257 fw.data_index = 0; 4258 fw.data = bce_RXP_b09FwData; 4259 4260 fw.sbss_addr = bce_RXP_b09FwSbssAddr; 4261 fw.sbss_len = bce_RXP_b09FwSbssLen; 4262 fw.sbss_index = 0; 4263 fw.sbss = bce_RXP_b09FwSbss; 4264 4265 fw.bss_addr = bce_RXP_b09FwBssAddr; 4266 fw.bss_len = bce_RXP_b09FwBssLen; 4267 fw.bss_index = 0; 4268 fw.bss = bce_RXP_b09FwBss; 4269 4270 fw.rodata_addr = bce_RXP_b09FwRodataAddr; 4271 fw.rodata_len = bce_RXP_b09FwRodataLen; 4272 fw.rodata_index = 0; 4273 fw.rodata = bce_RXP_b09FwRodata; 4274 } else { 4275 fw.ver_major = bce_RXP_b06FwReleaseMajor; 4276 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 4277 fw.ver_fix = bce_RXP_b06FwReleaseFix; 4278 fw.start_addr = bce_RXP_b06FwStartAddr; 4279 4280 fw.text_addr = bce_RXP_b06FwTextAddr; 4281 fw.text_len = bce_RXP_b06FwTextLen; 4282 fw.text_index = 0; 4283 fw.text = bce_RXP_b06FwText; 4284 4285 fw.data_addr = bce_RXP_b06FwDataAddr; 4286 fw.data_len = bce_RXP_b06FwDataLen; 4287 fw.data_index = 0; 4288 fw.data = bce_RXP_b06FwData; 4289 4290 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 4291 fw.sbss_len = bce_RXP_b06FwSbssLen; 4292 fw.sbss_index = 0; 4293 fw.sbss = bce_RXP_b06FwSbss; 4294 4295 fw.bss_addr = bce_RXP_b06FwBssAddr; 4296 fw.bss_len = bce_RXP_b06FwBssLen; 4297 fw.bss_index = 0; 4298 fw.bss = bce_RXP_b06FwBss; 4299 4300 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 4301 fw.rodata_len = bce_RXP_b06FwRodataLen; 4302 fw.rodata_index = 0; 4303 fw.rodata = bce_RXP_b06FwRodata; 4304 } 4305 4306 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 4307 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4308 4309 /* Delay RXP start until initialization is complete. */ 4310 4311 DBEXIT(BCE_VERBOSE_RESET); 4312 } 4313 4314 4315 /****************************************************************************/ 4316 /* Initialize the TX CPU. */ 4317 /* */ 4318 /* Returns: */ 4319 /* Nothing. */ 4320 /****************************************************************************/ 4321 static void 4322 bce_init_txp_cpu(struct bce_softc *sc) 4323 { 4324 struct cpu_reg cpu_reg; 4325 struct fw_info fw; 4326 4327 DBENTER(BCE_VERBOSE_RESET); 4328 4329 cpu_reg.mode = BCE_TXP_CPU_MODE; 4330 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 4331 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 4332 cpu_reg.state = BCE_TXP_CPU_STATE; 4333 cpu_reg.state_value_clear = 0xffffff; 4334 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 4335 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 4336 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 4337 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 4338 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 4339 cpu_reg.spad_base = BCE_TXP_SCRATCH; 4340 cpu_reg.mips_view_base = 0x8000000; 4341 4342 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4343 fw.ver_major = bce_TXP_b09FwReleaseMajor; 4344 fw.ver_minor = bce_TXP_b09FwReleaseMinor; 4345 fw.ver_fix = bce_TXP_b09FwReleaseFix; 4346 fw.start_addr = bce_TXP_b09FwStartAddr; 4347 4348 fw.text_addr = bce_TXP_b09FwTextAddr; 4349 fw.text_len = bce_TXP_b09FwTextLen; 4350 fw.text_index = 0; 4351 fw.text = bce_TXP_b09FwText; 4352 4353 fw.data_addr = bce_TXP_b09FwDataAddr; 4354 fw.data_len = bce_TXP_b09FwDataLen; 4355 fw.data_index = 0; 4356 fw.data = bce_TXP_b09FwData; 4357 4358 fw.sbss_addr = bce_TXP_b09FwSbssAddr; 4359 fw.sbss_len = bce_TXP_b09FwSbssLen; 4360 fw.sbss_index = 0; 4361 fw.sbss = bce_TXP_b09FwSbss; 4362 4363 fw.bss_addr = bce_TXP_b09FwBssAddr; 4364 fw.bss_len = bce_TXP_b09FwBssLen; 4365 fw.bss_index = 0; 4366 fw.bss = bce_TXP_b09FwBss; 4367 4368 fw.rodata_addr = bce_TXP_b09FwRodataAddr; 4369 fw.rodata_len = bce_TXP_b09FwRodataLen; 4370 fw.rodata_index = 0; 4371 fw.rodata = bce_TXP_b09FwRodata; 4372 } else { 4373 fw.ver_major = bce_TXP_b06FwReleaseMajor; 4374 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 4375 fw.ver_fix = bce_TXP_b06FwReleaseFix; 4376 fw.start_addr = bce_TXP_b06FwStartAddr; 4377 4378 fw.text_addr = bce_TXP_b06FwTextAddr; 4379 fw.text_len = bce_TXP_b06FwTextLen; 4380 fw.text_index = 0; 4381 fw.text = bce_TXP_b06FwText; 4382 4383 fw.data_addr = bce_TXP_b06FwDataAddr; 4384 fw.data_len = bce_TXP_b06FwDataLen; 4385 fw.data_index = 0; 4386 fw.data = bce_TXP_b06FwData; 4387 4388 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 4389 fw.sbss_len = bce_TXP_b06FwSbssLen; 4390 fw.sbss_index = 0; 4391 fw.sbss = bce_TXP_b06FwSbss; 4392 4393 fw.bss_addr = bce_TXP_b06FwBssAddr; 4394 fw.bss_len = bce_TXP_b06FwBssLen; 4395 fw.bss_index = 0; 4396 fw.bss = bce_TXP_b06FwBss; 4397 4398 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 4399 fw.rodata_len = bce_TXP_b06FwRodataLen; 4400 fw.rodata_index = 0; 4401 fw.rodata = bce_TXP_b06FwRodata; 4402 } 4403 4404 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 4405 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4406 bce_start_cpu(sc, &cpu_reg); 4407 4408 DBEXIT(BCE_VERBOSE_RESET); 4409 } 4410 4411 4412 /****************************************************************************/ 4413 /* Initialize the TPAT CPU. */ 4414 /* */ 4415 /* Returns: */ 4416 /* Nothing. */ 4417 /****************************************************************************/ 4418 static void 4419 bce_init_tpat_cpu(struct bce_softc *sc) 4420 { 4421 struct cpu_reg cpu_reg; 4422 struct fw_info fw; 4423 4424 DBENTER(BCE_VERBOSE_RESET); 4425 4426 cpu_reg.mode = BCE_TPAT_CPU_MODE; 4427 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 4428 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 4429 cpu_reg.state = BCE_TPAT_CPU_STATE; 4430 cpu_reg.state_value_clear = 0xffffff; 4431 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 4432 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 4433 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 4434 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 4435 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 4436 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 4437 cpu_reg.mips_view_base = 0x8000000; 4438 4439 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4440 fw.ver_major = bce_TPAT_b09FwReleaseMajor; 4441 fw.ver_minor = bce_TPAT_b09FwReleaseMinor; 4442 fw.ver_fix = bce_TPAT_b09FwReleaseFix; 4443 fw.start_addr = bce_TPAT_b09FwStartAddr; 4444 4445 fw.text_addr = bce_TPAT_b09FwTextAddr; 4446 fw.text_len = bce_TPAT_b09FwTextLen; 4447 fw.text_index = 0; 4448 fw.text = bce_TPAT_b09FwText; 4449 4450 fw.data_addr = bce_TPAT_b09FwDataAddr; 4451 fw.data_len = bce_TPAT_b09FwDataLen; 4452 fw.data_index = 0; 4453 fw.data = bce_TPAT_b09FwData; 4454 4455 fw.sbss_addr = bce_TPAT_b09FwSbssAddr; 4456 fw.sbss_len = bce_TPAT_b09FwSbssLen; 4457 fw.sbss_index = 0; 4458 fw.sbss = bce_TPAT_b09FwSbss; 4459 4460 fw.bss_addr = bce_TPAT_b09FwBssAddr; 4461 fw.bss_len = bce_TPAT_b09FwBssLen; 4462 fw.bss_index = 0; 4463 fw.bss = bce_TPAT_b09FwBss; 4464 4465 fw.rodata_addr = bce_TPAT_b09FwRodataAddr; 4466 fw.rodata_len = bce_TPAT_b09FwRodataLen; 4467 fw.rodata_index = 0; 4468 fw.rodata = bce_TPAT_b09FwRodata; 4469 } else { 4470 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 4471 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 4472 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 4473 fw.start_addr = bce_TPAT_b06FwStartAddr; 4474 4475 fw.text_addr = bce_TPAT_b06FwTextAddr; 4476 fw.text_len = bce_TPAT_b06FwTextLen; 4477 fw.text_index = 0; 4478 fw.text = bce_TPAT_b06FwText; 4479 4480 fw.data_addr = bce_TPAT_b06FwDataAddr; 4481 fw.data_len = bce_TPAT_b06FwDataLen; 4482 fw.data_index = 0; 4483 fw.data = bce_TPAT_b06FwData; 4484 4485 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 4486 fw.sbss_len = bce_TPAT_b06FwSbssLen; 4487 fw.sbss_index = 0; 4488 fw.sbss = bce_TPAT_b06FwSbss; 4489 4490 fw.bss_addr = bce_TPAT_b06FwBssAddr; 4491 fw.bss_len = bce_TPAT_b06FwBssLen; 4492 fw.bss_index = 0; 4493 fw.bss = bce_TPAT_b06FwBss; 4494 4495 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 4496 fw.rodata_len = bce_TPAT_b06FwRodataLen; 4497 fw.rodata_index = 0; 4498 fw.rodata = bce_TPAT_b06FwRodata; 4499 } 4500 4501 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 4502 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4503 bce_start_cpu(sc, &cpu_reg); 4504 4505 DBEXIT(BCE_VERBOSE_RESET); 4506 } 4507 4508 4509 /****************************************************************************/ 4510 /* Initialize the CP CPU. */ 4511 /* */ 4512 /* Returns: */ 4513 /* Nothing. */ 4514 /****************************************************************************/ 4515 static void 4516 bce_init_cp_cpu(struct bce_softc *sc) 4517 { 4518 struct cpu_reg cpu_reg; 4519 struct fw_info fw; 4520 4521 DBENTER(BCE_VERBOSE_RESET); 4522 4523 cpu_reg.mode = BCE_CP_CPU_MODE; 4524 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; 4525 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; 4526 cpu_reg.state = BCE_CP_CPU_STATE; 4527 cpu_reg.state_value_clear = 0xffffff; 4528 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; 4529 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; 4530 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; 4531 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; 4532 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; 4533 cpu_reg.spad_base = BCE_CP_SCRATCH; 4534 cpu_reg.mips_view_base = 0x8000000; 4535 4536 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4537 fw.ver_major = bce_CP_b09FwReleaseMajor; 4538 fw.ver_minor = bce_CP_b09FwReleaseMinor; 4539 fw.ver_fix = bce_CP_b09FwReleaseFix; 4540 fw.start_addr = bce_CP_b09FwStartAddr; 4541 4542 fw.text_addr = bce_CP_b09FwTextAddr; 4543 fw.text_len = bce_CP_b09FwTextLen; 4544 fw.text_index = 0; 4545 fw.text = bce_CP_b09FwText; 4546 4547 fw.data_addr = bce_CP_b09FwDataAddr; 4548 fw.data_len = bce_CP_b09FwDataLen; 4549 fw.data_index = 0; 4550 fw.data = bce_CP_b09FwData; 4551 4552 fw.sbss_addr = bce_CP_b09FwSbssAddr; 4553 fw.sbss_len = bce_CP_b09FwSbssLen; 4554 fw.sbss_index = 0; 4555 fw.sbss = bce_CP_b09FwSbss; 4556 4557 fw.bss_addr = bce_CP_b09FwBssAddr; 4558 fw.bss_len = bce_CP_b09FwBssLen; 4559 fw.bss_index = 0; 4560 fw.bss = bce_CP_b09FwBss; 4561 4562 fw.rodata_addr = bce_CP_b09FwRodataAddr; 4563 fw.rodata_len = bce_CP_b09FwRodataLen; 4564 fw.rodata_index = 0; 4565 fw.rodata = bce_CP_b09FwRodata; 4566 } else { 4567 fw.ver_major = bce_CP_b06FwReleaseMajor; 4568 fw.ver_minor = bce_CP_b06FwReleaseMinor; 4569 fw.ver_fix = bce_CP_b06FwReleaseFix; 4570 fw.start_addr = bce_CP_b06FwStartAddr; 4571 4572 fw.text_addr = bce_CP_b06FwTextAddr; 4573 fw.text_len = bce_CP_b06FwTextLen; 4574 fw.text_index = 0; 4575 fw.text = bce_CP_b06FwText; 4576 4577 fw.data_addr = bce_CP_b06FwDataAddr; 4578 fw.data_len = bce_CP_b06FwDataLen; 4579 fw.data_index = 0; 4580 fw.data = bce_CP_b06FwData; 4581 4582 fw.sbss_addr = bce_CP_b06FwSbssAddr; 4583 fw.sbss_len = bce_CP_b06FwSbssLen; 4584 fw.sbss_index = 0; 4585 fw.sbss = bce_CP_b06FwSbss; 4586 4587 fw.bss_addr = bce_CP_b06FwBssAddr; 4588 fw.bss_len = bce_CP_b06FwBssLen; 4589 fw.bss_index = 0; 4590 fw.bss = bce_CP_b06FwBss; 4591 4592 fw.rodata_addr = bce_CP_b06FwRodataAddr; 4593 fw.rodata_len = bce_CP_b06FwRodataLen; 4594 fw.rodata_index = 0; 4595 fw.rodata = bce_CP_b06FwRodata; 4596 } 4597 4598 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); 4599 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4600 bce_start_cpu(sc, &cpu_reg); 4601 4602 DBEXIT(BCE_VERBOSE_RESET); 4603 } 4604 4605 4606 /****************************************************************************/ 4607 /* Initialize the COM CPU. */ 4608 /* */ 4609 /* Returns: */ 4610 /* Nothing. */ 4611 /****************************************************************************/ 4612 static void 4613 bce_init_com_cpu(struct bce_softc *sc) 4614 { 4615 struct cpu_reg cpu_reg; 4616 struct fw_info fw; 4617 4618 DBENTER(BCE_VERBOSE_RESET); 4619 4620 cpu_reg.mode = BCE_COM_CPU_MODE; 4621 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 4622 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 4623 cpu_reg.state = BCE_COM_CPU_STATE; 4624 cpu_reg.state_value_clear = 0xffffff; 4625 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 4626 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 4627 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 4628 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 4629 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 4630 cpu_reg.spad_base = BCE_COM_SCRATCH; 4631 cpu_reg.mips_view_base = 0x8000000; 4632 4633 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4634 fw.ver_major = bce_COM_b09FwReleaseMajor; 4635 fw.ver_minor = bce_COM_b09FwReleaseMinor; 4636 fw.ver_fix = bce_COM_b09FwReleaseFix; 4637 fw.start_addr = bce_COM_b09FwStartAddr; 4638 4639 fw.text_addr = bce_COM_b09FwTextAddr; 4640 fw.text_len = bce_COM_b09FwTextLen; 4641 fw.text_index = 0; 4642 fw.text = bce_COM_b09FwText; 4643 4644 fw.data_addr = bce_COM_b09FwDataAddr; 4645 fw.data_len = bce_COM_b09FwDataLen; 4646 fw.data_index = 0; 4647 fw.data = bce_COM_b09FwData; 4648 4649 fw.sbss_addr = bce_COM_b09FwSbssAddr; 4650 fw.sbss_len = bce_COM_b09FwSbssLen; 4651 fw.sbss_index = 0; 4652 fw.sbss = bce_COM_b09FwSbss; 4653 4654 fw.bss_addr = bce_COM_b09FwBssAddr; 4655 fw.bss_len = bce_COM_b09FwBssLen; 4656 fw.bss_index = 0; 4657 fw.bss = bce_COM_b09FwBss; 4658 4659 fw.rodata_addr = bce_COM_b09FwRodataAddr; 4660 fw.rodata_len = bce_COM_b09FwRodataLen; 4661 fw.rodata_index = 0; 4662 fw.rodata = bce_COM_b09FwRodata; 4663 } else { 4664 fw.ver_major = bce_COM_b06FwReleaseMajor; 4665 fw.ver_minor = bce_COM_b06FwReleaseMinor; 4666 fw.ver_fix = bce_COM_b06FwReleaseFix; 4667 fw.start_addr = bce_COM_b06FwStartAddr; 4668 4669 fw.text_addr = bce_COM_b06FwTextAddr; 4670 fw.text_len = bce_COM_b06FwTextLen; 4671 fw.text_index = 0; 4672 fw.text = bce_COM_b06FwText; 4673 4674 fw.data_addr = bce_COM_b06FwDataAddr; 4675 fw.data_len = bce_COM_b06FwDataLen; 4676 fw.data_index = 0; 4677 fw.data = bce_COM_b06FwData; 4678 4679 fw.sbss_addr = bce_COM_b06FwSbssAddr; 4680 fw.sbss_len = bce_COM_b06FwSbssLen; 4681 fw.sbss_index = 0; 4682 fw.sbss = bce_COM_b06FwSbss; 4683 4684 fw.bss_addr = bce_COM_b06FwBssAddr; 4685 fw.bss_len = bce_COM_b06FwBssLen; 4686 fw.bss_index = 0; 4687 fw.bss = bce_COM_b06FwBss; 4688 4689 fw.rodata_addr = bce_COM_b06FwRodataAddr; 4690 fw.rodata_len = bce_COM_b06FwRodataLen; 4691 fw.rodata_index = 0; 4692 fw.rodata = bce_COM_b06FwRodata; 4693 } 4694 4695 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 4696 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4697 bce_start_cpu(sc, &cpu_reg); 4698 4699 DBEXIT(BCE_VERBOSE_RESET); 4700 } 4701 4702 4703 /****************************************************************************/ 4704 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ 4705 /* */ 4706 /* Loads the firmware for each CPU and starts the CPU. */ 4707 /* */ 4708 /* Returns: */ 4709 /* Nothing. */ 4710 /****************************************************************************/ 4711 static void 4712 bce_init_cpus(struct bce_softc *sc) 4713 { 4714 DBENTER(BCE_VERBOSE_RESET); 4715 4716 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4717 4718 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) { 4719 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1, 4720 sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1); 4721 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2, 4722 sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2); 4723 } else { 4724 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, 4725 sizeof(bce_xi_rv2p_proc1), RV2P_PROC1); 4726 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, 4727 sizeof(bce_xi_rv2p_proc2), RV2P_PROC2); 4728 } 4729 4730 } else { 4731 bce_load_rv2p_fw(sc, bce_rv2p_proc1, 4732 sizeof(bce_rv2p_proc1), RV2P_PROC1); 4733 bce_load_rv2p_fw(sc, bce_rv2p_proc2, 4734 sizeof(bce_rv2p_proc2), RV2P_PROC2); 4735 } 4736 4737 bce_init_rxp_cpu(sc); 4738 bce_init_txp_cpu(sc); 4739 bce_init_tpat_cpu(sc); 4740 bce_init_com_cpu(sc); 4741 bce_init_cp_cpu(sc); 4742 4743 DBEXIT(BCE_VERBOSE_RESET); 4744 } 4745 4746 4747 /****************************************************************************/ 4748 /* Initialize context memory. */ 4749 /* */ 4750 /* Clears the memory associated with each Context ID (CID). */ 4751 /* */ 4752 /* Returns: */ 4753 /* Nothing. */ 4754 /****************************************************************************/ 4755 static int 4756 bce_init_ctx(struct bce_softc *sc) 4757 { 4758 u32 offset, val, vcid_addr; 4759 int i, j, rc, retry_cnt; 4760 4761 rc = 0; 4762 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4763 4764 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4765 retry_cnt = CTX_INIT_RETRY_COUNT; 4766 4767 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); 4768 4769 /* 4770 * BCM5709 context memory may be cached 4771 * in host memory so prepare the host memory 4772 * for access. 4773 */ 4774 val = BCE_CTX_COMMAND_ENABLED | 4775 BCE_CTX_COMMAND_MEM_INIT | (1 << 12); 4776 val |= (BCM_PAGE_BITS - 8) << 16; 4777 REG_WR(sc, BCE_CTX_COMMAND, val); 4778 4779 /* Wait for mem init command to complete. */ 4780 for (i = 0; i < retry_cnt; i++) { 4781 val = REG_RD(sc, BCE_CTX_COMMAND); 4782 if (!(val & BCE_CTX_COMMAND_MEM_INIT)) 4783 break; 4784 DELAY(2); 4785 } 4786 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) { 4787 BCE_PRINTF("%s(): Context memory initialization failed!\n", 4788 __FUNCTION__); 4789 rc = EBUSY; 4790 goto init_ctx_fail; 4791 } 4792 4793 for (i = 0; i < sc->ctx_pages; i++) { 4794 /* Set the physical address of the context memory. */ 4795 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, 4796 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | 4797 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); 4798 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, 4799 BCE_ADDR_HI(sc->ctx_paddr[i])); 4800 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | 4801 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 4802 4803 /* Verify the context memory write was successful. */ 4804 for (j = 0; j < retry_cnt; j++) { 4805 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); 4806 if ((val & 4807 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 4808 break; 4809 DELAY(5); 4810 } 4811 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) { 4812 BCE_PRINTF("%s(): Failed to initialize " 4813 "context page %d!\n", __FUNCTION__, i); 4814 rc = EBUSY; 4815 goto init_ctx_fail; 4816 } 4817 } 4818 } else { 4819 4820 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); 4821 4822 /* 4823 * For the 5706/5708, context memory is local to 4824 * the controller, so initialize the controller 4825 * context memory. 4826 */ 4827 4828 vcid_addr = GET_CID_ADDR(96); 4829 while (vcid_addr) { 4830 4831 vcid_addr -= PHY_CTX_SIZE; 4832 4833 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); 4834 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4835 4836 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 4837 CTX_WR(sc, 0x00, offset, 0); 4838 } 4839 4840 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 4841 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4842 } 4843 4844 } 4845 init_ctx_fail: 4846 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4847 return (rc); 4848 } 4849 4850 4851 /****************************************************************************/ 4852 /* Fetch the permanent MAC address of the controller. */ 4853 /* */ 4854 /* Returns: */ 4855 /* Nothing. */ 4856 /****************************************************************************/ 4857 static void 4858 bce_get_mac_addr(struct bce_softc *sc) 4859 { 4860 u32 mac_lo = 0, mac_hi = 0; 4861 4862 DBENTER(BCE_VERBOSE_RESET); 4863 4864 /* 4865 * The NetXtreme II bootcode populates various NIC 4866 * power-on and runtime configuration items in a 4867 * shared memory area. The factory configured MAC 4868 * address is available from both NVRAM and the 4869 * shared memory area so we'll read the value from 4870 * shared memory for speed. 4871 */ 4872 4873 mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER); 4874 mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER); 4875 4876 if ((mac_lo == 0) && (mac_hi == 0)) { 4877 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 4878 __FILE__, __LINE__); 4879 } else { 4880 sc->eaddr[0] = (u_char)(mac_hi >> 8); 4881 sc->eaddr[1] = (u_char)(mac_hi >> 0); 4882 sc->eaddr[2] = (u_char)(mac_lo >> 24); 4883 sc->eaddr[3] = (u_char)(mac_lo >> 16); 4884 sc->eaddr[4] = (u_char)(mac_lo >> 8); 4885 sc->eaddr[5] = (u_char)(mac_lo >> 0); 4886 } 4887 4888 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet " 4889 "address = %6D\n", sc->eaddr, ":"); 4890 DBEXIT(BCE_VERBOSE_RESET); 4891 } 4892 4893 4894 /****************************************************************************/ 4895 /* Program the MAC address. */ 4896 /* */ 4897 /* Returns: */ 4898 /* Nothing. */ 4899 /****************************************************************************/ 4900 static void 4901 bce_set_mac_addr(struct bce_softc *sc) 4902 { 4903 u32 val; 4904 u8 *mac_addr = sc->eaddr; 4905 4906 /* ToDo: Add support for setting multiple MAC addresses. */ 4907 4908 DBENTER(BCE_VERBOSE_RESET); 4909 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = " 4910 "%6D\n", sc->eaddr, ":"); 4911 4912 val = (mac_addr[0] << 8) | mac_addr[1]; 4913 4914 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 4915 4916 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4917 (mac_addr[4] << 8) | mac_addr[5]; 4918 4919 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 4920 4921 DBEXIT(BCE_VERBOSE_RESET); 4922 } 4923 4924 4925 /****************************************************************************/ 4926 /* Stop the controller. */ 4927 /* */ 4928 /* Returns: */ 4929 /* Nothing. */ 4930 /****************************************************************************/ 4931 static void 4932 bce_stop(struct bce_softc *sc) 4933 { 4934 struct ifnet *ifp; 4935 4936 DBENTER(BCE_VERBOSE_RESET); 4937 4938 BCE_LOCK_ASSERT(sc); 4939 4940 ifp = sc->bce_ifp; 4941 4942 callout_stop(&sc->bce_tick_callout); 4943 4944 /* Disable the transmit/receive blocks. */ 4945 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); 4946 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4947 DELAY(20); 4948 4949 bce_disable_intr(sc); 4950 4951 /* Free RX buffers. */ 4952 if (bce_hdr_split == TRUE) { 4953 bce_free_pg_chain(sc); 4954 } 4955 bce_free_rx_chain(sc); 4956 4957 /* Free TX buffers. */ 4958 bce_free_tx_chain(sc); 4959 4960 sc->watchdog_timer = 0; 4961 4962 sc->bce_link_up = FALSE; 4963 4964 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4965 4966 DBEXIT(BCE_VERBOSE_RESET); 4967 } 4968 4969 4970 static int 4971 bce_reset(struct bce_softc *sc, u32 reset_code) 4972 { 4973 u32 emac_mode_save, val; 4974 int i, rc = 0; 4975 static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT | 4976 BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G; 4977 4978 DBENTER(BCE_VERBOSE_RESET); 4979 4980 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 4981 __FUNCTION__, reset_code); 4982 4983 /* 4984 * If ASF/IPMI is operational, then the EMAC Mode register already 4985 * contains appropriate values for the link settings that have 4986 * been auto-negotiated. Resetting the chip will clobber those 4987 * values. Save the important bits so we can restore them after 4988 * the reset. 4989 */ 4990 emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask; 4991 4992 /* Wait for pending PCI transactions to complete. */ 4993 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 4994 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 4995 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 4996 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 4997 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 4998 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4999 DELAY(5); 5000 5001 /* Disable DMA */ 5002 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5003 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 5004 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 5005 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 5006 } 5007 5008 /* Assume bootcode is running. */ 5009 sc->bce_fw_timed_out = FALSE; 5010 sc->bce_drv_cardiac_arrest = FALSE; 5011 5012 /* Give the firmware a chance to prepare for the reset. */ 5013 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 5014 if (rc) 5015 goto bce_reset_exit; 5016 5017 /* Set a firmware reminder that this is a soft reset. */ 5018 bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC); 5019 5020 /* Dummy read to force the chip to complete all current transactions. */ 5021 val = REG_RD(sc, BCE_MISC_ID); 5022 5023 /* Chip reset. */ 5024 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5025 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); 5026 REG_RD(sc, BCE_MISC_COMMAND); 5027 DELAY(5); 5028 5029 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 5030 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 5031 5032 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); 5033 } else { 5034 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5035 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 5036 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 5037 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 5038 5039 /* Allow up to 30us for reset to complete. */ 5040 for (i = 0; i < 10; i++) { 5041 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 5042 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5043 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 5044 break; 5045 } 5046 DELAY(10); 5047 } 5048 5049 /* Check that reset completed successfully. */ 5050 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5051 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 5052 BCE_PRINTF("%s(%d): Reset failed!\n", 5053 __FILE__, __LINE__); 5054 rc = EBUSY; 5055 goto bce_reset_exit; 5056 } 5057 } 5058 5059 /* Make sure byte swapping is properly configured. */ 5060 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 5061 if (val != 0x01020304) { 5062 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 5063 __FILE__, __LINE__); 5064 rc = ENODEV; 5065 goto bce_reset_exit; 5066 } 5067 5068 /* Just completed a reset, assume that firmware is running again. */ 5069 sc->bce_fw_timed_out = FALSE; 5070 sc->bce_drv_cardiac_arrest = FALSE; 5071 5072 /* Wait for the firmware to finish its initialization. */ 5073 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 5074 if (rc) 5075 BCE_PRINTF("%s(%d): Firmware did not complete " 5076 "initialization!\n", __FILE__, __LINE__); 5077 /* Get firmware capabilities. */ 5078 bce_fw_cap_init(sc); 5079 5080 bce_reset_exit: 5081 /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */ 5082 if (reset_code == BCE_DRV_MSG_CODE_RESET) { 5083 val = REG_RD(sc, BCE_EMAC_MODE); 5084 val = (val & ~emac_mode_mask) | emac_mode_save; 5085 REG_WR(sc, BCE_EMAC_MODE, val); 5086 } 5087 5088 DBEXIT(BCE_VERBOSE_RESET); 5089 return (rc); 5090 } 5091 5092 5093 static int 5094 bce_chipinit(struct bce_softc *sc) 5095 { 5096 u32 val; 5097 int rc = 0; 5098 5099 DBENTER(BCE_VERBOSE_RESET); 5100 5101 bce_disable_intr(sc); 5102 5103 /* 5104 * Initialize DMA byte/word swapping, configure the number of DMA 5105 * channels and PCI clock compensation delay. 5106 */ 5107 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 5108 BCE_DMA_CONFIG_DATA_WORD_SWAP | 5109 #if BYTE_ORDER == BIG_ENDIAN 5110 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 5111 #endif 5112 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 5113 DMA_READ_CHANS << 12 | 5114 DMA_WRITE_CHANS << 16; 5115 5116 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 5117 5118 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 5119 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 5120 5121 /* 5122 * This setting resolves a problem observed on certain Intel PCI 5123 * chipsets that cannot handle multiple outstanding DMA operations. 5124 * See errata E9_5706A1_65. 5125 */ 5126 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 5127 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 5128 !(sc->bce_flags & BCE_PCIX_FLAG)) 5129 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 5130 5131 REG_WR(sc, BCE_DMA_CONFIG, val); 5132 5133 /* Enable the RX_V2P and Context state machines before access. */ 5134 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5135 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 5136 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 5137 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 5138 5139 /* Initialize context mapping and zero out the quick contexts. */ 5140 if ((rc = bce_init_ctx(sc)) != 0) 5141 goto bce_chipinit_exit; 5142 5143 /* Initialize the on-boards CPUs */ 5144 bce_init_cpus(sc); 5145 5146 /* Enable management frames (NC-SI) to flow to the MCP. */ 5147 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5148 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 5149 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 5150 } 5151 5152 /* Prepare NVRAM for access. */ 5153 if ((rc = bce_init_nvram(sc)) != 0) 5154 goto bce_chipinit_exit; 5155 5156 /* Set the kernel bypass block size */ 5157 val = REG_RD(sc, BCE_MQ_CONFIG); 5158 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 5159 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 5160 5161 /* Enable bins used on the 5709. */ 5162 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5163 val |= BCE_MQ_CONFIG_BIN_MQ_MODE; 5164 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) 5165 val |= BCE_MQ_CONFIG_HALT_DIS; 5166 } 5167 5168 REG_WR(sc, BCE_MQ_CONFIG, val); 5169 5170 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 5171 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 5172 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 5173 5174 /* Set the page size and clear the RV2P processor stall bits. */ 5175 val = (BCM_PAGE_BITS - 8) << 24; 5176 REG_WR(sc, BCE_RV2P_CONFIG, val); 5177 5178 /* Configure page size. */ 5179 val = REG_RD(sc, BCE_TBDR_CONFIG); 5180 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 5181 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 5182 REG_WR(sc, BCE_TBDR_CONFIG, val); 5183 5184 /* Set the perfect match control register to default. */ 5185 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); 5186 5187 bce_chipinit_exit: 5188 DBEXIT(BCE_VERBOSE_RESET); 5189 5190 return(rc); 5191 } 5192 5193 5194 /****************************************************************************/ 5195 /* Initialize the controller in preparation to send/receive traffic. */ 5196 /* */ 5197 /* Returns: */ 5198 /* 0 for success, positive value for failure. */ 5199 /****************************************************************************/ 5200 static int 5201 bce_blockinit(struct bce_softc *sc) 5202 { 5203 u32 reg, val; 5204 int rc = 0; 5205 5206 DBENTER(BCE_VERBOSE_RESET); 5207 5208 /* Load the hardware default MAC address. */ 5209 bce_set_mac_addr(sc); 5210 5211 /* Set the Ethernet backoff seed value */ 5212 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 5213 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 5214 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 5215 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 5216 5217 sc->last_status_idx = 0; 5218 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 5219 5220 /* Set up link change interrupt generation. */ 5221 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 5222 5223 /* Program the physical address of the status block. */ 5224 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 5225 BCE_ADDR_LO(sc->status_block_paddr)); 5226 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 5227 BCE_ADDR_HI(sc->status_block_paddr)); 5228 5229 /* Program the physical address of the statistics block. */ 5230 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 5231 BCE_ADDR_LO(sc->stats_block_paddr)); 5232 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 5233 BCE_ADDR_HI(sc->stats_block_paddr)); 5234 5235 /* 5236 * Program various host coalescing parameters. 5237 * Trip points control how many BDs should be ready before generating 5238 * an interrupt while ticks control how long a BD can sit in the chain 5239 * before generating an interrupt. 5240 */ 5241 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 5242 (sc->bce_tx_quick_cons_trip_int << 16) | 5243 sc->bce_tx_quick_cons_trip); 5244 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 5245 (sc->bce_rx_quick_cons_trip_int << 16) | 5246 sc->bce_rx_quick_cons_trip); 5247 REG_WR(sc, BCE_HC_TX_TICKS, 5248 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 5249 REG_WR(sc, BCE_HC_RX_TICKS, 5250 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 5251 REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00); 5252 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 5253 /* Not used for L2. */ 5254 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0); 5255 REG_WR(sc, BCE_HC_COM_TICKS, 0); 5256 REG_WR(sc, BCE_HC_CMD_TICKS, 0); 5257 5258 /* Configure the Host Coalescing block. */ 5259 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 5260 BCE_HC_CONFIG_COLLECT_STATS; 5261 5262 #if 0 5263 /* ToDo: Add MSI-X support. */ 5264 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 5265 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + 5266 BCE_HC_SB_CONFIG_1; 5267 5268 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); 5269 5270 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | 5271 BCE_HC_SB_CONFIG_1_ONE_SHOT); 5272 5273 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, 5274 (sc->tx_quick_cons_trip_int << 16) | 5275 sc->tx_quick_cons_trip); 5276 5277 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, 5278 (sc->tx_ticks_int << 16) | sc->tx_ticks); 5279 5280 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 5281 } 5282 5283 /* 5284 * Tell the HC block to automatically set the 5285 * INT_MASK bit after an MSI/MSI-X interrupt 5286 * is generated so the driver doesn't have to. 5287 */ 5288 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) 5289 val |= BCE_HC_CONFIG_ONE_SHOT; 5290 5291 /* Set the MSI-X status blocks to 128 byte boundaries. */ 5292 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 5293 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 5294 #endif 5295 5296 REG_WR(sc, BCE_HC_CONFIG, val); 5297 5298 /* Clear the internal statistics counters. */ 5299 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 5300 5301 /* Verify that bootcode is running. */ 5302 reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE); 5303 5304 DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control), 5305 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 5306 __FILE__, __LINE__); 5307 reg = 0); 5308 5309 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 5310 BCE_DEV_INFO_SIGNATURE_MAGIC) { 5311 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 5312 "Expected: 08%08X\n", __FILE__, __LINE__, 5313 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 5314 BCE_DEV_INFO_SIGNATURE_MAGIC); 5315 rc = ENODEV; 5316 goto bce_blockinit_exit; 5317 } 5318 5319 /* Enable DMA */ 5320 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5321 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 5322 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 5323 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 5324 } 5325 5326 /* Allow bootcode to apply additional fixes before enabling MAC. */ 5327 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | 5328 BCE_DRV_MSG_CODE_RESET); 5329 5330 /* Enable link state change interrupt generation. */ 5331 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 5332 5333 /* Enable the RXP. */ 5334 bce_start_rxp_cpu(sc); 5335 5336 /* Disable management frames (NC-SI) from flowing to the MCP. */ 5337 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5338 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) & 5339 ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 5340 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 5341 } 5342 5343 /* Enable all remaining blocks in the MAC. */ 5344 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 5345 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5346 BCE_MISC_ENABLE_DEFAULT_XI); 5347 else 5348 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5349 BCE_MISC_ENABLE_DEFAULT); 5350 5351 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 5352 DELAY(20); 5353 5354 /* Save the current host coalescing block settings. */ 5355 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); 5356 5357 bce_blockinit_exit: 5358 DBEXIT(BCE_VERBOSE_RESET); 5359 5360 return (rc); 5361 } 5362 5363 5364 /****************************************************************************/ 5365 /* Encapsulate an mbuf into the rx_bd chain. */ 5366 /* */ 5367 /* Returns: */ 5368 /* 0 for success, positive value for failure. */ 5369 /****************************************************************************/ 5370 static int 5371 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq) 5372 { 5373 bus_dma_segment_t segs[1]; 5374 struct mbuf *m_new = NULL; 5375 struct rx_bd *rxbd; 5376 int nsegs, error, rc = 0; 5377 #ifdef BCE_DEBUG 5378 u16 debug_chain_prod = chain_prod; 5379 #endif 5380 5381 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5382 5383 /* Make sure the inputs are valid. */ 5384 DBRUNIF((chain_prod > MAX_RX_BD_ALLOC), 5385 BCE_PRINTF("%s(%d): RX producer out of range: " 5386 "0x%04X > 0x%04X\n", __FILE__, __LINE__, 5387 chain_prod, (u16)MAX_RX_BD_ALLOC)); 5388 5389 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5390 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, 5391 prod, chain_prod, *prod_bseq); 5392 5393 /* Update some debug statistic counters */ 5394 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5395 sc->rx_low_watermark = sc->free_rx_bd); 5396 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), 5397 sc->rx_empty_count++); 5398 5399 /* Simulate an mbuf allocation failure. */ 5400 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5401 sc->mbuf_alloc_failed_count++; 5402 sc->mbuf_alloc_failed_sim_count++; 5403 rc = ENOBUFS; 5404 goto bce_get_rx_buf_exit); 5405 5406 /* This is a new mbuf allocation. */ 5407 if (bce_hdr_split == TRUE) 5408 MGETHDR(m_new, M_NOWAIT, MT_DATA); 5409 else 5410 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 5411 sc->rx_bd_mbuf_alloc_size); 5412 5413 if (m_new == NULL) { 5414 sc->mbuf_alloc_failed_count++; 5415 rc = ENOBUFS; 5416 goto bce_get_rx_buf_exit; 5417 } 5418 5419 DBRUN(sc->debug_rx_mbuf_alloc++); 5420 5421 /* Make sure we have a valid packet header. */ 5422 M_ASSERTPKTHDR(m_new); 5423 5424 /* Initialize the mbuf size and pad if necessary for alignment. */ 5425 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; 5426 m_adj(m_new, sc->rx_bd_mbuf_align_pad); 5427 5428 /* ToDo: Consider calling m_fragment() to test error handling. */ 5429 5430 /* Map the mbuf cluster into device memory. */ 5431 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, 5432 sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT); 5433 5434 /* Handle any mapping errors. */ 5435 if (error) { 5436 BCE_PRINTF("%s(%d): Error mapping mbuf into RX " 5437 "chain (%d)!\n", __FILE__, __LINE__, error); 5438 5439 sc->dma_map_addr_rx_failed_count++; 5440 m_freem(m_new); 5441 5442 DBRUN(sc->debug_rx_mbuf_alloc--); 5443 5444 rc = ENOBUFS; 5445 goto bce_get_rx_buf_exit; 5446 } 5447 5448 /* All mbufs must map to a single segment. */ 5449 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5450 __FUNCTION__, nsegs)); 5451 5452 /* Setup the rx_bd for the segment. */ 5453 rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)]; 5454 5455 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5456 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5457 rxbd->rx_bd_len = htole32(segs[0].ds_len); 5458 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5459 *prod_bseq += segs[0].ds_len; 5460 5461 /* Save the mbuf and update our counter. */ 5462 sc->rx_mbuf_ptr[chain_prod] = m_new; 5463 sc->free_rx_bd -= nsegs; 5464 5465 DBRUNMSG(BCE_INSANE_RECV, 5466 bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs)); 5467 5468 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5469 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod, 5470 chain_prod, *prod_bseq); 5471 5472 bce_get_rx_buf_exit: 5473 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5474 5475 return(rc); 5476 } 5477 5478 5479 /****************************************************************************/ 5480 /* Encapsulate an mbuf cluster into the page chain. */ 5481 /* */ 5482 /* Returns: */ 5483 /* 0 for success, positive value for failure. */ 5484 /****************************************************************************/ 5485 static int 5486 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx) 5487 { 5488 bus_dma_segment_t segs[1]; 5489 struct mbuf *m_new = NULL; 5490 struct rx_bd *pgbd; 5491 int error, nsegs, rc = 0; 5492 #ifdef BCE_DEBUG 5493 u16 debug_prod_idx = prod_idx; 5494 #endif 5495 5496 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5497 5498 /* Make sure the inputs are valid. */ 5499 DBRUNIF((prod_idx > MAX_PG_BD_ALLOC), 5500 BCE_PRINTF("%s(%d): page producer out of range: " 5501 "0x%04X > 0x%04X\n", __FILE__, __LINE__, 5502 prod_idx, (u16)MAX_PG_BD_ALLOC)); 5503 5504 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5505 "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx); 5506 5507 /* Update counters if we've hit a new low or run out of pages. */ 5508 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), 5509 sc->pg_low_watermark = sc->free_pg_bd); 5510 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); 5511 5512 /* Simulate an mbuf allocation failure. */ 5513 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5514 sc->mbuf_alloc_failed_count++; 5515 sc->mbuf_alloc_failed_sim_count++; 5516 rc = ENOBUFS; 5517 goto bce_get_pg_buf_exit); 5518 5519 /* This is a new mbuf allocation. */ 5520 m_new = m_getcl(M_NOWAIT, MT_DATA, 0); 5521 if (m_new == NULL) { 5522 sc->mbuf_alloc_failed_count++; 5523 rc = ENOBUFS; 5524 goto bce_get_pg_buf_exit; 5525 } 5526 5527 DBRUN(sc->debug_pg_mbuf_alloc++); 5528 5529 m_new->m_len = MCLBYTES; 5530 5531 /* ToDo: Consider calling m_fragment() to test error handling. */ 5532 5533 /* Map the mbuf cluster into device memory. */ 5534 error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag, 5535 sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT); 5536 5537 /* Handle any mapping errors. */ 5538 if (error) { 5539 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", 5540 __FILE__, __LINE__); 5541 5542 m_freem(m_new); 5543 DBRUN(sc->debug_pg_mbuf_alloc--); 5544 5545 rc = ENOBUFS; 5546 goto bce_get_pg_buf_exit; 5547 } 5548 5549 /* All mbufs must map to a single segment. */ 5550 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5551 __FUNCTION__, nsegs)); 5552 5553 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ 5554 5555 /* 5556 * The page chain uses the same rx_bd data structure 5557 * as the receive chain but doesn't require a byte sequence (bseq). 5558 */ 5559 pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)]; 5560 5561 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5562 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5563 pgbd->rx_bd_len = htole32(MCLBYTES); 5564 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5565 5566 /* Save the mbuf and update our counter. */ 5567 sc->pg_mbuf_ptr[prod_idx] = m_new; 5568 sc->free_pg_bd--; 5569 5570 DBRUNMSG(BCE_INSANE_RECV, 5571 bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1)); 5572 5573 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5574 "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx); 5575 5576 bce_get_pg_buf_exit: 5577 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5578 5579 return(rc); 5580 } 5581 5582 5583 /****************************************************************************/ 5584 /* Initialize the TX context memory. */ 5585 /* */ 5586 /* Returns: */ 5587 /* Nothing */ 5588 /****************************************************************************/ 5589 static void 5590 bce_init_tx_context(struct bce_softc *sc) 5591 { 5592 u32 val; 5593 5594 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5595 5596 /* Initialize the context ID for an L2 TX chain. */ 5597 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5598 /* Set the CID type to support an L2 connection. */ 5599 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | 5600 BCE_L2CTX_TX_TYPE_SIZE_L2_XI; 5601 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); 5602 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); 5603 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5604 BCE_L2CTX_TX_CMD_TYPE_XI, val); 5605 5606 /* Point the hardware to the first page in the chain. */ 5607 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5608 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5609 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); 5610 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5611 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5612 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); 5613 } else { 5614 /* Set the CID type to support an L2 connection. */ 5615 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; 5616 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); 5617 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); 5618 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); 5619 5620 /* Point the hardware to the first page in the chain. */ 5621 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5622 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5623 BCE_L2CTX_TX_TBDR_BHADDR_HI, val); 5624 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5625 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5626 BCE_L2CTX_TX_TBDR_BHADDR_LO, val); 5627 } 5628 5629 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5630 } 5631 5632 5633 /****************************************************************************/ 5634 /* Allocate memory and initialize the TX data structures. */ 5635 /* */ 5636 /* Returns: */ 5637 /* 0 for success, positive value for failure. */ 5638 /****************************************************************************/ 5639 static int 5640 bce_init_tx_chain(struct bce_softc *sc) 5641 { 5642 struct tx_bd *txbd; 5643 int i, rc = 0; 5644 5645 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5646 5647 /* Set the initial TX producer/consumer indices. */ 5648 sc->tx_prod = 0; 5649 sc->tx_cons = 0; 5650 sc->tx_prod_bseq = 0; 5651 sc->used_tx_bd = 0; 5652 sc->max_tx_bd = USABLE_TX_BD_ALLOC; 5653 DBRUN(sc->tx_hi_watermark = 0); 5654 DBRUN(sc->tx_full_count = 0); 5655 5656 /* 5657 * The NetXtreme II supports a linked-list structre called 5658 * a Buffer Descriptor Chain (or BD chain). A BD chain 5659 * consists of a series of 1 or more chain pages, each of which 5660 * consists of a fixed number of BD entries. 5661 * The last BD entry on each page is a pointer to the next page 5662 * in the chain, and the last pointer in the BD chain 5663 * points back to the beginning of the chain. 5664 */ 5665 5666 /* Set the TX next pointer chain entries. */ 5667 for (i = 0; i < sc->tx_pages; i++) { 5668 int j; 5669 5670 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 5671 5672 /* Check if we've reached the last page. */ 5673 if (i == (sc->tx_pages - 1)) 5674 j = 0; 5675 else 5676 j = i + 1; 5677 5678 txbd->tx_bd_haddr_hi = 5679 htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 5680 txbd->tx_bd_haddr_lo = 5681 htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 5682 } 5683 5684 bce_init_tx_context(sc); 5685 5686 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC)); 5687 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5688 5689 return(rc); 5690 } 5691 5692 5693 /****************************************************************************/ 5694 /* Free memory and clear the TX data structures. */ 5695 /* */ 5696 /* Returns: */ 5697 /* Nothing. */ 5698 /****************************************************************************/ 5699 static void 5700 bce_free_tx_chain(struct bce_softc *sc) 5701 { 5702 int i; 5703 5704 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5705 5706 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 5707 for (i = 0; i < MAX_TX_BD_AVAIL; i++) { 5708 if (sc->tx_mbuf_ptr[i] != NULL) { 5709 if (sc->tx_mbuf_map[i] != NULL) 5710 bus_dmamap_sync(sc->tx_mbuf_tag, 5711 sc->tx_mbuf_map[i], 5712 BUS_DMASYNC_POSTWRITE); 5713 m_freem(sc->tx_mbuf_ptr[i]); 5714 sc->tx_mbuf_ptr[i] = NULL; 5715 DBRUN(sc->debug_tx_mbuf_alloc--); 5716 } 5717 } 5718 5719 /* Clear each TX chain page. */ 5720 for (i = 0; i < sc->tx_pages; i++) 5721 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 5722 5723 sc->used_tx_bd = 0; 5724 5725 /* Check if we lost any mbufs in the process. */ 5726 DBRUNIF((sc->debug_tx_mbuf_alloc), 5727 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 5728 "from tx chain!\n", __FILE__, __LINE__, 5729 sc->debug_tx_mbuf_alloc)); 5730 5731 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5732 } 5733 5734 5735 /****************************************************************************/ 5736 /* Initialize the RX context memory. */ 5737 /* */ 5738 /* Returns: */ 5739 /* Nothing */ 5740 /****************************************************************************/ 5741 static void 5742 bce_init_rx_context(struct bce_softc *sc) 5743 { 5744 u32 val; 5745 5746 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5747 5748 /* Init the type, size, and BD cache levels for the RX context. */ 5749 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 5750 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | 5751 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); 5752 5753 /* 5754 * Set the level for generating pause frames 5755 * when the number of available rx_bd's gets 5756 * too low (the low watermark) and the level 5757 * when pause frames can be stopped (the high 5758 * watermark). 5759 */ 5760 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5761 u32 lo_water, hi_water; 5762 5763 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) { 5764 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; 5765 } else { 5766 lo_water = 0; 5767 } 5768 5769 if (lo_water >= USABLE_RX_BD_ALLOC) { 5770 lo_water = 0; 5771 } 5772 5773 hi_water = USABLE_RX_BD_ALLOC / 4; 5774 5775 if (hi_water <= lo_water) { 5776 lo_water = 0; 5777 } 5778 5779 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; 5780 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; 5781 5782 if (hi_water > 0xf) 5783 hi_water = 0xf; 5784 else if (hi_water == 0) 5785 lo_water = 0; 5786 5787 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | 5788 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); 5789 } 5790 5791 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); 5792 5793 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 5794 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5795 val = REG_RD(sc, BCE_MQ_MAP_L2_5); 5796 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); 5797 } 5798 5799 /* Point the hardware to the first page in the chain. */ 5800 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 5801 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); 5802 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 5803 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); 5804 5805 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5806 } 5807 5808 5809 /****************************************************************************/ 5810 /* Allocate memory and initialize the RX data structures. */ 5811 /* */ 5812 /* Returns: */ 5813 /* 0 for success, positive value for failure. */ 5814 /****************************************************************************/ 5815 static int 5816 bce_init_rx_chain(struct bce_softc *sc) 5817 { 5818 struct rx_bd *rxbd; 5819 int i, rc = 0; 5820 5821 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5822 BCE_VERBOSE_CTX); 5823 5824 /* Initialize the RX producer and consumer indices. */ 5825 sc->rx_prod = 0; 5826 sc->rx_cons = 0; 5827 sc->rx_prod_bseq = 0; 5828 sc->free_rx_bd = USABLE_RX_BD_ALLOC; 5829 sc->max_rx_bd = USABLE_RX_BD_ALLOC; 5830 5831 /* Initialize the RX next pointer chain entries. */ 5832 for (i = 0; i < sc->rx_pages; i++) { 5833 int j; 5834 5835 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 5836 5837 /* Check if we've reached the last page. */ 5838 if (i == (sc->rx_pages - 1)) 5839 j = 0; 5840 else 5841 j = i + 1; 5842 5843 /* Setup the chain page pointers. */ 5844 rxbd->rx_bd_haddr_hi = 5845 htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 5846 rxbd->rx_bd_haddr_lo = 5847 htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 5848 } 5849 5850 /* Fill up the RX chain. */ 5851 bce_fill_rx_chain(sc); 5852 5853 DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC); 5854 DBRUN(sc->rx_empty_count = 0); 5855 for (i = 0; i < sc->rx_pages; i++) { 5856 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], 5857 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5858 } 5859 5860 bce_init_rx_context(sc); 5861 5862 DBRUNMSG(BCE_EXTREME_RECV, 5863 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC)); 5864 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5865 BCE_VERBOSE_CTX); 5866 5867 /* ToDo: Are there possible failure modes here? */ 5868 5869 return(rc); 5870 } 5871 5872 5873 /****************************************************************************/ 5874 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 5875 /* occurs. */ 5876 /* */ 5877 /* Returns: */ 5878 /* Nothing */ 5879 /****************************************************************************/ 5880 static void 5881 bce_fill_rx_chain(struct bce_softc *sc) 5882 { 5883 u16 prod, prod_idx; 5884 u32 prod_bseq; 5885 5886 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5887 BCE_VERBOSE_CTX); 5888 5889 /* Get the RX chain producer indices. */ 5890 prod = sc->rx_prod; 5891 prod_bseq = sc->rx_prod_bseq; 5892 5893 /* Keep filling the RX chain until it's full. */ 5894 while (sc->free_rx_bd > 0) { 5895 prod_idx = RX_CHAIN_IDX(prod); 5896 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) { 5897 /* Bail out if we can't add an mbuf to the chain. */ 5898 break; 5899 } 5900 prod = NEXT_RX_BD(prod); 5901 } 5902 5903 /* Save the RX chain producer indices. */ 5904 sc->rx_prod = prod; 5905 sc->rx_prod_bseq = prod_bseq; 5906 5907 /* We should never end up pointing to a next page pointer. */ 5908 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5909 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", 5910 __FUNCTION__, rx_prod)); 5911 5912 /* Write the mailbox and tell the chip about the waiting rx_bd's. */ 5913 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod); 5914 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq); 5915 5916 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5917 BCE_VERBOSE_CTX); 5918 } 5919 5920 5921 /****************************************************************************/ 5922 /* Free memory and clear the RX data structures. */ 5923 /* */ 5924 /* Returns: */ 5925 /* Nothing. */ 5926 /****************************************************************************/ 5927 static void 5928 bce_free_rx_chain(struct bce_softc *sc) 5929 { 5930 int i; 5931 5932 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5933 5934 /* Free any mbufs still in the RX mbuf chain. */ 5935 for (i = 0; i < MAX_RX_BD_AVAIL; i++) { 5936 if (sc->rx_mbuf_ptr[i] != NULL) { 5937 if (sc->rx_mbuf_map[i] != NULL) 5938 bus_dmamap_sync(sc->rx_mbuf_tag, 5939 sc->rx_mbuf_map[i], 5940 BUS_DMASYNC_POSTREAD); 5941 m_freem(sc->rx_mbuf_ptr[i]); 5942 sc->rx_mbuf_ptr[i] = NULL; 5943 DBRUN(sc->debug_rx_mbuf_alloc--); 5944 } 5945 } 5946 5947 /* Clear each RX chain page. */ 5948 for (i = 0; i < sc->rx_pages; i++) 5949 if (sc->rx_bd_chain[i] != NULL) 5950 bzero((char *)sc->rx_bd_chain[i], 5951 BCE_RX_CHAIN_PAGE_SZ); 5952 5953 sc->free_rx_bd = sc->max_rx_bd; 5954 5955 /* Check if we lost any mbufs in the process. */ 5956 DBRUNIF((sc->debug_rx_mbuf_alloc), 5957 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", 5958 __FUNCTION__, sc->debug_rx_mbuf_alloc)); 5959 5960 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5961 } 5962 5963 5964 /****************************************************************************/ 5965 /* Allocate memory and initialize the page data structures. */ 5966 /* Assumes that bce_init_rx_chain() has not already been called. */ 5967 /* */ 5968 /* Returns: */ 5969 /* 0 for success, positive value for failure. */ 5970 /****************************************************************************/ 5971 static int 5972 bce_init_pg_chain(struct bce_softc *sc) 5973 { 5974 struct rx_bd *pgbd; 5975 int i, rc = 0; 5976 u32 val; 5977 5978 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5979 BCE_VERBOSE_CTX); 5980 5981 /* Initialize the page producer and consumer indices. */ 5982 sc->pg_prod = 0; 5983 sc->pg_cons = 0; 5984 sc->free_pg_bd = USABLE_PG_BD_ALLOC; 5985 sc->max_pg_bd = USABLE_PG_BD_ALLOC; 5986 DBRUN(sc->pg_low_watermark = sc->max_pg_bd); 5987 DBRUN(sc->pg_empty_count = 0); 5988 5989 /* Initialize the page next pointer chain entries. */ 5990 for (i = 0; i < sc->pg_pages; i++) { 5991 int j; 5992 5993 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; 5994 5995 /* Check if we've reached the last page. */ 5996 if (i == (sc->pg_pages - 1)) 5997 j = 0; 5998 else 5999 j = i + 1; 6000 6001 /* Setup the chain page pointers. */ 6002 pgbd->rx_bd_haddr_hi = 6003 htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); 6004 pgbd->rx_bd_haddr_lo = 6005 htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); 6006 } 6007 6008 /* Setup the MQ BIN mapping for host_pg_bidx. */ 6009 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 6010 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); 6011 6012 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); 6013 6014 /* Configure the rx_bd and page chain mbuf cluster size. */ 6015 val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES; 6016 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); 6017 6018 /* Configure the context reserved for jumbo support. */ 6019 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, 6020 BCE_L2CTX_RX_RBDC_JUMBO_KEY); 6021 6022 /* Point the hardware to the first page in the page chain. */ 6023 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); 6024 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); 6025 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); 6026 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); 6027 6028 /* Fill up the page chain. */ 6029 bce_fill_pg_chain(sc); 6030 6031 for (i = 0; i < sc->pg_pages; i++) { 6032 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], 6033 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 6034 } 6035 6036 DBRUNMSG(BCE_EXTREME_RECV, 6037 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC)); 6038 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 6039 BCE_VERBOSE_CTX); 6040 return(rc); 6041 } 6042 6043 6044 /****************************************************************************/ 6045 /* Add mbufs to the page chain until its full or an mbuf allocation error */ 6046 /* occurs. */ 6047 /* */ 6048 /* Returns: */ 6049 /* Nothing */ 6050 /****************************************************************************/ 6051 static void 6052 bce_fill_pg_chain(struct bce_softc *sc) 6053 { 6054 u16 prod, prod_idx; 6055 6056 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 6057 BCE_VERBOSE_CTX); 6058 6059 /* Get the page chain prodcuer index. */ 6060 prod = sc->pg_prod; 6061 6062 /* Keep filling the page chain until it's full. */ 6063 while (sc->free_pg_bd > 0) { 6064 prod_idx = PG_CHAIN_IDX(prod); 6065 if (bce_get_pg_buf(sc, prod, prod_idx)) { 6066 /* Bail out if we can't add an mbuf to the chain. */ 6067 break; 6068 } 6069 prod = NEXT_PG_BD(prod); 6070 } 6071 6072 /* Save the page chain producer index. */ 6073 sc->pg_prod = prod; 6074 6075 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 6076 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", 6077 __FUNCTION__, pg_prod)); 6078 6079 /* 6080 * Write the mailbox and tell the chip about 6081 * the new rx_bd's in the page chain. 6082 */ 6083 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX, 6084 prod); 6085 6086 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 6087 BCE_VERBOSE_CTX); 6088 } 6089 6090 6091 /****************************************************************************/ 6092 /* Free memory and clear the RX data structures. */ 6093 /* */ 6094 /* Returns: */ 6095 /* Nothing. */ 6096 /****************************************************************************/ 6097 static void 6098 bce_free_pg_chain(struct bce_softc *sc) 6099 { 6100 int i; 6101 6102 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 6103 6104 /* Free any mbufs still in the mbuf page chain. */ 6105 for (i = 0; i < MAX_PG_BD_AVAIL; i++) { 6106 if (sc->pg_mbuf_ptr[i] != NULL) { 6107 if (sc->pg_mbuf_map[i] != NULL) 6108 bus_dmamap_sync(sc->pg_mbuf_tag, 6109 sc->pg_mbuf_map[i], 6110 BUS_DMASYNC_POSTREAD); 6111 m_freem(sc->pg_mbuf_ptr[i]); 6112 sc->pg_mbuf_ptr[i] = NULL; 6113 DBRUN(sc->debug_pg_mbuf_alloc--); 6114 } 6115 } 6116 6117 /* Clear each page chain pages. */ 6118 for (i = 0; i < sc->pg_pages; i++) 6119 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 6120 6121 sc->free_pg_bd = sc->max_pg_bd; 6122 6123 /* Check if we lost any mbufs in the process. */ 6124 DBRUNIF((sc->debug_pg_mbuf_alloc), 6125 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", 6126 __FUNCTION__, sc->debug_pg_mbuf_alloc)); 6127 6128 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 6129 } 6130 6131 6132 static u32 6133 bce_get_rphy_link(struct bce_softc *sc) 6134 { 6135 u32 advertise, link; 6136 int fdpx; 6137 6138 advertise = 0; 6139 fdpx = 0; 6140 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) 6141 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK); 6142 else 6143 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK); 6144 if (link & BCE_NETLINK_ANEG_ENB) 6145 advertise |= BCE_NETLINK_ANEG_ENB; 6146 if (link & BCE_NETLINK_SPEED_10HALF) 6147 advertise |= BCE_NETLINK_SPEED_10HALF; 6148 if (link & BCE_NETLINK_SPEED_10FULL) { 6149 advertise |= BCE_NETLINK_SPEED_10FULL; 6150 fdpx++; 6151 } 6152 if (link & BCE_NETLINK_SPEED_100HALF) 6153 advertise |= BCE_NETLINK_SPEED_100HALF; 6154 if (link & BCE_NETLINK_SPEED_100FULL) { 6155 advertise |= BCE_NETLINK_SPEED_100FULL; 6156 fdpx++; 6157 } 6158 if (link & BCE_NETLINK_SPEED_1000HALF) 6159 advertise |= BCE_NETLINK_SPEED_1000HALF; 6160 if (link & BCE_NETLINK_SPEED_1000FULL) { 6161 advertise |= BCE_NETLINK_SPEED_1000FULL; 6162 fdpx++; 6163 } 6164 if (link & BCE_NETLINK_SPEED_2500HALF) 6165 advertise |= BCE_NETLINK_SPEED_2500HALF; 6166 if (link & BCE_NETLINK_SPEED_2500FULL) { 6167 advertise |= BCE_NETLINK_SPEED_2500FULL; 6168 fdpx++; 6169 } 6170 if (fdpx) 6171 advertise |= BCE_NETLINK_FC_PAUSE_SYM | 6172 BCE_NETLINK_FC_PAUSE_ASYM; 6173 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6174 advertise |= BCE_NETLINK_PHY_APP_REMOTE | 6175 BCE_NETLINK_ETH_AT_WIRESPEED; 6176 6177 return (advertise); 6178 } 6179 6180 6181 /****************************************************************************/ 6182 /* Set media options. */ 6183 /* */ 6184 /* Returns: */ 6185 /* 0 for success, positive value for failure. */ 6186 /****************************************************************************/ 6187 static int 6188 bce_ifmedia_upd(struct ifnet *ifp) 6189 { 6190 struct bce_softc *sc = ifp->if_softc; 6191 int error; 6192 6193 DBENTER(BCE_VERBOSE); 6194 6195 BCE_LOCK(sc); 6196 error = bce_ifmedia_upd_locked(ifp); 6197 BCE_UNLOCK(sc); 6198 6199 DBEXIT(BCE_VERBOSE); 6200 return (error); 6201 } 6202 6203 6204 /****************************************************************************/ 6205 /* Set media options. */ 6206 /* */ 6207 /* Returns: */ 6208 /* Nothing. */ 6209 /****************************************************************************/ 6210 static int 6211 bce_ifmedia_upd_locked(struct ifnet *ifp) 6212 { 6213 struct bce_softc *sc = ifp->if_softc; 6214 struct mii_data *mii; 6215 struct mii_softc *miisc; 6216 struct ifmedia *ifm; 6217 u32 link; 6218 int error, fdx; 6219 6220 DBENTER(BCE_VERBOSE_PHY); 6221 6222 error = 0; 6223 BCE_LOCK_ASSERT(sc); 6224 6225 sc->bce_link_up = FALSE; 6226 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 6227 ifm = &sc->bce_ifmedia; 6228 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 6229 return (EINVAL); 6230 link = 0; 6231 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX; 6232 switch(IFM_SUBTYPE(ifm->ifm_media)) { 6233 case IFM_AUTO: 6234 /* 6235 * Check advertised link of remote PHY by reading 6236 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK. 6237 * Always use the same link type of remote PHY. 6238 */ 6239 link = bce_get_rphy_link(sc); 6240 break; 6241 case IFM_2500_SX: 6242 if ((sc->bce_phy_flags & 6243 (BCE_PHY_REMOTE_PORT_FIBER_FLAG | 6244 BCE_PHY_2_5G_CAPABLE_FLAG)) == 0) 6245 return (EINVAL); 6246 /* 6247 * XXX 6248 * Have to enable forced 2.5Gbps configuration. 6249 */ 6250 if (fdx != 0) 6251 link |= BCE_NETLINK_SPEED_2500FULL; 6252 else 6253 link |= BCE_NETLINK_SPEED_2500HALF; 6254 break; 6255 case IFM_1000_SX: 6256 if ((sc->bce_phy_flags & 6257 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6258 return (EINVAL); 6259 /* 6260 * XXX 6261 * Have to disable 2.5Gbps configuration. 6262 */ 6263 if (fdx != 0) 6264 link = BCE_NETLINK_SPEED_1000FULL; 6265 else 6266 link = BCE_NETLINK_SPEED_1000HALF; 6267 break; 6268 case IFM_1000_T: 6269 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6270 return (EINVAL); 6271 if (fdx != 0) 6272 link = BCE_NETLINK_SPEED_1000FULL; 6273 else 6274 link = BCE_NETLINK_SPEED_1000HALF; 6275 break; 6276 case IFM_100_TX: 6277 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6278 return (EINVAL); 6279 if (fdx != 0) 6280 link = BCE_NETLINK_SPEED_100FULL; 6281 else 6282 link = BCE_NETLINK_SPEED_100HALF; 6283 break; 6284 case IFM_10_T: 6285 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6286 return (EINVAL); 6287 if (fdx != 0) 6288 link = BCE_NETLINK_SPEED_10FULL; 6289 else 6290 link = BCE_NETLINK_SPEED_10HALF; 6291 break; 6292 default: 6293 return (EINVAL); 6294 } 6295 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) { 6296 /* 6297 * XXX 6298 * Advertise pause capability for full-duplex media. 6299 */ 6300 if (fdx != 0) 6301 link |= BCE_NETLINK_FC_PAUSE_SYM | 6302 BCE_NETLINK_FC_PAUSE_ASYM; 6303 if ((sc->bce_phy_flags & 6304 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6305 link |= BCE_NETLINK_PHY_APP_REMOTE | 6306 BCE_NETLINK_ETH_AT_WIRESPEED; 6307 } 6308 6309 bce_shmem_wr(sc, BCE_MB_ARGS_0, link); 6310 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK); 6311 } else { 6312 mii = device_get_softc(sc->bce_miibus); 6313 6314 /* Make sure the MII bus has been enumerated. */ 6315 if (mii) { 6316 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 6317 PHY_RESET(miisc); 6318 error = mii_mediachg(mii); 6319 } 6320 } 6321 6322 DBEXIT(BCE_VERBOSE_PHY); 6323 return (error); 6324 } 6325 6326 6327 static void 6328 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr) 6329 { 6330 struct ifnet *ifp; 6331 u32 link; 6332 6333 ifp = sc->bce_ifp; 6334 BCE_LOCK_ASSERT(sc); 6335 6336 ifmr->ifm_status = IFM_AVALID; 6337 ifmr->ifm_active = IFM_ETHER; 6338 link = bce_shmem_rd(sc, BCE_LINK_STATUS); 6339 /* XXX Handle heart beat status? */ 6340 if ((link & BCE_LINK_STATUS_LINK_UP) != 0) 6341 ifmr->ifm_status |= IFM_ACTIVE; 6342 else { 6343 ifmr->ifm_active |= IFM_NONE; 6344 ifp->if_baudrate = 0; 6345 return; 6346 } 6347 switch (link & BCE_LINK_STATUS_SPEED_MASK) { 6348 case BCE_LINK_STATUS_10HALF: 6349 ifmr->ifm_active |= IFM_10_T | IFM_HDX; 6350 ifp->if_baudrate = IF_Mbps(10UL); 6351 break; 6352 case BCE_LINK_STATUS_10FULL: 6353 ifmr->ifm_active |= IFM_10_T | IFM_FDX; 6354 ifp->if_baudrate = IF_Mbps(10UL); 6355 break; 6356 case BCE_LINK_STATUS_100HALF: 6357 ifmr->ifm_active |= IFM_100_TX | IFM_HDX; 6358 ifp->if_baudrate = IF_Mbps(100UL); 6359 break; 6360 case BCE_LINK_STATUS_100FULL: 6361 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 6362 ifp->if_baudrate = IF_Mbps(100UL); 6363 break; 6364 case BCE_LINK_STATUS_1000HALF: 6365 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6366 ifmr->ifm_active |= IFM_1000_T | IFM_HDX; 6367 else 6368 ifmr->ifm_active |= IFM_1000_SX | IFM_HDX; 6369 ifp->if_baudrate = IF_Mbps(1000UL); 6370 break; 6371 case BCE_LINK_STATUS_1000FULL: 6372 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6373 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 6374 else 6375 ifmr->ifm_active |= IFM_1000_SX | IFM_FDX; 6376 ifp->if_baudrate = IF_Mbps(1000UL); 6377 break; 6378 case BCE_LINK_STATUS_2500HALF: 6379 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { 6380 ifmr->ifm_active |= IFM_NONE; 6381 return; 6382 } else 6383 ifmr->ifm_active |= IFM_2500_SX | IFM_HDX; 6384 ifp->if_baudrate = IF_Mbps(2500UL); 6385 break; 6386 case BCE_LINK_STATUS_2500FULL: 6387 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { 6388 ifmr->ifm_active |= IFM_NONE; 6389 return; 6390 } else 6391 ifmr->ifm_active |= IFM_2500_SX | IFM_FDX; 6392 ifp->if_baudrate = IF_Mbps(2500UL); 6393 break; 6394 default: 6395 ifmr->ifm_active |= IFM_NONE; 6396 return; 6397 } 6398 6399 if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0) 6400 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 6401 if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0) 6402 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 6403 } 6404 6405 6406 /****************************************************************************/ 6407 /* Reports current media status. */ 6408 /* */ 6409 /* Returns: */ 6410 /* Nothing. */ 6411 /****************************************************************************/ 6412 static void 6413 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 6414 { 6415 struct bce_softc *sc = ifp->if_softc; 6416 struct mii_data *mii; 6417 6418 DBENTER(BCE_VERBOSE_PHY); 6419 6420 BCE_LOCK(sc); 6421 6422 if ((ifp->if_flags & IFF_UP) == 0) { 6423 BCE_UNLOCK(sc); 6424 return; 6425 } 6426 6427 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 6428 bce_ifmedia_sts_rphy(sc, ifmr); 6429 else { 6430 mii = device_get_softc(sc->bce_miibus); 6431 mii_pollstat(mii); 6432 ifmr->ifm_active = mii->mii_media_active; 6433 ifmr->ifm_status = mii->mii_media_status; 6434 } 6435 6436 BCE_UNLOCK(sc); 6437 6438 DBEXIT(BCE_VERBOSE_PHY); 6439 } 6440 6441 6442 /****************************************************************************/ 6443 /* Handles PHY generated interrupt events. */ 6444 /* */ 6445 /* Returns: */ 6446 /* Nothing. */ 6447 /****************************************************************************/ 6448 static void 6449 bce_phy_intr(struct bce_softc *sc) 6450 { 6451 u32 new_link_state, old_link_state; 6452 6453 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 6454 6455 DBRUN(sc->phy_interrupts++); 6456 6457 new_link_state = sc->status_block->status_attn_bits & 6458 STATUS_ATTN_BITS_LINK_STATE; 6459 old_link_state = sc->status_block->status_attn_bits_ack & 6460 STATUS_ATTN_BITS_LINK_STATE; 6461 6462 /* Handle any changes if the link state has changed. */ 6463 if (new_link_state != old_link_state) { 6464 6465 /* Update the status_attn_bits_ack field. */ 6466 if (new_link_state) { 6467 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 6468 STATUS_ATTN_BITS_LINK_STATE); 6469 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", 6470 __FUNCTION__); 6471 } else { 6472 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 6473 STATUS_ATTN_BITS_LINK_STATE); 6474 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", 6475 __FUNCTION__); 6476 } 6477 6478 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 6479 if (new_link_state) { 6480 if (bootverbose) 6481 if_printf(sc->bce_ifp, "link UP\n"); 6482 if_link_state_change(sc->bce_ifp, 6483 LINK_STATE_UP); 6484 } else { 6485 if (bootverbose) 6486 if_printf(sc->bce_ifp, "link DOWN\n"); 6487 if_link_state_change(sc->bce_ifp, 6488 LINK_STATE_DOWN); 6489 } 6490 } 6491 /* 6492 * Assume link is down and allow 6493 * tick routine to update the state 6494 * based on the actual media state. 6495 */ 6496 sc->bce_link_up = FALSE; 6497 callout_stop(&sc->bce_tick_callout); 6498 bce_tick(sc); 6499 } 6500 6501 /* Acknowledge the link change interrupt. */ 6502 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 6503 6504 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 6505 } 6506 6507 6508 /****************************************************************************/ 6509 /* Reads the receive consumer value from the status block (skipping over */ 6510 /* chain page pointer if necessary). */ 6511 /* */ 6512 /* Returns: */ 6513 /* hw_cons */ 6514 /****************************************************************************/ 6515 static inline u16 6516 bce_get_hw_rx_cons(struct bce_softc *sc) 6517 { 6518 u16 hw_cons; 6519 6520 rmb(); 6521 hw_cons = sc->status_block->status_rx_quick_consumer_index0; 6522 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 6523 hw_cons++; 6524 6525 return hw_cons; 6526 } 6527 6528 /****************************************************************************/ 6529 /* Handles received frame interrupt events. */ 6530 /* */ 6531 /* Returns: */ 6532 /* Nothing. */ 6533 /****************************************************************************/ 6534 static void 6535 bce_rx_intr(struct bce_softc *sc) 6536 { 6537 struct ifnet *ifp = sc->bce_ifp; 6538 struct l2_fhdr *l2fhdr; 6539 struct ether_vlan_header *vh; 6540 unsigned int pkt_len; 6541 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; 6542 u32 status; 6543 unsigned int rem_len; 6544 u16 sw_pg_cons, sw_pg_cons_idx; 6545 6546 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6547 DBRUN(sc->interrupts_rx++); 6548 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " 6549 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6550 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6551 6552 /* Prepare the RX chain pages to be accessed by the host CPU. */ 6553 for (int i = 0; i < sc->rx_pages; i++) 6554 bus_dmamap_sync(sc->rx_bd_chain_tag, 6555 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 6556 6557 /* Prepare the page chain pages to be accessed by the host CPU. */ 6558 if (bce_hdr_split == TRUE) { 6559 for (int i = 0; i < sc->pg_pages; i++) 6560 bus_dmamap_sync(sc->pg_bd_chain_tag, 6561 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 6562 } 6563 6564 /* Get the hardware's view of the RX consumer index. */ 6565 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6566 6567 /* Get working copies of the driver's view of the consumer indices. */ 6568 sw_rx_cons = sc->rx_cons; 6569 sw_pg_cons = sc->pg_cons; 6570 6571 /* Update some debug statistics counters */ 6572 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 6573 sc->rx_low_watermark = sc->free_rx_bd); 6574 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), 6575 sc->rx_empty_count++); 6576 6577 /* Scan through the receive chain as long as there is work to do */ 6578 /* ToDo: Consider setting a limit on the number of packets processed. */ 6579 rmb(); 6580 while (sw_rx_cons != hw_rx_cons) { 6581 struct mbuf *m0; 6582 6583 /* Convert the producer/consumer indices to an actual rx_bd index. */ 6584 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); 6585 6586 /* Unmap the mbuf from DMA space. */ 6587 bus_dmamap_sync(sc->rx_mbuf_tag, 6588 sc->rx_mbuf_map[sw_rx_cons_idx], 6589 BUS_DMASYNC_POSTREAD); 6590 bus_dmamap_unload(sc->rx_mbuf_tag, 6591 sc->rx_mbuf_map[sw_rx_cons_idx]); 6592 6593 /* Remove the mbuf from the RX chain. */ 6594 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; 6595 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; 6596 DBRUN(sc->debug_rx_mbuf_alloc--); 6597 sc->free_rx_bd++; 6598 6599 /* 6600 * Frames received on the NetXteme II are prepended 6601 * with an l2_fhdr structure which provides status 6602 * information about the received frame (including 6603 * VLAN tags and checksum info). The frames are 6604 * also automatically adjusted to word align the IP 6605 * header (i.e. two null bytes are inserted before 6606 * the Ethernet header). As a result the data 6607 * DMA'd by the controller into the mbuf looks 6608 * like this: 6609 * 6610 * +---------+-----+---------------------+-----+ 6611 * | l2_fhdr | pad | packet data | FCS | 6612 * +---------+-----+---------------------+-----+ 6613 * 6614 * The l2_fhdr needs to be checked and skipped and 6615 * the FCS needs to be stripped before sending the 6616 * packet up the stack. 6617 */ 6618 l2fhdr = mtod(m0, struct l2_fhdr *); 6619 6620 /* Get the packet data + FCS length and the status. */ 6621 pkt_len = l2fhdr->l2_fhdr_pkt_len; 6622 status = l2fhdr->l2_fhdr_status; 6623 6624 /* 6625 * Skip over the l2_fhdr and pad, resulting in the 6626 * following data in the mbuf: 6627 * +---------------------+-----+ 6628 * | packet data | FCS | 6629 * +---------------------+-----+ 6630 */ 6631 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); 6632 6633 /* 6634 * When split header mode is used, an ethernet frame 6635 * may be split across the receive chain and the 6636 * page chain. If that occurs an mbuf cluster must be 6637 * reassembled from the individual mbuf pieces. 6638 */ 6639 if (bce_hdr_split == TRUE) { 6640 /* 6641 * Check whether the received frame fits in a single 6642 * mbuf or not (i.e. packet data + FCS <= 6643 * sc->rx_bd_mbuf_data_len bytes). 6644 */ 6645 if (pkt_len > m0->m_len) { 6646 /* 6647 * The received frame is larger than a single mbuf. 6648 * If the frame was a TCP frame then only the TCP 6649 * header is placed in the mbuf, the remaining 6650 * payload (including FCS) is placed in the page 6651 * chain, the SPLIT flag is set, and the header 6652 * length is placed in the IP checksum field. 6653 * If the frame is not a TCP frame then the mbuf 6654 * is filled and the remaining bytes are placed 6655 * in the page chain. 6656 */ 6657 6658 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large " 6659 "packet.\n", __FUNCTION__); 6660 DBRUN(sc->split_header_frames_rcvd++); 6661 6662 /* 6663 * When the page chain is enabled and the TCP 6664 * header has been split from the TCP payload, 6665 * the ip_xsum structure will reflect the length 6666 * of the TCP header, not the IP checksum. Set 6667 * the packet length of the mbuf accordingly. 6668 */ 6669 if (status & L2_FHDR_STATUS_SPLIT) { 6670 m0->m_len = l2fhdr->l2_fhdr_ip_xsum; 6671 DBRUN(sc->split_header_tcp_frames_rcvd++); 6672 } 6673 6674 rem_len = pkt_len - m0->m_len; 6675 6676 /* Pull mbufs off the page chain for any remaining data. */ 6677 while (rem_len > 0) { 6678 struct mbuf *m_pg; 6679 6680 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); 6681 6682 /* Remove the mbuf from the page chain. */ 6683 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; 6684 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; 6685 DBRUN(sc->debug_pg_mbuf_alloc--); 6686 sc->free_pg_bd++; 6687 6688 /* Unmap the page chain mbuf from DMA space. */ 6689 bus_dmamap_sync(sc->pg_mbuf_tag, 6690 sc->pg_mbuf_map[sw_pg_cons_idx], 6691 BUS_DMASYNC_POSTREAD); 6692 bus_dmamap_unload(sc->pg_mbuf_tag, 6693 sc->pg_mbuf_map[sw_pg_cons_idx]); 6694 6695 /* Adjust the mbuf length. */ 6696 if (rem_len < m_pg->m_len) { 6697 /* The mbuf chain is complete. */ 6698 m_pg->m_len = rem_len; 6699 rem_len = 0; 6700 } else { 6701 /* More packet data is waiting. */ 6702 rem_len -= m_pg->m_len; 6703 } 6704 6705 /* Concatenate the mbuf cluster to the mbuf. */ 6706 m_cat(m0, m_pg); 6707 6708 sw_pg_cons = NEXT_PG_BD(sw_pg_cons); 6709 } 6710 6711 /* Set the total packet length. */ 6712 m0->m_pkthdr.len = pkt_len; 6713 6714 } else { 6715 /* 6716 * The received packet is small and fits in a 6717 * single mbuf (i.e. the l2_fhdr + pad + packet + 6718 * FCS <= MHLEN). In other words, the packet is 6719 * 154 bytes or less in size. 6720 */ 6721 6722 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small " 6723 "packet.\n", __FUNCTION__); 6724 6725 /* Set the total packet length. */ 6726 m0->m_pkthdr.len = m0->m_len = pkt_len; 6727 } 6728 } else 6729 /* Set the total packet length. */ 6730 m0->m_pkthdr.len = m0->m_len = pkt_len; 6731 6732 /* Remove the trailing Ethernet FCS. */ 6733 m_adj(m0, -ETHER_CRC_LEN); 6734 6735 /* Check that the resulting mbuf chain is valid. */ 6736 DBRUN(m_sanity(m0, FALSE)); 6737 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | 6738 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 6739 BCE_PRINTF("Invalid Ethernet frame size!\n"); 6740 m_print(m0, 128)); 6741 6742 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control), 6743 sc->l2fhdr_error_sim_count++; 6744 status = status | L2_FHDR_ERRORS_PHY_DECODE); 6745 6746 /* Check the received frame for errors. */ 6747 if (status & (L2_FHDR_ERRORS_BAD_CRC | 6748 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 6749 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 6750 6751 /* Log the error and release the mbuf. */ 6752 sc->l2fhdr_error_count++; 6753 m_freem(m0); 6754 m0 = NULL; 6755 goto bce_rx_intr_next_rx; 6756 } 6757 6758 /* Send the packet to the appropriate interface. */ 6759 m0->m_pkthdr.rcvif = ifp; 6760 6761 /* Assume no hardware checksum. */ 6762 m0->m_pkthdr.csum_flags = 0; 6763 6764 /* Validate the checksum if offload enabled. */ 6765 if (ifp->if_capenable & IFCAP_RXCSUM) { 6766 /* Check for an IP datagram. */ 6767 if (!(status & L2_FHDR_STATUS_SPLIT) && 6768 (status & L2_FHDR_STATUS_IP_DATAGRAM)) { 6769 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 6770 DBRUN(sc->csum_offload_ip++); 6771 /* Check if the IP checksum is valid. */ 6772 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 6773 m0->m_pkthdr.csum_flags |= 6774 CSUM_IP_VALID; 6775 } 6776 6777 /* Check for a valid TCP/UDP frame. */ 6778 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 6779 L2_FHDR_STATUS_UDP_DATAGRAM)) { 6780 6781 /* Check for a good TCP/UDP checksum. */ 6782 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 6783 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 6784 DBRUN(sc->csum_offload_tcp_udp++); 6785 m0->m_pkthdr.csum_data = 6786 l2fhdr->l2_fhdr_tcp_udp_xsum; 6787 m0->m_pkthdr.csum_flags |= 6788 (CSUM_DATA_VALID 6789 | CSUM_PSEUDO_HDR); 6790 } 6791 } 6792 } 6793 6794 /* Attach the VLAN tag. */ 6795 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && 6796 !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) { 6797 DBRUN(sc->vlan_tagged_frames_rcvd++); 6798 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { 6799 DBRUN(sc->vlan_tagged_frames_stripped++); 6800 #if __FreeBSD_version < 700000 6801 VLAN_INPUT_TAG(ifp, m0, 6802 l2fhdr->l2_fhdr_vlan_tag, continue); 6803 #else 6804 m0->m_pkthdr.ether_vtag = 6805 l2fhdr->l2_fhdr_vlan_tag; 6806 m0->m_flags |= M_VLANTAG; 6807 #endif 6808 } else { 6809 /* 6810 * bce(4) controllers can't disable VLAN 6811 * tag stripping if management firmware 6812 * (ASF/IPMI/UMP) is running. So we always 6813 * strip VLAN tag and manually reconstruct 6814 * the VLAN frame by appending stripped 6815 * VLAN tag in driver if VLAN tag stripping 6816 * was disabled. 6817 * 6818 * TODO: LLC SNAP handling. 6819 */ 6820 bcopy(mtod(m0, uint8_t *), 6821 mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN, 6822 ETHER_ADDR_LEN * 2); 6823 m0->m_data -= ETHER_VLAN_ENCAP_LEN; 6824 vh = mtod(m0, struct ether_vlan_header *); 6825 vh->evl_encap_proto = htons(ETHERTYPE_VLAN); 6826 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag); 6827 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN; 6828 m0->m_len += ETHER_VLAN_ENCAP_LEN; 6829 } 6830 } 6831 6832 /* Increment received packet statistics. */ 6833 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 6834 6835 bce_rx_intr_next_rx: 6836 sw_rx_cons = NEXT_RX_BD(sw_rx_cons); 6837 6838 /* If we have a packet, pass it up the stack */ 6839 if (m0) { 6840 /* Make sure we don't lose our place when we release the lock. */ 6841 sc->rx_cons = sw_rx_cons; 6842 sc->pg_cons = sw_pg_cons; 6843 6844 BCE_UNLOCK(sc); 6845 (*ifp->if_input)(ifp, m0); 6846 BCE_LOCK(sc); 6847 6848 /* Recover our place. */ 6849 sw_rx_cons = sc->rx_cons; 6850 sw_pg_cons = sc->pg_cons; 6851 } 6852 6853 /* Refresh hw_cons to see if there's new work */ 6854 if (sw_rx_cons == hw_rx_cons) 6855 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6856 } 6857 6858 /* No new packets. Refill the page chain. */ 6859 if (bce_hdr_split == TRUE) { 6860 sc->pg_cons = sw_pg_cons; 6861 bce_fill_pg_chain(sc); 6862 } 6863 6864 /* No new packets. Refill the RX chain. */ 6865 sc->rx_cons = sw_rx_cons; 6866 bce_fill_rx_chain(sc); 6867 6868 /* Prepare the page chain pages to be accessed by the NIC. */ 6869 for (int i = 0; i < sc->rx_pages; i++) 6870 bus_dmamap_sync(sc->rx_bd_chain_tag, 6871 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6872 6873 if (bce_hdr_split == TRUE) { 6874 for (int i = 0; i < sc->pg_pages; i++) 6875 bus_dmamap_sync(sc->pg_bd_chain_tag, 6876 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6877 } 6878 6879 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " 6880 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6881 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6882 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6883 } 6884 6885 6886 /****************************************************************************/ 6887 /* Reads the transmit consumer value from the status block (skipping over */ 6888 /* chain page pointer if necessary). */ 6889 /* */ 6890 /* Returns: */ 6891 /* hw_cons */ 6892 /****************************************************************************/ 6893 static inline u16 6894 bce_get_hw_tx_cons(struct bce_softc *sc) 6895 { 6896 u16 hw_cons; 6897 6898 mb(); 6899 hw_cons = sc->status_block->status_tx_quick_consumer_index0; 6900 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6901 hw_cons++; 6902 6903 return hw_cons; 6904 } 6905 6906 6907 /****************************************************************************/ 6908 /* Handles transmit completion interrupt events. */ 6909 /* */ 6910 /* Returns: */ 6911 /* Nothing. */ 6912 /****************************************************************************/ 6913 static void 6914 bce_tx_intr(struct bce_softc *sc) 6915 { 6916 struct ifnet *ifp = sc->bce_ifp; 6917 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 6918 6919 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6920 DBRUN(sc->interrupts_tx++); 6921 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " 6922 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6923 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6924 6925 BCE_LOCK_ASSERT(sc); 6926 6927 /* Get the hardware's view of the TX consumer index. */ 6928 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6929 sw_tx_cons = sc->tx_cons; 6930 6931 /* Prevent speculative reads of the status block. */ 6932 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6933 BUS_SPACE_BARRIER_READ); 6934 6935 /* Cycle through any completed TX chain page entries. */ 6936 while (sw_tx_cons != hw_tx_cons) { 6937 #ifdef BCE_DEBUG 6938 struct tx_bd *txbd = NULL; 6939 #endif 6940 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 6941 6942 DBPRINT(sc, BCE_INFO_SEND, 6943 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 6944 "sw_tx_chain_cons = 0x%04X\n", 6945 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 6946 6947 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC), 6948 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 6949 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 6950 (int) MAX_TX_BD_ALLOC); 6951 bce_breakpoint(sc)); 6952 6953 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 6954 [TX_IDX(sw_tx_chain_cons)]); 6955 6956 DBRUNIF((txbd == NULL), 6957 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 6958 __FILE__, __LINE__, sw_tx_chain_cons); 6959 bce_breakpoint(sc)); 6960 6961 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 6962 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 6963 6964 /* 6965 * Free the associated mbuf. Remember 6966 * that only the last tx_bd of a packet 6967 * has an mbuf pointer and DMA map. 6968 */ 6969 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 6970 6971 /* Validate that this is the last tx_bd. */ 6972 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 6973 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 6974 "txmbuf == NULL!\n", __FILE__, __LINE__); 6975 bce_breakpoint(sc)); 6976 6977 DBRUNMSG(BCE_INFO_SEND, 6978 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 6979 "from tx_bd[0x%04X]\n", __FUNCTION__, 6980 sw_tx_chain_cons)); 6981 6982 /* Unmap the mbuf. */ 6983 bus_dmamap_unload(sc->tx_mbuf_tag, 6984 sc->tx_mbuf_map[sw_tx_chain_cons]); 6985 6986 /* Free the mbuf. */ 6987 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 6988 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 6989 DBRUN(sc->debug_tx_mbuf_alloc--); 6990 6991 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 6992 } 6993 6994 sc->used_tx_bd--; 6995 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 6996 6997 /* Refresh hw_cons to see if there's new work. */ 6998 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6999 7000 /* Prevent speculative reads of the status block. */ 7001 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 7002 BUS_SPACE_BARRIER_READ); 7003 } 7004 7005 /* Clear the TX timeout timer. */ 7006 sc->watchdog_timer = 0; 7007 7008 /* Clear the tx hardware queue full flag. */ 7009 if (sc->used_tx_bd < sc->max_tx_bd) { 7010 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), 7011 DBPRINT(sc, BCE_INFO_SEND, 7012 "%s(): Open TX chain! %d/%d (used/total)\n", 7013 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 7014 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 7015 } 7016 7017 sc->tx_cons = sw_tx_cons; 7018 7019 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " 7020 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 7021 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 7022 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 7023 } 7024 7025 7026 /****************************************************************************/ 7027 /* Disables interrupt generation. */ 7028 /* */ 7029 /* Returns: */ 7030 /* Nothing. */ 7031 /****************************************************************************/ 7032 static void 7033 bce_disable_intr(struct bce_softc *sc) 7034 { 7035 DBENTER(BCE_VERBOSE_INTR); 7036 7037 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7038 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 7039 7040 DBEXIT(BCE_VERBOSE_INTR); 7041 } 7042 7043 7044 /****************************************************************************/ 7045 /* Enables interrupt generation. */ 7046 /* */ 7047 /* Returns: */ 7048 /* Nothing. */ 7049 /****************************************************************************/ 7050 static void 7051 bce_enable_intr(struct bce_softc *sc, int coal_now) 7052 { 7053 DBENTER(BCE_VERBOSE_INTR); 7054 7055 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7056 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 7057 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 7058 7059 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7060 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 7061 7062 /* Force an immediate interrupt (whether there is new data or not). */ 7063 if (coal_now) 7064 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); 7065 7066 DBEXIT(BCE_VERBOSE_INTR); 7067 } 7068 7069 7070 /****************************************************************************/ 7071 /* Handles controller initialization. */ 7072 /* */ 7073 /* Returns: */ 7074 /* Nothing. */ 7075 /****************************************************************************/ 7076 static void 7077 bce_init_locked(struct bce_softc *sc) 7078 { 7079 struct ifnet *ifp; 7080 u32 ether_mtu = 0; 7081 7082 DBENTER(BCE_VERBOSE_RESET); 7083 7084 BCE_LOCK_ASSERT(sc); 7085 7086 ifp = sc->bce_ifp; 7087 7088 /* Check if the driver is still running and bail out if it is. */ 7089 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 7090 goto bce_init_locked_exit; 7091 7092 bce_stop(sc); 7093 7094 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 7095 BCE_PRINTF("%s(%d): Controller reset failed!\n", 7096 __FILE__, __LINE__); 7097 goto bce_init_locked_exit; 7098 } 7099 7100 if (bce_chipinit(sc)) { 7101 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 7102 __FILE__, __LINE__); 7103 goto bce_init_locked_exit; 7104 } 7105 7106 if (bce_blockinit(sc)) { 7107 BCE_PRINTF("%s(%d): Block initialization failed!\n", 7108 __FILE__, __LINE__); 7109 goto bce_init_locked_exit; 7110 } 7111 7112 /* Load our MAC address. */ 7113 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 7114 bce_set_mac_addr(sc); 7115 7116 if (bce_hdr_split == FALSE) 7117 bce_get_rx_buffer_sizes(sc, ifp->if_mtu); 7118 /* 7119 * Calculate and program the hardware Ethernet MTU 7120 * size. Be generous on the receive if we have room 7121 * and allowed by the user. 7122 */ 7123 if (bce_strict_rx_mtu == TRUE) 7124 ether_mtu = ifp->if_mtu; 7125 else { 7126 if (bce_hdr_split == TRUE) { 7127 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES) 7128 ether_mtu = sc->rx_bd_mbuf_data_len + 7129 MCLBYTES; 7130 else 7131 ether_mtu = ifp->if_mtu; 7132 } else { 7133 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len) 7134 ether_mtu = sc->rx_bd_mbuf_data_len; 7135 else 7136 ether_mtu = ifp->if_mtu; 7137 } 7138 } 7139 7140 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 7141 7142 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", 7143 __FUNCTION__, ether_mtu); 7144 7145 /* Program the mtu, enabling jumbo frame support if necessary. */ 7146 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) 7147 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, 7148 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 7149 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 7150 else 7151 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 7152 7153 /* Program appropriate promiscuous/multicast filtering. */ 7154 bce_set_rx_mode(sc); 7155 7156 if (bce_hdr_split == TRUE) { 7157 /* Init page buffer descriptor chain. */ 7158 bce_init_pg_chain(sc); 7159 } 7160 7161 /* Init RX buffer descriptor chain. */ 7162 bce_init_rx_chain(sc); 7163 7164 /* Init TX buffer descriptor chain. */ 7165 bce_init_tx_chain(sc); 7166 7167 /* Enable host interrupts. */ 7168 bce_enable_intr(sc, 1); 7169 7170 bce_ifmedia_upd_locked(ifp); 7171 7172 /* Let the OS know the driver is up and running. */ 7173 ifp->if_drv_flags |= IFF_DRV_RUNNING; 7174 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 7175 7176 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 7177 7178 bce_init_locked_exit: 7179 DBEXIT(BCE_VERBOSE_RESET); 7180 } 7181 7182 7183 /****************************************************************************/ 7184 /* Initialize the controller just enough so that any management firmware */ 7185 /* running on the device will continue to operate correctly. */ 7186 /* */ 7187 /* Returns: */ 7188 /* Nothing. */ 7189 /****************************************************************************/ 7190 static void 7191 bce_mgmt_init_locked(struct bce_softc *sc) 7192 { 7193 struct ifnet *ifp; 7194 7195 DBENTER(BCE_VERBOSE_RESET); 7196 7197 BCE_LOCK_ASSERT(sc); 7198 7199 /* Bail out if management firmware is not running. */ 7200 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 7201 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 7202 "No management firmware running...\n"); 7203 goto bce_mgmt_init_locked_exit; 7204 } 7205 7206 ifp = sc->bce_ifp; 7207 7208 /* Enable all critical blocks in the MAC. */ 7209 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 7210 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 7211 DELAY(20); 7212 7213 bce_ifmedia_upd_locked(ifp); 7214 7215 bce_mgmt_init_locked_exit: 7216 DBEXIT(BCE_VERBOSE_RESET); 7217 } 7218 7219 7220 /****************************************************************************/ 7221 /* Handles controller initialization when called from an unlocked routine. */ 7222 /* */ 7223 /* Returns: */ 7224 /* Nothing. */ 7225 /****************************************************************************/ 7226 static void 7227 bce_init(void *xsc) 7228 { 7229 struct bce_softc *sc = xsc; 7230 7231 DBENTER(BCE_VERBOSE_RESET); 7232 7233 BCE_LOCK(sc); 7234 bce_init_locked(sc); 7235 BCE_UNLOCK(sc); 7236 7237 DBEXIT(BCE_VERBOSE_RESET); 7238 } 7239 7240 7241 /****************************************************************************/ 7242 /* Modifies an mbuf for TSO on the hardware. */ 7243 /* */ 7244 /* Returns: */ 7245 /* Pointer to a modified mbuf. */ 7246 /****************************************************************************/ 7247 static struct mbuf * 7248 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags) 7249 { 7250 struct mbuf *m; 7251 struct ether_header *eh; 7252 struct ip *ip; 7253 struct tcphdr *th; 7254 u16 etype; 7255 int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; 7256 7257 DBRUN(sc->tso_frames_requested++); 7258 7259 /* Controller may modify mbuf chains. */ 7260 if (M_WRITABLE(*m_head) == 0) { 7261 m = m_dup(*m_head, M_NOWAIT); 7262 m_freem(*m_head); 7263 if (m == NULL) { 7264 sc->mbuf_alloc_failed_count++; 7265 *m_head = NULL; 7266 return (NULL); 7267 } 7268 *m_head = m; 7269 } 7270 7271 /* 7272 * For TSO the controller needs two pieces of info, 7273 * the MSS and the IP+TCP options length. 7274 */ 7275 m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip)); 7276 if (m == NULL) { 7277 *m_head = NULL; 7278 return (NULL); 7279 } 7280 eh = mtod(m, struct ether_header *); 7281 etype = ntohs(eh->ether_type); 7282 7283 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 7284 switch (etype) { 7285 case ETHERTYPE_IP: 7286 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7287 /* TSO only supported for TCP protocol. */ 7288 if (ip->ip_p != IPPROTO_TCP) { 7289 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 7290 __FILE__, __LINE__); 7291 m_freem(*m_head); 7292 *m_head = NULL; 7293 return (NULL); 7294 } 7295 7296 /* Get IP header length in bytes (min 20) */ 7297 ip_hlen = ip->ip_hl << 2; 7298 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen + 7299 sizeof(struct tcphdr)); 7300 if (m == NULL) { 7301 *m_head = NULL; 7302 return (NULL); 7303 } 7304 7305 /* Get the TCP header length in bytes (min 20) */ 7306 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7307 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 7308 tcp_hlen = (th->th_off << 2); 7309 7310 /* Make sure all IP/TCP options live in the same buffer. */ 7311 m = m_pullup(*m_head, sizeof(struct ether_header)+ ip_hlen + 7312 tcp_hlen); 7313 if (m == NULL) { 7314 *m_head = NULL; 7315 return (NULL); 7316 } 7317 7318 /* Clear IP header length and checksum, will be calc'd by h/w. */ 7319 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7320 ip_len = ip->ip_len; 7321 ip->ip_len = 0; 7322 ip->ip_sum = 0; 7323 break; 7324 case ETHERTYPE_IPV6: 7325 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 7326 __FILE__, __LINE__); 7327 m_freem(*m_head); 7328 *m_head = NULL; 7329 return (NULL); 7330 /* NOT REACHED */ 7331 default: 7332 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 7333 __FILE__, __LINE__); 7334 m_freem(*m_head); 7335 *m_head = NULL; 7336 return (NULL); 7337 } 7338 7339 hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen; 7340 7341 DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, " 7342 "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 7343 __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen, 7344 tcp_hlen, ip_len); 7345 7346 /* Set the LSO flag in the TX BD */ 7347 *flags |= TX_BD_FLAGS_SW_LSO; 7348 7349 /* Set the length of IP + TCP options (in 32 bit words) */ 7350 *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) - 7351 sizeof(struct tcphdr)) >> 2) << 8); 7352 7353 DBRUN(sc->tso_frames_completed++); 7354 return (*m_head); 7355 } 7356 7357 7358 /****************************************************************************/ 7359 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 7360 /* memory visible to the controller. */ 7361 /* */ 7362 /* Returns: */ 7363 /* 0 for success, positive value for failure. */ 7364 /* Modified: */ 7365 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 7366 /****************************************************************************/ 7367 static int 7368 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 7369 { 7370 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 7371 bus_dmamap_t map; 7372 struct tx_bd *txbd = NULL; 7373 struct mbuf *m0; 7374 u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0; 7375 u32 prod_bseq; 7376 7377 #ifdef BCE_DEBUG 7378 u16 debug_prod; 7379 #endif 7380 7381 int i, error, nsegs, rc = 0; 7382 7383 DBENTER(BCE_VERBOSE_SEND); 7384 7385 /* Make sure we have room in the TX chain. */ 7386 if (sc->used_tx_bd >= sc->max_tx_bd) 7387 goto bce_tx_encap_exit; 7388 7389 /* Transfer any checksum offload flags to the bd. */ 7390 m0 = *m_head; 7391 if (m0->m_pkthdr.csum_flags) { 7392 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 7393 m0 = bce_tso_setup(sc, m_head, &flags); 7394 if (m0 == NULL) { 7395 DBRUN(sc->tso_frames_failed++); 7396 goto bce_tx_encap_exit; 7397 } 7398 mss = htole16(m0->m_pkthdr.tso_segsz); 7399 } else { 7400 if (m0->m_pkthdr.csum_flags & CSUM_IP) 7401 flags |= TX_BD_FLAGS_IP_CKSUM; 7402 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 7403 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 7404 } 7405 } 7406 7407 /* Transfer any VLAN tags to the bd. */ 7408 if (m0->m_flags & M_VLANTAG) { 7409 flags |= TX_BD_FLAGS_VLAN_TAG; 7410 vlan_tag = m0->m_pkthdr.ether_vtag; 7411 } 7412 7413 /* Map the mbuf into DMAable memory. */ 7414 prod = sc->tx_prod; 7415 chain_prod = TX_CHAIN_IDX(prod); 7416 map = sc->tx_mbuf_map[chain_prod]; 7417 7418 /* Map the mbuf into our DMA address space. */ 7419 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 7420 segs, &nsegs, BUS_DMA_NOWAIT); 7421 7422 /* Check if the DMA mapping was successful */ 7423 if (error == EFBIG) { 7424 sc->mbuf_frag_count++; 7425 7426 /* Try to defrag the mbuf. */ 7427 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS); 7428 if (m0 == NULL) { 7429 /* Defrag was unsuccessful */ 7430 m_freem(*m_head); 7431 *m_head = NULL; 7432 sc->mbuf_alloc_failed_count++; 7433 rc = ENOBUFS; 7434 goto bce_tx_encap_exit; 7435 } 7436 7437 /* Defrag was successful, try mapping again */ 7438 *m_head = m0; 7439 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, 7440 map, m0, segs, &nsegs, BUS_DMA_NOWAIT); 7441 7442 /* Still getting an error after a defrag. */ 7443 if (error == ENOMEM) { 7444 /* Insufficient DMA buffers available. */ 7445 sc->dma_map_addr_tx_failed_count++; 7446 rc = error; 7447 goto bce_tx_encap_exit; 7448 } else if (error != 0) { 7449 /* Release it and return an error. */ 7450 BCE_PRINTF("%s(%d): Unknown error mapping mbuf into " 7451 "TX chain!\n", __FILE__, __LINE__); 7452 m_freem(m0); 7453 *m_head = NULL; 7454 sc->dma_map_addr_tx_failed_count++; 7455 rc = ENOBUFS; 7456 goto bce_tx_encap_exit; 7457 } 7458 } else if (error == ENOMEM) { 7459 /* Insufficient DMA buffers available. */ 7460 sc->dma_map_addr_tx_failed_count++; 7461 rc = error; 7462 goto bce_tx_encap_exit; 7463 } else if (error != 0) { 7464 m_freem(m0); 7465 *m_head = NULL; 7466 sc->dma_map_addr_tx_failed_count++; 7467 rc = error; 7468 goto bce_tx_encap_exit; 7469 } 7470 7471 /* Make sure there's room in the chain */ 7472 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 7473 bus_dmamap_unload(sc->tx_mbuf_tag, map); 7474 rc = ENOBUFS; 7475 goto bce_tx_encap_exit; 7476 } 7477 7478 /* prod points to an empty tx_bd at this point. */ 7479 prod_bseq = sc->tx_prod_bseq; 7480 7481 #ifdef BCE_DEBUG 7482 debug_prod = chain_prod; 7483 #endif 7484 7485 DBPRINT(sc, BCE_INFO_SEND, 7486 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " 7487 "prod_bseq = 0x%08X\n", 7488 __FUNCTION__, prod, chain_prod, prod_bseq); 7489 7490 /* 7491 * Cycle through each mbuf segment that makes up 7492 * the outgoing frame, gathering the mapping info 7493 * for that segment and creating a tx_bd for 7494 * the mbuf. 7495 */ 7496 for (i = 0; i < nsegs ; i++) { 7497 7498 chain_prod = TX_CHAIN_IDX(prod); 7499 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)] 7500 [TX_IDX(chain_prod)]; 7501 7502 txbd->tx_bd_haddr_lo = 7503 htole32(BCE_ADDR_LO(segs[i].ds_addr)); 7504 txbd->tx_bd_haddr_hi = 7505 htole32(BCE_ADDR_HI(segs[i].ds_addr)); 7506 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | 7507 htole16(segs[i].ds_len); 7508 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 7509 txbd->tx_bd_flags = htole16(flags); 7510 prod_bseq += segs[i].ds_len; 7511 if (i == 0) 7512 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 7513 prod = NEXT_TX_BD(prod); 7514 } 7515 7516 /* Set the END flag on the last TX buffer descriptor. */ 7517 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 7518 7519 DBRUNMSG(BCE_EXTREME_SEND, 7520 bce_dump_tx_chain(sc, debug_prod, nsegs)); 7521 7522 /* 7523 * Ensure that the mbuf pointer for this transmission 7524 * is placed at the array index of the last 7525 * descriptor in this chain. This is done 7526 * because a single map is used for all 7527 * segments of the mbuf and we don't want to 7528 * unload the map before all of the segments 7529 * have been freed. 7530 */ 7531 sc->tx_mbuf_ptr[chain_prod] = m0; 7532 sc->used_tx_bd += nsegs; 7533 7534 /* Update some debug statistic counters */ 7535 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 7536 sc->tx_hi_watermark = sc->used_tx_bd); 7537 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 7538 DBRUNIF(sc->debug_tx_mbuf_alloc++); 7539 7540 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); 7541 7542 /* prod points to the next free tx_bd at this point. */ 7543 sc->tx_prod = prod; 7544 sc->tx_prod_bseq = prod_bseq; 7545 7546 /* Tell the chip about the waiting TX frames. */ 7547 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + 7548 BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 7549 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + 7550 BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 7551 7552 bce_tx_encap_exit: 7553 DBEXIT(BCE_VERBOSE_SEND); 7554 return(rc); 7555 } 7556 7557 7558 /****************************************************************************/ 7559 /* Main transmit routine when called from another routine with a lock. */ 7560 /* */ 7561 /* Returns: */ 7562 /* Nothing. */ 7563 /****************************************************************************/ 7564 static void 7565 bce_start_locked(struct ifnet *ifp) 7566 { 7567 struct bce_softc *sc = ifp->if_softc; 7568 struct mbuf *m_head = NULL; 7569 int count = 0; 7570 u16 tx_prod, tx_chain_prod; 7571 7572 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7573 7574 BCE_LOCK_ASSERT(sc); 7575 7576 /* prod points to the next free tx_bd. */ 7577 tx_prod = sc->tx_prod; 7578 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 7579 7580 DBPRINT(sc, BCE_INFO_SEND, 7581 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 7582 "tx_prod_bseq = 0x%08X\n", 7583 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 7584 7585 /* If there's no link or the transmit queue is empty then just exit. */ 7586 if (sc->bce_link_up == FALSE) { 7587 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", 7588 __FUNCTION__); 7589 goto bce_start_locked_exit; 7590 } 7591 7592 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 7593 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", 7594 __FUNCTION__); 7595 goto bce_start_locked_exit; 7596 } 7597 7598 /* 7599 * Keep adding entries while there is space in the ring. 7600 */ 7601 while (sc->used_tx_bd < sc->max_tx_bd) { 7602 7603 /* Check for any frames to send. */ 7604 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 7605 7606 /* Stop when the transmit queue is empty. */ 7607 if (m_head == NULL) 7608 break; 7609 7610 /* 7611 * Pack the data into the transmit ring. If we 7612 * don't have room, place the mbuf back at the 7613 * head of the queue and set the OACTIVE flag 7614 * to wait for the NIC to drain the chain. 7615 */ 7616 if (bce_tx_encap(sc, &m_head)) { 7617 if (m_head != NULL) 7618 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 7619 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 7620 DBPRINT(sc, BCE_INFO_SEND, 7621 "TX chain is closed for business! Total " 7622 "tx_bd used = %d\n", sc->used_tx_bd); 7623 break; 7624 } 7625 7626 count++; 7627 7628 /* Send a copy of the frame to any BPF listeners. */ 7629 ETHER_BPF_MTAP(ifp, m_head); 7630 } 7631 7632 /* Exit if no packets were dequeued. */ 7633 if (count == 0) { 7634 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were " 7635 "dequeued\n", __FUNCTION__); 7636 goto bce_start_locked_exit; 7637 } 7638 7639 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into " 7640 "send queue.\n", __FUNCTION__, count); 7641 7642 /* Set the tx timeout. */ 7643 sc->watchdog_timer = BCE_TX_TIMEOUT; 7644 7645 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); 7646 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); 7647 7648 bce_start_locked_exit: 7649 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7650 } 7651 7652 7653 /****************************************************************************/ 7654 /* Main transmit routine when called from another routine without a lock. */ 7655 /* */ 7656 /* Returns: */ 7657 /* Nothing. */ 7658 /****************************************************************************/ 7659 static void 7660 bce_start(struct ifnet *ifp) 7661 { 7662 struct bce_softc *sc = ifp->if_softc; 7663 7664 DBENTER(BCE_VERBOSE_SEND); 7665 7666 BCE_LOCK(sc); 7667 bce_start_locked(ifp); 7668 BCE_UNLOCK(sc); 7669 7670 DBEXIT(BCE_VERBOSE_SEND); 7671 } 7672 7673 7674 /****************************************************************************/ 7675 /* Handles any IOCTL calls from the operating system. */ 7676 /* */ 7677 /* Returns: */ 7678 /* 0 for success, positive value for failure. */ 7679 /****************************************************************************/ 7680 static int 7681 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 7682 { 7683 struct bce_softc *sc = ifp->if_softc; 7684 struct ifreq *ifr = (struct ifreq *) data; 7685 struct mii_data *mii; 7686 int mask, error = 0; 7687 7688 DBENTER(BCE_VERBOSE_MISC); 7689 7690 switch(command) { 7691 7692 /* Set the interface MTU. */ 7693 case SIOCSIFMTU: 7694 /* Check that the MTU setting is supported. */ 7695 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 7696 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 7697 error = EINVAL; 7698 break; 7699 } 7700 7701 DBPRINT(sc, BCE_INFO_MISC, 7702 "SIOCSIFMTU: Changing MTU from %d to %d\n", 7703 (int) ifp->if_mtu, (int) ifr->ifr_mtu); 7704 7705 BCE_LOCK(sc); 7706 ifp->if_mtu = ifr->ifr_mtu; 7707 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7708 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7709 bce_init_locked(sc); 7710 } 7711 BCE_UNLOCK(sc); 7712 break; 7713 7714 /* Set interface flags. */ 7715 case SIOCSIFFLAGS: 7716 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 7717 7718 BCE_LOCK(sc); 7719 7720 /* Check if the interface is up. */ 7721 if (ifp->if_flags & IFF_UP) { 7722 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7723 /* Change promiscuous/multicast flags as necessary. */ 7724 bce_set_rx_mode(sc); 7725 } else { 7726 /* Start the HW */ 7727 bce_init_locked(sc); 7728 } 7729 } else { 7730 /* The interface is down, check if driver is running. */ 7731 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7732 bce_stop(sc); 7733 7734 /* If MFW is running, restart the controller a bit. */ 7735 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 7736 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 7737 bce_chipinit(sc); 7738 bce_mgmt_init_locked(sc); 7739 } 7740 } 7741 } 7742 7743 BCE_UNLOCK(sc); 7744 break; 7745 7746 /* Add/Delete multicast address */ 7747 case SIOCADDMULTI: 7748 case SIOCDELMULTI: 7749 DBPRINT(sc, BCE_VERBOSE_MISC, 7750 "Received SIOCADDMULTI/SIOCDELMULTI\n"); 7751 7752 BCE_LOCK(sc); 7753 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 7754 bce_set_rx_mode(sc); 7755 BCE_UNLOCK(sc); 7756 7757 break; 7758 7759 /* Set/Get Interface media */ 7760 case SIOCSIFMEDIA: 7761 case SIOCGIFMEDIA: 7762 DBPRINT(sc, BCE_VERBOSE_MISC, 7763 "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 7764 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 7765 error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia, 7766 command); 7767 else { 7768 mii = device_get_softc(sc->bce_miibus); 7769 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 7770 command); 7771 } 7772 break; 7773 7774 /* Set interface capability */ 7775 case SIOCSIFCAP: 7776 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 7777 DBPRINT(sc, BCE_INFO_MISC, 7778 "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 7779 7780 /* Toggle the TX checksum capabilities enable flag. */ 7781 if (mask & IFCAP_TXCSUM && 7782 ifp->if_capabilities & IFCAP_TXCSUM) { 7783 ifp->if_capenable ^= IFCAP_TXCSUM; 7784 if (IFCAP_TXCSUM & ifp->if_capenable) 7785 ifp->if_hwassist |= BCE_IF_HWASSIST; 7786 else 7787 ifp->if_hwassist &= ~BCE_IF_HWASSIST; 7788 } 7789 7790 /* Toggle the RX checksum capabilities enable flag. */ 7791 if (mask & IFCAP_RXCSUM && 7792 ifp->if_capabilities & IFCAP_RXCSUM) 7793 ifp->if_capenable ^= IFCAP_RXCSUM; 7794 7795 /* Toggle the TSO capabilities enable flag. */ 7796 if (bce_tso_enable && (mask & IFCAP_TSO4) && 7797 ifp->if_capabilities & IFCAP_TSO4) { 7798 ifp->if_capenable ^= IFCAP_TSO4; 7799 if (IFCAP_TSO4 & ifp->if_capenable) 7800 ifp->if_hwassist |= CSUM_TSO; 7801 else 7802 ifp->if_hwassist &= ~CSUM_TSO; 7803 } 7804 7805 if (mask & IFCAP_VLAN_HWCSUM && 7806 ifp->if_capabilities & IFCAP_VLAN_HWCSUM) 7807 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 7808 7809 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 7810 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 7811 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 7812 /* 7813 * Don't actually disable VLAN tag stripping as 7814 * management firmware (ASF/IPMI/UMP) requires the 7815 * feature. If VLAN tag stripping is disabled driver 7816 * will manually reconstruct the VLAN frame by 7817 * appending stripped VLAN tag. 7818 */ 7819 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 7820 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) { 7821 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 7822 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 7823 == 0) 7824 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 7825 } 7826 VLAN_CAPABILITIES(ifp); 7827 break; 7828 default: 7829 /* We don't know how to handle the IOCTL, pass it on. */ 7830 error = ether_ioctl(ifp, command, data); 7831 break; 7832 } 7833 7834 DBEXIT(BCE_VERBOSE_MISC); 7835 return(error); 7836 } 7837 7838 7839 /****************************************************************************/ 7840 /* Transmit timeout handler. */ 7841 /* */ 7842 /* Returns: */ 7843 /* Nothing. */ 7844 /****************************************************************************/ 7845 static void 7846 bce_watchdog(struct bce_softc *sc) 7847 { 7848 uint32_t status; 7849 7850 DBENTER(BCE_EXTREME_SEND); 7851 7852 BCE_LOCK_ASSERT(sc); 7853 7854 status = 0; 7855 /* If the watchdog timer hasn't expired then just exit. */ 7856 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 7857 goto bce_watchdog_exit; 7858 7859 status = REG_RD(sc, BCE_EMAC_RX_STATUS); 7860 /* If pause frames are active then don't reset the hardware. */ 7861 if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) { 7862 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) { 7863 /* 7864 * If link partner has us in XOFF state then wait for 7865 * the condition to clear. 7866 */ 7867 sc->watchdog_timer = BCE_TX_TIMEOUT; 7868 goto bce_watchdog_exit; 7869 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 && 7870 (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) { 7871 /* 7872 * If we're not currently XOFF'ed but have recently 7873 * been XOFF'd/XON'd then assume that's delaying TX 7874 * this time around. 7875 */ 7876 sc->watchdog_timer = BCE_TX_TIMEOUT; 7877 goto bce_watchdog_exit; 7878 } 7879 /* 7880 * Any other condition is unexpected and the controller 7881 * should be reset. 7882 */ 7883 } 7884 7885 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 7886 __FILE__, __LINE__); 7887 7888 DBRUNMSG(BCE_INFO, 7889 bce_dump_driver_state(sc); 7890 bce_dump_status_block(sc); 7891 bce_dump_stats_block(sc); 7892 bce_dump_ftqs(sc); 7893 bce_dump_txp_state(sc, 0); 7894 bce_dump_rxp_state(sc, 0); 7895 bce_dump_tpat_state(sc, 0); 7896 bce_dump_cp_state(sc, 0); 7897 bce_dump_com_state(sc, 0)); 7898 7899 DBRUN(bce_breakpoint(sc)); 7900 7901 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7902 7903 bce_init_locked(sc); 7904 sc->watchdog_timeouts++; 7905 7906 bce_watchdog_exit: 7907 REG_WR(sc, BCE_EMAC_RX_STATUS, status); 7908 DBEXIT(BCE_EXTREME_SEND); 7909 } 7910 7911 7912 /* 7913 * Interrupt handler. 7914 */ 7915 /****************************************************************************/ 7916 /* Main interrupt entry point. Verifies that the controller generated the */ 7917 /* interrupt and then calls a separate routine for handle the various */ 7918 /* interrupt causes (PHY, TX, RX). */ 7919 /* */ 7920 /* Returns: */ 7921 /* Nothing. */ 7922 /****************************************************************************/ 7923 static void 7924 bce_intr(void *xsc) 7925 { 7926 struct bce_softc *sc; 7927 struct ifnet *ifp; 7928 u32 status_attn_bits; 7929 u16 hw_rx_cons, hw_tx_cons; 7930 7931 sc = xsc; 7932 ifp = sc->bce_ifp; 7933 7934 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7935 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 7936 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc)); 7937 7938 BCE_LOCK(sc); 7939 7940 DBRUN(sc->interrupts_generated++); 7941 7942 /* Synchnorize before we read from interface's status block */ 7943 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD); 7944 7945 /* 7946 * If the hardware status block index matches the last value read 7947 * by the driver and we haven't asserted our interrupt then there's 7948 * nothing to do. This may only happen in case of INTx due to the 7949 * interrupt arriving at the CPU before the status block is updated. 7950 */ 7951 if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 && 7952 sc->status_block->status_idx == sc->last_status_idx && 7953 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & 7954 BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { 7955 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", 7956 __FUNCTION__); 7957 goto bce_intr_exit; 7958 } 7959 7960 /* Ack the interrupt and stop others from occurring. */ 7961 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7962 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 7963 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7964 7965 /* Check if the hardware has finished any work. */ 7966 hw_rx_cons = bce_get_hw_rx_cons(sc); 7967 hw_tx_cons = bce_get_hw_tx_cons(sc); 7968 7969 /* Keep processing data as long as there is work to do. */ 7970 for (;;) { 7971 7972 status_attn_bits = sc->status_block->status_attn_bits; 7973 7974 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control), 7975 BCE_PRINTF("Simulating unexpected status attention " 7976 "bit set."); 7977 sc->unexpected_attention_sim_count++; 7978 status_attn_bits = status_attn_bits | 7979 STATUS_ATTN_BITS_PARITY_ERROR); 7980 7981 /* Was it a link change interrupt? */ 7982 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 7983 (sc->status_block->status_attn_bits_ack & 7984 STATUS_ATTN_BITS_LINK_STATE)) { 7985 bce_phy_intr(sc); 7986 7987 /* Clear transient updates during link state change. */ 7988 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | 7989 BCE_HC_COMMAND_COAL_NOW_WO_INT); 7990 REG_RD(sc, BCE_HC_COMMAND); 7991 } 7992 7993 /* If any other attention is asserted, the chip is toast. */ 7994 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 7995 (sc->status_block->status_attn_bits_ack & 7996 ~STATUS_ATTN_BITS_LINK_STATE))) { 7997 7998 sc->unexpected_attention_count++; 7999 8000 BCE_PRINTF("%s(%d): Fatal attention detected: " 8001 "0x%08X\n", __FILE__, __LINE__, 8002 sc->status_block->status_attn_bits); 8003 8004 DBRUNMSG(BCE_FATAL, 8005 if (unexpected_attention_sim_control == 0) 8006 bce_breakpoint(sc)); 8007 8008 bce_init_locked(sc); 8009 goto bce_intr_exit; 8010 } 8011 8012 /* Check for any completed RX frames. */ 8013 if (hw_rx_cons != sc->hw_rx_cons) 8014 bce_rx_intr(sc); 8015 8016 /* Check for any completed TX frames. */ 8017 if (hw_tx_cons != sc->hw_tx_cons) 8018 bce_tx_intr(sc); 8019 8020 /* Save status block index value for the next interrupt. */ 8021 sc->last_status_idx = sc->status_block->status_idx; 8022 8023 /* 8024 * Prevent speculative reads from getting 8025 * ahead of the status block. 8026 */ 8027 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 8028 BUS_SPACE_BARRIER_READ); 8029 8030 /* 8031 * If there's no work left then exit the 8032 * interrupt service routine. 8033 */ 8034 hw_rx_cons = bce_get_hw_rx_cons(sc); 8035 hw_tx_cons = bce_get_hw_tx_cons(sc); 8036 8037 if ((hw_rx_cons == sc->hw_rx_cons) && 8038 (hw_tx_cons == sc->hw_tx_cons)) 8039 break; 8040 } 8041 8042 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD); 8043 8044 /* Re-enable interrupts. */ 8045 bce_enable_intr(sc, 0); 8046 8047 /* Handle any frames that arrived while handling the interrupt. */ 8048 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 8049 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 8050 bce_start_locked(ifp); 8051 8052 bce_intr_exit: 8053 BCE_UNLOCK(sc); 8054 8055 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 8056 } 8057 8058 8059 /****************************************************************************/ 8060 /* Programs the various packet receive modes (broadcast and multicast). */ 8061 /* */ 8062 /* Returns: */ 8063 /* Nothing. */ 8064 /****************************************************************************/ 8065 static void 8066 bce_set_rx_mode(struct bce_softc *sc) 8067 { 8068 struct ifnet *ifp; 8069 struct ifmultiaddr *ifma; 8070 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 8071 u32 rx_mode, sort_mode; 8072 int h, i; 8073 8074 DBENTER(BCE_VERBOSE_MISC); 8075 8076 BCE_LOCK_ASSERT(sc); 8077 8078 ifp = sc->bce_ifp; 8079 8080 /* Initialize receive mode default settings. */ 8081 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 8082 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 8083 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 8084 8085 /* 8086 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 8087 * be enbled. 8088 */ 8089 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 8090 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 8091 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 8092 8093 /* 8094 * Check for promiscuous, all multicast, or selected 8095 * multicast address filtering. 8096 */ 8097 if (ifp->if_flags & IFF_PROMISC) { 8098 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 8099 8100 /* Enable promiscuous mode. */ 8101 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 8102 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 8103 } else if (ifp->if_flags & IFF_ALLMULTI) { 8104 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 8105 8106 /* Enable all multicast addresses. */ 8107 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 8108 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 8109 0xffffffff); 8110 } 8111 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 8112 } else { 8113 /* Accept one or more multicast(s). */ 8114 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 8115 8116 if_maddr_rlock(ifp); 8117 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 8118 if (ifma->ifma_addr->sa_family != AF_LINK) 8119 continue; 8120 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 8121 ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; 8122 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 8123 } 8124 if_maddr_runlock(ifp); 8125 8126 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 8127 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 8128 8129 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 8130 } 8131 8132 /* Only make changes if the recive mode has actually changed. */ 8133 if (rx_mode != sc->rx_mode) { 8134 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: " 8135 "0x%08X\n", rx_mode); 8136 8137 sc->rx_mode = rx_mode; 8138 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 8139 } 8140 8141 /* Disable and clear the exisitng sort before enabling a new sort. */ 8142 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 8143 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 8144 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 8145 8146 DBEXIT(BCE_VERBOSE_MISC); 8147 } 8148 8149 8150 /****************************************************************************/ 8151 /* Called periodically to updates statistics from the controllers */ 8152 /* statistics block. */ 8153 /* */ 8154 /* Returns: */ 8155 /* Nothing. */ 8156 /****************************************************************************/ 8157 static void 8158 bce_stats_update(struct bce_softc *sc) 8159 { 8160 struct statistics_block *stats; 8161 8162 DBENTER(BCE_EXTREME_MISC); 8163 8164 bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD); 8165 8166 stats = (struct statistics_block *) sc->stats_block; 8167 8168 /* 8169 * Update the sysctl statistics from the 8170 * hardware statistics. 8171 */ 8172 sc->stat_IfHCInOctets = 8173 ((u64) stats->stat_IfHCInOctets_hi << 32) + 8174 (u64) stats->stat_IfHCInOctets_lo; 8175 8176 sc->stat_IfHCInBadOctets = 8177 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 8178 (u64) stats->stat_IfHCInBadOctets_lo; 8179 8180 sc->stat_IfHCOutOctets = 8181 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 8182 (u64) stats->stat_IfHCOutOctets_lo; 8183 8184 sc->stat_IfHCOutBadOctets = 8185 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 8186 (u64) stats->stat_IfHCOutBadOctets_lo; 8187 8188 sc->stat_IfHCInUcastPkts = 8189 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 8190 (u64) stats->stat_IfHCInUcastPkts_lo; 8191 8192 sc->stat_IfHCInMulticastPkts = 8193 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 8194 (u64) stats->stat_IfHCInMulticastPkts_lo; 8195 8196 sc->stat_IfHCInBroadcastPkts = 8197 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 8198 (u64) stats->stat_IfHCInBroadcastPkts_lo; 8199 8200 sc->stat_IfHCOutUcastPkts = 8201 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 8202 (u64) stats->stat_IfHCOutUcastPkts_lo; 8203 8204 sc->stat_IfHCOutMulticastPkts = 8205 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 8206 (u64) stats->stat_IfHCOutMulticastPkts_lo; 8207 8208 sc->stat_IfHCOutBroadcastPkts = 8209 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 8210 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 8211 8212 /* ToDo: Preserve counters beyond 32 bits? */ 8213 /* ToDo: Read the statistics from auto-clear regs? */ 8214 8215 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 8216 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 8217 8218 sc->stat_Dot3StatsCarrierSenseErrors = 8219 stats->stat_Dot3StatsCarrierSenseErrors; 8220 8221 sc->stat_Dot3StatsFCSErrors = 8222 stats->stat_Dot3StatsFCSErrors; 8223 8224 sc->stat_Dot3StatsAlignmentErrors = 8225 stats->stat_Dot3StatsAlignmentErrors; 8226 8227 sc->stat_Dot3StatsSingleCollisionFrames = 8228 stats->stat_Dot3StatsSingleCollisionFrames; 8229 8230 sc->stat_Dot3StatsMultipleCollisionFrames = 8231 stats->stat_Dot3StatsMultipleCollisionFrames; 8232 8233 sc->stat_Dot3StatsDeferredTransmissions = 8234 stats->stat_Dot3StatsDeferredTransmissions; 8235 8236 sc->stat_Dot3StatsExcessiveCollisions = 8237 stats->stat_Dot3StatsExcessiveCollisions; 8238 8239 sc->stat_Dot3StatsLateCollisions = 8240 stats->stat_Dot3StatsLateCollisions; 8241 8242 sc->stat_EtherStatsCollisions = 8243 stats->stat_EtherStatsCollisions; 8244 8245 sc->stat_EtherStatsFragments = 8246 stats->stat_EtherStatsFragments; 8247 8248 sc->stat_EtherStatsJabbers = 8249 stats->stat_EtherStatsJabbers; 8250 8251 sc->stat_EtherStatsUndersizePkts = 8252 stats->stat_EtherStatsUndersizePkts; 8253 8254 sc->stat_EtherStatsOversizePkts = 8255 stats->stat_EtherStatsOversizePkts; 8256 8257 sc->stat_EtherStatsPktsRx64Octets = 8258 stats->stat_EtherStatsPktsRx64Octets; 8259 8260 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 8261 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 8262 8263 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 8264 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 8265 8266 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 8267 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 8268 8269 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 8270 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 8271 8272 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 8273 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 8274 8275 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 8276 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 8277 8278 sc->stat_EtherStatsPktsTx64Octets = 8279 stats->stat_EtherStatsPktsTx64Octets; 8280 8281 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 8282 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 8283 8284 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 8285 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 8286 8287 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 8288 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 8289 8290 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 8291 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 8292 8293 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 8294 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 8295 8296 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 8297 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 8298 8299 sc->stat_XonPauseFramesReceived = 8300 stats->stat_XonPauseFramesReceived; 8301 8302 sc->stat_XoffPauseFramesReceived = 8303 stats->stat_XoffPauseFramesReceived; 8304 8305 sc->stat_OutXonSent = 8306 stats->stat_OutXonSent; 8307 8308 sc->stat_OutXoffSent = 8309 stats->stat_OutXoffSent; 8310 8311 sc->stat_FlowControlDone = 8312 stats->stat_FlowControlDone; 8313 8314 sc->stat_MacControlFramesReceived = 8315 stats->stat_MacControlFramesReceived; 8316 8317 sc->stat_XoffStateEntered = 8318 stats->stat_XoffStateEntered; 8319 8320 sc->stat_IfInFramesL2FilterDiscards = 8321 stats->stat_IfInFramesL2FilterDiscards; 8322 8323 sc->stat_IfInRuleCheckerDiscards = 8324 stats->stat_IfInRuleCheckerDiscards; 8325 8326 sc->stat_IfInFTQDiscards = 8327 stats->stat_IfInFTQDiscards; 8328 8329 sc->stat_IfInMBUFDiscards = 8330 stats->stat_IfInMBUFDiscards; 8331 8332 sc->stat_IfInRuleCheckerP4Hit = 8333 stats->stat_IfInRuleCheckerP4Hit; 8334 8335 sc->stat_CatchupInRuleCheckerDiscards = 8336 stats->stat_CatchupInRuleCheckerDiscards; 8337 8338 sc->stat_CatchupInFTQDiscards = 8339 stats->stat_CatchupInFTQDiscards; 8340 8341 sc->stat_CatchupInMBUFDiscards = 8342 stats->stat_CatchupInMBUFDiscards; 8343 8344 sc->stat_CatchupInRuleCheckerP4Hit = 8345 stats->stat_CatchupInRuleCheckerP4Hit; 8346 8347 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 8348 8349 /* ToDo: Add additional statistics? */ 8350 8351 DBEXIT(BCE_EXTREME_MISC); 8352 } 8353 8354 static uint64_t 8355 bce_get_counter(struct ifnet *ifp, ift_counter cnt) 8356 { 8357 struct bce_softc *sc; 8358 uint64_t rv; 8359 8360 sc = if_getsoftc(ifp); 8361 8362 switch (cnt) { 8363 case IFCOUNTER_COLLISIONS: 8364 return (sc->stat_EtherStatsCollisions); 8365 case IFCOUNTER_IERRORS: 8366 return (sc->stat_EtherStatsUndersizePkts + 8367 sc->stat_EtherStatsOversizePkts + 8368 sc->stat_IfInMBUFDiscards + 8369 sc->stat_Dot3StatsAlignmentErrors + 8370 sc->stat_Dot3StatsFCSErrors + 8371 sc->stat_IfInRuleCheckerDiscards + 8372 sc->stat_IfInFTQDiscards + 8373 sc->l2fhdr_error_count + 8374 sc->com_no_buffers); 8375 case IFCOUNTER_OERRORS: 8376 rv = sc->stat_Dot3StatsExcessiveCollisions + 8377 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 8378 sc->stat_Dot3StatsLateCollisions + 8379 sc->watchdog_timeouts; 8380 /* 8381 * Certain controllers don't report 8382 * carrier sense errors correctly. 8383 * See errata E11_5708CA0_1165. 8384 */ 8385 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 8386 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 8387 rv += sc->stat_Dot3StatsCarrierSenseErrors; 8388 return (rv); 8389 default: 8390 return (if_get_counter_default(ifp, cnt)); 8391 } 8392 } 8393 8394 8395 /****************************************************************************/ 8396 /* Periodic function to notify the bootcode that the driver is still */ 8397 /* present. */ 8398 /* */ 8399 /* Returns: */ 8400 /* Nothing. */ 8401 /****************************************************************************/ 8402 static void 8403 bce_pulse(void *xsc) 8404 { 8405 struct bce_softc *sc = xsc; 8406 u32 msg; 8407 8408 DBENTER(BCE_EXTREME_MISC); 8409 8410 BCE_LOCK_ASSERT(sc); 8411 8412 /* Tell the firmware that the driver is still running. */ 8413 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 8414 bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg); 8415 8416 /* Update the bootcode condition. */ 8417 sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 8418 8419 /* Report whether the bootcode still knows the driver is running. */ 8420 if (bce_verbose || bootverbose) { 8421 if (sc->bce_drv_cardiac_arrest == FALSE) { 8422 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) { 8423 sc->bce_drv_cardiac_arrest = TRUE; 8424 BCE_PRINTF("%s(): Warning: bootcode " 8425 "thinks driver is absent! " 8426 "(bc_state = 0x%08X)\n", 8427 __FUNCTION__, sc->bc_state); 8428 } 8429 } else { 8430 /* 8431 * Not supported by all bootcode versions. 8432 * (v5.0.11+ and v5.2.1+) Older bootcode 8433 * will require the driver to reset the 8434 * controller to clear this condition. 8435 */ 8436 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) { 8437 sc->bce_drv_cardiac_arrest = FALSE; 8438 BCE_PRINTF("%s(): Bootcode found the " 8439 "driver pulse! (bc_state = 0x%08X)\n", 8440 __FUNCTION__, sc->bc_state); 8441 } 8442 } 8443 } 8444 8445 8446 /* Schedule the next pulse. */ 8447 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 8448 8449 DBEXIT(BCE_EXTREME_MISC); 8450 } 8451 8452 8453 /****************************************************************************/ 8454 /* Periodic function to perform maintenance tasks. */ 8455 /* */ 8456 /* Returns: */ 8457 /* Nothing. */ 8458 /****************************************************************************/ 8459 static void 8460 bce_tick(void *xsc) 8461 { 8462 struct bce_softc *sc = xsc; 8463 struct mii_data *mii; 8464 struct ifnet *ifp; 8465 struct ifmediareq ifmr; 8466 8467 ifp = sc->bce_ifp; 8468 8469 DBENTER(BCE_EXTREME_MISC); 8470 8471 BCE_LOCK_ASSERT(sc); 8472 8473 /* Schedule the next tick. */ 8474 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 8475 8476 /* Update the statistics from the hardware statistics block. */ 8477 bce_stats_update(sc); 8478 8479 /* Ensure page and RX chains get refilled in low-memory situations. */ 8480 if (bce_hdr_split == TRUE) 8481 bce_fill_pg_chain(sc); 8482 bce_fill_rx_chain(sc); 8483 8484 /* Check that chip hasn't hung. */ 8485 bce_watchdog(sc); 8486 8487 /* If link is up already up then we're done. */ 8488 if (sc->bce_link_up == TRUE) 8489 goto bce_tick_exit; 8490 8491 /* Link is down. Check what the PHY's doing. */ 8492 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 8493 bzero(&ifmr, sizeof(ifmr)); 8494 bce_ifmedia_sts_rphy(sc, &ifmr); 8495 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) == 8496 (IFM_ACTIVE | IFM_AVALID)) { 8497 sc->bce_link_up = TRUE; 8498 bce_miibus_statchg(sc->bce_dev); 8499 } 8500 } else { 8501 mii = device_get_softc(sc->bce_miibus); 8502 mii_tick(mii); 8503 /* Check if the link has come up. */ 8504 if ((mii->mii_media_status & IFM_ACTIVE) && 8505 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { 8506 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", 8507 __FUNCTION__); 8508 sc->bce_link_up = TRUE; 8509 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 8510 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX || 8511 IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) && 8512 (bce_verbose || bootverbose)) 8513 BCE_PRINTF("Gigabit link up!\n"); 8514 } 8515 8516 } 8517 if (sc->bce_link_up == TRUE) { 8518 /* Now that link is up, handle any outstanding TX traffic. */ 8519 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 8520 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found " 8521 "pending TX traffic.\n", __FUNCTION__); 8522 bce_start_locked(ifp); 8523 } 8524 } 8525 8526 bce_tick_exit: 8527 DBEXIT(BCE_EXTREME_MISC); 8528 } 8529 8530 static void 8531 bce_fw_cap_init(struct bce_softc *sc) 8532 { 8533 u32 ack, cap, link; 8534 8535 ack = 0; 8536 cap = bce_shmem_rd(sc, BCE_FW_CAP_MB); 8537 if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) != 8538 BCE_FW_CAP_SIGNATURE_MAGIC) 8539 return; 8540 if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) == 8541 (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) 8542 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | 8543 BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN; 8544 if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 && 8545 (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) { 8546 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG; 8547 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG; 8548 link = bce_shmem_rd(sc, BCE_LINK_STATUS); 8549 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0) 8550 sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG; 8551 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | 8552 BCE_FW_CAP_REMOTE_PHY_CAP; 8553 } 8554 8555 if (ack != 0) 8556 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack); 8557 } 8558 8559 8560 #ifdef BCE_DEBUG 8561 /****************************************************************************/ 8562 /* Allows the driver state to be dumped through the sysctl interface. */ 8563 /* */ 8564 /* Returns: */ 8565 /* 0 for success, positive value for failure. */ 8566 /****************************************************************************/ 8567 static int 8568 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 8569 { 8570 int error; 8571 int result; 8572 struct bce_softc *sc; 8573 8574 result = -1; 8575 error = sysctl_handle_int(oidp, &result, 0, req); 8576 8577 if (error || !req->newptr) 8578 return (error); 8579 8580 if (result == 1) { 8581 sc = (struct bce_softc *)arg1; 8582 bce_dump_driver_state(sc); 8583 } 8584 8585 return error; 8586 } 8587 8588 8589 /****************************************************************************/ 8590 /* Allows the hardware state to be dumped through the sysctl interface. */ 8591 /* */ 8592 /* Returns: */ 8593 /* 0 for success, positive value for failure. */ 8594 /****************************************************************************/ 8595 static int 8596 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 8597 { 8598 int error; 8599 int result; 8600 struct bce_softc *sc; 8601 8602 result = -1; 8603 error = sysctl_handle_int(oidp, &result, 0, req); 8604 8605 if (error || !req->newptr) 8606 return (error); 8607 8608 if (result == 1) { 8609 sc = (struct bce_softc *)arg1; 8610 bce_dump_hw_state(sc); 8611 } 8612 8613 return error; 8614 } 8615 8616 8617 /****************************************************************************/ 8618 /* Allows the status block to be dumped through the sysctl interface. */ 8619 /* */ 8620 /* Returns: */ 8621 /* 0 for success, positive value for failure. */ 8622 /****************************************************************************/ 8623 static int 8624 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS) 8625 { 8626 int error; 8627 int result; 8628 struct bce_softc *sc; 8629 8630 result = -1; 8631 error = sysctl_handle_int(oidp, &result, 0, req); 8632 8633 if (error || !req->newptr) 8634 return (error); 8635 8636 if (result == 1) { 8637 sc = (struct bce_softc *)arg1; 8638 bce_dump_status_block(sc); 8639 } 8640 8641 return error; 8642 } 8643 8644 8645 /****************************************************************************/ 8646 /* Allows the stats block to be dumped through the sysctl interface. */ 8647 /* */ 8648 /* Returns: */ 8649 /* 0 for success, positive value for failure. */ 8650 /****************************************************************************/ 8651 static int 8652 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS) 8653 { 8654 int error; 8655 int result; 8656 struct bce_softc *sc; 8657 8658 result = -1; 8659 error = sysctl_handle_int(oidp, &result, 0, req); 8660 8661 if (error || !req->newptr) 8662 return (error); 8663 8664 if (result == 1) { 8665 sc = (struct bce_softc *)arg1; 8666 bce_dump_stats_block(sc); 8667 } 8668 8669 return error; 8670 } 8671 8672 8673 /****************************************************************************/ 8674 /* Allows the stat counters to be cleared without unloading/reloading the */ 8675 /* driver. */ 8676 /* */ 8677 /* Returns: */ 8678 /* 0 for success, positive value for failure. */ 8679 /****************************************************************************/ 8680 static int 8681 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS) 8682 { 8683 int error; 8684 int result; 8685 struct bce_softc *sc; 8686 8687 result = -1; 8688 error = sysctl_handle_int(oidp, &result, 0, req); 8689 8690 if (error || !req->newptr) 8691 return (error); 8692 8693 if (result == 1) { 8694 sc = (struct bce_softc *)arg1; 8695 struct statistics_block *stats; 8696 8697 stats = (struct statistics_block *) sc->stats_block; 8698 bzero(stats, sizeof(struct statistics_block)); 8699 bus_dmamap_sync(sc->stats_tag, sc->stats_map, 8700 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 8701 8702 /* Clear the internal H/W statistics counters. */ 8703 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 8704 8705 /* Reset the driver maintained statistics. */ 8706 sc->interrupts_rx = 8707 sc->interrupts_tx = 0; 8708 sc->tso_frames_requested = 8709 sc->tso_frames_completed = 8710 sc->tso_frames_failed = 0; 8711 sc->rx_empty_count = 8712 sc->tx_full_count = 0; 8713 sc->rx_low_watermark = USABLE_RX_BD_ALLOC; 8714 sc->tx_hi_watermark = 0; 8715 sc->l2fhdr_error_count = 8716 sc->l2fhdr_error_sim_count = 0; 8717 sc->mbuf_alloc_failed_count = 8718 sc->mbuf_alloc_failed_sim_count = 0; 8719 sc->dma_map_addr_rx_failed_count = 8720 sc->dma_map_addr_tx_failed_count = 0; 8721 sc->mbuf_frag_count = 0; 8722 sc->csum_offload_tcp_udp = 8723 sc->csum_offload_ip = 0; 8724 sc->vlan_tagged_frames_rcvd = 8725 sc->vlan_tagged_frames_stripped = 0; 8726 sc->split_header_frames_rcvd = 8727 sc->split_header_tcp_frames_rcvd = 0; 8728 8729 /* Clear firmware maintained statistics. */ 8730 REG_WR_IND(sc, 0x120084, 0); 8731 } 8732 8733 return error; 8734 } 8735 8736 8737 /****************************************************************************/ 8738 /* Allows the shared memory contents to be dumped through the sysctl . */ 8739 /* interface. */ 8740 /* */ 8741 /* Returns: */ 8742 /* 0 for success, positive value for failure. */ 8743 /****************************************************************************/ 8744 static int 8745 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS) 8746 { 8747 int error; 8748 int result; 8749 struct bce_softc *sc; 8750 8751 result = -1; 8752 error = sysctl_handle_int(oidp, &result, 0, req); 8753 8754 if (error || !req->newptr) 8755 return (error); 8756 8757 if (result == 1) { 8758 sc = (struct bce_softc *)arg1; 8759 bce_dump_shmem_state(sc); 8760 } 8761 8762 return error; 8763 } 8764 8765 8766 /****************************************************************************/ 8767 /* Allows the bootcode state to be dumped through the sysctl interface. */ 8768 /* */ 8769 /* Returns: */ 8770 /* 0 for success, positive value for failure. */ 8771 /****************************************************************************/ 8772 static int 8773 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 8774 { 8775 int error; 8776 int result; 8777 struct bce_softc *sc; 8778 8779 result = -1; 8780 error = sysctl_handle_int(oidp, &result, 0, req); 8781 8782 if (error || !req->newptr) 8783 return (error); 8784 8785 if (result == 1) { 8786 sc = (struct bce_softc *)arg1; 8787 bce_dump_bc_state(sc); 8788 } 8789 8790 return error; 8791 } 8792 8793 8794 /****************************************************************************/ 8795 /* Provides a sysctl interface to allow dumping the RX BD chain. */ 8796 /* */ 8797 /* Returns: */ 8798 /* 0 for success, positive value for failure. */ 8799 /****************************************************************************/ 8800 static int 8801 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS) 8802 { 8803 int error; 8804 int result; 8805 struct bce_softc *sc; 8806 8807 result = -1; 8808 error = sysctl_handle_int(oidp, &result, 0, req); 8809 8810 if (error || !req->newptr) 8811 return (error); 8812 8813 if (result == 1) { 8814 sc = (struct bce_softc *)arg1; 8815 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC); 8816 } 8817 8818 return error; 8819 } 8820 8821 8822 /****************************************************************************/ 8823 /* Provides a sysctl interface to allow dumping the RX MBUF chain. */ 8824 /* */ 8825 /* Returns: */ 8826 /* 0 for success, positive value for failure. */ 8827 /****************************************************************************/ 8828 static int 8829 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS) 8830 { 8831 int error; 8832 int result; 8833 struct bce_softc *sc; 8834 8835 result = -1; 8836 error = sysctl_handle_int(oidp, &result, 0, req); 8837 8838 if (error || !req->newptr) 8839 return (error); 8840 8841 if (result == 1) { 8842 sc = (struct bce_softc *)arg1; 8843 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); 8844 } 8845 8846 return error; 8847 } 8848 8849 8850 /****************************************************************************/ 8851 /* Provides a sysctl interface to allow dumping the TX chain. */ 8852 /* */ 8853 /* Returns: */ 8854 /* 0 for success, positive value for failure. */ 8855 /****************************************************************************/ 8856 static int 8857 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 8858 { 8859 int error; 8860 int result; 8861 struct bce_softc *sc; 8862 8863 result = -1; 8864 error = sysctl_handle_int(oidp, &result, 0, req); 8865 8866 if (error || !req->newptr) 8867 return (error); 8868 8869 if (result == 1) { 8870 sc = (struct bce_softc *)arg1; 8871 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC); 8872 } 8873 8874 return error; 8875 } 8876 8877 8878 /****************************************************************************/ 8879 /* Provides a sysctl interface to allow dumping the page chain. */ 8880 /* */ 8881 /* Returns: */ 8882 /* 0 for success, positive value for failure. */ 8883 /****************************************************************************/ 8884 static int 8885 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) 8886 { 8887 int error; 8888 int result; 8889 struct bce_softc *sc; 8890 8891 result = -1; 8892 error = sysctl_handle_int(oidp, &result, 0, req); 8893 8894 if (error || !req->newptr) 8895 return (error); 8896 8897 if (result == 1) { 8898 sc = (struct bce_softc *)arg1; 8899 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC); 8900 } 8901 8902 return error; 8903 } 8904 8905 /****************************************************************************/ 8906 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ 8907 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8908 /* */ 8909 /* Returns: */ 8910 /* 0 for success, positive value for failure. */ 8911 /****************************************************************************/ 8912 static int 8913 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) 8914 { 8915 struct bce_softc *sc = (struct bce_softc *)arg1; 8916 int error; 8917 u32 result; 8918 u32 val[1]; 8919 u8 *data = (u8 *) val; 8920 8921 result = -1; 8922 error = sysctl_handle_int(oidp, &result, 0, req); 8923 if (error || (req->newptr == NULL)) 8924 return (error); 8925 8926 error = bce_nvram_read(sc, result, data, 4); 8927 8928 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); 8929 8930 return (error); 8931 } 8932 8933 8934 /****************************************************************************/ 8935 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 8936 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8937 /* */ 8938 /* Returns: */ 8939 /* 0 for success, positive value for failure. */ 8940 /****************************************************************************/ 8941 static int 8942 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 8943 { 8944 struct bce_softc *sc = (struct bce_softc *)arg1; 8945 int error; 8946 u32 val, result; 8947 8948 result = -1; 8949 error = sysctl_handle_int(oidp, &result, 0, req); 8950 if (error || (req->newptr == NULL)) 8951 return (error); 8952 8953 /* Make sure the register is accessible. */ 8954 if (result < 0x8000) { 8955 val = REG_RD(sc, result); 8956 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8957 } else if (result < 0x0280000) { 8958 val = REG_RD_IND(sc, result); 8959 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8960 } 8961 8962 return (error); 8963 } 8964 8965 8966 /****************************************************************************/ 8967 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 8968 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8969 /* */ 8970 /* Returns: */ 8971 /* 0 for success, positive value for failure. */ 8972 /****************************************************************************/ 8973 static int 8974 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 8975 { 8976 struct bce_softc *sc; 8977 device_t dev; 8978 int error, result; 8979 u16 val; 8980 8981 result = -1; 8982 error = sysctl_handle_int(oidp, &result, 0, req); 8983 if (error || (req->newptr == NULL)) 8984 return (error); 8985 8986 /* Make sure the register is accessible. */ 8987 if (result < 0x20) { 8988 sc = (struct bce_softc *)arg1; 8989 dev = sc->bce_dev; 8990 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 8991 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 8992 } 8993 return (error); 8994 } 8995 8996 8997 /****************************************************************************/ 8998 /* Provides a sysctl interface for dumping the nvram contents. */ 8999 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9000 /* */ 9001 /* Returns: */ 9002 /* 0 for success, positive errno for failure. */ 9003 /****************************************************************************/ 9004 static int 9005 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS) 9006 { 9007 struct bce_softc *sc = (struct bce_softc *)arg1; 9008 int error, i; 9009 9010 if (sc->nvram_buf == NULL) 9011 sc->nvram_buf = malloc(sc->bce_flash_size, 9012 M_TEMP, M_ZERO | M_WAITOK); 9013 9014 error = 0; 9015 if (req->oldlen == sc->bce_flash_size) { 9016 for (i = 0; i < sc->bce_flash_size && error == 0; i++) 9017 error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1); 9018 } 9019 9020 if (error == 0) 9021 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size); 9022 9023 return error; 9024 } 9025 9026 #ifdef BCE_NVRAM_WRITE_SUPPORT 9027 /****************************************************************************/ 9028 /* Provides a sysctl interface for writing to nvram. */ 9029 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9030 /* */ 9031 /* Returns: */ 9032 /* 0 for success, positive errno for failure. */ 9033 /****************************************************************************/ 9034 static int 9035 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS) 9036 { 9037 struct bce_softc *sc = (struct bce_softc *)arg1; 9038 int error; 9039 9040 if (sc->nvram_buf == NULL) 9041 sc->nvram_buf = malloc(sc->bce_flash_size, 9042 M_TEMP, M_ZERO | M_WAITOK); 9043 else 9044 bzero(sc->nvram_buf, sc->bce_flash_size); 9045 9046 error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size); 9047 if (error == 0) 9048 return (error); 9049 9050 if (req->newlen == sc->bce_flash_size) 9051 error = bce_nvram_write(sc, 0, sc->nvram_buf, 9052 sc->bce_flash_size); 9053 9054 9055 return error; 9056 } 9057 #endif 9058 9059 9060 /****************************************************************************/ 9061 /* Provides a sysctl interface to allow reading a CID. */ 9062 /* */ 9063 /* Returns: */ 9064 /* 0 for success, positive value for failure. */ 9065 /****************************************************************************/ 9066 static int 9067 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) 9068 { 9069 struct bce_softc *sc; 9070 int error, result; 9071 9072 result = -1; 9073 error = sysctl_handle_int(oidp, &result, 0, req); 9074 if (error || (req->newptr == NULL)) 9075 return (error); 9076 9077 /* Make sure the register is accessible. */ 9078 if (result <= TX_CID) { 9079 sc = (struct bce_softc *)arg1; 9080 bce_dump_ctx(sc, result); 9081 } 9082 9083 return (error); 9084 } 9085 9086 9087 /****************************************************************************/ 9088 /* Provides a sysctl interface to forcing the driver to dump state and */ 9089 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9090 /* */ 9091 /* Returns: */ 9092 /* 0 for success, positive value for failure. */ 9093 /****************************************************************************/ 9094 static int 9095 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 9096 { 9097 int error; 9098 int result; 9099 struct bce_softc *sc; 9100 9101 result = -1; 9102 error = sysctl_handle_int(oidp, &result, 0, req); 9103 9104 if (error || !req->newptr) 9105 return (error); 9106 9107 if (result == 1) { 9108 sc = (struct bce_softc *)arg1; 9109 bce_breakpoint(sc); 9110 } 9111 9112 return error; 9113 } 9114 #endif 9115 9116 /****************************************************************************/ 9117 /* Adds any sysctl parameters for tuning or debugging purposes. */ 9118 /* */ 9119 /* Returns: */ 9120 /* 0 for success, positive value for failure. */ 9121 /****************************************************************************/ 9122 static void 9123 bce_add_sysctls(struct bce_softc *sc) 9124 { 9125 struct sysctl_ctx_list *ctx; 9126 struct sysctl_oid_list *children; 9127 9128 DBENTER(BCE_VERBOSE_MISC); 9129 9130 ctx = device_get_sysctl_ctx(sc->bce_dev); 9131 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 9132 9133 #ifdef BCE_DEBUG 9134 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9135 "l2fhdr_error_sim_control", 9136 CTLFLAG_RW, &l2fhdr_error_sim_control, 9137 0, "Debug control to force l2fhdr errors"); 9138 9139 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9140 "l2fhdr_error_sim_count", 9141 CTLFLAG_RD, &sc->l2fhdr_error_sim_count, 9142 0, "Number of simulated l2_fhdr errors"); 9143 #endif 9144 9145 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9146 "l2fhdr_error_count", 9147 CTLFLAG_RD, &sc->l2fhdr_error_count, 9148 0, "Number of l2_fhdr errors"); 9149 9150 #ifdef BCE_DEBUG 9151 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9152 "mbuf_alloc_failed_sim_control", 9153 CTLFLAG_RW, &mbuf_alloc_failed_sim_control, 9154 0, "Debug control to force mbuf allocation failures"); 9155 9156 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9157 "mbuf_alloc_failed_sim_count", 9158 CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count, 9159 0, "Number of simulated mbuf cluster allocation failures"); 9160 #endif 9161 9162 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9163 "mbuf_alloc_failed_count", 9164 CTLFLAG_RD, &sc->mbuf_alloc_failed_count, 9165 0, "Number of mbuf allocation failures"); 9166 9167 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9168 "mbuf_frag_count", 9169 CTLFLAG_RD, &sc->mbuf_frag_count, 9170 0, "Number of fragmented mbufs"); 9171 9172 #ifdef BCE_DEBUG 9173 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9174 "dma_map_addr_failed_sim_control", 9175 CTLFLAG_RW, &dma_map_addr_failed_sim_control, 9176 0, "Debug control to force DMA mapping failures"); 9177 9178 /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */ 9179 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9180 "dma_map_addr_failed_sim_count", 9181 CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count, 9182 0, "Number of simulated DMA mapping failures"); 9183 9184 #endif 9185 9186 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9187 "dma_map_addr_rx_failed_count", 9188 CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count, 9189 0, "Number of RX DMA mapping failures"); 9190 9191 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9192 "dma_map_addr_tx_failed_count", 9193 CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count, 9194 0, "Number of TX DMA mapping failures"); 9195 9196 #ifdef BCE_DEBUG 9197 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9198 "unexpected_attention_sim_control", 9199 CTLFLAG_RW, &unexpected_attention_sim_control, 9200 0, "Debug control to simulate unexpected attentions"); 9201 9202 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9203 "unexpected_attention_sim_count", 9204 CTLFLAG_RW, &sc->unexpected_attention_sim_count, 9205 0, "Number of simulated unexpected attentions"); 9206 #endif 9207 9208 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9209 "unexpected_attention_count", 9210 CTLFLAG_RW, &sc->unexpected_attention_count, 9211 0, "Number of unexpected attentions"); 9212 9213 #ifdef BCE_DEBUG 9214 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9215 "debug_bootcode_running_failure", 9216 CTLFLAG_RW, &bootcode_running_failure_sim_control, 9217 0, "Debug control to force bootcode running failures"); 9218 9219 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9220 "rx_low_watermark", 9221 CTLFLAG_RD, &sc->rx_low_watermark, 9222 0, "Lowest level of free rx_bd's"); 9223 9224 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9225 "rx_empty_count", 9226 CTLFLAG_RD, &sc->rx_empty_count, 9227 "Number of times the RX chain was empty"); 9228 9229 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9230 "tx_hi_watermark", 9231 CTLFLAG_RD, &sc->tx_hi_watermark, 9232 0, "Highest level of used tx_bd's"); 9233 9234 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9235 "tx_full_count", 9236 CTLFLAG_RD, &sc->tx_full_count, 9237 "Number of times the TX chain was full"); 9238 9239 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9240 "tso_frames_requested", 9241 CTLFLAG_RD, &sc->tso_frames_requested, 9242 "Number of TSO frames requested"); 9243 9244 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9245 "tso_frames_completed", 9246 CTLFLAG_RD, &sc->tso_frames_completed, 9247 "Number of TSO frames completed"); 9248 9249 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9250 "tso_frames_failed", 9251 CTLFLAG_RD, &sc->tso_frames_failed, 9252 "Number of TSO frames failed"); 9253 9254 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9255 "csum_offload_ip", 9256 CTLFLAG_RD, &sc->csum_offload_ip, 9257 "Number of IP checksum offload frames"); 9258 9259 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9260 "csum_offload_tcp_udp", 9261 CTLFLAG_RD, &sc->csum_offload_tcp_udp, 9262 "Number of TCP/UDP checksum offload frames"); 9263 9264 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9265 "vlan_tagged_frames_rcvd", 9266 CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd, 9267 "Number of VLAN tagged frames received"); 9268 9269 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9270 "vlan_tagged_frames_stripped", 9271 CTLFLAG_RD, &sc->vlan_tagged_frames_stripped, 9272 "Number of VLAN tagged frames stripped"); 9273 9274 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9275 "interrupts_rx", 9276 CTLFLAG_RD, &sc->interrupts_rx, 9277 "Number of RX interrupts"); 9278 9279 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9280 "interrupts_tx", 9281 CTLFLAG_RD, &sc->interrupts_tx, 9282 "Number of TX interrupts"); 9283 9284 if (bce_hdr_split == TRUE) { 9285 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9286 "split_header_frames_rcvd", 9287 CTLFLAG_RD, &sc->split_header_frames_rcvd, 9288 "Number of split header frames received"); 9289 9290 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9291 "split_header_tcp_frames_rcvd", 9292 CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd, 9293 "Number of split header TCP frames received"); 9294 } 9295 9296 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9297 "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD, 9298 (void *)sc, 0, 9299 bce_sysctl_nvram_dump, "S", ""); 9300 9301 #ifdef BCE_NVRAM_WRITE_SUPPORT 9302 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9303 "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR, 9304 (void *)sc, 0, 9305 bce_sysctl_nvram_write, "S", ""); 9306 #endif 9307 #endif /* BCE_DEBUG */ 9308 9309 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9310 "stat_IfHcInOctets", 9311 CTLFLAG_RD, &sc->stat_IfHCInOctets, 9312 "Bytes received"); 9313 9314 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9315 "stat_IfHCInBadOctets", 9316 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 9317 "Bad bytes received"); 9318 9319 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9320 "stat_IfHCOutOctets", 9321 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 9322 "Bytes sent"); 9323 9324 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9325 "stat_IfHCOutBadOctets", 9326 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 9327 "Bad bytes sent"); 9328 9329 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9330 "stat_IfHCInUcastPkts", 9331 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 9332 "Unicast packets received"); 9333 9334 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9335 "stat_IfHCInMulticastPkts", 9336 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 9337 "Multicast packets received"); 9338 9339 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9340 "stat_IfHCInBroadcastPkts", 9341 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 9342 "Broadcast packets received"); 9343 9344 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9345 "stat_IfHCOutUcastPkts", 9346 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 9347 "Unicast packets sent"); 9348 9349 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9350 "stat_IfHCOutMulticastPkts", 9351 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 9352 "Multicast packets sent"); 9353 9354 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9355 "stat_IfHCOutBroadcastPkts", 9356 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 9357 "Broadcast packets sent"); 9358 9359 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9360 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 9361 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 9362 0, "Internal MAC transmit errors"); 9363 9364 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9365 "stat_Dot3StatsCarrierSenseErrors", 9366 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 9367 0, "Carrier sense errors"); 9368 9369 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9370 "stat_Dot3StatsFCSErrors", 9371 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 9372 0, "Frame check sequence errors"); 9373 9374 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9375 "stat_Dot3StatsAlignmentErrors", 9376 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 9377 0, "Alignment errors"); 9378 9379 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9380 "stat_Dot3StatsSingleCollisionFrames", 9381 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 9382 0, "Single Collision Frames"); 9383 9384 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9385 "stat_Dot3StatsMultipleCollisionFrames", 9386 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 9387 0, "Multiple Collision Frames"); 9388 9389 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9390 "stat_Dot3StatsDeferredTransmissions", 9391 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 9392 0, "Deferred Transmissions"); 9393 9394 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9395 "stat_Dot3StatsExcessiveCollisions", 9396 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 9397 0, "Excessive Collisions"); 9398 9399 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9400 "stat_Dot3StatsLateCollisions", 9401 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 9402 0, "Late Collisions"); 9403 9404 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9405 "stat_EtherStatsCollisions", 9406 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 9407 0, "Collisions"); 9408 9409 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9410 "stat_EtherStatsFragments", 9411 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 9412 0, "Fragments"); 9413 9414 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9415 "stat_EtherStatsJabbers", 9416 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 9417 0, "Jabbers"); 9418 9419 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9420 "stat_EtherStatsUndersizePkts", 9421 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 9422 0, "Undersize packets"); 9423 9424 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9425 "stat_EtherStatsOversizePkts", 9426 CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts, 9427 0, "stat_EtherStatsOversizePkts"); 9428 9429 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9430 "stat_EtherStatsPktsRx64Octets", 9431 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 9432 0, "Bytes received in 64 byte packets"); 9433 9434 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9435 "stat_EtherStatsPktsRx65Octetsto127Octets", 9436 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 9437 0, "Bytes received in 65 to 127 byte packets"); 9438 9439 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9440 "stat_EtherStatsPktsRx128Octetsto255Octets", 9441 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 9442 0, "Bytes received in 128 to 255 byte packets"); 9443 9444 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9445 "stat_EtherStatsPktsRx256Octetsto511Octets", 9446 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 9447 0, "Bytes received in 256 to 511 byte packets"); 9448 9449 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9450 "stat_EtherStatsPktsRx512Octetsto1023Octets", 9451 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 9452 0, "Bytes received in 512 to 1023 byte packets"); 9453 9454 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9455 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 9456 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 9457 0, "Bytes received in 1024 t0 1522 byte packets"); 9458 9459 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9460 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 9461 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 9462 0, "Bytes received in 1523 to 9022 byte packets"); 9463 9464 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9465 "stat_EtherStatsPktsTx64Octets", 9466 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 9467 0, "Bytes sent in 64 byte packets"); 9468 9469 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9470 "stat_EtherStatsPktsTx65Octetsto127Octets", 9471 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 9472 0, "Bytes sent in 65 to 127 byte packets"); 9473 9474 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9475 "stat_EtherStatsPktsTx128Octetsto255Octets", 9476 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 9477 0, "Bytes sent in 128 to 255 byte packets"); 9478 9479 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9480 "stat_EtherStatsPktsTx256Octetsto511Octets", 9481 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 9482 0, "Bytes sent in 256 to 511 byte packets"); 9483 9484 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9485 "stat_EtherStatsPktsTx512Octetsto1023Octets", 9486 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 9487 0, "Bytes sent in 512 to 1023 byte packets"); 9488 9489 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9490 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 9491 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 9492 0, "Bytes sent in 1024 to 1522 byte packets"); 9493 9494 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9495 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 9496 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 9497 0, "Bytes sent in 1523 to 9022 byte packets"); 9498 9499 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9500 "stat_XonPauseFramesReceived", 9501 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 9502 0, "XON pause frames receved"); 9503 9504 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9505 "stat_XoffPauseFramesReceived", 9506 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 9507 0, "XOFF pause frames received"); 9508 9509 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9510 "stat_OutXonSent", 9511 CTLFLAG_RD, &sc->stat_OutXonSent, 9512 0, "XON pause frames sent"); 9513 9514 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9515 "stat_OutXoffSent", 9516 CTLFLAG_RD, &sc->stat_OutXoffSent, 9517 0, "XOFF pause frames sent"); 9518 9519 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9520 "stat_FlowControlDone", 9521 CTLFLAG_RD, &sc->stat_FlowControlDone, 9522 0, "Flow control done"); 9523 9524 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9525 "stat_MacControlFramesReceived", 9526 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 9527 0, "MAC control frames received"); 9528 9529 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9530 "stat_XoffStateEntered", 9531 CTLFLAG_RD, &sc->stat_XoffStateEntered, 9532 0, "XOFF state entered"); 9533 9534 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9535 "stat_IfInFramesL2FilterDiscards", 9536 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 9537 0, "Received L2 packets discarded"); 9538 9539 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9540 "stat_IfInRuleCheckerDiscards", 9541 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 9542 0, "Received packets discarded by rule"); 9543 9544 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9545 "stat_IfInFTQDiscards", 9546 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 9547 0, "Received packet FTQ discards"); 9548 9549 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9550 "stat_IfInMBUFDiscards", 9551 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 9552 0, "Received packets discarded due to lack " 9553 "of controller buffer memory"); 9554 9555 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9556 "stat_IfInRuleCheckerP4Hit", 9557 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 9558 0, "Received packets rule checker hits"); 9559 9560 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9561 "stat_CatchupInRuleCheckerDiscards", 9562 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 9563 0, "Received packets discarded in Catchup path"); 9564 9565 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9566 "stat_CatchupInFTQDiscards", 9567 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 9568 0, "Received packets discarded in FTQ in Catchup path"); 9569 9570 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9571 "stat_CatchupInMBUFDiscards", 9572 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 9573 0, "Received packets discarded in controller " 9574 "buffer memory in Catchup path"); 9575 9576 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9577 "stat_CatchupInRuleCheckerP4Hit", 9578 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 9579 0, "Received packets rule checker hits in Catchup path"); 9580 9581 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9582 "com_no_buffers", 9583 CTLFLAG_RD, &sc->com_no_buffers, 9584 0, "Valid packets received but no RX buffers available"); 9585 9586 #ifdef BCE_DEBUG 9587 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9588 "driver_state", CTLTYPE_INT | CTLFLAG_RW, 9589 (void *)sc, 0, 9590 bce_sysctl_driver_state, "I", "Drive state information"); 9591 9592 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9593 "hw_state", CTLTYPE_INT | CTLFLAG_RW, 9594 (void *)sc, 0, 9595 bce_sysctl_hw_state, "I", "Hardware state information"); 9596 9597 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9598 "status_block", CTLTYPE_INT | CTLFLAG_RW, 9599 (void *)sc, 0, 9600 bce_sysctl_status_block, "I", "Dump status block"); 9601 9602 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9603 "stats_block", CTLTYPE_INT | CTLFLAG_RW, 9604 (void *)sc, 0, 9605 bce_sysctl_stats_block, "I", "Dump statistics block"); 9606 9607 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9608 "stats_clear", CTLTYPE_INT | CTLFLAG_RW, 9609 (void *)sc, 0, 9610 bce_sysctl_stats_clear, "I", "Clear statistics block"); 9611 9612 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9613 "shmem_state", CTLTYPE_INT | CTLFLAG_RW, 9614 (void *)sc, 0, 9615 bce_sysctl_shmem_state, "I", "Shared memory state information"); 9616 9617 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9618 "bc_state", CTLTYPE_INT | CTLFLAG_RW, 9619 (void *)sc, 0, 9620 bce_sysctl_bc_state, "I", "Bootcode state information"); 9621 9622 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9623 "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW, 9624 (void *)sc, 0, 9625 bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain"); 9626 9627 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9628 "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW, 9629 (void *)sc, 0, 9630 bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain"); 9631 9632 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9633 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW, 9634 (void *)sc, 0, 9635 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 9636 9637 if (bce_hdr_split == TRUE) { 9638 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9639 "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW, 9640 (void *)sc, 0, 9641 bce_sysctl_dump_pg_chain, "I", "Dump page chain"); 9642 } 9643 9644 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9645 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW, 9646 (void *)sc, 0, 9647 bce_sysctl_dump_ctx, "I", "Dump context memory"); 9648 9649 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9650 "breakpoint", CTLTYPE_INT | CTLFLAG_RW, 9651 (void *)sc, 0, 9652 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 9653 9654 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9655 "reg_read", CTLTYPE_INT | CTLFLAG_RW, 9656 (void *)sc, 0, 9657 bce_sysctl_reg_read, "I", "Register read"); 9658 9659 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9660 "nvram_read", CTLTYPE_INT | CTLFLAG_RW, 9661 (void *)sc, 0, 9662 bce_sysctl_nvram_read, "I", "NVRAM read"); 9663 9664 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9665 "phy_read", CTLTYPE_INT | CTLFLAG_RW, 9666 (void *)sc, 0, 9667 bce_sysctl_phy_read, "I", "PHY register read"); 9668 9669 #endif 9670 9671 DBEXIT(BCE_VERBOSE_MISC); 9672 } 9673 9674 9675 /****************************************************************************/ 9676 /* BCE Debug Routines */ 9677 /****************************************************************************/ 9678 #ifdef BCE_DEBUG 9679 9680 /****************************************************************************/ 9681 /* Freezes the controller to allow for a cohesive state dump. */ 9682 /* */ 9683 /* Returns: */ 9684 /* Nothing. */ 9685 /****************************************************************************/ 9686 static __attribute__ ((noinline)) void 9687 bce_freeze_controller(struct bce_softc *sc) 9688 { 9689 u32 val; 9690 val = REG_RD(sc, BCE_MISC_COMMAND); 9691 val |= BCE_MISC_COMMAND_DISABLE_ALL; 9692 REG_WR(sc, BCE_MISC_COMMAND, val); 9693 } 9694 9695 9696 /****************************************************************************/ 9697 /* Unfreezes the controller after a freeze operation. This may not always */ 9698 /* work and the controller will require a reset! */ 9699 /* */ 9700 /* Returns: */ 9701 /* Nothing. */ 9702 /****************************************************************************/ 9703 static __attribute__ ((noinline)) void 9704 bce_unfreeze_controller(struct bce_softc *sc) 9705 { 9706 u32 val; 9707 val = REG_RD(sc, BCE_MISC_COMMAND); 9708 val |= BCE_MISC_COMMAND_ENABLE_ALL; 9709 REG_WR(sc, BCE_MISC_COMMAND, val); 9710 } 9711 9712 9713 /****************************************************************************/ 9714 /* Prints out Ethernet frame information from an mbuf. */ 9715 /* */ 9716 /* Partially decode an Ethernet frame to look at some important headers. */ 9717 /* */ 9718 /* Returns: */ 9719 /* Nothing. */ 9720 /****************************************************************************/ 9721 static __attribute__ ((noinline)) void 9722 bce_dump_enet(struct bce_softc *sc, struct mbuf *m) 9723 { 9724 struct ether_vlan_header *eh; 9725 u16 etype; 9726 int ehlen; 9727 struct ip *ip; 9728 struct tcphdr *th; 9729 struct udphdr *uh; 9730 struct arphdr *ah; 9731 9732 BCE_PRINTF( 9733 "-----------------------------" 9734 " Frame Decode " 9735 "-----------------------------\n"); 9736 9737 eh = mtod(m, struct ether_vlan_header *); 9738 9739 /* Handle VLAN encapsulation if present. */ 9740 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 9741 etype = ntohs(eh->evl_proto); 9742 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 9743 } else { 9744 etype = ntohs(eh->evl_encap_proto); 9745 ehlen = ETHER_HDR_LEN; 9746 } 9747 9748 /* ToDo: Add VLAN output. */ 9749 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", 9750 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); 9751 9752 switch (etype) { 9753 case ETHERTYPE_IP: 9754 ip = (struct ip *)(m->m_data + ehlen); 9755 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, " 9756 "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n", 9757 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), 9758 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); 9759 9760 switch (ip->ip_p) { 9761 case IPPROTO_TCP: 9762 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 9763 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = " 9764 "%d bytes, flags = 0x%b, csum = 0x%04X\n", 9765 ntohs(th->th_dport), ntohs(th->th_sport), 9766 (th->th_off << 2), th->th_flags, 9767 "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST" 9768 "\02SYN\01FIN", ntohs(th->th_sum)); 9769 break; 9770 case IPPROTO_UDP: 9771 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 9772 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d " 9773 "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport), 9774 ntohs(uh->uh_sport), ntohs(uh->uh_ulen), 9775 ntohs(uh->uh_sum)); 9776 break; 9777 case IPPROTO_ICMP: 9778 BCE_PRINTF("icmp:\n"); 9779 break; 9780 default: 9781 BCE_PRINTF("----: Other IP protocol.\n"); 9782 } 9783 break; 9784 case ETHERTYPE_IPV6: 9785 BCE_PRINTF("ipv6: No decode supported.\n"); 9786 break; 9787 case ETHERTYPE_ARP: 9788 BCE_PRINTF("-arp: "); 9789 ah = (struct arphdr *) (m->m_data + ehlen); 9790 switch (ntohs(ah->ar_op)) { 9791 case ARPOP_REVREQUEST: 9792 printf("reverse ARP request\n"); 9793 break; 9794 case ARPOP_REVREPLY: 9795 printf("reverse ARP reply\n"); 9796 break; 9797 case ARPOP_REQUEST: 9798 printf("ARP request\n"); 9799 break; 9800 case ARPOP_REPLY: 9801 printf("ARP reply\n"); 9802 break; 9803 default: 9804 printf("other ARP operation\n"); 9805 } 9806 break; 9807 default: 9808 BCE_PRINTF("----: Other protocol.\n"); 9809 } 9810 9811 BCE_PRINTF( 9812 "-----------------------------" 9813 "--------------" 9814 "-----------------------------\n"); 9815 } 9816 9817 9818 /****************************************************************************/ 9819 /* Prints out information about an mbuf. */ 9820 /* */ 9821 /* Returns: */ 9822 /* Nothing. */ 9823 /****************************************************************************/ 9824 static __attribute__ ((noinline)) void 9825 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 9826 { 9827 struct mbuf *mp = m; 9828 9829 if (m == NULL) { 9830 BCE_PRINTF("mbuf: null pointer\n"); 9831 return; 9832 } 9833 9834 while (mp) { 9835 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, " 9836 "m_data = %p\n", mp, mp->m_len, mp->m_flags, 9837 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data); 9838 9839 if (mp->m_flags & M_PKTHDR) { 9840 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, " 9841 "csum_flags = %b\n", mp->m_pkthdr.len, 9842 mp->m_flags, M_FLAG_PRINTF, 9843 mp->m_pkthdr.csum_flags, CSUM_BITS); 9844 } 9845 9846 if (mp->m_flags & M_EXT) { 9847 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", 9848 mp->m_ext.ext_buf, mp->m_ext.ext_size); 9849 switch (mp->m_ext.ext_type) { 9850 case EXT_CLUSTER: 9851 printf("EXT_CLUSTER\n"); break; 9852 case EXT_SFBUF: 9853 printf("EXT_SFBUF\n"); break; 9854 case EXT_JUMBO9: 9855 printf("EXT_JUMBO9\n"); break; 9856 case EXT_JUMBO16: 9857 printf("EXT_JUMBO16\n"); break; 9858 case EXT_PACKET: 9859 printf("EXT_PACKET\n"); break; 9860 case EXT_MBUF: 9861 printf("EXT_MBUF\n"); break; 9862 case EXT_NET_DRV: 9863 printf("EXT_NET_DRV\n"); break; 9864 case EXT_MOD_TYPE: 9865 printf("EXT_MDD_TYPE\n"); break; 9866 case EXT_DISPOSABLE: 9867 printf("EXT_DISPOSABLE\n"); break; 9868 case EXT_EXTREF: 9869 printf("EXT_EXTREF\n"); break; 9870 default: 9871 printf("UNKNOWN\n"); 9872 } 9873 } 9874 9875 mp = mp->m_next; 9876 } 9877 } 9878 9879 9880 /****************************************************************************/ 9881 /* Prints out the mbufs in the TX mbuf chain. */ 9882 /* */ 9883 /* Returns: */ 9884 /* Nothing. */ 9885 /****************************************************************************/ 9886 static __attribute__ ((noinline)) void 9887 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9888 { 9889 struct mbuf *m; 9890 9891 BCE_PRINTF( 9892 "----------------------------" 9893 " tx mbuf data " 9894 "----------------------------\n"); 9895 9896 for (int i = 0; i < count; i++) { 9897 m = sc->tx_mbuf_ptr[chain_prod]; 9898 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); 9899 bce_dump_mbuf(sc, m); 9900 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 9901 } 9902 9903 BCE_PRINTF( 9904 "----------------------------" 9905 "----------------" 9906 "----------------------------\n"); 9907 } 9908 9909 9910 /****************************************************************************/ 9911 /* Prints out the mbufs in the RX mbuf chain. */ 9912 /* */ 9913 /* Returns: */ 9914 /* Nothing. */ 9915 /****************************************************************************/ 9916 static __attribute__ ((noinline)) void 9917 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9918 { 9919 struct mbuf *m; 9920 9921 BCE_PRINTF( 9922 "----------------------------" 9923 " rx mbuf data " 9924 "----------------------------\n"); 9925 9926 for (int i = 0; i < count; i++) { 9927 m = sc->rx_mbuf_ptr[chain_prod]; 9928 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 9929 bce_dump_mbuf(sc, m); 9930 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 9931 } 9932 9933 9934 BCE_PRINTF( 9935 "----------------------------" 9936 "----------------" 9937 "----------------------------\n"); 9938 } 9939 9940 9941 /****************************************************************************/ 9942 /* Prints out the mbufs in the mbuf page chain. */ 9943 /* */ 9944 /* Returns: */ 9945 /* Nothing. */ 9946 /****************************************************************************/ 9947 static __attribute__ ((noinline)) void 9948 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9949 { 9950 struct mbuf *m; 9951 9952 BCE_PRINTF( 9953 "----------------------------" 9954 " pg mbuf data " 9955 "----------------------------\n"); 9956 9957 for (int i = 0; i < count; i++) { 9958 m = sc->pg_mbuf_ptr[chain_prod]; 9959 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); 9960 bce_dump_mbuf(sc, m); 9961 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); 9962 } 9963 9964 9965 BCE_PRINTF( 9966 "----------------------------" 9967 "----------------" 9968 "----------------------------\n"); 9969 } 9970 9971 9972 /****************************************************************************/ 9973 /* Prints out a tx_bd structure. */ 9974 /* */ 9975 /* Returns: */ 9976 /* Nothing. */ 9977 /****************************************************************************/ 9978 static __attribute__ ((noinline)) void 9979 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 9980 { 9981 int i = 0; 9982 9983 if (idx > MAX_TX_BD_ALLOC) 9984 /* Index out of range. */ 9985 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 9986 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 9987 /* TX Chain page pointer. */ 9988 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 9989 "pointer\n", idx, txbd->tx_bd_haddr_hi, 9990 txbd->tx_bd_haddr_lo); 9991 else { 9992 /* Normal tx_bd entry. */ 9993 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, " 9994 "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = " 9995 "0x%04X (", idx, txbd->tx_bd_haddr_hi, 9996 txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes, 9997 txbd->tx_bd_vlan_tag, txbd->tx_bd_flags); 9998 9999 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) { 10000 if (i>0) 10001 printf("|"); 10002 printf("CONN_FAULT"); 10003 i++; 10004 } 10005 10006 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) { 10007 if (i>0) 10008 printf("|"); 10009 printf("TCP_UDP_CKSUM"); 10010 i++; 10011 } 10012 10013 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) { 10014 if (i>0) 10015 printf("|"); 10016 printf("IP_CKSUM"); 10017 i++; 10018 } 10019 10020 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) { 10021 if (i>0) 10022 printf("|"); 10023 printf("VLAN"); 10024 i++; 10025 } 10026 10027 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) { 10028 if (i>0) 10029 printf("|"); 10030 printf("COAL_NOW"); 10031 i++; 10032 } 10033 10034 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) { 10035 if (i>0) 10036 printf("|"); 10037 printf("DONT_GEN_CRC"); 10038 i++; 10039 } 10040 10041 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) { 10042 if (i>0) 10043 printf("|"); 10044 printf("START"); 10045 i++; 10046 } 10047 10048 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) { 10049 if (i>0) 10050 printf("|"); 10051 printf("END"); 10052 i++; 10053 } 10054 10055 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) { 10056 if (i>0) 10057 printf("|"); 10058 printf("LSO"); 10059 i++; 10060 } 10061 10062 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) { 10063 if (i>0) 10064 printf("|"); 10065 printf("SW_OPTION=%d", ((txbd->tx_bd_flags & 10066 TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++; 10067 } 10068 10069 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) { 10070 if (i>0) 10071 printf("|"); 10072 printf("SW_FLAGS"); 10073 i++; 10074 } 10075 10076 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) { 10077 if (i>0) 10078 printf("|"); 10079 printf("SNAP)"); 10080 } else { 10081 printf(")\n"); 10082 } 10083 } 10084 } 10085 10086 10087 /****************************************************************************/ 10088 /* Prints out a rx_bd structure. */ 10089 /* */ 10090 /* Returns: */ 10091 /* Nothing. */ 10092 /****************************************************************************/ 10093 static __attribute__ ((noinline)) void 10094 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 10095 { 10096 if (idx > MAX_RX_BD_ALLOC) 10097 /* Index out of range. */ 10098 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 10099 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 10100 /* RX Chain page pointer. */ 10101 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 10102 "pointer\n", idx, rxbd->rx_bd_haddr_hi, 10103 rxbd->rx_bd_haddr_lo); 10104 else 10105 /* Normal rx_bd entry. */ 10106 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 10107 "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi, 10108 rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len, 10109 rxbd->rx_bd_flags); 10110 } 10111 10112 10113 /****************************************************************************/ 10114 /* Prints out a rx_bd structure in the page chain. */ 10115 /* */ 10116 /* Returns: */ 10117 /* Nothing. */ 10118 /****************************************************************************/ 10119 static __attribute__ ((noinline)) void 10120 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) 10121 { 10122 if (idx > MAX_PG_BD_ALLOC) 10123 /* Index out of range. */ 10124 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); 10125 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) 10126 /* Page Chain page pointer. */ 10127 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 10128 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); 10129 else 10130 /* Normal rx_bd entry. */ 10131 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 10132 "flags = 0x%08X\n", idx, 10133 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, 10134 pgbd->rx_bd_len, pgbd->rx_bd_flags); 10135 } 10136 10137 10138 /****************************************************************************/ 10139 /* Prints out a l2_fhdr structure. */ 10140 /* */ 10141 /* Returns: */ 10142 /* Nothing. */ 10143 /****************************************************************************/ 10144 static __attribute__ ((noinline)) void 10145 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 10146 { 10147 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " 10148 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " 10149 "tcp_udp_xsum = 0x%04X\n", idx, 10150 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, 10151 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, 10152 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); 10153 } 10154 10155 10156 /****************************************************************************/ 10157 /* Prints out context memory info. (Only useful for CID 0 to 16.) */ 10158 /* */ 10159 /* Returns: */ 10160 /* Nothing. */ 10161 /****************************************************************************/ 10162 static __attribute__ ((noinline)) void 10163 bce_dump_ctx(struct bce_softc *sc, u16 cid) 10164 { 10165 if (cid > TX_CID) { 10166 BCE_PRINTF(" Unknown CID\n"); 10167 return; 10168 } 10169 10170 BCE_PRINTF( 10171 "----------------------------" 10172 " CTX Data " 10173 "----------------------------\n"); 10174 10175 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); 10176 10177 if (cid == RX_CID) { 10178 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " 10179 "producer index\n", 10180 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); 10181 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host " 10182 "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 10183 BCE_L2CTX_RX_HOST_BSEQ)); 10184 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", 10185 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); 10186 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " 10187 "descriptor address\n", 10188 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); 10189 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " 10190 "descriptor address\n", 10191 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); 10192 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer " 10193 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10194 BCE_L2CTX_RX_NX_BDIDX)); 10195 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " 10196 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10197 BCE_L2CTX_RX_HOST_PG_BDIDX)); 10198 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " 10199 "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid), 10200 BCE_L2CTX_RX_PG_BUF_SIZE)); 10201 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " 10202 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 10203 BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); 10204 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " 10205 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 10206 BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); 10207 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " 10208 "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10209 BCE_L2CTX_RX_NX_PG_BDIDX)); 10210 } else if (cid == TX_CID) { 10211 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 10212 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", 10213 CTX_RD(sc, GET_CID_ADDR(cid), 10214 BCE_L2CTX_TX_TYPE_XI)); 10215 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx " 10216 "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid), 10217 BCE_L2CTX_TX_CMD_TYPE_XI)); 10218 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) " 10219 "h/w buffer descriptor address\n", 10220 CTX_RD(sc, GET_CID_ADDR(cid), 10221 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); 10222 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) " 10223 "h/w buffer descriptor address\n", 10224 CTX_RD(sc, GET_CID_ADDR(cid), 10225 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); 10226 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) " 10227 "host producer index\n", 10228 CTX_RD(sc, GET_CID_ADDR(cid), 10229 BCE_L2CTX_TX_HOST_BIDX_XI)); 10230 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) " 10231 "host byte sequence\n", 10232 CTX_RD(sc, GET_CID_ADDR(cid), 10233 BCE_L2CTX_TX_HOST_BSEQ_XI)); 10234 } else { 10235 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", 10236 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); 10237 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", 10238 CTX_RD(sc, GET_CID_ADDR(cid), 10239 BCE_L2CTX_TX_CMD_TYPE)); 10240 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) " 10241 "h/w buffer descriptor address\n", 10242 CTX_RD(sc, GET_CID_ADDR(cid), 10243 BCE_L2CTX_TX_TBDR_BHADDR_HI)); 10244 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) " 10245 "h/w buffer descriptor address\n", 10246 CTX_RD(sc, GET_CID_ADDR(cid), 10247 BCE_L2CTX_TX_TBDR_BHADDR_LO)); 10248 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host " 10249 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10250 BCE_L2CTX_TX_HOST_BIDX)); 10251 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " 10252 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 10253 BCE_L2CTX_TX_HOST_BSEQ)); 10254 } 10255 } 10256 10257 BCE_PRINTF( 10258 "----------------------------" 10259 " Raw CTX " 10260 "----------------------------\n"); 10261 10262 for (int i = 0x0; i < 0x300; i += 0x10) { 10263 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, 10264 CTX_RD(sc, GET_CID_ADDR(cid), i), 10265 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), 10266 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), 10267 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); 10268 } 10269 10270 10271 BCE_PRINTF( 10272 "----------------------------" 10273 "----------------" 10274 "----------------------------\n"); 10275 } 10276 10277 10278 /****************************************************************************/ 10279 /* Prints out the FTQ data. */ 10280 /* */ 10281 /* Returns: */ 10282 /* Nothing. */ 10283 /****************************************************************************/ 10284 static __attribute__ ((noinline)) void 10285 bce_dump_ftqs(struct bce_softc *sc) 10286 { 10287 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; 10288 10289 BCE_PRINTF( 10290 "----------------------------" 10291 " FTQ Data " 10292 "----------------------------\n"); 10293 10294 BCE_PRINTF(" FTQ Command Control Depth_Now " 10295 "Max_Depth Valid_Cnt \n"); 10296 BCE_PRINTF(" ------- ---------- ---------- ---------- " 10297 "---------- ----------\n"); 10298 10299 /* Setup the generic statistic counters for the FTQ valid count. */ 10300 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | 10301 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | 10302 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | 10303 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); 10304 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 10305 10306 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | 10307 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | 10308 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | 10309 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); 10310 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); 10311 10312 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | 10313 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | 10314 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | 10315 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); 10316 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); 10317 10318 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | 10319 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | 10320 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | 10321 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); 10322 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); 10323 10324 /* Input queue to the Receive Lookup state machine */ 10325 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); 10326 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); 10327 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; 10328 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; 10329 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 10330 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10331 cmd, ctl, cur_depth, max_depth, valid_cnt); 10332 10333 /* Input queue to the Receive Processor */ 10334 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); 10335 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); 10336 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; 10337 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; 10338 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 10339 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10340 cmd, ctl, cur_depth, max_depth, valid_cnt); 10341 10342 /* Input queue to the Recevie Processor */ 10343 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); 10344 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); 10345 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; 10346 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; 10347 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 10348 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10349 cmd, ctl, cur_depth, max_depth, valid_cnt); 10350 10351 /* Input queue to the Receive Virtual to Physical state machine */ 10352 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); 10353 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); 10354 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; 10355 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; 10356 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 10357 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10358 cmd, ctl, cur_depth, max_depth, valid_cnt); 10359 10360 /* Input queue to the Recevie Virtual to Physical state machine */ 10361 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); 10362 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); 10363 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; 10364 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; 10365 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); 10366 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10367 cmd, ctl, cur_depth, max_depth, valid_cnt); 10368 10369 /* Input queue to the Receive Virtual to Physical state machine */ 10370 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); 10371 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); 10372 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; 10373 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; 10374 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); 10375 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10376 cmd, ctl, cur_depth, max_depth, valid_cnt); 10377 10378 /* Input queue to the Receive DMA state machine */ 10379 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); 10380 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); 10381 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; 10382 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; 10383 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); 10384 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10385 cmd, ctl, cur_depth, max_depth, valid_cnt); 10386 10387 /* Input queue to the Transmit Scheduler state machine */ 10388 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); 10389 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); 10390 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; 10391 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; 10392 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); 10393 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10394 cmd, ctl, cur_depth, max_depth, valid_cnt); 10395 10396 /* Input queue to the Transmit Buffer Descriptor state machine */ 10397 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); 10398 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); 10399 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; 10400 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; 10401 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); 10402 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10403 cmd, ctl, cur_depth, max_depth, valid_cnt); 10404 10405 /* Input queue to the Transmit Processor */ 10406 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); 10407 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); 10408 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; 10409 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; 10410 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); 10411 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10412 cmd, ctl, cur_depth, max_depth, valid_cnt); 10413 10414 /* Input queue to the Transmit DMA state machine */ 10415 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); 10416 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); 10417 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; 10418 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; 10419 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); 10420 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10421 cmd, ctl, cur_depth, max_depth, valid_cnt); 10422 10423 /* Input queue to the Transmit Patch-Up Processor */ 10424 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); 10425 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); 10426 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; 10427 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; 10428 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); 10429 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10430 cmd, ctl, cur_depth, max_depth, valid_cnt); 10431 10432 /* Input queue to the Transmit Assembler state machine */ 10433 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); 10434 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); 10435 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; 10436 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; 10437 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); 10438 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10439 cmd, ctl, cur_depth, max_depth, valid_cnt); 10440 10441 /* Input queue to the Completion Processor */ 10442 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); 10443 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); 10444 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; 10445 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; 10446 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); 10447 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10448 cmd, ctl, cur_depth, max_depth, valid_cnt); 10449 10450 /* Input queue to the Completion Processor */ 10451 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); 10452 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); 10453 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; 10454 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; 10455 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); 10456 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10457 cmd, ctl, cur_depth, max_depth, valid_cnt); 10458 10459 /* Input queue to the Completion Processor */ 10460 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); 10461 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); 10462 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; 10463 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; 10464 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); 10465 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10466 cmd, ctl, cur_depth, max_depth, valid_cnt); 10467 10468 /* Setup the generic statistic counters for the FTQ valid count. */ 10469 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | 10470 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | 10471 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); 10472 10473 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 10474 val = val | 10475 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 10476 24); 10477 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 10478 10479 /* Input queue to the Management Control Processor */ 10480 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); 10481 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); 10482 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; 10483 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; 10484 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 10485 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10486 cmd, ctl, cur_depth, max_depth, valid_cnt); 10487 10488 /* Input queue to the Command Processor */ 10489 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); 10490 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); 10491 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; 10492 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; 10493 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 10494 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10495 cmd, ctl, cur_depth, max_depth, valid_cnt); 10496 10497 /* Input queue to the Completion Scheduler state machine */ 10498 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); 10499 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); 10500 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; 10501 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; 10502 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 10503 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10504 cmd, ctl, cur_depth, max_depth, valid_cnt); 10505 10506 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 10507 /* Input queue to the RV2P Command Scheduler */ 10508 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); 10509 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); 10510 cur_depth = (ctl & 0xFFC00000) >> 22; 10511 max_depth = (ctl & 0x003FF000) >> 12; 10512 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 10513 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10514 cmd, ctl, cur_depth, max_depth, valid_cnt); 10515 } 10516 10517 BCE_PRINTF( 10518 "----------------------------" 10519 "----------------" 10520 "----------------------------\n"); 10521 } 10522 10523 10524 /****************************************************************************/ 10525 /* Prints out the TX chain. */ 10526 /* */ 10527 /* Returns: */ 10528 /* Nothing. */ 10529 /****************************************************************************/ 10530 static __attribute__ ((noinline)) void 10531 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) 10532 { 10533 struct tx_bd *txbd; 10534 10535 /* First some info about the tx_bd chain structure. */ 10536 BCE_PRINTF( 10537 "----------------------------" 10538 " tx_bd chain " 10539 "----------------------------\n"); 10540 10541 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 10542 (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages); 10543 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 10544 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 10545 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC); 10546 10547 BCE_PRINTF( 10548 "----------------------------" 10549 " tx_bd data " 10550 "----------------------------\n"); 10551 10552 /* Now print out a decoded list of TX buffer descriptors. */ 10553 for (int i = 0; i < count; i++) { 10554 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 10555 bce_dump_txbd(sc, tx_prod, txbd); 10556 tx_prod++; 10557 } 10558 10559 BCE_PRINTF( 10560 "----------------------------" 10561 "----------------" 10562 "----------------------------\n"); 10563 } 10564 10565 10566 /****************************************************************************/ 10567 /* Prints out the RX chain. */ 10568 /* */ 10569 /* Returns: */ 10570 /* Nothing. */ 10571 /****************************************************************************/ 10572 static __attribute__ ((noinline)) void 10573 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count) 10574 { 10575 struct rx_bd *rxbd; 10576 10577 /* First some info about the rx_bd chain structure. */ 10578 BCE_PRINTF( 10579 "----------------------------" 10580 " rx_bd chain " 10581 "----------------------------\n"); 10582 10583 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 10584 (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages); 10585 10586 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 10587 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 10588 10589 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC); 10590 10591 BCE_PRINTF( 10592 "----------------------------" 10593 " rx_bd data " 10594 "----------------------------\n"); 10595 10596 /* Now print out the rx_bd's themselves. */ 10597 for (int i = 0; i < count; i++) { 10598 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 10599 bce_dump_rxbd(sc, rx_prod, rxbd); 10600 rx_prod = RX_CHAIN_IDX(rx_prod + 1); 10601 } 10602 10603 BCE_PRINTF( 10604 "----------------------------" 10605 "----------------" 10606 "----------------------------\n"); 10607 } 10608 10609 10610 /****************************************************************************/ 10611 /* Prints out the page chain. */ 10612 /* */ 10613 /* Returns: */ 10614 /* Nothing. */ 10615 /****************************************************************************/ 10616 static __attribute__ ((noinline)) void 10617 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) 10618 { 10619 struct rx_bd *pgbd; 10620 10621 /* First some info about the page chain structure. */ 10622 BCE_PRINTF( 10623 "----------------------------" 10624 " page chain " 10625 "----------------------------\n"); 10626 10627 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", 10628 (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages); 10629 10630 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 10631 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); 10632 10633 BCE_PRINTF("total pg_bd = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC); 10634 10635 BCE_PRINTF( 10636 "----------------------------" 10637 " page data " 10638 "----------------------------\n"); 10639 10640 /* Now print out the rx_bd's themselves. */ 10641 for (int i = 0; i < count; i++) { 10642 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; 10643 bce_dump_pgbd(sc, pg_prod, pgbd); 10644 pg_prod = PG_CHAIN_IDX(pg_prod + 1); 10645 } 10646 10647 BCE_PRINTF( 10648 "----------------------------" 10649 "----------------" 10650 "----------------------------\n"); 10651 } 10652 10653 10654 #define BCE_PRINT_RX_CONS(arg) \ 10655 if (sblk->status_rx_quick_consumer_index##arg) \ 10656 BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n", \ 10657 sblk->status_rx_quick_consumer_index##arg, (u16) \ 10658 RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg), \ 10659 arg); 10660 10661 10662 #define BCE_PRINT_TX_CONS(arg) \ 10663 if (sblk->status_tx_quick_consumer_index##arg) \ 10664 BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n", \ 10665 sblk->status_tx_quick_consumer_index##arg, (u16) \ 10666 TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg), \ 10667 arg); 10668 10669 /****************************************************************************/ 10670 /* Prints out the status block from host memory. */ 10671 /* */ 10672 /* Returns: */ 10673 /* Nothing. */ 10674 /****************************************************************************/ 10675 static __attribute__ ((noinline)) void 10676 bce_dump_status_block(struct bce_softc *sc) 10677 { 10678 struct status_block *sblk; 10679 10680 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD); 10681 10682 sblk = sc->status_block; 10683 10684 BCE_PRINTF( 10685 "----------------------------" 10686 " Status Block " 10687 "----------------------------\n"); 10688 10689 /* Theses indices are used for normal L2 drivers. */ 10690 BCE_PRINTF(" 0x%08X - attn_bits\n", 10691 sblk->status_attn_bits); 10692 10693 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 10694 sblk->status_attn_bits_ack); 10695 10696 BCE_PRINT_RX_CONS(0); 10697 BCE_PRINT_TX_CONS(0) 10698 10699 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 10700 10701 /* Theses indices are not used for normal L2 drivers. */ 10702 BCE_PRINT_RX_CONS(1); BCE_PRINT_RX_CONS(2); BCE_PRINT_RX_CONS(3); 10703 BCE_PRINT_RX_CONS(4); BCE_PRINT_RX_CONS(5); BCE_PRINT_RX_CONS(6); 10704 BCE_PRINT_RX_CONS(7); BCE_PRINT_RX_CONS(8); BCE_PRINT_RX_CONS(9); 10705 BCE_PRINT_RX_CONS(10); BCE_PRINT_RX_CONS(11); BCE_PRINT_RX_CONS(12); 10706 BCE_PRINT_RX_CONS(13); BCE_PRINT_RX_CONS(14); BCE_PRINT_RX_CONS(15); 10707 10708 BCE_PRINT_TX_CONS(1); BCE_PRINT_TX_CONS(2); BCE_PRINT_TX_CONS(3); 10709 10710 if (sblk->status_completion_producer_index || 10711 sblk->status_cmd_consumer_index) 10712 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 10713 sblk->status_completion_producer_index, 10714 sblk->status_cmd_consumer_index); 10715 10716 BCE_PRINTF( 10717 "----------------------------" 10718 "----------------" 10719 "----------------------------\n"); 10720 } 10721 10722 10723 #define BCE_PRINT_64BIT_STAT(arg) \ 10724 if (sblk->arg##_lo || sblk->arg##_hi) \ 10725 BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi, \ 10726 sblk->arg##_lo, #arg); 10727 10728 #define BCE_PRINT_32BIT_STAT(arg) \ 10729 if (sblk->arg) \ 10730 BCE_PRINTF(" 0x%08X : %s\n", \ 10731 sblk->arg, #arg); 10732 10733 /****************************************************************************/ 10734 /* Prints out the statistics block from host memory. */ 10735 /* */ 10736 /* Returns: */ 10737 /* Nothing. */ 10738 /****************************************************************************/ 10739 static __attribute__ ((noinline)) void 10740 bce_dump_stats_block(struct bce_softc *sc) 10741 { 10742 struct statistics_block *sblk; 10743 10744 bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD); 10745 10746 sblk = sc->stats_block; 10747 10748 BCE_PRINTF( 10749 "---------------" 10750 " Stats Block (All Stats Not Shown Are 0) " 10751 "---------------\n"); 10752 10753 BCE_PRINT_64BIT_STAT(stat_IfHCInOctets); 10754 BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets); 10755 BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets); 10756 BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets); 10757 BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts); 10758 BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts); 10759 BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts); 10760 BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts); 10761 BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts); 10762 BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts); 10763 BCE_PRINT_32BIT_STAT( 10764 stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 10765 BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors); 10766 BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors); 10767 BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors); 10768 BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames); 10769 BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames); 10770 BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions); 10771 BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions); 10772 BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions); 10773 BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions); 10774 BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments); 10775 BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers); 10776 BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts); 10777 BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts); 10778 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets); 10779 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets); 10780 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets); 10781 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets); 10782 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets); 10783 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets); 10784 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets); 10785 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets); 10786 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets); 10787 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets); 10788 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets); 10789 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets); 10790 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets); 10791 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets); 10792 BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived); 10793 BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived); 10794 BCE_PRINT_32BIT_STAT(stat_OutXonSent); 10795 BCE_PRINT_32BIT_STAT(stat_OutXoffSent); 10796 BCE_PRINT_32BIT_STAT(stat_FlowControlDone); 10797 BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived); 10798 BCE_PRINT_32BIT_STAT(stat_XoffStateEntered); 10799 BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards); 10800 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards); 10801 BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards); 10802 BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards); 10803 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit); 10804 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards); 10805 BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards); 10806 BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards); 10807 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit); 10808 10809 BCE_PRINTF( 10810 "----------------------------" 10811 "----------------" 10812 "----------------------------\n"); 10813 } 10814 10815 10816 /****************************************************************************/ 10817 /* Prints out a summary of the driver state. */ 10818 /* */ 10819 /* Returns: */ 10820 /* Nothing. */ 10821 /****************************************************************************/ 10822 static __attribute__ ((noinline)) void 10823 bce_dump_driver_state(struct bce_softc *sc) 10824 { 10825 u32 val_hi, val_lo; 10826 10827 BCE_PRINTF( 10828 "-----------------------------" 10829 " Driver State " 10830 "-----------------------------\n"); 10831 10832 val_hi = BCE_ADDR_HI(sc); 10833 val_lo = BCE_ADDR_LO(sc); 10834 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual " 10835 "address\n", val_hi, val_lo); 10836 10837 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 10838 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 10839 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual " 10840 "address\n", val_hi, val_lo); 10841 10842 val_hi = BCE_ADDR_HI(sc->status_block); 10843 val_lo = BCE_ADDR_LO(sc->status_block); 10844 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block " 10845 "virtual address\n", val_hi, val_lo); 10846 10847 val_hi = BCE_ADDR_HI(sc->stats_block); 10848 val_lo = BCE_ADDR_LO(sc->stats_block); 10849 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block " 10850 "virtual address\n", val_hi, val_lo); 10851 10852 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 10853 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 10854 BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain " 10855 "virtual adddress\n", val_hi, val_lo); 10856 10857 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 10858 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 10859 BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain " 10860 "virtual address\n", val_hi, val_lo); 10861 10862 if (bce_hdr_split == TRUE) { 10863 val_hi = BCE_ADDR_HI(sc->pg_bd_chain); 10864 val_lo = BCE_ADDR_LO(sc->pg_bd_chain); 10865 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain " 10866 "virtual address\n", val_hi, val_lo); 10867 } 10868 10869 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 10870 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 10871 BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain " 10872 "virtual address\n", val_hi, val_lo); 10873 10874 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 10875 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 10876 BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain " 10877 "virtual address\n", val_hi, val_lo); 10878 10879 if (bce_hdr_split == TRUE) { 10880 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); 10881 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); 10882 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain " 10883 "virtual address\n", val_hi, val_lo); 10884 } 10885 10886 BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) " 10887 "h/w intrs\n", 10888 (long long unsigned int) sc->interrupts_generated); 10889 10890 BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) " 10891 "rx interrupts handled\n", 10892 (long long unsigned int) sc->interrupts_rx); 10893 10894 BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) " 10895 "tx interrupts handled\n", 10896 (long long unsigned int) sc->interrupts_tx); 10897 10898 BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) " 10899 "phy interrupts handled\n", 10900 (long long unsigned int) sc->phy_interrupts); 10901 10902 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) " 10903 "status block index\n", sc->last_status_idx); 10904 10905 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer " 10906 "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 10907 10908 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer " 10909 "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 10910 10911 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer " 10912 "byte seq index\n", sc->tx_prod_bseq); 10913 10914 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx " 10915 "mbufs allocated\n", sc->debug_tx_mbuf_alloc); 10916 10917 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used " 10918 "tx_bd's\n", sc->used_tx_bd); 10919 10920 BCE_PRINTF(" 0x%04X/0x%04X - (sc->tx_hi_watermark)/" 10921 "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd); 10922 10923 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer " 10924 "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 10925 10926 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer " 10927 "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 10928 10929 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer " 10930 "byte seq index\n", sc->rx_prod_bseq); 10931 10932 BCE_PRINTF(" 0x%04X/0x%04X - (sc->rx_low_watermark)/" 10933 "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd); 10934 10935 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx " 10936 "mbufs allocated\n", sc->debug_rx_mbuf_alloc); 10937 10938 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free " 10939 "rx_bd's\n", sc->free_rx_bd); 10940 10941 if (bce_hdr_split == TRUE) { 10942 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer " 10943 "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); 10944 10945 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer " 10946 "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); 10947 10948 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page " 10949 "mbufs allocated\n", sc->debug_pg_mbuf_alloc); 10950 } 10951 10952 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page " 10953 "rx_bd's\n", sc->free_pg_bd); 10954 10955 BCE_PRINTF(" 0x%04X/0x%04X - (sc->pg_low_watermark)/" 10956 "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd); 10957 10958 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) " 10959 "mbuf alloc failures\n", sc->mbuf_alloc_failed_count); 10960 10961 BCE_PRINTF(" 0x%08X - (sc->bce_flags) " 10962 "bce mac flags\n", sc->bce_flags); 10963 10964 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) " 10965 "bce phy flags\n", sc->bce_phy_flags); 10966 10967 BCE_PRINTF( 10968 "----------------------------" 10969 "----------------" 10970 "----------------------------\n"); 10971 } 10972 10973 10974 /****************************************************************************/ 10975 /* Prints out the hardware state through a summary of important register, */ 10976 /* followed by a complete register dump. */ 10977 /* */ 10978 /* Returns: */ 10979 /* Nothing. */ 10980 /****************************************************************************/ 10981 static __attribute__ ((noinline)) void 10982 bce_dump_hw_state(struct bce_softc *sc) 10983 { 10984 u32 val; 10985 10986 BCE_PRINTF( 10987 "----------------------------" 10988 " Hardware State " 10989 "----------------------------\n"); 10990 10991 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 10992 10993 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 10994 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 10995 val, BCE_MISC_ENABLE_STATUS_BITS); 10996 10997 val = REG_RD(sc, BCE_DMA_STATUS); 10998 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", 10999 val, BCE_DMA_STATUS); 11000 11001 val = REG_RD(sc, BCE_CTX_STATUS); 11002 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", 11003 val, BCE_CTX_STATUS); 11004 11005 val = REG_RD(sc, BCE_EMAC_STATUS); 11006 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", 11007 val, BCE_EMAC_STATUS); 11008 11009 val = REG_RD(sc, BCE_RPM_STATUS); 11010 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", 11011 val, BCE_RPM_STATUS); 11012 11013 /* ToDo: Create a #define for this constant. */ 11014 val = REG_RD(sc, 0x2004); 11015 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", 11016 val, 0x2004); 11017 11018 val = REG_RD(sc, BCE_RV2P_STATUS); 11019 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", 11020 val, BCE_RV2P_STATUS); 11021 11022 /* ToDo: Create a #define for this constant. */ 11023 val = REG_RD(sc, 0x2c04); 11024 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", 11025 val, 0x2c04); 11026 11027 val = REG_RD(sc, BCE_TBDR_STATUS); 11028 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", 11029 val, BCE_TBDR_STATUS); 11030 11031 val = REG_RD(sc, BCE_TDMA_STATUS); 11032 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", 11033 val, BCE_TDMA_STATUS); 11034 11035 val = REG_RD(sc, BCE_HC_STATUS); 11036 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", 11037 val, BCE_HC_STATUS); 11038 11039 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 11040 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 11041 val, BCE_TXP_CPU_STATE); 11042 11043 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 11044 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 11045 val, BCE_TPAT_CPU_STATE); 11046 11047 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 11048 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 11049 val, BCE_RXP_CPU_STATE); 11050 11051 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 11052 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 11053 val, BCE_COM_CPU_STATE); 11054 11055 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 11056 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", 11057 val, BCE_MCP_CPU_STATE); 11058 11059 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 11060 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 11061 val, BCE_CP_CPU_STATE); 11062 11063 BCE_PRINTF( 11064 "----------------------------" 11065 "----------------" 11066 "----------------------------\n"); 11067 11068 BCE_PRINTF( 11069 "----------------------------" 11070 " Register Dump " 11071 "----------------------------\n"); 11072 11073 for (int i = 0x400; i < 0x8000; i += 0x10) { 11074 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11075 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 11076 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 11077 } 11078 11079 BCE_PRINTF( 11080 "----------------------------" 11081 "----------------" 11082 "----------------------------\n"); 11083 } 11084 11085 11086 /****************************************************************************/ 11087 /* Prints out the contentst of shared memory which is used for host driver */ 11088 /* to bootcode firmware communication. */ 11089 /* */ 11090 /* Returns: */ 11091 /* Nothing. */ 11092 /****************************************************************************/ 11093 static __attribute__ ((noinline)) void 11094 bce_dump_shmem_state(struct bce_softc *sc) 11095 { 11096 BCE_PRINTF( 11097 "----------------------------" 11098 " Hardware State " 11099 "----------------------------\n"); 11100 11101 BCE_PRINTF("0x%08X - Shared memory base address\n", 11102 sc->bce_shmem_base); 11103 BCE_PRINTF("%s - bootcode version\n", 11104 sc->bce_bc_ver); 11105 11106 BCE_PRINTF( 11107 "----------------------------" 11108 " Shared Mem " 11109 "----------------------------\n"); 11110 11111 for (int i = 0x0; i < 0x200; i += 0x10) { 11112 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11113 i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4), 11114 bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC)); 11115 } 11116 11117 BCE_PRINTF( 11118 "----------------------------" 11119 "----------------" 11120 "----------------------------\n"); 11121 } 11122 11123 11124 /****************************************************************************/ 11125 /* Prints out the mailbox queue registers. */ 11126 /* */ 11127 /* Returns: */ 11128 /* Nothing. */ 11129 /****************************************************************************/ 11130 static __attribute__ ((noinline)) void 11131 bce_dump_mq_regs(struct bce_softc *sc) 11132 { 11133 BCE_PRINTF( 11134 "----------------------------" 11135 " MQ Regs " 11136 "----------------------------\n"); 11137 11138 BCE_PRINTF( 11139 "----------------------------" 11140 "----------------" 11141 "----------------------------\n"); 11142 11143 for (int i = 0x3c00; i < 0x4000; i += 0x10) { 11144 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11145 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 11146 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 11147 } 11148 11149 BCE_PRINTF( 11150 "----------------------------" 11151 "----------------" 11152 "----------------------------\n"); 11153 } 11154 11155 11156 /****************************************************************************/ 11157 /* Prints out the bootcode state. */ 11158 /* */ 11159 /* Returns: */ 11160 /* Nothing. */ 11161 /****************************************************************************/ 11162 static __attribute__ ((noinline)) void 11163 bce_dump_bc_state(struct bce_softc *sc) 11164 { 11165 u32 val; 11166 11167 BCE_PRINTF( 11168 "----------------------------" 11169 " Bootcode State " 11170 "----------------------------\n"); 11171 11172 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 11173 11174 val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE); 11175 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 11176 val, BCE_BC_RESET_TYPE); 11177 11178 val = bce_shmem_rd(sc, BCE_BC_STATE); 11179 BCE_PRINTF("0x%08X - (0x%06X) state\n", 11180 val, BCE_BC_STATE); 11181 11182 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 11183 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 11184 val, BCE_BC_STATE_CONDITION); 11185 11186 val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD); 11187 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 11188 val, BCE_BC_STATE_DEBUG_CMD); 11189 11190 BCE_PRINTF( 11191 "----------------------------" 11192 "----------------" 11193 "----------------------------\n"); 11194 } 11195 11196 11197 /****************************************************************************/ 11198 /* Prints out the TXP processor state. */ 11199 /* */ 11200 /* Returns: */ 11201 /* Nothing. */ 11202 /****************************************************************************/ 11203 static __attribute__ ((noinline)) void 11204 bce_dump_txp_state(struct bce_softc *sc, int regs) 11205 { 11206 u32 val; 11207 u32 fw_version[3]; 11208 11209 BCE_PRINTF( 11210 "----------------------------" 11211 " TXP State " 11212 "----------------------------\n"); 11213 11214 for (int i = 0; i < 3; i++) 11215 fw_version[i] = htonl(REG_RD_IND(sc, 11216 (BCE_TXP_SCRATCH + 0x10 + i * 4))); 11217 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11218 11219 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 11220 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", 11221 val, BCE_TXP_CPU_MODE); 11222 11223 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 11224 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 11225 val, BCE_TXP_CPU_STATE); 11226 11227 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 11228 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", 11229 val, BCE_TXP_CPU_EVENT_MASK); 11230 11231 if (regs) { 11232 BCE_PRINTF( 11233 "----------------------------" 11234 " Register Dump " 11235 "----------------------------\n"); 11236 11237 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 11238 /* Skip the big blank spaces */ 11239 if (i < 0x454000 && i > 0x5ffff) 11240 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11241 "0x%08X 0x%08X\n", i, 11242 REG_RD_IND(sc, i), 11243 REG_RD_IND(sc, i + 0x4), 11244 REG_RD_IND(sc, i + 0x8), 11245 REG_RD_IND(sc, i + 0xC)); 11246 } 11247 } 11248 11249 BCE_PRINTF( 11250 "----------------------------" 11251 "----------------" 11252 "----------------------------\n"); 11253 } 11254 11255 11256 /****************************************************************************/ 11257 /* Prints out the RXP processor state. */ 11258 /* */ 11259 /* Returns: */ 11260 /* Nothing. */ 11261 /****************************************************************************/ 11262 static __attribute__ ((noinline)) void 11263 bce_dump_rxp_state(struct bce_softc *sc, int regs) 11264 { 11265 u32 val; 11266 u32 fw_version[3]; 11267 11268 BCE_PRINTF( 11269 "----------------------------" 11270 " RXP State " 11271 "----------------------------\n"); 11272 11273 for (int i = 0; i < 3; i++) 11274 fw_version[i] = htonl(REG_RD_IND(sc, 11275 (BCE_RXP_SCRATCH + 0x10 + i * 4))); 11276 11277 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11278 11279 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 11280 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", 11281 val, BCE_RXP_CPU_MODE); 11282 11283 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 11284 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 11285 val, BCE_RXP_CPU_STATE); 11286 11287 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 11288 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", 11289 val, BCE_RXP_CPU_EVENT_MASK); 11290 11291 if (regs) { 11292 BCE_PRINTF( 11293 "----------------------------" 11294 " Register Dump " 11295 "----------------------------\n"); 11296 11297 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 11298 /* Skip the big blank sapces */ 11299 if (i < 0xc5400 && i > 0xdffff) 11300 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11301 "0x%08X 0x%08X\n", i, 11302 REG_RD_IND(sc, i), 11303 REG_RD_IND(sc, i + 0x4), 11304 REG_RD_IND(sc, i + 0x8), 11305 REG_RD_IND(sc, i + 0xC)); 11306 } 11307 } 11308 11309 BCE_PRINTF( 11310 "----------------------------" 11311 "----------------" 11312 "----------------------------\n"); 11313 } 11314 11315 11316 /****************************************************************************/ 11317 /* Prints out the TPAT processor state. */ 11318 /* */ 11319 /* Returns: */ 11320 /* Nothing. */ 11321 /****************************************************************************/ 11322 static __attribute__ ((noinline)) void 11323 bce_dump_tpat_state(struct bce_softc *sc, int regs) 11324 { 11325 u32 val; 11326 u32 fw_version[3]; 11327 11328 BCE_PRINTF( 11329 "----------------------------" 11330 " TPAT State " 11331 "----------------------------\n"); 11332 11333 for (int i = 0; i < 3; i++) 11334 fw_version[i] = htonl(REG_RD_IND(sc, 11335 (BCE_TPAT_SCRATCH + 0x410 + i * 4))); 11336 11337 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11338 11339 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 11340 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", 11341 val, BCE_TPAT_CPU_MODE); 11342 11343 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 11344 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 11345 val, BCE_TPAT_CPU_STATE); 11346 11347 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 11348 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", 11349 val, BCE_TPAT_CPU_EVENT_MASK); 11350 11351 if (regs) { 11352 BCE_PRINTF( 11353 "----------------------------" 11354 " Register Dump " 11355 "----------------------------\n"); 11356 11357 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 11358 /* Skip the big blank spaces */ 11359 if (i < 0x854000 && i > 0x9ffff) 11360 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11361 "0x%08X 0x%08X\n", i, 11362 REG_RD_IND(sc, i), 11363 REG_RD_IND(sc, i + 0x4), 11364 REG_RD_IND(sc, i + 0x8), 11365 REG_RD_IND(sc, i + 0xC)); 11366 } 11367 } 11368 11369 BCE_PRINTF( 11370 "----------------------------" 11371 "----------------" 11372 "----------------------------\n"); 11373 } 11374 11375 11376 /****************************************************************************/ 11377 /* Prints out the Command Procesor (CP) state. */ 11378 /* */ 11379 /* Returns: */ 11380 /* Nothing. */ 11381 /****************************************************************************/ 11382 static __attribute__ ((noinline)) void 11383 bce_dump_cp_state(struct bce_softc *sc, int regs) 11384 { 11385 u32 val; 11386 u32 fw_version[3]; 11387 11388 BCE_PRINTF( 11389 "----------------------------" 11390 " CP State " 11391 "----------------------------\n"); 11392 11393 for (int i = 0; i < 3; i++) 11394 fw_version[i] = htonl(REG_RD_IND(sc, 11395 (BCE_CP_SCRATCH + 0x10 + i * 4))); 11396 11397 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11398 11399 val = REG_RD_IND(sc, BCE_CP_CPU_MODE); 11400 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", 11401 val, BCE_CP_CPU_MODE); 11402 11403 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 11404 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 11405 val, BCE_CP_CPU_STATE); 11406 11407 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); 11408 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, 11409 BCE_CP_CPU_EVENT_MASK); 11410 11411 if (regs) { 11412 BCE_PRINTF( 11413 "----------------------------" 11414 " Register Dump " 11415 "----------------------------\n"); 11416 11417 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { 11418 /* Skip the big blank spaces */ 11419 if (i < 0x185400 && i > 0x19ffff) 11420 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11421 "0x%08X 0x%08X\n", i, 11422 REG_RD_IND(sc, i), 11423 REG_RD_IND(sc, i + 0x4), 11424 REG_RD_IND(sc, i + 0x8), 11425 REG_RD_IND(sc, i + 0xC)); 11426 } 11427 } 11428 11429 BCE_PRINTF( 11430 "----------------------------" 11431 "----------------" 11432 "----------------------------\n"); 11433 } 11434 11435 11436 /****************************************************************************/ 11437 /* Prints out the Completion Procesor (COM) state. */ 11438 /* */ 11439 /* Returns: */ 11440 /* Nothing. */ 11441 /****************************************************************************/ 11442 static __attribute__ ((noinline)) void 11443 bce_dump_com_state(struct bce_softc *sc, int regs) 11444 { 11445 u32 val; 11446 u32 fw_version[4]; 11447 11448 BCE_PRINTF( 11449 "----------------------------" 11450 " COM State " 11451 "----------------------------\n"); 11452 11453 for (int i = 0; i < 3; i++) 11454 fw_version[i] = htonl(REG_RD_IND(sc, 11455 (BCE_COM_SCRATCH + 0x10 + i * 4))); 11456 11457 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11458 11459 val = REG_RD_IND(sc, BCE_COM_CPU_MODE); 11460 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", 11461 val, BCE_COM_CPU_MODE); 11462 11463 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 11464 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 11465 val, BCE_COM_CPU_STATE); 11466 11467 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); 11468 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, 11469 BCE_COM_CPU_EVENT_MASK); 11470 11471 if (regs) { 11472 BCE_PRINTF( 11473 "----------------------------" 11474 " Register Dump " 11475 "----------------------------\n"); 11476 11477 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { 11478 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11479 "0x%08X 0x%08X\n", i, 11480 REG_RD_IND(sc, i), 11481 REG_RD_IND(sc, i + 0x4), 11482 REG_RD_IND(sc, i + 0x8), 11483 REG_RD_IND(sc, i + 0xC)); 11484 } 11485 } 11486 11487 BCE_PRINTF( 11488 "----------------------------" 11489 "----------------" 11490 "----------------------------\n"); 11491 } 11492 11493 11494 /****************************************************************************/ 11495 /* Prints out the Receive Virtual 2 Physical (RV2P) state. */ 11496 /* */ 11497 /* Returns: */ 11498 /* Nothing. */ 11499 /****************************************************************************/ 11500 static __attribute__ ((noinline)) void 11501 bce_dump_rv2p_state(struct bce_softc *sc) 11502 { 11503 u32 val, pc1, pc2, fw_ver_high, fw_ver_low; 11504 11505 BCE_PRINTF( 11506 "----------------------------" 11507 " RV2P State " 11508 "----------------------------\n"); 11509 11510 /* Stall the RV2P processors. */ 11511 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 11512 val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2; 11513 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 11514 11515 /* Read the firmware version. */ 11516 val = 0x00000001; 11517 REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 11518 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 11519 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 11520 BCE_RV2P_INSTR_HIGH_HIGH; 11521 BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n", 11522 fw_ver_high, fw_ver_low); 11523 11524 val = 0x00000001; 11525 REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 11526 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 11527 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 11528 BCE_RV2P_INSTR_HIGH_HIGH; 11529 BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n", 11530 fw_ver_high, fw_ver_low); 11531 11532 /* Resume the RV2P processors. */ 11533 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 11534 val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2); 11535 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 11536 11537 /* Fetch the program counter value. */ 11538 val = 0x68007800; 11539 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 11540 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 11541 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 11542 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 11543 BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1); 11544 BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2); 11545 11546 /* Fetch the program counter value again to see if it is advancing. */ 11547 val = 0x68007800; 11548 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 11549 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 11550 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 11551 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 11552 BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1); 11553 BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2); 11554 11555 BCE_PRINTF( 11556 "----------------------------" 11557 "----------------" 11558 "----------------------------\n"); 11559 } 11560 11561 11562 /****************************************************************************/ 11563 /* Prints out the driver state and then enters the debugger. */ 11564 /* */ 11565 /* Returns: */ 11566 /* Nothing. */ 11567 /****************************************************************************/ 11568 static __attribute__ ((noinline)) void 11569 bce_breakpoint(struct bce_softc *sc) 11570 { 11571 11572 /* 11573 * Unreachable code to silence compiler warnings 11574 * about unused functions. 11575 */ 11576 if (0) { 11577 bce_freeze_controller(sc); 11578 bce_unfreeze_controller(sc); 11579 bce_dump_enet(sc, NULL); 11580 bce_dump_txbd(sc, 0, NULL); 11581 bce_dump_rxbd(sc, 0, NULL); 11582 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC); 11583 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); 11584 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC); 11585 bce_dump_l2fhdr(sc, 0, NULL); 11586 bce_dump_ctx(sc, RX_CID); 11587 bce_dump_ftqs(sc); 11588 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC); 11589 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC); 11590 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC); 11591 bce_dump_status_block(sc); 11592 bce_dump_stats_block(sc); 11593 bce_dump_driver_state(sc); 11594 bce_dump_hw_state(sc); 11595 bce_dump_bc_state(sc); 11596 bce_dump_txp_state(sc, 0); 11597 bce_dump_rxp_state(sc, 0); 11598 bce_dump_tpat_state(sc, 0); 11599 bce_dump_cp_state(sc, 0); 11600 bce_dump_com_state(sc, 0); 11601 bce_dump_rv2p_state(sc); 11602 bce_dump_pgbd(sc, 0, NULL); 11603 } 11604 11605 bce_dump_status_block(sc); 11606 bce_dump_driver_state(sc); 11607 11608 /* Call the debugger. */ 11609 breakpoint(); 11610 } 11611 #endif 11612