1 /*- 2 * Copyright (c) 2006-2010 Broadcom Corporation 3 * David Christensen <davidch@broadcom.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written consent. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * The following controllers are supported by this driver: 36 * BCM5706C A2, A3 37 * BCM5706S A2, A3 38 * BCM5708C B1, B2 39 * BCM5708S B1, B2 40 * BCM5709C A1, C0 41 * BCM5709S A1, C0 42 * BCM5716C C0 43 * BCM5716S C0 44 * 45 * The following controllers are not supported by this driver: 46 * BCM5706C A0, A1 (pre-production) 47 * BCM5706S A0, A1 (pre-production) 48 * BCM5708C A0, B0 (pre-production) 49 * BCM5708S A0, B0 (pre-production) 50 * BCM5709C A0 B0, B1, B2 (pre-production) 51 * BCM5709S A0, B0, B1, B2 (pre-production) 52 */ 53 54 #include "opt_bce.h" 55 56 #include <dev/bce/if_bcereg.h> 57 #include <dev/bce/if_bcefw.h> 58 59 /****************************************************************************/ 60 /* BCE Debug Options */ 61 /****************************************************************************/ 62 #ifdef BCE_DEBUG 63 u32 bce_debug = BCE_WARN; 64 65 /* 0 = Never */ 66 /* 1 = 1 in 2,147,483,648 */ 67 /* 256 = 1 in 8,388,608 */ 68 /* 2048 = 1 in 1,048,576 */ 69 /* 65536 = 1 in 32,768 */ 70 /* 1048576 = 1 in 2,048 */ 71 /* 268435456 = 1 in 8 */ 72 /* 536870912 = 1 in 4 */ 73 /* 1073741824 = 1 in 2 */ 74 75 /* Controls how often the l2_fhdr frame error check will fail. */ 76 int l2fhdr_error_sim_control = 0; 77 78 /* Controls how often the unexpected attention check will fail. */ 79 int unexpected_attention_sim_control = 0; 80 81 /* Controls how often to simulate an mbuf allocation failure. */ 82 int mbuf_alloc_failed_sim_control = 0; 83 84 /* Controls how often to simulate a DMA mapping failure. */ 85 int dma_map_addr_failed_sim_control = 0; 86 87 /* Controls how often to simulate a bootcode failure. */ 88 int bootcode_running_failure_sim_control = 0; 89 #endif 90 91 /****************************************************************************/ 92 /* PCI Device ID Table */ 93 /* */ 94 /* Used by bce_probe() to identify the devices supported by this driver. */ 95 /****************************************************************************/ 96 #define BCE_DEVDESC_MAX 64 97 98 static const struct bce_type bce_devs[] = { 99 /* BCM5706C Controllers and OEM boards. */ 100 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 101 "HP NC370T Multifunction Gigabit Server Adapter" }, 102 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 103 "HP NC370i Multifunction Gigabit Server Adapter" }, 104 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, 105 "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, 106 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, 107 "HP NC371i Multifunction Gigabit Server Adapter" }, 108 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 109 "Broadcom NetXtreme II BCM5706 1000Base-T" }, 110 111 /* BCM5706S controllers and OEM boards. */ 112 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 113 "HP NC370F Multifunction Gigabit Server Adapter" }, 114 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 115 "Broadcom NetXtreme II BCM5706 1000Base-SX" }, 116 117 /* BCM5708C controllers and OEM boards. */ 118 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, 119 "HP NC373T PCIe Multifunction Gig Server Adapter" }, 120 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, 121 "HP NC373i Multifunction Gigabit Server Adapter" }, 122 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, 123 "HP NC374m PCIe Multifunction Adapter" }, 124 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 125 "Broadcom NetXtreme II BCM5708 1000Base-T" }, 126 127 /* BCM5708S controllers and OEM boards. */ 128 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, 129 "HP NC373m Multifunction Gigabit Server Adapter" }, 130 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, 131 "HP NC373i Multifunction Gigabit Server Adapter" }, 132 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, 133 "HP NC373F PCIe Multifunc Giga Server Adapter" }, 134 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 135 "Broadcom NetXtreme II BCM5708 1000Base-SX" }, 136 137 /* BCM5709C controllers and OEM boards. */ 138 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, 139 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 140 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, 141 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, 142 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, 143 "Broadcom NetXtreme II BCM5709 1000Base-T" }, 144 145 /* BCM5709S controllers and OEM boards. */ 146 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, 147 "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, 148 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, 149 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 150 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, 151 "Broadcom NetXtreme II BCM5709 1000Base-SX" }, 152 153 /* BCM5716 controllers and OEM boards. */ 154 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, 155 "Broadcom NetXtreme II BCM5716 1000Base-T" }, 156 157 { 0, 0, 0, 0, NULL } 158 }; 159 160 161 /****************************************************************************/ 162 /* Supported Flash NVRAM device data. */ 163 /****************************************************************************/ 164 static const struct flash_spec flash_table[] = 165 { 166 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) 167 #define NONBUFFERED_FLAGS (BCE_NV_WREN) 168 169 /* Slow EEPROM */ 170 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 171 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 172 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 173 "EEPROM - slow"}, 174 /* Expansion entry 0001 */ 175 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 176 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 177 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 178 "Entry 0001"}, 179 /* Saifun SA25F010 (non-buffered flash) */ 180 /* strap, cfg1, & write1 need updates */ 181 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 182 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 183 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 184 "Non-buffered flash (128kB)"}, 185 /* Saifun SA25F020 (non-buffered flash) */ 186 /* strap, cfg1, & write1 need updates */ 187 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 188 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 189 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 190 "Non-buffered flash (256kB)"}, 191 /* Expansion entry 0100 */ 192 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 194 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 195 "Entry 0100"}, 196 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 197 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 198 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 199 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 200 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 201 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 202 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 203 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 204 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 205 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 206 /* Saifun SA25F005 (non-buffered flash) */ 207 /* strap, cfg1, & write1 need updates */ 208 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 209 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 210 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 211 "Non-buffered flash (64kB)"}, 212 /* Fast EEPROM */ 213 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 214 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 215 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 216 "EEPROM - fast"}, 217 /* Expansion entry 1001 */ 218 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 219 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 220 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 221 "Entry 1001"}, 222 /* Expansion entry 1010 */ 223 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 225 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 226 "Entry 1010"}, 227 /* ATMEL AT45DB011B (buffered flash) */ 228 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 229 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 230 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 231 "Buffered flash (128kB)"}, 232 /* Expansion entry 1100 */ 233 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 234 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 235 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 236 "Entry 1100"}, 237 /* Expansion entry 1101 */ 238 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 239 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 240 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 241 "Entry 1101"}, 242 /* Ateml Expansion entry 1110 */ 243 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 244 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 245 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 246 "Entry 1110 (Atmel)"}, 247 /* ATMEL AT45DB021B (buffered flash) */ 248 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 249 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 250 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 251 "Buffered flash (256kB)"}, 252 }; 253 254 /* 255 * The BCM5709 controllers transparently handle the 256 * differences between Atmel 264 byte pages and all 257 * flash devices which use 256 byte pages, so no 258 * logical-to-physical mapping is required in the 259 * driver. 260 */ 261 static const struct flash_spec flash_5709 = { 262 .flags = BCE_NV_BUFFERED, 263 .page_bits = BCM5709_FLASH_PAGE_BITS, 264 .page_size = BCM5709_FLASH_PAGE_SIZE, 265 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 266 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 267 .name = "5709/5716 buffered flash (256kB)", 268 }; 269 270 271 /****************************************************************************/ 272 /* FreeBSD device entry points. */ 273 /****************************************************************************/ 274 static int bce_probe (device_t); 275 static int bce_attach (device_t); 276 static int bce_detach (device_t); 277 static int bce_shutdown (device_t); 278 279 280 /****************************************************************************/ 281 /* BCE Debug Data Structure Dump Routines */ 282 /****************************************************************************/ 283 #ifdef BCE_DEBUG 284 static u32 bce_reg_rd (struct bce_softc *, u32); 285 static void bce_reg_wr (struct bce_softc *, u32, u32); 286 static void bce_reg_wr16 (struct bce_softc *, u32, u16); 287 static u32 bce_ctx_rd (struct bce_softc *, u32, u32); 288 static void bce_dump_enet (struct bce_softc *, struct mbuf *); 289 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 290 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); 291 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); 292 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); 293 static void bce_dump_txbd (struct bce_softc *, 294 int, struct tx_bd *); 295 static void bce_dump_rxbd (struct bce_softc *, 296 int, struct rx_bd *); 297 static void bce_dump_pgbd (struct bce_softc *, 298 int, struct rx_bd *); 299 static void bce_dump_l2fhdr (struct bce_softc *, 300 int, struct l2_fhdr *); 301 static void bce_dump_ctx (struct bce_softc *, u16); 302 static void bce_dump_ftqs (struct bce_softc *); 303 static void bce_dump_tx_chain (struct bce_softc *, u16, int); 304 static void bce_dump_rx_bd_chain (struct bce_softc *, u16, int); 305 static void bce_dump_pg_chain (struct bce_softc *, u16, int); 306 static void bce_dump_status_block (struct bce_softc *); 307 static void bce_dump_stats_block (struct bce_softc *); 308 static void bce_dump_driver_state (struct bce_softc *); 309 static void bce_dump_hw_state (struct bce_softc *); 310 static void bce_dump_shmem_state (struct bce_softc *); 311 static void bce_dump_mq_regs (struct bce_softc *); 312 static void bce_dump_bc_state (struct bce_softc *); 313 static void bce_dump_txp_state (struct bce_softc *, int); 314 static void bce_dump_rxp_state (struct bce_softc *, int); 315 static void bce_dump_tpat_state (struct bce_softc *, int); 316 static void bce_dump_cp_state (struct bce_softc *, int); 317 static void bce_dump_com_state (struct bce_softc *, int); 318 static void bce_dump_rv2p_state (struct bce_softc *); 319 static void bce_breakpoint (struct bce_softc *); 320 #endif /*BCE_DEBUG */ 321 322 323 /****************************************************************************/ 324 /* BCE Register/Memory Access Routines */ 325 /****************************************************************************/ 326 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 327 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 328 static void bce_shmem_wr (struct bce_softc *, u32, u32); 329 static u32 bce_shmem_rd (struct bce_softc *, u32); 330 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 331 static int bce_miibus_read_reg (device_t, int, int); 332 static int bce_miibus_write_reg (device_t, int, int, int); 333 static void bce_miibus_statchg (device_t); 334 335 #ifdef BCE_DEBUG 336 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS); 337 #ifdef BCE_NVRAM_WRITE_SUPPORT 338 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS); 339 #endif 340 #endif 341 342 /****************************************************************************/ 343 /* BCE NVRAM Access Routines */ 344 /****************************************************************************/ 345 static int bce_acquire_nvram_lock (struct bce_softc *); 346 static int bce_release_nvram_lock (struct bce_softc *); 347 static void bce_enable_nvram_access(struct bce_softc *); 348 static void bce_disable_nvram_access(struct bce_softc *); 349 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 350 static int bce_init_nvram (struct bce_softc *); 351 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 352 static int bce_nvram_test (struct bce_softc *); 353 #ifdef BCE_NVRAM_WRITE_SUPPORT 354 static int bce_enable_nvram_write (struct bce_softc *); 355 static void bce_disable_nvram_write(struct bce_softc *); 356 static int bce_nvram_erase_page (struct bce_softc *, u32); 357 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 358 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 359 #endif 360 361 /****************************************************************************/ 362 /* */ 363 /****************************************************************************/ 364 static void bce_get_rx_buffer_sizes(struct bce_softc *, int); 365 static void bce_get_media (struct bce_softc *); 366 static void bce_init_media (struct bce_softc *); 367 static u32 bce_get_rphy_link (struct bce_softc *); 368 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); 369 static int bce_dma_alloc (device_t); 370 static void bce_dma_free (struct bce_softc *); 371 static void bce_release_resources (struct bce_softc *); 372 373 /****************************************************************************/ 374 /* BCE Firmware Synchronization and Load */ 375 /****************************************************************************/ 376 static void bce_fw_cap_init (struct bce_softc *); 377 static int bce_fw_sync (struct bce_softc *, u32); 378 static void bce_load_rv2p_fw (struct bce_softc *, u32 *, u32, u32); 379 static void bce_load_cpu_fw (struct bce_softc *, 380 struct cpu_reg *, struct fw_info *); 381 static void bce_start_cpu (struct bce_softc *, struct cpu_reg *); 382 static void bce_halt_cpu (struct bce_softc *, struct cpu_reg *); 383 static void bce_start_rxp_cpu (struct bce_softc *); 384 static void bce_init_rxp_cpu (struct bce_softc *); 385 static void bce_init_txp_cpu (struct bce_softc *); 386 static void bce_init_tpat_cpu (struct bce_softc *); 387 static void bce_init_cp_cpu (struct bce_softc *); 388 static void bce_init_com_cpu (struct bce_softc *); 389 static void bce_init_cpus (struct bce_softc *); 390 391 static void bce_print_adapter_info (struct bce_softc *); 392 static void bce_probe_pci_caps (device_t, struct bce_softc *); 393 static void bce_stop (struct bce_softc *); 394 static int bce_reset (struct bce_softc *, u32); 395 static int bce_chipinit (struct bce_softc *); 396 static int bce_blockinit (struct bce_softc *); 397 398 static int bce_init_tx_chain (struct bce_softc *); 399 static void bce_free_tx_chain (struct bce_softc *); 400 401 static int bce_get_rx_buf (struct bce_softc *, 402 struct mbuf *, u16 *, u16 *, u32 *); 403 static int bce_init_rx_chain (struct bce_softc *); 404 static void bce_fill_rx_chain (struct bce_softc *); 405 static void bce_free_rx_chain (struct bce_softc *); 406 407 static int bce_get_pg_buf (struct bce_softc *, 408 struct mbuf *, u16 *, u16 *); 409 static int bce_init_pg_chain (struct bce_softc *); 410 static void bce_fill_pg_chain (struct bce_softc *); 411 static void bce_free_pg_chain (struct bce_softc *); 412 413 static struct mbuf *bce_tso_setup (struct bce_softc *, 414 struct mbuf **, u16 *); 415 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 416 static void bce_start_locked (struct ifnet *); 417 static void bce_start (struct ifnet *); 418 static int bce_ioctl (struct ifnet *, u_long, caddr_t); 419 static void bce_watchdog (struct bce_softc *); 420 static int bce_ifmedia_upd (struct ifnet *); 421 static int bce_ifmedia_upd_locked (struct ifnet *); 422 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); 423 static void bce_ifmedia_sts_rphy (struct bce_softc *, struct ifmediareq *); 424 static void bce_init_locked (struct bce_softc *); 425 static void bce_init (void *); 426 static void bce_mgmt_init_locked (struct bce_softc *sc); 427 428 static int bce_init_ctx (struct bce_softc *); 429 static void bce_get_mac_addr (struct bce_softc *); 430 static void bce_set_mac_addr (struct bce_softc *); 431 static void bce_phy_intr (struct bce_softc *); 432 static inline u16 bce_get_hw_rx_cons (struct bce_softc *); 433 static void bce_rx_intr (struct bce_softc *); 434 static void bce_tx_intr (struct bce_softc *); 435 static void bce_disable_intr (struct bce_softc *); 436 static void bce_enable_intr (struct bce_softc *, int); 437 438 static void bce_intr (void *); 439 static void bce_set_rx_mode (struct bce_softc *); 440 static void bce_stats_update (struct bce_softc *); 441 static void bce_tick (void *); 442 static void bce_pulse (void *); 443 static void bce_add_sysctls (struct bce_softc *); 444 445 446 /****************************************************************************/ 447 /* FreeBSD device dispatch table. */ 448 /****************************************************************************/ 449 static device_method_t bce_methods[] = { 450 /* Device interface (device_if.h) */ 451 DEVMETHOD(device_probe, bce_probe), 452 DEVMETHOD(device_attach, bce_attach), 453 DEVMETHOD(device_detach, bce_detach), 454 DEVMETHOD(device_shutdown, bce_shutdown), 455 /* Supported by device interface but not used here. */ 456 /* DEVMETHOD(device_identify, bce_identify), */ 457 /* DEVMETHOD(device_suspend, bce_suspend), */ 458 /* DEVMETHOD(device_resume, bce_resume), */ 459 /* DEVMETHOD(device_quiesce, bce_quiesce), */ 460 461 /* MII interface (miibus_if.h) */ 462 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 463 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 464 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 465 /* Supported by MII interface but not used here. */ 466 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ 467 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ 468 469 DEVMETHOD_END 470 }; 471 472 static driver_t bce_driver = { 473 "bce", 474 bce_methods, 475 sizeof(struct bce_softc) 476 }; 477 478 static devclass_t bce_devclass; 479 480 MODULE_DEPEND(bce, pci, 1, 1, 1); 481 MODULE_DEPEND(bce, ether, 1, 1, 1); 482 MODULE_DEPEND(bce, miibus, 1, 1, 1); 483 484 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL); 485 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL); 486 487 488 /****************************************************************************/ 489 /* Tunable device values */ 490 /****************************************************************************/ 491 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters"); 492 493 /* Allowable values are TRUE or FALSE */ 494 static int bce_verbose = TRUE; 495 TUNABLE_INT("hw.bce.verbose", &bce_verbose); 496 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0, 497 "Verbose output enable/disable"); 498 499 /* Allowable values are TRUE or FALSE */ 500 static int bce_tso_enable = TRUE; 501 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable); 502 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 503 "TSO Enable/Disable"); 504 505 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 506 /* ToDo: Add MSI-X support. */ 507 static int bce_msi_enable = 1; 508 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable); 509 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 510 "MSI-X|MSI|INTx selector"); 511 512 /* Allowable values are 1, 2, 4, 8. */ 513 static int bce_rx_pages = DEFAULT_RX_PAGES; 514 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages); 515 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0, 516 "Receive buffer descriptor pages (1 page = 255 buffer descriptors)"); 517 518 /* Allowable values are 1, 2, 4, 8. */ 519 static int bce_tx_pages = DEFAULT_TX_PAGES; 520 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages); 521 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0, 522 "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)"); 523 524 /* Allowable values are TRUE or FALSE. */ 525 static int bce_hdr_split = TRUE; 526 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split); 527 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0, 528 "Frame header/payload splitting Enable/Disable"); 529 530 /* Allowable values are TRUE or FALSE. */ 531 static int bce_strict_rx_mtu = FALSE; 532 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu); 533 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN, 534 &bce_strict_rx_mtu, 0, 535 "Enable/Disable strict RX frame size checking"); 536 537 /* Allowable values are 0 ... 100 */ 538 #ifdef BCE_DEBUG 539 /* Generate 1 interrupt for every transmit completion. */ 540 static int bce_tx_quick_cons_trip_int = 1; 541 #else 542 /* Generate 1 interrupt for every 20 transmit completions. */ 543 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT; 544 #endif 545 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int); 546 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN, 547 &bce_tx_quick_cons_trip_int, 0, 548 "Transmit BD trip point during interrupts"); 549 550 /* Allowable values are 0 ... 100 */ 551 /* Generate 1 interrupt for every transmit completion. */ 552 #ifdef BCE_DEBUG 553 static int bce_tx_quick_cons_trip = 1; 554 #else 555 /* Generate 1 interrupt for every 20 transmit completions. */ 556 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; 557 #endif 558 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip); 559 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN, 560 &bce_tx_quick_cons_trip, 0, 561 "Transmit BD trip point"); 562 563 /* Allowable values are 0 ... 100 */ 564 #ifdef BCE_DEBUG 565 /* Generate an interrupt if 0us have elapsed since the last TX completion. */ 566 static int bce_tx_ticks_int = 0; 567 #else 568 /* Generate an interrupt if 80us have elapsed since the last TX completion. */ 569 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT; 570 #endif 571 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int); 572 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN, 573 &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt"); 574 575 /* Allowable values are 0 ... 100 */ 576 #ifdef BCE_DEBUG 577 /* Generate an interrupt if 0us have elapsed since the last TX completion. */ 578 static int bce_tx_ticks = 0; 579 #else 580 /* Generate an interrupt if 80us have elapsed since the last TX completion. */ 581 static int bce_tx_ticks = DEFAULT_TX_TICKS; 582 #endif 583 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks); 584 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN, 585 &bce_tx_ticks, 0, "Transmit ticks count"); 586 587 /* Allowable values are 1 ... 100 */ 588 #ifdef BCE_DEBUG 589 /* Generate 1 interrupt for every received frame. */ 590 static int bce_rx_quick_cons_trip_int = 1; 591 #else 592 /* Generate 1 interrupt for every 6 received frames. */ 593 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT; 594 #endif 595 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int); 596 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN, 597 &bce_rx_quick_cons_trip_int, 0, 598 "Receive BD trip point duirng interrupts"); 599 600 /* Allowable values are 1 ... 100 */ 601 #ifdef BCE_DEBUG 602 /* Generate 1 interrupt for every received frame. */ 603 static int bce_rx_quick_cons_trip = 1; 604 #else 605 /* Generate 1 interrupt for every 6 received frames. */ 606 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; 607 #endif 608 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip); 609 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN, 610 &bce_rx_quick_cons_trip, 0, 611 "Receive BD trip point"); 612 613 /* Allowable values are 0 ... 100 */ 614 #ifdef BCE_DEBUG 615 /* Generate an int. if 0us have elapsed since the last received frame. */ 616 static int bce_rx_ticks_int = 0; 617 #else 618 /* Generate an int. if 18us have elapsed since the last received frame. */ 619 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; 620 #endif 621 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int); 622 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN, 623 &bce_rx_ticks_int, 0, "Receive ticks count during interrupt"); 624 625 /* Allowable values are 0 ... 100 */ 626 #ifdef BCE_DEBUG 627 /* Generate an int. if 0us have elapsed since the last received frame. */ 628 static int bce_rx_ticks = 0; 629 #else 630 /* Generate an int. if 18us have elapsed since the last received frame. */ 631 static int bce_rx_ticks = DEFAULT_RX_TICKS; 632 #endif 633 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks); 634 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN, 635 &bce_rx_ticks, 0, "Receive ticks count"); 636 637 638 /****************************************************************************/ 639 /* Device probe function. */ 640 /* */ 641 /* Compares the device to the driver's list of supported devices and */ 642 /* reports back to the OS whether this is the right driver for the device. */ 643 /* */ 644 /* Returns: */ 645 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 646 /****************************************************************************/ 647 static int 648 bce_probe(device_t dev) 649 { 650 const struct bce_type *t; 651 struct bce_softc *sc; 652 char *descbuf; 653 u16 vid = 0, did = 0, svid = 0, sdid = 0; 654 655 t = bce_devs; 656 657 sc = device_get_softc(dev); 658 sc->bce_unit = device_get_unit(dev); 659 sc->bce_dev = dev; 660 661 /* Get the data for the device to be probed. */ 662 vid = pci_get_vendor(dev); 663 did = pci_get_device(dev); 664 svid = pci_get_subvendor(dev); 665 sdid = pci_get_subdevice(dev); 666 667 DBPRINT(sc, BCE_EXTREME_LOAD, 668 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 669 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 670 671 /* Look through the list of known devices for a match. */ 672 while(t->bce_name != NULL) { 673 674 if ((vid == t->bce_vid) && (did == t->bce_did) && 675 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 676 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 677 678 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 679 680 if (descbuf == NULL) 681 return(ENOMEM); 682 683 /* Print out the device identity. */ 684 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", 685 t->bce_name, (((pci_read_config(dev, 686 PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 687 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 688 689 device_set_desc_copy(dev, descbuf); 690 free(descbuf, M_TEMP); 691 return(BUS_PROBE_DEFAULT); 692 } 693 t++; 694 } 695 696 return(ENXIO); 697 } 698 699 700 /****************************************************************************/ 701 /* PCI Capabilities Probe Function. */ 702 /* */ 703 /* Walks the PCI capabiites list for the device to find what features are */ 704 /* supported. */ 705 /* */ 706 /* Returns: */ 707 /* None. */ 708 /****************************************************************************/ 709 static void 710 bce_print_adapter_info(struct bce_softc *sc) 711 { 712 int i = 0; 713 714 DBENTER(BCE_VERBOSE_LOAD); 715 716 if (bce_verbose || bootverbose) { 717 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 718 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 719 12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 720 721 722 /* Bus info. */ 723 if (sc->bce_flags & BCE_PCIE_FLAG) { 724 printf("Bus (PCIe x%d, ", sc->link_width); 725 switch (sc->link_speed) { 726 case 1: printf("2.5Gbps); "); break; 727 case 2: printf("5Gbps); "); break; 728 default: printf("Unknown link speed); "); 729 } 730 } else { 731 printf("Bus (PCI%s, %s, %dMHz); ", 732 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 733 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? 734 "32-bit" : "64-bit"), sc->bus_speed_mhz); 735 } 736 737 /* Firmware version and device features. */ 738 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (", 739 sc->bce_bc_ver, sc->rx_pages, sc->tx_pages, 740 (bce_hdr_split == TRUE ? sc->pg_pages: 0)); 741 742 if (bce_hdr_split == TRUE) { 743 printf("SPLT"); 744 i++; 745 } 746 747 if (sc->bce_flags & BCE_USING_MSI_FLAG) { 748 if (i > 0) printf("|"); 749 printf("MSI"); i++; 750 } 751 752 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 753 if (i > 0) printf("|"); 754 printf("MSI-X"); i++; 755 } 756 757 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 758 if (i > 0) printf("|"); 759 printf("2.5G"); i++; 760 } 761 762 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) { 763 if (i > 0) printf("|"); 764 printf("Remote PHY(%s)", 765 sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ? 766 "FIBER" : "TP"); i++; 767 } 768 769 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 770 if (i > 0) printf("|"); 771 printf("MFW); MFW (%s)\n", sc->bce_mfw_ver); 772 } else { 773 printf(")\n"); 774 } 775 776 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n", 777 sc->bce_rx_quick_cons_trip_int, 778 sc->bce_rx_quick_cons_trip, 779 sc->bce_rx_ticks_int, 780 sc->bce_rx_ticks, 781 sc->bce_tx_quick_cons_trip_int, 782 sc->bce_tx_quick_cons_trip, 783 sc->bce_tx_ticks_int, 784 sc->bce_tx_ticks); 785 786 } 787 788 DBEXIT(BCE_VERBOSE_LOAD); 789 } 790 791 792 /****************************************************************************/ 793 /* PCI Capabilities Probe Function. */ 794 /* */ 795 /* Walks the PCI capabiites list for the device to find what features are */ 796 /* supported. */ 797 /* */ 798 /* Returns: */ 799 /* None. */ 800 /****************************************************************************/ 801 static void 802 bce_probe_pci_caps(device_t dev, struct bce_softc *sc) 803 { 804 u32 reg; 805 806 DBENTER(BCE_VERBOSE_LOAD); 807 808 /* Check if PCI-X capability is enabled. */ 809 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) { 810 if (reg != 0) 811 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; 812 } 813 814 /* Check if PCIe capability is enabled. */ 815 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 816 if (reg != 0) { 817 u16 link_status = pci_read_config(dev, reg + 0x12, 2); 818 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = " 819 "0x%08X\n", link_status); 820 sc->link_speed = link_status & 0xf; 821 sc->link_width = (link_status >> 4) & 0x3f; 822 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; 823 sc->bce_flags |= BCE_PCIE_FLAG; 824 } 825 } 826 827 /* Check if MSI capability is enabled. */ 828 if (pci_find_cap(dev, PCIY_MSI, ®) == 0) { 829 if (reg != 0) 830 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; 831 } 832 833 /* Check if MSI-X capability is enabled. */ 834 if (pci_find_cap(dev, PCIY_MSIX, ®) == 0) { 835 if (reg != 0) 836 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; 837 } 838 839 DBEXIT(BCE_VERBOSE_LOAD); 840 } 841 842 843 /****************************************************************************/ 844 /* Load and validate user tunable settings. */ 845 /* */ 846 /* Returns: */ 847 /* Nothing. */ 848 /****************************************************************************/ 849 static void 850 bce_set_tunables(struct bce_softc *sc) 851 { 852 /* Set sysctl values for RX page count. */ 853 switch (bce_rx_pages) { 854 case 1: 855 /* fall-through */ 856 case 2: 857 /* fall-through */ 858 case 4: 859 /* fall-through */ 860 case 8: 861 sc->rx_pages = bce_rx_pages; 862 break; 863 default: 864 sc->rx_pages = DEFAULT_RX_PAGES; 865 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 866 "hw.bce.rx_pages! Setting default of %d.\n", 867 __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES); 868 } 869 870 /* ToDo: Consider allowing user setting for pg_pages. */ 871 sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES); 872 873 /* Set sysctl values for TX page count. */ 874 switch (bce_tx_pages) { 875 case 1: 876 /* fall-through */ 877 case 2: 878 /* fall-through */ 879 case 4: 880 /* fall-through */ 881 case 8: 882 sc->tx_pages = bce_tx_pages; 883 break; 884 default: 885 sc->tx_pages = DEFAULT_TX_PAGES; 886 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 887 "hw.bce.tx_pages! Setting default of %d.\n", 888 __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES); 889 } 890 891 /* 892 * Validate the TX trip point (i.e. the number of 893 * TX completions before a status block update is 894 * generated and an interrupt is asserted. 895 */ 896 if (bce_tx_quick_cons_trip_int <= 100) { 897 sc->bce_tx_quick_cons_trip_int = 898 bce_tx_quick_cons_trip_int; 899 } else { 900 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 901 "hw.bce.tx_quick_cons_trip_int! Setting default of %d.\n", 902 __FILE__, __LINE__, bce_tx_quick_cons_trip_int, 903 DEFAULT_TX_QUICK_CONS_TRIP_INT); 904 sc->bce_tx_quick_cons_trip_int = 905 DEFAULT_TX_QUICK_CONS_TRIP_INT; 906 } 907 908 if (bce_tx_quick_cons_trip <= 100) { 909 sc->bce_tx_quick_cons_trip = 910 bce_tx_quick_cons_trip; 911 } else { 912 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 913 "hw.bce.tx_quick_cons_trip! Setting default of %d.\n", 914 __FILE__, __LINE__, bce_tx_quick_cons_trip, 915 DEFAULT_TX_QUICK_CONS_TRIP); 916 sc->bce_tx_quick_cons_trip = 917 DEFAULT_TX_QUICK_CONS_TRIP; 918 } 919 920 /* 921 * Validate the TX ticks count (i.e. the maximum amount 922 * of time to wait after the last TX completion has 923 * occurred before a status block update is generated 924 * and an interrupt is asserted. 925 */ 926 if (bce_tx_ticks_int <= 100) { 927 sc->bce_tx_ticks_int = 928 bce_tx_ticks_int; 929 } else { 930 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 931 "hw.bce.tx_ticks_int! Setting default of %d.\n", 932 __FILE__, __LINE__, bce_tx_ticks_int, 933 DEFAULT_TX_TICKS_INT); 934 sc->bce_tx_ticks_int = 935 DEFAULT_TX_TICKS_INT; 936 } 937 938 if (bce_tx_ticks <= 100) { 939 sc->bce_tx_ticks = 940 bce_tx_ticks; 941 } else { 942 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 943 "hw.bce.tx_ticks! Setting default of %d.\n", 944 __FILE__, __LINE__, bce_tx_ticks, 945 DEFAULT_TX_TICKS); 946 sc->bce_tx_ticks = 947 DEFAULT_TX_TICKS; 948 } 949 950 /* 951 * Validate the RX trip point (i.e. the number of 952 * RX frames received before a status block update is 953 * generated and an interrupt is asserted. 954 */ 955 if (bce_rx_quick_cons_trip_int <= 100) { 956 sc->bce_rx_quick_cons_trip_int = 957 bce_rx_quick_cons_trip_int; 958 } else { 959 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 960 "hw.bce.rx_quick_cons_trip_int! Setting default of %d.\n", 961 __FILE__, __LINE__, bce_rx_quick_cons_trip_int, 962 DEFAULT_RX_QUICK_CONS_TRIP_INT); 963 sc->bce_rx_quick_cons_trip_int = 964 DEFAULT_RX_QUICK_CONS_TRIP_INT; 965 } 966 967 if (bce_rx_quick_cons_trip <= 100) { 968 sc->bce_rx_quick_cons_trip = 969 bce_rx_quick_cons_trip; 970 } else { 971 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 972 "hw.bce.rx_quick_cons_trip! Setting default of %d.\n", 973 __FILE__, __LINE__, bce_rx_quick_cons_trip, 974 DEFAULT_RX_QUICK_CONS_TRIP); 975 sc->bce_rx_quick_cons_trip = 976 DEFAULT_RX_QUICK_CONS_TRIP; 977 } 978 979 /* 980 * Validate the RX ticks count (i.e. the maximum amount 981 * of time to wait after the last RX frame has been 982 * received before a status block update is generated 983 * and an interrupt is asserted. 984 */ 985 if (bce_rx_ticks_int <= 100) { 986 sc->bce_rx_ticks_int = bce_rx_ticks_int; 987 } else { 988 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 989 "hw.bce.rx_ticks_int! Setting default of %d.\n", 990 __FILE__, __LINE__, bce_rx_ticks_int, 991 DEFAULT_RX_TICKS_INT); 992 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; 993 } 994 995 if (bce_rx_ticks <= 100) { 996 sc->bce_rx_ticks = bce_rx_ticks; 997 } else { 998 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 999 "hw.bce.rx_ticks! Setting default of %d.\n", 1000 __FILE__, __LINE__, bce_rx_ticks, 1001 DEFAULT_RX_TICKS); 1002 sc->bce_rx_ticks = DEFAULT_RX_TICKS; 1003 } 1004 1005 /* Disabling both RX ticks and RX trips will prevent interrupts. */ 1006 if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) { 1007 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and " 1008 "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n", 1009 __FILE__, __LINE__); 1010 sc->bce_rx_ticks = DEFAULT_RX_TICKS; 1011 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; 1012 } 1013 1014 /* Disabling both TX ticks and TX trips will prevent interrupts. */ 1015 if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) { 1016 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and " 1017 "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n", 1018 __FILE__, __LINE__); 1019 sc->bce_tx_ticks = DEFAULT_TX_TICKS; 1020 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; 1021 } 1022 1023 } 1024 1025 1026 /****************************************************************************/ 1027 /* Device attach function. */ 1028 /* */ 1029 /* Allocates device resources, performs secondary chip identification, */ 1030 /* resets and initializes the hardware, and initializes driver instance */ 1031 /* variables. */ 1032 /* */ 1033 /* Returns: */ 1034 /* 0 on success, positive value on failure. */ 1035 /****************************************************************************/ 1036 static int 1037 bce_attach(device_t dev) 1038 { 1039 struct bce_softc *sc; 1040 struct ifnet *ifp; 1041 u32 val; 1042 int count, error, rc = 0, rid; 1043 1044 sc = device_get_softc(dev); 1045 sc->bce_dev = dev; 1046 1047 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1048 1049 sc->bce_unit = device_get_unit(dev); 1050 1051 /* Set initial device and PHY flags */ 1052 sc->bce_flags = 0; 1053 sc->bce_phy_flags = 0; 1054 1055 bce_set_tunables(sc); 1056 1057 pci_enable_busmaster(dev); 1058 1059 /* Allocate PCI memory resources. */ 1060 rid = PCIR_BAR(0); 1061 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1062 &rid, RF_ACTIVE); 1063 1064 if (sc->bce_res_mem == NULL) { 1065 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 1066 __FILE__, __LINE__); 1067 rc = ENXIO; 1068 goto bce_attach_fail; 1069 } 1070 1071 /* Get various resource handles. */ 1072 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 1073 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 1074 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 1075 1076 bce_probe_pci_caps(dev, sc); 1077 1078 rid = 1; 1079 count = 0; 1080 #if 0 1081 /* Try allocating MSI-X interrupts. */ 1082 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && 1083 (bce_msi_enable >= 2) && 1084 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1085 &rid, RF_ACTIVE)) != NULL)) { 1086 1087 msi_needed = count = 1; 1088 1089 if (((error = pci_alloc_msix(dev, &count)) != 0) || 1090 (count != msi_needed)) { 1091 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," 1092 "Received = %d, error = %d\n", __FILE__, __LINE__, 1093 msi_needed, count, error); 1094 count = 0; 1095 pci_release_msi(dev); 1096 bus_release_resource(dev, SYS_RES_MEMORY, rid, 1097 sc->bce_res_irq); 1098 sc->bce_res_irq = NULL; 1099 } else { 1100 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", 1101 __FUNCTION__); 1102 sc->bce_flags |= BCE_USING_MSIX_FLAG; 1103 } 1104 } 1105 #endif 1106 1107 /* Try allocating a MSI interrupt. */ 1108 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && 1109 (bce_msi_enable >= 1) && (count == 0)) { 1110 count = 1; 1111 if ((error = pci_alloc_msi(dev, &count)) != 0) { 1112 BCE_PRINTF("%s(%d): MSI allocation failed! " 1113 "error = %d\n", __FILE__, __LINE__, error); 1114 count = 0; 1115 pci_release_msi(dev); 1116 } else { 1117 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI " 1118 "interrupt.\n", __FUNCTION__); 1119 sc->bce_flags |= BCE_USING_MSI_FLAG; 1120 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 1121 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; 1122 rid = 1; 1123 } 1124 } 1125 1126 /* Try allocating a legacy interrupt. */ 1127 if (count == 0) { 1128 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", 1129 __FUNCTION__); 1130 rid = 0; 1131 } 1132 1133 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 1134 &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE)); 1135 1136 /* Report any IRQ allocation errors. */ 1137 if (sc->bce_res_irq == NULL) { 1138 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 1139 __FILE__, __LINE__); 1140 rc = ENXIO; 1141 goto bce_attach_fail; 1142 } 1143 1144 /* Initialize mutex for the current device instance. */ 1145 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 1146 1147 /* 1148 * Configure byte swap and enable indirect register access. 1149 * Rely on CPU to do target byte swapping on big endian systems. 1150 * Access to registers outside of PCI configurtion space are not 1151 * valid until this is done. 1152 */ 1153 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 1154 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 1155 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 1156 1157 /* Save ASIC revsion info. */ 1158 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 1159 1160 /* Weed out any non-production controller revisions. */ 1161 switch(BCE_CHIP_ID(sc)) { 1162 case BCE_CHIP_ID_5706_A0: 1163 case BCE_CHIP_ID_5706_A1: 1164 case BCE_CHIP_ID_5708_A0: 1165 case BCE_CHIP_ID_5708_B0: 1166 case BCE_CHIP_ID_5709_A0: 1167 case BCE_CHIP_ID_5709_B0: 1168 case BCE_CHIP_ID_5709_B1: 1169 case BCE_CHIP_ID_5709_B2: 1170 BCE_PRINTF("%s(%d): Unsupported controller " 1171 "revision (%c%d)!\n", __FILE__, __LINE__, 1172 (((pci_read_config(dev, PCIR_REVID, 4) & 1173 0xf0) >> 4) + 'A'), (pci_read_config(dev, 1174 PCIR_REVID, 4) & 0xf)); 1175 rc = ENODEV; 1176 goto bce_attach_fail; 1177 } 1178 1179 /* 1180 * The embedded PCIe to PCI-X bridge (EPB) 1181 * in the 5708 cannot address memory above 1182 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 1183 */ 1184 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 1185 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 1186 else 1187 sc->max_bus_addr = BUS_SPACE_MAXADDR; 1188 1189 /* 1190 * Find the base address for shared memory access. 1191 * Newer versions of bootcode use a signature and offset 1192 * while older versions use a fixed address. 1193 */ 1194 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 1195 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 1196 /* Multi-port devices use different offsets in shared memory. */ 1197 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + 1198 (pci_get_function(sc->bce_dev) << 2)); 1199 else 1200 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 1201 1202 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 1203 __FUNCTION__, sc->bce_shmem_base); 1204 1205 /* Fetch the bootcode revision. */ 1206 val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV); 1207 for (int i = 0, j = 0; i < 3; i++) { 1208 u8 num; 1209 1210 num = (u8) (val >> (24 - (i * 8))); 1211 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { 1212 if (num >= k || !skip0 || k == 1) { 1213 sc->bce_bc_ver[j++] = (num / k) + '0'; 1214 skip0 = 0; 1215 } 1216 } 1217 1218 if (i != 2) 1219 sc->bce_bc_ver[j++] = '.'; 1220 } 1221 1222 /* Check if any management firwmare is enabled. */ 1223 val = bce_shmem_rd(sc, BCE_PORT_FEATURE); 1224 if (val & BCE_PORT_FEATURE_ASF_ENABLED) { 1225 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 1226 1227 /* Allow time for firmware to enter the running state. */ 1228 for (int i = 0; i < 30; i++) { 1229 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 1230 if (val & BCE_CONDITION_MFW_RUN_MASK) 1231 break; 1232 DELAY(10000); 1233 } 1234 1235 /* Check if management firmware is running. */ 1236 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 1237 val &= BCE_CONDITION_MFW_RUN_MASK; 1238 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) && 1239 (val != BCE_CONDITION_MFW_RUN_NONE)) { 1240 u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR); 1241 int i = 0; 1242 1243 /* Read the management firmware version string. */ 1244 for (int j = 0; j < 3; j++) { 1245 val = bce_reg_rd_ind(sc, addr + j * 4); 1246 val = bswap32(val); 1247 memcpy(&sc->bce_mfw_ver[i], &val, 4); 1248 i += 4; 1249 } 1250 } else { 1251 /* May cause firmware synchronization timeouts. */ 1252 BCE_PRINTF("%s(%d): Management firmware enabled " 1253 "but not running!\n", __FILE__, __LINE__); 1254 strcpy(sc->bce_mfw_ver, "NOT RUNNING!"); 1255 1256 /* ToDo: Any action the driver should take? */ 1257 } 1258 } 1259 1260 /* Get PCI bus information (speed and type). */ 1261 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 1262 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 1263 u32 clkreg; 1264 1265 sc->bce_flags |= BCE_PCIX_FLAG; 1266 1267 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 1268 1269 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 1270 switch (clkreg) { 1271 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 1272 sc->bus_speed_mhz = 133; 1273 break; 1274 1275 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 1276 sc->bus_speed_mhz = 100; 1277 break; 1278 1279 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 1280 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 1281 sc->bus_speed_mhz = 66; 1282 break; 1283 1284 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 1285 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 1286 sc->bus_speed_mhz = 50; 1287 break; 1288 1289 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 1290 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 1291 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 1292 sc->bus_speed_mhz = 33; 1293 break; 1294 } 1295 } else { 1296 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 1297 sc->bus_speed_mhz = 66; 1298 else 1299 sc->bus_speed_mhz = 33; 1300 } 1301 1302 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 1303 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 1304 1305 /* Find the media type for the adapter. */ 1306 bce_get_media(sc); 1307 1308 /* Reset controller and announce to bootcode that driver is present. */ 1309 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 1310 BCE_PRINTF("%s(%d): Controller reset failed!\n", 1311 __FILE__, __LINE__); 1312 rc = ENXIO; 1313 goto bce_attach_fail; 1314 } 1315 1316 /* Initialize the controller. */ 1317 if (bce_chipinit(sc)) { 1318 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 1319 __FILE__, __LINE__); 1320 rc = ENXIO; 1321 goto bce_attach_fail; 1322 } 1323 1324 /* Perform NVRAM test. */ 1325 if (bce_nvram_test(sc)) { 1326 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 1327 __FILE__, __LINE__); 1328 rc = ENXIO; 1329 goto bce_attach_fail; 1330 } 1331 1332 /* Fetch the permanent Ethernet MAC address. */ 1333 bce_get_mac_addr(sc); 1334 1335 /* 1336 * Trip points control how many BDs 1337 * should be ready before generating an 1338 * interrupt while ticks control how long 1339 * a BD can sit in the chain before 1340 * generating an interrupt. Set the default 1341 * values for the RX and TX chains. 1342 */ 1343 1344 /* Not used for L2. */ 1345 sc->bce_comp_prod_trip_int = 0; 1346 sc->bce_comp_prod_trip = 0; 1347 sc->bce_com_ticks_int = 0; 1348 sc->bce_com_ticks = 0; 1349 sc->bce_cmd_ticks_int = 0; 1350 sc->bce_cmd_ticks = 0; 1351 1352 /* Update statistics once every second. */ 1353 sc->bce_stats_ticks = 1000000 & 0xffff00; 1354 1355 /* Store data needed by PHY driver for backplane applications */ 1356 sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 1357 sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG); 1358 1359 /* Allocate DMA memory resources. */ 1360 if (bce_dma_alloc(dev)) { 1361 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 1362 __FILE__, __LINE__); 1363 rc = ENXIO; 1364 goto bce_attach_fail; 1365 } 1366 1367 /* Allocate an ifnet structure. */ 1368 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 1369 if (ifp == NULL) { 1370 BCE_PRINTF("%s(%d): Interface allocation failed!\n", 1371 __FILE__, __LINE__); 1372 rc = ENXIO; 1373 goto bce_attach_fail; 1374 } 1375 1376 /* Initialize the ifnet interface. */ 1377 ifp->if_softc = sc; 1378 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1379 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1380 ifp->if_ioctl = bce_ioctl; 1381 ifp->if_start = bce_start; 1382 ifp->if_init = bce_init; 1383 ifp->if_mtu = ETHERMTU; 1384 1385 if (bce_tso_enable) { 1386 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; 1387 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 | 1388 IFCAP_VLAN_HWTSO; 1389 } else { 1390 ifp->if_hwassist = BCE_IF_HWASSIST; 1391 ifp->if_capabilities = BCE_IF_CAPABILITIES; 1392 } 1393 1394 #if __FreeBSD_version >= 800505 1395 /* 1396 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version 1397 * so it's approximate value. 1398 */ 1399 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 1400 ifp->if_capabilities |= IFCAP_LINKSTATE; 1401 #endif 1402 1403 ifp->if_capenable = ifp->if_capabilities; 1404 1405 /* 1406 * Assume standard mbuf sizes for buffer allocation. 1407 * This may change later if the MTU size is set to 1408 * something other than 1500. 1409 */ 1410 bce_get_rx_buffer_sizes(sc, 1411 (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)); 1412 1413 /* Recalculate our buffer allocation sizes. */ 1414 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC; 1415 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 1416 IFQ_SET_READY(&ifp->if_snd); 1417 1418 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 1419 ifp->if_baudrate = IF_Mbps(2500ULL); 1420 else 1421 ifp->if_baudrate = IF_Mbps(1000); 1422 1423 /* Handle any special PHY initialization for SerDes PHYs. */ 1424 bce_init_media(sc); 1425 1426 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 1427 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd, 1428 bce_ifmedia_sts); 1429 /* 1430 * We can't manually override remote PHY's link and assume 1431 * PHY port configuration(Fiber or TP) is not changed after 1432 * device attach. This may not be correct though. 1433 */ 1434 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) { 1435 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 1436 ifmedia_add(&sc->bce_ifmedia, 1437 IFM_ETHER | IFM_2500_SX, 0, NULL); 1438 ifmedia_add(&sc->bce_ifmedia, 1439 IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL); 1440 } 1441 ifmedia_add(&sc->bce_ifmedia, 1442 IFM_ETHER | IFM_1000_SX, 0, NULL); 1443 ifmedia_add(&sc->bce_ifmedia, 1444 IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); 1445 } else { 1446 ifmedia_add(&sc->bce_ifmedia, 1447 IFM_ETHER | IFM_10_T, 0, NULL); 1448 ifmedia_add(&sc->bce_ifmedia, 1449 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 1450 ifmedia_add(&sc->bce_ifmedia, 1451 IFM_ETHER | IFM_100_TX, 0, NULL); 1452 ifmedia_add(&sc->bce_ifmedia, 1453 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 1454 ifmedia_add(&sc->bce_ifmedia, 1455 IFM_ETHER | IFM_1000_T, 0, NULL); 1456 ifmedia_add(&sc->bce_ifmedia, 1457 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 1458 } 1459 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 1460 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO); 1461 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media; 1462 } else { 1463 /* MII child bus by attaching the PHY. */ 1464 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd, 1465 bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr, 1466 MII_OFFSET_ANY, MIIF_DOPAUSE); 1467 if (rc != 0) { 1468 BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__, 1469 __LINE__); 1470 goto bce_attach_fail; 1471 } 1472 } 1473 1474 /* Attach to the Ethernet interface list. */ 1475 ether_ifattach(ifp, sc->eaddr); 1476 1477 #if __FreeBSD_version < 500000 1478 callout_init(&sc->bce_tick_callout); 1479 callout_init(&sc->bce_pulse_callout); 1480 #else 1481 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 1482 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 1483 #endif 1484 1485 /* Hookup IRQ last. */ 1486 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, 1487 NULL, bce_intr, sc, &sc->bce_intrhand); 1488 1489 if (rc) { 1490 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 1491 __FILE__, __LINE__); 1492 bce_detach(dev); 1493 goto bce_attach_exit; 1494 } 1495 1496 /* 1497 * At this point we've acquired all the resources 1498 * we need to run so there's no turning back, we're 1499 * cleared for launch. 1500 */ 1501 1502 /* Print some important debugging info. */ 1503 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); 1504 1505 /* Add the supported sysctls to the kernel. */ 1506 bce_add_sysctls(sc); 1507 1508 BCE_LOCK(sc); 1509 1510 /* 1511 * The chip reset earlier notified the bootcode that 1512 * a driver is present. We now need to start our pulse 1513 * routine so that the bootcode is reminded that we're 1514 * still running. 1515 */ 1516 bce_pulse(sc); 1517 1518 bce_mgmt_init_locked(sc); 1519 BCE_UNLOCK(sc); 1520 1521 /* Finally, print some useful adapter info */ 1522 bce_print_adapter_info(sc); 1523 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", 1524 __FUNCTION__, sc); 1525 1526 goto bce_attach_exit; 1527 1528 bce_attach_fail: 1529 bce_release_resources(sc); 1530 1531 bce_attach_exit: 1532 1533 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1534 1535 return(rc); 1536 } 1537 1538 1539 /****************************************************************************/ 1540 /* Device detach function. */ 1541 /* */ 1542 /* Stops the controller, resets the controller, and releases resources. */ 1543 /* */ 1544 /* Returns: */ 1545 /* 0 on success, positive value on failure. */ 1546 /****************************************************************************/ 1547 static int 1548 bce_detach(device_t dev) 1549 { 1550 struct bce_softc *sc = device_get_softc(dev); 1551 struct ifnet *ifp; 1552 u32 msg; 1553 1554 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1555 1556 ifp = sc->bce_ifp; 1557 1558 /* Stop and reset the controller. */ 1559 BCE_LOCK(sc); 1560 1561 /* Stop the pulse so the bootcode can go to driver absent state. */ 1562 callout_stop(&sc->bce_pulse_callout); 1563 1564 bce_stop(sc); 1565 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1566 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1567 else 1568 msg = BCE_DRV_MSG_CODE_UNLOAD; 1569 bce_reset(sc, msg); 1570 1571 BCE_UNLOCK(sc); 1572 1573 ether_ifdetach(ifp); 1574 1575 /* If we have a child device on the MII bus remove it too. */ 1576 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 1577 ifmedia_removeall(&sc->bce_ifmedia); 1578 else { 1579 bus_generic_detach(dev); 1580 device_delete_child(dev, sc->bce_miibus); 1581 } 1582 1583 /* Release all remaining resources. */ 1584 bce_release_resources(sc); 1585 1586 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1587 1588 return(0); 1589 } 1590 1591 1592 /****************************************************************************/ 1593 /* Device shutdown function. */ 1594 /* */ 1595 /* Stops and resets the controller. */ 1596 /* */ 1597 /* Returns: */ 1598 /* 0 on success, positive value on failure. */ 1599 /****************************************************************************/ 1600 static int 1601 bce_shutdown(device_t dev) 1602 { 1603 struct bce_softc *sc = device_get_softc(dev); 1604 u32 msg; 1605 1606 DBENTER(BCE_VERBOSE); 1607 1608 BCE_LOCK(sc); 1609 bce_stop(sc); 1610 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1611 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1612 else 1613 msg = BCE_DRV_MSG_CODE_UNLOAD; 1614 bce_reset(sc, msg); 1615 BCE_UNLOCK(sc); 1616 1617 DBEXIT(BCE_VERBOSE); 1618 1619 return (0); 1620 } 1621 1622 1623 #ifdef BCE_DEBUG 1624 /****************************************************************************/ 1625 /* Register read. */ 1626 /* */ 1627 /* Returns: */ 1628 /* The value of the register. */ 1629 /****************************************************************************/ 1630 static u32 1631 bce_reg_rd(struct bce_softc *sc, u32 offset) 1632 { 1633 u32 val = REG_RD(sc, offset); 1634 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1635 __FUNCTION__, offset, val); 1636 return val; 1637 } 1638 1639 1640 /****************************************************************************/ 1641 /* Register write (16 bit). */ 1642 /* */ 1643 /* Returns: */ 1644 /* Nothing. */ 1645 /****************************************************************************/ 1646 static void 1647 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) 1648 { 1649 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", 1650 __FUNCTION__, offset, val); 1651 REG_WR16(sc, offset, val); 1652 } 1653 1654 1655 /****************************************************************************/ 1656 /* Register write. */ 1657 /* */ 1658 /* Returns: */ 1659 /* Nothing. */ 1660 /****************************************************************************/ 1661 static void 1662 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) 1663 { 1664 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1665 __FUNCTION__, offset, val); 1666 REG_WR(sc, offset, val); 1667 } 1668 #endif 1669 1670 /****************************************************************************/ 1671 /* Indirect register read. */ 1672 /* */ 1673 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1674 /* configuration space. Using this mechanism avoids issues with posted */ 1675 /* reads but is much slower than memory-mapped I/O. */ 1676 /* */ 1677 /* Returns: */ 1678 /* The value of the register. */ 1679 /****************************************************************************/ 1680 static u32 1681 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 1682 { 1683 device_t dev; 1684 dev = sc->bce_dev; 1685 1686 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1687 #ifdef BCE_DEBUG 1688 { 1689 u32 val; 1690 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1691 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1692 __FUNCTION__, offset, val); 1693 return val; 1694 } 1695 #else 1696 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1697 #endif 1698 } 1699 1700 1701 /****************************************************************************/ 1702 /* Indirect register write. */ 1703 /* */ 1704 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1705 /* configuration space. Using this mechanism avoids issues with posted */ 1706 /* writes but is muchh slower than memory-mapped I/O. */ 1707 /* */ 1708 /* Returns: */ 1709 /* Nothing. */ 1710 /****************************************************************************/ 1711 static void 1712 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 1713 { 1714 device_t dev; 1715 dev = sc->bce_dev; 1716 1717 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1718 __FUNCTION__, offset, val); 1719 1720 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1721 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 1722 } 1723 1724 1725 /****************************************************************************/ 1726 /* Shared memory write. */ 1727 /* */ 1728 /* Writes NetXtreme II shared memory region. */ 1729 /* */ 1730 /* Returns: */ 1731 /* Nothing. */ 1732 /****************************************************************************/ 1733 static void 1734 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val) 1735 { 1736 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X to " 1737 "0x%08X\n", __FUNCTION__, val, offset); 1738 1739 bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val); 1740 } 1741 1742 1743 /****************************************************************************/ 1744 /* Shared memory read. */ 1745 /* */ 1746 /* Reads NetXtreme II shared memory region. */ 1747 /* */ 1748 /* Returns: */ 1749 /* The 32 bit value read. */ 1750 /****************************************************************************/ 1751 static u32 1752 bce_shmem_rd(struct bce_softc *sc, u32 offset) 1753 { 1754 u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset); 1755 1756 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from " 1757 "0x%08X\n", __FUNCTION__, val, offset); 1758 1759 return val; 1760 } 1761 1762 1763 #ifdef BCE_DEBUG 1764 /****************************************************************************/ 1765 /* Context memory read. */ 1766 /* */ 1767 /* The NetXtreme II controller uses context memory to track connection */ 1768 /* information for L2 and higher network protocols. */ 1769 /* */ 1770 /* Returns: */ 1771 /* The requested 32 bit value of context memory. */ 1772 /****************************************************************************/ 1773 static u32 1774 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) 1775 { 1776 u32 idx, offset, retry_cnt = 5, val; 1777 1778 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || 1779 cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID " 1780 "address: 0x%08X.\n", __FUNCTION__, cid_addr)); 1781 1782 offset = ctx_offset + cid_addr; 1783 1784 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 1785 1786 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); 1787 1788 for (idx = 0; idx < retry_cnt; idx++) { 1789 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1790 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) 1791 break; 1792 DELAY(5); 1793 } 1794 1795 if (val & BCE_CTX_CTX_CTRL_READ_REQ) 1796 BCE_PRINTF("%s(%d); Unable to read CTX memory: " 1797 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1798 __FILE__, __LINE__, cid_addr, ctx_offset); 1799 1800 val = REG_RD(sc, BCE_CTX_CTX_DATA); 1801 } else { 1802 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1803 val = REG_RD(sc, BCE_CTX_DATA); 1804 } 1805 1806 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1807 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); 1808 1809 return(val); 1810 } 1811 #endif 1812 1813 1814 /****************************************************************************/ 1815 /* Context memory write. */ 1816 /* */ 1817 /* The NetXtreme II controller uses context memory to track connection */ 1818 /* information for L2 and higher network protocols. */ 1819 /* */ 1820 /* Returns: */ 1821 /* Nothing. */ 1822 /****************************************************************************/ 1823 static void 1824 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) 1825 { 1826 u32 idx, offset = ctx_offset + cid_addr; 1827 u32 val, retry_cnt = 5; 1828 1829 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1830 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); 1831 1832 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1833 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1834 __FUNCTION__, cid_addr)); 1835 1836 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 1837 1838 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); 1839 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); 1840 1841 for (idx = 0; idx < retry_cnt; idx++) { 1842 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1843 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) 1844 break; 1845 DELAY(5); 1846 } 1847 1848 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) 1849 BCE_PRINTF("%s(%d); Unable to write CTX memory: " 1850 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1851 __FILE__, __LINE__, cid_addr, ctx_offset); 1852 1853 } else { 1854 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1855 REG_WR(sc, BCE_CTX_DATA, ctx_val); 1856 } 1857 } 1858 1859 1860 /****************************************************************************/ 1861 /* PHY register read. */ 1862 /* */ 1863 /* Implements register reads on the MII bus. */ 1864 /* */ 1865 /* Returns: */ 1866 /* The value of the register. */ 1867 /****************************************************************************/ 1868 static int 1869 bce_miibus_read_reg(device_t dev, int phy, int reg) 1870 { 1871 struct bce_softc *sc; 1872 u32 val; 1873 int i; 1874 1875 sc = device_get_softc(dev); 1876 1877 /* 1878 * The 5709S PHY is an IEEE Clause 45 PHY 1879 * with special mappings to work with IEEE 1880 * Clause 22 register accesses. 1881 */ 1882 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1883 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1884 reg += 0x10; 1885 } 1886 1887 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1888 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1889 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1890 1891 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1892 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1893 1894 DELAY(40); 1895 } 1896 1897 1898 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1899 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1900 BCE_EMAC_MDIO_COMM_START_BUSY; 1901 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1902 1903 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1904 DELAY(10); 1905 1906 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1907 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1908 DELAY(5); 1909 1910 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1911 val &= BCE_EMAC_MDIO_COMM_DATA; 1912 1913 break; 1914 } 1915 } 1916 1917 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1918 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, " 1919 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); 1920 val = 0x0; 1921 } else { 1922 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1923 } 1924 1925 1926 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1927 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1928 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1929 1930 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1931 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1932 1933 DELAY(40); 1934 } 1935 1936 DB_PRINT_PHY_REG(reg, val); 1937 return (val & 0xffff); 1938 1939 } 1940 1941 1942 /****************************************************************************/ 1943 /* PHY register write. */ 1944 /* */ 1945 /* Implements register writes on the MII bus. */ 1946 /* */ 1947 /* Returns: */ 1948 /* The value of the register. */ 1949 /****************************************************************************/ 1950 static int 1951 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1952 { 1953 struct bce_softc *sc; 1954 u32 val1; 1955 int i; 1956 1957 sc = device_get_softc(dev); 1958 1959 DB_PRINT_PHY_REG(reg, val); 1960 1961 /* 1962 * The 5709S PHY is an IEEE Clause 45 PHY 1963 * with special mappings to work with IEEE 1964 * Clause 22 register accesses. 1965 */ 1966 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1967 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1968 reg += 0x10; 1969 } 1970 1971 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1972 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1973 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1974 1975 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1976 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1977 1978 DELAY(40); 1979 } 1980 1981 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1982 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1983 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1984 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1985 1986 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1987 DELAY(10); 1988 1989 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1990 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1991 DELAY(5); 1992 break; 1993 } 1994 } 1995 1996 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 1997 BCE_PRINTF("%s(%d): PHY write timeout!\n", 1998 __FILE__, __LINE__); 1999 2000 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 2001 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 2002 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 2003 2004 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 2005 REG_RD(sc, BCE_EMAC_MDIO_MODE); 2006 2007 DELAY(40); 2008 } 2009 2010 return 0; 2011 } 2012 2013 2014 /****************************************************************************/ 2015 /* MII bus status change. */ 2016 /* */ 2017 /* Called by the MII bus driver when the PHY establishes link to set the */ 2018 /* MAC interface registers. */ 2019 /* */ 2020 /* Returns: */ 2021 /* Nothing. */ 2022 /****************************************************************************/ 2023 static void 2024 bce_miibus_statchg(device_t dev) 2025 { 2026 struct bce_softc *sc; 2027 struct mii_data *mii; 2028 struct ifmediareq ifmr; 2029 int media_active, media_status, val; 2030 2031 sc = device_get_softc(dev); 2032 2033 DBENTER(BCE_VERBOSE_PHY); 2034 2035 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 2036 bzero(&ifmr, sizeof(ifmr)); 2037 bce_ifmedia_sts_rphy(sc, &ifmr); 2038 media_active = ifmr.ifm_active; 2039 media_status = ifmr.ifm_status; 2040 } else { 2041 mii = device_get_softc(sc->bce_miibus); 2042 media_active = mii->mii_media_active; 2043 media_status = mii->mii_media_status; 2044 } 2045 2046 /* Ignore invalid media status. */ 2047 if ((media_status & (IFM_ACTIVE | IFM_AVALID)) != 2048 (IFM_ACTIVE | IFM_AVALID)) 2049 goto bce_miibus_statchg_exit; 2050 2051 val = REG_RD(sc, BCE_EMAC_MODE); 2052 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 2053 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 2054 BCE_EMAC_MODE_25G); 2055 2056 /* Set MII or GMII interface based on the PHY speed. */ 2057 switch (IFM_SUBTYPE(media_active)) { 2058 case IFM_10_T: 2059 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 2060 DBPRINT(sc, BCE_INFO_PHY, 2061 "Enabling 10Mb interface.\n"); 2062 val |= BCE_EMAC_MODE_PORT_MII_10; 2063 break; 2064 } 2065 /* fall-through */ 2066 case IFM_100_TX: 2067 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n"); 2068 val |= BCE_EMAC_MODE_PORT_MII; 2069 break; 2070 case IFM_2500_SX: 2071 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n"); 2072 val |= BCE_EMAC_MODE_25G; 2073 /* fall-through */ 2074 case IFM_1000_T: 2075 case IFM_1000_SX: 2076 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n"); 2077 val |= BCE_EMAC_MODE_PORT_GMII; 2078 break; 2079 default: 2080 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling " 2081 "default GMII interface.\n"); 2082 val |= BCE_EMAC_MODE_PORT_GMII; 2083 } 2084 2085 /* Set half or full duplex based on PHY settings. */ 2086 if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) { 2087 DBPRINT(sc, BCE_INFO_PHY, 2088 "Setting Half-Duplex interface.\n"); 2089 val |= BCE_EMAC_MODE_HALF_DUPLEX; 2090 } else 2091 DBPRINT(sc, BCE_INFO_PHY, 2092 "Setting Full-Duplex interface.\n"); 2093 2094 REG_WR(sc, BCE_EMAC_MODE, val); 2095 2096 if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) { 2097 DBPRINT(sc, BCE_INFO_PHY, 2098 "%s(): Enabling RX flow control.\n", __FUNCTION__); 2099 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 2100 } else { 2101 DBPRINT(sc, BCE_INFO_PHY, 2102 "%s(): Disabling RX flow control.\n", __FUNCTION__); 2103 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 2104 } 2105 2106 if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) { 2107 DBPRINT(sc, BCE_INFO_PHY, 2108 "%s(): Enabling TX flow control.\n", __FUNCTION__); 2109 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 2110 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL; 2111 } else { 2112 DBPRINT(sc, BCE_INFO_PHY, 2113 "%s(): Disabling TX flow control.\n", __FUNCTION__); 2114 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 2115 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL; 2116 } 2117 2118 /* ToDo: Update watermarks in bce_init_rx_context(). */ 2119 2120 bce_miibus_statchg_exit: 2121 DBEXIT(BCE_VERBOSE_PHY); 2122 } 2123 2124 2125 /****************************************************************************/ 2126 /* Acquire NVRAM lock. */ 2127 /* */ 2128 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 2129 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 2130 /* for use by the driver. */ 2131 /* */ 2132 /* Returns: */ 2133 /* 0 on success, positive value on failure. */ 2134 /****************************************************************************/ 2135 static int 2136 bce_acquire_nvram_lock(struct bce_softc *sc) 2137 { 2138 u32 val; 2139 int j, rc = 0; 2140 2141 DBENTER(BCE_VERBOSE_NVRAM); 2142 2143 /* Request access to the flash interface. */ 2144 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 2145 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2146 val = REG_RD(sc, BCE_NVM_SW_ARB); 2147 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 2148 break; 2149 2150 DELAY(5); 2151 } 2152 2153 if (j >= NVRAM_TIMEOUT_COUNT) { 2154 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 2155 rc = EBUSY; 2156 } 2157 2158 DBEXIT(BCE_VERBOSE_NVRAM); 2159 return (rc); 2160 } 2161 2162 2163 /****************************************************************************/ 2164 /* Release NVRAM lock. */ 2165 /* */ 2166 /* When the caller is finished accessing NVRAM the lock must be released. */ 2167 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 2168 /* for use by the driver. */ 2169 /* */ 2170 /* Returns: */ 2171 /* 0 on success, positive value on failure. */ 2172 /****************************************************************************/ 2173 static int 2174 bce_release_nvram_lock(struct bce_softc *sc) 2175 { 2176 u32 val; 2177 int j, rc = 0; 2178 2179 DBENTER(BCE_VERBOSE_NVRAM); 2180 2181 /* 2182 * Relinquish nvram interface. 2183 */ 2184 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 2185 2186 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2187 val = REG_RD(sc, BCE_NVM_SW_ARB); 2188 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 2189 break; 2190 2191 DELAY(5); 2192 } 2193 2194 if (j >= NVRAM_TIMEOUT_COUNT) { 2195 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); 2196 rc = EBUSY; 2197 } 2198 2199 DBEXIT(BCE_VERBOSE_NVRAM); 2200 return (rc); 2201 } 2202 2203 2204 #ifdef BCE_NVRAM_WRITE_SUPPORT 2205 /****************************************************************************/ 2206 /* Enable NVRAM write access. */ 2207 /* */ 2208 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 2209 /* */ 2210 /* Returns: */ 2211 /* 0 on success, positive value on failure. */ 2212 /****************************************************************************/ 2213 static int 2214 bce_enable_nvram_write(struct bce_softc *sc) 2215 { 2216 u32 val; 2217 int rc = 0; 2218 2219 DBENTER(BCE_VERBOSE_NVRAM); 2220 2221 val = REG_RD(sc, BCE_MISC_CFG); 2222 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 2223 2224 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2225 int j; 2226 2227 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2228 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 2229 2230 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2231 DELAY(5); 2232 2233 val = REG_RD(sc, BCE_NVM_COMMAND); 2234 if (val & BCE_NVM_COMMAND_DONE) 2235 break; 2236 } 2237 2238 if (j >= NVRAM_TIMEOUT_COUNT) { 2239 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 2240 rc = EBUSY; 2241 } 2242 } 2243 2244 DBENTER(BCE_VERBOSE_NVRAM); 2245 return (rc); 2246 } 2247 2248 2249 /****************************************************************************/ 2250 /* Disable NVRAM write access. */ 2251 /* */ 2252 /* When the caller is finished writing to NVRAM write access must be */ 2253 /* disabled. */ 2254 /* */ 2255 /* Returns: */ 2256 /* Nothing. */ 2257 /****************************************************************************/ 2258 static void 2259 bce_disable_nvram_write(struct bce_softc *sc) 2260 { 2261 u32 val; 2262 2263 DBENTER(BCE_VERBOSE_NVRAM); 2264 2265 val = REG_RD(sc, BCE_MISC_CFG); 2266 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 2267 2268 DBEXIT(BCE_VERBOSE_NVRAM); 2269 2270 } 2271 #endif 2272 2273 2274 /****************************************************************************/ 2275 /* Enable NVRAM access. */ 2276 /* */ 2277 /* Before accessing NVRAM for read or write operations the caller must */ 2278 /* enabled NVRAM access. */ 2279 /* */ 2280 /* Returns: */ 2281 /* Nothing. */ 2282 /****************************************************************************/ 2283 static void 2284 bce_enable_nvram_access(struct bce_softc *sc) 2285 { 2286 u32 val; 2287 2288 DBENTER(BCE_VERBOSE_NVRAM); 2289 2290 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 2291 /* Enable both bits, even on read. */ 2292 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val | 2293 BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 2294 2295 DBEXIT(BCE_VERBOSE_NVRAM); 2296 } 2297 2298 2299 /****************************************************************************/ 2300 /* Disable NVRAM access. */ 2301 /* */ 2302 /* When the caller is finished accessing NVRAM access must be disabled. */ 2303 /* */ 2304 /* Returns: */ 2305 /* Nothing. */ 2306 /****************************************************************************/ 2307 static void 2308 bce_disable_nvram_access(struct bce_softc *sc) 2309 { 2310 u32 val; 2311 2312 DBENTER(BCE_VERBOSE_NVRAM); 2313 2314 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 2315 2316 /* Disable both bits, even after read. */ 2317 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val & 2318 ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN)); 2319 2320 DBEXIT(BCE_VERBOSE_NVRAM); 2321 } 2322 2323 2324 #ifdef BCE_NVRAM_WRITE_SUPPORT 2325 /****************************************************************************/ 2326 /* Erase NVRAM page before writing. */ 2327 /* */ 2328 /* Non-buffered flash parts require that a page be erased before it is */ 2329 /* written. */ 2330 /* */ 2331 /* Returns: */ 2332 /* 0 on success, positive value on failure. */ 2333 /****************************************************************************/ 2334 static int 2335 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 2336 { 2337 u32 cmd; 2338 int j, rc = 0; 2339 2340 DBENTER(BCE_VERBOSE_NVRAM); 2341 2342 /* Buffered flash doesn't require an erase. */ 2343 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) 2344 goto bce_nvram_erase_page_exit; 2345 2346 /* Build an erase command. */ 2347 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 2348 BCE_NVM_COMMAND_DOIT; 2349 2350 /* 2351 * Clear the DONE bit separately, set the NVRAM adress to erase, 2352 * and issue the erase command. 2353 */ 2354 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2355 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2356 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2357 2358 /* Wait for completion. */ 2359 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2360 u32 val; 2361 2362 DELAY(5); 2363 2364 val = REG_RD(sc, BCE_NVM_COMMAND); 2365 if (val & BCE_NVM_COMMAND_DONE) 2366 break; 2367 } 2368 2369 if (j >= NVRAM_TIMEOUT_COUNT) { 2370 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 2371 rc = EBUSY; 2372 } 2373 2374 bce_nvram_erase_page_exit: 2375 DBEXIT(BCE_VERBOSE_NVRAM); 2376 return (rc); 2377 } 2378 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2379 2380 2381 /****************************************************************************/ 2382 /* Read a dword (32 bits) from NVRAM. */ 2383 /* */ 2384 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 2385 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 2386 /* */ 2387 /* Returns: */ 2388 /* 0 on success and the 32 bit value read, positive value on failure. */ 2389 /****************************************************************************/ 2390 static int 2391 bce_nvram_read_dword(struct bce_softc *sc, 2392 u32 offset, u8 *ret_val, u32 cmd_flags) 2393 { 2394 u32 cmd; 2395 int i, rc = 0; 2396 2397 DBENTER(BCE_EXTREME_NVRAM); 2398 2399 /* Build the command word. */ 2400 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 2401 2402 /* Calculate the offset for buffered flash if translation is used. */ 2403 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2404 offset = ((offset / sc->bce_flash_info->page_size) << 2405 sc->bce_flash_info->page_bits) + 2406 (offset % sc->bce_flash_info->page_size); 2407 } 2408 2409 /* 2410 * Clear the DONE bit separately, set the address to read, 2411 * and issue the read. 2412 */ 2413 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2414 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2415 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2416 2417 /* Wait for completion. */ 2418 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 2419 u32 val; 2420 2421 DELAY(5); 2422 2423 val = REG_RD(sc, BCE_NVM_COMMAND); 2424 if (val & BCE_NVM_COMMAND_DONE) { 2425 val = REG_RD(sc, BCE_NVM_READ); 2426 2427 val = bce_be32toh(val); 2428 memcpy(ret_val, &val, 4); 2429 break; 2430 } 2431 } 2432 2433 /* Check for errors. */ 2434 if (i >= NVRAM_TIMEOUT_COUNT) { 2435 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at " 2436 "offset 0x%08X!\n", __FILE__, __LINE__, offset); 2437 rc = EBUSY; 2438 } 2439 2440 DBEXIT(BCE_EXTREME_NVRAM); 2441 return(rc); 2442 } 2443 2444 2445 #ifdef BCE_NVRAM_WRITE_SUPPORT 2446 /****************************************************************************/ 2447 /* Write a dword (32 bits) to NVRAM. */ 2448 /* */ 2449 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 2450 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 2451 /* enabled NVRAM write access. */ 2452 /* */ 2453 /* Returns: */ 2454 /* 0 on success, positive value on failure. */ 2455 /****************************************************************************/ 2456 static int 2457 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 2458 u32 cmd_flags) 2459 { 2460 u32 cmd, val32; 2461 int j, rc = 0; 2462 2463 DBENTER(BCE_VERBOSE_NVRAM); 2464 2465 /* Build the command word. */ 2466 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 2467 2468 /* Calculate the offset for buffered flash if translation is used. */ 2469 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2470 offset = ((offset / sc->bce_flash_info->page_size) << 2471 sc->bce_flash_info->page_bits) + 2472 (offset % sc->bce_flash_info->page_size); 2473 } 2474 2475 /* 2476 * Clear the DONE bit separately, convert NVRAM data to big-endian, 2477 * set the NVRAM address to write, and issue the write command 2478 */ 2479 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2480 memcpy(&val32, val, 4); 2481 val32 = htobe32(val32); 2482 REG_WR(sc, BCE_NVM_WRITE, val32); 2483 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2484 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2485 2486 /* Wait for completion. */ 2487 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2488 DELAY(5); 2489 2490 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 2491 break; 2492 } 2493 if (j >= NVRAM_TIMEOUT_COUNT) { 2494 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at " 2495 "offset 0x%08X\n", __FILE__, __LINE__, offset); 2496 rc = EBUSY; 2497 } 2498 2499 DBEXIT(BCE_VERBOSE_NVRAM); 2500 return (rc); 2501 } 2502 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2503 2504 2505 /****************************************************************************/ 2506 /* Initialize NVRAM access. */ 2507 /* */ 2508 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 2509 /* access that device. */ 2510 /* */ 2511 /* Returns: */ 2512 /* 0 on success, positive value on failure. */ 2513 /****************************************************************************/ 2514 static int 2515 bce_init_nvram(struct bce_softc *sc) 2516 { 2517 u32 val; 2518 int j, entry_count, rc = 0; 2519 const struct flash_spec *flash; 2520 2521 DBENTER(BCE_VERBOSE_NVRAM); 2522 2523 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 2524 sc->bce_flash_info = &flash_5709; 2525 goto bce_init_nvram_get_flash_size; 2526 } 2527 2528 /* Determine the selected interface. */ 2529 val = REG_RD(sc, BCE_NVM_CFG1); 2530 2531 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 2532 2533 /* 2534 * Flash reconfiguration is required to support additional 2535 * NVRAM devices not directly supported in hardware. 2536 * Check if the flash interface was reconfigured 2537 * by the bootcode. 2538 */ 2539 2540 if (val & 0x40000000) { 2541 /* Flash interface reconfigured by bootcode. */ 2542 2543 DBPRINT(sc,BCE_INFO_LOAD, 2544 "bce_init_nvram(): Flash WAS reconfigured.\n"); 2545 2546 for (j = 0, flash = &flash_table[0]; j < entry_count; 2547 j++, flash++) { 2548 if ((val & FLASH_BACKUP_STRAP_MASK) == 2549 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 2550 sc->bce_flash_info = flash; 2551 break; 2552 } 2553 } 2554 } else { 2555 /* Flash interface not yet reconfigured. */ 2556 u32 mask; 2557 2558 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", 2559 __FUNCTION__); 2560 2561 if (val & (1 << 23)) 2562 mask = FLASH_BACKUP_STRAP_MASK; 2563 else 2564 mask = FLASH_STRAP_MASK; 2565 2566 /* Look for the matching NVRAM device configuration data. */ 2567 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 2568 2569 /* Check if the device matches any of the known devices. */ 2570 if ((val & mask) == (flash->strapping & mask)) { 2571 /* Found a device match. */ 2572 sc->bce_flash_info = flash; 2573 2574 /* Request access to the flash interface. */ 2575 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2576 return rc; 2577 2578 /* Reconfigure the flash interface. */ 2579 bce_enable_nvram_access(sc); 2580 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 2581 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 2582 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 2583 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 2584 bce_disable_nvram_access(sc); 2585 bce_release_nvram_lock(sc); 2586 2587 break; 2588 } 2589 } 2590 } 2591 2592 /* Check if a matching device was found. */ 2593 if (j == entry_count) { 2594 sc->bce_flash_info = NULL; 2595 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 2596 __FILE__, __LINE__); 2597 DBEXIT(BCE_VERBOSE_NVRAM); 2598 return (ENODEV); 2599 } 2600 2601 bce_init_nvram_get_flash_size: 2602 /* Write the flash config data to the shared memory interface. */ 2603 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2); 2604 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 2605 if (val) 2606 sc->bce_flash_size = val; 2607 else 2608 sc->bce_flash_size = sc->bce_flash_info->total_size; 2609 2610 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", 2611 __FUNCTION__, sc->bce_flash_info->name, 2612 sc->bce_flash_info->total_size); 2613 2614 DBEXIT(BCE_VERBOSE_NVRAM); 2615 return rc; 2616 } 2617 2618 2619 /****************************************************************************/ 2620 /* Read an arbitrary range of data from NVRAM. */ 2621 /* */ 2622 /* Prepares the NVRAM interface for access and reads the requested data */ 2623 /* into the supplied buffer. */ 2624 /* */ 2625 /* Returns: */ 2626 /* 0 on success and the data read, positive value on failure. */ 2627 /****************************************************************************/ 2628 static int 2629 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 2630 int buf_size) 2631 { 2632 int rc = 0; 2633 u32 cmd_flags, offset32, len32, extra; 2634 2635 DBENTER(BCE_VERBOSE_NVRAM); 2636 2637 if (buf_size == 0) 2638 goto bce_nvram_read_exit; 2639 2640 /* Request access to the flash interface. */ 2641 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2642 goto bce_nvram_read_exit; 2643 2644 /* Enable access to flash interface */ 2645 bce_enable_nvram_access(sc); 2646 2647 len32 = buf_size; 2648 offset32 = offset; 2649 extra = 0; 2650 2651 cmd_flags = 0; 2652 2653 if (offset32 & 3) { 2654 u8 buf[4]; 2655 u32 pre_len; 2656 2657 offset32 &= ~3; 2658 pre_len = 4 - (offset & 3); 2659 2660 if (pre_len >= len32) { 2661 pre_len = len32; 2662 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 2663 } 2664 else { 2665 cmd_flags = BCE_NVM_COMMAND_FIRST; 2666 } 2667 2668 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2669 2670 if (rc) 2671 return rc; 2672 2673 memcpy(ret_buf, buf + (offset & 3), pre_len); 2674 2675 offset32 += 4; 2676 ret_buf += pre_len; 2677 len32 -= pre_len; 2678 } 2679 2680 if (len32 & 3) { 2681 extra = 4 - (len32 & 3); 2682 len32 = (len32 + 4) & ~3; 2683 } 2684 2685 if (len32 == 4) { 2686 u8 buf[4]; 2687 2688 if (cmd_flags) 2689 cmd_flags = BCE_NVM_COMMAND_LAST; 2690 else 2691 cmd_flags = BCE_NVM_COMMAND_FIRST | 2692 BCE_NVM_COMMAND_LAST; 2693 2694 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2695 2696 memcpy(ret_buf, buf, 4 - extra); 2697 } 2698 else if (len32 > 0) { 2699 u8 buf[4]; 2700 2701 /* Read the first word. */ 2702 if (cmd_flags) 2703 cmd_flags = 0; 2704 else 2705 cmd_flags = BCE_NVM_COMMAND_FIRST; 2706 2707 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 2708 2709 /* Advance to the next dword. */ 2710 offset32 += 4; 2711 ret_buf += 4; 2712 len32 -= 4; 2713 2714 while (len32 > 4 && rc == 0) { 2715 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 2716 2717 /* Advance to the next dword. */ 2718 offset32 += 4; 2719 ret_buf += 4; 2720 len32 -= 4; 2721 } 2722 2723 if (rc) 2724 goto bce_nvram_read_locked_exit; 2725 2726 cmd_flags = BCE_NVM_COMMAND_LAST; 2727 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2728 2729 memcpy(ret_buf, buf, 4 - extra); 2730 } 2731 2732 bce_nvram_read_locked_exit: 2733 /* Disable access to flash interface and release the lock. */ 2734 bce_disable_nvram_access(sc); 2735 bce_release_nvram_lock(sc); 2736 2737 bce_nvram_read_exit: 2738 DBEXIT(BCE_VERBOSE_NVRAM); 2739 return rc; 2740 } 2741 2742 2743 #ifdef BCE_NVRAM_WRITE_SUPPORT 2744 /****************************************************************************/ 2745 /* Write an arbitrary range of data from NVRAM. */ 2746 /* */ 2747 /* Prepares the NVRAM interface for write access and writes the requested */ 2748 /* data from the supplied buffer. The caller is responsible for */ 2749 /* calculating any appropriate CRCs. */ 2750 /* */ 2751 /* Returns: */ 2752 /* 0 on success, positive value on failure. */ 2753 /****************************************************************************/ 2754 static int 2755 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 2756 int buf_size) 2757 { 2758 u32 written, offset32, len32; 2759 u8 *buf, start[4], end[4]; 2760 int rc = 0; 2761 int align_start, align_end; 2762 2763 DBENTER(BCE_VERBOSE_NVRAM); 2764 2765 buf = data_buf; 2766 offset32 = offset; 2767 len32 = buf_size; 2768 align_start = align_end = 0; 2769 2770 if ((align_start = (offset32 & 3))) { 2771 offset32 &= ~3; 2772 len32 += align_start; 2773 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 2774 goto bce_nvram_write_exit; 2775 } 2776 2777 if (len32 & 3) { 2778 if ((len32 > 4) || !align_start) { 2779 align_end = 4 - (len32 & 3); 2780 len32 += align_end; 2781 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 2782 end, 4))) { 2783 goto bce_nvram_write_exit; 2784 } 2785 } 2786 } 2787 2788 if (align_start || align_end) { 2789 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 2790 if (buf == 0) { 2791 rc = ENOMEM; 2792 goto bce_nvram_write_exit; 2793 } 2794 2795 if (align_start) { 2796 memcpy(buf, start, 4); 2797 } 2798 2799 if (align_end) { 2800 memcpy(buf + len32 - 4, end, 4); 2801 } 2802 memcpy(buf + align_start, data_buf, buf_size); 2803 } 2804 2805 written = 0; 2806 while ((written < len32) && (rc == 0)) { 2807 u32 page_start, page_end, data_start, data_end; 2808 u32 addr, cmd_flags; 2809 int i; 2810 u8 flash_buffer[264]; 2811 2812 /* Find the page_start addr */ 2813 page_start = offset32 + written; 2814 page_start -= (page_start % sc->bce_flash_info->page_size); 2815 /* Find the page_end addr */ 2816 page_end = page_start + sc->bce_flash_info->page_size; 2817 /* Find the data_start addr */ 2818 data_start = (written == 0) ? offset32 : page_start; 2819 /* Find the data_end addr */ 2820 data_end = (page_end > offset32 + len32) ? 2821 (offset32 + len32) : page_end; 2822 2823 /* Request access to the flash interface. */ 2824 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2825 goto bce_nvram_write_exit; 2826 2827 /* Enable access to flash interface */ 2828 bce_enable_nvram_access(sc); 2829 2830 cmd_flags = BCE_NVM_COMMAND_FIRST; 2831 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2832 int j; 2833 2834 /* Read the whole page into the buffer 2835 * (non-buffer flash only) */ 2836 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 2837 if (j == (sc->bce_flash_info->page_size - 4)) { 2838 cmd_flags |= BCE_NVM_COMMAND_LAST; 2839 } 2840 rc = bce_nvram_read_dword(sc, 2841 page_start + j, 2842 &flash_buffer[j], 2843 cmd_flags); 2844 2845 if (rc) 2846 goto bce_nvram_write_locked_exit; 2847 2848 cmd_flags = 0; 2849 } 2850 } 2851 2852 /* Enable writes to flash interface (unlock write-protect) */ 2853 if ((rc = bce_enable_nvram_write(sc)) != 0) 2854 goto bce_nvram_write_locked_exit; 2855 2856 /* Erase the page */ 2857 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 2858 goto bce_nvram_write_locked_exit; 2859 2860 /* Re-enable the write again for the actual write */ 2861 bce_enable_nvram_write(sc); 2862 2863 /* Loop to write back the buffer data from page_start to 2864 * data_start */ 2865 i = 0; 2866 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2867 for (addr = page_start; addr < data_start; 2868 addr += 4, i += 4) { 2869 2870 rc = bce_nvram_write_dword(sc, addr, 2871 &flash_buffer[i], cmd_flags); 2872 2873 if (rc != 0) 2874 goto bce_nvram_write_locked_exit; 2875 2876 cmd_flags = 0; 2877 } 2878 } 2879 2880 /* Loop to write the new data from data_start to data_end */ 2881 for (addr = data_start; addr < data_end; addr += 4, i++) { 2882 if ((addr == page_end - 4) || 2883 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && 2884 (addr == data_end - 4))) { 2885 2886 cmd_flags |= BCE_NVM_COMMAND_LAST; 2887 } 2888 rc = bce_nvram_write_dword(sc, addr, buf, 2889 cmd_flags); 2890 2891 if (rc != 0) 2892 goto bce_nvram_write_locked_exit; 2893 2894 cmd_flags = 0; 2895 buf += 4; 2896 } 2897 2898 /* Loop to write back the buffer data from data_end 2899 * to page_end */ 2900 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2901 for (addr = data_end; addr < page_end; 2902 addr += 4, i += 4) { 2903 2904 if (addr == page_end-4) { 2905 cmd_flags = BCE_NVM_COMMAND_LAST; 2906 } 2907 rc = bce_nvram_write_dword(sc, addr, 2908 &flash_buffer[i], cmd_flags); 2909 2910 if (rc != 0) 2911 goto bce_nvram_write_locked_exit; 2912 2913 cmd_flags = 0; 2914 } 2915 } 2916 2917 /* Disable writes to flash interface (lock write-protect) */ 2918 bce_disable_nvram_write(sc); 2919 2920 /* Disable access to flash interface */ 2921 bce_disable_nvram_access(sc); 2922 bce_release_nvram_lock(sc); 2923 2924 /* Increment written */ 2925 written += data_end - data_start; 2926 } 2927 2928 goto bce_nvram_write_exit; 2929 2930 bce_nvram_write_locked_exit: 2931 bce_disable_nvram_write(sc); 2932 bce_disable_nvram_access(sc); 2933 bce_release_nvram_lock(sc); 2934 2935 bce_nvram_write_exit: 2936 if (align_start || align_end) 2937 free(buf, M_DEVBUF); 2938 2939 DBEXIT(BCE_VERBOSE_NVRAM); 2940 return (rc); 2941 } 2942 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2943 2944 2945 /****************************************************************************/ 2946 /* Verifies that NVRAM is accessible and contains valid data. */ 2947 /* */ 2948 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2949 /* correct. */ 2950 /* */ 2951 /* Returns: */ 2952 /* 0 on success, positive value on failure. */ 2953 /****************************************************************************/ 2954 static int 2955 bce_nvram_test(struct bce_softc *sc) 2956 { 2957 u32 buf[BCE_NVRAM_SIZE / 4]; 2958 u8 *data = (u8 *) buf; 2959 int rc = 0; 2960 u32 magic, csum; 2961 2962 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2963 2964 /* 2965 * Check that the device NVRAM is valid by reading 2966 * the magic value at offset 0. 2967 */ 2968 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { 2969 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", 2970 __FILE__, __LINE__); 2971 goto bce_nvram_test_exit; 2972 } 2973 2974 /* 2975 * Verify that offset 0 of the NVRAM contains 2976 * a valid magic number. 2977 */ 2978 magic = bce_be32toh(buf[0]); 2979 if (magic != BCE_NVRAM_MAGIC) { 2980 rc = ENODEV; 2981 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! " 2982 "Expected: 0x%08X, Found: 0x%08X\n", 2983 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 2984 goto bce_nvram_test_exit; 2985 } 2986 2987 /* 2988 * Verify that the device NVRAM includes valid 2989 * configuration data. 2990 */ 2991 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { 2992 BCE_PRINTF("%s(%d): Unable to read manufacturing " 2993 "Information from NVRAM!\n", __FILE__, __LINE__); 2994 goto bce_nvram_test_exit; 2995 } 2996 2997 csum = ether_crc32_le(data, 0x100); 2998 if (csum != BCE_CRC32_RESIDUAL) { 2999 rc = ENODEV; 3000 BCE_PRINTF("%s(%d): Invalid manufacturing information " 3001 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n", 3002 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 3003 goto bce_nvram_test_exit; 3004 } 3005 3006 csum = ether_crc32_le(data + 0x100, 0x100); 3007 if (csum != BCE_CRC32_RESIDUAL) { 3008 rc = ENODEV; 3009 BCE_PRINTF("%s(%d): Invalid feature configuration " 3010 "information NVRAM CRC! Expected: 0x%08X, " 3011 "Found: 08%08X\n", __FILE__, __LINE__, 3012 BCE_CRC32_RESIDUAL, csum); 3013 } 3014 3015 bce_nvram_test_exit: 3016 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 3017 return rc; 3018 } 3019 3020 3021 /****************************************************************************/ 3022 /* Calculates the size of the buffers to allocate based on the MTU. */ 3023 /* */ 3024 /* Returns: */ 3025 /* Nothing. */ 3026 /****************************************************************************/ 3027 static void 3028 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu) 3029 { 3030 DBENTER(BCE_VERBOSE_LOAD); 3031 3032 /* Use a single allocation type when header splitting enabled. */ 3033 if (bce_hdr_split == TRUE) { 3034 sc->rx_bd_mbuf_alloc_size = MHLEN; 3035 /* Make sure offset is 16 byte aligned for hardware. */ 3036 sc->rx_bd_mbuf_align_pad = 3037 roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN); 3038 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 3039 sc->rx_bd_mbuf_align_pad; 3040 sc->pg_bd_mbuf_alloc_size = MCLBYTES; 3041 } else { 3042 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 3043 ETHER_CRC_LEN) > MCLBYTES) { 3044 /* Setup for jumbo RX buffer allocations. */ 3045 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; 3046 sc->rx_bd_mbuf_align_pad = 3047 roundup2(MJUM9BYTES, 16) - MJUM9BYTES; 3048 sc->rx_bd_mbuf_data_len = 3049 sc->rx_bd_mbuf_alloc_size - 3050 sc->rx_bd_mbuf_align_pad; 3051 } else { 3052 /* Setup for standard RX buffer allocations. */ 3053 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 3054 sc->rx_bd_mbuf_align_pad = 3055 roundup2(MCLBYTES, 16) - MCLBYTES; 3056 sc->rx_bd_mbuf_data_len = 3057 sc->rx_bd_mbuf_alloc_size - 3058 sc->rx_bd_mbuf_align_pad; 3059 } 3060 } 3061 3062 // DBPRINT(sc, BCE_INFO_LOAD, 3063 DBPRINT(sc, BCE_WARN, 3064 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, " 3065 "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__, 3066 sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, 3067 sc->rx_bd_mbuf_align_pad); 3068 3069 DBEXIT(BCE_VERBOSE_LOAD); 3070 3071 } 3072 3073 /****************************************************************************/ 3074 /* Identifies the current media type of the controller and sets the PHY */ 3075 /* address. */ 3076 /* */ 3077 /* Returns: */ 3078 /* Nothing. */ 3079 /****************************************************************************/ 3080 static void 3081 bce_get_media(struct bce_softc *sc) 3082 { 3083 u32 val; 3084 3085 DBENTER(BCE_VERBOSE_PHY); 3086 3087 /* Assume PHY address for copper controllers. */ 3088 sc->bce_phy_addr = 1; 3089 3090 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3091 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); 3092 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; 3093 u32 strap; 3094 3095 /* 3096 * The BCM5709S is software configurable 3097 * for Copper or SerDes operation. 3098 */ 3099 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 3100 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 3101 "for copper.\n"); 3102 goto bce_get_media_exit; 3103 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 3104 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 3105 "for dual media.\n"); 3106 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3107 goto bce_get_media_exit; 3108 } 3109 3110 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 3111 strap = (val & 3112 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 3113 else 3114 strap = (val & 3115 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 3116 3117 if (pci_get_function(sc->bce_dev) == 0) { 3118 switch (strap) { 3119 case 0x4: 3120 case 0x5: 3121 case 0x6: 3122 DBPRINT(sc, BCE_INFO_LOAD, 3123 "BCM5709 s/w configured for SerDes.\n"); 3124 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3125 break; 3126 default: 3127 DBPRINT(sc, BCE_INFO_LOAD, 3128 "BCM5709 s/w configured for Copper.\n"); 3129 break; 3130 } 3131 } else { 3132 switch (strap) { 3133 case 0x1: 3134 case 0x2: 3135 case 0x4: 3136 DBPRINT(sc, BCE_INFO_LOAD, 3137 "BCM5709 s/w configured for SerDes.\n"); 3138 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3139 break; 3140 default: 3141 DBPRINT(sc, BCE_INFO_LOAD, 3142 "BCM5709 s/w configured for Copper.\n"); 3143 break; 3144 } 3145 } 3146 3147 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) 3148 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3149 3150 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { 3151 3152 sc->bce_flags |= BCE_NO_WOL_FLAG; 3153 3154 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 3155 sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG; 3156 3157 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 3158 /* 5708S/09S/16S use a separate PHY for SerDes. */ 3159 sc->bce_phy_addr = 2; 3160 3161 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 3162 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 3163 sc->bce_phy_flags |= 3164 BCE_PHY_2_5G_CAPABLE_FLAG; 3165 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb " 3166 "capable adapter\n"); 3167 } 3168 } 3169 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || 3170 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) 3171 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; 3172 3173 bce_get_media_exit: 3174 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), 3175 "Using PHY address %d.\n", sc->bce_phy_addr); 3176 3177 DBEXIT(BCE_VERBOSE_PHY); 3178 } 3179 3180 3181 /****************************************************************************/ 3182 /* Performs PHY initialization required before MII drivers access the */ 3183 /* device. */ 3184 /* */ 3185 /* Returns: */ 3186 /* Nothing. */ 3187 /****************************************************************************/ 3188 static void 3189 bce_init_media(struct bce_softc *sc) 3190 { 3191 if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG | 3192 BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) { 3193 /* 3194 * Configure 5709S/5716S PHYs to use traditional IEEE 3195 * Clause 22 method. Otherwise we have no way to attach 3196 * the PHY in mii(4) layer. PHY specific configuration 3197 * is done in mii layer. 3198 */ 3199 3200 /* Select auto-negotiation MMD of the PHY. */ 3201 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3202 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT); 3203 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3204 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD); 3205 3206 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */ 3207 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3208 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0); 3209 } 3210 } 3211 3212 3213 /****************************************************************************/ 3214 /* Free any DMA memory owned by the driver. */ 3215 /* */ 3216 /* Scans through each data structre that requires DMA memory and frees */ 3217 /* the memory if allocated. */ 3218 /* */ 3219 /* Returns: */ 3220 /* Nothing. */ 3221 /****************************************************************************/ 3222 static void 3223 bce_dma_free(struct bce_softc *sc) 3224 { 3225 int i; 3226 3227 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3228 3229 /* Free, unmap, and destroy the status block. */ 3230 if (sc->status_block != NULL) { 3231 bus_dmamem_free( 3232 sc->status_tag, 3233 sc->status_block, 3234 sc->status_map); 3235 sc->status_block = NULL; 3236 } 3237 3238 if (sc->status_map != NULL) { 3239 bus_dmamap_unload( 3240 sc->status_tag, 3241 sc->status_map); 3242 bus_dmamap_destroy(sc->status_tag, 3243 sc->status_map); 3244 sc->status_map = NULL; 3245 } 3246 3247 if (sc->status_tag != NULL) { 3248 bus_dma_tag_destroy(sc->status_tag); 3249 sc->status_tag = NULL; 3250 } 3251 3252 3253 /* Free, unmap, and destroy the statistics block. */ 3254 if (sc->stats_block != NULL) { 3255 bus_dmamem_free( 3256 sc->stats_tag, 3257 sc->stats_block, 3258 sc->stats_map); 3259 sc->stats_block = NULL; 3260 } 3261 3262 if (sc->stats_map != NULL) { 3263 bus_dmamap_unload( 3264 sc->stats_tag, 3265 sc->stats_map); 3266 bus_dmamap_destroy(sc->stats_tag, 3267 sc->stats_map); 3268 sc->stats_map = NULL; 3269 } 3270 3271 if (sc->stats_tag != NULL) { 3272 bus_dma_tag_destroy(sc->stats_tag); 3273 sc->stats_tag = NULL; 3274 } 3275 3276 3277 /* Free, unmap and destroy all context memory pages. */ 3278 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3279 for (i = 0; i < sc->ctx_pages; i++ ) { 3280 if (sc->ctx_block[i] != NULL) { 3281 bus_dmamem_free( 3282 sc->ctx_tag, 3283 sc->ctx_block[i], 3284 sc->ctx_map[i]); 3285 sc->ctx_block[i] = NULL; 3286 } 3287 3288 if (sc->ctx_map[i] != NULL) { 3289 bus_dmamap_unload( 3290 sc->ctx_tag, 3291 sc->ctx_map[i]); 3292 bus_dmamap_destroy( 3293 sc->ctx_tag, 3294 sc->ctx_map[i]); 3295 sc->ctx_map[i] = NULL; 3296 } 3297 } 3298 3299 /* Destroy the context memory tag. */ 3300 if (sc->ctx_tag != NULL) { 3301 bus_dma_tag_destroy(sc->ctx_tag); 3302 sc->ctx_tag = NULL; 3303 } 3304 } 3305 3306 3307 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 3308 for (i = 0; i < sc->tx_pages; i++ ) { 3309 if (sc->tx_bd_chain[i] != NULL) { 3310 bus_dmamem_free( 3311 sc->tx_bd_chain_tag, 3312 sc->tx_bd_chain[i], 3313 sc->tx_bd_chain_map[i]); 3314 sc->tx_bd_chain[i] = NULL; 3315 } 3316 3317 if (sc->tx_bd_chain_map[i] != NULL) { 3318 bus_dmamap_unload( 3319 sc->tx_bd_chain_tag, 3320 sc->tx_bd_chain_map[i]); 3321 bus_dmamap_destroy( 3322 sc->tx_bd_chain_tag, 3323 sc->tx_bd_chain_map[i]); 3324 sc->tx_bd_chain_map[i] = NULL; 3325 } 3326 } 3327 3328 /* Destroy the TX buffer descriptor tag. */ 3329 if (sc->tx_bd_chain_tag != NULL) { 3330 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 3331 sc->tx_bd_chain_tag = NULL; 3332 } 3333 3334 3335 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 3336 for (i = 0; i < sc->rx_pages; i++ ) { 3337 if (sc->rx_bd_chain[i] != NULL) { 3338 bus_dmamem_free( 3339 sc->rx_bd_chain_tag, 3340 sc->rx_bd_chain[i], 3341 sc->rx_bd_chain_map[i]); 3342 sc->rx_bd_chain[i] = NULL; 3343 } 3344 3345 if (sc->rx_bd_chain_map[i] != NULL) { 3346 bus_dmamap_unload( 3347 sc->rx_bd_chain_tag, 3348 sc->rx_bd_chain_map[i]); 3349 bus_dmamap_destroy( 3350 sc->rx_bd_chain_tag, 3351 sc->rx_bd_chain_map[i]); 3352 sc->rx_bd_chain_map[i] = NULL; 3353 } 3354 } 3355 3356 /* Destroy the RX buffer descriptor tag. */ 3357 if (sc->rx_bd_chain_tag != NULL) { 3358 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 3359 sc->rx_bd_chain_tag = NULL; 3360 } 3361 3362 3363 /* Free, unmap and destroy all page buffer descriptor chain pages. */ 3364 if (bce_hdr_split == TRUE) { 3365 for (i = 0; i < sc->pg_pages; i++ ) { 3366 if (sc->pg_bd_chain[i] != NULL) { 3367 bus_dmamem_free( 3368 sc->pg_bd_chain_tag, 3369 sc->pg_bd_chain[i], 3370 sc->pg_bd_chain_map[i]); 3371 sc->pg_bd_chain[i] = NULL; 3372 } 3373 3374 if (sc->pg_bd_chain_map[i] != NULL) { 3375 bus_dmamap_unload( 3376 sc->pg_bd_chain_tag, 3377 sc->pg_bd_chain_map[i]); 3378 bus_dmamap_destroy( 3379 sc->pg_bd_chain_tag, 3380 sc->pg_bd_chain_map[i]); 3381 sc->pg_bd_chain_map[i] = NULL; 3382 } 3383 } 3384 3385 /* Destroy the page buffer descriptor tag. */ 3386 if (sc->pg_bd_chain_tag != NULL) { 3387 bus_dma_tag_destroy(sc->pg_bd_chain_tag); 3388 sc->pg_bd_chain_tag = NULL; 3389 } 3390 } 3391 3392 3393 /* Unload and destroy the TX mbuf maps. */ 3394 for (i = 0; i < MAX_TX_BD_AVAIL; i++) { 3395 if (sc->tx_mbuf_map[i] != NULL) { 3396 bus_dmamap_unload(sc->tx_mbuf_tag, 3397 sc->tx_mbuf_map[i]); 3398 bus_dmamap_destroy(sc->tx_mbuf_tag, 3399 sc->tx_mbuf_map[i]); 3400 sc->tx_mbuf_map[i] = NULL; 3401 } 3402 } 3403 3404 /* Destroy the TX mbuf tag. */ 3405 if (sc->tx_mbuf_tag != NULL) { 3406 bus_dma_tag_destroy(sc->tx_mbuf_tag); 3407 sc->tx_mbuf_tag = NULL; 3408 } 3409 3410 /* Unload and destroy the RX mbuf maps. */ 3411 for (i = 0; i < MAX_RX_BD_AVAIL; i++) { 3412 if (sc->rx_mbuf_map[i] != NULL) { 3413 bus_dmamap_unload(sc->rx_mbuf_tag, 3414 sc->rx_mbuf_map[i]); 3415 bus_dmamap_destroy(sc->rx_mbuf_tag, 3416 sc->rx_mbuf_map[i]); 3417 sc->rx_mbuf_map[i] = NULL; 3418 } 3419 } 3420 3421 /* Destroy the RX mbuf tag. */ 3422 if (sc->rx_mbuf_tag != NULL) { 3423 bus_dma_tag_destroy(sc->rx_mbuf_tag); 3424 sc->rx_mbuf_tag = NULL; 3425 } 3426 3427 /* Unload and destroy the page mbuf maps. */ 3428 if (bce_hdr_split == TRUE) { 3429 for (i = 0; i < MAX_PG_BD_AVAIL; i++) { 3430 if (sc->pg_mbuf_map[i] != NULL) { 3431 bus_dmamap_unload(sc->pg_mbuf_tag, 3432 sc->pg_mbuf_map[i]); 3433 bus_dmamap_destroy(sc->pg_mbuf_tag, 3434 sc->pg_mbuf_map[i]); 3435 sc->pg_mbuf_map[i] = NULL; 3436 } 3437 } 3438 3439 /* Destroy the page mbuf tag. */ 3440 if (sc->pg_mbuf_tag != NULL) { 3441 bus_dma_tag_destroy(sc->pg_mbuf_tag); 3442 sc->pg_mbuf_tag = NULL; 3443 } 3444 } 3445 3446 /* Destroy the parent tag */ 3447 if (sc->parent_tag != NULL) { 3448 bus_dma_tag_destroy(sc->parent_tag); 3449 sc->parent_tag = NULL; 3450 } 3451 3452 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3453 } 3454 3455 3456 /****************************************************************************/ 3457 /* Get DMA memory from the OS. */ 3458 /* */ 3459 /* Validates that the OS has provided DMA buffers in response to a */ 3460 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 3461 /* When the callback is used the OS will return 0 for the mapping function */ 3462 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 3463 /* failures back to the caller. */ 3464 /* */ 3465 /* Returns: */ 3466 /* Nothing. */ 3467 /****************************************************************************/ 3468 static void 3469 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3470 { 3471 bus_addr_t *busaddr = arg; 3472 3473 KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!", 3474 __FUNCTION__, nseg)); 3475 /* Simulate a mapping failure. */ 3476 DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control), 3477 error = ENOMEM); 3478 3479 /* ToDo: How to increment debug sim_count variable here? */ 3480 3481 /* Check for an error and signal the caller that an error occurred. */ 3482 if (error) { 3483 *busaddr = 0; 3484 } else { 3485 *busaddr = segs->ds_addr; 3486 } 3487 3488 return; 3489 } 3490 3491 3492 /****************************************************************************/ 3493 /* Allocate any DMA memory needed by the driver. */ 3494 /* */ 3495 /* Allocates DMA memory needed for the various global structures needed by */ 3496 /* hardware. */ 3497 /* */ 3498 /* Memory alignment requirements: */ 3499 /* +-----------------+----------+----------+----------+----------+ */ 3500 /* | | 5706 | 5708 | 5709 | 5716 | */ 3501 /* +-----------------+----------+----------+----------+----------+ */ 3502 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3503 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3504 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ 3505 /* |PG Buffers | none | none | none | none | */ 3506 /* |TX Buffers | none | none | none | none | */ 3507 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ 3508 /* |Context Memory | | | | | */ 3509 /* +-----------------+----------+----------+----------+----------+ */ 3510 /* */ 3511 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ 3512 /* */ 3513 /* Returns: */ 3514 /* 0 for success, positive value for failure. */ 3515 /****************************************************************************/ 3516 static int 3517 bce_dma_alloc(device_t dev) 3518 { 3519 struct bce_softc *sc; 3520 int i, error, rc = 0; 3521 bus_size_t max_size, max_seg_size; 3522 int max_segments; 3523 3524 sc = device_get_softc(dev); 3525 3526 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3527 3528 /* 3529 * Allocate the parent bus DMA tag appropriate for PCI. 3530 */ 3531 if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY, 3532 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3533 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 3534 &sc->parent_tag)) { 3535 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 3536 __FILE__, __LINE__); 3537 rc = ENOMEM; 3538 goto bce_dma_alloc_exit; 3539 } 3540 3541 /* 3542 * Create a DMA tag for the status block, allocate and clear the 3543 * memory, map the memory into DMA space, and fetch the physical 3544 * address of the block. 3545 */ 3546 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3547 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3548 NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ, 3549 0, NULL, NULL, &sc->status_tag)) { 3550 BCE_PRINTF("%s(%d): Could not allocate status block " 3551 "DMA tag!\n", __FILE__, __LINE__); 3552 rc = ENOMEM; 3553 goto bce_dma_alloc_exit; 3554 } 3555 3556 if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block, 3557 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3558 &sc->status_map)) { 3559 BCE_PRINTF("%s(%d): Could not allocate status block " 3560 "DMA memory!\n", __FILE__, __LINE__); 3561 rc = ENOMEM; 3562 goto bce_dma_alloc_exit; 3563 } 3564 3565 error = bus_dmamap_load(sc->status_tag, sc->status_map, 3566 sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr, 3567 &sc->status_block_paddr, BUS_DMA_NOWAIT); 3568 3569 if (error) { 3570 BCE_PRINTF("%s(%d): Could not map status block " 3571 "DMA memory!\n", __FILE__, __LINE__); 3572 rc = ENOMEM; 3573 goto bce_dma_alloc_exit; 3574 } 3575 3576 DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n", 3577 __FUNCTION__, (uintmax_t) sc->status_block_paddr); 3578 3579 /* 3580 * Create a DMA tag for the statistics block, allocate and clear the 3581 * memory, map the memory into DMA space, and fetch the physical 3582 * address of the block. 3583 */ 3584 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3585 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3586 NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ, 3587 0, NULL, NULL, &sc->stats_tag)) { 3588 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3589 "DMA tag!\n", __FILE__, __LINE__); 3590 rc = ENOMEM; 3591 goto bce_dma_alloc_exit; 3592 } 3593 3594 if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block, 3595 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) { 3596 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3597 "DMA memory!\n", __FILE__, __LINE__); 3598 rc = ENOMEM; 3599 goto bce_dma_alloc_exit; 3600 } 3601 3602 error = bus_dmamap_load(sc->stats_tag, sc->stats_map, 3603 sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr, 3604 &sc->stats_block_paddr, BUS_DMA_NOWAIT); 3605 3606 if(error) { 3607 BCE_PRINTF("%s(%d): Could not map statistics block " 3608 "DMA memory!\n", __FILE__, __LINE__); 3609 rc = ENOMEM; 3610 goto bce_dma_alloc_exit; 3611 } 3612 3613 DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n", 3614 __FUNCTION__, (uintmax_t) sc->stats_block_paddr); 3615 3616 /* BCM5709 uses host memory as cache for context memory. */ 3617 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3618 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 3619 if (sc->ctx_pages == 0) 3620 sc->ctx_pages = 1; 3621 3622 DBRUNIF((sc->ctx_pages > 512), 3623 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 3624 __FILE__, __LINE__, sc->ctx_pages)); 3625 3626 /* 3627 * Create a DMA tag for the context pages, 3628 * allocate and clear the memory, map the 3629 * memory into DMA space, and fetch the 3630 * physical address of the block. 3631 */ 3632 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3633 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3634 NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE, 3635 0, NULL, NULL, &sc->ctx_tag)) { 3636 BCE_PRINTF("%s(%d): Could not allocate CTX " 3637 "DMA tag!\n", __FILE__, __LINE__); 3638 rc = ENOMEM; 3639 goto bce_dma_alloc_exit; 3640 } 3641 3642 for (i = 0; i < sc->ctx_pages; i++) { 3643 3644 if(bus_dmamem_alloc(sc->ctx_tag, 3645 (void **)&sc->ctx_block[i], 3646 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3647 &sc->ctx_map[i])) { 3648 BCE_PRINTF("%s(%d): Could not allocate CTX " 3649 "DMA memory!\n", __FILE__, __LINE__); 3650 rc = ENOMEM; 3651 goto bce_dma_alloc_exit; 3652 } 3653 3654 error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i], 3655 sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr, 3656 &sc->ctx_paddr[i], BUS_DMA_NOWAIT); 3657 3658 if (error) { 3659 BCE_PRINTF("%s(%d): Could not map CTX " 3660 "DMA memory!\n", __FILE__, __LINE__); 3661 rc = ENOMEM; 3662 goto bce_dma_alloc_exit; 3663 } 3664 3665 DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] " 3666 "= 0x%jX\n", __FUNCTION__, i, 3667 (uintmax_t) sc->ctx_paddr[i]); 3668 } 3669 } 3670 3671 /* 3672 * Create a DMA tag for the TX buffer descriptor chain, 3673 * allocate and clear the memory, and fetch the 3674 * physical address of the block. 3675 */ 3676 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY, 3677 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3678 BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0, 3679 NULL, NULL, &sc->tx_bd_chain_tag)) { 3680 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3681 "chain DMA tag!\n", __FILE__, __LINE__); 3682 rc = ENOMEM; 3683 goto bce_dma_alloc_exit; 3684 } 3685 3686 for (i = 0; i < sc->tx_pages; i++) { 3687 3688 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 3689 (void **)&sc->tx_bd_chain[i], 3690 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3691 &sc->tx_bd_chain_map[i])) { 3692 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3693 "chain DMA memory!\n", __FILE__, __LINE__); 3694 rc = ENOMEM; 3695 goto bce_dma_alloc_exit; 3696 } 3697 3698 error = bus_dmamap_load(sc->tx_bd_chain_tag, 3699 sc->tx_bd_chain_map[i], sc->tx_bd_chain[i], 3700 BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3701 &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3702 3703 if (error) { 3704 BCE_PRINTF("%s(%d): Could not map TX descriptor " 3705 "chain DMA memory!\n", __FILE__, __LINE__); 3706 rc = ENOMEM; 3707 goto bce_dma_alloc_exit; 3708 } 3709 3710 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = " 3711 "0x%jX\n", __FUNCTION__, i, 3712 (uintmax_t) sc->tx_bd_chain_paddr[i]); 3713 } 3714 3715 /* Check the required size before mapping to conserve resources. */ 3716 if (bce_tso_enable) { 3717 max_size = BCE_TSO_MAX_SIZE; 3718 max_segments = BCE_MAX_SEGMENTS; 3719 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 3720 } else { 3721 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 3722 max_segments = BCE_MAX_SEGMENTS; 3723 max_seg_size = MCLBYTES; 3724 } 3725 3726 /* Create a DMA tag for TX mbufs. */ 3727 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3728 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size, 3729 max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) { 3730 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 3731 __FILE__, __LINE__); 3732 rc = ENOMEM; 3733 goto bce_dma_alloc_exit; 3734 } 3735 3736 /* Create DMA maps for the TX mbufs clusters. */ 3737 for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) { 3738 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 3739 &sc->tx_mbuf_map[i])) { 3740 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA " 3741 "map!\n", __FILE__, __LINE__); 3742 rc = ENOMEM; 3743 goto bce_dma_alloc_exit; 3744 } 3745 } 3746 3747 /* 3748 * Create a DMA tag for the RX buffer descriptor chain, 3749 * allocate and clear the memory, and fetch the physical 3750 * address of the blocks. 3751 */ 3752 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3753 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, 3754 sc->max_bus_addr, NULL, NULL, 3755 BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ, 3756 0, NULL, NULL, &sc->rx_bd_chain_tag)) { 3757 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 3758 "DMA tag!\n", __FILE__, __LINE__); 3759 rc = ENOMEM; 3760 goto bce_dma_alloc_exit; 3761 } 3762 3763 for (i = 0; i < sc->rx_pages; i++) { 3764 3765 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 3766 (void **)&sc->rx_bd_chain[i], 3767 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3768 &sc->rx_bd_chain_map[i])) { 3769 BCE_PRINTF("%s(%d): Could not allocate RX descriptor " 3770 "chain DMA memory!\n", __FILE__, __LINE__); 3771 rc = ENOMEM; 3772 goto bce_dma_alloc_exit; 3773 } 3774 3775 error = bus_dmamap_load(sc->rx_bd_chain_tag, 3776 sc->rx_bd_chain_map[i], sc->rx_bd_chain[i], 3777 BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3778 &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3779 3780 if (error) { 3781 BCE_PRINTF("%s(%d): Could not map RX descriptor " 3782 "chain DMA memory!\n", __FILE__, __LINE__); 3783 rc = ENOMEM; 3784 goto bce_dma_alloc_exit; 3785 } 3786 3787 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = " 3788 "0x%jX\n", __FUNCTION__, i, 3789 (uintmax_t) sc->rx_bd_chain_paddr[i]); 3790 } 3791 3792 /* 3793 * Create a DMA tag for RX mbufs. 3794 */ 3795 if (bce_hdr_split == TRUE) 3796 max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? 3797 MCLBYTES : sc->rx_bd_mbuf_alloc_size); 3798 else 3799 max_size = max_seg_size = MJUM9BYTES; 3800 max_segments = 1; 3801 3802 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag " 3803 "(max size = 0x%jX max segments = %d, max segment " 3804 "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size, 3805 max_segments, (uintmax_t) max_seg_size); 3806 3807 if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN, 3808 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3809 max_size, max_segments, max_seg_size, 0, NULL, NULL, 3810 &sc->rx_mbuf_tag)) { 3811 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 3812 __FILE__, __LINE__); 3813 rc = ENOMEM; 3814 goto bce_dma_alloc_exit; 3815 } 3816 3817 /* Create DMA maps for the RX mbuf clusters. */ 3818 for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) { 3819 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 3820 &sc->rx_mbuf_map[i])) { 3821 BCE_PRINTF("%s(%d): Unable to create RX mbuf " 3822 "DMA map!\n", __FILE__, __LINE__); 3823 rc = ENOMEM; 3824 goto bce_dma_alloc_exit; 3825 } 3826 } 3827 3828 if (bce_hdr_split == TRUE) { 3829 /* 3830 * Create a DMA tag for the page buffer descriptor chain, 3831 * allocate and clear the memory, and fetch the physical 3832 * address of the blocks. 3833 */ 3834 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3835 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr, 3836 NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ, 3837 0, NULL, NULL, &sc->pg_bd_chain_tag)) { 3838 BCE_PRINTF("%s(%d): Could not allocate page descriptor " 3839 "chain DMA tag!\n", __FILE__, __LINE__); 3840 rc = ENOMEM; 3841 goto bce_dma_alloc_exit; 3842 } 3843 3844 for (i = 0; i < sc->pg_pages; i++) { 3845 if (bus_dmamem_alloc(sc->pg_bd_chain_tag, 3846 (void **)&sc->pg_bd_chain[i], 3847 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3848 &sc->pg_bd_chain_map[i])) { 3849 BCE_PRINTF("%s(%d): Could not allocate page " 3850 "descriptor chain DMA memory!\n", 3851 __FILE__, __LINE__); 3852 rc = ENOMEM; 3853 goto bce_dma_alloc_exit; 3854 } 3855 3856 error = bus_dmamap_load(sc->pg_bd_chain_tag, 3857 sc->pg_bd_chain_map[i], sc->pg_bd_chain[i], 3858 BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr, 3859 &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3860 3861 if (error) { 3862 BCE_PRINTF("%s(%d): Could not map page descriptor " 3863 "chain DMA memory!\n", __FILE__, __LINE__); 3864 rc = ENOMEM; 3865 goto bce_dma_alloc_exit; 3866 } 3867 3868 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = " 3869 "0x%jX\n", __FUNCTION__, i, 3870 (uintmax_t) sc->pg_bd_chain_paddr[i]); 3871 } 3872 3873 /* 3874 * Create a DMA tag for page mbufs. 3875 */ 3876 max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ? 3877 MCLBYTES : sc->pg_bd_mbuf_alloc_size); 3878 3879 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3880 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3881 max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) { 3882 BCE_PRINTF("%s(%d): Could not allocate page mbuf " 3883 "DMA tag!\n", __FILE__, __LINE__); 3884 rc = ENOMEM; 3885 goto bce_dma_alloc_exit; 3886 } 3887 3888 /* Create DMA maps for the page mbuf clusters. */ 3889 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) { 3890 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, 3891 &sc->pg_mbuf_map[i])) { 3892 BCE_PRINTF("%s(%d): Unable to create page mbuf " 3893 "DMA map!\n", __FILE__, __LINE__); 3894 rc = ENOMEM; 3895 goto bce_dma_alloc_exit; 3896 } 3897 } 3898 } 3899 3900 bce_dma_alloc_exit: 3901 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3902 return(rc); 3903 } 3904 3905 3906 /****************************************************************************/ 3907 /* Release all resources used by the driver. */ 3908 /* */ 3909 /* Releases all resources acquired by the driver including interrupts, */ 3910 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 3911 /* */ 3912 /* Returns: */ 3913 /* Nothing. */ 3914 /****************************************************************************/ 3915 static void 3916 bce_release_resources(struct bce_softc *sc) 3917 { 3918 device_t dev; 3919 3920 DBENTER(BCE_VERBOSE_RESET); 3921 3922 dev = sc->bce_dev; 3923 3924 bce_dma_free(sc); 3925 3926 if (sc->bce_intrhand != NULL) { 3927 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 3928 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 3929 } 3930 3931 if (sc->bce_res_irq != NULL) { 3932 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 3933 bus_release_resource(dev, SYS_RES_IRQ, 3934 rman_get_rid(sc->bce_res_irq), sc->bce_res_irq); 3935 } 3936 3937 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { 3938 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); 3939 pci_release_msi(dev); 3940 } 3941 3942 if (sc->bce_res_mem != NULL) { 3943 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 3944 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 3945 sc->bce_res_mem); 3946 } 3947 3948 if (sc->bce_ifp != NULL) { 3949 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 3950 if_free(sc->bce_ifp); 3951 } 3952 3953 if (mtx_initialized(&sc->bce_mtx)) 3954 BCE_LOCK_DESTROY(sc); 3955 3956 DBEXIT(BCE_VERBOSE_RESET); 3957 } 3958 3959 3960 /****************************************************************************/ 3961 /* Firmware synchronization. */ 3962 /* */ 3963 /* Before performing certain events such as a chip reset, synchronize with */ 3964 /* the firmware first. */ 3965 /* */ 3966 /* Returns: */ 3967 /* 0 for success, positive value for failure. */ 3968 /****************************************************************************/ 3969 static int 3970 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 3971 { 3972 int i, rc = 0; 3973 u32 val; 3974 3975 DBENTER(BCE_VERBOSE_RESET); 3976 3977 /* Don't waste any time if we've timed out before. */ 3978 if (sc->bce_fw_timed_out == TRUE) { 3979 rc = EBUSY; 3980 goto bce_fw_sync_exit; 3981 } 3982 3983 /* Increment the message sequence number. */ 3984 sc->bce_fw_wr_seq++; 3985 msg_data |= sc->bce_fw_wr_seq; 3986 3987 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = " 3988 "0x%08X\n", msg_data); 3989 3990 /* Send the message to the bootcode driver mailbox. */ 3991 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3992 3993 /* Wait for the bootcode to acknowledge the message. */ 3994 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 3995 /* Check for a response in the bootcode firmware mailbox. */ 3996 val = bce_shmem_rd(sc, BCE_FW_MB); 3997 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 3998 break; 3999 DELAY(1000); 4000 } 4001 4002 /* If we've timed out, tell bootcode that we've stopped waiting. */ 4003 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 4004 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 4005 4006 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 4007 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); 4008 4009 msg_data &= ~BCE_DRV_MSG_CODE; 4010 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 4011 4012 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 4013 4014 sc->bce_fw_timed_out = TRUE; 4015 rc = EBUSY; 4016 } 4017 4018 bce_fw_sync_exit: 4019 DBEXIT(BCE_VERBOSE_RESET); 4020 return (rc); 4021 } 4022 4023 4024 /****************************************************************************/ 4025 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 4026 /* */ 4027 /* Returns: */ 4028 /* Nothing. */ 4029 /****************************************************************************/ 4030 static void 4031 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code, 4032 u32 rv2p_code_len, u32 rv2p_proc) 4033 { 4034 int i; 4035 u32 val; 4036 4037 DBENTER(BCE_VERBOSE_RESET); 4038 4039 /* Set the page size used by RV2P. */ 4040 if (rv2p_proc == RV2P_PROC2) { 4041 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); 4042 } 4043 4044 for (i = 0; i < rv2p_code_len; i += 8) { 4045 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 4046 rv2p_code++; 4047 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 4048 rv2p_code++; 4049 4050 if (rv2p_proc == RV2P_PROC1) { 4051 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 4052 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 4053 } 4054 else { 4055 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 4056 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 4057 } 4058 } 4059 4060 /* Reset the processor, un-stall is done later. */ 4061 if (rv2p_proc == RV2P_PROC1) { 4062 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 4063 } 4064 else { 4065 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 4066 } 4067 4068 DBEXIT(BCE_VERBOSE_RESET); 4069 } 4070 4071 4072 /****************************************************************************/ 4073 /* Load RISC processor firmware. */ 4074 /* */ 4075 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 4076 /* associated with a particular processor. */ 4077 /* */ 4078 /* Returns: */ 4079 /* Nothing. */ 4080 /****************************************************************************/ 4081 static void 4082 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 4083 struct fw_info *fw) 4084 { 4085 u32 offset; 4086 4087 DBENTER(BCE_VERBOSE_RESET); 4088 4089 bce_halt_cpu(sc, cpu_reg); 4090 4091 /* Load the Text area. */ 4092 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 4093 if (fw->text) { 4094 int j; 4095 4096 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 4097 REG_WR_IND(sc, offset, fw->text[j]); 4098 } 4099 } 4100 4101 /* Load the Data area. */ 4102 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 4103 if (fw->data) { 4104 int j; 4105 4106 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 4107 REG_WR_IND(sc, offset, fw->data[j]); 4108 } 4109 } 4110 4111 /* Load the SBSS area. */ 4112 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 4113 if (fw->sbss) { 4114 int j; 4115 4116 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 4117 REG_WR_IND(sc, offset, fw->sbss[j]); 4118 } 4119 } 4120 4121 /* Load the BSS area. */ 4122 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 4123 if (fw->bss) { 4124 int j; 4125 4126 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 4127 REG_WR_IND(sc, offset, fw->bss[j]); 4128 } 4129 } 4130 4131 /* Load the Read-Only area. */ 4132 offset = cpu_reg->spad_base + 4133 (fw->rodata_addr - cpu_reg->mips_view_base); 4134 if (fw->rodata) { 4135 int j; 4136 4137 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 4138 REG_WR_IND(sc, offset, fw->rodata[j]); 4139 } 4140 } 4141 4142 /* Clear the pre-fetch instruction and set the FW start address. */ 4143 REG_WR_IND(sc, cpu_reg->inst, 0); 4144 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 4145 4146 DBEXIT(BCE_VERBOSE_RESET); 4147 } 4148 4149 4150 /****************************************************************************/ 4151 /* Starts the RISC processor. */ 4152 /* */ 4153 /* Assumes the CPU starting address has already been set. */ 4154 /* */ 4155 /* Returns: */ 4156 /* Nothing. */ 4157 /****************************************************************************/ 4158 static void 4159 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 4160 { 4161 u32 val; 4162 4163 DBENTER(BCE_VERBOSE_RESET); 4164 4165 /* Start the CPU. */ 4166 val = REG_RD_IND(sc, cpu_reg->mode); 4167 val &= ~cpu_reg->mode_value_halt; 4168 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 4169 REG_WR_IND(sc, cpu_reg->mode, val); 4170 4171 DBEXIT(BCE_VERBOSE_RESET); 4172 } 4173 4174 4175 /****************************************************************************/ 4176 /* Halts the RISC processor. */ 4177 /* */ 4178 /* Returns: */ 4179 /* Nothing. */ 4180 /****************************************************************************/ 4181 static void 4182 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 4183 { 4184 u32 val; 4185 4186 DBENTER(BCE_VERBOSE_RESET); 4187 4188 /* Halt the CPU. */ 4189 val = REG_RD_IND(sc, cpu_reg->mode); 4190 val |= cpu_reg->mode_value_halt; 4191 REG_WR_IND(sc, cpu_reg->mode, val); 4192 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 4193 4194 DBEXIT(BCE_VERBOSE_RESET); 4195 } 4196 4197 4198 /****************************************************************************/ 4199 /* Initialize the RX CPU. */ 4200 /* */ 4201 /* Returns: */ 4202 /* Nothing. */ 4203 /****************************************************************************/ 4204 static void 4205 bce_start_rxp_cpu(struct bce_softc *sc) 4206 { 4207 struct cpu_reg cpu_reg; 4208 4209 DBENTER(BCE_VERBOSE_RESET); 4210 4211 cpu_reg.mode = BCE_RXP_CPU_MODE; 4212 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 4213 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 4214 cpu_reg.state = BCE_RXP_CPU_STATE; 4215 cpu_reg.state_value_clear = 0xffffff; 4216 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 4217 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 4218 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 4219 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 4220 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 4221 cpu_reg.spad_base = BCE_RXP_SCRATCH; 4222 cpu_reg.mips_view_base = 0x8000000; 4223 4224 DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n"); 4225 bce_start_cpu(sc, &cpu_reg); 4226 4227 DBEXIT(BCE_VERBOSE_RESET); 4228 } 4229 4230 4231 /****************************************************************************/ 4232 /* Initialize the RX CPU. */ 4233 /* */ 4234 /* Returns: */ 4235 /* Nothing. */ 4236 /****************************************************************************/ 4237 static void 4238 bce_init_rxp_cpu(struct bce_softc *sc) 4239 { 4240 struct cpu_reg cpu_reg; 4241 struct fw_info fw; 4242 4243 DBENTER(BCE_VERBOSE_RESET); 4244 4245 cpu_reg.mode = BCE_RXP_CPU_MODE; 4246 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 4247 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 4248 cpu_reg.state = BCE_RXP_CPU_STATE; 4249 cpu_reg.state_value_clear = 0xffffff; 4250 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 4251 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 4252 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 4253 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 4254 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 4255 cpu_reg.spad_base = BCE_RXP_SCRATCH; 4256 cpu_reg.mips_view_base = 0x8000000; 4257 4258 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4259 fw.ver_major = bce_RXP_b09FwReleaseMajor; 4260 fw.ver_minor = bce_RXP_b09FwReleaseMinor; 4261 fw.ver_fix = bce_RXP_b09FwReleaseFix; 4262 fw.start_addr = bce_RXP_b09FwStartAddr; 4263 4264 fw.text_addr = bce_RXP_b09FwTextAddr; 4265 fw.text_len = bce_RXP_b09FwTextLen; 4266 fw.text_index = 0; 4267 fw.text = bce_RXP_b09FwText; 4268 4269 fw.data_addr = bce_RXP_b09FwDataAddr; 4270 fw.data_len = bce_RXP_b09FwDataLen; 4271 fw.data_index = 0; 4272 fw.data = bce_RXP_b09FwData; 4273 4274 fw.sbss_addr = bce_RXP_b09FwSbssAddr; 4275 fw.sbss_len = bce_RXP_b09FwSbssLen; 4276 fw.sbss_index = 0; 4277 fw.sbss = bce_RXP_b09FwSbss; 4278 4279 fw.bss_addr = bce_RXP_b09FwBssAddr; 4280 fw.bss_len = bce_RXP_b09FwBssLen; 4281 fw.bss_index = 0; 4282 fw.bss = bce_RXP_b09FwBss; 4283 4284 fw.rodata_addr = bce_RXP_b09FwRodataAddr; 4285 fw.rodata_len = bce_RXP_b09FwRodataLen; 4286 fw.rodata_index = 0; 4287 fw.rodata = bce_RXP_b09FwRodata; 4288 } else { 4289 fw.ver_major = bce_RXP_b06FwReleaseMajor; 4290 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 4291 fw.ver_fix = bce_RXP_b06FwReleaseFix; 4292 fw.start_addr = bce_RXP_b06FwStartAddr; 4293 4294 fw.text_addr = bce_RXP_b06FwTextAddr; 4295 fw.text_len = bce_RXP_b06FwTextLen; 4296 fw.text_index = 0; 4297 fw.text = bce_RXP_b06FwText; 4298 4299 fw.data_addr = bce_RXP_b06FwDataAddr; 4300 fw.data_len = bce_RXP_b06FwDataLen; 4301 fw.data_index = 0; 4302 fw.data = bce_RXP_b06FwData; 4303 4304 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 4305 fw.sbss_len = bce_RXP_b06FwSbssLen; 4306 fw.sbss_index = 0; 4307 fw.sbss = bce_RXP_b06FwSbss; 4308 4309 fw.bss_addr = bce_RXP_b06FwBssAddr; 4310 fw.bss_len = bce_RXP_b06FwBssLen; 4311 fw.bss_index = 0; 4312 fw.bss = bce_RXP_b06FwBss; 4313 4314 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 4315 fw.rodata_len = bce_RXP_b06FwRodataLen; 4316 fw.rodata_index = 0; 4317 fw.rodata = bce_RXP_b06FwRodata; 4318 } 4319 4320 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 4321 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4322 4323 /* Delay RXP start until initialization is complete. */ 4324 4325 DBEXIT(BCE_VERBOSE_RESET); 4326 } 4327 4328 4329 /****************************************************************************/ 4330 /* Initialize the TX CPU. */ 4331 /* */ 4332 /* Returns: */ 4333 /* Nothing. */ 4334 /****************************************************************************/ 4335 static void 4336 bce_init_txp_cpu(struct bce_softc *sc) 4337 { 4338 struct cpu_reg cpu_reg; 4339 struct fw_info fw; 4340 4341 DBENTER(BCE_VERBOSE_RESET); 4342 4343 cpu_reg.mode = BCE_TXP_CPU_MODE; 4344 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 4345 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 4346 cpu_reg.state = BCE_TXP_CPU_STATE; 4347 cpu_reg.state_value_clear = 0xffffff; 4348 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 4349 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 4350 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 4351 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 4352 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 4353 cpu_reg.spad_base = BCE_TXP_SCRATCH; 4354 cpu_reg.mips_view_base = 0x8000000; 4355 4356 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4357 fw.ver_major = bce_TXP_b09FwReleaseMajor; 4358 fw.ver_minor = bce_TXP_b09FwReleaseMinor; 4359 fw.ver_fix = bce_TXP_b09FwReleaseFix; 4360 fw.start_addr = bce_TXP_b09FwStartAddr; 4361 4362 fw.text_addr = bce_TXP_b09FwTextAddr; 4363 fw.text_len = bce_TXP_b09FwTextLen; 4364 fw.text_index = 0; 4365 fw.text = bce_TXP_b09FwText; 4366 4367 fw.data_addr = bce_TXP_b09FwDataAddr; 4368 fw.data_len = bce_TXP_b09FwDataLen; 4369 fw.data_index = 0; 4370 fw.data = bce_TXP_b09FwData; 4371 4372 fw.sbss_addr = bce_TXP_b09FwSbssAddr; 4373 fw.sbss_len = bce_TXP_b09FwSbssLen; 4374 fw.sbss_index = 0; 4375 fw.sbss = bce_TXP_b09FwSbss; 4376 4377 fw.bss_addr = bce_TXP_b09FwBssAddr; 4378 fw.bss_len = bce_TXP_b09FwBssLen; 4379 fw.bss_index = 0; 4380 fw.bss = bce_TXP_b09FwBss; 4381 4382 fw.rodata_addr = bce_TXP_b09FwRodataAddr; 4383 fw.rodata_len = bce_TXP_b09FwRodataLen; 4384 fw.rodata_index = 0; 4385 fw.rodata = bce_TXP_b09FwRodata; 4386 } else { 4387 fw.ver_major = bce_TXP_b06FwReleaseMajor; 4388 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 4389 fw.ver_fix = bce_TXP_b06FwReleaseFix; 4390 fw.start_addr = bce_TXP_b06FwStartAddr; 4391 4392 fw.text_addr = bce_TXP_b06FwTextAddr; 4393 fw.text_len = bce_TXP_b06FwTextLen; 4394 fw.text_index = 0; 4395 fw.text = bce_TXP_b06FwText; 4396 4397 fw.data_addr = bce_TXP_b06FwDataAddr; 4398 fw.data_len = bce_TXP_b06FwDataLen; 4399 fw.data_index = 0; 4400 fw.data = bce_TXP_b06FwData; 4401 4402 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 4403 fw.sbss_len = bce_TXP_b06FwSbssLen; 4404 fw.sbss_index = 0; 4405 fw.sbss = bce_TXP_b06FwSbss; 4406 4407 fw.bss_addr = bce_TXP_b06FwBssAddr; 4408 fw.bss_len = bce_TXP_b06FwBssLen; 4409 fw.bss_index = 0; 4410 fw.bss = bce_TXP_b06FwBss; 4411 4412 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 4413 fw.rodata_len = bce_TXP_b06FwRodataLen; 4414 fw.rodata_index = 0; 4415 fw.rodata = bce_TXP_b06FwRodata; 4416 } 4417 4418 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 4419 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4420 bce_start_cpu(sc, &cpu_reg); 4421 4422 DBEXIT(BCE_VERBOSE_RESET); 4423 } 4424 4425 4426 /****************************************************************************/ 4427 /* Initialize the TPAT CPU. */ 4428 /* */ 4429 /* Returns: */ 4430 /* Nothing. */ 4431 /****************************************************************************/ 4432 static void 4433 bce_init_tpat_cpu(struct bce_softc *sc) 4434 { 4435 struct cpu_reg cpu_reg; 4436 struct fw_info fw; 4437 4438 DBENTER(BCE_VERBOSE_RESET); 4439 4440 cpu_reg.mode = BCE_TPAT_CPU_MODE; 4441 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 4442 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 4443 cpu_reg.state = BCE_TPAT_CPU_STATE; 4444 cpu_reg.state_value_clear = 0xffffff; 4445 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 4446 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 4447 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 4448 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 4449 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 4450 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 4451 cpu_reg.mips_view_base = 0x8000000; 4452 4453 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4454 fw.ver_major = bce_TPAT_b09FwReleaseMajor; 4455 fw.ver_minor = bce_TPAT_b09FwReleaseMinor; 4456 fw.ver_fix = bce_TPAT_b09FwReleaseFix; 4457 fw.start_addr = bce_TPAT_b09FwStartAddr; 4458 4459 fw.text_addr = bce_TPAT_b09FwTextAddr; 4460 fw.text_len = bce_TPAT_b09FwTextLen; 4461 fw.text_index = 0; 4462 fw.text = bce_TPAT_b09FwText; 4463 4464 fw.data_addr = bce_TPAT_b09FwDataAddr; 4465 fw.data_len = bce_TPAT_b09FwDataLen; 4466 fw.data_index = 0; 4467 fw.data = bce_TPAT_b09FwData; 4468 4469 fw.sbss_addr = bce_TPAT_b09FwSbssAddr; 4470 fw.sbss_len = bce_TPAT_b09FwSbssLen; 4471 fw.sbss_index = 0; 4472 fw.sbss = bce_TPAT_b09FwSbss; 4473 4474 fw.bss_addr = bce_TPAT_b09FwBssAddr; 4475 fw.bss_len = bce_TPAT_b09FwBssLen; 4476 fw.bss_index = 0; 4477 fw.bss = bce_TPAT_b09FwBss; 4478 4479 fw.rodata_addr = bce_TPAT_b09FwRodataAddr; 4480 fw.rodata_len = bce_TPAT_b09FwRodataLen; 4481 fw.rodata_index = 0; 4482 fw.rodata = bce_TPAT_b09FwRodata; 4483 } else { 4484 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 4485 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 4486 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 4487 fw.start_addr = bce_TPAT_b06FwStartAddr; 4488 4489 fw.text_addr = bce_TPAT_b06FwTextAddr; 4490 fw.text_len = bce_TPAT_b06FwTextLen; 4491 fw.text_index = 0; 4492 fw.text = bce_TPAT_b06FwText; 4493 4494 fw.data_addr = bce_TPAT_b06FwDataAddr; 4495 fw.data_len = bce_TPAT_b06FwDataLen; 4496 fw.data_index = 0; 4497 fw.data = bce_TPAT_b06FwData; 4498 4499 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 4500 fw.sbss_len = bce_TPAT_b06FwSbssLen; 4501 fw.sbss_index = 0; 4502 fw.sbss = bce_TPAT_b06FwSbss; 4503 4504 fw.bss_addr = bce_TPAT_b06FwBssAddr; 4505 fw.bss_len = bce_TPAT_b06FwBssLen; 4506 fw.bss_index = 0; 4507 fw.bss = bce_TPAT_b06FwBss; 4508 4509 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 4510 fw.rodata_len = bce_TPAT_b06FwRodataLen; 4511 fw.rodata_index = 0; 4512 fw.rodata = bce_TPAT_b06FwRodata; 4513 } 4514 4515 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 4516 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4517 bce_start_cpu(sc, &cpu_reg); 4518 4519 DBEXIT(BCE_VERBOSE_RESET); 4520 } 4521 4522 4523 /****************************************************************************/ 4524 /* Initialize the CP CPU. */ 4525 /* */ 4526 /* Returns: */ 4527 /* Nothing. */ 4528 /****************************************************************************/ 4529 static void 4530 bce_init_cp_cpu(struct bce_softc *sc) 4531 { 4532 struct cpu_reg cpu_reg; 4533 struct fw_info fw; 4534 4535 DBENTER(BCE_VERBOSE_RESET); 4536 4537 cpu_reg.mode = BCE_CP_CPU_MODE; 4538 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; 4539 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; 4540 cpu_reg.state = BCE_CP_CPU_STATE; 4541 cpu_reg.state_value_clear = 0xffffff; 4542 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; 4543 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; 4544 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; 4545 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; 4546 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; 4547 cpu_reg.spad_base = BCE_CP_SCRATCH; 4548 cpu_reg.mips_view_base = 0x8000000; 4549 4550 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4551 fw.ver_major = bce_CP_b09FwReleaseMajor; 4552 fw.ver_minor = bce_CP_b09FwReleaseMinor; 4553 fw.ver_fix = bce_CP_b09FwReleaseFix; 4554 fw.start_addr = bce_CP_b09FwStartAddr; 4555 4556 fw.text_addr = bce_CP_b09FwTextAddr; 4557 fw.text_len = bce_CP_b09FwTextLen; 4558 fw.text_index = 0; 4559 fw.text = bce_CP_b09FwText; 4560 4561 fw.data_addr = bce_CP_b09FwDataAddr; 4562 fw.data_len = bce_CP_b09FwDataLen; 4563 fw.data_index = 0; 4564 fw.data = bce_CP_b09FwData; 4565 4566 fw.sbss_addr = bce_CP_b09FwSbssAddr; 4567 fw.sbss_len = bce_CP_b09FwSbssLen; 4568 fw.sbss_index = 0; 4569 fw.sbss = bce_CP_b09FwSbss; 4570 4571 fw.bss_addr = bce_CP_b09FwBssAddr; 4572 fw.bss_len = bce_CP_b09FwBssLen; 4573 fw.bss_index = 0; 4574 fw.bss = bce_CP_b09FwBss; 4575 4576 fw.rodata_addr = bce_CP_b09FwRodataAddr; 4577 fw.rodata_len = bce_CP_b09FwRodataLen; 4578 fw.rodata_index = 0; 4579 fw.rodata = bce_CP_b09FwRodata; 4580 } else { 4581 fw.ver_major = bce_CP_b06FwReleaseMajor; 4582 fw.ver_minor = bce_CP_b06FwReleaseMinor; 4583 fw.ver_fix = bce_CP_b06FwReleaseFix; 4584 fw.start_addr = bce_CP_b06FwStartAddr; 4585 4586 fw.text_addr = bce_CP_b06FwTextAddr; 4587 fw.text_len = bce_CP_b06FwTextLen; 4588 fw.text_index = 0; 4589 fw.text = bce_CP_b06FwText; 4590 4591 fw.data_addr = bce_CP_b06FwDataAddr; 4592 fw.data_len = bce_CP_b06FwDataLen; 4593 fw.data_index = 0; 4594 fw.data = bce_CP_b06FwData; 4595 4596 fw.sbss_addr = bce_CP_b06FwSbssAddr; 4597 fw.sbss_len = bce_CP_b06FwSbssLen; 4598 fw.sbss_index = 0; 4599 fw.sbss = bce_CP_b06FwSbss; 4600 4601 fw.bss_addr = bce_CP_b06FwBssAddr; 4602 fw.bss_len = bce_CP_b06FwBssLen; 4603 fw.bss_index = 0; 4604 fw.bss = bce_CP_b06FwBss; 4605 4606 fw.rodata_addr = bce_CP_b06FwRodataAddr; 4607 fw.rodata_len = bce_CP_b06FwRodataLen; 4608 fw.rodata_index = 0; 4609 fw.rodata = bce_CP_b06FwRodata; 4610 } 4611 4612 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); 4613 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4614 bce_start_cpu(sc, &cpu_reg); 4615 4616 DBEXIT(BCE_VERBOSE_RESET); 4617 } 4618 4619 4620 /****************************************************************************/ 4621 /* Initialize the COM CPU. */ 4622 /* */ 4623 /* Returns: */ 4624 /* Nothing. */ 4625 /****************************************************************************/ 4626 static void 4627 bce_init_com_cpu(struct bce_softc *sc) 4628 { 4629 struct cpu_reg cpu_reg; 4630 struct fw_info fw; 4631 4632 DBENTER(BCE_VERBOSE_RESET); 4633 4634 cpu_reg.mode = BCE_COM_CPU_MODE; 4635 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 4636 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 4637 cpu_reg.state = BCE_COM_CPU_STATE; 4638 cpu_reg.state_value_clear = 0xffffff; 4639 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 4640 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 4641 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 4642 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 4643 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 4644 cpu_reg.spad_base = BCE_COM_SCRATCH; 4645 cpu_reg.mips_view_base = 0x8000000; 4646 4647 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4648 fw.ver_major = bce_COM_b09FwReleaseMajor; 4649 fw.ver_minor = bce_COM_b09FwReleaseMinor; 4650 fw.ver_fix = bce_COM_b09FwReleaseFix; 4651 fw.start_addr = bce_COM_b09FwStartAddr; 4652 4653 fw.text_addr = bce_COM_b09FwTextAddr; 4654 fw.text_len = bce_COM_b09FwTextLen; 4655 fw.text_index = 0; 4656 fw.text = bce_COM_b09FwText; 4657 4658 fw.data_addr = bce_COM_b09FwDataAddr; 4659 fw.data_len = bce_COM_b09FwDataLen; 4660 fw.data_index = 0; 4661 fw.data = bce_COM_b09FwData; 4662 4663 fw.sbss_addr = bce_COM_b09FwSbssAddr; 4664 fw.sbss_len = bce_COM_b09FwSbssLen; 4665 fw.sbss_index = 0; 4666 fw.sbss = bce_COM_b09FwSbss; 4667 4668 fw.bss_addr = bce_COM_b09FwBssAddr; 4669 fw.bss_len = bce_COM_b09FwBssLen; 4670 fw.bss_index = 0; 4671 fw.bss = bce_COM_b09FwBss; 4672 4673 fw.rodata_addr = bce_COM_b09FwRodataAddr; 4674 fw.rodata_len = bce_COM_b09FwRodataLen; 4675 fw.rodata_index = 0; 4676 fw.rodata = bce_COM_b09FwRodata; 4677 } else { 4678 fw.ver_major = bce_COM_b06FwReleaseMajor; 4679 fw.ver_minor = bce_COM_b06FwReleaseMinor; 4680 fw.ver_fix = bce_COM_b06FwReleaseFix; 4681 fw.start_addr = bce_COM_b06FwStartAddr; 4682 4683 fw.text_addr = bce_COM_b06FwTextAddr; 4684 fw.text_len = bce_COM_b06FwTextLen; 4685 fw.text_index = 0; 4686 fw.text = bce_COM_b06FwText; 4687 4688 fw.data_addr = bce_COM_b06FwDataAddr; 4689 fw.data_len = bce_COM_b06FwDataLen; 4690 fw.data_index = 0; 4691 fw.data = bce_COM_b06FwData; 4692 4693 fw.sbss_addr = bce_COM_b06FwSbssAddr; 4694 fw.sbss_len = bce_COM_b06FwSbssLen; 4695 fw.sbss_index = 0; 4696 fw.sbss = bce_COM_b06FwSbss; 4697 4698 fw.bss_addr = bce_COM_b06FwBssAddr; 4699 fw.bss_len = bce_COM_b06FwBssLen; 4700 fw.bss_index = 0; 4701 fw.bss = bce_COM_b06FwBss; 4702 4703 fw.rodata_addr = bce_COM_b06FwRodataAddr; 4704 fw.rodata_len = bce_COM_b06FwRodataLen; 4705 fw.rodata_index = 0; 4706 fw.rodata = bce_COM_b06FwRodata; 4707 } 4708 4709 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 4710 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4711 bce_start_cpu(sc, &cpu_reg); 4712 4713 DBEXIT(BCE_VERBOSE_RESET); 4714 } 4715 4716 4717 /****************************************************************************/ 4718 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ 4719 /* */ 4720 /* Loads the firmware for each CPU and starts the CPU. */ 4721 /* */ 4722 /* Returns: */ 4723 /* Nothing. */ 4724 /****************************************************************************/ 4725 static void 4726 bce_init_cpus(struct bce_softc *sc) 4727 { 4728 DBENTER(BCE_VERBOSE_RESET); 4729 4730 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4731 4732 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) { 4733 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1, 4734 sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1); 4735 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2, 4736 sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2); 4737 } else { 4738 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, 4739 sizeof(bce_xi_rv2p_proc1), RV2P_PROC1); 4740 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, 4741 sizeof(bce_xi_rv2p_proc2), RV2P_PROC2); 4742 } 4743 4744 } else { 4745 bce_load_rv2p_fw(sc, bce_rv2p_proc1, 4746 sizeof(bce_rv2p_proc1), RV2P_PROC1); 4747 bce_load_rv2p_fw(sc, bce_rv2p_proc2, 4748 sizeof(bce_rv2p_proc2), RV2P_PROC2); 4749 } 4750 4751 bce_init_rxp_cpu(sc); 4752 bce_init_txp_cpu(sc); 4753 bce_init_tpat_cpu(sc); 4754 bce_init_com_cpu(sc); 4755 bce_init_cp_cpu(sc); 4756 4757 DBEXIT(BCE_VERBOSE_RESET); 4758 } 4759 4760 4761 /****************************************************************************/ 4762 /* Initialize context memory. */ 4763 /* */ 4764 /* Clears the memory associated with each Context ID (CID). */ 4765 /* */ 4766 /* Returns: */ 4767 /* Nothing. */ 4768 /****************************************************************************/ 4769 static int 4770 bce_init_ctx(struct bce_softc *sc) 4771 { 4772 u32 offset, val, vcid_addr; 4773 int i, j, rc, retry_cnt; 4774 4775 rc = 0; 4776 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4777 4778 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4779 retry_cnt = CTX_INIT_RETRY_COUNT; 4780 4781 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); 4782 4783 /* 4784 * BCM5709 context memory may be cached 4785 * in host memory so prepare the host memory 4786 * for access. 4787 */ 4788 val = BCE_CTX_COMMAND_ENABLED | 4789 BCE_CTX_COMMAND_MEM_INIT | (1 << 12); 4790 val |= (BCM_PAGE_BITS - 8) << 16; 4791 REG_WR(sc, BCE_CTX_COMMAND, val); 4792 4793 /* Wait for mem init command to complete. */ 4794 for (i = 0; i < retry_cnt; i++) { 4795 val = REG_RD(sc, BCE_CTX_COMMAND); 4796 if (!(val & BCE_CTX_COMMAND_MEM_INIT)) 4797 break; 4798 DELAY(2); 4799 } 4800 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) { 4801 BCE_PRINTF("%s(): Context memory initialization failed!\n", 4802 __FUNCTION__); 4803 rc = EBUSY; 4804 goto init_ctx_fail; 4805 } 4806 4807 for (i = 0; i < sc->ctx_pages; i++) { 4808 /* Set the physical address of the context memory. */ 4809 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, 4810 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | 4811 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); 4812 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, 4813 BCE_ADDR_HI(sc->ctx_paddr[i])); 4814 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | 4815 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 4816 4817 /* Verify the context memory write was successful. */ 4818 for (j = 0; j < retry_cnt; j++) { 4819 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); 4820 if ((val & 4821 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 4822 break; 4823 DELAY(5); 4824 } 4825 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) { 4826 BCE_PRINTF("%s(): Failed to initialize " 4827 "context page %d!\n", __FUNCTION__, i); 4828 rc = EBUSY; 4829 goto init_ctx_fail; 4830 } 4831 } 4832 } else { 4833 4834 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); 4835 4836 /* 4837 * For the 5706/5708, context memory is local to 4838 * the controller, so initialize the controller 4839 * context memory. 4840 */ 4841 4842 vcid_addr = GET_CID_ADDR(96); 4843 while (vcid_addr) { 4844 4845 vcid_addr -= PHY_CTX_SIZE; 4846 4847 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); 4848 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4849 4850 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 4851 CTX_WR(sc, 0x00, offset, 0); 4852 } 4853 4854 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 4855 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4856 } 4857 4858 } 4859 init_ctx_fail: 4860 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4861 return (rc); 4862 } 4863 4864 4865 /****************************************************************************/ 4866 /* Fetch the permanent MAC address of the controller. */ 4867 /* */ 4868 /* Returns: */ 4869 /* Nothing. */ 4870 /****************************************************************************/ 4871 static void 4872 bce_get_mac_addr(struct bce_softc *sc) 4873 { 4874 u32 mac_lo = 0, mac_hi = 0; 4875 4876 DBENTER(BCE_VERBOSE_RESET); 4877 4878 /* 4879 * The NetXtreme II bootcode populates various NIC 4880 * power-on and runtime configuration items in a 4881 * shared memory area. The factory configured MAC 4882 * address is available from both NVRAM and the 4883 * shared memory area so we'll read the value from 4884 * shared memory for speed. 4885 */ 4886 4887 mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER); 4888 mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER); 4889 4890 if ((mac_lo == 0) && (mac_hi == 0)) { 4891 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 4892 __FILE__, __LINE__); 4893 } else { 4894 sc->eaddr[0] = (u_char)(mac_hi >> 8); 4895 sc->eaddr[1] = (u_char)(mac_hi >> 0); 4896 sc->eaddr[2] = (u_char)(mac_lo >> 24); 4897 sc->eaddr[3] = (u_char)(mac_lo >> 16); 4898 sc->eaddr[4] = (u_char)(mac_lo >> 8); 4899 sc->eaddr[5] = (u_char)(mac_lo >> 0); 4900 } 4901 4902 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet " 4903 "address = %6D\n", sc->eaddr, ":"); 4904 DBEXIT(BCE_VERBOSE_RESET); 4905 } 4906 4907 4908 /****************************************************************************/ 4909 /* Program the MAC address. */ 4910 /* */ 4911 /* Returns: */ 4912 /* Nothing. */ 4913 /****************************************************************************/ 4914 static void 4915 bce_set_mac_addr(struct bce_softc *sc) 4916 { 4917 u32 val; 4918 u8 *mac_addr = sc->eaddr; 4919 4920 /* ToDo: Add support for setting multiple MAC addresses. */ 4921 4922 DBENTER(BCE_VERBOSE_RESET); 4923 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = " 4924 "%6D\n", sc->eaddr, ":"); 4925 4926 val = (mac_addr[0] << 8) | mac_addr[1]; 4927 4928 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 4929 4930 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4931 (mac_addr[4] << 8) | mac_addr[5]; 4932 4933 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 4934 4935 DBEXIT(BCE_VERBOSE_RESET); 4936 } 4937 4938 4939 /****************************************************************************/ 4940 /* Stop the controller. */ 4941 /* */ 4942 /* Returns: */ 4943 /* Nothing. */ 4944 /****************************************************************************/ 4945 static void 4946 bce_stop(struct bce_softc *sc) 4947 { 4948 struct ifnet *ifp; 4949 4950 DBENTER(BCE_VERBOSE_RESET); 4951 4952 BCE_LOCK_ASSERT(sc); 4953 4954 ifp = sc->bce_ifp; 4955 4956 callout_stop(&sc->bce_tick_callout); 4957 4958 /* Disable the transmit/receive blocks. */ 4959 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); 4960 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4961 DELAY(20); 4962 4963 bce_disable_intr(sc); 4964 4965 /* Free RX buffers. */ 4966 if (bce_hdr_split == TRUE) { 4967 bce_free_pg_chain(sc); 4968 } 4969 bce_free_rx_chain(sc); 4970 4971 /* Free TX buffers. */ 4972 bce_free_tx_chain(sc); 4973 4974 sc->watchdog_timer = 0; 4975 4976 sc->bce_link_up = FALSE; 4977 4978 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4979 4980 DBEXIT(BCE_VERBOSE_RESET); 4981 } 4982 4983 4984 static int 4985 bce_reset(struct bce_softc *sc, u32 reset_code) 4986 { 4987 u32 emac_mode_save, val; 4988 int i, rc = 0; 4989 static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT | 4990 BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G; 4991 4992 DBENTER(BCE_VERBOSE_RESET); 4993 4994 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 4995 __FUNCTION__, reset_code); 4996 4997 /* 4998 * If ASF/IPMI is operational, then the EMAC Mode register already 4999 * contains appropriate values for the link settings that have 5000 * been auto-negotiated. Resetting the chip will clobber those 5001 * values. Save the important bits so we can restore them after 5002 * the reset. 5003 */ 5004 emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask; 5005 5006 /* Wait for pending PCI transactions to complete. */ 5007 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 5008 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 5009 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 5010 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 5011 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 5012 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 5013 DELAY(5); 5014 5015 /* Disable DMA */ 5016 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5017 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 5018 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 5019 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 5020 } 5021 5022 /* Assume bootcode is running. */ 5023 sc->bce_fw_timed_out = FALSE; 5024 sc->bce_drv_cardiac_arrest = FALSE; 5025 5026 /* Give the firmware a chance to prepare for the reset. */ 5027 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 5028 if (rc) 5029 goto bce_reset_exit; 5030 5031 /* Set a firmware reminder that this is a soft reset. */ 5032 bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC); 5033 5034 /* Dummy read to force the chip to complete all current transactions. */ 5035 val = REG_RD(sc, BCE_MISC_ID); 5036 5037 /* Chip reset. */ 5038 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5039 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); 5040 REG_RD(sc, BCE_MISC_COMMAND); 5041 DELAY(5); 5042 5043 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 5044 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 5045 5046 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); 5047 } else { 5048 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5049 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 5050 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 5051 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 5052 5053 /* Allow up to 30us for reset to complete. */ 5054 for (i = 0; i < 10; i++) { 5055 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 5056 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5057 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 5058 break; 5059 } 5060 DELAY(10); 5061 } 5062 5063 /* Check that reset completed successfully. */ 5064 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5065 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 5066 BCE_PRINTF("%s(%d): Reset failed!\n", 5067 __FILE__, __LINE__); 5068 rc = EBUSY; 5069 goto bce_reset_exit; 5070 } 5071 } 5072 5073 /* Make sure byte swapping is properly configured. */ 5074 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 5075 if (val != 0x01020304) { 5076 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 5077 __FILE__, __LINE__); 5078 rc = ENODEV; 5079 goto bce_reset_exit; 5080 } 5081 5082 /* Just completed a reset, assume that firmware is running again. */ 5083 sc->bce_fw_timed_out = FALSE; 5084 sc->bce_drv_cardiac_arrest = FALSE; 5085 5086 /* Wait for the firmware to finish its initialization. */ 5087 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 5088 if (rc) 5089 BCE_PRINTF("%s(%d): Firmware did not complete " 5090 "initialization!\n", __FILE__, __LINE__); 5091 /* Get firmware capabilities. */ 5092 bce_fw_cap_init(sc); 5093 5094 bce_reset_exit: 5095 /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */ 5096 val = REG_RD(sc, BCE_EMAC_MODE); 5097 val = (val & ~emac_mode_mask) | emac_mode_save; 5098 REG_WR(sc, BCE_EMAC_MODE, val); 5099 5100 DBEXIT(BCE_VERBOSE_RESET); 5101 return (rc); 5102 } 5103 5104 5105 static int 5106 bce_chipinit(struct bce_softc *sc) 5107 { 5108 u32 val; 5109 int rc = 0; 5110 5111 DBENTER(BCE_VERBOSE_RESET); 5112 5113 bce_disable_intr(sc); 5114 5115 /* 5116 * Initialize DMA byte/word swapping, configure the number of DMA 5117 * channels and PCI clock compensation delay. 5118 */ 5119 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 5120 BCE_DMA_CONFIG_DATA_WORD_SWAP | 5121 #if BYTE_ORDER == BIG_ENDIAN 5122 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 5123 #endif 5124 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 5125 DMA_READ_CHANS << 12 | 5126 DMA_WRITE_CHANS << 16; 5127 5128 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 5129 5130 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 5131 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 5132 5133 /* 5134 * This setting resolves a problem observed on certain Intel PCI 5135 * chipsets that cannot handle multiple outstanding DMA operations. 5136 * See errata E9_5706A1_65. 5137 */ 5138 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 5139 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 5140 !(sc->bce_flags & BCE_PCIX_FLAG)) 5141 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 5142 5143 REG_WR(sc, BCE_DMA_CONFIG, val); 5144 5145 /* Enable the RX_V2P and Context state machines before access. */ 5146 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5147 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 5148 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 5149 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 5150 5151 /* Initialize context mapping and zero out the quick contexts. */ 5152 if ((rc = bce_init_ctx(sc)) != 0) 5153 goto bce_chipinit_exit; 5154 5155 /* Initialize the on-boards CPUs */ 5156 bce_init_cpus(sc); 5157 5158 /* Enable management frames (NC-SI) to flow to the MCP. */ 5159 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5160 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 5161 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 5162 } 5163 5164 /* Prepare NVRAM for access. */ 5165 if ((rc = bce_init_nvram(sc)) != 0) 5166 goto bce_chipinit_exit; 5167 5168 /* Set the kernel bypass block size */ 5169 val = REG_RD(sc, BCE_MQ_CONFIG); 5170 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 5171 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 5172 5173 /* Enable bins used on the 5709. */ 5174 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5175 val |= BCE_MQ_CONFIG_BIN_MQ_MODE; 5176 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) 5177 val |= BCE_MQ_CONFIG_HALT_DIS; 5178 } 5179 5180 REG_WR(sc, BCE_MQ_CONFIG, val); 5181 5182 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 5183 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 5184 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 5185 5186 /* Set the page size and clear the RV2P processor stall bits. */ 5187 val = (BCM_PAGE_BITS - 8) << 24; 5188 REG_WR(sc, BCE_RV2P_CONFIG, val); 5189 5190 /* Configure page size. */ 5191 val = REG_RD(sc, BCE_TBDR_CONFIG); 5192 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 5193 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 5194 REG_WR(sc, BCE_TBDR_CONFIG, val); 5195 5196 /* Set the perfect match control register to default. */ 5197 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); 5198 5199 bce_chipinit_exit: 5200 DBEXIT(BCE_VERBOSE_RESET); 5201 5202 return(rc); 5203 } 5204 5205 5206 /****************************************************************************/ 5207 /* Initialize the controller in preparation to send/receive traffic. */ 5208 /* */ 5209 /* Returns: */ 5210 /* 0 for success, positive value for failure. */ 5211 /****************************************************************************/ 5212 static int 5213 bce_blockinit(struct bce_softc *sc) 5214 { 5215 u32 reg, val; 5216 int rc = 0; 5217 5218 DBENTER(BCE_VERBOSE_RESET); 5219 5220 /* Load the hardware default MAC address. */ 5221 bce_set_mac_addr(sc); 5222 5223 /* Set the Ethernet backoff seed value */ 5224 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 5225 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 5226 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 5227 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 5228 5229 sc->last_status_idx = 0; 5230 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 5231 5232 /* Set up link change interrupt generation. */ 5233 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 5234 5235 /* Program the physical address of the status block. */ 5236 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 5237 BCE_ADDR_LO(sc->status_block_paddr)); 5238 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 5239 BCE_ADDR_HI(sc->status_block_paddr)); 5240 5241 /* Program the physical address of the statistics block. */ 5242 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 5243 BCE_ADDR_LO(sc->stats_block_paddr)); 5244 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 5245 BCE_ADDR_HI(sc->stats_block_paddr)); 5246 5247 /* Program various host coalescing parameters. */ 5248 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 5249 (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); 5250 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 5251 (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); 5252 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 5253 (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip); 5254 REG_WR(sc, BCE_HC_TX_TICKS, 5255 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 5256 REG_WR(sc, BCE_HC_RX_TICKS, 5257 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 5258 REG_WR(sc, BCE_HC_COM_TICKS, 5259 (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks); 5260 REG_WR(sc, BCE_HC_CMD_TICKS, 5261 (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks); 5262 REG_WR(sc, BCE_HC_STATS_TICKS, 5263 (sc->bce_stats_ticks & 0xffff00)); 5264 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 5265 5266 /* Configure the Host Coalescing block. */ 5267 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 5268 BCE_HC_CONFIG_COLLECT_STATS; 5269 5270 #if 0 5271 /* ToDo: Add MSI-X support. */ 5272 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 5273 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + 5274 BCE_HC_SB_CONFIG_1; 5275 5276 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); 5277 5278 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | 5279 BCE_HC_SB_CONFIG_1_ONE_SHOT); 5280 5281 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, 5282 (sc->tx_quick_cons_trip_int << 16) | 5283 sc->tx_quick_cons_trip); 5284 5285 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, 5286 (sc->tx_ticks_int << 16) | sc->tx_ticks); 5287 5288 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 5289 } 5290 5291 /* 5292 * Tell the HC block to automatically set the 5293 * INT_MASK bit after an MSI/MSI-X interrupt 5294 * is generated so the driver doesn't have to. 5295 */ 5296 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) 5297 val |= BCE_HC_CONFIG_ONE_SHOT; 5298 5299 /* Set the MSI-X status blocks to 128 byte boundaries. */ 5300 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 5301 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 5302 #endif 5303 5304 REG_WR(sc, BCE_HC_CONFIG, val); 5305 5306 /* Clear the internal statistics counters. */ 5307 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 5308 5309 /* Verify that bootcode is running. */ 5310 reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE); 5311 5312 DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control), 5313 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 5314 __FILE__, __LINE__); 5315 reg = 0); 5316 5317 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 5318 BCE_DEV_INFO_SIGNATURE_MAGIC) { 5319 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 5320 "Expected: 08%08X\n", __FILE__, __LINE__, 5321 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 5322 BCE_DEV_INFO_SIGNATURE_MAGIC); 5323 rc = ENODEV; 5324 goto bce_blockinit_exit; 5325 } 5326 5327 /* Enable DMA */ 5328 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5329 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 5330 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 5331 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 5332 } 5333 5334 /* Allow bootcode to apply additional fixes before enabling MAC. */ 5335 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | 5336 BCE_DRV_MSG_CODE_RESET); 5337 5338 /* Enable link state change interrupt generation. */ 5339 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 5340 5341 /* Enable the RXP. */ 5342 bce_start_rxp_cpu(sc); 5343 5344 /* Disable management frames (NC-SI) from flowing to the MCP. */ 5345 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5346 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) & 5347 ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 5348 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 5349 } 5350 5351 /* Enable all remaining blocks in the MAC. */ 5352 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 5353 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5354 BCE_MISC_ENABLE_DEFAULT_XI); 5355 else 5356 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5357 BCE_MISC_ENABLE_DEFAULT); 5358 5359 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 5360 DELAY(20); 5361 5362 /* Save the current host coalescing block settings. */ 5363 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); 5364 5365 bce_blockinit_exit: 5366 DBEXIT(BCE_VERBOSE_RESET); 5367 5368 return (rc); 5369 } 5370 5371 5372 /****************************************************************************/ 5373 /* Encapsulate an mbuf into the rx_bd chain. */ 5374 /* */ 5375 /* Returns: */ 5376 /* 0 for success, positive value for failure. */ 5377 /****************************************************************************/ 5378 static int 5379 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 5380 u16 *chain_prod, u32 *prod_bseq) 5381 { 5382 bus_dmamap_t map; 5383 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 5384 struct mbuf *m_new = NULL; 5385 struct rx_bd *rxbd; 5386 int nsegs, error, rc = 0; 5387 #ifdef BCE_DEBUG 5388 u16 debug_chain_prod = *chain_prod; 5389 #endif 5390 5391 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5392 5393 /* Make sure the inputs are valid. */ 5394 DBRUNIF((*chain_prod > MAX_RX_BD_ALLOC), 5395 BCE_PRINTF("%s(%d): RX producer out of range: " 5396 "0x%04X > 0x%04X\n", __FILE__, __LINE__, 5397 *chain_prod, (u16) MAX_RX_BD_ALLOC)); 5398 5399 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5400 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, 5401 *prod, *chain_prod, *prod_bseq); 5402 5403 /* Update some debug statistic counters */ 5404 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5405 sc->rx_low_watermark = sc->free_rx_bd); 5406 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), 5407 sc->rx_empty_count++); 5408 5409 /* Check whether this is a new mbuf allocation. */ 5410 if (m == NULL) { 5411 5412 /* Simulate an mbuf allocation failure. */ 5413 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5414 sc->mbuf_alloc_failed_count++; 5415 sc->mbuf_alloc_failed_sim_count++; 5416 rc = ENOBUFS; 5417 goto bce_get_rx_buf_exit); 5418 5419 /* This is a new mbuf allocation. */ 5420 if (bce_hdr_split == TRUE) 5421 MGETHDR(m_new, M_NOWAIT, MT_DATA); 5422 else 5423 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 5424 sc->rx_bd_mbuf_alloc_size); 5425 5426 if (m_new == NULL) { 5427 sc->mbuf_alloc_failed_count++; 5428 rc = ENOBUFS; 5429 goto bce_get_rx_buf_exit; 5430 } 5431 5432 DBRUN(sc->debug_rx_mbuf_alloc++); 5433 } else { 5434 /* Reuse an existing mbuf. */ 5435 m_new = m; 5436 } 5437 5438 /* Make sure we have a valid packet header. */ 5439 M_ASSERTPKTHDR(m_new); 5440 5441 /* Initialize the mbuf size and pad if necessary for alignment. */ 5442 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; 5443 m_adj(m_new, sc->rx_bd_mbuf_align_pad); 5444 5445 /* ToDo: Consider calling m_fragment() to test error handling. */ 5446 5447 /* Map the mbuf cluster into device memory. */ 5448 map = sc->rx_mbuf_map[*chain_prod]; 5449 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new, 5450 segs, &nsegs, BUS_DMA_NOWAIT); 5451 5452 /* Handle any mapping errors. */ 5453 if (error) { 5454 BCE_PRINTF("%s(%d): Error mapping mbuf into RX " 5455 "chain (%d)!\n", __FILE__, __LINE__, error); 5456 5457 sc->dma_map_addr_rx_failed_count++; 5458 m_freem(m_new); 5459 5460 DBRUN(sc->debug_rx_mbuf_alloc--); 5461 5462 rc = ENOBUFS; 5463 goto bce_get_rx_buf_exit; 5464 } 5465 5466 /* All mbufs must map to a single segment. */ 5467 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5468 __FUNCTION__, nsegs)); 5469 5470 /* Setup the rx_bd for the segment. */ 5471 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 5472 5473 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5474 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5475 rxbd->rx_bd_len = htole32(segs[0].ds_len); 5476 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5477 *prod_bseq += segs[0].ds_len; 5478 5479 /* Save the mbuf and update our counter. */ 5480 sc->rx_mbuf_ptr[*chain_prod] = m_new; 5481 sc->free_rx_bd -= nsegs; 5482 5483 DBRUNMSG(BCE_INSANE_RECV, 5484 bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs)); 5485 5486 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5487 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", 5488 __FUNCTION__, *prod, *chain_prod, *prod_bseq); 5489 5490 bce_get_rx_buf_exit: 5491 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5492 5493 return(rc); 5494 } 5495 5496 5497 /****************************************************************************/ 5498 /* Encapsulate an mbuf cluster into the page chain. */ 5499 /* */ 5500 /* Returns: */ 5501 /* 0 for success, positive value for failure. */ 5502 /****************************************************************************/ 5503 static int 5504 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 5505 u16 *prod_idx) 5506 { 5507 bus_dmamap_t map; 5508 bus_addr_t busaddr; 5509 struct mbuf *m_new = NULL; 5510 struct rx_bd *pgbd; 5511 int error, rc = 0; 5512 #ifdef BCE_DEBUG 5513 u16 debug_prod_idx = *prod_idx; 5514 #endif 5515 5516 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5517 5518 /* Make sure the inputs are valid. */ 5519 DBRUNIF((*prod_idx > MAX_PG_BD_ALLOC), 5520 BCE_PRINTF("%s(%d): page producer out of range: " 5521 "0x%04X > 0x%04X\n", __FILE__, __LINE__, 5522 *prod_idx, (u16) MAX_PG_BD_ALLOC)); 5523 5524 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5525 "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 5526 5527 /* Update counters if we've hit a new low or run out of pages. */ 5528 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), 5529 sc->pg_low_watermark = sc->free_pg_bd); 5530 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); 5531 5532 /* Check whether this is a new mbuf allocation. */ 5533 if (m == NULL) { 5534 5535 /* Simulate an mbuf allocation failure. */ 5536 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5537 sc->mbuf_alloc_failed_count++; 5538 sc->mbuf_alloc_failed_sim_count++; 5539 rc = ENOBUFS; 5540 goto bce_get_pg_buf_exit); 5541 5542 /* This is a new mbuf allocation. */ 5543 m_new = m_getcl(M_NOWAIT, MT_DATA, 0); 5544 if (m_new == NULL) { 5545 sc->mbuf_alloc_failed_count++; 5546 rc = ENOBUFS; 5547 goto bce_get_pg_buf_exit; 5548 } 5549 5550 DBRUN(sc->debug_pg_mbuf_alloc++); 5551 } else { 5552 /* Reuse an existing mbuf. */ 5553 m_new = m; 5554 m_new->m_data = m_new->m_ext.ext_buf; 5555 } 5556 5557 m_new->m_len = sc->pg_bd_mbuf_alloc_size; 5558 5559 /* ToDo: Consider calling m_fragment() to test error handling. */ 5560 5561 /* Map the mbuf cluster into device memory. */ 5562 map = sc->pg_mbuf_map[*prod_idx]; 5563 error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *), 5564 sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr, 5565 &busaddr, BUS_DMA_NOWAIT); 5566 5567 /* Handle any mapping errors. */ 5568 if (error) { 5569 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", 5570 __FILE__, __LINE__); 5571 5572 m_freem(m_new); 5573 DBRUN(sc->debug_pg_mbuf_alloc--); 5574 5575 rc = ENOBUFS; 5576 goto bce_get_pg_buf_exit; 5577 } 5578 5579 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ 5580 5581 /* 5582 * The page chain uses the same rx_bd data structure 5583 * as the receive chain but doesn't require a byte sequence (bseq). 5584 */ 5585 pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)]; 5586 5587 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(busaddr)); 5588 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(busaddr)); 5589 pgbd->rx_bd_len = htole32(sc->pg_bd_mbuf_alloc_size); 5590 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5591 5592 /* Save the mbuf and update our counter. */ 5593 sc->pg_mbuf_ptr[*prod_idx] = m_new; 5594 sc->free_pg_bd--; 5595 5596 DBRUNMSG(BCE_INSANE_RECV, 5597 bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1)); 5598 5599 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5600 "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 5601 5602 bce_get_pg_buf_exit: 5603 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5604 5605 return(rc); 5606 } 5607 5608 5609 /****************************************************************************/ 5610 /* Initialize the TX context memory. */ 5611 /* */ 5612 /* Returns: */ 5613 /* Nothing */ 5614 /****************************************************************************/ 5615 static void 5616 bce_init_tx_context(struct bce_softc *sc) 5617 { 5618 u32 val; 5619 5620 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5621 5622 /* Initialize the context ID for an L2 TX chain. */ 5623 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5624 /* Set the CID type to support an L2 connection. */ 5625 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | 5626 BCE_L2CTX_TX_TYPE_SIZE_L2_XI; 5627 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); 5628 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); 5629 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5630 BCE_L2CTX_TX_CMD_TYPE_XI, val); 5631 5632 /* Point the hardware to the first page in the chain. */ 5633 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5634 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5635 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); 5636 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5637 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5638 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); 5639 } else { 5640 /* Set the CID type to support an L2 connection. */ 5641 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; 5642 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); 5643 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); 5644 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); 5645 5646 /* Point the hardware to the first page in the chain. */ 5647 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5648 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5649 BCE_L2CTX_TX_TBDR_BHADDR_HI, val); 5650 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5651 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5652 BCE_L2CTX_TX_TBDR_BHADDR_LO, val); 5653 } 5654 5655 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5656 } 5657 5658 5659 /****************************************************************************/ 5660 /* Allocate memory and initialize the TX data structures. */ 5661 /* */ 5662 /* Returns: */ 5663 /* 0 for success, positive value for failure. */ 5664 /****************************************************************************/ 5665 static int 5666 bce_init_tx_chain(struct bce_softc *sc) 5667 { 5668 struct tx_bd *txbd; 5669 int i, rc = 0; 5670 5671 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5672 5673 /* Set the initial TX producer/consumer indices. */ 5674 sc->tx_prod = 0; 5675 sc->tx_cons = 0; 5676 sc->tx_prod_bseq = 0; 5677 sc->used_tx_bd = 0; 5678 sc->max_tx_bd = USABLE_TX_BD_ALLOC; 5679 DBRUN(sc->tx_hi_watermark = 0); 5680 DBRUN(sc->tx_full_count = 0); 5681 5682 /* 5683 * The NetXtreme II supports a linked-list structre called 5684 * a Buffer Descriptor Chain (or BD chain). A BD chain 5685 * consists of a series of 1 or more chain pages, each of which 5686 * consists of a fixed number of BD entries. 5687 * The last BD entry on each page is a pointer to the next page 5688 * in the chain, and the last pointer in the BD chain 5689 * points back to the beginning of the chain. 5690 */ 5691 5692 /* Set the TX next pointer chain entries. */ 5693 for (i = 0; i < sc->tx_pages; i++) { 5694 int j; 5695 5696 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 5697 5698 /* Check if we've reached the last page. */ 5699 if (i == (sc->tx_pages - 1)) 5700 j = 0; 5701 else 5702 j = i + 1; 5703 5704 txbd->tx_bd_haddr_hi = 5705 htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 5706 txbd->tx_bd_haddr_lo = 5707 htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 5708 } 5709 5710 bce_init_tx_context(sc); 5711 5712 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC)); 5713 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5714 5715 return(rc); 5716 } 5717 5718 5719 /****************************************************************************/ 5720 /* Free memory and clear the TX data structures. */ 5721 /* */ 5722 /* Returns: */ 5723 /* Nothing. */ 5724 /****************************************************************************/ 5725 static void 5726 bce_free_tx_chain(struct bce_softc *sc) 5727 { 5728 int i; 5729 5730 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5731 5732 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 5733 for (i = 0; i < MAX_TX_BD_AVAIL; i++) { 5734 if (sc->tx_mbuf_ptr[i] != NULL) { 5735 if (sc->tx_mbuf_map[i] != NULL) 5736 bus_dmamap_sync(sc->tx_mbuf_tag, 5737 sc->tx_mbuf_map[i], 5738 BUS_DMASYNC_POSTWRITE); 5739 m_freem(sc->tx_mbuf_ptr[i]); 5740 sc->tx_mbuf_ptr[i] = NULL; 5741 DBRUN(sc->debug_tx_mbuf_alloc--); 5742 } 5743 } 5744 5745 /* Clear each TX chain page. */ 5746 for (i = 0; i < sc->tx_pages; i++) 5747 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 5748 5749 sc->used_tx_bd = 0; 5750 5751 /* Check if we lost any mbufs in the process. */ 5752 DBRUNIF((sc->debug_tx_mbuf_alloc), 5753 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 5754 "from tx chain!\n", __FILE__, __LINE__, 5755 sc->debug_tx_mbuf_alloc)); 5756 5757 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5758 } 5759 5760 5761 /****************************************************************************/ 5762 /* Initialize the RX context memory. */ 5763 /* */ 5764 /* Returns: */ 5765 /* Nothing */ 5766 /****************************************************************************/ 5767 static void 5768 bce_init_rx_context(struct bce_softc *sc) 5769 { 5770 u32 val; 5771 5772 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5773 5774 /* Init the type, size, and BD cache levels for the RX context. */ 5775 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 5776 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | 5777 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); 5778 5779 /* 5780 * Set the level for generating pause frames 5781 * when the number of available rx_bd's gets 5782 * too low (the low watermark) and the level 5783 * when pause frames can be stopped (the high 5784 * watermark). 5785 */ 5786 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5787 u32 lo_water, hi_water; 5788 5789 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) { 5790 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; 5791 } else { 5792 lo_water = 0; 5793 } 5794 5795 if (lo_water >= USABLE_RX_BD_ALLOC) { 5796 lo_water = 0; 5797 } 5798 5799 hi_water = USABLE_RX_BD_ALLOC / 4; 5800 5801 if (hi_water <= lo_water) { 5802 lo_water = 0; 5803 } 5804 5805 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; 5806 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; 5807 5808 if (hi_water > 0xf) 5809 hi_water = 0xf; 5810 else if (hi_water == 0) 5811 lo_water = 0; 5812 5813 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | 5814 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); 5815 } 5816 5817 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); 5818 5819 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 5820 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5821 val = REG_RD(sc, BCE_MQ_MAP_L2_5); 5822 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); 5823 } 5824 5825 /* Point the hardware to the first page in the chain. */ 5826 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 5827 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); 5828 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 5829 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); 5830 5831 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5832 } 5833 5834 5835 /****************************************************************************/ 5836 /* Allocate memory and initialize the RX data structures. */ 5837 /* */ 5838 /* Returns: */ 5839 /* 0 for success, positive value for failure. */ 5840 /****************************************************************************/ 5841 static int 5842 bce_init_rx_chain(struct bce_softc *sc) 5843 { 5844 struct rx_bd *rxbd; 5845 int i, rc = 0; 5846 5847 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5848 BCE_VERBOSE_CTX); 5849 5850 /* Initialize the RX producer and consumer indices. */ 5851 sc->rx_prod = 0; 5852 sc->rx_cons = 0; 5853 sc->rx_prod_bseq = 0; 5854 sc->free_rx_bd = USABLE_RX_BD_ALLOC; 5855 sc->max_rx_bd = USABLE_RX_BD_ALLOC; 5856 5857 /* Initialize the RX next pointer chain entries. */ 5858 for (i = 0; i < sc->rx_pages; i++) { 5859 int j; 5860 5861 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 5862 5863 /* Check if we've reached the last page. */ 5864 if (i == (sc->rx_pages - 1)) 5865 j = 0; 5866 else 5867 j = i + 1; 5868 5869 /* Setup the chain page pointers. */ 5870 rxbd->rx_bd_haddr_hi = 5871 htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 5872 rxbd->rx_bd_haddr_lo = 5873 htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 5874 } 5875 5876 /* Fill up the RX chain. */ 5877 bce_fill_rx_chain(sc); 5878 5879 DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC); 5880 DBRUN(sc->rx_empty_count = 0); 5881 for (i = 0; i < sc->rx_pages; i++) { 5882 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], 5883 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5884 } 5885 5886 bce_init_rx_context(sc); 5887 5888 DBRUNMSG(BCE_EXTREME_RECV, 5889 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC)); 5890 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5891 BCE_VERBOSE_CTX); 5892 5893 /* ToDo: Are there possible failure modes here? */ 5894 5895 return(rc); 5896 } 5897 5898 5899 /****************************************************************************/ 5900 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 5901 /* occurs. */ 5902 /* */ 5903 /* Returns: */ 5904 /* Nothing */ 5905 /****************************************************************************/ 5906 static void 5907 bce_fill_rx_chain(struct bce_softc *sc) 5908 { 5909 u16 prod, prod_idx; 5910 u32 prod_bseq; 5911 5912 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5913 BCE_VERBOSE_CTX); 5914 5915 /* Get the RX chain producer indices. */ 5916 prod = sc->rx_prod; 5917 prod_bseq = sc->rx_prod_bseq; 5918 5919 /* Keep filling the RX chain until it's full. */ 5920 while (sc->free_rx_bd > 0) { 5921 prod_idx = RX_CHAIN_IDX(prod); 5922 if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) { 5923 /* Bail out if we can't add an mbuf to the chain. */ 5924 break; 5925 } 5926 prod = NEXT_RX_BD(prod); 5927 } 5928 5929 /* Save the RX chain producer indices. */ 5930 sc->rx_prod = prod; 5931 sc->rx_prod_bseq = prod_bseq; 5932 5933 /* We should never end up pointing to a next page pointer. */ 5934 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5935 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", 5936 __FUNCTION__, sc->rx_prod)); 5937 5938 /* Write the mailbox and tell the chip about the waiting rx_bd's. */ 5939 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + 5940 BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod); 5941 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + 5942 BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq); 5943 5944 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5945 BCE_VERBOSE_CTX); 5946 } 5947 5948 5949 /****************************************************************************/ 5950 /* Free memory and clear the RX data structures. */ 5951 /* */ 5952 /* Returns: */ 5953 /* Nothing. */ 5954 /****************************************************************************/ 5955 static void 5956 bce_free_rx_chain(struct bce_softc *sc) 5957 { 5958 int i; 5959 5960 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5961 5962 /* Free any mbufs still in the RX mbuf chain. */ 5963 for (i = 0; i < MAX_RX_BD_AVAIL; i++) { 5964 if (sc->rx_mbuf_ptr[i] != NULL) { 5965 if (sc->rx_mbuf_map[i] != NULL) 5966 bus_dmamap_sync(sc->rx_mbuf_tag, 5967 sc->rx_mbuf_map[i], 5968 BUS_DMASYNC_POSTREAD); 5969 m_freem(sc->rx_mbuf_ptr[i]); 5970 sc->rx_mbuf_ptr[i] = NULL; 5971 DBRUN(sc->debug_rx_mbuf_alloc--); 5972 } 5973 } 5974 5975 /* Clear each RX chain page. */ 5976 for (i = 0; i < sc->rx_pages; i++) 5977 if (sc->rx_bd_chain[i] != NULL) { 5978 bzero((char *)sc->rx_bd_chain[i], 5979 BCE_RX_CHAIN_PAGE_SZ); 5980 } 5981 5982 sc->free_rx_bd = sc->max_rx_bd; 5983 5984 /* Check if we lost any mbufs in the process. */ 5985 DBRUNIF((sc->debug_rx_mbuf_alloc), 5986 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", 5987 __FUNCTION__, sc->debug_rx_mbuf_alloc)); 5988 5989 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5990 } 5991 5992 5993 /****************************************************************************/ 5994 /* Allocate memory and initialize the page data structures. */ 5995 /* Assumes that bce_init_rx_chain() has not already been called. */ 5996 /* */ 5997 /* Returns: */ 5998 /* 0 for success, positive value for failure. */ 5999 /****************************************************************************/ 6000 static int 6001 bce_init_pg_chain(struct bce_softc *sc) 6002 { 6003 struct rx_bd *pgbd; 6004 int i, rc = 0; 6005 u32 val; 6006 6007 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 6008 BCE_VERBOSE_CTX); 6009 6010 /* Initialize the page producer and consumer indices. */ 6011 sc->pg_prod = 0; 6012 sc->pg_cons = 0; 6013 sc->free_pg_bd = USABLE_PG_BD_ALLOC; 6014 sc->max_pg_bd = USABLE_PG_BD_ALLOC; 6015 DBRUN(sc->pg_low_watermark = sc->max_pg_bd); 6016 DBRUN(sc->pg_empty_count = 0); 6017 6018 /* Initialize the page next pointer chain entries. */ 6019 for (i = 0; i < sc->pg_pages; i++) { 6020 int j; 6021 6022 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; 6023 6024 /* Check if we've reached the last page. */ 6025 if (i == (sc->pg_pages - 1)) 6026 j = 0; 6027 else 6028 j = i + 1; 6029 6030 /* Setup the chain page pointers. */ 6031 pgbd->rx_bd_haddr_hi = 6032 htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); 6033 pgbd->rx_bd_haddr_lo = 6034 htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); 6035 } 6036 6037 /* Setup the MQ BIN mapping for host_pg_bidx. */ 6038 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 6039 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); 6040 6041 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); 6042 6043 /* Configure the rx_bd and page chain mbuf cluster size. */ 6044 val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size; 6045 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); 6046 6047 /* Configure the context reserved for jumbo support. */ 6048 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, 6049 BCE_L2CTX_RX_RBDC_JUMBO_KEY); 6050 6051 /* Point the hardware to the first page in the page chain. */ 6052 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); 6053 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); 6054 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); 6055 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); 6056 6057 /* Fill up the page chain. */ 6058 bce_fill_pg_chain(sc); 6059 6060 for (i = 0; i < sc->pg_pages; i++) { 6061 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], 6062 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 6063 } 6064 6065 DBRUNMSG(BCE_EXTREME_RECV, 6066 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC)); 6067 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 6068 BCE_VERBOSE_CTX); 6069 return(rc); 6070 } 6071 6072 6073 /****************************************************************************/ 6074 /* Add mbufs to the page chain until its full or an mbuf allocation error */ 6075 /* occurs. */ 6076 /* */ 6077 /* Returns: */ 6078 /* Nothing */ 6079 /****************************************************************************/ 6080 static void 6081 bce_fill_pg_chain(struct bce_softc *sc) 6082 { 6083 u16 prod, prod_idx; 6084 6085 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 6086 BCE_VERBOSE_CTX); 6087 6088 /* Get the page chain prodcuer index. */ 6089 prod = sc->pg_prod; 6090 6091 /* Keep filling the page chain until it's full. */ 6092 while (sc->free_pg_bd > 0) { 6093 prod_idx = PG_CHAIN_IDX(prod); 6094 if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) { 6095 /* Bail out if we can't add an mbuf to the chain. */ 6096 break; 6097 } 6098 prod = NEXT_PG_BD(prod); 6099 } 6100 6101 /* Save the page chain producer index. */ 6102 sc->pg_prod = prod; 6103 6104 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 6105 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", 6106 __FUNCTION__, sc->pg_prod)); 6107 6108 /* 6109 * Write the mailbox and tell the chip about 6110 * the new rx_bd's in the page chain. 6111 */ 6112 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + 6113 BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod); 6114 6115 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 6116 BCE_VERBOSE_CTX); 6117 } 6118 6119 6120 /****************************************************************************/ 6121 /* Free memory and clear the RX data structures. */ 6122 /* */ 6123 /* Returns: */ 6124 /* Nothing. */ 6125 /****************************************************************************/ 6126 static void 6127 bce_free_pg_chain(struct bce_softc *sc) 6128 { 6129 int i; 6130 6131 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 6132 6133 /* Free any mbufs still in the mbuf page chain. */ 6134 for (i = 0; i < MAX_PG_BD_AVAIL; i++) { 6135 if (sc->pg_mbuf_ptr[i] != NULL) { 6136 if (sc->pg_mbuf_map[i] != NULL) 6137 bus_dmamap_sync(sc->pg_mbuf_tag, 6138 sc->pg_mbuf_map[i], 6139 BUS_DMASYNC_POSTREAD); 6140 m_freem(sc->pg_mbuf_ptr[i]); 6141 sc->pg_mbuf_ptr[i] = NULL; 6142 DBRUN(sc->debug_pg_mbuf_alloc--); 6143 } 6144 } 6145 6146 /* Clear each page chain pages. */ 6147 for (i = 0; i < sc->pg_pages; i++) 6148 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 6149 6150 sc->free_pg_bd = sc->max_pg_bd; 6151 6152 /* Check if we lost any mbufs in the process. */ 6153 DBRUNIF((sc->debug_pg_mbuf_alloc), 6154 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", 6155 __FUNCTION__, sc->debug_pg_mbuf_alloc)); 6156 6157 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 6158 } 6159 6160 6161 static u32 6162 bce_get_rphy_link(struct bce_softc *sc) 6163 { 6164 u32 advertise, link; 6165 int fdpx; 6166 6167 advertise = 0; 6168 fdpx = 0; 6169 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) 6170 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK); 6171 else 6172 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK); 6173 if (link & BCE_NETLINK_ANEG_ENB) 6174 advertise |= BCE_NETLINK_ANEG_ENB; 6175 if (link & BCE_NETLINK_SPEED_10HALF) 6176 advertise |= BCE_NETLINK_SPEED_10HALF; 6177 if (link & BCE_NETLINK_SPEED_10FULL) { 6178 advertise |= BCE_NETLINK_SPEED_10FULL; 6179 fdpx++; 6180 } 6181 if (link & BCE_NETLINK_SPEED_100HALF) 6182 advertise |= BCE_NETLINK_SPEED_100HALF; 6183 if (link & BCE_NETLINK_SPEED_100FULL) { 6184 advertise |= BCE_NETLINK_SPEED_100FULL; 6185 fdpx++; 6186 } 6187 if (link & BCE_NETLINK_SPEED_1000HALF) 6188 advertise |= BCE_NETLINK_SPEED_1000HALF; 6189 if (link & BCE_NETLINK_SPEED_1000FULL) { 6190 advertise |= BCE_NETLINK_SPEED_1000FULL; 6191 fdpx++; 6192 } 6193 if (link & BCE_NETLINK_SPEED_2500HALF) 6194 advertise |= BCE_NETLINK_SPEED_2500HALF; 6195 if (link & BCE_NETLINK_SPEED_2500FULL) { 6196 advertise |= BCE_NETLINK_SPEED_2500FULL; 6197 fdpx++; 6198 } 6199 if (fdpx) 6200 advertise |= BCE_NETLINK_FC_PAUSE_SYM | 6201 BCE_NETLINK_FC_PAUSE_ASYM; 6202 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6203 advertise |= BCE_NETLINK_PHY_APP_REMOTE | 6204 BCE_NETLINK_ETH_AT_WIRESPEED; 6205 6206 return (advertise); 6207 } 6208 6209 6210 /****************************************************************************/ 6211 /* Set media options. */ 6212 /* */ 6213 /* Returns: */ 6214 /* 0 for success, positive value for failure. */ 6215 /****************************************************************************/ 6216 static int 6217 bce_ifmedia_upd(struct ifnet *ifp) 6218 { 6219 struct bce_softc *sc = ifp->if_softc; 6220 int error; 6221 6222 DBENTER(BCE_VERBOSE); 6223 6224 BCE_LOCK(sc); 6225 error = bce_ifmedia_upd_locked(ifp); 6226 BCE_UNLOCK(sc); 6227 6228 DBEXIT(BCE_VERBOSE); 6229 return (error); 6230 } 6231 6232 6233 /****************************************************************************/ 6234 /* Set media options. */ 6235 /* */ 6236 /* Returns: */ 6237 /* Nothing. */ 6238 /****************************************************************************/ 6239 static int 6240 bce_ifmedia_upd_locked(struct ifnet *ifp) 6241 { 6242 struct bce_softc *sc = ifp->if_softc; 6243 struct mii_data *mii; 6244 struct mii_softc *miisc; 6245 struct ifmedia *ifm; 6246 u32 link; 6247 int error, fdx; 6248 6249 DBENTER(BCE_VERBOSE_PHY); 6250 6251 error = 0; 6252 BCE_LOCK_ASSERT(sc); 6253 6254 sc->bce_link_up = FALSE; 6255 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 6256 ifm = &sc->bce_ifmedia; 6257 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 6258 return (EINVAL); 6259 link = 0; 6260 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX; 6261 switch(IFM_SUBTYPE(ifm->ifm_media)) { 6262 case IFM_AUTO: 6263 /* 6264 * Check advertised link of remote PHY by reading 6265 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK. 6266 * Always use the same link type of remote PHY. 6267 */ 6268 link = bce_get_rphy_link(sc); 6269 break; 6270 case IFM_2500_SX: 6271 if ((sc->bce_phy_flags & 6272 (BCE_PHY_REMOTE_PORT_FIBER_FLAG | 6273 BCE_PHY_2_5G_CAPABLE_FLAG)) == 0) 6274 return (EINVAL); 6275 /* 6276 * XXX 6277 * Have to enable forced 2.5Gbps configuration. 6278 */ 6279 if (fdx != 0) 6280 link |= BCE_NETLINK_SPEED_2500FULL; 6281 else 6282 link |= BCE_NETLINK_SPEED_2500HALF; 6283 break; 6284 case IFM_1000_SX: 6285 if ((sc->bce_phy_flags & 6286 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6287 return (EINVAL); 6288 /* 6289 * XXX 6290 * Have to disable 2.5Gbps configuration. 6291 */ 6292 if (fdx != 0) 6293 link = BCE_NETLINK_SPEED_1000FULL; 6294 else 6295 link = BCE_NETLINK_SPEED_1000HALF; 6296 break; 6297 case IFM_1000_T: 6298 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6299 return (EINVAL); 6300 if (fdx != 0) 6301 link = BCE_NETLINK_SPEED_1000FULL; 6302 else 6303 link = BCE_NETLINK_SPEED_1000HALF; 6304 break; 6305 case IFM_100_TX: 6306 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6307 return (EINVAL); 6308 if (fdx != 0) 6309 link = BCE_NETLINK_SPEED_100FULL; 6310 else 6311 link = BCE_NETLINK_SPEED_100HALF; 6312 break; 6313 case IFM_10_T: 6314 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6315 return (EINVAL); 6316 if (fdx != 0) 6317 link = BCE_NETLINK_SPEED_10FULL; 6318 else 6319 link = BCE_NETLINK_SPEED_10HALF; 6320 break; 6321 default: 6322 return (EINVAL); 6323 } 6324 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) { 6325 /* 6326 * XXX 6327 * Advertise pause capability for full-duplex media. 6328 */ 6329 if (fdx != 0) 6330 link |= BCE_NETLINK_FC_PAUSE_SYM | 6331 BCE_NETLINK_FC_PAUSE_ASYM; 6332 if ((sc->bce_phy_flags & 6333 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6334 link |= BCE_NETLINK_PHY_APP_REMOTE | 6335 BCE_NETLINK_ETH_AT_WIRESPEED; 6336 } 6337 6338 bce_shmem_wr(sc, BCE_MB_ARGS_0, link); 6339 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK); 6340 } else { 6341 mii = device_get_softc(sc->bce_miibus); 6342 6343 /* Make sure the MII bus has been enumerated. */ 6344 if (mii) { 6345 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 6346 PHY_RESET(miisc); 6347 error = mii_mediachg(mii); 6348 } 6349 } 6350 6351 DBEXIT(BCE_VERBOSE_PHY); 6352 return (error); 6353 } 6354 6355 6356 static void 6357 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr) 6358 { 6359 struct ifnet *ifp; 6360 u32 link; 6361 6362 ifp = sc->bce_ifp; 6363 BCE_LOCK_ASSERT(sc); 6364 6365 ifmr->ifm_status = IFM_AVALID; 6366 ifmr->ifm_active = IFM_ETHER; 6367 link = bce_shmem_rd(sc, BCE_LINK_STATUS); 6368 /* XXX Handle heart beat status? */ 6369 if ((link & BCE_LINK_STATUS_LINK_UP) != 0) 6370 ifmr->ifm_status |= IFM_ACTIVE; 6371 else { 6372 ifmr->ifm_active |= IFM_NONE; 6373 ifp->if_baudrate = 0; 6374 return; 6375 } 6376 switch (link & BCE_LINK_STATUS_SPEED_MASK) { 6377 case BCE_LINK_STATUS_10HALF: 6378 ifmr->ifm_active |= IFM_10_T | IFM_HDX; 6379 ifp->if_baudrate = IF_Mbps(10UL); 6380 break; 6381 case BCE_LINK_STATUS_10FULL: 6382 ifmr->ifm_active |= IFM_10_T | IFM_FDX; 6383 ifp->if_baudrate = IF_Mbps(10UL); 6384 break; 6385 case BCE_LINK_STATUS_100HALF: 6386 ifmr->ifm_active |= IFM_100_TX | IFM_HDX; 6387 ifp->if_baudrate = IF_Mbps(100UL); 6388 break; 6389 case BCE_LINK_STATUS_100FULL: 6390 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 6391 ifp->if_baudrate = IF_Mbps(100UL); 6392 break; 6393 case BCE_LINK_STATUS_1000HALF: 6394 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6395 ifmr->ifm_active |= IFM_1000_T | IFM_HDX; 6396 else 6397 ifmr->ifm_active |= IFM_1000_SX | IFM_HDX; 6398 ifp->if_baudrate = IF_Mbps(1000UL); 6399 break; 6400 case BCE_LINK_STATUS_1000FULL: 6401 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6402 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 6403 else 6404 ifmr->ifm_active |= IFM_1000_SX | IFM_FDX; 6405 ifp->if_baudrate = IF_Mbps(1000UL); 6406 break; 6407 case BCE_LINK_STATUS_2500HALF: 6408 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { 6409 ifmr->ifm_active |= IFM_NONE; 6410 return; 6411 } else 6412 ifmr->ifm_active |= IFM_2500_SX | IFM_HDX; 6413 ifp->if_baudrate = IF_Mbps(2500UL); 6414 break; 6415 case BCE_LINK_STATUS_2500FULL: 6416 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { 6417 ifmr->ifm_active |= IFM_NONE; 6418 return; 6419 } else 6420 ifmr->ifm_active |= IFM_2500_SX | IFM_FDX; 6421 ifp->if_baudrate = IF_Mbps(2500UL); 6422 break; 6423 default: 6424 ifmr->ifm_active |= IFM_NONE; 6425 return; 6426 } 6427 6428 if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0) 6429 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 6430 if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0) 6431 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 6432 } 6433 6434 6435 /****************************************************************************/ 6436 /* Reports current media status. */ 6437 /* */ 6438 /* Returns: */ 6439 /* Nothing. */ 6440 /****************************************************************************/ 6441 static void 6442 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 6443 { 6444 struct bce_softc *sc = ifp->if_softc; 6445 struct mii_data *mii; 6446 6447 DBENTER(BCE_VERBOSE_PHY); 6448 6449 BCE_LOCK(sc); 6450 6451 if ((ifp->if_flags & IFF_UP) == 0) { 6452 BCE_UNLOCK(sc); 6453 return; 6454 } 6455 6456 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 6457 bce_ifmedia_sts_rphy(sc, ifmr); 6458 else { 6459 mii = device_get_softc(sc->bce_miibus); 6460 mii_pollstat(mii); 6461 ifmr->ifm_active = mii->mii_media_active; 6462 ifmr->ifm_status = mii->mii_media_status; 6463 } 6464 6465 BCE_UNLOCK(sc); 6466 6467 DBEXIT(BCE_VERBOSE_PHY); 6468 } 6469 6470 6471 /****************************************************************************/ 6472 /* Handles PHY generated interrupt events. */ 6473 /* */ 6474 /* Returns: */ 6475 /* Nothing. */ 6476 /****************************************************************************/ 6477 static void 6478 bce_phy_intr(struct bce_softc *sc) 6479 { 6480 u32 new_link_state, old_link_state; 6481 6482 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 6483 6484 DBRUN(sc->phy_interrupts++); 6485 6486 new_link_state = sc->status_block->status_attn_bits & 6487 STATUS_ATTN_BITS_LINK_STATE; 6488 old_link_state = sc->status_block->status_attn_bits_ack & 6489 STATUS_ATTN_BITS_LINK_STATE; 6490 6491 /* Handle any changes if the link state has changed. */ 6492 if (new_link_state != old_link_state) { 6493 6494 /* Update the status_attn_bits_ack field. */ 6495 if (new_link_state) { 6496 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 6497 STATUS_ATTN_BITS_LINK_STATE); 6498 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", 6499 __FUNCTION__); 6500 } else { 6501 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 6502 STATUS_ATTN_BITS_LINK_STATE); 6503 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", 6504 __FUNCTION__); 6505 } 6506 6507 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 6508 if (new_link_state) { 6509 if (bootverbose) 6510 if_printf(sc->bce_ifp, "link UP\n"); 6511 if_link_state_change(sc->bce_ifp, 6512 LINK_STATE_UP); 6513 } else { 6514 if (bootverbose) 6515 if_printf(sc->bce_ifp, "link DOWN\n"); 6516 if_link_state_change(sc->bce_ifp, 6517 LINK_STATE_DOWN); 6518 } 6519 } 6520 /* 6521 * Assume link is down and allow 6522 * tick routine to update the state 6523 * based on the actual media state. 6524 */ 6525 sc->bce_link_up = FALSE; 6526 callout_stop(&sc->bce_tick_callout); 6527 bce_tick(sc); 6528 } 6529 6530 /* Acknowledge the link change interrupt. */ 6531 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 6532 6533 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 6534 } 6535 6536 6537 /****************************************************************************/ 6538 /* Reads the receive consumer value from the status block (skipping over */ 6539 /* chain page pointer if necessary). */ 6540 /* */ 6541 /* Returns: */ 6542 /* hw_cons */ 6543 /****************************************************************************/ 6544 static inline u16 6545 bce_get_hw_rx_cons(struct bce_softc *sc) 6546 { 6547 u16 hw_cons; 6548 6549 rmb(); 6550 hw_cons = sc->status_block->status_rx_quick_consumer_index0; 6551 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 6552 hw_cons++; 6553 6554 return hw_cons; 6555 } 6556 6557 /****************************************************************************/ 6558 /* Handles received frame interrupt events. */ 6559 /* */ 6560 /* Returns: */ 6561 /* Nothing. */ 6562 /****************************************************************************/ 6563 static void 6564 bce_rx_intr(struct bce_softc *sc) 6565 { 6566 struct ifnet *ifp = sc->bce_ifp; 6567 struct l2_fhdr *l2fhdr; 6568 struct ether_vlan_header *vh; 6569 unsigned int pkt_len; 6570 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; 6571 u32 status; 6572 unsigned int rem_len; 6573 u16 sw_pg_cons, sw_pg_cons_idx; 6574 6575 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6576 DBRUN(sc->interrupts_rx++); 6577 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " 6578 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6579 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6580 6581 /* Prepare the RX chain pages to be accessed by the host CPU. */ 6582 for (int i = 0; i < sc->rx_pages; i++) 6583 bus_dmamap_sync(sc->rx_bd_chain_tag, 6584 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 6585 6586 /* Prepare the page chain pages to be accessed by the host CPU. */ 6587 if (bce_hdr_split == TRUE) { 6588 for (int i = 0; i < sc->pg_pages; i++) 6589 bus_dmamap_sync(sc->pg_bd_chain_tag, 6590 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 6591 } 6592 6593 /* Get the hardware's view of the RX consumer index. */ 6594 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6595 6596 /* Get working copies of the driver's view of the consumer indices. */ 6597 sw_rx_cons = sc->rx_cons; 6598 sw_pg_cons = sc->pg_cons; 6599 6600 /* Update some debug statistics counters */ 6601 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 6602 sc->rx_low_watermark = sc->free_rx_bd); 6603 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), 6604 sc->rx_empty_count++); 6605 6606 /* Scan through the receive chain as long as there is work to do */ 6607 /* ToDo: Consider setting a limit on the number of packets processed. */ 6608 rmb(); 6609 while (sw_rx_cons != hw_rx_cons) { 6610 struct mbuf *m0; 6611 6612 /* Convert the producer/consumer indices to an actual rx_bd index. */ 6613 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); 6614 6615 /* Unmap the mbuf from DMA space. */ 6616 bus_dmamap_sync(sc->rx_mbuf_tag, 6617 sc->rx_mbuf_map[sw_rx_cons_idx], 6618 BUS_DMASYNC_POSTREAD); 6619 bus_dmamap_unload(sc->rx_mbuf_tag, 6620 sc->rx_mbuf_map[sw_rx_cons_idx]); 6621 6622 /* Remove the mbuf from the RX chain. */ 6623 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; 6624 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; 6625 DBRUN(sc->debug_rx_mbuf_alloc--); 6626 sc->free_rx_bd++; 6627 6628 if(m0 == NULL) { 6629 DBPRINT(sc, BCE_EXTREME_RECV, 6630 "%s(): Oops! Empty mbuf pointer " 6631 "found in sc->rx_mbuf_ptr[0x%04X]!\n", 6632 __FUNCTION__, sw_rx_cons_idx); 6633 goto bce_rx_int_next_rx; 6634 } 6635 6636 /* 6637 * Frames received on the NetXteme II are prepended 6638 * with an l2_fhdr structure which provides status 6639 * information about the received frame (including 6640 * VLAN tags and checksum info). The frames are 6641 * also automatically adjusted to word align the IP 6642 * header (i.e. two null bytes are inserted before 6643 * the Ethernet header). As a result the data 6644 * DMA'd by the controller into the mbuf looks 6645 * like this: 6646 * 6647 * +---------+-----+---------------------+-----+ 6648 * | l2_fhdr | pad | packet data | FCS | 6649 * +---------+-----+---------------------+-----+ 6650 * 6651 * The l2_fhdr needs to be checked and skipped and 6652 * the FCS needs to be stripped before sending the 6653 * packet up the stack. 6654 */ 6655 l2fhdr = mtod(m0, struct l2_fhdr *); 6656 6657 /* Get the packet data + FCS length and the status. */ 6658 pkt_len = l2fhdr->l2_fhdr_pkt_len; 6659 status = l2fhdr->l2_fhdr_status; 6660 6661 /* 6662 * Skip over the l2_fhdr and pad, resulting in the 6663 * following data in the mbuf: 6664 * +---------------------+-----+ 6665 * | packet data | FCS | 6666 * +---------------------+-----+ 6667 */ 6668 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); 6669 6670 /* 6671 * When split header mode is used, an ethernet frame 6672 * may be split across the receive chain and the 6673 * page chain. If that occurs an mbuf cluster must be 6674 * reassembled from the individual mbuf pieces. 6675 */ 6676 if (bce_hdr_split == TRUE) { 6677 /* 6678 * Check whether the received frame fits in a single 6679 * mbuf or not (i.e. packet data + FCS <= 6680 * sc->rx_bd_mbuf_data_len bytes). 6681 */ 6682 if (pkt_len > m0->m_len) { 6683 /* 6684 * The received frame is larger than a single mbuf. 6685 * If the frame was a TCP frame then only the TCP 6686 * header is placed in the mbuf, the remaining 6687 * payload (including FCS) is placed in the page 6688 * chain, the SPLIT flag is set, and the header 6689 * length is placed in the IP checksum field. 6690 * If the frame is not a TCP frame then the mbuf 6691 * is filled and the remaining bytes are placed 6692 * in the page chain. 6693 */ 6694 6695 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large " 6696 "packet.\n", __FUNCTION__); 6697 DBRUN(sc->split_header_frames_rcvd++); 6698 6699 /* 6700 * When the page chain is enabled and the TCP 6701 * header has been split from the TCP payload, 6702 * the ip_xsum structure will reflect the length 6703 * of the TCP header, not the IP checksum. Set 6704 * the packet length of the mbuf accordingly. 6705 */ 6706 if (status & L2_FHDR_STATUS_SPLIT) { 6707 m0->m_len = l2fhdr->l2_fhdr_ip_xsum; 6708 DBRUN(sc->split_header_tcp_frames_rcvd++); 6709 } 6710 6711 rem_len = pkt_len - m0->m_len; 6712 6713 /* Pull mbufs off the page chain for any remaining data. */ 6714 while (rem_len > 0) { 6715 struct mbuf *m_pg; 6716 6717 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); 6718 6719 /* Remove the mbuf from the page chain. */ 6720 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; 6721 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; 6722 DBRUN(sc->debug_pg_mbuf_alloc--); 6723 sc->free_pg_bd++; 6724 6725 /* Unmap the page chain mbuf from DMA space. */ 6726 bus_dmamap_sync(sc->pg_mbuf_tag, 6727 sc->pg_mbuf_map[sw_pg_cons_idx], 6728 BUS_DMASYNC_POSTREAD); 6729 bus_dmamap_unload(sc->pg_mbuf_tag, 6730 sc->pg_mbuf_map[sw_pg_cons_idx]); 6731 6732 /* Adjust the mbuf length. */ 6733 if (rem_len < m_pg->m_len) { 6734 /* The mbuf chain is complete. */ 6735 m_pg->m_len = rem_len; 6736 rem_len = 0; 6737 } else { 6738 /* More packet data is waiting. */ 6739 rem_len -= m_pg->m_len; 6740 } 6741 6742 /* Concatenate the mbuf cluster to the mbuf. */ 6743 m_cat(m0, m_pg); 6744 6745 sw_pg_cons = NEXT_PG_BD(sw_pg_cons); 6746 } 6747 6748 /* Set the total packet length. */ 6749 m0->m_pkthdr.len = pkt_len; 6750 6751 } else { 6752 /* 6753 * The received packet is small and fits in a 6754 * single mbuf (i.e. the l2_fhdr + pad + packet + 6755 * FCS <= MHLEN). In other words, the packet is 6756 * 154 bytes or less in size. 6757 */ 6758 6759 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small " 6760 "packet.\n", __FUNCTION__); 6761 6762 /* Set the total packet length. */ 6763 m0->m_pkthdr.len = m0->m_len = pkt_len; 6764 } 6765 } else 6766 /* Set the total packet length. */ 6767 m0->m_pkthdr.len = m0->m_len = pkt_len; 6768 6769 /* Remove the trailing Ethernet FCS. */ 6770 m_adj(m0, -ETHER_CRC_LEN); 6771 6772 /* Check that the resulting mbuf chain is valid. */ 6773 DBRUN(m_sanity(m0, FALSE)); 6774 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | 6775 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 6776 BCE_PRINTF("Invalid Ethernet frame size!\n"); 6777 m_print(m0, 128)); 6778 6779 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control), 6780 sc->l2fhdr_error_sim_count++; 6781 status = status | L2_FHDR_ERRORS_PHY_DECODE); 6782 6783 /* Check the received frame for errors. */ 6784 if (status & (L2_FHDR_ERRORS_BAD_CRC | 6785 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 6786 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 6787 6788 /* Log the error and release the mbuf. */ 6789 ifp->if_ierrors++; 6790 sc->l2fhdr_error_count++; 6791 6792 m_freem(m0); 6793 m0 = NULL; 6794 goto bce_rx_int_next_rx; 6795 } 6796 6797 /* Send the packet to the appropriate interface. */ 6798 m0->m_pkthdr.rcvif = ifp; 6799 6800 /* Assume no hardware checksum. */ 6801 m0->m_pkthdr.csum_flags = 0; 6802 6803 /* Validate the checksum if offload enabled. */ 6804 if (ifp->if_capenable & IFCAP_RXCSUM) { 6805 6806 /* Check for an IP datagram. */ 6807 if (!(status & L2_FHDR_STATUS_SPLIT) && 6808 (status & L2_FHDR_STATUS_IP_DATAGRAM)) { 6809 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 6810 DBRUN(sc->csum_offload_ip++); 6811 /* Check if the IP checksum is valid. */ 6812 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 6813 m0->m_pkthdr.csum_flags |= 6814 CSUM_IP_VALID; 6815 } 6816 6817 /* Check for a valid TCP/UDP frame. */ 6818 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 6819 L2_FHDR_STATUS_UDP_DATAGRAM)) { 6820 6821 /* Check for a good TCP/UDP checksum. */ 6822 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 6823 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 6824 DBRUN(sc->csum_offload_tcp_udp++); 6825 m0->m_pkthdr.csum_data = 6826 l2fhdr->l2_fhdr_tcp_udp_xsum; 6827 m0->m_pkthdr.csum_flags |= 6828 (CSUM_DATA_VALID 6829 | CSUM_PSEUDO_HDR); 6830 } 6831 } 6832 } 6833 6834 /* Attach the VLAN tag. */ 6835 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) { 6836 DBRUN(sc->vlan_tagged_frames_rcvd++); 6837 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { 6838 DBRUN(sc->vlan_tagged_frames_stripped++); 6839 #if __FreeBSD_version < 700000 6840 VLAN_INPUT_TAG(ifp, m0, 6841 l2fhdr->l2_fhdr_vlan_tag, continue); 6842 #else 6843 m0->m_pkthdr.ether_vtag = 6844 l2fhdr->l2_fhdr_vlan_tag; 6845 m0->m_flags |= M_VLANTAG; 6846 #endif 6847 } else { 6848 /* 6849 * bce(4) controllers can't disable VLAN 6850 * tag stripping if management firmware 6851 * (ASF/IPMI/UMP) is running. So we always 6852 * strip VLAN tag and manually reconstruct 6853 * the VLAN frame by appending stripped 6854 * VLAN tag in driver if VLAN tag stripping 6855 * was disabled. 6856 * 6857 * TODO: LLC SNAP handling. 6858 */ 6859 bcopy(mtod(m0, uint8_t *), 6860 mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN, 6861 ETHER_ADDR_LEN * 2); 6862 m0->m_data -= ETHER_VLAN_ENCAP_LEN; 6863 vh = mtod(m0, struct ether_vlan_header *); 6864 vh->evl_encap_proto = htons(ETHERTYPE_VLAN); 6865 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag); 6866 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN; 6867 m0->m_len += ETHER_VLAN_ENCAP_LEN; 6868 } 6869 } 6870 6871 /* Increment received packet statistics. */ 6872 ifp->if_ipackets++; 6873 6874 bce_rx_int_next_rx: 6875 sw_rx_cons = NEXT_RX_BD(sw_rx_cons); 6876 6877 /* If we have a packet, pass it up the stack */ 6878 if (m0) { 6879 /* Make sure we don't lose our place when we release the lock. */ 6880 sc->rx_cons = sw_rx_cons; 6881 sc->pg_cons = sw_pg_cons; 6882 6883 BCE_UNLOCK(sc); 6884 (*ifp->if_input)(ifp, m0); 6885 BCE_LOCK(sc); 6886 6887 /* Recover our place. */ 6888 sw_rx_cons = sc->rx_cons; 6889 sw_pg_cons = sc->pg_cons; 6890 } 6891 6892 /* Refresh hw_cons to see if there's new work */ 6893 if (sw_rx_cons == hw_rx_cons) 6894 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6895 } 6896 6897 /* No new packets. Refill the page chain. */ 6898 if (bce_hdr_split == TRUE) { 6899 sc->pg_cons = sw_pg_cons; 6900 bce_fill_pg_chain(sc); 6901 } 6902 6903 /* No new packets. Refill the RX chain. */ 6904 sc->rx_cons = sw_rx_cons; 6905 bce_fill_rx_chain(sc); 6906 6907 /* Prepare the page chain pages to be accessed by the NIC. */ 6908 for (int i = 0; i < sc->rx_pages; i++) 6909 bus_dmamap_sync(sc->rx_bd_chain_tag, 6910 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6911 6912 if (bce_hdr_split == TRUE) { 6913 for (int i = 0; i < sc->pg_pages; i++) 6914 bus_dmamap_sync(sc->pg_bd_chain_tag, 6915 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6916 } 6917 6918 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " 6919 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6920 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6921 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6922 } 6923 6924 6925 /****************************************************************************/ 6926 /* Reads the transmit consumer value from the status block (skipping over */ 6927 /* chain page pointer if necessary). */ 6928 /* */ 6929 /* Returns: */ 6930 /* hw_cons */ 6931 /****************************************************************************/ 6932 static inline u16 6933 bce_get_hw_tx_cons(struct bce_softc *sc) 6934 { 6935 u16 hw_cons; 6936 6937 mb(); 6938 hw_cons = sc->status_block->status_tx_quick_consumer_index0; 6939 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6940 hw_cons++; 6941 6942 return hw_cons; 6943 } 6944 6945 6946 /****************************************************************************/ 6947 /* Handles transmit completion interrupt events. */ 6948 /* */ 6949 /* Returns: */ 6950 /* Nothing. */ 6951 /****************************************************************************/ 6952 static void 6953 bce_tx_intr(struct bce_softc *sc) 6954 { 6955 struct ifnet *ifp = sc->bce_ifp; 6956 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 6957 6958 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6959 DBRUN(sc->interrupts_tx++); 6960 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " 6961 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6962 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6963 6964 BCE_LOCK_ASSERT(sc); 6965 6966 /* Get the hardware's view of the TX consumer index. */ 6967 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6968 sw_tx_cons = sc->tx_cons; 6969 6970 /* Prevent speculative reads of the status block. */ 6971 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6972 BUS_SPACE_BARRIER_READ); 6973 6974 /* Cycle through any completed TX chain page entries. */ 6975 while (sw_tx_cons != hw_tx_cons) { 6976 #ifdef BCE_DEBUG 6977 struct tx_bd *txbd = NULL; 6978 #endif 6979 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 6980 6981 DBPRINT(sc, BCE_INFO_SEND, 6982 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 6983 "sw_tx_chain_cons = 0x%04X\n", 6984 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 6985 6986 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC), 6987 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 6988 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 6989 (int) MAX_TX_BD_ALLOC); 6990 bce_breakpoint(sc)); 6991 6992 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 6993 [TX_IDX(sw_tx_chain_cons)]); 6994 6995 DBRUNIF((txbd == NULL), 6996 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 6997 __FILE__, __LINE__, sw_tx_chain_cons); 6998 bce_breakpoint(sc)); 6999 7000 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 7001 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 7002 7003 /* 7004 * Free the associated mbuf. Remember 7005 * that only the last tx_bd of a packet 7006 * has an mbuf pointer and DMA map. 7007 */ 7008 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 7009 7010 /* Validate that this is the last tx_bd. */ 7011 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 7012 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 7013 "txmbuf == NULL!\n", __FILE__, __LINE__); 7014 bce_breakpoint(sc)); 7015 7016 DBRUNMSG(BCE_INFO_SEND, 7017 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 7018 "from tx_bd[0x%04X]\n", __FUNCTION__, 7019 sw_tx_chain_cons)); 7020 7021 /* Unmap the mbuf. */ 7022 bus_dmamap_unload(sc->tx_mbuf_tag, 7023 sc->tx_mbuf_map[sw_tx_chain_cons]); 7024 7025 /* Free the mbuf. */ 7026 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 7027 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 7028 DBRUN(sc->debug_tx_mbuf_alloc--); 7029 7030 ifp->if_opackets++; 7031 } 7032 7033 sc->used_tx_bd--; 7034 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 7035 7036 /* Refresh hw_cons to see if there's new work. */ 7037 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 7038 7039 /* Prevent speculative reads of the status block. */ 7040 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 7041 BUS_SPACE_BARRIER_READ); 7042 } 7043 7044 /* Clear the TX timeout timer. */ 7045 sc->watchdog_timer = 0; 7046 7047 /* Clear the tx hardware queue full flag. */ 7048 if (sc->used_tx_bd < sc->max_tx_bd) { 7049 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), 7050 DBPRINT(sc, BCE_INFO_SEND, 7051 "%s(): Open TX chain! %d/%d (used/total)\n", 7052 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 7053 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 7054 } 7055 7056 sc->tx_cons = sw_tx_cons; 7057 7058 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " 7059 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 7060 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 7061 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 7062 } 7063 7064 7065 /****************************************************************************/ 7066 /* Disables interrupt generation. */ 7067 /* */ 7068 /* Returns: */ 7069 /* Nothing. */ 7070 /****************************************************************************/ 7071 static void 7072 bce_disable_intr(struct bce_softc *sc) 7073 { 7074 DBENTER(BCE_VERBOSE_INTR); 7075 7076 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7077 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 7078 7079 DBEXIT(BCE_VERBOSE_INTR); 7080 } 7081 7082 7083 /****************************************************************************/ 7084 /* Enables interrupt generation. */ 7085 /* */ 7086 /* Returns: */ 7087 /* Nothing. */ 7088 /****************************************************************************/ 7089 static void 7090 bce_enable_intr(struct bce_softc *sc, int coal_now) 7091 { 7092 DBENTER(BCE_VERBOSE_INTR); 7093 7094 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7095 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 7096 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 7097 7098 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7099 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 7100 7101 /* Force an immediate interrupt (whether there is new data or not). */ 7102 if (coal_now) 7103 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); 7104 7105 DBEXIT(BCE_VERBOSE_INTR); 7106 } 7107 7108 7109 /****************************************************************************/ 7110 /* Handles controller initialization. */ 7111 /* */ 7112 /* Returns: */ 7113 /* Nothing. */ 7114 /****************************************************************************/ 7115 static void 7116 bce_init_locked(struct bce_softc *sc) 7117 { 7118 struct ifnet *ifp; 7119 u32 ether_mtu = 0; 7120 7121 DBENTER(BCE_VERBOSE_RESET); 7122 7123 BCE_LOCK_ASSERT(sc); 7124 7125 ifp = sc->bce_ifp; 7126 7127 /* Check if the driver is still running and bail out if it is. */ 7128 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 7129 goto bce_init_locked_exit; 7130 7131 bce_stop(sc); 7132 7133 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 7134 BCE_PRINTF("%s(%d): Controller reset failed!\n", 7135 __FILE__, __LINE__); 7136 goto bce_init_locked_exit; 7137 } 7138 7139 if (bce_chipinit(sc)) { 7140 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 7141 __FILE__, __LINE__); 7142 goto bce_init_locked_exit; 7143 } 7144 7145 if (bce_blockinit(sc)) { 7146 BCE_PRINTF("%s(%d): Block initialization failed!\n", 7147 __FILE__, __LINE__); 7148 goto bce_init_locked_exit; 7149 } 7150 7151 /* Load our MAC address. */ 7152 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 7153 bce_set_mac_addr(sc); 7154 7155 if (bce_hdr_split == FALSE) 7156 bce_get_rx_buffer_sizes(sc, ifp->if_mtu); 7157 /* 7158 * Calculate and program the hardware Ethernet MTU 7159 * size. Be generous on the receive if we have room 7160 * and allowed by the user. 7161 */ 7162 if (bce_strict_rx_mtu == TRUE) 7163 ether_mtu = ifp->if_mtu; 7164 else { 7165 if (bce_hdr_split == TRUE) { 7166 if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len + 7167 sc->pg_bd_mbuf_alloc_size)) 7168 ether_mtu = sc->rx_bd_mbuf_data_len + 7169 sc->pg_bd_mbuf_alloc_size; 7170 else 7171 ether_mtu = ifp->if_mtu; 7172 } else { 7173 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len) 7174 ether_mtu = sc->rx_bd_mbuf_data_len; 7175 else 7176 ether_mtu = ifp->if_mtu; 7177 } 7178 } 7179 7180 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 7181 7182 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", 7183 __FUNCTION__, ether_mtu); 7184 7185 /* Program the mtu, enabling jumbo frame support if necessary. */ 7186 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) 7187 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, 7188 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 7189 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 7190 else 7191 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 7192 7193 /* Program appropriate promiscuous/multicast filtering. */ 7194 bce_set_rx_mode(sc); 7195 7196 if (bce_hdr_split == TRUE) { 7197 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n", 7198 __FUNCTION__, sc->pg_bd_mbuf_alloc_size); 7199 7200 /* Init page buffer descriptor chain. */ 7201 bce_init_pg_chain(sc); 7202 } 7203 7204 /* Init RX buffer descriptor chain. */ 7205 bce_init_rx_chain(sc); 7206 7207 /* Init TX buffer descriptor chain. */ 7208 bce_init_tx_chain(sc); 7209 7210 /* Enable host interrupts. */ 7211 bce_enable_intr(sc, 1); 7212 7213 bce_ifmedia_upd_locked(ifp); 7214 7215 /* Let the OS know the driver is up and running. */ 7216 ifp->if_drv_flags |= IFF_DRV_RUNNING; 7217 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 7218 7219 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 7220 7221 bce_init_locked_exit: 7222 DBEXIT(BCE_VERBOSE_RESET); 7223 } 7224 7225 7226 /****************************************************************************/ 7227 /* Initialize the controller just enough so that any management firmware */ 7228 /* running on the device will continue to operate correctly. */ 7229 /* */ 7230 /* Returns: */ 7231 /* Nothing. */ 7232 /****************************************************************************/ 7233 static void 7234 bce_mgmt_init_locked(struct bce_softc *sc) 7235 { 7236 struct ifnet *ifp; 7237 7238 DBENTER(BCE_VERBOSE_RESET); 7239 7240 BCE_LOCK_ASSERT(sc); 7241 7242 /* Bail out if management firmware is not running. */ 7243 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 7244 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 7245 "No management firmware running...\n"); 7246 goto bce_mgmt_init_locked_exit; 7247 } 7248 7249 ifp = sc->bce_ifp; 7250 7251 /* Enable all critical blocks in the MAC. */ 7252 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 7253 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 7254 DELAY(20); 7255 7256 bce_ifmedia_upd_locked(ifp); 7257 7258 bce_mgmt_init_locked_exit: 7259 DBEXIT(BCE_VERBOSE_RESET); 7260 } 7261 7262 7263 /****************************************************************************/ 7264 /* Handles controller initialization when called from an unlocked routine. */ 7265 /* */ 7266 /* Returns: */ 7267 /* Nothing. */ 7268 /****************************************************************************/ 7269 static void 7270 bce_init(void *xsc) 7271 { 7272 struct bce_softc *sc = xsc; 7273 7274 DBENTER(BCE_VERBOSE_RESET); 7275 7276 BCE_LOCK(sc); 7277 bce_init_locked(sc); 7278 BCE_UNLOCK(sc); 7279 7280 DBEXIT(BCE_VERBOSE_RESET); 7281 } 7282 7283 7284 /****************************************************************************/ 7285 /* Modifies an mbuf for TSO on the hardware. */ 7286 /* */ 7287 /* Returns: */ 7288 /* Pointer to a modified mbuf. */ 7289 /****************************************************************************/ 7290 static struct mbuf * 7291 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags) 7292 { 7293 struct mbuf *m; 7294 struct ether_header *eh; 7295 struct ip *ip; 7296 struct tcphdr *th; 7297 u16 etype; 7298 int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; 7299 7300 DBRUN(sc->tso_frames_requested++); 7301 7302 /* Controller may modify mbuf chains. */ 7303 if (M_WRITABLE(*m_head) == 0) { 7304 m = m_dup(*m_head, M_NOWAIT); 7305 m_freem(*m_head); 7306 if (m == NULL) { 7307 sc->mbuf_alloc_failed_count++; 7308 *m_head = NULL; 7309 return (NULL); 7310 } 7311 *m_head = m; 7312 } 7313 7314 /* 7315 * For TSO the controller needs two pieces of info, 7316 * the MSS and the IP+TCP options length. 7317 */ 7318 m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip)); 7319 if (m == NULL) { 7320 *m_head = NULL; 7321 return (NULL); 7322 } 7323 eh = mtod(m, struct ether_header *); 7324 etype = ntohs(eh->ether_type); 7325 7326 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 7327 switch (etype) { 7328 case ETHERTYPE_IP: 7329 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7330 /* TSO only supported for TCP protocol. */ 7331 if (ip->ip_p != IPPROTO_TCP) { 7332 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 7333 __FILE__, __LINE__); 7334 m_freem(*m_head); 7335 *m_head = NULL; 7336 return (NULL); 7337 } 7338 7339 /* Get IP header length in bytes (min 20) */ 7340 ip_hlen = ip->ip_hl << 2; 7341 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen + 7342 sizeof(struct tcphdr)); 7343 if (m == NULL) { 7344 *m_head = NULL; 7345 return (NULL); 7346 } 7347 7348 /* Get the TCP header length in bytes (min 20) */ 7349 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7350 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 7351 tcp_hlen = (th->th_off << 2); 7352 7353 /* Make sure all IP/TCP options live in the same buffer. */ 7354 m = m_pullup(*m_head, sizeof(struct ether_header)+ ip_hlen + 7355 tcp_hlen); 7356 if (m == NULL) { 7357 *m_head = NULL; 7358 return (NULL); 7359 } 7360 7361 /* Clear IP header length and checksum, will be calc'd by h/w. */ 7362 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7363 ip_len = ip->ip_len; 7364 ip->ip_len = 0; 7365 ip->ip_sum = 0; 7366 break; 7367 case ETHERTYPE_IPV6: 7368 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 7369 __FILE__, __LINE__); 7370 m_freem(*m_head); 7371 *m_head = NULL; 7372 return (NULL); 7373 /* NOT REACHED */ 7374 default: 7375 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 7376 __FILE__, __LINE__); 7377 m_freem(*m_head); 7378 *m_head = NULL; 7379 return (NULL); 7380 } 7381 7382 hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen; 7383 7384 DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, " 7385 "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 7386 __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen, 7387 tcp_hlen, ip_len); 7388 7389 /* Set the LSO flag in the TX BD */ 7390 *flags |= TX_BD_FLAGS_SW_LSO; 7391 7392 /* Set the length of IP + TCP options (in 32 bit words) */ 7393 *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) - 7394 sizeof(struct tcphdr)) >> 2) << 8); 7395 7396 DBRUN(sc->tso_frames_completed++); 7397 return (*m_head); 7398 } 7399 7400 7401 /****************************************************************************/ 7402 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 7403 /* memory visible to the controller. */ 7404 /* */ 7405 /* Returns: */ 7406 /* 0 for success, positive value for failure. */ 7407 /* Modified: */ 7408 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 7409 /****************************************************************************/ 7410 static int 7411 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 7412 { 7413 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 7414 bus_dmamap_t map; 7415 struct tx_bd *txbd = NULL; 7416 struct mbuf *m0; 7417 u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0; 7418 u32 prod_bseq; 7419 7420 #ifdef BCE_DEBUG 7421 u16 debug_prod; 7422 #endif 7423 7424 int i, error, nsegs, rc = 0; 7425 7426 DBENTER(BCE_VERBOSE_SEND); 7427 7428 /* Make sure we have room in the TX chain. */ 7429 if (sc->used_tx_bd >= sc->max_tx_bd) 7430 goto bce_tx_encap_exit; 7431 7432 /* Transfer any checksum offload flags to the bd. */ 7433 m0 = *m_head; 7434 if (m0->m_pkthdr.csum_flags) { 7435 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 7436 m0 = bce_tso_setup(sc, m_head, &flags); 7437 if (m0 == NULL) { 7438 DBRUN(sc->tso_frames_failed++); 7439 goto bce_tx_encap_exit; 7440 } 7441 mss = htole16(m0->m_pkthdr.tso_segsz); 7442 } else { 7443 if (m0->m_pkthdr.csum_flags & CSUM_IP) 7444 flags |= TX_BD_FLAGS_IP_CKSUM; 7445 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 7446 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 7447 } 7448 } 7449 7450 /* Transfer any VLAN tags to the bd. */ 7451 if (m0->m_flags & M_VLANTAG) { 7452 flags |= TX_BD_FLAGS_VLAN_TAG; 7453 vlan_tag = m0->m_pkthdr.ether_vtag; 7454 } 7455 7456 /* Map the mbuf into DMAable memory. */ 7457 prod = sc->tx_prod; 7458 chain_prod = TX_CHAIN_IDX(prod); 7459 map = sc->tx_mbuf_map[chain_prod]; 7460 7461 /* Map the mbuf into our DMA address space. */ 7462 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 7463 segs, &nsegs, BUS_DMA_NOWAIT); 7464 7465 /* Check if the DMA mapping was successful */ 7466 if (error == EFBIG) { 7467 sc->mbuf_frag_count++; 7468 7469 /* Try to defrag the mbuf. */ 7470 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS); 7471 if (m0 == NULL) { 7472 /* Defrag was unsuccessful */ 7473 m_freem(*m_head); 7474 *m_head = NULL; 7475 sc->mbuf_alloc_failed_count++; 7476 rc = ENOBUFS; 7477 goto bce_tx_encap_exit; 7478 } 7479 7480 /* Defrag was successful, try mapping again */ 7481 *m_head = m0; 7482 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, 7483 map, m0, segs, &nsegs, BUS_DMA_NOWAIT); 7484 7485 /* Still getting an error after a defrag. */ 7486 if (error == ENOMEM) { 7487 /* Insufficient DMA buffers available. */ 7488 sc->dma_map_addr_tx_failed_count++; 7489 rc = error; 7490 goto bce_tx_encap_exit; 7491 } else if (error != 0) { 7492 /* Release it and return an error. */ 7493 BCE_PRINTF("%s(%d): Unknown error mapping mbuf into " 7494 "TX chain!\n", __FILE__, __LINE__); 7495 m_freem(m0); 7496 *m_head = NULL; 7497 sc->dma_map_addr_tx_failed_count++; 7498 rc = ENOBUFS; 7499 goto bce_tx_encap_exit; 7500 } 7501 } else if (error == ENOMEM) { 7502 /* Insufficient DMA buffers available. */ 7503 sc->dma_map_addr_tx_failed_count++; 7504 rc = error; 7505 goto bce_tx_encap_exit; 7506 } else if (error != 0) { 7507 m_freem(m0); 7508 *m_head = NULL; 7509 sc->dma_map_addr_tx_failed_count++; 7510 rc = error; 7511 goto bce_tx_encap_exit; 7512 } 7513 7514 /* Make sure there's room in the chain */ 7515 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 7516 bus_dmamap_unload(sc->tx_mbuf_tag, map); 7517 rc = ENOBUFS; 7518 goto bce_tx_encap_exit; 7519 } 7520 7521 /* prod points to an empty tx_bd at this point. */ 7522 prod_bseq = sc->tx_prod_bseq; 7523 7524 #ifdef BCE_DEBUG 7525 debug_prod = chain_prod; 7526 #endif 7527 7528 DBPRINT(sc, BCE_INFO_SEND, 7529 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " 7530 "prod_bseq = 0x%08X\n", 7531 __FUNCTION__, prod, chain_prod, prod_bseq); 7532 7533 /* 7534 * Cycle through each mbuf segment that makes up 7535 * the outgoing frame, gathering the mapping info 7536 * for that segment and creating a tx_bd for 7537 * the mbuf. 7538 */ 7539 for (i = 0; i < nsegs ; i++) { 7540 7541 chain_prod = TX_CHAIN_IDX(prod); 7542 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)] 7543 [TX_IDX(chain_prod)]; 7544 7545 txbd->tx_bd_haddr_lo = 7546 htole32(BCE_ADDR_LO(segs[i].ds_addr)); 7547 txbd->tx_bd_haddr_hi = 7548 htole32(BCE_ADDR_HI(segs[i].ds_addr)); 7549 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | 7550 htole16(segs[i].ds_len); 7551 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 7552 txbd->tx_bd_flags = htole16(flags); 7553 prod_bseq += segs[i].ds_len; 7554 if (i == 0) 7555 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 7556 prod = NEXT_TX_BD(prod); 7557 } 7558 7559 /* Set the END flag on the last TX buffer descriptor. */ 7560 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 7561 7562 DBRUNMSG(BCE_EXTREME_SEND, 7563 bce_dump_tx_chain(sc, debug_prod, nsegs)); 7564 7565 /* 7566 * Ensure that the mbuf pointer for this transmission 7567 * is placed at the array index of the last 7568 * descriptor in this chain. This is done 7569 * because a single map is used for all 7570 * segments of the mbuf and we don't want to 7571 * unload the map before all of the segments 7572 * have been freed. 7573 */ 7574 sc->tx_mbuf_ptr[chain_prod] = m0; 7575 sc->used_tx_bd += nsegs; 7576 7577 /* Update some debug statistic counters */ 7578 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 7579 sc->tx_hi_watermark = sc->used_tx_bd); 7580 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 7581 DBRUNIF(sc->debug_tx_mbuf_alloc++); 7582 7583 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); 7584 7585 /* prod points to the next free tx_bd at this point. */ 7586 sc->tx_prod = prod; 7587 sc->tx_prod_bseq = prod_bseq; 7588 7589 /* Tell the chip about the waiting TX frames. */ 7590 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + 7591 BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 7592 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + 7593 BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 7594 7595 bce_tx_encap_exit: 7596 DBEXIT(BCE_VERBOSE_SEND); 7597 return(rc); 7598 } 7599 7600 7601 /****************************************************************************/ 7602 /* Main transmit routine when called from another routine with a lock. */ 7603 /* */ 7604 /* Returns: */ 7605 /* Nothing. */ 7606 /****************************************************************************/ 7607 static void 7608 bce_start_locked(struct ifnet *ifp) 7609 { 7610 struct bce_softc *sc = ifp->if_softc; 7611 struct mbuf *m_head = NULL; 7612 int count = 0; 7613 u16 tx_prod, tx_chain_prod; 7614 7615 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7616 7617 BCE_LOCK_ASSERT(sc); 7618 7619 /* prod points to the next free tx_bd. */ 7620 tx_prod = sc->tx_prod; 7621 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 7622 7623 DBPRINT(sc, BCE_INFO_SEND, 7624 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 7625 "tx_prod_bseq = 0x%08X\n", 7626 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 7627 7628 /* If there's no link or the transmit queue is empty then just exit. */ 7629 if (sc->bce_link_up == FALSE) { 7630 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", 7631 __FUNCTION__); 7632 goto bce_start_locked_exit; 7633 } 7634 7635 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 7636 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", 7637 __FUNCTION__); 7638 goto bce_start_locked_exit; 7639 } 7640 7641 /* 7642 * Keep adding entries while there is space in the ring. 7643 */ 7644 while (sc->used_tx_bd < sc->max_tx_bd) { 7645 7646 /* Check for any frames to send. */ 7647 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 7648 7649 /* Stop when the transmit queue is empty. */ 7650 if (m_head == NULL) 7651 break; 7652 7653 /* 7654 * Pack the data into the transmit ring. If we 7655 * don't have room, place the mbuf back at the 7656 * head of the queue and set the OACTIVE flag 7657 * to wait for the NIC to drain the chain. 7658 */ 7659 if (bce_tx_encap(sc, &m_head)) { 7660 if (m_head != NULL) 7661 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 7662 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 7663 DBPRINT(sc, BCE_INFO_SEND, 7664 "TX chain is closed for business! Total " 7665 "tx_bd used = %d\n", sc->used_tx_bd); 7666 break; 7667 } 7668 7669 count++; 7670 7671 /* Send a copy of the frame to any BPF listeners. */ 7672 ETHER_BPF_MTAP(ifp, m_head); 7673 } 7674 7675 /* Exit if no packets were dequeued. */ 7676 if (count == 0) { 7677 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were " 7678 "dequeued\n", __FUNCTION__); 7679 goto bce_start_locked_exit; 7680 } 7681 7682 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into " 7683 "send queue.\n", __FUNCTION__, count); 7684 7685 /* Set the tx timeout. */ 7686 sc->watchdog_timer = BCE_TX_TIMEOUT; 7687 7688 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); 7689 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); 7690 7691 bce_start_locked_exit: 7692 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7693 return; 7694 } 7695 7696 7697 /****************************************************************************/ 7698 /* Main transmit routine when called from another routine without a lock. */ 7699 /* */ 7700 /* Returns: */ 7701 /* Nothing. */ 7702 /****************************************************************************/ 7703 static void 7704 bce_start(struct ifnet *ifp) 7705 { 7706 struct bce_softc *sc = ifp->if_softc; 7707 7708 DBENTER(BCE_VERBOSE_SEND); 7709 7710 BCE_LOCK(sc); 7711 bce_start_locked(ifp); 7712 BCE_UNLOCK(sc); 7713 7714 DBEXIT(BCE_VERBOSE_SEND); 7715 } 7716 7717 7718 /****************************************************************************/ 7719 /* Handles any IOCTL calls from the operating system. */ 7720 /* */ 7721 /* Returns: */ 7722 /* 0 for success, positive value for failure. */ 7723 /****************************************************************************/ 7724 static int 7725 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 7726 { 7727 struct bce_softc *sc = ifp->if_softc; 7728 struct ifreq *ifr = (struct ifreq *) data; 7729 struct mii_data *mii; 7730 int mask, error = 0; 7731 7732 DBENTER(BCE_VERBOSE_MISC); 7733 7734 switch(command) { 7735 7736 /* Set the interface MTU. */ 7737 case SIOCSIFMTU: 7738 /* Check that the MTU setting is supported. */ 7739 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 7740 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 7741 error = EINVAL; 7742 break; 7743 } 7744 7745 DBPRINT(sc, BCE_INFO_MISC, 7746 "SIOCSIFMTU: Changing MTU from %d to %d\n", 7747 (int) ifp->if_mtu, (int) ifr->ifr_mtu); 7748 7749 BCE_LOCK(sc); 7750 ifp->if_mtu = ifr->ifr_mtu; 7751 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7752 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7753 bce_init_locked(sc); 7754 } 7755 BCE_UNLOCK(sc); 7756 break; 7757 7758 /* Set interface flags. */ 7759 case SIOCSIFFLAGS: 7760 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 7761 7762 BCE_LOCK(sc); 7763 7764 /* Check if the interface is up. */ 7765 if (ifp->if_flags & IFF_UP) { 7766 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7767 /* Change promiscuous/multicast flags as necessary. */ 7768 bce_set_rx_mode(sc); 7769 } else { 7770 /* Start the HW */ 7771 bce_init_locked(sc); 7772 } 7773 } else { 7774 /* The interface is down, check if driver is running. */ 7775 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7776 bce_stop(sc); 7777 7778 /* If MFW is running, restart the controller a bit. */ 7779 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 7780 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 7781 bce_chipinit(sc); 7782 bce_mgmt_init_locked(sc); 7783 } 7784 } 7785 } 7786 7787 BCE_UNLOCK(sc); 7788 break; 7789 7790 /* Add/Delete multicast address */ 7791 case SIOCADDMULTI: 7792 case SIOCDELMULTI: 7793 DBPRINT(sc, BCE_VERBOSE_MISC, 7794 "Received SIOCADDMULTI/SIOCDELMULTI\n"); 7795 7796 BCE_LOCK(sc); 7797 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 7798 bce_set_rx_mode(sc); 7799 BCE_UNLOCK(sc); 7800 7801 break; 7802 7803 /* Set/Get Interface media */ 7804 case SIOCSIFMEDIA: 7805 case SIOCGIFMEDIA: 7806 DBPRINT(sc, BCE_VERBOSE_MISC, 7807 "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 7808 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 7809 error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia, 7810 command); 7811 else { 7812 mii = device_get_softc(sc->bce_miibus); 7813 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 7814 command); 7815 } 7816 break; 7817 7818 /* Set interface capability */ 7819 case SIOCSIFCAP: 7820 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 7821 DBPRINT(sc, BCE_INFO_MISC, 7822 "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 7823 7824 /* Toggle the TX checksum capabilities enable flag. */ 7825 if (mask & IFCAP_TXCSUM && 7826 ifp->if_capabilities & IFCAP_TXCSUM) { 7827 ifp->if_capenable ^= IFCAP_TXCSUM; 7828 if (IFCAP_TXCSUM & ifp->if_capenable) 7829 ifp->if_hwassist |= BCE_IF_HWASSIST; 7830 else 7831 ifp->if_hwassist &= ~BCE_IF_HWASSIST; 7832 } 7833 7834 /* Toggle the RX checksum capabilities enable flag. */ 7835 if (mask & IFCAP_RXCSUM && 7836 ifp->if_capabilities & IFCAP_RXCSUM) 7837 ifp->if_capenable ^= IFCAP_RXCSUM; 7838 7839 /* Toggle the TSO capabilities enable flag. */ 7840 if (bce_tso_enable && (mask & IFCAP_TSO4) && 7841 ifp->if_capabilities & IFCAP_TSO4) { 7842 ifp->if_capenable ^= IFCAP_TSO4; 7843 if (IFCAP_TSO4 & ifp->if_capenable) 7844 ifp->if_hwassist |= CSUM_TSO; 7845 else 7846 ifp->if_hwassist &= ~CSUM_TSO; 7847 } 7848 7849 if (mask & IFCAP_VLAN_HWCSUM && 7850 ifp->if_capabilities & IFCAP_VLAN_HWCSUM) 7851 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 7852 7853 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 7854 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 7855 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 7856 /* 7857 * Don't actually disable VLAN tag stripping as 7858 * management firmware (ASF/IPMI/UMP) requires the 7859 * feature. If VLAN tag stripping is disabled driver 7860 * will manually reconstruct the VLAN frame by 7861 * appending stripped VLAN tag. 7862 */ 7863 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 7864 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) { 7865 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 7866 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 7867 == 0) 7868 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 7869 } 7870 VLAN_CAPABILITIES(ifp); 7871 break; 7872 default: 7873 /* We don't know how to handle the IOCTL, pass it on. */ 7874 error = ether_ioctl(ifp, command, data); 7875 break; 7876 } 7877 7878 DBEXIT(BCE_VERBOSE_MISC); 7879 return(error); 7880 } 7881 7882 7883 /****************************************************************************/ 7884 /* Transmit timeout handler. */ 7885 /* */ 7886 /* Returns: */ 7887 /* Nothing. */ 7888 /****************************************************************************/ 7889 static void 7890 bce_watchdog(struct bce_softc *sc) 7891 { 7892 DBENTER(BCE_EXTREME_SEND); 7893 7894 BCE_LOCK_ASSERT(sc); 7895 7896 /* If the watchdog timer hasn't expired then just exit. */ 7897 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 7898 goto bce_watchdog_exit; 7899 7900 /* If pause frames are active then don't reset the hardware. */ 7901 /* ToDo: Should we reset the timer here? */ 7902 if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 7903 goto bce_watchdog_exit; 7904 7905 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 7906 __FILE__, __LINE__); 7907 7908 DBRUNMSG(BCE_INFO, 7909 bce_dump_driver_state(sc); 7910 bce_dump_status_block(sc); 7911 bce_dump_stats_block(sc); 7912 bce_dump_ftqs(sc); 7913 bce_dump_txp_state(sc, 0); 7914 bce_dump_rxp_state(sc, 0); 7915 bce_dump_tpat_state(sc, 0); 7916 bce_dump_cp_state(sc, 0); 7917 bce_dump_com_state(sc, 0)); 7918 7919 DBRUN(bce_breakpoint(sc)); 7920 7921 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7922 7923 bce_init_locked(sc); 7924 sc->bce_ifp->if_oerrors++; 7925 7926 bce_watchdog_exit: 7927 DBEXIT(BCE_EXTREME_SEND); 7928 } 7929 7930 7931 /* 7932 * Interrupt handler. 7933 */ 7934 /****************************************************************************/ 7935 /* Main interrupt entry point. Verifies that the controller generated the */ 7936 /* interrupt and then calls a separate routine for handle the various */ 7937 /* interrupt causes (PHY, TX, RX). */ 7938 /* */ 7939 /* Returns: */ 7940 /* 0 for success, positive value for failure. */ 7941 /****************************************************************************/ 7942 static void 7943 bce_intr(void *xsc) 7944 { 7945 struct bce_softc *sc; 7946 struct ifnet *ifp; 7947 u32 status_attn_bits; 7948 u16 hw_rx_cons, hw_tx_cons; 7949 7950 sc = xsc; 7951 ifp = sc->bce_ifp; 7952 7953 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7954 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 7955 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc)); 7956 7957 BCE_LOCK(sc); 7958 7959 DBRUN(sc->interrupts_generated++); 7960 7961 /* Synchnorize before we read from interface's status block */ 7962 bus_dmamap_sync(sc->status_tag, sc->status_map, 7963 BUS_DMASYNC_POSTREAD); 7964 7965 /* 7966 * If the hardware status block index 7967 * matches the last value read by the 7968 * driver and we haven't asserted our 7969 * interrupt then there's nothing to do. 7970 */ 7971 if ((sc->status_block->status_idx == sc->last_status_idx) && 7972 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & 7973 BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { 7974 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", 7975 __FUNCTION__); 7976 goto bce_intr_exit; 7977 } 7978 7979 /* Ack the interrupt and stop others from occuring. */ 7980 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7981 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 7982 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7983 7984 /* Check if the hardware has finished any work. */ 7985 hw_rx_cons = bce_get_hw_rx_cons(sc); 7986 hw_tx_cons = bce_get_hw_tx_cons(sc); 7987 7988 /* Keep processing data as long as there is work to do. */ 7989 for (;;) { 7990 7991 status_attn_bits = sc->status_block->status_attn_bits; 7992 7993 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control), 7994 BCE_PRINTF("Simulating unexpected status attention " 7995 "bit set."); 7996 sc->unexpected_attention_sim_count++; 7997 status_attn_bits = status_attn_bits | 7998 STATUS_ATTN_BITS_PARITY_ERROR); 7999 8000 /* Was it a link change interrupt? */ 8001 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 8002 (sc->status_block->status_attn_bits_ack & 8003 STATUS_ATTN_BITS_LINK_STATE)) { 8004 bce_phy_intr(sc); 8005 8006 /* Clear transient updates during link state change. */ 8007 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | 8008 BCE_HC_COMMAND_COAL_NOW_WO_INT); 8009 REG_RD(sc, BCE_HC_COMMAND); 8010 } 8011 8012 /* If any other attention is asserted, the chip is toast. */ 8013 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 8014 (sc->status_block->status_attn_bits_ack & 8015 ~STATUS_ATTN_BITS_LINK_STATE))) { 8016 8017 sc->unexpected_attention_count++; 8018 8019 BCE_PRINTF("%s(%d): Fatal attention detected: " 8020 "0x%08X\n", __FILE__, __LINE__, 8021 sc->status_block->status_attn_bits); 8022 8023 DBRUNMSG(BCE_FATAL, 8024 if (unexpected_attention_sim_control == 0) 8025 bce_breakpoint(sc)); 8026 8027 bce_init_locked(sc); 8028 goto bce_intr_exit; 8029 } 8030 8031 /* Check for any completed RX frames. */ 8032 if (hw_rx_cons != sc->hw_rx_cons) 8033 bce_rx_intr(sc); 8034 8035 /* Check for any completed TX frames. */ 8036 if (hw_tx_cons != sc->hw_tx_cons) 8037 bce_tx_intr(sc); 8038 8039 /* Save status block index value for the next interrupt. */ 8040 sc->last_status_idx = sc->status_block->status_idx; 8041 8042 /* 8043 * Prevent speculative reads from getting 8044 * ahead of the status block. 8045 */ 8046 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 8047 BUS_SPACE_BARRIER_READ); 8048 8049 /* 8050 * If there's no work left then exit the 8051 * interrupt service routine. 8052 */ 8053 hw_rx_cons = bce_get_hw_rx_cons(sc); 8054 hw_tx_cons = bce_get_hw_tx_cons(sc); 8055 8056 if ((hw_rx_cons == sc->hw_rx_cons) && 8057 (hw_tx_cons == sc->hw_tx_cons)) 8058 break; 8059 8060 } 8061 8062 bus_dmamap_sync(sc->status_tag, sc->status_map, 8063 BUS_DMASYNC_PREREAD); 8064 8065 /* Re-enable interrupts. */ 8066 bce_enable_intr(sc, 0); 8067 8068 /* Handle any frames that arrived while handling the interrupt. */ 8069 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 8070 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 8071 bce_start_locked(ifp); 8072 8073 bce_intr_exit: 8074 BCE_UNLOCK(sc); 8075 8076 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 8077 } 8078 8079 8080 /****************************************************************************/ 8081 /* Programs the various packet receive modes (broadcast and multicast). */ 8082 /* */ 8083 /* Returns: */ 8084 /* Nothing. */ 8085 /****************************************************************************/ 8086 static void 8087 bce_set_rx_mode(struct bce_softc *sc) 8088 { 8089 struct ifnet *ifp; 8090 struct ifmultiaddr *ifma; 8091 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 8092 u32 rx_mode, sort_mode; 8093 int h, i; 8094 8095 DBENTER(BCE_VERBOSE_MISC); 8096 8097 BCE_LOCK_ASSERT(sc); 8098 8099 ifp = sc->bce_ifp; 8100 8101 /* Initialize receive mode default settings. */ 8102 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 8103 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 8104 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 8105 8106 /* 8107 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 8108 * be enbled. 8109 */ 8110 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 8111 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 8112 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 8113 8114 /* 8115 * Check for promiscuous, all multicast, or selected 8116 * multicast address filtering. 8117 */ 8118 if (ifp->if_flags & IFF_PROMISC) { 8119 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 8120 8121 /* Enable promiscuous mode. */ 8122 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 8123 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 8124 } else if (ifp->if_flags & IFF_ALLMULTI) { 8125 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 8126 8127 /* Enable all multicast addresses. */ 8128 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 8129 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); 8130 } 8131 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 8132 } else { 8133 /* Accept one or more multicast(s). */ 8134 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 8135 8136 if_maddr_rlock(ifp); 8137 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 8138 if (ifma->ifma_addr->sa_family != AF_LINK) 8139 continue; 8140 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 8141 ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; 8142 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 8143 } 8144 if_maddr_runlock(ifp); 8145 8146 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 8147 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 8148 8149 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 8150 } 8151 8152 /* Only make changes if the recive mode has actually changed. */ 8153 if (rx_mode != sc->rx_mode) { 8154 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: " 8155 "0x%08X\n", rx_mode); 8156 8157 sc->rx_mode = rx_mode; 8158 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 8159 } 8160 8161 /* Disable and clear the exisitng sort before enabling a new sort. */ 8162 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 8163 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 8164 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 8165 8166 DBEXIT(BCE_VERBOSE_MISC); 8167 } 8168 8169 8170 /****************************************************************************/ 8171 /* Called periodically to updates statistics from the controllers */ 8172 /* statistics block. */ 8173 /* */ 8174 /* Returns: */ 8175 /* Nothing. */ 8176 /****************************************************************************/ 8177 static void 8178 bce_stats_update(struct bce_softc *sc) 8179 { 8180 struct ifnet *ifp; 8181 struct statistics_block *stats; 8182 8183 DBENTER(BCE_EXTREME_MISC); 8184 8185 ifp = sc->bce_ifp; 8186 8187 stats = (struct statistics_block *) sc->stats_block; 8188 8189 /* 8190 * Certain controllers don't report 8191 * carrier sense errors correctly. 8192 * See errata E11_5708CA0_1165. 8193 */ 8194 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 8195 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 8196 ifp->if_oerrors += 8197 (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 8198 8199 /* 8200 * Update the sysctl statistics from the 8201 * hardware statistics. 8202 */ 8203 sc->stat_IfHCInOctets = 8204 ((u64) stats->stat_IfHCInOctets_hi << 32) + 8205 (u64) stats->stat_IfHCInOctets_lo; 8206 8207 sc->stat_IfHCInBadOctets = 8208 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 8209 (u64) stats->stat_IfHCInBadOctets_lo; 8210 8211 sc->stat_IfHCOutOctets = 8212 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 8213 (u64) stats->stat_IfHCOutOctets_lo; 8214 8215 sc->stat_IfHCOutBadOctets = 8216 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 8217 (u64) stats->stat_IfHCOutBadOctets_lo; 8218 8219 sc->stat_IfHCInUcastPkts = 8220 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 8221 (u64) stats->stat_IfHCInUcastPkts_lo; 8222 8223 sc->stat_IfHCInMulticastPkts = 8224 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 8225 (u64) stats->stat_IfHCInMulticastPkts_lo; 8226 8227 sc->stat_IfHCInBroadcastPkts = 8228 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 8229 (u64) stats->stat_IfHCInBroadcastPkts_lo; 8230 8231 sc->stat_IfHCOutUcastPkts = 8232 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 8233 (u64) stats->stat_IfHCOutUcastPkts_lo; 8234 8235 sc->stat_IfHCOutMulticastPkts = 8236 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 8237 (u64) stats->stat_IfHCOutMulticastPkts_lo; 8238 8239 sc->stat_IfHCOutBroadcastPkts = 8240 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 8241 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 8242 8243 /* ToDo: Preserve counters beyond 32 bits? */ 8244 /* ToDo: Read the statistics from auto-clear regs? */ 8245 8246 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 8247 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 8248 8249 sc->stat_Dot3StatsCarrierSenseErrors = 8250 stats->stat_Dot3StatsCarrierSenseErrors; 8251 8252 sc->stat_Dot3StatsFCSErrors = 8253 stats->stat_Dot3StatsFCSErrors; 8254 8255 sc->stat_Dot3StatsAlignmentErrors = 8256 stats->stat_Dot3StatsAlignmentErrors; 8257 8258 sc->stat_Dot3StatsSingleCollisionFrames = 8259 stats->stat_Dot3StatsSingleCollisionFrames; 8260 8261 sc->stat_Dot3StatsMultipleCollisionFrames = 8262 stats->stat_Dot3StatsMultipleCollisionFrames; 8263 8264 sc->stat_Dot3StatsDeferredTransmissions = 8265 stats->stat_Dot3StatsDeferredTransmissions; 8266 8267 sc->stat_Dot3StatsExcessiveCollisions = 8268 stats->stat_Dot3StatsExcessiveCollisions; 8269 8270 sc->stat_Dot3StatsLateCollisions = 8271 stats->stat_Dot3StatsLateCollisions; 8272 8273 sc->stat_EtherStatsCollisions = 8274 stats->stat_EtherStatsCollisions; 8275 8276 sc->stat_EtherStatsFragments = 8277 stats->stat_EtherStatsFragments; 8278 8279 sc->stat_EtherStatsJabbers = 8280 stats->stat_EtherStatsJabbers; 8281 8282 sc->stat_EtherStatsUndersizePkts = 8283 stats->stat_EtherStatsUndersizePkts; 8284 8285 sc->stat_EtherStatsOversizePkts = 8286 stats->stat_EtherStatsOversizePkts; 8287 8288 sc->stat_EtherStatsPktsRx64Octets = 8289 stats->stat_EtherStatsPktsRx64Octets; 8290 8291 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 8292 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 8293 8294 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 8295 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 8296 8297 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 8298 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 8299 8300 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 8301 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 8302 8303 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 8304 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 8305 8306 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 8307 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 8308 8309 sc->stat_EtherStatsPktsTx64Octets = 8310 stats->stat_EtherStatsPktsTx64Octets; 8311 8312 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 8313 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 8314 8315 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 8316 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 8317 8318 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 8319 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 8320 8321 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 8322 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 8323 8324 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 8325 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 8326 8327 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 8328 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 8329 8330 sc->stat_XonPauseFramesReceived = 8331 stats->stat_XonPauseFramesReceived; 8332 8333 sc->stat_XoffPauseFramesReceived = 8334 stats->stat_XoffPauseFramesReceived; 8335 8336 sc->stat_OutXonSent = 8337 stats->stat_OutXonSent; 8338 8339 sc->stat_OutXoffSent = 8340 stats->stat_OutXoffSent; 8341 8342 sc->stat_FlowControlDone = 8343 stats->stat_FlowControlDone; 8344 8345 sc->stat_MacControlFramesReceived = 8346 stats->stat_MacControlFramesReceived; 8347 8348 sc->stat_XoffStateEntered = 8349 stats->stat_XoffStateEntered; 8350 8351 sc->stat_IfInFramesL2FilterDiscards = 8352 stats->stat_IfInFramesL2FilterDiscards; 8353 8354 sc->stat_IfInRuleCheckerDiscards = 8355 stats->stat_IfInRuleCheckerDiscards; 8356 8357 sc->stat_IfInFTQDiscards = 8358 stats->stat_IfInFTQDiscards; 8359 8360 sc->stat_IfInMBUFDiscards = 8361 stats->stat_IfInMBUFDiscards; 8362 8363 sc->stat_IfInRuleCheckerP4Hit = 8364 stats->stat_IfInRuleCheckerP4Hit; 8365 8366 sc->stat_CatchupInRuleCheckerDiscards = 8367 stats->stat_CatchupInRuleCheckerDiscards; 8368 8369 sc->stat_CatchupInFTQDiscards = 8370 stats->stat_CatchupInFTQDiscards; 8371 8372 sc->stat_CatchupInMBUFDiscards = 8373 stats->stat_CatchupInMBUFDiscards; 8374 8375 sc->stat_CatchupInRuleCheckerP4Hit = 8376 stats->stat_CatchupInRuleCheckerP4Hit; 8377 8378 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 8379 8380 /* 8381 * Update the interface statistics from the 8382 * hardware statistics. 8383 */ 8384 ifp->if_collisions = 8385 (u_long) sc->stat_EtherStatsCollisions; 8386 8387 /* ToDo: This method loses soft errors. */ 8388 ifp->if_ierrors = 8389 (u_long) sc->stat_EtherStatsUndersizePkts + 8390 (u_long) sc->stat_EtherStatsOversizePkts + 8391 (u_long) sc->stat_IfInMBUFDiscards + 8392 (u_long) sc->stat_Dot3StatsAlignmentErrors + 8393 (u_long) sc->stat_Dot3StatsFCSErrors + 8394 (u_long) sc->stat_IfInRuleCheckerDiscards + 8395 (u_long) sc->stat_IfInFTQDiscards + 8396 (u_long) sc->com_no_buffers; 8397 8398 /* ToDo: This method loses soft errors. */ 8399 ifp->if_oerrors = 8400 (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 8401 (u_long) sc->stat_Dot3StatsExcessiveCollisions + 8402 (u_long) sc->stat_Dot3StatsLateCollisions; 8403 8404 /* ToDo: Add additional statistics? */ 8405 8406 DBEXIT(BCE_EXTREME_MISC); 8407 } 8408 8409 8410 /****************************************************************************/ 8411 /* Periodic function to notify the bootcode that the driver is still */ 8412 /* present. */ 8413 /* */ 8414 /* Returns: */ 8415 /* Nothing. */ 8416 /****************************************************************************/ 8417 static void 8418 bce_pulse(void *xsc) 8419 { 8420 struct bce_softc *sc = xsc; 8421 u32 msg; 8422 8423 DBENTER(BCE_EXTREME_MISC); 8424 8425 BCE_LOCK_ASSERT(sc); 8426 8427 /* Tell the firmware that the driver is still running. */ 8428 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 8429 bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg); 8430 8431 /* Update the bootcode condition. */ 8432 sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 8433 8434 /* Report whether the bootcode still knows the driver is running. */ 8435 if (bce_verbose || bootverbose) { 8436 if (sc->bce_drv_cardiac_arrest == FALSE) { 8437 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) { 8438 sc->bce_drv_cardiac_arrest = TRUE; 8439 BCE_PRINTF("%s(): Warning: bootcode " 8440 "thinks driver is absent! " 8441 "(bc_state = 0x%08X)\n", 8442 __FUNCTION__, sc->bc_state); 8443 } 8444 } else { 8445 /* 8446 * Not supported by all bootcode versions. 8447 * (v5.0.11+ and v5.2.1+) Older bootcode 8448 * will require the driver to reset the 8449 * controller to clear this condition. 8450 */ 8451 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) { 8452 sc->bce_drv_cardiac_arrest = FALSE; 8453 BCE_PRINTF("%s(): Bootcode found the " 8454 "driver pulse! (bc_state = 0x%08X)\n", 8455 __FUNCTION__, sc->bc_state); 8456 } 8457 } 8458 } 8459 8460 8461 /* Schedule the next pulse. */ 8462 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 8463 8464 DBEXIT(BCE_EXTREME_MISC); 8465 } 8466 8467 8468 /****************************************************************************/ 8469 /* Periodic function to perform maintenance tasks. */ 8470 /* */ 8471 /* Returns: */ 8472 /* Nothing. */ 8473 /****************************************************************************/ 8474 static void 8475 bce_tick(void *xsc) 8476 { 8477 struct bce_softc *sc = xsc; 8478 struct mii_data *mii; 8479 struct ifnet *ifp; 8480 struct ifmediareq ifmr; 8481 8482 ifp = sc->bce_ifp; 8483 8484 DBENTER(BCE_EXTREME_MISC); 8485 8486 BCE_LOCK_ASSERT(sc); 8487 8488 /* Schedule the next tick. */ 8489 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 8490 8491 /* Update the statistics from the hardware statistics block. */ 8492 bce_stats_update(sc); 8493 8494 /* 8495 * ToDo: This is a safety measure. Need to re-evaluate 8496 * high level processing logic and eliminate this code. 8497 */ 8498 /* Top off the receive and page chains. */ 8499 if (bce_hdr_split == TRUE) 8500 bce_fill_pg_chain(sc); 8501 bce_fill_rx_chain(sc); 8502 8503 /* Check that chip hasn't hung. */ 8504 bce_watchdog(sc); 8505 8506 /* If link is up already up then we're done. */ 8507 if (sc->bce_link_up == TRUE) 8508 goto bce_tick_exit; 8509 8510 /* Link is down. Check what the PHY's doing. */ 8511 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 8512 bzero(&ifmr, sizeof(ifmr)); 8513 bce_ifmedia_sts_rphy(sc, &ifmr); 8514 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) == 8515 (IFM_ACTIVE | IFM_AVALID)) { 8516 sc->bce_link_up = TRUE; 8517 bce_miibus_statchg(sc->bce_dev); 8518 } 8519 } else { 8520 mii = device_get_softc(sc->bce_miibus); 8521 mii_tick(mii); 8522 /* Check if the link has come up. */ 8523 if ((mii->mii_media_status & IFM_ACTIVE) && 8524 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { 8525 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", 8526 __FUNCTION__); 8527 sc->bce_link_up = TRUE; 8528 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 8529 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX || 8530 IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) && 8531 (bce_verbose || bootverbose)) 8532 BCE_PRINTF("Gigabit link up!\n"); 8533 } 8534 8535 } 8536 if (sc->bce_link_up == TRUE) { 8537 /* Now that link is up, handle any outstanding TX traffic. */ 8538 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 8539 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found " 8540 "pending TX traffic.\n", __FUNCTION__); 8541 bce_start_locked(ifp); 8542 } 8543 } 8544 8545 bce_tick_exit: 8546 DBEXIT(BCE_EXTREME_MISC); 8547 return; 8548 } 8549 8550 static void 8551 bce_fw_cap_init(struct bce_softc *sc) 8552 { 8553 u32 ack, cap, link; 8554 8555 ack = 0; 8556 cap = bce_shmem_rd(sc, BCE_FW_CAP_MB); 8557 if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) != 8558 BCE_FW_CAP_SIGNATURE_MAGIC) 8559 return; 8560 if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) == 8561 (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) 8562 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | 8563 BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN; 8564 if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 && 8565 (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) { 8566 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG; 8567 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG; 8568 link = bce_shmem_rd(sc, BCE_LINK_STATUS); 8569 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0) 8570 sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG; 8571 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | 8572 BCE_FW_CAP_REMOTE_PHY_CAP; 8573 } 8574 8575 if (ack != 0) 8576 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack); 8577 } 8578 8579 8580 #ifdef BCE_DEBUG 8581 /****************************************************************************/ 8582 /* Allows the driver state to be dumped through the sysctl interface. */ 8583 /* */ 8584 /* Returns: */ 8585 /* 0 for success, positive value for failure. */ 8586 /****************************************************************************/ 8587 static int 8588 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 8589 { 8590 int error; 8591 int result; 8592 struct bce_softc *sc; 8593 8594 result = -1; 8595 error = sysctl_handle_int(oidp, &result, 0, req); 8596 8597 if (error || !req->newptr) 8598 return (error); 8599 8600 if (result == 1) { 8601 sc = (struct bce_softc *)arg1; 8602 bce_dump_driver_state(sc); 8603 } 8604 8605 return error; 8606 } 8607 8608 8609 /****************************************************************************/ 8610 /* Allows the hardware state to be dumped through the sysctl interface. */ 8611 /* */ 8612 /* Returns: */ 8613 /* 0 for success, positive value for failure. */ 8614 /****************************************************************************/ 8615 static int 8616 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 8617 { 8618 int error; 8619 int result; 8620 struct bce_softc *sc; 8621 8622 result = -1; 8623 error = sysctl_handle_int(oidp, &result, 0, req); 8624 8625 if (error || !req->newptr) 8626 return (error); 8627 8628 if (result == 1) { 8629 sc = (struct bce_softc *)arg1; 8630 bce_dump_hw_state(sc); 8631 } 8632 8633 return error; 8634 } 8635 8636 8637 /****************************************************************************/ 8638 /* Allows the status block to be dumped through the sysctl interface. */ 8639 /* */ 8640 /* Returns: */ 8641 /* 0 for success, positive value for failure. */ 8642 /****************************************************************************/ 8643 static int 8644 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS) 8645 { 8646 int error; 8647 int result; 8648 struct bce_softc *sc; 8649 8650 result = -1; 8651 error = sysctl_handle_int(oidp, &result, 0, req); 8652 8653 if (error || !req->newptr) 8654 return (error); 8655 8656 if (result == 1) { 8657 sc = (struct bce_softc *)arg1; 8658 bce_dump_status_block(sc); 8659 } 8660 8661 return error; 8662 } 8663 8664 8665 /****************************************************************************/ 8666 /* Allows the stats block to be dumped through the sysctl interface. */ 8667 /* */ 8668 /* Returns: */ 8669 /* 0 for success, positive value for failure. */ 8670 /****************************************************************************/ 8671 static int 8672 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS) 8673 { 8674 int error; 8675 int result; 8676 struct bce_softc *sc; 8677 8678 result = -1; 8679 error = sysctl_handle_int(oidp, &result, 0, req); 8680 8681 if (error || !req->newptr) 8682 return (error); 8683 8684 if (result == 1) { 8685 sc = (struct bce_softc *)arg1; 8686 bce_dump_stats_block(sc); 8687 } 8688 8689 return error; 8690 } 8691 8692 8693 /****************************************************************************/ 8694 /* Allows the stat counters to be cleared without unloading/reloading the */ 8695 /* driver. */ 8696 /* */ 8697 /* Returns: */ 8698 /* 0 for success, positive value for failure. */ 8699 /****************************************************************************/ 8700 static int 8701 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS) 8702 { 8703 int error; 8704 int result; 8705 struct bce_softc *sc; 8706 8707 result = -1; 8708 error = sysctl_handle_int(oidp, &result, 0, req); 8709 8710 if (error || !req->newptr) 8711 return (error); 8712 8713 if (result == 1) { 8714 sc = (struct bce_softc *)arg1; 8715 struct statistics_block *stats; 8716 8717 stats = (struct statistics_block *) sc->stats_block; 8718 bzero(stats, sizeof(struct statistics_block)); 8719 8720 /* Clear the internal H/W statistics counters. */ 8721 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 8722 8723 /* Reset the driver maintained statistics. */ 8724 sc->interrupts_rx = 8725 sc->interrupts_tx = 0; 8726 sc->tso_frames_requested = 8727 sc->tso_frames_completed = 8728 sc->tso_frames_failed = 0; 8729 sc->rx_empty_count = 8730 sc->tx_full_count = 0; 8731 sc->rx_low_watermark = USABLE_RX_BD_ALLOC; 8732 sc->tx_hi_watermark = 0; 8733 sc->l2fhdr_error_count = 8734 sc->l2fhdr_error_sim_count = 0; 8735 sc->mbuf_alloc_failed_count = 8736 sc->mbuf_alloc_failed_sim_count = 0; 8737 sc->dma_map_addr_rx_failed_count = 8738 sc->dma_map_addr_tx_failed_count = 0; 8739 sc->mbuf_frag_count = 0; 8740 sc->csum_offload_tcp_udp = 8741 sc->csum_offload_ip = 0; 8742 sc->vlan_tagged_frames_rcvd = 8743 sc->vlan_tagged_frames_stripped = 0; 8744 sc->split_header_frames_rcvd = 8745 sc->split_header_tcp_frames_rcvd = 0; 8746 8747 /* Clear firmware maintained statistics. */ 8748 REG_WR_IND(sc, 0x120084, 0); 8749 } 8750 8751 return error; 8752 } 8753 8754 8755 /****************************************************************************/ 8756 /* Allows the shared memory contents to be dumped through the sysctl . */ 8757 /* interface. */ 8758 /* */ 8759 /* Returns: */ 8760 /* 0 for success, positive value for failure. */ 8761 /****************************************************************************/ 8762 static int 8763 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS) 8764 { 8765 int error; 8766 int result; 8767 struct bce_softc *sc; 8768 8769 result = -1; 8770 error = sysctl_handle_int(oidp, &result, 0, req); 8771 8772 if (error || !req->newptr) 8773 return (error); 8774 8775 if (result == 1) { 8776 sc = (struct bce_softc *)arg1; 8777 bce_dump_shmem_state(sc); 8778 } 8779 8780 return error; 8781 } 8782 8783 8784 /****************************************************************************/ 8785 /* Allows the bootcode state to be dumped through the sysctl interface. */ 8786 /* */ 8787 /* Returns: */ 8788 /* 0 for success, positive value for failure. */ 8789 /****************************************************************************/ 8790 static int 8791 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 8792 { 8793 int error; 8794 int result; 8795 struct bce_softc *sc; 8796 8797 result = -1; 8798 error = sysctl_handle_int(oidp, &result, 0, req); 8799 8800 if (error || !req->newptr) 8801 return (error); 8802 8803 if (result == 1) { 8804 sc = (struct bce_softc *)arg1; 8805 bce_dump_bc_state(sc); 8806 } 8807 8808 return error; 8809 } 8810 8811 8812 /****************************************************************************/ 8813 /* Provides a sysctl interface to allow dumping the RX BD chain. */ 8814 /* */ 8815 /* Returns: */ 8816 /* 0 for success, positive value for failure. */ 8817 /****************************************************************************/ 8818 static int 8819 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS) 8820 { 8821 int error; 8822 int result; 8823 struct bce_softc *sc; 8824 8825 result = -1; 8826 error = sysctl_handle_int(oidp, &result, 0, req); 8827 8828 if (error || !req->newptr) 8829 return (error); 8830 8831 if (result == 1) { 8832 sc = (struct bce_softc *)arg1; 8833 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC); 8834 } 8835 8836 return error; 8837 } 8838 8839 8840 /****************************************************************************/ 8841 /* Provides a sysctl interface to allow dumping the RX MBUF chain. */ 8842 /* */ 8843 /* Returns: */ 8844 /* 0 for success, positive value for failure. */ 8845 /****************************************************************************/ 8846 static int 8847 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS) 8848 { 8849 int error; 8850 int result; 8851 struct bce_softc *sc; 8852 8853 result = -1; 8854 error = sysctl_handle_int(oidp, &result, 0, req); 8855 8856 if (error || !req->newptr) 8857 return (error); 8858 8859 if (result == 1) { 8860 sc = (struct bce_softc *)arg1; 8861 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); 8862 } 8863 8864 return error; 8865 } 8866 8867 8868 /****************************************************************************/ 8869 /* Provides a sysctl interface to allow dumping the TX chain. */ 8870 /* */ 8871 /* Returns: */ 8872 /* 0 for success, positive value for failure. */ 8873 /****************************************************************************/ 8874 static int 8875 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 8876 { 8877 int error; 8878 int result; 8879 struct bce_softc *sc; 8880 8881 result = -1; 8882 error = sysctl_handle_int(oidp, &result, 0, req); 8883 8884 if (error || !req->newptr) 8885 return (error); 8886 8887 if (result == 1) { 8888 sc = (struct bce_softc *)arg1; 8889 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC); 8890 } 8891 8892 return error; 8893 } 8894 8895 8896 /****************************************************************************/ 8897 /* Provides a sysctl interface to allow dumping the page chain. */ 8898 /* */ 8899 /* Returns: */ 8900 /* 0 for success, positive value for failure. */ 8901 /****************************************************************************/ 8902 static int 8903 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) 8904 { 8905 int error; 8906 int result; 8907 struct bce_softc *sc; 8908 8909 result = -1; 8910 error = sysctl_handle_int(oidp, &result, 0, req); 8911 8912 if (error || !req->newptr) 8913 return (error); 8914 8915 if (result == 1) { 8916 sc = (struct bce_softc *)arg1; 8917 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC); 8918 } 8919 8920 return error; 8921 } 8922 8923 /****************************************************************************/ 8924 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ 8925 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8926 /* */ 8927 /* Returns: */ 8928 /* 0 for success, positive value for failure. */ 8929 /****************************************************************************/ 8930 static int 8931 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) 8932 { 8933 struct bce_softc *sc = (struct bce_softc *)arg1; 8934 int error; 8935 u32 result; 8936 u32 val[1]; 8937 u8 *data = (u8 *) val; 8938 8939 result = -1; 8940 error = sysctl_handle_int(oidp, &result, 0, req); 8941 if (error || (req->newptr == NULL)) 8942 return (error); 8943 8944 error = bce_nvram_read(sc, result, data, 4); 8945 8946 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); 8947 8948 return (error); 8949 } 8950 8951 8952 /****************************************************************************/ 8953 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 8954 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8955 /* */ 8956 /* Returns: */ 8957 /* 0 for success, positive value for failure. */ 8958 /****************************************************************************/ 8959 static int 8960 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 8961 { 8962 struct bce_softc *sc = (struct bce_softc *)arg1; 8963 int error; 8964 u32 val, result; 8965 8966 result = -1; 8967 error = sysctl_handle_int(oidp, &result, 0, req); 8968 if (error || (req->newptr == NULL)) 8969 return (error); 8970 8971 /* Make sure the register is accessible. */ 8972 if (result < 0x8000) { 8973 val = REG_RD(sc, result); 8974 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8975 } else if (result < 0x0280000) { 8976 val = REG_RD_IND(sc, result); 8977 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8978 } 8979 8980 return (error); 8981 } 8982 8983 8984 /****************************************************************************/ 8985 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 8986 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8987 /* */ 8988 /* Returns: */ 8989 /* 0 for success, positive value for failure. */ 8990 /****************************************************************************/ 8991 static int 8992 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 8993 { 8994 struct bce_softc *sc; 8995 device_t dev; 8996 int error, result; 8997 u16 val; 8998 8999 result = -1; 9000 error = sysctl_handle_int(oidp, &result, 0, req); 9001 if (error || (req->newptr == NULL)) 9002 return (error); 9003 9004 /* Make sure the register is accessible. */ 9005 if (result < 0x20) { 9006 sc = (struct bce_softc *)arg1; 9007 dev = sc->bce_dev; 9008 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 9009 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 9010 } 9011 return (error); 9012 } 9013 9014 9015 /****************************************************************************/ 9016 /* Provides a sysctl interface for dumping the nvram contents. */ 9017 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9018 /* */ 9019 /* Returns: */ 9020 /* 0 for success, positive errno for failure. */ 9021 /****************************************************************************/ 9022 static int 9023 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS) 9024 { 9025 struct bce_softc *sc = (struct bce_softc *)arg1; 9026 int error, i; 9027 9028 if (sc->nvram_buf == NULL) 9029 sc->nvram_buf = malloc(sc->bce_flash_size, 9030 M_TEMP, M_ZERO | M_WAITOK); 9031 9032 error = 0; 9033 if (req->oldlen == sc->bce_flash_size) { 9034 for (i = 0; i < sc->bce_flash_size && error == 0; i++) 9035 error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1); 9036 } 9037 9038 if (error == 0) 9039 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size); 9040 9041 return error; 9042 } 9043 9044 #ifdef BCE_NVRAM_WRITE_SUPPORT 9045 /****************************************************************************/ 9046 /* Provides a sysctl interface for writing to nvram. */ 9047 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9048 /* */ 9049 /* Returns: */ 9050 /* 0 for success, positive errno for failure. */ 9051 /****************************************************************************/ 9052 static int 9053 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS) 9054 { 9055 struct bce_softc *sc = (struct bce_softc *)arg1; 9056 int error; 9057 9058 if (sc->nvram_buf == NULL) 9059 sc->nvram_buf = malloc(sc->bce_flash_size, 9060 M_TEMP, M_ZERO | M_WAITOK); 9061 else 9062 bzero(sc->nvram_buf, sc->bce_flash_size); 9063 9064 error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size); 9065 if (error == 0) 9066 return (error); 9067 9068 if (req->newlen == sc->bce_flash_size) 9069 error = bce_nvram_write(sc, 0, sc->nvram_buf, 9070 sc->bce_flash_size); 9071 9072 9073 return error; 9074 } 9075 #endif 9076 9077 9078 /****************************************************************************/ 9079 /* Provides a sysctl interface to allow reading a CID. */ 9080 /* */ 9081 /* Returns: */ 9082 /* 0 for success, positive value for failure. */ 9083 /****************************************************************************/ 9084 static int 9085 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) 9086 { 9087 struct bce_softc *sc; 9088 int error, result; 9089 9090 result = -1; 9091 error = sysctl_handle_int(oidp, &result, 0, req); 9092 if (error || (req->newptr == NULL)) 9093 return (error); 9094 9095 /* Make sure the register is accessible. */ 9096 if (result <= TX_CID) { 9097 sc = (struct bce_softc *)arg1; 9098 bce_dump_ctx(sc, result); 9099 } 9100 9101 return (error); 9102 } 9103 9104 9105 /****************************************************************************/ 9106 /* Provides a sysctl interface to forcing the driver to dump state and */ 9107 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9108 /* */ 9109 /* Returns: */ 9110 /* 0 for success, positive value for failure. */ 9111 /****************************************************************************/ 9112 static int 9113 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 9114 { 9115 int error; 9116 int result; 9117 struct bce_softc *sc; 9118 9119 result = -1; 9120 error = sysctl_handle_int(oidp, &result, 0, req); 9121 9122 if (error || !req->newptr) 9123 return (error); 9124 9125 if (result == 1) { 9126 sc = (struct bce_softc *)arg1; 9127 bce_breakpoint(sc); 9128 } 9129 9130 return error; 9131 } 9132 #endif 9133 9134 /****************************************************************************/ 9135 /* Adds any sysctl parameters for tuning or debugging purposes. */ 9136 /* */ 9137 /* Returns: */ 9138 /* 0 for success, positive value for failure. */ 9139 /****************************************************************************/ 9140 static void 9141 bce_add_sysctls(struct bce_softc *sc) 9142 { 9143 struct sysctl_ctx_list *ctx; 9144 struct sysctl_oid_list *children; 9145 9146 DBENTER(BCE_VERBOSE_MISC); 9147 9148 ctx = device_get_sysctl_ctx(sc->bce_dev); 9149 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 9150 9151 #ifdef BCE_DEBUG 9152 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9153 "l2fhdr_error_sim_control", 9154 CTLFLAG_RW, &l2fhdr_error_sim_control, 9155 0, "Debug control to force l2fhdr errors"); 9156 9157 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9158 "l2fhdr_error_sim_count", 9159 CTLFLAG_RD, &sc->l2fhdr_error_sim_count, 9160 0, "Number of simulated l2_fhdr errors"); 9161 #endif 9162 9163 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9164 "l2fhdr_error_count", 9165 CTLFLAG_RD, &sc->l2fhdr_error_count, 9166 0, "Number of l2_fhdr errors"); 9167 9168 #ifdef BCE_DEBUG 9169 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9170 "mbuf_alloc_failed_sim_control", 9171 CTLFLAG_RW, &mbuf_alloc_failed_sim_control, 9172 0, "Debug control to force mbuf allocation failures"); 9173 9174 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9175 "mbuf_alloc_failed_sim_count", 9176 CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count, 9177 0, "Number of simulated mbuf cluster allocation failures"); 9178 #endif 9179 9180 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9181 "mbuf_alloc_failed_count", 9182 CTLFLAG_RD, &sc->mbuf_alloc_failed_count, 9183 0, "Number of mbuf allocation failures"); 9184 9185 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9186 "mbuf_frag_count", 9187 CTLFLAG_RD, &sc->mbuf_frag_count, 9188 0, "Number of fragmented mbufs"); 9189 9190 #ifdef BCE_DEBUG 9191 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9192 "dma_map_addr_failed_sim_control", 9193 CTLFLAG_RW, &dma_map_addr_failed_sim_control, 9194 0, "Debug control to force DMA mapping failures"); 9195 9196 /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */ 9197 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9198 "dma_map_addr_failed_sim_count", 9199 CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count, 9200 0, "Number of simulated DMA mapping failures"); 9201 9202 #endif 9203 9204 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9205 "dma_map_addr_rx_failed_count", 9206 CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count, 9207 0, "Number of RX DMA mapping failures"); 9208 9209 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9210 "dma_map_addr_tx_failed_count", 9211 CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count, 9212 0, "Number of TX DMA mapping failures"); 9213 9214 #ifdef BCE_DEBUG 9215 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9216 "unexpected_attention_sim_control", 9217 CTLFLAG_RW, &unexpected_attention_sim_control, 9218 0, "Debug control to simulate unexpected attentions"); 9219 9220 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9221 "unexpected_attention_sim_count", 9222 CTLFLAG_RW, &sc->unexpected_attention_sim_count, 9223 0, "Number of simulated unexpected attentions"); 9224 #endif 9225 9226 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9227 "unexpected_attention_count", 9228 CTLFLAG_RW, &sc->unexpected_attention_count, 9229 0, "Number of unexpected attentions"); 9230 9231 #ifdef BCE_DEBUG 9232 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9233 "debug_bootcode_running_failure", 9234 CTLFLAG_RW, &bootcode_running_failure_sim_control, 9235 0, "Debug control to force bootcode running failures"); 9236 9237 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9238 "rx_low_watermark", 9239 CTLFLAG_RD, &sc->rx_low_watermark, 9240 0, "Lowest level of free rx_bd's"); 9241 9242 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9243 "rx_empty_count", 9244 CTLFLAG_RD, &sc->rx_empty_count, 9245 "Number of times the RX chain was empty"); 9246 9247 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9248 "tx_hi_watermark", 9249 CTLFLAG_RD, &sc->tx_hi_watermark, 9250 0, "Highest level of used tx_bd's"); 9251 9252 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9253 "tx_full_count", 9254 CTLFLAG_RD, &sc->tx_full_count, 9255 "Number of times the TX chain was full"); 9256 9257 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9258 "tso_frames_requested", 9259 CTLFLAG_RD, &sc->tso_frames_requested, 9260 "Number of TSO frames requested"); 9261 9262 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9263 "tso_frames_completed", 9264 CTLFLAG_RD, &sc->tso_frames_completed, 9265 "Number of TSO frames completed"); 9266 9267 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9268 "tso_frames_failed", 9269 CTLFLAG_RD, &sc->tso_frames_failed, 9270 "Number of TSO frames failed"); 9271 9272 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9273 "csum_offload_ip", 9274 CTLFLAG_RD, &sc->csum_offload_ip, 9275 "Number of IP checksum offload frames"); 9276 9277 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9278 "csum_offload_tcp_udp", 9279 CTLFLAG_RD, &sc->csum_offload_tcp_udp, 9280 "Number of TCP/UDP checksum offload frames"); 9281 9282 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9283 "vlan_tagged_frames_rcvd", 9284 CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd, 9285 "Number of VLAN tagged frames received"); 9286 9287 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9288 "vlan_tagged_frames_stripped", 9289 CTLFLAG_RD, &sc->vlan_tagged_frames_stripped, 9290 "Number of VLAN tagged frames stripped"); 9291 9292 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9293 "interrupts_rx", 9294 CTLFLAG_RD, &sc->interrupts_rx, 9295 "Number of RX interrupts"); 9296 9297 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9298 "interrupts_tx", 9299 CTLFLAG_RD, &sc->interrupts_tx, 9300 "Number of TX interrupts"); 9301 9302 if (bce_hdr_split == TRUE) { 9303 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9304 "split_header_frames_rcvd", 9305 CTLFLAG_RD, &sc->split_header_frames_rcvd, 9306 "Number of split header frames received"); 9307 9308 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9309 "split_header_tcp_frames_rcvd", 9310 CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd, 9311 "Number of split header TCP frames received"); 9312 } 9313 9314 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9315 "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD, 9316 (void *)sc, 0, 9317 bce_sysctl_nvram_dump, "S", ""); 9318 9319 #ifdef BCE_NVRAM_WRITE_SUPPORT 9320 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9321 "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR, 9322 (void *)sc, 0, 9323 bce_sysctl_nvram_write, "S", ""); 9324 #endif 9325 #endif /* BCE_DEBUG */ 9326 9327 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9328 "stat_IfHcInOctets", 9329 CTLFLAG_RD, &sc->stat_IfHCInOctets, 9330 "Bytes received"); 9331 9332 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9333 "stat_IfHCInBadOctets", 9334 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 9335 "Bad bytes received"); 9336 9337 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9338 "stat_IfHCOutOctets", 9339 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 9340 "Bytes sent"); 9341 9342 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9343 "stat_IfHCOutBadOctets", 9344 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 9345 "Bad bytes sent"); 9346 9347 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9348 "stat_IfHCInUcastPkts", 9349 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 9350 "Unicast packets received"); 9351 9352 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9353 "stat_IfHCInMulticastPkts", 9354 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 9355 "Multicast packets received"); 9356 9357 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9358 "stat_IfHCInBroadcastPkts", 9359 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 9360 "Broadcast packets received"); 9361 9362 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9363 "stat_IfHCOutUcastPkts", 9364 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 9365 "Unicast packets sent"); 9366 9367 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9368 "stat_IfHCOutMulticastPkts", 9369 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 9370 "Multicast packets sent"); 9371 9372 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9373 "stat_IfHCOutBroadcastPkts", 9374 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 9375 "Broadcast packets sent"); 9376 9377 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9378 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 9379 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 9380 0, "Internal MAC transmit errors"); 9381 9382 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9383 "stat_Dot3StatsCarrierSenseErrors", 9384 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 9385 0, "Carrier sense errors"); 9386 9387 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9388 "stat_Dot3StatsFCSErrors", 9389 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 9390 0, "Frame check sequence errors"); 9391 9392 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9393 "stat_Dot3StatsAlignmentErrors", 9394 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 9395 0, "Alignment errors"); 9396 9397 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9398 "stat_Dot3StatsSingleCollisionFrames", 9399 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 9400 0, "Single Collision Frames"); 9401 9402 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9403 "stat_Dot3StatsMultipleCollisionFrames", 9404 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 9405 0, "Multiple Collision Frames"); 9406 9407 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9408 "stat_Dot3StatsDeferredTransmissions", 9409 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 9410 0, "Deferred Transmissions"); 9411 9412 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9413 "stat_Dot3StatsExcessiveCollisions", 9414 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 9415 0, "Excessive Collisions"); 9416 9417 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9418 "stat_Dot3StatsLateCollisions", 9419 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 9420 0, "Late Collisions"); 9421 9422 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9423 "stat_EtherStatsCollisions", 9424 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 9425 0, "Collisions"); 9426 9427 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9428 "stat_EtherStatsFragments", 9429 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 9430 0, "Fragments"); 9431 9432 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9433 "stat_EtherStatsJabbers", 9434 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 9435 0, "Jabbers"); 9436 9437 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9438 "stat_EtherStatsUndersizePkts", 9439 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 9440 0, "Undersize packets"); 9441 9442 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9443 "stat_EtherStatsOversizePkts", 9444 CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts, 9445 0, "stat_EtherStatsOversizePkts"); 9446 9447 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9448 "stat_EtherStatsPktsRx64Octets", 9449 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 9450 0, "Bytes received in 64 byte packets"); 9451 9452 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9453 "stat_EtherStatsPktsRx65Octetsto127Octets", 9454 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 9455 0, "Bytes received in 65 to 127 byte packets"); 9456 9457 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9458 "stat_EtherStatsPktsRx128Octetsto255Octets", 9459 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 9460 0, "Bytes received in 128 to 255 byte packets"); 9461 9462 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9463 "stat_EtherStatsPktsRx256Octetsto511Octets", 9464 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 9465 0, "Bytes received in 256 to 511 byte packets"); 9466 9467 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9468 "stat_EtherStatsPktsRx512Octetsto1023Octets", 9469 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 9470 0, "Bytes received in 512 to 1023 byte packets"); 9471 9472 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9473 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 9474 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 9475 0, "Bytes received in 1024 t0 1522 byte packets"); 9476 9477 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9478 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 9479 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 9480 0, "Bytes received in 1523 to 9022 byte packets"); 9481 9482 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9483 "stat_EtherStatsPktsTx64Octets", 9484 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 9485 0, "Bytes sent in 64 byte packets"); 9486 9487 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9488 "stat_EtherStatsPktsTx65Octetsto127Octets", 9489 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 9490 0, "Bytes sent in 65 to 127 byte packets"); 9491 9492 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9493 "stat_EtherStatsPktsTx128Octetsto255Octets", 9494 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 9495 0, "Bytes sent in 128 to 255 byte packets"); 9496 9497 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9498 "stat_EtherStatsPktsTx256Octetsto511Octets", 9499 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 9500 0, "Bytes sent in 256 to 511 byte packets"); 9501 9502 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9503 "stat_EtherStatsPktsTx512Octetsto1023Octets", 9504 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 9505 0, "Bytes sent in 512 to 1023 byte packets"); 9506 9507 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9508 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 9509 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 9510 0, "Bytes sent in 1024 to 1522 byte packets"); 9511 9512 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9513 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 9514 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 9515 0, "Bytes sent in 1523 to 9022 byte packets"); 9516 9517 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9518 "stat_XonPauseFramesReceived", 9519 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 9520 0, "XON pause frames receved"); 9521 9522 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9523 "stat_XoffPauseFramesReceived", 9524 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 9525 0, "XOFF pause frames received"); 9526 9527 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9528 "stat_OutXonSent", 9529 CTLFLAG_RD, &sc->stat_OutXonSent, 9530 0, "XON pause frames sent"); 9531 9532 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9533 "stat_OutXoffSent", 9534 CTLFLAG_RD, &sc->stat_OutXoffSent, 9535 0, "XOFF pause frames sent"); 9536 9537 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9538 "stat_FlowControlDone", 9539 CTLFLAG_RD, &sc->stat_FlowControlDone, 9540 0, "Flow control done"); 9541 9542 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9543 "stat_MacControlFramesReceived", 9544 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 9545 0, "MAC control frames received"); 9546 9547 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9548 "stat_XoffStateEntered", 9549 CTLFLAG_RD, &sc->stat_XoffStateEntered, 9550 0, "XOFF state entered"); 9551 9552 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9553 "stat_IfInFramesL2FilterDiscards", 9554 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 9555 0, "Received L2 packets discarded"); 9556 9557 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9558 "stat_IfInRuleCheckerDiscards", 9559 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 9560 0, "Received packets discarded by rule"); 9561 9562 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9563 "stat_IfInFTQDiscards", 9564 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 9565 0, "Received packet FTQ discards"); 9566 9567 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9568 "stat_IfInMBUFDiscards", 9569 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 9570 0, "Received packets discarded due to lack " 9571 "of controller buffer memory"); 9572 9573 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9574 "stat_IfInRuleCheckerP4Hit", 9575 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 9576 0, "Received packets rule checker hits"); 9577 9578 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9579 "stat_CatchupInRuleCheckerDiscards", 9580 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 9581 0, "Received packets discarded in Catchup path"); 9582 9583 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9584 "stat_CatchupInFTQDiscards", 9585 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 9586 0, "Received packets discarded in FTQ in Catchup path"); 9587 9588 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9589 "stat_CatchupInMBUFDiscards", 9590 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 9591 0, "Received packets discarded in controller " 9592 "buffer memory in Catchup path"); 9593 9594 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9595 "stat_CatchupInRuleCheckerP4Hit", 9596 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 9597 0, "Received packets rule checker hits in Catchup path"); 9598 9599 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9600 "com_no_buffers", 9601 CTLFLAG_RD, &sc->com_no_buffers, 9602 0, "Valid packets received but no RX buffers available"); 9603 9604 #ifdef BCE_DEBUG 9605 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9606 "driver_state", CTLTYPE_INT | CTLFLAG_RW, 9607 (void *)sc, 0, 9608 bce_sysctl_driver_state, "I", "Drive state information"); 9609 9610 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9611 "hw_state", CTLTYPE_INT | CTLFLAG_RW, 9612 (void *)sc, 0, 9613 bce_sysctl_hw_state, "I", "Hardware state information"); 9614 9615 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9616 "status_block", CTLTYPE_INT | CTLFLAG_RW, 9617 (void *)sc, 0, 9618 bce_sysctl_status_block, "I", "Dump status block"); 9619 9620 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9621 "stats_block", CTLTYPE_INT | CTLFLAG_RW, 9622 (void *)sc, 0, 9623 bce_sysctl_stats_block, "I", "Dump statistics block"); 9624 9625 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9626 "stats_clear", CTLTYPE_INT | CTLFLAG_RW, 9627 (void *)sc, 0, 9628 bce_sysctl_stats_clear, "I", "Clear statistics block"); 9629 9630 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9631 "shmem_state", CTLTYPE_INT | CTLFLAG_RW, 9632 (void *)sc, 0, 9633 bce_sysctl_shmem_state, "I", "Shared memory state information"); 9634 9635 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9636 "bc_state", CTLTYPE_INT | CTLFLAG_RW, 9637 (void *)sc, 0, 9638 bce_sysctl_bc_state, "I", "Bootcode state information"); 9639 9640 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9641 "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW, 9642 (void *)sc, 0, 9643 bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain"); 9644 9645 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9646 "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW, 9647 (void *)sc, 0, 9648 bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain"); 9649 9650 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9651 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW, 9652 (void *)sc, 0, 9653 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 9654 9655 if (bce_hdr_split == TRUE) { 9656 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9657 "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW, 9658 (void *)sc, 0, 9659 bce_sysctl_dump_pg_chain, "I", "Dump page chain"); 9660 } 9661 9662 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9663 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW, 9664 (void *)sc, 0, 9665 bce_sysctl_dump_ctx, "I", "Dump context memory"); 9666 9667 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9668 "breakpoint", CTLTYPE_INT | CTLFLAG_RW, 9669 (void *)sc, 0, 9670 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 9671 9672 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9673 "reg_read", CTLTYPE_INT | CTLFLAG_RW, 9674 (void *)sc, 0, 9675 bce_sysctl_reg_read, "I", "Register read"); 9676 9677 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9678 "nvram_read", CTLTYPE_INT | CTLFLAG_RW, 9679 (void *)sc, 0, 9680 bce_sysctl_nvram_read, "I", "NVRAM read"); 9681 9682 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9683 "phy_read", CTLTYPE_INT | CTLFLAG_RW, 9684 (void *)sc, 0, 9685 bce_sysctl_phy_read, "I", "PHY register read"); 9686 9687 #endif 9688 9689 DBEXIT(BCE_VERBOSE_MISC); 9690 } 9691 9692 9693 /****************************************************************************/ 9694 /* BCE Debug Routines */ 9695 /****************************************************************************/ 9696 #ifdef BCE_DEBUG 9697 9698 /****************************************************************************/ 9699 /* Freezes the controller to allow for a cohesive state dump. */ 9700 /* */ 9701 /* Returns: */ 9702 /* Nothing. */ 9703 /****************************************************************************/ 9704 static __attribute__ ((noinline)) void 9705 bce_freeze_controller(struct bce_softc *sc) 9706 { 9707 u32 val; 9708 val = REG_RD(sc, BCE_MISC_COMMAND); 9709 val |= BCE_MISC_COMMAND_DISABLE_ALL; 9710 REG_WR(sc, BCE_MISC_COMMAND, val); 9711 } 9712 9713 9714 /****************************************************************************/ 9715 /* Unfreezes the controller after a freeze operation. This may not always */ 9716 /* work and the controller will require a reset! */ 9717 /* */ 9718 /* Returns: */ 9719 /* Nothing. */ 9720 /****************************************************************************/ 9721 static __attribute__ ((noinline)) void 9722 bce_unfreeze_controller(struct bce_softc *sc) 9723 { 9724 u32 val; 9725 val = REG_RD(sc, BCE_MISC_COMMAND); 9726 val |= BCE_MISC_COMMAND_ENABLE_ALL; 9727 REG_WR(sc, BCE_MISC_COMMAND, val); 9728 } 9729 9730 9731 /****************************************************************************/ 9732 /* Prints out Ethernet frame information from an mbuf. */ 9733 /* */ 9734 /* Partially decode an Ethernet frame to look at some important headers. */ 9735 /* */ 9736 /* Returns: */ 9737 /* Nothing. */ 9738 /****************************************************************************/ 9739 static __attribute__ ((noinline)) void 9740 bce_dump_enet(struct bce_softc *sc, struct mbuf *m) 9741 { 9742 struct ether_vlan_header *eh; 9743 u16 etype; 9744 int ehlen; 9745 struct ip *ip; 9746 struct tcphdr *th; 9747 struct udphdr *uh; 9748 struct arphdr *ah; 9749 9750 BCE_PRINTF( 9751 "-----------------------------" 9752 " Frame Decode " 9753 "-----------------------------\n"); 9754 9755 eh = mtod(m, struct ether_vlan_header *); 9756 9757 /* Handle VLAN encapsulation if present. */ 9758 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 9759 etype = ntohs(eh->evl_proto); 9760 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 9761 } else { 9762 etype = ntohs(eh->evl_encap_proto); 9763 ehlen = ETHER_HDR_LEN; 9764 } 9765 9766 /* ToDo: Add VLAN output. */ 9767 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", 9768 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); 9769 9770 switch (etype) { 9771 case ETHERTYPE_IP: 9772 ip = (struct ip *)(m->m_data + ehlen); 9773 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, " 9774 "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n", 9775 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), 9776 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); 9777 9778 switch (ip->ip_p) { 9779 case IPPROTO_TCP: 9780 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 9781 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = " 9782 "%d bytes, flags = 0x%b, csum = 0x%04X\n", 9783 ntohs(th->th_dport), ntohs(th->th_sport), 9784 (th->th_off << 2), th->th_flags, 9785 "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST" 9786 "\02SYN\01FIN", ntohs(th->th_sum)); 9787 break; 9788 case IPPROTO_UDP: 9789 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 9790 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d " 9791 "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport), 9792 ntohs(uh->uh_sport), ntohs(uh->uh_ulen), 9793 ntohs(uh->uh_sum)); 9794 break; 9795 case IPPROTO_ICMP: 9796 BCE_PRINTF("icmp:\n"); 9797 break; 9798 default: 9799 BCE_PRINTF("----: Other IP protocol.\n"); 9800 } 9801 break; 9802 case ETHERTYPE_IPV6: 9803 BCE_PRINTF("ipv6: No decode supported.\n"); 9804 break; 9805 case ETHERTYPE_ARP: 9806 BCE_PRINTF("-arp: "); 9807 ah = (struct arphdr *) (m->m_data + ehlen); 9808 switch (ntohs(ah->ar_op)) { 9809 case ARPOP_REVREQUEST: 9810 printf("reverse ARP request\n"); 9811 break; 9812 case ARPOP_REVREPLY: 9813 printf("reverse ARP reply\n"); 9814 break; 9815 case ARPOP_REQUEST: 9816 printf("ARP request\n"); 9817 break; 9818 case ARPOP_REPLY: 9819 printf("ARP reply\n"); 9820 break; 9821 default: 9822 printf("other ARP operation\n"); 9823 } 9824 break; 9825 default: 9826 BCE_PRINTF("----: Other protocol.\n"); 9827 } 9828 9829 BCE_PRINTF( 9830 "-----------------------------" 9831 "--------------" 9832 "-----------------------------\n"); 9833 } 9834 9835 9836 /****************************************************************************/ 9837 /* Prints out information about an mbuf. */ 9838 /* */ 9839 /* Returns: */ 9840 /* Nothing. */ 9841 /****************************************************************************/ 9842 static __attribute__ ((noinline)) void 9843 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 9844 { 9845 struct mbuf *mp = m; 9846 9847 if (m == NULL) { 9848 BCE_PRINTF("mbuf: null pointer\n"); 9849 return; 9850 } 9851 9852 while (mp) { 9853 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, " 9854 "m_data = %p\n", mp, mp->m_len, mp->m_flags, 9855 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data); 9856 9857 if (mp->m_flags & M_PKTHDR) { 9858 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, " 9859 "csum_flags = %b\n", mp->m_pkthdr.len, 9860 mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG" 9861 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 9862 "\22M_PROMISC\23M_NOFREE", 9863 mp->m_pkthdr.csum_flags, 9864 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP" 9865 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 9866 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 9867 "\14CSUM_PSEUDO_HDR"); 9868 } 9869 9870 if (mp->m_flags & M_EXT) { 9871 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", 9872 mp->m_ext.ext_buf, mp->m_ext.ext_size); 9873 switch (mp->m_ext.ext_type) { 9874 case EXT_CLUSTER: 9875 printf("EXT_CLUSTER\n"); break; 9876 case EXT_SFBUF: 9877 printf("EXT_SFBUF\n"); break; 9878 case EXT_JUMBO9: 9879 printf("EXT_JUMBO9\n"); break; 9880 case EXT_JUMBO16: 9881 printf("EXT_JUMBO16\n"); break; 9882 case EXT_PACKET: 9883 printf("EXT_PACKET\n"); break; 9884 case EXT_MBUF: 9885 printf("EXT_MBUF\n"); break; 9886 case EXT_NET_DRV: 9887 printf("EXT_NET_DRV\n"); break; 9888 case EXT_MOD_TYPE: 9889 printf("EXT_MDD_TYPE\n"); break; 9890 case EXT_DISPOSABLE: 9891 printf("EXT_DISPOSABLE\n"); break; 9892 case EXT_EXTREF: 9893 printf("EXT_EXTREF\n"); break; 9894 default: 9895 printf("UNKNOWN\n"); 9896 } 9897 } 9898 9899 mp = mp->m_next; 9900 } 9901 } 9902 9903 9904 /****************************************************************************/ 9905 /* Prints out the mbufs in the TX mbuf chain. */ 9906 /* */ 9907 /* Returns: */ 9908 /* Nothing. */ 9909 /****************************************************************************/ 9910 static __attribute__ ((noinline)) void 9911 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9912 { 9913 struct mbuf *m; 9914 9915 BCE_PRINTF( 9916 "----------------------------" 9917 " tx mbuf data " 9918 "----------------------------\n"); 9919 9920 for (int i = 0; i < count; i++) { 9921 m = sc->tx_mbuf_ptr[chain_prod]; 9922 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); 9923 bce_dump_mbuf(sc, m); 9924 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 9925 } 9926 9927 BCE_PRINTF( 9928 "----------------------------" 9929 "----------------" 9930 "----------------------------\n"); 9931 } 9932 9933 9934 /****************************************************************************/ 9935 /* Prints out the mbufs in the RX mbuf chain. */ 9936 /* */ 9937 /* Returns: */ 9938 /* Nothing. */ 9939 /****************************************************************************/ 9940 static __attribute__ ((noinline)) void 9941 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9942 { 9943 struct mbuf *m; 9944 9945 BCE_PRINTF( 9946 "----------------------------" 9947 " rx mbuf data " 9948 "----------------------------\n"); 9949 9950 for (int i = 0; i < count; i++) { 9951 m = sc->rx_mbuf_ptr[chain_prod]; 9952 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 9953 bce_dump_mbuf(sc, m); 9954 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 9955 } 9956 9957 9958 BCE_PRINTF( 9959 "----------------------------" 9960 "----------------" 9961 "----------------------------\n"); 9962 } 9963 9964 9965 /****************************************************************************/ 9966 /* Prints out the mbufs in the mbuf page chain. */ 9967 /* */ 9968 /* Returns: */ 9969 /* Nothing. */ 9970 /****************************************************************************/ 9971 static __attribute__ ((noinline)) void 9972 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9973 { 9974 struct mbuf *m; 9975 9976 BCE_PRINTF( 9977 "----------------------------" 9978 " pg mbuf data " 9979 "----------------------------\n"); 9980 9981 for (int i = 0; i < count; i++) { 9982 m = sc->pg_mbuf_ptr[chain_prod]; 9983 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); 9984 bce_dump_mbuf(sc, m); 9985 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); 9986 } 9987 9988 9989 BCE_PRINTF( 9990 "----------------------------" 9991 "----------------" 9992 "----------------------------\n"); 9993 } 9994 9995 9996 /****************************************************************************/ 9997 /* Prints out a tx_bd structure. */ 9998 /* */ 9999 /* Returns: */ 10000 /* Nothing. */ 10001 /****************************************************************************/ 10002 static __attribute__ ((noinline)) void 10003 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 10004 { 10005 int i = 0; 10006 10007 if (idx > MAX_TX_BD_ALLOC) 10008 /* Index out of range. */ 10009 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 10010 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 10011 /* TX Chain page pointer. */ 10012 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 10013 "pointer\n", idx, txbd->tx_bd_haddr_hi, 10014 txbd->tx_bd_haddr_lo); 10015 else { 10016 /* Normal tx_bd entry. */ 10017 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, " 10018 "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = " 10019 "0x%04X (", idx, txbd->tx_bd_haddr_hi, 10020 txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes, 10021 txbd->tx_bd_vlan_tag, txbd->tx_bd_flags); 10022 10023 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) { 10024 if (i>0) 10025 printf("|"); 10026 printf("CONN_FAULT"); 10027 i++; 10028 } 10029 10030 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) { 10031 if (i>0) 10032 printf("|"); 10033 printf("TCP_UDP_CKSUM"); 10034 i++; 10035 } 10036 10037 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) { 10038 if (i>0) 10039 printf("|"); 10040 printf("IP_CKSUM"); 10041 i++; 10042 } 10043 10044 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) { 10045 if (i>0) 10046 printf("|"); 10047 printf("VLAN"); 10048 i++; 10049 } 10050 10051 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) { 10052 if (i>0) 10053 printf("|"); 10054 printf("COAL_NOW"); 10055 i++; 10056 } 10057 10058 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) { 10059 if (i>0) 10060 printf("|"); 10061 printf("DONT_GEN_CRC"); 10062 i++; 10063 } 10064 10065 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) { 10066 if (i>0) 10067 printf("|"); 10068 printf("START"); 10069 i++; 10070 } 10071 10072 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) { 10073 if (i>0) 10074 printf("|"); 10075 printf("END"); 10076 i++; 10077 } 10078 10079 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) { 10080 if (i>0) 10081 printf("|"); 10082 printf("LSO"); 10083 i++; 10084 } 10085 10086 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) { 10087 if (i>0) 10088 printf("|"); 10089 printf("SW_OPTION=%d", ((txbd->tx_bd_flags & 10090 TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++; 10091 } 10092 10093 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) { 10094 if (i>0) 10095 printf("|"); 10096 printf("SW_FLAGS"); 10097 i++; 10098 } 10099 10100 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) { 10101 if (i>0) 10102 printf("|"); 10103 printf("SNAP)"); 10104 } else { 10105 printf(")\n"); 10106 } 10107 } 10108 } 10109 10110 10111 /****************************************************************************/ 10112 /* Prints out a rx_bd structure. */ 10113 /* */ 10114 /* Returns: */ 10115 /* Nothing. */ 10116 /****************************************************************************/ 10117 static __attribute__ ((noinline)) void 10118 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 10119 { 10120 if (idx > MAX_RX_BD_ALLOC) 10121 /* Index out of range. */ 10122 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 10123 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 10124 /* RX Chain page pointer. */ 10125 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 10126 "pointer\n", idx, rxbd->rx_bd_haddr_hi, 10127 rxbd->rx_bd_haddr_lo); 10128 else 10129 /* Normal rx_bd entry. */ 10130 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 10131 "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi, 10132 rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len, 10133 rxbd->rx_bd_flags); 10134 } 10135 10136 10137 /****************************************************************************/ 10138 /* Prints out a rx_bd structure in the page chain. */ 10139 /* */ 10140 /* Returns: */ 10141 /* Nothing. */ 10142 /****************************************************************************/ 10143 static __attribute__ ((noinline)) void 10144 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) 10145 { 10146 if (idx > MAX_PG_BD_ALLOC) 10147 /* Index out of range. */ 10148 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); 10149 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) 10150 /* Page Chain page pointer. */ 10151 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 10152 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); 10153 else 10154 /* Normal rx_bd entry. */ 10155 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 10156 "flags = 0x%08X\n", idx, 10157 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, 10158 pgbd->rx_bd_len, pgbd->rx_bd_flags); 10159 } 10160 10161 10162 /****************************************************************************/ 10163 /* Prints out a l2_fhdr structure. */ 10164 /* */ 10165 /* Returns: */ 10166 /* Nothing. */ 10167 /****************************************************************************/ 10168 static __attribute__ ((noinline)) void 10169 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 10170 { 10171 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " 10172 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " 10173 "tcp_udp_xsum = 0x%04X\n", idx, 10174 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, 10175 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, 10176 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); 10177 } 10178 10179 10180 /****************************************************************************/ 10181 /* Prints out context memory info. (Only useful for CID 0 to 16.) */ 10182 /* */ 10183 /* Returns: */ 10184 /* Nothing. */ 10185 /****************************************************************************/ 10186 static __attribute__ ((noinline)) void 10187 bce_dump_ctx(struct bce_softc *sc, u16 cid) 10188 { 10189 if (cid > TX_CID) { 10190 BCE_PRINTF(" Unknown CID\n"); 10191 return; 10192 } 10193 10194 BCE_PRINTF( 10195 "----------------------------" 10196 " CTX Data " 10197 "----------------------------\n"); 10198 10199 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); 10200 10201 if (cid == RX_CID) { 10202 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " 10203 "producer index\n", 10204 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); 10205 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host " 10206 "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 10207 BCE_L2CTX_RX_HOST_BSEQ)); 10208 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", 10209 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); 10210 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " 10211 "descriptor address\n", 10212 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); 10213 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " 10214 "descriptor address\n", 10215 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); 10216 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer " 10217 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10218 BCE_L2CTX_RX_NX_BDIDX)); 10219 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " 10220 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10221 BCE_L2CTX_RX_HOST_PG_BDIDX)); 10222 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " 10223 "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid), 10224 BCE_L2CTX_RX_PG_BUF_SIZE)); 10225 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " 10226 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 10227 BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); 10228 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " 10229 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 10230 BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); 10231 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " 10232 "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10233 BCE_L2CTX_RX_NX_PG_BDIDX)); 10234 } else if (cid == TX_CID) { 10235 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 10236 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", 10237 CTX_RD(sc, GET_CID_ADDR(cid), 10238 BCE_L2CTX_TX_TYPE_XI)); 10239 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx " 10240 "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid), 10241 BCE_L2CTX_TX_CMD_TYPE_XI)); 10242 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) " 10243 "h/w buffer descriptor address\n", 10244 CTX_RD(sc, GET_CID_ADDR(cid), 10245 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); 10246 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) " 10247 "h/w buffer descriptor address\n", 10248 CTX_RD(sc, GET_CID_ADDR(cid), 10249 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); 10250 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) " 10251 "host producer index\n", 10252 CTX_RD(sc, GET_CID_ADDR(cid), 10253 BCE_L2CTX_TX_HOST_BIDX_XI)); 10254 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) " 10255 "host byte sequence\n", 10256 CTX_RD(sc, GET_CID_ADDR(cid), 10257 BCE_L2CTX_TX_HOST_BSEQ_XI)); 10258 } else { 10259 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", 10260 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); 10261 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", 10262 CTX_RD(sc, GET_CID_ADDR(cid), 10263 BCE_L2CTX_TX_CMD_TYPE)); 10264 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) " 10265 "h/w buffer descriptor address\n", 10266 CTX_RD(sc, GET_CID_ADDR(cid), 10267 BCE_L2CTX_TX_TBDR_BHADDR_HI)); 10268 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) " 10269 "h/w buffer descriptor address\n", 10270 CTX_RD(sc, GET_CID_ADDR(cid), 10271 BCE_L2CTX_TX_TBDR_BHADDR_LO)); 10272 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host " 10273 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10274 BCE_L2CTX_TX_HOST_BIDX)); 10275 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " 10276 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 10277 BCE_L2CTX_TX_HOST_BSEQ)); 10278 } 10279 } 10280 10281 BCE_PRINTF( 10282 "----------------------------" 10283 " Raw CTX " 10284 "----------------------------\n"); 10285 10286 for (int i = 0x0; i < 0x300; i += 0x10) { 10287 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, 10288 CTX_RD(sc, GET_CID_ADDR(cid), i), 10289 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), 10290 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), 10291 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); 10292 } 10293 10294 10295 BCE_PRINTF( 10296 "----------------------------" 10297 "----------------" 10298 "----------------------------\n"); 10299 } 10300 10301 10302 /****************************************************************************/ 10303 /* Prints out the FTQ data. */ 10304 /* */ 10305 /* Returns: */ 10306 /* Nothing. */ 10307 /****************************************************************************/ 10308 static __attribute__ ((noinline)) void 10309 bce_dump_ftqs(struct bce_softc *sc) 10310 { 10311 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; 10312 10313 BCE_PRINTF( 10314 "----------------------------" 10315 " FTQ Data " 10316 "----------------------------\n"); 10317 10318 BCE_PRINTF(" FTQ Command Control Depth_Now " 10319 "Max_Depth Valid_Cnt \n"); 10320 BCE_PRINTF(" ------- ---------- ---------- ---------- " 10321 "---------- ----------\n"); 10322 10323 /* Setup the generic statistic counters for the FTQ valid count. */ 10324 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | 10325 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | 10326 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | 10327 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); 10328 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 10329 10330 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | 10331 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | 10332 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | 10333 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); 10334 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); 10335 10336 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | 10337 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | 10338 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | 10339 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); 10340 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); 10341 10342 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | 10343 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | 10344 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | 10345 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); 10346 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); 10347 10348 /* Input queue to the Receive Lookup state machine */ 10349 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); 10350 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); 10351 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; 10352 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; 10353 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 10354 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10355 cmd, ctl, cur_depth, max_depth, valid_cnt); 10356 10357 /* Input queue to the Receive Processor */ 10358 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); 10359 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); 10360 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; 10361 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; 10362 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 10363 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10364 cmd, ctl, cur_depth, max_depth, valid_cnt); 10365 10366 /* Input queue to the Recevie Processor */ 10367 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); 10368 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); 10369 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; 10370 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; 10371 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 10372 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10373 cmd, ctl, cur_depth, max_depth, valid_cnt); 10374 10375 /* Input queue to the Receive Virtual to Physical state machine */ 10376 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); 10377 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); 10378 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; 10379 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; 10380 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 10381 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10382 cmd, ctl, cur_depth, max_depth, valid_cnt); 10383 10384 /* Input queue to the Recevie Virtual to Physical state machine */ 10385 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); 10386 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); 10387 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; 10388 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; 10389 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); 10390 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10391 cmd, ctl, cur_depth, max_depth, valid_cnt); 10392 10393 /* Input queue to the Receive Virtual to Physical state machine */ 10394 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); 10395 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); 10396 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; 10397 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; 10398 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); 10399 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10400 cmd, ctl, cur_depth, max_depth, valid_cnt); 10401 10402 /* Input queue to the Receive DMA state machine */ 10403 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); 10404 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); 10405 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; 10406 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; 10407 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); 10408 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10409 cmd, ctl, cur_depth, max_depth, valid_cnt); 10410 10411 /* Input queue to the Transmit Scheduler state machine */ 10412 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); 10413 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); 10414 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; 10415 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; 10416 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); 10417 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10418 cmd, ctl, cur_depth, max_depth, valid_cnt); 10419 10420 /* Input queue to the Transmit Buffer Descriptor state machine */ 10421 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); 10422 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); 10423 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; 10424 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; 10425 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); 10426 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10427 cmd, ctl, cur_depth, max_depth, valid_cnt); 10428 10429 /* Input queue to the Transmit Processor */ 10430 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); 10431 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); 10432 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; 10433 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; 10434 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); 10435 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10436 cmd, ctl, cur_depth, max_depth, valid_cnt); 10437 10438 /* Input queue to the Transmit DMA state machine */ 10439 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); 10440 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); 10441 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; 10442 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; 10443 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); 10444 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10445 cmd, ctl, cur_depth, max_depth, valid_cnt); 10446 10447 /* Input queue to the Transmit Patch-Up Processor */ 10448 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); 10449 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); 10450 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; 10451 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; 10452 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); 10453 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10454 cmd, ctl, cur_depth, max_depth, valid_cnt); 10455 10456 /* Input queue to the Transmit Assembler state machine */ 10457 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); 10458 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); 10459 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; 10460 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; 10461 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); 10462 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10463 cmd, ctl, cur_depth, max_depth, valid_cnt); 10464 10465 /* Input queue to the Completion Processor */ 10466 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); 10467 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); 10468 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; 10469 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; 10470 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); 10471 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10472 cmd, ctl, cur_depth, max_depth, valid_cnt); 10473 10474 /* Input queue to the Completion Processor */ 10475 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); 10476 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); 10477 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; 10478 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; 10479 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); 10480 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10481 cmd, ctl, cur_depth, max_depth, valid_cnt); 10482 10483 /* Input queue to the Completion Processor */ 10484 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); 10485 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); 10486 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; 10487 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; 10488 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); 10489 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10490 cmd, ctl, cur_depth, max_depth, valid_cnt); 10491 10492 /* Setup the generic statistic counters for the FTQ valid count. */ 10493 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | 10494 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | 10495 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); 10496 10497 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 10498 val = val | 10499 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 10500 24); 10501 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 10502 10503 /* Input queue to the Management Control Processor */ 10504 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); 10505 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); 10506 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; 10507 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; 10508 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 10509 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10510 cmd, ctl, cur_depth, max_depth, valid_cnt); 10511 10512 /* Input queue to the Command Processor */ 10513 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); 10514 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); 10515 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; 10516 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; 10517 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 10518 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10519 cmd, ctl, cur_depth, max_depth, valid_cnt); 10520 10521 /* Input queue to the Completion Scheduler state machine */ 10522 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); 10523 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); 10524 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; 10525 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; 10526 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 10527 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10528 cmd, ctl, cur_depth, max_depth, valid_cnt); 10529 10530 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 10531 /* Input queue to the RV2P Command Scheduler */ 10532 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); 10533 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); 10534 cur_depth = (ctl & 0xFFC00000) >> 22; 10535 max_depth = (ctl & 0x003FF000) >> 12; 10536 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 10537 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10538 cmd, ctl, cur_depth, max_depth, valid_cnt); 10539 } 10540 10541 BCE_PRINTF( 10542 "----------------------------" 10543 "----------------" 10544 "----------------------------\n"); 10545 } 10546 10547 10548 /****************************************************************************/ 10549 /* Prints out the TX chain. */ 10550 /* */ 10551 /* Returns: */ 10552 /* Nothing. */ 10553 /****************************************************************************/ 10554 static __attribute__ ((noinline)) void 10555 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) 10556 { 10557 struct tx_bd *txbd; 10558 10559 /* First some info about the tx_bd chain structure. */ 10560 BCE_PRINTF( 10561 "----------------------------" 10562 " tx_bd chain " 10563 "----------------------------\n"); 10564 10565 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 10566 (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages); 10567 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 10568 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 10569 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC); 10570 10571 BCE_PRINTF( 10572 "----------------------------" 10573 " tx_bd data " 10574 "----------------------------\n"); 10575 10576 /* Now print out a decoded list of TX buffer descriptors. */ 10577 for (int i = 0; i < count; i++) { 10578 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 10579 bce_dump_txbd(sc, tx_prod, txbd); 10580 tx_prod++; 10581 } 10582 10583 BCE_PRINTF( 10584 "----------------------------" 10585 "----------------" 10586 "----------------------------\n"); 10587 } 10588 10589 10590 /****************************************************************************/ 10591 /* Prints out the RX chain. */ 10592 /* */ 10593 /* Returns: */ 10594 /* Nothing. */ 10595 /****************************************************************************/ 10596 static __attribute__ ((noinline)) void 10597 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count) 10598 { 10599 struct rx_bd *rxbd; 10600 10601 /* First some info about the rx_bd chain structure. */ 10602 BCE_PRINTF( 10603 "----------------------------" 10604 " rx_bd chain " 10605 "----------------------------\n"); 10606 10607 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 10608 (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages); 10609 10610 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 10611 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 10612 10613 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC); 10614 10615 BCE_PRINTF( 10616 "----------------------------" 10617 " rx_bd data " 10618 "----------------------------\n"); 10619 10620 /* Now print out the rx_bd's themselves. */ 10621 for (int i = 0; i < count; i++) { 10622 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 10623 bce_dump_rxbd(sc, rx_prod, rxbd); 10624 rx_prod = RX_CHAIN_IDX(rx_prod + 1); 10625 } 10626 10627 BCE_PRINTF( 10628 "----------------------------" 10629 "----------------" 10630 "----------------------------\n"); 10631 } 10632 10633 10634 /****************************************************************************/ 10635 /* Prints out the page chain. */ 10636 /* */ 10637 /* Returns: */ 10638 /* Nothing. */ 10639 /****************************************************************************/ 10640 static __attribute__ ((noinline)) void 10641 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) 10642 { 10643 struct rx_bd *pgbd; 10644 10645 /* First some info about the page chain structure. */ 10646 BCE_PRINTF( 10647 "----------------------------" 10648 " page chain " 10649 "----------------------------\n"); 10650 10651 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", 10652 (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages); 10653 10654 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 10655 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); 10656 10657 BCE_PRINTF("total pg_bd = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC); 10658 10659 BCE_PRINTF( 10660 "----------------------------" 10661 " page data " 10662 "----------------------------\n"); 10663 10664 /* Now print out the rx_bd's themselves. */ 10665 for (int i = 0; i < count; i++) { 10666 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; 10667 bce_dump_pgbd(sc, pg_prod, pgbd); 10668 pg_prod = PG_CHAIN_IDX(pg_prod + 1); 10669 } 10670 10671 BCE_PRINTF( 10672 "----------------------------" 10673 "----------------" 10674 "----------------------------\n"); 10675 } 10676 10677 10678 #define BCE_PRINT_RX_CONS(arg) \ 10679 if (sblk->status_rx_quick_consumer_index##arg) \ 10680 BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n", \ 10681 sblk->status_rx_quick_consumer_index##arg, (u16) \ 10682 RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg), \ 10683 arg); 10684 10685 10686 #define BCE_PRINT_TX_CONS(arg) \ 10687 if (sblk->status_tx_quick_consumer_index##arg) \ 10688 BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n", \ 10689 sblk->status_tx_quick_consumer_index##arg, (u16) \ 10690 TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg), \ 10691 arg); 10692 10693 /****************************************************************************/ 10694 /* Prints out the status block from host memory. */ 10695 /* */ 10696 /* Returns: */ 10697 /* Nothing. */ 10698 /****************************************************************************/ 10699 static __attribute__ ((noinline)) void 10700 bce_dump_status_block(struct bce_softc *sc) 10701 { 10702 struct status_block *sblk; 10703 10704 sblk = sc->status_block; 10705 10706 BCE_PRINTF( 10707 "----------------------------" 10708 " Status Block " 10709 "----------------------------\n"); 10710 10711 /* Theses indices are used for normal L2 drivers. */ 10712 BCE_PRINTF(" 0x%08X - attn_bits\n", 10713 sblk->status_attn_bits); 10714 10715 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 10716 sblk->status_attn_bits_ack); 10717 10718 BCE_PRINT_RX_CONS(0); 10719 BCE_PRINT_TX_CONS(0) 10720 10721 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 10722 10723 /* Theses indices are not used for normal L2 drivers. */ 10724 BCE_PRINT_RX_CONS(1); BCE_PRINT_RX_CONS(2); BCE_PRINT_RX_CONS(3); 10725 BCE_PRINT_RX_CONS(4); BCE_PRINT_RX_CONS(5); BCE_PRINT_RX_CONS(6); 10726 BCE_PRINT_RX_CONS(7); BCE_PRINT_RX_CONS(8); BCE_PRINT_RX_CONS(9); 10727 BCE_PRINT_RX_CONS(10); BCE_PRINT_RX_CONS(11); BCE_PRINT_RX_CONS(12); 10728 BCE_PRINT_RX_CONS(13); BCE_PRINT_RX_CONS(14); BCE_PRINT_RX_CONS(15); 10729 10730 BCE_PRINT_TX_CONS(1); BCE_PRINT_TX_CONS(2); BCE_PRINT_TX_CONS(3); 10731 10732 if (sblk->status_completion_producer_index || 10733 sblk->status_cmd_consumer_index) 10734 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 10735 sblk->status_completion_producer_index, 10736 sblk->status_cmd_consumer_index); 10737 10738 BCE_PRINTF( 10739 "----------------------------" 10740 "----------------" 10741 "----------------------------\n"); 10742 } 10743 10744 10745 #define BCE_PRINT_64BIT_STAT(arg) \ 10746 if (sblk->arg##_lo || sblk->arg##_hi) \ 10747 BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi, \ 10748 sblk->arg##_lo, #arg); 10749 10750 #define BCE_PRINT_32BIT_STAT(arg) \ 10751 if (sblk->arg) \ 10752 BCE_PRINTF(" 0x%08X : %s\n", \ 10753 sblk->arg, #arg); 10754 10755 /****************************************************************************/ 10756 /* Prints out the statistics block from host memory. */ 10757 /* */ 10758 /* Returns: */ 10759 /* Nothing. */ 10760 /****************************************************************************/ 10761 static __attribute__ ((noinline)) void 10762 bce_dump_stats_block(struct bce_softc *sc) 10763 { 10764 struct statistics_block *sblk; 10765 10766 sblk = sc->stats_block; 10767 10768 BCE_PRINTF( 10769 "---------------" 10770 " Stats Block (All Stats Not Shown Are 0) " 10771 "---------------\n"); 10772 10773 BCE_PRINT_64BIT_STAT(stat_IfHCInOctets); 10774 BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets); 10775 BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets); 10776 BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets); 10777 BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts); 10778 BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts); 10779 BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts); 10780 BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts); 10781 BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts); 10782 BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts); 10783 BCE_PRINT_32BIT_STAT( 10784 stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 10785 BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors); 10786 BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors); 10787 BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors); 10788 BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames); 10789 BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames); 10790 BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions); 10791 BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions); 10792 BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions); 10793 BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions); 10794 BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments); 10795 BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers); 10796 BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts); 10797 BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts); 10798 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets); 10799 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets); 10800 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets); 10801 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets); 10802 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets); 10803 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets); 10804 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets); 10805 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets); 10806 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets); 10807 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets); 10808 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets); 10809 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets); 10810 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets); 10811 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets); 10812 BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived); 10813 BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived); 10814 BCE_PRINT_32BIT_STAT(stat_OutXonSent); 10815 BCE_PRINT_32BIT_STAT(stat_OutXoffSent); 10816 BCE_PRINT_32BIT_STAT(stat_FlowControlDone); 10817 BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived); 10818 BCE_PRINT_32BIT_STAT(stat_XoffStateEntered); 10819 BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards); 10820 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards); 10821 BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards); 10822 BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards); 10823 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit); 10824 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards); 10825 BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards); 10826 BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards); 10827 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit); 10828 10829 BCE_PRINTF( 10830 "----------------------------" 10831 "----------------" 10832 "----------------------------\n"); 10833 } 10834 10835 10836 /****************************************************************************/ 10837 /* Prints out a summary of the driver state. */ 10838 /* */ 10839 /* Returns: */ 10840 /* Nothing. */ 10841 /****************************************************************************/ 10842 static __attribute__ ((noinline)) void 10843 bce_dump_driver_state(struct bce_softc *sc) 10844 { 10845 u32 val_hi, val_lo; 10846 10847 BCE_PRINTF( 10848 "-----------------------------" 10849 " Driver State " 10850 "-----------------------------\n"); 10851 10852 val_hi = BCE_ADDR_HI(sc); 10853 val_lo = BCE_ADDR_LO(sc); 10854 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual " 10855 "address\n", val_hi, val_lo); 10856 10857 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 10858 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 10859 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual " 10860 "address\n", val_hi, val_lo); 10861 10862 val_hi = BCE_ADDR_HI(sc->status_block); 10863 val_lo = BCE_ADDR_LO(sc->status_block); 10864 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block " 10865 "virtual address\n", val_hi, val_lo); 10866 10867 val_hi = BCE_ADDR_HI(sc->stats_block); 10868 val_lo = BCE_ADDR_LO(sc->stats_block); 10869 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block " 10870 "virtual address\n", val_hi, val_lo); 10871 10872 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 10873 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 10874 BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain " 10875 "virtual adddress\n", val_hi, val_lo); 10876 10877 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 10878 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 10879 BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain " 10880 "virtual address\n", val_hi, val_lo); 10881 10882 if (bce_hdr_split == TRUE) { 10883 val_hi = BCE_ADDR_HI(sc->pg_bd_chain); 10884 val_lo = BCE_ADDR_LO(sc->pg_bd_chain); 10885 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain " 10886 "virtual address\n", val_hi, val_lo); 10887 } 10888 10889 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 10890 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 10891 BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain " 10892 "virtual address\n", val_hi, val_lo); 10893 10894 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 10895 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 10896 BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain " 10897 "virtual address\n", val_hi, val_lo); 10898 10899 if (bce_hdr_split == TRUE) { 10900 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); 10901 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); 10902 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain " 10903 "virtual address\n", val_hi, val_lo); 10904 } 10905 10906 BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) " 10907 "h/w intrs\n", 10908 (long long unsigned int) sc->interrupts_generated); 10909 10910 BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) " 10911 "rx interrupts handled\n", 10912 (long long unsigned int) sc->interrupts_rx); 10913 10914 BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) " 10915 "tx interrupts handled\n", 10916 (long long unsigned int) sc->interrupts_tx); 10917 10918 BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) " 10919 "phy interrupts handled\n", 10920 (long long unsigned int) sc->phy_interrupts); 10921 10922 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) " 10923 "status block index\n", sc->last_status_idx); 10924 10925 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer " 10926 "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 10927 10928 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer " 10929 "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 10930 10931 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer " 10932 "byte seq index\n", sc->tx_prod_bseq); 10933 10934 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx " 10935 "mbufs allocated\n", sc->debug_tx_mbuf_alloc); 10936 10937 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used " 10938 "tx_bd's\n", sc->used_tx_bd); 10939 10940 BCE_PRINTF(" 0x%04X/0x%04X - (sc->tx_hi_watermark)/" 10941 "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd); 10942 10943 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer " 10944 "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 10945 10946 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer " 10947 "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 10948 10949 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer " 10950 "byte seq index\n", sc->rx_prod_bseq); 10951 10952 BCE_PRINTF(" 0x%04X/0x%04X - (sc->rx_low_watermark)/" 10953 "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd); 10954 10955 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx " 10956 "mbufs allocated\n", sc->debug_rx_mbuf_alloc); 10957 10958 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free " 10959 "rx_bd's\n", sc->free_rx_bd); 10960 10961 if (bce_hdr_split == TRUE) { 10962 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer " 10963 "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); 10964 10965 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer " 10966 "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); 10967 10968 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page " 10969 "mbufs allocated\n", sc->debug_pg_mbuf_alloc); 10970 } 10971 10972 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page " 10973 "rx_bd's\n", sc->free_pg_bd); 10974 10975 BCE_PRINTF(" 0x%04X/0x%04X - (sc->pg_low_watermark)/" 10976 "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd); 10977 10978 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) " 10979 "mbuf alloc failures\n", sc->mbuf_alloc_failed_count); 10980 10981 BCE_PRINTF(" 0x%08X - (sc->bce_flags) " 10982 "bce mac flags\n", sc->bce_flags); 10983 10984 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) " 10985 "bce phy flags\n", sc->bce_phy_flags); 10986 10987 BCE_PRINTF( 10988 "----------------------------" 10989 "----------------" 10990 "----------------------------\n"); 10991 } 10992 10993 10994 /****************************************************************************/ 10995 /* Prints out the hardware state through a summary of important register, */ 10996 /* followed by a complete register dump. */ 10997 /* */ 10998 /* Returns: */ 10999 /* Nothing. */ 11000 /****************************************************************************/ 11001 static __attribute__ ((noinline)) void 11002 bce_dump_hw_state(struct bce_softc *sc) 11003 { 11004 u32 val; 11005 11006 BCE_PRINTF( 11007 "----------------------------" 11008 " Hardware State " 11009 "----------------------------\n"); 11010 11011 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 11012 11013 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 11014 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 11015 val, BCE_MISC_ENABLE_STATUS_BITS); 11016 11017 val = REG_RD(sc, BCE_DMA_STATUS); 11018 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", 11019 val, BCE_DMA_STATUS); 11020 11021 val = REG_RD(sc, BCE_CTX_STATUS); 11022 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", 11023 val, BCE_CTX_STATUS); 11024 11025 val = REG_RD(sc, BCE_EMAC_STATUS); 11026 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", 11027 val, BCE_EMAC_STATUS); 11028 11029 val = REG_RD(sc, BCE_RPM_STATUS); 11030 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", 11031 val, BCE_RPM_STATUS); 11032 11033 /* ToDo: Create a #define for this constant. */ 11034 val = REG_RD(sc, 0x2004); 11035 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", 11036 val, 0x2004); 11037 11038 val = REG_RD(sc, BCE_RV2P_STATUS); 11039 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", 11040 val, BCE_RV2P_STATUS); 11041 11042 /* ToDo: Create a #define for this constant. */ 11043 val = REG_RD(sc, 0x2c04); 11044 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", 11045 val, 0x2c04); 11046 11047 val = REG_RD(sc, BCE_TBDR_STATUS); 11048 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", 11049 val, BCE_TBDR_STATUS); 11050 11051 val = REG_RD(sc, BCE_TDMA_STATUS); 11052 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", 11053 val, BCE_TDMA_STATUS); 11054 11055 val = REG_RD(sc, BCE_HC_STATUS); 11056 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", 11057 val, BCE_HC_STATUS); 11058 11059 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 11060 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 11061 val, BCE_TXP_CPU_STATE); 11062 11063 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 11064 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 11065 val, BCE_TPAT_CPU_STATE); 11066 11067 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 11068 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 11069 val, BCE_RXP_CPU_STATE); 11070 11071 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 11072 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 11073 val, BCE_COM_CPU_STATE); 11074 11075 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 11076 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", 11077 val, BCE_MCP_CPU_STATE); 11078 11079 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 11080 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 11081 val, BCE_CP_CPU_STATE); 11082 11083 BCE_PRINTF( 11084 "----------------------------" 11085 "----------------" 11086 "----------------------------\n"); 11087 11088 BCE_PRINTF( 11089 "----------------------------" 11090 " Register Dump " 11091 "----------------------------\n"); 11092 11093 for (int i = 0x400; i < 0x8000; i += 0x10) { 11094 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11095 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 11096 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 11097 } 11098 11099 BCE_PRINTF( 11100 "----------------------------" 11101 "----------------" 11102 "----------------------------\n"); 11103 } 11104 11105 11106 /****************************************************************************/ 11107 /* Prints out the contentst of shared memory which is used for host driver */ 11108 /* to bootcode firmware communication. */ 11109 /* */ 11110 /* Returns: */ 11111 /* Nothing. */ 11112 /****************************************************************************/ 11113 static __attribute__ ((noinline)) void 11114 bce_dump_shmem_state(struct bce_softc *sc) 11115 { 11116 BCE_PRINTF( 11117 "----------------------------" 11118 " Hardware State " 11119 "----------------------------\n"); 11120 11121 BCE_PRINTF("0x%08X - Shared memory base address\n", 11122 sc->bce_shmem_base); 11123 BCE_PRINTF("%s - bootcode version\n", 11124 sc->bce_bc_ver); 11125 11126 BCE_PRINTF( 11127 "----------------------------" 11128 " Shared Mem " 11129 "----------------------------\n"); 11130 11131 for (int i = 0x0; i < 0x200; i += 0x10) { 11132 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11133 i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4), 11134 bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC)); 11135 } 11136 11137 BCE_PRINTF( 11138 "----------------------------" 11139 "----------------" 11140 "----------------------------\n"); 11141 } 11142 11143 11144 /****************************************************************************/ 11145 /* Prints out the mailbox queue registers. */ 11146 /* */ 11147 /* Returns: */ 11148 /* Nothing. */ 11149 /****************************************************************************/ 11150 static __attribute__ ((noinline)) void 11151 bce_dump_mq_regs(struct bce_softc *sc) 11152 { 11153 BCE_PRINTF( 11154 "----------------------------" 11155 " MQ Regs " 11156 "----------------------------\n"); 11157 11158 BCE_PRINTF( 11159 "----------------------------" 11160 "----------------" 11161 "----------------------------\n"); 11162 11163 for (int i = 0x3c00; i < 0x4000; i += 0x10) { 11164 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11165 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 11166 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 11167 } 11168 11169 BCE_PRINTF( 11170 "----------------------------" 11171 "----------------" 11172 "----------------------------\n"); 11173 } 11174 11175 11176 /****************************************************************************/ 11177 /* Prints out the bootcode state. */ 11178 /* */ 11179 /* Returns: */ 11180 /* Nothing. */ 11181 /****************************************************************************/ 11182 static __attribute__ ((noinline)) void 11183 bce_dump_bc_state(struct bce_softc *sc) 11184 { 11185 u32 val; 11186 11187 BCE_PRINTF( 11188 "----------------------------" 11189 " Bootcode State " 11190 "----------------------------\n"); 11191 11192 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 11193 11194 val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE); 11195 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 11196 val, BCE_BC_RESET_TYPE); 11197 11198 val = bce_shmem_rd(sc, BCE_BC_STATE); 11199 BCE_PRINTF("0x%08X - (0x%06X) state\n", 11200 val, BCE_BC_STATE); 11201 11202 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 11203 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 11204 val, BCE_BC_STATE_CONDITION); 11205 11206 val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD); 11207 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 11208 val, BCE_BC_STATE_DEBUG_CMD); 11209 11210 BCE_PRINTF( 11211 "----------------------------" 11212 "----------------" 11213 "----------------------------\n"); 11214 } 11215 11216 11217 /****************************************************************************/ 11218 /* Prints out the TXP processor state. */ 11219 /* */ 11220 /* Returns: */ 11221 /* Nothing. */ 11222 /****************************************************************************/ 11223 static __attribute__ ((noinline)) void 11224 bce_dump_txp_state(struct bce_softc *sc, int regs) 11225 { 11226 u32 val; 11227 u32 fw_version[3]; 11228 11229 BCE_PRINTF( 11230 "----------------------------" 11231 " TXP State " 11232 "----------------------------\n"); 11233 11234 for (int i = 0; i < 3; i++) 11235 fw_version[i] = htonl(REG_RD_IND(sc, 11236 (BCE_TXP_SCRATCH + 0x10 + i * 4))); 11237 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11238 11239 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 11240 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", 11241 val, BCE_TXP_CPU_MODE); 11242 11243 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 11244 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 11245 val, BCE_TXP_CPU_STATE); 11246 11247 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 11248 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", 11249 val, BCE_TXP_CPU_EVENT_MASK); 11250 11251 if (regs) { 11252 BCE_PRINTF( 11253 "----------------------------" 11254 " Register Dump " 11255 "----------------------------\n"); 11256 11257 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 11258 /* Skip the big blank spaces */ 11259 if (i < 0x454000 && i > 0x5ffff) 11260 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11261 "0x%08X 0x%08X\n", i, 11262 REG_RD_IND(sc, i), 11263 REG_RD_IND(sc, i + 0x4), 11264 REG_RD_IND(sc, i + 0x8), 11265 REG_RD_IND(sc, i + 0xC)); 11266 } 11267 } 11268 11269 BCE_PRINTF( 11270 "----------------------------" 11271 "----------------" 11272 "----------------------------\n"); 11273 } 11274 11275 11276 /****************************************************************************/ 11277 /* Prints out the RXP processor state. */ 11278 /* */ 11279 /* Returns: */ 11280 /* Nothing. */ 11281 /****************************************************************************/ 11282 static __attribute__ ((noinline)) void 11283 bce_dump_rxp_state(struct bce_softc *sc, int regs) 11284 { 11285 u32 val; 11286 u32 fw_version[3]; 11287 11288 BCE_PRINTF( 11289 "----------------------------" 11290 " RXP State " 11291 "----------------------------\n"); 11292 11293 for (int i = 0; i < 3; i++) 11294 fw_version[i] = htonl(REG_RD_IND(sc, 11295 (BCE_RXP_SCRATCH + 0x10 + i * 4))); 11296 11297 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11298 11299 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 11300 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", 11301 val, BCE_RXP_CPU_MODE); 11302 11303 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 11304 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 11305 val, BCE_RXP_CPU_STATE); 11306 11307 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 11308 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", 11309 val, BCE_RXP_CPU_EVENT_MASK); 11310 11311 if (regs) { 11312 BCE_PRINTF( 11313 "----------------------------" 11314 " Register Dump " 11315 "----------------------------\n"); 11316 11317 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 11318 /* Skip the big blank sapces */ 11319 if (i < 0xc5400 && i > 0xdffff) 11320 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11321 "0x%08X 0x%08X\n", i, 11322 REG_RD_IND(sc, i), 11323 REG_RD_IND(sc, i + 0x4), 11324 REG_RD_IND(sc, i + 0x8), 11325 REG_RD_IND(sc, i + 0xC)); 11326 } 11327 } 11328 11329 BCE_PRINTF( 11330 "----------------------------" 11331 "----------------" 11332 "----------------------------\n"); 11333 } 11334 11335 11336 /****************************************************************************/ 11337 /* Prints out the TPAT processor state. */ 11338 /* */ 11339 /* Returns: */ 11340 /* Nothing. */ 11341 /****************************************************************************/ 11342 static __attribute__ ((noinline)) void 11343 bce_dump_tpat_state(struct bce_softc *sc, int regs) 11344 { 11345 u32 val; 11346 u32 fw_version[3]; 11347 11348 BCE_PRINTF( 11349 "----------------------------" 11350 " TPAT State " 11351 "----------------------------\n"); 11352 11353 for (int i = 0; i < 3; i++) 11354 fw_version[i] = htonl(REG_RD_IND(sc, 11355 (BCE_TPAT_SCRATCH + 0x410 + i * 4))); 11356 11357 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11358 11359 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 11360 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", 11361 val, BCE_TPAT_CPU_MODE); 11362 11363 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 11364 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 11365 val, BCE_TPAT_CPU_STATE); 11366 11367 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 11368 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", 11369 val, BCE_TPAT_CPU_EVENT_MASK); 11370 11371 if (regs) { 11372 BCE_PRINTF( 11373 "----------------------------" 11374 " Register Dump " 11375 "----------------------------\n"); 11376 11377 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 11378 /* Skip the big blank spaces */ 11379 if (i < 0x854000 && i > 0x9ffff) 11380 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11381 "0x%08X 0x%08X\n", i, 11382 REG_RD_IND(sc, i), 11383 REG_RD_IND(sc, i + 0x4), 11384 REG_RD_IND(sc, i + 0x8), 11385 REG_RD_IND(sc, i + 0xC)); 11386 } 11387 } 11388 11389 BCE_PRINTF( 11390 "----------------------------" 11391 "----------------" 11392 "----------------------------\n"); 11393 } 11394 11395 11396 /****************************************************************************/ 11397 /* Prints out the Command Procesor (CP) state. */ 11398 /* */ 11399 /* Returns: */ 11400 /* Nothing. */ 11401 /****************************************************************************/ 11402 static __attribute__ ((noinline)) void 11403 bce_dump_cp_state(struct bce_softc *sc, int regs) 11404 { 11405 u32 val; 11406 u32 fw_version[3]; 11407 11408 BCE_PRINTF( 11409 "----------------------------" 11410 " CP State " 11411 "----------------------------\n"); 11412 11413 for (int i = 0; i < 3; i++) 11414 fw_version[i] = htonl(REG_RD_IND(sc, 11415 (BCE_CP_SCRATCH + 0x10 + i * 4))); 11416 11417 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11418 11419 val = REG_RD_IND(sc, BCE_CP_CPU_MODE); 11420 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", 11421 val, BCE_CP_CPU_MODE); 11422 11423 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 11424 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 11425 val, BCE_CP_CPU_STATE); 11426 11427 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); 11428 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, 11429 BCE_CP_CPU_EVENT_MASK); 11430 11431 if (regs) { 11432 BCE_PRINTF( 11433 "----------------------------" 11434 " Register Dump " 11435 "----------------------------\n"); 11436 11437 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { 11438 /* Skip the big blank spaces */ 11439 if (i < 0x185400 && i > 0x19ffff) 11440 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11441 "0x%08X 0x%08X\n", i, 11442 REG_RD_IND(sc, i), 11443 REG_RD_IND(sc, i + 0x4), 11444 REG_RD_IND(sc, i + 0x8), 11445 REG_RD_IND(sc, i + 0xC)); 11446 } 11447 } 11448 11449 BCE_PRINTF( 11450 "----------------------------" 11451 "----------------" 11452 "----------------------------\n"); 11453 } 11454 11455 11456 /****************************************************************************/ 11457 /* Prints out the Completion Procesor (COM) state. */ 11458 /* */ 11459 /* Returns: */ 11460 /* Nothing. */ 11461 /****************************************************************************/ 11462 static __attribute__ ((noinline)) void 11463 bce_dump_com_state(struct bce_softc *sc, int regs) 11464 { 11465 u32 val; 11466 u32 fw_version[4]; 11467 11468 BCE_PRINTF( 11469 "----------------------------" 11470 " COM State " 11471 "----------------------------\n"); 11472 11473 for (int i = 0; i < 3; i++) 11474 fw_version[i] = htonl(REG_RD_IND(sc, 11475 (BCE_COM_SCRATCH + 0x10 + i * 4))); 11476 11477 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11478 11479 val = REG_RD_IND(sc, BCE_COM_CPU_MODE); 11480 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", 11481 val, BCE_COM_CPU_MODE); 11482 11483 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 11484 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 11485 val, BCE_COM_CPU_STATE); 11486 11487 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); 11488 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, 11489 BCE_COM_CPU_EVENT_MASK); 11490 11491 if (regs) { 11492 BCE_PRINTF( 11493 "----------------------------" 11494 " Register Dump " 11495 "----------------------------\n"); 11496 11497 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { 11498 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11499 "0x%08X 0x%08X\n", i, 11500 REG_RD_IND(sc, i), 11501 REG_RD_IND(sc, i + 0x4), 11502 REG_RD_IND(sc, i + 0x8), 11503 REG_RD_IND(sc, i + 0xC)); 11504 } 11505 } 11506 11507 BCE_PRINTF( 11508 "----------------------------" 11509 "----------------" 11510 "----------------------------\n"); 11511 } 11512 11513 11514 /****************************************************************************/ 11515 /* Prints out the Receive Virtual 2 Physical (RV2P) state. */ 11516 /* */ 11517 /* Returns: */ 11518 /* Nothing. */ 11519 /****************************************************************************/ 11520 static __attribute__ ((noinline)) void 11521 bce_dump_rv2p_state(struct bce_softc *sc) 11522 { 11523 u32 val, pc1, pc2, fw_ver_high, fw_ver_low; 11524 11525 BCE_PRINTF( 11526 "----------------------------" 11527 " RV2P State " 11528 "----------------------------\n"); 11529 11530 /* Stall the RV2P processors. */ 11531 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 11532 val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2; 11533 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 11534 11535 /* Read the firmware version. */ 11536 val = 0x00000001; 11537 REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 11538 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 11539 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 11540 BCE_RV2P_INSTR_HIGH_HIGH; 11541 BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n", 11542 fw_ver_high, fw_ver_low); 11543 11544 val = 0x00000001; 11545 REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 11546 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 11547 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 11548 BCE_RV2P_INSTR_HIGH_HIGH; 11549 BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n", 11550 fw_ver_high, fw_ver_low); 11551 11552 /* Resume the RV2P processors. */ 11553 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 11554 val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2); 11555 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 11556 11557 /* Fetch the program counter value. */ 11558 val = 0x68007800; 11559 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 11560 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 11561 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 11562 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 11563 BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1); 11564 BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2); 11565 11566 /* Fetch the program counter value again to see if it is advancing. */ 11567 val = 0x68007800; 11568 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 11569 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 11570 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 11571 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 11572 BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1); 11573 BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2); 11574 11575 BCE_PRINTF( 11576 "----------------------------" 11577 "----------------" 11578 "----------------------------\n"); 11579 } 11580 11581 11582 /****************************************************************************/ 11583 /* Prints out the driver state and then enters the debugger. */ 11584 /* */ 11585 /* Returns: */ 11586 /* Nothing. */ 11587 /****************************************************************************/ 11588 static __attribute__ ((noinline)) void 11589 bce_breakpoint(struct bce_softc *sc) 11590 { 11591 11592 /* 11593 * Unreachable code to silence compiler warnings 11594 * about unused functions. 11595 */ 11596 if (0) { 11597 bce_freeze_controller(sc); 11598 bce_unfreeze_controller(sc); 11599 bce_dump_enet(sc, NULL); 11600 bce_dump_txbd(sc, 0, NULL); 11601 bce_dump_rxbd(sc, 0, NULL); 11602 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC); 11603 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); 11604 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC); 11605 bce_dump_l2fhdr(sc, 0, NULL); 11606 bce_dump_ctx(sc, RX_CID); 11607 bce_dump_ftqs(sc); 11608 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC); 11609 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC); 11610 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC); 11611 bce_dump_status_block(sc); 11612 bce_dump_stats_block(sc); 11613 bce_dump_driver_state(sc); 11614 bce_dump_hw_state(sc); 11615 bce_dump_bc_state(sc); 11616 bce_dump_txp_state(sc, 0); 11617 bce_dump_rxp_state(sc, 0); 11618 bce_dump_tpat_state(sc, 0); 11619 bce_dump_cp_state(sc, 0); 11620 bce_dump_com_state(sc, 0); 11621 bce_dump_rv2p_state(sc); 11622 bce_dump_pgbd(sc, 0, NULL); 11623 } 11624 11625 bce_dump_status_block(sc); 11626 bce_dump_driver_state(sc); 11627 11628 /* Call the debugger. */ 11629 breakpoint(); 11630 11631 return; 11632 } 11633 #endif 11634