xref: /freebsd/sys/dev/bce/if_bce.c (revision 5686c6c38a3e1cc78804eaf5f880bda23dcf592f)
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53 
54 #include "opt_bce.h"
55 
56 #include <dev/bce/if_bcereg.h>
57 #include <dev/bce/if_bcefw.h>
58 
59 /****************************************************************************/
60 /* BCE Debug Options                                                        */
61 /****************************************************************************/
62 #ifdef BCE_DEBUG
63 	u32 bce_debug = BCE_WARN;
64 
65 	/*          0 = Never              */
66 	/*          1 = 1 in 2,147,483,648 */
67 	/*        256 = 1 in     8,388,608 */
68 	/*       2048 = 1 in     1,048,576 */
69 	/*      65536 = 1 in        32,768 */
70 	/*    1048576 = 1 in         2,048 */
71 	/*  268435456 =	1 in             8 */
72 	/*  536870912 = 1 in             4 */
73 	/* 1073741824 = 1 in             2 */
74 
75 	/* Controls how often the l2_fhdr frame error check will fail. */
76 	int l2fhdr_error_sim_control = 0;
77 
78 	/* Controls how often the unexpected attention check will fail. */
79 	int unexpected_attention_sim_control = 0;
80 
81 	/* Controls how often to simulate an mbuf allocation failure. */
82 	int mbuf_alloc_failed_sim_control = 0;
83 
84 	/* Controls how often to simulate a DMA mapping failure. */
85 	int dma_map_addr_failed_sim_control = 0;
86 
87 	/* Controls how often to simulate a bootcode failure. */
88 	int bootcode_running_failure_sim_control = 0;
89 #endif
90 
91 /****************************************************************************/
92 /* PCI Device ID Table                                                      */
93 /*                                                                          */
94 /* Used by bce_probe() to identify the devices supported by this driver.    */
95 /****************************************************************************/
96 #define BCE_DEVDESC_MAX		64
97 
98 static const struct bce_type bce_devs[] = {
99 	/* BCM5706C Controllers and OEM boards. */
100 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
101 		"HP NC370T Multifunction Gigabit Server Adapter" },
102 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
103 		"HP NC370i Multifunction Gigabit Server Adapter" },
104 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
105 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
106 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
107 		"HP NC371i Multifunction Gigabit Server Adapter" },
108 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
109 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
110 
111 	/* BCM5706S controllers and OEM boards. */
112 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
113 		"HP NC370F Multifunction Gigabit Server Adapter" },
114 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
115 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
116 
117 	/* BCM5708C controllers and OEM boards. */
118 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
119 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
120 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
121 		"HP NC373i Multifunction Gigabit Server Adapter" },
122 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
123 		"HP NC374m PCIe Multifunction Adapter" },
124 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
125 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
126 
127 	/* BCM5708S controllers and OEM boards. */
128 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
129 		"HP NC373m Multifunction Gigabit Server Adapter" },
130 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
131 		"HP NC373i Multifunction Gigabit Server Adapter" },
132 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
133 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
134 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
135 		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
136 
137 	/* BCM5709C controllers and OEM boards. */
138 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
139 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
140 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
141 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
142 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
143 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
144 
145 	/* BCM5709S controllers and OEM boards. */
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
147 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
149 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
151 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
152 
153 	/* BCM5716 controllers and OEM boards. */
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
155 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
156 
157 	{ 0, 0, 0, 0, NULL }
158 };
159 
160 
161 /****************************************************************************/
162 /* Supported Flash NVRAM device data.                                       */
163 /****************************************************************************/
164 static const struct flash_spec flash_table[] =
165 {
166 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
167 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
168 
169 	/* Slow EEPROM */
170 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
171 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
172 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
173 	 "EEPROM - slow"},
174 	/* Expansion entry 0001 */
175 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
176 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178 	 "Entry 0001"},
179 	/* Saifun SA25F010 (non-buffered flash) */
180 	/* strap, cfg1, & write1 need updates */
181 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
182 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
184 	 "Non-buffered flash (128kB)"},
185 	/* Saifun SA25F020 (non-buffered flash) */
186 	/* strap, cfg1, & write1 need updates */
187 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
188 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
190 	 "Non-buffered flash (256kB)"},
191 	/* Expansion entry 0100 */
192 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0100"},
196 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
197 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
198 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
199 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
200 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
201 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
202 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
203 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
204 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
205 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
206 	/* Saifun SA25F005 (non-buffered flash) */
207 	/* strap, cfg1, & write1 need updates */
208 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
209 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
211 	 "Non-buffered flash (64kB)"},
212 	/* Fast EEPROM */
213 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
214 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
215 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
216 	 "EEPROM - fast"},
217 	/* Expansion entry 1001 */
218 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
219 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 	 "Entry 1001"},
222 	/* Expansion entry 1010 */
223 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 	 "Entry 1010"},
227 	/* ATMEL AT45DB011B (buffered flash) */
228 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
229 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
231 	 "Buffered flash (128kB)"},
232 	/* Expansion entry 1100 */
233 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
234 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
235 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
236 	 "Entry 1100"},
237 	/* Expansion entry 1101 */
238 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
239 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
240 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
241 	 "Entry 1101"},
242 	/* Ateml Expansion entry 1110 */
243 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
244 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
245 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
246 	 "Entry 1110 (Atmel)"},
247 	/* ATMEL AT45DB021B (buffered flash) */
248 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
249 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
250 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
251 	 "Buffered flash (256kB)"},
252 };
253 
254 /*
255  * The BCM5709 controllers transparently handle the
256  * differences between Atmel 264 byte pages and all
257  * flash devices which use 256 byte pages, so no
258  * logical-to-physical mapping is required in the
259  * driver.
260  */
261 static const struct flash_spec flash_5709 = {
262 	.flags		= BCE_NV_BUFFERED,
263 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
264 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
265 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
266 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
267 	.name		= "5709/5716 buffered flash (256kB)",
268 };
269 
270 
271 /****************************************************************************/
272 /* FreeBSD device entry points.                                             */
273 /****************************************************************************/
274 static int  bce_probe			(device_t);
275 static int  bce_attach			(device_t);
276 static int  bce_detach			(device_t);
277 static int  bce_shutdown		(device_t);
278 
279 
280 /****************************************************************************/
281 /* BCE Debug Data Structure Dump Routines                                   */
282 /****************************************************************************/
283 #ifdef BCE_DEBUG
284 static u32  bce_reg_rd				(struct bce_softc *, u32);
285 static void bce_reg_wr				(struct bce_softc *, u32, u32);
286 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
287 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
288 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
289 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
290 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
291 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
292 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
293 static void bce_dump_txbd			(struct bce_softc *,
294     int, struct tx_bd *);
295 static void bce_dump_rxbd			(struct bce_softc *,
296     int, struct rx_bd *);
297 static void bce_dump_pgbd			(struct bce_softc *,
298     int, struct rx_bd *);
299 static void bce_dump_l2fhdr		(struct bce_softc *,
300     int, struct l2_fhdr *);
301 static void bce_dump_ctx			(struct bce_softc *, u16);
302 static void bce_dump_ftqs			(struct bce_softc *);
303 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
304 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
305 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
306 static void bce_dump_status_block	(struct bce_softc *);
307 static void bce_dump_stats_block	(struct bce_softc *);
308 static void bce_dump_driver_state	(struct bce_softc *);
309 static void bce_dump_hw_state		(struct bce_softc *);
310 static void bce_dump_shmem_state	(struct bce_softc *);
311 static void bce_dump_mq_regs		(struct bce_softc *);
312 static void bce_dump_bc_state		(struct bce_softc *);
313 static void bce_dump_txp_state		(struct bce_softc *, int);
314 static void bce_dump_rxp_state		(struct bce_softc *, int);
315 static void bce_dump_tpat_state	(struct bce_softc *, int);
316 static void bce_dump_cp_state		(struct bce_softc *, int);
317 static void bce_dump_com_state		(struct bce_softc *, int);
318 static void bce_dump_rv2p_state	(struct bce_softc *);
319 static void bce_breakpoint			(struct bce_softc *);
320 #endif /*BCE_DEBUG */
321 
322 
323 /****************************************************************************/
324 /* BCE Register/Memory Access Routines                                      */
325 /****************************************************************************/
326 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
327 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
328 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
329 static u32  bce_shmem_rd		(struct bce_softc *, u32);
330 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
331 static int  bce_miibus_read_reg		(device_t, int, int);
332 static int  bce_miibus_write_reg	(device_t, int, int, int);
333 static void bce_miibus_statchg		(device_t);
334 
335 #ifdef BCE_DEBUG
336 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
337 #ifdef BCE_NVRAM_WRITE_SUPPORT
338 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
339 #endif
340 #endif
341 
342 /****************************************************************************/
343 /* BCE NVRAM Access Routines                                                */
344 /****************************************************************************/
345 static int  bce_acquire_nvram_lock	(struct bce_softc *);
346 static int  bce_release_nvram_lock	(struct bce_softc *);
347 static void bce_enable_nvram_access(struct bce_softc *);
348 static void bce_disable_nvram_access(struct bce_softc *);
349 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
350 static int  bce_init_nvram			(struct bce_softc *);
351 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
352 static int  bce_nvram_test			(struct bce_softc *);
353 #ifdef BCE_NVRAM_WRITE_SUPPORT
354 static int  bce_enable_nvram_write	(struct bce_softc *);
355 static void bce_disable_nvram_write(struct bce_softc *);
356 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
357 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
358 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
359 #endif
360 
361 /****************************************************************************/
362 /*                                                                          */
363 /****************************************************************************/
364 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
365 static void bce_get_media			(struct bce_softc *);
366 static void bce_init_media			(struct bce_softc *);
367 static u32 bce_get_rphy_link		(struct bce_softc *);
368 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
369 static int  bce_dma_alloc			(device_t);
370 static void bce_dma_free			(struct bce_softc *);
371 static void bce_release_resources	(struct bce_softc *);
372 
373 /****************************************************************************/
374 /* BCE Firmware Synchronization and Load                                    */
375 /****************************************************************************/
376 static void bce_fw_cap_init			(struct bce_softc *);
377 static int  bce_fw_sync			(struct bce_softc *, u32);
378 static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
379 static void bce_load_cpu_fw		(struct bce_softc *,
380     struct cpu_reg *, struct fw_info *);
381 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
382 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
383 static void bce_start_rxp_cpu		(struct bce_softc *);
384 static void bce_init_rxp_cpu		(struct bce_softc *);
385 static void bce_init_txp_cpu 		(struct bce_softc *);
386 static void bce_init_tpat_cpu		(struct bce_softc *);
387 static void bce_init_cp_cpu	  	(struct bce_softc *);
388 static void bce_init_com_cpu	  	(struct bce_softc *);
389 static void bce_init_cpus			(struct bce_softc *);
390 
391 static void bce_print_adapter_info	(struct bce_softc *);
392 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
393 static void bce_stop				(struct bce_softc *);
394 static int  bce_reset				(struct bce_softc *, u32);
395 static int  bce_chipinit 			(struct bce_softc *);
396 static int  bce_blockinit 			(struct bce_softc *);
397 
398 static int  bce_init_tx_chain		(struct bce_softc *);
399 static void bce_free_tx_chain		(struct bce_softc *);
400 
401 static int  bce_get_rx_buf			(struct bce_softc *,
402     struct mbuf *, u16 *, u16 *, u32 *);
403 static int  bce_init_rx_chain		(struct bce_softc *);
404 static void bce_fill_rx_chain		(struct bce_softc *);
405 static void bce_free_rx_chain		(struct bce_softc *);
406 
407 static int  bce_get_pg_buf			(struct bce_softc *,
408     struct mbuf *, u16 *, u16 *);
409 static int  bce_init_pg_chain		(struct bce_softc *);
410 static void bce_fill_pg_chain		(struct bce_softc *);
411 static void bce_free_pg_chain		(struct bce_softc *);
412 
413 static struct mbuf *bce_tso_setup	(struct bce_softc *,
414     struct mbuf **, u16 *);
415 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
416 static void bce_start_locked		(struct ifnet *);
417 static void bce_start				(struct ifnet *);
418 static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
419 static void bce_watchdog			(struct bce_softc *);
420 static int  bce_ifmedia_upd		(struct ifnet *);
421 static int  bce_ifmedia_upd_locked	(struct ifnet *);
422 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
423 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
424 static void bce_init_locked		(struct bce_softc *);
425 static void bce_init				(void *);
426 static void bce_mgmt_init_locked	(struct bce_softc *sc);
427 
428 static int  bce_init_ctx			(struct bce_softc *);
429 static void bce_get_mac_addr		(struct bce_softc *);
430 static void bce_set_mac_addr		(struct bce_softc *);
431 static void bce_phy_intr			(struct bce_softc *);
432 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
433 static void bce_rx_intr			(struct bce_softc *);
434 static void bce_tx_intr			(struct bce_softc *);
435 static void bce_disable_intr		(struct bce_softc *);
436 static void bce_enable_intr		(struct bce_softc *, int);
437 
438 static void bce_intr				(void *);
439 static void bce_set_rx_mode		(struct bce_softc *);
440 static void bce_stats_update		(struct bce_softc *);
441 static void bce_tick				(void *);
442 static void bce_pulse				(void *);
443 static void bce_add_sysctls		(struct bce_softc *);
444 
445 
446 /****************************************************************************/
447 /* FreeBSD device dispatch table.                                           */
448 /****************************************************************************/
449 static device_method_t bce_methods[] = {
450 	/* Device interface (device_if.h) */
451 	DEVMETHOD(device_probe,		bce_probe),
452 	DEVMETHOD(device_attach,	bce_attach),
453 	DEVMETHOD(device_detach,	bce_detach),
454 	DEVMETHOD(device_shutdown,	bce_shutdown),
455 /* Supported by device interface but not used here. */
456 /*	DEVMETHOD(device_identify,	bce_identify),      */
457 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
458 /*	DEVMETHOD(device_resume,	bce_resume),        */
459 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
460 
461 	/* MII interface (miibus_if.h) */
462 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
463 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
464 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
465 /* Supported by MII interface but not used here.       */
466 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
467 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
468 
469 	DEVMETHOD_END
470 };
471 
472 static driver_t bce_driver = {
473 	"bce",
474 	bce_methods,
475 	sizeof(struct bce_softc)
476 };
477 
478 static devclass_t bce_devclass;
479 
480 MODULE_DEPEND(bce, pci, 1, 1, 1);
481 MODULE_DEPEND(bce, ether, 1, 1, 1);
482 MODULE_DEPEND(bce, miibus, 1, 1, 1);
483 
484 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
485 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
486 
487 
488 /****************************************************************************/
489 /* Tunable device values                                                    */
490 /****************************************************************************/
491 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
492 
493 /* Allowable values are TRUE or FALSE */
494 static int bce_verbose = TRUE;
495 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
496 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
497     "Verbose output enable/disable");
498 
499 /* Allowable values are TRUE or FALSE */
500 static int bce_tso_enable = TRUE;
501 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
502 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
503     "TSO Enable/Disable");
504 
505 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
506 /* ToDo: Add MSI-X support. */
507 static int bce_msi_enable = 1;
508 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
509 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
510     "MSI-X|MSI|INTx selector");
511 
512 /* Allowable values are 1, 2, 4, 8. */
513 static int bce_rx_pages = DEFAULT_RX_PAGES;
514 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
515 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
516     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
517 
518 /* Allowable values are 1, 2, 4, 8. */
519 static int bce_tx_pages = DEFAULT_TX_PAGES;
520 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
521 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
522     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
523 
524 /* Allowable values are TRUE or FALSE. */
525 static int bce_hdr_split = TRUE;
526 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
527 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
528     "Frame header/payload splitting Enable/Disable");
529 
530 /* Allowable values are TRUE or FALSE. */
531 static int bce_strict_rx_mtu = FALSE;
532 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
533 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
534     &bce_strict_rx_mtu, 0,
535     "Enable/Disable strict RX frame size checking");
536 
537 /* Allowable values are 0 ... 100 */
538 #ifdef BCE_DEBUG
539 /* Generate 1 interrupt for every transmit completion. */
540 static int bce_tx_quick_cons_trip_int = 1;
541 #else
542 /* Generate 1 interrupt for every 20 transmit completions. */
543 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
544 #endif
545 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
546 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
547     &bce_tx_quick_cons_trip_int, 0,
548     "Transmit BD trip point during interrupts");
549 
550 /* Allowable values are 0 ... 100 */
551 /* Generate 1 interrupt for every transmit completion. */
552 #ifdef BCE_DEBUG
553 static int bce_tx_quick_cons_trip = 1;
554 #else
555 /* Generate 1 interrupt for every 20 transmit completions. */
556 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
557 #endif
558 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
559 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
560     &bce_tx_quick_cons_trip, 0,
561     "Transmit BD trip point");
562 
563 /* Allowable values are 0 ... 100 */
564 #ifdef BCE_DEBUG
565 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
566 static int bce_tx_ticks_int = 0;
567 #else
568 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
569 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
570 #endif
571 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
572 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
573     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
574 
575 /* Allowable values are 0 ... 100 */
576 #ifdef BCE_DEBUG
577 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
578 static int bce_tx_ticks = 0;
579 #else
580 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
581 static int bce_tx_ticks = DEFAULT_TX_TICKS;
582 #endif
583 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
584 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
585     &bce_tx_ticks, 0, "Transmit ticks count");
586 
587 /* Allowable values are 1 ... 100 */
588 #ifdef BCE_DEBUG
589 /* Generate 1 interrupt for every received frame. */
590 static int bce_rx_quick_cons_trip_int = 1;
591 #else
592 /* Generate 1 interrupt for every 6 received frames. */
593 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
594 #endif
595 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
596 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
597     &bce_rx_quick_cons_trip_int, 0,
598     "Receive BD trip point duirng interrupts");
599 
600 /* Allowable values are 1 ... 100 */
601 #ifdef BCE_DEBUG
602 /* Generate 1 interrupt for every received frame. */
603 static int bce_rx_quick_cons_trip = 1;
604 #else
605 /* Generate 1 interrupt for every 6 received frames. */
606 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
607 #endif
608 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
609 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
610     &bce_rx_quick_cons_trip, 0,
611     "Receive BD trip point");
612 
613 /* Allowable values are 0 ... 100 */
614 #ifdef BCE_DEBUG
615 /* Generate an int. if 0us have elapsed since the last received frame. */
616 static int bce_rx_ticks_int = 0;
617 #else
618 /* Generate an int. if 18us have elapsed since the last received frame. */
619 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
620 #endif
621 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
622 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
623     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
624 
625 /* Allowable values are 0 ... 100 */
626 #ifdef BCE_DEBUG
627 /* Generate an int. if 0us have elapsed since the last received frame. */
628 static int bce_rx_ticks = 0;
629 #else
630 /* Generate an int. if 18us have elapsed since the last received frame. */
631 static int bce_rx_ticks = DEFAULT_RX_TICKS;
632 #endif
633 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
634 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
635     &bce_rx_ticks, 0, "Receive ticks count");
636 
637 
638 /****************************************************************************/
639 /* Device probe function.                                                   */
640 /*                                                                          */
641 /* Compares the device to the driver's list of supported devices and        */
642 /* reports back to the OS whether this is the right driver for the device.  */
643 /*                                                                          */
644 /* Returns:                                                                 */
645 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
646 /****************************************************************************/
647 static int
648 bce_probe(device_t dev)
649 {
650 	const struct bce_type *t;
651 	struct bce_softc *sc;
652 	char *descbuf;
653 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
654 
655 	t = bce_devs;
656 
657 	sc = device_get_softc(dev);
658 	sc->bce_unit = device_get_unit(dev);
659 	sc->bce_dev = dev;
660 
661 	/* Get the data for the device to be probed. */
662 	vid  = pci_get_vendor(dev);
663 	did  = pci_get_device(dev);
664 	svid = pci_get_subvendor(dev);
665 	sdid = pci_get_subdevice(dev);
666 
667 	DBPRINT(sc, BCE_EXTREME_LOAD,
668 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
669 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
670 
671 	/* Look through the list of known devices for a match. */
672 	while(t->bce_name != NULL) {
673 
674 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
675 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
676 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
677 
678 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
679 
680 			if (descbuf == NULL)
681 				return(ENOMEM);
682 
683 			/* Print out the device identity. */
684 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
685 			    t->bce_name, (((pci_read_config(dev,
686 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
687 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
688 
689 			device_set_desc_copy(dev, descbuf);
690 			free(descbuf, M_TEMP);
691 			return(BUS_PROBE_DEFAULT);
692 		}
693 		t++;
694 	}
695 
696 	return(ENXIO);
697 }
698 
699 
700 /****************************************************************************/
701 /* PCI Capabilities Probe Function.                                         */
702 /*                                                                          */
703 /* Walks the PCI capabiites list for the device to find what features are   */
704 /* supported.                                                               */
705 /*                                                                          */
706 /* Returns:                                                                 */
707 /*   None.                                                                  */
708 /****************************************************************************/
709 static void
710 bce_print_adapter_info(struct bce_softc *sc)
711 {
712 	int i = 0;
713 
714 	DBENTER(BCE_VERBOSE_LOAD);
715 
716 	if (bce_verbose || bootverbose) {
717 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
718 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
719 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
720 
721 
722 		/* Bus info. */
723 		if (sc->bce_flags & BCE_PCIE_FLAG) {
724 			printf("Bus (PCIe x%d, ", sc->link_width);
725 			switch (sc->link_speed) {
726 			case 1: printf("2.5Gbps); "); break;
727 			case 2:	printf("5Gbps); "); break;
728 			default: printf("Unknown link speed); ");
729 			}
730 		} else {
731 			printf("Bus (PCI%s, %s, %dMHz); ",
732 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
733 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
734 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
735 		}
736 
737 		/* Firmware version and device features. */
738 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
739 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
740 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
741 
742 		if (bce_hdr_split == TRUE) {
743 			printf("SPLT");
744 			i++;
745 		}
746 
747 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
748 			if (i > 0) printf("|");
749 			printf("MSI"); i++;
750 		}
751 
752 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
753 			if (i > 0) printf("|");
754 			printf("MSI-X"); i++;
755 		}
756 
757 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
758 			if (i > 0) printf("|");
759 			printf("2.5G"); i++;
760 		}
761 
762 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
763 			if (i > 0) printf("|");
764 			printf("Remote PHY(%s)",
765 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
766 			    "FIBER" : "TP"); i++;
767 		}
768 
769 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
770 			if (i > 0) printf("|");
771 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
772 		} else {
773 			printf(")\n");
774 		}
775 
776 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
777 		    sc->bce_rx_quick_cons_trip_int,
778 		    sc->bce_rx_quick_cons_trip,
779 		    sc->bce_rx_ticks_int,
780 		    sc->bce_rx_ticks,
781 		    sc->bce_tx_quick_cons_trip_int,
782 		    sc->bce_tx_quick_cons_trip,
783 		    sc->bce_tx_ticks_int,
784 		    sc->bce_tx_ticks);
785 
786 	}
787 
788 	DBEXIT(BCE_VERBOSE_LOAD);
789 }
790 
791 
792 /****************************************************************************/
793 /* PCI Capabilities Probe Function.                                         */
794 /*                                                                          */
795 /* Walks the PCI capabiites list for the device to find what features are   */
796 /* supported.                                                               */
797 /*                                                                          */
798 /* Returns:                                                                 */
799 /*   None.                                                                  */
800 /****************************************************************************/
801 static void
802 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
803 {
804 	u32 reg;
805 
806 	DBENTER(BCE_VERBOSE_LOAD);
807 
808 	/* Check if PCI-X capability is enabled. */
809 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
810 		if (reg != 0)
811 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
812 	}
813 
814 	/* Check if PCIe capability is enabled. */
815 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
816 		if (reg != 0) {
817 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
818 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
819 			    "0x%08X\n",	link_status);
820 			sc->link_speed = link_status & 0xf;
821 			sc->link_width = (link_status >> 4) & 0x3f;
822 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
823 			sc->bce_flags |= BCE_PCIE_FLAG;
824 		}
825 	}
826 
827 	/* Check if MSI capability is enabled. */
828 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
829 		if (reg != 0)
830 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
831 	}
832 
833 	/* Check if MSI-X capability is enabled. */
834 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
835 		if (reg != 0)
836 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
837 	}
838 
839 	DBEXIT(BCE_VERBOSE_LOAD);
840 }
841 
842 
843 /****************************************************************************/
844 /* Load and validate user tunable settings.                                 */
845 /*                                                                          */
846 /* Returns:                                                                 */
847 /*   Nothing.                                                               */
848 /****************************************************************************/
849 static void
850 bce_set_tunables(struct bce_softc *sc)
851 {
852 	/* Set sysctl values for RX page count. */
853 	switch (bce_rx_pages) {
854 	case 1:
855 		/* fall-through */
856 	case 2:
857 		/* fall-through */
858 	case 4:
859 		/* fall-through */
860 	case 8:
861 		sc->rx_pages = bce_rx_pages;
862 		break;
863 	default:
864 		sc->rx_pages = DEFAULT_RX_PAGES;
865 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
866 		    "hw.bce.rx_pages!  Setting default of %d.\n",
867 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
868 	}
869 
870 	/* ToDo: Consider allowing user setting for pg_pages. */
871 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
872 
873 	/* Set sysctl values for TX page count. */
874 	switch (bce_tx_pages) {
875 	case 1:
876 		/* fall-through */
877 	case 2:
878 		/* fall-through */
879 	case 4:
880 		/* fall-through */
881 	case 8:
882 		sc->tx_pages = bce_tx_pages;
883 		break;
884 	default:
885 		sc->tx_pages = DEFAULT_TX_PAGES;
886 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
887 		    "hw.bce.tx_pages!  Setting default of %d.\n",
888 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
889 	}
890 
891 	/*
892 	 * Validate the TX trip point (i.e. the number of
893 	 * TX completions before a status block update is
894 	 * generated and an interrupt is asserted.
895 	 */
896 	if (bce_tx_quick_cons_trip_int <= 100) {
897 		sc->bce_tx_quick_cons_trip_int =
898 		    bce_tx_quick_cons_trip_int;
899 	} else {
900 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
901 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
902 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
903 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
904 		sc->bce_tx_quick_cons_trip_int =
905 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
906 	}
907 
908 	if (bce_tx_quick_cons_trip <= 100) {
909 		sc->bce_tx_quick_cons_trip =
910 		    bce_tx_quick_cons_trip;
911 	} else {
912 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
913 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
914 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
915 		    DEFAULT_TX_QUICK_CONS_TRIP);
916 		sc->bce_tx_quick_cons_trip =
917 		    DEFAULT_TX_QUICK_CONS_TRIP;
918 	}
919 
920 	/*
921 	 * Validate the TX ticks count (i.e. the maximum amount
922 	 * of time to wait after the last TX completion has
923 	 * occurred before a status block update is generated
924 	 * and an interrupt is asserted.
925 	 */
926 	if (bce_tx_ticks_int <= 100) {
927 		sc->bce_tx_ticks_int =
928 		    bce_tx_ticks_int;
929 	} else {
930 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
931 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
932 		    __FILE__, __LINE__, bce_tx_ticks_int,
933 		    DEFAULT_TX_TICKS_INT);
934 		sc->bce_tx_ticks_int =
935 		    DEFAULT_TX_TICKS_INT;
936 	   }
937 
938 	if (bce_tx_ticks <= 100) {
939 		sc->bce_tx_ticks =
940 		    bce_tx_ticks;
941 	} else {
942 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
943 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
944 		    __FILE__, __LINE__, bce_tx_ticks,
945 		    DEFAULT_TX_TICKS);
946 		sc->bce_tx_ticks =
947 		    DEFAULT_TX_TICKS;
948 	}
949 
950 	/*
951 	 * Validate the RX trip point (i.e. the number of
952 	 * RX frames received before a status block update is
953 	 * generated and an interrupt is asserted.
954 	 */
955 	if (bce_rx_quick_cons_trip_int <= 100) {
956 		sc->bce_rx_quick_cons_trip_int =
957 		    bce_rx_quick_cons_trip_int;
958 	} else {
959 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
960 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
961 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
962 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
963 		sc->bce_rx_quick_cons_trip_int =
964 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
965 	}
966 
967 	if (bce_rx_quick_cons_trip <= 100) {
968 		sc->bce_rx_quick_cons_trip =
969 		    bce_rx_quick_cons_trip;
970 	} else {
971 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
972 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
973 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
974 		    DEFAULT_RX_QUICK_CONS_TRIP);
975 		sc->bce_rx_quick_cons_trip =
976 		    DEFAULT_RX_QUICK_CONS_TRIP;
977 	}
978 
979 	/*
980 	 * Validate the RX ticks count (i.e. the maximum amount
981 	 * of time to wait after the last RX frame has been
982 	 * received before a status block update is generated
983 	 * and an interrupt is asserted.
984 	 */
985 	if (bce_rx_ticks_int <= 100) {
986 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
987 	} else {
988 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
989 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
990 		    __FILE__, __LINE__, bce_rx_ticks_int,
991 		    DEFAULT_RX_TICKS_INT);
992 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
993 	}
994 
995 	if (bce_rx_ticks <= 100) {
996 		sc->bce_rx_ticks = bce_rx_ticks;
997 	} else {
998 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
999 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1000 		    __FILE__, __LINE__, bce_rx_ticks,
1001 		    DEFAULT_RX_TICKS);
1002 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1003 	}
1004 
1005 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1006 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1007 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1008 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1009 		   __FILE__, __LINE__);
1010 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1011 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1012 	}
1013 
1014 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1015 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1016 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1017 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1018 		   __FILE__, __LINE__);
1019 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1020 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1021 	}
1022 
1023 }
1024 
1025 
1026 /****************************************************************************/
1027 /* Device attach function.                                                  */
1028 /*                                                                          */
1029 /* Allocates device resources, performs secondary chip identification,      */
1030 /* resets and initializes the hardware, and initializes driver instance     */
1031 /* variables.                                                               */
1032 /*                                                                          */
1033 /* Returns:                                                                 */
1034 /*   0 on success, positive value on failure.                               */
1035 /****************************************************************************/
1036 static int
1037 bce_attach(device_t dev)
1038 {
1039 	struct bce_softc *sc;
1040 	struct ifnet *ifp;
1041 	u32 val;
1042 	int count, error, rc = 0, rid;
1043 
1044 	sc = device_get_softc(dev);
1045 	sc->bce_dev = dev;
1046 
1047 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1048 
1049 	sc->bce_unit = device_get_unit(dev);
1050 
1051 	/* Set initial device and PHY flags */
1052 	sc->bce_flags = 0;
1053 	sc->bce_phy_flags = 0;
1054 
1055 	bce_set_tunables(sc);
1056 
1057 	pci_enable_busmaster(dev);
1058 
1059 	/* Allocate PCI memory resources. */
1060 	rid = PCIR_BAR(0);
1061 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1062 		&rid, RF_ACTIVE);
1063 
1064 	if (sc->bce_res_mem == NULL) {
1065 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1066 		    __FILE__, __LINE__);
1067 		rc = ENXIO;
1068 		goto bce_attach_fail;
1069 	}
1070 
1071 	/* Get various resource handles. */
1072 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1073 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1074 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1075 
1076 	bce_probe_pci_caps(dev, sc);
1077 
1078 	rid = 1;
1079 	count = 0;
1080 #if 0
1081 	/* Try allocating MSI-X interrupts. */
1082 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1083 		(bce_msi_enable >= 2) &&
1084 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1085 		&rid, RF_ACTIVE)) != NULL)) {
1086 
1087 		msi_needed = count = 1;
1088 
1089 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1090 			(count != msi_needed)) {
1091 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1092 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1093 				msi_needed, count, error);
1094 			count = 0;
1095 			pci_release_msi(dev);
1096 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1097 				sc->bce_res_irq);
1098 			sc->bce_res_irq = NULL;
1099 		} else {
1100 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1101 				__FUNCTION__);
1102 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1103 		}
1104 	}
1105 #endif
1106 
1107 	/* Try allocating a MSI interrupt. */
1108 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1109 		(bce_msi_enable >= 1) && (count == 0)) {
1110 		count = 1;
1111 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1112 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1113 			    "error = %d\n", __FILE__, __LINE__, error);
1114 			count = 0;
1115 			pci_release_msi(dev);
1116 		} else {
1117 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1118 			    "interrupt.\n", __FUNCTION__);
1119 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1120 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1121 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1122 			rid = 1;
1123 		}
1124 	}
1125 
1126 	/* Try allocating a legacy interrupt. */
1127 	if (count == 0) {
1128 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1129 			__FUNCTION__);
1130 		rid = 0;
1131 	}
1132 
1133 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1134 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1135 
1136 	/* Report any IRQ allocation errors. */
1137 	if (sc->bce_res_irq == NULL) {
1138 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1139 		    __FILE__, __LINE__);
1140 		rc = ENXIO;
1141 		goto bce_attach_fail;
1142 	}
1143 
1144 	/* Initialize mutex for the current device instance. */
1145 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1146 
1147 	/*
1148 	 * Configure byte swap and enable indirect register access.
1149 	 * Rely on CPU to do target byte swapping on big endian systems.
1150 	 * Access to registers outside of PCI configurtion space are not
1151 	 * valid until this is done.
1152 	 */
1153 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1154 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1155 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1156 
1157 	/* Save ASIC revsion info. */
1158 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1159 
1160 	/* Weed out any non-production controller revisions. */
1161 	switch(BCE_CHIP_ID(sc)) {
1162 	case BCE_CHIP_ID_5706_A0:
1163 	case BCE_CHIP_ID_5706_A1:
1164 	case BCE_CHIP_ID_5708_A0:
1165 	case BCE_CHIP_ID_5708_B0:
1166 	case BCE_CHIP_ID_5709_A0:
1167 	case BCE_CHIP_ID_5709_B0:
1168 	case BCE_CHIP_ID_5709_B1:
1169 	case BCE_CHIP_ID_5709_B2:
1170 		BCE_PRINTF("%s(%d): Unsupported controller "
1171 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1172 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1173 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1174 		    PCIR_REVID, 4) & 0xf));
1175 		rc = ENODEV;
1176 		goto bce_attach_fail;
1177 	}
1178 
1179 	/*
1180 	 * The embedded PCIe to PCI-X bridge (EPB)
1181 	 * in the 5708 cannot address memory above
1182 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1183 	 */
1184 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1185 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1186 	else
1187 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1188 
1189 	/*
1190 	 * Find the base address for shared memory access.
1191 	 * Newer versions of bootcode use a signature and offset
1192 	 * while older versions use a fixed address.
1193 	 */
1194 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1195 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1196 		/* Multi-port devices use different offsets in shared memory. */
1197 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1198 		    (pci_get_function(sc->bce_dev) << 2));
1199 	else
1200 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1201 
1202 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1203 	    __FUNCTION__, sc->bce_shmem_base);
1204 
1205 	/* Fetch the bootcode revision. */
1206 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1207 	for (int i = 0, j = 0; i < 3; i++) {
1208 		u8 num;
1209 
1210 		num = (u8) (val >> (24 - (i * 8)));
1211 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1212 			if (num >= k || !skip0 || k == 1) {
1213 				sc->bce_bc_ver[j++] = (num / k) + '0';
1214 				skip0 = 0;
1215 			}
1216 		}
1217 
1218 		if (i != 2)
1219 			sc->bce_bc_ver[j++] = '.';
1220 	}
1221 
1222 	/* Check if any management firwmare is enabled. */
1223 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1224 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1225 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1226 
1227 		/* Allow time for firmware to enter the running state. */
1228 		for (int i = 0; i < 30; i++) {
1229 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1230 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1231 				break;
1232 			DELAY(10000);
1233 		}
1234 
1235 		/* Check if management firmware is running. */
1236 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1237 		val &= BCE_CONDITION_MFW_RUN_MASK;
1238 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1239 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1240 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1241 			int i = 0;
1242 
1243 			/* Read the management firmware version string. */
1244 			for (int j = 0; j < 3; j++) {
1245 				val = bce_reg_rd_ind(sc, addr + j * 4);
1246 				val = bswap32(val);
1247 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1248 				i += 4;
1249 			}
1250 		} else {
1251 			/* May cause firmware synchronization timeouts. */
1252 			BCE_PRINTF("%s(%d): Management firmware enabled "
1253 			    "but not running!\n", __FILE__, __LINE__);
1254 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1255 
1256 			/* ToDo: Any action the driver should take? */
1257 		}
1258 	}
1259 
1260 	/* Get PCI bus information (speed and type). */
1261 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1262 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1263 		u32 clkreg;
1264 
1265 		sc->bce_flags |= BCE_PCIX_FLAG;
1266 
1267 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1268 
1269 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1270 		switch (clkreg) {
1271 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1272 			sc->bus_speed_mhz = 133;
1273 			break;
1274 
1275 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1276 			sc->bus_speed_mhz = 100;
1277 			break;
1278 
1279 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1280 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1281 			sc->bus_speed_mhz = 66;
1282 			break;
1283 
1284 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1285 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1286 			sc->bus_speed_mhz = 50;
1287 			break;
1288 
1289 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1290 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1291 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1292 			sc->bus_speed_mhz = 33;
1293 			break;
1294 		}
1295 	} else {
1296 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1297 			sc->bus_speed_mhz = 66;
1298 		else
1299 			sc->bus_speed_mhz = 33;
1300 	}
1301 
1302 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1303 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1304 
1305 	/* Find the media type for the adapter. */
1306 	bce_get_media(sc);
1307 
1308 	/* Reset controller and announce to bootcode that driver is present. */
1309 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1310 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1311 		    __FILE__, __LINE__);
1312 		rc = ENXIO;
1313 		goto bce_attach_fail;
1314 	}
1315 
1316 	/* Initialize the controller. */
1317 	if (bce_chipinit(sc)) {
1318 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1319 		    __FILE__, __LINE__);
1320 		rc = ENXIO;
1321 		goto bce_attach_fail;
1322 	}
1323 
1324 	/* Perform NVRAM test. */
1325 	if (bce_nvram_test(sc)) {
1326 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1327 		    __FILE__, __LINE__);
1328 		rc = ENXIO;
1329 		goto bce_attach_fail;
1330 	}
1331 
1332 	/* Fetch the permanent Ethernet MAC address. */
1333 	bce_get_mac_addr(sc);
1334 
1335 	/*
1336 	 * Trip points control how many BDs
1337 	 * should be ready before generating an
1338 	 * interrupt while ticks control how long
1339 	 * a BD can sit in the chain before
1340 	 * generating an interrupt.  Set the default
1341 	 * values for the RX and TX chains.
1342 	 */
1343 
1344 	/* Not used for L2. */
1345 	sc->bce_comp_prod_trip_int     = 0;
1346 	sc->bce_comp_prod_trip         = 0;
1347 	sc->bce_com_ticks_int          = 0;
1348 	sc->bce_com_ticks              = 0;
1349 	sc->bce_cmd_ticks_int          = 0;
1350 	sc->bce_cmd_ticks              = 0;
1351 
1352 	/* Update statistics once every second. */
1353 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1354 
1355 	/* Store data needed by PHY driver for backplane applications */
1356 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1357 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1358 
1359 	/* Allocate DMA memory resources. */
1360 	if (bce_dma_alloc(dev)) {
1361 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1362 		    __FILE__, __LINE__);
1363 		rc = ENXIO;
1364 		goto bce_attach_fail;
1365 	}
1366 
1367 	/* Allocate an ifnet structure. */
1368 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1369 	if (ifp == NULL) {
1370 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1371 		    __FILE__, __LINE__);
1372 		rc = ENXIO;
1373 		goto bce_attach_fail;
1374 	}
1375 
1376 	/* Initialize the ifnet interface. */
1377 	ifp->if_softc	= sc;
1378 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1379 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1380 	ifp->if_ioctl	= bce_ioctl;
1381 	ifp->if_start	= bce_start;
1382 	ifp->if_init	= bce_init;
1383 	ifp->if_mtu	= ETHERMTU;
1384 
1385 	if (bce_tso_enable) {
1386 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1387 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1388 		    IFCAP_VLAN_HWTSO;
1389 	} else {
1390 		ifp->if_hwassist = BCE_IF_HWASSIST;
1391 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1392 	}
1393 
1394 #if __FreeBSD_version >= 800505
1395 	/*
1396 	 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1397 	 * so it's approximate value.
1398 	 */
1399 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1400 		ifp->if_capabilities |= IFCAP_LINKSTATE;
1401 #endif
1402 
1403 	ifp->if_capenable = ifp->if_capabilities;
1404 
1405 	/*
1406 	 * Assume standard mbuf sizes for buffer allocation.
1407 	 * This may change later if the MTU size is set to
1408 	 * something other than 1500.
1409 	 */
1410 	bce_get_rx_buffer_sizes(sc,
1411 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1412 
1413 	/* Recalculate our buffer allocation sizes. */
1414 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1415 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1416 	IFQ_SET_READY(&ifp->if_snd);
1417 
1418 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1419 		ifp->if_baudrate = IF_Mbps(2500ULL);
1420 	else
1421 		ifp->if_baudrate = IF_Mbps(1000);
1422 
1423 	/* Handle any special PHY initialization for SerDes PHYs. */
1424 	bce_init_media(sc);
1425 
1426 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1427 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1428 		    bce_ifmedia_sts);
1429 		/*
1430 		 * We can't manually override remote PHY's link and assume
1431 		 * PHY port configuration(Fiber or TP) is not changed after
1432 		 * device attach.  This may not be correct though.
1433 		 */
1434 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1435 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1436 				ifmedia_add(&sc->bce_ifmedia,
1437 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1438 				ifmedia_add(&sc->bce_ifmedia,
1439 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1440 			}
1441 			ifmedia_add(&sc->bce_ifmedia,
1442 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1443 			ifmedia_add(&sc->bce_ifmedia,
1444 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1445 		} else {
1446 			ifmedia_add(&sc->bce_ifmedia,
1447 			    IFM_ETHER | IFM_10_T, 0, NULL);
1448 			ifmedia_add(&sc->bce_ifmedia,
1449 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1450 			ifmedia_add(&sc->bce_ifmedia,
1451 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1452 			ifmedia_add(&sc->bce_ifmedia,
1453 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1454 			ifmedia_add(&sc->bce_ifmedia,
1455 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1456 			ifmedia_add(&sc->bce_ifmedia,
1457 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1458 		}
1459 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1460 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1461 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1462 	} else {
1463 		/* MII child bus by attaching the PHY. */
1464 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1465 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1466 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1467 		if (rc != 0) {
1468 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1469 			    __LINE__);
1470 			goto bce_attach_fail;
1471 		}
1472 	}
1473 
1474 	/* Attach to the Ethernet interface list. */
1475 	ether_ifattach(ifp, sc->eaddr);
1476 
1477 #if __FreeBSD_version < 500000
1478 	callout_init(&sc->bce_tick_callout);
1479 	callout_init(&sc->bce_pulse_callout);
1480 #else
1481 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1482 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1483 #endif
1484 
1485 	/* Hookup IRQ last. */
1486 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1487 		NULL, bce_intr, sc, &sc->bce_intrhand);
1488 
1489 	if (rc) {
1490 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1491 		    __FILE__, __LINE__);
1492 		bce_detach(dev);
1493 		goto bce_attach_exit;
1494 	}
1495 
1496 	/*
1497 	 * At this point we've acquired all the resources
1498 	 * we need to run so there's no turning back, we're
1499 	 * cleared for launch.
1500 	 */
1501 
1502 	/* Print some important debugging info. */
1503 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1504 
1505 	/* Add the supported sysctls to the kernel. */
1506 	bce_add_sysctls(sc);
1507 
1508 	BCE_LOCK(sc);
1509 
1510 	/*
1511 	 * The chip reset earlier notified the bootcode that
1512 	 * a driver is present.  We now need to start our pulse
1513 	 * routine so that the bootcode is reminded that we're
1514 	 * still running.
1515 	 */
1516 	bce_pulse(sc);
1517 
1518 	bce_mgmt_init_locked(sc);
1519 	BCE_UNLOCK(sc);
1520 
1521 	/* Finally, print some useful adapter info */
1522 	bce_print_adapter_info(sc);
1523 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1524 		__FUNCTION__, sc);
1525 
1526 	goto bce_attach_exit;
1527 
1528 bce_attach_fail:
1529 	bce_release_resources(sc);
1530 
1531 bce_attach_exit:
1532 
1533 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1534 
1535 	return(rc);
1536 }
1537 
1538 
1539 /****************************************************************************/
1540 /* Device detach function.                                                  */
1541 /*                                                                          */
1542 /* Stops the controller, resets the controller, and releases resources.     */
1543 /*                                                                          */
1544 /* Returns:                                                                 */
1545 /*   0 on success, positive value on failure.                               */
1546 /****************************************************************************/
1547 static int
1548 bce_detach(device_t dev)
1549 {
1550 	struct bce_softc *sc = device_get_softc(dev);
1551 	struct ifnet *ifp;
1552 	u32 msg;
1553 
1554 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1555 
1556 	ifp = sc->bce_ifp;
1557 
1558 	/* Stop and reset the controller. */
1559 	BCE_LOCK(sc);
1560 
1561 	/* Stop the pulse so the bootcode can go to driver absent state. */
1562 	callout_stop(&sc->bce_pulse_callout);
1563 
1564 	bce_stop(sc);
1565 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1566 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1567 	else
1568 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1569 	bce_reset(sc, msg);
1570 
1571 	BCE_UNLOCK(sc);
1572 
1573 	ether_ifdetach(ifp);
1574 
1575 	/* If we have a child device on the MII bus remove it too. */
1576 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1577 		ifmedia_removeall(&sc->bce_ifmedia);
1578 	else {
1579 		bus_generic_detach(dev);
1580 		device_delete_child(dev, sc->bce_miibus);
1581 	}
1582 
1583 	/* Release all remaining resources. */
1584 	bce_release_resources(sc);
1585 
1586 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1587 
1588 	return(0);
1589 }
1590 
1591 
1592 /****************************************************************************/
1593 /* Device shutdown function.                                                */
1594 /*                                                                          */
1595 /* Stops and resets the controller.                                         */
1596 /*                                                                          */
1597 /* Returns:                                                                 */
1598 /*   0 on success, positive value on failure.                               */
1599 /****************************************************************************/
1600 static int
1601 bce_shutdown(device_t dev)
1602 {
1603 	struct bce_softc *sc = device_get_softc(dev);
1604 	u32 msg;
1605 
1606 	DBENTER(BCE_VERBOSE);
1607 
1608 	BCE_LOCK(sc);
1609 	bce_stop(sc);
1610 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1611 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1612 	else
1613 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1614 	bce_reset(sc, msg);
1615 	BCE_UNLOCK(sc);
1616 
1617 	DBEXIT(BCE_VERBOSE);
1618 
1619 	return (0);
1620 }
1621 
1622 
1623 #ifdef BCE_DEBUG
1624 /****************************************************************************/
1625 /* Register read.                                                           */
1626 /*                                                                          */
1627 /* Returns:                                                                 */
1628 /*   The value of the register.                                             */
1629 /****************************************************************************/
1630 static u32
1631 bce_reg_rd(struct bce_softc *sc, u32 offset)
1632 {
1633 	u32 val = REG_RD(sc, offset);
1634 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1635 		__FUNCTION__, offset, val);
1636 	return val;
1637 }
1638 
1639 
1640 /****************************************************************************/
1641 /* Register write (16 bit).                                                 */
1642 /*                                                                          */
1643 /* Returns:                                                                 */
1644 /*   Nothing.                                                               */
1645 /****************************************************************************/
1646 static void
1647 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1648 {
1649 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1650 		__FUNCTION__, offset, val);
1651 	REG_WR16(sc, offset, val);
1652 }
1653 
1654 
1655 /****************************************************************************/
1656 /* Register write.                                                          */
1657 /*                                                                          */
1658 /* Returns:                                                                 */
1659 /*   Nothing.                                                               */
1660 /****************************************************************************/
1661 static void
1662 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1663 {
1664 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1665 		__FUNCTION__, offset, val);
1666 	REG_WR(sc, offset, val);
1667 }
1668 #endif
1669 
1670 /****************************************************************************/
1671 /* Indirect register read.                                                  */
1672 /*                                                                          */
1673 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1674 /* configuration space.  Using this mechanism avoids issues with posted     */
1675 /* reads but is much slower than memory-mapped I/O.                         */
1676 /*                                                                          */
1677 /* Returns:                                                                 */
1678 /*   The value of the register.                                             */
1679 /****************************************************************************/
1680 static u32
1681 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1682 {
1683 	device_t dev;
1684 	dev = sc->bce_dev;
1685 
1686 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1687 #ifdef BCE_DEBUG
1688 	{
1689 		u32 val;
1690 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1691 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1692 			__FUNCTION__, offset, val);
1693 		return val;
1694 	}
1695 #else
1696 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1697 #endif
1698 }
1699 
1700 
1701 /****************************************************************************/
1702 /* Indirect register write.                                                 */
1703 /*                                                                          */
1704 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1705 /* configuration space.  Using this mechanism avoids issues with posted     */
1706 /* writes but is muchh slower than memory-mapped I/O.                       */
1707 /*                                                                          */
1708 /* Returns:                                                                 */
1709 /*   Nothing.                                                               */
1710 /****************************************************************************/
1711 static void
1712 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1713 {
1714 	device_t dev;
1715 	dev = sc->bce_dev;
1716 
1717 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1718 		__FUNCTION__, offset, val);
1719 
1720 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1721 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1722 }
1723 
1724 
1725 /****************************************************************************/
1726 /* Shared memory write.                                                     */
1727 /*                                                                          */
1728 /* Writes NetXtreme II shared memory region.                                */
1729 /*                                                                          */
1730 /* Returns:                                                                 */
1731 /*   Nothing.                                                               */
1732 /****************************************************************************/
1733 static void
1734 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1735 {
1736 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1737 	    "0x%08X\n",	__FUNCTION__, val, offset);
1738 
1739 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1740 }
1741 
1742 
1743 /****************************************************************************/
1744 /* Shared memory read.                                                      */
1745 /*                                                                          */
1746 /* Reads NetXtreme II shared memory region.                                 */
1747 /*                                                                          */
1748 /* Returns:                                                                 */
1749 /*   The 32 bit value read.                                                 */
1750 /****************************************************************************/
1751 static u32
1752 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1753 {
1754 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1755 
1756 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1757 	    "0x%08X\n",	__FUNCTION__, val, offset);
1758 
1759 	return val;
1760 }
1761 
1762 
1763 #ifdef BCE_DEBUG
1764 /****************************************************************************/
1765 /* Context memory read.                                                     */
1766 /*                                                                          */
1767 /* The NetXtreme II controller uses context memory to track connection      */
1768 /* information for L2 and higher network protocols.                         */
1769 /*                                                                          */
1770 /* Returns:                                                                 */
1771 /*   The requested 32 bit value of context memory.                          */
1772 /****************************************************************************/
1773 static u32
1774 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1775 {
1776 	u32 idx, offset, retry_cnt = 5, val;
1777 
1778 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1779 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1780 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1781 
1782 	offset = ctx_offset + cid_addr;
1783 
1784 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1785 
1786 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1787 
1788 		for (idx = 0; idx < retry_cnt; idx++) {
1789 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1790 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1791 				break;
1792 			DELAY(5);
1793 		}
1794 
1795 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1796 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1797 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1798 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1799 
1800 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1801 	} else {
1802 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1803 		val = REG_RD(sc, BCE_CTX_DATA);
1804 	}
1805 
1806 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1807 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1808 
1809 	return(val);
1810 }
1811 #endif
1812 
1813 
1814 /****************************************************************************/
1815 /* Context memory write.                                                    */
1816 /*                                                                          */
1817 /* The NetXtreme II controller uses context memory to track connection      */
1818 /* information for L2 and higher network protocols.                         */
1819 /*                                                                          */
1820 /* Returns:                                                                 */
1821 /*   Nothing.                                                               */
1822 /****************************************************************************/
1823 static void
1824 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1825 {
1826 	u32 idx, offset = ctx_offset + cid_addr;
1827 	u32 val, retry_cnt = 5;
1828 
1829 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1830 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1831 
1832 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1833 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1834 		    __FUNCTION__, cid_addr));
1835 
1836 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1837 
1838 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1839 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1840 
1841 		for (idx = 0; idx < retry_cnt; idx++) {
1842 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1843 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1844 				break;
1845 			DELAY(5);
1846 		}
1847 
1848 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1849 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1850 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1851 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1852 
1853 	} else {
1854 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1855 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1856 	}
1857 }
1858 
1859 
1860 /****************************************************************************/
1861 /* PHY register read.                                                       */
1862 /*                                                                          */
1863 /* Implements register reads on the MII bus.                                */
1864 /*                                                                          */
1865 /* Returns:                                                                 */
1866 /*   The value of the register.                                             */
1867 /****************************************************************************/
1868 static int
1869 bce_miibus_read_reg(device_t dev, int phy, int reg)
1870 {
1871 	struct bce_softc *sc;
1872 	u32 val;
1873 	int i;
1874 
1875 	sc = device_get_softc(dev);
1876 
1877     /*
1878      * The 5709S PHY is an IEEE Clause 45 PHY
1879      * with special mappings to work with IEEE
1880      * Clause 22 register accesses.
1881      */
1882 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1883 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1884 			reg += 0x10;
1885 	}
1886 
1887     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1888 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1889 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1890 
1891 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1892 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1893 
1894 		DELAY(40);
1895 	}
1896 
1897 
1898 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1899 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1900 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1901 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1902 
1903 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1904 		DELAY(10);
1905 
1906 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1907 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1908 			DELAY(5);
1909 
1910 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1911 			val &= BCE_EMAC_MDIO_COMM_DATA;
1912 
1913 			break;
1914 		}
1915 	}
1916 
1917 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1918 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1919 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1920 		val = 0x0;
1921 	} else {
1922 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1923 	}
1924 
1925 
1926 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1927 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1928 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1929 
1930 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1931 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1932 
1933 		DELAY(40);
1934 	}
1935 
1936 	DB_PRINT_PHY_REG(reg, val);
1937 	return (val & 0xffff);
1938 
1939 }
1940 
1941 
1942 /****************************************************************************/
1943 /* PHY register write.                                                      */
1944 /*                                                                          */
1945 /* Implements register writes on the MII bus.                               */
1946 /*                                                                          */
1947 /* Returns:                                                                 */
1948 /*   The value of the register.                                             */
1949 /****************************************************************************/
1950 static int
1951 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1952 {
1953 	struct bce_softc *sc;
1954 	u32 val1;
1955 	int i;
1956 
1957 	sc = device_get_softc(dev);
1958 
1959 	DB_PRINT_PHY_REG(reg, val);
1960 
1961 	/*
1962 	 * The 5709S PHY is an IEEE Clause 45 PHY
1963 	 * with special mappings to work with IEEE
1964 	 * Clause 22 register accesses.
1965 	 */
1966 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1967 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1968 			reg += 0x10;
1969 	}
1970 
1971 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1972 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1973 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1974 
1975 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1976 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1977 
1978 		DELAY(40);
1979 	}
1980 
1981 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1982 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1983 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1984 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1985 
1986 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1987 		DELAY(10);
1988 
1989 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1990 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1991 			DELAY(5);
1992 			break;
1993 		}
1994 	}
1995 
1996 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1997 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1998 		    __FILE__, __LINE__);
1999 
2000 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2001 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2002 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
2003 
2004 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2005 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
2006 
2007 		DELAY(40);
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 
2014 /****************************************************************************/
2015 /* MII bus status change.                                                   */
2016 /*                                                                          */
2017 /* Called by the MII bus driver when the PHY establishes link to set the    */
2018 /* MAC interface registers.                                                 */
2019 /*                                                                          */
2020 /* Returns:                                                                 */
2021 /*   Nothing.                                                               */
2022 /****************************************************************************/
2023 static void
2024 bce_miibus_statchg(device_t dev)
2025 {
2026 	struct bce_softc *sc;
2027 	struct mii_data *mii;
2028 	struct ifmediareq ifmr;
2029 	int media_active, media_status, val;
2030 
2031 	sc = device_get_softc(dev);
2032 
2033 	DBENTER(BCE_VERBOSE_PHY);
2034 
2035 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2036 		bzero(&ifmr, sizeof(ifmr));
2037 		bce_ifmedia_sts_rphy(sc, &ifmr);
2038 		media_active = ifmr.ifm_active;
2039 		media_status = ifmr.ifm_status;
2040 	} else {
2041 		mii = device_get_softc(sc->bce_miibus);
2042 		media_active = mii->mii_media_active;
2043 		media_status = mii->mii_media_status;
2044 	}
2045 
2046 	/* Ignore invalid media status. */
2047 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2048 	    (IFM_ACTIVE | IFM_AVALID))
2049 		goto bce_miibus_statchg_exit;
2050 
2051 	val = REG_RD(sc, BCE_EMAC_MODE);
2052 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2053 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2054 	    BCE_EMAC_MODE_25G);
2055 
2056 	/* Set MII or GMII interface based on the PHY speed. */
2057 	switch (IFM_SUBTYPE(media_active)) {
2058 	case IFM_10_T:
2059 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2060 			DBPRINT(sc, BCE_INFO_PHY,
2061 			    "Enabling 10Mb interface.\n");
2062 			val |= BCE_EMAC_MODE_PORT_MII_10;
2063 			break;
2064 		}
2065 		/* fall-through */
2066 	case IFM_100_TX:
2067 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2068 		val |= BCE_EMAC_MODE_PORT_MII;
2069 		break;
2070 	case IFM_2500_SX:
2071 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2072 		val |= BCE_EMAC_MODE_25G;
2073 		/* fall-through */
2074 	case IFM_1000_T:
2075 	case IFM_1000_SX:
2076 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2077 		val |= BCE_EMAC_MODE_PORT_GMII;
2078 		break;
2079 	default:
2080 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2081 		    "default GMII interface.\n");
2082 		val |= BCE_EMAC_MODE_PORT_GMII;
2083 	}
2084 
2085 	/* Set half or full duplex based on PHY settings. */
2086 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2087 		DBPRINT(sc, BCE_INFO_PHY,
2088 		    "Setting Half-Duplex interface.\n");
2089 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2090 	} else
2091 		DBPRINT(sc, BCE_INFO_PHY,
2092 		    "Setting Full-Duplex interface.\n");
2093 
2094 	REG_WR(sc, BCE_EMAC_MODE, val);
2095 
2096 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2097 		DBPRINT(sc, BCE_INFO_PHY,
2098 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2099 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2100 	} else {
2101 		DBPRINT(sc, BCE_INFO_PHY,
2102 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2103 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2104 	}
2105 
2106 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2107 		DBPRINT(sc, BCE_INFO_PHY,
2108 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2109 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2110 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2111 	} else {
2112 		DBPRINT(sc, BCE_INFO_PHY,
2113 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2114 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2115 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2116 	}
2117 
2118 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2119 
2120 bce_miibus_statchg_exit:
2121 	DBEXIT(BCE_VERBOSE_PHY);
2122 }
2123 
2124 
2125 /****************************************************************************/
2126 /* Acquire NVRAM lock.                                                      */
2127 /*                                                                          */
2128 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2129 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2130 /* for use by the driver.                                                   */
2131 /*                                                                          */
2132 /* Returns:                                                                 */
2133 /*   0 on success, positive value on failure.                               */
2134 /****************************************************************************/
2135 static int
2136 bce_acquire_nvram_lock(struct bce_softc *sc)
2137 {
2138 	u32 val;
2139 	int j, rc = 0;
2140 
2141 	DBENTER(BCE_VERBOSE_NVRAM);
2142 
2143 	/* Request access to the flash interface. */
2144 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2145 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2146 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2147 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2148 			break;
2149 
2150 		DELAY(5);
2151 	}
2152 
2153 	if (j >= NVRAM_TIMEOUT_COUNT) {
2154 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2155 		rc = EBUSY;
2156 	}
2157 
2158 	DBEXIT(BCE_VERBOSE_NVRAM);
2159 	return (rc);
2160 }
2161 
2162 
2163 /****************************************************************************/
2164 /* Release NVRAM lock.                                                      */
2165 /*                                                                          */
2166 /* When the caller is finished accessing NVRAM the lock must be released.   */
2167 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2168 /* for use by the driver.                                                   */
2169 /*                                                                          */
2170 /* Returns:                                                                 */
2171 /*   0 on success, positive value on failure.                               */
2172 /****************************************************************************/
2173 static int
2174 bce_release_nvram_lock(struct bce_softc *sc)
2175 {
2176 	u32 val;
2177 	int j, rc = 0;
2178 
2179 	DBENTER(BCE_VERBOSE_NVRAM);
2180 
2181 	/*
2182 	 * Relinquish nvram interface.
2183 	 */
2184 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2185 
2186 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2187 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2188 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2189 			break;
2190 
2191 		DELAY(5);
2192 	}
2193 
2194 	if (j >= NVRAM_TIMEOUT_COUNT) {
2195 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2196 		rc = EBUSY;
2197 	}
2198 
2199 	DBEXIT(BCE_VERBOSE_NVRAM);
2200 	return (rc);
2201 }
2202 
2203 
2204 #ifdef BCE_NVRAM_WRITE_SUPPORT
2205 /****************************************************************************/
2206 /* Enable NVRAM write access.                                               */
2207 /*                                                                          */
2208 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2209 /*                                                                          */
2210 /* Returns:                                                                 */
2211 /*   0 on success, positive value on failure.                               */
2212 /****************************************************************************/
2213 static int
2214 bce_enable_nvram_write(struct bce_softc *sc)
2215 {
2216 	u32 val;
2217 	int rc = 0;
2218 
2219 	DBENTER(BCE_VERBOSE_NVRAM);
2220 
2221 	val = REG_RD(sc, BCE_MISC_CFG);
2222 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2223 
2224 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2225 		int j;
2226 
2227 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2228 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2229 
2230 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2231 			DELAY(5);
2232 
2233 			val = REG_RD(sc, BCE_NVM_COMMAND);
2234 			if (val & BCE_NVM_COMMAND_DONE)
2235 				break;
2236 		}
2237 
2238 		if (j >= NVRAM_TIMEOUT_COUNT) {
2239 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2240 			rc = EBUSY;
2241 		}
2242 	}
2243 
2244 	DBENTER(BCE_VERBOSE_NVRAM);
2245 	return (rc);
2246 }
2247 
2248 
2249 /****************************************************************************/
2250 /* Disable NVRAM write access.                                              */
2251 /*                                                                          */
2252 /* When the caller is finished writing to NVRAM write access must be        */
2253 /* disabled.                                                                */
2254 /*                                                                          */
2255 /* Returns:                                                                 */
2256 /*   Nothing.                                                               */
2257 /****************************************************************************/
2258 static void
2259 bce_disable_nvram_write(struct bce_softc *sc)
2260 {
2261 	u32 val;
2262 
2263 	DBENTER(BCE_VERBOSE_NVRAM);
2264 
2265 	val = REG_RD(sc, BCE_MISC_CFG);
2266 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2267 
2268 	DBEXIT(BCE_VERBOSE_NVRAM);
2269 
2270 }
2271 #endif
2272 
2273 
2274 /****************************************************************************/
2275 /* Enable NVRAM access.                                                     */
2276 /*                                                                          */
2277 /* Before accessing NVRAM for read or write operations the caller must      */
2278 /* enabled NVRAM access.                                                    */
2279 /*                                                                          */
2280 /* Returns:                                                                 */
2281 /*   Nothing.                                                               */
2282 /****************************************************************************/
2283 static void
2284 bce_enable_nvram_access(struct bce_softc *sc)
2285 {
2286 	u32 val;
2287 
2288 	DBENTER(BCE_VERBOSE_NVRAM);
2289 
2290 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2291 	/* Enable both bits, even on read. */
2292 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2293 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2294 
2295 	DBEXIT(BCE_VERBOSE_NVRAM);
2296 }
2297 
2298 
2299 /****************************************************************************/
2300 /* Disable NVRAM access.                                                    */
2301 /*                                                                          */
2302 /* When the caller is finished accessing NVRAM access must be disabled.     */
2303 /*                                                                          */
2304 /* Returns:                                                                 */
2305 /*   Nothing.                                                               */
2306 /****************************************************************************/
2307 static void
2308 bce_disable_nvram_access(struct bce_softc *sc)
2309 {
2310 	u32 val;
2311 
2312 	DBENTER(BCE_VERBOSE_NVRAM);
2313 
2314 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2315 
2316 	/* Disable both bits, even after read. */
2317 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2318 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2319 
2320 	DBEXIT(BCE_VERBOSE_NVRAM);
2321 }
2322 
2323 
2324 #ifdef BCE_NVRAM_WRITE_SUPPORT
2325 /****************************************************************************/
2326 /* Erase NVRAM page before writing.                                         */
2327 /*                                                                          */
2328 /* Non-buffered flash parts require that a page be erased before it is      */
2329 /* written.                                                                 */
2330 /*                                                                          */
2331 /* Returns:                                                                 */
2332 /*   0 on success, positive value on failure.                               */
2333 /****************************************************************************/
2334 static int
2335 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2336 {
2337 	u32 cmd;
2338 	int j, rc = 0;
2339 
2340 	DBENTER(BCE_VERBOSE_NVRAM);
2341 
2342 	/* Buffered flash doesn't require an erase. */
2343 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2344 		goto bce_nvram_erase_page_exit;
2345 
2346 	/* Build an erase command. */
2347 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2348 	    BCE_NVM_COMMAND_DOIT;
2349 
2350 	/*
2351 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2352 	 * and issue the erase command.
2353 	 */
2354 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2355 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2356 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2357 
2358 	/* Wait for completion. */
2359 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2360 		u32 val;
2361 
2362 		DELAY(5);
2363 
2364 		val = REG_RD(sc, BCE_NVM_COMMAND);
2365 		if (val & BCE_NVM_COMMAND_DONE)
2366 			break;
2367 	}
2368 
2369 	if (j >= NVRAM_TIMEOUT_COUNT) {
2370 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2371 		rc = EBUSY;
2372 	}
2373 
2374 bce_nvram_erase_page_exit:
2375 	DBEXIT(BCE_VERBOSE_NVRAM);
2376 	return (rc);
2377 }
2378 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2379 
2380 
2381 /****************************************************************************/
2382 /* Read a dword (32 bits) from NVRAM.                                       */
2383 /*                                                                          */
2384 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2385 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2386 /*                                                                          */
2387 /* Returns:                                                                 */
2388 /*   0 on success and the 32 bit value read, positive value on failure.     */
2389 /****************************************************************************/
2390 static int
2391 bce_nvram_read_dword(struct bce_softc *sc,
2392     u32 offset, u8 *ret_val, u32 cmd_flags)
2393 {
2394 	u32 cmd;
2395 	int i, rc = 0;
2396 
2397 	DBENTER(BCE_EXTREME_NVRAM);
2398 
2399 	/* Build the command word. */
2400 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2401 
2402 	/* Calculate the offset for buffered flash if translation is used. */
2403 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2404 		offset = ((offset / sc->bce_flash_info->page_size) <<
2405 		    sc->bce_flash_info->page_bits) +
2406 		    (offset % sc->bce_flash_info->page_size);
2407 	}
2408 
2409 	/*
2410 	 * Clear the DONE bit separately, set the address to read,
2411 	 * and issue the read.
2412 	 */
2413 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2414 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2415 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2416 
2417 	/* Wait for completion. */
2418 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2419 		u32 val;
2420 
2421 		DELAY(5);
2422 
2423 		val = REG_RD(sc, BCE_NVM_COMMAND);
2424 		if (val & BCE_NVM_COMMAND_DONE) {
2425 			val = REG_RD(sc, BCE_NVM_READ);
2426 
2427 			val = bce_be32toh(val);
2428 			memcpy(ret_val, &val, 4);
2429 			break;
2430 		}
2431 	}
2432 
2433 	/* Check for errors. */
2434 	if (i >= NVRAM_TIMEOUT_COUNT) {
2435 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2436 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2437 		rc = EBUSY;
2438 	}
2439 
2440 	DBEXIT(BCE_EXTREME_NVRAM);
2441 	return(rc);
2442 }
2443 
2444 
2445 #ifdef BCE_NVRAM_WRITE_SUPPORT
2446 /****************************************************************************/
2447 /* Write a dword (32 bits) to NVRAM.                                        */
2448 /*                                                                          */
2449 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2450 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2451 /* enabled NVRAM write access.                                              */
2452 /*                                                                          */
2453 /* Returns:                                                                 */
2454 /*   0 on success, positive value on failure.                               */
2455 /****************************************************************************/
2456 static int
2457 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2458 	u32 cmd_flags)
2459 {
2460 	u32 cmd, val32;
2461 	int j, rc = 0;
2462 
2463 	DBENTER(BCE_VERBOSE_NVRAM);
2464 
2465 	/* Build the command word. */
2466 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2467 
2468 	/* Calculate the offset for buffered flash if translation is used. */
2469 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2470 		offset = ((offset / sc->bce_flash_info->page_size) <<
2471 		    sc->bce_flash_info->page_bits) +
2472 		    (offset % sc->bce_flash_info->page_size);
2473 	}
2474 
2475 	/*
2476 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2477 	 * set the NVRAM address to write, and issue the write command
2478 	 */
2479 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2480 	memcpy(&val32, val, 4);
2481 	val32 = htobe32(val32);
2482 	REG_WR(sc, BCE_NVM_WRITE, val32);
2483 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2484 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2485 
2486 	/* Wait for completion. */
2487 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2488 		DELAY(5);
2489 
2490 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2491 			break;
2492 	}
2493 	if (j >= NVRAM_TIMEOUT_COUNT) {
2494 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2495 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2496 		rc = EBUSY;
2497 	}
2498 
2499 	DBEXIT(BCE_VERBOSE_NVRAM);
2500 	return (rc);
2501 }
2502 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2503 
2504 
2505 /****************************************************************************/
2506 /* Initialize NVRAM access.                                                 */
2507 /*                                                                          */
2508 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2509 /* access that device.                                                      */
2510 /*                                                                          */
2511 /* Returns:                                                                 */
2512 /*   0 on success, positive value on failure.                               */
2513 /****************************************************************************/
2514 static int
2515 bce_init_nvram(struct bce_softc *sc)
2516 {
2517 	u32 val;
2518 	int j, entry_count, rc = 0;
2519 	const struct flash_spec *flash;
2520 
2521 	DBENTER(BCE_VERBOSE_NVRAM);
2522 
2523 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2524 		sc->bce_flash_info = &flash_5709;
2525 		goto bce_init_nvram_get_flash_size;
2526 	}
2527 
2528 	/* Determine the selected interface. */
2529 	val = REG_RD(sc, BCE_NVM_CFG1);
2530 
2531 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2532 
2533 	/*
2534 	 * Flash reconfiguration is required to support additional
2535 	 * NVRAM devices not directly supported in hardware.
2536 	 * Check if the flash interface was reconfigured
2537 	 * by the bootcode.
2538 	 */
2539 
2540 	if (val & 0x40000000) {
2541 		/* Flash interface reconfigured by bootcode. */
2542 
2543 		DBPRINT(sc,BCE_INFO_LOAD,
2544 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2545 
2546 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2547 		     j++, flash++) {
2548 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2549 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2550 				sc->bce_flash_info = flash;
2551 				break;
2552 			}
2553 		}
2554 	} else {
2555 		/* Flash interface not yet reconfigured. */
2556 		u32 mask;
2557 
2558 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2559 			__FUNCTION__);
2560 
2561 		if (val & (1 << 23))
2562 			mask = FLASH_BACKUP_STRAP_MASK;
2563 		else
2564 			mask = FLASH_STRAP_MASK;
2565 
2566 		/* Look for the matching NVRAM device configuration data. */
2567 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2568 
2569 			/* Check if the device matches any of the known devices. */
2570 			if ((val & mask) == (flash->strapping & mask)) {
2571 				/* Found a device match. */
2572 				sc->bce_flash_info = flash;
2573 
2574 				/* Request access to the flash interface. */
2575 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2576 					return rc;
2577 
2578 				/* Reconfigure the flash interface. */
2579 				bce_enable_nvram_access(sc);
2580 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2581 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2582 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2583 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2584 				bce_disable_nvram_access(sc);
2585 				bce_release_nvram_lock(sc);
2586 
2587 				break;
2588 			}
2589 		}
2590 	}
2591 
2592 	/* Check if a matching device was found. */
2593 	if (j == entry_count) {
2594 		sc->bce_flash_info = NULL;
2595 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2596 		    __FILE__, __LINE__);
2597 		DBEXIT(BCE_VERBOSE_NVRAM);
2598 		return (ENODEV);
2599 	}
2600 
2601 bce_init_nvram_get_flash_size:
2602 	/* Write the flash config data to the shared memory interface. */
2603 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2604 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2605 	if (val)
2606 		sc->bce_flash_size = val;
2607 	else
2608 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2609 
2610 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2611 	    __FUNCTION__, sc->bce_flash_info->name,
2612 	    sc->bce_flash_info->total_size);
2613 
2614 	DBEXIT(BCE_VERBOSE_NVRAM);
2615 	return rc;
2616 }
2617 
2618 
2619 /****************************************************************************/
2620 /* Read an arbitrary range of data from NVRAM.                              */
2621 /*                                                                          */
2622 /* Prepares the NVRAM interface for access and reads the requested data     */
2623 /* into the supplied buffer.                                                */
2624 /*                                                                          */
2625 /* Returns:                                                                 */
2626 /*   0 on success and the data read, positive value on failure.             */
2627 /****************************************************************************/
2628 static int
2629 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2630 	int buf_size)
2631 {
2632 	int rc = 0;
2633 	u32 cmd_flags, offset32, len32, extra;
2634 
2635 	DBENTER(BCE_VERBOSE_NVRAM);
2636 
2637 	if (buf_size == 0)
2638 		goto bce_nvram_read_exit;
2639 
2640 	/* Request access to the flash interface. */
2641 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2642 		goto bce_nvram_read_exit;
2643 
2644 	/* Enable access to flash interface */
2645 	bce_enable_nvram_access(sc);
2646 
2647 	len32 = buf_size;
2648 	offset32 = offset;
2649 	extra = 0;
2650 
2651 	cmd_flags = 0;
2652 
2653 	if (offset32 & 3) {
2654 		u8 buf[4];
2655 		u32 pre_len;
2656 
2657 		offset32 &= ~3;
2658 		pre_len = 4 - (offset & 3);
2659 
2660 		if (pre_len >= len32) {
2661 			pre_len = len32;
2662 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2663 		}
2664 		else {
2665 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2666 		}
2667 
2668 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2669 
2670 		if (rc)
2671 			return rc;
2672 
2673 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2674 
2675 		offset32 += 4;
2676 		ret_buf += pre_len;
2677 		len32 -= pre_len;
2678 	}
2679 
2680 	if (len32 & 3) {
2681 		extra = 4 - (len32 & 3);
2682 		len32 = (len32 + 4) & ~3;
2683 	}
2684 
2685 	if (len32 == 4) {
2686 		u8 buf[4];
2687 
2688 		if (cmd_flags)
2689 			cmd_flags = BCE_NVM_COMMAND_LAST;
2690 		else
2691 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2692 				    BCE_NVM_COMMAND_LAST;
2693 
2694 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2695 
2696 		memcpy(ret_buf, buf, 4 - extra);
2697 	}
2698 	else if (len32 > 0) {
2699 		u8 buf[4];
2700 
2701 		/* Read the first word. */
2702 		if (cmd_flags)
2703 			cmd_flags = 0;
2704 		else
2705 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2706 
2707 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2708 
2709 		/* Advance to the next dword. */
2710 		offset32 += 4;
2711 		ret_buf += 4;
2712 		len32 -= 4;
2713 
2714 		while (len32 > 4 && rc == 0) {
2715 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2716 
2717 			/* Advance to the next dword. */
2718 			offset32 += 4;
2719 			ret_buf += 4;
2720 			len32 -= 4;
2721 		}
2722 
2723 		if (rc)
2724 			goto bce_nvram_read_locked_exit;
2725 
2726 		cmd_flags = BCE_NVM_COMMAND_LAST;
2727 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2728 
2729 		memcpy(ret_buf, buf, 4 - extra);
2730 	}
2731 
2732 bce_nvram_read_locked_exit:
2733 	/* Disable access to flash interface and release the lock. */
2734 	bce_disable_nvram_access(sc);
2735 	bce_release_nvram_lock(sc);
2736 
2737 bce_nvram_read_exit:
2738 	DBEXIT(BCE_VERBOSE_NVRAM);
2739 	return rc;
2740 }
2741 
2742 
2743 #ifdef BCE_NVRAM_WRITE_SUPPORT
2744 /****************************************************************************/
2745 /* Write an arbitrary range of data from NVRAM.                             */
2746 /*                                                                          */
2747 /* Prepares the NVRAM interface for write access and writes the requested   */
2748 /* data from the supplied buffer.  The caller is responsible for            */
2749 /* calculating any appropriate CRCs.                                        */
2750 /*                                                                          */
2751 /* Returns:                                                                 */
2752 /*   0 on success, positive value on failure.                               */
2753 /****************************************************************************/
2754 static int
2755 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2756 	int buf_size)
2757 {
2758 	u32 written, offset32, len32;
2759 	u8 *buf, start[4], end[4];
2760 	int rc = 0;
2761 	int align_start, align_end;
2762 
2763 	DBENTER(BCE_VERBOSE_NVRAM);
2764 
2765 	buf = data_buf;
2766 	offset32 = offset;
2767 	len32 = buf_size;
2768 	align_start = align_end = 0;
2769 
2770 	if ((align_start = (offset32 & 3))) {
2771 		offset32 &= ~3;
2772 		len32 += align_start;
2773 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2774 			goto bce_nvram_write_exit;
2775 	}
2776 
2777 	if (len32 & 3) {
2778 	       	if ((len32 > 4) || !align_start) {
2779 			align_end = 4 - (len32 & 3);
2780 			len32 += align_end;
2781 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2782 				end, 4))) {
2783 				goto bce_nvram_write_exit;
2784 			}
2785 		}
2786 	}
2787 
2788 	if (align_start || align_end) {
2789 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2790 		if (buf == 0) {
2791 			rc = ENOMEM;
2792 			goto bce_nvram_write_exit;
2793 		}
2794 
2795 		if (align_start) {
2796 			memcpy(buf, start, 4);
2797 		}
2798 
2799 		if (align_end) {
2800 			memcpy(buf + len32 - 4, end, 4);
2801 		}
2802 		memcpy(buf + align_start, data_buf, buf_size);
2803 	}
2804 
2805 	written = 0;
2806 	while ((written < len32) && (rc == 0)) {
2807 		u32 page_start, page_end, data_start, data_end;
2808 		u32 addr, cmd_flags;
2809 		int i;
2810 		u8 flash_buffer[264];
2811 
2812 	    /* Find the page_start addr */
2813 		page_start = offset32 + written;
2814 		page_start -= (page_start % sc->bce_flash_info->page_size);
2815 		/* Find the page_end addr */
2816 		page_end = page_start + sc->bce_flash_info->page_size;
2817 		/* Find the data_start addr */
2818 		data_start = (written == 0) ? offset32 : page_start;
2819 		/* Find the data_end addr */
2820 		data_end = (page_end > offset32 + len32) ?
2821 			(offset32 + len32) : page_end;
2822 
2823 		/* Request access to the flash interface. */
2824 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2825 			goto bce_nvram_write_exit;
2826 
2827 		/* Enable access to flash interface */
2828 		bce_enable_nvram_access(sc);
2829 
2830 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2831 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2832 			int j;
2833 
2834 			/* Read the whole page into the buffer
2835 			 * (non-buffer flash only) */
2836 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2837 				if (j == (sc->bce_flash_info->page_size - 4)) {
2838 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2839 				}
2840 				rc = bce_nvram_read_dword(sc,
2841 					page_start + j,
2842 					&flash_buffer[j],
2843 					cmd_flags);
2844 
2845 				if (rc)
2846 					goto bce_nvram_write_locked_exit;
2847 
2848 				cmd_flags = 0;
2849 			}
2850 		}
2851 
2852 		/* Enable writes to flash interface (unlock write-protect) */
2853 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2854 			goto bce_nvram_write_locked_exit;
2855 
2856 		/* Erase the page */
2857 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2858 			goto bce_nvram_write_locked_exit;
2859 
2860 		/* Re-enable the write again for the actual write */
2861 		bce_enable_nvram_write(sc);
2862 
2863 		/* Loop to write back the buffer data from page_start to
2864 		 * data_start */
2865 		i = 0;
2866 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2867 			for (addr = page_start; addr < data_start;
2868 				addr += 4, i += 4) {
2869 
2870 				rc = bce_nvram_write_dword(sc, addr,
2871 					&flash_buffer[i], cmd_flags);
2872 
2873 				if (rc != 0)
2874 					goto bce_nvram_write_locked_exit;
2875 
2876 				cmd_flags = 0;
2877 			}
2878 		}
2879 
2880 		/* Loop to write the new data from data_start to data_end */
2881 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2882 			if ((addr == page_end - 4) ||
2883 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2884 				(addr == data_end - 4))) {
2885 
2886 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2887 			}
2888 			rc = bce_nvram_write_dword(sc, addr, buf,
2889 				cmd_flags);
2890 
2891 			if (rc != 0)
2892 				goto bce_nvram_write_locked_exit;
2893 
2894 			cmd_flags = 0;
2895 			buf += 4;
2896 		}
2897 
2898 		/* Loop to write back the buffer data from data_end
2899 		 * to page_end */
2900 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2901 			for (addr = data_end; addr < page_end;
2902 				addr += 4, i += 4) {
2903 
2904 				if (addr == page_end-4) {
2905 					cmd_flags = BCE_NVM_COMMAND_LAST;
2906                 		}
2907 				rc = bce_nvram_write_dword(sc, addr,
2908 					&flash_buffer[i], cmd_flags);
2909 
2910 				if (rc != 0)
2911 					goto bce_nvram_write_locked_exit;
2912 
2913 				cmd_flags = 0;
2914 			}
2915 		}
2916 
2917 		/* Disable writes to flash interface (lock write-protect) */
2918 		bce_disable_nvram_write(sc);
2919 
2920 		/* Disable access to flash interface */
2921 		bce_disable_nvram_access(sc);
2922 		bce_release_nvram_lock(sc);
2923 
2924 		/* Increment written */
2925 		written += data_end - data_start;
2926 	}
2927 
2928 	goto bce_nvram_write_exit;
2929 
2930 bce_nvram_write_locked_exit:
2931 	bce_disable_nvram_write(sc);
2932 	bce_disable_nvram_access(sc);
2933 	bce_release_nvram_lock(sc);
2934 
2935 bce_nvram_write_exit:
2936 	if (align_start || align_end)
2937 		free(buf, M_DEVBUF);
2938 
2939 	DBEXIT(BCE_VERBOSE_NVRAM);
2940 	return (rc);
2941 }
2942 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2943 
2944 
2945 /****************************************************************************/
2946 /* Verifies that NVRAM is accessible and contains valid data.               */
2947 /*                                                                          */
2948 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2949 /* correct.                                                                 */
2950 /*                                                                          */
2951 /* Returns:                                                                 */
2952 /*   0 on success, positive value on failure.                               */
2953 /****************************************************************************/
2954 static int
2955 bce_nvram_test(struct bce_softc *sc)
2956 {
2957 	u32 buf[BCE_NVRAM_SIZE / 4];
2958 	u8 *data = (u8 *) buf;
2959 	int rc = 0;
2960 	u32 magic, csum;
2961 
2962 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2963 
2964 	/*
2965 	 * Check that the device NVRAM is valid by reading
2966 	 * the magic value at offset 0.
2967 	 */
2968 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2969 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2970 		    __FILE__, __LINE__);
2971 		goto bce_nvram_test_exit;
2972 	}
2973 
2974 	/*
2975 	 * Verify that offset 0 of the NVRAM contains
2976 	 * a valid magic number.
2977 	 */
2978 	magic = bce_be32toh(buf[0]);
2979 	if (magic != BCE_NVRAM_MAGIC) {
2980 		rc = ENODEV;
2981 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2982 		    "Expected: 0x%08X, Found: 0x%08X\n",
2983 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2984 		goto bce_nvram_test_exit;
2985 	}
2986 
2987 	/*
2988 	 * Verify that the device NVRAM includes valid
2989 	 * configuration data.
2990 	 */
2991 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2992 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2993 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2994 		goto bce_nvram_test_exit;
2995 	}
2996 
2997 	csum = ether_crc32_le(data, 0x100);
2998 	if (csum != BCE_CRC32_RESIDUAL) {
2999 		rc = ENODEV;
3000 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
3001 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
3002 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
3003 		goto bce_nvram_test_exit;
3004 	}
3005 
3006 	csum = ether_crc32_le(data + 0x100, 0x100);
3007 	if (csum != BCE_CRC32_RESIDUAL) {
3008 		rc = ENODEV;
3009 		BCE_PRINTF("%s(%d): Invalid feature configuration "
3010 		    "information NVRAM CRC! Expected: 0x%08X, "
3011 		    "Found: 08%08X\n", __FILE__, __LINE__,
3012 		    BCE_CRC32_RESIDUAL, csum);
3013 	}
3014 
3015 bce_nvram_test_exit:
3016 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
3017 	return rc;
3018 }
3019 
3020 
3021 /****************************************************************************/
3022 /* Calculates the size of the buffers to allocate based on the MTU.         */
3023 /*                                                                          */
3024 /* Returns:                                                                 */
3025 /*   Nothing.                                                               */
3026 /****************************************************************************/
3027 static void
3028 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3029 {
3030 	DBENTER(BCE_VERBOSE_LOAD);
3031 
3032 	/* Use a single allocation type when header splitting enabled. */
3033 	if (bce_hdr_split == TRUE) {
3034 		sc->rx_bd_mbuf_alloc_size = MHLEN;
3035 		/* Make sure offset is 16 byte aligned for hardware. */
3036 		sc->rx_bd_mbuf_align_pad =
3037 			roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
3038 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3039 			sc->rx_bd_mbuf_align_pad;
3040 		sc->pg_bd_mbuf_alloc_size = MCLBYTES;
3041 	} else {
3042 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3043 		    ETHER_CRC_LEN) > MCLBYTES) {
3044 			/* Setup for jumbo RX buffer allocations. */
3045 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3046 			sc->rx_bd_mbuf_align_pad  =
3047 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3048 			sc->rx_bd_mbuf_data_len =
3049 			    sc->rx_bd_mbuf_alloc_size -
3050 			    sc->rx_bd_mbuf_align_pad;
3051 		} else {
3052 			/* Setup for standard RX buffer allocations. */
3053 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3054 			sc->rx_bd_mbuf_align_pad  =
3055 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3056 			sc->rx_bd_mbuf_data_len =
3057 			    sc->rx_bd_mbuf_alloc_size -
3058 			    sc->rx_bd_mbuf_align_pad;
3059 		}
3060 	}
3061 
3062 //	DBPRINT(sc, BCE_INFO_LOAD,
3063 	DBPRINT(sc, BCE_WARN,
3064 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3065 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3066 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3067 	   sc->rx_bd_mbuf_align_pad);
3068 
3069 	DBEXIT(BCE_VERBOSE_LOAD);
3070 
3071 }
3072 
3073 /****************************************************************************/
3074 /* Identifies the current media type of the controller and sets the PHY     */
3075 /* address.                                                                 */
3076 /*                                                                          */
3077 /* Returns:                                                                 */
3078 /*   Nothing.                                                               */
3079 /****************************************************************************/
3080 static void
3081 bce_get_media(struct bce_softc *sc)
3082 {
3083 	u32 val;
3084 
3085 	DBENTER(BCE_VERBOSE_PHY);
3086 
3087 	/* Assume PHY address for copper controllers. */
3088 	sc->bce_phy_addr = 1;
3089 
3090 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3091  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3092 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3093 		u32 strap;
3094 
3095 		/*
3096 		 * The BCM5709S is software configurable
3097 		 * for Copper or SerDes operation.
3098 		 */
3099 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3100 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3101 			    "for copper.\n");
3102 			goto bce_get_media_exit;
3103 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3104 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3105 			    "for dual media.\n");
3106 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3107 			goto bce_get_media_exit;
3108 		}
3109 
3110 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3111 			strap = (val &
3112 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3113 		else
3114 			strap = (val &
3115 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3116 
3117 		if (pci_get_function(sc->bce_dev) == 0) {
3118 			switch (strap) {
3119 			case 0x4:
3120 			case 0x5:
3121 			case 0x6:
3122 				DBPRINT(sc, BCE_INFO_LOAD,
3123 				    "BCM5709 s/w configured for SerDes.\n");
3124 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3125 				break;
3126 			default:
3127 				DBPRINT(sc, BCE_INFO_LOAD,
3128 				    "BCM5709 s/w configured for Copper.\n");
3129 				break;
3130 			}
3131 		} else {
3132 			switch (strap) {
3133 			case 0x1:
3134 			case 0x2:
3135 			case 0x4:
3136 				DBPRINT(sc, BCE_INFO_LOAD,
3137 				    "BCM5709 s/w configured for SerDes.\n");
3138 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3139 				break;
3140 			default:
3141 				DBPRINT(sc, BCE_INFO_LOAD,
3142 				    "BCM5709 s/w configured for Copper.\n");
3143 				break;
3144 			}
3145 		}
3146 
3147 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3148 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3149 
3150 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3151 
3152 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3153 
3154 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3155 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3156 
3157 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3158 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3159 			sc->bce_phy_addr = 2;
3160 
3161 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3162 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3163 				sc->bce_phy_flags |=
3164 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3165 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3166 				    "capable adapter\n");
3167 			}
3168 		}
3169 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3170 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3171 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3172 
3173 bce_get_media_exit:
3174 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3175 		"Using PHY address %d.\n", sc->bce_phy_addr);
3176 
3177 	DBEXIT(BCE_VERBOSE_PHY);
3178 }
3179 
3180 
3181 /****************************************************************************/
3182 /* Performs PHY initialization required before MII drivers access the       */
3183 /* device.                                                                  */
3184 /*                                                                          */
3185 /* Returns:                                                                 */
3186 /*   Nothing.                                                               */
3187 /****************************************************************************/
3188 static void
3189 bce_init_media(struct bce_softc *sc)
3190 {
3191 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3192 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3193 		/*
3194 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3195 		 * Clause 22 method. Otherwise we have no way to attach
3196 		 * the PHY in mii(4) layer. PHY specific configuration
3197 		 * is done in mii layer.
3198 		 */
3199 
3200 		/* Select auto-negotiation MMD of the PHY. */
3201 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3202 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3203 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3204 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3205 
3206 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3207 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3208 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3209 	}
3210 }
3211 
3212 
3213 /****************************************************************************/
3214 /* Free any DMA memory owned by the driver.                                 */
3215 /*                                                                          */
3216 /* Scans through each data structre that requires DMA memory and frees      */
3217 /* the memory if allocated.                                                 */
3218 /*                                                                          */
3219 /* Returns:                                                                 */
3220 /*   Nothing.                                                               */
3221 /****************************************************************************/
3222 static void
3223 bce_dma_free(struct bce_softc *sc)
3224 {
3225 	int i;
3226 
3227 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3228 
3229 	/* Free, unmap, and destroy the status block. */
3230 	if (sc->status_block != NULL) {
3231 		bus_dmamem_free(
3232 		   sc->status_tag,
3233 		    sc->status_block,
3234 		    sc->status_map);
3235 		sc->status_block = NULL;
3236 	}
3237 
3238 	if (sc->status_map != NULL) {
3239 		bus_dmamap_unload(
3240 		    sc->status_tag,
3241 		    sc->status_map);
3242 		bus_dmamap_destroy(sc->status_tag,
3243 		    sc->status_map);
3244 		sc->status_map = NULL;
3245 	}
3246 
3247 	if (sc->status_tag != NULL) {
3248 		bus_dma_tag_destroy(sc->status_tag);
3249 		sc->status_tag = NULL;
3250 	}
3251 
3252 
3253 	/* Free, unmap, and destroy the statistics block. */
3254 	if (sc->stats_block != NULL) {
3255 		bus_dmamem_free(
3256 		    sc->stats_tag,
3257 		    sc->stats_block,
3258 		    sc->stats_map);
3259 		sc->stats_block = NULL;
3260 	}
3261 
3262 	if (sc->stats_map != NULL) {
3263 		bus_dmamap_unload(
3264 		    sc->stats_tag,
3265 		    sc->stats_map);
3266 		bus_dmamap_destroy(sc->stats_tag,
3267 		    sc->stats_map);
3268 		sc->stats_map = NULL;
3269 	}
3270 
3271 	if (sc->stats_tag != NULL) {
3272 		bus_dma_tag_destroy(sc->stats_tag);
3273 		sc->stats_tag = NULL;
3274 	}
3275 
3276 
3277 	/* Free, unmap and destroy all context memory pages. */
3278 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3279 		for (i = 0; i < sc->ctx_pages; i++ ) {
3280 			if (sc->ctx_block[i] != NULL) {
3281 				bus_dmamem_free(
3282 				    sc->ctx_tag,
3283 				    sc->ctx_block[i],
3284 				    sc->ctx_map[i]);
3285 				sc->ctx_block[i] = NULL;
3286 			}
3287 
3288 			if (sc->ctx_map[i] != NULL) {
3289 				bus_dmamap_unload(
3290 				    sc->ctx_tag,
3291 				    sc->ctx_map[i]);
3292 				bus_dmamap_destroy(
3293 				    sc->ctx_tag,
3294 				    sc->ctx_map[i]);
3295 				sc->ctx_map[i] = NULL;
3296 			}
3297 		}
3298 
3299 		/* Destroy the context memory tag. */
3300 		if (sc->ctx_tag != NULL) {
3301 			bus_dma_tag_destroy(sc->ctx_tag);
3302 			sc->ctx_tag = NULL;
3303 		}
3304 	}
3305 
3306 
3307 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3308 	for (i = 0; i < sc->tx_pages; i++ ) {
3309 		if (sc->tx_bd_chain[i] != NULL) {
3310 			bus_dmamem_free(
3311 			    sc->tx_bd_chain_tag,
3312 			    sc->tx_bd_chain[i],
3313 			    sc->tx_bd_chain_map[i]);
3314 			sc->tx_bd_chain[i] = NULL;
3315 		}
3316 
3317 		if (sc->tx_bd_chain_map[i] != NULL) {
3318 			bus_dmamap_unload(
3319 			    sc->tx_bd_chain_tag,
3320 			    sc->tx_bd_chain_map[i]);
3321 			bus_dmamap_destroy(
3322 			    sc->tx_bd_chain_tag,
3323 			    sc->tx_bd_chain_map[i]);
3324 			sc->tx_bd_chain_map[i] = NULL;
3325 		}
3326 	}
3327 
3328 	/* Destroy the TX buffer descriptor tag. */
3329 	if (sc->tx_bd_chain_tag != NULL) {
3330 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3331 		sc->tx_bd_chain_tag = NULL;
3332 	}
3333 
3334 
3335 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3336 	for (i = 0; i < sc->rx_pages; i++ ) {
3337 		if (sc->rx_bd_chain[i] != NULL) {
3338 			bus_dmamem_free(
3339 			    sc->rx_bd_chain_tag,
3340 			    sc->rx_bd_chain[i],
3341 			    sc->rx_bd_chain_map[i]);
3342 			sc->rx_bd_chain[i] = NULL;
3343 		}
3344 
3345 		if (sc->rx_bd_chain_map[i] != NULL) {
3346 			bus_dmamap_unload(
3347 			    sc->rx_bd_chain_tag,
3348 			    sc->rx_bd_chain_map[i]);
3349 			bus_dmamap_destroy(
3350 			    sc->rx_bd_chain_tag,
3351 			    sc->rx_bd_chain_map[i]);
3352 			sc->rx_bd_chain_map[i] = NULL;
3353 		}
3354 	}
3355 
3356 	/* Destroy the RX buffer descriptor tag. */
3357 	if (sc->rx_bd_chain_tag != NULL) {
3358 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3359 		sc->rx_bd_chain_tag = NULL;
3360 	}
3361 
3362 
3363 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3364 	if (bce_hdr_split == TRUE) {
3365 		for (i = 0; i < sc->pg_pages; i++ ) {
3366 			if (sc->pg_bd_chain[i] != NULL) {
3367 				bus_dmamem_free(
3368 				    sc->pg_bd_chain_tag,
3369 				    sc->pg_bd_chain[i],
3370 				    sc->pg_bd_chain_map[i]);
3371 				sc->pg_bd_chain[i] = NULL;
3372 			}
3373 
3374 			if (sc->pg_bd_chain_map[i] != NULL) {
3375 				bus_dmamap_unload(
3376 				    sc->pg_bd_chain_tag,
3377 				    sc->pg_bd_chain_map[i]);
3378 				bus_dmamap_destroy(
3379 				    sc->pg_bd_chain_tag,
3380 				    sc->pg_bd_chain_map[i]);
3381 				sc->pg_bd_chain_map[i] = NULL;
3382 			}
3383 		}
3384 
3385 		/* Destroy the page buffer descriptor tag. */
3386 		if (sc->pg_bd_chain_tag != NULL) {
3387 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3388 			sc->pg_bd_chain_tag = NULL;
3389 		}
3390 	}
3391 
3392 
3393 	/* Unload and destroy the TX mbuf maps. */
3394 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3395 		if (sc->tx_mbuf_map[i] != NULL) {
3396 			bus_dmamap_unload(sc->tx_mbuf_tag,
3397 			    sc->tx_mbuf_map[i]);
3398 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3399 	 		    sc->tx_mbuf_map[i]);
3400 			sc->tx_mbuf_map[i] = NULL;
3401 		}
3402 	}
3403 
3404 	/* Destroy the TX mbuf tag. */
3405 	if (sc->tx_mbuf_tag != NULL) {
3406 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3407 		sc->tx_mbuf_tag = NULL;
3408 	}
3409 
3410 	/* Unload and destroy the RX mbuf maps. */
3411 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3412 		if (sc->rx_mbuf_map[i] != NULL) {
3413 			bus_dmamap_unload(sc->rx_mbuf_tag,
3414 			    sc->rx_mbuf_map[i]);
3415 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3416 	 		    sc->rx_mbuf_map[i]);
3417 			sc->rx_mbuf_map[i] = NULL;
3418 		}
3419 	}
3420 
3421 	/* Destroy the RX mbuf tag. */
3422 	if (sc->rx_mbuf_tag != NULL) {
3423 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3424 		sc->rx_mbuf_tag = NULL;
3425 	}
3426 
3427 	/* Unload and destroy the page mbuf maps. */
3428 	if (bce_hdr_split == TRUE) {
3429 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3430 			if (sc->pg_mbuf_map[i] != NULL) {
3431 				bus_dmamap_unload(sc->pg_mbuf_tag,
3432 				    sc->pg_mbuf_map[i]);
3433 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3434 				    sc->pg_mbuf_map[i]);
3435 				sc->pg_mbuf_map[i] = NULL;
3436 			}
3437 		}
3438 
3439 		/* Destroy the page mbuf tag. */
3440 		if (sc->pg_mbuf_tag != NULL) {
3441 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3442 			sc->pg_mbuf_tag = NULL;
3443 		}
3444 	}
3445 
3446 	/* Destroy the parent tag */
3447 	if (sc->parent_tag != NULL) {
3448 		bus_dma_tag_destroy(sc->parent_tag);
3449 		sc->parent_tag = NULL;
3450 	}
3451 
3452 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3453 }
3454 
3455 
3456 /****************************************************************************/
3457 /* Get DMA memory from the OS.                                              */
3458 /*                                                                          */
3459 /* Validates that the OS has provided DMA buffers in response to a          */
3460 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3461 /* When the callback is used the OS will return 0 for the mapping function  */
3462 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3463 /* failures back to the caller.                                             */
3464 /*                                                                          */
3465 /* Returns:                                                                 */
3466 /*   Nothing.                                                               */
3467 /****************************************************************************/
3468 static void
3469 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3470 {
3471 	bus_addr_t *busaddr = arg;
3472 
3473 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3474 	    __FUNCTION__, nseg));
3475 	/* Simulate a mapping failure. */
3476 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3477 	    error = ENOMEM);
3478 
3479 	/* ToDo: How to increment debug sim_count variable here? */
3480 
3481 	/* Check for an error and signal the caller that an error occurred. */
3482 	if (error) {
3483 		*busaddr = 0;
3484 	} else {
3485 		*busaddr = segs->ds_addr;
3486 	}
3487 
3488 	return;
3489 }
3490 
3491 
3492 /****************************************************************************/
3493 /* Allocate any DMA memory needed by the driver.                            */
3494 /*                                                                          */
3495 /* Allocates DMA memory needed for the various global structures needed by  */
3496 /* hardware.                                                                */
3497 /*                                                                          */
3498 /* Memory alignment requirements:                                           */
3499 /* +-----------------+----------+----------+----------+----------+          */
3500 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3501 /* +-----------------+----------+----------+----------+----------+          */
3502 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3503 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3504 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3505 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3506 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3507 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3508 /* |Context Memory   |          |          |          |          |          */
3509 /* +-----------------+----------+----------+----------+----------+          */
3510 /*                                                                          */
3511 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3512 /*                                                                          */
3513 /* Returns:                                                                 */
3514 /*   0 for success, positive value for failure.                             */
3515 /****************************************************************************/
3516 static int
3517 bce_dma_alloc(device_t dev)
3518 {
3519 	struct bce_softc *sc;
3520 	int i, error, rc = 0;
3521 	bus_size_t max_size, max_seg_size;
3522 	int max_segments;
3523 
3524 	sc = device_get_softc(dev);
3525 
3526 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3527 
3528 	/*
3529 	 * Allocate the parent bus DMA tag appropriate for PCI.
3530 	 */
3531 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3532 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3533 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3534 	    &sc->parent_tag)) {
3535 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3536 		    __FILE__, __LINE__);
3537 		rc = ENOMEM;
3538 		goto bce_dma_alloc_exit;
3539 	}
3540 
3541 	/*
3542 	 * Create a DMA tag for the status block, allocate and clear the
3543 	 * memory, map the memory into DMA space, and fetch the physical
3544 	 * address of the block.
3545 	 */
3546 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3547 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3548 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3549 	    0, NULL, NULL, &sc->status_tag)) {
3550 		BCE_PRINTF("%s(%d): Could not allocate status block "
3551 		    "DMA tag!\n", __FILE__, __LINE__);
3552 		rc = ENOMEM;
3553 		goto bce_dma_alloc_exit;
3554 	}
3555 
3556 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3557 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3558 	    &sc->status_map)) {
3559 		BCE_PRINTF("%s(%d): Could not allocate status block "
3560 		    "DMA memory!\n", __FILE__, __LINE__);
3561 		rc = ENOMEM;
3562 		goto bce_dma_alloc_exit;
3563 	}
3564 
3565 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3566 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3567 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3568 
3569 	if (error) {
3570 		BCE_PRINTF("%s(%d): Could not map status block "
3571 		    "DMA memory!\n", __FILE__, __LINE__);
3572 		rc = ENOMEM;
3573 		goto bce_dma_alloc_exit;
3574 	}
3575 
3576 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3577 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3578 
3579 	/*
3580 	 * Create a DMA tag for the statistics block, allocate and clear the
3581 	 * memory, map the memory into DMA space, and fetch the physical
3582 	 * address of the block.
3583 	 */
3584 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3585 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3586 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3587 	    0, NULL, NULL, &sc->stats_tag)) {
3588 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3589 		    "DMA tag!\n", __FILE__, __LINE__);
3590 		rc = ENOMEM;
3591 		goto bce_dma_alloc_exit;
3592 	}
3593 
3594 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3595 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3596 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3597 		    "DMA memory!\n", __FILE__, __LINE__);
3598 		rc = ENOMEM;
3599 		goto bce_dma_alloc_exit;
3600 	}
3601 
3602 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3603 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3604 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3605 
3606 	if(error) {
3607 		BCE_PRINTF("%s(%d): Could not map statistics block "
3608 		    "DMA memory!\n", __FILE__, __LINE__);
3609 		rc = ENOMEM;
3610 		goto bce_dma_alloc_exit;
3611 	}
3612 
3613 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3614 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3615 
3616 	/* BCM5709 uses host memory as cache for context memory. */
3617 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3618 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3619 		if (sc->ctx_pages == 0)
3620 			sc->ctx_pages = 1;
3621 
3622 		DBRUNIF((sc->ctx_pages > 512),
3623 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3624 		    __FILE__, __LINE__, sc->ctx_pages));
3625 
3626 		/*
3627 		 * Create a DMA tag for the context pages,
3628 		 * allocate and clear the memory, map the
3629 		 * memory into DMA space, and fetch the
3630 		 * physical address of the block.
3631 		 */
3632 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3633 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3634 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3635 		    0, NULL, NULL, &sc->ctx_tag)) {
3636 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3637 			    "DMA tag!\n", __FILE__, __LINE__);
3638 			rc = ENOMEM;
3639 			goto bce_dma_alloc_exit;
3640 		}
3641 
3642 		for (i = 0; i < sc->ctx_pages; i++) {
3643 
3644 			if(bus_dmamem_alloc(sc->ctx_tag,
3645 			    (void **)&sc->ctx_block[i],
3646 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3647 			    &sc->ctx_map[i])) {
3648 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3649 				    "DMA memory!\n", __FILE__, __LINE__);
3650 				rc = ENOMEM;
3651 				goto bce_dma_alloc_exit;
3652 			}
3653 
3654 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3655 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3656 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3657 
3658 			if (error) {
3659 				BCE_PRINTF("%s(%d): Could not map CTX "
3660 				    "DMA memory!\n", __FILE__, __LINE__);
3661 				rc = ENOMEM;
3662 				goto bce_dma_alloc_exit;
3663 			}
3664 
3665 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3666 			    "= 0x%jX\n", __FUNCTION__, i,
3667 			    (uintmax_t) sc->ctx_paddr[i]);
3668 		}
3669 	}
3670 
3671 	/*
3672 	 * Create a DMA tag for the TX buffer descriptor chain,
3673 	 * allocate and clear the  memory, and fetch the
3674 	 * physical address of the block.
3675 	 */
3676 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3677 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3678 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3679 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3680 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3681 		    "chain DMA tag!\n", __FILE__, __LINE__);
3682 		rc = ENOMEM;
3683 		goto bce_dma_alloc_exit;
3684 	}
3685 
3686 	for (i = 0; i < sc->tx_pages; i++) {
3687 
3688 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3689 		    (void **)&sc->tx_bd_chain[i],
3690 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3691 		    &sc->tx_bd_chain_map[i])) {
3692 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3693 			    "chain DMA memory!\n", __FILE__, __LINE__);
3694 			rc = ENOMEM;
3695 			goto bce_dma_alloc_exit;
3696 		}
3697 
3698 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3699 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3700 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3701 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3702 
3703 		if (error) {
3704 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3705 			    "chain DMA memory!\n", __FILE__, __LINE__);
3706 			rc = ENOMEM;
3707 			goto bce_dma_alloc_exit;
3708 		}
3709 
3710 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3711 		    "0x%jX\n", __FUNCTION__, i,
3712 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3713 	}
3714 
3715 	/* Check the required size before mapping to conserve resources. */
3716 	if (bce_tso_enable) {
3717 		max_size     = BCE_TSO_MAX_SIZE;
3718 		max_segments = BCE_MAX_SEGMENTS;
3719 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3720 	} else {
3721 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3722 		max_segments = BCE_MAX_SEGMENTS;
3723 		max_seg_size = MCLBYTES;
3724 	}
3725 
3726 	/* Create a DMA tag for TX mbufs. */
3727 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3728 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3729 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3730 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3731 		    __FILE__, __LINE__);
3732 		rc = ENOMEM;
3733 		goto bce_dma_alloc_exit;
3734 	}
3735 
3736 	/* Create DMA maps for the TX mbufs clusters. */
3737 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3738 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3739 			&sc->tx_mbuf_map[i])) {
3740 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3741 			    "map!\n", __FILE__, __LINE__);
3742 			rc = ENOMEM;
3743 			goto bce_dma_alloc_exit;
3744 		}
3745 	}
3746 
3747 	/*
3748 	 * Create a DMA tag for the RX buffer descriptor chain,
3749 	 * allocate and clear the memory, and fetch the physical
3750 	 * address of the blocks.
3751 	 */
3752 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3753 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3754 			sc->max_bus_addr, NULL, NULL,
3755 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3756 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3757 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3758 		    "DMA tag!\n", __FILE__, __LINE__);
3759 		rc = ENOMEM;
3760 		goto bce_dma_alloc_exit;
3761 	}
3762 
3763 	for (i = 0; i < sc->rx_pages; i++) {
3764 
3765 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3766 		    (void **)&sc->rx_bd_chain[i],
3767 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3768 		    &sc->rx_bd_chain_map[i])) {
3769 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3770 			    "chain DMA memory!\n", __FILE__, __LINE__);
3771 			rc = ENOMEM;
3772 			goto bce_dma_alloc_exit;
3773 		}
3774 
3775 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3776 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3777 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3778 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3779 
3780 		if (error) {
3781 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3782 			    "chain DMA memory!\n", __FILE__, __LINE__);
3783 			rc = ENOMEM;
3784 			goto bce_dma_alloc_exit;
3785 		}
3786 
3787 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3788 		    "0x%jX\n", __FUNCTION__, i,
3789 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3790 	}
3791 
3792 	/*
3793 	 * Create a DMA tag for RX mbufs.
3794 	 */
3795 	if (bce_hdr_split == TRUE)
3796 		max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3797 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3798 	else
3799 		max_size = max_seg_size = MJUM9BYTES;
3800 	max_segments = 1;
3801 
3802 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3803 	    "(max size = 0x%jX max segments = %d, max segment "
3804 	    "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
3805 	     max_segments, (uintmax_t) max_seg_size);
3806 
3807 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3808 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3809 	    max_size, max_segments, max_seg_size, 0, NULL, NULL,
3810 	    &sc->rx_mbuf_tag)) {
3811 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3812 		    __FILE__, __LINE__);
3813 		rc = ENOMEM;
3814 		goto bce_dma_alloc_exit;
3815 	}
3816 
3817 	/* Create DMA maps for the RX mbuf clusters. */
3818 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3819 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3820 		    &sc->rx_mbuf_map[i])) {
3821 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3822 			    "DMA map!\n", __FILE__, __LINE__);
3823 			rc = ENOMEM;
3824 			goto bce_dma_alloc_exit;
3825 		}
3826 	}
3827 
3828 	if (bce_hdr_split == TRUE) {
3829 		/*
3830 		 * Create a DMA tag for the page buffer descriptor chain,
3831 		 * allocate and clear the memory, and fetch the physical
3832 		 * address of the blocks.
3833 		 */
3834 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3835 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3836 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3837 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3838 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3839 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3840 			rc = ENOMEM;
3841 			goto bce_dma_alloc_exit;
3842 		}
3843 
3844 		for (i = 0; i < sc->pg_pages; i++) {
3845 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3846 			    (void **)&sc->pg_bd_chain[i],
3847 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3848 			    &sc->pg_bd_chain_map[i])) {
3849 				BCE_PRINTF("%s(%d): Could not allocate page "
3850 				    "descriptor chain DMA memory!\n",
3851 				    __FILE__, __LINE__);
3852 				rc = ENOMEM;
3853 				goto bce_dma_alloc_exit;
3854 			}
3855 
3856 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3857 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3858 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3859 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3860 
3861 			if (error) {
3862 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3863 					"chain DMA memory!\n", __FILE__, __LINE__);
3864 				rc = ENOMEM;
3865 				goto bce_dma_alloc_exit;
3866 			}
3867 
3868 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3869 				"0x%jX\n", __FUNCTION__, i,
3870 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3871 		}
3872 
3873 		/*
3874 		 * Create a DMA tag for page mbufs.
3875 		 */
3876 		max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3877 			MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3878 
3879 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3880 			sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3881 			max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3882 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3883 				"DMA tag!\n", __FILE__, __LINE__);
3884 			rc = ENOMEM;
3885 			goto bce_dma_alloc_exit;
3886 		}
3887 
3888 		/* Create DMA maps for the page mbuf clusters. */
3889 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3890 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3891 				&sc->pg_mbuf_map[i])) {
3892 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3893 					"DMA map!\n", __FILE__, __LINE__);
3894 				rc = ENOMEM;
3895 				goto bce_dma_alloc_exit;
3896 			}
3897 		}
3898 	}
3899 
3900 bce_dma_alloc_exit:
3901 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3902 	return(rc);
3903 }
3904 
3905 
3906 /****************************************************************************/
3907 /* Release all resources used by the driver.                                */
3908 /*                                                                          */
3909 /* Releases all resources acquired by the driver including interrupts,      */
3910 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3911 /*                                                                          */
3912 /* Returns:                                                                 */
3913 /*   Nothing.                                                               */
3914 /****************************************************************************/
3915 static void
3916 bce_release_resources(struct bce_softc *sc)
3917 {
3918 	device_t dev;
3919 
3920 	DBENTER(BCE_VERBOSE_RESET);
3921 
3922 	dev = sc->bce_dev;
3923 
3924 	bce_dma_free(sc);
3925 
3926 	if (sc->bce_intrhand != NULL) {
3927 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3928 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3929 	}
3930 
3931 	if (sc->bce_res_irq != NULL) {
3932 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3933 		bus_release_resource(dev, SYS_RES_IRQ,
3934 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3935 	}
3936 
3937 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3938 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3939 		pci_release_msi(dev);
3940 	}
3941 
3942 	if (sc->bce_res_mem != NULL) {
3943 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3944 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3945 		    sc->bce_res_mem);
3946 	}
3947 
3948 	if (sc->bce_ifp != NULL) {
3949 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3950 		if_free(sc->bce_ifp);
3951 	}
3952 
3953 	if (mtx_initialized(&sc->bce_mtx))
3954 		BCE_LOCK_DESTROY(sc);
3955 
3956 	DBEXIT(BCE_VERBOSE_RESET);
3957 }
3958 
3959 
3960 /****************************************************************************/
3961 /* Firmware synchronization.                                                */
3962 /*                                                                          */
3963 /* Before performing certain events such as a chip reset, synchronize with  */
3964 /* the firmware first.                                                      */
3965 /*                                                                          */
3966 /* Returns:                                                                 */
3967 /*   0 for success, positive value for failure.                             */
3968 /****************************************************************************/
3969 static int
3970 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3971 {
3972 	int i, rc = 0;
3973 	u32 val;
3974 
3975 	DBENTER(BCE_VERBOSE_RESET);
3976 
3977 	/* Don't waste any time if we've timed out before. */
3978 	if (sc->bce_fw_timed_out == TRUE) {
3979 		rc = EBUSY;
3980 		goto bce_fw_sync_exit;
3981 	}
3982 
3983 	/* Increment the message sequence number. */
3984 	sc->bce_fw_wr_seq++;
3985 	msg_data |= sc->bce_fw_wr_seq;
3986 
3987  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3988 	    "0x%08X\n",	msg_data);
3989 
3990 	/* Send the message to the bootcode driver mailbox. */
3991 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3992 
3993 	/* Wait for the bootcode to acknowledge the message. */
3994 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3995 		/* Check for a response in the bootcode firmware mailbox. */
3996 		val = bce_shmem_rd(sc, BCE_FW_MB);
3997 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3998 			break;
3999 		DELAY(1000);
4000 	}
4001 
4002 	/* If we've timed out, tell bootcode that we've stopped waiting. */
4003 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
4004 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
4005 
4006 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
4007 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
4008 
4009 		msg_data &= ~BCE_DRV_MSG_CODE;
4010 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
4011 
4012 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
4013 
4014 		sc->bce_fw_timed_out = TRUE;
4015 		rc = EBUSY;
4016 	}
4017 
4018 bce_fw_sync_exit:
4019 	DBEXIT(BCE_VERBOSE_RESET);
4020 	return (rc);
4021 }
4022 
4023 
4024 /****************************************************************************/
4025 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
4026 /*                                                                          */
4027 /* Returns:                                                                 */
4028 /*   Nothing.                                                               */
4029 /****************************************************************************/
4030 static void
4031 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
4032 	u32 rv2p_code_len, u32 rv2p_proc)
4033 {
4034 	int i;
4035 	u32 val;
4036 
4037 	DBENTER(BCE_VERBOSE_RESET);
4038 
4039 	/* Set the page size used by RV2P. */
4040 	if (rv2p_proc == RV2P_PROC2) {
4041 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4042 	}
4043 
4044 	for (i = 0; i < rv2p_code_len; i += 8) {
4045 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4046 		rv2p_code++;
4047 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4048 		rv2p_code++;
4049 
4050 		if (rv2p_proc == RV2P_PROC1) {
4051 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4052 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4053 		}
4054 		else {
4055 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4056 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4057 		}
4058 	}
4059 
4060 	/* Reset the processor, un-stall is done later. */
4061 	if (rv2p_proc == RV2P_PROC1) {
4062 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4063 	}
4064 	else {
4065 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4066 	}
4067 
4068 	DBEXIT(BCE_VERBOSE_RESET);
4069 }
4070 
4071 
4072 /****************************************************************************/
4073 /* Load RISC processor firmware.                                            */
4074 /*                                                                          */
4075 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4076 /* associated with a particular processor.                                  */
4077 /*                                                                          */
4078 /* Returns:                                                                 */
4079 /*   Nothing.                                                               */
4080 /****************************************************************************/
4081 static void
4082 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4083 	struct fw_info *fw)
4084 {
4085 	u32 offset;
4086 
4087 	DBENTER(BCE_VERBOSE_RESET);
4088 
4089     bce_halt_cpu(sc, cpu_reg);
4090 
4091 	/* Load the Text area. */
4092 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4093 	if (fw->text) {
4094 		int j;
4095 
4096 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4097 			REG_WR_IND(sc, offset, fw->text[j]);
4098 	        }
4099 	}
4100 
4101 	/* Load the Data area. */
4102 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4103 	if (fw->data) {
4104 		int j;
4105 
4106 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4107 			REG_WR_IND(sc, offset, fw->data[j]);
4108 		}
4109 	}
4110 
4111 	/* Load the SBSS area. */
4112 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4113 	if (fw->sbss) {
4114 		int j;
4115 
4116 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4117 			REG_WR_IND(sc, offset, fw->sbss[j]);
4118 		}
4119 	}
4120 
4121 	/* Load the BSS area. */
4122 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4123 	if (fw->bss) {
4124 		int j;
4125 
4126 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4127 			REG_WR_IND(sc, offset, fw->bss[j]);
4128 		}
4129 	}
4130 
4131 	/* Load the Read-Only area. */
4132 	offset = cpu_reg->spad_base +
4133 		(fw->rodata_addr - cpu_reg->mips_view_base);
4134 	if (fw->rodata) {
4135 		int j;
4136 
4137 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4138 			REG_WR_IND(sc, offset, fw->rodata[j]);
4139 		}
4140 	}
4141 
4142 	/* Clear the pre-fetch instruction and set the FW start address. */
4143 	REG_WR_IND(sc, cpu_reg->inst, 0);
4144 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4145 
4146 	DBEXIT(BCE_VERBOSE_RESET);
4147 }
4148 
4149 
4150 /****************************************************************************/
4151 /* Starts the RISC processor.                                               */
4152 /*                                                                          */
4153 /* Assumes the CPU starting address has already been set.                   */
4154 /*                                                                          */
4155 /* Returns:                                                                 */
4156 /*   Nothing.                                                               */
4157 /****************************************************************************/
4158 static void
4159 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4160 {
4161 	u32 val;
4162 
4163 	DBENTER(BCE_VERBOSE_RESET);
4164 
4165 	/* Start the CPU. */
4166 	val = REG_RD_IND(sc, cpu_reg->mode);
4167 	val &= ~cpu_reg->mode_value_halt;
4168 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4169 	REG_WR_IND(sc, cpu_reg->mode, val);
4170 
4171 	DBEXIT(BCE_VERBOSE_RESET);
4172 }
4173 
4174 
4175 /****************************************************************************/
4176 /* Halts the RISC processor.                                                */
4177 /*                                                                          */
4178 /* Returns:                                                                 */
4179 /*   Nothing.                                                               */
4180 /****************************************************************************/
4181 static void
4182 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4183 {
4184 	u32 val;
4185 
4186 	DBENTER(BCE_VERBOSE_RESET);
4187 
4188 	/* Halt the CPU. */
4189 	val = REG_RD_IND(sc, cpu_reg->mode);
4190 	val |= cpu_reg->mode_value_halt;
4191 	REG_WR_IND(sc, cpu_reg->mode, val);
4192 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4193 
4194 	DBEXIT(BCE_VERBOSE_RESET);
4195 }
4196 
4197 
4198 /****************************************************************************/
4199 /* Initialize the RX CPU.                                                   */
4200 /*                                                                          */
4201 /* Returns:                                                                 */
4202 /*   Nothing.                                                               */
4203 /****************************************************************************/
4204 static void
4205 bce_start_rxp_cpu(struct bce_softc *sc)
4206 {
4207 	struct cpu_reg cpu_reg;
4208 
4209 	DBENTER(BCE_VERBOSE_RESET);
4210 
4211 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4212 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4213 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4214 	cpu_reg.state = BCE_RXP_CPU_STATE;
4215 	cpu_reg.state_value_clear = 0xffffff;
4216 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4217 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4218 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4219 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4220 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4221 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4222 	cpu_reg.mips_view_base = 0x8000000;
4223 
4224 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4225 	bce_start_cpu(sc, &cpu_reg);
4226 
4227 	DBEXIT(BCE_VERBOSE_RESET);
4228 }
4229 
4230 
4231 /****************************************************************************/
4232 /* Initialize the RX CPU.                                                   */
4233 /*                                                                          */
4234 /* Returns:                                                                 */
4235 /*   Nothing.                                                               */
4236 /****************************************************************************/
4237 static void
4238 bce_init_rxp_cpu(struct bce_softc *sc)
4239 {
4240 	struct cpu_reg cpu_reg;
4241 	struct fw_info fw;
4242 
4243 	DBENTER(BCE_VERBOSE_RESET);
4244 
4245 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4246 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4247 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4248 	cpu_reg.state = BCE_RXP_CPU_STATE;
4249 	cpu_reg.state_value_clear = 0xffffff;
4250 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4251 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4252 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4253 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4254 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4255 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4256 	cpu_reg.mips_view_base = 0x8000000;
4257 
4258 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4259  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4260 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4261 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4262 		fw.start_addr = bce_RXP_b09FwStartAddr;
4263 
4264 		fw.text_addr = bce_RXP_b09FwTextAddr;
4265 		fw.text_len = bce_RXP_b09FwTextLen;
4266 		fw.text_index = 0;
4267 		fw.text = bce_RXP_b09FwText;
4268 
4269 		fw.data_addr = bce_RXP_b09FwDataAddr;
4270 		fw.data_len = bce_RXP_b09FwDataLen;
4271 		fw.data_index = 0;
4272 		fw.data = bce_RXP_b09FwData;
4273 
4274 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4275 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4276 		fw.sbss_index = 0;
4277 		fw.sbss = bce_RXP_b09FwSbss;
4278 
4279 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4280 		fw.bss_len = bce_RXP_b09FwBssLen;
4281 		fw.bss_index = 0;
4282 		fw.bss = bce_RXP_b09FwBss;
4283 
4284 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4285 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4286 		fw.rodata_index = 0;
4287 		fw.rodata = bce_RXP_b09FwRodata;
4288 	} else {
4289 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4290 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4291 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4292 		fw.start_addr = bce_RXP_b06FwStartAddr;
4293 
4294 		fw.text_addr = bce_RXP_b06FwTextAddr;
4295 		fw.text_len = bce_RXP_b06FwTextLen;
4296 		fw.text_index = 0;
4297 		fw.text = bce_RXP_b06FwText;
4298 
4299 		fw.data_addr = bce_RXP_b06FwDataAddr;
4300 		fw.data_len = bce_RXP_b06FwDataLen;
4301 		fw.data_index = 0;
4302 		fw.data = bce_RXP_b06FwData;
4303 
4304 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4305 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4306 		fw.sbss_index = 0;
4307 		fw.sbss = bce_RXP_b06FwSbss;
4308 
4309 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4310 		fw.bss_len = bce_RXP_b06FwBssLen;
4311 		fw.bss_index = 0;
4312 		fw.bss = bce_RXP_b06FwBss;
4313 
4314 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4315 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4316 		fw.rodata_index = 0;
4317 		fw.rodata = bce_RXP_b06FwRodata;
4318 	}
4319 
4320 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4321 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4322 
4323     /* Delay RXP start until initialization is complete. */
4324 
4325 	DBEXIT(BCE_VERBOSE_RESET);
4326 }
4327 
4328 
4329 /****************************************************************************/
4330 /* Initialize the TX CPU.                                                   */
4331 /*                                                                          */
4332 /* Returns:                                                                 */
4333 /*   Nothing.                                                               */
4334 /****************************************************************************/
4335 static void
4336 bce_init_txp_cpu(struct bce_softc *sc)
4337 {
4338 	struct cpu_reg cpu_reg;
4339 	struct fw_info fw;
4340 
4341 	DBENTER(BCE_VERBOSE_RESET);
4342 
4343 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4344 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4345 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4346 	cpu_reg.state = BCE_TXP_CPU_STATE;
4347 	cpu_reg.state_value_clear = 0xffffff;
4348 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4349 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4350 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4351 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4352 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4353 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4354 	cpu_reg.mips_view_base = 0x8000000;
4355 
4356 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4357 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4358 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4359 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4360 		fw.start_addr = bce_TXP_b09FwStartAddr;
4361 
4362 		fw.text_addr = bce_TXP_b09FwTextAddr;
4363 		fw.text_len = bce_TXP_b09FwTextLen;
4364 		fw.text_index = 0;
4365 		fw.text = bce_TXP_b09FwText;
4366 
4367 		fw.data_addr = bce_TXP_b09FwDataAddr;
4368 		fw.data_len = bce_TXP_b09FwDataLen;
4369 		fw.data_index = 0;
4370 		fw.data = bce_TXP_b09FwData;
4371 
4372 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4373 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4374 		fw.sbss_index = 0;
4375 		fw.sbss = bce_TXP_b09FwSbss;
4376 
4377 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4378 		fw.bss_len = bce_TXP_b09FwBssLen;
4379 		fw.bss_index = 0;
4380 		fw.bss = bce_TXP_b09FwBss;
4381 
4382 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4383 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4384 		fw.rodata_index = 0;
4385 		fw.rodata = bce_TXP_b09FwRodata;
4386 	} else {
4387 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4388 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4389 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4390 		fw.start_addr = bce_TXP_b06FwStartAddr;
4391 
4392 		fw.text_addr = bce_TXP_b06FwTextAddr;
4393 		fw.text_len = bce_TXP_b06FwTextLen;
4394 		fw.text_index = 0;
4395 		fw.text = bce_TXP_b06FwText;
4396 
4397 		fw.data_addr = bce_TXP_b06FwDataAddr;
4398 		fw.data_len = bce_TXP_b06FwDataLen;
4399 		fw.data_index = 0;
4400 		fw.data = bce_TXP_b06FwData;
4401 
4402 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4403 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4404 		fw.sbss_index = 0;
4405 		fw.sbss = bce_TXP_b06FwSbss;
4406 
4407 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4408 		fw.bss_len = bce_TXP_b06FwBssLen;
4409 		fw.bss_index = 0;
4410 		fw.bss = bce_TXP_b06FwBss;
4411 
4412 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4413 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4414 		fw.rodata_index = 0;
4415 		fw.rodata = bce_TXP_b06FwRodata;
4416 	}
4417 
4418 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4419 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4420     bce_start_cpu(sc, &cpu_reg);
4421 
4422 	DBEXIT(BCE_VERBOSE_RESET);
4423 }
4424 
4425 
4426 /****************************************************************************/
4427 /* Initialize the TPAT CPU.                                                 */
4428 /*                                                                          */
4429 /* Returns:                                                                 */
4430 /*   Nothing.                                                               */
4431 /****************************************************************************/
4432 static void
4433 bce_init_tpat_cpu(struct bce_softc *sc)
4434 {
4435 	struct cpu_reg cpu_reg;
4436 	struct fw_info fw;
4437 
4438 	DBENTER(BCE_VERBOSE_RESET);
4439 
4440 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4441 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4442 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4443 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4444 	cpu_reg.state_value_clear = 0xffffff;
4445 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4446 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4447 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4448 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4449 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4450 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4451 	cpu_reg.mips_view_base = 0x8000000;
4452 
4453 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4454 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4455 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4456 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4457 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4458 
4459 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4460 		fw.text_len = bce_TPAT_b09FwTextLen;
4461 		fw.text_index = 0;
4462 		fw.text = bce_TPAT_b09FwText;
4463 
4464 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4465 		fw.data_len = bce_TPAT_b09FwDataLen;
4466 		fw.data_index = 0;
4467 		fw.data = bce_TPAT_b09FwData;
4468 
4469 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4470 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4471 		fw.sbss_index = 0;
4472 		fw.sbss = bce_TPAT_b09FwSbss;
4473 
4474 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4475 		fw.bss_len = bce_TPAT_b09FwBssLen;
4476 		fw.bss_index = 0;
4477 		fw.bss = bce_TPAT_b09FwBss;
4478 
4479 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4480 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4481 		fw.rodata_index = 0;
4482 		fw.rodata = bce_TPAT_b09FwRodata;
4483 	} else {
4484 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4485 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4486 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4487 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4488 
4489 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4490 		fw.text_len = bce_TPAT_b06FwTextLen;
4491 		fw.text_index = 0;
4492 		fw.text = bce_TPAT_b06FwText;
4493 
4494 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4495 		fw.data_len = bce_TPAT_b06FwDataLen;
4496 		fw.data_index = 0;
4497 		fw.data = bce_TPAT_b06FwData;
4498 
4499 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4500 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4501 		fw.sbss_index = 0;
4502 		fw.sbss = bce_TPAT_b06FwSbss;
4503 
4504 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4505 		fw.bss_len = bce_TPAT_b06FwBssLen;
4506 		fw.bss_index = 0;
4507 		fw.bss = bce_TPAT_b06FwBss;
4508 
4509 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4510 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4511 		fw.rodata_index = 0;
4512 		fw.rodata = bce_TPAT_b06FwRodata;
4513 	}
4514 
4515 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4516 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4517 	bce_start_cpu(sc, &cpu_reg);
4518 
4519 	DBEXIT(BCE_VERBOSE_RESET);
4520 }
4521 
4522 
4523 /****************************************************************************/
4524 /* Initialize the CP CPU.                                                   */
4525 /*                                                                          */
4526 /* Returns:                                                                 */
4527 /*   Nothing.                                                               */
4528 /****************************************************************************/
4529 static void
4530 bce_init_cp_cpu(struct bce_softc *sc)
4531 {
4532 	struct cpu_reg cpu_reg;
4533 	struct fw_info fw;
4534 
4535 	DBENTER(BCE_VERBOSE_RESET);
4536 
4537 	cpu_reg.mode = BCE_CP_CPU_MODE;
4538 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4539 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4540 	cpu_reg.state = BCE_CP_CPU_STATE;
4541 	cpu_reg.state_value_clear = 0xffffff;
4542 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4543 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4544 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4545 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4546 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4547 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4548 	cpu_reg.mips_view_base = 0x8000000;
4549 
4550 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4551 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4552 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4553 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4554 		fw.start_addr = bce_CP_b09FwStartAddr;
4555 
4556 		fw.text_addr = bce_CP_b09FwTextAddr;
4557 		fw.text_len = bce_CP_b09FwTextLen;
4558 		fw.text_index = 0;
4559 		fw.text = bce_CP_b09FwText;
4560 
4561 		fw.data_addr = bce_CP_b09FwDataAddr;
4562 		fw.data_len = bce_CP_b09FwDataLen;
4563 		fw.data_index = 0;
4564 		fw.data = bce_CP_b09FwData;
4565 
4566 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4567 		fw.sbss_len = bce_CP_b09FwSbssLen;
4568 		fw.sbss_index = 0;
4569 		fw.sbss = bce_CP_b09FwSbss;
4570 
4571 		fw.bss_addr = bce_CP_b09FwBssAddr;
4572 		fw.bss_len = bce_CP_b09FwBssLen;
4573 		fw.bss_index = 0;
4574 		fw.bss = bce_CP_b09FwBss;
4575 
4576 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4577 		fw.rodata_len = bce_CP_b09FwRodataLen;
4578 		fw.rodata_index = 0;
4579 		fw.rodata = bce_CP_b09FwRodata;
4580 	} else {
4581 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4582 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4583 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4584 		fw.start_addr = bce_CP_b06FwStartAddr;
4585 
4586 		fw.text_addr = bce_CP_b06FwTextAddr;
4587 		fw.text_len = bce_CP_b06FwTextLen;
4588 		fw.text_index = 0;
4589 		fw.text = bce_CP_b06FwText;
4590 
4591 		fw.data_addr = bce_CP_b06FwDataAddr;
4592 		fw.data_len = bce_CP_b06FwDataLen;
4593 		fw.data_index = 0;
4594 		fw.data = bce_CP_b06FwData;
4595 
4596 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4597 		fw.sbss_len = bce_CP_b06FwSbssLen;
4598 		fw.sbss_index = 0;
4599 		fw.sbss = bce_CP_b06FwSbss;
4600 
4601 		fw.bss_addr = bce_CP_b06FwBssAddr;
4602 		fw.bss_len = bce_CP_b06FwBssLen;
4603 		fw.bss_index = 0;
4604 		fw.bss = bce_CP_b06FwBss;
4605 
4606 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4607 		fw.rodata_len = bce_CP_b06FwRodataLen;
4608 		fw.rodata_index = 0;
4609 		fw.rodata = bce_CP_b06FwRodata;
4610 	}
4611 
4612 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4613 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4614 	bce_start_cpu(sc, &cpu_reg);
4615 
4616 	DBEXIT(BCE_VERBOSE_RESET);
4617 }
4618 
4619 
4620 /****************************************************************************/
4621 /* Initialize the COM CPU.                                                 */
4622 /*                                                                          */
4623 /* Returns:                                                                 */
4624 /*   Nothing.                                                               */
4625 /****************************************************************************/
4626 static void
4627 bce_init_com_cpu(struct bce_softc *sc)
4628 {
4629 	struct cpu_reg cpu_reg;
4630 	struct fw_info fw;
4631 
4632 	DBENTER(BCE_VERBOSE_RESET);
4633 
4634 	cpu_reg.mode = BCE_COM_CPU_MODE;
4635 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4636 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4637 	cpu_reg.state = BCE_COM_CPU_STATE;
4638 	cpu_reg.state_value_clear = 0xffffff;
4639 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4640 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4641 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4642 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4643 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4644 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4645 	cpu_reg.mips_view_base = 0x8000000;
4646 
4647 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4648 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4649 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4650 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4651 		fw.start_addr = bce_COM_b09FwStartAddr;
4652 
4653 		fw.text_addr = bce_COM_b09FwTextAddr;
4654 		fw.text_len = bce_COM_b09FwTextLen;
4655 		fw.text_index = 0;
4656 		fw.text = bce_COM_b09FwText;
4657 
4658 		fw.data_addr = bce_COM_b09FwDataAddr;
4659 		fw.data_len = bce_COM_b09FwDataLen;
4660 		fw.data_index = 0;
4661 		fw.data = bce_COM_b09FwData;
4662 
4663 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4664 		fw.sbss_len = bce_COM_b09FwSbssLen;
4665 		fw.sbss_index = 0;
4666 		fw.sbss = bce_COM_b09FwSbss;
4667 
4668 		fw.bss_addr = bce_COM_b09FwBssAddr;
4669 		fw.bss_len = bce_COM_b09FwBssLen;
4670 		fw.bss_index = 0;
4671 		fw.bss = bce_COM_b09FwBss;
4672 
4673 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4674 		fw.rodata_len = bce_COM_b09FwRodataLen;
4675 		fw.rodata_index = 0;
4676 		fw.rodata = bce_COM_b09FwRodata;
4677 	} else {
4678 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4679 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4680 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4681 		fw.start_addr = bce_COM_b06FwStartAddr;
4682 
4683 		fw.text_addr = bce_COM_b06FwTextAddr;
4684 		fw.text_len = bce_COM_b06FwTextLen;
4685 		fw.text_index = 0;
4686 		fw.text = bce_COM_b06FwText;
4687 
4688 		fw.data_addr = bce_COM_b06FwDataAddr;
4689 		fw.data_len = bce_COM_b06FwDataLen;
4690 		fw.data_index = 0;
4691 		fw.data = bce_COM_b06FwData;
4692 
4693 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4694 		fw.sbss_len = bce_COM_b06FwSbssLen;
4695 		fw.sbss_index = 0;
4696 		fw.sbss = bce_COM_b06FwSbss;
4697 
4698 		fw.bss_addr = bce_COM_b06FwBssAddr;
4699 		fw.bss_len = bce_COM_b06FwBssLen;
4700 		fw.bss_index = 0;
4701 		fw.bss = bce_COM_b06FwBss;
4702 
4703 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4704 		fw.rodata_len = bce_COM_b06FwRodataLen;
4705 		fw.rodata_index = 0;
4706 		fw.rodata = bce_COM_b06FwRodata;
4707 	}
4708 
4709 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4710 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4711 	bce_start_cpu(sc, &cpu_reg);
4712 
4713 	DBEXIT(BCE_VERBOSE_RESET);
4714 }
4715 
4716 
4717 /****************************************************************************/
4718 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4719 /*                                                                          */
4720 /* Loads the firmware for each CPU and starts the CPU.                      */
4721 /*                                                                          */
4722 /* Returns:                                                                 */
4723 /*   Nothing.                                                               */
4724 /****************************************************************************/
4725 static void
4726 bce_init_cpus(struct bce_softc *sc)
4727 {
4728 	DBENTER(BCE_VERBOSE_RESET);
4729 
4730 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4731 
4732 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4733 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4734 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4735 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4736 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4737 		} else {
4738 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4739 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4740 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4741 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4742 		}
4743 
4744 	} else {
4745 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4746 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4747 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4748 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4749 	}
4750 
4751 	bce_init_rxp_cpu(sc);
4752 	bce_init_txp_cpu(sc);
4753 	bce_init_tpat_cpu(sc);
4754 	bce_init_com_cpu(sc);
4755 	bce_init_cp_cpu(sc);
4756 
4757 	DBEXIT(BCE_VERBOSE_RESET);
4758 }
4759 
4760 
4761 /****************************************************************************/
4762 /* Initialize context memory.                                               */
4763 /*                                                                          */
4764 /* Clears the memory associated with each Context ID (CID).                 */
4765 /*                                                                          */
4766 /* Returns:                                                                 */
4767 /*   Nothing.                                                               */
4768 /****************************************************************************/
4769 static int
4770 bce_init_ctx(struct bce_softc *sc)
4771 {
4772 	u32 offset, val, vcid_addr;
4773 	int i, j, rc, retry_cnt;
4774 
4775 	rc = 0;
4776 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4777 
4778 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4779 		retry_cnt = CTX_INIT_RETRY_COUNT;
4780 
4781 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4782 
4783 		/*
4784 		 * BCM5709 context memory may be cached
4785 		 * in host memory so prepare the host memory
4786 		 * for access.
4787 		 */
4788 		val = BCE_CTX_COMMAND_ENABLED |
4789 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4790 		val |= (BCM_PAGE_BITS - 8) << 16;
4791 		REG_WR(sc, BCE_CTX_COMMAND, val);
4792 
4793 		/* Wait for mem init command to complete. */
4794 		for (i = 0; i < retry_cnt; i++) {
4795 			val = REG_RD(sc, BCE_CTX_COMMAND);
4796 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4797 				break;
4798 			DELAY(2);
4799 		}
4800 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4801 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4802 			    __FUNCTION__);
4803 			rc = EBUSY;
4804 			goto init_ctx_fail;
4805 		}
4806 
4807 		for (i = 0; i < sc->ctx_pages; i++) {
4808 			/* Set the physical address of the context memory. */
4809 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4810 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4811 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4812 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4813 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4814 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4815 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4816 
4817 			/* Verify the context memory write was successful. */
4818 			for (j = 0; j < retry_cnt; j++) {
4819 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4820 				if ((val &
4821 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4822 					break;
4823 				DELAY(5);
4824 			}
4825 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4826 				BCE_PRINTF("%s(): Failed to initialize "
4827 				    "context page %d!\n", __FUNCTION__, i);
4828 				rc = EBUSY;
4829 				goto init_ctx_fail;
4830 			}
4831 		}
4832 	} else {
4833 
4834 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4835 
4836 		/*
4837 		 * For the 5706/5708, context memory is local to
4838 		 * the controller, so initialize the controller
4839 		 * context memory.
4840 		 */
4841 
4842 		vcid_addr = GET_CID_ADDR(96);
4843 		while (vcid_addr) {
4844 
4845 			vcid_addr -= PHY_CTX_SIZE;
4846 
4847 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4848 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4849 
4850 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4851 				CTX_WR(sc, 0x00, offset, 0);
4852 			}
4853 
4854 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4855 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4856 		}
4857 
4858 	}
4859 init_ctx_fail:
4860 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4861 	return (rc);
4862 }
4863 
4864 
4865 /****************************************************************************/
4866 /* Fetch the permanent MAC address of the controller.                       */
4867 /*                                                                          */
4868 /* Returns:                                                                 */
4869 /*   Nothing.                                                               */
4870 /****************************************************************************/
4871 static void
4872 bce_get_mac_addr(struct bce_softc *sc)
4873 {
4874 	u32 mac_lo = 0, mac_hi = 0;
4875 
4876 	DBENTER(BCE_VERBOSE_RESET);
4877 
4878 	/*
4879 	 * The NetXtreme II bootcode populates various NIC
4880 	 * power-on and runtime configuration items in a
4881 	 * shared memory area.  The factory configured MAC
4882 	 * address is available from both NVRAM and the
4883 	 * shared memory area so we'll read the value from
4884 	 * shared memory for speed.
4885 	 */
4886 
4887 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4888 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4889 
4890 	if ((mac_lo == 0) && (mac_hi == 0)) {
4891 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4892 		    __FILE__, __LINE__);
4893 	} else {
4894 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4895 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4896 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4897 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4898 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4899 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4900 	}
4901 
4902 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4903 	    "address = %6D\n", sc->eaddr, ":");
4904 	DBEXIT(BCE_VERBOSE_RESET);
4905 }
4906 
4907 
4908 /****************************************************************************/
4909 /* Program the MAC address.                                                 */
4910 /*                                                                          */
4911 /* Returns:                                                                 */
4912 /*   Nothing.                                                               */
4913 /****************************************************************************/
4914 static void
4915 bce_set_mac_addr(struct bce_softc *sc)
4916 {
4917 	u32 val;
4918 	u8 *mac_addr = sc->eaddr;
4919 
4920 	/* ToDo: Add support for setting multiple MAC addresses. */
4921 
4922 	DBENTER(BCE_VERBOSE_RESET);
4923 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4924 	    "%6D\n", sc->eaddr, ":");
4925 
4926 	val = (mac_addr[0] << 8) | mac_addr[1];
4927 
4928 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4929 
4930 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4931 	    (mac_addr[4] << 8) | mac_addr[5];
4932 
4933 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4934 
4935 	DBEXIT(BCE_VERBOSE_RESET);
4936 }
4937 
4938 
4939 /****************************************************************************/
4940 /* Stop the controller.                                                     */
4941 /*                                                                          */
4942 /* Returns:                                                                 */
4943 /*   Nothing.                                                               */
4944 /****************************************************************************/
4945 static void
4946 bce_stop(struct bce_softc *sc)
4947 {
4948 	struct ifnet *ifp;
4949 
4950 	DBENTER(BCE_VERBOSE_RESET);
4951 
4952 	BCE_LOCK_ASSERT(sc);
4953 
4954 	ifp = sc->bce_ifp;
4955 
4956 	callout_stop(&sc->bce_tick_callout);
4957 
4958 	/* Disable the transmit/receive blocks. */
4959 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4960 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4961 	DELAY(20);
4962 
4963 	bce_disable_intr(sc);
4964 
4965 	/* Free RX buffers. */
4966 	if (bce_hdr_split == TRUE) {
4967 		bce_free_pg_chain(sc);
4968 	}
4969 	bce_free_rx_chain(sc);
4970 
4971 	/* Free TX buffers. */
4972 	bce_free_tx_chain(sc);
4973 
4974 	sc->watchdog_timer = 0;
4975 
4976 	sc->bce_link_up = FALSE;
4977 
4978 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4979 
4980 	DBEXIT(BCE_VERBOSE_RESET);
4981 }
4982 
4983 
4984 static int
4985 bce_reset(struct bce_softc *sc, u32 reset_code)
4986 {
4987 	u32 emac_mode_save, val;
4988 	int i, rc = 0;
4989 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4990 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4991 
4992 	DBENTER(BCE_VERBOSE_RESET);
4993 
4994 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4995 	    __FUNCTION__, reset_code);
4996 
4997 	/*
4998 	 * If ASF/IPMI is operational, then the EMAC Mode register already
4999 	 * contains appropriate values for the link settings that have
5000 	 * been auto-negotiated.  Resetting the chip will clobber those
5001 	 * values.  Save the important bits so we can restore them after
5002 	 * the reset.
5003 	 */
5004 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
5005 
5006 	/* Wait for pending PCI transactions to complete. */
5007 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
5008 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
5009 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
5010 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
5011 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
5012 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
5013 	DELAY(5);
5014 
5015 	/* Disable DMA */
5016 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5017 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5018 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5019 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5020 	}
5021 
5022 	/* Assume bootcode is running. */
5023 	sc->bce_fw_timed_out = FALSE;
5024 	sc->bce_drv_cardiac_arrest = FALSE;
5025 
5026 	/* Give the firmware a chance to prepare for the reset. */
5027 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
5028 	if (rc)
5029 		goto bce_reset_exit;
5030 
5031 	/* Set a firmware reminder that this is a soft reset. */
5032 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5033 
5034 	/* Dummy read to force the chip to complete all current transactions. */
5035 	val = REG_RD(sc, BCE_MISC_ID);
5036 
5037 	/* Chip reset. */
5038 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5039 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5040 		REG_RD(sc, BCE_MISC_COMMAND);
5041 		DELAY(5);
5042 
5043 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5044 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5045 
5046 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5047 	} else {
5048 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5049 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5050 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5051 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5052 
5053 		/* Allow up to 30us for reset to complete. */
5054 		for (i = 0; i < 10; i++) {
5055 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5056 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5057 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5058 				break;
5059 			}
5060 			DELAY(10);
5061 		}
5062 
5063 		/* Check that reset completed successfully. */
5064 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5065 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5066 			BCE_PRINTF("%s(%d): Reset failed!\n",
5067 			    __FILE__, __LINE__);
5068 			rc = EBUSY;
5069 			goto bce_reset_exit;
5070 		}
5071 	}
5072 
5073 	/* Make sure byte swapping is properly configured. */
5074 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5075 	if (val != 0x01020304) {
5076 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5077 		    __FILE__, __LINE__);
5078 		rc = ENODEV;
5079 		goto bce_reset_exit;
5080 	}
5081 
5082 	/* Just completed a reset, assume that firmware is running again. */
5083 	sc->bce_fw_timed_out = FALSE;
5084 	sc->bce_drv_cardiac_arrest = FALSE;
5085 
5086 	/* Wait for the firmware to finish its initialization. */
5087 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5088 	if (rc)
5089 		BCE_PRINTF("%s(%d): Firmware did not complete "
5090 		    "initialization!\n", __FILE__, __LINE__);
5091 	/* Get firmware capabilities. */
5092 	bce_fw_cap_init(sc);
5093 
5094 bce_reset_exit:
5095 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5096 	val = REG_RD(sc, BCE_EMAC_MODE);
5097 	val = (val & ~emac_mode_mask) | emac_mode_save;
5098 	REG_WR(sc, BCE_EMAC_MODE, val);
5099 
5100 	DBEXIT(BCE_VERBOSE_RESET);
5101 	return (rc);
5102 }
5103 
5104 
5105 static int
5106 bce_chipinit(struct bce_softc *sc)
5107 {
5108 	u32 val;
5109 	int rc = 0;
5110 
5111 	DBENTER(BCE_VERBOSE_RESET);
5112 
5113 	bce_disable_intr(sc);
5114 
5115 	/*
5116 	 * Initialize DMA byte/word swapping, configure the number of DMA
5117 	 * channels and PCI clock compensation delay.
5118 	 */
5119 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5120 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5121 #if BYTE_ORDER == BIG_ENDIAN
5122 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5123 #endif
5124 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5125 	    DMA_READ_CHANS << 12 |
5126 	    DMA_WRITE_CHANS << 16;
5127 
5128 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5129 
5130 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5131 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5132 
5133 	/*
5134 	 * This setting resolves a problem observed on certain Intel PCI
5135 	 * chipsets that cannot handle multiple outstanding DMA operations.
5136 	 * See errata E9_5706A1_65.
5137 	 */
5138 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5139 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5140 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5141 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5142 
5143 	REG_WR(sc, BCE_DMA_CONFIG, val);
5144 
5145 	/* Enable the RX_V2P and Context state machines before access. */
5146 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5147 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5148 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5149 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5150 
5151 	/* Initialize context mapping and zero out the quick contexts. */
5152 	if ((rc = bce_init_ctx(sc)) != 0)
5153 		goto bce_chipinit_exit;
5154 
5155 	/* Initialize the on-boards CPUs */
5156 	bce_init_cpus(sc);
5157 
5158 	/* Enable management frames (NC-SI) to flow to the MCP. */
5159 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5160 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5161 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5162 	}
5163 
5164 	/* Prepare NVRAM for access. */
5165 	if ((rc = bce_init_nvram(sc)) != 0)
5166 		goto bce_chipinit_exit;
5167 
5168 	/* Set the kernel bypass block size */
5169 	val = REG_RD(sc, BCE_MQ_CONFIG);
5170 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5171 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5172 
5173 	/* Enable bins used on the 5709. */
5174 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5175 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5176 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5177 			val |= BCE_MQ_CONFIG_HALT_DIS;
5178 	}
5179 
5180 	REG_WR(sc, BCE_MQ_CONFIG, val);
5181 
5182 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5183 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5184 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5185 
5186 	/* Set the page size and clear the RV2P processor stall bits. */
5187 	val = (BCM_PAGE_BITS - 8) << 24;
5188 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5189 
5190 	/* Configure page size. */
5191 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5192 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5193 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5194 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5195 
5196 	/* Set the perfect match control register to default. */
5197 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5198 
5199 bce_chipinit_exit:
5200 	DBEXIT(BCE_VERBOSE_RESET);
5201 
5202 	return(rc);
5203 }
5204 
5205 
5206 /****************************************************************************/
5207 /* Initialize the controller in preparation to send/receive traffic.        */
5208 /*                                                                          */
5209 /* Returns:                                                                 */
5210 /*   0 for success, positive value for failure.                             */
5211 /****************************************************************************/
5212 static int
5213 bce_blockinit(struct bce_softc *sc)
5214 {
5215 	u32 reg, val;
5216 	int rc = 0;
5217 
5218 	DBENTER(BCE_VERBOSE_RESET);
5219 
5220 	/* Load the hardware default MAC address. */
5221 	bce_set_mac_addr(sc);
5222 
5223 	/* Set the Ethernet backoff seed value */
5224 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5225 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5226 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5227 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5228 
5229 	sc->last_status_idx = 0;
5230 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5231 
5232 	/* Set up link change interrupt generation. */
5233 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5234 
5235 	/* Program the physical address of the status block. */
5236 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5237 	    BCE_ADDR_LO(sc->status_block_paddr));
5238 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5239 	    BCE_ADDR_HI(sc->status_block_paddr));
5240 
5241 	/* Program the physical address of the statistics block. */
5242 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5243 	    BCE_ADDR_LO(sc->stats_block_paddr));
5244 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5245 	    BCE_ADDR_HI(sc->stats_block_paddr));
5246 
5247 	/* Program various host coalescing parameters. */
5248 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5249 	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
5250 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5251 	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
5252 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
5253 	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
5254 	REG_WR(sc, BCE_HC_TX_TICKS,
5255 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5256 	REG_WR(sc, BCE_HC_RX_TICKS,
5257 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5258 	REG_WR(sc, BCE_HC_COM_TICKS,
5259 	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
5260 	REG_WR(sc, BCE_HC_CMD_TICKS,
5261 	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
5262 	REG_WR(sc, BCE_HC_STATS_TICKS,
5263 	    (sc->bce_stats_ticks & 0xffff00));
5264 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5265 
5266 	/* Configure the Host Coalescing block. */
5267 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5268 	    BCE_HC_CONFIG_COLLECT_STATS;
5269 
5270 #if 0
5271 	/* ToDo: Add MSI-X support. */
5272 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5273 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5274 		    BCE_HC_SB_CONFIG_1;
5275 
5276 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5277 
5278 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5279 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5280 
5281 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5282 		    (sc->tx_quick_cons_trip_int << 16) |
5283 		     sc->tx_quick_cons_trip);
5284 
5285 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5286 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5287 
5288 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5289 	}
5290 
5291 	/*
5292 	 * Tell the HC block to automatically set the
5293 	 * INT_MASK bit after an MSI/MSI-X interrupt
5294 	 * is generated so the driver doesn't have to.
5295 	 */
5296 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5297 		val |= BCE_HC_CONFIG_ONE_SHOT;
5298 
5299 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5300 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5301 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5302 #endif
5303 
5304 	REG_WR(sc, BCE_HC_CONFIG, val);
5305 
5306 	/* Clear the internal statistics counters. */
5307 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5308 
5309 	/* Verify that bootcode is running. */
5310 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5311 
5312 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5313 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5314 	    __FILE__, __LINE__);
5315 	    reg = 0);
5316 
5317 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5318 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5319 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5320 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5321 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5322 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5323 		rc = ENODEV;
5324 		goto bce_blockinit_exit;
5325 	}
5326 
5327 	/* Enable DMA */
5328 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5329 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5330 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5331 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5332 	}
5333 
5334 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5335 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5336 	    BCE_DRV_MSG_CODE_RESET);
5337 
5338 	/* Enable link state change interrupt generation. */
5339 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5340 
5341 	/* Enable the RXP. */
5342 	bce_start_rxp_cpu(sc);
5343 
5344 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5345 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5346 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5347 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5348 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5349 	}
5350 
5351 	/* Enable all remaining blocks in the MAC. */
5352 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5353 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5354 		    BCE_MISC_ENABLE_DEFAULT_XI);
5355 	else
5356 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5357 		    BCE_MISC_ENABLE_DEFAULT);
5358 
5359 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5360 	DELAY(20);
5361 
5362 	/* Save the current host coalescing block settings. */
5363 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5364 
5365 bce_blockinit_exit:
5366 	DBEXIT(BCE_VERBOSE_RESET);
5367 
5368 	return (rc);
5369 }
5370 
5371 
5372 /****************************************************************************/
5373 /* Encapsulate an mbuf into the rx_bd chain.                                */
5374 /*                                                                          */
5375 /* Returns:                                                                 */
5376 /*   0 for success, positive value for failure.                             */
5377 /****************************************************************************/
5378 static int
5379 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5380     u16 *chain_prod, u32 *prod_bseq)
5381 {
5382 	bus_dmamap_t map;
5383 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
5384 	struct mbuf *m_new = NULL;
5385 	struct rx_bd *rxbd;
5386 	int nsegs, error, rc = 0;
5387 #ifdef BCE_DEBUG
5388 	u16 debug_chain_prod = *chain_prod;
5389 #endif
5390 
5391 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5392 
5393 	/* Make sure the inputs are valid. */
5394 	DBRUNIF((*chain_prod > MAX_RX_BD_ALLOC),
5395 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5396 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5397 	    *chain_prod, (u16) MAX_RX_BD_ALLOC));
5398 
5399 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5400 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5401 	    *prod, *chain_prod, *prod_bseq);
5402 
5403 	/* Update some debug statistic counters */
5404 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5405 	    sc->rx_low_watermark = sc->free_rx_bd);
5406 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5407 	    sc->rx_empty_count++);
5408 
5409 	/* Check whether this is a new mbuf allocation. */
5410 	if (m == NULL) {
5411 
5412 		/* Simulate an mbuf allocation failure. */
5413 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5414 		    sc->mbuf_alloc_failed_count++;
5415 		    sc->mbuf_alloc_failed_sim_count++;
5416 		    rc = ENOBUFS;
5417 		    goto bce_get_rx_buf_exit);
5418 
5419 		/* This is a new mbuf allocation. */
5420 		if (bce_hdr_split == TRUE)
5421 			MGETHDR(m_new, M_NOWAIT, MT_DATA);
5422 		else
5423 			m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5424 			    sc->rx_bd_mbuf_alloc_size);
5425 
5426 		if (m_new == NULL) {
5427 			sc->mbuf_alloc_failed_count++;
5428 			rc = ENOBUFS;
5429 			goto bce_get_rx_buf_exit;
5430 		}
5431 
5432 		DBRUN(sc->debug_rx_mbuf_alloc++);
5433 	} else {
5434 		/* Reuse an existing mbuf. */
5435 		m_new = m;
5436 	}
5437 
5438 	/* Make sure we have a valid packet header. */
5439 	M_ASSERTPKTHDR(m_new);
5440 
5441 	/* Initialize the mbuf size and pad if necessary for alignment. */
5442 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5443 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5444 
5445 	/* ToDo: Consider calling m_fragment() to test error handling. */
5446 
5447 	/* Map the mbuf cluster into device memory. */
5448 	map = sc->rx_mbuf_map[*chain_prod];
5449 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
5450 	    segs, &nsegs, BUS_DMA_NOWAIT);
5451 
5452 	/* Handle any mapping errors. */
5453 	if (error) {
5454 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5455 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5456 
5457 		sc->dma_map_addr_rx_failed_count++;
5458 		m_freem(m_new);
5459 
5460 		DBRUN(sc->debug_rx_mbuf_alloc--);
5461 
5462 		rc = ENOBUFS;
5463 		goto bce_get_rx_buf_exit;
5464 	}
5465 
5466 	/* All mbufs must map to a single segment. */
5467 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5468 	    __FUNCTION__, nsegs));
5469 
5470 	/* Setup the rx_bd for the segment. */
5471 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
5472 
5473 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5474 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5475 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5476 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5477 	*prod_bseq += segs[0].ds_len;
5478 
5479 	/* Save the mbuf and update our counter. */
5480 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
5481 	sc->free_rx_bd -= nsegs;
5482 
5483 	DBRUNMSG(BCE_INSANE_RECV,
5484 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5485 
5486 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5487 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
5488 	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);
5489 
5490 bce_get_rx_buf_exit:
5491 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5492 
5493 	return(rc);
5494 }
5495 
5496 
5497 /****************************************************************************/
5498 /* Encapsulate an mbuf cluster into the page chain.                         */
5499 /*                                                                          */
5500 /* Returns:                                                                 */
5501 /*   0 for success, positive value for failure.                             */
5502 /****************************************************************************/
5503 static int
5504 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5505 	u16 *prod_idx)
5506 {
5507 	bus_dmamap_t map;
5508 	bus_addr_t busaddr;
5509 	struct mbuf *m_new = NULL;
5510 	struct rx_bd *pgbd;
5511 	int error, rc = 0;
5512 #ifdef BCE_DEBUG
5513 	u16 debug_prod_idx = *prod_idx;
5514 #endif
5515 
5516 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5517 
5518 	/* Make sure the inputs are valid. */
5519 	DBRUNIF((*prod_idx > MAX_PG_BD_ALLOC),
5520 	    BCE_PRINTF("%s(%d): page producer out of range: "
5521 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5522 	    *prod_idx, (u16) MAX_PG_BD_ALLOC));
5523 
5524 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5525 	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5526 
5527 	/* Update counters if we've hit a new low or run out of pages. */
5528 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5529 	    sc->pg_low_watermark = sc->free_pg_bd);
5530 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5531 
5532 	/* Check whether this is a new mbuf allocation. */
5533 	if (m == NULL) {
5534 
5535 		/* Simulate an mbuf allocation failure. */
5536 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5537 		    sc->mbuf_alloc_failed_count++;
5538 		    sc->mbuf_alloc_failed_sim_count++;
5539 		    rc = ENOBUFS;
5540 		    goto bce_get_pg_buf_exit);
5541 
5542 		/* This is a new mbuf allocation. */
5543 		m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5544 		if (m_new == NULL) {
5545 			sc->mbuf_alloc_failed_count++;
5546 			rc = ENOBUFS;
5547 			goto bce_get_pg_buf_exit;
5548 		}
5549 
5550 		DBRUN(sc->debug_pg_mbuf_alloc++);
5551 	} else {
5552 		/* Reuse an existing mbuf. */
5553 		m_new = m;
5554 		m_new->m_data = m_new->m_ext.ext_buf;
5555 	}
5556 
5557 	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5558 
5559 	/* ToDo: Consider calling m_fragment() to test error handling. */
5560 
5561 	/* Map the mbuf cluster into device memory. */
5562 	map = sc->pg_mbuf_map[*prod_idx];
5563 	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5564 	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
5565 	    &busaddr, BUS_DMA_NOWAIT);
5566 
5567 	/* Handle any mapping errors. */
5568 	if (error) {
5569 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5570 		    __FILE__, __LINE__);
5571 
5572 		m_freem(m_new);
5573 		DBRUN(sc->debug_pg_mbuf_alloc--);
5574 
5575 		rc = ENOBUFS;
5576 		goto bce_get_pg_buf_exit;
5577 	}
5578 
5579 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5580 
5581 	/*
5582 	 * The page chain uses the same rx_bd data structure
5583 	 * as the receive chain but doesn't require a byte sequence (bseq).
5584 	 */
5585 	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5586 
5587 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
5588 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
5589 	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
5590 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5591 
5592 	/* Save the mbuf and update our counter. */
5593 	sc->pg_mbuf_ptr[*prod_idx] = m_new;
5594 	sc->free_pg_bd--;
5595 
5596 	DBRUNMSG(BCE_INSANE_RECV,
5597 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5598 
5599 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5600 	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5601 
5602 bce_get_pg_buf_exit:
5603 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5604 
5605 	return(rc);
5606 }
5607 
5608 
5609 /****************************************************************************/
5610 /* Initialize the TX context memory.                                        */
5611 /*                                                                          */
5612 /* Returns:                                                                 */
5613 /*   Nothing                                                                */
5614 /****************************************************************************/
5615 static void
5616 bce_init_tx_context(struct bce_softc *sc)
5617 {
5618 	u32 val;
5619 
5620 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5621 
5622 	/* Initialize the context ID for an L2 TX chain. */
5623 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5624 		/* Set the CID type to support an L2 connection. */
5625 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5626 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5627 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5628 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5629 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5630 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5631 
5632 		/* Point the hardware to the first page in the chain. */
5633 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5634 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5635 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5636 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5637 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5638 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5639 	} else {
5640 		/* Set the CID type to support an L2 connection. */
5641 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5642 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5643 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5644 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5645 
5646 		/* Point the hardware to the first page in the chain. */
5647 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5648 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5649 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5650 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5651 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5652 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5653 	}
5654 
5655 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5656 }
5657 
5658 
5659 /****************************************************************************/
5660 /* Allocate memory and initialize the TX data structures.                   */
5661 /*                                                                          */
5662 /* Returns:                                                                 */
5663 /*   0 for success, positive value for failure.                             */
5664 /****************************************************************************/
5665 static int
5666 bce_init_tx_chain(struct bce_softc *sc)
5667 {
5668 	struct tx_bd *txbd;
5669 	int i, rc = 0;
5670 
5671 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5672 
5673 	/* Set the initial TX producer/consumer indices. */
5674 	sc->tx_prod        = 0;
5675 	sc->tx_cons        = 0;
5676 	sc->tx_prod_bseq   = 0;
5677 	sc->used_tx_bd     = 0;
5678 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5679 	DBRUN(sc->tx_hi_watermark = 0);
5680 	DBRUN(sc->tx_full_count = 0);
5681 
5682 	/*
5683 	 * The NetXtreme II supports a linked-list structre called
5684 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5685 	 * consists of a series of 1 or more chain pages, each of which
5686 	 * consists of a fixed number of BD entries.
5687 	 * The last BD entry on each page is a pointer to the next page
5688 	 * in the chain, and the last pointer in the BD chain
5689 	 * points back to the beginning of the chain.
5690 	 */
5691 
5692 	/* Set the TX next pointer chain entries. */
5693 	for (i = 0; i < sc->tx_pages; i++) {
5694 		int j;
5695 
5696 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5697 
5698 		/* Check if we've reached the last page. */
5699 		if (i == (sc->tx_pages - 1))
5700 			j = 0;
5701 		else
5702 			j = i + 1;
5703 
5704 		txbd->tx_bd_haddr_hi =
5705 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5706 		txbd->tx_bd_haddr_lo =
5707 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5708 	}
5709 
5710 	bce_init_tx_context(sc);
5711 
5712 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5713 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5714 
5715 	return(rc);
5716 }
5717 
5718 
5719 /****************************************************************************/
5720 /* Free memory and clear the TX data structures.                            */
5721 /*                                                                          */
5722 /* Returns:                                                                 */
5723 /*   Nothing.                                                               */
5724 /****************************************************************************/
5725 static void
5726 bce_free_tx_chain(struct bce_softc *sc)
5727 {
5728 	int i;
5729 
5730 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5731 
5732 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5733 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5734 		if (sc->tx_mbuf_ptr[i] != NULL) {
5735 			if (sc->tx_mbuf_map[i] != NULL)
5736 				bus_dmamap_sync(sc->tx_mbuf_tag,
5737 				    sc->tx_mbuf_map[i],
5738 				    BUS_DMASYNC_POSTWRITE);
5739 			m_freem(sc->tx_mbuf_ptr[i]);
5740 			sc->tx_mbuf_ptr[i] = NULL;
5741 			DBRUN(sc->debug_tx_mbuf_alloc--);
5742 		}
5743 	}
5744 
5745 	/* Clear each TX chain page. */
5746 	for (i = 0; i < sc->tx_pages; i++)
5747 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5748 
5749 	sc->used_tx_bd = 0;
5750 
5751 	/* Check if we lost any mbufs in the process. */
5752 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5753 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5754 	    "from tx chain!\n",	__FILE__, __LINE__,
5755 	    sc->debug_tx_mbuf_alloc));
5756 
5757 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5758 }
5759 
5760 
5761 /****************************************************************************/
5762 /* Initialize the RX context memory.                                        */
5763 /*                                                                          */
5764 /* Returns:                                                                 */
5765 /*   Nothing                                                                */
5766 /****************************************************************************/
5767 static void
5768 bce_init_rx_context(struct bce_softc *sc)
5769 {
5770 	u32 val;
5771 
5772 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5773 
5774 	/* Init the type, size, and BD cache levels for the RX context. */
5775 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5776 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5777 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5778 
5779 	/*
5780 	 * Set the level for generating pause frames
5781 	 * when the number of available rx_bd's gets
5782 	 * too low (the low watermark) and the level
5783 	 * when pause frames can be stopped (the high
5784 	 * watermark).
5785 	 */
5786 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5787 		u32 lo_water, hi_water;
5788 
5789 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5790 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5791 		} else {
5792 			lo_water = 0;
5793 		}
5794 
5795 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5796 			lo_water = 0;
5797 		}
5798 
5799 		hi_water = USABLE_RX_BD_ALLOC / 4;
5800 
5801 		if (hi_water <= lo_water) {
5802 			lo_water = 0;
5803 		}
5804 
5805 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5806 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5807 
5808 		if (hi_water > 0xf)
5809 			hi_water = 0xf;
5810 		else if (hi_water == 0)
5811 			lo_water = 0;
5812 
5813 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5814 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5815 	}
5816 
5817 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5818 
5819 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5820 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5821 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5822 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5823 	}
5824 
5825 	/* Point the hardware to the first page in the chain. */
5826 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5827 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5828 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5829 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5830 
5831 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5832 }
5833 
5834 
5835 /****************************************************************************/
5836 /* Allocate memory and initialize the RX data structures.                   */
5837 /*                                                                          */
5838 /* Returns:                                                                 */
5839 /*   0 for success, positive value for failure.                             */
5840 /****************************************************************************/
5841 static int
5842 bce_init_rx_chain(struct bce_softc *sc)
5843 {
5844 	struct rx_bd *rxbd;
5845 	int i, rc = 0;
5846 
5847 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5848 	    BCE_VERBOSE_CTX);
5849 
5850 	/* Initialize the RX producer and consumer indices. */
5851 	sc->rx_prod        = 0;
5852 	sc->rx_cons        = 0;
5853 	sc->rx_prod_bseq   = 0;
5854 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5855 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5856 
5857 	/* Initialize the RX next pointer chain entries. */
5858 	for (i = 0; i < sc->rx_pages; i++) {
5859 		int j;
5860 
5861 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5862 
5863 		/* Check if we've reached the last page. */
5864 		if (i == (sc->rx_pages - 1))
5865 			j = 0;
5866 		else
5867 			j = i + 1;
5868 
5869 		/* Setup the chain page pointers. */
5870 		rxbd->rx_bd_haddr_hi =
5871 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5872 		rxbd->rx_bd_haddr_lo =
5873 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5874 	}
5875 
5876 	/* Fill up the RX chain. */
5877 	bce_fill_rx_chain(sc);
5878 
5879 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5880 	DBRUN(sc->rx_empty_count = 0);
5881 	for (i = 0; i < sc->rx_pages; i++) {
5882 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5883 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5884 	}
5885 
5886 	bce_init_rx_context(sc);
5887 
5888 	DBRUNMSG(BCE_EXTREME_RECV,
5889 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5890 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5891 	    BCE_VERBOSE_CTX);
5892 
5893 	/* ToDo: Are there possible failure modes here? */
5894 
5895 	return(rc);
5896 }
5897 
5898 
5899 /****************************************************************************/
5900 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5901 /* occurs.                                                                  */
5902 /*                                                                          */
5903 /* Returns:                                                                 */
5904 /*   Nothing                                                                */
5905 /****************************************************************************/
5906 static void
5907 bce_fill_rx_chain(struct bce_softc *sc)
5908 {
5909 	u16 prod, prod_idx;
5910 	u32 prod_bseq;
5911 
5912 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5913 	    BCE_VERBOSE_CTX);
5914 
5915 	/* Get the RX chain producer indices. */
5916 	prod      = sc->rx_prod;
5917 	prod_bseq = sc->rx_prod_bseq;
5918 
5919 	/* Keep filling the RX chain until it's full. */
5920 	while (sc->free_rx_bd > 0) {
5921 		prod_idx = RX_CHAIN_IDX(prod);
5922 		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5923 			/* Bail out if we can't add an mbuf to the chain. */
5924 			break;
5925 		}
5926 		prod = NEXT_RX_BD(prod);
5927 	}
5928 
5929 	/* Save the RX chain producer indices. */
5930 	sc->rx_prod      = prod;
5931 	sc->rx_prod_bseq = prod_bseq;
5932 
5933 	/* We should never end up pointing to a next page pointer. */
5934 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5935 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5936 	    __FUNCTION__, sc->rx_prod));
5937 
5938 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5939 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5940 	    BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
5941 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
5942 	    BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);
5943 
5944 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5945 	    BCE_VERBOSE_CTX);
5946 }
5947 
5948 
5949 /****************************************************************************/
5950 /* Free memory and clear the RX data structures.                            */
5951 /*                                                                          */
5952 /* Returns:                                                                 */
5953 /*   Nothing.                                                               */
5954 /****************************************************************************/
5955 static void
5956 bce_free_rx_chain(struct bce_softc *sc)
5957 {
5958 	int i;
5959 
5960 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5961 
5962 	/* Free any mbufs still in the RX mbuf chain. */
5963 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5964 		if (sc->rx_mbuf_ptr[i] != NULL) {
5965 			if (sc->rx_mbuf_map[i] != NULL)
5966 				bus_dmamap_sync(sc->rx_mbuf_tag,
5967 				    sc->rx_mbuf_map[i],
5968 				    BUS_DMASYNC_POSTREAD);
5969 			m_freem(sc->rx_mbuf_ptr[i]);
5970 			sc->rx_mbuf_ptr[i] = NULL;
5971 			DBRUN(sc->debug_rx_mbuf_alloc--);
5972 		}
5973 	}
5974 
5975 	/* Clear each RX chain page. */
5976 	for (i = 0; i < sc->rx_pages; i++)
5977 		if (sc->rx_bd_chain[i] != NULL) {
5978 			bzero((char *)sc->rx_bd_chain[i],
5979 			    BCE_RX_CHAIN_PAGE_SZ);
5980 		}
5981 
5982 	sc->free_rx_bd = sc->max_rx_bd;
5983 
5984 	/* Check if we lost any mbufs in the process. */
5985 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5986 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5987 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5988 
5989 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5990 }
5991 
5992 
5993 /****************************************************************************/
5994 /* Allocate memory and initialize the page data structures.                 */
5995 /* Assumes that bce_init_rx_chain() has not already been called.            */
5996 /*                                                                          */
5997 /* Returns:                                                                 */
5998 /*   0 for success, positive value for failure.                             */
5999 /****************************************************************************/
6000 static int
6001 bce_init_pg_chain(struct bce_softc *sc)
6002 {
6003 	struct rx_bd *pgbd;
6004 	int i, rc = 0;
6005 	u32 val;
6006 
6007 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6008 		BCE_VERBOSE_CTX);
6009 
6010 	/* Initialize the page producer and consumer indices. */
6011 	sc->pg_prod        = 0;
6012 	sc->pg_cons        = 0;
6013 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
6014 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
6015 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
6016 	DBRUN(sc->pg_empty_count = 0);
6017 
6018 	/* Initialize the page next pointer chain entries. */
6019 	for (i = 0; i < sc->pg_pages; i++) {
6020 		int j;
6021 
6022 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
6023 
6024 		/* Check if we've reached the last page. */
6025 		if (i == (sc->pg_pages - 1))
6026 			j = 0;
6027 		else
6028 			j = i + 1;
6029 
6030 		/* Setup the chain page pointers. */
6031 		pgbd->rx_bd_haddr_hi =
6032 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
6033 		pgbd->rx_bd_haddr_lo =
6034 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
6035 	}
6036 
6037 	/* Setup the MQ BIN mapping for host_pg_bidx. */
6038 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
6039 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
6040 
6041 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
6042 
6043 	/* Configure the rx_bd and page chain mbuf cluster size. */
6044 	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
6045 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6046 
6047 	/* Configure the context reserved for jumbo support. */
6048 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6049 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6050 
6051 	/* Point the hardware to the first page in the page chain. */
6052 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6053 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6054 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6055 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6056 
6057 	/* Fill up the page chain. */
6058 	bce_fill_pg_chain(sc);
6059 
6060 	for (i = 0; i < sc->pg_pages; i++) {
6061 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6062 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6063 	}
6064 
6065 	DBRUNMSG(BCE_EXTREME_RECV,
6066 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6067 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6068 		BCE_VERBOSE_CTX);
6069 	return(rc);
6070 }
6071 
6072 
6073 /****************************************************************************/
6074 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6075 /* occurs.                                                                  */
6076 /*                                                                          */
6077 /* Returns:                                                                 */
6078 /*   Nothing                                                                */
6079 /****************************************************************************/
6080 static void
6081 bce_fill_pg_chain(struct bce_softc *sc)
6082 {
6083 	u16 prod, prod_idx;
6084 
6085 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6086 	    BCE_VERBOSE_CTX);
6087 
6088 	/* Get the page chain prodcuer index. */
6089 	prod = sc->pg_prod;
6090 
6091 	/* Keep filling the page chain until it's full. */
6092 	while (sc->free_pg_bd > 0) {
6093 		prod_idx = PG_CHAIN_IDX(prod);
6094 		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
6095 			/* Bail out if we can't add an mbuf to the chain. */
6096 			break;
6097 		}
6098 		prod = NEXT_PG_BD(prod);
6099 	}
6100 
6101 	/* Save the page chain producer index. */
6102 	sc->pg_prod = prod;
6103 
6104 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6105 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6106 	    __FUNCTION__, sc->pg_prod));
6107 
6108 	/*
6109 	 * Write the mailbox and tell the chip about
6110 	 * the new rx_bd's in the page chain.
6111 	 */
6112 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
6113 	    BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);
6114 
6115 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6116 	    BCE_VERBOSE_CTX);
6117 }
6118 
6119 
6120 /****************************************************************************/
6121 /* Free memory and clear the RX data structures.                            */
6122 /*                                                                          */
6123 /* Returns:                                                                 */
6124 /*   Nothing.                                                               */
6125 /****************************************************************************/
6126 static void
6127 bce_free_pg_chain(struct bce_softc *sc)
6128 {
6129 	int i;
6130 
6131 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6132 
6133 	/* Free any mbufs still in the mbuf page chain. */
6134 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6135 		if (sc->pg_mbuf_ptr[i] != NULL) {
6136 			if (sc->pg_mbuf_map[i] != NULL)
6137 				bus_dmamap_sync(sc->pg_mbuf_tag,
6138 				    sc->pg_mbuf_map[i],
6139 				    BUS_DMASYNC_POSTREAD);
6140 			m_freem(sc->pg_mbuf_ptr[i]);
6141 			sc->pg_mbuf_ptr[i] = NULL;
6142 			DBRUN(sc->debug_pg_mbuf_alloc--);
6143 		}
6144 	}
6145 
6146 	/* Clear each page chain pages. */
6147 	for (i = 0; i < sc->pg_pages; i++)
6148 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6149 
6150 	sc->free_pg_bd = sc->max_pg_bd;
6151 
6152 	/* Check if we lost any mbufs in the process. */
6153 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6154 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6155 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6156 
6157 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6158 }
6159 
6160 
6161 static u32
6162 bce_get_rphy_link(struct bce_softc *sc)
6163 {
6164 	u32 advertise, link;
6165 	int fdpx;
6166 
6167 	advertise = 0;
6168 	fdpx = 0;
6169 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6170 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6171 	else
6172 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6173 	if (link & BCE_NETLINK_ANEG_ENB)
6174 		advertise |= BCE_NETLINK_ANEG_ENB;
6175 	if (link & BCE_NETLINK_SPEED_10HALF)
6176 		advertise |= BCE_NETLINK_SPEED_10HALF;
6177 	if (link & BCE_NETLINK_SPEED_10FULL) {
6178 		advertise |= BCE_NETLINK_SPEED_10FULL;
6179 		fdpx++;
6180 	}
6181 	if (link & BCE_NETLINK_SPEED_100HALF)
6182 		advertise |= BCE_NETLINK_SPEED_100HALF;
6183 	if (link & BCE_NETLINK_SPEED_100FULL) {
6184 		advertise |= BCE_NETLINK_SPEED_100FULL;
6185 		fdpx++;
6186 	}
6187 	if (link & BCE_NETLINK_SPEED_1000HALF)
6188 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6189 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6190 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6191 		fdpx++;
6192 	}
6193 	if (link & BCE_NETLINK_SPEED_2500HALF)
6194 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6195 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6196 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6197 		fdpx++;
6198 	}
6199 	if (fdpx)
6200 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6201 		    BCE_NETLINK_FC_PAUSE_ASYM;
6202 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6203 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6204 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6205 
6206 	return (advertise);
6207 }
6208 
6209 
6210 /****************************************************************************/
6211 /* Set media options.                                                       */
6212 /*                                                                          */
6213 /* Returns:                                                                 */
6214 /*   0 for success, positive value for failure.                             */
6215 /****************************************************************************/
6216 static int
6217 bce_ifmedia_upd(struct ifnet *ifp)
6218 {
6219 	struct bce_softc *sc = ifp->if_softc;
6220 	int error;
6221 
6222 	DBENTER(BCE_VERBOSE);
6223 
6224 	BCE_LOCK(sc);
6225 	error = bce_ifmedia_upd_locked(ifp);
6226 	BCE_UNLOCK(sc);
6227 
6228 	DBEXIT(BCE_VERBOSE);
6229 	return (error);
6230 }
6231 
6232 
6233 /****************************************************************************/
6234 /* Set media options.                                                       */
6235 /*                                                                          */
6236 /* Returns:                                                                 */
6237 /*   Nothing.                                                               */
6238 /****************************************************************************/
6239 static int
6240 bce_ifmedia_upd_locked(struct ifnet *ifp)
6241 {
6242 	struct bce_softc *sc = ifp->if_softc;
6243 	struct mii_data *mii;
6244 	struct mii_softc *miisc;
6245 	struct ifmedia *ifm;
6246 	u32 link;
6247 	int error, fdx;
6248 
6249 	DBENTER(BCE_VERBOSE_PHY);
6250 
6251 	error = 0;
6252 	BCE_LOCK_ASSERT(sc);
6253 
6254 	sc->bce_link_up = FALSE;
6255 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6256 		ifm = &sc->bce_ifmedia;
6257 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6258 			return (EINVAL);
6259 		link = 0;
6260 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6261 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6262 		case IFM_AUTO:
6263 			/*
6264 			 * Check advertised link of remote PHY by reading
6265 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6266 			 * Always use the same link type of remote PHY.
6267 			 */
6268 			link = bce_get_rphy_link(sc);
6269 			break;
6270 		case IFM_2500_SX:
6271 			if ((sc->bce_phy_flags &
6272 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6273 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6274 				return (EINVAL);
6275 			/*
6276 			 * XXX
6277 			 * Have to enable forced 2.5Gbps configuration.
6278 			 */
6279 			if (fdx != 0)
6280 				link |= BCE_NETLINK_SPEED_2500FULL;
6281 			else
6282 				link |= BCE_NETLINK_SPEED_2500HALF;
6283 			break;
6284 		case IFM_1000_SX:
6285 			if ((sc->bce_phy_flags &
6286 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6287 				return (EINVAL);
6288 			/*
6289 			 * XXX
6290 			 * Have to disable 2.5Gbps configuration.
6291 			 */
6292 			if (fdx != 0)
6293 				link = BCE_NETLINK_SPEED_1000FULL;
6294 			else
6295 				link = BCE_NETLINK_SPEED_1000HALF;
6296 			break;
6297 		case IFM_1000_T:
6298 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6299 				return (EINVAL);
6300 			if (fdx != 0)
6301 				link = BCE_NETLINK_SPEED_1000FULL;
6302 			else
6303 				link = BCE_NETLINK_SPEED_1000HALF;
6304 			break;
6305 		case IFM_100_TX:
6306 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6307 				return (EINVAL);
6308 			if (fdx != 0)
6309 				link = BCE_NETLINK_SPEED_100FULL;
6310 			else
6311 				link = BCE_NETLINK_SPEED_100HALF;
6312 			break;
6313 		case IFM_10_T:
6314 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6315 				return (EINVAL);
6316 			if (fdx != 0)
6317 				link = BCE_NETLINK_SPEED_10FULL;
6318 			else
6319 				link = BCE_NETLINK_SPEED_10HALF;
6320 			break;
6321 		default:
6322 			return (EINVAL);
6323 		}
6324 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6325 			/*
6326 			 * XXX
6327 			 * Advertise pause capability for full-duplex media.
6328 			 */
6329 			if (fdx != 0)
6330 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6331 				    BCE_NETLINK_FC_PAUSE_ASYM;
6332 			if ((sc->bce_phy_flags &
6333 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6334 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6335 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6336 		}
6337 
6338 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6339 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6340 	} else {
6341 		mii = device_get_softc(sc->bce_miibus);
6342 
6343 		/* Make sure the MII bus has been enumerated. */
6344 		if (mii) {
6345 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6346 				PHY_RESET(miisc);
6347 			error = mii_mediachg(mii);
6348 		}
6349 	}
6350 
6351 	DBEXIT(BCE_VERBOSE_PHY);
6352 	return (error);
6353 }
6354 
6355 
6356 static void
6357 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6358 {
6359 	struct ifnet *ifp;
6360 	u32 link;
6361 
6362 	ifp = sc->bce_ifp;
6363 	BCE_LOCK_ASSERT(sc);
6364 
6365 	ifmr->ifm_status = IFM_AVALID;
6366 	ifmr->ifm_active = IFM_ETHER;
6367 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6368 	/* XXX Handle heart beat status? */
6369 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6370 		ifmr->ifm_status |= IFM_ACTIVE;
6371 	else {
6372 		ifmr->ifm_active |= IFM_NONE;
6373 		ifp->if_baudrate = 0;
6374 		return;
6375 	}
6376 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6377 	case BCE_LINK_STATUS_10HALF:
6378 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6379 		ifp->if_baudrate = IF_Mbps(10UL);
6380 		break;
6381 	case BCE_LINK_STATUS_10FULL:
6382 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6383 		ifp->if_baudrate = IF_Mbps(10UL);
6384 		break;
6385 	case BCE_LINK_STATUS_100HALF:
6386 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6387 		ifp->if_baudrate = IF_Mbps(100UL);
6388 		break;
6389 	case BCE_LINK_STATUS_100FULL:
6390 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6391 		ifp->if_baudrate = IF_Mbps(100UL);
6392 		break;
6393 	case BCE_LINK_STATUS_1000HALF:
6394 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6395 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6396 		else
6397 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6398 		ifp->if_baudrate = IF_Mbps(1000UL);
6399 		break;
6400 	case BCE_LINK_STATUS_1000FULL:
6401 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6402 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6403 		else
6404 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6405 		ifp->if_baudrate = IF_Mbps(1000UL);
6406 		break;
6407 	case BCE_LINK_STATUS_2500HALF:
6408 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6409 			ifmr->ifm_active |= IFM_NONE;
6410 			return;
6411 		} else
6412 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6413 		ifp->if_baudrate = IF_Mbps(2500UL);
6414 		break;
6415 	case BCE_LINK_STATUS_2500FULL:
6416 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6417 			ifmr->ifm_active |= IFM_NONE;
6418 			return;
6419 		} else
6420 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6421 		ifp->if_baudrate = IF_Mbps(2500UL);
6422 		break;
6423 	default:
6424 		ifmr->ifm_active |= IFM_NONE;
6425 		return;
6426 	}
6427 
6428 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6429 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6430 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6431 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6432 }
6433 
6434 
6435 /****************************************************************************/
6436 /* Reports current media status.                                            */
6437 /*                                                                          */
6438 /* Returns:                                                                 */
6439 /*   Nothing.                                                               */
6440 /****************************************************************************/
6441 static void
6442 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6443 {
6444 	struct bce_softc *sc = ifp->if_softc;
6445 	struct mii_data *mii;
6446 
6447 	DBENTER(BCE_VERBOSE_PHY);
6448 
6449 	BCE_LOCK(sc);
6450 
6451 	if ((ifp->if_flags & IFF_UP) == 0) {
6452 		BCE_UNLOCK(sc);
6453 		return;
6454 	}
6455 
6456 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6457 		bce_ifmedia_sts_rphy(sc, ifmr);
6458 	else {
6459 		mii = device_get_softc(sc->bce_miibus);
6460 		mii_pollstat(mii);
6461 		ifmr->ifm_active = mii->mii_media_active;
6462 		ifmr->ifm_status = mii->mii_media_status;
6463 	}
6464 
6465 	BCE_UNLOCK(sc);
6466 
6467 	DBEXIT(BCE_VERBOSE_PHY);
6468 }
6469 
6470 
6471 /****************************************************************************/
6472 /* Handles PHY generated interrupt events.                                  */
6473 /*                                                                          */
6474 /* Returns:                                                                 */
6475 /*   Nothing.                                                               */
6476 /****************************************************************************/
6477 static void
6478 bce_phy_intr(struct bce_softc *sc)
6479 {
6480 	u32 new_link_state, old_link_state;
6481 
6482 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6483 
6484 	DBRUN(sc->phy_interrupts++);
6485 
6486 	new_link_state = sc->status_block->status_attn_bits &
6487 	    STATUS_ATTN_BITS_LINK_STATE;
6488 	old_link_state = sc->status_block->status_attn_bits_ack &
6489 	    STATUS_ATTN_BITS_LINK_STATE;
6490 
6491 	/* Handle any changes if the link state has changed. */
6492 	if (new_link_state != old_link_state) {
6493 
6494 		/* Update the status_attn_bits_ack field. */
6495 		if (new_link_state) {
6496 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6497 			    STATUS_ATTN_BITS_LINK_STATE);
6498 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6499 			    __FUNCTION__);
6500 		} else {
6501 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6502 			    STATUS_ATTN_BITS_LINK_STATE);
6503 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6504 			    __FUNCTION__);
6505 		}
6506 
6507 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6508 			if (new_link_state) {
6509 				if (bootverbose)
6510 					if_printf(sc->bce_ifp, "link UP\n");
6511 				if_link_state_change(sc->bce_ifp,
6512 				    LINK_STATE_UP);
6513 			} else {
6514 				if (bootverbose)
6515 					if_printf(sc->bce_ifp, "link DOWN\n");
6516 				if_link_state_change(sc->bce_ifp,
6517 				    LINK_STATE_DOWN);
6518 			}
6519 		}
6520 		/*
6521 		 * Assume link is down and allow
6522 		 * tick routine to update the state
6523 		 * based on the actual media state.
6524 		 */
6525 		sc->bce_link_up = FALSE;
6526 		callout_stop(&sc->bce_tick_callout);
6527 		bce_tick(sc);
6528 	}
6529 
6530 	/* Acknowledge the link change interrupt. */
6531 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6532 
6533 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6534 }
6535 
6536 
6537 /****************************************************************************/
6538 /* Reads the receive consumer value from the status block (skipping over    */
6539 /* chain page pointer if necessary).                                        */
6540 /*                                                                          */
6541 /* Returns:                                                                 */
6542 /*   hw_cons                                                                */
6543 /****************************************************************************/
6544 static inline u16
6545 bce_get_hw_rx_cons(struct bce_softc *sc)
6546 {
6547 	u16 hw_cons;
6548 
6549 	rmb();
6550 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6551 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6552 		hw_cons++;
6553 
6554 	return hw_cons;
6555 }
6556 
6557 /****************************************************************************/
6558 /* Handles received frame interrupt events.                                 */
6559 /*                                                                          */
6560 /* Returns:                                                                 */
6561 /*   Nothing.                                                               */
6562 /****************************************************************************/
6563 static void
6564 bce_rx_intr(struct bce_softc *sc)
6565 {
6566 	struct ifnet *ifp = sc->bce_ifp;
6567 	struct l2_fhdr *l2fhdr;
6568 	struct ether_vlan_header *vh;
6569 	unsigned int pkt_len;
6570 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6571 	u32 status;
6572 	unsigned int rem_len;
6573 	u16 sw_pg_cons, sw_pg_cons_idx;
6574 
6575 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6576 	DBRUN(sc->interrupts_rx++);
6577 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6578 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6579 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6580 
6581 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6582 	for (int i = 0; i < sc->rx_pages; i++)
6583 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6584 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6585 
6586 	/* Prepare the page chain pages to be accessed by the host CPU. */
6587 	if (bce_hdr_split == TRUE) {
6588 		for (int i = 0; i < sc->pg_pages; i++)
6589 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6590 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6591 	}
6592 
6593 	/* Get the hardware's view of the RX consumer index. */
6594 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6595 
6596 	/* Get working copies of the driver's view of the consumer indices. */
6597 	sw_rx_cons = sc->rx_cons;
6598 	sw_pg_cons = sc->pg_cons;
6599 
6600 	/* Update some debug statistics counters */
6601 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6602 	    sc->rx_low_watermark = sc->free_rx_bd);
6603 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6604 	    sc->rx_empty_count++);
6605 
6606 	/* Scan through the receive chain as long as there is work to do */
6607 	/* ToDo: Consider setting a limit on the number of packets processed. */
6608 	rmb();
6609 	while (sw_rx_cons != hw_rx_cons) {
6610 		struct mbuf *m0;
6611 
6612 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6613 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6614 
6615 		/* Unmap the mbuf from DMA space. */
6616 		bus_dmamap_sync(sc->rx_mbuf_tag,
6617 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6618 		    BUS_DMASYNC_POSTREAD);
6619 		bus_dmamap_unload(sc->rx_mbuf_tag,
6620 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6621 
6622 		/* Remove the mbuf from the RX chain. */
6623 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6624 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6625 		DBRUN(sc->debug_rx_mbuf_alloc--);
6626 		sc->free_rx_bd++;
6627 
6628 		if(m0 == NULL) {
6629 			DBPRINT(sc, BCE_EXTREME_RECV,
6630 			    "%s(): Oops! Empty mbuf pointer "
6631 			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
6632 			    __FUNCTION__, sw_rx_cons_idx);
6633 			goto bce_rx_int_next_rx;
6634 		}
6635 
6636 		/*
6637  		 * Frames received on the NetXteme II are prepended
6638  		 * with an l2_fhdr structure which provides status
6639  		 * information about the received frame (including
6640  		 * VLAN tags and checksum info).  The frames are
6641 		 * also automatically adjusted to word align the IP
6642  		 * header (i.e. two null bytes are inserted before
6643  		 * the Ethernet	header).  As a result the data
6644  		 * DMA'd by the controller into	the mbuf looks
6645 		 * like this:
6646 		 *
6647 		 * +---------+-----+---------------------+-----+
6648 		 * | l2_fhdr | pad | packet data         | FCS |
6649 		 * +---------+-----+---------------------+-----+
6650 		 *
6651  		 * The l2_fhdr needs to be checked and skipped and
6652  		 * the FCS needs to be stripped before sending the
6653 		 * packet up the stack.
6654 		 */
6655 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6656 
6657 		/* Get the packet data + FCS length and the status. */
6658 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6659 		status  = l2fhdr->l2_fhdr_status;
6660 
6661 		/*
6662 		 * Skip over the l2_fhdr and pad, resulting in the
6663 		 * following data in the mbuf:
6664 		 * +---------------------+-----+
6665 		 * | packet data         | FCS |
6666 		 * +---------------------+-----+
6667 		 */
6668 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6669 
6670 		/*
6671  		 * When split header mode is used, an ethernet frame
6672  		 * may be split across the receive chain and the
6673  		 * page chain. If that occurs an mbuf cluster must be
6674  		 * reassembled from the individual mbuf pieces.
6675 		 */
6676 		if (bce_hdr_split == TRUE) {
6677 			/*
6678 			 * Check whether the received frame fits in a single
6679 			 * mbuf or not (i.e. packet data + FCS <=
6680 			 * sc->rx_bd_mbuf_data_len bytes).
6681 			 */
6682 			if (pkt_len > m0->m_len) {
6683 				/*
6684 				 * The received frame is larger than a single mbuf.
6685 				 * If the frame was a TCP frame then only the TCP
6686 				 * header is placed in the mbuf, the remaining
6687 				 * payload (including FCS) is placed in the page
6688 				 * chain, the SPLIT flag is set, and the header
6689 				 * length is placed in the IP checksum field.
6690 				 * If the frame is not a TCP frame then the mbuf
6691 				 * is filled and the remaining bytes are placed
6692 				 * in the page chain.
6693 				 */
6694 
6695 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6696 					"packet.\n", __FUNCTION__);
6697 				DBRUN(sc->split_header_frames_rcvd++);
6698 
6699 				/*
6700 				 * When the page chain is enabled and the TCP
6701 				 * header has been split from the TCP payload,
6702 				 * the ip_xsum structure will reflect the length
6703 				 * of the TCP header, not the IP checksum.  Set
6704 				 * the packet length of the mbuf accordingly.
6705 				 */
6706 				if (status & L2_FHDR_STATUS_SPLIT) {
6707 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6708 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6709 				}
6710 
6711 				rem_len = pkt_len - m0->m_len;
6712 
6713 				/* Pull mbufs off the page chain for any remaining data. */
6714 				while (rem_len > 0) {
6715 					struct mbuf *m_pg;
6716 
6717 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6718 
6719 					/* Remove the mbuf from the page chain. */
6720 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6721 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6722 					DBRUN(sc->debug_pg_mbuf_alloc--);
6723 					sc->free_pg_bd++;
6724 
6725 					/* Unmap the page chain mbuf from DMA space. */
6726 					bus_dmamap_sync(sc->pg_mbuf_tag,
6727 						sc->pg_mbuf_map[sw_pg_cons_idx],
6728 						BUS_DMASYNC_POSTREAD);
6729 					bus_dmamap_unload(sc->pg_mbuf_tag,
6730 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6731 
6732 					/* Adjust the mbuf length. */
6733 					if (rem_len < m_pg->m_len) {
6734 						/* The mbuf chain is complete. */
6735 						m_pg->m_len = rem_len;
6736 						rem_len = 0;
6737 					} else {
6738 						/* More packet data is waiting. */
6739 						rem_len -= m_pg->m_len;
6740 					}
6741 
6742 					/* Concatenate the mbuf cluster to the mbuf. */
6743 					m_cat(m0, m_pg);
6744 
6745 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6746 				}
6747 
6748 				/* Set the total packet length. */
6749 				m0->m_pkthdr.len = pkt_len;
6750 
6751 			} else {
6752 				/*
6753 				 * The received packet is small and fits in a
6754 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6755 				 * FCS <= MHLEN).  In other words, the packet is
6756 				 * 154 bytes or less in size.
6757 				 */
6758 
6759 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6760 					"packet.\n", __FUNCTION__);
6761 
6762 				/* Set the total packet length. */
6763 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6764 			}
6765 		} else
6766 			/* Set the total packet length. */
6767 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6768 
6769 		/* Remove the trailing Ethernet FCS. */
6770 		m_adj(m0, -ETHER_CRC_LEN);
6771 
6772 		/* Check that the resulting mbuf chain is valid. */
6773 		DBRUN(m_sanity(m0, FALSE));
6774 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6775 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6776 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6777 		    m_print(m0, 128));
6778 
6779 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6780 		    sc->l2fhdr_error_sim_count++;
6781 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6782 
6783 		/* Check the received frame for errors. */
6784 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6785 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6786 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6787 
6788 			/* Log the error and release the mbuf. */
6789 			ifp->if_ierrors++;
6790 			sc->l2fhdr_error_count++;
6791 
6792 			m_freem(m0);
6793 			m0 = NULL;
6794 			goto bce_rx_int_next_rx;
6795 		}
6796 
6797 		/* Send the packet to the appropriate interface. */
6798 		m0->m_pkthdr.rcvif = ifp;
6799 
6800 		/* Assume no hardware checksum. */
6801 		m0->m_pkthdr.csum_flags = 0;
6802 
6803 		/* Validate the checksum if offload enabled. */
6804 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6805 
6806 			/* Check for an IP datagram. */
6807 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6808 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6809 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6810 				DBRUN(sc->csum_offload_ip++);
6811 				/* Check if the IP checksum is valid. */
6812 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6813 					m0->m_pkthdr.csum_flags |=
6814 					    CSUM_IP_VALID;
6815 			}
6816 
6817 			/* Check for a valid TCP/UDP frame. */
6818 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6819 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6820 
6821 				/* Check for a good TCP/UDP checksum. */
6822 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6823 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6824 					DBRUN(sc->csum_offload_tcp_udp++);
6825 					m0->m_pkthdr.csum_data =
6826 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6827 					m0->m_pkthdr.csum_flags |=
6828 					    (CSUM_DATA_VALID
6829 					    | CSUM_PSEUDO_HDR);
6830 				}
6831 			}
6832 		}
6833 
6834 		/* Attach the VLAN tag.	*/
6835 		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6836 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6837 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6838 				DBRUN(sc->vlan_tagged_frames_stripped++);
6839 #if __FreeBSD_version < 700000
6840 				VLAN_INPUT_TAG(ifp, m0,
6841 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6842 #else
6843 				m0->m_pkthdr.ether_vtag =
6844 				    l2fhdr->l2_fhdr_vlan_tag;
6845 				m0->m_flags |= M_VLANTAG;
6846 #endif
6847 			} else {
6848 				/*
6849 				 * bce(4) controllers can't disable VLAN
6850 				 * tag stripping if management firmware
6851 				 * (ASF/IPMI/UMP) is running. So we always
6852 				 * strip VLAN tag and manually reconstruct
6853 				 * the VLAN frame by appending stripped
6854 				 * VLAN tag in driver if VLAN tag stripping
6855 				 * was disabled.
6856 				 *
6857 				 * TODO: LLC SNAP handling.
6858 				 */
6859 				bcopy(mtod(m0, uint8_t *),
6860 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6861 				    ETHER_ADDR_LEN * 2);
6862 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6863 				vh = mtod(m0, struct ether_vlan_header *);
6864 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6865 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6866 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6867 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6868 			}
6869 		}
6870 
6871 		/* Increment received packet statistics. */
6872 		ifp->if_ipackets++;
6873 
6874 bce_rx_int_next_rx:
6875 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6876 
6877 		/* If we have a packet, pass it up the stack */
6878 		if (m0) {
6879 			/* Make sure we don't lose our place when we release the lock. */
6880 			sc->rx_cons = sw_rx_cons;
6881 			sc->pg_cons = sw_pg_cons;
6882 
6883 			BCE_UNLOCK(sc);
6884 			(*ifp->if_input)(ifp, m0);
6885 			BCE_LOCK(sc);
6886 
6887 			/* Recover our place. */
6888 			sw_rx_cons = sc->rx_cons;
6889 			sw_pg_cons = sc->pg_cons;
6890 		}
6891 
6892 		/* Refresh hw_cons to see if there's new work */
6893 		if (sw_rx_cons == hw_rx_cons)
6894 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6895 	}
6896 
6897 	/* No new packets.  Refill the page chain. */
6898 	if (bce_hdr_split == TRUE) {
6899 		sc->pg_cons = sw_pg_cons;
6900 		bce_fill_pg_chain(sc);
6901 	}
6902 
6903 	/* No new packets.  Refill the RX chain. */
6904 	sc->rx_cons = sw_rx_cons;
6905 	bce_fill_rx_chain(sc);
6906 
6907 	/* Prepare the page chain pages to be accessed by the NIC. */
6908 	for (int i = 0; i < sc->rx_pages; i++)
6909 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6910 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6911 
6912 	if (bce_hdr_split == TRUE) {
6913 		for (int i = 0; i < sc->pg_pages; i++)
6914 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6915 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6916 	}
6917 
6918 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6919 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6920 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6921 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6922 }
6923 
6924 
6925 /****************************************************************************/
6926 /* Reads the transmit consumer value from the status block (skipping over   */
6927 /* chain page pointer if necessary).                                        */
6928 /*                                                                          */
6929 /* Returns:                                                                 */
6930 /*   hw_cons                                                                */
6931 /****************************************************************************/
6932 static inline u16
6933 bce_get_hw_tx_cons(struct bce_softc *sc)
6934 {
6935 	u16 hw_cons;
6936 
6937 	mb();
6938 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6939 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6940 		hw_cons++;
6941 
6942 	return hw_cons;
6943 }
6944 
6945 
6946 /****************************************************************************/
6947 /* Handles transmit completion interrupt events.                            */
6948 /*                                                                          */
6949 /* Returns:                                                                 */
6950 /*   Nothing.                                                               */
6951 /****************************************************************************/
6952 static void
6953 bce_tx_intr(struct bce_softc *sc)
6954 {
6955 	struct ifnet *ifp = sc->bce_ifp;
6956 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6957 
6958 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6959 	DBRUN(sc->interrupts_tx++);
6960 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6961 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6962 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6963 
6964 	BCE_LOCK_ASSERT(sc);
6965 
6966 	/* Get the hardware's view of the TX consumer index. */
6967 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6968 	sw_tx_cons = sc->tx_cons;
6969 
6970 	/* Prevent speculative reads of the status block. */
6971 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6972 	    BUS_SPACE_BARRIER_READ);
6973 
6974 	/* Cycle through any completed TX chain page entries. */
6975 	while (sw_tx_cons != hw_tx_cons) {
6976 #ifdef BCE_DEBUG
6977 		struct tx_bd *txbd = NULL;
6978 #endif
6979 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6980 
6981 		DBPRINT(sc, BCE_INFO_SEND,
6982 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6983 		    "sw_tx_chain_cons = 0x%04X\n",
6984 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6985 
6986 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6987 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6988 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6989 		    (int) MAX_TX_BD_ALLOC);
6990 		    bce_breakpoint(sc));
6991 
6992 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6993 		    [TX_IDX(sw_tx_chain_cons)]);
6994 
6995 		DBRUNIF((txbd == NULL),
6996 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6997 		    __FILE__, __LINE__, sw_tx_chain_cons);
6998 		    bce_breakpoint(sc));
6999 
7000 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
7001 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
7002 
7003 		/*
7004 		 * Free the associated mbuf. Remember
7005 		 * that only the last tx_bd of a packet
7006 		 * has an mbuf pointer and DMA map.
7007 		 */
7008 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
7009 
7010 			/* Validate that this is the last tx_bd. */
7011 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
7012 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
7013 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
7014 			    bce_breakpoint(sc));
7015 
7016 			DBRUNMSG(BCE_INFO_SEND,
7017 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
7018 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
7019 			    sw_tx_chain_cons));
7020 
7021 			/* Unmap the mbuf. */
7022 			bus_dmamap_unload(sc->tx_mbuf_tag,
7023 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
7024 
7025 			/* Free the mbuf. */
7026 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
7027 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
7028 			DBRUN(sc->debug_tx_mbuf_alloc--);
7029 
7030 			ifp->if_opackets++;
7031 		}
7032 
7033 		sc->used_tx_bd--;
7034 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
7035 
7036 		/* Refresh hw_cons to see if there's new work. */
7037 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
7038 
7039 		/* Prevent speculative reads of the status block. */
7040 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7041 		    BUS_SPACE_BARRIER_READ);
7042 	}
7043 
7044 	/* Clear the TX timeout timer. */
7045 	sc->watchdog_timer = 0;
7046 
7047 	/* Clear the tx hardware queue full flag. */
7048 	if (sc->used_tx_bd < sc->max_tx_bd) {
7049 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
7050 		    DBPRINT(sc, BCE_INFO_SEND,
7051 		    "%s(): Open TX chain! %d/%d (used/total)\n",
7052 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
7053 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7054 	}
7055 
7056 	sc->tx_cons = sw_tx_cons;
7057 
7058 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7059 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7060 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7061 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7062 }
7063 
7064 
7065 /****************************************************************************/
7066 /* Disables interrupt generation.                                           */
7067 /*                                                                          */
7068 /* Returns:                                                                 */
7069 /*   Nothing.                                                               */
7070 /****************************************************************************/
7071 static void
7072 bce_disable_intr(struct bce_softc *sc)
7073 {
7074 	DBENTER(BCE_VERBOSE_INTR);
7075 
7076 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7077 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7078 
7079 	DBEXIT(BCE_VERBOSE_INTR);
7080 }
7081 
7082 
7083 /****************************************************************************/
7084 /* Enables interrupt generation.                                            */
7085 /*                                                                          */
7086 /* Returns:                                                                 */
7087 /*   Nothing.                                                               */
7088 /****************************************************************************/
7089 static void
7090 bce_enable_intr(struct bce_softc *sc, int coal_now)
7091 {
7092 	DBENTER(BCE_VERBOSE_INTR);
7093 
7094 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7095 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7096 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7097 
7098 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7099 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7100 
7101 	/* Force an immediate interrupt (whether there is new data or not). */
7102 	if (coal_now)
7103 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7104 
7105 	DBEXIT(BCE_VERBOSE_INTR);
7106 }
7107 
7108 
7109 /****************************************************************************/
7110 /* Handles controller initialization.                                       */
7111 /*                                                                          */
7112 /* Returns:                                                                 */
7113 /*   Nothing.                                                               */
7114 /****************************************************************************/
7115 static void
7116 bce_init_locked(struct bce_softc *sc)
7117 {
7118 	struct ifnet *ifp;
7119 	u32 ether_mtu = 0;
7120 
7121 	DBENTER(BCE_VERBOSE_RESET);
7122 
7123 	BCE_LOCK_ASSERT(sc);
7124 
7125 	ifp = sc->bce_ifp;
7126 
7127 	/* Check if the driver is still running and bail out if it is. */
7128 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7129 		goto bce_init_locked_exit;
7130 
7131 	bce_stop(sc);
7132 
7133 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7134 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
7135 		    __FILE__, __LINE__);
7136 		goto bce_init_locked_exit;
7137 	}
7138 
7139 	if (bce_chipinit(sc)) {
7140 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7141 		    __FILE__, __LINE__);
7142 		goto bce_init_locked_exit;
7143 	}
7144 
7145 	if (bce_blockinit(sc)) {
7146 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
7147 		    __FILE__, __LINE__);
7148 		goto bce_init_locked_exit;
7149 	}
7150 
7151 	/* Load our MAC address. */
7152 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7153 	bce_set_mac_addr(sc);
7154 
7155 	if (bce_hdr_split == FALSE)
7156 		bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7157 	/*
7158 	 * Calculate and program the hardware Ethernet MTU
7159  	 * size. Be generous on the receive if we have room
7160  	 * and allowed by the user.
7161 	 */
7162 	if (bce_strict_rx_mtu == TRUE)
7163 		ether_mtu = ifp->if_mtu;
7164 	else {
7165 		if (bce_hdr_split == TRUE) {
7166 			if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
7167 				   sc->pg_bd_mbuf_alloc_size))
7168 					ether_mtu = sc->rx_bd_mbuf_data_len +
7169 					   sc->pg_bd_mbuf_alloc_size;
7170 			else
7171 				ether_mtu = ifp->if_mtu;
7172 		} else {
7173 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7174 				ether_mtu = sc->rx_bd_mbuf_data_len;
7175 			else
7176 				ether_mtu = ifp->if_mtu;
7177 		}
7178 	}
7179 
7180 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7181 
7182 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7183 	    __FUNCTION__, ether_mtu);
7184 
7185 	/* Program the mtu, enabling jumbo frame support if necessary. */
7186 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7187 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7188 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7189 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7190 	else
7191 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7192 
7193 	/* Program appropriate promiscuous/multicast filtering. */
7194 	bce_set_rx_mode(sc);
7195 
7196 	if (bce_hdr_split == TRUE) {
7197 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
7198 			__FUNCTION__, sc->pg_bd_mbuf_alloc_size);
7199 
7200 		/* Init page buffer descriptor chain. */
7201 		bce_init_pg_chain(sc);
7202 	}
7203 
7204 	/* Init RX buffer descriptor chain. */
7205 	bce_init_rx_chain(sc);
7206 
7207 	/* Init TX buffer descriptor chain. */
7208 	bce_init_tx_chain(sc);
7209 
7210 	/* Enable host interrupts. */
7211 	bce_enable_intr(sc, 1);
7212 
7213 	bce_ifmedia_upd_locked(ifp);
7214 
7215 	/* Let the OS know the driver is up and running. */
7216 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7217 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7218 
7219 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7220 
7221 bce_init_locked_exit:
7222 	DBEXIT(BCE_VERBOSE_RESET);
7223 }
7224 
7225 
7226 /****************************************************************************/
7227 /* Initialize the controller just enough so that any management firmware    */
7228 /* running on the device will continue to operate correctly.                */
7229 /*                                                                          */
7230 /* Returns:                                                                 */
7231 /*   Nothing.                                                               */
7232 /****************************************************************************/
7233 static void
7234 bce_mgmt_init_locked(struct bce_softc *sc)
7235 {
7236 	struct ifnet *ifp;
7237 
7238 	DBENTER(BCE_VERBOSE_RESET);
7239 
7240 	BCE_LOCK_ASSERT(sc);
7241 
7242 	/* Bail out if management firmware is not running. */
7243 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7244 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7245 		    "No management firmware running...\n");
7246 		goto bce_mgmt_init_locked_exit;
7247 	}
7248 
7249 	ifp = sc->bce_ifp;
7250 
7251 	/* Enable all critical blocks in the MAC. */
7252 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7253 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7254 	DELAY(20);
7255 
7256 	bce_ifmedia_upd_locked(ifp);
7257 
7258 bce_mgmt_init_locked_exit:
7259 	DBEXIT(BCE_VERBOSE_RESET);
7260 }
7261 
7262 
7263 /****************************************************************************/
7264 /* Handles controller initialization when called from an unlocked routine.  */
7265 /*                                                                          */
7266 /* Returns:                                                                 */
7267 /*   Nothing.                                                               */
7268 /****************************************************************************/
7269 static void
7270 bce_init(void *xsc)
7271 {
7272 	struct bce_softc *sc = xsc;
7273 
7274 	DBENTER(BCE_VERBOSE_RESET);
7275 
7276 	BCE_LOCK(sc);
7277 	bce_init_locked(sc);
7278 	BCE_UNLOCK(sc);
7279 
7280 	DBEXIT(BCE_VERBOSE_RESET);
7281 }
7282 
7283 
7284 /****************************************************************************/
7285 /* Modifies an mbuf for TSO on the hardware.                                */
7286 /*                                                                          */
7287 /* Returns:                                                                 */
7288 /*   Pointer to a modified mbuf.                                            */
7289 /****************************************************************************/
7290 static struct mbuf *
7291 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7292 {
7293 	struct mbuf *m;
7294 	struct ether_header *eh;
7295 	struct ip *ip;
7296 	struct tcphdr *th;
7297 	u16 etype;
7298 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7299 
7300 	DBRUN(sc->tso_frames_requested++);
7301 
7302 	/* Controller may modify mbuf chains. */
7303 	if (M_WRITABLE(*m_head) == 0) {
7304 		m = m_dup(*m_head, M_NOWAIT);
7305 		m_freem(*m_head);
7306 		if (m == NULL) {
7307 			sc->mbuf_alloc_failed_count++;
7308 			*m_head = NULL;
7309 			return (NULL);
7310 		}
7311 		*m_head = m;
7312 	}
7313 
7314 	/*
7315 	 * For TSO the controller needs two pieces of info,
7316 	 * the MSS and the IP+TCP options length.
7317 	 */
7318 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7319 	if (m == NULL) {
7320 		*m_head = NULL;
7321 		return (NULL);
7322 	}
7323 	eh = mtod(m, struct ether_header *);
7324 	etype = ntohs(eh->ether_type);
7325 
7326 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7327 	switch (etype) {
7328 	case ETHERTYPE_IP:
7329 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7330 		/* TSO only supported for TCP protocol. */
7331 		if (ip->ip_p != IPPROTO_TCP) {
7332 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7333 			    __FILE__, __LINE__);
7334 			m_freem(*m_head);
7335 			*m_head = NULL;
7336 			return (NULL);
7337 		}
7338 
7339 		/* Get IP header length in bytes (min 20) */
7340 		ip_hlen = ip->ip_hl << 2;
7341 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7342 		    sizeof(struct tcphdr));
7343 		if (m == NULL) {
7344 			*m_head = NULL;
7345 			return (NULL);
7346 		}
7347 
7348 		/* Get the TCP header length in bytes (min 20) */
7349 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7350 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7351 		tcp_hlen = (th->th_off << 2);
7352 
7353 		/* Make sure all IP/TCP options live in the same buffer. */
7354 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7355 		    tcp_hlen);
7356 		if (m == NULL) {
7357 			*m_head = NULL;
7358 			return (NULL);
7359 		}
7360 
7361 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7362 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7363 		ip_len = ip->ip_len;
7364 		ip->ip_len = 0;
7365 		ip->ip_sum = 0;
7366 		break;
7367 	case ETHERTYPE_IPV6:
7368 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7369 		    __FILE__, __LINE__);
7370 		m_freem(*m_head);
7371 		*m_head = NULL;
7372 		return (NULL);
7373 		/* NOT REACHED */
7374 	default:
7375 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7376 		    __FILE__, __LINE__);
7377 		m_freem(*m_head);
7378 		*m_head = NULL;
7379 		return (NULL);
7380 	}
7381 
7382 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7383 
7384 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7385 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7386 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7387 	    tcp_hlen, ip_len);
7388 
7389 	/* Set the LSO flag in the TX BD */
7390 	*flags |= TX_BD_FLAGS_SW_LSO;
7391 
7392 	/* Set the length of IP + TCP options (in 32 bit words) */
7393 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7394 	    sizeof(struct tcphdr)) >> 2) << 8);
7395 
7396 	DBRUN(sc->tso_frames_completed++);
7397 	return (*m_head);
7398 }
7399 
7400 
7401 /****************************************************************************/
7402 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7403 /* memory visible to the controller.                                        */
7404 /*                                                                          */
7405 /* Returns:                                                                 */
7406 /*   0 for success, positive value for failure.                             */
7407 /* Modified:                                                                */
7408 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7409 /****************************************************************************/
7410 static int
7411 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7412 {
7413 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7414 	bus_dmamap_t map;
7415 	struct tx_bd *txbd = NULL;
7416 	struct mbuf *m0;
7417 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7418 	u32 prod_bseq;
7419 
7420 #ifdef BCE_DEBUG
7421 	u16 debug_prod;
7422 #endif
7423 
7424 	int i, error, nsegs, rc = 0;
7425 
7426 	DBENTER(BCE_VERBOSE_SEND);
7427 
7428 	/* Make sure we have room in the TX chain. */
7429 	if (sc->used_tx_bd >= sc->max_tx_bd)
7430 		goto bce_tx_encap_exit;
7431 
7432 	/* Transfer any checksum offload flags to the bd. */
7433 	m0 = *m_head;
7434 	if (m0->m_pkthdr.csum_flags) {
7435 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7436 			m0 = bce_tso_setup(sc, m_head, &flags);
7437 			if (m0 == NULL) {
7438 				DBRUN(sc->tso_frames_failed++);
7439 				goto bce_tx_encap_exit;
7440 			}
7441 			mss = htole16(m0->m_pkthdr.tso_segsz);
7442 		} else {
7443 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7444 				flags |= TX_BD_FLAGS_IP_CKSUM;
7445 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7446 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7447 		}
7448 	}
7449 
7450 	/* Transfer any VLAN tags to the bd. */
7451 	if (m0->m_flags & M_VLANTAG) {
7452 		flags |= TX_BD_FLAGS_VLAN_TAG;
7453 		vlan_tag = m0->m_pkthdr.ether_vtag;
7454 	}
7455 
7456 	/* Map the mbuf into DMAable memory. */
7457 	prod = sc->tx_prod;
7458 	chain_prod = TX_CHAIN_IDX(prod);
7459 	map = sc->tx_mbuf_map[chain_prod];
7460 
7461 	/* Map the mbuf into our DMA address space. */
7462 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7463 	    segs, &nsegs, BUS_DMA_NOWAIT);
7464 
7465 	/* Check if the DMA mapping was successful */
7466 	if (error == EFBIG) {
7467 		sc->mbuf_frag_count++;
7468 
7469 		/* Try to defrag the mbuf. */
7470 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7471 		if (m0 == NULL) {
7472 			/* Defrag was unsuccessful */
7473 			m_freem(*m_head);
7474 			*m_head = NULL;
7475 			sc->mbuf_alloc_failed_count++;
7476 			rc = ENOBUFS;
7477 			goto bce_tx_encap_exit;
7478 		}
7479 
7480 		/* Defrag was successful, try mapping again */
7481 		*m_head = m0;
7482 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7483 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7484 
7485 		/* Still getting an error after a defrag. */
7486 		if (error == ENOMEM) {
7487 			/* Insufficient DMA buffers available. */
7488 			sc->dma_map_addr_tx_failed_count++;
7489 			rc = error;
7490 			goto bce_tx_encap_exit;
7491 		} else if (error != 0) {
7492 			/* Release it and return an error. */
7493 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7494 			    "TX chain!\n", __FILE__, __LINE__);
7495 			m_freem(m0);
7496 			*m_head = NULL;
7497 			sc->dma_map_addr_tx_failed_count++;
7498 			rc = ENOBUFS;
7499 			goto bce_tx_encap_exit;
7500 		}
7501 	} else if (error == ENOMEM) {
7502 		/* Insufficient DMA buffers available. */
7503 		sc->dma_map_addr_tx_failed_count++;
7504 		rc = error;
7505 		goto bce_tx_encap_exit;
7506 	} else if (error != 0) {
7507 		m_freem(m0);
7508 		*m_head = NULL;
7509 		sc->dma_map_addr_tx_failed_count++;
7510 		rc = error;
7511 		goto bce_tx_encap_exit;
7512 	}
7513 
7514 	/* Make sure there's room in the chain */
7515 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7516 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7517 		rc = ENOBUFS;
7518 		goto bce_tx_encap_exit;
7519 	}
7520 
7521 	/* prod points to an empty tx_bd at this point. */
7522 	prod_bseq  = sc->tx_prod_bseq;
7523 
7524 #ifdef BCE_DEBUG
7525 	debug_prod = chain_prod;
7526 #endif
7527 
7528 	DBPRINT(sc, BCE_INFO_SEND,
7529 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7530 	    "prod_bseq = 0x%08X\n",
7531 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7532 
7533 	/*
7534 	 * Cycle through each mbuf segment that makes up
7535 	 * the outgoing frame, gathering the mapping info
7536 	 * for that segment and creating a tx_bd for
7537 	 * the mbuf.
7538 	 */
7539 	for (i = 0; i < nsegs ; i++) {
7540 
7541 		chain_prod = TX_CHAIN_IDX(prod);
7542 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7543 		    [TX_IDX(chain_prod)];
7544 
7545 		txbd->tx_bd_haddr_lo =
7546 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7547 		txbd->tx_bd_haddr_hi =
7548 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7549 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7550 		    htole16(segs[i].ds_len);
7551 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7552 		txbd->tx_bd_flags = htole16(flags);
7553 		prod_bseq += segs[i].ds_len;
7554 		if (i == 0)
7555 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7556 		prod = NEXT_TX_BD(prod);
7557 	}
7558 
7559 	/* Set the END flag on the last TX buffer descriptor. */
7560 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7561 
7562 	DBRUNMSG(BCE_EXTREME_SEND,
7563 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7564 
7565 	/*
7566 	 * Ensure that the mbuf pointer for this transmission
7567 	 * is placed at the array index of the last
7568 	 * descriptor in this chain.  This is done
7569 	 * because a single map is used for all
7570 	 * segments of the mbuf and we don't want to
7571 	 * unload the map before all of the segments
7572 	 * have been freed.
7573 	 */
7574 	sc->tx_mbuf_ptr[chain_prod] = m0;
7575 	sc->used_tx_bd += nsegs;
7576 
7577 	/* Update some debug statistic counters */
7578 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7579 	    sc->tx_hi_watermark = sc->used_tx_bd);
7580 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7581 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7582 
7583 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7584 
7585 	/* prod points to the next free tx_bd at this point. */
7586 	sc->tx_prod = prod;
7587 	sc->tx_prod_bseq = prod_bseq;
7588 
7589 	/* Tell the chip about the waiting TX frames. */
7590 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7591 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7592 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7593 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7594 
7595 bce_tx_encap_exit:
7596 	DBEXIT(BCE_VERBOSE_SEND);
7597 	return(rc);
7598 }
7599 
7600 
7601 /****************************************************************************/
7602 /* Main transmit routine when called from another routine with a lock.      */
7603 /*                                                                          */
7604 /* Returns:                                                                 */
7605 /*   Nothing.                                                               */
7606 /****************************************************************************/
7607 static void
7608 bce_start_locked(struct ifnet *ifp)
7609 {
7610 	struct bce_softc *sc = ifp->if_softc;
7611 	struct mbuf *m_head = NULL;
7612 	int count = 0;
7613 	u16 tx_prod, tx_chain_prod;
7614 
7615 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7616 
7617 	BCE_LOCK_ASSERT(sc);
7618 
7619 	/* prod points to the next free tx_bd. */
7620 	tx_prod = sc->tx_prod;
7621 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7622 
7623 	DBPRINT(sc, BCE_INFO_SEND,
7624 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7625 	    "tx_prod_bseq = 0x%08X\n",
7626 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7627 
7628 	/* If there's no link or the transmit queue is empty then just exit. */
7629 	if (sc->bce_link_up == FALSE) {
7630 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7631 		    __FUNCTION__);
7632 		goto bce_start_locked_exit;
7633 	}
7634 
7635 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7636 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7637 		    __FUNCTION__);
7638 		goto bce_start_locked_exit;
7639 	}
7640 
7641 	/*
7642 	 * Keep adding entries while there is space in the ring.
7643 	 */
7644 	while (sc->used_tx_bd < sc->max_tx_bd) {
7645 
7646 		/* Check for any frames to send. */
7647 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7648 
7649 		/* Stop when the transmit queue is empty. */
7650 		if (m_head == NULL)
7651 			break;
7652 
7653 		/*
7654 		 * Pack the data into the transmit ring. If we
7655 		 * don't have room, place the mbuf back at the
7656 		 * head of the queue and set the OACTIVE flag
7657 		 * to wait for the NIC to drain the chain.
7658 		 */
7659 		if (bce_tx_encap(sc, &m_head)) {
7660 			if (m_head != NULL)
7661 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7662 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7663 			DBPRINT(sc, BCE_INFO_SEND,
7664 			    "TX chain is closed for business! Total "
7665 			    "tx_bd used = %d\n", sc->used_tx_bd);
7666 			break;
7667 		}
7668 
7669 		count++;
7670 
7671 		/* Send a copy of the frame to any BPF listeners. */
7672 		ETHER_BPF_MTAP(ifp, m_head);
7673 	}
7674 
7675 	/* Exit if no packets were dequeued. */
7676 	if (count == 0) {
7677 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7678 		    "dequeued\n", __FUNCTION__);
7679 		goto bce_start_locked_exit;
7680 	}
7681 
7682 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7683 	    "send queue.\n", __FUNCTION__, count);
7684 
7685 	/* Set the tx timeout. */
7686 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7687 
7688 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7689 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7690 
7691 bce_start_locked_exit:
7692 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7693 	return;
7694 }
7695 
7696 
7697 /****************************************************************************/
7698 /* Main transmit routine when called from another routine without a lock.   */
7699 /*                                                                          */
7700 /* Returns:                                                                 */
7701 /*   Nothing.                                                               */
7702 /****************************************************************************/
7703 static void
7704 bce_start(struct ifnet *ifp)
7705 {
7706 	struct bce_softc *sc = ifp->if_softc;
7707 
7708 	DBENTER(BCE_VERBOSE_SEND);
7709 
7710 	BCE_LOCK(sc);
7711 	bce_start_locked(ifp);
7712 	BCE_UNLOCK(sc);
7713 
7714 	DBEXIT(BCE_VERBOSE_SEND);
7715 }
7716 
7717 
7718 /****************************************************************************/
7719 /* Handles any IOCTL calls from the operating system.                       */
7720 /*                                                                          */
7721 /* Returns:                                                                 */
7722 /*   0 for success, positive value for failure.                             */
7723 /****************************************************************************/
7724 static int
7725 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7726 {
7727 	struct bce_softc *sc = ifp->if_softc;
7728 	struct ifreq *ifr = (struct ifreq *) data;
7729 	struct mii_data *mii;
7730 	int mask, error = 0;
7731 
7732 	DBENTER(BCE_VERBOSE_MISC);
7733 
7734 	switch(command) {
7735 
7736 	/* Set the interface MTU. */
7737 	case SIOCSIFMTU:
7738 		/* Check that the MTU setting is supported. */
7739 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7740 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7741 			error = EINVAL;
7742 			break;
7743 		}
7744 
7745 		DBPRINT(sc, BCE_INFO_MISC,
7746 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7747 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7748 
7749 		BCE_LOCK(sc);
7750 		ifp->if_mtu = ifr->ifr_mtu;
7751 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7752 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7753 			bce_init_locked(sc);
7754 		}
7755 		BCE_UNLOCK(sc);
7756 		break;
7757 
7758 	/* Set interface flags. */
7759 	case SIOCSIFFLAGS:
7760 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7761 
7762 		BCE_LOCK(sc);
7763 
7764 		/* Check if the interface is up. */
7765 		if (ifp->if_flags & IFF_UP) {
7766 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7767 				/* Change promiscuous/multicast flags as necessary. */
7768 				bce_set_rx_mode(sc);
7769 			} else {
7770 				/* Start the HW */
7771 				bce_init_locked(sc);
7772 			}
7773 		} else {
7774 			/* The interface is down, check if driver is running. */
7775 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7776 				bce_stop(sc);
7777 
7778 				/* If MFW is running, restart the controller a bit. */
7779 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7780 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7781 					bce_chipinit(sc);
7782 					bce_mgmt_init_locked(sc);
7783 				}
7784 			}
7785 		}
7786 
7787 		BCE_UNLOCK(sc);
7788 		break;
7789 
7790 	/* Add/Delete multicast address */
7791 	case SIOCADDMULTI:
7792 	case SIOCDELMULTI:
7793 		DBPRINT(sc, BCE_VERBOSE_MISC,
7794 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7795 
7796 		BCE_LOCK(sc);
7797 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7798 			bce_set_rx_mode(sc);
7799 		BCE_UNLOCK(sc);
7800 
7801 		break;
7802 
7803 	/* Set/Get Interface media */
7804 	case SIOCSIFMEDIA:
7805 	case SIOCGIFMEDIA:
7806 		DBPRINT(sc, BCE_VERBOSE_MISC,
7807 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7808 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7809 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7810 			    command);
7811 		else {
7812 			mii = device_get_softc(sc->bce_miibus);
7813 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7814 			    command);
7815 		}
7816 		break;
7817 
7818 	/* Set interface capability */
7819 	case SIOCSIFCAP:
7820 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7821 		DBPRINT(sc, BCE_INFO_MISC,
7822 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7823 
7824 		/* Toggle the TX checksum capabilities enable flag. */
7825 		if (mask & IFCAP_TXCSUM &&
7826 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7827 			ifp->if_capenable ^= IFCAP_TXCSUM;
7828 			if (IFCAP_TXCSUM & ifp->if_capenable)
7829 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7830 			else
7831 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7832 		}
7833 
7834 		/* Toggle the RX checksum capabilities enable flag. */
7835 		if (mask & IFCAP_RXCSUM &&
7836 		    ifp->if_capabilities & IFCAP_RXCSUM)
7837 			ifp->if_capenable ^= IFCAP_RXCSUM;
7838 
7839 		/* Toggle the TSO capabilities enable flag. */
7840 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7841 		    ifp->if_capabilities & IFCAP_TSO4) {
7842 			ifp->if_capenable ^= IFCAP_TSO4;
7843 			if (IFCAP_TSO4 & ifp->if_capenable)
7844 				ifp->if_hwassist |= CSUM_TSO;
7845 			else
7846 				ifp->if_hwassist &= ~CSUM_TSO;
7847 		}
7848 
7849 		if (mask & IFCAP_VLAN_HWCSUM &&
7850 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7851 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7852 
7853 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7854 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7855 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7856 		/*
7857 		 * Don't actually disable VLAN tag stripping as
7858 		 * management firmware (ASF/IPMI/UMP) requires the
7859 		 * feature. If VLAN tag stripping is disabled driver
7860 		 * will manually reconstruct the VLAN frame by
7861 		 * appending stripped VLAN tag.
7862 		 */
7863 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7864 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7865 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7866 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7867 			    == 0)
7868 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7869 		}
7870 		VLAN_CAPABILITIES(ifp);
7871 		break;
7872 	default:
7873 		/* We don't know how to handle the IOCTL, pass it on. */
7874 		error = ether_ioctl(ifp, command, data);
7875 		break;
7876 	}
7877 
7878 	DBEXIT(BCE_VERBOSE_MISC);
7879 	return(error);
7880 }
7881 
7882 
7883 /****************************************************************************/
7884 /* Transmit timeout handler.                                                */
7885 /*                                                                          */
7886 /* Returns:                                                                 */
7887 /*   Nothing.                                                               */
7888 /****************************************************************************/
7889 static void
7890 bce_watchdog(struct bce_softc *sc)
7891 {
7892 	DBENTER(BCE_EXTREME_SEND);
7893 
7894 	BCE_LOCK_ASSERT(sc);
7895 
7896 	/* If the watchdog timer hasn't expired then just exit. */
7897 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7898 		goto bce_watchdog_exit;
7899 
7900 	/* If pause frames are active then don't reset the hardware. */
7901 	/* ToDo: Should we reset the timer here? */
7902 	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7903 		goto bce_watchdog_exit;
7904 
7905 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7906 	    __FILE__, __LINE__);
7907 
7908 	DBRUNMSG(BCE_INFO,
7909 	    bce_dump_driver_state(sc);
7910 	    bce_dump_status_block(sc);
7911 	    bce_dump_stats_block(sc);
7912 	    bce_dump_ftqs(sc);
7913 	    bce_dump_txp_state(sc, 0);
7914 	    bce_dump_rxp_state(sc, 0);
7915 	    bce_dump_tpat_state(sc, 0);
7916 	    bce_dump_cp_state(sc, 0);
7917 	    bce_dump_com_state(sc, 0));
7918 
7919 	DBRUN(bce_breakpoint(sc));
7920 
7921 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7922 
7923 	bce_init_locked(sc);
7924 	sc->bce_ifp->if_oerrors++;
7925 
7926 bce_watchdog_exit:
7927 	DBEXIT(BCE_EXTREME_SEND);
7928 }
7929 
7930 
7931 /*
7932  * Interrupt handler.
7933  */
7934 /****************************************************************************/
7935 /* Main interrupt entry point.  Verifies that the controller generated the  */
7936 /* interrupt and then calls a separate routine for handle the various       */
7937 /* interrupt causes (PHY, TX, RX).                                          */
7938 /*                                                                          */
7939 /* Returns:                                                                 */
7940 /*   0 for success, positive value for failure.                             */
7941 /****************************************************************************/
7942 static void
7943 bce_intr(void *xsc)
7944 {
7945 	struct bce_softc *sc;
7946 	struct ifnet *ifp;
7947 	u32 status_attn_bits;
7948 	u16 hw_rx_cons, hw_tx_cons;
7949 
7950 	sc = xsc;
7951 	ifp = sc->bce_ifp;
7952 
7953 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7954 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7955 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7956 
7957 	BCE_LOCK(sc);
7958 
7959 	DBRUN(sc->interrupts_generated++);
7960 
7961 	/* Synchnorize before we read from interface's status block */
7962 	bus_dmamap_sync(sc->status_tag, sc->status_map,
7963 	    BUS_DMASYNC_POSTREAD);
7964 
7965 	/*
7966 	 * If the hardware status block index
7967 	 * matches the last value read by the
7968 	 * driver and we haven't asserted our
7969 	 * interrupt then there's nothing to do.
7970 	 */
7971 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7972 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7973 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7974 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7975 		    __FUNCTION__);
7976 		goto bce_intr_exit;
7977 	}
7978 
7979 	/* Ack the interrupt and stop others from occuring. */
7980 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7981 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7982 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7983 
7984 	/* Check if the hardware has finished any work. */
7985 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7986 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7987 
7988 	/* Keep processing data as long as there is work to do. */
7989 	for (;;) {
7990 
7991 		status_attn_bits = sc->status_block->status_attn_bits;
7992 
7993 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7994 		    BCE_PRINTF("Simulating unexpected status attention "
7995 		    "bit set.");
7996 		    sc->unexpected_attention_sim_count++;
7997 		    status_attn_bits = status_attn_bits |
7998 		    STATUS_ATTN_BITS_PARITY_ERROR);
7999 
8000 		/* Was it a link change interrupt? */
8001 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
8002 		    (sc->status_block->status_attn_bits_ack &
8003 		     STATUS_ATTN_BITS_LINK_STATE)) {
8004 			bce_phy_intr(sc);
8005 
8006 			/* Clear transient updates during link state change. */
8007 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
8008 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
8009 			REG_RD(sc, BCE_HC_COMMAND);
8010 		}
8011 
8012 		/* If any other attention is asserted, the chip is toast. */
8013 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
8014 		    (sc->status_block->status_attn_bits_ack &
8015 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
8016 
8017 			sc->unexpected_attention_count++;
8018 
8019 			BCE_PRINTF("%s(%d): Fatal attention detected: "
8020 			    "0x%08X\n",	__FILE__, __LINE__,
8021 			    sc->status_block->status_attn_bits);
8022 
8023 			DBRUNMSG(BCE_FATAL,
8024 			    if (unexpected_attention_sim_control == 0)
8025 				bce_breakpoint(sc));
8026 
8027 			bce_init_locked(sc);
8028 			goto bce_intr_exit;
8029 		}
8030 
8031 		/* Check for any completed RX frames. */
8032 		if (hw_rx_cons != sc->hw_rx_cons)
8033 			bce_rx_intr(sc);
8034 
8035 		/* Check for any completed TX frames. */
8036 		if (hw_tx_cons != sc->hw_tx_cons)
8037 			bce_tx_intr(sc);
8038 
8039 		/* Save status block index value for the next interrupt. */
8040 		sc->last_status_idx = sc->status_block->status_idx;
8041 
8042  		/*
8043  		 * Prevent speculative reads from getting
8044  		 * ahead of the status block.
8045 		 */
8046 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8047 		    BUS_SPACE_BARRIER_READ);
8048 
8049  		/*
8050  		 * If there's no work left then exit the
8051  		 * interrupt service routine.
8052 		 */
8053 		hw_rx_cons = bce_get_hw_rx_cons(sc);
8054 		hw_tx_cons = bce_get_hw_tx_cons(sc);
8055 
8056 		if ((hw_rx_cons == sc->hw_rx_cons) &&
8057 		    (hw_tx_cons == sc->hw_tx_cons))
8058 			break;
8059 
8060 	}
8061 
8062 	bus_dmamap_sync(sc->status_tag,	sc->status_map,
8063 	    BUS_DMASYNC_PREREAD);
8064 
8065 	/* Re-enable interrupts. */
8066 	bce_enable_intr(sc, 0);
8067 
8068 	/* Handle any frames that arrived while handling the interrupt. */
8069 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8070 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8071 		bce_start_locked(ifp);
8072 
8073 bce_intr_exit:
8074 	BCE_UNLOCK(sc);
8075 
8076 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8077 }
8078 
8079 
8080 /****************************************************************************/
8081 /* Programs the various packet receive modes (broadcast and multicast).     */
8082 /*                                                                          */
8083 /* Returns:                                                                 */
8084 /*   Nothing.                                                               */
8085 /****************************************************************************/
8086 static void
8087 bce_set_rx_mode(struct bce_softc *sc)
8088 {
8089 	struct ifnet *ifp;
8090 	struct ifmultiaddr *ifma;
8091 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8092 	u32 rx_mode, sort_mode;
8093 	int h, i;
8094 
8095 	DBENTER(BCE_VERBOSE_MISC);
8096 
8097 	BCE_LOCK_ASSERT(sc);
8098 
8099 	ifp = sc->bce_ifp;
8100 
8101 	/* Initialize receive mode default settings. */
8102 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8103 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8104 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8105 
8106 	/*
8107 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8108 	 * be enbled.
8109 	 */
8110 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8111 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8112 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8113 
8114 	/*
8115 	 * Check for promiscuous, all multicast, or selected
8116 	 * multicast address filtering.
8117 	 */
8118 	if (ifp->if_flags & IFF_PROMISC) {
8119 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8120 
8121 		/* Enable promiscuous mode. */
8122 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8123 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8124 	} else if (ifp->if_flags & IFF_ALLMULTI) {
8125 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8126 
8127 		/* Enable all multicast addresses. */
8128 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8129 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
8130        	}
8131 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8132 	} else {
8133 		/* Accept one or more multicast(s). */
8134 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8135 
8136 		if_maddr_rlock(ifp);
8137 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8138 			if (ifma->ifma_addr->sa_family != AF_LINK)
8139 				continue;
8140 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8141 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8142 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8143 		}
8144 		if_maddr_runlock(ifp);
8145 
8146 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8147 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8148 
8149 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8150 	}
8151 
8152 	/* Only make changes if the recive mode has actually changed. */
8153 	if (rx_mode != sc->rx_mode) {
8154 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8155 		    "0x%08X\n", rx_mode);
8156 
8157 		sc->rx_mode = rx_mode;
8158 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8159 	}
8160 
8161 	/* Disable and clear the exisitng sort before enabling a new sort. */
8162 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8163 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8164 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8165 
8166 	DBEXIT(BCE_VERBOSE_MISC);
8167 }
8168 
8169 
8170 /****************************************************************************/
8171 /* Called periodically to updates statistics from the controllers           */
8172 /* statistics block.                                                        */
8173 /*                                                                          */
8174 /* Returns:                                                                 */
8175 /*   Nothing.                                                               */
8176 /****************************************************************************/
8177 static void
8178 bce_stats_update(struct bce_softc *sc)
8179 {
8180 	struct ifnet *ifp;
8181 	struct statistics_block *stats;
8182 
8183 	DBENTER(BCE_EXTREME_MISC);
8184 
8185 	ifp = sc->bce_ifp;
8186 
8187 	stats = (struct statistics_block *) sc->stats_block;
8188 
8189 	/*
8190 	 * Certain controllers don't report
8191 	 * carrier sense errors correctly.
8192 	 * See errata E11_5708CA0_1165.
8193 	 */
8194 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8195 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8196 		ifp->if_oerrors +=
8197 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
8198 
8199 	/*
8200 	 * Update the sysctl statistics from the
8201 	 * hardware statistics.
8202 	 */
8203 	sc->stat_IfHCInOctets =
8204 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8205 	     (u64) stats->stat_IfHCInOctets_lo;
8206 
8207 	sc->stat_IfHCInBadOctets =
8208 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8209 	     (u64) stats->stat_IfHCInBadOctets_lo;
8210 
8211 	sc->stat_IfHCOutOctets =
8212 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8213 	     (u64) stats->stat_IfHCOutOctets_lo;
8214 
8215 	sc->stat_IfHCOutBadOctets =
8216 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8217 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8218 
8219 	sc->stat_IfHCInUcastPkts =
8220 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8221 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8222 
8223 	sc->stat_IfHCInMulticastPkts =
8224 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8225 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8226 
8227 	sc->stat_IfHCInBroadcastPkts =
8228 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8229 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8230 
8231 	sc->stat_IfHCOutUcastPkts =
8232 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8233 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8234 
8235 	sc->stat_IfHCOutMulticastPkts =
8236 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8237 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8238 
8239 	sc->stat_IfHCOutBroadcastPkts =
8240 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8241 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8242 
8243 	/* ToDo: Preserve counters beyond 32 bits? */
8244 	/* ToDo: Read the statistics from auto-clear regs? */
8245 
8246 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8247 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8248 
8249 	sc->stat_Dot3StatsCarrierSenseErrors =
8250 	    stats->stat_Dot3StatsCarrierSenseErrors;
8251 
8252 	sc->stat_Dot3StatsFCSErrors =
8253 	    stats->stat_Dot3StatsFCSErrors;
8254 
8255 	sc->stat_Dot3StatsAlignmentErrors =
8256 	    stats->stat_Dot3StatsAlignmentErrors;
8257 
8258 	sc->stat_Dot3StatsSingleCollisionFrames =
8259 	    stats->stat_Dot3StatsSingleCollisionFrames;
8260 
8261 	sc->stat_Dot3StatsMultipleCollisionFrames =
8262 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8263 
8264 	sc->stat_Dot3StatsDeferredTransmissions =
8265 	    stats->stat_Dot3StatsDeferredTransmissions;
8266 
8267 	sc->stat_Dot3StatsExcessiveCollisions =
8268 	    stats->stat_Dot3StatsExcessiveCollisions;
8269 
8270 	sc->stat_Dot3StatsLateCollisions =
8271 	    stats->stat_Dot3StatsLateCollisions;
8272 
8273 	sc->stat_EtherStatsCollisions =
8274 	    stats->stat_EtherStatsCollisions;
8275 
8276 	sc->stat_EtherStatsFragments =
8277 	    stats->stat_EtherStatsFragments;
8278 
8279 	sc->stat_EtherStatsJabbers =
8280 	    stats->stat_EtherStatsJabbers;
8281 
8282 	sc->stat_EtherStatsUndersizePkts =
8283 	    stats->stat_EtherStatsUndersizePkts;
8284 
8285 	sc->stat_EtherStatsOversizePkts =
8286 	     stats->stat_EtherStatsOversizePkts;
8287 
8288 	sc->stat_EtherStatsPktsRx64Octets =
8289 	    stats->stat_EtherStatsPktsRx64Octets;
8290 
8291 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8292 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8293 
8294 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8295 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8296 
8297 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8298 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8299 
8300 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8301 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8302 
8303 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8304 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8305 
8306 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8307 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8308 
8309 	sc->stat_EtherStatsPktsTx64Octets =
8310 	    stats->stat_EtherStatsPktsTx64Octets;
8311 
8312 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8313 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8314 
8315 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8316 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8317 
8318 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8319 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8320 
8321 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8322 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8323 
8324 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8325 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8326 
8327 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8328 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8329 
8330 	sc->stat_XonPauseFramesReceived =
8331 	    stats->stat_XonPauseFramesReceived;
8332 
8333 	sc->stat_XoffPauseFramesReceived =
8334 	    stats->stat_XoffPauseFramesReceived;
8335 
8336 	sc->stat_OutXonSent =
8337 	    stats->stat_OutXonSent;
8338 
8339 	sc->stat_OutXoffSent =
8340 	    stats->stat_OutXoffSent;
8341 
8342 	sc->stat_FlowControlDone =
8343 	    stats->stat_FlowControlDone;
8344 
8345 	sc->stat_MacControlFramesReceived =
8346 	    stats->stat_MacControlFramesReceived;
8347 
8348 	sc->stat_XoffStateEntered =
8349 	    stats->stat_XoffStateEntered;
8350 
8351 	sc->stat_IfInFramesL2FilterDiscards =
8352 	    stats->stat_IfInFramesL2FilterDiscards;
8353 
8354 	sc->stat_IfInRuleCheckerDiscards =
8355 	    stats->stat_IfInRuleCheckerDiscards;
8356 
8357 	sc->stat_IfInFTQDiscards =
8358 	    stats->stat_IfInFTQDiscards;
8359 
8360 	sc->stat_IfInMBUFDiscards =
8361 	    stats->stat_IfInMBUFDiscards;
8362 
8363 	sc->stat_IfInRuleCheckerP4Hit =
8364 	    stats->stat_IfInRuleCheckerP4Hit;
8365 
8366 	sc->stat_CatchupInRuleCheckerDiscards =
8367 	    stats->stat_CatchupInRuleCheckerDiscards;
8368 
8369 	sc->stat_CatchupInFTQDiscards =
8370 	    stats->stat_CatchupInFTQDiscards;
8371 
8372 	sc->stat_CatchupInMBUFDiscards =
8373 	    stats->stat_CatchupInMBUFDiscards;
8374 
8375 	sc->stat_CatchupInRuleCheckerP4Hit =
8376 	    stats->stat_CatchupInRuleCheckerP4Hit;
8377 
8378 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8379 
8380 	/*
8381 	 * Update the interface statistics from the
8382 	 * hardware statistics.
8383 	 */
8384 	ifp->if_collisions =
8385 	    (u_long) sc->stat_EtherStatsCollisions;
8386 
8387 	/* ToDo: This method loses soft errors. */
8388 	ifp->if_ierrors =
8389 	    (u_long) sc->stat_EtherStatsUndersizePkts +
8390 	    (u_long) sc->stat_EtherStatsOversizePkts +
8391 	    (u_long) sc->stat_IfInMBUFDiscards +
8392 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
8393 	    (u_long) sc->stat_Dot3StatsFCSErrors +
8394 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
8395 	    (u_long) sc->stat_IfInFTQDiscards +
8396 	    (u_long) sc->com_no_buffers;
8397 
8398 	/* ToDo: This method loses soft errors. */
8399 	ifp->if_oerrors =
8400 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8401 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8402 	    (u_long) sc->stat_Dot3StatsLateCollisions;
8403 
8404 	/* ToDo: Add additional statistics? */
8405 
8406 	DBEXIT(BCE_EXTREME_MISC);
8407 }
8408 
8409 
8410 /****************************************************************************/
8411 /* Periodic function to notify the bootcode that the driver is still        */
8412 /* present.                                                                 */
8413 /*                                                                          */
8414 /* Returns:                                                                 */
8415 /*   Nothing.                                                               */
8416 /****************************************************************************/
8417 static void
8418 bce_pulse(void *xsc)
8419 {
8420 	struct bce_softc *sc = xsc;
8421 	u32 msg;
8422 
8423 	DBENTER(BCE_EXTREME_MISC);
8424 
8425 	BCE_LOCK_ASSERT(sc);
8426 
8427 	/* Tell the firmware that the driver is still running. */
8428 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8429 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8430 
8431 	/* Update the bootcode condition. */
8432 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8433 
8434 	/* Report whether the bootcode still knows the driver is running. */
8435 	if (bce_verbose || bootverbose) {
8436 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8437 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8438 				sc->bce_drv_cardiac_arrest = TRUE;
8439 				BCE_PRINTF("%s(): Warning: bootcode "
8440 				    "thinks driver is absent! "
8441 				    "(bc_state = 0x%08X)\n",
8442 				    __FUNCTION__, sc->bc_state);
8443 			}
8444 		} else {
8445 			/*
8446 			 * Not supported by all bootcode versions.
8447 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8448 			 * will require the driver to reset the
8449 			 * controller to clear this condition.
8450 			 */
8451 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8452 				sc->bce_drv_cardiac_arrest = FALSE;
8453 				BCE_PRINTF("%s(): Bootcode found the "
8454 				    "driver pulse! (bc_state = 0x%08X)\n",
8455 				    __FUNCTION__, sc->bc_state);
8456 			}
8457 		}
8458 	}
8459 
8460 
8461 	/* Schedule the next pulse. */
8462 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8463 
8464 	DBEXIT(BCE_EXTREME_MISC);
8465 }
8466 
8467 
8468 /****************************************************************************/
8469 /* Periodic function to perform maintenance tasks.                          */
8470 /*                                                                          */
8471 /* Returns:                                                                 */
8472 /*   Nothing.                                                               */
8473 /****************************************************************************/
8474 static void
8475 bce_tick(void *xsc)
8476 {
8477 	struct bce_softc *sc = xsc;
8478 	struct mii_data *mii;
8479 	struct ifnet *ifp;
8480 	struct ifmediareq ifmr;
8481 
8482 	ifp = sc->bce_ifp;
8483 
8484 	DBENTER(BCE_EXTREME_MISC);
8485 
8486 	BCE_LOCK_ASSERT(sc);
8487 
8488 	/* Schedule the next tick. */
8489 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8490 
8491 	/* Update the statistics from the hardware statistics block. */
8492 	bce_stats_update(sc);
8493 
8494  	/*
8495  	 * ToDo: This is a safety measure.  Need to re-evaluate
8496  	 * high	level processing logic and eliminate this code.
8497  	 */
8498 	/* Top off the receive and page chains. */
8499 	if (bce_hdr_split == TRUE)
8500 		bce_fill_pg_chain(sc);
8501 	bce_fill_rx_chain(sc);
8502 
8503 	/* Check that chip hasn't hung. */
8504 	bce_watchdog(sc);
8505 
8506 	/* If link is up already up then we're done. */
8507 	if (sc->bce_link_up == TRUE)
8508 		goto bce_tick_exit;
8509 
8510 	/* Link is down.  Check what the PHY's doing. */
8511 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8512 		bzero(&ifmr, sizeof(ifmr));
8513 		bce_ifmedia_sts_rphy(sc, &ifmr);
8514 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8515 		    (IFM_ACTIVE | IFM_AVALID)) {
8516 			sc->bce_link_up = TRUE;
8517 			bce_miibus_statchg(sc->bce_dev);
8518 		}
8519 	} else {
8520 		mii = device_get_softc(sc->bce_miibus);
8521 		mii_tick(mii);
8522 		/* Check if the link has come up. */
8523 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8524 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8525 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8526 			    __FUNCTION__);
8527 			sc->bce_link_up = TRUE;
8528 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8529 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8530 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8531 			    (bce_verbose || bootverbose))
8532 				BCE_PRINTF("Gigabit link up!\n");
8533 		}
8534 
8535 	}
8536 	if (sc->bce_link_up == TRUE) {
8537 		/* Now that link is up, handle any outstanding TX traffic. */
8538 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8539 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8540 			    "pending TX traffic.\n", __FUNCTION__);
8541 			bce_start_locked(ifp);
8542 		}
8543 	}
8544 
8545 bce_tick_exit:
8546 	DBEXIT(BCE_EXTREME_MISC);
8547 	return;
8548 }
8549 
8550 static void
8551 bce_fw_cap_init(struct bce_softc *sc)
8552 {
8553 	u32 ack, cap, link;
8554 
8555 	ack = 0;
8556 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8557 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8558 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8559 		return;
8560 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8561 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8562 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8563 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8564 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8565 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8566 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8567 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8568 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8569 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8570 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8571 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8572 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8573 	}
8574 
8575 	if (ack != 0)
8576 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8577 }
8578 
8579 
8580 #ifdef BCE_DEBUG
8581 /****************************************************************************/
8582 /* Allows the driver state to be dumped through the sysctl interface.       */
8583 /*                                                                          */
8584 /* Returns:                                                                 */
8585 /*   0 for success, positive value for failure.                             */
8586 /****************************************************************************/
8587 static int
8588 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8589 {
8590 	int error;
8591 	int result;
8592 	struct bce_softc *sc;
8593 
8594 	result = -1;
8595 	error = sysctl_handle_int(oidp, &result, 0, req);
8596 
8597 	if (error || !req->newptr)
8598 		return (error);
8599 
8600 	if (result == 1) {
8601 		sc = (struct bce_softc *)arg1;
8602 		bce_dump_driver_state(sc);
8603 	}
8604 
8605 	return error;
8606 }
8607 
8608 
8609 /****************************************************************************/
8610 /* Allows the hardware state to be dumped through the sysctl interface.     */
8611 /*                                                                          */
8612 /* Returns:                                                                 */
8613 /*   0 for success, positive value for failure.                             */
8614 /****************************************************************************/
8615 static int
8616 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8617 {
8618 	int error;
8619 	int result;
8620 	struct bce_softc *sc;
8621 
8622 	result = -1;
8623 	error = sysctl_handle_int(oidp, &result, 0, req);
8624 
8625 	if (error || !req->newptr)
8626 		return (error);
8627 
8628 	if (result == 1) {
8629 		sc = (struct bce_softc *)arg1;
8630 		bce_dump_hw_state(sc);
8631 	}
8632 
8633 	return error;
8634 }
8635 
8636 
8637 /****************************************************************************/
8638 /* Allows the status block to be dumped through the sysctl interface.       */
8639 /*                                                                          */
8640 /* Returns:                                                                 */
8641 /*   0 for success, positive value for failure.                             */
8642 /****************************************************************************/
8643 static int
8644 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8645 {
8646 	int error;
8647 	int result;
8648 	struct bce_softc *sc;
8649 
8650 	result = -1;
8651 	error = sysctl_handle_int(oidp, &result, 0, req);
8652 
8653 	if (error || !req->newptr)
8654 		return (error);
8655 
8656 	if (result == 1) {
8657 		sc = (struct bce_softc *)arg1;
8658 		bce_dump_status_block(sc);
8659 	}
8660 
8661 	return error;
8662 }
8663 
8664 
8665 /****************************************************************************/
8666 /* Allows the stats block to be dumped through the sysctl interface.        */
8667 /*                                                                          */
8668 /* Returns:                                                                 */
8669 /*   0 for success, positive value for failure.                             */
8670 /****************************************************************************/
8671 static int
8672 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8673 {
8674 	int error;
8675 	int result;
8676 	struct bce_softc *sc;
8677 
8678 	result = -1;
8679 	error = sysctl_handle_int(oidp, &result, 0, req);
8680 
8681 	if (error || !req->newptr)
8682 		return (error);
8683 
8684 	if (result == 1) {
8685 		sc = (struct bce_softc *)arg1;
8686 		bce_dump_stats_block(sc);
8687 	}
8688 
8689 	return error;
8690 }
8691 
8692 
8693 /****************************************************************************/
8694 /* Allows the stat counters to be cleared without unloading/reloading the   */
8695 /* driver.                                                                  */
8696 /*                                                                          */
8697 /* Returns:                                                                 */
8698 /*   0 for success, positive value for failure.                             */
8699 /****************************************************************************/
8700 static int
8701 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8702 {
8703 	int error;
8704 	int result;
8705 	struct bce_softc *sc;
8706 
8707 	result = -1;
8708 	error = sysctl_handle_int(oidp, &result, 0, req);
8709 
8710 	if (error || !req->newptr)
8711 		return (error);
8712 
8713 	if (result == 1) {
8714 		sc = (struct bce_softc *)arg1;
8715 		struct statistics_block *stats;
8716 
8717 		stats = (struct statistics_block *) sc->stats_block;
8718 		bzero(stats, sizeof(struct statistics_block));
8719 
8720 		/* Clear the internal H/W statistics counters. */
8721 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8722 
8723 		/* Reset the driver maintained statistics. */
8724 		sc->interrupts_rx =
8725 		    sc->interrupts_tx = 0;
8726 		sc->tso_frames_requested =
8727 		    sc->tso_frames_completed =
8728 		    sc->tso_frames_failed = 0;
8729 		sc->rx_empty_count =
8730 		    sc->tx_full_count = 0;
8731 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8732 		sc->tx_hi_watermark = 0;
8733 		sc->l2fhdr_error_count =
8734 		    sc->l2fhdr_error_sim_count = 0;
8735 		sc->mbuf_alloc_failed_count =
8736 		    sc->mbuf_alloc_failed_sim_count = 0;
8737 		sc->dma_map_addr_rx_failed_count =
8738 		    sc->dma_map_addr_tx_failed_count = 0;
8739 		sc->mbuf_frag_count = 0;
8740 		sc->csum_offload_tcp_udp =
8741 		    sc->csum_offload_ip = 0;
8742 		sc->vlan_tagged_frames_rcvd =
8743 		    sc->vlan_tagged_frames_stripped = 0;
8744 		sc->split_header_frames_rcvd =
8745 		    sc->split_header_tcp_frames_rcvd = 0;
8746 
8747 		/* Clear firmware maintained statistics. */
8748 		REG_WR_IND(sc, 0x120084, 0);
8749 	}
8750 
8751 	return error;
8752 }
8753 
8754 
8755 /****************************************************************************/
8756 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8757 /* interface.                                                               */
8758 /*                                                                          */
8759 /* Returns:                                                                 */
8760 /*   0 for success, positive value for failure.                             */
8761 /****************************************************************************/
8762 static int
8763 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8764 {
8765 	int error;
8766 	int result;
8767 	struct bce_softc *sc;
8768 
8769 	result = -1;
8770 	error = sysctl_handle_int(oidp, &result, 0, req);
8771 
8772 	if (error || !req->newptr)
8773 		return (error);
8774 
8775 	if (result == 1) {
8776 		sc = (struct bce_softc *)arg1;
8777 		bce_dump_shmem_state(sc);
8778 	}
8779 
8780 	return error;
8781 }
8782 
8783 
8784 /****************************************************************************/
8785 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8786 /*                                                                          */
8787 /* Returns:                                                                 */
8788 /*   0 for success, positive value for failure.                             */
8789 /****************************************************************************/
8790 static int
8791 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8792 {
8793 	int error;
8794 	int result;
8795 	struct bce_softc *sc;
8796 
8797 	result = -1;
8798 	error = sysctl_handle_int(oidp, &result, 0, req);
8799 
8800 	if (error || !req->newptr)
8801 		return (error);
8802 
8803 	if (result == 1) {
8804 		sc = (struct bce_softc *)arg1;
8805 		bce_dump_bc_state(sc);
8806 	}
8807 
8808 	return error;
8809 }
8810 
8811 
8812 /****************************************************************************/
8813 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8814 /*                                                                          */
8815 /* Returns:                                                                 */
8816 /*   0 for success, positive value for failure.                             */
8817 /****************************************************************************/
8818 static int
8819 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8820 {
8821 	int error;
8822 	int result;
8823 	struct bce_softc *sc;
8824 
8825 	result = -1;
8826 	error = sysctl_handle_int(oidp, &result, 0, req);
8827 
8828 	if (error || !req->newptr)
8829 		return (error);
8830 
8831 	if (result == 1) {
8832 		sc = (struct bce_softc *)arg1;
8833 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8834 	}
8835 
8836 	return error;
8837 }
8838 
8839 
8840 /****************************************************************************/
8841 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8842 /*                                                                          */
8843 /* Returns:                                                                 */
8844 /*   0 for success, positive value for failure.                             */
8845 /****************************************************************************/
8846 static int
8847 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8848 {
8849 	int error;
8850 	int result;
8851 	struct bce_softc *sc;
8852 
8853 	result = -1;
8854 	error = sysctl_handle_int(oidp, &result, 0, req);
8855 
8856 	if (error || !req->newptr)
8857 		return (error);
8858 
8859 	if (result == 1) {
8860 		sc = (struct bce_softc *)arg1;
8861 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8862 	}
8863 
8864 	return error;
8865 }
8866 
8867 
8868 /****************************************************************************/
8869 /* Provides a sysctl interface to allow dumping the TX chain.               */
8870 /*                                                                          */
8871 /* Returns:                                                                 */
8872 /*   0 for success, positive value for failure.                             */
8873 /****************************************************************************/
8874 static int
8875 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8876 {
8877 	int error;
8878 	int result;
8879 	struct bce_softc *sc;
8880 
8881 	result = -1;
8882 	error = sysctl_handle_int(oidp, &result, 0, req);
8883 
8884 	if (error || !req->newptr)
8885 		return (error);
8886 
8887 	if (result == 1) {
8888 		sc = (struct bce_softc *)arg1;
8889 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8890 	}
8891 
8892 	return error;
8893 }
8894 
8895 
8896 /****************************************************************************/
8897 /* Provides a sysctl interface to allow dumping the page chain.             */
8898 /*                                                                          */
8899 /* Returns:                                                                 */
8900 /*   0 for success, positive value for failure.                             */
8901 /****************************************************************************/
8902 static int
8903 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8904 {
8905 	int error;
8906 	int result;
8907 	struct bce_softc *sc;
8908 
8909 	result = -1;
8910 	error = sysctl_handle_int(oidp, &result, 0, req);
8911 
8912 	if (error || !req->newptr)
8913 		return (error);
8914 
8915 	if (result == 1) {
8916 		sc = (struct bce_softc *)arg1;
8917 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8918 	}
8919 
8920 	return error;
8921 }
8922 
8923 /****************************************************************************/
8924 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8925 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8926 /*                                                                          */
8927 /* Returns:                                                                 */
8928 /*   0 for success, positive value for failure.                             */
8929 /****************************************************************************/
8930 static int
8931 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8932 {
8933 	struct bce_softc *sc = (struct bce_softc *)arg1;
8934 	int error;
8935 	u32 result;
8936 	u32 val[1];
8937 	u8 *data = (u8 *) val;
8938 
8939 	result = -1;
8940 	error = sysctl_handle_int(oidp, &result, 0, req);
8941 	if (error || (req->newptr == NULL))
8942 		return (error);
8943 
8944 	error = bce_nvram_read(sc, result, data, 4);
8945 
8946 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8947 
8948 	return (error);
8949 }
8950 
8951 
8952 /****************************************************************************/
8953 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8954 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8955 /*                                                                          */
8956 /* Returns:                                                                 */
8957 /*   0 for success, positive value for failure.                             */
8958 /****************************************************************************/
8959 static int
8960 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8961 {
8962 	struct bce_softc *sc = (struct bce_softc *)arg1;
8963 	int error;
8964 	u32 val, result;
8965 
8966 	result = -1;
8967 	error = sysctl_handle_int(oidp, &result, 0, req);
8968 	if (error || (req->newptr == NULL))
8969 		return (error);
8970 
8971 	/* Make sure the register is accessible. */
8972 	if (result < 0x8000) {
8973 		val = REG_RD(sc, result);
8974 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8975 	} else if (result < 0x0280000) {
8976 		val = REG_RD_IND(sc, result);
8977 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8978 	}
8979 
8980 	return (error);
8981 }
8982 
8983 
8984 /****************************************************************************/
8985 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8986 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8987 /*                                                                          */
8988 /* Returns:                                                                 */
8989 /*   0 for success, positive value for failure.                             */
8990 /****************************************************************************/
8991 static int
8992 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8993 {
8994 	struct bce_softc *sc;
8995 	device_t dev;
8996 	int error, result;
8997 	u16 val;
8998 
8999 	result = -1;
9000 	error = sysctl_handle_int(oidp, &result, 0, req);
9001 	if (error || (req->newptr == NULL))
9002 		return (error);
9003 
9004 	/* Make sure the register is accessible. */
9005 	if (result < 0x20) {
9006 		sc = (struct bce_softc *)arg1;
9007 		dev = sc->bce_dev;
9008 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
9009 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
9010 	}
9011 	return (error);
9012 }
9013 
9014 
9015 /****************************************************************************/
9016 /* Provides a sysctl interface for dumping the nvram contents.              */
9017 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9018 /*									    */
9019 /* Returns:								    */
9020 /*   0 for success, positive errno for failure.				    */
9021 /****************************************************************************/
9022 static int
9023 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
9024 {
9025 	struct bce_softc *sc = (struct bce_softc *)arg1;
9026 	int error, i;
9027 
9028 	if (sc->nvram_buf == NULL)
9029 		sc->nvram_buf = malloc(sc->bce_flash_size,
9030 				    M_TEMP, M_ZERO | M_WAITOK);
9031 
9032 	error = 0;
9033 	if (req->oldlen == sc->bce_flash_size) {
9034 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
9035 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9036 	}
9037 
9038 	if (error == 0)
9039 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9040 
9041 	return error;
9042 }
9043 
9044 #ifdef BCE_NVRAM_WRITE_SUPPORT
9045 /****************************************************************************/
9046 /* Provides a sysctl interface for writing to nvram.                        */
9047 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9048 /*									    */
9049 /* Returns:								    */
9050 /*   0 for success, positive errno for failure.				    */
9051 /****************************************************************************/
9052 static int
9053 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9054 {
9055 	struct bce_softc *sc = (struct bce_softc *)arg1;
9056 	int error;
9057 
9058 	if (sc->nvram_buf == NULL)
9059 		sc->nvram_buf = malloc(sc->bce_flash_size,
9060 				    M_TEMP, M_ZERO | M_WAITOK);
9061 	else
9062 		bzero(sc->nvram_buf, sc->bce_flash_size);
9063 
9064 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9065 	if (error == 0)
9066 		return (error);
9067 
9068 	if (req->newlen == sc->bce_flash_size)
9069 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
9070 			    sc->bce_flash_size);
9071 
9072 
9073 	return error;
9074 }
9075 #endif
9076 
9077 
9078 /****************************************************************************/
9079 /* Provides a sysctl interface to allow reading a CID.                      */
9080 /*                                                                          */
9081 /* Returns:                                                                 */
9082 /*   0 for success, positive value for failure.                             */
9083 /****************************************************************************/
9084 static int
9085 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9086 {
9087 	struct bce_softc *sc;
9088 	int error, result;
9089 
9090 	result = -1;
9091 	error = sysctl_handle_int(oidp, &result, 0, req);
9092 	if (error || (req->newptr == NULL))
9093 		return (error);
9094 
9095 	/* Make sure the register is accessible. */
9096 	if (result <= TX_CID) {
9097 		sc = (struct bce_softc *)arg1;
9098 		bce_dump_ctx(sc, result);
9099 	}
9100 
9101 	return (error);
9102 }
9103 
9104 
9105 /****************************************************************************/
9106 /* Provides a sysctl interface to forcing the driver to dump state and      */
9107 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9108 /*                                                                          */
9109 /* Returns:                                                                 */
9110 /*   0 for success, positive value for failure.                             */
9111 /****************************************************************************/
9112 static int
9113 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9114 {
9115 	int error;
9116 	int result;
9117 	struct bce_softc *sc;
9118 
9119 	result = -1;
9120 	error = sysctl_handle_int(oidp, &result, 0, req);
9121 
9122 	if (error || !req->newptr)
9123 		return (error);
9124 
9125 	if (result == 1) {
9126 		sc = (struct bce_softc *)arg1;
9127 		bce_breakpoint(sc);
9128 	}
9129 
9130 	return error;
9131 }
9132 #endif
9133 
9134 /****************************************************************************/
9135 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9136 /*                                                                          */
9137 /* Returns:                                                                 */
9138 /*   0 for success, positive value for failure.                             */
9139 /****************************************************************************/
9140 static void
9141 bce_add_sysctls(struct bce_softc *sc)
9142 {
9143 	struct sysctl_ctx_list *ctx;
9144 	struct sysctl_oid_list *children;
9145 
9146 	DBENTER(BCE_VERBOSE_MISC);
9147 
9148 	ctx = device_get_sysctl_ctx(sc->bce_dev);
9149 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9150 
9151 #ifdef BCE_DEBUG
9152 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9153 	    "l2fhdr_error_sim_control",
9154 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
9155 	    0, "Debug control to force l2fhdr errors");
9156 
9157 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9158 	    "l2fhdr_error_sim_count",
9159 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9160 	    0, "Number of simulated l2_fhdr errors");
9161 #endif
9162 
9163 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9164 	    "l2fhdr_error_count",
9165 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
9166 	    0, "Number of l2_fhdr errors");
9167 
9168 #ifdef BCE_DEBUG
9169 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9170 	    "mbuf_alloc_failed_sim_control",
9171 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9172 	    0, "Debug control to force mbuf allocation failures");
9173 
9174 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9175 	    "mbuf_alloc_failed_sim_count",
9176 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9177 	    0, "Number of simulated mbuf cluster allocation failures");
9178 #endif
9179 
9180 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9181 	    "mbuf_alloc_failed_count",
9182 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9183 	    0, "Number of mbuf allocation failures");
9184 
9185 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9186 	    "mbuf_frag_count",
9187 	    CTLFLAG_RD, &sc->mbuf_frag_count,
9188 	    0, "Number of fragmented mbufs");
9189 
9190 #ifdef BCE_DEBUG
9191 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9192 	    "dma_map_addr_failed_sim_control",
9193 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9194 	    0, "Debug control to force DMA mapping failures");
9195 
9196 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9197 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9198 	    "dma_map_addr_failed_sim_count",
9199 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9200 	    0, "Number of simulated DMA mapping failures");
9201 
9202 #endif
9203 
9204 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9205 	    "dma_map_addr_rx_failed_count",
9206 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9207 	    0, "Number of RX DMA mapping failures");
9208 
9209 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9210 	    "dma_map_addr_tx_failed_count",
9211 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9212 	    0, "Number of TX DMA mapping failures");
9213 
9214 #ifdef BCE_DEBUG
9215 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9216 	    "unexpected_attention_sim_control",
9217 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9218 	    0, "Debug control to simulate unexpected attentions");
9219 
9220 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9221 	    "unexpected_attention_sim_count",
9222 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9223 	    0, "Number of simulated unexpected attentions");
9224 #endif
9225 
9226 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9227 	    "unexpected_attention_count",
9228 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9229 	    0, "Number of unexpected attentions");
9230 
9231 #ifdef BCE_DEBUG
9232 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9233 	    "debug_bootcode_running_failure",
9234 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9235 	    0, "Debug control to force bootcode running failures");
9236 
9237 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9238 	    "rx_low_watermark",
9239 	    CTLFLAG_RD, &sc->rx_low_watermark,
9240 	    0, "Lowest level of free rx_bd's");
9241 
9242 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9243 	    "rx_empty_count",
9244 	    CTLFLAG_RD, &sc->rx_empty_count,
9245 	    "Number of times the RX chain was empty");
9246 
9247 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9248 	    "tx_hi_watermark",
9249 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9250 	    0, "Highest level of used tx_bd's");
9251 
9252 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9253 	    "tx_full_count",
9254 	    CTLFLAG_RD, &sc->tx_full_count,
9255 	    "Number of times the TX chain was full");
9256 
9257 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9258 	    "tso_frames_requested",
9259 	    CTLFLAG_RD, &sc->tso_frames_requested,
9260 	    "Number of TSO frames requested");
9261 
9262 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9263 	    "tso_frames_completed",
9264 	    CTLFLAG_RD, &sc->tso_frames_completed,
9265 	    "Number of TSO frames completed");
9266 
9267 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9268 	    "tso_frames_failed",
9269 	    CTLFLAG_RD, &sc->tso_frames_failed,
9270 	    "Number of TSO frames failed");
9271 
9272 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9273 	    "csum_offload_ip",
9274 	    CTLFLAG_RD, &sc->csum_offload_ip,
9275 	    "Number of IP checksum offload frames");
9276 
9277 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9278 	    "csum_offload_tcp_udp",
9279 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9280 	    "Number of TCP/UDP checksum offload frames");
9281 
9282 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9283 	    "vlan_tagged_frames_rcvd",
9284 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9285 	    "Number of VLAN tagged frames received");
9286 
9287 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9288 	    "vlan_tagged_frames_stripped",
9289 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9290 	    "Number of VLAN tagged frames stripped");
9291 
9292 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9293 	    "interrupts_rx",
9294 	    CTLFLAG_RD, &sc->interrupts_rx,
9295 	    "Number of RX interrupts");
9296 
9297 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9298 	    "interrupts_tx",
9299 	    CTLFLAG_RD, &sc->interrupts_tx,
9300 	    "Number of TX interrupts");
9301 
9302 	if (bce_hdr_split == TRUE) {
9303 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9304 		    "split_header_frames_rcvd",
9305 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9306 		    "Number of split header frames received");
9307 
9308 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9309 		    "split_header_tcp_frames_rcvd",
9310 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9311 		    "Number of split header TCP frames received");
9312 	}
9313 
9314 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9315 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9316 	    (void *)sc, 0,
9317 	    bce_sysctl_nvram_dump, "S", "");
9318 
9319 #ifdef BCE_NVRAM_WRITE_SUPPORT
9320 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9321 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9322 	    (void *)sc, 0,
9323 	    bce_sysctl_nvram_write, "S", "");
9324 #endif
9325 #endif /* BCE_DEBUG */
9326 
9327 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9328 	    "stat_IfHcInOctets",
9329 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9330 	    "Bytes received");
9331 
9332 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9333 	    "stat_IfHCInBadOctets",
9334 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9335 	    "Bad bytes received");
9336 
9337 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9338 	    "stat_IfHCOutOctets",
9339 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9340 	    "Bytes sent");
9341 
9342 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9343 	    "stat_IfHCOutBadOctets",
9344 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9345 	    "Bad bytes sent");
9346 
9347 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9348 	    "stat_IfHCInUcastPkts",
9349 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9350 	    "Unicast packets received");
9351 
9352 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9353 	    "stat_IfHCInMulticastPkts",
9354 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9355 	    "Multicast packets received");
9356 
9357 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9358 	    "stat_IfHCInBroadcastPkts",
9359 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9360 	    "Broadcast packets received");
9361 
9362 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9363 	    "stat_IfHCOutUcastPkts",
9364 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9365 	    "Unicast packets sent");
9366 
9367 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9368 	    "stat_IfHCOutMulticastPkts",
9369 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9370 	    "Multicast packets sent");
9371 
9372 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9373 	    "stat_IfHCOutBroadcastPkts",
9374 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9375 	    "Broadcast packets sent");
9376 
9377 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9378 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9379 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9380 	    0, "Internal MAC transmit errors");
9381 
9382 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9383 	    "stat_Dot3StatsCarrierSenseErrors",
9384 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9385 	    0, "Carrier sense errors");
9386 
9387 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9388 	    "stat_Dot3StatsFCSErrors",
9389 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9390 	    0, "Frame check sequence errors");
9391 
9392 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9393 	    "stat_Dot3StatsAlignmentErrors",
9394 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9395 	    0, "Alignment errors");
9396 
9397 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9398 	    "stat_Dot3StatsSingleCollisionFrames",
9399 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9400 	    0, "Single Collision Frames");
9401 
9402 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9403 	    "stat_Dot3StatsMultipleCollisionFrames",
9404 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9405 	    0, "Multiple Collision Frames");
9406 
9407 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9408 	    "stat_Dot3StatsDeferredTransmissions",
9409 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9410 	    0, "Deferred Transmissions");
9411 
9412 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9413 	    "stat_Dot3StatsExcessiveCollisions",
9414 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9415 	    0, "Excessive Collisions");
9416 
9417 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9418 	    "stat_Dot3StatsLateCollisions",
9419 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9420 	    0, "Late Collisions");
9421 
9422 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9423 	    "stat_EtherStatsCollisions",
9424 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9425 	    0, "Collisions");
9426 
9427 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9428 	    "stat_EtherStatsFragments",
9429 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9430 	    0, "Fragments");
9431 
9432 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9433 	    "stat_EtherStatsJabbers",
9434 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9435 	    0, "Jabbers");
9436 
9437 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9438 	    "stat_EtherStatsUndersizePkts",
9439 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9440 	    0, "Undersize packets");
9441 
9442 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9443 	    "stat_EtherStatsOversizePkts",
9444 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9445 	    0, "stat_EtherStatsOversizePkts");
9446 
9447 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9448 	    "stat_EtherStatsPktsRx64Octets",
9449 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9450 	    0, "Bytes received in 64 byte packets");
9451 
9452 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9453 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9454 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9455 	    0, "Bytes received in 65 to 127 byte packets");
9456 
9457 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9458 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9459 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9460 	    0, "Bytes received in 128 to 255 byte packets");
9461 
9462 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9463 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9464 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9465 	    0, "Bytes received in 256 to 511 byte packets");
9466 
9467 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9468 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9469 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9470 	    0, "Bytes received in 512 to 1023 byte packets");
9471 
9472 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9473 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9474 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9475 	    0, "Bytes received in 1024 t0 1522 byte packets");
9476 
9477 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9478 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9479 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9480 	    0, "Bytes received in 1523 to 9022 byte packets");
9481 
9482 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9483 	    "stat_EtherStatsPktsTx64Octets",
9484 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9485 	    0, "Bytes sent in 64 byte packets");
9486 
9487 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9488 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9489 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9490 	    0, "Bytes sent in 65 to 127 byte packets");
9491 
9492 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9493 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9494 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9495 	    0, "Bytes sent in 128 to 255 byte packets");
9496 
9497 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9498 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9499 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9500 	    0, "Bytes sent in 256 to 511 byte packets");
9501 
9502 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9503 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9504 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9505 	    0, "Bytes sent in 512 to 1023 byte packets");
9506 
9507 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9508 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9509 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9510 	    0, "Bytes sent in 1024 to 1522 byte packets");
9511 
9512 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9513 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9514 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9515 	    0, "Bytes sent in 1523 to 9022 byte packets");
9516 
9517 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9518 	    "stat_XonPauseFramesReceived",
9519 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9520 	    0, "XON pause frames receved");
9521 
9522 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9523 	    "stat_XoffPauseFramesReceived",
9524 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9525 	    0, "XOFF pause frames received");
9526 
9527 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9528 	    "stat_OutXonSent",
9529 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9530 	    0, "XON pause frames sent");
9531 
9532 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9533 	    "stat_OutXoffSent",
9534 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9535 	    0, "XOFF pause frames sent");
9536 
9537 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9538 	    "stat_FlowControlDone",
9539 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9540 	    0, "Flow control done");
9541 
9542 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9543 	    "stat_MacControlFramesReceived",
9544 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9545 	    0, "MAC control frames received");
9546 
9547 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9548 	    "stat_XoffStateEntered",
9549 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9550 	    0, "XOFF state entered");
9551 
9552 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9553 	    "stat_IfInFramesL2FilterDiscards",
9554 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9555 	    0, "Received L2 packets discarded");
9556 
9557 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9558 	    "stat_IfInRuleCheckerDiscards",
9559 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9560 	    0, "Received packets discarded by rule");
9561 
9562 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9563 	    "stat_IfInFTQDiscards",
9564 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9565 	    0, "Received packet FTQ discards");
9566 
9567 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9568 	    "stat_IfInMBUFDiscards",
9569 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9570 	    0, "Received packets discarded due to lack "
9571 	    "of controller buffer memory");
9572 
9573 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9574 	    "stat_IfInRuleCheckerP4Hit",
9575 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9576 	    0, "Received packets rule checker hits");
9577 
9578 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9579 	    "stat_CatchupInRuleCheckerDiscards",
9580 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9581 	    0, "Received packets discarded in Catchup path");
9582 
9583 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9584 	    "stat_CatchupInFTQDiscards",
9585 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9586 	    0, "Received packets discarded in FTQ in Catchup path");
9587 
9588 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9589 	    "stat_CatchupInMBUFDiscards",
9590 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9591 	    0, "Received packets discarded in controller "
9592 	    "buffer memory in Catchup path");
9593 
9594 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9595 	    "stat_CatchupInRuleCheckerP4Hit",
9596 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9597 	    0, "Received packets rule checker hits in Catchup path");
9598 
9599 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9600 	    "com_no_buffers",
9601 	    CTLFLAG_RD, &sc->com_no_buffers,
9602 	    0, "Valid packets received but no RX buffers available");
9603 
9604 #ifdef BCE_DEBUG
9605 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9606 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9607 	    (void *)sc, 0,
9608 	    bce_sysctl_driver_state, "I", "Drive state information");
9609 
9610 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9611 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9612 	    (void *)sc, 0,
9613 	    bce_sysctl_hw_state, "I", "Hardware state information");
9614 
9615 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9616 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9617 	    (void *)sc, 0,
9618 	    bce_sysctl_status_block, "I", "Dump status block");
9619 
9620 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9621 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9622 	    (void *)sc, 0,
9623 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9624 
9625 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9626 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9627 	    (void *)sc, 0,
9628 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9629 
9630 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9631 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9632 	    (void *)sc, 0,
9633 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9634 
9635 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9636 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9637 	    (void *)sc, 0,
9638 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9639 
9640 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9641 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9642 	    (void *)sc, 0,
9643 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9644 
9645 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9646 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9647 	    (void *)sc, 0,
9648 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9649 
9650 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9651 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9652 	    (void *)sc, 0,
9653 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9654 
9655 	if (bce_hdr_split == TRUE) {
9656 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9657 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9658 		    (void *)sc, 0,
9659 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9660 	}
9661 
9662 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9663 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9664 	    (void *)sc, 0,
9665 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9666 
9667 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9668 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9669 	    (void *)sc, 0,
9670 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9671 
9672 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9673 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9674 	    (void *)sc, 0,
9675 	    bce_sysctl_reg_read, "I", "Register read");
9676 
9677 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9678 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9679 	    (void *)sc, 0,
9680 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9681 
9682 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9683 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9684 	    (void *)sc, 0,
9685 	    bce_sysctl_phy_read, "I", "PHY register read");
9686 
9687 #endif
9688 
9689 	DBEXIT(BCE_VERBOSE_MISC);
9690 }
9691 
9692 
9693 /****************************************************************************/
9694 /* BCE Debug Routines                                                       */
9695 /****************************************************************************/
9696 #ifdef BCE_DEBUG
9697 
9698 /****************************************************************************/
9699 /* Freezes the controller to allow for a cohesive state dump.               */
9700 /*                                                                          */
9701 /* Returns:                                                                 */
9702 /*   Nothing.                                                               */
9703 /****************************************************************************/
9704 static __attribute__ ((noinline)) void
9705 bce_freeze_controller(struct bce_softc *sc)
9706 {
9707 	u32 val;
9708 	val = REG_RD(sc, BCE_MISC_COMMAND);
9709 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9710 	REG_WR(sc, BCE_MISC_COMMAND, val);
9711 }
9712 
9713 
9714 /****************************************************************************/
9715 /* Unfreezes the controller after a freeze operation.  This may not always  */
9716 /* work and the controller will require a reset!                            */
9717 /*                                                                          */
9718 /* Returns:                                                                 */
9719 /*   Nothing.                                                               */
9720 /****************************************************************************/
9721 static __attribute__ ((noinline)) void
9722 bce_unfreeze_controller(struct bce_softc *sc)
9723 {
9724 	u32 val;
9725 	val = REG_RD(sc, BCE_MISC_COMMAND);
9726 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9727 	REG_WR(sc, BCE_MISC_COMMAND, val);
9728 }
9729 
9730 
9731 /****************************************************************************/
9732 /* Prints out Ethernet frame information from an mbuf.                      */
9733 /*                                                                          */
9734 /* Partially decode an Ethernet frame to look at some important headers.    */
9735 /*                                                                          */
9736 /* Returns:                                                                 */
9737 /*   Nothing.                                                               */
9738 /****************************************************************************/
9739 static __attribute__ ((noinline)) void
9740 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9741 {
9742 	struct ether_vlan_header *eh;
9743 	u16 etype;
9744 	int ehlen;
9745 	struct ip *ip;
9746 	struct tcphdr *th;
9747 	struct udphdr *uh;
9748 	struct arphdr *ah;
9749 
9750 	BCE_PRINTF(
9751 	    "-----------------------------"
9752 	    " Frame Decode "
9753 	    "-----------------------------\n");
9754 
9755 	eh = mtod(m, struct ether_vlan_header *);
9756 
9757 	/* Handle VLAN encapsulation if present. */
9758 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9759 		etype = ntohs(eh->evl_proto);
9760 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9761 	} else {
9762 		etype = ntohs(eh->evl_encap_proto);
9763 		ehlen = ETHER_HDR_LEN;
9764 	}
9765 
9766 	/* ToDo: Add VLAN output. */
9767 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9768 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9769 
9770 	switch (etype) {
9771 	case ETHERTYPE_IP:
9772 		ip = (struct ip *)(m->m_data + ehlen);
9773 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9774 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9775 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9776 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9777 
9778 		switch (ip->ip_p) {
9779 		case IPPROTO_TCP:
9780 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9781 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9782 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9783 			    ntohs(th->th_dport), ntohs(th->th_sport),
9784 			    (th->th_off << 2), th->th_flags,
9785 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9786 			    "\02SYN\01FIN", ntohs(th->th_sum));
9787 			break;
9788 		case IPPROTO_UDP:
9789 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9790 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9791 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9792 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9793 			    ntohs(uh->uh_sum));
9794 			break;
9795 		case IPPROTO_ICMP:
9796 			BCE_PRINTF("icmp:\n");
9797 			break;
9798 		default:
9799 			BCE_PRINTF("----: Other IP protocol.\n");
9800 			}
9801 		break;
9802 	case ETHERTYPE_IPV6:
9803 		BCE_PRINTF("ipv6: No decode supported.\n");
9804 		break;
9805 	case ETHERTYPE_ARP:
9806 		BCE_PRINTF("-arp: ");
9807 		ah = (struct arphdr *) (m->m_data + ehlen);
9808 		switch (ntohs(ah->ar_op)) {
9809 		case ARPOP_REVREQUEST:
9810 			printf("reverse ARP request\n");
9811 			break;
9812 		case ARPOP_REVREPLY:
9813 			printf("reverse ARP reply\n");
9814 			break;
9815 		case ARPOP_REQUEST:
9816 			printf("ARP request\n");
9817 			break;
9818 		case ARPOP_REPLY:
9819 			printf("ARP reply\n");
9820 			break;
9821 		default:
9822 			printf("other ARP operation\n");
9823 		}
9824 		break;
9825 	default:
9826 		BCE_PRINTF("----: Other protocol.\n");
9827 	}
9828 
9829 	BCE_PRINTF(
9830 		"-----------------------------"
9831 		"--------------"
9832 		"-----------------------------\n");
9833 }
9834 
9835 
9836 /****************************************************************************/
9837 /* Prints out information about an mbuf.                                    */
9838 /*                                                                          */
9839 /* Returns:                                                                 */
9840 /*   Nothing.                                                               */
9841 /****************************************************************************/
9842 static __attribute__ ((noinline)) void
9843 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9844 {
9845 	struct mbuf *mp = m;
9846 
9847 	if (m == NULL) {
9848 		BCE_PRINTF("mbuf: null pointer\n");
9849 		return;
9850 	}
9851 
9852 	while (mp) {
9853 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9854 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9855 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9856 
9857 		if (mp->m_flags & M_PKTHDR) {
9858 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9859 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9860 			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
9861 			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
9862 			    "\22M_PROMISC\23M_NOFREE",
9863 			    mp->m_pkthdr.csum_flags,
9864 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP"
9865 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9866 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9867 			    "\14CSUM_PSEUDO_HDR");
9868 		}
9869 
9870 		if (mp->m_flags & M_EXT) {
9871 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9872 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9873 			switch (mp->m_ext.ext_type) {
9874 			case EXT_CLUSTER:
9875 				printf("EXT_CLUSTER\n"); break;
9876 			case EXT_SFBUF:
9877 				printf("EXT_SFBUF\n"); break;
9878 			case EXT_JUMBO9:
9879 				printf("EXT_JUMBO9\n"); break;
9880 			case EXT_JUMBO16:
9881 				printf("EXT_JUMBO16\n"); break;
9882 			case EXT_PACKET:
9883 				printf("EXT_PACKET\n"); break;
9884 			case EXT_MBUF:
9885 				printf("EXT_MBUF\n"); break;
9886 			case EXT_NET_DRV:
9887 				printf("EXT_NET_DRV\n"); break;
9888 			case EXT_MOD_TYPE:
9889 				printf("EXT_MDD_TYPE\n"); break;
9890 			case EXT_DISPOSABLE:
9891 				printf("EXT_DISPOSABLE\n"); break;
9892 			case EXT_EXTREF:
9893 				printf("EXT_EXTREF\n"); break;
9894 			default:
9895 				printf("UNKNOWN\n");
9896 			}
9897 		}
9898 
9899 		mp = mp->m_next;
9900 	}
9901 }
9902 
9903 
9904 /****************************************************************************/
9905 /* Prints out the mbufs in the TX mbuf chain.                               */
9906 /*                                                                          */
9907 /* Returns:                                                                 */
9908 /*   Nothing.                                                               */
9909 /****************************************************************************/
9910 static __attribute__ ((noinline)) void
9911 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9912 {
9913 	struct mbuf *m;
9914 
9915 	BCE_PRINTF(
9916 		"----------------------------"
9917 		"  tx mbuf data  "
9918 		"----------------------------\n");
9919 
9920 	for (int i = 0; i < count; i++) {
9921 	 	m = sc->tx_mbuf_ptr[chain_prod];
9922 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9923 		bce_dump_mbuf(sc, m);
9924 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9925 	}
9926 
9927 	BCE_PRINTF(
9928 		"----------------------------"
9929 		"----------------"
9930 		"----------------------------\n");
9931 }
9932 
9933 
9934 /****************************************************************************/
9935 /* Prints out the mbufs in the RX mbuf chain.                               */
9936 /*                                                                          */
9937 /* Returns:                                                                 */
9938 /*   Nothing.                                                               */
9939 /****************************************************************************/
9940 static __attribute__ ((noinline)) void
9941 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9942 {
9943 	struct mbuf *m;
9944 
9945 	BCE_PRINTF(
9946 		"----------------------------"
9947 		"  rx mbuf data  "
9948 		"----------------------------\n");
9949 
9950 	for (int i = 0; i < count; i++) {
9951 	 	m = sc->rx_mbuf_ptr[chain_prod];
9952 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9953 		bce_dump_mbuf(sc, m);
9954 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9955 	}
9956 
9957 
9958 	BCE_PRINTF(
9959 		"----------------------------"
9960 		"----------------"
9961 		"----------------------------\n");
9962 }
9963 
9964 
9965 /****************************************************************************/
9966 /* Prints out the mbufs in the mbuf page chain.                             */
9967 /*                                                                          */
9968 /* Returns:                                                                 */
9969 /*   Nothing.                                                               */
9970 /****************************************************************************/
9971 static __attribute__ ((noinline)) void
9972 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9973 {
9974 	struct mbuf *m;
9975 
9976 	BCE_PRINTF(
9977 		"----------------------------"
9978 		"  pg mbuf data  "
9979 		"----------------------------\n");
9980 
9981 	for (int i = 0; i < count; i++) {
9982 	 	m = sc->pg_mbuf_ptr[chain_prod];
9983 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9984 		bce_dump_mbuf(sc, m);
9985 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9986 	}
9987 
9988 
9989 	BCE_PRINTF(
9990 		"----------------------------"
9991 		"----------------"
9992 		"----------------------------\n");
9993 }
9994 
9995 
9996 /****************************************************************************/
9997 /* Prints out a tx_bd structure.                                            */
9998 /*                                                                          */
9999 /* Returns:                                                                 */
10000 /*   Nothing.                                                               */
10001 /****************************************************************************/
10002 static __attribute__ ((noinline)) void
10003 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
10004 {
10005 	int i = 0;
10006 
10007 	if (idx > MAX_TX_BD_ALLOC)
10008 		/* Index out of range. */
10009 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
10010 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
10011 		/* TX Chain page pointer. */
10012 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10013 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
10014 		    txbd->tx_bd_haddr_lo);
10015 	else {
10016 		/* Normal tx_bd entry. */
10017 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
10018 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
10019 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
10020 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
10021 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
10022 
10023 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
10024 			if (i>0)
10025 				printf("|");
10026 			printf("CONN_FAULT");
10027 			i++;
10028 		}
10029 
10030 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
10031 			if (i>0)
10032 				printf("|");
10033 			printf("TCP_UDP_CKSUM");
10034 			i++;
10035 		}
10036 
10037 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10038 			if (i>0)
10039 				printf("|");
10040 			printf("IP_CKSUM");
10041 			i++;
10042 		}
10043 
10044 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10045 			if (i>0)
10046 				printf("|");
10047 			printf("VLAN");
10048 			i++;
10049 		}
10050 
10051 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10052 			if (i>0)
10053 				printf("|");
10054 			printf("COAL_NOW");
10055 			i++;
10056 		}
10057 
10058 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10059 			if (i>0)
10060 				printf("|");
10061 			printf("DONT_GEN_CRC");
10062 			i++;
10063 		}
10064 
10065 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10066 			if (i>0)
10067 				printf("|");
10068 			printf("START");
10069 			i++;
10070 		}
10071 
10072 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10073 			if (i>0)
10074 				printf("|");
10075 			printf("END");
10076 			i++;
10077 		}
10078 
10079 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10080 			if (i>0)
10081 				printf("|");
10082 			printf("LSO");
10083 			i++;
10084 		}
10085 
10086 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10087 			if (i>0)
10088 				printf("|");
10089 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10090 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10091 		}
10092 
10093 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10094 			if (i>0)
10095 				printf("|");
10096 			printf("SW_FLAGS");
10097 			i++;
10098 		}
10099 
10100 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10101 			if (i>0)
10102 				printf("|");
10103 			printf("SNAP)");
10104 		} else {
10105 			printf(")\n");
10106 		}
10107 	}
10108 }
10109 
10110 
10111 /****************************************************************************/
10112 /* Prints out a rx_bd structure.                                            */
10113 /*                                                                          */
10114 /* Returns:                                                                 */
10115 /*   Nothing.                                                               */
10116 /****************************************************************************/
10117 static __attribute__ ((noinline)) void
10118 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10119 {
10120 	if (idx > MAX_RX_BD_ALLOC)
10121 		/* Index out of range. */
10122 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10123 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10124 		/* RX Chain page pointer. */
10125 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10126 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10127 		    rxbd->rx_bd_haddr_lo);
10128 	else
10129 		/* Normal rx_bd entry. */
10130 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10131 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10132 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10133 		    rxbd->rx_bd_flags);
10134 }
10135 
10136 
10137 /****************************************************************************/
10138 /* Prints out a rx_bd structure in the page chain.                          */
10139 /*                                                                          */
10140 /* Returns:                                                                 */
10141 /*   Nothing.                                                               */
10142 /****************************************************************************/
10143 static __attribute__ ((noinline)) void
10144 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10145 {
10146 	if (idx > MAX_PG_BD_ALLOC)
10147 		/* Index out of range. */
10148 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10149 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10150 		/* Page Chain page pointer. */
10151 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10152 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10153 	else
10154 		/* Normal rx_bd entry. */
10155 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10156 			"flags = 0x%08X\n", idx,
10157 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10158 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
10159 }
10160 
10161 
10162 /****************************************************************************/
10163 /* Prints out a l2_fhdr structure.                                          */
10164 /*                                                                          */
10165 /* Returns:                                                                 */
10166 /*   Nothing.                                                               */
10167 /****************************************************************************/
10168 static __attribute__ ((noinline)) void
10169 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10170 {
10171 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10172 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10173 		"tcp_udp_xsum = 0x%04X\n", idx,
10174 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10175 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10176 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10177 }
10178 
10179 
10180 /****************************************************************************/
10181 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10182 /*                                                                          */
10183 /* Returns:                                                                 */
10184 /*   Nothing.                                                               */
10185 /****************************************************************************/
10186 static __attribute__ ((noinline)) void
10187 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10188 {
10189 	if (cid > TX_CID) {
10190 		BCE_PRINTF(" Unknown CID\n");
10191 		return;
10192 	}
10193 
10194 	BCE_PRINTF(
10195 	    "----------------------------"
10196 	    "    CTX Data    "
10197 	    "----------------------------\n");
10198 
10199 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10200 
10201 	if (cid == RX_CID) {
10202 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10203 		   "producer index\n",
10204 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10205 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10206 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10207 		    BCE_L2CTX_RX_HOST_BSEQ));
10208 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10209 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10210 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10211 		    "descriptor address\n",
10212  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10213 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10214 		    "descriptor address\n",
10215 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10216 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10217 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10218 		    BCE_L2CTX_RX_NX_BDIDX));
10219 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10220 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10221 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10222 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10223 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10224 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10225 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10226 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10227 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10228 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10229 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10230 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10231 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10232 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10233 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10234 	} else if (cid == TX_CID) {
10235 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10236 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10237 			    CTX_RD(sc, GET_CID_ADDR(cid),
10238 			    BCE_L2CTX_TX_TYPE_XI));
10239 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10240 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10241 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10242 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10243 			    "h/w buffer descriptor address\n",
10244 			    CTX_RD(sc, GET_CID_ADDR(cid),
10245 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10246 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10247 			    "h/w buffer	descriptor address\n",
10248 			    CTX_RD(sc, GET_CID_ADDR(cid),
10249 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10250 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10251 			    "host producer index\n",
10252 			    CTX_RD(sc, GET_CID_ADDR(cid),
10253 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10254 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10255 			    "host byte sequence\n",
10256 			    CTX_RD(sc, GET_CID_ADDR(cid),
10257 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10258 		} else {
10259 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10260 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10261 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10262 			    CTX_RD(sc, GET_CID_ADDR(cid),
10263 			    BCE_L2CTX_TX_CMD_TYPE));
10264 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10265 			    "h/w buffer	descriptor address\n",
10266 			    CTX_RD(sc, GET_CID_ADDR(cid),
10267 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10268 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10269 			    "h/w buffer	descriptor address\n",
10270 			    CTX_RD(sc, GET_CID_ADDR(cid),
10271 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10272 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10273 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10274 			    BCE_L2CTX_TX_HOST_BIDX));
10275 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10276 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10277 			    BCE_L2CTX_TX_HOST_BSEQ));
10278 		}
10279 	}
10280 
10281 	BCE_PRINTF(
10282 	   "----------------------------"
10283 	   "    Raw CTX     "
10284 	   "----------------------------\n");
10285 
10286 	for (int i = 0x0; i < 0x300; i += 0x10) {
10287 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10288 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10289 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10290 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10291 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10292 	}
10293 
10294 
10295 	BCE_PRINTF(
10296 	   "----------------------------"
10297 	   "----------------"
10298 	   "----------------------------\n");
10299 }
10300 
10301 
10302 /****************************************************************************/
10303 /* Prints out the FTQ data.                                                 */
10304 /*                                                                          */
10305 /* Returns:                                                                */
10306 /*   Nothing.                                                               */
10307 /****************************************************************************/
10308 static __attribute__ ((noinline)) void
10309 bce_dump_ftqs(struct bce_softc *sc)
10310 {
10311 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10312 
10313 	BCE_PRINTF(
10314 	    "----------------------------"
10315 	    "    FTQ Data    "
10316 	    "----------------------------\n");
10317 
10318 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10319 	    "Max_Depth  Valid_Cnt \n");
10320 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10321 	    "---------- ----------\n");
10322 
10323 	/* Setup the generic statistic counters for the FTQ valid count. */
10324 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10325 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10326 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10327 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10328 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10329 
10330 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10331 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10332 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10333 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10334 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10335 
10336 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10337 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10338 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10339 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10340 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10341 
10342 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10343 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10344 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10345 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10346 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10347 
10348 	/* Input queue to the Receive Lookup state machine */
10349 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10350 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10351 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10352 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10353 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10354 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10355 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10356 
10357 	/* Input queue to the Receive Processor */
10358 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10359 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10360 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10361 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10362 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10363 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10364 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10365 
10366 	/* Input queue to the Recevie Processor */
10367 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10368 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10369 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10370 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10371 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10372 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10373 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10374 
10375 	/* Input queue to the Receive Virtual to Physical state machine */
10376 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10377 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10378 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10379 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10380 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10381 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10382 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10383 
10384 	/* Input queue to the Recevie Virtual to Physical state machine */
10385 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10386 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10387 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10388 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10389 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10390 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10391 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10392 
10393 	/* Input queue to the Receive Virtual to Physical state machine */
10394 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10395 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10396 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10397 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10398 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10399 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10400 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10401 
10402 	/* Input queue to the Receive DMA state machine */
10403 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10404 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10405 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10406 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10407 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10408 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10409 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10410 
10411 	/* Input queue to the Transmit Scheduler state machine */
10412 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10413 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10414 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10415 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10416 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10417 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10418 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10419 
10420 	/* Input queue to the Transmit Buffer Descriptor state machine */
10421 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10422 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10423 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10424 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10425 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10426 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10427 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10428 
10429 	/* Input queue to the Transmit Processor */
10430 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10431 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10432 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10433 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10434 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10435 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10436 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10437 
10438 	/* Input queue to the Transmit DMA state machine */
10439 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10440 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10441 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10442 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10443 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10444 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10445 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10446 
10447 	/* Input queue to the Transmit Patch-Up Processor */
10448 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10449 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10450 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10451 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10452 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10453 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10454 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10455 
10456 	/* Input queue to the Transmit Assembler state machine */
10457 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10458 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10459 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10460 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10461 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10462 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10463 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10464 
10465 	/* Input queue to the Completion Processor */
10466 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10467 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10468 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10469 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10470 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10471 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10472 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10473 
10474 	/* Input queue to the Completion Processor */
10475 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10476 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10477 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10478 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10479 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10480 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10481 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10482 
10483 	/* Input queue to the Completion Processor */
10484 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10485 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10486 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10487 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10488 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10489 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10490 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10491 
10492 	/* Setup the generic statistic counters for the FTQ valid count. */
10493 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10494 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10495 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10496 
10497 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10498 		val = val |
10499 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10500 		     24);
10501 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10502 
10503 	/* Input queue to the Management Control Processor */
10504 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10505 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10506 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10507 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10508 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10509 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10510 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10511 
10512 	/* Input queue to the Command Processor */
10513 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10514 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10515 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10516 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10517 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10518 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10519 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10520 
10521 	/* Input queue to the Completion Scheduler state machine */
10522 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10523 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10524 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10525 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10526 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10527 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10528 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10529 
10530 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10531 		/* Input queue to the RV2P Command Scheduler */
10532 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10533 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10534 		cur_depth = (ctl & 0xFFC00000) >> 22;
10535 		max_depth = (ctl & 0x003FF000) >> 12;
10536 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10537 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10538 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10539 	}
10540 
10541 	BCE_PRINTF(
10542 	    "----------------------------"
10543 	    "----------------"
10544 	    "----------------------------\n");
10545 }
10546 
10547 
10548 /****************************************************************************/
10549 /* Prints out the TX chain.                                                 */
10550 /*                                                                          */
10551 /* Returns:                                                                 */
10552 /*   Nothing.                                                               */
10553 /****************************************************************************/
10554 static __attribute__ ((noinline)) void
10555 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10556 {
10557 	struct tx_bd *txbd;
10558 
10559 	/* First some info about the tx_bd chain structure. */
10560 	BCE_PRINTF(
10561 	    "----------------------------"
10562 	    "  tx_bd  chain  "
10563 	    "----------------------------\n");
10564 
10565 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10566 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10567 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10568 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10569 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10570 
10571 	BCE_PRINTF(
10572 	    "----------------------------"
10573 	    "   tx_bd data   "
10574 	    "----------------------------\n");
10575 
10576 	/* Now print out a decoded list of TX buffer descriptors. */
10577 	for (int i = 0; i < count; i++) {
10578 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10579 		bce_dump_txbd(sc, tx_prod, txbd);
10580 		tx_prod++;
10581 	}
10582 
10583 	BCE_PRINTF(
10584 	    "----------------------------"
10585 	    "----------------"
10586 	    "----------------------------\n");
10587 }
10588 
10589 
10590 /****************************************************************************/
10591 /* Prints out the RX chain.                                                 */
10592 /*                                                                          */
10593 /* Returns:                                                                 */
10594 /*   Nothing.                                                               */
10595 /****************************************************************************/
10596 static __attribute__ ((noinline)) void
10597 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10598 {
10599 	struct rx_bd *rxbd;
10600 
10601 	/* First some info about the rx_bd chain structure. */
10602 	BCE_PRINTF(
10603 	    "----------------------------"
10604 	    "  rx_bd  chain  "
10605 	    "----------------------------\n");
10606 
10607 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10608 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10609 
10610 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10611 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10612 
10613 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10614 
10615 	BCE_PRINTF(
10616 	    "----------------------------"
10617 	    "   rx_bd data   "
10618 	    "----------------------------\n");
10619 
10620 	/* Now print out the rx_bd's themselves. */
10621 	for (int i = 0; i < count; i++) {
10622 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10623 		bce_dump_rxbd(sc, rx_prod, rxbd);
10624 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10625 	}
10626 
10627 	BCE_PRINTF(
10628 	    "----------------------------"
10629 	    "----------------"
10630 	    "----------------------------\n");
10631 }
10632 
10633 
10634 /****************************************************************************/
10635 /* Prints out the page chain.                                               */
10636 /*                                                                          */
10637 /* Returns:                                                                 */
10638 /*   Nothing.                                                               */
10639 /****************************************************************************/
10640 static __attribute__ ((noinline)) void
10641 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10642 {
10643 	struct rx_bd *pgbd;
10644 
10645 	/* First some info about the page chain structure. */
10646 	BCE_PRINTF(
10647 	    "----------------------------"
10648 	    "   page chain   "
10649 	    "----------------------------\n");
10650 
10651 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10652 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10653 
10654 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10655 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10656 
10657 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10658 
10659 	BCE_PRINTF(
10660 	    "----------------------------"
10661 	    "   page data    "
10662 	    "----------------------------\n");
10663 
10664 	/* Now print out the rx_bd's themselves. */
10665 	for (int i = 0; i < count; i++) {
10666 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10667 		bce_dump_pgbd(sc, pg_prod, pgbd);
10668 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10669 	}
10670 
10671 	BCE_PRINTF(
10672 	    "----------------------------"
10673 	    "----------------"
10674 	    "----------------------------\n");
10675 }
10676 
10677 
10678 #define BCE_PRINT_RX_CONS(arg)						\
10679 if (sblk->status_rx_quick_consumer_index##arg)				\
10680 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10681 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10682 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10683 	    arg);
10684 
10685 
10686 #define BCE_PRINT_TX_CONS(arg)						\
10687 if (sblk->status_tx_quick_consumer_index##arg)				\
10688 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10689 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10690 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10691 	    arg);
10692 
10693 /****************************************************************************/
10694 /* Prints out the status block from host memory.                            */
10695 /*                                                                          */
10696 /* Returns:                                                                 */
10697 /*   Nothing.                                                               */
10698 /****************************************************************************/
10699 static __attribute__ ((noinline)) void
10700 bce_dump_status_block(struct bce_softc *sc)
10701 {
10702 	struct status_block *sblk;
10703 
10704 	sblk = sc->status_block;
10705 
10706 	BCE_PRINTF(
10707 	    "----------------------------"
10708 	    "  Status Block  "
10709 	    "----------------------------\n");
10710 
10711 	/* Theses indices are used for normal L2 drivers. */
10712 	BCE_PRINTF("    0x%08X - attn_bits\n",
10713 	    sblk->status_attn_bits);
10714 
10715 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10716 	    sblk->status_attn_bits_ack);
10717 
10718 	BCE_PRINT_RX_CONS(0);
10719 	BCE_PRINT_TX_CONS(0)
10720 
10721 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10722 
10723 	/* Theses indices are not used for normal L2 drivers. */
10724 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10725 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10726 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10727 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10728 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10729 
10730 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10731 
10732 	if (sblk->status_completion_producer_index ||
10733 	    sblk->status_cmd_consumer_index)
10734 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10735 		    sblk->status_completion_producer_index,
10736 		    sblk->status_cmd_consumer_index);
10737 
10738 	BCE_PRINTF(
10739 	    "----------------------------"
10740 	    "----------------"
10741 	    "----------------------------\n");
10742 }
10743 
10744 
10745 #define BCE_PRINT_64BIT_STAT(arg) 				\
10746 if (sblk->arg##_lo || sblk->arg##_hi)				\
10747 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10748 	    sblk->arg##_lo, #arg);
10749 
10750 #define BCE_PRINT_32BIT_STAT(arg)				\
10751 if (sblk->arg)							\
10752 	BCE_PRINTF("         0x%08X : %s\n", 			\
10753 	    sblk->arg, #arg);
10754 
10755 /****************************************************************************/
10756 /* Prints out the statistics block from host memory.                        */
10757 /*                                                                          */
10758 /* Returns:                                                                 */
10759 /*   Nothing.                                                               */
10760 /****************************************************************************/
10761 static __attribute__ ((noinline)) void
10762 bce_dump_stats_block(struct bce_softc *sc)
10763 {
10764 	struct statistics_block *sblk;
10765 
10766 	sblk = sc->stats_block;
10767 
10768 	BCE_PRINTF(
10769 	    "---------------"
10770 	    " Stats Block  (All Stats Not Shown Are 0) "
10771 	    "---------------\n");
10772 
10773 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10774 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10775 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10776 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10777 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10778 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10779 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10780 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10781 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10782 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10783 	BCE_PRINT_32BIT_STAT(
10784 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10785 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10786 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10787 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10788 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10789 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10790 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10791 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10792 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10793 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10794 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10795 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10796 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10797 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10798 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10799 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10800 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10801 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10802 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10803 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10804 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10805 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10806 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10807 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10808 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10809 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10810 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10811 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10812 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10813 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10814 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10815 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10816 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10817 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10818 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10819 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10820 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10821 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10822 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10823 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10824 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10825 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10826 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10827 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10828 
10829 	BCE_PRINTF(
10830 	    "----------------------------"
10831 	    "----------------"
10832 	    "----------------------------\n");
10833 }
10834 
10835 
10836 /****************************************************************************/
10837 /* Prints out a summary of the driver state.                                */
10838 /*                                                                          */
10839 /* Returns:                                                                 */
10840 /*   Nothing.                                                               */
10841 /****************************************************************************/
10842 static __attribute__ ((noinline)) void
10843 bce_dump_driver_state(struct bce_softc *sc)
10844 {
10845 	u32 val_hi, val_lo;
10846 
10847 	BCE_PRINTF(
10848 	    "-----------------------------"
10849 	    " Driver State "
10850 	    "-----------------------------\n");
10851 
10852 	val_hi = BCE_ADDR_HI(sc);
10853 	val_lo = BCE_ADDR_LO(sc);
10854 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10855 	    "address\n", val_hi, val_lo);
10856 
10857 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10858 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10859 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10860 	    "address\n", val_hi, val_lo);
10861 
10862 	val_hi = BCE_ADDR_HI(sc->status_block);
10863 	val_lo = BCE_ADDR_LO(sc->status_block);
10864 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10865 	    "virtual address\n",	val_hi, val_lo);
10866 
10867 	val_hi = BCE_ADDR_HI(sc->stats_block);
10868 	val_lo = BCE_ADDR_LO(sc->stats_block);
10869 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10870 	    "virtual address\n", val_hi, val_lo);
10871 
10872 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10873 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10874 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10875 	    "virtual adddress\n", val_hi, val_lo);
10876 
10877 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10878 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10879 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10880 	    "virtual address\n", val_hi, val_lo);
10881 
10882 	if (bce_hdr_split == TRUE) {
10883 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10884 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10885 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10886 		    "virtual address\n", val_hi, val_lo);
10887 	}
10888 
10889 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10890 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10891 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10892 	    "virtual address\n",	val_hi, val_lo);
10893 
10894 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10895 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10896 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10897 	    "virtual address\n", val_hi, val_lo);
10898 
10899 	if (bce_hdr_split == TRUE) {
10900 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10901 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10902 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10903 		    "virtual address\n", val_hi, val_lo);
10904 	}
10905 
10906 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10907 	    "h/w intrs\n",
10908 	    (long long unsigned int) sc->interrupts_generated);
10909 
10910 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10911 	    "rx interrupts handled\n",
10912 	    (long long unsigned int) sc->interrupts_rx);
10913 
10914 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10915 	    "tx interrupts handled\n",
10916 	    (long long unsigned int) sc->interrupts_tx);
10917 
10918 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10919 	    "phy interrupts handled\n",
10920 	    (long long unsigned int) sc->phy_interrupts);
10921 
10922 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10923 	    "status block index\n", sc->last_status_idx);
10924 
10925 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10926 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10927 
10928 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10929 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10930 
10931 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10932 	    "byte seq index\n",	sc->tx_prod_bseq);
10933 
10934 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10935 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10936 
10937 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10938 	    "tx_bd's\n", sc->used_tx_bd);
10939 
10940 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10941 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10942 
10943 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10944 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10945 
10946 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10947 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10948 
10949 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10950 	    "byte seq index\n",	sc->rx_prod_bseq);
10951 
10952 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10953 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10954 
10955 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10956 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10957 
10958 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10959 	    "rx_bd's\n", sc->free_rx_bd);
10960 
10961 	if (bce_hdr_split == TRUE) {
10962 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10963 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10964 
10965 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10966 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10967 
10968 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10969 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10970 	}
10971 
10972 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10973 	    "rx_bd's\n", sc->free_pg_bd);
10974 
10975 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10976 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10977 
10978 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10979 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10980 
10981 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10982 	    "bce mac flags\n", sc->bce_flags);
10983 
10984 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10985 	    "bce phy flags\n", sc->bce_phy_flags);
10986 
10987 	BCE_PRINTF(
10988 	    "----------------------------"
10989 	    "----------------"
10990 	    "----------------------------\n");
10991 }
10992 
10993 
10994 /****************************************************************************/
10995 /* Prints out the hardware state through a summary of important register,   */
10996 /* followed by a complete register dump.                                    */
10997 /*                                                                          */
10998 /* Returns:                                                                 */
10999 /*   Nothing.                                                               */
11000 /****************************************************************************/
11001 static __attribute__ ((noinline)) void
11002 bce_dump_hw_state(struct bce_softc *sc)
11003 {
11004 	u32 val;
11005 
11006 	BCE_PRINTF(
11007 	    "----------------------------"
11008 	    " Hardware State "
11009 	    "----------------------------\n");
11010 
11011 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11012 
11013 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
11014 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
11015 	    val, BCE_MISC_ENABLE_STATUS_BITS);
11016 
11017 	val = REG_RD(sc, BCE_DMA_STATUS);
11018 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
11019 	    val, BCE_DMA_STATUS);
11020 
11021 	val = REG_RD(sc, BCE_CTX_STATUS);
11022 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
11023 	    val, BCE_CTX_STATUS);
11024 
11025 	val = REG_RD(sc, BCE_EMAC_STATUS);
11026 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
11027 	    val, BCE_EMAC_STATUS);
11028 
11029 	val = REG_RD(sc, BCE_RPM_STATUS);
11030 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
11031 	    val, BCE_RPM_STATUS);
11032 
11033 	/* ToDo: Create a #define for this constant. */
11034 	val = REG_RD(sc, 0x2004);
11035 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11036 	    val, 0x2004);
11037 
11038 	val = REG_RD(sc, BCE_RV2P_STATUS);
11039 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11040 	    val, BCE_RV2P_STATUS);
11041 
11042 	/* ToDo: Create a #define for this constant. */
11043 	val = REG_RD(sc, 0x2c04);
11044 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11045 	    val, 0x2c04);
11046 
11047 	val = REG_RD(sc, BCE_TBDR_STATUS);
11048 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11049 	    val, BCE_TBDR_STATUS);
11050 
11051 	val = REG_RD(sc, BCE_TDMA_STATUS);
11052 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11053 	    val, BCE_TDMA_STATUS);
11054 
11055 	val = REG_RD(sc, BCE_HC_STATUS);
11056 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11057 	    val, BCE_HC_STATUS);
11058 
11059 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11060 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11061 	    val, BCE_TXP_CPU_STATE);
11062 
11063 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11064 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11065 	    val, BCE_TPAT_CPU_STATE);
11066 
11067 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11068 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11069 	    val, BCE_RXP_CPU_STATE);
11070 
11071 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11072 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11073 	    val, BCE_COM_CPU_STATE);
11074 
11075 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11076 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11077 	    val, BCE_MCP_CPU_STATE);
11078 
11079 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11080 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11081 	    val, BCE_CP_CPU_STATE);
11082 
11083 	BCE_PRINTF(
11084 	    "----------------------------"
11085 	    "----------------"
11086 	    "----------------------------\n");
11087 
11088 	BCE_PRINTF(
11089 	    "----------------------------"
11090 	    " Register  Dump "
11091 	    "----------------------------\n");
11092 
11093 	for (int i = 0x400; i < 0x8000; i += 0x10) {
11094 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11095 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11096 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11097 	}
11098 
11099 	BCE_PRINTF(
11100 	    "----------------------------"
11101 	    "----------------"
11102 	    "----------------------------\n");
11103 }
11104 
11105 
11106 /****************************************************************************/
11107 /* Prints out the contentst of shared memory which is used for host driver  */
11108 /* to bootcode firmware communication.                                      */
11109 /*                                                                          */
11110 /* Returns:                                                                 */
11111 /*   Nothing.                                                               */
11112 /****************************************************************************/
11113 static __attribute__ ((noinline)) void
11114 bce_dump_shmem_state(struct bce_softc *sc)
11115 {
11116 	BCE_PRINTF(
11117 	    "----------------------------"
11118 	    " Hardware State "
11119 	    "----------------------------\n");
11120 
11121 	BCE_PRINTF("0x%08X - Shared memory base address\n",
11122 	    sc->bce_shmem_base);
11123 	BCE_PRINTF("%s - bootcode version\n",
11124 	    sc->bce_bc_ver);
11125 
11126 	BCE_PRINTF(
11127 	    "----------------------------"
11128 	    "   Shared Mem   "
11129 	    "----------------------------\n");
11130 
11131 	for (int i = 0x0; i < 0x200; i += 0x10) {
11132 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11133 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11134 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11135 	}
11136 
11137 	BCE_PRINTF(
11138 	    "----------------------------"
11139 	    "----------------"
11140 	    "----------------------------\n");
11141 }
11142 
11143 
11144 /****************************************************************************/
11145 /* Prints out the mailbox queue registers.                                  */
11146 /*                                                                          */
11147 /* Returns:                                                                 */
11148 /*   Nothing.                                                               */
11149 /****************************************************************************/
11150 static __attribute__ ((noinline)) void
11151 bce_dump_mq_regs(struct bce_softc *sc)
11152 {
11153 	BCE_PRINTF(
11154 	    "----------------------------"
11155 	    "    MQ Regs     "
11156 	    "----------------------------\n");
11157 
11158 	BCE_PRINTF(
11159 	    "----------------------------"
11160 	    "----------------"
11161 	    "----------------------------\n");
11162 
11163 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11164 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11165 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11166 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11167 	}
11168 
11169 	BCE_PRINTF(
11170 	    "----------------------------"
11171 	    "----------------"
11172 	    "----------------------------\n");
11173 }
11174 
11175 
11176 /****************************************************************************/
11177 /* Prints out the bootcode state.                                           */
11178 /*                                                                          */
11179 /* Returns:                                                                 */
11180 /*   Nothing.                                                               */
11181 /****************************************************************************/
11182 static __attribute__ ((noinline)) void
11183 bce_dump_bc_state(struct bce_softc *sc)
11184 {
11185 	u32 val;
11186 
11187 	BCE_PRINTF(
11188 	    "----------------------------"
11189 	    " Bootcode State "
11190 	    "----------------------------\n");
11191 
11192 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11193 
11194 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11195 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11196 	    val, BCE_BC_RESET_TYPE);
11197 
11198 	val = bce_shmem_rd(sc, BCE_BC_STATE);
11199 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
11200 	    val, BCE_BC_STATE);
11201 
11202 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11203 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11204 	    val, BCE_BC_STATE_CONDITION);
11205 
11206 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11207 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11208 	    val, BCE_BC_STATE_DEBUG_CMD);
11209 
11210 	BCE_PRINTF(
11211 	    "----------------------------"
11212 	    "----------------"
11213 	    "----------------------------\n");
11214 }
11215 
11216 
11217 /****************************************************************************/
11218 /* Prints out the TXP processor state.                                      */
11219 /*                                                                          */
11220 /* Returns:                                                                 */
11221 /*   Nothing.                                                               */
11222 /****************************************************************************/
11223 static __attribute__ ((noinline)) void
11224 bce_dump_txp_state(struct bce_softc *sc, int regs)
11225 {
11226 	u32 val;
11227 	u32 fw_version[3];
11228 
11229 	BCE_PRINTF(
11230 	    "----------------------------"
11231 	    "   TXP  State   "
11232 	    "----------------------------\n");
11233 
11234 	for (int i = 0; i < 3; i++)
11235 		fw_version[i] = htonl(REG_RD_IND(sc,
11236 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11237 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11238 
11239 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11240 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11241 	    val, BCE_TXP_CPU_MODE);
11242 
11243 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11244 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11245 	    val, BCE_TXP_CPU_STATE);
11246 
11247 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11248 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11249 	    val, BCE_TXP_CPU_EVENT_MASK);
11250 
11251 	if (regs) {
11252 		BCE_PRINTF(
11253 		    "----------------------------"
11254 		    " Register  Dump "
11255 		    "----------------------------\n");
11256 
11257 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11258 			/* Skip the big blank spaces */
11259 			if (i < 0x454000 && i > 0x5ffff)
11260 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11261 				    "0x%08X 0x%08X\n", i,
11262 				    REG_RD_IND(sc, i),
11263 				    REG_RD_IND(sc, i + 0x4),
11264 				    REG_RD_IND(sc, i + 0x8),
11265 				    REG_RD_IND(sc, i + 0xC));
11266 		}
11267 	}
11268 
11269 	BCE_PRINTF(
11270 	    "----------------------------"
11271 	    "----------------"
11272 	    "----------------------------\n");
11273 }
11274 
11275 
11276 /****************************************************************************/
11277 /* Prints out the RXP processor state.                                      */
11278 /*                                                                          */
11279 /* Returns:                                                                 */
11280 /*   Nothing.                                                               */
11281 /****************************************************************************/
11282 static __attribute__ ((noinline)) void
11283 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11284 {
11285 	u32 val;
11286 	u32 fw_version[3];
11287 
11288 	BCE_PRINTF(
11289 	    "----------------------------"
11290 	    "   RXP  State   "
11291 	    "----------------------------\n");
11292 
11293 	for (int i = 0; i < 3; i++)
11294 		fw_version[i] = htonl(REG_RD_IND(sc,
11295 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11296 
11297 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11298 
11299 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11300 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11301 	    val, BCE_RXP_CPU_MODE);
11302 
11303 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11304 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11305 	    val, BCE_RXP_CPU_STATE);
11306 
11307 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11308 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11309 	    val, BCE_RXP_CPU_EVENT_MASK);
11310 
11311 	if (regs) {
11312 		BCE_PRINTF(
11313 		    "----------------------------"
11314 		    " Register  Dump "
11315 		    "----------------------------\n");
11316 
11317 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11318 			/* Skip the big blank sapces */
11319 			if (i < 0xc5400 && i > 0xdffff)
11320 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11321 				    "0x%08X 0x%08X\n", i,
11322 				    REG_RD_IND(sc, i),
11323 				    REG_RD_IND(sc, i + 0x4),
11324 				    REG_RD_IND(sc, i + 0x8),
11325 				    REG_RD_IND(sc, i + 0xC));
11326 		}
11327 	}
11328 
11329 	BCE_PRINTF(
11330 	    "----------------------------"
11331 	    "----------------"
11332 	    "----------------------------\n");
11333 }
11334 
11335 
11336 /****************************************************************************/
11337 /* Prints out the TPAT processor state.                                     */
11338 /*                                                                          */
11339 /* Returns:                                                                 */
11340 /*   Nothing.                                                               */
11341 /****************************************************************************/
11342 static __attribute__ ((noinline)) void
11343 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11344 {
11345 	u32 val;
11346 	u32 fw_version[3];
11347 
11348 	BCE_PRINTF(
11349 	    "----------------------------"
11350 	    "   TPAT State   "
11351 	    "----------------------------\n");
11352 
11353 	for (int i = 0; i < 3; i++)
11354 		fw_version[i] = htonl(REG_RD_IND(sc,
11355 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11356 
11357 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11358 
11359 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11360 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11361 	    val, BCE_TPAT_CPU_MODE);
11362 
11363 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11364 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11365 	    val, BCE_TPAT_CPU_STATE);
11366 
11367 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11368 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11369 	    val, BCE_TPAT_CPU_EVENT_MASK);
11370 
11371 	if (regs) {
11372 		BCE_PRINTF(
11373 		    "----------------------------"
11374 		    " Register  Dump "
11375 		    "----------------------------\n");
11376 
11377 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11378 			/* Skip the big blank spaces */
11379 			if (i < 0x854000 && i > 0x9ffff)
11380 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11381 				    "0x%08X 0x%08X\n", i,
11382 				    REG_RD_IND(sc, i),
11383 				    REG_RD_IND(sc, i + 0x4),
11384 				    REG_RD_IND(sc, i + 0x8),
11385 				    REG_RD_IND(sc, i + 0xC));
11386 		}
11387 	}
11388 
11389 	BCE_PRINTF(
11390 		"----------------------------"
11391 		"----------------"
11392 		"----------------------------\n");
11393 }
11394 
11395 
11396 /****************************************************************************/
11397 /* Prints out the Command Procesor (CP) state.                              */
11398 /*                                                                          */
11399 /* Returns:                                                                 */
11400 /*   Nothing.                                                               */
11401 /****************************************************************************/
11402 static __attribute__ ((noinline)) void
11403 bce_dump_cp_state(struct bce_softc *sc, int regs)
11404 {
11405 	u32 val;
11406 	u32 fw_version[3];
11407 
11408 	BCE_PRINTF(
11409 	    "----------------------------"
11410 	    "    CP State    "
11411 	    "----------------------------\n");
11412 
11413 	for (int i = 0; i < 3; i++)
11414 		fw_version[i] = htonl(REG_RD_IND(sc,
11415 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11416 
11417 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11418 
11419 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11420 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11421 	    val, BCE_CP_CPU_MODE);
11422 
11423 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11424 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11425 	    val, BCE_CP_CPU_STATE);
11426 
11427 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11428 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11429 	    BCE_CP_CPU_EVENT_MASK);
11430 
11431 	if (regs) {
11432 		BCE_PRINTF(
11433 		    "----------------------------"
11434 		    " Register  Dump "
11435 		    "----------------------------\n");
11436 
11437 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11438 			/* Skip the big blank spaces */
11439 			if (i < 0x185400 && i > 0x19ffff)
11440 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11441 				    "0x%08X 0x%08X\n", i,
11442 				    REG_RD_IND(sc, i),
11443 				    REG_RD_IND(sc, i + 0x4),
11444 				    REG_RD_IND(sc, i + 0x8),
11445 				    REG_RD_IND(sc, i + 0xC));
11446 		}
11447 	}
11448 
11449 	BCE_PRINTF(
11450 	    "----------------------------"
11451 	    "----------------"
11452 	    "----------------------------\n");
11453 }
11454 
11455 
11456 /****************************************************************************/
11457 /* Prints out the Completion Procesor (COM) state.                          */
11458 /*                                                                          */
11459 /* Returns:                                                                 */
11460 /*   Nothing.                                                               */
11461 /****************************************************************************/
11462 static __attribute__ ((noinline)) void
11463 bce_dump_com_state(struct bce_softc *sc, int regs)
11464 {
11465 	u32 val;
11466 	u32 fw_version[4];
11467 
11468 	BCE_PRINTF(
11469 	    "----------------------------"
11470 	    "   COM State    "
11471 	    "----------------------------\n");
11472 
11473 	for (int i = 0; i < 3; i++)
11474 		fw_version[i] = htonl(REG_RD_IND(sc,
11475 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11476 
11477 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11478 
11479 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11480 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11481 	    val, BCE_COM_CPU_MODE);
11482 
11483 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11484 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11485 	    val, BCE_COM_CPU_STATE);
11486 
11487 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11488 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11489 	    BCE_COM_CPU_EVENT_MASK);
11490 
11491 	if (regs) {
11492 		BCE_PRINTF(
11493 		    "----------------------------"
11494 		    " Register  Dump "
11495 		    "----------------------------\n");
11496 
11497 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11498 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11499 			    "0x%08X 0x%08X\n", i,
11500 			    REG_RD_IND(sc, i),
11501 			    REG_RD_IND(sc, i + 0x4),
11502 			    REG_RD_IND(sc, i + 0x8),
11503 			    REG_RD_IND(sc, i + 0xC));
11504 		}
11505 	}
11506 
11507 	BCE_PRINTF(
11508 		"----------------------------"
11509 		"----------------"
11510 		"----------------------------\n");
11511 }
11512 
11513 
11514 /****************************************************************************/
11515 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11516 /*                                                                          */
11517 /* Returns:                                                                 */
11518 /*   Nothing.                                                               */
11519 /****************************************************************************/
11520 static __attribute__ ((noinline)) void
11521 bce_dump_rv2p_state(struct bce_softc *sc)
11522 {
11523 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11524 
11525 	BCE_PRINTF(
11526 	    "----------------------------"
11527 	    "   RV2P State   "
11528 	    "----------------------------\n");
11529 
11530 	/* Stall the RV2P processors. */
11531 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11532 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11533 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11534 
11535 	/* Read the firmware version. */
11536 	val = 0x00000001;
11537 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11538 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11539 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11540 	    BCE_RV2P_INSTR_HIGH_HIGH;
11541 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11542 	    fw_ver_high, fw_ver_low);
11543 
11544 	val = 0x00000001;
11545 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11546 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11547 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11548 	    BCE_RV2P_INSTR_HIGH_HIGH;
11549 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11550 	    fw_ver_high, fw_ver_low);
11551 
11552 	/* Resume the RV2P processors. */
11553 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11554 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11555 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11556 
11557 	/* Fetch the program counter value. */
11558 	val = 0x68007800;
11559 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11560 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11561 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11562 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11563 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11564 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11565 
11566 	/* Fetch the program counter value again to see if it is advancing. */
11567 	val = 0x68007800;
11568 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11569 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11570 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11571 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11572 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11573 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11574 
11575 	BCE_PRINTF(
11576 	    "----------------------------"
11577 	    "----------------"
11578 	    "----------------------------\n");
11579 }
11580 
11581 
11582 /****************************************************************************/
11583 /* Prints out the driver state and then enters the debugger.                */
11584 /*                                                                          */
11585 /* Returns:                                                                 */
11586 /*   Nothing.                                                               */
11587 /****************************************************************************/
11588 static __attribute__ ((noinline)) void
11589 bce_breakpoint(struct bce_softc *sc)
11590 {
11591 
11592 	/*
11593 	 * Unreachable code to silence compiler warnings
11594 	 * about unused functions.
11595 	 */
11596 	if (0) {
11597 		bce_freeze_controller(sc);
11598 		bce_unfreeze_controller(sc);
11599 		bce_dump_enet(sc, NULL);
11600 		bce_dump_txbd(sc, 0, NULL);
11601 		bce_dump_rxbd(sc, 0, NULL);
11602 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11603 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11604 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11605 		bce_dump_l2fhdr(sc, 0, NULL);
11606 		bce_dump_ctx(sc, RX_CID);
11607 		bce_dump_ftqs(sc);
11608 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11609 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11610 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11611 		bce_dump_status_block(sc);
11612 		bce_dump_stats_block(sc);
11613 		bce_dump_driver_state(sc);
11614 		bce_dump_hw_state(sc);
11615 		bce_dump_bc_state(sc);
11616 		bce_dump_txp_state(sc, 0);
11617 		bce_dump_rxp_state(sc, 0);
11618 		bce_dump_tpat_state(sc, 0);
11619 		bce_dump_cp_state(sc, 0);
11620 		bce_dump_com_state(sc, 0);
11621 		bce_dump_rv2p_state(sc);
11622 		bce_dump_pgbd(sc, 0, NULL);
11623 	}
11624 
11625 	bce_dump_status_block(sc);
11626 	bce_dump_driver_state(sc);
11627 
11628 	/* Call the debugger. */
11629 	breakpoint();
11630 
11631 	return;
11632 }
11633 #endif
11634