1 /*- 2 * Copyright (c) 2006-2009 Broadcom Corporation 3 * David Christensen <davidch@broadcom.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written consent. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * The following controllers are supported by this driver: 36 * BCM5706C A2, A3 37 * BCM5706S A2, A3 38 * BCM5708C B1, B2 39 * BCM5708S B1, B2 40 * BCM5709C A1, C0 41 * BCM5716C C0 42 * 43 * The following controllers are not supported by this driver: 44 * BCM5706C A0, A1 (pre-production) 45 * BCM5706S A0, A1 (pre-production) 46 * BCM5708C A0, B0 (pre-production) 47 * BCM5708S A0, B0 (pre-production) 48 * BCM5709C A0 B0, B1, B2 (pre-production) 49 * BCM5709S A0, A1, B0, B1, B2, C0 (pre-production) 50 */ 51 52 #include "opt_bce.h" 53 54 #include <dev/bce/if_bcereg.h> 55 #include <dev/bce/if_bcefw.h> 56 57 /****************************************************************************/ 58 /* BCE Debug Options */ 59 /****************************************************************************/ 60 #ifdef BCE_DEBUG 61 u32 bce_debug = BCE_WARN; 62 63 /* 0 = Never */ 64 /* 1 = 1 in 2,147,483,648 */ 65 /* 256 = 1 in 8,388,608 */ 66 /* 2048 = 1 in 1,048,576 */ 67 /* 65536 = 1 in 32,768 */ 68 /* 1048576 = 1 in 2,048 */ 69 /* 268435456 = 1 in 8 */ 70 /* 536870912 = 1 in 4 */ 71 /* 1073741824 = 1 in 2 */ 72 73 /* Controls how often the l2_fhdr frame error check will fail. */ 74 int l2fhdr_error_sim_control = 0; 75 76 /* Controls how often the unexpected attention check will fail. */ 77 int unexpected_attention_sim_control = 0; 78 79 /* Controls how often to simulate an mbuf allocation failure. */ 80 int mbuf_alloc_failed_sim_control = 0; 81 82 /* Controls how often to simulate a DMA mapping failure. */ 83 int dma_map_addr_failed_sim_control = 0; 84 85 /* Controls how often to simulate a bootcode failure. */ 86 int bootcode_running_failure_sim_control = 0; 87 #endif 88 89 /****************************************************************************/ 90 /* BCE Build Time Options */ 91 /****************************************************************************/ 92 /* #define BCE_NVRAM_WRITE_SUPPORT 1 */ 93 94 95 /****************************************************************************/ 96 /* PCI Device ID Table */ 97 /* */ 98 /* Used by bce_probe() to identify the devices supported by this driver. */ 99 /****************************************************************************/ 100 #define BCE_DEVDESC_MAX 64 101 102 static struct bce_type bce_devs[] = { 103 /* BCM5706C Controllers and OEM boards. */ 104 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 105 "HP NC370T Multifunction Gigabit Server Adapter" }, 106 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 107 "HP NC370i Multifunction Gigabit Server Adapter" }, 108 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, 109 "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, 110 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, 111 "HP NC371i Multifunction Gigabit Server Adapter" }, 112 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 113 "Broadcom NetXtreme II BCM5706 1000Base-T" }, 114 115 /* BCM5706S controllers and OEM boards. */ 116 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 117 "HP NC370F Multifunction Gigabit Server Adapter" }, 118 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 119 "Broadcom NetXtreme II BCM5706 1000Base-SX" }, 120 121 /* BCM5708C controllers and OEM boards. */ 122 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, 123 "HP NC373T PCIe Multifunction Gig Server Adapter" }, 124 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, 125 "HP NC373i Multifunction Gigabit Server Adapter" }, 126 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, 127 "HP NC374m PCIe Multifunction Adapter" }, 128 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 129 "Broadcom NetXtreme II BCM5708 1000Base-T" }, 130 131 /* BCM5708S controllers and OEM boards. */ 132 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, 133 "HP NC373m Multifunction Gigabit Server Adapter" }, 134 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, 135 "HP NC373i Multifunction Gigabit Server Adapter" }, 136 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, 137 "HP NC373F PCIe Multifunc Giga Server Adapter" }, 138 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 139 "Broadcom NetXtreme II BCM5708 1000Base-SX" }, 140 141 /* BCM5709C controllers and OEM boards. */ 142 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, 143 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 144 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, 145 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, 146 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, 147 "Broadcom NetXtreme II BCM5709 1000Base-T" }, 148 149 /* BCM5709S controllers and OEM boards. */ 150 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, 151 "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, 152 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, 153 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 154 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, 155 "Broadcom NetXtreme II BCM5709 1000Base-SX" }, 156 157 /* BCM5716 controllers and OEM boards. */ 158 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, 159 "Broadcom NetXtreme II BCM5716 1000Base-T" }, 160 161 { 0, 0, 0, 0, NULL } 162 }; 163 164 165 /****************************************************************************/ 166 /* Supported Flash NVRAM device data. */ 167 /****************************************************************************/ 168 static struct flash_spec flash_table[] = 169 { 170 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) 171 #define NONBUFFERED_FLAGS (BCE_NV_WREN) 172 173 /* Slow EEPROM */ 174 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 175 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 176 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 177 "EEPROM - slow"}, 178 /* Expansion entry 0001 */ 179 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 180 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 181 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 182 "Entry 0001"}, 183 /* Saifun SA25F010 (non-buffered flash) */ 184 /* strap, cfg1, & write1 need updates */ 185 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 186 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 187 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 188 "Non-buffered flash (128kB)"}, 189 /* Saifun SA25F020 (non-buffered flash) */ 190 /* strap, cfg1, & write1 need updates */ 191 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 192 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 193 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 194 "Non-buffered flash (256kB)"}, 195 /* Expansion entry 0100 */ 196 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 197 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 198 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 199 "Entry 0100"}, 200 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 201 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 202 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 203 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 204 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 205 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 206 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 207 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 208 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 209 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 210 /* Saifun SA25F005 (non-buffered flash) */ 211 /* strap, cfg1, & write1 need updates */ 212 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 213 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 214 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 215 "Non-buffered flash (64kB)"}, 216 /* Fast EEPROM */ 217 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 218 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 219 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 220 "EEPROM - fast"}, 221 /* Expansion entry 1001 */ 222 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 223 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 224 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 225 "Entry 1001"}, 226 /* Expansion entry 1010 */ 227 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 229 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 230 "Entry 1010"}, 231 /* ATMEL AT45DB011B (buffered flash) */ 232 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 233 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 234 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 235 "Buffered flash (128kB)"}, 236 /* Expansion entry 1100 */ 237 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 240 "Entry 1100"}, 241 /* Expansion entry 1101 */ 242 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 245 "Entry 1101"}, 246 /* Ateml Expansion entry 1110 */ 247 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 249 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 250 "Entry 1110 (Atmel)"}, 251 /* ATMEL AT45DB021B (buffered flash) */ 252 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 253 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 254 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 255 "Buffered flash (256kB)"}, 256 }; 257 258 /* 259 * The BCM5709 controllers transparently handle the 260 * differences between Atmel 264 byte pages and all 261 * flash devices which use 256 byte pages, so no 262 * logical-to-physical mapping is required in the 263 * driver. 264 */ 265 static struct flash_spec flash_5709 = { 266 .flags = BCE_NV_BUFFERED, 267 .page_bits = BCM5709_FLASH_PAGE_BITS, 268 .page_size = BCM5709_FLASH_PAGE_SIZE, 269 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 270 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 271 .name = "5709/5716 buffered flash (256kB)", 272 }; 273 274 275 /****************************************************************************/ 276 /* FreeBSD device entry points. */ 277 /****************************************************************************/ 278 static int bce_probe (device_t); 279 static int bce_attach (device_t); 280 static int bce_detach (device_t); 281 static int bce_shutdown (device_t); 282 283 284 /****************************************************************************/ 285 /* BCE Debug Data Structure Dump Routines */ 286 /****************************************************************************/ 287 #ifdef BCE_DEBUG 288 static u32 bce_reg_rd (struct bce_softc *, u32); 289 static void bce_reg_wr (struct bce_softc *, u32, u32); 290 static void bce_reg_wr16 (struct bce_softc *, u32, u16); 291 static u32 bce_ctx_rd (struct bce_softc *, u32, u32); 292 static void bce_dump_enet (struct bce_softc *, struct mbuf *); 293 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 294 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); 295 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); 296 #ifdef BCE_JUMBO_HDRSPLIT 297 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); 298 #endif 299 static void bce_dump_txbd (struct bce_softc *, int, struct tx_bd *); 300 static void bce_dump_rxbd (struct bce_softc *, int, struct rx_bd *); 301 #ifdef BCE_JUMBO_HDRSPLIT 302 static void bce_dump_pgbd (struct bce_softc *, int, struct rx_bd *); 303 #endif 304 static void bce_dump_l2fhdr (struct bce_softc *, int, struct l2_fhdr *); 305 static void bce_dump_ctx (struct bce_softc *, u16); 306 static void bce_dump_ftqs (struct bce_softc *); 307 static void bce_dump_tx_chain (struct bce_softc *, u16, int); 308 static void bce_dump_rx_chain (struct bce_softc *, u16, int); 309 #ifdef BCE_JUMBO_HDRSPLIT 310 static void bce_dump_pg_chain (struct bce_softc *, u16, int); 311 #endif 312 static void bce_dump_status_block (struct bce_softc *); 313 static void bce_dump_stats_block (struct bce_softc *); 314 static void bce_dump_driver_state (struct bce_softc *); 315 static void bce_dump_hw_state (struct bce_softc *); 316 static void bce_dump_mq_regs (struct bce_softc *); 317 static void bce_dump_bc_state (struct bce_softc *); 318 static void bce_dump_txp_state (struct bce_softc *, int); 319 static void bce_dump_rxp_state (struct bce_softc *, int); 320 static void bce_dump_tpat_state (struct bce_softc *, int); 321 static void bce_dump_cp_state (struct bce_softc *, int); 322 static void bce_dump_com_state (struct bce_softc *, int); 323 static void bce_breakpoint (struct bce_softc *); 324 #endif 325 326 327 /****************************************************************************/ 328 /* BCE Register/Memory Access Routines */ 329 /****************************************************************************/ 330 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 331 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 332 static void bce_shmem_wr (struct bce_softc *, u32, u32); 333 static u32 bce_shmem_rd (struct bce_softc *, u32); 334 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 335 static int bce_miibus_read_reg (device_t, int, int); 336 static int bce_miibus_write_reg (device_t, int, int, int); 337 static void bce_miibus_statchg (device_t); 338 339 340 /****************************************************************************/ 341 /* BCE NVRAM Access Routines */ 342 /****************************************************************************/ 343 static int bce_acquire_nvram_lock (struct bce_softc *); 344 static int bce_release_nvram_lock (struct bce_softc *); 345 static void bce_enable_nvram_access (struct bce_softc *); 346 static void bce_disable_nvram_access(struct bce_softc *); 347 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 348 static int bce_init_nvram (struct bce_softc *); 349 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 350 static int bce_nvram_test (struct bce_softc *); 351 #ifdef BCE_NVRAM_WRITE_SUPPORT 352 static int bce_enable_nvram_write (struct bce_softc *); 353 static void bce_disable_nvram_write (struct bce_softc *); 354 static int bce_nvram_erase_page (struct bce_softc *, u32); 355 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 356 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 357 #endif 358 359 /****************************************************************************/ 360 /* */ 361 /****************************************************************************/ 362 static void bce_get_media (struct bce_softc *); 363 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); 364 static int bce_dma_alloc (device_t); 365 static void bce_dma_free (struct bce_softc *); 366 static void bce_release_resources (struct bce_softc *); 367 368 /****************************************************************************/ 369 /* BCE Firmware Synchronization and Load */ 370 /****************************************************************************/ 371 static int bce_fw_sync (struct bce_softc *, u32); 372 static void bce_load_rv2p_fw (struct bce_softc *, u32 *, u32, u32); 373 static void bce_load_cpu_fw (struct bce_softc *, struct cpu_reg *, struct fw_info *); 374 static void bce_start_cpu (struct bce_softc *, struct cpu_reg *); 375 static void bce_halt_cpu (struct bce_softc *, struct cpu_reg *); 376 static void bce_start_rxp_cpu (struct bce_softc *); 377 static void bce_init_rxp_cpu (struct bce_softc *); 378 static void bce_init_txp_cpu (struct bce_softc *); 379 static void bce_init_tpat_cpu (struct bce_softc *); 380 static void bce_init_cp_cpu (struct bce_softc *); 381 static void bce_init_com_cpu (struct bce_softc *); 382 static void bce_init_cpus (struct bce_softc *); 383 384 static void bce_print_adapter_info (struct bce_softc *); 385 static void bce_probe_pci_caps (device_t, struct bce_softc *); 386 static void bce_stop (struct bce_softc *); 387 static int bce_reset (struct bce_softc *, u32); 388 static int bce_chipinit (struct bce_softc *); 389 static int bce_blockinit (struct bce_softc *); 390 391 static int bce_init_tx_chain (struct bce_softc *); 392 static void bce_free_tx_chain (struct bce_softc *); 393 394 static int bce_get_rx_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *); 395 static int bce_init_rx_chain (struct bce_softc *); 396 static void bce_fill_rx_chain (struct bce_softc *); 397 static void bce_free_rx_chain (struct bce_softc *); 398 399 #ifdef BCE_JUMBO_HDRSPLIT 400 static int bce_get_pg_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *); 401 static int bce_init_pg_chain (struct bce_softc *); 402 static void bce_fill_pg_chain (struct bce_softc *); 403 static void bce_free_pg_chain (struct bce_softc *); 404 #endif 405 406 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 407 static void bce_start_locked (struct ifnet *); 408 static void bce_start (struct ifnet *); 409 static int bce_ioctl (struct ifnet *, u_long, caddr_t); 410 static void bce_watchdog (struct bce_softc *); 411 static int bce_ifmedia_upd (struct ifnet *); 412 static void bce_ifmedia_upd_locked (struct ifnet *); 413 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); 414 static void bce_init_locked (struct bce_softc *); 415 static void bce_init (void *); 416 static void bce_mgmt_init_locked (struct bce_softc *sc); 417 418 static void bce_init_ctx (struct bce_softc *); 419 static void bce_get_mac_addr (struct bce_softc *); 420 static void bce_set_mac_addr (struct bce_softc *); 421 static void bce_phy_intr (struct bce_softc *); 422 static inline u16 bce_get_hw_rx_cons(struct bce_softc *); 423 static void bce_rx_intr (struct bce_softc *); 424 static void bce_tx_intr (struct bce_softc *); 425 static void bce_disable_intr (struct bce_softc *); 426 static void bce_enable_intr (struct bce_softc *, int); 427 428 static void bce_intr (void *); 429 static void bce_set_rx_mode (struct bce_softc *); 430 static void bce_stats_update (struct bce_softc *); 431 static void bce_tick (void *); 432 static void bce_pulse (void *); 433 static void bce_add_sysctls (struct bce_softc *); 434 435 436 /****************************************************************************/ 437 /* FreeBSD device dispatch table. */ 438 /****************************************************************************/ 439 static device_method_t bce_methods[] = { 440 /* Device interface (device_if.h) */ 441 DEVMETHOD(device_probe, bce_probe), 442 DEVMETHOD(device_attach, bce_attach), 443 DEVMETHOD(device_detach, bce_detach), 444 DEVMETHOD(device_shutdown, bce_shutdown), 445 /* Supported by device interface but not used here. */ 446 /* DEVMETHOD(device_identify, bce_identify), */ 447 /* DEVMETHOD(device_suspend, bce_suspend), */ 448 /* DEVMETHOD(device_resume, bce_resume), */ 449 /* DEVMETHOD(device_quiesce, bce_quiesce), */ 450 451 /* Bus interface (bus_if.h) */ 452 DEVMETHOD(bus_print_child, bus_generic_print_child), 453 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 454 455 /* MII interface (miibus_if.h) */ 456 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 457 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 458 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 459 /* Supported by MII interface but not used here. */ 460 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ 461 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ 462 463 { 0, 0 } 464 }; 465 466 static driver_t bce_driver = { 467 "bce", 468 bce_methods, 469 sizeof(struct bce_softc) 470 }; 471 472 static devclass_t bce_devclass; 473 474 MODULE_DEPEND(bce, pci, 1, 1, 1); 475 MODULE_DEPEND(bce, ether, 1, 1, 1); 476 MODULE_DEPEND(bce, miibus, 1, 1, 1); 477 478 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0); 479 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0); 480 481 482 /****************************************************************************/ 483 /* Tunable device values */ 484 /****************************************************************************/ 485 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters"); 486 487 /* Allowable values are TRUE or FALSE */ 488 static int bce_tso_enable = TRUE; 489 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable); 490 SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 491 "TSO Enable/Disable"); 492 493 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 494 /* ToDo: Add MSI-X support. */ 495 static int bce_msi_enable = 1; 496 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable); 497 SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 498 "MSI-X|MSI|INTx selector"); 499 500 /* ToDo: Add tunable to enable/disable strict MTU handling. */ 501 /* Currently allows "loose" RX MTU checking (i.e. sets the */ 502 /* H/W RX MTU to the size of the largest receive buffer, or */ 503 /* 2048 bytes). This will cause a UNH failure but is more */ 504 /* desireable from a functional perspective. */ 505 506 507 /****************************************************************************/ 508 /* Device probe function. */ 509 /* */ 510 /* Compares the device to the driver's list of supported devices and */ 511 /* reports back to the OS whether this is the right driver for the device. */ 512 /* */ 513 /* Returns: */ 514 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 515 /****************************************************************************/ 516 static int 517 bce_probe(device_t dev) 518 { 519 struct bce_type *t; 520 struct bce_softc *sc; 521 char *descbuf; 522 u16 vid = 0, did = 0, svid = 0, sdid = 0; 523 524 t = bce_devs; 525 526 sc = device_get_softc(dev); 527 bzero(sc, sizeof(struct bce_softc)); 528 sc->bce_unit = device_get_unit(dev); 529 sc->bce_dev = dev; 530 531 /* Get the data for the device to be probed. */ 532 vid = pci_get_vendor(dev); 533 did = pci_get_device(dev); 534 svid = pci_get_subvendor(dev); 535 sdid = pci_get_subdevice(dev); 536 537 DBPRINT(sc, BCE_EXTREME_LOAD, 538 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 539 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 540 541 /* Look through the list of known devices for a match. */ 542 while(t->bce_name != NULL) { 543 544 if ((vid == t->bce_vid) && (did == t->bce_did) && 545 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 546 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 547 548 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 549 550 if (descbuf == NULL) 551 return(ENOMEM); 552 553 /* Print out the device identity. */ 554 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", 555 t->bce_name, 556 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 557 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 558 559 device_set_desc_copy(dev, descbuf); 560 free(descbuf, M_TEMP); 561 return(BUS_PROBE_DEFAULT); 562 } 563 t++; 564 } 565 566 return(ENXIO); 567 } 568 569 570 /****************************************************************************/ 571 /* PCI Capabilities Probe Function. */ 572 /* */ 573 /* Walks the PCI capabiites list for the device to find what features are */ 574 /* supported. */ 575 /* */ 576 /* Returns: */ 577 /* None. */ 578 /****************************************************************************/ 579 static void 580 bce_print_adapter_info(struct bce_softc *sc) 581 { 582 int i = 0; 583 584 DBENTER(BCE_VERBOSE_LOAD); 585 586 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 587 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A', 588 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 589 590 /* Bus info. */ 591 if (sc->bce_flags & BCE_PCIE_FLAG) { 592 printf("Bus (PCIe x%d, ", sc->link_width); 593 switch (sc->link_speed) { 594 case 1: printf("2.5Gbps); "); break; 595 case 2: printf("5Gbps); "); break; 596 default: printf("Unknown link speed); "); 597 } 598 } else { 599 printf("Bus (PCI%s, %s, %dMHz); ", 600 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 601 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"), 602 sc->bus_speed_mhz); 603 } 604 605 /* Firmware version and device features. */ 606 printf("B/C (%s); Flags (", sc->bce_bc_ver); 607 608 #ifdef BCE_JUMBO_HDRSPLIT 609 printf("SPLT"); 610 i++; 611 #endif 612 613 if (sc->bce_flags & BCE_USING_MSI_FLAG) { 614 if (i > 0) printf("|"); 615 printf("MSI"); i++; 616 } 617 618 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 619 if (i > 0) printf("|"); 620 printf("MSI-X"); i++; 621 } 622 623 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 624 if (i > 0) printf("|"); 625 printf("2.5G"); i++; 626 } 627 628 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 629 if (i > 0) printf("|"); 630 printf("MFW); MFW (%s)\n", sc->bce_mfw_ver); 631 } else { 632 printf(")\n"); 633 } 634 635 DBEXIT(BCE_VERBOSE_LOAD); 636 } 637 638 639 /****************************************************************************/ 640 /* PCI Capabilities Probe Function. */ 641 /* */ 642 /* Walks the PCI capabiites list for the device to find what features are */ 643 /* supported. */ 644 /* */ 645 /* Returns: */ 646 /* None. */ 647 /****************************************************************************/ 648 static void 649 bce_probe_pci_caps(device_t dev, struct bce_softc *sc) 650 { 651 u32 reg; 652 653 DBENTER(BCE_VERBOSE_LOAD); 654 655 /* Check if PCI-X capability is enabled. */ 656 if (pci_find_extcap(dev, PCIY_PCIX, ®) == 0) { 657 if (reg != 0) 658 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; 659 } 660 661 /* Check if PCIe capability is enabled. */ 662 if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { 663 if (reg != 0) { 664 u16 link_status = pci_read_config(dev, reg + 0x12, 2); 665 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = 0x%08X\n", 666 link_status); 667 sc->link_speed = link_status & 0xf; 668 sc->link_width = (link_status >> 4) & 0x3f; 669 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; 670 sc->bce_flags |= BCE_PCIE_FLAG; 671 } 672 } 673 674 /* Check if MSI capability is enabled. */ 675 if (pci_find_extcap(dev, PCIY_MSI, ®) == 0) { 676 if (reg != 0) 677 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; 678 } 679 680 /* Check if MSI-X capability is enabled. */ 681 if (pci_find_extcap(dev, PCIY_MSIX, ®) == 0) { 682 if (reg != 0) 683 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; 684 } 685 686 DBEXIT(BCE_VERBOSE_LOAD); 687 } 688 689 690 /****************************************************************************/ 691 /* Device attach function. */ 692 /* */ 693 /* Allocates device resources, performs secondary chip identification, */ 694 /* resets and initializes the hardware, and initializes driver instance */ 695 /* variables. */ 696 /* */ 697 /* Returns: */ 698 /* 0 on success, positive value on failure. */ 699 /****************************************************************************/ 700 static int 701 bce_attach(device_t dev) 702 { 703 struct bce_softc *sc; 704 struct ifnet *ifp; 705 u32 val; 706 int error, rid, rc = 0; 707 708 sc = device_get_softc(dev); 709 sc->bce_dev = dev; 710 711 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 712 713 sc->bce_unit = device_get_unit(dev); 714 715 /* Set initial device and PHY flags */ 716 sc->bce_flags = 0; 717 sc->bce_phy_flags = 0; 718 719 pci_enable_busmaster(dev); 720 721 /* Allocate PCI memory resources. */ 722 rid = PCIR_BAR(0); 723 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 724 &rid, RF_ACTIVE); 725 726 if (sc->bce_res_mem == NULL) { 727 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 728 __FILE__, __LINE__); 729 rc = ENXIO; 730 goto bce_attach_fail; 731 } 732 733 /* Get various resource handles. */ 734 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 735 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 736 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 737 738 bce_probe_pci_caps(dev, sc); 739 740 rid = 1; 741 #if 0 742 /* Try allocating MSI-X interrupts. */ 743 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && 744 (bce_msi_enable >= 2) && 745 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 746 &rid, RF_ACTIVE)) != NULL)) { 747 748 msi_needed = sc->bce_msi_count = 1; 749 750 if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) || 751 (sc->bce_msi_count != msi_needed)) { 752 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," 753 "Received = %d, error = %d\n", __FILE__, __LINE__, 754 msi_needed, sc->bce_msi_count, error); 755 sc->bce_msi_count = 0; 756 pci_release_msi(dev); 757 bus_release_resource(dev, SYS_RES_MEMORY, rid, 758 sc->bce_res_irq); 759 sc->bce_res_irq = NULL; 760 } else { 761 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", 762 __FUNCTION__); 763 sc->bce_flags |= BCE_USING_MSIX_FLAG; 764 sc->bce_intr = bce_intr; 765 } 766 } 767 #endif 768 769 /* Try allocating a MSI interrupt. */ 770 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && 771 (bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) { 772 sc->bce_msi_count = 1; 773 if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) { 774 BCE_PRINTF("%s(%d): MSI allocation failed! error = %d\n", 775 __FILE__, __LINE__, error); 776 sc->bce_msi_count = 0; 777 pci_release_msi(dev); 778 } else { 779 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI interrupt.\n", 780 __FUNCTION__); 781 sc->bce_flags |= BCE_USING_MSI_FLAG; 782 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 783 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 784 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; 785 sc->bce_irq_rid = 1; 786 sc->bce_intr = bce_intr; 787 } 788 } 789 790 /* Try allocating a legacy interrupt. */ 791 if (sc->bce_msi_count == 0) { 792 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", 793 __FUNCTION__); 794 rid = 0; 795 sc->bce_intr = bce_intr; 796 } 797 798 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 799 &rid, RF_SHAREABLE | RF_ACTIVE); 800 801 sc->bce_irq_rid = rid; 802 803 /* Report any IRQ allocation errors. */ 804 if (sc->bce_res_irq == NULL) { 805 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 806 __FILE__, __LINE__); 807 rc = ENXIO; 808 goto bce_attach_fail; 809 } 810 811 /* Initialize mutex for the current device instance. */ 812 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 813 814 /* 815 * Configure byte swap and enable indirect register access. 816 * Rely on CPU to do target byte swapping on big endian systems. 817 * Access to registers outside of PCI configurtion space are not 818 * valid until this is done. 819 */ 820 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 821 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 822 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 823 824 /* Save ASIC revsion info. */ 825 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 826 827 /* Weed out any non-production controller revisions. */ 828 switch(BCE_CHIP_ID(sc)) { 829 case BCE_CHIP_ID_5706_A0: 830 case BCE_CHIP_ID_5706_A1: 831 case BCE_CHIP_ID_5708_A0: 832 case BCE_CHIP_ID_5708_B0: 833 case BCE_CHIP_ID_5709_A0: 834 case BCE_CHIP_ID_5709_B0: 835 case BCE_CHIP_ID_5709_B1: 836 case BCE_CHIP_ID_5709_B2: 837 BCE_PRINTF("%s(%d): Unsupported controller revision (%c%d)!\n", 838 __FILE__, __LINE__, 839 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 840 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 841 rc = ENODEV; 842 goto bce_attach_fail; 843 } 844 845 /* 846 * The embedded PCIe to PCI-X bridge (EPB) 847 * in the 5708 cannot address memory above 848 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 849 */ 850 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 851 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 852 else 853 sc->max_bus_addr = BUS_SPACE_MAXADDR; 854 855 /* 856 * Find the base address for shared memory access. 857 * Newer versions of bootcode use a signature and offset 858 * while older versions use a fixed address. 859 */ 860 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 861 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 862 /* Multi-port devices use different offsets in shared memory. */ 863 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + 864 (pci_get_function(sc->bce_dev) << 2)); 865 else 866 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 867 868 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 869 __FUNCTION__, sc->bce_shmem_base); 870 871 /* Fetch the bootcode revision. */ 872 val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV); 873 for (int i = 0, j = 0; i < 3; i++) { 874 u8 num; 875 876 num = (u8) (val >> (24 - (i * 8))); 877 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { 878 if (num >= k || !skip0 || k == 1) { 879 sc->bce_bc_ver[j++] = (num / k) + '0'; 880 skip0 = 0; 881 } 882 } 883 if (i != 2) 884 sc->bce_bc_ver[j++] = '.'; 885 } 886 887 /* Check if any management firwmare is running. */ 888 val = bce_shmem_rd(sc, BCE_PORT_FEATURE); 889 if (val & BCE_PORT_FEATURE_ASF_ENABLED) { 890 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 891 892 /* Allow time for firmware to enter the running state. */ 893 for (int i = 0; i < 30; i++) { 894 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 895 if (val & BCE_CONDITION_MFW_RUN_MASK) 896 break; 897 DELAY(10000); 898 } 899 } 900 901 /* Check the current bootcode state. */ 902 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 903 val &= BCE_CONDITION_MFW_RUN_MASK; 904 if (val != BCE_CONDITION_MFW_RUN_UNKNOWN && 905 val != BCE_CONDITION_MFW_RUN_NONE) { 906 u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR); 907 int i = 0; 908 909 for (int j = 0; j < 3; j++) { 910 val = bce_reg_rd_ind(sc, addr + j * 4); 911 val = bswap32(val); 912 memcpy(&sc->bce_mfw_ver[i], &val, 4); 913 i += 4; 914 } 915 } 916 917 /* Get PCI bus information (speed and type). */ 918 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 919 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 920 u32 clkreg; 921 922 sc->bce_flags |= BCE_PCIX_FLAG; 923 924 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 925 926 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 927 switch (clkreg) { 928 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 929 sc->bus_speed_mhz = 133; 930 break; 931 932 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 933 sc->bus_speed_mhz = 100; 934 break; 935 936 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 937 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 938 sc->bus_speed_mhz = 66; 939 break; 940 941 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 942 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 943 sc->bus_speed_mhz = 50; 944 break; 945 946 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 947 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 948 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 949 sc->bus_speed_mhz = 33; 950 break; 951 } 952 } else { 953 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 954 sc->bus_speed_mhz = 66; 955 else 956 sc->bus_speed_mhz = 33; 957 } 958 959 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 960 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 961 962 /* Reset the controller and announce to bootcode that driver is present. */ 963 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 964 BCE_PRINTF("%s(%d): Controller reset failed!\n", 965 __FILE__, __LINE__); 966 rc = ENXIO; 967 goto bce_attach_fail; 968 } 969 970 /* Initialize the controller. */ 971 if (bce_chipinit(sc)) { 972 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 973 __FILE__, __LINE__); 974 rc = ENXIO; 975 goto bce_attach_fail; 976 } 977 978 /* Perform NVRAM test. */ 979 if (bce_nvram_test(sc)) { 980 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 981 __FILE__, __LINE__); 982 rc = ENXIO; 983 goto bce_attach_fail; 984 } 985 986 /* Fetch the permanent Ethernet MAC address. */ 987 bce_get_mac_addr(sc); 988 989 /* 990 * Trip points control how many BDs 991 * should be ready before generating an 992 * interrupt while ticks control how long 993 * a BD can sit in the chain before 994 * generating an interrupt. Set the default 995 * values for the RX and TX chains. 996 */ 997 998 #ifdef BCE_DEBUG 999 /* Force more frequent interrupts. */ 1000 sc->bce_tx_quick_cons_trip_int = 1; 1001 sc->bce_tx_quick_cons_trip = 1; 1002 sc->bce_tx_ticks_int = 0; 1003 sc->bce_tx_ticks = 0; 1004 1005 sc->bce_rx_quick_cons_trip_int = 1; 1006 sc->bce_rx_quick_cons_trip = 1; 1007 sc->bce_rx_ticks_int = 0; 1008 sc->bce_rx_ticks = 0; 1009 #else 1010 /* Improve throughput at the expense of increased latency. */ 1011 sc->bce_tx_quick_cons_trip_int = 20; 1012 sc->bce_tx_quick_cons_trip = 20; 1013 sc->bce_tx_ticks_int = 80; 1014 sc->bce_tx_ticks = 80; 1015 1016 sc->bce_rx_quick_cons_trip_int = 6; 1017 sc->bce_rx_quick_cons_trip = 6; 1018 sc->bce_rx_ticks_int = 18; 1019 sc->bce_rx_ticks = 18; 1020 #endif 1021 1022 /* Update statistics once every second. */ 1023 sc->bce_stats_ticks = 1000000 & 0xffff00; 1024 1025 /* Find the media type for the adapter. */ 1026 bce_get_media(sc); 1027 1028 /* Store data needed by PHY driver for backplane applications */ 1029 sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 1030 sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG); 1031 1032 /* Allocate DMA memory resources. */ 1033 if (bce_dma_alloc(dev)) { 1034 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 1035 __FILE__, __LINE__); 1036 rc = ENXIO; 1037 goto bce_attach_fail; 1038 } 1039 1040 /* Allocate an ifnet structure. */ 1041 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 1042 if (ifp == NULL) { 1043 BCE_PRINTF("%s(%d): Interface allocation failed!\n", 1044 __FILE__, __LINE__); 1045 rc = ENXIO; 1046 goto bce_attach_fail; 1047 } 1048 1049 /* Initialize the ifnet interface. */ 1050 ifp->if_softc = sc; 1051 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1052 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1053 ifp->if_ioctl = bce_ioctl; 1054 ifp->if_start = bce_start; 1055 ifp->if_init = bce_init; 1056 ifp->if_mtu = ETHERMTU; 1057 1058 if (bce_tso_enable) { 1059 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; 1060 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4; 1061 } else { 1062 ifp->if_hwassist = BCE_IF_HWASSIST; 1063 ifp->if_capabilities = BCE_IF_CAPABILITIES; 1064 } 1065 1066 ifp->if_capenable = ifp->if_capabilities; 1067 1068 /* 1069 * Assume standard mbuf sizes for buffer allocation. 1070 * This may change later if the MTU size is set to 1071 * something other than 1500. 1072 */ 1073 #ifdef BCE_JUMBO_HDRSPLIT 1074 sc->rx_bd_mbuf_alloc_size = MHLEN; 1075 /* Make sure offset is 16 byte aligned for hardware. */ 1076 sc->rx_bd_mbuf_align_pad = roundup2((MSIZE - MHLEN), 16) - 1077 (MSIZE - MHLEN); 1078 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 1079 sc->rx_bd_mbuf_align_pad; 1080 sc->pg_bd_mbuf_alloc_size = MCLBYTES; 1081 #else 1082 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 1083 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES; 1084 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 1085 sc->rx_bd_mbuf_align_pad; 1086 #endif 1087 1088 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD; 1089 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 1090 IFQ_SET_READY(&ifp->if_snd); 1091 1092 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 1093 ifp->if_baudrate = IF_Mbps(2500ULL); 1094 else 1095 ifp->if_baudrate = IF_Mbps(1000); 1096 1097 /* Check for an MII child bus by probing the PHY. */ 1098 if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd, 1099 bce_ifmedia_sts)) { 1100 BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n", 1101 __FILE__, __LINE__); 1102 rc = ENXIO; 1103 goto bce_attach_fail; 1104 } 1105 1106 /* Attach to the Ethernet interface list. */ 1107 ether_ifattach(ifp, sc->eaddr); 1108 1109 #if __FreeBSD_version < 500000 1110 callout_init(&sc->bce_tick_callout); 1111 callout_init(&sc->bce_pulse_callout); 1112 #else 1113 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 1114 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 1115 #endif 1116 1117 /* Hookup IRQ last. */ 1118 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, 1119 NULL, bce_intr, sc, &sc->bce_intrhand); 1120 1121 if (rc) { 1122 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 1123 __FILE__, __LINE__); 1124 bce_detach(dev); 1125 goto bce_attach_exit; 1126 } 1127 1128 /* 1129 * At this point we've acquired all the resources 1130 * we need to run so there's no turning back, we're 1131 * cleared for launch. 1132 */ 1133 1134 /* Print some important debugging info. */ 1135 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); 1136 1137 /* Add the supported sysctls to the kernel. */ 1138 bce_add_sysctls(sc); 1139 1140 BCE_LOCK(sc); 1141 1142 /* 1143 * The chip reset earlier notified the bootcode that 1144 * a driver is present. We now need to start our pulse 1145 * routine so that the bootcode is reminded that we're 1146 * still running. 1147 */ 1148 bce_pulse(sc); 1149 1150 bce_mgmt_init_locked(sc); 1151 BCE_UNLOCK(sc); 1152 1153 /* Finally, print some useful adapter info */ 1154 bce_print_adapter_info(sc); 1155 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", 1156 __FUNCTION__, sc); 1157 1158 goto bce_attach_exit; 1159 1160 bce_attach_fail: 1161 bce_release_resources(sc); 1162 1163 bce_attach_exit: 1164 1165 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1166 1167 return(rc); 1168 } 1169 1170 1171 /****************************************************************************/ 1172 /* Device detach function. */ 1173 /* */ 1174 /* Stops the controller, resets the controller, and releases resources. */ 1175 /* */ 1176 /* Returns: */ 1177 /* 0 on success, positive value on failure. */ 1178 /****************************************************************************/ 1179 static int 1180 bce_detach(device_t dev) 1181 { 1182 struct bce_softc *sc = device_get_softc(dev); 1183 struct ifnet *ifp; 1184 u32 msg; 1185 1186 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1187 1188 ifp = sc->bce_ifp; 1189 1190 /* Stop and reset the controller. */ 1191 BCE_LOCK(sc); 1192 1193 /* Stop the pulse so the bootcode can go to driver absent state. */ 1194 callout_stop(&sc->bce_pulse_callout); 1195 1196 bce_stop(sc); 1197 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1198 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1199 else 1200 msg = BCE_DRV_MSG_CODE_UNLOAD; 1201 bce_reset(sc, msg); 1202 1203 BCE_UNLOCK(sc); 1204 1205 ether_ifdetach(ifp); 1206 1207 /* If we have a child device on the MII bus remove it too. */ 1208 bus_generic_detach(dev); 1209 device_delete_child(dev, sc->bce_miibus); 1210 1211 /* Release all remaining resources. */ 1212 bce_release_resources(sc); 1213 1214 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1215 1216 return(0); 1217 } 1218 1219 1220 /****************************************************************************/ 1221 /* Device shutdown function. */ 1222 /* */ 1223 /* Stops and resets the controller. */ 1224 /* */ 1225 /* Returns: */ 1226 /* 0 on success, positive value on failure. */ 1227 /****************************************************************************/ 1228 static int 1229 bce_shutdown(device_t dev) 1230 { 1231 struct bce_softc *sc = device_get_softc(dev); 1232 u32 msg; 1233 1234 DBENTER(BCE_VERBOSE); 1235 1236 BCE_LOCK(sc); 1237 bce_stop(sc); 1238 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1239 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1240 else 1241 msg = BCE_DRV_MSG_CODE_UNLOAD; 1242 bce_reset(sc, msg); 1243 BCE_UNLOCK(sc); 1244 1245 DBEXIT(BCE_VERBOSE); 1246 1247 return (0); 1248 } 1249 1250 1251 #ifdef BCE_DEBUG 1252 /****************************************************************************/ 1253 /* Register read. */ 1254 /* */ 1255 /* Returns: */ 1256 /* The value of the register. */ 1257 /****************************************************************************/ 1258 static u32 1259 bce_reg_rd(struct bce_softc *sc, u32 offset) 1260 { 1261 u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset); 1262 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1263 __FUNCTION__, offset, val); 1264 return val; 1265 } 1266 1267 1268 /****************************************************************************/ 1269 /* Register write (16 bit). */ 1270 /* */ 1271 /* Returns: */ 1272 /* Nothing. */ 1273 /****************************************************************************/ 1274 static void 1275 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) 1276 { 1277 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", 1278 __FUNCTION__, offset, val); 1279 bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val); 1280 } 1281 1282 1283 /****************************************************************************/ 1284 /* Register write. */ 1285 /* */ 1286 /* Returns: */ 1287 /* Nothing. */ 1288 /****************************************************************************/ 1289 static void 1290 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) 1291 { 1292 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1293 __FUNCTION__, offset, val); 1294 bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val); 1295 } 1296 #endif 1297 1298 /****************************************************************************/ 1299 /* Indirect register read. */ 1300 /* */ 1301 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1302 /* configuration space. Using this mechanism avoids issues with posted */ 1303 /* reads but is much slower than memory-mapped I/O. */ 1304 /* */ 1305 /* Returns: */ 1306 /* The value of the register. */ 1307 /****************************************************************************/ 1308 static u32 1309 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 1310 { 1311 device_t dev; 1312 dev = sc->bce_dev; 1313 1314 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1315 #ifdef BCE_DEBUG 1316 { 1317 u32 val; 1318 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1319 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1320 __FUNCTION__, offset, val); 1321 return val; 1322 } 1323 #else 1324 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1325 #endif 1326 } 1327 1328 1329 /****************************************************************************/ 1330 /* Indirect register write. */ 1331 /* */ 1332 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1333 /* configuration space. Using this mechanism avoids issues with posted */ 1334 /* writes but is muchh slower than memory-mapped I/O. */ 1335 /* */ 1336 /* Returns: */ 1337 /* Nothing. */ 1338 /****************************************************************************/ 1339 static void 1340 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 1341 { 1342 device_t dev; 1343 dev = sc->bce_dev; 1344 1345 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1346 __FUNCTION__, offset, val); 1347 1348 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1349 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 1350 } 1351 1352 1353 /****************************************************************************/ 1354 /* Shared memory write. */ 1355 /* */ 1356 /* Writes NetXtreme II shared memory region. */ 1357 /* */ 1358 /* Returns: */ 1359 /* Nothing. */ 1360 /****************************************************************************/ 1361 static void 1362 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val) 1363 { 1364 bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val); 1365 } 1366 1367 1368 /****************************************************************************/ 1369 /* Shared memory read. */ 1370 /* */ 1371 /* Reads NetXtreme II shared memory region. */ 1372 /* */ 1373 /* Returns: */ 1374 /* The 32 bit value read. */ 1375 /****************************************************************************/ 1376 static u32 1377 bce_shmem_rd(struct bce_softc *sc, u32 offset) 1378 { 1379 return (bce_reg_rd_ind(sc, sc->bce_shmem_base + offset)); 1380 } 1381 1382 1383 #ifdef BCE_DEBUG 1384 /****************************************************************************/ 1385 /* Context memory read. */ 1386 /* */ 1387 /* The NetXtreme II controller uses context memory to track connection */ 1388 /* information for L2 and higher network protocols. */ 1389 /* */ 1390 /* Returns: */ 1391 /* The requested 32 bit value of context memory. */ 1392 /****************************************************************************/ 1393 static u32 1394 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) 1395 { 1396 u32 idx, offset, retry_cnt = 5, val; 1397 1398 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1399 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1400 __FUNCTION__, cid_addr)); 1401 1402 offset = ctx_offset + cid_addr; 1403 1404 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1405 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1406 1407 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); 1408 1409 for (idx = 0; idx < retry_cnt; idx++) { 1410 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1411 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) 1412 break; 1413 DELAY(5); 1414 } 1415 1416 if (val & BCE_CTX_CTX_CTRL_READ_REQ) 1417 BCE_PRINTF("%s(%d); Unable to read CTX memory: " 1418 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1419 __FILE__, __LINE__, cid_addr, ctx_offset); 1420 1421 val = REG_RD(sc, BCE_CTX_CTX_DATA); 1422 } else { 1423 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1424 val = REG_RD(sc, BCE_CTX_DATA); 1425 } 1426 1427 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1428 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); 1429 1430 return(val); 1431 } 1432 #endif 1433 1434 1435 /****************************************************************************/ 1436 /* Context memory write. */ 1437 /* */ 1438 /* The NetXtreme II controller uses context memory to track connection */ 1439 /* information for L2 and higher network protocols. */ 1440 /* */ 1441 /* Returns: */ 1442 /* Nothing. */ 1443 /****************************************************************************/ 1444 static void 1445 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) 1446 { 1447 u32 idx, offset = ctx_offset + cid_addr; 1448 u32 val, retry_cnt = 5; 1449 1450 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1451 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); 1452 1453 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1454 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1455 __FUNCTION__, cid_addr)); 1456 1457 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1458 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1459 1460 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); 1461 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); 1462 1463 for (idx = 0; idx < retry_cnt; idx++) { 1464 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1465 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) 1466 break; 1467 DELAY(5); 1468 } 1469 1470 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) 1471 BCE_PRINTF("%s(%d); Unable to write CTX memory: " 1472 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1473 __FILE__, __LINE__, cid_addr, ctx_offset); 1474 1475 } else { 1476 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1477 REG_WR(sc, BCE_CTX_DATA, ctx_val); 1478 } 1479 } 1480 1481 1482 /****************************************************************************/ 1483 /* PHY register read. */ 1484 /* */ 1485 /* Implements register reads on the MII bus. */ 1486 /* */ 1487 /* Returns: */ 1488 /* The value of the register. */ 1489 /****************************************************************************/ 1490 static int 1491 bce_miibus_read_reg(device_t dev, int phy, int reg) 1492 { 1493 struct bce_softc *sc; 1494 u32 val; 1495 int i; 1496 1497 sc = device_get_softc(dev); 1498 1499 /* Make sure we are accessing the correct PHY address. */ 1500 if (phy != sc->bce_phy_addr) { 1501 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY read!\n", phy); 1502 return(0); 1503 } 1504 1505 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1506 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1507 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1508 1509 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1510 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1511 1512 DELAY(40); 1513 } 1514 1515 1516 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1517 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1518 BCE_EMAC_MDIO_COMM_START_BUSY; 1519 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1520 1521 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1522 DELAY(10); 1523 1524 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1525 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1526 DELAY(5); 1527 1528 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1529 val &= BCE_EMAC_MDIO_COMM_DATA; 1530 1531 break; 1532 } 1533 } 1534 1535 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1536 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, reg = 0x%04X\n", 1537 __FILE__, __LINE__, phy, reg); 1538 val = 0x0; 1539 } else { 1540 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1541 } 1542 1543 1544 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1545 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1546 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1547 1548 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1549 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1550 1551 DELAY(40); 1552 } 1553 1554 DB_PRINT_PHY_REG(reg, val); 1555 return (val & 0xffff); 1556 1557 } 1558 1559 1560 /****************************************************************************/ 1561 /* PHY register write. */ 1562 /* */ 1563 /* Implements register writes on the MII bus. */ 1564 /* */ 1565 /* Returns: */ 1566 /* The value of the register. */ 1567 /****************************************************************************/ 1568 static int 1569 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1570 { 1571 struct bce_softc *sc; 1572 u32 val1; 1573 int i; 1574 1575 sc = device_get_softc(dev); 1576 1577 /* Make sure we are accessing the correct PHY address. */ 1578 if (phy != sc->bce_phy_addr) { 1579 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY write!\n", phy); 1580 return(0); 1581 } 1582 1583 DB_PRINT_PHY_REG(reg, val); 1584 1585 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1586 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1587 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1588 1589 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1590 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1591 1592 DELAY(40); 1593 } 1594 1595 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1596 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1597 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1598 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1599 1600 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1601 DELAY(10); 1602 1603 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1604 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1605 DELAY(5); 1606 break; 1607 } 1608 } 1609 1610 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 1611 BCE_PRINTF("%s(%d): PHY write timeout!\n", 1612 __FILE__, __LINE__); 1613 1614 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1615 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1616 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1617 1618 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1619 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1620 1621 DELAY(40); 1622 } 1623 1624 return 0; 1625 } 1626 1627 1628 /****************************************************************************/ 1629 /* MII bus status change. */ 1630 /* */ 1631 /* Called by the MII bus driver when the PHY establishes link to set the */ 1632 /* MAC interface registers. */ 1633 /* */ 1634 /* Returns: */ 1635 /* Nothing. */ 1636 /****************************************************************************/ 1637 static void 1638 bce_miibus_statchg(device_t dev) 1639 { 1640 struct bce_softc *sc; 1641 struct mii_data *mii; 1642 int val; 1643 1644 sc = device_get_softc(dev); 1645 1646 DBENTER(BCE_VERBOSE_PHY); 1647 1648 mii = device_get_softc(sc->bce_miibus); 1649 1650 val = REG_RD(sc, BCE_EMAC_MODE); 1651 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 1652 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 1653 BCE_EMAC_MODE_25G); 1654 1655 /* Set MII or GMII interface based on the speed negotiated by the PHY. */ 1656 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1657 case IFM_10_T: 1658 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 1659 DBPRINT(sc, BCE_INFO, "Enabling 10Mb interface.\n"); 1660 val |= BCE_EMAC_MODE_PORT_MII_10; 1661 break; 1662 } 1663 /* fall-through */ 1664 case IFM_100_TX: 1665 DBPRINT(sc, BCE_INFO, "Enabling MII interface.\n"); 1666 val |= BCE_EMAC_MODE_PORT_MII; 1667 break; 1668 case IFM_2500_SX: 1669 DBPRINT(sc, BCE_INFO, "Enabling 2.5G MAC mode.\n"); 1670 val |= BCE_EMAC_MODE_25G; 1671 /* fall-through */ 1672 case IFM_1000_T: 1673 case IFM_1000_SX: 1674 DBPRINT(sc, BCE_INFO, "Enabling GMII interface.\n"); 1675 val |= BCE_EMAC_MODE_PORT_GMII; 1676 break; 1677 default: 1678 DBPRINT(sc, BCE_INFO, "Unknown speed, enabling default GMII " 1679 "interface.\n"); 1680 val |= BCE_EMAC_MODE_PORT_GMII; 1681 } 1682 1683 /* Set half or full duplex based on the duplicity negotiated by the PHY. */ 1684 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 1685 DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n"); 1686 val |= BCE_EMAC_MODE_HALF_DUPLEX; 1687 } else 1688 DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n"); 1689 1690 REG_WR(sc, BCE_EMAC_MODE, val); 1691 1692 #if 0 1693 /* ToDo: Enable flow control support in brgphy and bge. */ 1694 /* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */ 1695 if (mii->mii_media_active & IFM_FLAG0) 1696 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 1697 if (mii->mii_media_active & IFM_FLAG1) 1698 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 1699 #endif 1700 1701 DBEXIT(BCE_VERBOSE_PHY); 1702 } 1703 1704 1705 /****************************************************************************/ 1706 /* Acquire NVRAM lock. */ 1707 /* */ 1708 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 1709 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1710 /* for use by the driver. */ 1711 /* */ 1712 /* Returns: */ 1713 /* 0 on success, positive value on failure. */ 1714 /****************************************************************************/ 1715 static int 1716 bce_acquire_nvram_lock(struct bce_softc *sc) 1717 { 1718 u32 val; 1719 int j, rc = 0; 1720 1721 DBENTER(BCE_VERBOSE_NVRAM); 1722 1723 /* Request access to the flash interface. */ 1724 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 1725 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1726 val = REG_RD(sc, BCE_NVM_SW_ARB); 1727 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 1728 break; 1729 1730 DELAY(5); 1731 } 1732 1733 if (j >= NVRAM_TIMEOUT_COUNT) { 1734 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 1735 rc = EBUSY; 1736 } 1737 1738 DBEXIT(BCE_VERBOSE_NVRAM); 1739 return (rc); 1740 } 1741 1742 1743 /****************************************************************************/ 1744 /* Release NVRAM lock. */ 1745 /* */ 1746 /* When the caller is finished accessing NVRAM the lock must be released. */ 1747 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1748 /* for use by the driver. */ 1749 /* */ 1750 /* Returns: */ 1751 /* 0 on success, positive value on failure. */ 1752 /****************************************************************************/ 1753 static int 1754 bce_release_nvram_lock(struct bce_softc *sc) 1755 { 1756 u32 val; 1757 int j, rc = 0; 1758 1759 DBENTER(BCE_VERBOSE_NVRAM); 1760 1761 /* 1762 * Relinquish nvram interface. 1763 */ 1764 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 1765 1766 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1767 val = REG_RD(sc, BCE_NVM_SW_ARB); 1768 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 1769 break; 1770 1771 DELAY(5); 1772 } 1773 1774 if (j >= NVRAM_TIMEOUT_COUNT) { 1775 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); 1776 rc = EBUSY; 1777 } 1778 1779 DBEXIT(BCE_VERBOSE_NVRAM); 1780 return (rc); 1781 } 1782 1783 1784 #ifdef BCE_NVRAM_WRITE_SUPPORT 1785 /****************************************************************************/ 1786 /* Enable NVRAM write access. */ 1787 /* */ 1788 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 1789 /* */ 1790 /* Returns: */ 1791 /* 0 on success, positive value on failure. */ 1792 /****************************************************************************/ 1793 static int 1794 bce_enable_nvram_write(struct bce_softc *sc) 1795 { 1796 u32 val; 1797 int rc = 0; 1798 1799 DBENTER(BCE_VERBOSE_NVRAM); 1800 1801 val = REG_RD(sc, BCE_MISC_CFG); 1802 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 1803 1804 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 1805 int j; 1806 1807 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1808 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 1809 1810 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1811 DELAY(5); 1812 1813 val = REG_RD(sc, BCE_NVM_COMMAND); 1814 if (val & BCE_NVM_COMMAND_DONE) 1815 break; 1816 } 1817 1818 if (j >= NVRAM_TIMEOUT_COUNT) { 1819 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 1820 rc = EBUSY; 1821 } 1822 } 1823 1824 DBENTER(BCE_VERBOSE_NVRAM); 1825 return (rc); 1826 } 1827 1828 1829 /****************************************************************************/ 1830 /* Disable NVRAM write access. */ 1831 /* */ 1832 /* When the caller is finished writing to NVRAM write access must be */ 1833 /* disabled. */ 1834 /* */ 1835 /* Returns: */ 1836 /* Nothing. */ 1837 /****************************************************************************/ 1838 static void 1839 bce_disable_nvram_write(struct bce_softc *sc) 1840 { 1841 u32 val; 1842 1843 DBENTER(BCE_VERBOSE_NVRAM); 1844 1845 val = REG_RD(sc, BCE_MISC_CFG); 1846 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 1847 1848 DBEXIT(BCE_VERBOSE_NVRAM); 1849 1850 } 1851 #endif 1852 1853 1854 /****************************************************************************/ 1855 /* Enable NVRAM access. */ 1856 /* */ 1857 /* Before accessing NVRAM for read or write operations the caller must */ 1858 /* enabled NVRAM access. */ 1859 /* */ 1860 /* Returns: */ 1861 /* Nothing. */ 1862 /****************************************************************************/ 1863 static void 1864 bce_enable_nvram_access(struct bce_softc *sc) 1865 { 1866 u32 val; 1867 1868 DBENTER(BCE_VERBOSE_NVRAM); 1869 1870 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1871 /* Enable both bits, even on read. */ 1872 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1873 val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 1874 1875 DBEXIT(BCE_VERBOSE_NVRAM); 1876 } 1877 1878 1879 /****************************************************************************/ 1880 /* Disable NVRAM access. */ 1881 /* */ 1882 /* When the caller is finished accessing NVRAM access must be disabled. */ 1883 /* */ 1884 /* Returns: */ 1885 /* Nothing. */ 1886 /****************************************************************************/ 1887 static void 1888 bce_disable_nvram_access(struct bce_softc *sc) 1889 { 1890 u32 val; 1891 1892 DBENTER(BCE_VERBOSE_NVRAM); 1893 1894 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1895 1896 /* Disable both bits, even after read. */ 1897 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1898 val & ~(BCE_NVM_ACCESS_ENABLE_EN | 1899 BCE_NVM_ACCESS_ENABLE_WR_EN)); 1900 1901 DBEXIT(BCE_VERBOSE_NVRAM); 1902 } 1903 1904 1905 #ifdef BCE_NVRAM_WRITE_SUPPORT 1906 /****************************************************************************/ 1907 /* Erase NVRAM page before writing. */ 1908 /* */ 1909 /* Non-buffered flash parts require that a page be erased before it is */ 1910 /* written. */ 1911 /* */ 1912 /* Returns: */ 1913 /* 0 on success, positive value on failure. */ 1914 /****************************************************************************/ 1915 static int 1916 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 1917 { 1918 u32 cmd; 1919 int j, rc = 0; 1920 1921 DBENTER(BCE_VERBOSE_NVRAM); 1922 1923 /* Buffered flash doesn't require an erase. */ 1924 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) 1925 goto bce_nvram_erase_page_exit; 1926 1927 /* Build an erase command. */ 1928 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 1929 BCE_NVM_COMMAND_DOIT; 1930 1931 /* 1932 * Clear the DONE bit separately, set the NVRAM adress to erase, 1933 * and issue the erase command. 1934 */ 1935 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1936 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1937 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1938 1939 /* Wait for completion. */ 1940 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1941 u32 val; 1942 1943 DELAY(5); 1944 1945 val = REG_RD(sc, BCE_NVM_COMMAND); 1946 if (val & BCE_NVM_COMMAND_DONE) 1947 break; 1948 } 1949 1950 if (j >= NVRAM_TIMEOUT_COUNT) { 1951 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 1952 rc = EBUSY; 1953 } 1954 1955 bce_nvram_erase_page_exit: 1956 DBEXIT(BCE_VERBOSE_NVRAM); 1957 return (rc); 1958 } 1959 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 1960 1961 1962 /****************************************************************************/ 1963 /* Read a dword (32 bits) from NVRAM. */ 1964 /* */ 1965 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 1966 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 1967 /* */ 1968 /* Returns: */ 1969 /* 0 on success and the 32 bit value read, positive value on failure. */ 1970 /****************************************************************************/ 1971 static int 1972 bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val, 1973 u32 cmd_flags) 1974 { 1975 u32 cmd; 1976 int i, rc = 0; 1977 1978 DBENTER(BCE_EXTREME_NVRAM); 1979 1980 /* Build the command word. */ 1981 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 1982 1983 /* Calculate the offset for buffered flash if translation is used. */ 1984 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 1985 offset = ((offset / sc->bce_flash_info->page_size) << 1986 sc->bce_flash_info->page_bits) + 1987 (offset % sc->bce_flash_info->page_size); 1988 } 1989 1990 /* 1991 * Clear the DONE bit separately, set the address to read, 1992 * and issue the read. 1993 */ 1994 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1995 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1996 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1997 1998 /* Wait for completion. */ 1999 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 2000 u32 val; 2001 2002 DELAY(5); 2003 2004 val = REG_RD(sc, BCE_NVM_COMMAND); 2005 if (val & BCE_NVM_COMMAND_DONE) { 2006 val = REG_RD(sc, BCE_NVM_READ); 2007 2008 val = bce_be32toh(val); 2009 memcpy(ret_val, &val, 4); 2010 break; 2011 } 2012 } 2013 2014 /* Check for errors. */ 2015 if (i >= NVRAM_TIMEOUT_COUNT) { 2016 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n", 2017 __FILE__, __LINE__, offset); 2018 rc = EBUSY; 2019 } 2020 2021 DBEXIT(BCE_EXTREME_NVRAM); 2022 return(rc); 2023 } 2024 2025 2026 #ifdef BCE_NVRAM_WRITE_SUPPORT 2027 /****************************************************************************/ 2028 /* Write a dword (32 bits) to NVRAM. */ 2029 /* */ 2030 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 2031 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 2032 /* enabled NVRAM write access. */ 2033 /* */ 2034 /* Returns: */ 2035 /* 0 on success, positive value on failure. */ 2036 /****************************************************************************/ 2037 static int 2038 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 2039 u32 cmd_flags) 2040 { 2041 u32 cmd, val32; 2042 int j, rc = 0; 2043 2044 DBENTER(BCE_VERBOSE_NVRAM); 2045 2046 /* Build the command word. */ 2047 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 2048 2049 /* Calculate the offset for buffered flash if translation is used. */ 2050 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2051 offset = ((offset / sc->bce_flash_info->page_size) << 2052 sc->bce_flash_info->page_bits) + 2053 (offset % sc->bce_flash_info->page_size); 2054 } 2055 2056 /* 2057 * Clear the DONE bit separately, convert NVRAM data to big-endian, 2058 * set the NVRAM address to write, and issue the write command 2059 */ 2060 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2061 memcpy(&val32, val, 4); 2062 val32 = htobe32(val32); 2063 REG_WR(sc, BCE_NVM_WRITE, val32); 2064 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2065 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2066 2067 /* Wait for completion. */ 2068 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2069 DELAY(5); 2070 2071 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 2072 break; 2073 } 2074 if (j >= NVRAM_TIMEOUT_COUNT) { 2075 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at offset 0x%08X\n", 2076 __FILE__, __LINE__, offset); 2077 rc = EBUSY; 2078 } 2079 2080 DBEXIT(BCE_VERBOSE_NVRAM); 2081 return (rc); 2082 } 2083 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2084 2085 2086 /****************************************************************************/ 2087 /* Initialize NVRAM access. */ 2088 /* */ 2089 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 2090 /* access that device. */ 2091 /* */ 2092 /* Returns: */ 2093 /* 0 on success, positive value on failure. */ 2094 /****************************************************************************/ 2095 static int 2096 bce_init_nvram(struct bce_softc *sc) 2097 { 2098 u32 val; 2099 int j, entry_count, rc = 0; 2100 struct flash_spec *flash; 2101 2102 DBENTER(BCE_VERBOSE_NVRAM); 2103 2104 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 2105 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 2106 sc->bce_flash_info = &flash_5709; 2107 goto bce_init_nvram_get_flash_size; 2108 } 2109 2110 /* Determine the selected interface. */ 2111 val = REG_RD(sc, BCE_NVM_CFG1); 2112 2113 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 2114 2115 /* 2116 * Flash reconfiguration is required to support additional 2117 * NVRAM devices not directly supported in hardware. 2118 * Check if the flash interface was reconfigured 2119 * by the bootcode. 2120 */ 2121 2122 if (val & 0x40000000) { 2123 /* Flash interface reconfigured by bootcode. */ 2124 2125 DBPRINT(sc,BCE_INFO_LOAD, 2126 "bce_init_nvram(): Flash WAS reconfigured.\n"); 2127 2128 for (j = 0, flash = &flash_table[0]; j < entry_count; 2129 j++, flash++) { 2130 if ((val & FLASH_BACKUP_STRAP_MASK) == 2131 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 2132 sc->bce_flash_info = flash; 2133 break; 2134 } 2135 } 2136 } else { 2137 /* Flash interface not yet reconfigured. */ 2138 u32 mask; 2139 2140 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", 2141 __FUNCTION__); 2142 2143 if (val & (1 << 23)) 2144 mask = FLASH_BACKUP_STRAP_MASK; 2145 else 2146 mask = FLASH_STRAP_MASK; 2147 2148 /* Look for the matching NVRAM device configuration data. */ 2149 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 2150 2151 /* Check if the device matches any of the known devices. */ 2152 if ((val & mask) == (flash->strapping & mask)) { 2153 /* Found a device match. */ 2154 sc->bce_flash_info = flash; 2155 2156 /* Request access to the flash interface. */ 2157 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2158 return rc; 2159 2160 /* Reconfigure the flash interface. */ 2161 bce_enable_nvram_access(sc); 2162 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 2163 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 2164 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 2165 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 2166 bce_disable_nvram_access(sc); 2167 bce_release_nvram_lock(sc); 2168 2169 break; 2170 } 2171 } 2172 } 2173 2174 /* Check if a matching device was found. */ 2175 if (j == entry_count) { 2176 sc->bce_flash_info = NULL; 2177 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 2178 __FILE__, __LINE__); 2179 rc = ENODEV; 2180 } 2181 2182 bce_init_nvram_get_flash_size: 2183 /* Write the flash config data to the shared memory interface. */ 2184 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2); 2185 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 2186 if (val) 2187 sc->bce_flash_size = val; 2188 else 2189 sc->bce_flash_size = sc->bce_flash_info->total_size; 2190 2191 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", 2192 __FUNCTION__, sc->bce_flash_info->name, 2193 sc->bce_flash_info->total_size); 2194 2195 DBEXIT(BCE_VERBOSE_NVRAM); 2196 return rc; 2197 } 2198 2199 2200 /****************************************************************************/ 2201 /* Read an arbitrary range of data from NVRAM. */ 2202 /* */ 2203 /* Prepares the NVRAM interface for access and reads the requested data */ 2204 /* into the supplied buffer. */ 2205 /* */ 2206 /* Returns: */ 2207 /* 0 on success and the data read, positive value on failure. */ 2208 /****************************************************************************/ 2209 static int 2210 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 2211 int buf_size) 2212 { 2213 int rc = 0; 2214 u32 cmd_flags, offset32, len32, extra; 2215 2216 DBENTER(BCE_VERBOSE_NVRAM); 2217 2218 if (buf_size == 0) 2219 goto bce_nvram_read_exit; 2220 2221 /* Request access to the flash interface. */ 2222 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2223 goto bce_nvram_read_exit; 2224 2225 /* Enable access to flash interface */ 2226 bce_enable_nvram_access(sc); 2227 2228 len32 = buf_size; 2229 offset32 = offset; 2230 extra = 0; 2231 2232 cmd_flags = 0; 2233 2234 if (offset32 & 3) { 2235 u8 buf[4]; 2236 u32 pre_len; 2237 2238 offset32 &= ~3; 2239 pre_len = 4 - (offset & 3); 2240 2241 if (pre_len >= len32) { 2242 pre_len = len32; 2243 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 2244 } 2245 else { 2246 cmd_flags = BCE_NVM_COMMAND_FIRST; 2247 } 2248 2249 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2250 2251 if (rc) 2252 return rc; 2253 2254 memcpy(ret_buf, buf + (offset & 3), pre_len); 2255 2256 offset32 += 4; 2257 ret_buf += pre_len; 2258 len32 -= pre_len; 2259 } 2260 2261 if (len32 & 3) { 2262 extra = 4 - (len32 & 3); 2263 len32 = (len32 + 4) & ~3; 2264 } 2265 2266 if (len32 == 4) { 2267 u8 buf[4]; 2268 2269 if (cmd_flags) 2270 cmd_flags = BCE_NVM_COMMAND_LAST; 2271 else 2272 cmd_flags = BCE_NVM_COMMAND_FIRST | 2273 BCE_NVM_COMMAND_LAST; 2274 2275 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2276 2277 memcpy(ret_buf, buf, 4 - extra); 2278 } 2279 else if (len32 > 0) { 2280 u8 buf[4]; 2281 2282 /* Read the first word. */ 2283 if (cmd_flags) 2284 cmd_flags = 0; 2285 else 2286 cmd_flags = BCE_NVM_COMMAND_FIRST; 2287 2288 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 2289 2290 /* Advance to the next dword. */ 2291 offset32 += 4; 2292 ret_buf += 4; 2293 len32 -= 4; 2294 2295 while (len32 > 4 && rc == 0) { 2296 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 2297 2298 /* Advance to the next dword. */ 2299 offset32 += 4; 2300 ret_buf += 4; 2301 len32 -= 4; 2302 } 2303 2304 if (rc) 2305 goto bce_nvram_read_locked_exit; 2306 2307 cmd_flags = BCE_NVM_COMMAND_LAST; 2308 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2309 2310 memcpy(ret_buf, buf, 4 - extra); 2311 } 2312 2313 bce_nvram_read_locked_exit: 2314 /* Disable access to flash interface and release the lock. */ 2315 bce_disable_nvram_access(sc); 2316 bce_release_nvram_lock(sc); 2317 2318 bce_nvram_read_exit: 2319 DBEXIT(BCE_VERBOSE_NVRAM); 2320 return rc; 2321 } 2322 2323 2324 #ifdef BCE_NVRAM_WRITE_SUPPORT 2325 /****************************************************************************/ 2326 /* Write an arbitrary range of data from NVRAM. */ 2327 /* */ 2328 /* Prepares the NVRAM interface for write access and writes the requested */ 2329 /* data from the supplied buffer. The caller is responsible for */ 2330 /* calculating any appropriate CRCs. */ 2331 /* */ 2332 /* Returns: */ 2333 /* 0 on success, positive value on failure. */ 2334 /****************************************************************************/ 2335 static int 2336 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 2337 int buf_size) 2338 { 2339 u32 written, offset32, len32; 2340 u8 *buf, start[4], end[4]; 2341 int rc = 0; 2342 int align_start, align_end; 2343 2344 DBENTER(BCE_VERBOSE_NVRAM); 2345 2346 buf = data_buf; 2347 offset32 = offset; 2348 len32 = buf_size; 2349 align_start = align_end = 0; 2350 2351 if ((align_start = (offset32 & 3))) { 2352 offset32 &= ~3; 2353 len32 += align_start; 2354 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 2355 goto bce_nvram_write_exit; 2356 } 2357 2358 if (len32 & 3) { 2359 if ((len32 > 4) || !align_start) { 2360 align_end = 4 - (len32 & 3); 2361 len32 += align_end; 2362 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 2363 end, 4))) { 2364 goto bce_nvram_write_exit; 2365 } 2366 } 2367 } 2368 2369 if (align_start || align_end) { 2370 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 2371 if (buf == 0) { 2372 rc = ENOMEM; 2373 goto bce_nvram_write_exit; 2374 } 2375 2376 if (align_start) { 2377 memcpy(buf, start, 4); 2378 } 2379 2380 if (align_end) { 2381 memcpy(buf + len32 - 4, end, 4); 2382 } 2383 memcpy(buf + align_start, data_buf, buf_size); 2384 } 2385 2386 written = 0; 2387 while ((written < len32) && (rc == 0)) { 2388 u32 page_start, page_end, data_start, data_end; 2389 u32 addr, cmd_flags; 2390 int i; 2391 u8 flash_buffer[264]; 2392 2393 /* Find the page_start addr */ 2394 page_start = offset32 + written; 2395 page_start -= (page_start % sc->bce_flash_info->page_size); 2396 /* Find the page_end addr */ 2397 page_end = page_start + sc->bce_flash_info->page_size; 2398 /* Find the data_start addr */ 2399 data_start = (written == 0) ? offset32 : page_start; 2400 /* Find the data_end addr */ 2401 data_end = (page_end > offset32 + len32) ? 2402 (offset32 + len32) : page_end; 2403 2404 /* Request access to the flash interface. */ 2405 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2406 goto bce_nvram_write_exit; 2407 2408 /* Enable access to flash interface */ 2409 bce_enable_nvram_access(sc); 2410 2411 cmd_flags = BCE_NVM_COMMAND_FIRST; 2412 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2413 int j; 2414 2415 /* Read the whole page into the buffer 2416 * (non-buffer flash only) */ 2417 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 2418 if (j == (sc->bce_flash_info->page_size - 4)) { 2419 cmd_flags |= BCE_NVM_COMMAND_LAST; 2420 } 2421 rc = bce_nvram_read_dword(sc, 2422 page_start + j, 2423 &flash_buffer[j], 2424 cmd_flags); 2425 2426 if (rc) 2427 goto bce_nvram_write_locked_exit; 2428 2429 cmd_flags = 0; 2430 } 2431 } 2432 2433 /* Enable writes to flash interface (unlock write-protect) */ 2434 if ((rc = bce_enable_nvram_write(sc)) != 0) 2435 goto bce_nvram_write_locked_exit; 2436 2437 /* Erase the page */ 2438 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 2439 goto bce_nvram_write_locked_exit; 2440 2441 /* Re-enable the write again for the actual write */ 2442 bce_enable_nvram_write(sc); 2443 2444 /* Loop to write back the buffer data from page_start to 2445 * data_start */ 2446 i = 0; 2447 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2448 for (addr = page_start; addr < data_start; 2449 addr += 4, i += 4) { 2450 2451 rc = bce_nvram_write_dword(sc, addr, 2452 &flash_buffer[i], cmd_flags); 2453 2454 if (rc != 0) 2455 goto bce_nvram_write_locked_exit; 2456 2457 cmd_flags = 0; 2458 } 2459 } 2460 2461 /* Loop to write the new data from data_start to data_end */ 2462 for (addr = data_start; addr < data_end; addr += 4, i++) { 2463 if ((addr == page_end - 4) || 2464 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && 2465 (addr == data_end - 4))) { 2466 2467 cmd_flags |= BCE_NVM_COMMAND_LAST; 2468 } 2469 rc = bce_nvram_write_dword(sc, addr, buf, 2470 cmd_flags); 2471 2472 if (rc != 0) 2473 goto bce_nvram_write_locked_exit; 2474 2475 cmd_flags = 0; 2476 buf += 4; 2477 } 2478 2479 /* Loop to write back the buffer data from data_end 2480 * to page_end */ 2481 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2482 for (addr = data_end; addr < page_end; 2483 addr += 4, i += 4) { 2484 2485 if (addr == page_end-4) { 2486 cmd_flags = BCE_NVM_COMMAND_LAST; 2487 } 2488 rc = bce_nvram_write_dword(sc, addr, 2489 &flash_buffer[i], cmd_flags); 2490 2491 if (rc != 0) 2492 goto bce_nvram_write_locked_exit; 2493 2494 cmd_flags = 0; 2495 } 2496 } 2497 2498 /* Disable writes to flash interface (lock write-protect) */ 2499 bce_disable_nvram_write(sc); 2500 2501 /* Disable access to flash interface */ 2502 bce_disable_nvram_access(sc); 2503 bce_release_nvram_lock(sc); 2504 2505 /* Increment written */ 2506 written += data_end - data_start; 2507 } 2508 2509 goto bce_nvram_write_exit; 2510 2511 bce_nvram_write_locked_exit: 2512 bce_disable_nvram_write(sc); 2513 bce_disable_nvram_access(sc); 2514 bce_release_nvram_lock(sc); 2515 2516 bce_nvram_write_exit: 2517 if (align_start || align_end) 2518 free(buf, M_DEVBUF); 2519 2520 DBEXIT(BCE_VERBOSE_NVRAM); 2521 return (rc); 2522 } 2523 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2524 2525 2526 /****************************************************************************/ 2527 /* Verifies that NVRAM is accessible and contains valid data. */ 2528 /* */ 2529 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2530 /* correct. */ 2531 /* */ 2532 /* Returns: */ 2533 /* 0 on success, positive value on failure. */ 2534 /****************************************************************************/ 2535 static int 2536 bce_nvram_test(struct bce_softc *sc) 2537 { 2538 u32 buf[BCE_NVRAM_SIZE / 4]; 2539 u8 *data = (u8 *) buf; 2540 int rc = 0; 2541 u32 magic, csum; 2542 2543 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2544 2545 /* 2546 * Check that the device NVRAM is valid by reading 2547 * the magic value at offset 0. 2548 */ 2549 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { 2550 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", __FILE__, __LINE__); 2551 goto bce_nvram_test_exit; 2552 } 2553 2554 /* 2555 * Verify that offset 0 of the NVRAM contains 2556 * a valid magic number. 2557 */ 2558 magic = bce_be32toh(buf[0]); 2559 if (magic != BCE_NVRAM_MAGIC) { 2560 rc = ENODEV; 2561 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, " 2562 "Found: 0x%08X\n", 2563 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 2564 goto bce_nvram_test_exit; 2565 } 2566 2567 /* 2568 * Verify that the device NVRAM includes valid 2569 * configuration data. 2570 */ 2571 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { 2572 BCE_PRINTF("%s(%d): Unable to read Manufacturing Information from " 2573 "NVRAM!\n", __FILE__, __LINE__); 2574 goto bce_nvram_test_exit; 2575 } 2576 2577 csum = ether_crc32_le(data, 0x100); 2578 if (csum != BCE_CRC32_RESIDUAL) { 2579 rc = ENODEV; 2580 BCE_PRINTF("%s(%d): Invalid Manufacturing Information NVRAM CRC! " 2581 "Expected: 0x%08X, Found: 0x%08X\n", 2582 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2583 goto bce_nvram_test_exit; 2584 } 2585 2586 csum = ether_crc32_le(data + 0x100, 0x100); 2587 if (csum != BCE_CRC32_RESIDUAL) { 2588 rc = ENODEV; 2589 BCE_PRINTF("%s(%d): Invalid Feature Configuration Information " 2590 "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", 2591 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2592 } 2593 2594 bce_nvram_test_exit: 2595 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2596 return rc; 2597 } 2598 2599 2600 /****************************************************************************/ 2601 /* Identifies the current media type of the controller and sets the PHY */ 2602 /* address. */ 2603 /* */ 2604 /* Returns: */ 2605 /* Nothing. */ 2606 /****************************************************************************/ 2607 static void 2608 bce_get_media(struct bce_softc *sc) 2609 { 2610 u32 val; 2611 2612 DBENTER(BCE_VERBOSE); 2613 2614 /* Assume PHY address for copper controllers. */ 2615 sc->bce_phy_addr = 1; 2616 2617 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 2618 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); 2619 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; 2620 u32 strap; 2621 2622 /* 2623 * The BCM5709S is software configurable 2624 * for Copper or SerDes operation. 2625 */ 2626 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 2627 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for copper.\n"); 2628 goto bce_get_media_exit; 2629 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 2630 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for dual media.\n"); 2631 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2632 goto bce_get_media_exit; 2633 } 2634 2635 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 2636 strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 2637 else 2638 strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 2639 2640 if (pci_get_function(sc->bce_dev) == 0) { 2641 switch (strap) { 2642 case 0x4: 2643 case 0x5: 2644 case 0x6: 2645 DBPRINT(sc, BCE_INFO_LOAD, 2646 "BCM5709 s/w configured for SerDes.\n"); 2647 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2648 default: 2649 DBPRINT(sc, BCE_INFO_LOAD, 2650 "BCM5709 s/w configured for Copper.\n"); 2651 } 2652 } else { 2653 switch (strap) { 2654 case 0x1: 2655 case 0x2: 2656 case 0x4: 2657 DBPRINT(sc, BCE_INFO_LOAD, 2658 "BCM5709 s/w configured for SerDes.\n"); 2659 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2660 default: 2661 DBPRINT(sc, BCE_INFO_LOAD, 2662 "BCM5709 s/w configured for Copper.\n"); 2663 } 2664 } 2665 2666 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) 2667 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2668 2669 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { 2670 sc->bce_flags |= BCE_NO_WOL_FLAG; 2671 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 2672 sc->bce_phy_addr = 2; 2673 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 2674 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 2675 sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG; 2676 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb capable adapter\n"); 2677 } 2678 } 2679 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || 2680 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) 2681 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; 2682 2683 bce_get_media_exit: 2684 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), 2685 "Using PHY address %d.\n", sc->bce_phy_addr); 2686 2687 DBEXIT(BCE_VERBOSE); 2688 } 2689 2690 2691 /****************************************************************************/ 2692 /* Free any DMA memory owned by the driver. */ 2693 /* */ 2694 /* Scans through each data structre that requires DMA memory and frees */ 2695 /* the memory if allocated. */ 2696 /* */ 2697 /* Returns: */ 2698 /* Nothing. */ 2699 /****************************************************************************/ 2700 static void 2701 bce_dma_free(struct bce_softc *sc) 2702 { 2703 int i; 2704 2705 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 2706 2707 /* Free, unmap, and destroy the status block. */ 2708 if (sc->status_block != NULL) { 2709 bus_dmamem_free( 2710 sc->status_tag, 2711 sc->status_block, 2712 sc->status_map); 2713 sc->status_block = NULL; 2714 } 2715 2716 if (sc->status_map != NULL) { 2717 bus_dmamap_unload( 2718 sc->status_tag, 2719 sc->status_map); 2720 bus_dmamap_destroy(sc->status_tag, 2721 sc->status_map); 2722 sc->status_map = NULL; 2723 } 2724 2725 if (sc->status_tag != NULL) { 2726 bus_dma_tag_destroy(sc->status_tag); 2727 sc->status_tag = NULL; 2728 } 2729 2730 2731 /* Free, unmap, and destroy the statistics block. */ 2732 if (sc->stats_block != NULL) { 2733 bus_dmamem_free( 2734 sc->stats_tag, 2735 sc->stats_block, 2736 sc->stats_map); 2737 sc->stats_block = NULL; 2738 } 2739 2740 if (sc->stats_map != NULL) { 2741 bus_dmamap_unload( 2742 sc->stats_tag, 2743 sc->stats_map); 2744 bus_dmamap_destroy(sc->stats_tag, 2745 sc->stats_map); 2746 sc->stats_map = NULL; 2747 } 2748 2749 if (sc->stats_tag != NULL) { 2750 bus_dma_tag_destroy(sc->stats_tag); 2751 sc->stats_tag = NULL; 2752 } 2753 2754 2755 /* Free, unmap and destroy all context memory pages. */ 2756 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 2757 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 2758 for (i = 0; i < sc->ctx_pages; i++ ) { 2759 if (sc->ctx_block[i] != NULL) { 2760 bus_dmamem_free( 2761 sc->ctx_tag, 2762 sc->ctx_block[i], 2763 sc->ctx_map[i]); 2764 sc->ctx_block[i] = NULL; 2765 } 2766 2767 if (sc->ctx_map[i] != NULL) { 2768 bus_dmamap_unload( 2769 sc->ctx_tag, 2770 sc->ctx_map[i]); 2771 bus_dmamap_destroy( 2772 sc->ctx_tag, 2773 sc->ctx_map[i]); 2774 sc->ctx_map[i] = NULL; 2775 } 2776 } 2777 2778 /* Destroy the context memory tag. */ 2779 if (sc->ctx_tag != NULL) { 2780 bus_dma_tag_destroy(sc->ctx_tag); 2781 sc->ctx_tag = NULL; 2782 } 2783 } 2784 2785 2786 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 2787 for (i = 0; i < TX_PAGES; i++ ) { 2788 if (sc->tx_bd_chain[i] != NULL) { 2789 bus_dmamem_free( 2790 sc->tx_bd_chain_tag, 2791 sc->tx_bd_chain[i], 2792 sc->tx_bd_chain_map[i]); 2793 sc->tx_bd_chain[i] = NULL; 2794 } 2795 2796 if (sc->tx_bd_chain_map[i] != NULL) { 2797 bus_dmamap_unload( 2798 sc->tx_bd_chain_tag, 2799 sc->tx_bd_chain_map[i]); 2800 bus_dmamap_destroy( 2801 sc->tx_bd_chain_tag, 2802 sc->tx_bd_chain_map[i]); 2803 sc->tx_bd_chain_map[i] = NULL; 2804 } 2805 } 2806 2807 /* Destroy the TX buffer descriptor tag. */ 2808 if (sc->tx_bd_chain_tag != NULL) { 2809 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 2810 sc->tx_bd_chain_tag = NULL; 2811 } 2812 2813 2814 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 2815 for (i = 0; i < RX_PAGES; i++ ) { 2816 if (sc->rx_bd_chain[i] != NULL) { 2817 bus_dmamem_free( 2818 sc->rx_bd_chain_tag, 2819 sc->rx_bd_chain[i], 2820 sc->rx_bd_chain_map[i]); 2821 sc->rx_bd_chain[i] = NULL; 2822 } 2823 2824 if (sc->rx_bd_chain_map[i] != NULL) { 2825 bus_dmamap_unload( 2826 sc->rx_bd_chain_tag, 2827 sc->rx_bd_chain_map[i]); 2828 bus_dmamap_destroy( 2829 sc->rx_bd_chain_tag, 2830 sc->rx_bd_chain_map[i]); 2831 sc->rx_bd_chain_map[i] = NULL; 2832 } 2833 } 2834 2835 /* Destroy the RX buffer descriptor tag. */ 2836 if (sc->rx_bd_chain_tag != NULL) { 2837 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 2838 sc->rx_bd_chain_tag = NULL; 2839 } 2840 2841 2842 #ifdef BCE_JUMBO_HDRSPLIT 2843 /* Free, unmap and destroy all page buffer descriptor chain pages. */ 2844 for (i = 0; i < PG_PAGES; i++ ) { 2845 if (sc->pg_bd_chain[i] != NULL) { 2846 bus_dmamem_free( 2847 sc->pg_bd_chain_tag, 2848 sc->pg_bd_chain[i], 2849 sc->pg_bd_chain_map[i]); 2850 sc->pg_bd_chain[i] = NULL; 2851 } 2852 2853 if (sc->pg_bd_chain_map[i] != NULL) { 2854 bus_dmamap_unload( 2855 sc->pg_bd_chain_tag, 2856 sc->pg_bd_chain_map[i]); 2857 bus_dmamap_destroy( 2858 sc->pg_bd_chain_tag, 2859 sc->pg_bd_chain_map[i]); 2860 sc->pg_bd_chain_map[i] = NULL; 2861 } 2862 } 2863 2864 /* Destroy the page buffer descriptor tag. */ 2865 if (sc->pg_bd_chain_tag != NULL) { 2866 bus_dma_tag_destroy(sc->pg_bd_chain_tag); 2867 sc->pg_bd_chain_tag = NULL; 2868 } 2869 #endif 2870 2871 2872 /* Unload and destroy the TX mbuf maps. */ 2873 for (i = 0; i < TOTAL_TX_BD; i++) { 2874 if (sc->tx_mbuf_map[i] != NULL) { 2875 bus_dmamap_unload(sc->tx_mbuf_tag, 2876 sc->tx_mbuf_map[i]); 2877 bus_dmamap_destroy(sc->tx_mbuf_tag, 2878 sc->tx_mbuf_map[i]); 2879 sc->tx_mbuf_map[i] = NULL; 2880 } 2881 } 2882 2883 /* Destroy the TX mbuf tag. */ 2884 if (sc->tx_mbuf_tag != NULL) { 2885 bus_dma_tag_destroy(sc->tx_mbuf_tag); 2886 sc->tx_mbuf_tag = NULL; 2887 } 2888 2889 /* Unload and destroy the RX mbuf maps. */ 2890 for (i = 0; i < TOTAL_RX_BD; i++) { 2891 if (sc->rx_mbuf_map[i] != NULL) { 2892 bus_dmamap_unload(sc->rx_mbuf_tag, 2893 sc->rx_mbuf_map[i]); 2894 bus_dmamap_destroy(sc->rx_mbuf_tag, 2895 sc->rx_mbuf_map[i]); 2896 sc->rx_mbuf_map[i] = NULL; 2897 } 2898 } 2899 2900 /* Destroy the RX mbuf tag. */ 2901 if (sc->rx_mbuf_tag != NULL) { 2902 bus_dma_tag_destroy(sc->rx_mbuf_tag); 2903 sc->rx_mbuf_tag = NULL; 2904 } 2905 2906 #ifdef BCE_JUMBO_HDRSPLIT 2907 /* Unload and destroy the page mbuf maps. */ 2908 for (i = 0; i < TOTAL_PG_BD; i++) { 2909 if (sc->pg_mbuf_map[i] != NULL) { 2910 bus_dmamap_unload(sc->pg_mbuf_tag, 2911 sc->pg_mbuf_map[i]); 2912 bus_dmamap_destroy(sc->pg_mbuf_tag, 2913 sc->pg_mbuf_map[i]); 2914 sc->pg_mbuf_map[i] = NULL; 2915 } 2916 } 2917 2918 /* Destroy the page mbuf tag. */ 2919 if (sc->pg_mbuf_tag != NULL) { 2920 bus_dma_tag_destroy(sc->pg_mbuf_tag); 2921 sc->pg_mbuf_tag = NULL; 2922 } 2923 #endif 2924 2925 /* Destroy the parent tag */ 2926 if (sc->parent_tag != NULL) { 2927 bus_dma_tag_destroy(sc->parent_tag); 2928 sc->parent_tag = NULL; 2929 } 2930 2931 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 2932 } 2933 2934 2935 /****************************************************************************/ 2936 /* Get DMA memory from the OS. */ 2937 /* */ 2938 /* Validates that the OS has provided DMA buffers in response to a */ 2939 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 2940 /* When the callback is used the OS will return 0 for the mapping function */ 2941 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 2942 /* failures back to the caller. */ 2943 /* */ 2944 /* Returns: */ 2945 /* Nothing. */ 2946 /****************************************************************************/ 2947 static void 2948 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2949 { 2950 bus_addr_t *busaddr = arg; 2951 2952 /* Simulate a mapping failure. */ 2953 DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control), 2954 error = ENOMEM); 2955 2956 /* Check for an error and signal the caller that an error occurred. */ 2957 if (error) { 2958 *busaddr = 0; 2959 } else { 2960 *busaddr = segs->ds_addr; 2961 } 2962 2963 return; 2964 } 2965 2966 2967 /****************************************************************************/ 2968 /* Allocate any DMA memory needed by the driver. */ 2969 /* */ 2970 /* Allocates DMA memory needed for the various global structures needed by */ 2971 /* hardware. */ 2972 /* */ 2973 /* Memory alignment requirements: */ 2974 /* +-----------------+----------+----------+----------+----------+ */ 2975 /* | | 5706 | 5708 | 5709 | 5716 | */ 2976 /* +-----------------+----------+----------+----------+----------+ */ 2977 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 2978 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 2979 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ 2980 /* |PG Buffers | none | none | none | none | */ 2981 /* |TX Buffers | none | none | none | none | */ 2982 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ 2983 /* |Context Memory | | | | | */ 2984 /* +-----------------+----------+----------+----------+----------+ */ 2985 /* */ 2986 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ 2987 /* */ 2988 /* Returns: */ 2989 /* 0 for success, positive value for failure. */ 2990 /****************************************************************************/ 2991 static int 2992 bce_dma_alloc(device_t dev) 2993 { 2994 struct bce_softc *sc; 2995 int i, error, rc = 0; 2996 bus_size_t max_size, max_seg_size; 2997 int max_segments; 2998 2999 sc = device_get_softc(dev); 3000 3001 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3002 3003 /* 3004 * Allocate the parent bus DMA tag appropriate for PCI. 3005 */ 3006 if (bus_dma_tag_create(NULL, 3007 1, 3008 BCE_DMA_BOUNDARY, 3009 sc->max_bus_addr, 3010 BUS_SPACE_MAXADDR, 3011 NULL, NULL, 3012 MAXBSIZE, 3013 BUS_SPACE_UNRESTRICTED, 3014 BUS_SPACE_MAXSIZE_32BIT, 3015 0, 3016 NULL, NULL, 3017 &sc->parent_tag)) { 3018 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 3019 __FILE__, __LINE__); 3020 rc = ENOMEM; 3021 goto bce_dma_alloc_exit; 3022 } 3023 3024 /* 3025 * Create a DMA tag for the status block, allocate and clear the 3026 * memory, map the memory into DMA space, and fetch the physical 3027 * address of the block. 3028 */ 3029 if (bus_dma_tag_create(sc->parent_tag, 3030 BCE_DMA_ALIGN, 3031 BCE_DMA_BOUNDARY, 3032 sc->max_bus_addr, 3033 BUS_SPACE_MAXADDR, 3034 NULL, NULL, 3035 BCE_STATUS_BLK_SZ, 3036 1, 3037 BCE_STATUS_BLK_SZ, 3038 0, 3039 NULL, NULL, 3040 &sc->status_tag)) { 3041 BCE_PRINTF("%s(%d): Could not allocate status block DMA tag!\n", 3042 __FILE__, __LINE__); 3043 rc = ENOMEM; 3044 goto bce_dma_alloc_exit; 3045 } 3046 3047 if(bus_dmamem_alloc(sc->status_tag, 3048 (void **)&sc->status_block, 3049 BUS_DMA_NOWAIT, 3050 &sc->status_map)) { 3051 BCE_PRINTF("%s(%d): Could not allocate status block DMA memory!\n", 3052 __FILE__, __LINE__); 3053 rc = ENOMEM; 3054 goto bce_dma_alloc_exit; 3055 } 3056 3057 bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ); 3058 3059 error = bus_dmamap_load(sc->status_tag, 3060 sc->status_map, 3061 sc->status_block, 3062 BCE_STATUS_BLK_SZ, 3063 bce_dma_map_addr, 3064 &sc->status_block_paddr, 3065 BUS_DMA_NOWAIT); 3066 3067 if (error) { 3068 BCE_PRINTF("%s(%d): Could not map status block DMA memory!\n", 3069 __FILE__, __LINE__); 3070 rc = ENOMEM; 3071 goto bce_dma_alloc_exit; 3072 } 3073 3074 DBPRINT(sc, BCE_INFO, "%s(): status_block_paddr = 0x%jX\n", 3075 __FUNCTION__, (uintmax_t) sc->status_block_paddr); 3076 3077 /* 3078 * Create a DMA tag for the statistics block, allocate and clear the 3079 * memory, map the memory into DMA space, and fetch the physical 3080 * address of the block. 3081 */ 3082 if (bus_dma_tag_create(sc->parent_tag, 3083 BCE_DMA_ALIGN, 3084 BCE_DMA_BOUNDARY, 3085 sc->max_bus_addr, 3086 BUS_SPACE_MAXADDR, 3087 NULL, NULL, 3088 BCE_STATS_BLK_SZ, 3089 1, 3090 BCE_STATS_BLK_SZ, 3091 0, 3092 NULL, NULL, 3093 &sc->stats_tag)) { 3094 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA tag!\n", 3095 __FILE__, __LINE__); 3096 rc = ENOMEM; 3097 goto bce_dma_alloc_exit; 3098 } 3099 3100 if (bus_dmamem_alloc(sc->stats_tag, 3101 (void **)&sc->stats_block, 3102 BUS_DMA_NOWAIT, 3103 &sc->stats_map)) { 3104 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA memory!\n", 3105 __FILE__, __LINE__); 3106 rc = ENOMEM; 3107 goto bce_dma_alloc_exit; 3108 } 3109 3110 bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ); 3111 3112 error = bus_dmamap_load(sc->stats_tag, 3113 sc->stats_map, 3114 sc->stats_block, 3115 BCE_STATS_BLK_SZ, 3116 bce_dma_map_addr, 3117 &sc->stats_block_paddr, 3118 BUS_DMA_NOWAIT); 3119 3120 if(error) { 3121 BCE_PRINTF("%s(%d): Could not map statistics block DMA memory!\n", 3122 __FILE__, __LINE__); 3123 rc = ENOMEM; 3124 goto bce_dma_alloc_exit; 3125 } 3126 3127 DBPRINT(sc, BCE_INFO, "%s(): stats_block_paddr = 0x%jX\n", 3128 __FUNCTION__, (uintmax_t) sc->stats_block_paddr); 3129 3130 /* BCM5709 uses host memory as cache for context memory. */ 3131 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3132 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3133 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 3134 if (sc->ctx_pages == 0) 3135 sc->ctx_pages = 1; 3136 3137 DBRUNIF((sc->ctx_pages > 512), 3138 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 3139 __FILE__, __LINE__, sc->ctx_pages)); 3140 3141 /* 3142 * Create a DMA tag for the context pages, 3143 * allocate and clear the memory, map the 3144 * memory into DMA space, and fetch the 3145 * physical address of the block. 3146 */ 3147 if(bus_dma_tag_create(sc->parent_tag, 3148 BCM_PAGE_SIZE, 3149 BCE_DMA_BOUNDARY, 3150 sc->max_bus_addr, 3151 BUS_SPACE_MAXADDR, 3152 NULL, NULL, 3153 BCM_PAGE_SIZE, 3154 1, 3155 BCM_PAGE_SIZE, 3156 0, 3157 NULL, NULL, 3158 &sc->ctx_tag)) { 3159 BCE_PRINTF("%s(%d): Could not allocate CTX DMA tag!\n", 3160 __FILE__, __LINE__); 3161 rc = ENOMEM; 3162 goto bce_dma_alloc_exit; 3163 } 3164 3165 for (i = 0; i < sc->ctx_pages; i++) { 3166 3167 if(bus_dmamem_alloc(sc->ctx_tag, 3168 (void **)&sc->ctx_block[i], 3169 BUS_DMA_NOWAIT, 3170 &sc->ctx_map[i])) { 3171 BCE_PRINTF("%s(%d): Could not allocate CTX " 3172 "DMA memory!\n", __FILE__, __LINE__); 3173 rc = ENOMEM; 3174 goto bce_dma_alloc_exit; 3175 } 3176 3177 bzero((char *)sc->ctx_block[i], BCM_PAGE_SIZE); 3178 3179 error = bus_dmamap_load(sc->ctx_tag, 3180 sc->ctx_map[i], 3181 sc->ctx_block[i], 3182 BCM_PAGE_SIZE, 3183 bce_dma_map_addr, 3184 &sc->ctx_paddr[i], 3185 BUS_DMA_NOWAIT); 3186 3187 if (error) { 3188 BCE_PRINTF("%s(%d): Could not map CTX DMA memory!\n", 3189 __FILE__, __LINE__); 3190 rc = ENOMEM; 3191 goto bce_dma_alloc_exit; 3192 } 3193 3194 DBPRINT(sc, BCE_INFO, "%s(): ctx_paddr[%d] = 0x%jX\n", 3195 __FUNCTION__, i, (uintmax_t) sc->ctx_paddr[i]); 3196 } 3197 } 3198 3199 /* 3200 * Create a DMA tag for the TX buffer descriptor chain, 3201 * allocate and clear the memory, and fetch the 3202 * physical address of the block. 3203 */ 3204 if(bus_dma_tag_create(sc->parent_tag, 3205 BCM_PAGE_SIZE, 3206 BCE_DMA_BOUNDARY, 3207 sc->max_bus_addr, 3208 BUS_SPACE_MAXADDR, 3209 NULL, NULL, 3210 BCE_TX_CHAIN_PAGE_SZ, 3211 1, 3212 BCE_TX_CHAIN_PAGE_SZ, 3213 0, 3214 NULL, NULL, 3215 &sc->tx_bd_chain_tag)) { 3216 BCE_PRINTF("%s(%d): Could not allocate TX descriptor chain DMA tag!\n", 3217 __FILE__, __LINE__); 3218 rc = ENOMEM; 3219 goto bce_dma_alloc_exit; 3220 } 3221 3222 for (i = 0; i < TX_PAGES; i++) { 3223 3224 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 3225 (void **)&sc->tx_bd_chain[i], 3226 BUS_DMA_NOWAIT, 3227 &sc->tx_bd_chain_map[i])) { 3228 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3229 "chain DMA memory!\n", __FILE__, __LINE__); 3230 rc = ENOMEM; 3231 goto bce_dma_alloc_exit; 3232 } 3233 3234 error = bus_dmamap_load(sc->tx_bd_chain_tag, 3235 sc->tx_bd_chain_map[i], 3236 sc->tx_bd_chain[i], 3237 BCE_TX_CHAIN_PAGE_SZ, 3238 bce_dma_map_addr, 3239 &sc->tx_bd_chain_paddr[i], 3240 BUS_DMA_NOWAIT); 3241 3242 if (error) { 3243 BCE_PRINTF("%s(%d): Could not map TX descriptor chain DMA memory!\n", 3244 __FILE__, __LINE__); 3245 rc = ENOMEM; 3246 goto bce_dma_alloc_exit; 3247 } 3248 3249 DBPRINT(sc, BCE_INFO, "%s(): tx_bd_chain_paddr[%d] = 0x%jX\n", 3250 __FUNCTION__, i, (uintmax_t) sc->tx_bd_chain_paddr[i]); 3251 } 3252 3253 /* Check the required size before mapping to conserve resources. */ 3254 if (bce_tso_enable) { 3255 max_size = BCE_TSO_MAX_SIZE; 3256 max_segments = BCE_MAX_SEGMENTS; 3257 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 3258 } else { 3259 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 3260 max_segments = BCE_MAX_SEGMENTS; 3261 max_seg_size = MCLBYTES; 3262 } 3263 3264 /* Create a DMA tag for TX mbufs. */ 3265 if (bus_dma_tag_create(sc->parent_tag, 3266 1, 3267 BCE_DMA_BOUNDARY, 3268 sc->max_bus_addr, 3269 BUS_SPACE_MAXADDR, 3270 NULL, NULL, 3271 max_size, 3272 max_segments, 3273 max_seg_size, 3274 0, 3275 NULL, NULL, 3276 &sc->tx_mbuf_tag)) { 3277 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 3278 __FILE__, __LINE__); 3279 rc = ENOMEM; 3280 goto bce_dma_alloc_exit; 3281 } 3282 3283 /* Create DMA maps for the TX mbufs clusters. */ 3284 for (i = 0; i < TOTAL_TX_BD; i++) { 3285 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 3286 &sc->tx_mbuf_map[i])) { 3287 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA map!\n", 3288 __FILE__, __LINE__); 3289 rc = ENOMEM; 3290 goto bce_dma_alloc_exit; 3291 } 3292 } 3293 3294 /* 3295 * Create a DMA tag for the RX buffer descriptor chain, 3296 * allocate and clear the memory, and fetch the physical 3297 * address of the blocks. 3298 */ 3299 if (bus_dma_tag_create(sc->parent_tag, 3300 BCM_PAGE_SIZE, 3301 BCE_DMA_BOUNDARY, 3302 BUS_SPACE_MAXADDR, 3303 sc->max_bus_addr, 3304 NULL, NULL, 3305 BCE_RX_CHAIN_PAGE_SZ, 3306 1, 3307 BCE_RX_CHAIN_PAGE_SZ, 3308 0, 3309 NULL, NULL, 3310 &sc->rx_bd_chain_tag)) { 3311 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain DMA tag!\n", 3312 __FILE__, __LINE__); 3313 rc = ENOMEM; 3314 goto bce_dma_alloc_exit; 3315 } 3316 3317 for (i = 0; i < RX_PAGES; i++) { 3318 3319 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 3320 (void **)&sc->rx_bd_chain[i], 3321 BUS_DMA_NOWAIT, 3322 &sc->rx_bd_chain_map[i])) { 3323 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 3324 "DMA memory!\n", __FILE__, __LINE__); 3325 rc = ENOMEM; 3326 goto bce_dma_alloc_exit; 3327 } 3328 3329 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 3330 3331 error = bus_dmamap_load(sc->rx_bd_chain_tag, 3332 sc->rx_bd_chain_map[i], 3333 sc->rx_bd_chain[i], 3334 BCE_RX_CHAIN_PAGE_SZ, 3335 bce_dma_map_addr, 3336 &sc->rx_bd_chain_paddr[i], 3337 BUS_DMA_NOWAIT); 3338 3339 if (error) { 3340 BCE_PRINTF("%s(%d): Could not map RX descriptor chain DMA memory!\n", 3341 __FILE__, __LINE__); 3342 rc = ENOMEM; 3343 goto bce_dma_alloc_exit; 3344 } 3345 3346 DBPRINT(sc, BCE_INFO, "%s(): rx_bd_chain_paddr[%d] = 0x%jX\n", 3347 __FUNCTION__, i, (uintmax_t) sc->rx_bd_chain_paddr[i]); 3348 } 3349 3350 /* 3351 * Create a DMA tag for RX mbufs. 3352 */ 3353 #ifdef BCE_JUMBO_HDRSPLIT 3354 max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? 3355 MCLBYTES : sc->rx_bd_mbuf_alloc_size); 3356 #else 3357 max_size = max_seg_size = MJUM9BYTES; 3358 #endif 3359 max_segments = 1; 3360 3361 DBPRINT(sc, BCE_INFO, "%s(): Creating rx_mbuf_tag (max size = 0x%jX " 3362 "max segments = %d, max segment size = 0x%jX)\n", __FUNCTION__, 3363 (uintmax_t) max_size, max_segments, (uintmax_t) max_seg_size); 3364 3365 if (bus_dma_tag_create(sc->parent_tag, 3366 1, 3367 BCE_DMA_BOUNDARY, 3368 sc->max_bus_addr, 3369 BUS_SPACE_MAXADDR, 3370 NULL, NULL, 3371 max_size, 3372 max_segments, 3373 max_seg_size, 3374 0, 3375 NULL, NULL, 3376 &sc->rx_mbuf_tag)) { 3377 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 3378 __FILE__, __LINE__); 3379 rc = ENOMEM; 3380 goto bce_dma_alloc_exit; 3381 } 3382 3383 /* Create DMA maps for the RX mbuf clusters. */ 3384 for (i = 0; i < TOTAL_RX_BD; i++) { 3385 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 3386 &sc->rx_mbuf_map[i])) { 3387 BCE_PRINTF("%s(%d): Unable to create RX mbuf DMA map!\n", 3388 __FILE__, __LINE__); 3389 rc = ENOMEM; 3390 goto bce_dma_alloc_exit; 3391 } 3392 } 3393 3394 #ifdef BCE_JUMBO_HDRSPLIT 3395 /* 3396 * Create a DMA tag for the page buffer descriptor chain, 3397 * allocate and clear the memory, and fetch the physical 3398 * address of the blocks. 3399 */ 3400 if (bus_dma_tag_create(sc->parent_tag, 3401 BCM_PAGE_SIZE, 3402 BCE_DMA_BOUNDARY, 3403 BUS_SPACE_MAXADDR, 3404 sc->max_bus_addr, 3405 NULL, NULL, 3406 BCE_PG_CHAIN_PAGE_SZ, 3407 1, 3408 BCE_PG_CHAIN_PAGE_SZ, 3409 0, 3410 NULL, NULL, 3411 &sc->pg_bd_chain_tag)) { 3412 BCE_PRINTF("%s(%d): Could not allocate page descriptor chain DMA tag!\n", 3413 __FILE__, __LINE__); 3414 rc = ENOMEM; 3415 goto bce_dma_alloc_exit; 3416 } 3417 3418 for (i = 0; i < PG_PAGES; i++) { 3419 3420 if (bus_dmamem_alloc(sc->pg_bd_chain_tag, 3421 (void **)&sc->pg_bd_chain[i], 3422 BUS_DMA_NOWAIT, 3423 &sc->pg_bd_chain_map[i])) { 3424 BCE_PRINTF("%s(%d): Could not allocate page descriptor chain " 3425 "DMA memory!\n", __FILE__, __LINE__); 3426 rc = ENOMEM; 3427 goto bce_dma_alloc_exit; 3428 } 3429 3430 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 3431 3432 error = bus_dmamap_load(sc->pg_bd_chain_tag, 3433 sc->pg_bd_chain_map[i], 3434 sc->pg_bd_chain[i], 3435 BCE_PG_CHAIN_PAGE_SZ, 3436 bce_dma_map_addr, 3437 &sc->pg_bd_chain_paddr[i], 3438 BUS_DMA_NOWAIT); 3439 3440 if (error) { 3441 BCE_PRINTF("%s(%d): Could not map page descriptor chain DMA memory!\n", 3442 __FILE__, __LINE__); 3443 rc = ENOMEM; 3444 goto bce_dma_alloc_exit; 3445 } 3446 3447 DBPRINT(sc, BCE_INFO, "%s(): pg_bd_chain_paddr[%d] = 0x%jX\n", 3448 __FUNCTION__, i, (uintmax_t) sc->pg_bd_chain_paddr[i]); 3449 } 3450 3451 /* 3452 * Create a DMA tag for page mbufs. 3453 */ 3454 max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ? 3455 MCLBYTES : sc->pg_bd_mbuf_alloc_size); 3456 3457 if (bus_dma_tag_create(sc->parent_tag, 3458 1, 3459 BCE_DMA_BOUNDARY, 3460 sc->max_bus_addr, 3461 BUS_SPACE_MAXADDR, 3462 NULL, NULL, 3463 max_size, 3464 1, 3465 max_seg_size, 3466 0, 3467 NULL, NULL, 3468 &sc->pg_mbuf_tag)) { 3469 BCE_PRINTF("%s(%d): Could not allocate page mbuf DMA tag!\n", 3470 __FILE__, __LINE__); 3471 rc = ENOMEM; 3472 goto bce_dma_alloc_exit; 3473 } 3474 3475 /* Create DMA maps for the page mbuf clusters. */ 3476 for (i = 0; i < TOTAL_PG_BD; i++) { 3477 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, 3478 &sc->pg_mbuf_map[i])) { 3479 BCE_PRINTF("%s(%d): Unable to create page mbuf DMA map!\n", 3480 __FILE__, __LINE__); 3481 rc = ENOMEM; 3482 goto bce_dma_alloc_exit; 3483 } 3484 } 3485 #endif 3486 3487 bce_dma_alloc_exit: 3488 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3489 return(rc); 3490 } 3491 3492 3493 /****************************************************************************/ 3494 /* Release all resources used by the driver. */ 3495 /* */ 3496 /* Releases all resources acquired by the driver including interrupts, */ 3497 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 3498 /* */ 3499 /* Returns: */ 3500 /* Nothing. */ 3501 /****************************************************************************/ 3502 static void 3503 bce_release_resources(struct bce_softc *sc) 3504 { 3505 device_t dev; 3506 3507 DBENTER(BCE_VERBOSE_RESET); 3508 3509 dev = sc->bce_dev; 3510 3511 bce_dma_free(sc); 3512 3513 if (sc->bce_intrhand != NULL) { 3514 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 3515 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 3516 } 3517 3518 if (sc->bce_res_irq != NULL) { 3519 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 3520 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid, 3521 sc->bce_res_irq); 3522 } 3523 3524 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { 3525 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); 3526 pci_release_msi(dev); 3527 } 3528 3529 if (sc->bce_res_mem != NULL) { 3530 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 3531 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->bce_res_mem); 3532 } 3533 3534 if (sc->bce_ifp != NULL) { 3535 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 3536 if_free(sc->bce_ifp); 3537 } 3538 3539 if (mtx_initialized(&sc->bce_mtx)) 3540 BCE_LOCK_DESTROY(sc); 3541 3542 DBEXIT(BCE_VERBOSE_RESET); 3543 } 3544 3545 3546 /****************************************************************************/ 3547 /* Firmware synchronization. */ 3548 /* */ 3549 /* Before performing certain events such as a chip reset, synchronize with */ 3550 /* the firmware first. */ 3551 /* */ 3552 /* Returns: */ 3553 /* 0 for success, positive value for failure. */ 3554 /****************************************************************************/ 3555 static int 3556 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 3557 { 3558 int i, rc = 0; 3559 u32 val; 3560 3561 DBENTER(BCE_VERBOSE_RESET); 3562 3563 /* Don't waste any time if we've timed out before. */ 3564 if (sc->bce_fw_timed_out) { 3565 rc = EBUSY; 3566 goto bce_fw_sync_exit; 3567 } 3568 3569 /* Increment the message sequence number. */ 3570 sc->bce_fw_wr_seq++; 3571 msg_data |= sc->bce_fw_wr_seq; 3572 3573 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = 0x%08X\n", 3574 msg_data); 3575 3576 /* Send the message to the bootcode driver mailbox. */ 3577 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3578 3579 /* Wait for the bootcode to acknowledge the message. */ 3580 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 3581 /* Check for a response in the bootcode firmware mailbox. */ 3582 val = bce_shmem_rd(sc, BCE_FW_MB); 3583 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 3584 break; 3585 DELAY(1000); 3586 } 3587 3588 /* If we've timed out, tell the bootcode that we've stopped waiting. */ 3589 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 3590 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 3591 3592 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 3593 "msg_data = 0x%08X\n", 3594 __FILE__, __LINE__, msg_data); 3595 3596 msg_data &= ~BCE_DRV_MSG_CODE; 3597 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 3598 3599 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3600 3601 sc->bce_fw_timed_out = 1; 3602 rc = EBUSY; 3603 } 3604 3605 bce_fw_sync_exit: 3606 DBEXIT(BCE_VERBOSE_RESET); 3607 return (rc); 3608 } 3609 3610 3611 /****************************************************************************/ 3612 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 3613 /* */ 3614 /* Returns: */ 3615 /* Nothing. */ 3616 /****************************************************************************/ 3617 static void 3618 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code, 3619 u32 rv2p_code_len, u32 rv2p_proc) 3620 { 3621 int i; 3622 u32 val; 3623 3624 DBENTER(BCE_VERBOSE_RESET); 3625 3626 /* Set the page size used by RV2P. */ 3627 if (rv2p_proc == RV2P_PROC2) { 3628 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); 3629 } 3630 3631 for (i = 0; i < rv2p_code_len; i += 8) { 3632 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 3633 rv2p_code++; 3634 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 3635 rv2p_code++; 3636 3637 if (rv2p_proc == RV2P_PROC1) { 3638 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 3639 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 3640 } 3641 else { 3642 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 3643 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 3644 } 3645 } 3646 3647 /* Reset the processor, un-stall is done later. */ 3648 if (rv2p_proc == RV2P_PROC1) { 3649 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 3650 } 3651 else { 3652 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 3653 } 3654 3655 DBEXIT(BCE_VERBOSE_RESET); 3656 } 3657 3658 3659 /****************************************************************************/ 3660 /* Load RISC processor firmware. */ 3661 /* */ 3662 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 3663 /* associated with a particular processor. */ 3664 /* */ 3665 /* Returns: */ 3666 /* Nothing. */ 3667 /****************************************************************************/ 3668 static void 3669 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 3670 struct fw_info *fw) 3671 { 3672 u32 offset; 3673 3674 DBENTER(BCE_VERBOSE_RESET); 3675 3676 bce_halt_cpu(sc, cpu_reg); 3677 3678 /* Load the Text area. */ 3679 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 3680 if (fw->text) { 3681 int j; 3682 3683 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 3684 REG_WR_IND(sc, offset, fw->text[j]); 3685 } 3686 } 3687 3688 /* Load the Data area. */ 3689 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 3690 if (fw->data) { 3691 int j; 3692 3693 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 3694 REG_WR_IND(sc, offset, fw->data[j]); 3695 } 3696 } 3697 3698 /* Load the SBSS area. */ 3699 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 3700 if (fw->sbss) { 3701 int j; 3702 3703 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 3704 REG_WR_IND(sc, offset, fw->sbss[j]); 3705 } 3706 } 3707 3708 /* Load the BSS area. */ 3709 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 3710 if (fw->bss) { 3711 int j; 3712 3713 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 3714 REG_WR_IND(sc, offset, fw->bss[j]); 3715 } 3716 } 3717 3718 /* Load the Read-Only area. */ 3719 offset = cpu_reg->spad_base + 3720 (fw->rodata_addr - cpu_reg->mips_view_base); 3721 if (fw->rodata) { 3722 int j; 3723 3724 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 3725 REG_WR_IND(sc, offset, fw->rodata[j]); 3726 } 3727 } 3728 3729 /* Clear the pre-fetch instruction and set the FW start address. */ 3730 REG_WR_IND(sc, cpu_reg->inst, 0); 3731 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 3732 3733 DBEXIT(BCE_VERBOSE_RESET); 3734 } 3735 3736 3737 /****************************************************************************/ 3738 /* Starts the RISC processor. */ 3739 /* */ 3740 /* Assumes the CPU starting address has already been set. */ 3741 /* */ 3742 /* Returns: */ 3743 /* Nothing. */ 3744 /****************************************************************************/ 3745 static void 3746 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 3747 { 3748 u32 val; 3749 3750 DBENTER(BCE_VERBOSE_RESET); 3751 3752 /* Start the CPU. */ 3753 val = REG_RD_IND(sc, cpu_reg->mode); 3754 val &= ~cpu_reg->mode_value_halt; 3755 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 3756 REG_WR_IND(sc, cpu_reg->mode, val); 3757 3758 DBEXIT(BCE_VERBOSE_RESET); 3759 } 3760 3761 3762 /****************************************************************************/ 3763 /* Halts the RISC processor. */ 3764 /* */ 3765 /* Returns: */ 3766 /* Nothing. */ 3767 /****************************************************************************/ 3768 static void 3769 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 3770 { 3771 u32 val; 3772 3773 DBENTER(BCE_VERBOSE_RESET); 3774 3775 /* Halt the CPU. */ 3776 val = REG_RD_IND(sc, cpu_reg->mode); 3777 val |= cpu_reg->mode_value_halt; 3778 REG_WR_IND(sc, cpu_reg->mode, val); 3779 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 3780 3781 DBEXIT(BCE_VERBOSE_RESET); 3782 } 3783 3784 3785 /****************************************************************************/ 3786 /* Initialize the RX CPU. */ 3787 /* */ 3788 /* Returns: */ 3789 /* Nothing. */ 3790 /****************************************************************************/ 3791 static void 3792 bce_start_rxp_cpu(struct bce_softc *sc) 3793 { 3794 struct cpu_reg cpu_reg; 3795 3796 DBENTER(BCE_VERBOSE_RESET); 3797 3798 cpu_reg.mode = BCE_RXP_CPU_MODE; 3799 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 3800 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 3801 cpu_reg.state = BCE_RXP_CPU_STATE; 3802 cpu_reg.state_value_clear = 0xffffff; 3803 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 3804 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 3805 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 3806 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 3807 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 3808 cpu_reg.spad_base = BCE_RXP_SCRATCH; 3809 cpu_reg.mips_view_base = 0x8000000; 3810 3811 DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n"); 3812 bce_start_cpu(sc, &cpu_reg); 3813 3814 DBEXIT(BCE_VERBOSE_RESET); 3815 } 3816 3817 3818 /****************************************************************************/ 3819 /* Initialize the RX CPU. */ 3820 /* */ 3821 /* Returns: */ 3822 /* Nothing. */ 3823 /****************************************************************************/ 3824 static void 3825 bce_init_rxp_cpu(struct bce_softc *sc) 3826 { 3827 struct cpu_reg cpu_reg; 3828 struct fw_info fw; 3829 3830 DBENTER(BCE_VERBOSE_RESET); 3831 3832 cpu_reg.mode = BCE_RXP_CPU_MODE; 3833 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 3834 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 3835 cpu_reg.state = BCE_RXP_CPU_STATE; 3836 cpu_reg.state_value_clear = 0xffffff; 3837 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 3838 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 3839 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 3840 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 3841 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 3842 cpu_reg.spad_base = BCE_RXP_SCRATCH; 3843 cpu_reg.mips_view_base = 0x8000000; 3844 3845 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3846 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3847 fw.ver_major = bce_RXP_b09FwReleaseMajor; 3848 fw.ver_minor = bce_RXP_b09FwReleaseMinor; 3849 fw.ver_fix = bce_RXP_b09FwReleaseFix; 3850 fw.start_addr = bce_RXP_b09FwStartAddr; 3851 3852 fw.text_addr = bce_RXP_b09FwTextAddr; 3853 fw.text_len = bce_RXP_b09FwTextLen; 3854 fw.text_index = 0; 3855 fw.text = bce_RXP_b09FwText; 3856 3857 fw.data_addr = bce_RXP_b09FwDataAddr; 3858 fw.data_len = bce_RXP_b09FwDataLen; 3859 fw.data_index = 0; 3860 fw.data = bce_RXP_b09FwData; 3861 3862 fw.sbss_addr = bce_RXP_b09FwSbssAddr; 3863 fw.sbss_len = bce_RXP_b09FwSbssLen; 3864 fw.sbss_index = 0; 3865 fw.sbss = bce_RXP_b09FwSbss; 3866 3867 fw.bss_addr = bce_RXP_b09FwBssAddr; 3868 fw.bss_len = bce_RXP_b09FwBssLen; 3869 fw.bss_index = 0; 3870 fw.bss = bce_RXP_b09FwBss; 3871 3872 fw.rodata_addr = bce_RXP_b09FwRodataAddr; 3873 fw.rodata_len = bce_RXP_b09FwRodataLen; 3874 fw.rodata_index = 0; 3875 fw.rodata = bce_RXP_b09FwRodata; 3876 } else { 3877 fw.ver_major = bce_RXP_b06FwReleaseMajor; 3878 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 3879 fw.ver_fix = bce_RXP_b06FwReleaseFix; 3880 fw.start_addr = bce_RXP_b06FwStartAddr; 3881 3882 fw.text_addr = bce_RXP_b06FwTextAddr; 3883 fw.text_len = bce_RXP_b06FwTextLen; 3884 fw.text_index = 0; 3885 fw.text = bce_RXP_b06FwText; 3886 3887 fw.data_addr = bce_RXP_b06FwDataAddr; 3888 fw.data_len = bce_RXP_b06FwDataLen; 3889 fw.data_index = 0; 3890 fw.data = bce_RXP_b06FwData; 3891 3892 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 3893 fw.sbss_len = bce_RXP_b06FwSbssLen; 3894 fw.sbss_index = 0; 3895 fw.sbss = bce_RXP_b06FwSbss; 3896 3897 fw.bss_addr = bce_RXP_b06FwBssAddr; 3898 fw.bss_len = bce_RXP_b06FwBssLen; 3899 fw.bss_index = 0; 3900 fw.bss = bce_RXP_b06FwBss; 3901 3902 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 3903 fw.rodata_len = bce_RXP_b06FwRodataLen; 3904 fw.rodata_index = 0; 3905 fw.rodata = bce_RXP_b06FwRodata; 3906 } 3907 3908 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 3909 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3910 3911 /* Delay RXP start until initialization is complete. */ 3912 3913 DBEXIT(BCE_VERBOSE_RESET); 3914 } 3915 3916 3917 /****************************************************************************/ 3918 /* Initialize the TX CPU. */ 3919 /* */ 3920 /* Returns: */ 3921 /* Nothing. */ 3922 /****************************************************************************/ 3923 static void 3924 bce_init_txp_cpu(struct bce_softc *sc) 3925 { 3926 struct cpu_reg cpu_reg; 3927 struct fw_info fw; 3928 3929 DBENTER(BCE_VERBOSE_RESET); 3930 3931 cpu_reg.mode = BCE_TXP_CPU_MODE; 3932 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 3933 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 3934 cpu_reg.state = BCE_TXP_CPU_STATE; 3935 cpu_reg.state_value_clear = 0xffffff; 3936 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 3937 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 3938 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 3939 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 3940 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 3941 cpu_reg.spad_base = BCE_TXP_SCRATCH; 3942 cpu_reg.mips_view_base = 0x8000000; 3943 3944 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3945 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3946 fw.ver_major = bce_TXP_b09FwReleaseMajor; 3947 fw.ver_minor = bce_TXP_b09FwReleaseMinor; 3948 fw.ver_fix = bce_TXP_b09FwReleaseFix; 3949 fw.start_addr = bce_TXP_b09FwStartAddr; 3950 3951 fw.text_addr = bce_TXP_b09FwTextAddr; 3952 fw.text_len = bce_TXP_b09FwTextLen; 3953 fw.text_index = 0; 3954 fw.text = bce_TXP_b09FwText; 3955 3956 fw.data_addr = bce_TXP_b09FwDataAddr; 3957 fw.data_len = bce_TXP_b09FwDataLen; 3958 fw.data_index = 0; 3959 fw.data = bce_TXP_b09FwData; 3960 3961 fw.sbss_addr = bce_TXP_b09FwSbssAddr; 3962 fw.sbss_len = bce_TXP_b09FwSbssLen; 3963 fw.sbss_index = 0; 3964 fw.sbss = bce_TXP_b09FwSbss; 3965 3966 fw.bss_addr = bce_TXP_b09FwBssAddr; 3967 fw.bss_len = bce_TXP_b09FwBssLen; 3968 fw.bss_index = 0; 3969 fw.bss = bce_TXP_b09FwBss; 3970 3971 fw.rodata_addr = bce_TXP_b09FwRodataAddr; 3972 fw.rodata_len = bce_TXP_b09FwRodataLen; 3973 fw.rodata_index = 0; 3974 fw.rodata = bce_TXP_b09FwRodata; 3975 } else { 3976 fw.ver_major = bce_TXP_b06FwReleaseMajor; 3977 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 3978 fw.ver_fix = bce_TXP_b06FwReleaseFix; 3979 fw.start_addr = bce_TXP_b06FwStartAddr; 3980 3981 fw.text_addr = bce_TXP_b06FwTextAddr; 3982 fw.text_len = bce_TXP_b06FwTextLen; 3983 fw.text_index = 0; 3984 fw.text = bce_TXP_b06FwText; 3985 3986 fw.data_addr = bce_TXP_b06FwDataAddr; 3987 fw.data_len = bce_TXP_b06FwDataLen; 3988 fw.data_index = 0; 3989 fw.data = bce_TXP_b06FwData; 3990 3991 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 3992 fw.sbss_len = bce_TXP_b06FwSbssLen; 3993 fw.sbss_index = 0; 3994 fw.sbss = bce_TXP_b06FwSbss; 3995 3996 fw.bss_addr = bce_TXP_b06FwBssAddr; 3997 fw.bss_len = bce_TXP_b06FwBssLen; 3998 fw.bss_index = 0; 3999 fw.bss = bce_TXP_b06FwBss; 4000 4001 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 4002 fw.rodata_len = bce_TXP_b06FwRodataLen; 4003 fw.rodata_index = 0; 4004 fw.rodata = bce_TXP_b06FwRodata; 4005 } 4006 4007 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 4008 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4009 bce_start_cpu(sc, &cpu_reg); 4010 4011 DBEXIT(BCE_VERBOSE_RESET); 4012 } 4013 4014 4015 /****************************************************************************/ 4016 /* Initialize the TPAT CPU. */ 4017 /* */ 4018 /* Returns: */ 4019 /* Nothing. */ 4020 /****************************************************************************/ 4021 static void 4022 bce_init_tpat_cpu(struct bce_softc *sc) 4023 { 4024 struct cpu_reg cpu_reg; 4025 struct fw_info fw; 4026 4027 DBENTER(BCE_VERBOSE_RESET); 4028 4029 cpu_reg.mode = BCE_TPAT_CPU_MODE; 4030 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 4031 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 4032 cpu_reg.state = BCE_TPAT_CPU_STATE; 4033 cpu_reg.state_value_clear = 0xffffff; 4034 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 4035 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 4036 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 4037 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 4038 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 4039 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 4040 cpu_reg.mips_view_base = 0x8000000; 4041 4042 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4043 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4044 fw.ver_major = bce_TPAT_b09FwReleaseMajor; 4045 fw.ver_minor = bce_TPAT_b09FwReleaseMinor; 4046 fw.ver_fix = bce_TPAT_b09FwReleaseFix; 4047 fw.start_addr = bce_TPAT_b09FwStartAddr; 4048 4049 fw.text_addr = bce_TPAT_b09FwTextAddr; 4050 fw.text_len = bce_TPAT_b09FwTextLen; 4051 fw.text_index = 0; 4052 fw.text = bce_TPAT_b09FwText; 4053 4054 fw.data_addr = bce_TPAT_b09FwDataAddr; 4055 fw.data_len = bce_TPAT_b09FwDataLen; 4056 fw.data_index = 0; 4057 fw.data = bce_TPAT_b09FwData; 4058 4059 fw.sbss_addr = bce_TPAT_b09FwSbssAddr; 4060 fw.sbss_len = bce_TPAT_b09FwSbssLen; 4061 fw.sbss_index = 0; 4062 fw.sbss = bce_TPAT_b09FwSbss; 4063 4064 fw.bss_addr = bce_TPAT_b09FwBssAddr; 4065 fw.bss_len = bce_TPAT_b09FwBssLen; 4066 fw.bss_index = 0; 4067 fw.bss = bce_TPAT_b09FwBss; 4068 4069 fw.rodata_addr = bce_TPAT_b09FwRodataAddr; 4070 fw.rodata_len = bce_TPAT_b09FwRodataLen; 4071 fw.rodata_index = 0; 4072 fw.rodata = bce_TPAT_b09FwRodata; 4073 } else { 4074 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 4075 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 4076 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 4077 fw.start_addr = bce_TPAT_b06FwStartAddr; 4078 4079 fw.text_addr = bce_TPAT_b06FwTextAddr; 4080 fw.text_len = bce_TPAT_b06FwTextLen; 4081 fw.text_index = 0; 4082 fw.text = bce_TPAT_b06FwText; 4083 4084 fw.data_addr = bce_TPAT_b06FwDataAddr; 4085 fw.data_len = bce_TPAT_b06FwDataLen; 4086 fw.data_index = 0; 4087 fw.data = bce_TPAT_b06FwData; 4088 4089 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 4090 fw.sbss_len = bce_TPAT_b06FwSbssLen; 4091 fw.sbss_index = 0; 4092 fw.sbss = bce_TPAT_b06FwSbss; 4093 4094 fw.bss_addr = bce_TPAT_b06FwBssAddr; 4095 fw.bss_len = bce_TPAT_b06FwBssLen; 4096 fw.bss_index = 0; 4097 fw.bss = bce_TPAT_b06FwBss; 4098 4099 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 4100 fw.rodata_len = bce_TPAT_b06FwRodataLen; 4101 fw.rodata_index = 0; 4102 fw.rodata = bce_TPAT_b06FwRodata; 4103 } 4104 4105 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 4106 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4107 bce_start_cpu(sc, &cpu_reg); 4108 4109 DBEXIT(BCE_VERBOSE_RESET); 4110 } 4111 4112 4113 /****************************************************************************/ 4114 /* Initialize the CP CPU. */ 4115 /* */ 4116 /* Returns: */ 4117 /* Nothing. */ 4118 /****************************************************************************/ 4119 static void 4120 bce_init_cp_cpu(struct bce_softc *sc) 4121 { 4122 struct cpu_reg cpu_reg; 4123 struct fw_info fw; 4124 4125 DBENTER(BCE_VERBOSE_RESET); 4126 4127 cpu_reg.mode = BCE_CP_CPU_MODE; 4128 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; 4129 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; 4130 cpu_reg.state = BCE_CP_CPU_STATE; 4131 cpu_reg.state_value_clear = 0xffffff; 4132 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; 4133 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; 4134 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; 4135 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; 4136 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; 4137 cpu_reg.spad_base = BCE_CP_SCRATCH; 4138 cpu_reg.mips_view_base = 0x8000000; 4139 4140 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4141 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4142 fw.ver_major = bce_CP_b09FwReleaseMajor; 4143 fw.ver_minor = bce_CP_b09FwReleaseMinor; 4144 fw.ver_fix = bce_CP_b09FwReleaseFix; 4145 fw.start_addr = bce_CP_b09FwStartAddr; 4146 4147 fw.text_addr = bce_CP_b09FwTextAddr; 4148 fw.text_len = bce_CP_b09FwTextLen; 4149 fw.text_index = 0; 4150 fw.text = bce_CP_b09FwText; 4151 4152 fw.data_addr = bce_CP_b09FwDataAddr; 4153 fw.data_len = bce_CP_b09FwDataLen; 4154 fw.data_index = 0; 4155 fw.data = bce_CP_b09FwData; 4156 4157 fw.sbss_addr = bce_CP_b09FwSbssAddr; 4158 fw.sbss_len = bce_CP_b09FwSbssLen; 4159 fw.sbss_index = 0; 4160 fw.sbss = bce_CP_b09FwSbss; 4161 4162 fw.bss_addr = bce_CP_b09FwBssAddr; 4163 fw.bss_len = bce_CP_b09FwBssLen; 4164 fw.bss_index = 0; 4165 fw.bss = bce_CP_b09FwBss; 4166 4167 fw.rodata_addr = bce_CP_b09FwRodataAddr; 4168 fw.rodata_len = bce_CP_b09FwRodataLen; 4169 fw.rodata_index = 0; 4170 fw.rodata = bce_CP_b09FwRodata; 4171 } else { 4172 fw.ver_major = bce_CP_b06FwReleaseMajor; 4173 fw.ver_minor = bce_CP_b06FwReleaseMinor; 4174 fw.ver_fix = bce_CP_b06FwReleaseFix; 4175 fw.start_addr = bce_CP_b06FwStartAddr; 4176 4177 fw.text_addr = bce_CP_b06FwTextAddr; 4178 fw.text_len = bce_CP_b06FwTextLen; 4179 fw.text_index = 0; 4180 fw.text = bce_CP_b06FwText; 4181 4182 fw.data_addr = bce_CP_b06FwDataAddr; 4183 fw.data_len = bce_CP_b06FwDataLen; 4184 fw.data_index = 0; 4185 fw.data = bce_CP_b06FwData; 4186 4187 fw.sbss_addr = bce_CP_b06FwSbssAddr; 4188 fw.sbss_len = bce_CP_b06FwSbssLen; 4189 fw.sbss_index = 0; 4190 fw.sbss = bce_CP_b06FwSbss; 4191 4192 fw.bss_addr = bce_CP_b06FwBssAddr; 4193 fw.bss_len = bce_CP_b06FwBssLen; 4194 fw.bss_index = 0; 4195 fw.bss = bce_CP_b06FwBss; 4196 4197 fw.rodata_addr = bce_CP_b06FwRodataAddr; 4198 fw.rodata_len = bce_CP_b06FwRodataLen; 4199 fw.rodata_index = 0; 4200 fw.rodata = bce_CP_b06FwRodata; 4201 } 4202 4203 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); 4204 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4205 bce_start_cpu(sc, &cpu_reg); 4206 4207 DBEXIT(BCE_VERBOSE_RESET); 4208 } 4209 4210 4211 /****************************************************************************/ 4212 /* Initialize the COM CPU. */ 4213 /* */ 4214 /* Returns: */ 4215 /* Nothing. */ 4216 /****************************************************************************/ 4217 static void 4218 bce_init_com_cpu(struct bce_softc *sc) 4219 { 4220 struct cpu_reg cpu_reg; 4221 struct fw_info fw; 4222 4223 DBENTER(BCE_VERBOSE_RESET); 4224 4225 cpu_reg.mode = BCE_COM_CPU_MODE; 4226 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 4227 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 4228 cpu_reg.state = BCE_COM_CPU_STATE; 4229 cpu_reg.state_value_clear = 0xffffff; 4230 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 4231 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 4232 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 4233 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 4234 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 4235 cpu_reg.spad_base = BCE_COM_SCRATCH; 4236 cpu_reg.mips_view_base = 0x8000000; 4237 4238 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4239 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4240 fw.ver_major = bce_COM_b09FwReleaseMajor; 4241 fw.ver_minor = bce_COM_b09FwReleaseMinor; 4242 fw.ver_fix = bce_COM_b09FwReleaseFix; 4243 fw.start_addr = bce_COM_b09FwStartAddr; 4244 4245 fw.text_addr = bce_COM_b09FwTextAddr; 4246 fw.text_len = bce_COM_b09FwTextLen; 4247 fw.text_index = 0; 4248 fw.text = bce_COM_b09FwText; 4249 4250 fw.data_addr = bce_COM_b09FwDataAddr; 4251 fw.data_len = bce_COM_b09FwDataLen; 4252 fw.data_index = 0; 4253 fw.data = bce_COM_b09FwData; 4254 4255 fw.sbss_addr = bce_COM_b09FwSbssAddr; 4256 fw.sbss_len = bce_COM_b09FwSbssLen; 4257 fw.sbss_index = 0; 4258 fw.sbss = bce_COM_b09FwSbss; 4259 4260 fw.bss_addr = bce_COM_b09FwBssAddr; 4261 fw.bss_len = bce_COM_b09FwBssLen; 4262 fw.bss_index = 0; 4263 fw.bss = bce_COM_b09FwBss; 4264 4265 fw.rodata_addr = bce_COM_b09FwRodataAddr; 4266 fw.rodata_len = bce_COM_b09FwRodataLen; 4267 fw.rodata_index = 0; 4268 fw.rodata = bce_COM_b09FwRodata; 4269 } else { 4270 fw.ver_major = bce_COM_b06FwReleaseMajor; 4271 fw.ver_minor = bce_COM_b06FwReleaseMinor; 4272 fw.ver_fix = bce_COM_b06FwReleaseFix; 4273 fw.start_addr = bce_COM_b06FwStartAddr; 4274 4275 fw.text_addr = bce_COM_b06FwTextAddr; 4276 fw.text_len = bce_COM_b06FwTextLen; 4277 fw.text_index = 0; 4278 fw.text = bce_COM_b06FwText; 4279 4280 fw.data_addr = bce_COM_b06FwDataAddr; 4281 fw.data_len = bce_COM_b06FwDataLen; 4282 fw.data_index = 0; 4283 fw.data = bce_COM_b06FwData; 4284 4285 fw.sbss_addr = bce_COM_b06FwSbssAddr; 4286 fw.sbss_len = bce_COM_b06FwSbssLen; 4287 fw.sbss_index = 0; 4288 fw.sbss = bce_COM_b06FwSbss; 4289 4290 fw.bss_addr = bce_COM_b06FwBssAddr; 4291 fw.bss_len = bce_COM_b06FwBssLen; 4292 fw.bss_index = 0; 4293 fw.bss = bce_COM_b06FwBss; 4294 4295 fw.rodata_addr = bce_COM_b06FwRodataAddr; 4296 fw.rodata_len = bce_COM_b06FwRodataLen; 4297 fw.rodata_index = 0; 4298 fw.rodata = bce_COM_b06FwRodata; 4299 } 4300 4301 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 4302 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4303 bce_start_cpu(sc, &cpu_reg); 4304 4305 DBEXIT(BCE_VERBOSE_RESET); 4306 } 4307 4308 4309 /****************************************************************************/ 4310 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ 4311 /* */ 4312 /* Loads the firmware for each CPU and starts the CPU. */ 4313 /* */ 4314 /* Returns: */ 4315 /* Nothing. */ 4316 /****************************************************************************/ 4317 static void 4318 bce_init_cpus(struct bce_softc *sc) 4319 { 4320 DBENTER(BCE_VERBOSE_RESET); 4321 4322 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4323 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4324 4325 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) { 4326 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1, 4327 sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1); 4328 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2, 4329 sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2); 4330 } else { 4331 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, 4332 sizeof(bce_xi_rv2p_proc1), RV2P_PROC1); 4333 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, 4334 sizeof(bce_xi_rv2p_proc2), RV2P_PROC2); 4335 } 4336 4337 } else { 4338 bce_load_rv2p_fw(sc, bce_rv2p_proc1, 4339 sizeof(bce_rv2p_proc1), RV2P_PROC1); 4340 bce_load_rv2p_fw(sc, bce_rv2p_proc2, 4341 sizeof(bce_rv2p_proc2), RV2P_PROC2); 4342 } 4343 4344 bce_init_rxp_cpu(sc); 4345 bce_init_txp_cpu(sc); 4346 bce_init_tpat_cpu(sc); 4347 bce_init_com_cpu(sc); 4348 bce_init_cp_cpu(sc); 4349 4350 DBEXIT(BCE_VERBOSE_RESET); 4351 } 4352 4353 4354 /****************************************************************************/ 4355 /* Initialize context memory. */ 4356 /* */ 4357 /* Clears the memory associated with each Context ID (CID). */ 4358 /* */ 4359 /* Returns: */ 4360 /* Nothing. */ 4361 /****************************************************************************/ 4362 static void 4363 bce_init_ctx(struct bce_softc *sc) 4364 { 4365 4366 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4367 4368 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4369 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4370 int i, retry_cnt = CTX_INIT_RETRY_COUNT; 4371 u32 val; 4372 4373 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); 4374 4375 /* 4376 * BCM5709 context memory may be cached 4377 * in host memory so prepare the host memory 4378 * for access. 4379 */ 4380 val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT | (1 << 12); 4381 val |= (BCM_PAGE_BITS - 8) << 16; 4382 REG_WR(sc, BCE_CTX_COMMAND, val); 4383 4384 /* Wait for mem init command to complete. */ 4385 for (i = 0; i < retry_cnt; i++) { 4386 val = REG_RD(sc, BCE_CTX_COMMAND); 4387 if (!(val & BCE_CTX_COMMAND_MEM_INIT)) 4388 break; 4389 DELAY(2); 4390 } 4391 4392 /* ToDo: Consider returning an error here. */ 4393 DBRUNIF((val & BCE_CTX_COMMAND_MEM_INIT), 4394 BCE_PRINTF("%s(): Context memory initialization failed!\n", 4395 __FUNCTION__)); 4396 4397 for (i = 0; i < sc->ctx_pages; i++) { 4398 int j; 4399 4400 /* Set the physical address of the context memory cache. */ 4401 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, 4402 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | 4403 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); 4404 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, 4405 BCE_ADDR_HI(sc->ctx_paddr[i])); 4406 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | 4407 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 4408 4409 /* Verify that the context memory write was successful. */ 4410 for (j = 0; j < retry_cnt; j++) { 4411 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); 4412 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 4413 break; 4414 DELAY(5); 4415 } 4416 4417 /* ToDo: Consider returning an error here. */ 4418 DBRUNIF((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ), 4419 BCE_PRINTF("%s(): Failed to initialize context page %d!\n", 4420 __FUNCTION__, i)); 4421 } 4422 } else { 4423 u32 vcid_addr, offset; 4424 4425 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); 4426 4427 /* 4428 * For the 5706/5708, context memory is local to 4429 * the controller, so initialize the controller 4430 * context memory. 4431 */ 4432 4433 vcid_addr = GET_CID_ADDR(96); 4434 while (vcid_addr) { 4435 4436 vcid_addr -= PHY_CTX_SIZE; 4437 4438 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); 4439 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4440 4441 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 4442 CTX_WR(sc, 0x00, offset, 0); 4443 } 4444 4445 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 4446 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4447 } 4448 4449 } 4450 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4451 } 4452 4453 4454 /****************************************************************************/ 4455 /* Fetch the permanent MAC address of the controller. */ 4456 /* */ 4457 /* Returns: */ 4458 /* Nothing. */ 4459 /****************************************************************************/ 4460 static void 4461 bce_get_mac_addr(struct bce_softc *sc) 4462 { 4463 u32 mac_lo = 0, mac_hi = 0; 4464 4465 DBENTER(BCE_VERBOSE_RESET); 4466 /* 4467 * The NetXtreme II bootcode populates various NIC 4468 * power-on and runtime configuration items in a 4469 * shared memory area. The factory configured MAC 4470 * address is available from both NVRAM and the 4471 * shared memory area so we'll read the value from 4472 * shared memory for speed. 4473 */ 4474 4475 mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER); 4476 mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER); 4477 4478 if ((mac_lo == 0) && (mac_hi == 0)) { 4479 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 4480 __FILE__, __LINE__); 4481 } else { 4482 sc->eaddr[0] = (u_char)(mac_hi >> 8); 4483 sc->eaddr[1] = (u_char)(mac_hi >> 0); 4484 sc->eaddr[2] = (u_char)(mac_lo >> 24); 4485 sc->eaddr[3] = (u_char)(mac_lo >> 16); 4486 sc->eaddr[4] = (u_char)(mac_lo >> 8); 4487 sc->eaddr[5] = (u_char)(mac_lo >> 0); 4488 } 4489 4490 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet address = %6D\n", sc->eaddr, ":"); 4491 DBEXIT(BCE_VERBOSE_RESET); 4492 } 4493 4494 4495 /****************************************************************************/ 4496 /* Program the MAC address. */ 4497 /* */ 4498 /* Returns: */ 4499 /* Nothing. */ 4500 /****************************************************************************/ 4501 static void 4502 bce_set_mac_addr(struct bce_softc *sc) 4503 { 4504 u32 val; 4505 u8 *mac_addr = sc->eaddr; 4506 4507 /* ToDo: Add support for setting multiple MAC addresses. */ 4508 4509 DBENTER(BCE_VERBOSE_RESET); 4510 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = %6D\n", sc->eaddr, ":"); 4511 4512 val = (mac_addr[0] << 8) | mac_addr[1]; 4513 4514 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 4515 4516 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4517 (mac_addr[4] << 8) | mac_addr[5]; 4518 4519 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 4520 4521 DBEXIT(BCE_VERBOSE_RESET); 4522 } 4523 4524 4525 /****************************************************************************/ 4526 /* Stop the controller. */ 4527 /* */ 4528 /* Returns: */ 4529 /* Nothing. */ 4530 /****************************************************************************/ 4531 static void 4532 bce_stop(struct bce_softc *sc) 4533 { 4534 struct ifnet *ifp; 4535 struct ifmedia_entry *ifm; 4536 struct mii_data *mii = NULL; 4537 int mtmp, itmp; 4538 4539 DBENTER(BCE_VERBOSE_RESET); 4540 4541 BCE_LOCK_ASSERT(sc); 4542 4543 ifp = sc->bce_ifp; 4544 4545 mii = device_get_softc(sc->bce_miibus); 4546 4547 callout_stop(&sc->bce_tick_callout); 4548 4549 /* Disable the transmit/receive blocks. */ 4550 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); 4551 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4552 DELAY(20); 4553 4554 bce_disable_intr(sc); 4555 4556 /* Free RX buffers. */ 4557 #ifdef BCE_JUMBO_HDRSPLIT 4558 bce_free_pg_chain(sc); 4559 #endif 4560 bce_free_rx_chain(sc); 4561 4562 /* Free TX buffers. */ 4563 bce_free_tx_chain(sc); 4564 4565 /* 4566 * Isolate/power down the PHY, but leave the media selection 4567 * unchanged so that things will be put back to normal when 4568 * we bring the interface back up. 4569 */ 4570 4571 itmp = ifp->if_flags; 4572 ifp->if_flags |= IFF_UP; 4573 4574 /* If we are called from bce_detach(), mii is already NULL. */ 4575 if (mii != NULL) { 4576 ifm = mii->mii_media.ifm_cur; 4577 mtmp = ifm->ifm_media; 4578 ifm->ifm_media = IFM_ETHER | IFM_NONE; 4579 mii_mediachg(mii); 4580 ifm->ifm_media = mtmp; 4581 } 4582 4583 ifp->if_flags = itmp; 4584 sc->watchdog_timer = 0; 4585 4586 sc->bce_link = 0; 4587 4588 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4589 4590 DBEXIT(BCE_VERBOSE_RESET); 4591 } 4592 4593 4594 static int 4595 bce_reset(struct bce_softc *sc, u32 reset_code) 4596 { 4597 u32 val; 4598 int i, rc = 0; 4599 4600 DBENTER(BCE_VERBOSE_RESET); 4601 4602 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 4603 __FUNCTION__, reset_code); 4604 4605 /* Wait for pending PCI transactions to complete. */ 4606 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 4607 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 4608 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 4609 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 4610 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 4611 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4612 DELAY(5); 4613 4614 /* Disable DMA */ 4615 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4616 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4617 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4618 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4619 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4620 } 4621 4622 /* Assume bootcode is running. */ 4623 sc->bce_fw_timed_out = 0; 4624 4625 /* Give the firmware a chance to prepare for the reset. */ 4626 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 4627 if (rc) 4628 goto bce_reset_exit; 4629 4630 /* Set a firmware reminder that this is a soft reset. */ 4631 bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC); 4632 4633 /* Dummy read to force the chip to complete all current transactions. */ 4634 val = REG_RD(sc, BCE_MISC_ID); 4635 4636 /* Chip reset. */ 4637 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4638 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4639 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); 4640 REG_RD(sc, BCE_MISC_COMMAND); 4641 DELAY(5); 4642 4643 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4644 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4645 4646 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); 4647 } else { 4648 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4649 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4650 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4651 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 4652 4653 /* Allow up to 30us for reset to complete. */ 4654 for (i = 0; i < 10; i++) { 4655 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 4656 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4657 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 4658 break; 4659 } 4660 DELAY(10); 4661 } 4662 4663 /* Check that reset completed successfully. */ 4664 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4665 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 4666 BCE_PRINTF("%s(%d): Reset failed!\n", 4667 __FILE__, __LINE__); 4668 rc = EBUSY; 4669 goto bce_reset_exit; 4670 } 4671 } 4672 4673 /* Make sure byte swapping is properly configured. */ 4674 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 4675 if (val != 0x01020304) { 4676 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 4677 __FILE__, __LINE__); 4678 rc = ENODEV; 4679 goto bce_reset_exit; 4680 } 4681 4682 /* Just completed a reset, assume that firmware is running again. */ 4683 sc->bce_fw_timed_out = 0; 4684 4685 /* Wait for the firmware to finish its initialization. */ 4686 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 4687 if (rc) 4688 BCE_PRINTF("%s(%d): Firmware did not complete initialization!\n", 4689 __FILE__, __LINE__); 4690 4691 bce_reset_exit: 4692 DBEXIT(BCE_VERBOSE_RESET); 4693 return (rc); 4694 } 4695 4696 4697 static int 4698 bce_chipinit(struct bce_softc *sc) 4699 { 4700 u32 val; 4701 int rc = 0; 4702 4703 DBENTER(BCE_VERBOSE_RESET); 4704 4705 bce_disable_intr(sc); 4706 4707 /* 4708 * Initialize DMA byte/word swapping, configure the number of DMA 4709 * channels and PCI clock compensation delay. 4710 */ 4711 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 4712 BCE_DMA_CONFIG_DATA_WORD_SWAP | 4713 #if BYTE_ORDER == BIG_ENDIAN 4714 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 4715 #endif 4716 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 4717 DMA_READ_CHANS << 12 | 4718 DMA_WRITE_CHANS << 16; 4719 4720 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 4721 4722 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 4723 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 4724 4725 /* 4726 * This setting resolves a problem observed on certain Intel PCI 4727 * chipsets that cannot handle multiple outstanding DMA operations. 4728 * See errata E9_5706A1_65. 4729 */ 4730 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 4731 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 4732 !(sc->bce_flags & BCE_PCIX_FLAG)) 4733 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 4734 4735 REG_WR(sc, BCE_DMA_CONFIG, val); 4736 4737 /* Enable the RX_V2P and Context state machines before access. */ 4738 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 4739 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 4740 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 4741 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 4742 4743 /* Initialize context mapping and zero out the quick contexts. */ 4744 bce_init_ctx(sc); 4745 4746 /* Initialize the on-boards CPUs */ 4747 bce_init_cpus(sc); 4748 4749 /* Enable management frames (NC-SI) to flow to the MCP. */ 4750 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 4751 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 4752 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 4753 } 4754 4755 /* Prepare NVRAM for access. */ 4756 if (bce_init_nvram(sc)) { 4757 rc = ENODEV; 4758 goto bce_chipinit_exit; 4759 } 4760 4761 /* Set the kernel bypass block size */ 4762 val = REG_RD(sc, BCE_MQ_CONFIG); 4763 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 4764 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 4765 4766 /* Enable bins used on the 5709. */ 4767 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4768 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4769 val |= BCE_MQ_CONFIG_BIN_MQ_MODE; 4770 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) 4771 val |= BCE_MQ_CONFIG_HALT_DIS; 4772 } 4773 4774 REG_WR(sc, BCE_MQ_CONFIG, val); 4775 4776 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 4777 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 4778 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 4779 4780 /* Set the page size and clear the RV2P processor stall bits. */ 4781 val = (BCM_PAGE_BITS - 8) << 24; 4782 REG_WR(sc, BCE_RV2P_CONFIG, val); 4783 4784 /* Configure page size. */ 4785 val = REG_RD(sc, BCE_TBDR_CONFIG); 4786 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 4787 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 4788 REG_WR(sc, BCE_TBDR_CONFIG, val); 4789 4790 /* Set the perfect match control register to default. */ 4791 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); 4792 4793 bce_chipinit_exit: 4794 DBEXIT(BCE_VERBOSE_RESET); 4795 4796 return(rc); 4797 } 4798 4799 4800 /****************************************************************************/ 4801 /* Initialize the controller in preparation to send/receive traffic. */ 4802 /* */ 4803 /* Returns: */ 4804 /* 0 for success, positive value for failure. */ 4805 /****************************************************************************/ 4806 static int 4807 bce_blockinit(struct bce_softc *sc) 4808 { 4809 u32 reg, val; 4810 int rc = 0; 4811 4812 DBENTER(BCE_VERBOSE_RESET); 4813 4814 /* Load the hardware default MAC address. */ 4815 bce_set_mac_addr(sc); 4816 4817 /* Set the Ethernet backoff seed value */ 4818 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 4819 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 4820 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 4821 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 4822 4823 sc->last_status_idx = 0; 4824 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 4825 4826 /* Set up link change interrupt generation. */ 4827 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 4828 4829 /* Program the physical address of the status block. */ 4830 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 4831 BCE_ADDR_LO(sc->status_block_paddr)); 4832 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 4833 BCE_ADDR_HI(sc->status_block_paddr)); 4834 4835 /* Program the physical address of the statistics block. */ 4836 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 4837 BCE_ADDR_LO(sc->stats_block_paddr)); 4838 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 4839 BCE_ADDR_HI(sc->stats_block_paddr)); 4840 4841 /* Program various host coalescing parameters. */ 4842 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 4843 (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); 4844 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 4845 (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); 4846 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 4847 (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip); 4848 REG_WR(sc, BCE_HC_TX_TICKS, 4849 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 4850 REG_WR(sc, BCE_HC_RX_TICKS, 4851 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 4852 REG_WR(sc, BCE_HC_COM_TICKS, 4853 (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks); 4854 REG_WR(sc, BCE_HC_CMD_TICKS, 4855 (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks); 4856 REG_WR(sc, BCE_HC_STATS_TICKS, 4857 (sc->bce_stats_ticks & 0xffff00)); 4858 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 4859 4860 /* Configure the Host Coalescing block. */ 4861 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 4862 BCE_HC_CONFIG_COLLECT_STATS; 4863 4864 #if 0 4865 /* ToDo: Add MSI-X support. */ 4866 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 4867 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + 4868 BCE_HC_SB_CONFIG_1; 4869 4870 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); 4871 4872 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | 4873 BCE_HC_SB_CONFIG_1_ONE_SHOT); 4874 4875 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, 4876 (sc->tx_quick_cons_trip_int << 16) | 4877 sc->tx_quick_cons_trip); 4878 4879 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, 4880 (sc->tx_ticks_int << 16) | sc->tx_ticks); 4881 4882 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 4883 } 4884 4885 /* 4886 * Tell the HC block to automatically set the 4887 * INT_MASK bit after an MSI/MSI-X interrupt 4888 * is generated so the driver doesn't have to. 4889 */ 4890 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) 4891 val |= BCE_HC_CONFIG_ONE_SHOT; 4892 4893 /* Set the MSI-X status blocks to 128 byte boundaries. */ 4894 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 4895 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 4896 #endif 4897 4898 REG_WR(sc, BCE_HC_CONFIG, val); 4899 4900 /* Clear the internal statistics counters. */ 4901 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 4902 4903 /* Verify that bootcode is running. */ 4904 reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE); 4905 4906 DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control), 4907 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 4908 __FILE__, __LINE__); 4909 reg = 0); 4910 4911 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 4912 BCE_DEV_INFO_SIGNATURE_MAGIC) { 4913 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 4914 "Expected: 08%08X\n", __FILE__, __LINE__, 4915 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 4916 BCE_DEV_INFO_SIGNATURE_MAGIC); 4917 rc = ENODEV; 4918 goto bce_blockinit_exit; 4919 } 4920 4921 /* Enable DMA */ 4922 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4923 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4924 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4925 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4926 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4927 } 4928 4929 /* Allow bootcode to apply any additional fixes before enabling MAC. */ 4930 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET); 4931 4932 /* Enable link state change interrupt generation. */ 4933 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 4934 4935 /* Enable the RXP. */ 4936 bce_start_rxp_cpu(sc); 4937 4938 /* Disable management frames (NC-SI) from flowing to the MCP. */ 4939 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 4940 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) & ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 4941 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 4942 } 4943 4944 /* Enable all remaining blocks in the MAC. */ 4945 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4946 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 4947 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT_XI); 4948 else 4949 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 4950 4951 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 4952 DELAY(20); 4953 4954 /* Save the current host coalescing block settings. */ 4955 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); 4956 4957 bce_blockinit_exit: 4958 DBEXIT(BCE_VERBOSE_RESET); 4959 4960 return (rc); 4961 } 4962 4963 4964 /****************************************************************************/ 4965 /* Encapsulate an mbuf into the rx_bd chain. */ 4966 /* */ 4967 /* Returns: */ 4968 /* 0 for success, positive value for failure. */ 4969 /****************************************************************************/ 4970 static int 4971 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 4972 u16 *chain_prod, u32 *prod_bseq) 4973 { 4974 bus_dmamap_t map; 4975 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 4976 struct mbuf *m_new = NULL; 4977 struct rx_bd *rxbd; 4978 int nsegs, error, rc = 0; 4979 #ifdef BCE_DEBUG 4980 u16 debug_chain_prod = *chain_prod; 4981 #endif 4982 4983 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4984 4985 /* Make sure the inputs are valid. */ 4986 DBRUNIF((*chain_prod > MAX_RX_BD), 4987 BCE_PRINTF("%s(%d): RX producer out of range: 0x%04X > 0x%04X\n", 4988 __FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD)); 4989 4990 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, " 4991 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); 4992 4993 /* Update some debug statistic counters */ 4994 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 4995 sc->rx_low_watermark = sc->free_rx_bd); 4996 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 4997 4998 /* Check whether this is a new mbuf allocation. */ 4999 if (m == NULL) { 5000 5001 /* Simulate an mbuf allocation failure. */ 5002 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5003 sc->mbuf_alloc_failed_count++; 5004 sc->mbuf_alloc_failed_sim_count++; 5005 rc = ENOBUFS; 5006 goto bce_get_rx_buf_exit); 5007 5008 /* This is a new mbuf allocation. */ 5009 #ifdef BCE_JUMBO_HDRSPLIT 5010 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 5011 #else 5012 if (sc->rx_bd_mbuf_alloc_size <= MCLBYTES) 5013 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 5014 else 5015 m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, sc->rx_bd_mbuf_alloc_size); 5016 #endif 5017 5018 if (m_new == NULL) { 5019 sc->mbuf_alloc_failed_count++; 5020 rc = ENOBUFS; 5021 goto bce_get_rx_buf_exit; 5022 } 5023 5024 DBRUN(sc->debug_rx_mbuf_alloc++); 5025 } else { 5026 /* Reuse an existing mbuf. */ 5027 m_new = m; 5028 } 5029 5030 /* Make sure we have a valid packet header. */ 5031 M_ASSERTPKTHDR(m_new); 5032 5033 /* Initialize the mbuf size and pad if necessary for alignment. */ 5034 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; 5035 m_adj(m_new, sc->rx_bd_mbuf_align_pad); 5036 5037 /* ToDo: Consider calling m_fragment() to test error handling. */ 5038 5039 /* Map the mbuf cluster into device memory. */ 5040 map = sc->rx_mbuf_map[*chain_prod]; 5041 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new, 5042 segs, &nsegs, BUS_DMA_NOWAIT); 5043 5044 /* Handle any mapping errors. */ 5045 if (error) { 5046 BCE_PRINTF("%s(%d): Error mapping mbuf into RX chain (%d)!\n", 5047 __FILE__, __LINE__, error); 5048 5049 sc->dma_map_addr_rx_failed_count++; 5050 m_freem(m_new); 5051 5052 DBRUN(sc->debug_rx_mbuf_alloc--); 5053 5054 rc = ENOBUFS; 5055 goto bce_get_rx_buf_exit; 5056 } 5057 5058 /* All mbufs must map to a single segment. */ 5059 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5060 __FUNCTION__, nsegs)); 5061 5062 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ 5063 5064 /* Setup the rx_bd for the segment. */ 5065 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 5066 5067 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5068 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5069 rxbd->rx_bd_len = htole32(segs[0].ds_len); 5070 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5071 *prod_bseq += segs[0].ds_len; 5072 5073 /* Save the mbuf and update our counter. */ 5074 sc->rx_mbuf_ptr[*chain_prod] = m_new; 5075 sc->free_rx_bd -= nsegs; 5076 5077 DBRUNMSG(BCE_INSANE_RECV, bce_dump_rx_mbuf_chain(sc, debug_chain_prod, 5078 nsegs)); 5079 5080 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, " 5081 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); 5082 5083 bce_get_rx_buf_exit: 5084 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5085 5086 return(rc); 5087 } 5088 5089 5090 #ifdef BCE_JUMBO_HDRSPLIT 5091 /****************************************************************************/ 5092 /* Encapsulate an mbuf cluster into the page chain. */ 5093 /* */ 5094 /* Returns: */ 5095 /* 0 for success, positive value for failure. */ 5096 /****************************************************************************/ 5097 static int 5098 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 5099 u16 *prod_idx) 5100 { 5101 bus_dmamap_t map; 5102 bus_addr_t busaddr; 5103 struct mbuf *m_new = NULL; 5104 struct rx_bd *pgbd; 5105 int error, rc = 0; 5106 #ifdef BCE_DEBUG 5107 u16 debug_prod_idx = *prod_idx; 5108 #endif 5109 5110 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5111 5112 /* Make sure the inputs are valid. */ 5113 DBRUNIF((*prod_idx > MAX_PG_BD), 5114 BCE_PRINTF("%s(%d): page producer out of range: 0x%04X > 0x%04X\n", 5115 __FILE__, __LINE__, *prod_idx, (u16) MAX_PG_BD)); 5116 5117 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5118 "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 5119 5120 /* Update counters if we've hit a new low or run out of pages. */ 5121 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), 5122 sc->pg_low_watermark = sc->free_pg_bd); 5123 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); 5124 5125 /* Check whether this is a new mbuf allocation. */ 5126 if (m == NULL) { 5127 5128 /* Simulate an mbuf allocation failure. */ 5129 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5130 sc->mbuf_alloc_failed_count++; 5131 sc->mbuf_alloc_failed_sim_count++; 5132 rc = ENOBUFS; 5133 goto bce_get_pg_buf_exit); 5134 5135 /* This is a new mbuf allocation. */ 5136 m_new = m_getcl(M_DONTWAIT, MT_DATA, 0); 5137 if (m_new == NULL) { 5138 sc->mbuf_alloc_failed_count++; 5139 rc = ENOBUFS; 5140 goto bce_get_pg_buf_exit; 5141 } 5142 5143 DBRUN(sc->debug_pg_mbuf_alloc++); 5144 } else { 5145 /* Reuse an existing mbuf. */ 5146 m_new = m; 5147 m_new->m_data = m_new->m_ext.ext_buf; 5148 } 5149 5150 m_new->m_len = sc->pg_bd_mbuf_alloc_size; 5151 5152 /* ToDo: Consider calling m_fragment() to test error handling. */ 5153 5154 /* Map the mbuf cluster into device memory. */ 5155 map = sc->pg_mbuf_map[*prod_idx]; 5156 error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *), 5157 sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr, &busaddr, BUS_DMA_NOWAIT); 5158 5159 /* Handle any mapping errors. */ 5160 if (error) { 5161 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", 5162 __FILE__, __LINE__); 5163 5164 m_freem(m_new); 5165 DBRUN(sc->debug_pg_mbuf_alloc--); 5166 5167 rc = ENOBUFS; 5168 goto bce_get_pg_buf_exit; 5169 } 5170 5171 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ 5172 5173 /* 5174 * The page chain uses the same rx_bd data structure 5175 * as the receive chain but doesn't require a byte sequence (bseq). 5176 */ 5177 pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)]; 5178 5179 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(busaddr)); 5180 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(busaddr)); 5181 pgbd->rx_bd_len = htole32(sc->pg_bd_mbuf_alloc_size); 5182 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5183 5184 /* Save the mbuf and update our counter. */ 5185 sc->pg_mbuf_ptr[*prod_idx] = m_new; 5186 sc->free_pg_bd--; 5187 5188 DBRUNMSG(BCE_INSANE_RECV, bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 5189 1)); 5190 5191 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5192 "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 5193 5194 bce_get_pg_buf_exit: 5195 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5196 5197 return(rc); 5198 } 5199 #endif /* BCE_JUMBO_HDRSPLIT */ 5200 5201 /****************************************************************************/ 5202 /* Initialize the TX context memory. */ 5203 /* */ 5204 /* Returns: */ 5205 /* Nothing */ 5206 /****************************************************************************/ 5207 static void 5208 bce_init_tx_context(struct bce_softc *sc) 5209 { 5210 u32 val; 5211 5212 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5213 5214 /* Initialize the context ID for an L2 TX chain. */ 5215 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5216 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5217 /* Set the CID type to support an L2 connection. */ 5218 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | BCE_L2CTX_TX_TYPE_SIZE_L2_XI; 5219 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); 5220 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); 5221 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val); 5222 5223 /* Point the hardware to the first page in the chain. */ 5224 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5225 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); 5226 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5227 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); 5228 } else { 5229 /* Set the CID type to support an L2 connection. */ 5230 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; 5231 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); 5232 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); 5233 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); 5234 5235 /* Point the hardware to the first page in the chain. */ 5236 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5237 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI, val); 5238 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5239 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO, val); 5240 } 5241 5242 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5243 } 5244 5245 5246 /****************************************************************************/ 5247 /* Allocate memory and initialize the TX data structures. */ 5248 /* */ 5249 /* Returns: */ 5250 /* 0 for success, positive value for failure. */ 5251 /****************************************************************************/ 5252 static int 5253 bce_init_tx_chain(struct bce_softc *sc) 5254 { 5255 struct tx_bd *txbd; 5256 int i, rc = 0; 5257 5258 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5259 5260 /* Set the initial TX producer/consumer indices. */ 5261 sc->tx_prod = 0; 5262 sc->tx_cons = 0; 5263 sc->tx_prod_bseq = 0; 5264 sc->used_tx_bd = 0; 5265 sc->max_tx_bd = USABLE_TX_BD; 5266 DBRUN(sc->tx_hi_watermark = USABLE_TX_BD); 5267 DBRUN(sc->tx_full_count = 0); 5268 5269 /* 5270 * The NetXtreme II supports a linked-list structre called 5271 * a Buffer Descriptor Chain (or BD chain). A BD chain 5272 * consists of a series of 1 or more chain pages, each of which 5273 * consists of a fixed number of BD entries. 5274 * The last BD entry on each page is a pointer to the next page 5275 * in the chain, and the last pointer in the BD chain 5276 * points back to the beginning of the chain. 5277 */ 5278 5279 /* Set the TX next pointer chain entries. */ 5280 for (i = 0; i < TX_PAGES; i++) { 5281 int j; 5282 5283 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 5284 5285 /* Check if we've reached the last page. */ 5286 if (i == (TX_PAGES - 1)) 5287 j = 0; 5288 else 5289 j = i + 1; 5290 5291 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 5292 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 5293 } 5294 5295 bce_init_tx_context(sc); 5296 5297 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD)); 5298 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5299 5300 return(rc); 5301 } 5302 5303 5304 /****************************************************************************/ 5305 /* Free memory and clear the TX data structures. */ 5306 /* */ 5307 /* Returns: */ 5308 /* Nothing. */ 5309 /****************************************************************************/ 5310 static void 5311 bce_free_tx_chain(struct bce_softc *sc) 5312 { 5313 int i; 5314 5315 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5316 5317 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 5318 for (i = 0; i < TOTAL_TX_BD; i++) { 5319 if (sc->tx_mbuf_ptr[i] != NULL) { 5320 if (sc->tx_mbuf_map[i] != NULL) 5321 bus_dmamap_sync(sc->tx_mbuf_tag, sc->tx_mbuf_map[i], 5322 BUS_DMASYNC_POSTWRITE); 5323 m_freem(sc->tx_mbuf_ptr[i]); 5324 sc->tx_mbuf_ptr[i] = NULL; 5325 DBRUN(sc->debug_tx_mbuf_alloc--); 5326 } 5327 } 5328 5329 /* Clear each TX chain page. */ 5330 for (i = 0; i < TX_PAGES; i++) 5331 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 5332 5333 sc->used_tx_bd = 0; 5334 5335 /* Check if we lost any mbufs in the process. */ 5336 DBRUNIF((sc->debug_tx_mbuf_alloc), 5337 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 5338 "from tx chain!\n", 5339 __FILE__, __LINE__, sc->debug_tx_mbuf_alloc)); 5340 5341 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5342 } 5343 5344 5345 /****************************************************************************/ 5346 /* Initialize the RX context memory. */ 5347 /* */ 5348 /* Returns: */ 5349 /* Nothing */ 5350 /****************************************************************************/ 5351 static void 5352 bce_init_rx_context(struct bce_softc *sc) 5353 { 5354 u32 val; 5355 5356 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5357 5358 /* Initialize the type, size, and BD cache levels for the RX context. */ 5359 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 5360 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | 5361 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); 5362 5363 /* 5364 * Set the level for generating pause frames 5365 * when the number of available rx_bd's gets 5366 * too low (the low watermark) and the level 5367 * when pause frames can be stopped (the high 5368 * watermark). 5369 */ 5370 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5371 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5372 u32 lo_water, hi_water; 5373 5374 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; 5375 hi_water = USABLE_RX_BD / 4; 5376 5377 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; 5378 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; 5379 5380 if (hi_water > 0xf) 5381 hi_water = 0xf; 5382 else if (hi_water == 0) 5383 lo_water = 0; 5384 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | 5385 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); 5386 } 5387 5388 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); 5389 5390 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 5391 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5392 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5393 val = REG_RD(sc, BCE_MQ_MAP_L2_5); 5394 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); 5395 } 5396 5397 /* Point the hardware to the first page in the chain. */ 5398 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 5399 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); 5400 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 5401 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); 5402 5403 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5404 } 5405 5406 5407 /****************************************************************************/ 5408 /* Allocate memory and initialize the RX data structures. */ 5409 /* */ 5410 /* Returns: */ 5411 /* 0 for success, positive value for failure. */ 5412 /****************************************************************************/ 5413 static int 5414 bce_init_rx_chain(struct bce_softc *sc) 5415 { 5416 struct rx_bd *rxbd; 5417 int i, rc = 0; 5418 5419 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5420 BCE_VERBOSE_CTX); 5421 5422 /* Initialize the RX producer and consumer indices. */ 5423 sc->rx_prod = 0; 5424 sc->rx_cons = 0; 5425 sc->rx_prod_bseq = 0; 5426 sc->free_rx_bd = USABLE_RX_BD; 5427 sc->max_rx_bd = USABLE_RX_BD; 5428 DBRUN(sc->rx_low_watermark = sc->max_rx_bd); 5429 DBRUN(sc->rx_empty_count = 0); 5430 5431 /* Initialize the RX next pointer chain entries. */ 5432 for (i = 0; i < RX_PAGES; i++) { 5433 int j; 5434 5435 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 5436 5437 /* Check if we've reached the last page. */ 5438 if (i == (RX_PAGES - 1)) 5439 j = 0; 5440 else 5441 j = i + 1; 5442 5443 /* Setup the chain page pointers. */ 5444 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 5445 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 5446 } 5447 5448 /* Fill up the RX chain. */ 5449 bce_fill_rx_chain(sc); 5450 5451 for (i = 0; i < RX_PAGES; i++) { 5452 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], 5453 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5454 } 5455 5456 bce_init_rx_context(sc); 5457 5458 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_chain(sc, 0, TOTAL_RX_BD)); 5459 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5460 BCE_VERBOSE_CTX); 5461 /* ToDo: Are there possible failure modes here? */ 5462 return(rc); 5463 } 5464 5465 5466 /****************************************************************************/ 5467 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 5468 /* occurs. */ 5469 /* */ 5470 /* Returns: */ 5471 /* Nothing */ 5472 /****************************************************************************/ 5473 static void 5474 bce_fill_rx_chain(struct bce_softc *sc) 5475 { 5476 u16 prod, prod_idx; 5477 u32 prod_bseq; 5478 5479 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5480 BCE_VERBOSE_CTX); 5481 5482 /* Get the RX chain producer indices. */ 5483 prod = sc->rx_prod; 5484 prod_bseq = sc->rx_prod_bseq; 5485 5486 /* Keep filling the RX chain until it's full. */ 5487 while (sc->free_rx_bd > 0) { 5488 prod_idx = RX_CHAIN_IDX(prod); 5489 if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) { 5490 /* Bail out if we can't add an mbuf to the chain. */ 5491 break; 5492 } 5493 prod = NEXT_RX_BD(prod); 5494 } 5495 5496 /* Save the RX chain producer indices. */ 5497 sc->rx_prod = prod; 5498 sc->rx_prod_bseq = prod_bseq; 5499 5500 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5501 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", 5502 __FUNCTION__, sc->rx_prod)); 5503 5504 /* Write the mailbox and tell the chip about the waiting rx_bd's. */ 5505 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, 5506 sc->rx_prod); 5507 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, 5508 sc->rx_prod_bseq); 5509 5510 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5511 BCE_VERBOSE_CTX); 5512 } 5513 5514 5515 /****************************************************************************/ 5516 /* Free memory and clear the RX data structures. */ 5517 /* */ 5518 /* Returns: */ 5519 /* Nothing. */ 5520 /****************************************************************************/ 5521 static void 5522 bce_free_rx_chain(struct bce_softc *sc) 5523 { 5524 int i; 5525 5526 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5527 5528 /* Free any mbufs still in the RX mbuf chain. */ 5529 for (i = 0; i < TOTAL_RX_BD; i++) { 5530 if (sc->rx_mbuf_ptr[i] != NULL) { 5531 if (sc->rx_mbuf_map[i] != NULL) 5532 bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[i], 5533 BUS_DMASYNC_POSTREAD); 5534 m_freem(sc->rx_mbuf_ptr[i]); 5535 sc->rx_mbuf_ptr[i] = NULL; 5536 DBRUN(sc->debug_rx_mbuf_alloc--); 5537 } 5538 } 5539 5540 /* Clear each RX chain page. */ 5541 for (i = 0; i < RX_PAGES; i++) 5542 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 5543 5544 sc->free_rx_bd = sc->max_rx_bd; 5545 5546 /* Check if we lost any mbufs in the process. */ 5547 DBRUNIF((sc->debug_rx_mbuf_alloc), 5548 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", 5549 __FUNCTION__, sc->debug_rx_mbuf_alloc)); 5550 5551 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5552 } 5553 5554 5555 #ifdef BCE_JUMBO_HDRSPLIT 5556 /****************************************************************************/ 5557 /* Allocate memory and initialize the page data structures. */ 5558 /* Assumes that bce_init_rx_chain() has not already been called. */ 5559 /* */ 5560 /* Returns: */ 5561 /* 0 for success, positive value for failure. */ 5562 /****************************************************************************/ 5563 static int 5564 bce_init_pg_chain(struct bce_softc *sc) 5565 { 5566 struct rx_bd *pgbd; 5567 int i, rc = 0; 5568 u32 val; 5569 5570 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5571 BCE_VERBOSE_CTX); 5572 5573 /* Initialize the page producer and consumer indices. */ 5574 sc->pg_prod = 0; 5575 sc->pg_cons = 0; 5576 sc->free_pg_bd = USABLE_PG_BD; 5577 sc->max_pg_bd = USABLE_PG_BD; 5578 DBRUN(sc->pg_low_watermark = sc->max_pg_bd); 5579 DBRUN(sc->pg_empty_count = 0); 5580 5581 /* Initialize the page next pointer chain entries. */ 5582 for (i = 0; i < PG_PAGES; i++) { 5583 int j; 5584 5585 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; 5586 5587 /* Check if we've reached the last page. */ 5588 if (i == (PG_PAGES - 1)) 5589 j = 0; 5590 else 5591 j = i + 1; 5592 5593 /* Setup the chain page pointers. */ 5594 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); 5595 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); 5596 } 5597 5598 /* Setup the MQ BIN mapping for host_pg_bidx. */ 5599 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5600 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 5601 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); 5602 5603 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); 5604 5605 /* Configure the rx_bd and page chain mbuf cluster size. */ 5606 val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size; 5607 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); 5608 5609 /* Configure the context reserved for jumbo support. */ 5610 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, 5611 BCE_L2CTX_RX_RBDC_JUMBO_KEY); 5612 5613 /* Point the hardware to the first page in the page chain. */ 5614 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); 5615 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); 5616 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); 5617 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); 5618 5619 /* Fill up the page chain. */ 5620 bce_fill_pg_chain(sc); 5621 5622 for (i = 0; i < PG_PAGES; i++) { 5623 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], 5624 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5625 } 5626 5627 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD)); 5628 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5629 BCE_VERBOSE_CTX); 5630 return(rc); 5631 } 5632 5633 5634 /****************************************************************************/ 5635 /* Add mbufs to the page chain until its full or an mbuf allocation error */ 5636 /* occurs. */ 5637 /* */ 5638 /* Returns: */ 5639 /* Nothing */ 5640 /****************************************************************************/ 5641 static void 5642 bce_fill_pg_chain(struct bce_softc *sc) 5643 { 5644 u16 prod, prod_idx; 5645 5646 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5647 BCE_VERBOSE_CTX); 5648 5649 /* Get the page chain prodcuer index. */ 5650 prod = sc->pg_prod; 5651 5652 /* Keep filling the page chain until it's full. */ 5653 while (sc->free_pg_bd > 0) { 5654 prod_idx = PG_CHAIN_IDX(prod); 5655 if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) { 5656 /* Bail out if we can't add an mbuf to the chain. */ 5657 break; 5658 } 5659 prod = NEXT_PG_BD(prod); 5660 } 5661 5662 /* Save the page chain producer index. */ 5663 sc->pg_prod = prod; 5664 5665 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5666 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", 5667 __FUNCTION__, sc->pg_prod)); 5668 5669 /* 5670 * Write the mailbox and tell the chip about 5671 * the new rx_bd's in the page chain. 5672 */ 5673 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX, 5674 sc->pg_prod); 5675 5676 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5677 BCE_VERBOSE_CTX); 5678 } 5679 5680 5681 /****************************************************************************/ 5682 /* Free memory and clear the RX data structures. */ 5683 /* */ 5684 /* Returns: */ 5685 /* Nothing. */ 5686 /****************************************************************************/ 5687 static void 5688 bce_free_pg_chain(struct bce_softc *sc) 5689 { 5690 int i; 5691 5692 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5693 5694 /* Free any mbufs still in the mbuf page chain. */ 5695 for (i = 0; i < TOTAL_PG_BD; i++) { 5696 if (sc->pg_mbuf_ptr[i] != NULL) { 5697 if (sc->pg_mbuf_map[i] != NULL) 5698 bus_dmamap_sync(sc->pg_mbuf_tag, sc->pg_mbuf_map[i], 5699 BUS_DMASYNC_POSTREAD); 5700 m_freem(sc->pg_mbuf_ptr[i]); 5701 sc->pg_mbuf_ptr[i] = NULL; 5702 DBRUN(sc->debug_pg_mbuf_alloc--); 5703 } 5704 } 5705 5706 /* Clear each page chain pages. */ 5707 for (i = 0; i < PG_PAGES; i++) 5708 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 5709 5710 sc->free_pg_bd = sc->max_pg_bd; 5711 5712 /* Check if we lost any mbufs in the process. */ 5713 DBRUNIF((sc->debug_pg_mbuf_alloc), 5714 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", 5715 __FUNCTION__, sc->debug_pg_mbuf_alloc)); 5716 5717 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5718 } 5719 #endif /* BCE_JUMBO_HDRSPLIT */ 5720 5721 5722 /****************************************************************************/ 5723 /* Set media options. */ 5724 /* */ 5725 /* Returns: */ 5726 /* 0 for success, positive value for failure. */ 5727 /****************************************************************************/ 5728 static int 5729 bce_ifmedia_upd(struct ifnet *ifp) 5730 { 5731 struct bce_softc *sc = ifp->if_softc; 5732 5733 DBENTER(BCE_VERBOSE); 5734 5735 BCE_LOCK(sc); 5736 bce_ifmedia_upd_locked(ifp); 5737 BCE_UNLOCK(sc); 5738 5739 DBEXIT(BCE_VERBOSE); 5740 return (0); 5741 } 5742 5743 5744 /****************************************************************************/ 5745 /* Set media options. */ 5746 /* */ 5747 /* Returns: */ 5748 /* Nothing. */ 5749 /****************************************************************************/ 5750 static void 5751 bce_ifmedia_upd_locked(struct ifnet *ifp) 5752 { 5753 struct bce_softc *sc = ifp->if_softc; 5754 struct mii_data *mii; 5755 5756 DBENTER(BCE_VERBOSE); 5757 5758 BCE_LOCK_ASSERT(sc); 5759 5760 mii = device_get_softc(sc->bce_miibus); 5761 5762 /* Make sure the MII bus has been enumerated. */ 5763 if (mii) { 5764 sc->bce_link = 0; 5765 if (mii->mii_instance) { 5766 struct mii_softc *miisc; 5767 5768 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5769 mii_phy_reset(miisc); 5770 } 5771 mii_mediachg(mii); 5772 } 5773 5774 DBEXIT(BCE_VERBOSE); 5775 } 5776 5777 5778 /****************************************************************************/ 5779 /* Reports current media status. */ 5780 /* */ 5781 /* Returns: */ 5782 /* Nothing. */ 5783 /****************************************************************************/ 5784 static void 5785 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5786 { 5787 struct bce_softc *sc = ifp->if_softc; 5788 struct mii_data *mii; 5789 5790 DBENTER(BCE_VERBOSE); 5791 5792 BCE_LOCK(sc); 5793 5794 mii = device_get_softc(sc->bce_miibus); 5795 5796 mii_pollstat(mii); 5797 ifmr->ifm_active = mii->mii_media_active; 5798 ifmr->ifm_status = mii->mii_media_status; 5799 5800 BCE_UNLOCK(sc); 5801 5802 DBEXIT(BCE_VERBOSE); 5803 } 5804 5805 5806 /****************************************************************************/ 5807 /* Handles PHY generated interrupt events. */ 5808 /* */ 5809 /* Returns: */ 5810 /* Nothing. */ 5811 /****************************************************************************/ 5812 static void 5813 bce_phy_intr(struct bce_softc *sc) 5814 { 5815 u32 new_link_state, old_link_state; 5816 5817 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 5818 5819 new_link_state = sc->status_block->status_attn_bits & 5820 STATUS_ATTN_BITS_LINK_STATE; 5821 old_link_state = sc->status_block->status_attn_bits_ack & 5822 STATUS_ATTN_BITS_LINK_STATE; 5823 5824 /* Handle any changes if the link state has changed. */ 5825 if (new_link_state != old_link_state) { 5826 5827 /* Update the status_attn_bits_ack field in the status block. */ 5828 if (new_link_state) { 5829 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 5830 STATUS_ATTN_BITS_LINK_STATE); 5831 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", 5832 __FUNCTION__); 5833 } 5834 else { 5835 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 5836 STATUS_ATTN_BITS_LINK_STATE); 5837 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", 5838 __FUNCTION__); 5839 } 5840 5841 /* 5842 * Assume link is down and allow 5843 * tick routine to update the state 5844 * based on the actual media state. 5845 */ 5846 sc->bce_link = 0; 5847 callout_stop(&sc->bce_tick_callout); 5848 bce_tick(sc); 5849 } 5850 5851 /* Acknowledge the link change interrupt. */ 5852 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 5853 5854 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 5855 } 5856 5857 5858 /****************************************************************************/ 5859 /* Reads the receive consumer value from the status block (skipping over */ 5860 /* chain page pointer if necessary). */ 5861 /* */ 5862 /* Returns: */ 5863 /* hw_cons */ 5864 /****************************************************************************/ 5865 static inline u16 5866 bce_get_hw_rx_cons(struct bce_softc *sc) 5867 { 5868 u16 hw_cons; 5869 5870 rmb(); 5871 hw_cons = sc->status_block->status_rx_quick_consumer_index0; 5872 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 5873 hw_cons++; 5874 5875 return hw_cons; 5876 } 5877 5878 /****************************************************************************/ 5879 /* Handles received frame interrupt events. */ 5880 /* */ 5881 /* Returns: */ 5882 /* Nothing. */ 5883 /****************************************************************************/ 5884 static void 5885 bce_rx_intr(struct bce_softc *sc) 5886 { 5887 struct ifnet *ifp = sc->bce_ifp; 5888 struct l2_fhdr *l2fhdr; 5889 unsigned int pkt_len; 5890 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; 5891 u32 status; 5892 #ifdef BCE_JUMBO_HDRSPLIT 5893 unsigned int rem_len; 5894 u16 sw_pg_cons, sw_pg_cons_idx; 5895 #endif 5896 5897 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 5898 DBRUN(sc->rx_interrupts++); 5899 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " 5900 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 5901 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 5902 5903 /* Prepare the RX chain pages to be accessed by the host CPU. */ 5904 for (int i = 0; i < RX_PAGES; i++) 5905 bus_dmamap_sync(sc->rx_bd_chain_tag, 5906 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 5907 5908 #ifdef BCE_JUMBO_HDRSPLIT 5909 /* Prepare the page chain pages to be accessed by the host CPU. */ 5910 for (int i = 0; i < PG_PAGES; i++) 5911 bus_dmamap_sync(sc->pg_bd_chain_tag, 5912 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 5913 #endif 5914 5915 /* Get the hardware's view of the RX consumer index. */ 5916 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 5917 5918 /* Get working copies of the driver's view of the consumer indices. */ 5919 sw_rx_cons = sc->rx_cons; 5920 #ifdef BCE_JUMBO_HDRSPLIT 5921 sw_pg_cons = sc->pg_cons; 5922 #endif 5923 5924 /* Update some debug statistics counters */ 5925 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5926 sc->rx_low_watermark = sc->free_rx_bd); 5927 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 5928 5929 /* Scan through the receive chain as long as there is work to do */ 5930 /* ToDo: Consider setting a limit on the number of packets processed. */ 5931 rmb(); 5932 while (sw_rx_cons != hw_rx_cons) { 5933 struct mbuf *m0; 5934 5935 /* Convert the producer/consumer indices to an actual rx_bd index. */ 5936 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); 5937 5938 /* Unmap the mbuf from DMA space. */ 5939 bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[sw_rx_cons_idx], 5940 BUS_DMASYNC_POSTREAD); 5941 bus_dmamap_unload(sc->rx_mbuf_tag, 5942 sc->rx_mbuf_map[sw_rx_cons_idx]); 5943 5944 /* Remove the mbuf from the RX chain. */ 5945 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; 5946 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; 5947 DBRUN(sc->debug_rx_mbuf_alloc--); 5948 sc->free_rx_bd++; 5949 5950 if(m0 == NULL) { 5951 DBPRINT(sc, BCE_EXTREME_RECV, "%s(): Oops! Empty mbuf pointer " 5952 "found in sc->rx_mbuf_ptr[0x%04X]!\n", 5953 __FUNCTION__, sw_rx_cons_idx); 5954 goto bce_rx_int_next_rx; 5955 } 5956 5957 /* 5958 * Frames received on the NetXteme II are prepended with an 5959 * l2_fhdr structure which provides status information about 5960 * the received frame (including VLAN tags and checksum info). 5961 * The frames are also automatically adjusted to align the IP 5962 * header (i.e. two null bytes are inserted before the Ethernet 5963 * header). As a result the data DMA'd by the controller into 5964 * the mbuf is as follows: 5965 * 5966 * +---------+-----+---------------------+-----+ 5967 * | l2_fhdr | pad | packet data | FCS | 5968 * +---------+-----+---------------------+-----+ 5969 * 5970 * The l2_fhdr needs to be checked and skipped and the FCS needs 5971 * to be stripped before sending the packet up the stack. 5972 */ 5973 l2fhdr = mtod(m0, struct l2_fhdr *); 5974 5975 /* Get the packet data + FCS length and the status. */ 5976 pkt_len = l2fhdr->l2_fhdr_pkt_len; 5977 status = l2fhdr->l2_fhdr_status; 5978 5979 /* 5980 * Skip over the l2_fhdr and pad, resulting in the 5981 * following data in the mbuf: 5982 * +---------------------+-----+ 5983 * | packet data | FCS | 5984 * +---------------------+-----+ 5985 */ 5986 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); 5987 5988 #ifdef BCE_JUMBO_HDRSPLIT 5989 /* 5990 * Check whether the received frame fits in a single 5991 * mbuf or not (i.e. packet data + FCS <= 5992 * sc->rx_bd_mbuf_data_len bytes). 5993 */ 5994 if (pkt_len > m0->m_len) { 5995 /* 5996 * The received frame is larger than a single mbuf. 5997 * If the frame was a TCP frame then only the TCP 5998 * header is placed in the mbuf, the remaining 5999 * payload (including FCS) is placed in the page 6000 * chain, the SPLIT flag is set, and the header 6001 * length is placed in the IP checksum field. 6002 * If the frame is not a TCP frame then the mbuf 6003 * is filled and the remaining bytes are placed 6004 * in the page chain. 6005 */ 6006 6007 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large packet.\n", 6008 __FUNCTION__); 6009 6010 /* 6011 * When the page chain is enabled and the TCP 6012 * header has been split from the TCP payload, 6013 * the ip_xsum structure will reflect the length 6014 * of the TCP header, not the IP checksum. Set 6015 * the packet length of the mbuf accordingly. 6016 */ 6017 if (status & L2_FHDR_STATUS_SPLIT) 6018 m0->m_len = l2fhdr->l2_fhdr_ip_xsum; 6019 6020 rem_len = pkt_len - m0->m_len; 6021 6022 /* Pull mbufs off the page chain for the remaining data. */ 6023 while (rem_len > 0) { 6024 struct mbuf *m_pg; 6025 6026 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); 6027 6028 /* Remove the mbuf from the page chain. */ 6029 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; 6030 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; 6031 DBRUN(sc->debug_pg_mbuf_alloc--); 6032 sc->free_pg_bd++; 6033 6034 /* Unmap the page chain mbuf from DMA space. */ 6035 bus_dmamap_sync(sc->pg_mbuf_tag, 6036 sc->pg_mbuf_map[sw_pg_cons_idx], 6037 BUS_DMASYNC_POSTREAD); 6038 bus_dmamap_unload(sc->pg_mbuf_tag, 6039 sc->pg_mbuf_map[sw_pg_cons_idx]); 6040 6041 /* Adjust the mbuf length. */ 6042 if (rem_len < m_pg->m_len) { 6043 /* The mbuf chain is complete. */ 6044 m_pg->m_len = rem_len; 6045 rem_len = 0; 6046 } else { 6047 /* More packet data is waiting. */ 6048 rem_len -= m_pg->m_len; 6049 } 6050 6051 /* Concatenate the mbuf cluster to the mbuf. */ 6052 m_cat(m0, m_pg); 6053 6054 sw_pg_cons = NEXT_PG_BD(sw_pg_cons); 6055 } 6056 6057 /* Set the total packet length. */ 6058 m0->m_pkthdr.len = pkt_len; 6059 6060 } else { 6061 /* 6062 * The received packet is small and fits in a 6063 * single mbuf (i.e. the l2_fhdr + pad + packet + 6064 * FCS <= MHLEN). In other words, the packet is 6065 * 154 bytes or less in size. 6066 */ 6067 6068 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small packet.\n", 6069 __FUNCTION__); 6070 6071 /* Set the total packet length. */ 6072 m0->m_pkthdr.len = m0->m_len = pkt_len; 6073 } 6074 #else 6075 /* Set the total packet length. */ 6076 m0->m_pkthdr.len = m0->m_len = pkt_len; 6077 #endif 6078 6079 /* Remove the trailing Ethernet FCS. */ 6080 m_adj(m0, -ETHER_CRC_LEN); 6081 6082 /* Check that the resulting mbuf chain is valid. */ 6083 DBRUN(m_sanity(m0, FALSE)); 6084 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | 6085 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 6086 BCE_PRINTF("Invalid Ethernet frame size!\n"); 6087 m_print(m0, 128)); 6088 6089 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control), 6090 BCE_PRINTF("Simulating l2_fhdr status error.\n"); 6091 sc->l2fhdr_error_sim_count++; 6092 status = status | L2_FHDR_ERRORS_PHY_DECODE); 6093 6094 /* Check the received frame for errors. */ 6095 if (status & (L2_FHDR_ERRORS_BAD_CRC | 6096 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 6097 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 6098 6099 /* Log the error and release the mbuf. */ 6100 ifp->if_ierrors++; 6101 sc->l2fhdr_error_count++; 6102 6103 m_freem(m0); 6104 m0 = NULL; 6105 goto bce_rx_int_next_rx; 6106 } 6107 6108 /* Send the packet to the appropriate interface. */ 6109 m0->m_pkthdr.rcvif = ifp; 6110 6111 /* Assume no hardware checksum. */ 6112 m0->m_pkthdr.csum_flags = 0; 6113 6114 /* Validate the checksum if offload enabled. */ 6115 if (ifp->if_capenable & IFCAP_RXCSUM) { 6116 6117 /* Check for an IP datagram. */ 6118 if (!(status & L2_FHDR_STATUS_SPLIT) && 6119 (status & L2_FHDR_STATUS_IP_DATAGRAM)) { 6120 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 6121 6122 /* Check if the IP checksum is valid. */ 6123 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 6124 m0->m_pkthdr.csum_flags |= CSUM_IP_VALID; 6125 } 6126 6127 /* Check for a valid TCP/UDP frame. */ 6128 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 6129 L2_FHDR_STATUS_UDP_DATAGRAM)) { 6130 6131 /* Check for a good TCP/UDP checksum. */ 6132 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 6133 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 6134 m0->m_pkthdr.csum_data = 6135 l2fhdr->l2_fhdr_tcp_udp_xsum; 6136 m0->m_pkthdr.csum_flags |= (CSUM_DATA_VALID 6137 | CSUM_PSEUDO_HDR); 6138 } 6139 } 6140 } 6141 6142 /* Attach the VLAN tag. */ 6143 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) { 6144 #if __FreeBSD_version < 700000 6145 VLAN_INPUT_TAG(ifp, m0, l2fhdr->l2_fhdr_vlan_tag, continue); 6146 #else 6147 m0->m_pkthdr.ether_vtag = l2fhdr->l2_fhdr_vlan_tag; 6148 m0->m_flags |= M_VLANTAG; 6149 #endif 6150 } 6151 6152 /* Increment received packet statistics. */ 6153 ifp->if_ipackets++; 6154 6155 bce_rx_int_next_rx: 6156 sw_rx_cons = NEXT_RX_BD(sw_rx_cons); 6157 6158 /* If we have a packet, pass it up the stack */ 6159 if (m0) { 6160 /* Make sure we don't lose our place when we release the lock. */ 6161 sc->rx_cons = sw_rx_cons; 6162 #ifdef BCE_JUMBO_HDRSPLIT 6163 sc->pg_cons = sw_pg_cons; 6164 #endif 6165 6166 BCE_UNLOCK(sc); 6167 (*ifp->if_input)(ifp, m0); 6168 BCE_LOCK(sc); 6169 6170 /* Recover our place. */ 6171 sw_rx_cons = sc->rx_cons; 6172 #ifdef BCE_JUMBO_HDRSPLIT 6173 sw_pg_cons = sc->pg_cons; 6174 #endif 6175 } 6176 6177 /* Refresh hw_cons to see if there's new work */ 6178 if (sw_rx_cons == hw_rx_cons) 6179 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6180 } 6181 6182 /* No new packets to process. Refill the RX and page chains and exit. */ 6183 #ifdef BCE_JUMBO_HDRSPLIT 6184 sc->pg_cons = sw_pg_cons; 6185 bce_fill_pg_chain(sc); 6186 #endif 6187 6188 sc->rx_cons = sw_rx_cons; 6189 bce_fill_rx_chain(sc); 6190 6191 /* Prepare the page chain pages to be accessed by the NIC. */ 6192 for (int i = 0; i < RX_PAGES; i++) 6193 bus_dmamap_sync(sc->rx_bd_chain_tag, 6194 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6195 6196 #ifdef BCE_JUMBO_HDRSPLIT 6197 for (int i = 0; i < PG_PAGES; i++) 6198 bus_dmamap_sync(sc->pg_bd_chain_tag, 6199 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6200 #endif 6201 6202 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " 6203 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6204 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6205 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6206 } 6207 6208 6209 /****************************************************************************/ 6210 /* Reads the transmit consumer value from the status block (skipping over */ 6211 /* chain page pointer if necessary). */ 6212 /* */ 6213 /* Returns: */ 6214 /* hw_cons */ 6215 /****************************************************************************/ 6216 static inline u16 6217 bce_get_hw_tx_cons(struct bce_softc *sc) 6218 { 6219 u16 hw_cons; 6220 6221 mb(); 6222 hw_cons = sc->status_block->status_tx_quick_consumer_index0; 6223 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6224 hw_cons++; 6225 6226 return hw_cons; 6227 } 6228 6229 6230 /****************************************************************************/ 6231 /* Handles transmit completion interrupt events. */ 6232 /* */ 6233 /* Returns: */ 6234 /* Nothing. */ 6235 /****************************************************************************/ 6236 static void 6237 bce_tx_intr(struct bce_softc *sc) 6238 { 6239 struct ifnet *ifp = sc->bce_ifp; 6240 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 6241 6242 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6243 DBRUN(sc->tx_interrupts++); 6244 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " 6245 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6246 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6247 6248 BCE_LOCK_ASSERT(sc); 6249 6250 /* Get the hardware's view of the TX consumer index. */ 6251 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6252 sw_tx_cons = sc->tx_cons; 6253 6254 /* Prevent speculative reads from getting ahead of the status block. */ 6255 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6256 BUS_SPACE_BARRIER_READ); 6257 6258 /* Cycle through any completed TX chain page entries. */ 6259 while (sw_tx_cons != hw_tx_cons) { 6260 #ifdef BCE_DEBUG 6261 struct tx_bd *txbd = NULL; 6262 #endif 6263 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 6264 6265 DBPRINT(sc, BCE_INFO_SEND, 6266 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 6267 "sw_tx_chain_cons = 0x%04X\n", 6268 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 6269 6270 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), 6271 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 6272 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 6273 (int) MAX_TX_BD); 6274 bce_breakpoint(sc)); 6275 6276 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 6277 [TX_IDX(sw_tx_chain_cons)]); 6278 6279 DBRUNIF((txbd == NULL), 6280 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 6281 __FILE__, __LINE__, sw_tx_chain_cons); 6282 bce_breakpoint(sc)); 6283 6284 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 6285 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 6286 6287 /* 6288 * Free the associated mbuf. Remember 6289 * that only the last tx_bd of a packet 6290 * has an mbuf pointer and DMA map. 6291 */ 6292 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 6293 6294 /* Validate that this is the last tx_bd. */ 6295 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 6296 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 6297 "txmbuf == NULL!\n", __FILE__, __LINE__); 6298 bce_breakpoint(sc)); 6299 6300 DBRUNMSG(BCE_INFO_SEND, 6301 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 6302 "from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons)); 6303 6304 /* Unmap the mbuf. */ 6305 bus_dmamap_unload(sc->tx_mbuf_tag, 6306 sc->tx_mbuf_map[sw_tx_chain_cons]); 6307 6308 /* Free the mbuf. */ 6309 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 6310 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 6311 DBRUN(sc->debug_tx_mbuf_alloc--); 6312 6313 ifp->if_opackets++; 6314 } 6315 6316 sc->used_tx_bd--; 6317 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 6318 6319 /* Refresh hw_cons to see if there's new work. */ 6320 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6321 6322 /* Prevent speculative reads from getting ahead of the status block. */ 6323 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6324 BUS_SPACE_BARRIER_READ); 6325 } 6326 6327 /* Clear the TX timeout timer. */ 6328 sc->watchdog_timer = 0; 6329 6330 /* Clear the tx hardware queue full flag. */ 6331 if (sc->used_tx_bd < sc->max_tx_bd) { 6332 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), 6333 DBPRINT(sc, BCE_INFO_SEND, 6334 "%s(): Open TX chain! %d/%d (used/total)\n", 6335 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 6336 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6337 } 6338 6339 sc->tx_cons = sw_tx_cons; 6340 6341 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " 6342 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6343 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6344 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6345 } 6346 6347 6348 /****************************************************************************/ 6349 /* Disables interrupt generation. */ 6350 /* */ 6351 /* Returns: */ 6352 /* Nothing. */ 6353 /****************************************************************************/ 6354 static void 6355 bce_disable_intr(struct bce_softc *sc) 6356 { 6357 DBENTER(BCE_VERBOSE_INTR); 6358 6359 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 6360 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 6361 6362 DBEXIT(BCE_VERBOSE_INTR); 6363 } 6364 6365 6366 /****************************************************************************/ 6367 /* Enables interrupt generation. */ 6368 /* */ 6369 /* Returns: */ 6370 /* Nothing. */ 6371 /****************************************************************************/ 6372 static void 6373 bce_enable_intr(struct bce_softc *sc, int coal_now) 6374 { 6375 DBENTER(BCE_VERBOSE_INTR); 6376 6377 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6378 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 6379 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 6380 6381 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6382 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 6383 6384 /* Force an immediate interrupt (whether there is new data or not). */ 6385 if (coal_now) 6386 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); 6387 6388 DBEXIT(BCE_VERBOSE_INTR); 6389 } 6390 6391 6392 /****************************************************************************/ 6393 /* Handles controller initialization. */ 6394 /* */ 6395 /* Returns: */ 6396 /* Nothing. */ 6397 /****************************************************************************/ 6398 static void 6399 bce_init_locked(struct bce_softc *sc) 6400 { 6401 struct ifnet *ifp; 6402 u32 ether_mtu = 0; 6403 6404 DBENTER(BCE_VERBOSE_RESET); 6405 6406 BCE_LOCK_ASSERT(sc); 6407 6408 ifp = sc->bce_ifp; 6409 6410 /* Check if the driver is still running and bail out if it is. */ 6411 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6412 goto bce_init_locked_exit; 6413 6414 bce_stop(sc); 6415 6416 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 6417 BCE_PRINTF("%s(%d): Controller reset failed!\n", 6418 __FILE__, __LINE__); 6419 goto bce_init_locked_exit; 6420 } 6421 6422 if (bce_chipinit(sc)) { 6423 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 6424 __FILE__, __LINE__); 6425 goto bce_init_locked_exit; 6426 } 6427 6428 if (bce_blockinit(sc)) { 6429 BCE_PRINTF("%s(%d): Block initialization failed!\n", 6430 __FILE__, __LINE__); 6431 goto bce_init_locked_exit; 6432 } 6433 6434 /* Load our MAC address. */ 6435 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 6436 bce_set_mac_addr(sc); 6437 6438 /* 6439 * Calculate and program the hardware Ethernet MTU 6440 * size. Be generous on the receive if we have room. 6441 */ 6442 #ifdef BCE_JUMBO_HDRSPLIT 6443 if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size)) 6444 ether_mtu = sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size; 6445 #else 6446 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len) 6447 ether_mtu = sc->rx_bd_mbuf_data_len; 6448 #endif 6449 else 6450 ether_mtu = ifp->if_mtu; 6451 6452 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 6453 6454 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", __FUNCTION__, 6455 ether_mtu); 6456 6457 /* Program the mtu, enabling jumbo frame support if necessary. */ 6458 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) 6459 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, 6460 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 6461 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 6462 else 6463 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 6464 6465 DBPRINT(sc, BCE_INFO_LOAD, 6466 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, " 6467 "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__, 6468 sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, 6469 sc->rx_bd_mbuf_align_pad); 6470 6471 /* Program appropriate promiscuous/multicast filtering. */ 6472 bce_set_rx_mode(sc); 6473 6474 #ifdef BCE_JUMBO_HDRSPLIT 6475 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n", 6476 __FUNCTION__, sc->pg_bd_mbuf_alloc_size); 6477 6478 /* Init page buffer descriptor chain. */ 6479 bce_init_pg_chain(sc); 6480 #endif 6481 6482 /* Init RX buffer descriptor chain. */ 6483 bce_init_rx_chain(sc); 6484 6485 /* Init TX buffer descriptor chain. */ 6486 bce_init_tx_chain(sc); 6487 6488 /* Enable host interrupts. */ 6489 bce_enable_intr(sc, 1); 6490 6491 bce_ifmedia_upd_locked(ifp); 6492 6493 /* Let the OS know the driver is up and running. */ 6494 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6495 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6496 6497 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 6498 6499 bce_init_locked_exit: 6500 DBEXIT(BCE_VERBOSE_RESET); 6501 } 6502 6503 6504 /****************************************************************************/ 6505 /* Initialize the controller just enough so that any management firmware */ 6506 /* running on the device will continue to operate correctly. */ 6507 /* */ 6508 /* Returns: */ 6509 /* Nothing. */ 6510 /****************************************************************************/ 6511 static void 6512 bce_mgmt_init_locked(struct bce_softc *sc) 6513 { 6514 struct ifnet *ifp; 6515 6516 DBENTER(BCE_VERBOSE_RESET); 6517 6518 BCE_LOCK_ASSERT(sc); 6519 6520 /* Bail out if management firmware is not running. */ 6521 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 6522 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 6523 "No management firmware running...\n"); 6524 goto bce_mgmt_init_locked_exit; 6525 } 6526 6527 ifp = sc->bce_ifp; 6528 6529 /* Enable all critical blocks in the MAC. */ 6530 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 6531 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 6532 DELAY(20); 6533 6534 bce_ifmedia_upd_locked(ifp); 6535 6536 bce_mgmt_init_locked_exit: 6537 DBEXIT(BCE_VERBOSE_RESET); 6538 } 6539 6540 6541 /****************************************************************************/ 6542 /* Handles controller initialization when called from an unlocked routine. */ 6543 /* */ 6544 /* Returns: */ 6545 /* Nothing. */ 6546 /****************************************************************************/ 6547 static void 6548 bce_init(void *xsc) 6549 { 6550 struct bce_softc *sc = xsc; 6551 6552 DBENTER(BCE_VERBOSE_RESET); 6553 6554 BCE_LOCK(sc); 6555 bce_init_locked(sc); 6556 BCE_UNLOCK(sc); 6557 6558 DBEXIT(BCE_VERBOSE_RESET); 6559 } 6560 6561 6562 /****************************************************************************/ 6563 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 6564 /* memory visible to the controller. */ 6565 /* */ 6566 /* Returns: */ 6567 /* 0 for success, positive value for failure. */ 6568 /* Modified: */ 6569 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 6570 /****************************************************************************/ 6571 static int 6572 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 6573 { 6574 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 6575 bus_dmamap_t map; 6576 struct tx_bd *txbd = NULL; 6577 struct mbuf *m0; 6578 struct ether_vlan_header *eh; 6579 struct ip *ip; 6580 struct tcphdr *th; 6581 u16 prod, chain_prod, etype, mss = 0, vlan_tag = 0, flags = 0; 6582 u32 prod_bseq; 6583 int hdr_len = 0, e_hlen = 0, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; 6584 6585 #ifdef BCE_DEBUG 6586 u16 debug_prod; 6587 #endif 6588 int i, error, nsegs, rc = 0; 6589 6590 DBENTER(BCE_VERBOSE_SEND); 6591 DBPRINT(sc, BCE_INFO_SEND, 6592 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = %04X, " 6593 "tx_prod_bseq = 0x%08X\n", 6594 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod), 6595 sc->tx_prod_bseq); 6596 6597 /* Transfer any checksum offload flags to the bd. */ 6598 m0 = *m_head; 6599 if (m0->m_pkthdr.csum_flags) { 6600 if (m0->m_pkthdr.csum_flags & CSUM_IP) 6601 flags |= TX_BD_FLAGS_IP_CKSUM; 6602 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 6603 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 6604 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 6605 /* For TSO the controller needs two pieces of info, */ 6606 /* the MSS and the IP+TCP options length. */ 6607 mss = htole16(m0->m_pkthdr.tso_segsz); 6608 6609 /* Map the header and find the Ethernet type & header length */ 6610 eh = mtod(m0, struct ether_vlan_header *); 6611 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 6612 etype = ntohs(eh->evl_proto); 6613 e_hlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 6614 } else { 6615 etype = ntohs(eh->evl_encap_proto); 6616 e_hlen = ETHER_HDR_LEN; 6617 } 6618 6619 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 6620 switch (etype) { 6621 case ETHERTYPE_IP: 6622 ip = (struct ip *)(m0->m_data + e_hlen); 6623 6624 /* TSO only supported for TCP protocol */ 6625 if (ip->ip_p != IPPROTO_TCP) { 6626 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 6627 __FILE__, __LINE__); 6628 goto bce_tx_encap_skip_tso; 6629 } 6630 6631 /* Get IP header length in bytes (min 20) */ 6632 ip_hlen = ip->ip_hl << 2; 6633 6634 /* Get the TCP header length in bytes (min 20) */ 6635 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 6636 tcp_hlen = (th->th_off << 2); 6637 6638 /* IP header length and checksum will be calc'd by hardware */ 6639 ip_len = ip->ip_len; 6640 ip->ip_len = 0; 6641 ip->ip_sum = 0; 6642 break; 6643 case ETHERTYPE_IPV6: 6644 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 6645 __FILE__, __LINE__); 6646 goto bce_tx_encap_skip_tso; 6647 default: 6648 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 6649 __FILE__, __LINE__); 6650 goto bce_tx_encap_skip_tso; 6651 } 6652 6653 hdr_len = e_hlen + ip_hlen + tcp_hlen; 6654 6655 DBPRINT(sc, BCE_EXTREME_SEND, 6656 "%s(): hdr_len = %d, e_hlen = %d, ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 6657 __FUNCTION__, hdr_len, e_hlen, ip_hlen, tcp_hlen, ip_len); 6658 6659 /* Set the LSO flag in the TX BD */ 6660 flags |= TX_BD_FLAGS_SW_LSO; 6661 /* Set the length of IP + TCP options (in 32 bit words) */ 6662 flags |= (((ip_hlen + tcp_hlen - 40) >> 2) << 8); 6663 6664 bce_tx_encap_skip_tso: 6665 DBRUN(sc->requested_tso_frames++); 6666 } 6667 } 6668 6669 /* Transfer any VLAN tags to the bd. */ 6670 if (m0->m_flags & M_VLANTAG) { 6671 flags |= TX_BD_FLAGS_VLAN_TAG; 6672 vlan_tag = m0->m_pkthdr.ether_vtag; 6673 } 6674 6675 /* Map the mbuf into DMAable memory. */ 6676 prod = sc->tx_prod; 6677 chain_prod = TX_CHAIN_IDX(prod); 6678 map = sc->tx_mbuf_map[chain_prod]; 6679 6680 /* Map the mbuf into our DMA address space. */ 6681 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 6682 segs, &nsegs, BUS_DMA_NOWAIT); 6683 6684 /* Check if the DMA mapping was successful */ 6685 if (error == EFBIG) { 6686 6687 sc->fragmented_mbuf_count++; 6688 6689 /* Try to defrag the mbuf. */ 6690 m0 = m_defrag(*m_head, M_DONTWAIT); 6691 if (m0 == NULL) { 6692 /* Defrag was unsuccessful */ 6693 m_freem(*m_head); 6694 *m_head = NULL; 6695 sc->mbuf_alloc_failed_count++; 6696 rc = ENOBUFS; 6697 goto bce_tx_encap_exit; 6698 } 6699 6700 /* Defrag was successful, try mapping again */ 6701 *m_head = m0; 6702 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 6703 segs, &nsegs, BUS_DMA_NOWAIT); 6704 6705 /* Still getting an error after a defrag. */ 6706 if (error == ENOMEM) { 6707 /* Insufficient DMA buffers available. */ 6708 sc->dma_map_addr_tx_failed_count++; 6709 rc = error; 6710 goto bce_tx_encap_exit; 6711 } else if (error != 0) { 6712 /* Still can't map the mbuf, release it and return an error. */ 6713 BCE_PRINTF( 6714 "%s(%d): Unknown error mapping mbuf into TX chain!\n", 6715 __FILE__, __LINE__); 6716 m_freem(m0); 6717 *m_head = NULL; 6718 sc->dma_map_addr_tx_failed_count++; 6719 rc = ENOBUFS; 6720 goto bce_tx_encap_exit; 6721 } 6722 } else if (error == ENOMEM) { 6723 /* Insufficient DMA buffers available. */ 6724 sc->dma_map_addr_tx_failed_count++; 6725 rc = error; 6726 goto bce_tx_encap_exit; 6727 } else if (error != 0) { 6728 m_freem(m0); 6729 *m_head = NULL; 6730 sc->dma_map_addr_tx_failed_count++; 6731 rc = error; 6732 goto bce_tx_encap_exit; 6733 } 6734 6735 /* Make sure there's room in the chain */ 6736 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 6737 bus_dmamap_unload(sc->tx_mbuf_tag, map); 6738 rc = ENOBUFS; 6739 goto bce_tx_encap_exit; 6740 } 6741 6742 /* prod points to an empty tx_bd at this point. */ 6743 prod_bseq = sc->tx_prod_bseq; 6744 6745 #ifdef BCE_DEBUG 6746 debug_prod = chain_prod; 6747 #endif 6748 6749 DBPRINT(sc, BCE_INFO_SEND, 6750 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " 6751 "prod_bseq = 0x%08X\n", 6752 __FUNCTION__, prod, chain_prod, prod_bseq); 6753 6754 /* 6755 * Cycle through each mbuf segment that makes up 6756 * the outgoing frame, gathering the mapping info 6757 * for that segment and creating a tx_bd for 6758 * the mbuf. 6759 */ 6760 for (i = 0; i < nsegs ; i++) { 6761 6762 chain_prod = TX_CHAIN_IDX(prod); 6763 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; 6764 6765 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr)); 6766 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr)); 6767 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | htole16(segs[i].ds_len); 6768 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 6769 txbd->tx_bd_flags = htole16(flags); 6770 prod_bseq += segs[i].ds_len; 6771 if (i == 0) 6772 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 6773 prod = NEXT_TX_BD(prod); 6774 } 6775 6776 /* Set the END flag on the last TX buffer descriptor. */ 6777 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 6778 6779 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_chain(sc, debug_prod, nsegs)); 6780 6781 DBPRINT(sc, BCE_INFO_SEND, 6782 "%s( end ): prod = 0x%04X, chain_prod = 0x%04X, " 6783 "prod_bseq = 0x%08X\n", 6784 __FUNCTION__, prod, chain_prod, prod_bseq); 6785 6786 /* 6787 * Ensure that the mbuf pointer for this transmission 6788 * is placed at the array index of the last 6789 * descriptor in this chain. This is done 6790 * because a single map is used for all 6791 * segments of the mbuf and we don't want to 6792 * unload the map before all of the segments 6793 * have been freed. 6794 */ 6795 sc->tx_mbuf_ptr[chain_prod] = m0; 6796 sc->used_tx_bd += nsegs; 6797 6798 /* Update some debug statistic counters */ 6799 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 6800 sc->tx_hi_watermark = sc->used_tx_bd); 6801 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 6802 DBRUNIF(sc->debug_tx_mbuf_alloc++); 6803 6804 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); 6805 6806 /* prod points to the next free tx_bd at this point. */ 6807 sc->tx_prod = prod; 6808 sc->tx_prod_bseq = prod_bseq; 6809 6810 DBPRINT(sc, BCE_INFO_SEND, 6811 "%s(exit): prod = 0x%04X, chain_prod = %04X, " 6812 "prod_bseq = 0x%08X\n", 6813 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod), 6814 sc->tx_prod_bseq); 6815 6816 bce_tx_encap_exit: 6817 DBEXIT(BCE_VERBOSE_SEND); 6818 return(rc); 6819 } 6820 6821 6822 /****************************************************************************/ 6823 /* Main transmit routine when called from another routine with a lock. */ 6824 /* */ 6825 /* Returns: */ 6826 /* Nothing. */ 6827 /****************************************************************************/ 6828 static void 6829 bce_start_locked(struct ifnet *ifp) 6830 { 6831 struct bce_softc *sc = ifp->if_softc; 6832 struct mbuf *m_head = NULL; 6833 int count = 0; 6834 u16 tx_prod, tx_chain_prod; 6835 6836 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 6837 6838 BCE_LOCK_ASSERT(sc); 6839 6840 /* prod points to the next free tx_bd. */ 6841 tx_prod = sc->tx_prod; 6842 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 6843 6844 DBPRINT(sc, BCE_INFO_SEND, 6845 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 6846 "tx_prod_bseq = 0x%08X\n", 6847 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 6848 6849 /* If there's no link or the transmit queue is empty then just exit. */ 6850 if (!sc->bce_link) { 6851 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", 6852 __FUNCTION__); 6853 goto bce_start_locked_exit; 6854 } 6855 6856 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 6857 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", 6858 __FUNCTION__); 6859 goto bce_start_locked_exit; 6860 } 6861 6862 /* 6863 * Keep adding entries while there is space in the ring. 6864 */ 6865 while (sc->used_tx_bd < sc->max_tx_bd) { 6866 6867 /* Check for any frames to send. */ 6868 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 6869 6870 /* Stop when the transmit queue is empty. */ 6871 if (m_head == NULL) 6872 break; 6873 6874 /* 6875 * Pack the data into the transmit ring. If we 6876 * don't have room, place the mbuf back at the 6877 * head of the queue and set the OACTIVE flag 6878 * to wait for the NIC to drain the chain. 6879 */ 6880 if (bce_tx_encap(sc, &m_head)) { 6881 /* No room, put the frame back on the transmit queue. */ 6882 if (m_head != NULL) 6883 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 6884 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 6885 DBPRINT(sc, BCE_INFO_SEND, 6886 "TX chain is closed for business! Total tx_bd used = %d\n", 6887 sc->used_tx_bd); 6888 break; 6889 } 6890 6891 count++; 6892 6893 /* Send a copy of the frame to any BPF listeners. */ 6894 ETHER_BPF_MTAP(ifp, m_head); 6895 } 6896 6897 /* Exit if no packets were dequeued. */ 6898 if (count == 0) { 6899 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were dequeued\n", 6900 __FUNCTION__); 6901 goto bce_start_locked_exit; 6902 } 6903 6904 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into send queue.\n", 6905 __FUNCTION__, count); 6906 6907 REG_WR(sc, BCE_MQ_COMMAND, REG_RD(sc, BCE_MQ_COMMAND) | BCE_MQ_COMMAND_NO_MAP_ERROR); 6908 6909 /* Write the mailbox and tell the chip about the waiting tx_bd's. */ 6910 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; " 6911 "BCE_L2MQ_TX_HOST_BIDX = 0x%08X, sc->tx_prod = 0x%04X\n", 6912 __FUNCTION__, 6913 MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 6914 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 6915 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; " 6916 "BCE_L2MQ_TX_HOST_BSEQ = 0x%08X, sc->tx_prod_bseq = 0x%04X\n", 6917 __FUNCTION__, 6918 MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 6919 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 6920 6921 /* Set the tx timeout. */ 6922 sc->watchdog_timer = BCE_TX_TIMEOUT; 6923 6924 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); 6925 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); 6926 6927 bce_start_locked_exit: 6928 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 6929 return; 6930 } 6931 6932 6933 /****************************************************************************/ 6934 /* Main transmit routine when called from another routine without a lock. */ 6935 /* */ 6936 /* Returns: */ 6937 /* Nothing. */ 6938 /****************************************************************************/ 6939 static void 6940 bce_start(struct ifnet *ifp) 6941 { 6942 struct bce_softc *sc = ifp->if_softc; 6943 6944 DBENTER(BCE_VERBOSE_SEND); 6945 6946 BCE_LOCK(sc); 6947 bce_start_locked(ifp); 6948 BCE_UNLOCK(sc); 6949 6950 DBEXIT(BCE_VERBOSE_SEND); 6951 } 6952 6953 6954 /****************************************************************************/ 6955 /* Handles any IOCTL calls from the operating system. */ 6956 /* */ 6957 /* Returns: */ 6958 /* 0 for success, positive value for failure. */ 6959 /****************************************************************************/ 6960 static int 6961 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 6962 { 6963 struct bce_softc *sc = ifp->if_softc; 6964 struct ifreq *ifr = (struct ifreq *) data; 6965 struct mii_data *mii; 6966 int mask, error = 0; 6967 6968 DBENTER(BCE_VERBOSE_MISC); 6969 6970 switch(command) { 6971 6972 /* Set the interface MTU. */ 6973 case SIOCSIFMTU: 6974 /* Check that the MTU setting is supported. */ 6975 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 6976 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 6977 error = EINVAL; 6978 break; 6979 } 6980 6981 DBPRINT(sc, BCE_INFO_MISC, 6982 "SIOCSIFMTU: Changing MTU from %d to %d\n", 6983 (int) ifp->if_mtu, (int) ifr->ifr_mtu); 6984 6985 BCE_LOCK(sc); 6986 ifp->if_mtu = ifr->ifr_mtu; 6987 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6988 #ifdef BCE_JUMBO_HDRSPLIT 6989 /* No buffer allocation size changes are necessary. */ 6990 #else 6991 /* Recalculate our buffer allocation sizes. */ 6992 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN) > MCLBYTES) { 6993 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; 6994 sc->rx_bd_mbuf_align_pad = roundup2(MJUM9BYTES, 16) - MJUM9BYTES; 6995 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 6996 sc->rx_bd_mbuf_align_pad; 6997 } else { 6998 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 6999 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES; 7000 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 7001 sc->rx_bd_mbuf_align_pad; 7002 } 7003 #endif 7004 7005 bce_init_locked(sc); 7006 BCE_UNLOCK(sc); 7007 break; 7008 7009 /* Set interface flags. */ 7010 case SIOCSIFFLAGS: 7011 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 7012 7013 BCE_LOCK(sc); 7014 7015 /* Check if the interface is up. */ 7016 if (ifp->if_flags & IFF_UP) { 7017 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7018 /* Change promiscuous/multicast flags as necessary. */ 7019 bce_set_rx_mode(sc); 7020 } else { 7021 /* Start the HW */ 7022 bce_init_locked(sc); 7023 } 7024 } else { 7025 /* The interface is down, check if driver is running. */ 7026 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7027 bce_stop(sc); 7028 7029 /* If MFW is running, restart the controller a bit. */ 7030 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 7031 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 7032 bce_chipinit(sc); 7033 bce_mgmt_init_locked(sc); 7034 } 7035 } 7036 } 7037 7038 BCE_UNLOCK(sc); 7039 error = 0; 7040 7041 break; 7042 7043 /* Add/Delete multicast address */ 7044 case SIOCADDMULTI: 7045 case SIOCDELMULTI: 7046 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCADDMULTI/SIOCDELMULTI\n"); 7047 7048 BCE_LOCK(sc); 7049 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7050 bce_set_rx_mode(sc); 7051 error = 0; 7052 } 7053 BCE_UNLOCK(sc); 7054 7055 break; 7056 7057 /* Set/Get Interface media */ 7058 case SIOCSIFMEDIA: 7059 case SIOCGIFMEDIA: 7060 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 7061 7062 mii = device_get_softc(sc->bce_miibus); 7063 error = ifmedia_ioctl(ifp, ifr, 7064 &mii->mii_media, command); 7065 break; 7066 7067 /* Set interface capability */ 7068 case SIOCSIFCAP: 7069 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 7070 DBPRINT(sc, BCE_INFO_MISC, "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 7071 7072 /* Toggle the TX checksum capabilites enable flag. */ 7073 if (mask & IFCAP_TXCSUM) { 7074 ifp->if_capenable ^= IFCAP_TXCSUM; 7075 if (IFCAP_TXCSUM & ifp->if_capenable) 7076 ifp->if_hwassist = BCE_IF_HWASSIST; 7077 else 7078 ifp->if_hwassist = 0; 7079 } 7080 7081 /* Toggle the RX checksum capabilities enable flag. */ 7082 if (mask & IFCAP_RXCSUM) { 7083 ifp->if_capenable ^= IFCAP_RXCSUM; 7084 if (IFCAP_RXCSUM & ifp->if_capenable) 7085 ifp->if_hwassist = BCE_IF_HWASSIST; 7086 else 7087 ifp->if_hwassist = 0; 7088 } 7089 7090 /* Toggle the TSO capabilities enable flag. */ 7091 if (bce_tso_enable && (mask & IFCAP_TSO4)) { 7092 ifp->if_capenable ^= IFCAP_TSO4; 7093 if (IFCAP_RXCSUM & ifp->if_capenable) 7094 ifp->if_hwassist = BCE_IF_HWASSIST; 7095 else 7096 ifp->if_hwassist = 0; 7097 } 7098 7099 /* Toggle VLAN_MTU capabilities enable flag. */ 7100 if (mask & IFCAP_VLAN_MTU) { 7101 BCE_PRINTF("%s(%d): Changing VLAN_MTU not supported.\n", 7102 __FILE__, __LINE__); 7103 } 7104 7105 /* Toggle VLANHWTAG capabilities enabled flag. */ 7106 if (mask & IFCAP_VLAN_HWTAGGING) { 7107 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) 7108 BCE_PRINTF("%s(%d): Cannot change VLAN_HWTAGGING while " 7109 "management firmware (ASF/IPMI/UMP) is running!\n", 7110 __FILE__, __LINE__); 7111 else 7112 BCE_PRINTF("%s(%d): Changing VLAN_HWTAGGING not supported!\n", 7113 __FILE__, __LINE__); 7114 } 7115 7116 break; 7117 default: 7118 /* We don't know how to handle the IOCTL, pass it on. */ 7119 error = ether_ioctl(ifp, command, data); 7120 break; 7121 } 7122 7123 DBEXIT(BCE_VERBOSE_MISC); 7124 return(error); 7125 } 7126 7127 7128 /****************************************************************************/ 7129 /* Transmit timeout handler. */ 7130 /* */ 7131 /* Returns: */ 7132 /* Nothing. */ 7133 /****************************************************************************/ 7134 static void 7135 bce_watchdog(struct bce_softc *sc) 7136 { 7137 DBENTER(BCE_EXTREME_SEND); 7138 7139 BCE_LOCK_ASSERT(sc); 7140 7141 /* If the watchdog timer hasn't expired then just exit. */ 7142 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 7143 goto bce_watchdog_exit; 7144 7145 /* If pause frames are active then don't reset the hardware. */ 7146 /* ToDo: Should we reset the timer here? */ 7147 if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 7148 goto bce_watchdog_exit; 7149 7150 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 7151 __FILE__, __LINE__); 7152 7153 DBRUNMSG(BCE_INFO, 7154 bce_dump_driver_state(sc); 7155 bce_dump_status_block(sc); 7156 bce_dump_stats_block(sc); 7157 bce_dump_ftqs(sc); 7158 bce_dump_txp_state(sc, 0); 7159 bce_dump_rxp_state(sc, 0); 7160 bce_dump_tpat_state(sc, 0); 7161 bce_dump_cp_state(sc, 0); 7162 bce_dump_com_state(sc, 0)); 7163 7164 DBRUN(bce_breakpoint(sc)); 7165 7166 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7167 7168 bce_init_locked(sc); 7169 sc->bce_ifp->if_oerrors++; 7170 7171 bce_watchdog_exit: 7172 DBEXIT(BCE_EXTREME_SEND); 7173 } 7174 7175 7176 /* 7177 * Interrupt handler. 7178 */ 7179 /****************************************************************************/ 7180 /* Main interrupt entry point. Verifies that the controller generated the */ 7181 /* interrupt and then calls a separate routine for handle the various */ 7182 /* interrupt causes (PHY, TX, RX). */ 7183 /* */ 7184 /* Returns: */ 7185 /* 0 for success, positive value for failure. */ 7186 /****************************************************************************/ 7187 static void 7188 bce_intr(void *xsc) 7189 { 7190 struct bce_softc *sc; 7191 struct ifnet *ifp; 7192 u32 status_attn_bits; 7193 u16 hw_rx_cons, hw_tx_cons; 7194 7195 sc = xsc; 7196 ifp = sc->bce_ifp; 7197 7198 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7199 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 7200 7201 BCE_LOCK(sc); 7202 7203 DBRUN(sc->interrupts_generated++); 7204 7205 /* Synchnorize before we read from interface's status block */ 7206 bus_dmamap_sync(sc->status_tag, sc->status_map, 7207 BUS_DMASYNC_POSTREAD); 7208 7209 /* 7210 * If the hardware status block index 7211 * matches the last value read by the 7212 * driver and we haven't asserted our 7213 * interrupt then there's nothing to do. 7214 */ 7215 if ((sc->status_block->status_idx == sc->last_status_idx) && 7216 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { 7217 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", 7218 __FUNCTION__); 7219 goto bce_intr_exit; 7220 } 7221 7222 /* Ack the interrupt and stop others from occuring. */ 7223 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7224 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 7225 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7226 7227 /* Check if the hardware has finished any work. */ 7228 hw_rx_cons = bce_get_hw_rx_cons(sc); 7229 hw_tx_cons = bce_get_hw_tx_cons(sc); 7230 7231 /* Keep processing data as long as there is work to do. */ 7232 for (;;) { 7233 7234 status_attn_bits = sc->status_block->status_attn_bits; 7235 7236 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control), 7237 BCE_PRINTF("Simulating unexpected status attention bit set."); 7238 sc->unexpected_attention_sim_count++; 7239 status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR); 7240 7241 /* Was it a link change interrupt? */ 7242 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 7243 (sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) { 7244 bce_phy_intr(sc); 7245 7246 /* Clear any transient status updates during link state change. */ 7247 REG_WR(sc, BCE_HC_COMMAND, 7248 sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT); 7249 REG_RD(sc, BCE_HC_COMMAND); 7250 } 7251 7252 /* If any other attention is asserted then the chip is toast. */ 7253 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 7254 (sc->status_block->status_attn_bits_ack & 7255 ~STATUS_ATTN_BITS_LINK_STATE))) { 7256 7257 sc->unexpected_attention_count++; 7258 7259 BCE_PRINTF("%s(%d): Fatal attention detected: 0x%08X\n", 7260 __FILE__, __LINE__, sc->status_block->status_attn_bits); 7261 7262 DBRUNMSG(BCE_FATAL, 7263 if (unexpected_attention_sim_control == 0) 7264 bce_breakpoint(sc)); 7265 7266 bce_init_locked(sc); 7267 goto bce_intr_exit; 7268 } 7269 7270 /* Check for any completed RX frames. */ 7271 if (hw_rx_cons != sc->hw_rx_cons) 7272 bce_rx_intr(sc); 7273 7274 /* Check for any completed TX frames. */ 7275 if (hw_tx_cons != sc->hw_tx_cons) 7276 bce_tx_intr(sc); 7277 7278 /* Save the status block index value for use during the next interrupt. */ 7279 sc->last_status_idx = sc->status_block->status_idx; 7280 7281 /* Prevent speculative reads from getting ahead of the status block. */ 7282 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 7283 BUS_SPACE_BARRIER_READ); 7284 7285 /* If there's no work left then exit the interrupt service routine. */ 7286 hw_rx_cons = bce_get_hw_rx_cons(sc); 7287 hw_tx_cons = bce_get_hw_tx_cons(sc); 7288 7289 if ((hw_rx_cons == sc->hw_rx_cons) && (hw_tx_cons == sc->hw_tx_cons)) 7290 break; 7291 7292 } 7293 7294 bus_dmamap_sync(sc->status_tag, sc->status_map, 7295 BUS_DMASYNC_PREREAD); 7296 7297 /* Re-enable interrupts. */ 7298 bce_enable_intr(sc, 0); 7299 7300 /* Handle any frames that arrived while handling the interrupt. */ 7301 if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 7302 bce_start_locked(ifp); 7303 7304 bce_intr_exit: 7305 BCE_UNLOCK(sc); 7306 7307 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7308 } 7309 7310 7311 /****************************************************************************/ 7312 /* Programs the various packet receive modes (broadcast and multicast). */ 7313 /* */ 7314 /* Returns: */ 7315 /* Nothing. */ 7316 /****************************************************************************/ 7317 static void 7318 bce_set_rx_mode(struct bce_softc *sc) 7319 { 7320 struct ifnet *ifp; 7321 struct ifmultiaddr *ifma; 7322 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 7323 u32 rx_mode, sort_mode; 7324 int h, i; 7325 7326 DBENTER(BCE_VERBOSE_MISC); 7327 7328 BCE_LOCK_ASSERT(sc); 7329 7330 ifp = sc->bce_ifp; 7331 7332 /* Initialize receive mode default settings. */ 7333 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 7334 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 7335 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 7336 7337 /* 7338 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 7339 * be enbled. 7340 */ 7341 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 7342 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 7343 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 7344 7345 /* 7346 * Check for promiscuous, all multicast, or selected 7347 * multicast address filtering. 7348 */ 7349 if (ifp->if_flags & IFF_PROMISC) { 7350 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 7351 7352 /* Enable promiscuous mode. */ 7353 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 7354 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 7355 } else if (ifp->if_flags & IFF_ALLMULTI) { 7356 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 7357 7358 /* Enable all multicast addresses. */ 7359 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 7360 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); 7361 } 7362 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 7363 } else { 7364 /* Accept one or more multicast(s). */ 7365 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 7366 7367 if_maddr_rlock(ifp); 7368 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 7369 if (ifma->ifma_addr->sa_family != AF_LINK) 7370 continue; 7371 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 7372 ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; 7373 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 7374 } 7375 if_maddr_runlock(ifp); 7376 7377 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 7378 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 7379 7380 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 7381 } 7382 7383 /* Only make changes if the recive mode has actually changed. */ 7384 if (rx_mode != sc->rx_mode) { 7385 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: 0x%08X\n", 7386 rx_mode); 7387 7388 sc->rx_mode = rx_mode; 7389 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 7390 } 7391 7392 /* Disable and clear the exisitng sort before enabling a new sort. */ 7393 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 7394 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 7395 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 7396 7397 DBEXIT(BCE_VERBOSE_MISC); 7398 } 7399 7400 7401 /****************************************************************************/ 7402 /* Called periodically to updates statistics from the controllers */ 7403 /* statistics block. */ 7404 /* */ 7405 /* Returns: */ 7406 /* Nothing. */ 7407 /****************************************************************************/ 7408 static void 7409 bce_stats_update(struct bce_softc *sc) 7410 { 7411 struct ifnet *ifp; 7412 struct statistics_block *stats; 7413 7414 DBENTER(BCE_EXTREME_MISC); 7415 7416 ifp = sc->bce_ifp; 7417 7418 stats = (struct statistics_block *) sc->stats_block; 7419 7420 /* 7421 * Certain controllers don't report 7422 * carrier sense errors correctly. 7423 * See errata E11_5708CA0_1165. 7424 */ 7425 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 7426 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 7427 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 7428 7429 /* 7430 * Update the sysctl statistics from the 7431 * hardware statistics. 7432 */ 7433 sc->stat_IfHCInOctets = 7434 ((u64) stats->stat_IfHCInOctets_hi << 32) + 7435 (u64) stats->stat_IfHCInOctets_lo; 7436 7437 sc->stat_IfHCInBadOctets = 7438 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 7439 (u64) stats->stat_IfHCInBadOctets_lo; 7440 7441 sc->stat_IfHCOutOctets = 7442 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 7443 (u64) stats->stat_IfHCOutOctets_lo; 7444 7445 sc->stat_IfHCOutBadOctets = 7446 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 7447 (u64) stats->stat_IfHCOutBadOctets_lo; 7448 7449 sc->stat_IfHCInUcastPkts = 7450 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 7451 (u64) stats->stat_IfHCInUcastPkts_lo; 7452 7453 sc->stat_IfHCInMulticastPkts = 7454 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 7455 (u64) stats->stat_IfHCInMulticastPkts_lo; 7456 7457 sc->stat_IfHCInBroadcastPkts = 7458 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 7459 (u64) stats->stat_IfHCInBroadcastPkts_lo; 7460 7461 sc->stat_IfHCOutUcastPkts = 7462 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 7463 (u64) stats->stat_IfHCOutUcastPkts_lo; 7464 7465 sc->stat_IfHCOutMulticastPkts = 7466 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 7467 (u64) stats->stat_IfHCOutMulticastPkts_lo; 7468 7469 sc->stat_IfHCOutBroadcastPkts = 7470 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 7471 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 7472 7473 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 7474 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 7475 7476 sc->stat_Dot3StatsCarrierSenseErrors = 7477 stats->stat_Dot3StatsCarrierSenseErrors; 7478 7479 sc->stat_Dot3StatsFCSErrors = 7480 stats->stat_Dot3StatsFCSErrors; 7481 7482 sc->stat_Dot3StatsAlignmentErrors = 7483 stats->stat_Dot3StatsAlignmentErrors; 7484 7485 sc->stat_Dot3StatsSingleCollisionFrames = 7486 stats->stat_Dot3StatsSingleCollisionFrames; 7487 7488 sc->stat_Dot3StatsMultipleCollisionFrames = 7489 stats->stat_Dot3StatsMultipleCollisionFrames; 7490 7491 sc->stat_Dot3StatsDeferredTransmissions = 7492 stats->stat_Dot3StatsDeferredTransmissions; 7493 7494 sc->stat_Dot3StatsExcessiveCollisions = 7495 stats->stat_Dot3StatsExcessiveCollisions; 7496 7497 sc->stat_Dot3StatsLateCollisions = 7498 stats->stat_Dot3StatsLateCollisions; 7499 7500 sc->stat_EtherStatsCollisions = 7501 stats->stat_EtherStatsCollisions; 7502 7503 sc->stat_EtherStatsFragments = 7504 stats->stat_EtherStatsFragments; 7505 7506 sc->stat_EtherStatsJabbers = 7507 stats->stat_EtherStatsJabbers; 7508 7509 sc->stat_EtherStatsUndersizePkts = 7510 stats->stat_EtherStatsUndersizePkts; 7511 7512 sc->stat_EtherStatsOversizePkts = 7513 stats->stat_EtherStatsOversizePkts; 7514 7515 sc->stat_EtherStatsPktsRx64Octets = 7516 stats->stat_EtherStatsPktsRx64Octets; 7517 7518 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 7519 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 7520 7521 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 7522 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 7523 7524 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 7525 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 7526 7527 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 7528 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 7529 7530 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 7531 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 7532 7533 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 7534 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 7535 7536 sc->stat_EtherStatsPktsTx64Octets = 7537 stats->stat_EtherStatsPktsTx64Octets; 7538 7539 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 7540 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 7541 7542 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 7543 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 7544 7545 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 7546 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 7547 7548 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 7549 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 7550 7551 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 7552 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 7553 7554 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 7555 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 7556 7557 sc->stat_XonPauseFramesReceived = 7558 stats->stat_XonPauseFramesReceived; 7559 7560 sc->stat_XoffPauseFramesReceived = 7561 stats->stat_XoffPauseFramesReceived; 7562 7563 sc->stat_OutXonSent = 7564 stats->stat_OutXonSent; 7565 7566 sc->stat_OutXoffSent = 7567 stats->stat_OutXoffSent; 7568 7569 sc->stat_FlowControlDone = 7570 stats->stat_FlowControlDone; 7571 7572 sc->stat_MacControlFramesReceived = 7573 stats->stat_MacControlFramesReceived; 7574 7575 sc->stat_XoffStateEntered = 7576 stats->stat_XoffStateEntered; 7577 7578 sc->stat_IfInFramesL2FilterDiscards = 7579 stats->stat_IfInFramesL2FilterDiscards; 7580 7581 sc->stat_IfInRuleCheckerDiscards = 7582 stats->stat_IfInRuleCheckerDiscards; 7583 7584 sc->stat_IfInFTQDiscards = 7585 stats->stat_IfInFTQDiscards; 7586 7587 sc->stat_IfInMBUFDiscards = 7588 stats->stat_IfInMBUFDiscards; 7589 7590 sc->stat_IfInRuleCheckerP4Hit = 7591 stats->stat_IfInRuleCheckerP4Hit; 7592 7593 sc->stat_CatchupInRuleCheckerDiscards = 7594 stats->stat_CatchupInRuleCheckerDiscards; 7595 7596 sc->stat_CatchupInFTQDiscards = 7597 stats->stat_CatchupInFTQDiscards; 7598 7599 sc->stat_CatchupInMBUFDiscards = 7600 stats->stat_CatchupInMBUFDiscards; 7601 7602 sc->stat_CatchupInRuleCheckerP4Hit = 7603 stats->stat_CatchupInRuleCheckerP4Hit; 7604 7605 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 7606 7607 /* 7608 * Update the interface statistics from the 7609 * hardware statistics. 7610 */ 7611 ifp->if_collisions = 7612 (u_long) sc->stat_EtherStatsCollisions; 7613 7614 /* ToDo: This method loses soft errors. */ 7615 ifp->if_ierrors = 7616 (u_long) sc->stat_EtherStatsUndersizePkts + 7617 (u_long) sc->stat_EtherStatsOversizePkts + 7618 (u_long) sc->stat_IfInMBUFDiscards + 7619 (u_long) sc->stat_Dot3StatsAlignmentErrors + 7620 (u_long) sc->stat_Dot3StatsFCSErrors + 7621 (u_long) sc->stat_IfInRuleCheckerDiscards + 7622 (u_long) sc->stat_IfInFTQDiscards + 7623 (u_long) sc->com_no_buffers; 7624 7625 /* ToDo: This method loses soft errors. */ 7626 ifp->if_oerrors = 7627 (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 7628 (u_long) sc->stat_Dot3StatsExcessiveCollisions + 7629 (u_long) sc->stat_Dot3StatsLateCollisions; 7630 7631 /* ToDo: Add additional statistics. */ 7632 7633 DBEXIT(BCE_EXTREME_MISC); 7634 } 7635 7636 7637 /****************************************************************************/ 7638 /* Periodic function to notify the bootcode that the driver is still */ 7639 /* present. */ 7640 /* */ 7641 /* Returns: */ 7642 /* Nothing. */ 7643 /****************************************************************************/ 7644 static void 7645 bce_pulse(void *xsc) 7646 { 7647 struct bce_softc *sc = xsc; 7648 u32 msg; 7649 7650 DBENTER(BCE_EXTREME_MISC); 7651 7652 BCE_LOCK_ASSERT(sc); 7653 7654 /* Tell the firmware that the driver is still running. */ 7655 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 7656 bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg); 7657 7658 /* Schedule the next pulse. */ 7659 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 7660 7661 DBEXIT(BCE_EXTREME_MISC); 7662 } 7663 7664 7665 /****************************************************************************/ 7666 /* Periodic function to perform maintenance tasks. */ 7667 /* */ 7668 /* Returns: */ 7669 /* Nothing. */ 7670 /****************************************************************************/ 7671 static void 7672 bce_tick(void *xsc) 7673 { 7674 struct bce_softc *sc = xsc; 7675 struct mii_data *mii; 7676 struct ifnet *ifp; 7677 7678 ifp = sc->bce_ifp; 7679 7680 DBENTER(BCE_EXTREME_MISC); 7681 7682 BCE_LOCK_ASSERT(sc); 7683 7684 /* Schedule the next tick. */ 7685 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 7686 7687 /* Update the statistics from the hardware statistics block. */ 7688 bce_stats_update(sc); 7689 7690 /* Top off the receive and page chains. */ 7691 #ifdef BCE_JUMBO_HDRSPLIT 7692 bce_fill_pg_chain(sc); 7693 #endif 7694 bce_fill_rx_chain(sc); 7695 7696 /* Check that chip hasn't hung. */ 7697 bce_watchdog(sc); 7698 7699 /* If link is up already up then we're done. */ 7700 if (sc->bce_link) 7701 goto bce_tick_exit; 7702 7703 /* Link is down. Check what the PHY's doing. */ 7704 mii = device_get_softc(sc->bce_miibus); 7705 mii_tick(mii); 7706 7707 /* Check if the link has come up. */ 7708 if ((mii->mii_media_status & IFM_ACTIVE) && 7709 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { 7710 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", __FUNCTION__); 7711 sc->bce_link++; 7712 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 7713 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) && 7714 bootverbose) 7715 BCE_PRINTF("Gigabit link up!\n"); 7716 /* Now that link is up, handle any outstanding TX traffic. */ 7717 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 7718 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found pending TX traffic.\n", 7719 __FUNCTION__); 7720 bce_start_locked(ifp); 7721 } 7722 } 7723 7724 bce_tick_exit: 7725 DBEXIT(BCE_EXTREME_MISC); 7726 return; 7727 } 7728 7729 7730 #ifdef BCE_DEBUG 7731 /****************************************************************************/ 7732 /* Allows the driver state to be dumped through the sysctl interface. */ 7733 /* */ 7734 /* Returns: */ 7735 /* 0 for success, positive value for failure. */ 7736 /****************************************************************************/ 7737 static int 7738 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 7739 { 7740 int error; 7741 int result; 7742 struct bce_softc *sc; 7743 7744 result = -1; 7745 error = sysctl_handle_int(oidp, &result, 0, req); 7746 7747 if (error || !req->newptr) 7748 return (error); 7749 7750 if (result == 1) { 7751 sc = (struct bce_softc *)arg1; 7752 bce_dump_driver_state(sc); 7753 } 7754 7755 return error; 7756 } 7757 7758 7759 /****************************************************************************/ 7760 /* Allows the hardware state to be dumped through the sysctl interface. */ 7761 /* */ 7762 /* Returns: */ 7763 /* 0 for success, positive value for failure. */ 7764 /****************************************************************************/ 7765 static int 7766 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 7767 { 7768 int error; 7769 int result; 7770 struct bce_softc *sc; 7771 7772 result = -1; 7773 error = sysctl_handle_int(oidp, &result, 0, req); 7774 7775 if (error || !req->newptr) 7776 return (error); 7777 7778 if (result == 1) { 7779 sc = (struct bce_softc *)arg1; 7780 bce_dump_hw_state(sc); 7781 } 7782 7783 return error; 7784 } 7785 7786 7787 /****************************************************************************/ 7788 /* Allows the bootcode state to be dumped through the sysctl interface. */ 7789 /* */ 7790 /* Returns: */ 7791 /* 0 for success, positive value for failure. */ 7792 /****************************************************************************/ 7793 static int 7794 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 7795 { 7796 int error; 7797 int result; 7798 struct bce_softc *sc; 7799 7800 result = -1; 7801 error = sysctl_handle_int(oidp, &result, 0, req); 7802 7803 if (error || !req->newptr) 7804 return (error); 7805 7806 if (result == 1) { 7807 sc = (struct bce_softc *)arg1; 7808 bce_dump_bc_state(sc); 7809 } 7810 7811 return error; 7812 } 7813 7814 7815 /****************************************************************************/ 7816 /* Provides a sysctl interface to allow dumping the RX chain. */ 7817 /* */ 7818 /* Returns: */ 7819 /* 0 for success, positive value for failure. */ 7820 /****************************************************************************/ 7821 static int 7822 bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS) 7823 { 7824 int error; 7825 int result; 7826 struct bce_softc *sc; 7827 7828 result = -1; 7829 error = sysctl_handle_int(oidp, &result, 0, req); 7830 7831 if (error || !req->newptr) 7832 return (error); 7833 7834 if (result == 1) { 7835 sc = (struct bce_softc *)arg1; 7836 bce_dump_rx_chain(sc, 0, TOTAL_RX_BD); 7837 } 7838 7839 return error; 7840 } 7841 7842 7843 /****************************************************************************/ 7844 /* Provides a sysctl interface to allow dumping the TX chain. */ 7845 /* */ 7846 /* Returns: */ 7847 /* 0 for success, positive value for failure. */ 7848 /****************************************************************************/ 7849 static int 7850 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 7851 { 7852 int error; 7853 int result; 7854 struct bce_softc *sc; 7855 7856 result = -1; 7857 error = sysctl_handle_int(oidp, &result, 0, req); 7858 7859 if (error || !req->newptr) 7860 return (error); 7861 7862 if (result == 1) { 7863 sc = (struct bce_softc *)arg1; 7864 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 7865 } 7866 7867 return error; 7868 } 7869 7870 7871 #ifdef BCE_JUMBO_HDRSPLIT 7872 /****************************************************************************/ 7873 /* Provides a sysctl interface to allow dumping the page chain. */ 7874 /* */ 7875 /* Returns: */ 7876 /* 0 for success, positive value for failure. */ 7877 /****************************************************************************/ 7878 static int 7879 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) 7880 { 7881 int error; 7882 int result; 7883 struct bce_softc *sc; 7884 7885 result = -1; 7886 error = sysctl_handle_int(oidp, &result, 0, req); 7887 7888 if (error || !req->newptr) 7889 return (error); 7890 7891 if (result == 1) { 7892 sc = (struct bce_softc *)arg1; 7893 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD); 7894 } 7895 7896 return error; 7897 } 7898 #endif 7899 7900 /****************************************************************************/ 7901 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ 7902 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7903 /* */ 7904 /* Returns: */ 7905 /* 0 for success, positive value for failure. */ 7906 /****************************************************************************/ 7907 static int 7908 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) 7909 { 7910 struct bce_softc *sc = (struct bce_softc *)arg1; 7911 int error; 7912 u32 result; 7913 u32 val[1]; 7914 u8 *data = (u8 *) val; 7915 7916 result = -1; 7917 error = sysctl_handle_int(oidp, &result, 0, req); 7918 if (error || (req->newptr == NULL)) 7919 return (error); 7920 7921 bce_nvram_read(sc, result, data, 4); 7922 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); 7923 7924 return (error); 7925 } 7926 7927 7928 /****************************************************************************/ 7929 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 7930 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7931 /* */ 7932 /* Returns: */ 7933 /* 0 for success, positive value for failure. */ 7934 /****************************************************************************/ 7935 static int 7936 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 7937 { 7938 struct bce_softc *sc = (struct bce_softc *)arg1; 7939 int error; 7940 u32 val, result; 7941 7942 result = -1; 7943 error = sysctl_handle_int(oidp, &result, 0, req); 7944 if (error || (req->newptr == NULL)) 7945 return (error); 7946 7947 /* Make sure the register is accessible. */ 7948 if (result < 0x8000) { 7949 val = REG_RD(sc, result); 7950 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 7951 } else if (result < 0x0280000) { 7952 val = REG_RD_IND(sc, result); 7953 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 7954 } 7955 7956 return (error); 7957 } 7958 7959 7960 /****************************************************************************/ 7961 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 7962 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7963 /* */ 7964 /* Returns: */ 7965 /* 0 for success, positive value for failure. */ 7966 /****************************************************************************/ 7967 static int 7968 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 7969 { 7970 struct bce_softc *sc; 7971 device_t dev; 7972 int error, result; 7973 u16 val; 7974 7975 result = -1; 7976 error = sysctl_handle_int(oidp, &result, 0, req); 7977 if (error || (req->newptr == NULL)) 7978 return (error); 7979 7980 /* Make sure the register is accessible. */ 7981 if (result < 0x20) { 7982 sc = (struct bce_softc *)arg1; 7983 dev = sc->bce_dev; 7984 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 7985 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 7986 } 7987 return (error); 7988 } 7989 7990 7991 /****************************************************************************/ 7992 /* Provides a sysctl interface to allow reading a CID. */ 7993 /* */ 7994 /* Returns: */ 7995 /* 0 for success, positive value for failure. */ 7996 /****************************************************************************/ 7997 static int 7998 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) 7999 { 8000 struct bce_softc *sc; 8001 int error; 8002 u16 result; 8003 8004 result = -1; 8005 error = sysctl_handle_int(oidp, &result, 0, req); 8006 if (error || (req->newptr == NULL)) 8007 return (error); 8008 8009 /* Make sure the register is accessible. */ 8010 if (result <= TX_CID) { 8011 sc = (struct bce_softc *)arg1; 8012 bce_dump_ctx(sc, result); 8013 } 8014 8015 return (error); 8016 } 8017 8018 8019 /****************************************************************************/ 8020 /* Provides a sysctl interface to forcing the driver to dump state and */ 8021 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8022 /* */ 8023 /* Returns: */ 8024 /* 0 for success, positive value for failure. */ 8025 /****************************************************************************/ 8026 static int 8027 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 8028 { 8029 int error; 8030 int result; 8031 struct bce_softc *sc; 8032 8033 result = -1; 8034 error = sysctl_handle_int(oidp, &result, 0, req); 8035 8036 if (error || !req->newptr) 8037 return (error); 8038 8039 if (result == 1) { 8040 sc = (struct bce_softc *)arg1; 8041 bce_breakpoint(sc); 8042 } 8043 8044 return error; 8045 } 8046 #endif 8047 8048 8049 /****************************************************************************/ 8050 /* Adds any sysctl parameters for tuning or debugging purposes. */ 8051 /* */ 8052 /* Returns: */ 8053 /* 0 for success, positive value for failure. */ 8054 /****************************************************************************/ 8055 static void 8056 bce_add_sysctls(struct bce_softc *sc) 8057 { 8058 struct sysctl_ctx_list *ctx; 8059 struct sysctl_oid_list *children; 8060 8061 DBENTER(BCE_VERBOSE_MISC); 8062 8063 ctx = device_get_sysctl_ctx(sc->bce_dev); 8064 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 8065 8066 #ifdef BCE_DEBUG 8067 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8068 "l2fhdr_error_sim_control", 8069 CTLFLAG_RW, &l2fhdr_error_sim_control, 8070 0, "Debug control to force l2fhdr errors"); 8071 8072 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8073 "l2fhdr_error_sim_count", 8074 CTLFLAG_RD, &sc->l2fhdr_error_sim_count, 8075 0, "Number of simulated l2_fhdr errors"); 8076 #endif 8077 8078 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8079 "l2fhdr_error_count", 8080 CTLFLAG_RD, &sc->l2fhdr_error_count, 8081 0, "Number of l2_fhdr errors"); 8082 8083 #ifdef BCE_DEBUG 8084 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8085 "mbuf_alloc_failed_sim_control", 8086 CTLFLAG_RW, &mbuf_alloc_failed_sim_control, 8087 0, "Debug control to force mbuf allocation failures"); 8088 8089 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8090 "mbuf_alloc_failed_sim_count", 8091 CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count, 8092 0, "Number of simulated mbuf cluster allocation failures"); 8093 #endif 8094 8095 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8096 "mbuf_alloc_failed_count", 8097 CTLFLAG_RD, &sc->mbuf_alloc_failed_count, 8098 0, "Number of mbuf allocation failures"); 8099 8100 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8101 "fragmented_mbuf_count", 8102 CTLFLAG_RD, &sc->fragmented_mbuf_count, 8103 0, "Number of fragmented mbufs"); 8104 8105 #ifdef BCE_DEBUG 8106 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8107 "dma_map_addr_failed_sim_control", 8108 CTLFLAG_RW, &dma_map_addr_failed_sim_control, 8109 0, "Debug control to force DMA mapping failures"); 8110 8111 /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */ 8112 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8113 "dma_map_addr_failed_sim_count", 8114 CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count, 8115 0, "Number of simulated DMA mapping failures"); 8116 8117 #endif 8118 8119 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8120 "dma_map_addr_rx_failed_count", 8121 CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count, 8122 0, "Number of RX DMA mapping failures"); 8123 8124 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8125 "dma_map_addr_tx_failed_count", 8126 CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count, 8127 0, "Number of TX DMA mapping failures"); 8128 8129 #ifdef BCE_DEBUG 8130 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8131 "unexpected_attention_sim_control", 8132 CTLFLAG_RW, &unexpected_attention_sim_control, 8133 0, "Debug control to simulate unexpected attentions"); 8134 8135 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8136 "unexpected_attention_sim_count", 8137 CTLFLAG_RW, &sc->unexpected_attention_sim_count, 8138 0, "Number of simulated unexpected attentions"); 8139 #endif 8140 8141 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8142 "unexpected_attention_count", 8143 CTLFLAG_RW, &sc->unexpected_attention_count, 8144 0, "Number of unexpected attentions"); 8145 8146 #ifdef BCE_DEBUG 8147 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8148 "debug_bootcode_running_failure", 8149 CTLFLAG_RW, &bootcode_running_failure_sim_control, 8150 0, "Debug control to force bootcode running failures"); 8151 8152 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8153 "rx_low_watermark", 8154 CTLFLAG_RD, &sc->rx_low_watermark, 8155 0, "Lowest level of free rx_bd's"); 8156 8157 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8158 "rx_empty_count", 8159 CTLFLAG_RD, &sc->rx_empty_count, 8160 0, "Number of times the RX chain was empty"); 8161 8162 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8163 "tx_hi_watermark", 8164 CTLFLAG_RD, &sc->tx_hi_watermark, 8165 0, "Highest level of used tx_bd's"); 8166 8167 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8168 "tx_full_count", 8169 CTLFLAG_RD, &sc->tx_full_count, 8170 0, "Number of times the TX chain was full"); 8171 8172 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8173 "requested_tso_frames", 8174 CTLFLAG_RD, &sc->requested_tso_frames, 8175 0, "Number of TSO frames received"); 8176 8177 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8178 "rx_interrupts", 8179 CTLFLAG_RD, &sc->rx_interrupts, 8180 0, "Number of RX interrupts"); 8181 8182 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8183 "tx_interrupts", 8184 CTLFLAG_RD, &sc->tx_interrupts, 8185 0, "Number of TX interrupts"); 8186 8187 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8188 "rx_intr_time", 8189 CTLFLAG_RD, &sc->rx_intr_time, 8190 "RX interrupt time"); 8191 8192 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8193 "tx_intr_time", 8194 CTLFLAG_RD, &sc->tx_intr_time, 8195 "TX interrupt time"); 8196 #endif 8197 8198 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8199 "stat_IfHcInOctets", 8200 CTLFLAG_RD, &sc->stat_IfHCInOctets, 8201 "Bytes received"); 8202 8203 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8204 "stat_IfHCInBadOctets", 8205 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 8206 "Bad bytes received"); 8207 8208 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8209 "stat_IfHCOutOctets", 8210 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 8211 "Bytes sent"); 8212 8213 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8214 "stat_IfHCOutBadOctets", 8215 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 8216 "Bad bytes sent"); 8217 8218 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8219 "stat_IfHCInUcastPkts", 8220 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 8221 "Unicast packets received"); 8222 8223 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8224 "stat_IfHCInMulticastPkts", 8225 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 8226 "Multicast packets received"); 8227 8228 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8229 "stat_IfHCInBroadcastPkts", 8230 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 8231 "Broadcast packets received"); 8232 8233 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8234 "stat_IfHCOutUcastPkts", 8235 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 8236 "Unicast packets sent"); 8237 8238 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8239 "stat_IfHCOutMulticastPkts", 8240 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 8241 "Multicast packets sent"); 8242 8243 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8244 "stat_IfHCOutBroadcastPkts", 8245 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 8246 "Broadcast packets sent"); 8247 8248 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8249 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 8250 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 8251 0, "Internal MAC transmit errors"); 8252 8253 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8254 "stat_Dot3StatsCarrierSenseErrors", 8255 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 8256 0, "Carrier sense errors"); 8257 8258 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8259 "stat_Dot3StatsFCSErrors", 8260 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 8261 0, "Frame check sequence errors"); 8262 8263 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8264 "stat_Dot3StatsAlignmentErrors", 8265 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 8266 0, "Alignment errors"); 8267 8268 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8269 "stat_Dot3StatsSingleCollisionFrames", 8270 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 8271 0, "Single Collision Frames"); 8272 8273 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8274 "stat_Dot3StatsMultipleCollisionFrames", 8275 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 8276 0, "Multiple Collision Frames"); 8277 8278 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8279 "stat_Dot3StatsDeferredTransmissions", 8280 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 8281 0, "Deferred Transmissions"); 8282 8283 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8284 "stat_Dot3StatsExcessiveCollisions", 8285 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 8286 0, "Excessive Collisions"); 8287 8288 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8289 "stat_Dot3StatsLateCollisions", 8290 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 8291 0, "Late Collisions"); 8292 8293 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8294 "stat_EtherStatsCollisions", 8295 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 8296 0, "Collisions"); 8297 8298 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8299 "stat_EtherStatsFragments", 8300 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 8301 0, "Fragments"); 8302 8303 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8304 "stat_EtherStatsJabbers", 8305 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 8306 0, "Jabbers"); 8307 8308 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8309 "stat_EtherStatsUndersizePkts", 8310 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 8311 0, "Undersize packets"); 8312 8313 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8314 "stat_EtherStatsOversizePkts", 8315 CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts, 8316 0, "stat_EtherStatsOversizePkts"); 8317 8318 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8319 "stat_EtherStatsPktsRx64Octets", 8320 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 8321 0, "Bytes received in 64 byte packets"); 8322 8323 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8324 "stat_EtherStatsPktsRx65Octetsto127Octets", 8325 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 8326 0, "Bytes received in 65 to 127 byte packets"); 8327 8328 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8329 "stat_EtherStatsPktsRx128Octetsto255Octets", 8330 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 8331 0, "Bytes received in 128 to 255 byte packets"); 8332 8333 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8334 "stat_EtherStatsPktsRx256Octetsto511Octets", 8335 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 8336 0, "Bytes received in 256 to 511 byte packets"); 8337 8338 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8339 "stat_EtherStatsPktsRx512Octetsto1023Octets", 8340 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 8341 0, "Bytes received in 512 to 1023 byte packets"); 8342 8343 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8344 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 8345 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 8346 0, "Bytes received in 1024 t0 1522 byte packets"); 8347 8348 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8349 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 8350 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 8351 0, "Bytes received in 1523 to 9022 byte packets"); 8352 8353 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8354 "stat_EtherStatsPktsTx64Octets", 8355 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 8356 0, "Bytes sent in 64 byte packets"); 8357 8358 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8359 "stat_EtherStatsPktsTx65Octetsto127Octets", 8360 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 8361 0, "Bytes sent in 65 to 127 byte packets"); 8362 8363 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8364 "stat_EtherStatsPktsTx128Octetsto255Octets", 8365 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 8366 0, "Bytes sent in 128 to 255 byte packets"); 8367 8368 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8369 "stat_EtherStatsPktsTx256Octetsto511Octets", 8370 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 8371 0, "Bytes sent in 256 to 511 byte packets"); 8372 8373 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8374 "stat_EtherStatsPktsTx512Octetsto1023Octets", 8375 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 8376 0, "Bytes sent in 512 to 1023 byte packets"); 8377 8378 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8379 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 8380 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 8381 0, "Bytes sent in 1024 to 1522 byte packets"); 8382 8383 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8384 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 8385 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 8386 0, "Bytes sent in 1523 to 9022 byte packets"); 8387 8388 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8389 "stat_XonPauseFramesReceived", 8390 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 8391 0, "XON pause frames receved"); 8392 8393 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8394 "stat_XoffPauseFramesReceived", 8395 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 8396 0, "XOFF pause frames received"); 8397 8398 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8399 "stat_OutXonSent", 8400 CTLFLAG_RD, &sc->stat_OutXonSent, 8401 0, "XON pause frames sent"); 8402 8403 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8404 "stat_OutXoffSent", 8405 CTLFLAG_RD, &sc->stat_OutXoffSent, 8406 0, "XOFF pause frames sent"); 8407 8408 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8409 "stat_FlowControlDone", 8410 CTLFLAG_RD, &sc->stat_FlowControlDone, 8411 0, "Flow control done"); 8412 8413 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8414 "stat_MacControlFramesReceived", 8415 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 8416 0, "MAC control frames received"); 8417 8418 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8419 "stat_XoffStateEntered", 8420 CTLFLAG_RD, &sc->stat_XoffStateEntered, 8421 0, "XOFF state entered"); 8422 8423 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8424 "stat_IfInFramesL2FilterDiscards", 8425 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 8426 0, "Received L2 packets discarded"); 8427 8428 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8429 "stat_IfInRuleCheckerDiscards", 8430 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 8431 0, "Received packets discarded by rule"); 8432 8433 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8434 "stat_IfInFTQDiscards", 8435 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 8436 0, "Received packet FTQ discards"); 8437 8438 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8439 "stat_IfInMBUFDiscards", 8440 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 8441 0, "Received packets discarded due to lack of controller buffer memory"); 8442 8443 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8444 "stat_IfInRuleCheckerP4Hit", 8445 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 8446 0, "Received packets rule checker hits"); 8447 8448 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8449 "stat_CatchupInRuleCheckerDiscards", 8450 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 8451 0, "Received packets discarded in Catchup path"); 8452 8453 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8454 "stat_CatchupInFTQDiscards", 8455 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 8456 0, "Received packets discarded in FTQ in Catchup path"); 8457 8458 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8459 "stat_CatchupInMBUFDiscards", 8460 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 8461 0, "Received packets discarded in controller buffer memory in Catchup path"); 8462 8463 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8464 "stat_CatchupInRuleCheckerP4Hit", 8465 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 8466 0, "Received packets rule checker hits in Catchup path"); 8467 8468 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8469 "com_no_buffers", 8470 CTLFLAG_RD, &sc->com_no_buffers, 8471 0, "Valid packets received but no RX buffers available"); 8472 8473 #ifdef BCE_DEBUG 8474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8475 "driver_state", CTLTYPE_INT | CTLFLAG_RW, 8476 (void *)sc, 0, 8477 bce_sysctl_driver_state, "I", "Drive state information"); 8478 8479 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8480 "hw_state", CTLTYPE_INT | CTLFLAG_RW, 8481 (void *)sc, 0, 8482 bce_sysctl_hw_state, "I", "Hardware state information"); 8483 8484 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8485 "bc_state", CTLTYPE_INT | CTLFLAG_RW, 8486 (void *)sc, 0, 8487 bce_sysctl_bc_state, "I", "Bootcode state information"); 8488 8489 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8490 "dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW, 8491 (void *)sc, 0, 8492 bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain"); 8493 8494 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8495 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW, 8496 (void *)sc, 0, 8497 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 8498 8499 #ifdef BCE_JUMBO_HDRSPLIT 8500 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8501 "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW, 8502 (void *)sc, 0, 8503 bce_sysctl_dump_pg_chain, "I", "Dump page chain"); 8504 #endif 8505 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8506 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW, 8507 (void *)sc, 0, 8508 bce_sysctl_dump_ctx, "I", "Dump context memory"); 8509 8510 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8511 "breakpoint", CTLTYPE_INT | CTLFLAG_RW, 8512 (void *)sc, 0, 8513 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 8514 8515 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8516 "reg_read", CTLTYPE_INT | CTLFLAG_RW, 8517 (void *)sc, 0, 8518 bce_sysctl_reg_read, "I", "Register read"); 8519 8520 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8521 "nvram_read", CTLTYPE_INT | CTLFLAG_RW, 8522 (void *)sc, 0, 8523 bce_sysctl_nvram_read, "I", "NVRAM read"); 8524 8525 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8526 "phy_read", CTLTYPE_INT | CTLFLAG_RW, 8527 (void *)sc, 0, 8528 bce_sysctl_phy_read, "I", "PHY register read"); 8529 8530 #endif 8531 8532 DBEXIT(BCE_VERBOSE_MISC); 8533 } 8534 8535 8536 /****************************************************************************/ 8537 /* BCE Debug Routines */ 8538 /****************************************************************************/ 8539 #ifdef BCE_DEBUG 8540 8541 /****************************************************************************/ 8542 /* Freezes the controller to allow for a cohesive state dump. */ 8543 /* */ 8544 /* Returns: */ 8545 /* Nothing. */ 8546 /****************************************************************************/ 8547 static void 8548 bce_freeze_controller(struct bce_softc *sc) 8549 { 8550 u32 val; 8551 val = REG_RD(sc, BCE_MISC_COMMAND); 8552 val |= BCE_MISC_COMMAND_DISABLE_ALL; 8553 REG_WR(sc, BCE_MISC_COMMAND, val); 8554 } 8555 8556 8557 /****************************************************************************/ 8558 /* Unfreezes the controller after a freeze operation. This may not always */ 8559 /* work and the controller will require a reset! */ 8560 /* */ 8561 /* Returns: */ 8562 /* Nothing. */ 8563 /****************************************************************************/ 8564 static void 8565 bce_unfreeze_controller(struct bce_softc *sc) 8566 { 8567 u32 val; 8568 val = REG_RD(sc, BCE_MISC_COMMAND); 8569 val |= BCE_MISC_COMMAND_ENABLE_ALL; 8570 REG_WR(sc, BCE_MISC_COMMAND, val); 8571 } 8572 8573 8574 /****************************************************************************/ 8575 /* Prints out Ethernet frame information from an mbuf. */ 8576 /* */ 8577 /* Partially decode an Ethernet frame to look at some important headers. */ 8578 /* */ 8579 /* Returns: */ 8580 /* Nothing. */ 8581 /****************************************************************************/ 8582 static void 8583 bce_dump_enet(struct bce_softc *sc, struct mbuf *m) 8584 { 8585 struct ether_vlan_header *eh; 8586 u16 etype; 8587 int ehlen; 8588 struct ip *ip; 8589 struct tcphdr *th; 8590 struct udphdr *uh; 8591 struct arphdr *ah; 8592 8593 BCE_PRINTF( 8594 "-----------------------------" 8595 " Frame Decode " 8596 "-----------------------------\n"); 8597 8598 eh = mtod(m, struct ether_vlan_header *); 8599 8600 /* Handle VLAN encapsulation if present. */ 8601 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 8602 etype = ntohs(eh->evl_proto); 8603 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 8604 } else { 8605 etype = ntohs(eh->evl_encap_proto); 8606 ehlen = ETHER_HDR_LEN; 8607 } 8608 8609 /* ToDo: Add VLAN output. */ 8610 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", 8611 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); 8612 8613 switch (etype) { 8614 case ETHERTYPE_IP: 8615 ip = (struct ip *)(m->m_data + ehlen); 8616 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, len = %d bytes, " 8617 "protocol = 0x%02X, xsum = 0x%04X\n", 8618 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), 8619 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); 8620 8621 switch (ip->ip_p) { 8622 case IPPROTO_TCP: 8623 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 8624 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = %d bytes, " 8625 "flags = 0x%b, csum = 0x%04X\n", 8626 ntohs(th->th_dport), ntohs(th->th_sport), (th->th_off << 2), 8627 th->th_flags, "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST\02SYN\01FIN", 8628 ntohs(th->th_sum)); 8629 break; 8630 case IPPROTO_UDP: 8631 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 8632 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d bytes, " 8633 "csum = 0x%04X\n", ntohs(uh->uh_dport), ntohs(uh->uh_sport), 8634 ntohs(uh->uh_ulen), ntohs(uh->uh_sum)); 8635 break; 8636 case IPPROTO_ICMP: 8637 BCE_PRINTF("icmp:\n"); 8638 break; 8639 default: 8640 BCE_PRINTF("----: Other IP protocol.\n"); 8641 } 8642 break; 8643 case ETHERTYPE_IPV6: 8644 BCE_PRINTF("ipv6: No decode supported.\n"); 8645 break; 8646 case ETHERTYPE_ARP: 8647 BCE_PRINTF("-arp: "); 8648 ah = (struct arphdr *) (m->m_data + ehlen); 8649 switch (ntohs(ah->ar_op)) { 8650 case ARPOP_REVREQUEST: 8651 printf("reverse ARP request\n"); 8652 break; 8653 case ARPOP_REVREPLY: 8654 printf("reverse ARP reply\n"); 8655 break; 8656 case ARPOP_REQUEST: 8657 printf("ARP request\n"); 8658 break; 8659 case ARPOP_REPLY: 8660 printf("ARP reply\n"); 8661 break; 8662 default: 8663 printf("other ARP operation\n"); 8664 } 8665 break; 8666 default: 8667 BCE_PRINTF("----: Other protocol.\n"); 8668 } 8669 8670 BCE_PRINTF( 8671 "-----------------------------" 8672 "--------------" 8673 "-----------------------------\n"); 8674 } 8675 8676 8677 /****************************************************************************/ 8678 /* Prints out information about an mbuf. */ 8679 /* */ 8680 /* Returns: */ 8681 /* Nothing. */ 8682 /****************************************************************************/ 8683 static __attribute__ ((noinline)) void 8684 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 8685 { 8686 struct mbuf *mp = m; 8687 8688 if (m == NULL) { 8689 BCE_PRINTF("mbuf: null pointer\n"); 8690 return; 8691 } 8692 8693 while (mp) { 8694 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, m_data = %p\n", 8695 mp, mp->m_len, mp->m_flags, 8696 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", 8697 mp->m_data); 8698 8699 if (mp->m_flags & M_PKTHDR) { 8700 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, csum_flags = %b\n", 8701 mp->m_pkthdr.len, mp->m_flags, 8702 "\20\12M_BCAST\13M_MCAST\14M_FRAG\15M_FIRSTFRAG" 8703 "\16M_LASTFRAG\21M_VLANTAG\22M_PROMISC\23M_NOFREE", 8704 mp->m_pkthdr.csum_flags, 8705 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 8706 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 8707 "\12CSUM_IP_VALID\13CSUM_DATA_VALID\14CSUM_PSEUDO_HDR"); 8708 } 8709 8710 if (mp->m_flags & M_EXT) { 8711 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", 8712 mp->m_ext.ext_buf, mp->m_ext.ext_size); 8713 switch (mp->m_ext.ext_type) { 8714 case EXT_CLUSTER: printf("EXT_CLUSTER\n"); break; 8715 case EXT_SFBUF: printf("EXT_SFBUF\n"); break; 8716 case EXT_JUMBO9: printf("EXT_JUMBO9\n"); break; 8717 case EXT_JUMBO16: printf("EXT_JUMBO16\n"); break; 8718 case EXT_PACKET: printf("EXT_PACKET\n"); break; 8719 case EXT_MBUF: printf("EXT_MBUF\n"); break; 8720 case EXT_NET_DRV: printf("EXT_NET_DRV\n"); break; 8721 case EXT_MOD_TYPE: printf("EXT_MDD_TYPE\n"); break; 8722 case EXT_DISPOSABLE: printf("EXT_DISPOSABLE\n"); break; 8723 case EXT_EXTREF: printf("EXT_EXTREF\n"); break; 8724 default: printf("UNKNOWN\n"); 8725 } 8726 } 8727 8728 mp = mp->m_next; 8729 } 8730 } 8731 8732 8733 /****************************************************************************/ 8734 /* Prints out the mbufs in the TX mbuf chain. */ 8735 /* */ 8736 /* Returns: */ 8737 /* Nothing. */ 8738 /****************************************************************************/ 8739 static __attribute__ ((noinline)) void 8740 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8741 { 8742 struct mbuf *m; 8743 8744 BCE_PRINTF( 8745 "----------------------------" 8746 " tx mbuf data " 8747 "----------------------------\n"); 8748 8749 for (int i = 0; i < count; i++) { 8750 m = sc->tx_mbuf_ptr[chain_prod]; 8751 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); 8752 bce_dump_mbuf(sc, m); 8753 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 8754 } 8755 8756 BCE_PRINTF( 8757 "----------------------------" 8758 "----------------" 8759 "----------------------------\n"); 8760 } 8761 8762 8763 /****************************************************************************/ 8764 /* Prints out the mbufs in the RX mbuf chain. */ 8765 /* */ 8766 /* Returns: */ 8767 /* Nothing. */ 8768 /****************************************************************************/ 8769 static __attribute__ ((noinline)) void 8770 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8771 { 8772 struct mbuf *m; 8773 8774 BCE_PRINTF( 8775 "----------------------------" 8776 " rx mbuf data " 8777 "----------------------------\n"); 8778 8779 for (int i = 0; i < count; i++) { 8780 m = sc->rx_mbuf_ptr[chain_prod]; 8781 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 8782 bce_dump_mbuf(sc, m); 8783 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 8784 } 8785 8786 8787 BCE_PRINTF( 8788 "----------------------------" 8789 "----------------" 8790 "----------------------------\n"); 8791 } 8792 8793 8794 #ifdef BCE_JUMBO_HDRSPLIT 8795 /****************************************************************************/ 8796 /* Prints out the mbufs in the mbuf page chain. */ 8797 /* */ 8798 /* Returns: */ 8799 /* Nothing. */ 8800 /****************************************************************************/ 8801 static __attribute__ ((noinline)) void 8802 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8803 { 8804 struct mbuf *m; 8805 8806 BCE_PRINTF( 8807 "----------------------------" 8808 " pg mbuf data " 8809 "----------------------------\n"); 8810 8811 for (int i = 0; i < count; i++) { 8812 m = sc->pg_mbuf_ptr[chain_prod]; 8813 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); 8814 bce_dump_mbuf(sc, m); 8815 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); 8816 } 8817 8818 8819 BCE_PRINTF( 8820 "----------------------------" 8821 "----------------" 8822 "----------------------------\n"); 8823 } 8824 #endif 8825 8826 8827 /****************************************************************************/ 8828 /* Prints out a tx_bd structure. */ 8829 /* */ 8830 /* Returns: */ 8831 /* Nothing. */ 8832 /****************************************************************************/ 8833 static __attribute__ ((noinline)) void 8834 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 8835 { 8836 if (idx > MAX_TX_BD) 8837 /* Index out of range. */ 8838 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 8839 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 8840 /* TX Chain page pointer. */ 8841 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8842 idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo); 8843 else { 8844 /* Normal tx_bd entry. */ 8845 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8846 "vlan tag= 0x%04X, flags = 0x%04X (", idx, 8847 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, 8848 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, 8849 txbd->tx_bd_flags); 8850 8851 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) 8852 printf(" CONN_FAULT"); 8853 8854 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) 8855 printf(" TCP_UDP_CKSUM"); 8856 8857 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) 8858 printf(" IP_CKSUM"); 8859 8860 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) 8861 printf(" VLAN"); 8862 8863 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) 8864 printf(" COAL_NOW"); 8865 8866 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) 8867 printf(" DONT_GEN_CRC"); 8868 8869 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) 8870 printf(" START"); 8871 8872 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) 8873 printf(" END"); 8874 8875 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) 8876 printf(" LSO"); 8877 8878 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) 8879 printf(" OPTION_WORD"); 8880 8881 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) 8882 printf(" FLAGS"); 8883 8884 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) 8885 printf(" SNAP"); 8886 8887 printf(" )\n"); 8888 } 8889 8890 } 8891 8892 8893 /****************************************************************************/ 8894 /* Prints out a rx_bd structure. */ 8895 /* */ 8896 /* Returns: */ 8897 /* Nothing. */ 8898 /****************************************************************************/ 8899 static __attribute__ ((noinline)) void 8900 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 8901 { 8902 if (idx > MAX_RX_BD) 8903 /* Index out of range. */ 8904 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 8905 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 8906 /* RX Chain page pointer. */ 8907 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8908 idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo); 8909 else 8910 /* Normal rx_bd entry. */ 8911 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8912 "flags = 0x%08X\n", idx, 8913 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, 8914 rxbd->rx_bd_len, rxbd->rx_bd_flags); 8915 } 8916 8917 8918 #ifdef BCE_JUMBO_HDRSPLIT 8919 /****************************************************************************/ 8920 /* Prints out a rx_bd structure in the page chain. */ 8921 /* */ 8922 /* Returns: */ 8923 /* Nothing. */ 8924 /****************************************************************************/ 8925 static __attribute__ ((noinline)) void 8926 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) 8927 { 8928 if (idx > MAX_PG_BD) 8929 /* Index out of range. */ 8930 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); 8931 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) 8932 /* Page Chain page pointer. */ 8933 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8934 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); 8935 else 8936 /* Normal rx_bd entry. */ 8937 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8938 "flags = 0x%08X\n", idx, 8939 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, 8940 pgbd->rx_bd_len, pgbd->rx_bd_flags); 8941 } 8942 #endif 8943 8944 8945 /****************************************************************************/ 8946 /* Prints out a l2_fhdr structure. */ 8947 /* */ 8948 /* Returns: */ 8949 /* Nothing. */ 8950 /****************************************************************************/ 8951 static __attribute__ ((noinline)) void 8952 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 8953 { 8954 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " 8955 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " 8956 "tcp_udp_xsum = 0x%04X\n", idx, 8957 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, 8958 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, 8959 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); 8960 } 8961 8962 8963 /****************************************************************************/ 8964 /* Prints out context memory info. (Only useful for CID 0 to 16.) */ 8965 /* */ 8966 /* Returns: */ 8967 /* Nothing. */ 8968 /****************************************************************************/ 8969 static __attribute__ ((noinline)) void 8970 bce_dump_ctx(struct bce_softc *sc, u16 cid) 8971 { 8972 if (cid <= TX_CID) { 8973 BCE_PRINTF( 8974 "----------------------------" 8975 " CTX Data " 8976 "----------------------------\n"); 8977 8978 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); 8979 8980 if (cid == RX_CID) { 8981 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " 8982 "producer index\n", 8983 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); 8984 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host byte sequence\n", 8985 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BSEQ)); 8986 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", 8987 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); 8988 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " 8989 "descriptor address\n", 8990 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); 8991 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " 8992 "descriptor address\n", 8993 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); 8994 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer index\n", 8995 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDIDX)); 8996 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " 8997 "producer index\n", 8998 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_PG_BDIDX)); 8999 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " 9000 "buffer size\n", 9001 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_PG_BUF_SIZE)); 9002 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " 9003 "chain address\n", 9004 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); 9005 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " 9006 "chain address\n", 9007 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); 9008 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " 9009 "consumer index\n", 9010 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDIDX)); 9011 } else if (cid == TX_CID) { 9012 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9013 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 9014 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", 9015 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE_XI)); 9016 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx cmd\n", 9017 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE_XI)); 9018 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) h/w buffer " 9019 "descriptor address\n", CTX_RD(sc, 9020 GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); 9021 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) h/w buffer " 9022 "descriptor address\n", CTX_RD(sc, 9023 GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); 9024 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) host producer " 9025 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 9026 BCE_L2CTX_TX_HOST_BIDX_XI)); 9027 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) host byte " 9028 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 9029 BCE_L2CTX_TX_HOST_BSEQ_XI)); 9030 } else { 9031 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", 9032 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); 9033 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", 9034 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE)); 9035 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) h/w buffer " 9036 "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), 9037 BCE_L2CTX_TX_TBDR_BHADDR_HI)); 9038 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) h/w buffer " 9039 "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), 9040 BCE_L2CTX_TX_TBDR_BHADDR_LO)); 9041 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host producer " 9042 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 9043 BCE_L2CTX_TX_HOST_BIDX)); 9044 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " 9045 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 9046 BCE_L2CTX_TX_HOST_BSEQ)); 9047 } 9048 } else 9049 BCE_PRINTF(" Unknown CID\n"); 9050 9051 BCE_PRINTF( 9052 "----------------------------" 9053 " Raw CTX " 9054 "----------------------------\n"); 9055 9056 for (int i = 0x0; i < 0x300; i += 0x10) { 9057 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, 9058 CTX_RD(sc, GET_CID_ADDR(cid), i), 9059 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), 9060 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), 9061 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); 9062 } 9063 9064 9065 BCE_PRINTF( 9066 "----------------------------" 9067 "----------------" 9068 "----------------------------\n"); 9069 } 9070 } 9071 9072 9073 /****************************************************************************/ 9074 /* Prints out the FTQ data. */ 9075 /* */ 9076 /* Returns: */ 9077 /* Nothing. */ 9078 /****************************************************************************/ 9079 static __attribute__ ((noinline)) void 9080 bce_dump_ftqs(struct bce_softc *sc) 9081 { 9082 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; 9083 9084 BCE_PRINTF( 9085 "----------------------------" 9086 " FTQ Data " 9087 "----------------------------\n"); 9088 9089 BCE_PRINTF(" FTQ Command Control Depth_Now Max_Depth Valid_Cnt \n"); 9090 BCE_PRINTF(" ------- ---------- ---------- ---------- ---------- ----------\n"); 9091 9092 /* Setup the generic statistic counters for the FTQ valid count. */ 9093 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | 9094 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | 9095 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | 9096 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); 9097 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 9098 9099 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | 9100 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | 9101 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | 9102 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); 9103 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); 9104 9105 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | 9106 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | 9107 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | 9108 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); 9109 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); 9110 9111 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | 9112 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | 9113 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | 9114 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); 9115 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); 9116 9117 /* Input queue to the Receive Lookup state machine */ 9118 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); 9119 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); 9120 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; 9121 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; 9122 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 9123 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9124 cmd, ctl, cur_depth, max_depth, valid_cnt); 9125 9126 /* Input queue to the Receive Processor */ 9127 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); 9128 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); 9129 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; 9130 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; 9131 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 9132 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9133 cmd, ctl, cur_depth, max_depth, valid_cnt); 9134 9135 /* Input queue to the Recevie Processor */ 9136 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); 9137 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); 9138 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; 9139 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; 9140 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 9141 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9142 cmd, ctl, cur_depth, max_depth, valid_cnt); 9143 9144 /* Input queue to the Receive Virtual to Physical state machine */ 9145 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); 9146 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); 9147 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; 9148 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; 9149 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 9150 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9151 cmd, ctl, cur_depth, max_depth, valid_cnt); 9152 9153 /* Input queue to the Recevie Virtual to Physical state machine */ 9154 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); 9155 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); 9156 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; 9157 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; 9158 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); 9159 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9160 cmd, ctl, cur_depth, max_depth, valid_cnt); 9161 9162 /* Input queue to the Receive Virtual to Physical state machine */ 9163 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); 9164 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); 9165 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; 9166 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; 9167 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); 9168 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9169 cmd, ctl, cur_depth, max_depth, valid_cnt); 9170 9171 /* Input queue to the Receive DMA state machine */ 9172 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); 9173 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); 9174 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; 9175 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; 9176 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); 9177 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9178 cmd, ctl, cur_depth, max_depth, valid_cnt); 9179 9180 /* Input queue to the Transmit Scheduler state machine */ 9181 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); 9182 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); 9183 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; 9184 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; 9185 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); 9186 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9187 cmd, ctl, cur_depth, max_depth, valid_cnt); 9188 9189 /* Input queue to the Transmit Buffer Descriptor state machine */ 9190 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); 9191 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); 9192 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; 9193 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; 9194 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); 9195 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9196 cmd, ctl, cur_depth, max_depth, valid_cnt); 9197 9198 /* Input queue to the Transmit Processor */ 9199 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); 9200 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); 9201 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; 9202 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; 9203 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); 9204 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9205 cmd, ctl, cur_depth, max_depth, valid_cnt); 9206 9207 /* Input queue to the Transmit DMA state machine */ 9208 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); 9209 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); 9210 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; 9211 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; 9212 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); 9213 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9214 cmd, ctl, cur_depth, max_depth, valid_cnt); 9215 9216 /* Input queue to the Transmit Patch-Up Processor */ 9217 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); 9218 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); 9219 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; 9220 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; 9221 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); 9222 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9223 cmd, ctl, cur_depth, max_depth, valid_cnt); 9224 9225 /* Input queue to the Transmit Assembler state machine */ 9226 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); 9227 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); 9228 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; 9229 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; 9230 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); 9231 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9232 cmd, ctl, cur_depth, max_depth, valid_cnt); 9233 9234 /* Input queue to the Completion Processor */ 9235 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); 9236 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); 9237 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; 9238 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; 9239 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); 9240 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9241 cmd, ctl, cur_depth, max_depth, valid_cnt); 9242 9243 /* Input queue to the Completion Processor */ 9244 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); 9245 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); 9246 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; 9247 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; 9248 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); 9249 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9250 cmd, ctl, cur_depth, max_depth, valid_cnt); 9251 9252 /* Input queue to the Completion Processor */ 9253 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); 9254 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); 9255 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; 9256 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; 9257 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); 9258 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9259 cmd, ctl, cur_depth, max_depth, valid_cnt); 9260 9261 /* Setup the generic statistic counters for the FTQ valid count. */ 9262 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | 9263 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | 9264 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); 9265 9266 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9267 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 9268 val = val | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 24); 9269 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 9270 9271 /* Input queue to the Management Control Processor */ 9272 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); 9273 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); 9274 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; 9275 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; 9276 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 9277 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9278 cmd, ctl, cur_depth, max_depth, valid_cnt); 9279 9280 /* Input queue to the Command Processor */ 9281 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); 9282 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); 9283 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; 9284 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; 9285 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 9286 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9287 cmd, ctl, cur_depth, max_depth, valid_cnt); 9288 9289 /* Input queue to the Completion Scheduler state machine */ 9290 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); 9291 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); 9292 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; 9293 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; 9294 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 9295 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9296 cmd, ctl, cur_depth, max_depth, valid_cnt); 9297 9298 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9299 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 9300 /* Input queue to the Receive Virtual to Physical Command Scheduler */ 9301 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); 9302 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); 9303 cur_depth = (ctl & 0xFFC00000) >> 22; 9304 max_depth = (ctl & 0x003FF000) >> 12; 9305 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 9306 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9307 cmd, ctl, cur_depth, max_depth, valid_cnt); 9308 } 9309 9310 BCE_PRINTF( 9311 "----------------------------" 9312 "----------------" 9313 "----------------------------\n"); 9314 } 9315 9316 9317 /****************************************************************************/ 9318 /* Prints out the TX chain. */ 9319 /* */ 9320 /* Returns: */ 9321 /* Nothing. */ 9322 /****************************************************************************/ 9323 static __attribute__ ((noinline)) void 9324 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) 9325 { 9326 struct tx_bd *txbd; 9327 9328 /* First some info about the tx_bd chain structure. */ 9329 BCE_PRINTF( 9330 "----------------------------" 9331 " tx_bd chain " 9332 "----------------------------\n"); 9333 9334 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 9335 (u32) BCM_PAGE_SIZE, (u32) TX_PAGES); 9336 9337 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 9338 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 9339 9340 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD); 9341 9342 BCE_PRINTF( 9343 "----------------------------" 9344 " tx_bd data " 9345 "----------------------------\n"); 9346 9347 /* Now print out the tx_bd's themselves. */ 9348 for (int i = 0; i < count; i++) { 9349 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 9350 bce_dump_txbd(sc, tx_prod, txbd); 9351 tx_prod = NEXT_TX_BD(tx_prod); 9352 } 9353 9354 BCE_PRINTF( 9355 "----------------------------" 9356 "----------------" 9357 "----------------------------\n"); 9358 } 9359 9360 9361 /****************************************************************************/ 9362 /* Prints out the RX chain. */ 9363 /* */ 9364 /* Returns: */ 9365 /* Nothing. */ 9366 /****************************************************************************/ 9367 static __attribute__ ((noinline)) void 9368 bce_dump_rx_chain(struct bce_softc *sc, u16 rx_prod, int count) 9369 { 9370 struct rx_bd *rxbd; 9371 9372 /* First some info about the rx_bd chain structure. */ 9373 BCE_PRINTF( 9374 "----------------------------" 9375 " rx_bd chain " 9376 "----------------------------\n"); 9377 9378 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 9379 (u32) BCM_PAGE_SIZE, (u32) RX_PAGES); 9380 9381 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 9382 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 9383 9384 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD); 9385 9386 BCE_PRINTF( 9387 "----------------------------" 9388 " rx_bd data " 9389 "----------------------------\n"); 9390 9391 /* Now print out the rx_bd's themselves. */ 9392 for (int i = 0; i < count; i++) { 9393 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 9394 bce_dump_rxbd(sc, rx_prod, rxbd); 9395 rx_prod = RX_CHAIN_IDX(rx_prod + 1); 9396 } 9397 9398 BCE_PRINTF( 9399 "----------------------------" 9400 "----------------" 9401 "----------------------------\n"); 9402 } 9403 9404 9405 #ifdef BCE_JUMBO_HDRSPLIT 9406 /****************************************************************************/ 9407 /* Prints out the page chain. */ 9408 /* */ 9409 /* Returns: */ 9410 /* Nothing. */ 9411 /****************************************************************************/ 9412 static __attribute__ ((noinline)) void 9413 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) 9414 { 9415 struct rx_bd *pgbd; 9416 9417 /* First some info about the page chain structure. */ 9418 BCE_PRINTF( 9419 "----------------------------" 9420 " page chain " 9421 "----------------------------\n"); 9422 9423 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", 9424 (u32) BCM_PAGE_SIZE, (u32) PG_PAGES); 9425 9426 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 9427 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); 9428 9429 BCE_PRINTF("total rx_bd = 0x%08X, max_pg_bd = 0x%08X\n", 9430 (u32) TOTAL_PG_BD, (u32) MAX_PG_BD); 9431 9432 BCE_PRINTF( 9433 "----------------------------" 9434 " page data " 9435 "----------------------------\n"); 9436 9437 /* Now print out the rx_bd's themselves. */ 9438 for (int i = 0; i < count; i++) { 9439 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; 9440 bce_dump_pgbd(sc, pg_prod, pgbd); 9441 pg_prod = PG_CHAIN_IDX(pg_prod + 1); 9442 } 9443 9444 BCE_PRINTF( 9445 "----------------------------" 9446 "----------------" 9447 "----------------------------\n"); 9448 } 9449 #endif 9450 9451 9452 /****************************************************************************/ 9453 /* Prints out the status block from host memory. */ 9454 /* */ 9455 /* Returns: */ 9456 /* Nothing. */ 9457 /****************************************************************************/ 9458 static __attribute__ ((noinline)) void 9459 bce_dump_status_block(struct bce_softc *sc) 9460 { 9461 struct status_block *sblk; 9462 9463 sblk = sc->status_block; 9464 9465 BCE_PRINTF( 9466 "----------------------------" 9467 " Status Block " 9468 "----------------------------\n"); 9469 9470 BCE_PRINTF(" 0x%08X - attn_bits\n", 9471 sblk->status_attn_bits); 9472 9473 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 9474 sblk->status_attn_bits_ack); 9475 9476 BCE_PRINTF("0x%04X(0x%04X) - rx_cons0\n", 9477 sblk->status_rx_quick_consumer_index0, 9478 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index0)); 9479 9480 BCE_PRINTF("0x%04X(0x%04X) - tx_cons0\n", 9481 sblk->status_tx_quick_consumer_index0, 9482 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index0)); 9483 9484 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 9485 9486 /* Theses indices are not used for normal L2 drivers. */ 9487 if (sblk->status_rx_quick_consumer_index1) 9488 BCE_PRINTF("0x%04X(0x%04X) - rx_cons1\n", 9489 sblk->status_rx_quick_consumer_index1, 9490 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index1)); 9491 9492 if (sblk->status_tx_quick_consumer_index1) 9493 BCE_PRINTF("0x%04X(0x%04X) - tx_cons1\n", 9494 sblk->status_tx_quick_consumer_index1, 9495 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index1)); 9496 9497 if (sblk->status_rx_quick_consumer_index2) 9498 BCE_PRINTF("0x%04X(0x%04X)- rx_cons2\n", 9499 sblk->status_rx_quick_consumer_index2, 9500 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index2)); 9501 9502 if (sblk->status_tx_quick_consumer_index2) 9503 BCE_PRINTF("0x%04X(0x%04X) - tx_cons2\n", 9504 sblk->status_tx_quick_consumer_index2, 9505 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index2)); 9506 9507 if (sblk->status_rx_quick_consumer_index3) 9508 BCE_PRINTF("0x%04X(0x%04X) - rx_cons3\n", 9509 sblk->status_rx_quick_consumer_index3, 9510 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index3)); 9511 9512 if (sblk->status_tx_quick_consumer_index3) 9513 BCE_PRINTF("0x%04X(0x%04X) - tx_cons3\n", 9514 sblk->status_tx_quick_consumer_index3, 9515 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index3)); 9516 9517 if (sblk->status_rx_quick_consumer_index4 || 9518 sblk->status_rx_quick_consumer_index5) 9519 BCE_PRINTF("rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", 9520 sblk->status_rx_quick_consumer_index4, 9521 sblk->status_rx_quick_consumer_index5); 9522 9523 if (sblk->status_rx_quick_consumer_index6 || 9524 sblk->status_rx_quick_consumer_index7) 9525 BCE_PRINTF("rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", 9526 sblk->status_rx_quick_consumer_index6, 9527 sblk->status_rx_quick_consumer_index7); 9528 9529 if (sblk->status_rx_quick_consumer_index8 || 9530 sblk->status_rx_quick_consumer_index9) 9531 BCE_PRINTF("rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", 9532 sblk->status_rx_quick_consumer_index8, 9533 sblk->status_rx_quick_consumer_index9); 9534 9535 if (sblk->status_rx_quick_consumer_index10 || 9536 sblk->status_rx_quick_consumer_index11) 9537 BCE_PRINTF("rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", 9538 sblk->status_rx_quick_consumer_index10, 9539 sblk->status_rx_quick_consumer_index11); 9540 9541 if (sblk->status_rx_quick_consumer_index12 || 9542 sblk->status_rx_quick_consumer_index13) 9543 BCE_PRINTF("rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", 9544 sblk->status_rx_quick_consumer_index12, 9545 sblk->status_rx_quick_consumer_index13); 9546 9547 if (sblk->status_rx_quick_consumer_index14 || 9548 sblk->status_rx_quick_consumer_index15) 9549 BCE_PRINTF("rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", 9550 sblk->status_rx_quick_consumer_index14, 9551 sblk->status_rx_quick_consumer_index15); 9552 9553 if (sblk->status_completion_producer_index || 9554 sblk->status_cmd_consumer_index) 9555 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 9556 sblk->status_completion_producer_index, 9557 sblk->status_cmd_consumer_index); 9558 9559 BCE_PRINTF( 9560 "----------------------------" 9561 "----------------" 9562 "----------------------------\n"); 9563 } 9564 9565 9566 /****************************************************************************/ 9567 /* Prints out the statistics block from host memory. */ 9568 /* */ 9569 /* Returns: */ 9570 /* Nothing. */ 9571 /****************************************************************************/ 9572 static __attribute__ ((noinline)) void 9573 bce_dump_stats_block(struct bce_softc *sc) 9574 { 9575 struct statistics_block *sblk; 9576 9577 sblk = sc->stats_block; 9578 9579 BCE_PRINTF( 9580 "---------------" 9581 " Stats Block (All Stats Not Shown Are 0) " 9582 "---------------\n"); 9583 9584 if (sblk->stat_IfHCInOctets_hi 9585 || sblk->stat_IfHCInOctets_lo) 9586 BCE_PRINTF("0x%08X:%08X : " 9587 "IfHcInOctets\n", 9588 sblk->stat_IfHCInOctets_hi, 9589 sblk->stat_IfHCInOctets_lo); 9590 9591 if (sblk->stat_IfHCInBadOctets_hi 9592 || sblk->stat_IfHCInBadOctets_lo) 9593 BCE_PRINTF("0x%08X:%08X : " 9594 "IfHcInBadOctets\n", 9595 sblk->stat_IfHCInBadOctets_hi, 9596 sblk->stat_IfHCInBadOctets_lo); 9597 9598 if (sblk->stat_IfHCOutOctets_hi 9599 || sblk->stat_IfHCOutOctets_lo) 9600 BCE_PRINTF("0x%08X:%08X : " 9601 "IfHcOutOctets\n", 9602 sblk->stat_IfHCOutOctets_hi, 9603 sblk->stat_IfHCOutOctets_lo); 9604 9605 if (sblk->stat_IfHCOutBadOctets_hi 9606 || sblk->stat_IfHCOutBadOctets_lo) 9607 BCE_PRINTF("0x%08X:%08X : " 9608 "IfHcOutBadOctets\n", 9609 sblk->stat_IfHCOutBadOctets_hi, 9610 sblk->stat_IfHCOutBadOctets_lo); 9611 9612 if (sblk->stat_IfHCInUcastPkts_hi 9613 || sblk->stat_IfHCInUcastPkts_lo) 9614 BCE_PRINTF("0x%08X:%08X : " 9615 "IfHcInUcastPkts\n", 9616 sblk->stat_IfHCInUcastPkts_hi, 9617 sblk->stat_IfHCInUcastPkts_lo); 9618 9619 if (sblk->stat_IfHCInBroadcastPkts_hi 9620 || sblk->stat_IfHCInBroadcastPkts_lo) 9621 BCE_PRINTF("0x%08X:%08X : " 9622 "IfHcInBroadcastPkts\n", 9623 sblk->stat_IfHCInBroadcastPkts_hi, 9624 sblk->stat_IfHCInBroadcastPkts_lo); 9625 9626 if (sblk->stat_IfHCInMulticastPkts_hi 9627 || sblk->stat_IfHCInMulticastPkts_lo) 9628 BCE_PRINTF("0x%08X:%08X : " 9629 "IfHcInMulticastPkts\n", 9630 sblk->stat_IfHCInMulticastPkts_hi, 9631 sblk->stat_IfHCInMulticastPkts_lo); 9632 9633 if (sblk->stat_IfHCOutUcastPkts_hi 9634 || sblk->stat_IfHCOutUcastPkts_lo) 9635 BCE_PRINTF("0x%08X:%08X : " 9636 "IfHcOutUcastPkts\n", 9637 sblk->stat_IfHCOutUcastPkts_hi, 9638 sblk->stat_IfHCOutUcastPkts_lo); 9639 9640 if (sblk->stat_IfHCOutBroadcastPkts_hi 9641 || sblk->stat_IfHCOutBroadcastPkts_lo) 9642 BCE_PRINTF("0x%08X:%08X : " 9643 "IfHcOutBroadcastPkts\n", 9644 sblk->stat_IfHCOutBroadcastPkts_hi, 9645 sblk->stat_IfHCOutBroadcastPkts_lo); 9646 9647 if (sblk->stat_IfHCOutMulticastPkts_hi 9648 || sblk->stat_IfHCOutMulticastPkts_lo) 9649 BCE_PRINTF("0x%08X:%08X : " 9650 "IfHcOutMulticastPkts\n", 9651 sblk->stat_IfHCOutMulticastPkts_hi, 9652 sblk->stat_IfHCOutMulticastPkts_lo); 9653 9654 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) 9655 BCE_PRINTF(" 0x%08X : " 9656 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 9657 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 9658 9659 if (sblk->stat_Dot3StatsCarrierSenseErrors) 9660 BCE_PRINTF(" 0x%08X : Dot3StatsCarrierSenseErrors\n", 9661 sblk->stat_Dot3StatsCarrierSenseErrors); 9662 9663 if (sblk->stat_Dot3StatsFCSErrors) 9664 BCE_PRINTF(" 0x%08X : Dot3StatsFCSErrors\n", 9665 sblk->stat_Dot3StatsFCSErrors); 9666 9667 if (sblk->stat_Dot3StatsAlignmentErrors) 9668 BCE_PRINTF(" 0x%08X : Dot3StatsAlignmentErrors\n", 9669 sblk->stat_Dot3StatsAlignmentErrors); 9670 9671 if (sblk->stat_Dot3StatsSingleCollisionFrames) 9672 BCE_PRINTF(" 0x%08X : Dot3StatsSingleCollisionFrames\n", 9673 sblk->stat_Dot3StatsSingleCollisionFrames); 9674 9675 if (sblk->stat_Dot3StatsMultipleCollisionFrames) 9676 BCE_PRINTF(" 0x%08X : Dot3StatsMultipleCollisionFrames\n", 9677 sblk->stat_Dot3StatsMultipleCollisionFrames); 9678 9679 if (sblk->stat_Dot3StatsDeferredTransmissions) 9680 BCE_PRINTF(" 0x%08X : Dot3StatsDeferredTransmissions\n", 9681 sblk->stat_Dot3StatsDeferredTransmissions); 9682 9683 if (sblk->stat_Dot3StatsExcessiveCollisions) 9684 BCE_PRINTF(" 0x%08X : Dot3StatsExcessiveCollisions\n", 9685 sblk->stat_Dot3StatsExcessiveCollisions); 9686 9687 if (sblk->stat_Dot3StatsLateCollisions) 9688 BCE_PRINTF(" 0x%08X : Dot3StatsLateCollisions\n", 9689 sblk->stat_Dot3StatsLateCollisions); 9690 9691 if (sblk->stat_EtherStatsCollisions) 9692 BCE_PRINTF(" 0x%08X : EtherStatsCollisions\n", 9693 sblk->stat_EtherStatsCollisions); 9694 9695 if (sblk->stat_EtherStatsFragments) 9696 BCE_PRINTF(" 0x%08X : EtherStatsFragments\n", 9697 sblk->stat_EtherStatsFragments); 9698 9699 if (sblk->stat_EtherStatsJabbers) 9700 BCE_PRINTF(" 0x%08X : EtherStatsJabbers\n", 9701 sblk->stat_EtherStatsJabbers); 9702 9703 if (sblk->stat_EtherStatsUndersizePkts) 9704 BCE_PRINTF(" 0x%08X : EtherStatsUndersizePkts\n", 9705 sblk->stat_EtherStatsUndersizePkts); 9706 9707 if (sblk->stat_EtherStatsOversizePkts) 9708 BCE_PRINTF(" 0x%08X : EtherStatsOverrsizePkts\n", 9709 sblk->stat_EtherStatsOversizePkts); 9710 9711 if (sblk->stat_EtherStatsPktsRx64Octets) 9712 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx64Octets\n", 9713 sblk->stat_EtherStatsPktsRx64Octets); 9714 9715 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) 9716 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx65Octetsto127Octets\n", 9717 sblk->stat_EtherStatsPktsRx65Octetsto127Octets); 9718 9719 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) 9720 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx128Octetsto255Octets\n", 9721 sblk->stat_EtherStatsPktsRx128Octetsto255Octets); 9722 9723 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) 9724 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx256Octetsto511Octets\n", 9725 sblk->stat_EtherStatsPktsRx256Octetsto511Octets); 9726 9727 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) 9728 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx512Octetsto1023Octets\n", 9729 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets); 9730 9731 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) 9732 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1024Octetsto1522Octets\n", 9733 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets); 9734 9735 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) 9736 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1523Octetsto9022Octets\n", 9737 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets); 9738 9739 if (sblk->stat_EtherStatsPktsTx64Octets) 9740 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx64Octets\n", 9741 sblk->stat_EtherStatsPktsTx64Octets); 9742 9743 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) 9744 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx65Octetsto127Octets\n", 9745 sblk->stat_EtherStatsPktsTx65Octetsto127Octets); 9746 9747 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) 9748 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx128Octetsto255Octets\n", 9749 sblk->stat_EtherStatsPktsTx128Octetsto255Octets); 9750 9751 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) 9752 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx256Octetsto511Octets\n", 9753 sblk->stat_EtherStatsPktsTx256Octetsto511Octets); 9754 9755 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) 9756 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx512Octetsto1023Octets\n", 9757 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets); 9758 9759 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) 9760 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1024Octetsto1522Octets\n", 9761 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets); 9762 9763 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) 9764 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1523Octetsto9022Octets\n", 9765 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets); 9766 9767 if (sblk->stat_XonPauseFramesReceived) 9768 BCE_PRINTF(" 0x%08X : XonPauseFramesReceived\n", 9769 sblk->stat_XonPauseFramesReceived); 9770 9771 if (sblk->stat_XoffPauseFramesReceived) 9772 BCE_PRINTF(" 0x%08X : XoffPauseFramesReceived\n", 9773 sblk->stat_XoffPauseFramesReceived); 9774 9775 if (sblk->stat_OutXonSent) 9776 BCE_PRINTF(" 0x%08X : OutXonSent\n", 9777 sblk->stat_OutXonSent); 9778 9779 if (sblk->stat_OutXoffSent) 9780 BCE_PRINTF(" 0x%08X : OutXoffSent\n", 9781 sblk->stat_OutXoffSent); 9782 9783 if (sblk->stat_FlowControlDone) 9784 BCE_PRINTF(" 0x%08X : FlowControlDone\n", 9785 sblk->stat_FlowControlDone); 9786 9787 if (sblk->stat_MacControlFramesReceived) 9788 BCE_PRINTF(" 0x%08X : MacControlFramesReceived\n", 9789 sblk->stat_MacControlFramesReceived); 9790 9791 if (sblk->stat_XoffStateEntered) 9792 BCE_PRINTF(" 0x%08X : XoffStateEntered\n", 9793 sblk->stat_XoffStateEntered); 9794 9795 if (sblk->stat_IfInFramesL2FilterDiscards) 9796 BCE_PRINTF(" 0x%08X : IfInFramesL2FilterDiscards\n", 9797 sblk->stat_IfInFramesL2FilterDiscards); 9798 9799 if (sblk->stat_IfInRuleCheckerDiscards) 9800 BCE_PRINTF(" 0x%08X : IfInRuleCheckerDiscards\n", 9801 sblk->stat_IfInRuleCheckerDiscards); 9802 9803 if (sblk->stat_IfInFTQDiscards) 9804 BCE_PRINTF(" 0x%08X : IfInFTQDiscards\n", 9805 sblk->stat_IfInFTQDiscards); 9806 9807 if (sblk->stat_IfInMBUFDiscards) 9808 BCE_PRINTF(" 0x%08X : IfInMBUFDiscards\n", 9809 sblk->stat_IfInMBUFDiscards); 9810 9811 if (sblk->stat_IfInRuleCheckerP4Hit) 9812 BCE_PRINTF(" 0x%08X : IfInRuleCheckerP4Hit\n", 9813 sblk->stat_IfInRuleCheckerP4Hit); 9814 9815 if (sblk->stat_CatchupInRuleCheckerDiscards) 9816 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerDiscards\n", 9817 sblk->stat_CatchupInRuleCheckerDiscards); 9818 9819 if (sblk->stat_CatchupInFTQDiscards) 9820 BCE_PRINTF(" 0x%08X : CatchupInFTQDiscards\n", 9821 sblk->stat_CatchupInFTQDiscards); 9822 9823 if (sblk->stat_CatchupInMBUFDiscards) 9824 BCE_PRINTF(" 0x%08X : CatchupInMBUFDiscards\n", 9825 sblk->stat_CatchupInMBUFDiscards); 9826 9827 if (sblk->stat_CatchupInRuleCheckerP4Hit) 9828 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerP4Hit\n", 9829 sblk->stat_CatchupInRuleCheckerP4Hit); 9830 9831 BCE_PRINTF( 9832 "----------------------------" 9833 "----------------" 9834 "----------------------------\n"); 9835 } 9836 9837 9838 /****************************************************************************/ 9839 /* Prints out a summary of the driver state. */ 9840 /* */ 9841 /* Returns: */ 9842 /* Nothing. */ 9843 /****************************************************************************/ 9844 static __attribute__ ((noinline)) void 9845 bce_dump_driver_state(struct bce_softc *sc) 9846 { 9847 u32 val_hi, val_lo; 9848 9849 BCE_PRINTF( 9850 "-----------------------------" 9851 " Driver State " 9852 "-----------------------------\n"); 9853 9854 val_hi = BCE_ADDR_HI(sc); 9855 val_lo = BCE_ADDR_LO(sc); 9856 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual address\n", 9857 val_hi, val_lo); 9858 9859 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 9860 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 9861 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual address\n", 9862 val_hi, val_lo); 9863 9864 val_hi = BCE_ADDR_HI(sc->status_block); 9865 val_lo = BCE_ADDR_LO(sc->status_block); 9866 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block virtual address\n", 9867 val_hi, val_lo); 9868 9869 val_hi = BCE_ADDR_HI(sc->stats_block); 9870 val_lo = BCE_ADDR_LO(sc->stats_block); 9871 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block virtual address\n", 9872 val_hi, val_lo); 9873 9874 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 9875 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 9876 BCE_PRINTF( 9877 "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain virtual adddress\n", 9878 val_hi, val_lo); 9879 9880 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 9881 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 9882 BCE_PRINTF( 9883 "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain virtual address\n", 9884 val_hi, val_lo); 9885 9886 #ifdef BCE_JUMBO_HDRSPLIT 9887 val_hi = BCE_ADDR_HI(sc->pg_bd_chain); 9888 val_lo = BCE_ADDR_LO(sc->pg_bd_chain); 9889 BCE_PRINTF( 9890 "0x%08X:%08X - (sc->pg_bd_chain) page chain virtual address\n", 9891 val_hi, val_lo); 9892 #endif 9893 9894 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 9895 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 9896 BCE_PRINTF( 9897 "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n", 9898 val_hi, val_lo); 9899 9900 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 9901 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 9902 BCE_PRINTF( 9903 "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n", 9904 val_hi, val_lo); 9905 9906 #ifdef BCE_JUMBO_HDRSPLIT 9907 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); 9908 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); 9909 BCE_PRINTF( 9910 "0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain virtual address\n", 9911 val_hi, val_lo); 9912 #endif 9913 9914 BCE_PRINTF(" 0x%08X - (sc->interrupts_generated) h/w intrs\n", 9915 sc->interrupts_generated); 9916 9917 BCE_PRINTF(" 0x%08X - (sc->rx_interrupts) rx interrupts handled\n", 9918 sc->rx_interrupts); 9919 9920 BCE_PRINTF(" 0x%08X - (sc->tx_interrupts) tx interrupts handled\n", 9921 sc->tx_interrupts); 9922 9923 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) status block index\n", 9924 sc->last_status_idx); 9925 9926 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer index\n", 9927 sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 9928 9929 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer index\n", 9930 sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 9931 9932 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n", 9933 sc->tx_prod_bseq); 9934 9935 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx mbufs allocated\n", 9936 sc->debug_tx_mbuf_alloc); 9937 9938 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used tx_bd's\n", 9939 sc->used_tx_bd); 9940 9941 BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n", 9942 sc->tx_hi_watermark, sc->max_tx_bd); 9943 9944 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer index\n", 9945 sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 9946 9947 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer index\n", 9948 sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 9949 9950 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n", 9951 sc->rx_prod_bseq); 9952 9953 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx mbufs allocated\n", 9954 sc->debug_rx_mbuf_alloc); 9955 9956 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free rx_bd's\n", 9957 sc->free_rx_bd); 9958 9959 #ifdef BCE_JUMBO_HDRSPLIT 9960 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer index\n", 9961 sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); 9962 9963 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer index\n", 9964 sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); 9965 9966 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page mbufs allocated\n", 9967 sc->debug_pg_mbuf_alloc); 9968 9969 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page rx_bd's\n", 9970 sc->free_pg_bd); 9971 9972 BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low watermark\n", 9973 sc->pg_low_watermark, sc->max_pg_bd); 9974 #endif 9975 9976 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) " 9977 "mbuf alloc failures\n", 9978 sc->mbuf_alloc_failed_count); 9979 9980 BCE_PRINTF(" 0x%08X - (sc->bce_flags) bce mac flags\n", 9981 sc->bce_flags); 9982 9983 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) bce phy flags\n", 9984 sc->bce_phy_flags); 9985 9986 BCE_PRINTF( 9987 "----------------------------" 9988 "----------------" 9989 "----------------------------\n"); 9990 } 9991 9992 9993 /****************************************************************************/ 9994 /* Prints out the hardware state through a summary of important register, */ 9995 /* followed by a complete register dump. */ 9996 /* */ 9997 /* Returns: */ 9998 /* Nothing. */ 9999 /****************************************************************************/ 10000 static __attribute__ ((noinline)) void 10001 bce_dump_hw_state(struct bce_softc *sc) 10002 { 10003 u32 val; 10004 10005 BCE_PRINTF( 10006 "----------------------------" 10007 " Hardware State " 10008 "----------------------------\n"); 10009 10010 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 10011 10012 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 10013 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 10014 val, BCE_MISC_ENABLE_STATUS_BITS); 10015 10016 val = REG_RD(sc, BCE_DMA_STATUS); 10017 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", val, BCE_DMA_STATUS); 10018 10019 val = REG_RD(sc, BCE_CTX_STATUS); 10020 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", val, BCE_CTX_STATUS); 10021 10022 val = REG_RD(sc, BCE_EMAC_STATUS); 10023 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", val, BCE_EMAC_STATUS); 10024 10025 val = REG_RD(sc, BCE_RPM_STATUS); 10026 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", val, BCE_RPM_STATUS); 10027 10028 val = REG_RD(sc, 0x2004); 10029 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", val, 0x2004); 10030 10031 val = REG_RD(sc, BCE_RV2P_STATUS); 10032 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", val, BCE_RV2P_STATUS); 10033 10034 val = REG_RD(sc, 0x2c04); 10035 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", val, 0x2c04); 10036 10037 val = REG_RD(sc, BCE_TBDR_STATUS); 10038 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", val, BCE_TBDR_STATUS); 10039 10040 val = REG_RD(sc, BCE_TDMA_STATUS); 10041 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", val, BCE_TDMA_STATUS); 10042 10043 val = REG_RD(sc, BCE_HC_STATUS); 10044 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", val, BCE_HC_STATUS); 10045 10046 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 10047 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE); 10048 10049 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 10050 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE); 10051 10052 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 10053 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE); 10054 10055 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 10056 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE); 10057 10058 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 10059 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", val, BCE_MCP_CPU_STATE); 10060 10061 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 10062 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE); 10063 10064 BCE_PRINTF( 10065 "----------------------------" 10066 "----------------" 10067 "----------------------------\n"); 10068 10069 BCE_PRINTF( 10070 "----------------------------" 10071 " Register Dump " 10072 "----------------------------\n"); 10073 10074 for (int i = 0x400; i < 0x8000; i += 0x10) { 10075 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10076 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 10077 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 10078 } 10079 10080 BCE_PRINTF( 10081 "----------------------------" 10082 "----------------" 10083 "----------------------------\n"); 10084 } 10085 10086 10087 /****************************************************************************/ 10088 /* Prints out the mailbox queue registers. */ 10089 /* */ 10090 /* Returns: */ 10091 /* Nothing. */ 10092 /****************************************************************************/ 10093 static __attribute__ ((noinline)) void 10094 bce_dump_mq_regs(struct bce_softc *sc) 10095 { 10096 BCE_PRINTF( 10097 "----------------------------" 10098 " MQ Regs " 10099 "----------------------------\n"); 10100 10101 BCE_PRINTF( 10102 "----------------------------" 10103 "----------------" 10104 "----------------------------\n"); 10105 10106 for (int i = 0x3c00; i < 0x4000; i += 0x10) { 10107 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10108 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 10109 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 10110 } 10111 10112 BCE_PRINTF( 10113 "----------------------------" 10114 "----------------" 10115 "----------------------------\n"); 10116 } 10117 10118 10119 /****************************************************************************/ 10120 /* Prints out the bootcode state. */ 10121 /* */ 10122 /* Returns: */ 10123 /* Nothing. */ 10124 /****************************************************************************/ 10125 static __attribute__ ((noinline)) void 10126 bce_dump_bc_state(struct bce_softc *sc) 10127 { 10128 u32 val; 10129 10130 BCE_PRINTF( 10131 "----------------------------" 10132 " Bootcode State " 10133 "----------------------------\n"); 10134 10135 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 10136 10137 val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE); 10138 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 10139 val, BCE_BC_RESET_TYPE); 10140 10141 val = bce_shmem_rd(sc, BCE_BC_STATE); 10142 BCE_PRINTF("0x%08X - (0x%06X) state\n", 10143 val, BCE_BC_STATE); 10144 10145 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 10146 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 10147 val, BCE_BC_STATE_CONDITION); 10148 10149 val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD); 10150 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 10151 val, BCE_BC_STATE_DEBUG_CMD); 10152 10153 BCE_PRINTF( 10154 "----------------------------" 10155 "----------------" 10156 "----------------------------\n"); 10157 } 10158 10159 10160 /****************************************************************************/ 10161 /* Prints out the TXP processor state. */ 10162 /* */ 10163 /* Returns: */ 10164 /* Nothing. */ 10165 /****************************************************************************/ 10166 static __attribute__ ((noinline)) void 10167 bce_dump_txp_state(struct bce_softc *sc, int regs) 10168 { 10169 u32 val; 10170 u32 fw_version[3]; 10171 10172 BCE_PRINTF( 10173 "----------------------------" 10174 " TXP State " 10175 "----------------------------\n"); 10176 10177 for (int i = 0; i < 3; i++) 10178 fw_version[i] = htonl(REG_RD_IND(sc, 10179 (BCE_TXP_SCRATCH + 0x10 + i * 4))); 10180 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10181 10182 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 10183 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", val, BCE_TXP_CPU_MODE); 10184 10185 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 10186 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE); 10187 10188 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 10189 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", val, 10190 BCE_TXP_CPU_EVENT_MASK); 10191 10192 if (regs) { 10193 BCE_PRINTF( 10194 "----------------------------" 10195 " Register Dump " 10196 "----------------------------\n"); 10197 10198 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 10199 /* Skip the big blank spaces */ 10200 if (i < 0x454000 && i > 0x5ffff) 10201 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10202 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10203 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10204 } 10205 } 10206 10207 BCE_PRINTF( 10208 "----------------------------" 10209 "----------------" 10210 "----------------------------\n"); 10211 } 10212 10213 10214 /****************************************************************************/ 10215 /* Prints out the RXP processor state. */ 10216 /* */ 10217 /* Returns: */ 10218 /* Nothing. */ 10219 /****************************************************************************/ 10220 static __attribute__ ((noinline)) void 10221 bce_dump_rxp_state(struct bce_softc *sc, int regs) 10222 { 10223 u32 val; 10224 u32 fw_version[3]; 10225 10226 BCE_PRINTF( 10227 "----------------------------" 10228 " RXP State " 10229 "----------------------------\n"); 10230 10231 for (int i = 0; i < 3; i++) 10232 fw_version[i] = htonl(REG_RD_IND(sc, 10233 (BCE_RXP_SCRATCH + 0x10 + i * 4))); 10234 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10235 10236 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 10237 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", val, BCE_RXP_CPU_MODE); 10238 10239 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 10240 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE); 10241 10242 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 10243 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", val, 10244 BCE_RXP_CPU_EVENT_MASK); 10245 10246 if (regs) { 10247 BCE_PRINTF( 10248 "----------------------------" 10249 " Register Dump " 10250 "----------------------------\n"); 10251 10252 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 10253 /* Skip the big blank sapces */ 10254 if (i < 0xc5400 && i > 0xdffff) 10255 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10256 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10257 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10258 } 10259 } 10260 10261 BCE_PRINTF( 10262 "----------------------------" 10263 "----------------" 10264 "----------------------------\n"); 10265 } 10266 10267 10268 /****************************************************************************/ 10269 /* Prints out the TPAT processor state. */ 10270 /* */ 10271 /* Returns: */ 10272 /* Nothing. */ 10273 /****************************************************************************/ 10274 static __attribute__ ((noinline)) void 10275 bce_dump_tpat_state(struct bce_softc *sc, int regs) 10276 { 10277 u32 val; 10278 u32 fw_version[3]; 10279 10280 BCE_PRINTF( 10281 "----------------------------" 10282 " TPAT State " 10283 "----------------------------\n"); 10284 10285 for (int i = 0; i < 3; i++) 10286 fw_version[i] = htonl(REG_RD_IND(sc, 10287 (BCE_TPAT_SCRATCH + 0x410 + i * 4))); 10288 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10289 10290 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 10291 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", val, BCE_TPAT_CPU_MODE); 10292 10293 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 10294 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE); 10295 10296 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 10297 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", val, 10298 BCE_TPAT_CPU_EVENT_MASK); 10299 10300 if (regs) { 10301 BCE_PRINTF( 10302 "----------------------------" 10303 " Register Dump " 10304 "----------------------------\n"); 10305 10306 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 10307 /* Skip the big blank spaces */ 10308 if (i < 0x854000 && i > 0x9ffff) 10309 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10310 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10311 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10312 } 10313 } 10314 10315 BCE_PRINTF( 10316 "----------------------------" 10317 "----------------" 10318 "----------------------------\n"); 10319 } 10320 10321 10322 /****************************************************************************/ 10323 /* Prints out the Command Procesor (CP) state. */ 10324 /* */ 10325 /* Returns: */ 10326 /* Nothing. */ 10327 /****************************************************************************/ 10328 static __attribute__ ((noinline)) void 10329 bce_dump_cp_state(struct bce_softc *sc, int regs) 10330 { 10331 u32 val; 10332 u32 fw_version[3]; 10333 10334 BCE_PRINTF( 10335 "----------------------------" 10336 " CP State " 10337 "----------------------------\n"); 10338 10339 for (int i = 0; i < 3; i++) 10340 fw_version[i] = htonl(REG_RD_IND(sc, 10341 (BCE_CP_SCRATCH + 0x10 + i * 4))); 10342 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10343 10344 val = REG_RD_IND(sc, BCE_CP_CPU_MODE); 10345 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", val, BCE_CP_CPU_MODE); 10346 10347 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 10348 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE); 10349 10350 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); 10351 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, 10352 BCE_CP_CPU_EVENT_MASK); 10353 10354 if (regs) { 10355 BCE_PRINTF( 10356 "----------------------------" 10357 " Register Dump " 10358 "----------------------------\n"); 10359 10360 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { 10361 /* Skip the big blank spaces */ 10362 if (i < 0x185400 && i > 0x19ffff) 10363 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10364 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10365 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10366 } 10367 } 10368 10369 BCE_PRINTF( 10370 "----------------------------" 10371 "----------------" 10372 "----------------------------\n"); 10373 } 10374 10375 10376 /****************************************************************************/ 10377 /* Prints out the Completion Procesor (COM) state. */ 10378 /* */ 10379 /* Returns: */ 10380 /* Nothing. */ 10381 /****************************************************************************/ 10382 static __attribute__ ((noinline)) void 10383 bce_dump_com_state(struct bce_softc *sc, int regs) 10384 { 10385 u32 val; 10386 u32 fw_version[3]; 10387 10388 BCE_PRINTF( 10389 "----------------------------" 10390 " COM State " 10391 "----------------------------\n"); 10392 10393 for (int i = 0; i < 3; i++) 10394 fw_version[i] = htonl(REG_RD_IND(sc, 10395 (BCE_COM_SCRATCH + 0x10 + i * 4))); 10396 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10397 10398 val = REG_RD_IND(sc, BCE_COM_CPU_MODE); 10399 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", val, BCE_COM_CPU_MODE); 10400 10401 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 10402 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE); 10403 10404 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); 10405 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, 10406 BCE_COM_CPU_EVENT_MASK); 10407 10408 if (regs) { 10409 BCE_PRINTF( 10410 "----------------------------" 10411 " Register Dump " 10412 "----------------------------\n"); 10413 10414 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { 10415 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10416 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10417 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10418 } 10419 } 10420 10421 BCE_PRINTF( 10422 "----------------------------" 10423 "----------------" 10424 "----------------------------\n"); 10425 } 10426 10427 10428 /****************************************************************************/ 10429 /* Prints out the driver state and then enters the debugger. */ 10430 /* */ 10431 /* Returns: */ 10432 /* Nothing. */ 10433 /****************************************************************************/ 10434 static void 10435 bce_breakpoint(struct bce_softc *sc) 10436 { 10437 10438 /* 10439 * Unreachable code to silence compiler warnings 10440 * about unused functions. 10441 */ 10442 if (0) { 10443 bce_freeze_controller(sc); 10444 bce_unfreeze_controller(sc); 10445 bce_dump_enet(sc, NULL); 10446 bce_dump_txbd(sc, 0, NULL); 10447 bce_dump_rxbd(sc, 0, NULL); 10448 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); 10449 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD); 10450 bce_dump_l2fhdr(sc, 0, NULL); 10451 bce_dump_ctx(sc, RX_CID); 10452 bce_dump_ftqs(sc); 10453 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 10454 bce_dump_rx_chain(sc, 0, USABLE_RX_BD); 10455 bce_dump_status_block(sc); 10456 bce_dump_stats_block(sc); 10457 bce_dump_driver_state(sc); 10458 bce_dump_hw_state(sc); 10459 bce_dump_bc_state(sc); 10460 bce_dump_txp_state(sc, 0); 10461 bce_dump_rxp_state(sc, 0); 10462 bce_dump_tpat_state(sc, 0); 10463 bce_dump_cp_state(sc, 0); 10464 bce_dump_com_state(sc, 0); 10465 #ifdef BCE_JUMBO_HDRSPLIT 10466 bce_dump_pgbd(sc, 0, NULL); 10467 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD); 10468 bce_dump_pg_chain(sc, 0, USABLE_PG_BD); 10469 #endif 10470 } 10471 10472 bce_dump_status_block(sc); 10473 bce_dump_driver_state(sc); 10474 10475 /* Call the debugger. */ 10476 breakpoint(); 10477 10478 return; 10479 } 10480 #endif 10481 10482