xref: /freebsd/sys/dev/bce/if_bce.c (revision 4a5216a6dc0c3ce4cf5f2d3ee8af0c3ff3402c4f)
1 /*-
2  * Copyright (c) 2006-2008 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5716  C0
42  *
43  * The following controllers are not supported by this driver:
44  *   BCM5706C A0, A1 (pre-production)
45  *   BCM5706S A0, A1 (pre-production)
46  *   BCM5708C A0, B0 (pre-production)
47  *   BCM5708S A0, B0 (pre-production)
48  *   BCM5709C A0  B0, B1, B2 (pre-production)
49  *   BCM5709S A0, A1, B0, B1, B2, C0 (pre-production)
50  */
51 
52 #include "opt_bce.h"
53 
54 #include <dev/bce/if_bcereg.h>
55 #include <dev/bce/if_bcefw.h>
56 
57 /****************************************************************************/
58 /* BCE Debug Options                                                        */
59 /****************************************************************************/
60 #ifdef BCE_DEBUG
61 	u32 bce_debug = BCE_WARN;
62 
63 	/*          0 = Never              */
64 	/*          1 = 1 in 2,147,483,648 */
65 	/*        256 = 1 in     8,388,608 */
66 	/*       2048 = 1 in     1,048,576 */
67 	/*      65536 = 1 in        32,768 */
68 	/*    1048576 = 1 in         2,048 */
69 	/*  268435456 =	1 in             8 */
70 	/*  536870912 = 1 in             4 */
71 	/* 1073741824 = 1 in             2 */
72 
73 	/* Controls how often the l2_fhdr frame error check will fail. */
74 	int bce_debug_l2fhdr_status_check = 0;
75 
76 	/* Controls how often the unexpected attention check will fail. */
77 	int bce_debug_unexpected_attention = 0;
78 
79 	/* Controls how often to simulate an mbuf allocation failure. */
80 	int bce_debug_mbuf_allocation_failure = 0;
81 
82 	/* Controls how often to simulate a DMA mapping failure. */
83 	int bce_debug_dma_map_addr_failure = 0;
84 
85 	/* Controls how often to simulate a bootcode failure. */
86 	int bce_debug_bootcode_running_failure = 0;
87 #endif
88 
89 /****************************************************************************/
90 /* BCE Build Time Options                                                   */
91 /****************************************************************************/
92 #define BCE_USE_SPLIT_HEADER 1
93 /* #define BCE_NVRAM_WRITE_SUPPORT 1 */
94 
95 
96 /****************************************************************************/
97 /* PCI Device ID Table                                                      */
98 /*                                                                          */
99 /* Used by bce_probe() to identify the devices supported by this driver.    */
100 /****************************************************************************/
101 #define BCE_DEVDESC_MAX		64
102 
103 static struct bce_type bce_devs[] = {
104 	/* BCM5706C Controllers and OEM boards. */
105 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
106 		"HP NC370T Multifunction Gigabit Server Adapter" },
107 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
108 		"HP NC370i Multifunction Gigabit Server Adapter" },
109 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
110 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
111 
112 	/* BCM5706S controllers and OEM boards. */
113 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
114 		"HP NC370F Multifunction Gigabit Server Adapter" },
115 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
116 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
117 
118 	/* BCM5708C controllers and OEM boards. */
119 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
120 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
121 
122 	/* BCM5708S controllers and OEM boards. */
123 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
124 		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
125 
126 	/* BCM5709C controllers and OEM boards. */
127 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
128 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
129 
130 	/* BCM5709S controllers and OEM boards. */
131 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
132 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
133 
134 	/* BCM5716 controllers and OEM boards. */
135 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
136 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
137 
138 	{ 0, 0, 0, 0, NULL }
139 };
140 
141 
142 /****************************************************************************/
143 /* Supported Flash NVRAM device data.                                       */
144 /****************************************************************************/
145 static struct flash_spec flash_table[] =
146 {
147 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
148 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
149 
150 	/* Slow EEPROM */
151 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
152 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
153 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
154 	 "EEPROM - slow"},
155 	/* Expansion entry 0001 */
156 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
157 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
158 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
159 	 "Entry 0001"},
160 	/* Saifun SA25F010 (non-buffered flash) */
161 	/* strap, cfg1, & write1 need updates */
162 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
163 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
165 	 "Non-buffered flash (128kB)"},
166 	/* Saifun SA25F020 (non-buffered flash) */
167 	/* strap, cfg1, & write1 need updates */
168 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
169 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
171 	 "Non-buffered flash (256kB)"},
172 	/* Expansion entry 0100 */
173 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
174 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
175 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
176 	 "Entry 0100"},
177 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
178 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
179 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
180 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
181 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
182 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
183 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
184 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
185 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
186 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
187 	/* Saifun SA25F005 (non-buffered flash) */
188 	/* strap, cfg1, & write1 need updates */
189 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
190 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
191 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
192 	 "Non-buffered flash (64kB)"},
193 	/* Fast EEPROM */
194 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
195 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
196 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
197 	 "EEPROM - fast"},
198 	/* Expansion entry 1001 */
199 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
200 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
202 	 "Entry 1001"},
203 	/* Expansion entry 1010 */
204 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
207 	 "Entry 1010"},
208 	/* ATMEL AT45DB011B (buffered flash) */
209 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
210 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
211 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
212 	 "Buffered flash (128kB)"},
213 	/* Expansion entry 1100 */
214 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
215 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
216 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
217 	 "Entry 1100"},
218 	/* Expansion entry 1101 */
219 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
221 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
222 	 "Entry 1101"},
223 	/* Ateml Expansion entry 1110 */
224 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
225 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
226 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
227 	 "Entry 1110 (Atmel)"},
228 	/* ATMEL AT45DB021B (buffered flash) */
229 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
230 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
231 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
232 	 "Buffered flash (256kB)"},
233 };
234 
235 /*
236  * The BCM5709 controllers transparently handle the
237  * differences between Atmel 264 byte pages and all
238  * flash devices which use 256 byte pages, so no
239  * logical-to-physical mapping is required in the
240  * driver.
241  */
242 static struct flash_spec flash_5709 = {
243 	.flags		= BCE_NV_BUFFERED,
244 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
245 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
246 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
247 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
248 	.name		= "5709/5716 buffered flash (256kB)",
249 };
250 
251 
252 /****************************************************************************/
253 /* FreeBSD device entry points.                                             */
254 /****************************************************************************/
255 static int  bce_probe				(device_t);
256 static int  bce_attach				(device_t);
257 static int  bce_detach				(device_t);
258 static int  bce_shutdown			(device_t);
259 
260 
261 /****************************************************************************/
262 /* BCE Debug Data Structure Dump Routines                                   */
263 /****************************************************************************/
264 #ifdef BCE_DEBUG
265 static u32	bce_reg_rd				(struct bce_softc *, u32);
266 static void	bce_reg_wr				(struct bce_softc *, u32, u32);
267 static void	bce_reg_wr16			(struct bce_softc *, u32, u16);
268 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
269 static void bce_dump_enet           (struct bce_softc *, struct mbuf *);
270 static void bce_dump_mbuf 			(struct bce_softc *, struct mbuf *);
271 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
272 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
273 #ifdef BCE_USE_SPLIT_HEADER
274 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
275 #endif
276 static void bce_dump_txbd			(struct bce_softc *, int, struct tx_bd *);
277 static void bce_dump_rxbd			(struct bce_softc *, int, struct rx_bd *);
278 #ifdef BCE_USE_SPLIT_HEADER
279 static void bce_dump_pgbd			(struct bce_softc *, int, struct rx_bd *);
280 #endif
281 static void bce_dump_l2fhdr			(struct bce_softc *, int, struct l2_fhdr *);
282 static void bce_dump_ctx			(struct bce_softc *, u16);
283 static void bce_dump_ftqs			(struct bce_softc *);
284 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
285 static void bce_dump_rx_chain		(struct bce_softc *, u16, int);
286 #ifdef BCE_USE_SPLIT_HEADER
287 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
288 #endif
289 static void bce_dump_status_block	(struct bce_softc *);
290 static void bce_dump_stats_block	(struct bce_softc *);
291 static void bce_dump_driver_state	(struct bce_softc *);
292 static void bce_dump_hw_state		(struct bce_softc *);
293 static void bce_dump_mq_regs        (struct bce_softc *);
294 static void bce_dump_bc_state		(struct bce_softc *);
295 static void bce_dump_txp_state		(struct bce_softc *, int);
296 static void bce_dump_rxp_state		(struct bce_softc *, int);
297 static void bce_dump_tpat_state		(struct bce_softc *, int);
298 static void bce_dump_cp_state		(struct bce_softc *, int);
299 static void bce_dump_com_state		(struct bce_softc *, int);
300 static void bce_breakpoint			(struct bce_softc *);
301 #endif
302 
303 
304 /****************************************************************************/
305 /* BCE Register/Memory Access Routines                                      */
306 /****************************************************************************/
307 static u32  bce_reg_rd_ind			(struct bce_softc *, u32);
308 static void bce_reg_wr_ind			(struct bce_softc *, u32, u32);
309 static void bce_ctx_wr				(struct bce_softc *, u32, u32, u32);
310 static int  bce_miibus_read_reg		(device_t, int, int);
311 static int  bce_miibus_write_reg	(device_t, int, int, int);
312 static void bce_miibus_statchg		(device_t);
313 
314 
315 /****************************************************************************/
316 /* BCE NVRAM Access Routines                                                */
317 /****************************************************************************/
318 static int  bce_acquire_nvram_lock	(struct bce_softc *);
319 static int  bce_release_nvram_lock	(struct bce_softc *);
320 static void bce_enable_nvram_access	(struct bce_softc *);
321 static void	bce_disable_nvram_access(struct bce_softc *);
322 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
323 static int  bce_init_nvram			(struct bce_softc *);
324 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
325 static int  bce_nvram_test			(struct bce_softc *);
326 #ifdef BCE_NVRAM_WRITE_SUPPORT
327 static int  bce_enable_nvram_write	(struct bce_softc *);
328 static void bce_disable_nvram_write	(struct bce_softc *);
329 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
330 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
331 static int  bce_nvram_write			(struct bce_softc *, u32, u8 *, int);
332 #endif
333 
334 /****************************************************************************/
335 /*                                                                          */
336 /****************************************************************************/
337 static void bce_get_media			(struct bce_softc *);
338 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
339 static int  bce_dma_alloc			(device_t);
340 static void bce_dma_free			(struct bce_softc *);
341 static void bce_release_resources	(struct bce_softc *);
342 
343 /****************************************************************************/
344 /* BCE Firmware Synchronization and Load                                    */
345 /****************************************************************************/
346 static int  bce_fw_sync				(struct bce_softc *, u32);
347 static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
348 static void bce_load_cpu_fw			(struct bce_softc *, struct cpu_reg *, struct fw_info *);
349 static void bce_init_rxp_cpu		(struct bce_softc *);
350 static void bce_init_txp_cpu 		(struct bce_softc *);
351 static void bce_init_tpat_cpu		(struct bce_softc *);
352 static void bce_init_cp_cpu		  	(struct bce_softc *);
353 static void bce_init_com_cpu	  	(struct bce_softc *);
354 static void bce_init_cpus			(struct bce_softc *);
355 
356 static void	bce_print_adapter_info	(struct bce_softc *);
357 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
358 static void bce_stop				(struct bce_softc *);
359 static int  bce_reset				(struct bce_softc *, u32);
360 static int  bce_chipinit 			(struct bce_softc *);
361 static int  bce_blockinit 			(struct bce_softc *);
362 
363 static int  bce_init_tx_chain		(struct bce_softc *);
364 static void bce_free_tx_chain		(struct bce_softc *);
365 
366 static int  bce_get_rx_buf			(struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *);
367 static int  bce_init_rx_chain		(struct bce_softc *);
368 static void bce_fill_rx_chain		(struct bce_softc *);
369 static void bce_free_rx_chain		(struct bce_softc *);
370 
371 #ifdef BCE_USE_SPLIT_HEADER
372 static int  bce_get_pg_buf			(struct bce_softc *, struct mbuf *, u16 *, u16 *);
373 static int  bce_init_pg_chain		(struct bce_softc *);
374 static void bce_fill_pg_chain		(struct bce_softc *);
375 static void bce_free_pg_chain		(struct bce_softc *);
376 #endif
377 
378 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
379 static void bce_start_locked		(struct ifnet *);
380 static void bce_start				(struct ifnet *);
381 static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
382 static void bce_watchdog			(struct bce_softc *);
383 static int  bce_ifmedia_upd			(struct ifnet *);
384 static void bce_ifmedia_upd_locked	(struct ifnet *);
385 static void bce_ifmedia_sts			(struct ifnet *, struct ifmediareq *);
386 static void bce_init_locked			(struct bce_softc *);
387 static void bce_init				(void *);
388 static void bce_mgmt_init_locked	(struct bce_softc *sc);
389 
390 static void bce_init_ctx			(struct bce_softc *);
391 static void bce_get_mac_addr		(struct bce_softc *);
392 static void bce_set_mac_addr		(struct bce_softc *);
393 static void bce_phy_intr			(struct bce_softc *);
394 static inline u16 bce_get_hw_rx_cons(struct bce_softc *);
395 static void bce_rx_intr				(struct bce_softc *);
396 static void bce_tx_intr				(struct bce_softc *);
397 static void bce_disable_intr		(struct bce_softc *);
398 static void bce_enable_intr			(struct bce_softc *, int);
399 
400 static void bce_intr				(void *);
401 static void bce_set_rx_mode			(struct bce_softc *);
402 static void bce_stats_update		(struct bce_softc *);
403 static void bce_tick				(void *);
404 static void bce_pulse				(void *);
405 static void bce_add_sysctls			(struct bce_softc *);
406 
407 
408 /****************************************************************************/
409 /* FreeBSD device dispatch table.                                           */
410 /****************************************************************************/
411 static device_method_t bce_methods[] = {
412 	/* Device interface (device_if.h) */
413 	DEVMETHOD(device_probe,		bce_probe),
414 	DEVMETHOD(device_attach,	bce_attach),
415 	DEVMETHOD(device_detach,	bce_detach),
416 	DEVMETHOD(device_shutdown,	bce_shutdown),
417 /* Supported by device interface but not used here. */
418 /*	DEVMETHOD(device_identify,	bce_identify),      */
419 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
420 /*	DEVMETHOD(device_resume,	bce_resume),        */
421 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
422 
423 	/* Bus interface (bus_if.h) */
424 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
425 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
426 
427 	/* MII interface (miibus_if.h) */
428 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
429 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
430 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
431 /* Supported by MII interface but not used here.       */
432 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
433 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
434 
435 	{ 0, 0 }
436 };
437 
438 static driver_t bce_driver = {
439 	"bce",
440 	bce_methods,
441 	sizeof(struct bce_softc)
442 };
443 
444 static devclass_t bce_devclass;
445 
446 MODULE_DEPEND(bce, pci, 1, 1, 1);
447 MODULE_DEPEND(bce, ether, 1, 1, 1);
448 MODULE_DEPEND(bce, miibus, 1, 1, 1);
449 
450 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
451 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
452 
453 
454 /****************************************************************************/
455 /* Tunable device values                                                    */
456 /****************************************************************************/
457 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
458 
459 /* Allowable values are TRUE or FALSE */
460 static int bce_tso_enable = TRUE;
461 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
462 SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
463 "TSO Enable/Disable");
464 
465 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
466 /* ToDo: Add MSI-X support. */
467 static int bce_msi_enable = 1;
468 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
469 SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
470 "MSI-X|MSI|INTx selector");
471 
472 /* ToDo: Add tunable to enable/disable strict MTU handling. */
473 /* Currently allows "loose" RX MTU checking (i.e. sets the  */
474 /* H/W RX MTU to the size of the largest receive buffer, or */
475 /* 2048 bytes).                                             */
476 
477 
478 /****************************************************************************/
479 /* Device probe function.                                                   */
480 /*                                                                          */
481 /* Compares the device to the driver's list of supported devices and        */
482 /* reports back to the OS whether this is the right driver for the device.  */
483 /*                                                                          */
484 /* Returns:                                                                 */
485 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
486 /****************************************************************************/
487 static int
488 bce_probe(device_t dev)
489 {
490 	struct bce_type *t;
491 	struct bce_softc *sc;
492 	char *descbuf;
493 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
494 
495 	t = bce_devs;
496 
497 	sc = device_get_softc(dev);
498 	bzero(sc, sizeof(struct bce_softc));
499 	sc->bce_unit = device_get_unit(dev);
500 	sc->bce_dev = dev;
501 
502 	/* Get the data for the device to be probed. */
503 	vid  = pci_get_vendor(dev);
504 	did  = pci_get_device(dev);
505 	svid = pci_get_subvendor(dev);
506 	sdid = pci_get_subdevice(dev);
507 
508 	DBPRINT(sc, BCE_EXTREME_LOAD,
509 		"%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
510 		"SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
511 
512 	/* Look through the list of known devices for a match. */
513 	while(t->bce_name != NULL) {
514 
515 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
516 			((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
517 			((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
518 
519 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
520 
521 			if (descbuf == NULL)
522 				return(ENOMEM);
523 
524 			/* Print out the device identity. */
525 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
526 				t->bce_name,
527 			    (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
528 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
529 
530 			device_set_desc_copy(dev, descbuf);
531 			free(descbuf, M_TEMP);
532 			return(BUS_PROBE_DEFAULT);
533 		}
534 		t++;
535 	}
536 
537 	return(ENXIO);
538 }
539 
540 
541 /****************************************************************************/
542 /* PCI Capabilities Probe Function.                                         */
543 /*                                                                          */
544 /* Walks the PCI capabiites list for the device to find what features are   */
545 /* supported.                                                               */
546 /*                                                                          */
547 /* Returns:                                                                 */
548 /*   None.                                                                  */
549 /****************************************************************************/
550 static void
551 bce_print_adapter_info(struct bce_softc *sc)
552 {
553 	DBENTER(BCE_VERBOSE_LOAD);
554 
555 	BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
556 	printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
557 		((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
558 
559 	/* Bus info. */
560 	if (sc->bce_flags & BCE_PCIE_FLAG) {
561 		printf("Bus (PCIe x%d, ", sc->link_width);
562 		switch (sc->link_speed) {
563 			case 1: printf("2.5Gbps); "); break;
564 			case 2:	printf("5Gbps); "); break;
565 			default: printf("Unknown link speed); ");
566 		}
567 	} else {
568 		printf("Bus (PCI%s, %s, %dMHz); ",
569 			((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
570 			((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
571 			sc->bus_speed_mhz);
572 	}
573 
574 	/* Firmware version and device features. */
575 	printf("F/W (0x%08X); Flags( ", sc->bce_fw_ver);
576 #ifdef BCE_USE_SPLIT_HEADER
577 	printf("SPLT ");
578 #endif
579 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
580 		printf("MFW ");
581 	if (sc->bce_flags & BCE_USING_MSI_FLAG)
582 		printf("MSI ");
583 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
584 		printf("MSI-X ");
585 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
586 		printf("2.5G ");
587 	printf(")\n");
588 
589 	DBEXIT(BCE_VERBOSE_LOAD);
590 }
591 
592 
593 /****************************************************************************/
594 /* PCI Capabilities Probe Function.                                         */
595 /*                                                                          */
596 /* Walks the PCI capabiites list for the device to find what features are   */
597 /* supported.                                                               */
598 /*                                                                          */
599 /* Returns:                                                                 */
600 /*   None.                                                                  */
601 /****************************************************************************/
602 static void
603 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
604 {
605 	u32 reg;
606 
607 	DBENTER(BCE_VERBOSE_LOAD);
608 
609 	/* Check if PCI-X capability is enabled. */
610 	if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
611 		if (reg != 0)
612 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
613 	}
614 
615 	/* Check if PCIe capability is enabled. */
616 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
617 		if (reg != 0) {
618 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
619 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = 0x%08X\n",
620 				link_status);
621 			sc->link_speed = link_status & 0xf;
622 			sc->link_width = (link_status >> 4) & 0x3f;
623 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
624 			sc->bce_flags |= BCE_PCIE_FLAG;
625 		}
626 	}
627 
628 	/* Check if MSI capability is enabled. */
629 	if (pci_find_extcap(dev, PCIY_MSI, &reg) == 0) {
630 		if (reg != 0)
631 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
632 	}
633 
634 	/* Check if MSI-X capability is enabled. */
635 	if (pci_find_extcap(dev, PCIY_MSIX, &reg) == 0) {
636 		if (reg != 0)
637 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
638 	}
639 
640 	DBEXIT(BCE_VERBOSE_LOAD);
641 }
642 
643 
644 /****************************************************************************/
645 /* Device attach function.                                                  */
646 /*                                                                          */
647 /* Allocates device resources, performs secondary chip identification,      */
648 /* resets and initializes the hardware, and initializes driver instance     */
649 /* variables.                                                               */
650 /*                                                                          */
651 /* Returns:                                                                 */
652 /*   0 on success, positive value on failure.                               */
653 /****************************************************************************/
654 static int
655 bce_attach(device_t dev)
656 {
657 	struct bce_softc *sc;
658 	struct ifnet *ifp;
659 	u32 val;
660 	int error, rid, rc = 0;
661 
662 	sc = device_get_softc(dev);
663 	sc->bce_dev = dev;
664 
665 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
666 
667 	sc->bce_unit = device_get_unit(dev);
668 
669 	/* Set initial device and PHY flags */
670 	sc->bce_flags = 0;
671 	sc->bce_phy_flags = 0;
672 
673 	pci_enable_busmaster(dev);
674 
675 	/* Allocate PCI memory resources. */
676 	rid = PCIR_BAR(0);
677 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
678 		&rid, RF_ACTIVE);
679 
680 	if (sc->bce_res_mem == NULL) {
681 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
682 			__FILE__, __LINE__);
683 		rc = ENXIO;
684 		goto bce_attach_fail;
685 	}
686 
687 	/* Get various resource handles. */
688 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
689 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
690 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
691 
692 	bce_probe_pci_caps(dev, sc);
693 
694 	rid = 1;
695 #if 0
696 	/* Try allocating MSI-X interrupts. */
697 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
698 		(bce_msi_enable >= 2) &&
699 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
700 		&rid, RF_ACTIVE)) != NULL)) {
701 
702 		msi_needed = sc->bce_msi_count = 1;
703 
704 		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
705 			(sc->bce_msi_count != msi_needed)) {
706 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
707 				"Received = %d, error = %d\n", __FILE__, __LINE__,
708 				msi_needed, sc->bce_msi_count, error);
709 			sc->bce_msi_count = 0;
710 			pci_release_msi(dev);
711 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
712 				sc->bce_res_irq);
713 			sc->bce_res_irq = NULL;
714 		} else {
715 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
716 				__FUNCTION__);
717 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
718 			sc->bce_intr = bce_intr;
719 		}
720 	}
721 #endif
722 
723 	/* Try allocating a MSI interrupt. */
724 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
725 		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
726 		sc->bce_msi_count = 1;
727 		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
728 			BCE_PRINTF("%s(%d): MSI allocation failed! error = %d\n",
729 				__FILE__, __LINE__, error);
730 			sc->bce_msi_count = 0;
731 			pci_release_msi(dev);
732 		} else {
733 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI interrupt.\n",
734 				__FUNCTION__);
735 			sc->bce_flags |= BCE_USING_MSI_FLAG;
736 			if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
737 				(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
738 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
739 			sc->bce_irq_rid = 1;
740 			sc->bce_intr = bce_intr;
741 		}
742 	}
743 
744 	/* Try allocating a legacy interrupt. */
745 	if (sc->bce_msi_count == 0) {
746 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
747 			__FUNCTION__);
748 		rid = 0;
749 		sc->bce_intr = bce_intr;
750 	}
751 
752 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
753 		&rid, RF_SHAREABLE | RF_ACTIVE);
754 
755 	sc->bce_irq_rid = rid;
756 
757 	/* Report any IRQ allocation errors. */
758 	if (sc->bce_res_irq == NULL) {
759 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
760 			__FILE__, __LINE__);
761 		rc = ENXIO;
762 		goto bce_attach_fail;
763 	}
764 
765 	/* Initialize mutex for the current device instance. */
766 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
767 
768 	/*
769 	 * Configure byte swap and enable indirect register access.
770 	 * Rely on CPU to do target byte swapping on big endian systems.
771 	 * Access to registers outside of PCI configurtion space are not
772 	 * valid until this is done.
773 	 */
774 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
775 			       BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
776 			       BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
777 
778 	/* Save ASIC revsion info. */
779 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
780 
781 	/* Weed out any non-production controller revisions. */
782 	switch(BCE_CHIP_ID(sc)) {
783 		case BCE_CHIP_ID_5706_A0:
784 		case BCE_CHIP_ID_5706_A1:
785 		case BCE_CHIP_ID_5708_A0:
786 		case BCE_CHIP_ID_5708_B0:
787 		case BCE_CHIP_ID_5709_A0:
788 		case BCE_CHIP_ID_5709_B0:
789 		case BCE_CHIP_ID_5709_B1:
790 		case BCE_CHIP_ID_5709_B2:
791 			BCE_PRINTF("%s(%d): Unsupported controller revision (%c%d)!\n",
792 				__FILE__, __LINE__,
793 				(((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
794 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
795 			rc = ENODEV;
796 			goto bce_attach_fail;
797 	}
798 
799 	/*
800 	 * The embedded PCIe to PCI-X bridge (EPB)
801 	 * in the 5708 cannot address memory above
802 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
803 	 */
804 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
805 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
806 	else
807 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
808 
809 	/*
810 	 * Find the base address for shared memory access.
811 	 * Newer versions of bootcode use a signature and offset
812 	 * while older versions use a fixed address.
813 	 */
814 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
815 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
816 		/* Multi-port devices use different offsets in shared memory. */
817 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
818 			(pci_get_function(sc->bce_dev) << 2));
819 	else
820 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
821 
822 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
823 		__FUNCTION__, sc->bce_shmem_base);
824 
825 	/* Fetch the bootcode revision. */
826 	sc->bce_fw_ver = REG_RD_IND(sc, sc->bce_shmem_base +
827 		BCE_DEV_INFO_BC_REV);
828 
829 	/* Check if any management firmware is running. */
830 	val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_PORT_FEATURE);
831 	if (val & (BCE_PORT_FEATURE_ASF_ENABLED | BCE_PORT_FEATURE_IMD_ENABLED))
832 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
833 
834 	/* Get PCI bus information (speed and type). */
835 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
836 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
837 		u32 clkreg;
838 
839 		sc->bce_flags |= BCE_PCIX_FLAG;
840 
841 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
842 
843 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
844 		switch (clkreg) {
845 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
846 			sc->bus_speed_mhz = 133;
847 			break;
848 
849 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
850 			sc->bus_speed_mhz = 100;
851 			break;
852 
853 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
854 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
855 			sc->bus_speed_mhz = 66;
856 			break;
857 
858 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
859 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
860 			sc->bus_speed_mhz = 50;
861 			break;
862 
863 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
864 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
865 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
866 			sc->bus_speed_mhz = 33;
867 			break;
868 		}
869 	} else {
870 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
871 			sc->bus_speed_mhz = 66;
872 		else
873 			sc->bus_speed_mhz = 33;
874 	}
875 
876 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
877 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
878 
879 	/* Reset the controller and announce to bootcode that driver is present. */
880 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
881 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
882 			__FILE__, __LINE__);
883 		rc = ENXIO;
884 		goto bce_attach_fail;
885 	}
886 
887 	/* Initialize the controller. */
888 	if (bce_chipinit(sc)) {
889 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
890 			__FILE__, __LINE__);
891 		rc = ENXIO;
892 		goto bce_attach_fail;
893 	}
894 
895 	/* Perform NVRAM test. */
896 	if (bce_nvram_test(sc)) {
897 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
898 			__FILE__, __LINE__);
899 		rc = ENXIO;
900 		goto bce_attach_fail;
901 	}
902 
903 	/* Fetch the permanent Ethernet MAC address. */
904 	bce_get_mac_addr(sc);
905 
906 	/*
907 	 * Trip points control how many BDs
908 	 * should be ready before generating an
909 	 * interrupt while ticks control how long
910 	 * a BD can sit in the chain before
911 	 * generating an interrupt.  Set the default
912 	 * values for the RX and TX chains.
913 	 */
914 
915 #ifdef BCE_DEBUG
916 	/* Force more frequent interrupts. */
917 	sc->bce_tx_quick_cons_trip_int = 1;
918 	sc->bce_tx_quick_cons_trip     = 1;
919 	sc->bce_tx_ticks_int           = 0;
920 	sc->bce_tx_ticks               = 0;
921 
922 	sc->bce_rx_quick_cons_trip_int = 1;
923 	sc->bce_rx_quick_cons_trip     = 1;
924 	sc->bce_rx_ticks_int           = 0;
925 	sc->bce_rx_ticks               = 0;
926 #else
927 	/* Improve throughput at the expense of increased latency. */
928 	sc->bce_tx_quick_cons_trip_int = 20;
929 	sc->bce_tx_quick_cons_trip     = 20;
930 	sc->bce_tx_ticks_int           = 80;
931 	sc->bce_tx_ticks               = 80;
932 
933 	sc->bce_rx_quick_cons_trip_int = 6;
934 	sc->bce_rx_quick_cons_trip     = 6;
935 	sc->bce_rx_ticks_int           = 18;
936 	sc->bce_rx_ticks               = 18;
937 #endif
938 
939 	/* Update statistics once every second. */
940 	sc->bce_stats_ticks = 1000000 & 0xffff00;
941 
942 	/* Find the media type for the adapter. */
943 	bce_get_media(sc);
944 
945 	/* Store data needed by PHY driver for backplane applications */
946 	sc->bce_shared_hw_cfg = REG_RD_IND(sc, sc->bce_shmem_base +
947 		BCE_SHARED_HW_CFG_CONFIG);
948 	sc->bce_port_hw_cfg   = REG_RD_IND(sc, sc->bce_shmem_base +
949 		BCE_PORT_HW_CFG_CONFIG);
950 
951 	/* Allocate DMA memory resources. */
952 	if (bce_dma_alloc(dev)) {
953 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
954 		    __FILE__, __LINE__);
955 		rc = ENXIO;
956 		goto bce_attach_fail;
957 	}
958 
959 	/* Allocate an ifnet structure. */
960 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
961 	if (ifp == NULL) {
962 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
963 			__FILE__, __LINE__);
964 		rc = ENXIO;
965 		goto bce_attach_fail;
966 	}
967 
968 	/* Initialize the ifnet interface. */
969 	ifp->if_softc        = sc;
970 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
971 	ifp->if_flags        = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
972 	ifp->if_ioctl        = bce_ioctl;
973 	ifp->if_start        = bce_start;
974 	ifp->if_init         = bce_init;
975 	ifp->if_mtu          = ETHERMTU;
976 
977 	if (bce_tso_enable) {
978 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
979 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4;
980 	} else {
981 		ifp->if_hwassist = BCE_IF_HWASSIST;
982 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
983 	}
984 
985 	ifp->if_capenable    = ifp->if_capabilities;
986 
987 	/*
988 	 * Assume standard mbuf sizes for buffer allocation.
989 	 * This may change later if the MTU size is set to
990 	 * something other than 1500.
991 	 */
992 #ifdef BCE_USE_SPLIT_HEADER
993 	sc->rx_bd_mbuf_alloc_size = MHLEN;
994 	/* Make sure offset is 16 byte aligned for hardware. */
995 	sc->rx_bd_mbuf_align_pad  = roundup2((MSIZE - MHLEN), 16) -
996 		(MSIZE - MHLEN);
997 	sc->rx_bd_mbuf_data_len   = sc->rx_bd_mbuf_alloc_size -
998 		sc->rx_bd_mbuf_align_pad;
999 	sc->pg_bd_mbuf_alloc_size = MCLBYTES;
1000 #else
1001 	sc->rx_bd_mbuf_alloc_size = MCLBYTES;
1002 	sc->rx_bd_mbuf_align_pad  = roundup2(MCLBYTES, 16) - MCLBYTES;
1003 	sc->rx_bd_mbuf_data_len   = sc->rx_bd_mbuf_alloc_size -
1004 		sc->rx_bd_mbuf_align_pad;
1005 #endif
1006 
1007 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD;
1008 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1009 	IFQ_SET_READY(&ifp->if_snd);
1010 
1011 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1012 		ifp->if_baudrate = IF_Mbps(2500ULL);
1013 	else
1014 		ifp->if_baudrate = IF_Mbps(1000);
1015 
1016 	/* Check for an MII child bus by probing the PHY. */
1017 	if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd,
1018 		bce_ifmedia_sts)) {
1019 		BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n",
1020 			__FILE__, __LINE__);
1021 		rc = ENXIO;
1022 		goto bce_attach_fail;
1023 	}
1024 
1025 	/* Attach to the Ethernet interface list. */
1026 	ether_ifattach(ifp, sc->eaddr);
1027 
1028 #if __FreeBSD_version < 500000
1029 	callout_init(&sc->bce_tick_callout);
1030 	callout_init(&sc->bce_pulse_callout);
1031 #else
1032 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1033 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1034 #endif
1035 
1036 	/* Hookup IRQ last. */
1037 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1038 		NULL, bce_intr, sc, &sc->bce_intrhand);
1039 
1040 	if (rc) {
1041 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1042 			__FILE__, __LINE__);
1043 		bce_detach(dev);
1044 		goto bce_attach_exit;
1045 	}
1046 
1047 	/*
1048 	 * At this point we've acquired all the resources
1049 	 * we need to run so there's no turning back, we're
1050 	 * cleared for launch.
1051 	 */
1052 
1053 	/* Print some important debugging info. */
1054 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1055 
1056 	/* Add the supported sysctls to the kernel. */
1057 	bce_add_sysctls(sc);
1058 
1059 	BCE_LOCK(sc);
1060 
1061 	/*
1062 	 * The chip reset earlier notified the bootcode that
1063 	 * a driver is present.  We now need to start our pulse
1064 	 * routine so that the bootcode is reminded that we're
1065 	 * still running.
1066 	 */
1067 	bce_pulse(sc);
1068 
1069 	bce_mgmt_init_locked(sc);
1070 	BCE_UNLOCK(sc);
1071 
1072 	/* Finally, print some useful adapter info */
1073 	bce_print_adapter_info(sc);
1074 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1075 		__FUNCTION__, sc);
1076 
1077 	goto bce_attach_exit;
1078 
1079 bce_attach_fail:
1080 	bce_release_resources(sc);
1081 
1082 bce_attach_exit:
1083 
1084 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1085 
1086 	return(rc);
1087 }
1088 
1089 
1090 /****************************************************************************/
1091 /* Device detach function.                                                  */
1092 /*                                                                          */
1093 /* Stops the controller, resets the controller, and releases resources.     */
1094 /*                                                                          */
1095 /* Returns:                                                                 */
1096 /*   0 on success, positive value on failure.                               */
1097 /****************************************************************************/
1098 static int
1099 bce_detach(device_t dev)
1100 {
1101 	struct bce_softc *sc = device_get_softc(dev);
1102 	struct ifnet *ifp;
1103 	u32 msg;
1104 
1105 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1106 
1107 	ifp = sc->bce_ifp;
1108 
1109 	/* Stop and reset the controller. */
1110 	BCE_LOCK(sc);
1111 
1112 	/* Stop the pulse so the bootcode can go to driver absent state. */
1113 	callout_stop(&sc->bce_pulse_callout);
1114 
1115 	bce_stop(sc);
1116 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1117 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1118 	else
1119 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1120 	bce_reset(sc, msg);
1121 
1122 	BCE_UNLOCK(sc);
1123 
1124 	ether_ifdetach(ifp);
1125 
1126 	/* If we have a child device on the MII bus remove it too. */
1127 	bus_generic_detach(dev);
1128 	device_delete_child(dev, sc->bce_miibus);
1129 
1130 	/* Release all remaining resources. */
1131 	bce_release_resources(sc);
1132 
1133 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1134 
1135 	return(0);
1136 }
1137 
1138 
1139 /****************************************************************************/
1140 /* Device shutdown function.                                                */
1141 /*                                                                          */
1142 /* Stops and resets the controller.                                         */
1143 /*                                                                          */
1144 /* Returns:                                                                 */
1145 /*   0 on success, positive value on failure.                               */
1146 /****************************************************************************/
1147 static int
1148 bce_shutdown(device_t dev)
1149 {
1150 	struct bce_softc *sc = device_get_softc(dev);
1151 	u32 msg;
1152 
1153 	DBENTER(BCE_VERBOSE);
1154 
1155 	BCE_LOCK(sc);
1156 	bce_stop(sc);
1157 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1158 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1159 	else
1160 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1161 	bce_reset(sc, msg);
1162 	BCE_UNLOCK(sc);
1163 
1164 	DBEXIT(BCE_VERBOSE);
1165 
1166 	return (0);
1167 }
1168 
1169 
1170 #ifdef BCE_DEBUG
1171 /****************************************************************************/
1172 /* Register read.                                                           */
1173 /*                                                                          */
1174 /* Returns:                                                                 */
1175 /*   The value of the register.                                             */
1176 /****************************************************************************/
1177 static u32
1178 bce_reg_rd(struct bce_softc *sc, u32 offset)
1179 {
1180 	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1181 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1182 		__FUNCTION__, offset, val);
1183 	return val;
1184 }
1185 
1186 
1187 /****************************************************************************/
1188 /* Register write (16 bit).                                                 */
1189 /*                                                                          */
1190 /* Returns:                                                                 */
1191 /*   Nothing.                                                               */
1192 /****************************************************************************/
1193 static void
1194 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1195 {
1196 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1197 		__FUNCTION__, offset, val);
1198 	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1199 }
1200 
1201 
1202 /****************************************************************************/
1203 /* Register write.                                                          */
1204 /*                                                                          */
1205 /* Returns:                                                                 */
1206 /*   Nothing.                                                               */
1207 /****************************************************************************/
1208 static void
1209 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1210 {
1211 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1212 		__FUNCTION__, offset, val);
1213 	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1214 }
1215 #endif
1216 
1217 /****************************************************************************/
1218 /* Indirect register read.                                                  */
1219 /*                                                                          */
1220 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1221 /* configuration space.  Using this mechanism avoids issues with posted     */
1222 /* reads but is much slower than memory-mapped I/O.                         */
1223 /*                                                                          */
1224 /* Returns:                                                                 */
1225 /*   The value of the register.                                             */
1226 /****************************************************************************/
1227 static u32
1228 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1229 {
1230 	device_t dev;
1231 	dev = sc->bce_dev;
1232 
1233 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1234 #ifdef BCE_DEBUG
1235 	{
1236 		u32 val;
1237 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1238 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1239 			__FUNCTION__, offset, val);
1240 		return val;
1241 	}
1242 #else
1243 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1244 #endif
1245 }
1246 
1247 
1248 /****************************************************************************/
1249 /* Indirect register write.                                                 */
1250 /*                                                                          */
1251 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1252 /* configuration space.  Using this mechanism avoids issues with posted     */
1253 /* writes but is muchh slower than memory-mapped I/O.                       */
1254 /*                                                                          */
1255 /* Returns:                                                                 */
1256 /*   Nothing.                                                               */
1257 /****************************************************************************/
1258 static void
1259 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1260 {
1261 	device_t dev;
1262 	dev = sc->bce_dev;
1263 
1264 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1265 		__FUNCTION__, offset, val);
1266 
1267 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1268 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1269 }
1270 
1271 
1272 #ifdef BCE_DEBUG
1273 /****************************************************************************/
1274 /* Context memory read.                                                     */
1275 /*                                                                          */
1276 /* The NetXtreme II controller uses context memory to track connection      */
1277 /* information for L2 and higher network protocols.                         */
1278 /*                                                                          */
1279 /* Returns:                                                                 */
1280 /*   The requested 32 bit value of context memory.                          */
1281 /****************************************************************************/
1282 static u32
1283 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1284 {
1285 	u32 idx, offset, retry_cnt = 5, val;
1286 
1287 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1288 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1289 			__FUNCTION__, cid_addr));
1290 
1291 	offset = ctx_offset + cid_addr;
1292 
1293 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1294 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1295 
1296 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1297 
1298 		for (idx = 0; idx < retry_cnt; idx++) {
1299 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1300 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1301 				break;
1302 			DELAY(5);
1303 		}
1304 
1305 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1306 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1307 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
1308 				__FILE__, __LINE__, cid_addr, ctx_offset);
1309 
1310 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1311 	} else {
1312 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1313 		val = REG_RD(sc, BCE_CTX_DATA);
1314 	}
1315 
1316 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1317 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1318 
1319 	return(val);
1320 }
1321 #endif
1322 
1323 
1324 /****************************************************************************/
1325 /* Context memory write.                                                    */
1326 /*                                                                          */
1327 /* The NetXtreme II controller uses context memory to track connection      */
1328 /* information for L2 and higher network protocols.                         */
1329 /*                                                                          */
1330 /* Returns:                                                                 */
1331 /*   Nothing.                                                               */
1332 /****************************************************************************/
1333 static void
1334 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1335 {
1336 	u32 idx, offset = ctx_offset + cid_addr;
1337 	u32 val, retry_cnt = 5;
1338 
1339 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1340 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1341 
1342 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1343 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1344 			__FUNCTION__, cid_addr));
1345 
1346 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1347 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1348 
1349 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1350 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1351 
1352 		for (idx = 0; idx < retry_cnt; idx++) {
1353 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1354 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1355 				break;
1356 			DELAY(5);
1357 		}
1358 
1359 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1360 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1361 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
1362 				__FILE__, __LINE__, cid_addr, ctx_offset);
1363 
1364 	} else {
1365 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1366 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1367 	}
1368 }
1369 
1370 
1371 /****************************************************************************/
1372 /* PHY register read.                                                       */
1373 /*                                                                          */
1374 /* Implements register reads on the MII bus.                                */
1375 /*                                                                          */
1376 /* Returns:                                                                 */
1377 /*   The value of the register.                                             */
1378 /****************************************************************************/
1379 static int
1380 bce_miibus_read_reg(device_t dev, int phy, int reg)
1381 {
1382 	struct bce_softc *sc;
1383 	u32 val;
1384 	int i;
1385 
1386 	sc = device_get_softc(dev);
1387 
1388 	/* Make sure we are accessing the correct PHY address. */
1389 	if (phy != sc->bce_phy_addr) {
1390 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY read!\n", phy);
1391 		return(0);
1392 	}
1393 
1394 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1395 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1396 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1397 
1398 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1399 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1400 
1401 		DELAY(40);
1402 	}
1403 
1404 
1405 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1406 		BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1407 		BCE_EMAC_MDIO_COMM_START_BUSY;
1408 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1409 
1410 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1411 		DELAY(10);
1412 
1413 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1414 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1415 			DELAY(5);
1416 
1417 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1418 			val &= BCE_EMAC_MDIO_COMM_DATA;
1419 
1420 			break;
1421 		}
1422 	}
1423 
1424 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1425 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, reg = 0x%04X\n",
1426 			__FILE__, __LINE__, phy, reg);
1427 		val = 0x0;
1428 	} else {
1429 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1430 	}
1431 
1432 
1433 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1434 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1435 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1436 
1437 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1438 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1439 
1440 		DELAY(40);
1441 	}
1442 
1443 	DB_PRINT_PHY_REG(reg, val);
1444 	return (val & 0xffff);
1445 
1446 }
1447 
1448 
1449 /****************************************************************************/
1450 /* PHY register write.                                                      */
1451 /*                                                                          */
1452 /* Implements register writes on the MII bus.                               */
1453 /*                                                                          */
1454 /* Returns:                                                                 */
1455 /*   The value of the register.                                             */
1456 /****************************************************************************/
1457 static int
1458 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1459 {
1460 	struct bce_softc *sc;
1461 	u32 val1;
1462 	int i;
1463 
1464 	sc = device_get_softc(dev);
1465 
1466 	/* Make sure we are accessing the correct PHY address. */
1467 	if (phy != sc->bce_phy_addr) {
1468 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY write!\n", phy);
1469 		return(0);
1470 	}
1471 
1472 	DB_PRINT_PHY_REG(reg, val);
1473 
1474 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1475 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1476 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1477 
1478 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1479 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1480 
1481 		DELAY(40);
1482 	}
1483 
1484 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1485 		BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1486 		BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1487 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1488 
1489 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1490 		DELAY(10);
1491 
1492 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1493 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1494 			DELAY(5);
1495 			break;
1496 		}
1497 	}
1498 
1499 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1500 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1501 			__FILE__, __LINE__);
1502 
1503 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1504 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1505 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1506 
1507 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1508 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1509 
1510 		DELAY(40);
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 
1517 /****************************************************************************/
1518 /* MII bus status change.                                                   */
1519 /*                                                                          */
1520 /* Called by the MII bus driver when the PHY establishes link to set the    */
1521 /* MAC interface registers.                                                 */
1522 /*                                                                          */
1523 /* Returns:                                                                 */
1524 /*   Nothing.                                                               */
1525 /****************************************************************************/
1526 static void
1527 bce_miibus_statchg(device_t dev)
1528 {
1529 	struct bce_softc *sc;
1530 	struct mii_data *mii;
1531 	int val;
1532 
1533 	sc = device_get_softc(dev);
1534 
1535 	DBENTER(BCE_VERBOSE_PHY);
1536 
1537 	mii = device_get_softc(sc->bce_miibus);
1538 
1539 	val = REG_RD(sc, BCE_EMAC_MODE);
1540 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
1541 		BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
1542 		BCE_EMAC_MODE_25G);
1543 
1544 	/* Set MII or GMII interface based on the speed negotiated by the PHY. */
1545 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1546 	case IFM_10_T:
1547 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
1548 			DBPRINT(sc, BCE_INFO, "Enabling 10Mb interface.\n");
1549 			val |= BCE_EMAC_MODE_PORT_MII_10;
1550 			break;
1551 		}
1552 		/* fall-through */
1553 	case IFM_100_TX:
1554 		DBPRINT(sc, BCE_INFO, "Enabling MII interface.\n");
1555 		val |= BCE_EMAC_MODE_PORT_MII;
1556 		break;
1557 	case IFM_2500_SX:
1558 		DBPRINT(sc, BCE_INFO, "Enabling 2.5G MAC mode.\n");
1559 		val |= BCE_EMAC_MODE_25G;
1560 		/* fall-through */
1561 	case IFM_1000_T:
1562 	case IFM_1000_SX:
1563 		DBPRINT(sc, BCE_INFO, "Enabling GMII interface.\n");
1564 		val |= BCE_EMAC_MODE_PORT_GMII;
1565 		break;
1566 	default:
1567 		DBPRINT(sc, BCE_INFO, "Unknown speed, enabling default GMII "
1568 			"interface.\n");
1569 		val |= BCE_EMAC_MODE_PORT_GMII;
1570 	}
1571 
1572 	/* Set half or full duplex based on the duplicity negotiated by the PHY. */
1573 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1574 		DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n");
1575 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
1576 	} else
1577 		DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n");
1578 
1579 	REG_WR(sc, BCE_EMAC_MODE, val);
1580 
1581 #if 0
1582 	/* ToDo: Enable flow control support in brgphy and bge. */
1583 	/* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */
1584 	if (mii->mii_media_active & IFM_FLAG0)
1585 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1586 	if (mii->mii_media_active & IFM_FLAG1)
1587 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1588 #endif
1589 
1590 	DBEXIT(BCE_VERBOSE_PHY);
1591 }
1592 
1593 
1594 /****************************************************************************/
1595 /* Acquire NVRAM lock.                                                      */
1596 /*                                                                          */
1597 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1598 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1599 /* for use by the driver.                                                   */
1600 /*                                                                          */
1601 /* Returns:                                                                 */
1602 /*   0 on success, positive value on failure.                               */
1603 /****************************************************************************/
1604 static int
1605 bce_acquire_nvram_lock(struct bce_softc *sc)
1606 {
1607 	u32 val;
1608 	int j, rc = 0;
1609 
1610 	DBENTER(BCE_VERBOSE_NVRAM);
1611 
1612 	/* Request access to the flash interface. */
1613 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1614 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1615 		val = REG_RD(sc, BCE_NVM_SW_ARB);
1616 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1617 			break;
1618 
1619 		DELAY(5);
1620 	}
1621 
1622 	if (j >= NVRAM_TIMEOUT_COUNT) {
1623 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1624 		rc = EBUSY;
1625 	}
1626 
1627 	DBEXIT(BCE_VERBOSE_NVRAM);
1628 	return (rc);
1629 }
1630 
1631 
1632 /****************************************************************************/
1633 /* Release NVRAM lock.                                                      */
1634 /*                                                                          */
1635 /* When the caller is finished accessing NVRAM the lock must be released.   */
1636 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1637 /* for use by the driver.                                                   */
1638 /*                                                                          */
1639 /* Returns:                                                                 */
1640 /*   0 on success, positive value on failure.                               */
1641 /****************************************************************************/
1642 static int
1643 bce_release_nvram_lock(struct bce_softc *sc)
1644 {
1645 	u32 val;
1646 	int j, rc = 0;
1647 
1648 	DBENTER(BCE_VERBOSE_NVRAM);
1649 
1650 	/*
1651 	 * Relinquish nvram interface.
1652 	 */
1653 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1654 
1655 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1656 		val = REG_RD(sc, BCE_NVM_SW_ARB);
1657 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1658 			break;
1659 
1660 		DELAY(5);
1661 	}
1662 
1663 	if (j >= NVRAM_TIMEOUT_COUNT) {
1664 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
1665 		rc = EBUSY;
1666 	}
1667 
1668 	DBEXIT(BCE_VERBOSE_NVRAM);
1669 	return (rc);
1670 }
1671 
1672 
1673 #ifdef BCE_NVRAM_WRITE_SUPPORT
1674 /****************************************************************************/
1675 /* Enable NVRAM write access.                                               */
1676 /*                                                                          */
1677 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1678 /*                                                                          */
1679 /* Returns:                                                                 */
1680 /*   0 on success, positive value on failure.                               */
1681 /****************************************************************************/
1682 static int
1683 bce_enable_nvram_write(struct bce_softc *sc)
1684 {
1685 	u32 val;
1686 	int rc = 0;
1687 
1688 	DBENTER(BCE_VERBOSE_NVRAM);
1689 
1690 	val = REG_RD(sc, BCE_MISC_CFG);
1691 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
1692 
1693 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
1694 		int j;
1695 
1696 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1697 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
1698 
1699 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1700 			DELAY(5);
1701 
1702 			val = REG_RD(sc, BCE_NVM_COMMAND);
1703 			if (val & BCE_NVM_COMMAND_DONE)
1704 				break;
1705 		}
1706 
1707 		if (j >= NVRAM_TIMEOUT_COUNT) {
1708 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
1709 			rc = EBUSY;
1710 		}
1711 	}
1712 
1713 	DBENTER(BCE_VERBOSE_NVRAM);
1714 	return (rc);
1715 }
1716 
1717 
1718 /****************************************************************************/
1719 /* Disable NVRAM write access.                                              */
1720 /*                                                                          */
1721 /* When the caller is finished writing to NVRAM write access must be        */
1722 /* disabled.                                                                */
1723 /*                                                                          */
1724 /* Returns:                                                                 */
1725 /*   Nothing.                                                               */
1726 /****************************************************************************/
1727 static void
1728 bce_disable_nvram_write(struct bce_softc *sc)
1729 {
1730 	u32 val;
1731 
1732 	DBENTER(BCE_VERBOSE_NVRAM);
1733 
1734 	val = REG_RD(sc, BCE_MISC_CFG);
1735 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
1736 
1737 	DBEXIT(BCE_VERBOSE_NVRAM);
1738 
1739 }
1740 #endif
1741 
1742 
1743 /****************************************************************************/
1744 /* Enable NVRAM access.                                                     */
1745 /*                                                                          */
1746 /* Before accessing NVRAM for read or write operations the caller must      */
1747 /* enabled NVRAM access.                                                    */
1748 /*                                                                          */
1749 /* Returns:                                                                 */
1750 /*   Nothing.                                                               */
1751 /****************************************************************************/
1752 static void
1753 bce_enable_nvram_access(struct bce_softc *sc)
1754 {
1755 	u32 val;
1756 
1757 	DBENTER(BCE_VERBOSE_NVRAM);
1758 
1759 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1760 	/* Enable both bits, even on read. */
1761 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1762 	       val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1763 
1764 	DBEXIT(BCE_VERBOSE_NVRAM);
1765 }
1766 
1767 
1768 /****************************************************************************/
1769 /* Disable NVRAM access.                                                    */
1770 /*                                                                          */
1771 /* When the caller is finished accessing NVRAM access must be disabled.     */
1772 /*                                                                          */
1773 /* Returns:                                                                 */
1774 /*   Nothing.                                                               */
1775 /****************************************************************************/
1776 static void
1777 bce_disable_nvram_access(struct bce_softc *sc)
1778 {
1779 	u32 val;
1780 
1781 	DBENTER(BCE_VERBOSE_NVRAM);
1782 
1783 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1784 
1785 	/* Disable both bits, even after read. */
1786 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1787 		val & ~(BCE_NVM_ACCESS_ENABLE_EN |
1788 			BCE_NVM_ACCESS_ENABLE_WR_EN));
1789 
1790 	DBEXIT(BCE_VERBOSE_NVRAM);
1791 }
1792 
1793 
1794 #ifdef BCE_NVRAM_WRITE_SUPPORT
1795 /****************************************************************************/
1796 /* Erase NVRAM page before writing.                                         */
1797 /*                                                                          */
1798 /* Non-buffered flash parts require that a page be erased before it is      */
1799 /* written.                                                                 */
1800 /*                                                                          */
1801 /* Returns:                                                                 */
1802 /*   0 on success, positive value on failure.                               */
1803 /****************************************************************************/
1804 static int
1805 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
1806 {
1807 	u32 cmd;
1808 	int j, rc = 0;
1809 
1810 	DBENTER(BCE_VERBOSE_NVRAM);
1811 
1812 	/* Buffered flash doesn't require an erase. */
1813 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
1814 		goto bce_nvram_erase_page_exit;
1815 
1816 	/* Build an erase command. */
1817 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
1818 	      BCE_NVM_COMMAND_DOIT;
1819 
1820 	/*
1821 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
1822 	 * and issue the erase command.
1823 	 */
1824 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1825 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1826 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
1827 
1828 	/* Wait for completion. */
1829 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1830 		u32 val;
1831 
1832 		DELAY(5);
1833 
1834 		val = REG_RD(sc, BCE_NVM_COMMAND);
1835 		if (val & BCE_NVM_COMMAND_DONE)
1836 			break;
1837 	}
1838 
1839 	if (j >= NVRAM_TIMEOUT_COUNT) {
1840 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
1841 		rc = EBUSY;
1842 	}
1843 
1844 bce_nvram_erase_page_exit:
1845 	DBEXIT(BCE_VERBOSE_NVRAM);
1846 	return (rc);
1847 }
1848 #endif /* BCE_NVRAM_WRITE_SUPPORT */
1849 
1850 
1851 /****************************************************************************/
1852 /* Read a dword (32 bits) from NVRAM.                                       */
1853 /*                                                                          */
1854 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1855 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1856 /*                                                                          */
1857 /* Returns:                                                                 */
1858 /*   0 on success and the 32 bit value read, positive value on failure.     */
1859 /****************************************************************************/
1860 static int
1861 bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val,
1862 							u32 cmd_flags)
1863 {
1864 	u32 cmd;
1865 	int i, rc = 0;
1866 
1867 	DBENTER(BCE_EXTREME_NVRAM);
1868 
1869 	/* Build the command word. */
1870 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
1871 
1872 	/* Calculate the offset for buffered flash if translation is used. */
1873 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
1874 		offset = ((offset / sc->bce_flash_info->page_size) <<
1875 			   sc->bce_flash_info->page_bits) +
1876 			  (offset % sc->bce_flash_info->page_size);
1877 	}
1878 
1879 	/*
1880 	 * Clear the DONE bit separately, set the address to read,
1881 	 * and issue the read.
1882 	 */
1883 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1884 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1885 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
1886 
1887 	/* Wait for completion. */
1888 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1889 		u32 val;
1890 
1891 		DELAY(5);
1892 
1893 		val = REG_RD(sc, BCE_NVM_COMMAND);
1894 		if (val & BCE_NVM_COMMAND_DONE) {
1895 			val = REG_RD(sc, BCE_NVM_READ);
1896 
1897 			val = bce_be32toh(val);
1898 			memcpy(ret_val, &val, 4);
1899 			break;
1900 		}
1901 	}
1902 
1903 	/* Check for errors. */
1904 	if (i >= NVRAM_TIMEOUT_COUNT) {
1905 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n",
1906 			__FILE__, __LINE__, offset);
1907 		rc = EBUSY;
1908 	}
1909 
1910 	DBEXIT(BCE_EXTREME_NVRAM);
1911 	return(rc);
1912 }
1913 
1914 
1915 #ifdef BCE_NVRAM_WRITE_SUPPORT
1916 /****************************************************************************/
1917 /* Write a dword (32 bits) to NVRAM.                                        */
1918 /*                                                                          */
1919 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1920 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1921 /* enabled NVRAM write access.                                              */
1922 /*                                                                          */
1923 /* Returns:                                                                 */
1924 /*   0 on success, positive value on failure.                               */
1925 /****************************************************************************/
1926 static int
1927 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
1928 	u32 cmd_flags)
1929 {
1930 	u32 cmd, val32;
1931 	int j, rc = 0;
1932 
1933 	DBENTER(BCE_VERBOSE_NVRAM);
1934 
1935 	/* Build the command word. */
1936 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
1937 
1938 	/* Calculate the offset for buffered flash if translation is used. */
1939 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
1940 		offset = ((offset / sc->bce_flash_info->page_size) <<
1941 			  sc->bce_flash_info->page_bits) +
1942 			 (offset % sc->bce_flash_info->page_size);
1943 	}
1944 
1945 	/*
1946 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1947 	 * set the NVRAM address to write, and issue the write command
1948 	 */
1949 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1950 	memcpy(&val32, val, 4);
1951 	val32 = htobe32(val32);
1952 	REG_WR(sc, BCE_NVM_WRITE, val32);
1953 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1954 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
1955 
1956 	/* Wait for completion. */
1957 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1958 		DELAY(5);
1959 
1960 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
1961 			break;
1962 	}
1963 	if (j >= NVRAM_TIMEOUT_COUNT) {
1964 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at offset 0x%08X\n",
1965 			__FILE__, __LINE__, offset);
1966 		rc = EBUSY;
1967 	}
1968 
1969 	DBEXIT(BCE_VERBOSE_NVRAM);
1970 	return (rc);
1971 }
1972 #endif /* BCE_NVRAM_WRITE_SUPPORT */
1973 
1974 
1975 /****************************************************************************/
1976 /* Initialize NVRAM access.                                                 */
1977 /*                                                                          */
1978 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1979 /* access that device.                                                      */
1980 /*                                                                          */
1981 /* Returns:                                                                 */
1982 /*   0 on success, positive value on failure.                               */
1983 /****************************************************************************/
1984 static int
1985 bce_init_nvram(struct bce_softc *sc)
1986 {
1987 	u32 val;
1988 	int j, entry_count, rc = 0;
1989 	struct flash_spec *flash;
1990 
1991 	DBENTER(BCE_VERBOSE_NVRAM);
1992 
1993 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1994 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1995 		sc->bce_flash_info = &flash_5709;
1996 		goto bce_init_nvram_get_flash_size;
1997 	}
1998 
1999 	/* Determine the selected interface. */
2000 	val = REG_RD(sc, BCE_NVM_CFG1);
2001 
2002 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2003 
2004 	/*
2005 	 * Flash reconfiguration is required to support additional
2006 	 * NVRAM devices not directly supported in hardware.
2007 	 * Check if the flash interface was reconfigured
2008 	 * by the bootcode.
2009 	 */
2010 
2011 	if (val & 0x40000000) {
2012 		/* Flash interface reconfigured by bootcode. */
2013 
2014 		DBPRINT(sc,BCE_INFO_LOAD,
2015 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2016 
2017 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2018 		     j++, flash++) {
2019 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2020 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2021 				sc->bce_flash_info = flash;
2022 				break;
2023 			}
2024 		}
2025 	} else {
2026 		/* Flash interface not yet reconfigured. */
2027 		u32 mask;
2028 
2029 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2030 			__FUNCTION__);
2031 
2032 		if (val & (1 << 23))
2033 			mask = FLASH_BACKUP_STRAP_MASK;
2034 		else
2035 			mask = FLASH_STRAP_MASK;
2036 
2037 		/* Look for the matching NVRAM device configuration data. */
2038 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2039 
2040 			/* Check if the device matches any of the known devices. */
2041 			if ((val & mask) == (flash->strapping & mask)) {
2042 				/* Found a device match. */
2043 				sc->bce_flash_info = flash;
2044 
2045 				/* Request access to the flash interface. */
2046 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2047 					return rc;
2048 
2049 				/* Reconfigure the flash interface. */
2050 				bce_enable_nvram_access(sc);
2051 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2052 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2053 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2054 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2055 				bce_disable_nvram_access(sc);
2056 				bce_release_nvram_lock(sc);
2057 
2058 				break;
2059 			}
2060 		}
2061 	}
2062 
2063 	/* Check if a matching device was found. */
2064 	if (j == entry_count) {
2065 		sc->bce_flash_info = NULL;
2066 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2067 			__FILE__, __LINE__);
2068 		rc = ENODEV;
2069 	}
2070 
2071 bce_init_nvram_get_flash_size:
2072 	/* Write the flash config data to the shared memory interface. */
2073 	val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_SHARED_HW_CFG_CONFIG2);
2074 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2075 	if (val)
2076 		sc->bce_flash_size = val;
2077 	else
2078 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2079 
2080 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2081 		__FUNCTION__, sc->bce_flash_info->name,
2082 		sc->bce_flash_info->total_size);
2083 
2084 	DBEXIT(BCE_VERBOSE_NVRAM);
2085 	return rc;
2086 }
2087 
2088 
2089 /****************************************************************************/
2090 /* Read an arbitrary range of data from NVRAM.                              */
2091 /*                                                                          */
2092 /* Prepares the NVRAM interface for access and reads the requested data     */
2093 /* into the supplied buffer.                                                */
2094 /*                                                                          */
2095 /* Returns:                                                                 */
2096 /*   0 on success and the data read, positive value on failure.             */
2097 /****************************************************************************/
2098 static int
2099 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2100 	int buf_size)
2101 {
2102 	int rc = 0;
2103 	u32 cmd_flags, offset32, len32, extra;
2104 
2105 	DBENTER(BCE_VERBOSE_NVRAM);
2106 
2107 	if (buf_size == 0)
2108 		goto bce_nvram_read_exit;
2109 
2110 	/* Request access to the flash interface. */
2111 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2112 		goto bce_nvram_read_exit;
2113 
2114 	/* Enable access to flash interface */
2115 	bce_enable_nvram_access(sc);
2116 
2117 	len32 = buf_size;
2118 	offset32 = offset;
2119 	extra = 0;
2120 
2121 	cmd_flags = 0;
2122 
2123 	if (offset32 & 3) {
2124 		u8 buf[4];
2125 		u32 pre_len;
2126 
2127 		offset32 &= ~3;
2128 		pre_len = 4 - (offset & 3);
2129 
2130 		if (pre_len >= len32) {
2131 			pre_len = len32;
2132 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2133 		}
2134 		else {
2135 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2136 		}
2137 
2138 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2139 
2140 		if (rc)
2141 			return rc;
2142 
2143 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2144 
2145 		offset32 += 4;
2146 		ret_buf += pre_len;
2147 		len32 -= pre_len;
2148 	}
2149 
2150 	if (len32 & 3) {
2151 		extra = 4 - (len32 & 3);
2152 		len32 = (len32 + 4) & ~3;
2153 	}
2154 
2155 	if (len32 == 4) {
2156 		u8 buf[4];
2157 
2158 		if (cmd_flags)
2159 			cmd_flags = BCE_NVM_COMMAND_LAST;
2160 		else
2161 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2162 				    BCE_NVM_COMMAND_LAST;
2163 
2164 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2165 
2166 		memcpy(ret_buf, buf, 4 - extra);
2167 	}
2168 	else if (len32 > 0) {
2169 		u8 buf[4];
2170 
2171 		/* Read the first word. */
2172 		if (cmd_flags)
2173 			cmd_flags = 0;
2174 		else
2175 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2176 
2177 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2178 
2179 		/* Advance to the next dword. */
2180 		offset32 += 4;
2181 		ret_buf += 4;
2182 		len32 -= 4;
2183 
2184 		while (len32 > 4 && rc == 0) {
2185 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2186 
2187 			/* Advance to the next dword. */
2188 			offset32 += 4;
2189 			ret_buf += 4;
2190 			len32 -= 4;
2191 		}
2192 
2193 		if (rc)
2194 			goto bce_nvram_read_locked_exit;
2195 
2196 		cmd_flags = BCE_NVM_COMMAND_LAST;
2197 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2198 
2199 		memcpy(ret_buf, buf, 4 - extra);
2200 	}
2201 
2202 bce_nvram_read_locked_exit:
2203 	/* Disable access to flash interface and release the lock. */
2204 	bce_disable_nvram_access(sc);
2205 	bce_release_nvram_lock(sc);
2206 
2207 bce_nvram_read_exit:
2208 	DBEXIT(BCE_VERBOSE_NVRAM);
2209 	return rc;
2210 }
2211 
2212 
2213 #ifdef BCE_NVRAM_WRITE_SUPPORT
2214 /****************************************************************************/
2215 /* Write an arbitrary range of data from NVRAM.                             */
2216 /*                                                                          */
2217 /* Prepares the NVRAM interface for write access and writes the requested   */
2218 /* data from the supplied buffer.  The caller is responsible for            */
2219 /* calculating any appropriate CRCs.                                        */
2220 /*                                                                          */
2221 /* Returns:                                                                 */
2222 /*   0 on success, positive value on failure.                               */
2223 /****************************************************************************/
2224 static int
2225 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2226 	int buf_size)
2227 {
2228 	u32 written, offset32, len32;
2229 	u8 *buf, start[4], end[4];
2230 	int rc = 0;
2231 	int align_start, align_end;
2232 
2233 	DBENTER(BCE_VERBOSE_NVRAM);
2234 
2235 	buf = data_buf;
2236 	offset32 = offset;
2237 	len32 = buf_size;
2238 	align_start = align_end = 0;
2239 
2240 	if ((align_start = (offset32 & 3))) {
2241 		offset32 &= ~3;
2242 		len32 += align_start;
2243 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2244 			goto bce_nvram_write_exit;
2245 	}
2246 
2247 	if (len32 & 3) {
2248 	       	if ((len32 > 4) || !align_start) {
2249 			align_end = 4 - (len32 & 3);
2250 			len32 += align_end;
2251 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2252 				end, 4))) {
2253 				goto bce_nvram_write_exit;
2254 			}
2255 		}
2256 	}
2257 
2258 	if (align_start || align_end) {
2259 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2260 		if (buf == 0) {
2261 			rc = ENOMEM;
2262 			goto bce_nvram_write_exit;
2263 		}
2264 
2265 		if (align_start) {
2266 			memcpy(buf, start, 4);
2267 		}
2268 
2269 		if (align_end) {
2270 			memcpy(buf + len32 - 4, end, 4);
2271 		}
2272 		memcpy(buf + align_start, data_buf, buf_size);
2273 	}
2274 
2275 	written = 0;
2276 	while ((written < len32) && (rc == 0)) {
2277 		u32 page_start, page_end, data_start, data_end;
2278 		u32 addr, cmd_flags;
2279 		int i;
2280 		u8 flash_buffer[264];
2281 
2282 	    /* Find the page_start addr */
2283 		page_start = offset32 + written;
2284 		page_start -= (page_start % sc->bce_flash_info->page_size);
2285 		/* Find the page_end addr */
2286 		page_end = page_start + sc->bce_flash_info->page_size;
2287 		/* Find the data_start addr */
2288 		data_start = (written == 0) ? offset32 : page_start;
2289 		/* Find the data_end addr */
2290 		data_end = (page_end > offset32 + len32) ?
2291 			(offset32 + len32) : page_end;
2292 
2293 		/* Request access to the flash interface. */
2294 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2295 			goto bce_nvram_write_exit;
2296 
2297 		/* Enable access to flash interface */
2298 		bce_enable_nvram_access(sc);
2299 
2300 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2301 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2302 			int j;
2303 
2304 			/* Read the whole page into the buffer
2305 			 * (non-buffer flash only) */
2306 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2307 				if (j == (sc->bce_flash_info->page_size - 4)) {
2308 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2309 				}
2310 				rc = bce_nvram_read_dword(sc,
2311 					page_start + j,
2312 					&flash_buffer[j],
2313 					cmd_flags);
2314 
2315 				if (rc)
2316 					goto bce_nvram_write_locked_exit;
2317 
2318 				cmd_flags = 0;
2319 			}
2320 		}
2321 
2322 		/* Enable writes to flash interface (unlock write-protect) */
2323 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2324 			goto bce_nvram_write_locked_exit;
2325 
2326 		/* Erase the page */
2327 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2328 			goto bce_nvram_write_locked_exit;
2329 
2330 		/* Re-enable the write again for the actual write */
2331 		bce_enable_nvram_write(sc);
2332 
2333 		/* Loop to write back the buffer data from page_start to
2334 		 * data_start */
2335 		i = 0;
2336 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2337 			for (addr = page_start; addr < data_start;
2338 				addr += 4, i += 4) {
2339 
2340 				rc = bce_nvram_write_dword(sc, addr,
2341 					&flash_buffer[i], cmd_flags);
2342 
2343 				if (rc != 0)
2344 					goto bce_nvram_write_locked_exit;
2345 
2346 				cmd_flags = 0;
2347 			}
2348 		}
2349 
2350 		/* Loop to write the new data from data_start to data_end */
2351 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2352 			if ((addr == page_end - 4) ||
2353 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2354 				(addr == data_end - 4))) {
2355 
2356 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2357 			}
2358 			rc = bce_nvram_write_dword(sc, addr, buf,
2359 				cmd_flags);
2360 
2361 			if (rc != 0)
2362 				goto bce_nvram_write_locked_exit;
2363 
2364 			cmd_flags = 0;
2365 			buf += 4;
2366 		}
2367 
2368 		/* Loop to write back the buffer data from data_end
2369 		 * to page_end */
2370 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2371 			for (addr = data_end; addr < page_end;
2372 				addr += 4, i += 4) {
2373 
2374 				if (addr == page_end-4) {
2375 					cmd_flags = BCE_NVM_COMMAND_LAST;
2376                 		}
2377 				rc = bce_nvram_write_dword(sc, addr,
2378 					&flash_buffer[i], cmd_flags);
2379 
2380 				if (rc != 0)
2381 					goto bce_nvram_write_locked_exit;
2382 
2383 				cmd_flags = 0;
2384 			}
2385 		}
2386 
2387 		/* Disable writes to flash interface (lock write-protect) */
2388 		bce_disable_nvram_write(sc);
2389 
2390 		/* Disable access to flash interface */
2391 		bce_disable_nvram_access(sc);
2392 		bce_release_nvram_lock(sc);
2393 
2394 		/* Increment written */
2395 		written += data_end - data_start;
2396 	}
2397 
2398 	goto bce_nvram_write_exit;
2399 
2400 bce_nvram_write_locked_exit:
2401 		bce_disable_nvram_write(sc);
2402 		bce_disable_nvram_access(sc);
2403 		bce_release_nvram_lock(sc);
2404 
2405 bce_nvram_write_exit:
2406 	if (align_start || align_end)
2407 		free(buf, M_DEVBUF);
2408 
2409 	DBEXIT(BCE_VERBOSE_NVRAM);
2410 	return (rc);
2411 }
2412 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2413 
2414 
2415 /****************************************************************************/
2416 /* Verifies that NVRAM is accessible and contains valid data.               */
2417 /*                                                                          */
2418 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2419 /* correct.                                                                 */
2420 /*                                                                          */
2421 /* Returns:                                                                 */
2422 /*   0 on success, positive value on failure.                               */
2423 /****************************************************************************/
2424 static int
2425 bce_nvram_test(struct bce_softc *sc)
2426 {
2427 	u32 buf[BCE_NVRAM_SIZE / 4];
2428 	u8 *data = (u8 *) buf;
2429 	int rc = 0;
2430 	u32 magic, csum;
2431 
2432 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2433 
2434 	/*
2435 	 * Check that the device NVRAM is valid by reading
2436 	 * the magic value at offset 0.
2437 	 */
2438 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2439 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", __FILE__, __LINE__);
2440 		goto bce_nvram_test_exit;
2441 	}
2442 
2443 	/*
2444 	 * Verify that offset 0 of the NVRAM contains
2445 	 * a valid magic number.
2446 	 */
2447     magic = bce_be32toh(buf[0]);
2448 	if (magic != BCE_NVRAM_MAGIC) {
2449 		rc = ENODEV;
2450 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, "
2451 			"Found: 0x%08X\n",
2452 			__FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2453 		goto bce_nvram_test_exit;
2454 	}
2455 
2456 	/*
2457 	 * Verify that the device NVRAM includes valid
2458 	 * configuration data.
2459 	 */
2460 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2461 		BCE_PRINTF("%s(%d): Unable to read Manufacturing Information from "
2462 			"NVRAM!\n", __FILE__, __LINE__);
2463 		goto bce_nvram_test_exit;
2464 	}
2465 
2466 	csum = ether_crc32_le(data, 0x100);
2467 	if (csum != BCE_CRC32_RESIDUAL) {
2468 		rc = ENODEV;
2469 		BCE_PRINTF("%s(%d): Invalid Manufacturing Information NVRAM CRC! "
2470 			"Expected: 0x%08X, Found: 0x%08X\n",
2471 			__FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2472 		goto bce_nvram_test_exit;
2473 	}
2474 
2475 	csum = ether_crc32_le(data + 0x100, 0x100);
2476 	if (csum != BCE_CRC32_RESIDUAL) {
2477 		rc = ENODEV;
2478 		BCE_PRINTF("%s(%d): Invalid Feature Configuration Information "
2479 			"NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2480 			__FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2481 	}
2482 
2483 bce_nvram_test_exit:
2484 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2485 	return rc;
2486 }
2487 
2488 
2489 /****************************************************************************/
2490 /* Identifies the current media type of the controller and sets the PHY     */
2491 /* address.                                                                 */
2492 /*                                                                          */
2493 /* Returns:                                                                 */
2494 /*   Nothing.                                                               */
2495 /****************************************************************************/
2496 static void
2497 bce_get_media(struct bce_softc *sc)
2498 {
2499 	u32 val;
2500 
2501 	DBENTER(BCE_VERBOSE);
2502 
2503 	/* Assume PHY address for copper controllers. */
2504 	sc->bce_phy_addr = 1;
2505 
2506 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2507  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
2508 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2509 		u32 strap;
2510 
2511 		/*
2512 		 * The BCM5709S is software configurable
2513 		 * for Copper or SerDes operation.
2514 		 */
2515 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2516 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for copper.\n");
2517 			goto bce_get_media_exit;
2518 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2519 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for dual media.\n");
2520 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2521 			goto bce_get_media_exit;
2522 		}
2523 
2524 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2525 			strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2526 		else
2527 			strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
2528 
2529 		if (pci_get_function(sc->bce_dev) == 0) {
2530 			switch (strap) {
2531 			case 0x4:
2532 			case 0x5:
2533 			case 0x6:
2534 				DBPRINT(sc, BCE_INFO_LOAD,
2535 					"BCM5709 s/w configured for SerDes.\n");
2536 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2537 			default:
2538 				DBPRINT(sc, BCE_INFO_LOAD,
2539 					"BCM5709 s/w configured for Copper.\n");
2540 			}
2541 		} else {
2542 			switch (strap) {
2543 			case 0x1:
2544 			case 0x2:
2545 			case 0x4:
2546 				DBPRINT(sc, BCE_INFO_LOAD,
2547 					"BCM5709 s/w configured for SerDes.\n");
2548 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2549 			default:
2550 				DBPRINT(sc, BCE_INFO_LOAD,
2551 					"BCM5709 s/w configured for Copper.\n");
2552 			}
2553 		}
2554 
2555 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
2556 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2557 
2558 	if (sc->bce_phy_flags && BCE_PHY_SERDES_FLAG) {
2559 		sc->bce_flags |= BCE_NO_WOL_FLAG;
2560 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2561 			sc->bce_phy_addr = 2;
2562 			val = REG_RD_IND(sc, sc->bce_shmem_base +
2563 				 BCE_SHARED_HW_CFG_CONFIG);
2564 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
2565 				sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG;
2566 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb capable adapter\n");
2567 			}
2568 		}
2569 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
2570 		   (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
2571 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
2572 
2573 bce_get_media_exit:
2574 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
2575 		"Using PHY address %d.\n", sc->bce_phy_addr);
2576 
2577 	DBEXIT(BCE_VERBOSE);
2578 }
2579 
2580 
2581 /****************************************************************************/
2582 /* Free any DMA memory owned by the driver.                                 */
2583 /*                                                                          */
2584 /* Scans through each data structre that requires DMA memory and frees      */
2585 /* the memory if allocated.                                                 */
2586 /*                                                                          */
2587 /* Returns:                                                                 */
2588 /*   Nothing.                                                               */
2589 /****************************************************************************/
2590 static void
2591 bce_dma_free(struct bce_softc *sc)
2592 {
2593 	int i;
2594 
2595 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
2596 
2597 	/* Free, unmap, and destroy the status block. */
2598 	if (sc->status_block != NULL) {
2599 		bus_dmamem_free(
2600 			sc->status_tag,
2601 		    sc->status_block,
2602 		    sc->status_map);
2603 		sc->status_block = NULL;
2604 	}
2605 
2606 	if (sc->status_map != NULL) {
2607 		bus_dmamap_unload(
2608 			sc->status_tag,
2609 		    sc->status_map);
2610 		bus_dmamap_destroy(sc->status_tag,
2611 		    sc->status_map);
2612 		sc->status_map = NULL;
2613 	}
2614 
2615 	if (sc->status_tag != NULL) {
2616 		bus_dma_tag_destroy(sc->status_tag);
2617 		sc->status_tag = NULL;
2618 	}
2619 
2620 
2621 	/* Free, unmap, and destroy the statistics block. */
2622 	if (sc->stats_block != NULL) {
2623 		bus_dmamem_free(
2624 			sc->stats_tag,
2625 		    sc->stats_block,
2626 		    sc->stats_map);
2627 		sc->stats_block = NULL;
2628 	}
2629 
2630 	if (sc->stats_map != NULL) {
2631 		bus_dmamap_unload(
2632 			sc->stats_tag,
2633 		    sc->stats_map);
2634 		bus_dmamap_destroy(sc->stats_tag,
2635 		    sc->stats_map);
2636 		sc->stats_map = NULL;
2637 	}
2638 
2639 	if (sc->stats_tag != NULL) {
2640 		bus_dma_tag_destroy(sc->stats_tag);
2641 		sc->stats_tag = NULL;
2642 	}
2643 
2644 
2645 	/* Free, unmap and destroy all context memory pages. */
2646 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2647 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2648 		for (i = 0; i < sc->ctx_pages; i++ ) {
2649 			if (sc->ctx_block[i] != NULL) {
2650 				bus_dmamem_free(
2651 					sc->ctx_tag,
2652 				    sc->ctx_block[i],
2653 				    sc->ctx_map[i]);
2654 				sc->ctx_block[i] = NULL;
2655 			}
2656 
2657 			if (sc->ctx_map[i] != NULL) {
2658 				bus_dmamap_unload(
2659 					sc->ctx_tag,
2660 		    		sc->ctx_map[i]);
2661 				bus_dmamap_destroy(
2662 					sc->ctx_tag,
2663 				    sc->ctx_map[i]);
2664 				sc->ctx_map[i] = NULL;
2665 			}
2666 		}
2667 
2668 		/* Destroy the context memory tag. */
2669 		if (sc->ctx_tag != NULL) {
2670 			bus_dma_tag_destroy(sc->ctx_tag);
2671 			sc->ctx_tag = NULL;
2672 		}
2673 	}
2674 
2675 
2676 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2677 	for (i = 0; i < TX_PAGES; i++ ) {
2678 		if (sc->tx_bd_chain[i] != NULL) {
2679 			bus_dmamem_free(
2680 				sc->tx_bd_chain_tag,
2681 			    sc->tx_bd_chain[i],
2682 			    sc->tx_bd_chain_map[i]);
2683 			sc->tx_bd_chain[i] = NULL;
2684 		}
2685 
2686 		if (sc->tx_bd_chain_map[i] != NULL) {
2687 			bus_dmamap_unload(
2688 				sc->tx_bd_chain_tag,
2689 		    	sc->tx_bd_chain_map[i]);
2690 			bus_dmamap_destroy(
2691 				sc->tx_bd_chain_tag,
2692 			    sc->tx_bd_chain_map[i]);
2693 			sc->tx_bd_chain_map[i] = NULL;
2694 		}
2695 	}
2696 
2697 	/* Destroy the TX buffer descriptor tag. */
2698 	if (sc->tx_bd_chain_tag != NULL) {
2699 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2700 		sc->tx_bd_chain_tag = NULL;
2701 	}
2702 
2703 
2704 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2705 	for (i = 0; i < RX_PAGES; i++ ) {
2706 		if (sc->rx_bd_chain[i] != NULL) {
2707 			bus_dmamem_free(
2708 				sc->rx_bd_chain_tag,
2709 			    sc->rx_bd_chain[i],
2710 			    sc->rx_bd_chain_map[i]);
2711 			sc->rx_bd_chain[i] = NULL;
2712 		}
2713 
2714 		if (sc->rx_bd_chain_map[i] != NULL) {
2715 			bus_dmamap_unload(
2716 				sc->rx_bd_chain_tag,
2717 		    	sc->rx_bd_chain_map[i]);
2718 			bus_dmamap_destroy(
2719 				sc->rx_bd_chain_tag,
2720 			    sc->rx_bd_chain_map[i]);
2721 			sc->rx_bd_chain_map[i] = NULL;
2722 		}
2723 	}
2724 
2725 	/* Destroy the RX buffer descriptor tag. */
2726 	if (sc->rx_bd_chain_tag != NULL) {
2727 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2728 		sc->rx_bd_chain_tag = NULL;
2729 	}
2730 
2731 
2732 #ifdef BCE_USE_SPLIT_HEADER
2733 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
2734 	for (i = 0; i < PG_PAGES; i++ ) {
2735 		if (sc->pg_bd_chain[i] != NULL) {
2736 			bus_dmamem_free(
2737 				sc->pg_bd_chain_tag,
2738 			    sc->pg_bd_chain[i],
2739 			    sc->pg_bd_chain_map[i]);
2740 			sc->pg_bd_chain[i] = NULL;
2741 		}
2742 
2743 		if (sc->pg_bd_chain_map[i] != NULL) {
2744 			bus_dmamap_unload(
2745 				sc->pg_bd_chain_tag,
2746 		    	sc->pg_bd_chain_map[i]);
2747 			bus_dmamap_destroy(
2748 				sc->pg_bd_chain_tag,
2749 			    sc->pg_bd_chain_map[i]);
2750 			sc->pg_bd_chain_map[i] = NULL;
2751 		}
2752 	}
2753 
2754 	/* Destroy the page buffer descriptor tag. */
2755 	if (sc->pg_bd_chain_tag != NULL) {
2756 		bus_dma_tag_destroy(sc->pg_bd_chain_tag);
2757 		sc->pg_bd_chain_tag = NULL;
2758 	}
2759 #endif
2760 
2761 
2762 	/* Unload and destroy the TX mbuf maps. */
2763 	for (i = 0; i < TOTAL_TX_BD; i++) {
2764 		if (sc->tx_mbuf_map[i] != NULL) {
2765 			bus_dmamap_unload(sc->tx_mbuf_tag,
2766 				sc->tx_mbuf_map[i]);
2767 			bus_dmamap_destroy(sc->tx_mbuf_tag,
2768 	 			sc->tx_mbuf_map[i]);
2769 			sc->tx_mbuf_map[i] = NULL;
2770 		}
2771 	}
2772 
2773 	/* Destroy the TX mbuf tag. */
2774 	if (sc->tx_mbuf_tag != NULL) {
2775 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
2776 		sc->tx_mbuf_tag = NULL;
2777 	}
2778 
2779 	/* Unload and destroy the RX mbuf maps. */
2780 	for (i = 0; i < TOTAL_RX_BD; i++) {
2781 		if (sc->rx_mbuf_map[i] != NULL) {
2782 			bus_dmamap_unload(sc->rx_mbuf_tag,
2783 				sc->rx_mbuf_map[i]);
2784 			bus_dmamap_destroy(sc->rx_mbuf_tag,
2785 	 			sc->rx_mbuf_map[i]);
2786 			sc->rx_mbuf_map[i] = NULL;
2787 		}
2788 	}
2789 
2790 	/* Destroy the RX mbuf tag. */
2791 	if (sc->rx_mbuf_tag != NULL) {
2792 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
2793 		sc->rx_mbuf_tag = NULL;
2794 	}
2795 
2796 #ifdef BCE_USE_SPLIT_HEADER
2797 	/* Unload and destroy the page mbuf maps. */
2798 	for (i = 0; i < TOTAL_PG_BD; i++) {
2799 		if (sc->pg_mbuf_map[i] != NULL) {
2800 			bus_dmamap_unload(sc->pg_mbuf_tag,
2801 				sc->pg_mbuf_map[i]);
2802 			bus_dmamap_destroy(sc->pg_mbuf_tag,
2803 	 			sc->pg_mbuf_map[i]);
2804 			sc->pg_mbuf_map[i] = NULL;
2805 		}
2806 	}
2807 
2808 	/* Destroy the page mbuf tag. */
2809 	if (sc->pg_mbuf_tag != NULL) {
2810 		bus_dma_tag_destroy(sc->pg_mbuf_tag);
2811 		sc->pg_mbuf_tag = NULL;
2812 	}
2813 #endif
2814 
2815 	/* Destroy the parent tag */
2816 	if (sc->parent_tag != NULL) {
2817 		bus_dma_tag_destroy(sc->parent_tag);
2818 		sc->parent_tag = NULL;
2819 	}
2820 
2821 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
2822 }
2823 
2824 
2825 /****************************************************************************/
2826 /* Get DMA memory from the OS.                                              */
2827 /*                                                                          */
2828 /* Validates that the OS has provided DMA buffers in response to a          */
2829 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
2830 /* When the callback is used the OS will return 0 for the mapping function  */
2831 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
2832 /* failures back to the caller.                                             */
2833 /*                                                                          */
2834 /* Returns:                                                                 */
2835 /*   Nothing.                                                               */
2836 /****************************************************************************/
2837 static void
2838 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2839 {
2840 	bus_addr_t *busaddr = arg;
2841 
2842 	/* Simulate a mapping failure. */
2843 	DBRUNIF(DB_RANDOMTRUE(bce_debug_dma_map_addr_failure),
2844 		printf("bce: %s(%d): Simulating DMA mapping error.\n",
2845 			__FILE__, __LINE__);
2846 		error = ENOMEM);
2847 
2848 	/* Check for an error and signal the caller that an error occurred. */
2849 	if (error) {
2850 		printf("bce %s(%d): DMA mapping error! error = %d, "
2851 		    "nseg = %d\n", __FILE__, __LINE__, error, nseg);
2852 		*busaddr = 0;
2853 		return;
2854 	}
2855 
2856 	*busaddr = segs->ds_addr;
2857 	return;
2858 }
2859 
2860 
2861 /****************************************************************************/
2862 /* Allocate any DMA memory needed by the driver.                            */
2863 /*                                                                          */
2864 /* Allocates DMA memory needed for the various global structures needed by  */
2865 /* hardware.                                                                */
2866 /*                                                                          */
2867 /* Memory alignment requirements:                                           */
2868 /* +-----------------+----------+----------+----------+----------+          */
2869 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
2870 /* +-----------------+----------+----------+----------+----------+          */
2871 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
2872 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
2873 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
2874 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
2875 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
2876 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
2877 /* +-----------------+----------+----------+----------+----------+          */
2878 /*                                                                          */
2879 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
2880 /*                                                                          */
2881 /* Returns:                                                                 */
2882 /*   0 for success, positive value for failure.                             */
2883 /****************************************************************************/
2884 static int
2885 bce_dma_alloc(device_t dev)
2886 {
2887 	struct bce_softc *sc;
2888 	int i, error, rc = 0;
2889 	bus_addr_t busaddr;
2890 	bus_size_t max_size, max_seg_size;
2891 	int max_segments;
2892 
2893 	sc = device_get_softc(dev);
2894 
2895 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
2896 
2897 	/*
2898 	 * Allocate the parent bus DMA tag appropriate for PCI.
2899 	 */
2900 	if (bus_dma_tag_create(NULL,
2901 			1,
2902 			BCE_DMA_BOUNDARY,
2903 			sc->max_bus_addr,
2904 			BUS_SPACE_MAXADDR,
2905 			NULL, NULL,
2906 			MAXBSIZE,
2907 			BUS_SPACE_UNRESTRICTED,
2908 			BUS_SPACE_MAXSIZE_32BIT,
2909 			0,
2910 			NULL, NULL,
2911 			&sc->parent_tag)) {
2912 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
2913 			__FILE__, __LINE__);
2914 		rc = ENOMEM;
2915 		goto bce_dma_alloc_exit;
2916 	}
2917 
2918 	/*
2919 	 * Create a DMA tag for the status block, allocate and clear the
2920 	 * memory, map the memory into DMA space, and fetch the physical
2921 	 * address of the block.
2922 	 */
2923 	if (bus_dma_tag_create(sc->parent_tag,
2924 	    	BCE_DMA_ALIGN,
2925 	    	BCE_DMA_BOUNDARY,
2926 	    	sc->max_bus_addr,
2927 	    	BUS_SPACE_MAXADDR,
2928 	    	NULL, NULL,
2929 	    	BCE_STATUS_BLK_SZ,
2930 	    	1,
2931 	    	BCE_STATUS_BLK_SZ,
2932 	    	0,
2933 	    	NULL, NULL,
2934 	    	&sc->status_tag)) {
2935 		BCE_PRINTF("%s(%d): Could not allocate status block DMA tag!\n",
2936 			__FILE__, __LINE__);
2937 		rc = ENOMEM;
2938 		goto bce_dma_alloc_exit;
2939 	}
2940 
2941 	if(bus_dmamem_alloc(sc->status_tag,
2942 	    	(void **)&sc->status_block,
2943 	    	BUS_DMA_NOWAIT,
2944 	    	&sc->status_map)) {
2945 		BCE_PRINTF("%s(%d): Could not allocate status block DMA memory!\n",
2946 			__FILE__, __LINE__);
2947 		rc = ENOMEM;
2948 		goto bce_dma_alloc_exit;
2949 	}
2950 
2951 	bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ);
2952 
2953 	error = bus_dmamap_load(sc->status_tag,
2954 	    	sc->status_map,
2955 	    	sc->status_block,
2956 	    	BCE_STATUS_BLK_SZ,
2957 	    	bce_dma_map_addr,
2958 	    	&busaddr,
2959 	    	BUS_DMA_NOWAIT);
2960 
2961 	if (error) {
2962 		BCE_PRINTF("%s(%d): Could not map status block DMA memory!\n",
2963 			__FILE__, __LINE__);
2964 		rc = ENOMEM;
2965 		goto bce_dma_alloc_exit;
2966 	}
2967 
2968 	sc->status_block_paddr = busaddr;
2969 	DBPRINT(sc, BCE_INFO, "%s(): status_block_paddr = 0x%jX\n",
2970 		__FUNCTION__, (uintmax_t) sc->status_block_paddr);
2971 
2972 	/*
2973 	 * Create a DMA tag for the statistics block, allocate and clear the
2974 	 * memory, map the memory into DMA space, and fetch the physical
2975 	 * address of the block.
2976 	 */
2977 	if (bus_dma_tag_create(sc->parent_tag,
2978 	    	BCE_DMA_ALIGN,
2979 	    	BCE_DMA_BOUNDARY,
2980 	    	sc->max_bus_addr,
2981 	    	BUS_SPACE_MAXADDR,
2982 	    	NULL, NULL,
2983 	    	BCE_STATS_BLK_SZ,
2984 	    	1,
2985 	    	BCE_STATS_BLK_SZ,
2986 	    	0,
2987 	    	NULL, NULL,
2988 	    	&sc->stats_tag)) {
2989 		BCE_PRINTF("%s(%d): Could not allocate statistics block DMA tag!\n",
2990 			__FILE__, __LINE__);
2991 		rc = ENOMEM;
2992 		goto bce_dma_alloc_exit;
2993 	}
2994 
2995 	if (bus_dmamem_alloc(sc->stats_tag,
2996 	    	(void **)&sc->stats_block,
2997 	    	BUS_DMA_NOWAIT,
2998 	    	&sc->stats_map)) {
2999 		BCE_PRINTF("%s(%d): Could not allocate statistics block DMA memory!\n",
3000 			__FILE__, __LINE__);
3001 		rc = ENOMEM;
3002 		goto bce_dma_alloc_exit;
3003 	}
3004 
3005 	bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ);
3006 
3007 	error = bus_dmamap_load(sc->stats_tag,
3008 	    	sc->stats_map,
3009 	    	sc->stats_block,
3010 	    	BCE_STATS_BLK_SZ,
3011 	    	bce_dma_map_addr,
3012 	    	&busaddr,
3013 	    	BUS_DMA_NOWAIT);
3014 
3015 	if(error) {
3016 		BCE_PRINTF("%s(%d): Could not map statistics block DMA memory!\n",
3017 			__FILE__, __LINE__);
3018 		rc = ENOMEM;
3019 		goto bce_dma_alloc_exit;
3020 	}
3021 
3022 	sc->stats_block_paddr = busaddr;
3023 	DBPRINT(sc, BCE_INFO, "%s(): stats_block_paddr = 0x%jX\n",
3024 		__FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3025 
3026 	/* BCM5709 uses host memory as cache for context memory. */
3027 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3028 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3029 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3030 		if (sc->ctx_pages == 0)
3031 			sc->ctx_pages = 1;
3032 
3033 		DBRUNIF((sc->ctx_pages > 512),
3034 			BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3035 				__FILE__, __LINE__, sc->ctx_pages));
3036 
3037 		/*
3038 		 * Create a DMA tag for the context pages,
3039 		 * allocate and clear the memory, map the
3040 		 * memory into DMA space, and fetch the
3041 		 * physical address of the block.
3042 		 */
3043 		if(bus_dma_tag_create(sc->parent_tag,
3044 			BCM_PAGE_SIZE,
3045 		    BCE_DMA_BOUNDARY,
3046 			sc->max_bus_addr,
3047 			BUS_SPACE_MAXADDR,
3048 			NULL, NULL,
3049 			BCM_PAGE_SIZE,
3050 			1,
3051 			BCM_PAGE_SIZE,
3052 			0,
3053 			NULL, NULL,
3054 			&sc->ctx_tag)) {
3055 			BCE_PRINTF("%s(%d): Could not allocate CTX DMA tag!\n",
3056 				__FILE__, __LINE__);
3057 			rc = ENOMEM;
3058 			goto bce_dma_alloc_exit;
3059 		}
3060 
3061 		for (i = 0; i < sc->ctx_pages; i++) {
3062 
3063 			if(bus_dmamem_alloc(sc->ctx_tag,
3064 		    		(void **)&sc->ctx_block[i],
3065 	    		BUS_DMA_NOWAIT,
3066 		    	&sc->ctx_map[i])) {
3067 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3068 					"DMA memory!\n", __FILE__, __LINE__);
3069 				rc = ENOMEM;
3070 				goto bce_dma_alloc_exit;
3071 			}
3072 
3073 			bzero((char *)sc->ctx_block[i], BCM_PAGE_SIZE);
3074 
3075 			error = bus_dmamap_load(sc->ctx_tag,
3076 	    		sc->ctx_map[i],
3077 	    		sc->ctx_block[i],
3078 		    	BCM_PAGE_SIZE,
3079 		    	bce_dma_map_addr,
3080 	    		&busaddr,
3081 	    		BUS_DMA_NOWAIT);
3082 
3083 			if (error) {
3084 				BCE_PRINTF("%s(%d): Could not map CTX DMA memory!\n",
3085 					__FILE__, __LINE__);
3086 				rc = ENOMEM;
3087 				goto bce_dma_alloc_exit;
3088 			}
3089 
3090 			sc->ctx_paddr[i] = busaddr;
3091 			DBPRINT(sc, BCE_INFO, "%s(): ctx_paddr[%d] = 0x%jX\n",
3092 				__FUNCTION__, i, (uintmax_t) sc->ctx_paddr[i]);
3093 		}
3094 	}
3095 
3096 	/*
3097 	 * Create a DMA tag for the TX buffer descriptor chain,
3098 	 * allocate and clear the  memory, and fetch the
3099 	 * physical address of the block.
3100 	 */
3101 	if(bus_dma_tag_create(sc->parent_tag,
3102 			BCM_PAGE_SIZE,
3103 		    BCE_DMA_BOUNDARY,
3104 			sc->max_bus_addr,
3105 			BUS_SPACE_MAXADDR,
3106 			NULL, NULL,
3107 			BCE_TX_CHAIN_PAGE_SZ,
3108 			1,
3109 			BCE_TX_CHAIN_PAGE_SZ,
3110 			0,
3111 			NULL, NULL,
3112 			&sc->tx_bd_chain_tag)) {
3113 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor chain DMA tag!\n",
3114 			__FILE__, __LINE__);
3115 		rc = ENOMEM;
3116 		goto bce_dma_alloc_exit;
3117 	}
3118 
3119 	for (i = 0; i < TX_PAGES; i++) {
3120 
3121 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3122 	    		(void **)&sc->tx_bd_chain[i],
3123 	    		BUS_DMA_NOWAIT,
3124 		    	&sc->tx_bd_chain_map[i])) {
3125 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3126 				"chain DMA memory!\n", __FILE__, __LINE__);
3127 			rc = ENOMEM;
3128 			goto bce_dma_alloc_exit;
3129 		}
3130 
3131 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3132 	    		sc->tx_bd_chain_map[i],
3133 	    		sc->tx_bd_chain[i],
3134 		    	BCE_TX_CHAIN_PAGE_SZ,
3135 		    	bce_dma_map_addr,
3136 	    		&busaddr,
3137 	    		BUS_DMA_NOWAIT);
3138 
3139 		if (error) {
3140 			BCE_PRINTF("%s(%d): Could not map TX descriptor chain DMA memory!\n",
3141 				__FILE__, __LINE__);
3142 			rc = ENOMEM;
3143 			goto bce_dma_alloc_exit;
3144 		}
3145 
3146 		sc->tx_bd_chain_paddr[i] = busaddr;
3147 		DBPRINT(sc, BCE_INFO, "%s(): tx_bd_chain_paddr[%d] = 0x%jX\n",
3148 			__FUNCTION__, i, (uintmax_t) sc->tx_bd_chain_paddr[i]);
3149 	}
3150 
3151 	/* Check the required size before mapping to conserve resources. */
3152 	if (bce_tso_enable) {
3153 		max_size     = BCE_TSO_MAX_SIZE;
3154 		max_segments = BCE_MAX_SEGMENTS;
3155 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3156 	} else {
3157 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3158 		max_segments = BCE_MAX_SEGMENTS;
3159 		max_seg_size = MCLBYTES;
3160 	}
3161 
3162 	/* Create a DMA tag for TX mbufs. */
3163 	if (bus_dma_tag_create(sc->parent_tag,
3164 			1,
3165 			BCE_DMA_BOUNDARY,
3166 			sc->max_bus_addr,
3167 			BUS_SPACE_MAXADDR,
3168 			NULL, NULL,
3169 			max_size,
3170 			max_segments,
3171 			max_seg_size,
3172 			0,
3173 			NULL, NULL,
3174 			&sc->tx_mbuf_tag)) {
3175 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3176 			__FILE__, __LINE__);
3177 		rc = ENOMEM;
3178 		goto bce_dma_alloc_exit;
3179 	}
3180 
3181 	/* Create DMA maps for the TX mbufs clusters. */
3182 	for (i = 0; i < TOTAL_TX_BD; i++) {
3183 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3184 			&sc->tx_mbuf_map[i])) {
3185 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA map!\n",
3186 				__FILE__, __LINE__);
3187 			rc = ENOMEM;
3188 			goto bce_dma_alloc_exit;
3189 		}
3190 	}
3191 
3192 	/*
3193 	 * Create a DMA tag for the RX buffer descriptor chain,
3194 	 * allocate and clear the memory, and fetch the physical
3195 	 * address of the blocks.
3196 	 */
3197 	if (bus_dma_tag_create(sc->parent_tag,
3198 			BCM_PAGE_SIZE,
3199 			BCE_DMA_BOUNDARY,
3200 			BUS_SPACE_MAXADDR,
3201 			sc->max_bus_addr,
3202 			NULL, NULL,
3203 			BCE_RX_CHAIN_PAGE_SZ,
3204 			1,
3205 			BCE_RX_CHAIN_PAGE_SZ,
3206 			0,
3207 			NULL, NULL,
3208 			&sc->rx_bd_chain_tag)) {
3209 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain DMA tag!\n",
3210 			__FILE__, __LINE__);
3211 		rc = ENOMEM;
3212 		goto bce_dma_alloc_exit;
3213 	}
3214 
3215 	for (i = 0; i < RX_PAGES; i++) {
3216 
3217 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3218 	    		(void **)&sc->rx_bd_chain[i],
3219 	    		BUS_DMA_NOWAIT,
3220 		    	&sc->rx_bd_chain_map[i])) {
3221 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3222 				"DMA memory!\n", __FILE__, __LINE__);
3223 			rc = ENOMEM;
3224 			goto bce_dma_alloc_exit;
3225 		}
3226 
3227 		bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
3228 
3229 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3230 	    		sc->rx_bd_chain_map[i],
3231 	    		sc->rx_bd_chain[i],
3232 		    	BCE_RX_CHAIN_PAGE_SZ,
3233 		    	bce_dma_map_addr,
3234 	    		&busaddr,
3235 	    		BUS_DMA_NOWAIT);
3236 
3237 		if (error) {
3238 			BCE_PRINTF("%s(%d): Could not map RX descriptor chain DMA memory!\n",
3239 				__FILE__, __LINE__);
3240 			rc = ENOMEM;
3241 			goto bce_dma_alloc_exit;
3242 		}
3243 
3244 		sc->rx_bd_chain_paddr[i] = busaddr;
3245 		DBPRINT(sc, BCE_INFO, "%s(): rx_bd_chain_paddr[%d] = 0x%jX\n",
3246 			__FUNCTION__, i, (uintmax_t) sc->rx_bd_chain_paddr[i]);
3247 	}
3248 
3249 	/*
3250 	 * Create a DMA tag for RX mbufs.
3251 	 */
3252 #ifdef BCE_USE_SPLIT_HEADER
3253 	max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3254 		MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3255 #else
3256 	max_size = max_seg_size = MJUM9BYTES;
3257 #endif
3258 
3259 	if (bus_dma_tag_create(sc->parent_tag,
3260 			1,
3261 			BCE_DMA_BOUNDARY,
3262 			sc->max_bus_addr,
3263 			BUS_SPACE_MAXADDR,
3264 			NULL, NULL,
3265 			max_size,
3266 			1,
3267 			max_seg_size,
3268 			0,
3269 			NULL, NULL,
3270 	    	&sc->rx_mbuf_tag)) {
3271 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3272 			__FILE__, __LINE__);
3273 		rc = ENOMEM;
3274 		goto bce_dma_alloc_exit;
3275 	}
3276 
3277 	/* Create DMA maps for the RX mbuf clusters. */
3278 	for (i = 0; i < TOTAL_RX_BD; i++) {
3279 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3280 				&sc->rx_mbuf_map[i])) {
3281 			BCE_PRINTF("%s(%d): Unable to create RX mbuf DMA map!\n",
3282 				__FILE__, __LINE__);
3283 			rc = ENOMEM;
3284 			goto bce_dma_alloc_exit;
3285 		}
3286 	}
3287 
3288 #ifdef BCE_USE_SPLIT_HEADER
3289 	/*
3290 	 * Create a DMA tag for the page buffer descriptor chain,
3291 	 * allocate and clear the memory, and fetch the physical
3292 	 * address of the blocks.
3293 	 */
3294 	if (bus_dma_tag_create(sc->parent_tag,
3295 			BCM_PAGE_SIZE,
3296 			BCE_DMA_BOUNDARY,
3297 			BUS_SPACE_MAXADDR,
3298 			sc->max_bus_addr,
3299 			NULL, NULL,
3300 			BCE_PG_CHAIN_PAGE_SZ,
3301 			1,
3302 			BCE_PG_CHAIN_PAGE_SZ,
3303 			0,
3304 			NULL, NULL,
3305 			&sc->pg_bd_chain_tag)) {
3306 		BCE_PRINTF("%s(%d): Could not allocate page descriptor chain DMA tag!\n",
3307 			__FILE__, __LINE__);
3308 		rc = ENOMEM;
3309 		goto bce_dma_alloc_exit;
3310 	}
3311 
3312 	for (i = 0; i < PG_PAGES; i++) {
3313 
3314 		if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3315 	    		(void **)&sc->pg_bd_chain[i],
3316 	    		BUS_DMA_NOWAIT,
3317 		    	&sc->pg_bd_chain_map[i])) {
3318 			BCE_PRINTF("%s(%d): Could not allocate page descriptor chain "
3319 				"DMA memory!\n", __FILE__, __LINE__);
3320 			rc = ENOMEM;
3321 			goto bce_dma_alloc_exit;
3322 		}
3323 
3324 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
3325 
3326 		error = bus_dmamap_load(sc->pg_bd_chain_tag,
3327 	    		sc->pg_bd_chain_map[i],
3328 	    		sc->pg_bd_chain[i],
3329 		    	BCE_PG_CHAIN_PAGE_SZ,
3330 		    	bce_dma_map_addr,
3331 	    		&busaddr,
3332 	    		BUS_DMA_NOWAIT);
3333 
3334 		if (error) {
3335 			BCE_PRINTF("%s(%d): Could not map page descriptor chain DMA memory!\n",
3336 				__FILE__, __LINE__);
3337 			rc = ENOMEM;
3338 			goto bce_dma_alloc_exit;
3339 		}
3340 
3341 		sc->pg_bd_chain_paddr[i] = busaddr;
3342 		DBPRINT(sc, BCE_INFO, "%s(): pg_bd_chain_paddr[%d] = 0x%jX\n",
3343 			__FUNCTION__, i, (uintmax_t) sc->pg_bd_chain_paddr[i]);
3344 	}
3345 
3346 	/*
3347 	 * Create a DMA tag for page mbufs.
3348 	 */
3349 	max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3350 		MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3351 
3352 	if (bus_dma_tag_create(sc->parent_tag,
3353 			1,
3354 			BCE_DMA_BOUNDARY,
3355 			sc->max_bus_addr,
3356 			BUS_SPACE_MAXADDR,
3357 			NULL, NULL,
3358 			max_size,
3359 			1,
3360 			max_seg_size,
3361 			0,
3362 			NULL, NULL,
3363 	    	&sc->pg_mbuf_tag)) {
3364 		BCE_PRINTF("%s(%d): Could not allocate page mbuf DMA tag!\n",
3365 			__FILE__, __LINE__);
3366 		rc = ENOMEM;
3367 		goto bce_dma_alloc_exit;
3368 	}
3369 
3370 	/* Create DMA maps for the page mbuf clusters. */
3371 	for (i = 0; i < TOTAL_PG_BD; i++) {
3372 		if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3373 				&sc->pg_mbuf_map[i])) {
3374 			BCE_PRINTF("%s(%d): Unable to create page mbuf DMA map!\n",
3375 				__FILE__, __LINE__);
3376 			rc = ENOMEM;
3377 			goto bce_dma_alloc_exit;
3378 		}
3379 	}
3380 #endif
3381 
3382 bce_dma_alloc_exit:
3383 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3384 	return(rc);
3385 }
3386 
3387 
3388 /****************************************************************************/
3389 /* Release all resources used by the driver.                                */
3390 /*                                                                          */
3391 /* Releases all resources acquired by the driver including interrupts,      */
3392 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3393 /*                                                                          */
3394 /* Returns:                                                                 */
3395 /*   Nothing.                                                               */
3396 /****************************************************************************/
3397 static void
3398 bce_release_resources(struct bce_softc *sc)
3399 {
3400 	device_t dev;
3401 
3402 	DBENTER(BCE_VERBOSE_RESET);
3403 
3404 	dev = sc->bce_dev;
3405 
3406 	bce_dma_free(sc);
3407 
3408 	if (sc->bce_intrhand != NULL) {
3409 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3410 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3411 	}
3412 
3413 	if (sc->bce_res_irq != NULL) {
3414 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3415 		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3416 			sc->bce_res_irq);
3417 	}
3418 
3419 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3420 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3421 		pci_release_msi(dev);
3422 	}
3423 
3424 	if (sc->bce_res_mem != NULL) {
3425 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3426 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->bce_res_mem);
3427 	}
3428 
3429 	if (sc->bce_ifp != NULL) {
3430 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3431 		if_free(sc->bce_ifp);
3432 	}
3433 
3434 	if (mtx_initialized(&sc->bce_mtx))
3435 		BCE_LOCK_DESTROY(sc);
3436 
3437 	DBEXIT(BCE_VERBOSE_RESET);
3438 }
3439 
3440 
3441 /****************************************************************************/
3442 /* Firmware synchronization.                                                */
3443 /*                                                                          */
3444 /* Before performing certain events such as a chip reset, synchronize with  */
3445 /* the firmware first.                                                      */
3446 /*                                                                          */
3447 /* Returns:                                                                 */
3448 /*   0 for success, positive value for failure.                             */
3449 /****************************************************************************/
3450 static int
3451 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3452 {
3453 	int i, rc = 0;
3454 	u32 val;
3455 
3456 	DBENTER(BCE_VERBOSE_RESET);
3457 
3458 	/* Don't waste any time if we've timed out before. */
3459 	if (sc->bce_fw_timed_out) {
3460 		rc = EBUSY;
3461 		goto bce_fw_sync_exit;
3462 	}
3463 
3464 	/* Increment the message sequence number. */
3465 	sc->bce_fw_wr_seq++;
3466 	msg_data |= sc->bce_fw_wr_seq;
3467 
3468  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = 0x%08X\n",
3469  		msg_data);
3470 
3471 	/* Send the message to the bootcode driver mailbox. */
3472 	REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data);
3473 
3474 	/* Wait for the bootcode to acknowledge the message. */
3475 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3476 		/* Check for a response in the bootcode firmware mailbox. */
3477 		val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_FW_MB);
3478 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3479 			break;
3480 		DELAY(1000);
3481 	}
3482 
3483 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
3484 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3485 		((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3486 
3487 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3488 			"msg_data = 0x%08X\n",
3489 			__FILE__, __LINE__, msg_data);
3490 
3491 		msg_data &= ~BCE_DRV_MSG_CODE;
3492 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3493 
3494 		REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data);
3495 
3496 		sc->bce_fw_timed_out = 1;
3497 		rc = EBUSY;
3498 	}
3499 
3500 bce_fw_sync_exit:
3501 	DBEXIT(BCE_VERBOSE_RESET);
3502 	return (rc);
3503 }
3504 
3505 
3506 /****************************************************************************/
3507 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3508 /*                                                                          */
3509 /* Returns:                                                                 */
3510 /*   Nothing.                                                               */
3511 /****************************************************************************/
3512 static void
3513 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
3514 	u32 rv2p_code_len, u32 rv2p_proc)
3515 {
3516 	int i;
3517 	u32 val;
3518 
3519 	DBENTER(BCE_VERBOSE_RESET);
3520 
3521 	/* Set the page size used by RV2P. */
3522 	if (rv2p_proc == RV2P_PROC2) {
3523 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3524 	}
3525 
3526 	for (i = 0; i < rv2p_code_len; i += 8) {
3527 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3528 		rv2p_code++;
3529 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3530 		rv2p_code++;
3531 
3532 		if (rv2p_proc == RV2P_PROC1) {
3533 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3534 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3535 		}
3536 		else {
3537 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3538 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3539 		}
3540 	}
3541 
3542 	/* Reset the processor, un-stall is done later. */
3543 	if (rv2p_proc == RV2P_PROC1) {
3544 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3545 	}
3546 	else {
3547 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3548 	}
3549 
3550 	DBEXIT(BCE_VERBOSE_RESET);
3551 }
3552 
3553 
3554 /****************************************************************************/
3555 /* Load RISC processor firmware.                                            */
3556 /*                                                                          */
3557 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
3558 /* associated with a particular processor.                                  */
3559 /*                                                                          */
3560 /* Returns:                                                                 */
3561 /*   Nothing.                                                               */
3562 /****************************************************************************/
3563 static void
3564 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3565 	struct fw_info *fw)
3566 {
3567 	u32 offset;
3568 	u32 val;
3569 
3570 	DBENTER(BCE_VERBOSE_RESET);
3571 
3572 	/* Halt the CPU. */
3573 	val = REG_RD_IND(sc, cpu_reg->mode);
3574 	val |= cpu_reg->mode_value_halt;
3575 	REG_WR_IND(sc, cpu_reg->mode, val);
3576 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3577 
3578 	/* Load the Text area. */
3579 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3580 	if (fw->text) {
3581 		int j;
3582 
3583 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3584 			REG_WR_IND(sc, offset, fw->text[j]);
3585 	        }
3586 	}
3587 
3588 	/* Load the Data area. */
3589 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3590 	if (fw->data) {
3591 		int j;
3592 
3593 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3594 			REG_WR_IND(sc, offset, fw->data[j]);
3595 		}
3596 	}
3597 
3598 	/* Load the SBSS area. */
3599 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
3600 	if (fw->sbss) {
3601 		int j;
3602 
3603 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
3604 			REG_WR_IND(sc, offset, fw->sbss[j]);
3605 		}
3606 	}
3607 
3608 	/* Load the BSS area. */
3609 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
3610 	if (fw->bss) {
3611 		int j;
3612 
3613 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
3614 			REG_WR_IND(sc, offset, fw->bss[j]);
3615 		}
3616 	}
3617 
3618 	/* Load the Read-Only area. */
3619 	offset = cpu_reg->spad_base +
3620 		(fw->rodata_addr - cpu_reg->mips_view_base);
3621 	if (fw->rodata) {
3622 		int j;
3623 
3624 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
3625 			REG_WR_IND(sc, offset, fw->rodata[j]);
3626 		}
3627 	}
3628 
3629 	/* Clear the pre-fetch instruction. */
3630 	REG_WR_IND(sc, cpu_reg->inst, 0);
3631 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
3632 
3633 	/* Start the CPU. */
3634 	val = REG_RD_IND(sc, cpu_reg->mode);
3635 	val &= ~cpu_reg->mode_value_halt;
3636 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3637 	REG_WR_IND(sc, cpu_reg->mode, val);
3638 
3639 	DBEXIT(BCE_VERBOSE_RESET);
3640 }
3641 
3642 
3643 /****************************************************************************/
3644 /* Initialize the RX CPU.                                                   */
3645 /*                                                                          */
3646 /* Returns:                                                                 */
3647 /*   Nothing.                                                               */
3648 /****************************************************************************/
3649 static void
3650 bce_init_rxp_cpu(struct bce_softc *sc)
3651 {
3652 	struct cpu_reg cpu_reg;
3653 	struct fw_info fw;
3654 
3655 	DBENTER(BCE_VERBOSE_RESET);
3656 
3657 	cpu_reg.mode = BCE_RXP_CPU_MODE;
3658 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3659 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3660 	cpu_reg.state = BCE_RXP_CPU_STATE;
3661 	cpu_reg.state_value_clear = 0xffffff;
3662 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3663 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3664 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3665 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3666 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3667 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3668 	cpu_reg.mips_view_base = 0x8000000;
3669 
3670 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3671 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3672  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
3673 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
3674 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
3675 		fw.start_addr = bce_RXP_b09FwStartAddr;
3676 
3677 		fw.text_addr = bce_RXP_b09FwTextAddr;
3678 		fw.text_len = bce_RXP_b09FwTextLen;
3679 		fw.text_index = 0;
3680 		fw.text = bce_RXP_b09FwText;
3681 
3682 		fw.data_addr = bce_RXP_b09FwDataAddr;
3683 		fw.data_len = bce_RXP_b09FwDataLen;
3684 		fw.data_index = 0;
3685 		fw.data = bce_RXP_b09FwData;
3686 
3687 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
3688 		fw.sbss_len = bce_RXP_b09FwSbssLen;
3689 		fw.sbss_index = 0;
3690 		fw.sbss = bce_RXP_b09FwSbss;
3691 
3692 		fw.bss_addr = bce_RXP_b09FwBssAddr;
3693 		fw.bss_len = bce_RXP_b09FwBssLen;
3694 		fw.bss_index = 0;
3695 		fw.bss = bce_RXP_b09FwBss;
3696 
3697 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
3698 		fw.rodata_len = bce_RXP_b09FwRodataLen;
3699 		fw.rodata_index = 0;
3700 		fw.rodata = bce_RXP_b09FwRodata;
3701 	} else {
3702 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
3703 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
3704 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
3705 		fw.start_addr = bce_RXP_b06FwStartAddr;
3706 
3707 		fw.text_addr = bce_RXP_b06FwTextAddr;
3708 		fw.text_len = bce_RXP_b06FwTextLen;
3709 		fw.text_index = 0;
3710 		fw.text = bce_RXP_b06FwText;
3711 
3712 		fw.data_addr = bce_RXP_b06FwDataAddr;
3713 		fw.data_len = bce_RXP_b06FwDataLen;
3714 		fw.data_index = 0;
3715 		fw.data = bce_RXP_b06FwData;
3716 
3717 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
3718 		fw.sbss_len = bce_RXP_b06FwSbssLen;
3719 		fw.sbss_index = 0;
3720 		fw.sbss = bce_RXP_b06FwSbss;
3721 
3722 		fw.bss_addr = bce_RXP_b06FwBssAddr;
3723 		fw.bss_len = bce_RXP_b06FwBssLen;
3724 		fw.bss_index = 0;
3725 		fw.bss = bce_RXP_b06FwBss;
3726 
3727 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
3728 		fw.rodata_len = bce_RXP_b06FwRodataLen;
3729 		fw.rodata_index = 0;
3730 		fw.rodata = bce_RXP_b06FwRodata;
3731 	}
3732 
3733 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
3734 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3735 
3736 	DBEXIT(BCE_VERBOSE_RESET);
3737 }
3738 
3739 
3740 /****************************************************************************/
3741 /* Initialize the TX CPU.                                                   */
3742 /*                                                                          */
3743 /* Returns:                                                                 */
3744 /*   Nothing.                                                               */
3745 /****************************************************************************/
3746 static void
3747 bce_init_txp_cpu(struct bce_softc *sc)
3748 {
3749 	struct cpu_reg cpu_reg;
3750 	struct fw_info fw;
3751 
3752 	DBENTER(BCE_VERBOSE_RESET);
3753 
3754 	cpu_reg.mode = BCE_TXP_CPU_MODE;
3755 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
3756 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
3757 	cpu_reg.state = BCE_TXP_CPU_STATE;
3758 	cpu_reg.state_value_clear = 0xffffff;
3759 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
3760 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
3761 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
3762 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
3763 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
3764 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
3765 	cpu_reg.mips_view_base = 0x8000000;
3766 
3767 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3768 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3769 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
3770 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
3771 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
3772 		fw.start_addr = bce_TXP_b09FwStartAddr;
3773 
3774 		fw.text_addr = bce_TXP_b09FwTextAddr;
3775 		fw.text_len = bce_TXP_b09FwTextLen;
3776 		fw.text_index = 0;
3777 		fw.text = bce_TXP_b09FwText;
3778 
3779 		fw.data_addr = bce_TXP_b09FwDataAddr;
3780 		fw.data_len = bce_TXP_b09FwDataLen;
3781 		fw.data_index = 0;
3782 		fw.data = bce_TXP_b09FwData;
3783 
3784 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
3785 		fw.sbss_len = bce_TXP_b09FwSbssLen;
3786 		fw.sbss_index = 0;
3787 		fw.sbss = bce_TXP_b09FwSbss;
3788 
3789 		fw.bss_addr = bce_TXP_b09FwBssAddr;
3790 		fw.bss_len = bce_TXP_b09FwBssLen;
3791 		fw.bss_index = 0;
3792 		fw.bss = bce_TXP_b09FwBss;
3793 
3794 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
3795 		fw.rodata_len = bce_TXP_b09FwRodataLen;
3796 		fw.rodata_index = 0;
3797 		fw.rodata = bce_TXP_b09FwRodata;
3798 	} else {
3799 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
3800 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
3801 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
3802 		fw.start_addr = bce_TXP_b06FwStartAddr;
3803 
3804 		fw.text_addr = bce_TXP_b06FwTextAddr;
3805 		fw.text_len = bce_TXP_b06FwTextLen;
3806 		fw.text_index = 0;
3807 		fw.text = bce_TXP_b06FwText;
3808 
3809 		fw.data_addr = bce_TXP_b06FwDataAddr;
3810 		fw.data_len = bce_TXP_b06FwDataLen;
3811 		fw.data_index = 0;
3812 		fw.data = bce_TXP_b06FwData;
3813 
3814 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
3815 		fw.sbss_len = bce_TXP_b06FwSbssLen;
3816 		fw.sbss_index = 0;
3817 		fw.sbss = bce_TXP_b06FwSbss;
3818 
3819 		fw.bss_addr = bce_TXP_b06FwBssAddr;
3820 		fw.bss_len = bce_TXP_b06FwBssLen;
3821 		fw.bss_index = 0;
3822 		fw.bss = bce_TXP_b06FwBss;
3823 
3824 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
3825 		fw.rodata_len = bce_TXP_b06FwRodataLen;
3826 		fw.rodata_index = 0;
3827 		fw.rodata = bce_TXP_b06FwRodata;
3828 	}
3829 
3830 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
3831 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3832 
3833 	DBEXIT(BCE_VERBOSE_RESET);
3834 }
3835 
3836 
3837 /****************************************************************************/
3838 /* Initialize the TPAT CPU.                                                 */
3839 /*                                                                          */
3840 /* Returns:                                                                 */
3841 /*   Nothing.                                                               */
3842 /****************************************************************************/
3843 static void
3844 bce_init_tpat_cpu(struct bce_softc *sc)
3845 {
3846 	struct cpu_reg cpu_reg;
3847 	struct fw_info fw;
3848 
3849 	DBENTER(BCE_VERBOSE_RESET);
3850 
3851 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
3852 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
3853 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
3854 	cpu_reg.state = BCE_TPAT_CPU_STATE;
3855 	cpu_reg.state_value_clear = 0xffffff;
3856 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
3857 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
3858 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
3859 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
3860 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
3861 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
3862 	cpu_reg.mips_view_base = 0x8000000;
3863 
3864 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3865 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3866 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
3867 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
3868 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
3869 		fw.start_addr = bce_TPAT_b09FwStartAddr;
3870 
3871 		fw.text_addr = bce_TPAT_b09FwTextAddr;
3872 		fw.text_len = bce_TPAT_b09FwTextLen;
3873 		fw.text_index = 0;
3874 		fw.text = bce_TPAT_b09FwText;
3875 
3876 		fw.data_addr = bce_TPAT_b09FwDataAddr;
3877 		fw.data_len = bce_TPAT_b09FwDataLen;
3878 		fw.data_index = 0;
3879 		fw.data = bce_TPAT_b09FwData;
3880 
3881 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
3882 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
3883 		fw.sbss_index = 0;
3884 		fw.sbss = bce_TPAT_b09FwSbss;
3885 
3886 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
3887 		fw.bss_len = bce_TPAT_b09FwBssLen;
3888 		fw.bss_index = 0;
3889 		fw.bss = bce_TPAT_b09FwBss;
3890 
3891 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
3892 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
3893 		fw.rodata_index = 0;
3894 		fw.rodata = bce_TPAT_b09FwRodata;
3895 	} else {
3896 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
3897 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
3898 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
3899 		fw.start_addr = bce_TPAT_b06FwStartAddr;
3900 
3901 		fw.text_addr = bce_TPAT_b06FwTextAddr;
3902 		fw.text_len = bce_TPAT_b06FwTextLen;
3903 		fw.text_index = 0;
3904 		fw.text = bce_TPAT_b06FwText;
3905 
3906 		fw.data_addr = bce_TPAT_b06FwDataAddr;
3907 		fw.data_len = bce_TPAT_b06FwDataLen;
3908 		fw.data_index = 0;
3909 		fw.data = bce_TPAT_b06FwData;
3910 
3911 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
3912 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
3913 		fw.sbss_index = 0;
3914 		fw.sbss = bce_TPAT_b06FwSbss;
3915 
3916 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
3917 		fw.bss_len = bce_TPAT_b06FwBssLen;
3918 		fw.bss_index = 0;
3919 		fw.bss = bce_TPAT_b06FwBss;
3920 
3921 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
3922 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
3923 		fw.rodata_index = 0;
3924 		fw.rodata = bce_TPAT_b06FwRodata;
3925 	}
3926 
3927 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
3928 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3929 
3930 	DBEXIT(BCE_VERBOSE_RESET);
3931 }
3932 
3933 
3934 /****************************************************************************/
3935 /* Initialize the CP CPU.                                                   */
3936 /*                                                                          */
3937 /* Returns:                                                                 */
3938 /*   Nothing.                                                               */
3939 /****************************************************************************/
3940 static void
3941 bce_init_cp_cpu(struct bce_softc *sc)
3942 {
3943 	struct cpu_reg cpu_reg;
3944 	struct fw_info fw;
3945 
3946 	DBENTER(BCE_VERBOSE_RESET);
3947 
3948 	cpu_reg.mode = BCE_CP_CPU_MODE;
3949 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
3950 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
3951 	cpu_reg.state = BCE_CP_CPU_STATE;
3952 	cpu_reg.state_value_clear = 0xffffff;
3953 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
3954 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
3955 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
3956 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
3957 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
3958 	cpu_reg.spad_base = BCE_CP_SCRATCH;
3959 	cpu_reg.mips_view_base = 0x8000000;
3960 
3961 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3962 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3963 		fw.ver_major = bce_CP_b09FwReleaseMajor;
3964 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
3965 		fw.ver_fix = bce_CP_b09FwReleaseFix;
3966 		fw.start_addr = bce_CP_b09FwStartAddr;
3967 
3968 		fw.text_addr = bce_CP_b09FwTextAddr;
3969 		fw.text_len = bce_CP_b09FwTextLen;
3970 		fw.text_index = 0;
3971 		fw.text = bce_CP_b09FwText;
3972 
3973 		fw.data_addr = bce_CP_b09FwDataAddr;
3974 		fw.data_len = bce_CP_b09FwDataLen;
3975 		fw.data_index = 0;
3976 		fw.data = bce_CP_b09FwData;
3977 
3978 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
3979 		fw.sbss_len = bce_CP_b09FwSbssLen;
3980 		fw.sbss_index = 0;
3981 		fw.sbss = bce_CP_b09FwSbss;
3982 
3983 		fw.bss_addr = bce_CP_b09FwBssAddr;
3984 		fw.bss_len = bce_CP_b09FwBssLen;
3985 		fw.bss_index = 0;
3986 		fw.bss = bce_CP_b09FwBss;
3987 
3988 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
3989 		fw.rodata_len = bce_CP_b09FwRodataLen;
3990 		fw.rodata_index = 0;
3991 		fw.rodata = bce_CP_b09FwRodata;
3992 	} else {
3993 		fw.ver_major = bce_CP_b06FwReleaseMajor;
3994 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
3995 		fw.ver_fix = bce_CP_b06FwReleaseFix;
3996 		fw.start_addr = bce_CP_b06FwStartAddr;
3997 
3998 		fw.text_addr = bce_CP_b06FwTextAddr;
3999 		fw.text_len = bce_CP_b06FwTextLen;
4000 		fw.text_index = 0;
4001 		fw.text = bce_CP_b06FwText;
4002 
4003 		fw.data_addr = bce_CP_b06FwDataAddr;
4004 		fw.data_len = bce_CP_b06FwDataLen;
4005 		fw.data_index = 0;
4006 		fw.data = bce_CP_b06FwData;
4007 
4008 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4009 		fw.sbss_len = bce_CP_b06FwSbssLen;
4010 		fw.sbss_index = 0;
4011 		fw.sbss = bce_CP_b06FwSbss;
4012 
4013 		fw.bss_addr = bce_CP_b06FwBssAddr;
4014 		fw.bss_len = bce_CP_b06FwBssLen;
4015 		fw.bss_index = 0;
4016 		fw.bss = bce_CP_b06FwBss;
4017 
4018 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4019 		fw.rodata_len = bce_CP_b06FwRodataLen;
4020 		fw.rodata_index = 0;
4021 		fw.rodata = bce_CP_b06FwRodata;
4022 	}
4023 
4024 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4025 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4026 
4027 	DBEXIT(BCE_VERBOSE_RESET);
4028 }
4029 
4030 
4031 /****************************************************************************/
4032 /* Initialize the COM CPU.                                                 */
4033 /*                                                                          */
4034 /* Returns:                                                                 */
4035 /*   Nothing.                                                               */
4036 /****************************************************************************/
4037 static void
4038 bce_init_com_cpu(struct bce_softc *sc)
4039 {
4040 	struct cpu_reg cpu_reg;
4041 	struct fw_info fw;
4042 
4043 	DBENTER(BCE_VERBOSE_RESET);
4044 
4045 	cpu_reg.mode = BCE_COM_CPU_MODE;
4046 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4047 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4048 	cpu_reg.state = BCE_COM_CPU_STATE;
4049 	cpu_reg.state_value_clear = 0xffffff;
4050 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4051 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4052 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4053 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4054 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4055 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4056 	cpu_reg.mips_view_base = 0x8000000;
4057 
4058 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4059 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4060 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4061 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4062 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4063 		fw.start_addr = bce_COM_b09FwStartAddr;
4064 
4065 		fw.text_addr = bce_COM_b09FwTextAddr;
4066 		fw.text_len = bce_COM_b09FwTextLen;
4067 		fw.text_index = 0;
4068 		fw.text = bce_COM_b09FwText;
4069 
4070 		fw.data_addr = bce_COM_b09FwDataAddr;
4071 		fw.data_len = bce_COM_b09FwDataLen;
4072 		fw.data_index = 0;
4073 		fw.data = bce_COM_b09FwData;
4074 
4075 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4076 		fw.sbss_len = bce_COM_b09FwSbssLen;
4077 		fw.sbss_index = 0;
4078 		fw.sbss = bce_COM_b09FwSbss;
4079 
4080 		fw.bss_addr = bce_COM_b09FwBssAddr;
4081 		fw.bss_len = bce_COM_b09FwBssLen;
4082 		fw.bss_index = 0;
4083 		fw.bss = bce_COM_b09FwBss;
4084 
4085 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4086 		fw.rodata_len = bce_COM_b09FwRodataLen;
4087 		fw.rodata_index = 0;
4088 		fw.rodata = bce_COM_b09FwRodata;
4089 	} else {
4090 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4091 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4092 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4093 		fw.start_addr = bce_COM_b06FwStartAddr;
4094 
4095 		fw.text_addr = bce_COM_b06FwTextAddr;
4096 		fw.text_len = bce_COM_b06FwTextLen;
4097 		fw.text_index = 0;
4098 		fw.text = bce_COM_b06FwText;
4099 
4100 		fw.data_addr = bce_COM_b06FwDataAddr;
4101 		fw.data_len = bce_COM_b06FwDataLen;
4102 		fw.data_index = 0;
4103 		fw.data = bce_COM_b06FwData;
4104 
4105 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4106 		fw.sbss_len = bce_COM_b06FwSbssLen;
4107 		fw.sbss_index = 0;
4108 		fw.sbss = bce_COM_b06FwSbss;
4109 
4110 		fw.bss_addr = bce_COM_b06FwBssAddr;
4111 		fw.bss_len = bce_COM_b06FwBssLen;
4112 		fw.bss_index = 0;
4113 		fw.bss = bce_COM_b06FwBss;
4114 
4115 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4116 		fw.rodata_len = bce_COM_b06FwRodataLen;
4117 		fw.rodata_index = 0;
4118 		fw.rodata = bce_COM_b06FwRodata;
4119 	}
4120 
4121 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4122 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4123 
4124 	DBEXIT(BCE_VERBOSE_RESET);
4125 }
4126 
4127 
4128 /****************************************************************************/
4129 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4130 /*                                                                          */
4131 /* Loads the firmware for each CPU and starts the CPU.                      */
4132 /*                                                                          */
4133 /* Returns:                                                                 */
4134 /*   Nothing.                                                               */
4135 /****************************************************************************/
4136 static void
4137 bce_init_cpus(struct bce_softc *sc)
4138 {
4139 	DBENTER(BCE_VERBOSE_RESET);
4140 
4141 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4142 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4143 		bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, sizeof(bce_xi_rv2p_proc1),
4144 			RV2P_PROC1);
4145 		bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, sizeof(bce_xi_rv2p_proc2),
4146 			RV2P_PROC2);
4147 	} else {
4148 		bce_load_rv2p_fw(sc, bce_rv2p_proc1, sizeof(bce_rv2p_proc1),
4149 			RV2P_PROC1);
4150 		bce_load_rv2p_fw(sc, bce_rv2p_proc2, sizeof(bce_rv2p_proc2),
4151 			RV2P_PROC2);
4152 	}
4153 
4154 	bce_init_rxp_cpu(sc);
4155 	bce_init_txp_cpu(sc);
4156 	bce_init_tpat_cpu(sc);
4157 	bce_init_com_cpu(sc);
4158 	bce_init_cp_cpu(sc);
4159 
4160 	DBEXIT(BCE_VERBOSE_RESET);
4161 }
4162 
4163 
4164 /****************************************************************************/
4165 /* Initialize context memory.                                               */
4166 /*                                                                          */
4167 /* Clears the memory associated with each Context ID (CID).                 */
4168 /*                                                                          */
4169 /* Returns:                                                                 */
4170 /*   Nothing.                                                               */
4171 /****************************************************************************/
4172 static void
4173 bce_init_ctx(struct bce_softc *sc)
4174 {
4175 
4176 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4177 
4178 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4179 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4180 		/* DRC: Replace this constant value with a #define. */
4181 		int i, retry_cnt = 10;
4182 		u32 val;
4183 
4184 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4185 
4186 		/*
4187 		 * BCM5709 context memory may be cached
4188 		 * in host memory so prepare the host memory
4189 		 * for access.
4190 		 */
4191 		val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4192 		val |= (BCM_PAGE_BITS - 8) << 16;
4193 		REG_WR(sc, BCE_CTX_COMMAND, val);
4194 
4195 		/* Wait for mem init command to complete. */
4196 		for (i = 0; i < retry_cnt; i++) {
4197 			val = REG_RD(sc, BCE_CTX_COMMAND);
4198 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4199 				break;
4200 			DELAY(2);
4201 		}
4202 
4203 		/* ToDo: Consider returning an error here. */
4204 		DBRUNIF((val & BCE_CTX_COMMAND_MEM_INIT),
4205 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4206 			__FUNCTION__));
4207 
4208 		for (i = 0; i < sc->ctx_pages; i++) {
4209 			int j;
4210 
4211 			/* Set the physical address of the context memory cache. */
4212 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4213 				BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4214 				BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4215 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4216 				BCE_ADDR_HI(sc->ctx_paddr[i]));
4217 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4218 				BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4219 
4220 			/* Verify that the context memory write was successful. */
4221 			for (j = 0; j < retry_cnt; j++) {
4222 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4223 				if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4224 					break;
4225 				DELAY(5);
4226 			}
4227 
4228 			/* ToDo: Consider returning an error here. */
4229 			DBRUNIF((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ),
4230 				BCE_PRINTF("%s(): Failed to initialize context page %d!\n",
4231 				__FUNCTION__, i));
4232 		}
4233 	} else {
4234 		u32 vcid_addr, offset;
4235 
4236 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4237 
4238 		/*
4239 		 * For the 5706/5708, context memory is local to
4240 		 * the controller, so initialize the controller
4241 		 * context memory.
4242 		 */
4243 
4244 		vcid_addr = GET_CID_ADDR(96);
4245 		while (vcid_addr) {
4246 
4247 			vcid_addr -= PHY_CTX_SIZE;
4248 
4249 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4250 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4251 
4252             for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4253                 CTX_WR(sc, 0x00, offset, 0);
4254             }
4255 
4256 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4257 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4258 		}
4259 
4260 	}
4261 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4262 }
4263 
4264 
4265 /****************************************************************************/
4266 /* Fetch the permanent MAC address of the controller.                       */
4267 /*                                                                          */
4268 /* Returns:                                                                 */
4269 /*   Nothing.                                                               */
4270 /****************************************************************************/
4271 static void
4272 bce_get_mac_addr(struct bce_softc *sc)
4273 {
4274 	u32 mac_lo = 0, mac_hi = 0;
4275 
4276 	DBENTER(BCE_VERBOSE_RESET);
4277 	/*
4278 	 * The NetXtreme II bootcode populates various NIC
4279 	 * power-on and runtime configuration items in a
4280 	 * shared memory area.  The factory configured MAC
4281 	 * address is available from both NVRAM and the
4282 	 * shared memory area so we'll read the value from
4283 	 * shared memory for speed.
4284 	 */
4285 
4286 	mac_hi = REG_RD_IND(sc, sc->bce_shmem_base +
4287 		BCE_PORT_HW_CFG_MAC_UPPER);
4288 	mac_lo = REG_RD_IND(sc, sc->bce_shmem_base +
4289 		BCE_PORT_HW_CFG_MAC_LOWER);
4290 
4291 	if ((mac_lo == 0) && (mac_hi == 0)) {
4292 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4293 			__FILE__, __LINE__);
4294 	} else {
4295 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4296 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4297 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4298 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4299 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4300 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4301 	}
4302 
4303 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet address = %6D\n", sc->eaddr, ":");
4304 	DBEXIT(BCE_VERBOSE_RESET);
4305 }
4306 
4307 
4308 /****************************************************************************/
4309 /* Program the MAC address.                                                 */
4310 /*                                                                          */
4311 /* Returns:                                                                 */
4312 /*   Nothing.                                                               */
4313 /****************************************************************************/
4314 static void
4315 bce_set_mac_addr(struct bce_softc *sc)
4316 {
4317 	u32 val;
4318 	u8 *mac_addr = sc->eaddr;
4319 
4320 	/* ToDo: Add support for setting multiple MAC addresses. */
4321 
4322 	DBENTER(BCE_VERBOSE_RESET);
4323 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = %6D\n", sc->eaddr, ":");
4324 
4325 	val = (mac_addr[0] << 8) | mac_addr[1];
4326 
4327 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4328 
4329 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4330 		(mac_addr[4] << 8) | mac_addr[5];
4331 
4332 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4333 
4334 	DBEXIT(BCE_VERBOSE_RESET);
4335 }
4336 
4337 
4338 /****************************************************************************/
4339 /* Stop the controller.                                                     */
4340 /*                                                                          */
4341 /* Returns:                                                                 */
4342 /*   Nothing.                                                               */
4343 /****************************************************************************/
4344 static void
4345 bce_stop(struct bce_softc *sc)
4346 {
4347 	struct ifnet *ifp;
4348 	struct ifmedia_entry *ifm;
4349 	struct mii_data *mii = NULL;
4350 	int mtmp, itmp;
4351 
4352 	DBENTER(BCE_VERBOSE_RESET);
4353 
4354 	BCE_LOCK_ASSERT(sc);
4355 
4356 	ifp = sc->bce_ifp;
4357 
4358 	mii = device_get_softc(sc->bce_miibus);
4359 
4360 	callout_stop(&sc->bce_tick_callout);
4361 
4362 	/* Disable the transmit/receive blocks. */
4363 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4364 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4365 	DELAY(20);
4366 
4367 	bce_disable_intr(sc);
4368 
4369 	/* Free RX buffers. */
4370 #ifdef BCE_USE_SPLIT_HEADER
4371 	bce_free_pg_chain(sc);
4372 #endif
4373 	bce_free_rx_chain(sc);
4374 
4375 	/* Free TX buffers. */
4376 	bce_free_tx_chain(sc);
4377 
4378 	/*
4379 	 * Isolate/power down the PHY, but leave the media selection
4380 	 * unchanged so that things will be put back to normal when
4381 	 * we bring the interface back up.
4382 	 */
4383 
4384 	itmp = ifp->if_flags;
4385 	ifp->if_flags |= IFF_UP;
4386 
4387 	/* If we are called from bce_detach(), mii is already NULL. */
4388 	if (mii != NULL) {
4389 		ifm = mii->mii_media.ifm_cur;
4390 		mtmp = ifm->ifm_media;
4391 		ifm->ifm_media = IFM_ETHER | IFM_NONE;
4392 		mii_mediachg(mii);
4393 		ifm->ifm_media = mtmp;
4394 	}
4395 
4396 	ifp->if_flags = itmp;
4397 	sc->watchdog_timer = 0;
4398 
4399 	sc->bce_link = 0;
4400 
4401 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4402 
4403 	DBEXIT(BCE_VERBOSE_RESET);
4404 }
4405 
4406 
4407 static int
4408 bce_reset(struct bce_softc *sc, u32 reset_code)
4409 {
4410 	u32 val;
4411 	int i, rc = 0;
4412 
4413 	DBENTER(BCE_VERBOSE_RESET);
4414 
4415 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4416 		__FUNCTION__, reset_code);
4417 
4418 	/* Wait for pending PCI transactions to complete. */
4419 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4420 	       BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4421 	       BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4422 	       BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4423 	       BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4424 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4425 	DELAY(5);
4426 
4427 	/* Disable DMA */
4428 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4429 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4430 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4431 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4432 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4433 	}
4434 
4435 	/* Assume bootcode is running. */
4436 	sc->bce_fw_timed_out = 0;
4437 
4438 	/* Give the firmware a chance to prepare for the reset. */
4439 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4440 	if (rc)
4441 		goto bce_reset_exit;
4442 
4443 	/* Set a firmware reminder that this is a soft reset. */
4444 	REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_RESET_SIGNATURE,
4445 		   BCE_DRV_RESET_SIGNATURE_MAGIC);
4446 
4447 	/* Dummy read to force the chip to complete all current transactions. */
4448 	val = REG_RD(sc, BCE_MISC_ID);
4449 
4450 	/* Chip reset. */
4451 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4452 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4453 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4454 		REG_RD(sc, BCE_MISC_COMMAND);
4455 		DELAY(5);
4456 
4457 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4458 		      BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4459 
4460 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4461 	} else {
4462 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4463 			BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4464 			BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4465 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4466 
4467 		/* Allow up to 30us for reset to complete. */
4468 		for (i = 0; i < 10; i++) {
4469 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4470 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4471 				BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4472 				break;
4473 			}
4474 			DELAY(10);
4475 		}
4476 
4477 		/* Check that reset completed successfully. */
4478 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4479 			BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4480 			BCE_PRINTF("%s(%d): Reset failed!\n",
4481 				__FILE__, __LINE__);
4482 			rc = EBUSY;
4483 			goto bce_reset_exit;
4484 		}
4485 	}
4486 
4487 	/* Make sure byte swapping is properly configured. */
4488 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4489 	if (val != 0x01020304) {
4490 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4491 			__FILE__, __LINE__);
4492 		rc = ENODEV;
4493 		goto bce_reset_exit;
4494 	}
4495 
4496 	/* Just completed a reset, assume that firmware is running again. */
4497 	sc->bce_fw_timed_out = 0;
4498 
4499 	/* Wait for the firmware to finish its initialization. */
4500 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4501 	if (rc)
4502 		BCE_PRINTF("%s(%d): Firmware did not complete initialization!\n",
4503 			__FILE__, __LINE__);
4504 
4505 bce_reset_exit:
4506 	DBEXIT(BCE_VERBOSE_RESET);
4507 	return (rc);
4508 }
4509 
4510 
4511 static int
4512 bce_chipinit(struct bce_softc *sc)
4513 {
4514 	u32 val;
4515 	int rc = 0;
4516 
4517 	DBENTER(BCE_VERBOSE_RESET);
4518 
4519 	bce_disable_intr(sc);
4520 
4521 	/*
4522 	 * Initialize DMA byte/word swapping, configure the number of DMA
4523 	 * channels and PCI clock compensation delay.
4524 	 */
4525 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
4526 	      BCE_DMA_CONFIG_DATA_WORD_SWAP |
4527 #if BYTE_ORDER == BIG_ENDIAN
4528 	      BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
4529 #endif
4530 	      BCE_DMA_CONFIG_CNTL_WORD_SWAP |
4531 	      DMA_READ_CHANS << 12 |
4532 	      DMA_WRITE_CHANS << 16;
4533 
4534 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
4535 
4536 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
4537 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
4538 
4539 	/*
4540 	 * This setting resolves a problem observed on certain Intel PCI
4541 	 * chipsets that cannot handle multiple outstanding DMA operations.
4542 	 * See errata E9_5706A1_65.
4543 	 */
4544 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
4545 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
4546 	    !(sc->bce_flags & BCE_PCIX_FLAG))
4547 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
4548 
4549 	REG_WR(sc, BCE_DMA_CONFIG, val);
4550 
4551 	/* Enable the RX_V2P and Context state machines before access. */
4552 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4553 	       BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4554 	       BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4555 	       BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4556 
4557 	/* Initialize context mapping and zero out the quick contexts. */
4558 	bce_init_ctx(sc);
4559 
4560 	/* Initialize the on-boards CPUs */
4561 	bce_init_cpus(sc);
4562 
4563 	/* Prepare NVRAM for access. */
4564 	if (bce_init_nvram(sc)) {
4565 		rc = ENODEV;
4566 		goto bce_chipinit_exit;
4567 	}
4568 
4569 	/* Set the kernel bypass block size */
4570 	val = REG_RD(sc, BCE_MQ_CONFIG);
4571 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4572 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4573 
4574 	/* Enable bins used on the 5709. */
4575 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4576 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4577 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
4578 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
4579 			val |= BCE_MQ_CONFIG_HALT_DIS;
4580 	}
4581 
4582 	REG_WR(sc, BCE_MQ_CONFIG, val);
4583 
4584 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4585 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
4586 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
4587 
4588 	/* Set the page size and clear the RV2P processor stall bits. */
4589 	val = (BCM_PAGE_BITS - 8) << 24;
4590 	REG_WR(sc, BCE_RV2P_CONFIG, val);
4591 
4592 	/* Configure page size. */
4593 	val = REG_RD(sc, BCE_TBDR_CONFIG);
4594 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
4595 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4596 	REG_WR(sc, BCE_TBDR_CONFIG, val);
4597 
4598 	/* Set the perfect match control register to default. */
4599 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
4600 
4601 bce_chipinit_exit:
4602 	DBEXIT(BCE_VERBOSE_RESET);
4603 
4604 	return(rc);
4605 }
4606 
4607 
4608 /****************************************************************************/
4609 /* Initialize the controller in preparation to send/receive traffic.        */
4610 /*                                                                          */
4611 /* Returns:                                                                 */
4612 /*   0 for success, positive value for failure.                             */
4613 /****************************************************************************/
4614 static int
4615 bce_blockinit(struct bce_softc *sc)
4616 {
4617 	u32 reg, val;
4618 	int rc = 0;
4619 
4620 	DBENTER(BCE_VERBOSE_RESET);
4621 
4622 	/* Load the hardware default MAC address. */
4623 	bce_set_mac_addr(sc);
4624 
4625 	/* Set the Ethernet backoff seed value */
4626 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
4627 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
4628 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
4629 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
4630 
4631 	sc->last_status_idx = 0;
4632 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
4633 
4634 	/* Set up link change interrupt generation. */
4635 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
4636 
4637 	/* Program the physical address of the status block. */
4638 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
4639 		BCE_ADDR_LO(sc->status_block_paddr));
4640 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
4641 		BCE_ADDR_HI(sc->status_block_paddr));
4642 
4643 	/* Program the physical address of the statistics block. */
4644 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
4645 		BCE_ADDR_LO(sc->stats_block_paddr));
4646 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
4647 		BCE_ADDR_HI(sc->stats_block_paddr));
4648 
4649 	/* Program various host coalescing parameters. */
4650 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4651 		(sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
4652 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4653 		(sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
4654 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
4655 		(sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
4656 	REG_WR(sc, BCE_HC_TX_TICKS,
4657 		(sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
4658 	REG_WR(sc, BCE_HC_RX_TICKS,
4659 		(sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
4660 	REG_WR(sc, BCE_HC_COM_TICKS,
4661 		(sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
4662 	REG_WR(sc, BCE_HC_CMD_TICKS,
4663 		(sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
4664 	REG_WR(sc, BCE_HC_STATS_TICKS,
4665 		(sc->bce_stats_ticks & 0xffff00));
4666 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
4667 
4668 	/* Configure the Host Coalescing block. */
4669 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
4670 		      BCE_HC_CONFIG_COLLECT_STATS;
4671 
4672 #if 0
4673 	/* ToDo: Add MSI-X support. */
4674 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
4675 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
4676 			   BCE_HC_SB_CONFIG_1;
4677 
4678 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
4679 
4680 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
4681 			BCE_HC_SB_CONFIG_1_ONE_SHOT);
4682 
4683 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
4684 			(sc->tx_quick_cons_trip_int << 16) |
4685 			 sc->tx_quick_cons_trip);
4686 
4687 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
4688 			(sc->tx_ticks_int << 16) | sc->tx_ticks);
4689 
4690 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4691 	}
4692 
4693 	/*
4694 	 * Tell the HC block to automatically set the
4695 	 * INT_MASK bit after an MSI/MSI-X interrupt
4696 	 * is generated so the driver doesn't have to.
4697 	 */
4698 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
4699 		val |= BCE_HC_CONFIG_ONE_SHOT;
4700 
4701 	/* Set the MSI-X status blocks to 128 byte boundaries. */
4702 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
4703 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4704 #endif
4705 
4706 	REG_WR(sc, BCE_HC_CONFIG, val);
4707 
4708 	/* Clear the internal statistics counters. */
4709 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
4710 
4711 	/* Verify that bootcode is running. */
4712 	reg = REG_RD_IND(sc, sc->bce_shmem_base + BCE_DEV_INFO_SIGNATURE);
4713 
4714 	DBRUNIF(DB_RANDOMTRUE(bce_debug_bootcode_running_failure),
4715 		BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
4716 			__FILE__, __LINE__);
4717 		reg = 0);
4718 
4719 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
4720 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
4721 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
4722 			"Expected: 08%08X\n", __FILE__, __LINE__,
4723 			(reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
4724 			BCE_DEV_INFO_SIGNATURE_MAGIC);
4725 		rc = ENODEV;
4726 		goto bce_blockinit_exit;
4727 	}
4728 
4729 	/* Enable DMA */
4730 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4731 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4732 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4733 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4734 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4735 	}
4736 
4737 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
4738 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET);
4739 
4740 	/* Enable link state change interrupt generation. */
4741 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
4742 
4743 	/* Enable all remaining blocks in the MAC. */
4744 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)	||
4745 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
4746 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT_XI);
4747 	else
4748 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
4749 
4750 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4751 	DELAY(20);
4752 
4753 	/* Save the current host coalescing block settings. */
4754 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
4755 
4756 bce_blockinit_exit:
4757 	DBEXIT(BCE_VERBOSE_RESET);
4758 
4759 	return (rc);
4760 }
4761 
4762 
4763 /****************************************************************************/
4764 /* Encapsulate an mbuf into the rx_bd chain.                                */
4765 /*                                                                          */
4766 /* Returns:                                                                 */
4767 /*   0 for success, positive value for failure.                             */
4768 /****************************************************************************/
4769 static int
4770 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
4771 	u16 *chain_prod, u32 *prod_bseq)
4772 {
4773 	bus_dmamap_t map;
4774 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4775 	struct mbuf *m_new = NULL;
4776 	struct rx_bd *rxbd;
4777 	int nsegs, error, rc = 0;
4778 #ifdef BCE_DEBUG
4779 	u16 debug_chain_prod = *chain_prod;
4780 #endif
4781 
4782 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
4783 
4784 	/* Make sure the inputs are valid. */
4785 	DBRUNIF((*chain_prod > MAX_RX_BD),
4786 		BCE_PRINTF("%s(%d): RX producer out of range: 0x%04X > 0x%04X\n",
4787 		__FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD));
4788 
4789 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, "
4790 		"prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq);
4791 
4792 	/* Update some debug statistic counters */
4793 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4794 		sc->rx_low_watermark = sc->free_rx_bd);
4795 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
4796 
4797 	/* Check whether this is a new mbuf allocation. */
4798 	if (m == NULL) {
4799 
4800 		/* Simulate an mbuf allocation failure. */
4801 		DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure),
4802 			sc->mbuf_alloc_failed++;
4803 			sc->debug_mbuf_sim_alloc_failed++;
4804 			rc = ENOBUFS;
4805 			goto bce_get_rx_buf_exit);
4806 
4807 		/* This is a new mbuf allocation. */
4808 #ifdef BCE_USE_SPLIT_HEADER
4809 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
4810 #else
4811 		if (sc->rx_bd_mbuf_alloc_size <= MCLBYTES)
4812 			m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
4813 		else
4814 			m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, sc->rx_bd_mbuf_alloc_size);
4815 #endif
4816 
4817 		if (m_new == NULL) {
4818 			sc->mbuf_alloc_failed++;
4819 			rc = ENOBUFS;
4820 			goto bce_get_rx_buf_exit;
4821 		}
4822 
4823 		DBRUN(sc->debug_rx_mbuf_alloc++);
4824 	} else {
4825 		/* Reuse an existing mbuf. */
4826 		m_new = m;
4827 	}
4828 
4829 	/* Make sure we have a valid packet header. */
4830 	M_ASSERTPKTHDR(m_new);
4831 
4832 	/* Initialize the mbuf size and pad if necessary for alignment. */
4833 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
4834 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
4835 
4836 	/* ToDo: Consider calling m_fragment() to test error handling. */
4837 
4838 	/* Map the mbuf cluster into device memory. */
4839 	map = sc->rx_mbuf_map[*chain_prod];
4840 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
4841 	    segs, &nsegs, BUS_DMA_NOWAIT);
4842 
4843 	/* Handle any mapping errors. */
4844 	if (error) {
4845 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX chain (%d)!\n",
4846 			__FILE__, __LINE__, error);
4847 
4848 		m_freem(m_new);
4849 		DBRUN(sc->debug_rx_mbuf_alloc--);
4850 
4851 		rc = ENOBUFS;
4852 		goto bce_get_rx_buf_exit;
4853 	}
4854 
4855 	/* All mbufs must map to a single segment. */
4856 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
4857 		 __FUNCTION__, nsegs));
4858 
4859 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREWRITE) here? */
4860 
4861 	/* Setup the rx_bd for the segment. */
4862 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
4863 
4864 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
4865 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
4866 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
4867 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
4868 	*prod_bseq += segs[0].ds_len;
4869 
4870 	/* Save the mbuf and update our counter. */
4871 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
4872 	sc->free_rx_bd -= nsegs;
4873 
4874 	DBRUNMSG(BCE_INSANE_RECV, bce_dump_rx_mbuf_chain(sc, debug_chain_prod,
4875 		nsegs));
4876 
4877 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, "
4878 		"prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq);
4879 
4880 bce_get_rx_buf_exit:
4881 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
4882 
4883 	return(rc);
4884 }
4885 
4886 
4887 #ifdef BCE_USE_SPLIT_HEADER
4888 /****************************************************************************/
4889 /* Encapsulate an mbuf cluster into the page chain.                        */
4890 /*                                                                          */
4891 /* Returns:                                                                 */
4892 /*   0 for success, positive value for failure.                             */
4893 /****************************************************************************/
4894 static int
4895 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
4896 	u16 *prod_idx)
4897 {
4898 	bus_dmamap_t map;
4899 	bus_addr_t busaddr;
4900 	struct mbuf *m_new = NULL;
4901 	struct rx_bd *pgbd;
4902 	int error, rc = 0;
4903 #ifdef BCE_DEBUG
4904 	u16 debug_prod_idx = *prod_idx;
4905 #endif
4906 
4907 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
4908 
4909 	/* Make sure the inputs are valid. */
4910 	DBRUNIF((*prod_idx > MAX_PG_BD),
4911 		BCE_PRINTF("%s(%d): page producer out of range: 0x%04X > 0x%04X\n",
4912 		__FILE__, __LINE__, *prod_idx, (u16) MAX_PG_BD));
4913 
4914 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
4915 		"chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
4916 
4917 	/* Update counters if we've hit a new low or run out of pages. */
4918 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
4919 		sc->pg_low_watermark = sc->free_pg_bd);
4920 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
4921 
4922 	/* Check whether this is a new mbuf allocation. */
4923 	if (m == NULL) {
4924 
4925 		/* Simulate an mbuf allocation failure. */
4926 		DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure),
4927 			sc->mbuf_alloc_failed++;
4928 			sc->debug_mbuf_sim_alloc_failed++;
4929 			rc = ENOBUFS;
4930 			goto bce_get_pg_buf_exit);
4931 
4932 		/* This is a new mbuf allocation. */
4933 		m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
4934 		if (m_new == NULL) {
4935 			sc->mbuf_alloc_failed++;
4936 			rc = ENOBUFS;
4937 			goto bce_get_pg_buf_exit;
4938 		}
4939 
4940 		DBRUN(sc->debug_pg_mbuf_alloc++);
4941 	} else {
4942 		/* Reuse an existing mbuf. */
4943 		m_new = m;
4944 		m_new->m_data = m_new->m_ext.ext_buf;
4945 	}
4946 
4947 	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
4948 
4949 	/* ToDo: Consider calling m_fragment() to test error handling. */
4950 
4951 	/* Map the mbuf cluster into device memory. */
4952 	map = sc->pg_mbuf_map[*prod_idx];
4953 	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
4954 	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr, &busaddr, BUS_DMA_NOWAIT);
4955 
4956 	/* Handle any mapping errors. */
4957 	if (error) {
4958 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
4959 			__FILE__, __LINE__);
4960 
4961 		m_freem(m_new);
4962 		DBRUN(sc->debug_pg_mbuf_alloc--);
4963 
4964 		rc = ENOBUFS;
4965 		goto bce_get_pg_buf_exit;
4966 	}
4967 
4968 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREWRITE) here? */
4969 
4970 	/*
4971 	 * The page chain uses the same rx_bd data structure
4972 	 * as the receive chain but doesn't require a byte sequence (bseq).
4973 	 */
4974 	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
4975 
4976 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
4977 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
4978 	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
4979 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
4980 
4981 	/* Save the mbuf and update our counter. */
4982 	sc->pg_mbuf_ptr[*prod_idx] = m_new;
4983 	sc->free_pg_bd--;
4984 
4985 	DBRUNMSG(BCE_INSANE_RECV, bce_dump_pg_mbuf_chain(sc, debug_prod_idx,
4986 		1));
4987 
4988 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
4989 		"prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
4990 
4991 bce_get_pg_buf_exit:
4992 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
4993 
4994 	return(rc);
4995 }
4996 #endif /* BCE_USE_SPLIT_HEADER */
4997 
4998 /****************************************************************************/
4999 /* Initialize the TX context memory.                                        */
5000 /*                                                                          */
5001 /* Returns:                                                                 */
5002 /*   Nothing                                                                */
5003 /****************************************************************************/
5004 static void
5005 bce_init_tx_context(struct bce_softc *sc)
5006 {
5007 	u32 val;
5008 
5009 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5010 
5011 	/* Initialize the context ID for an L2 TX chain. */
5012 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5013 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5014 		/* Set the CID type to support an L2 connection. */
5015 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5016 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5017 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5018 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val);
5019 
5020 		/* Point the hardware to the first page in the chain. */
5021 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5022 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5023 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5024 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5025 	} else {
5026 		/* Set the CID type to support an L2 connection. */
5027 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5028 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5029 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5030 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5031 
5032 		/* Point the hardware to the first page in the chain. */
5033 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5034 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5035 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5036 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5037 	}
5038 
5039 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5040 }
5041 
5042 
5043 /****************************************************************************/
5044 /* Allocate memory and initialize the TX data structures.                   */
5045 /*                                                                          */
5046 /* Returns:                                                                 */
5047 /*   0 for success, positive value for failure.                             */
5048 /****************************************************************************/
5049 static int
5050 bce_init_tx_chain(struct bce_softc *sc)
5051 {
5052 	struct tx_bd *txbd;
5053 	int i, rc = 0;
5054 
5055 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5056 
5057 	/* Set the initial TX producer/consumer indices. */
5058 	sc->tx_prod        = 0;
5059 	sc->tx_cons        = 0;
5060 	sc->tx_prod_bseq   = 0;
5061 	sc->used_tx_bd     = 0;
5062 	sc->max_tx_bd      = USABLE_TX_BD;
5063 	DBRUN(sc->tx_hi_watermark = USABLE_TX_BD);
5064 	DBRUN(sc->tx_full_count = 0);
5065 
5066 	/*
5067 	 * The NetXtreme II supports a linked-list structre called
5068 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5069 	 * consists of a series of 1 or more chain pages, each of which
5070 	 * consists of a fixed number of BD entries.
5071 	 * The last BD entry on each page is a pointer to the next page
5072 	 * in the chain, and the last pointer in the BD chain
5073 	 * points back to the beginning of the chain.
5074 	 */
5075 
5076 	/* Set the TX next pointer chain entries. */
5077 	for (i = 0; i < TX_PAGES; i++) {
5078 		int j;
5079 
5080 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5081 
5082 		/* Check if we've reached the last page. */
5083 		if (i == (TX_PAGES - 1))
5084 			j = 0;
5085 		else
5086 			j = i + 1;
5087 
5088 		txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5089 		txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5090 	}
5091 
5092 	bce_init_tx_context(sc);
5093 
5094 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD));
5095 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5096 
5097 	return(rc);
5098 }
5099 
5100 
5101 /****************************************************************************/
5102 /* Free memory and clear the TX data structures.                            */
5103 /*                                                                          */
5104 /* Returns:                                                                 */
5105 /*   Nothing.                                                               */
5106 /****************************************************************************/
5107 static void
5108 bce_free_tx_chain(struct bce_softc *sc)
5109 {
5110 	int i;
5111 
5112 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5113 
5114 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5115 	for (i = 0; i < TOTAL_TX_BD; i++) {
5116 		if (sc->tx_mbuf_ptr[i] != NULL) {
5117 			if (sc->tx_mbuf_map != NULL)
5118 				bus_dmamap_sync(sc->tx_mbuf_tag, sc->tx_mbuf_map[i],
5119 					BUS_DMASYNC_POSTWRITE);
5120 			m_freem(sc->tx_mbuf_ptr[i]);
5121 			sc->tx_mbuf_ptr[i] = NULL;
5122 			DBRUN(sc->debug_tx_mbuf_alloc--);
5123 		}
5124 	}
5125 
5126 	/* Clear each TX chain page. */
5127 	for (i = 0; i < TX_PAGES; i++)
5128 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5129 
5130 	sc->used_tx_bd     = 0;
5131 
5132 	/* Check if we lost any mbufs in the process. */
5133 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5134 		BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5135 			"from tx chain!\n",
5136 			__FILE__, __LINE__, sc->debug_tx_mbuf_alloc));
5137 
5138 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5139 }
5140 
5141 
5142 /****************************************************************************/
5143 /* Initialize the RX context memory.                                        */
5144 /*                                                                          */
5145 /* Returns:                                                                 */
5146 /*   Nothing                                                                */
5147 /****************************************************************************/
5148 static void
5149 bce_init_rx_context(struct bce_softc *sc)
5150 {
5151 	u32 val;
5152 
5153 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5154 
5155 	/* Initialize the type, size, and BD cache levels for the RX context. */
5156 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5157 		BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5158 		(0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5159 
5160 	/*
5161 	 * Set the level for generating pause frames
5162 	 * when the number of available rx_bd's gets
5163 	 * too low (the low watermark) and the level
5164 	 * when pause frames can be stopped (the high
5165 	 * watermark).
5166 	 */
5167 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5168 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5169 		u32 lo_water, hi_water;
5170 
5171 		lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5172 		hi_water = USABLE_RX_BD / 4;
5173 
5174 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5175 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5176 
5177 		if (hi_water > 0xf)
5178 			hi_water = 0xf;
5179 		else if (hi_water == 0)
5180 			lo_water = 0;
5181 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5182 			(hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5183 	}
5184 
5185  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5186 
5187 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5188 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5189 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5190 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5191 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5192 	}
5193 
5194 	/* Point the hardware to the first page in the chain. */
5195 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5196 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5197 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5198 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5199 
5200 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5201 }
5202 
5203 
5204 /****************************************************************************/
5205 /* Allocate memory and initialize the RX data structures.                   */
5206 /*                                                                          */
5207 /* Returns:                                                                 */
5208 /*   0 for success, positive value for failure.                             */
5209 /****************************************************************************/
5210 static int
5211 bce_init_rx_chain(struct bce_softc *sc)
5212 {
5213 	struct rx_bd *rxbd;
5214 	int i, rc = 0;
5215 
5216 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5217 		BCE_VERBOSE_CTX);
5218 
5219 	/* Initialize the RX producer and consumer indices. */
5220 	sc->rx_prod        = 0;
5221 	sc->rx_cons        = 0;
5222 	sc->rx_prod_bseq   = 0;
5223 	sc->free_rx_bd     = USABLE_RX_BD;
5224 	sc->max_rx_bd      = USABLE_RX_BD;
5225 	DBRUN(sc->rx_low_watermark = sc->max_rx_bd);
5226 	DBRUN(sc->rx_empty_count = 0);
5227 
5228 	/* Initialize the RX next pointer chain entries. */
5229 	for (i = 0; i < RX_PAGES; i++) {
5230 		int j;
5231 
5232 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5233 
5234 		/* Check if we've reached the last page. */
5235 		if (i == (RX_PAGES - 1))
5236 			j = 0;
5237 		else
5238 			j = i + 1;
5239 
5240 		/* Setup the chain page pointers. */
5241 		rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5242 		rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5243 	}
5244 
5245 /* Fill up the RX chain. */
5246 	bce_fill_rx_chain(sc);
5247 
5248 	for (i = 0; i < RX_PAGES; i++) {
5249 		bus_dmamap_sync(
5250 			sc->rx_bd_chain_tag,
5251 	    	sc->rx_bd_chain_map[i],
5252 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5253 	}
5254 
5255 	bce_init_rx_context(sc);
5256 
5257 	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_chain(sc, 0, TOTAL_RX_BD));
5258 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5259 		BCE_VERBOSE_CTX);
5260 	/* ToDo: Are there possible failure modes here? */
5261 	return(rc);
5262 }
5263 
5264 
5265 /****************************************************************************/
5266 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5267 /* occurs.                                                                  */
5268 /*                                                                          */
5269 /* Returns:                                                                 */
5270 /*   Nothing                                                                */
5271 /****************************************************************************/
5272 static void
5273 bce_fill_rx_chain(struct bce_softc *sc)
5274 {
5275 	u16 prod, prod_idx;
5276 	u32 prod_bseq;
5277 
5278 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5279 		BCE_VERBOSE_CTX);
5280 
5281 	/* Get the RX chain producer indices. */
5282 	prod      = sc->rx_prod;
5283 	prod_bseq = sc->rx_prod_bseq;
5284 
5285 	/* Keep filling the RX chain until it's full. */
5286 	while (sc->free_rx_bd > 0) {
5287 		prod_idx = RX_CHAIN_IDX(prod);
5288 		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5289 			/* Bail out if we can't add an mbuf to the chain. */
5290 			break;
5291 		}
5292 		prod = NEXT_RX_BD(prod);
5293 	}
5294 
5295 	/* Save the RX chain producer indices. */
5296 	sc->rx_prod      = prod;
5297 	sc->rx_prod_bseq = prod_bseq;
5298 
5299 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5300 		BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5301 		__FUNCTION__, sc->rx_prod));
5302 
5303 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5304 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
5305 		sc->rx_prod);
5306 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
5307 		sc->rx_prod_bseq);
5308 
5309 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5310 		BCE_VERBOSE_CTX);
5311 }
5312 
5313 
5314 /****************************************************************************/
5315 /* Free memory and clear the RX data structures.                            */
5316 /*                                                                          */
5317 /* Returns:                                                                 */
5318 /*   Nothing.                                                               */
5319 /****************************************************************************/
5320 static void
5321 bce_free_rx_chain(struct bce_softc *sc)
5322 {
5323 	int i;
5324 
5325 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5326 
5327 	/* Free any mbufs still in the RX mbuf chain. */
5328 	for (i = 0; i < TOTAL_RX_BD; i++) {
5329 		if (sc->rx_mbuf_ptr[i] != NULL) {
5330 			if (sc->rx_mbuf_map[i] != NULL)
5331 				bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[i],
5332 					BUS_DMASYNC_POSTREAD);
5333 			m_freem(sc->rx_mbuf_ptr[i]);
5334 			sc->rx_mbuf_ptr[i] = NULL;
5335 			DBRUN(sc->debug_rx_mbuf_alloc--);
5336 		}
5337 	}
5338 
5339 	/* Clear each RX chain page. */
5340 	for (i = 0; i < RX_PAGES; i++)
5341 		bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
5342 
5343 	sc->free_rx_bd = sc->max_rx_bd;
5344 
5345 	/* Check if we lost any mbufs in the process. */
5346 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5347 		BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5348 			__FUNCTION__, sc->debug_rx_mbuf_alloc));
5349 
5350 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5351 }
5352 
5353 
5354 #ifdef BCE_USE_SPLIT_HEADER
5355 /****************************************************************************/
5356 /* Allocate memory and initialize the page data structures.                 */
5357 /* Assumes that bce_init_rx_chain() has not already been called.            */
5358 /*                                                                          */
5359 /* Returns:                                                                 */
5360 /*   0 for success, positive value for failure.                             */
5361 /****************************************************************************/
5362 static int
5363 bce_init_pg_chain(struct bce_softc *sc)
5364 {
5365 	struct rx_bd *pgbd;
5366 	int i, rc = 0;
5367 	u32 val;
5368 
5369 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5370 		BCE_VERBOSE_CTX);
5371 
5372 	/* Initialize the page producer and consumer indices. */
5373 	sc->pg_prod        = 0;
5374 	sc->pg_cons        = 0;
5375 	sc->free_pg_bd     = USABLE_PG_BD;
5376 	sc->max_pg_bd      = USABLE_PG_BD;
5377 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5378 	DBRUN(sc->pg_empty_count = 0);
5379 
5380 	/* Initialize the page next pointer chain entries. */
5381 	for (i = 0; i < PG_PAGES; i++) {
5382 		int j;
5383 
5384 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5385 
5386 		/* Check if we've reached the last page. */
5387 		if (i == (PG_PAGES - 1))
5388 			j = 0;
5389 		else
5390 			j = i + 1;
5391 
5392 		/* Setup the chain page pointers. */
5393 		pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5394 		pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5395 	}
5396 
5397 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5398 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)	||
5399 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
5400 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5401 
5402 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5403 
5404 	/* Configure the rx_bd and page chain mbuf cluster size. */
5405 	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
5406 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5407 
5408 	/* Configure the context reserved for jumbo support. */
5409 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5410 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5411 
5412 	/* Point the hardware to the first page in the page chain. */
5413 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5414 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5415 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5416 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5417 
5418 	/* Fill up the page chain. */
5419 	bce_fill_pg_chain(sc);
5420 
5421 	for (i = 0; i < PG_PAGES; i++) {
5422 		bus_dmamap_sync(
5423 			sc->pg_bd_chain_tag,
5424 	    	sc->pg_bd_chain_map[i],
5425 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5426 	}
5427 
5428 	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD));
5429 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5430 		BCE_VERBOSE_CTX);
5431 	return(rc);
5432 }
5433 
5434 
5435 /****************************************************************************/
5436 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
5437 /* occurs.                                                                  */
5438 /*                                                                          */
5439 /* Returns:                                                                 */
5440 /*   Nothing                                                                */
5441 /****************************************************************************/
5442 static void
5443 bce_fill_pg_chain(struct bce_softc *sc)
5444 {
5445 	u16 prod, prod_idx;
5446 
5447 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5448 		BCE_VERBOSE_CTX);
5449 
5450 	/* Get the page chain prodcuer index. */
5451 	prod = sc->pg_prod;
5452 
5453 	/* Keep filling the page chain until it's full. */
5454 	while (sc->free_pg_bd > 0) {
5455 		prod_idx = PG_CHAIN_IDX(prod);
5456 		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
5457 			/* Bail out if we can't add an mbuf to the chain. */
5458 			break;
5459 		}
5460 		prod = NEXT_PG_BD(prod);
5461 	}
5462 
5463 	/* Save the page chain producer index. */
5464 	sc->pg_prod = prod;
5465 
5466 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5467 		BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5468 		__FUNCTION__, sc->pg_prod));
5469 
5470 	/*
5471 	 * Write the mailbox and tell the chip about
5472 	 * the new rx_bd's in the page chain.
5473 	 */
5474 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
5475 		sc->pg_prod);
5476 
5477 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5478 		BCE_VERBOSE_CTX);
5479 }
5480 
5481 
5482 /****************************************************************************/
5483 /* Free memory and clear the RX data structures.                            */
5484 /*                                                                          */
5485 /* Returns:                                                                 */
5486 /*   Nothing.                                                               */
5487 /****************************************************************************/
5488 static void
5489 bce_free_pg_chain(struct bce_softc *sc)
5490 {
5491 	int i;
5492 
5493 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5494 
5495 	/* Free any mbufs still in the mbuf page chain. */
5496 	for (i = 0; i < TOTAL_PG_BD; i++) {
5497 		if (sc->pg_mbuf_ptr[i] != NULL) {
5498 			if (sc->pg_mbuf_map[i] != NULL)
5499 				bus_dmamap_sync(sc->pg_mbuf_tag, sc->pg_mbuf_map[i],
5500 					BUS_DMASYNC_POSTREAD);
5501 			m_freem(sc->pg_mbuf_ptr[i]);
5502 			sc->pg_mbuf_ptr[i] = NULL;
5503 			DBRUN(sc->debug_pg_mbuf_alloc--);
5504 		}
5505 	}
5506 
5507 	/* Clear each page chain pages. */
5508 	for (i = 0; i < PG_PAGES; i++)
5509 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
5510 
5511 	sc->free_pg_bd = sc->max_pg_bd;
5512 
5513 	/* Check if we lost any mbufs in the process. */
5514 	DBRUNIF((sc->debug_pg_mbuf_alloc),
5515 		BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
5516 			__FUNCTION__, sc->debug_pg_mbuf_alloc));
5517 
5518 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5519 }
5520 #endif /* BCE_USE_SPLIT_HEADER */
5521 
5522 
5523 /****************************************************************************/
5524 /* Set media options.                                                       */
5525 /*                                                                          */
5526 /* Returns:                                                                 */
5527 /*   0 for success, positive value for failure.                             */
5528 /****************************************************************************/
5529 static int
5530 bce_ifmedia_upd(struct ifnet *ifp)
5531 {
5532 	struct bce_softc *sc = ifp->if_softc;
5533 
5534 	DBENTER(BCE_VERBOSE);
5535 
5536 	BCE_LOCK(sc);
5537 	bce_ifmedia_upd_locked(ifp);
5538 	BCE_UNLOCK(sc);
5539 
5540 	DBEXIT(BCE_VERBOSE);
5541 	return (0);
5542 }
5543 
5544 
5545 /****************************************************************************/
5546 /* Set media options.                                                       */
5547 /*                                                                          */
5548 /* Returns:                                                                 */
5549 /*   Nothing.                                                               */
5550 /****************************************************************************/
5551 static void
5552 bce_ifmedia_upd_locked(struct ifnet *ifp)
5553 {
5554 	struct bce_softc *sc = ifp->if_softc;
5555 	struct mii_data *mii;
5556 
5557 	DBENTER(BCE_VERBOSE);
5558 
5559 	BCE_LOCK_ASSERT(sc);
5560 
5561 	mii = device_get_softc(sc->bce_miibus);
5562 
5563 	/* Make sure the MII bus has been enumerated. */
5564 	if (mii) {
5565 		sc->bce_link = 0;
5566 		if (mii->mii_instance) {
5567 			struct mii_softc *miisc;
5568 
5569 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5570 				mii_phy_reset(miisc);
5571 		}
5572 		mii_mediachg(mii);
5573 	}
5574 
5575 	DBEXIT(BCE_VERBOSE);
5576 }
5577 
5578 
5579 /****************************************************************************/
5580 /* Reports current media status.                                            */
5581 /*                                                                          */
5582 /* Returns:                                                                 */
5583 /*   Nothing.                                                               */
5584 /****************************************************************************/
5585 static void
5586 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5587 {
5588 	struct bce_softc *sc = ifp->if_softc;
5589 	struct mii_data *mii;
5590 
5591 	DBENTER(BCE_VERBOSE);
5592 
5593 	BCE_LOCK(sc);
5594 
5595 	mii = device_get_softc(sc->bce_miibus);
5596 
5597 	mii_pollstat(mii);
5598 	ifmr->ifm_active = mii->mii_media_active;
5599 	ifmr->ifm_status = mii->mii_media_status;
5600 
5601 	BCE_UNLOCK(sc);
5602 
5603 	DBEXIT(BCE_VERBOSE);
5604 }
5605 
5606 
5607 /****************************************************************************/
5608 /* Handles PHY generated interrupt events.                                  */
5609 /*                                                                          */
5610 /* Returns:                                                                 */
5611 /*   Nothing.                                                               */
5612 /****************************************************************************/
5613 static void
5614 bce_phy_intr(struct bce_softc *sc)
5615 {
5616 	u32 new_link_state, old_link_state;
5617 
5618 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5619 
5620 	new_link_state = sc->status_block->status_attn_bits &
5621 		STATUS_ATTN_BITS_LINK_STATE;
5622 	old_link_state = sc->status_block->status_attn_bits_ack &
5623 		STATUS_ATTN_BITS_LINK_STATE;
5624 
5625 	/* Handle any changes if the link state has changed. */
5626 	if (new_link_state != old_link_state) {
5627 
5628 		/* Update the status_attn_bits_ack field in the status block. */
5629 		if (new_link_state) {
5630 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
5631 				STATUS_ATTN_BITS_LINK_STATE);
5632 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
5633 				__FUNCTION__);
5634 		}
5635 		else {
5636 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
5637 				STATUS_ATTN_BITS_LINK_STATE);
5638 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
5639 				__FUNCTION__);
5640 		}
5641 
5642 		/*
5643 		 * Assume link is down and allow
5644 		 * tick routine to update the state
5645 		 * based on the actual media state.
5646 		 */
5647 		sc->bce_link = 0;
5648 		callout_stop(&sc->bce_tick_callout);
5649 		bce_tick(sc);
5650 	}
5651 
5652 	/* Acknowledge the link change interrupt. */
5653 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
5654 
5655 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5656 }
5657 
5658 
5659 /****************************************************************************/
5660 /* Reads the receive consumer value from the status block (skipping over    */
5661 /* chain page pointer if necessary).                                        */
5662 /*                                                                          */
5663 /* Returns:                                                                 */
5664 /*   hw_cons                                                                */
5665 /****************************************************************************/
5666 static inline u16
5667 bce_get_hw_rx_cons(struct bce_softc *sc)
5668 {
5669 	u16 hw_cons;
5670 
5671 	rmb();
5672 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
5673 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5674 		hw_cons++;
5675 
5676 	return hw_cons;
5677 }
5678 
5679 /****************************************************************************/
5680 /* Handles received frame interrupt events.                                 */
5681 /*                                                                          */
5682 /* Returns:                                                                 */
5683 /*   Nothing.                                                               */
5684 /****************************************************************************/
5685 static void
5686 bce_rx_intr(struct bce_softc *sc)
5687 {
5688 	struct ifnet *ifp = sc->bce_ifp;
5689 	struct l2_fhdr *l2fhdr;
5690 	unsigned int pkt_len;
5691 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
5692 	u32 status;
5693 #ifdef BCE_USE_SPLIT_HEADER
5694 	unsigned int rem_len;
5695 	u16 sw_pg_cons, sw_pg_cons_idx;
5696 #endif
5697 
5698 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
5699 	DBRUN(sc->rx_interrupts++);
5700 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
5701 		"rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
5702 		__FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
5703 
5704 	/* Prepare the RX chain pages to be accessed by the host CPU. */
5705 	for (int i = 0; i < RX_PAGES; i++)
5706 		bus_dmamap_sync(sc->rx_bd_chain_tag,
5707 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTWRITE);
5708 
5709 #ifdef BCE_USE_SPLIT_HEADER
5710 	/* Prepare the page chain pages to be accessed by the host CPU. */
5711 	for (int i = 0; i < PG_PAGES; i++)
5712 		bus_dmamap_sync(sc->pg_bd_chain_tag,
5713 		    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTWRITE);
5714 #endif
5715 
5716 	/* Get the hardware's view of the RX consumer index. */
5717 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
5718 
5719 	/* Get working copies of the driver's view of the consumer indices. */
5720 	sw_rx_cons = sc->rx_cons;
5721 #ifdef BCE_USE_SPLIT_HEADER
5722 	sw_pg_cons = sc->pg_cons;
5723 #endif
5724 
5725 	/* Update some debug statistics counters */
5726 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5727 		sc->rx_low_watermark = sc->free_rx_bd);
5728 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
5729 
5730 	/* Scan through the receive chain as long as there is work to do */
5731 	/* ToDo: Consider setting a limit on the number of packets processed. */
5732 	rmb();
5733 	while (sw_rx_cons != hw_rx_cons) {
5734 		struct mbuf *m0;
5735 
5736 		/* Convert the producer/consumer indices to an actual rx_bd index. */
5737 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
5738 
5739 		/* Unmap the mbuf from DMA space. */
5740 		bus_dmamap_sync(sc->rx_mbuf_tag,
5741 		    sc->rx_mbuf_map[sw_rx_cons_idx],
5742 	    	BUS_DMASYNC_POSTREAD);
5743 		bus_dmamap_unload(sc->rx_mbuf_tag,
5744 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
5745 
5746 		/* Remove the mbuf from the RX chain. */
5747 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
5748 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
5749 		DBRUN(sc->debug_rx_mbuf_alloc--);
5750 		sc->free_rx_bd++;
5751 
5752 		/*
5753 		 * Frames received on the NetXteme II are prepended
5754 		 * with an l2_fhdr structure which provides status
5755 		 * information about the received frame (including
5756 		 * VLAN tags and checksum info).  The frames are also
5757 		 * automatically adjusted to align the IP header
5758 		 * (i.e. two null bytes are inserted before the
5759 		 * Ethernet header).  As a result the data DMA'd by
5760 		 * the controller into the mbuf is as follows:
5761 		 * +---------+-----+---------------------+-----+
5762 		 * | l2_fhdr | pad | packet data         | FCS |
5763 		 * +---------+-----+---------------------+-----+
5764 		 * The l2_fhdr needs to be checked and skipped and
5765 		 * the FCS needs to be stripped before sending the
5766 		 * packet up the stack.
5767 		 */
5768 		l2fhdr  = mtod(m0, struct l2_fhdr *);
5769 
5770 		/* Get the packet data + FCS length and the status. */
5771 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
5772 		status  = l2fhdr->l2_fhdr_status;
5773 
5774 		/*
5775 		 * Skip over the l2_fhdr and pad, resulting in the
5776 		 * following data in the mbuf:
5777 		 * +---------------------+-----+
5778 		 * | packet data         | FCS |
5779 		 * +---------------------+-----+
5780 		 */
5781 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
5782 
5783 #ifdef BCE_USE_SPLIT_HEADER
5784 		/*
5785 		 * Check whether the received frame fits in a single
5786 		 * mbuf or not (i.e. packet data + FCS <=
5787 		 * sc->rx_bd_mbuf_data_len bytes).
5788 		 */
5789 		if (pkt_len > m0->m_len) {
5790 			/*
5791 			 * The received frame is larger than a single mbuf.
5792 			 * If the frame was a TCP frame then only the TCP
5793 			 * header is placed in the mbuf, the remaining
5794 			 * payload (including FCS) is placed in the page
5795 			 * chain, the SPLIT flag is set, and the header
5796 			 * length is placed in the IP checksum field.
5797 			 * If the frame is not a TCP frame then the mbuf
5798 			 * is filled and the remaining bytes are placed
5799 			 * in the page chain.
5800 			 */
5801 
5802 			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large packet.\n",
5803 				__FUNCTION__);
5804 
5805 			/*
5806 			 * When the page chain is enabled and the TCP
5807 			 * header has been split from the TCP payload,
5808 			 * the ip_xsum structure will reflect the length
5809 			 * of the TCP header, not the IP checksum.  Set
5810 			 * the packet length of the mbuf accordingly.
5811 			 */
5812 		 	if (status & L2_FHDR_STATUS_SPLIT)
5813 				m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
5814 
5815 			rem_len = pkt_len - m0->m_len;
5816 
5817 			/* Pull mbufs off the page chain for the remaining data. */
5818 			while (rem_len > 0) {
5819 				struct mbuf *m_pg;
5820 
5821 				sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
5822 
5823 				/* Remove the mbuf from the page chain. */
5824 				m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
5825 				sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
5826 				DBRUN(sc->debug_pg_mbuf_alloc--);
5827 				sc->free_pg_bd++;
5828 
5829 				/* Unmap the page chain mbuf from DMA space. */
5830 				bus_dmamap_sync(sc->pg_mbuf_tag,
5831 					sc->pg_mbuf_map[sw_pg_cons_idx],
5832 					BUS_DMASYNC_POSTREAD);
5833 				bus_dmamap_unload(sc->pg_mbuf_tag,
5834 					sc->pg_mbuf_map[sw_pg_cons_idx]);
5835 
5836 				/* Adjust the mbuf length. */
5837 				if (rem_len < m_pg->m_len) {
5838 					/* The mbuf chain is complete. */
5839 					m_pg->m_len = rem_len;
5840 					rem_len = 0;
5841 				} else {
5842 					/* More packet data is waiting. */
5843 					rem_len -= m_pg->m_len;
5844 				}
5845 
5846 				/* Concatenate the mbuf cluster to the mbuf. */
5847 				m_cat(m0, m_pg);
5848 
5849 				sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
5850 			}
5851 
5852 			/* Set the total packet length. */
5853 			m0->m_pkthdr.len = pkt_len;
5854 
5855 		} else {
5856 			/*
5857 			 * The received packet is small and fits in a
5858 			 * single mbuf (i.e. the l2_fhdr + pad + packet +
5859 			 * FCS <= MHLEN).  In other words, the packet is
5860 			 * 154 bytes or less in size.
5861 			 */
5862 
5863 			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small packet.\n",
5864 				__FUNCTION__);
5865 
5866 			/* Set the total packet length. */
5867 			m0->m_pkthdr.len = m0->m_len = pkt_len;
5868 		}
5869 #endif
5870 
5871 		/* Remove the trailing Ethernet FCS. */
5872 		m_adj(m0, -ETHER_CRC_LEN);
5873 
5874 		/* Check that the resulting mbuf chain is valid. */
5875 		DBRUN(m_sanity(m0, FALSE));
5876 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
5877 			(m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
5878 			BCE_PRINTF("Invalid Ethernet frame size!\n");
5879 			m_print(m0, 128));
5880 
5881 		DBRUNIF(DB_RANDOMTRUE(bce_debug_l2fhdr_status_check),
5882 			BCE_PRINTF("Simulating l2_fhdr status error.\n");
5883 			status = status | L2_FHDR_ERRORS_PHY_DECODE);
5884 
5885 		/* Check the received frame for errors. */
5886 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
5887 			L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
5888 			L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
5889 
5890 			/* Log the error and release the mbuf. */
5891 			ifp->if_ierrors++;
5892 			DBRUN(sc->l2fhdr_status_errors++);
5893 
5894 			m_freem(m0);
5895 			m0 = NULL;
5896 			goto bce_rx_int_next_rx;
5897 		}
5898 
5899 		/* Send the packet to the appropriate interface. */
5900 		m0->m_pkthdr.rcvif = ifp;
5901 
5902 		/* Assume no hardware checksum. */
5903 		m0->m_pkthdr.csum_flags = 0;
5904 
5905 		/* Validate the checksum if offload enabled. */
5906 		if (ifp->if_capenable & IFCAP_RXCSUM) {
5907 
5908 			/* Check for an IP datagram. */
5909 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
5910 				(status & L2_FHDR_STATUS_IP_DATAGRAM)) {
5911 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
5912 
5913 				/* Check if the IP checksum is valid. */
5914 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
5915 					m0->m_pkthdr.csum_flags |= CSUM_IP_VALID;
5916 			}
5917 
5918 			/* Check for a valid TCP/UDP frame. */
5919 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
5920 				L2_FHDR_STATUS_UDP_DATAGRAM)) {
5921 
5922 				/* Check for a good TCP/UDP checksum. */
5923 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
5924 					      L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
5925 					m0->m_pkthdr.csum_data =
5926 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
5927 					m0->m_pkthdr.csum_flags |= (CSUM_DATA_VALID
5928 						| CSUM_PSEUDO_HDR);
5929 				}
5930 			}
5931 		}
5932 
5933 		/*
5934 		 * If we received a packet with a vlan tag,
5935 		 * attach that information to the packet.
5936 		 */
5937 		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
5938 #if __FreeBSD_version < 700000
5939 			VLAN_INPUT_TAG(ifp, m0, l2fhdr->l2_fhdr_vlan_tag, continue);
5940 #else
5941 			m0->m_pkthdr.ether_vtag = l2fhdr->l2_fhdr_vlan_tag;
5942 			m0->m_flags |= M_VLANTAG;
5943 #endif
5944 		}
5945 
5946 		/* Pass the mbuf off to the upper layers. */
5947 		ifp->if_ipackets++;
5948 
5949 bce_rx_int_next_rx:
5950 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
5951 
5952 		/* If we have a packet, pass it up the stack */
5953 		if (m0) {
5954 			/* Make sure we don't lose our place when we release the lock. */
5955 			sc->rx_cons = sw_rx_cons;
5956 #ifdef BCE_USE_SPLIT_HEADER
5957 			sc->pg_cons = sw_pg_cons;
5958 #endif
5959 
5960 			BCE_UNLOCK(sc);
5961 			(*ifp->if_input)(ifp, m0);
5962 			BCE_LOCK(sc);
5963 
5964 			/* Recover our place. */
5965 			sw_rx_cons = sc->rx_cons;
5966 #ifdef BCE_USE_SPLIT_HEADER
5967 			sw_pg_cons = sc->pg_cons;
5968 #endif
5969 		}
5970 
5971 		/* Refresh hw_cons to see if there's new work */
5972 		if (sw_rx_cons == hw_rx_cons)
5973 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
5974 	}
5975 
5976 	/* No new packets to process.  Refill the RX and page chains and exit. */
5977 #ifdef BCE_USE_SPLIT_HEADER
5978 	sc->pg_cons = sw_pg_cons;
5979 	bce_fill_pg_chain(sc);
5980 #endif
5981 
5982 	sc->rx_cons = sw_rx_cons;
5983 	bce_fill_rx_chain(sc);
5984 
5985 	for (int i = 0; i < RX_PAGES; i++)
5986 		bus_dmamap_sync(sc->rx_bd_chain_tag,
5987 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
5988 
5989 #ifdef BCE_USE_SPLIT_HEADER
5990 	for (int i = 0; i < PG_PAGES; i++)
5991 		bus_dmamap_sync(sc->pg_bd_chain_tag,
5992 		    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
5993 #endif
5994 
5995 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
5996 		"rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
5997 		__FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
5998 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
5999 }
6000 
6001 
6002 /****************************************************************************/
6003 /* Reads the transmit consumer value from the status block (skipping over   */
6004 /* chain page pointer if necessary).                                        */
6005 /*                                                                          */
6006 /* Returns:                                                                 */
6007 /*   hw_cons                                                                */
6008 /****************************************************************************/
6009 static inline u16
6010 bce_get_hw_tx_cons(struct bce_softc *sc)
6011 {
6012 	u16 hw_cons;
6013 
6014 	mb();
6015 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6016 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6017 		hw_cons++;
6018 
6019 	return hw_cons;
6020 }
6021 
6022 
6023 /****************************************************************************/
6024 /* Handles transmit completion interrupt events.                            */
6025 /*                                                                          */
6026 /* Returns:                                                                 */
6027 /*   Nothing.                                                               */
6028 /****************************************************************************/
6029 static void
6030 bce_tx_intr(struct bce_softc *sc)
6031 {
6032 	struct ifnet *ifp = sc->bce_ifp;
6033 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6034 
6035 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6036 	DBRUN(sc->tx_interrupts++);
6037 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6038 		"tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6039 		__FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6040 
6041 	BCE_LOCK_ASSERT(sc);
6042 
6043 	/* Get the hardware's view of the TX consumer index. */
6044 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6045 	sw_tx_cons = sc->tx_cons;
6046 
6047 	/* Prevent speculative reads from getting ahead of the status block. */
6048 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6049 		BUS_SPACE_BARRIER_READ);
6050 
6051 	/* Cycle through any completed TX chain page entries. */
6052 	while (sw_tx_cons != hw_tx_cons) {
6053 #ifdef BCE_DEBUG
6054 		struct tx_bd *txbd = NULL;
6055 #endif
6056 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6057 
6058 		DBPRINT(sc, BCE_INFO_SEND,
6059 			"%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6060 			"sw_tx_chain_cons = 0x%04X\n",
6061 			__FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6062 
6063 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
6064 			BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6065 				" 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6066 				(int) MAX_TX_BD);
6067 			bce_breakpoint(sc));
6068 
6069 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6070 				[TX_IDX(sw_tx_chain_cons)]);
6071 
6072 		DBRUNIF((txbd == NULL),
6073 			BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6074 				__FILE__, __LINE__, sw_tx_chain_cons);
6075 			bce_breakpoint(sc));
6076 
6077 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6078 			bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6079 
6080 		/*
6081 		 * Free the associated mbuf. Remember
6082 		 * that only the last tx_bd of a packet
6083 		 * has an mbuf pointer and DMA map.
6084 		 */
6085 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6086 
6087 			/* Validate that this is the last tx_bd. */
6088 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6089 				BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6090 				"txmbuf == NULL!\n", __FILE__, __LINE__);
6091 				bce_breakpoint(sc));
6092 
6093 			DBRUNMSG(BCE_INFO_SEND,
6094 				BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6095 					"from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons));
6096 
6097 			/* Unmap the mbuf. */
6098 			bus_dmamap_unload(sc->tx_mbuf_tag,
6099 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6100 
6101 			/* Free the mbuf. */
6102 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6103 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6104 			DBRUN(sc->debug_tx_mbuf_alloc--);
6105 
6106 			ifp->if_opackets++;
6107 		}
6108 
6109 		sc->used_tx_bd--;
6110 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6111 
6112 		/* Refresh hw_cons to see if there's new work. */
6113 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6114 
6115 		/* Prevent speculative reads from getting ahead of the status block. */
6116 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6117 			BUS_SPACE_BARRIER_READ);
6118 	}
6119 
6120 	/* Clear the TX timeout timer. */
6121 	sc->watchdog_timer = 0;
6122 
6123 	/* Clear the tx hardware queue full flag. */
6124 	if (sc->used_tx_bd < sc->max_tx_bd) {
6125 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6126 			DBPRINT(sc, BCE_INFO_SEND,
6127 				"%s(): Open TX chain! %d/%d (used/total)\n",
6128 				__FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6129 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6130 	}
6131 
6132 	sc->tx_cons = sw_tx_cons;
6133 
6134 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6135 		"tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6136 		__FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6137 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6138 }
6139 
6140 
6141 /****************************************************************************/
6142 /* Disables interrupt generation.                                           */
6143 /*                                                                          */
6144 /* Returns:                                                                 */
6145 /*   Nothing.                                                               */
6146 /****************************************************************************/
6147 static void
6148 bce_disable_intr(struct bce_softc *sc)
6149 {
6150 	DBENTER(BCE_VERBOSE_INTR);
6151 
6152 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6153 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6154 
6155 	DBEXIT(BCE_VERBOSE_INTR);
6156 }
6157 
6158 
6159 /****************************************************************************/
6160 /* Enables interrupt generation.                                            */
6161 /*                                                                          */
6162 /* Returns:                                                                 */
6163 /*   Nothing.                                                               */
6164 /****************************************************************************/
6165 static void
6166 bce_enable_intr(struct bce_softc *sc, int coal_now)
6167 {
6168 	DBENTER(BCE_VERBOSE_INTR);
6169 
6170 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6171 	       BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6172 	       BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6173 
6174 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6175 	       BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6176 
6177 	/* Force an immediate interrupt (whether there is new data or not). */
6178 	if (coal_now)
6179 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6180 
6181 	DBEXIT(BCE_VERBOSE_INTR);
6182 }
6183 
6184 
6185 /****************************************************************************/
6186 /* Handles controller initialization.                                       */
6187 /*                                                                          */
6188 /* Returns:                                                                 */
6189 /*   Nothing.                                                               */
6190 /****************************************************************************/
6191 static void
6192 bce_init_locked(struct bce_softc *sc)
6193 {
6194 	struct ifnet *ifp;
6195 	u32 ether_mtu = 0;
6196 
6197 	DBENTER(BCE_VERBOSE_RESET);
6198 
6199 	BCE_LOCK_ASSERT(sc);
6200 
6201 	ifp = sc->bce_ifp;
6202 
6203 	/* Check if the driver is still running and bail out if it is. */
6204 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6205 		goto bce_init_locked_exit;
6206 
6207 	bce_stop(sc);
6208 
6209 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6210 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6211 			__FILE__, __LINE__);
6212 		goto bce_init_locked_exit;
6213 	}
6214 
6215 	if (bce_chipinit(sc)) {
6216 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6217 			__FILE__, __LINE__);
6218 		goto bce_init_locked_exit;
6219 	}
6220 
6221 	if (bce_blockinit(sc)) {
6222 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6223 			__FILE__, __LINE__);
6224 		goto bce_init_locked_exit;
6225 	}
6226 
6227 	/* Load our MAC address. */
6228 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6229 	bce_set_mac_addr(sc);
6230 
6231 	/*
6232 	 * Calculate and program the hardware Ethernet MTU
6233 	 * size. Be generous on the receive if we have room.
6234 	 */
6235 #ifdef BCE_USE_SPLIT_HEADER
6236 	if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size))
6237 		ether_mtu = sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size;
6238 #else
6239 	if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
6240 		ether_mtu = sc->rx_bd_mbuf_data_len;
6241 #endif
6242 	else
6243 		ether_mtu = ifp->if_mtu;
6244 
6245 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6246 
6247 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", __FUNCTION__,
6248 		ether_mtu);
6249 
6250 	/* Program the mtu, enabling jumbo frame support if necessary. */
6251 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6252 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6253 			min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6254 			BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6255 	else
6256 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
6257 
6258 	DBPRINT(sc, BCE_INFO_LOAD,
6259 		"%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, "
6260 		"rx_bd_mbuf_align_pad = %d, pg_bd_mbuf_alloc_size = %d\n",
6261 		__FUNCTION__, sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
6262 		sc->rx_bd_mbuf_align_pad, sc->pg_bd_mbuf_alloc_size);
6263 
6264 	/* Program appropriate promiscuous/multicast filtering. */
6265 	bce_set_rx_mode(sc);
6266 
6267 #ifdef BCE_USE_SPLIT_HEADER
6268 	/* Init page buffer descriptor chain. */
6269 	bce_init_pg_chain(sc);
6270 #endif
6271 
6272 	/* Init RX buffer descriptor chain. */
6273 	bce_init_rx_chain(sc);
6274 
6275 	/* Init TX buffer descriptor chain. */
6276 	bce_init_tx_chain(sc);
6277 
6278 	/* Enable host interrupts. */
6279 	bce_enable_intr(sc, 1);
6280 
6281 	bce_ifmedia_upd_locked(ifp);
6282 
6283 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6284 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6285 
6286 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
6287 
6288 bce_init_locked_exit:
6289 	DBEXIT(BCE_VERBOSE_RESET);
6290 }
6291 
6292 
6293 /****************************************************************************/
6294 /* Initialize the controller just enough so that any management firmware    */
6295 /* running on the device will continue to operate correctly.                */
6296 /*                                                                          */
6297 /* Returns:                                                                 */
6298 /*   Nothing.                                                               */
6299 /****************************************************************************/
6300 static void
6301 bce_mgmt_init_locked(struct bce_softc *sc)
6302 {
6303 	struct ifnet *ifp;
6304 
6305 	DBENTER(BCE_VERBOSE_RESET);
6306 
6307 	BCE_LOCK_ASSERT(sc);
6308 
6309 	/* Bail out if management firmware is not running. */
6310 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
6311 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
6312 			"No management firmware running...\n");
6313 		goto bce_mgmt_init_locked_exit;
6314 	}
6315 
6316 	ifp = sc->bce_ifp;
6317 
6318 	/* Enable all critical blocks in the MAC. */
6319 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
6320 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
6321 	DELAY(20);
6322 
6323 	bce_ifmedia_upd_locked(ifp);
6324 
6325 bce_mgmt_init_locked_exit:
6326 	DBEXIT(BCE_VERBOSE_RESET);
6327 }
6328 
6329 
6330 /****************************************************************************/
6331 /* Handles controller initialization when called from an unlocked routine.  */
6332 /*                                                                          */
6333 /* Returns:                                                                 */
6334 /*   Nothing.                                                               */
6335 /****************************************************************************/
6336 static void
6337 bce_init(void *xsc)
6338 {
6339 	struct bce_softc *sc = xsc;
6340 
6341 	DBENTER(BCE_VERBOSE_RESET);
6342 
6343 	BCE_LOCK(sc);
6344 	bce_init_locked(sc);
6345 	BCE_UNLOCK(sc);
6346 
6347 	DBEXIT(BCE_VERBOSE_RESET);
6348 }
6349 
6350 
6351 /****************************************************************************/
6352 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
6353 /* memory visible to the controller.                                        */
6354 /*                                                                          */
6355 /* Returns:                                                                 */
6356 /*   0 for success, positive value for failure.                             */
6357 /* Modified:                                                                */
6358 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
6359 /****************************************************************************/
6360 static int
6361 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
6362 {
6363 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
6364 	bus_dmamap_t map;
6365 	struct tx_bd *txbd = NULL;
6366 	struct mbuf *m0;
6367 	struct ether_vlan_header *eh;
6368 	struct ip *ip;
6369 	struct tcphdr *th;
6370 	u16 prod, chain_prod, etype, mss = 0, vlan_tag = 0, flags = 0;
6371 	u32 prod_bseq;
6372 	int hdr_len = 0, e_hlen = 0, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
6373 
6374 #ifdef BCE_DEBUG
6375 	u16 debug_prod;
6376 #endif
6377 	int i, error, nsegs, rc = 0;
6378 
6379 	DBENTER(BCE_VERBOSE_SEND);
6380 	DBPRINT(sc, BCE_INFO_SEND,
6381 		"%s(enter): tx_prod = 0x%04X, tx_chain_prod = %04X, "
6382 		"tx_prod_bseq = 0x%08X\n",
6383 		__FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod),
6384 		sc->tx_prod_bseq);
6385 
6386 	/* Transfer any checksum offload flags to the bd. */
6387 	m0 = *m_head;
6388 	if (m0->m_pkthdr.csum_flags) {
6389 		if (m0->m_pkthdr.csum_flags & CSUM_IP)
6390 			flags |= TX_BD_FLAGS_IP_CKSUM;
6391 		if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
6392 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6393 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
6394 			/* For TSO the controller needs two pieces of info, */
6395 			/* the MSS and the IP+TCP options length.           */
6396 			mss = htole16(m0->m_pkthdr.tso_segsz);
6397 
6398 			/* Map the header and find the Ethernet type & header length */
6399 			eh = mtod(m0, struct ether_vlan_header *);
6400 			if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
6401 				etype = ntohs(eh->evl_proto);
6402 				e_hlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
6403 			} else {
6404 				etype = ntohs(eh->evl_encap_proto);
6405 				e_hlen = ETHER_HDR_LEN;
6406 			}
6407 
6408 			/* Check for supported TSO Ethernet types (only IPv4 for now) */
6409 			switch (etype) {
6410 				case ETHERTYPE_IP:
6411 					ip = (struct ip *)(m0->m_data + e_hlen);
6412 
6413 					/* TSO only supported for TCP protocol */
6414 					if (ip->ip_p != IPPROTO_TCP) {
6415 						BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
6416 							__FILE__, __LINE__);
6417 						goto bce_tx_encap_skip_tso;
6418 					}
6419 
6420 					/* Get IP header length in bytes (min 20) */
6421 					ip_hlen = ip->ip_hl << 2;
6422 
6423 					/* Get the TCP header length in bytes (min 20) */
6424 					th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
6425 					tcp_hlen = (th->th_off << 2);
6426 
6427 					/* IP header length and checksum will be calc'd by hardware */
6428 					ip_len = ip->ip_len;
6429 					ip->ip_len = 0;
6430 					ip->ip_sum = 0;
6431 					break;
6432 				case ETHERTYPE_IPV6:
6433 					BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
6434 						__FILE__, __LINE__);
6435 					goto bce_tx_encap_skip_tso;
6436 				default:
6437 					BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
6438 						__FILE__, __LINE__);
6439 					goto bce_tx_encap_skip_tso;
6440 			}
6441 
6442 			hdr_len = e_hlen + ip_hlen + tcp_hlen;
6443 
6444 			DBPRINT(sc, BCE_EXTREME_SEND,
6445 				"%s(): hdr_len = %d, e_hlen = %d, ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
6446 				 __FUNCTION__, hdr_len, e_hlen, ip_hlen, tcp_hlen, ip_len);
6447 
6448 			/* Set the LSO flag in the TX BD */
6449 			flags |= TX_BD_FLAGS_SW_LSO;
6450 			/* Set the length of IP + TCP options (in 32 bit words) */
6451 			flags |= (((ip_hlen + tcp_hlen - 40) >> 2) << 8);
6452 
6453 bce_tx_encap_skip_tso:
6454 			DBRUN(sc->requested_tso_frames++);
6455 		}
6456 	}
6457 
6458 	/* Transfer any VLAN tags to the bd. */
6459 	if (m0->m_flags & M_VLANTAG) {
6460 		flags |= TX_BD_FLAGS_VLAN_TAG;
6461 		vlan_tag = m0->m_pkthdr.ether_vtag;
6462 	}
6463 
6464 	/* Map the mbuf into DMAable memory. */
6465 	prod = sc->tx_prod;
6466 	chain_prod = TX_CHAIN_IDX(prod);
6467 	map = sc->tx_mbuf_map[chain_prod];
6468 
6469 	/* Map the mbuf into our DMA address space. */
6470 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
6471 	    segs, &nsegs, BUS_DMA_NOWAIT);
6472 
6473 	/* Check if the DMA mapping was successful */
6474 	if (error == EFBIG) {
6475 
6476 		/* The mbuf is too fragmented for our DMA mapping. */
6477    		DBPRINT(sc, BCE_WARN, "%s(): fragmented mbuf (%d pieces)\n",
6478 			__FUNCTION__, nsegs);
6479 		DBRUN(bce_dump_mbuf(sc, m0););
6480 
6481 		/* Try to defrag the mbuf. */
6482 		m0 = m_defrag(*m_head, M_DONTWAIT);
6483 		if (m0 == NULL) {
6484 			/* Defrag was unsuccessful */
6485 			m_freem(*m_head);
6486 			*m_head = NULL;
6487 			sc->mbuf_alloc_failed++;
6488 			rc = ENOBUFS;
6489 			goto bce_tx_encap_exit;
6490 		}
6491 
6492 		/* Defrag was successful, try mapping again */
6493 		*m_head = m0;
6494 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
6495 		    segs, &nsegs, BUS_DMA_NOWAIT);
6496 
6497 		/* Still getting an error after a defrag. */
6498 		if (error == ENOMEM) {
6499 			/* Insufficient DMA buffers available. */
6500 			sc->tx_dma_map_failures++;
6501 			rc = error;
6502 			goto bce_tx_encap_exit;
6503 		} else if (error != 0) {
6504 			/* Still can't map the mbuf, release it and return an error. */
6505 			BCE_PRINTF(
6506 			    "%s(%d): Unknown error mapping mbuf into TX chain!\n",
6507 			    __FILE__, __LINE__);
6508 			m_freem(m0);
6509 			*m_head = NULL;
6510 			sc->tx_dma_map_failures++;
6511 			rc = ENOBUFS;
6512 			goto bce_tx_encap_exit;
6513 		}
6514 	} else if (error == ENOMEM) {
6515 		/* Insufficient DMA buffers available. */
6516 		sc->tx_dma_map_failures++;
6517 		rc = error;
6518 		goto bce_tx_encap_exit;
6519 	} else if (error != 0) {
6520 		m_freem(m0);
6521 		*m_head = NULL;
6522 		sc->tx_dma_map_failures++;
6523 		rc = error;
6524 		goto bce_tx_encap_exit;
6525 	}
6526 
6527 	/* Make sure there's room in the chain */
6528 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
6529 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
6530 		rc = ENOBUFS;
6531 		goto bce_tx_encap_exit;
6532 	}
6533 
6534 	/* prod points to an empty tx_bd at this point. */
6535 	prod_bseq  = sc->tx_prod_bseq;
6536 
6537 #ifdef BCE_DEBUG
6538 	debug_prod = chain_prod;
6539 #endif
6540 
6541 	DBPRINT(sc, BCE_INFO_SEND,
6542 		"%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
6543 		"prod_bseq = 0x%08X\n",
6544 		__FUNCTION__, prod, chain_prod, prod_bseq);
6545 
6546 	/*
6547 	 * Cycle through each mbuf segment that makes up
6548 	 * the outgoing frame, gathering the mapping info
6549 	 * for that segment and creating a tx_bd for
6550 	 * the mbuf.
6551 	 */
6552 	for (i = 0; i < nsegs ; i++) {
6553 
6554 		chain_prod = TX_CHAIN_IDX(prod);
6555 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
6556 
6557 		txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
6558 		txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
6559 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) | htole16(segs[i].ds_len);
6560 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
6561 		txbd->tx_bd_flags = htole16(flags);
6562 		prod_bseq += segs[i].ds_len;
6563 		if (i == 0)
6564 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
6565 		prod = NEXT_TX_BD(prod);
6566 	}
6567 
6568 	/* Set the END flag on the last TX buffer descriptor. */
6569 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
6570 
6571 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_chain(sc, debug_prod, nsegs));
6572 
6573 	DBPRINT(sc, BCE_INFO_SEND,
6574 		"%s( end ): prod = 0x%04X, chain_prod = 0x%04X, "
6575 		"prod_bseq = 0x%08X\n",
6576 		__FUNCTION__, prod, chain_prod, prod_bseq);
6577 
6578 	/*
6579 	 * Ensure that the mbuf pointer for this transmission
6580 	 * is placed at the array index of the last
6581 	 * descriptor in this chain.  This is done
6582 	 * because a single map is used for all
6583 	 * segments of the mbuf and we don't want to
6584 	 * unload the map before all of the segments
6585 	 * have been freed.
6586 	 */
6587 	sc->tx_mbuf_ptr[chain_prod] = m0;
6588 	sc->used_tx_bd += nsegs;
6589 
6590 	/* Update some debug statistic counters */
6591 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
6592 		sc->tx_hi_watermark = sc->used_tx_bd);
6593 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
6594 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
6595 
6596 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
6597 
6598 	/* prod points to the next free tx_bd at this point. */
6599 	sc->tx_prod = prod;
6600 	sc->tx_prod_bseq = prod_bseq;
6601 
6602 	DBPRINT(sc, BCE_INFO_SEND,
6603 		"%s(exit): prod = 0x%04X, chain_prod = %04X, "
6604 		"prod_bseq = 0x%08X\n",
6605 		__FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod),
6606 		sc->tx_prod_bseq);
6607 
6608 bce_tx_encap_exit:
6609 	DBEXIT(BCE_VERBOSE_SEND);
6610 	return(rc);
6611 }
6612 
6613 
6614 /****************************************************************************/
6615 /* Main transmit routine when called from another routine with a lock.      */
6616 /*                                                                          */
6617 /* Returns:                                                                 */
6618 /*   Nothing.                                                               */
6619 /****************************************************************************/
6620 static void
6621 bce_start_locked(struct ifnet *ifp)
6622 {
6623 	struct bce_softc *sc = ifp->if_softc;
6624 	struct mbuf *m_head = NULL;
6625 	int count = 0;
6626 	u16 tx_prod, tx_chain_prod;
6627 
6628 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
6629 
6630 	BCE_LOCK_ASSERT(sc);
6631 
6632 	/* prod points to the next free tx_bd. */
6633 	tx_prod = sc->tx_prod;
6634 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
6635 
6636 	DBPRINT(sc, BCE_INFO_SEND,
6637 		"%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
6638 		"tx_prod_bseq = 0x%08X\n",
6639 		__FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
6640 
6641 	/* If there's no link or the transmit queue is empty then just exit. */
6642 	if (!sc->bce_link) {
6643 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
6644 			__FUNCTION__);
6645 		goto bce_start_locked_exit;
6646 	}
6647 
6648 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
6649 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
6650 			__FUNCTION__);
6651 		goto bce_start_locked_exit;
6652 	}
6653 
6654 	/*
6655 	 * Keep adding entries while there is space in the ring.
6656 	 */
6657 	while (sc->used_tx_bd < sc->max_tx_bd) {
6658 
6659 		/* Check for any frames to send. */
6660 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
6661 
6662 		/* Stop when the transmit queue is empty. */
6663 		if (m_head == NULL)
6664 			break;
6665 
6666 		/*
6667 		 * Pack the data into the transmit ring. If we
6668 		 * don't have room, place the mbuf back at the
6669 		 * head of the queue and set the OACTIVE flag
6670 		 * to wait for the NIC to drain the chain.
6671 		 */
6672 		if (bce_tx_encap(sc, &m_head)) {
6673 			/* No room, put the frame back on the transmit queue. */
6674 			if (m_head != NULL)
6675 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
6676 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
6677 			DBPRINT(sc, BCE_INFO_SEND,
6678 				"TX chain is closed for business! Total tx_bd used = %d\n",
6679 				sc->used_tx_bd);
6680 			break;
6681 		}
6682 
6683 		count++;
6684 
6685 		/* Send a copy of the frame to any BPF listeners. */
6686 		ETHER_BPF_MTAP(ifp, m_head);
6687 	}
6688 
6689 	/* Exit if no packets were dequeued. */
6690 	if (count == 0) {
6691 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were dequeued\n",
6692 			__FUNCTION__);
6693 		goto bce_start_locked_exit;
6694 	}
6695 
6696 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into send queue.\n",
6697 		__FUNCTION__, count);
6698 
6699 	REG_WR(sc, BCE_MQ_COMMAND, REG_RD(sc, BCE_MQ_COMMAND) | BCE_MQ_COMMAND_NO_MAP_ERROR);
6700 
6701 	/* Write the mailbox and tell the chip about the waiting tx_bd's. */
6702 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; "
6703 		"BCE_L2MQ_TX_HOST_BIDX = 0x%08X, sc->tx_prod = 0x%04X\n",
6704 		__FUNCTION__,
6705 		MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
6706 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
6707 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; "
6708 		"BCE_L2MQ_TX_HOST_BSEQ = 0x%08X, sc->tx_prod_bseq = 0x%04X\n",
6709 		__FUNCTION__,
6710 		MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
6711 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
6712 
6713 	/* Set the tx timeout. */
6714 	sc->watchdog_timer = BCE_TX_TIMEOUT;
6715 
6716 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
6717 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
6718 
6719 bce_start_locked_exit:
6720 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
6721 	return;
6722 }
6723 
6724 
6725 /****************************************************************************/
6726 /* Main transmit routine when called from another routine without a lock.   */
6727 /*                                                                          */
6728 /* Returns:                                                                 */
6729 /*   Nothing.                                                               */
6730 /****************************************************************************/
6731 static void
6732 bce_start(struct ifnet *ifp)
6733 {
6734 	struct bce_softc *sc = ifp->if_softc;
6735 
6736 	DBENTER(BCE_VERBOSE_SEND);
6737 
6738 	BCE_LOCK(sc);
6739 	bce_start_locked(ifp);
6740 	BCE_UNLOCK(sc);
6741 
6742 	DBEXIT(BCE_VERBOSE_SEND);
6743 }
6744 
6745 
6746 /****************************************************************************/
6747 /* Handles any IOCTL calls from the operating system.                       */
6748 /*                                                                          */
6749 /* Returns:                                                                 */
6750 /*   0 for success, positive value for failure.                             */
6751 /****************************************************************************/
6752 static int
6753 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
6754 {
6755 	struct bce_softc *sc = ifp->if_softc;
6756 	struct ifreq *ifr = (struct ifreq *) data;
6757 	struct mii_data *mii;
6758 	int mask, error = 0;
6759 
6760 	DBENTER(BCE_VERBOSE_MISC);
6761 
6762 	switch(command) {
6763 
6764 		/* Set the interface MTU. */
6765 		case SIOCSIFMTU:
6766 			/* Check that the MTU setting is supported. */
6767 			if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
6768 				(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
6769 				error = EINVAL;
6770 				break;
6771 			}
6772 
6773 			DBPRINT(sc, BCE_INFO_MISC,
6774 				"SIOCSIFMTU: Changing MTU from %d to %d\n",
6775 				(int) ifp->if_mtu, (int) ifr->ifr_mtu);
6776 
6777 			BCE_LOCK(sc);
6778 			ifp->if_mtu = ifr->ifr_mtu;
6779 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
6780 #ifdef BCE_USE_SPLIT_HEADER
6781 			/* No buffer allocation size changes are necessary. */
6782 #else
6783 			/* Recalculate our buffer allocation sizes. */
6784 			if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN) > MCLBYTES) {
6785 				sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
6786 				sc->rx_bd_mbuf_align_pad  = roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
6787 				sc->rx_bd_mbuf_data_len   = sc->rx_bd_mbuf_alloc_size -
6788 					sc->rx_bd_mbuf_align_pad;
6789 			} else {
6790 				sc->rx_bd_mbuf_alloc_size = MCLBYTES;
6791 				sc->rx_bd_mbuf_align_pad  = roundup2(MCLBYTES, 16) - MCLBYTES;
6792 				sc->rx_bd_mbuf_data_len   = sc->rx_bd_mbuf_alloc_size -
6793 					sc->rx_bd_mbuf_align_pad;
6794 			}
6795 #endif
6796 
6797 			bce_init_locked(sc);
6798 			BCE_UNLOCK(sc);
6799 			break;
6800 
6801 		/* Set interface flags. */
6802 		case SIOCSIFFLAGS:
6803 			DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
6804 
6805 			BCE_LOCK(sc);
6806 
6807 			/* Check if the interface is up. */
6808 			if (ifp->if_flags & IFF_UP) {
6809 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
6810 					/* Change promiscuous/multicast flags as necessary. */
6811 					bce_set_rx_mode(sc);
6812 				} else {
6813 					/* Start the HW */
6814 					bce_init_locked(sc);
6815 				}
6816 			} else {
6817 				/* The interface is down, check if driver is running. */
6818 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
6819 					bce_stop(sc);
6820 
6821 					/* If MFW is running, restart the controller a bit. */
6822 					if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
6823 						bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
6824 						bce_chipinit(sc);
6825 						bce_mgmt_init_locked(sc);
6826 					}
6827 				}
6828 			}
6829 
6830 			BCE_UNLOCK(sc);
6831 			error = 0;
6832 
6833 			break;
6834 
6835 		/* Add/Delete multicast address */
6836 		case SIOCADDMULTI:
6837 		case SIOCDELMULTI:
6838 			DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCADDMULTI/SIOCDELMULTI\n");
6839 
6840 			BCE_LOCK(sc);
6841 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
6842 				bce_set_rx_mode(sc);
6843 				error = 0;
6844 			}
6845 			BCE_UNLOCK(sc);
6846 
6847 			break;
6848 
6849 		/* Set/Get Interface media */
6850 		case SIOCSIFMEDIA:
6851 		case SIOCGIFMEDIA:
6852 			DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
6853 
6854 			mii = device_get_softc(sc->bce_miibus);
6855 			error = ifmedia_ioctl(ifp, ifr,
6856 			    &mii->mii_media, command);
6857 			break;
6858 
6859 		/* Set interface capability */
6860 		case SIOCSIFCAP:
6861 			mask = ifr->ifr_reqcap ^ ifp->if_capenable;
6862 			DBPRINT(sc, BCE_INFO_MISC, "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
6863 
6864 			/* Toggle the TX checksum capabilites enable flag. */
6865 			if (mask & IFCAP_TXCSUM) {
6866 				ifp->if_capenable ^= IFCAP_TXCSUM;
6867 				if (IFCAP_TXCSUM & ifp->if_capenable)
6868 					ifp->if_hwassist = BCE_IF_HWASSIST;
6869 				else
6870 					ifp->if_hwassist = 0;
6871 			}
6872 
6873 			/* Toggle the RX checksum capabilities enable flag. */
6874 			if (mask & IFCAP_RXCSUM) {
6875 				ifp->if_capenable ^= IFCAP_RXCSUM;
6876 				if (IFCAP_RXCSUM & ifp->if_capenable)
6877 					ifp->if_hwassist = BCE_IF_HWASSIST;
6878 				else
6879 					ifp->if_hwassist = 0;
6880 			}
6881 
6882 			/* Toggle the TSO capabilities enable flag. */
6883 			if (bce_tso_enable && (mask & IFCAP_TSO4)) {
6884 				ifp->if_capenable ^= IFCAP_TSO4;
6885 				if (IFCAP_RXCSUM & ifp->if_capenable)
6886 					ifp->if_hwassist = BCE_IF_HWASSIST;
6887 				else
6888 					ifp->if_hwassist = 0;
6889 			}
6890 
6891 			/* Toggle VLAN_MTU capabilities enable flag. */
6892 			if (mask & IFCAP_VLAN_MTU) {
6893 				BCE_PRINTF("%s(%d): Changing VLAN_MTU not supported.\n",
6894 					__FILE__, __LINE__);
6895 			}
6896 
6897 			/* Toggle VLANHWTAG capabilities enabled flag. */
6898 			if (mask & IFCAP_VLAN_HWTAGGING) {
6899 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
6900 					BCE_PRINTF("%s(%d): Cannot change VLAN_HWTAGGING while "
6901 						"management firmware (ASF/IPMI/UMP) is running!\n",
6902 						__FILE__, __LINE__);
6903 				else
6904 					BCE_PRINTF("%s(%d): Changing VLAN_HWTAGGING not supported!\n",
6905 						__FILE__, __LINE__);
6906 			}
6907 
6908 			break;
6909 		default:
6910 			/* We don't know how to handle the IOCTL, pass it on. */
6911 			error = ether_ioctl(ifp, command, data);
6912 			break;
6913 	}
6914 
6915 	DBEXIT(BCE_VERBOSE_MISC);
6916 	return(error);
6917 }
6918 
6919 
6920 /****************************************************************************/
6921 /* Transmit timeout handler.                                                */
6922 /*                                                                          */
6923 /* Returns:                                                                 */
6924 /*   Nothing.                                                               */
6925 /****************************************************************************/
6926 static void
6927 bce_watchdog(struct bce_softc *sc)
6928 {
6929 	DBENTER(BCE_EXTREME_SEND);
6930 
6931 	BCE_LOCK_ASSERT(sc);
6932 
6933 	/* If the watchdog timer hasn't expired then just exit. */
6934 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
6935 		goto bce_watchdog_exit;
6936 
6937 	/* If pause frames are active then don't reset the hardware. */
6938 	/* ToDo: Should we reset the timer here? */
6939 	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
6940 		goto bce_watchdog_exit;
6941 
6942 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
6943 		__FILE__, __LINE__);
6944 
6945 	DBRUNMSG(BCE_INFO,
6946 		bce_dump_driver_state(sc);
6947 		bce_dump_status_block(sc);
6948 		bce_dump_stats_block(sc);
6949 		bce_dump_ftqs(sc);
6950 		bce_dump_txp_state(sc, 0);
6951 		bce_dump_rxp_state(sc, 0);
6952 		bce_dump_tpat_state(sc, 0);
6953 		bce_dump_cp_state(sc, 0);
6954 		bce_dump_com_state(sc, 0));
6955 
6956 	DBRUN(bce_breakpoint(sc));
6957 
6958 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
6959 
6960 	bce_init_locked(sc);
6961 	sc->bce_ifp->if_oerrors++;
6962 
6963 bce_watchdog_exit:
6964 	DBEXIT(BCE_EXTREME_SEND);
6965 }
6966 
6967 
6968 /*
6969  * Interrupt handler.
6970  */
6971 /****************************************************************************/
6972 /* Main interrupt entry point.  Verifies that the controller generated the  */
6973 /* interrupt and then calls a separate routine for handle the various       */
6974 /* interrupt causes (PHY, TX, RX).                                          */
6975 /*                                                                          */
6976 /* Returns:                                                                 */
6977 /*   0 for success, positive value for failure.                             */
6978 /****************************************************************************/
6979 static void
6980 bce_intr(void *xsc)
6981 {
6982 	struct bce_softc *sc;
6983 	struct ifnet *ifp;
6984 	u32 status_attn_bits;
6985 	u16 hw_rx_cons, hw_tx_cons;
6986 
6987 	sc = xsc;
6988 	ifp = sc->bce_ifp;
6989 
6990 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6991 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
6992 
6993 	BCE_LOCK(sc);
6994 
6995 	DBRUN(sc->interrupts_generated++);
6996 
6997 	bus_dmamap_sync(sc->status_tag, sc->status_map,
6998 	    BUS_DMASYNC_POSTWRITE);
6999 
7000 	/*
7001 	 * If the hardware status block index
7002 	 * matches the last value read by the
7003 	 * driver and we haven't asserted our
7004 	 * interrupt then there's nothing to do.
7005 	 */
7006 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7007 		(REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7008 			DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7009 				__FUNCTION__);
7010 			goto bce_intr_exit;
7011 	}
7012 
7013 	/* Ack the interrupt and stop others from occuring. */
7014 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7015 		BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7016 		BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7017 
7018 	/* Check if the hardware has finished any work. */
7019 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7020 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7021 
7022 	/* Keep processing data as long as there is work to do. */
7023 	for (;;) {
7024 
7025 		status_attn_bits = sc->status_block->status_attn_bits;
7026 
7027 		DBRUNIF(DB_RANDOMTRUE(bce_debug_unexpected_attention),
7028 			BCE_PRINTF("Simulating unexpected status attention bit set.");
7029 			status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR);
7030 
7031 		/* Was it a link change interrupt? */
7032 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7033 			(sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE))
7034 			bce_phy_intr(sc);
7035 
7036 		/* Clear any transient status updates during link state change. */
7037 		REG_WR(sc, BCE_HC_COMMAND,
7038 			sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
7039 		REG_RD(sc, BCE_HC_COMMAND);
7040 
7041 		/* If any other attention is asserted then the chip is toast. */
7042 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7043 			(sc->status_block->status_attn_bits_ack &
7044 			~STATUS_ATTN_BITS_LINK_STATE))) {
7045 
7046 			DBRUN(sc->unexpected_attentions++);
7047 
7048 			BCE_PRINTF("%s(%d): Fatal attention detected: 0x%08X\n",
7049 				__FILE__, __LINE__, sc->status_block->status_attn_bits);
7050 
7051 			DBRUNMSG(BCE_FATAL,
7052 				if (bce_debug_unexpected_attention == 0)
7053 					bce_breakpoint(sc));
7054 
7055 			bce_init_locked(sc);
7056 			goto bce_intr_exit;
7057 		}
7058 
7059 		/* Check for any completed RX frames. */
7060 		if (hw_rx_cons != sc->hw_rx_cons)
7061 			bce_rx_intr(sc);
7062 
7063 		/* Check for any completed TX frames. */
7064 		if (hw_tx_cons != sc->hw_tx_cons)
7065 			bce_tx_intr(sc);
7066 
7067 		/* Save the status block index value for use during the next interrupt. */
7068 		sc->last_status_idx = sc->status_block->status_idx;
7069 
7070 		/* Prevent speculative reads from getting ahead of the status block. */
7071 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7072 			BUS_SPACE_BARRIER_READ);
7073 
7074 		/* If there's no work left then exit the interrupt service routine. */
7075 		hw_rx_cons = bce_get_hw_rx_cons(sc);
7076 		hw_tx_cons = bce_get_hw_tx_cons(sc);
7077 
7078 		if ((hw_rx_cons == sc->hw_rx_cons) && (hw_tx_cons == sc->hw_tx_cons))
7079 			break;
7080 
7081 	}
7082 
7083 	bus_dmamap_sync(sc->status_tag,	sc->status_map,
7084 	    BUS_DMASYNC_PREWRITE);
7085 
7086 	/* Re-enable interrupts. */
7087 	bce_enable_intr(sc, 0);
7088 
7089 	/* Handle any frames that arrived while handling the interrupt. */
7090 	if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7091 		bce_start_locked(ifp);
7092 
7093 bce_intr_exit:
7094 	BCE_UNLOCK(sc);
7095 
7096 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7097 }
7098 
7099 
7100 /****************************************************************************/
7101 /* Programs the various packet receive modes (broadcast and multicast).     */
7102 /*                                                                          */
7103 /* Returns:                                                                 */
7104 /*   Nothing.                                                               */
7105 /****************************************************************************/
7106 static void
7107 bce_set_rx_mode(struct bce_softc *sc)
7108 {
7109 	struct ifnet *ifp;
7110 	struct ifmultiaddr *ifma;
7111 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7112 	u32 rx_mode, sort_mode;
7113 	int h, i;
7114 
7115 	DBENTER(BCE_VERBOSE_MISC);
7116 
7117 	BCE_LOCK_ASSERT(sc);
7118 
7119 	ifp = sc->bce_ifp;
7120 
7121 	/* Initialize receive mode default settings. */
7122 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7123 			    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7124 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7125 
7126 	/*
7127 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7128 	 * be enbled.
7129 	 */
7130 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7131 		(!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7132 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7133 
7134 	/*
7135 	 * Check for promiscuous, all multicast, or selected
7136 	 * multicast address filtering.
7137 	 */
7138 	if (ifp->if_flags & IFF_PROMISC) {
7139 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7140 
7141 		/* Enable promiscuous mode. */
7142 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7143 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7144 	} else if (ifp->if_flags & IFF_ALLMULTI) {
7145 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7146 
7147 		/* Enable all multicast addresses. */
7148 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7149 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
7150        	}
7151 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7152 	} else {
7153 		/* Accept one or more multicast(s). */
7154 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7155 
7156 		IF_ADDR_LOCK(ifp);
7157 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
7158 			if (ifma->ifma_addr->sa_family != AF_LINK)
7159 				continue;
7160 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
7161 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
7162 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7163 		}
7164 		IF_ADDR_UNLOCK(ifp);
7165 
7166 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7167 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7168 
7169 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7170 	}
7171 
7172 	/* Only make changes if the recive mode has actually changed. */
7173 	if (rx_mode != sc->rx_mode) {
7174 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: 0x%08X\n",
7175 			rx_mode);
7176 
7177 		sc->rx_mode = rx_mode;
7178 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7179 	}
7180 
7181 	/* Disable and clear the exisitng sort before enabling a new sort. */
7182 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7183 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7184 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7185 
7186 	DBEXIT(BCE_VERBOSE_MISC);
7187 }
7188 
7189 
7190 /****************************************************************************/
7191 /* Called periodically to updates statistics from the controllers           */
7192 /* statistics block.                                                        */
7193 /*                                                                          */
7194 /* Returns:                                                                 */
7195 /*   Nothing.                                                               */
7196 /****************************************************************************/
7197 static void
7198 bce_stats_update(struct bce_softc *sc)
7199 {
7200 	struct ifnet *ifp;
7201 	struct statistics_block *stats;
7202 
7203 	DBENTER(BCE_EXTREME_MISC);
7204 
7205 	ifp = sc->bce_ifp;
7206 
7207 	stats = (struct statistics_block *) sc->stats_block;
7208 
7209 	/*
7210 	 * Certain controllers don't report
7211 	 * carrier sense errors correctly.
7212 	 * See errata E11_5708CA0_1165.
7213 	 */
7214 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
7215 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
7216 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
7217 
7218 	/*
7219 	 * Update the sysctl statistics from the
7220 	 * hardware statistics.
7221 	 */
7222 	sc->stat_IfHCInOctets =
7223 		((u64) stats->stat_IfHCInOctets_hi << 32) +
7224 		 (u64) stats->stat_IfHCInOctets_lo;
7225 
7226 	sc->stat_IfHCInBadOctets =
7227 		((u64) stats->stat_IfHCInBadOctets_hi << 32) +
7228 		 (u64) stats->stat_IfHCInBadOctets_lo;
7229 
7230 	sc->stat_IfHCOutOctets =
7231 		((u64) stats->stat_IfHCOutOctets_hi << 32) +
7232 		 (u64) stats->stat_IfHCOutOctets_lo;
7233 
7234 	sc->stat_IfHCOutBadOctets =
7235 		((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
7236 		 (u64) stats->stat_IfHCOutBadOctets_lo;
7237 
7238 	sc->stat_IfHCInUcastPkts =
7239 		((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
7240 		 (u64) stats->stat_IfHCInUcastPkts_lo;
7241 
7242 	sc->stat_IfHCInMulticastPkts =
7243 		((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
7244 		 (u64) stats->stat_IfHCInMulticastPkts_lo;
7245 
7246 	sc->stat_IfHCInBroadcastPkts =
7247 		((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
7248 		 (u64) stats->stat_IfHCInBroadcastPkts_lo;
7249 
7250 	sc->stat_IfHCOutUcastPkts =
7251 		((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
7252 		 (u64) stats->stat_IfHCOutUcastPkts_lo;
7253 
7254 	sc->stat_IfHCOutMulticastPkts =
7255 		((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
7256 		 (u64) stats->stat_IfHCOutMulticastPkts_lo;
7257 
7258 	sc->stat_IfHCOutBroadcastPkts =
7259 		((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
7260 		 (u64) stats->stat_IfHCOutBroadcastPkts_lo;
7261 
7262 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
7263 		stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
7264 
7265 	sc->stat_Dot3StatsCarrierSenseErrors =
7266 		stats->stat_Dot3StatsCarrierSenseErrors;
7267 
7268 	sc->stat_Dot3StatsFCSErrors =
7269 		stats->stat_Dot3StatsFCSErrors;
7270 
7271 	sc->stat_Dot3StatsAlignmentErrors =
7272 		stats->stat_Dot3StatsAlignmentErrors;
7273 
7274 	sc->stat_Dot3StatsSingleCollisionFrames =
7275 		stats->stat_Dot3StatsSingleCollisionFrames;
7276 
7277 	sc->stat_Dot3StatsMultipleCollisionFrames =
7278 		stats->stat_Dot3StatsMultipleCollisionFrames;
7279 
7280 	sc->stat_Dot3StatsDeferredTransmissions =
7281 		stats->stat_Dot3StatsDeferredTransmissions;
7282 
7283 	sc->stat_Dot3StatsExcessiveCollisions =
7284 		stats->stat_Dot3StatsExcessiveCollisions;
7285 
7286 	sc->stat_Dot3StatsLateCollisions =
7287 		stats->stat_Dot3StatsLateCollisions;
7288 
7289 	sc->stat_EtherStatsCollisions =
7290 		stats->stat_EtherStatsCollisions;
7291 
7292 	sc->stat_EtherStatsFragments =
7293 		stats->stat_EtherStatsFragments;
7294 
7295 	sc->stat_EtherStatsJabbers =
7296 		stats->stat_EtherStatsJabbers;
7297 
7298 	sc->stat_EtherStatsUndersizePkts =
7299 		stats->stat_EtherStatsUndersizePkts;
7300 
7301 	sc->stat_EtherStatsOverrsizePkts =
7302 		stats->stat_EtherStatsOverrsizePkts;
7303 
7304 	sc->stat_EtherStatsPktsRx64Octets =
7305 		stats->stat_EtherStatsPktsRx64Octets;
7306 
7307 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
7308 		stats->stat_EtherStatsPktsRx65Octetsto127Octets;
7309 
7310 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
7311 		stats->stat_EtherStatsPktsRx128Octetsto255Octets;
7312 
7313 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
7314 		stats->stat_EtherStatsPktsRx256Octetsto511Octets;
7315 
7316 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
7317 		stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
7318 
7319 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
7320 		stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
7321 
7322 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
7323 		stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
7324 
7325 	sc->stat_EtherStatsPktsTx64Octets =
7326 		stats->stat_EtherStatsPktsTx64Octets;
7327 
7328 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
7329 		stats->stat_EtherStatsPktsTx65Octetsto127Octets;
7330 
7331 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
7332 		stats->stat_EtherStatsPktsTx128Octetsto255Octets;
7333 
7334 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
7335 		stats->stat_EtherStatsPktsTx256Octetsto511Octets;
7336 
7337 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
7338 		stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
7339 
7340 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
7341 		stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
7342 
7343 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
7344 		stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
7345 
7346 	sc->stat_XonPauseFramesReceived =
7347 		stats->stat_XonPauseFramesReceived;
7348 
7349 	sc->stat_XoffPauseFramesReceived =
7350 		stats->stat_XoffPauseFramesReceived;
7351 
7352 	sc->stat_OutXonSent =
7353 		stats->stat_OutXonSent;
7354 
7355 	sc->stat_OutXoffSent =
7356 		stats->stat_OutXoffSent;
7357 
7358 	sc->stat_FlowControlDone =
7359 		stats->stat_FlowControlDone;
7360 
7361 	sc->stat_MacControlFramesReceived =
7362 		stats->stat_MacControlFramesReceived;
7363 
7364 	sc->stat_XoffStateEntered =
7365 		stats->stat_XoffStateEntered;
7366 
7367 	sc->stat_IfInFramesL2FilterDiscards =
7368 		stats->stat_IfInFramesL2FilterDiscards;
7369 
7370 	sc->stat_IfInRuleCheckerDiscards =
7371 		stats->stat_IfInRuleCheckerDiscards;
7372 
7373 	sc->stat_IfInFTQDiscards =
7374 		stats->stat_IfInFTQDiscards;
7375 
7376 	sc->stat_IfInMBUFDiscards =
7377 		stats->stat_IfInMBUFDiscards;
7378 
7379 	sc->stat_IfInRuleCheckerP4Hit =
7380 		stats->stat_IfInRuleCheckerP4Hit;
7381 
7382 	sc->stat_CatchupInRuleCheckerDiscards =
7383 		stats->stat_CatchupInRuleCheckerDiscards;
7384 
7385 	sc->stat_CatchupInFTQDiscards =
7386 		stats->stat_CatchupInFTQDiscards;
7387 
7388 	sc->stat_CatchupInMBUFDiscards =
7389 		stats->stat_CatchupInMBUFDiscards;
7390 
7391 	sc->stat_CatchupInRuleCheckerP4Hit =
7392 		stats->stat_CatchupInRuleCheckerP4Hit;
7393 
7394 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
7395 
7396 	/*
7397 	 * Update the interface statistics from the
7398 	 * hardware statistics.
7399 	 */
7400 	ifp->if_collisions =
7401 		(u_long) sc->stat_EtherStatsCollisions;
7402 
7403 	/* ToDo: This method loses soft errors. */
7404 	ifp->if_ierrors =
7405 		(u_long) sc->stat_EtherStatsUndersizePkts +
7406 		(u_long) sc->stat_EtherStatsOverrsizePkts +
7407 		(u_long) sc->stat_IfInMBUFDiscards +
7408 		(u_long) sc->stat_Dot3StatsAlignmentErrors +
7409 		(u_long) sc->stat_Dot3StatsFCSErrors +
7410 		(u_long) sc->stat_IfInFramesL2FilterDiscards +
7411 		(u_long) sc->stat_IfInRuleCheckerDiscards +
7412 		(u_long) sc->stat_IfInFTQDiscards +
7413 		(u_long) sc->com_no_buffers;
7414 
7415 	/* ToDo: This method loses soft errors. */
7416 	ifp->if_oerrors =
7417 		(u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
7418 		(u_long) sc->stat_Dot3StatsExcessiveCollisions +
7419 		(u_long) sc->stat_Dot3StatsLateCollisions;
7420 
7421 	/* ToDo: Add additional statistics. */
7422 
7423 	DBEXIT(BCE_EXTREME_MISC);
7424 }
7425 
7426 
7427 /****************************************************************************/
7428 /* Periodic function to notify the bootcode that the driver is still        */
7429 /* present.                                                                 */
7430 /*                                                                          */
7431 /* Returns:                                                                 */
7432 /*   Nothing.                                                               */
7433 /****************************************************************************/
7434 static void
7435 bce_pulse(void *xsc)
7436 {
7437 	struct bce_softc *sc = xsc;
7438 	u32 msg;
7439 
7440 	DBENTER(BCE_EXTREME_MISC);
7441 
7442 	BCE_LOCK_ASSERT(sc);
7443 
7444 	/* Tell the firmware that the driver is still running. */
7445 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
7446 	REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_PULSE_MB, msg);
7447 
7448 	/* Schedule the next pulse. */
7449 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
7450 
7451 	DBEXIT(BCE_EXTREME_MISC);
7452 }
7453 
7454 
7455 /****************************************************************************/
7456 /* Periodic function to perform maintenance tasks.                          */
7457 /*                                                                          */
7458 /* Returns:                                                                 */
7459 /*   Nothing.                                                               */
7460 /****************************************************************************/
7461 static void
7462 bce_tick(void *xsc)
7463 {
7464 	struct bce_softc *sc = xsc;
7465 	struct mii_data *mii;
7466 	struct ifnet *ifp;
7467 
7468 	ifp = sc->bce_ifp;
7469 
7470 	DBENTER(BCE_EXTREME_MISC);
7471 
7472 	BCE_LOCK_ASSERT(sc);
7473 
7474 	/* Schedule the next tick. */
7475 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7476 
7477 	/* Update the statistics from the hardware statistics block. */
7478 	bce_stats_update(sc);
7479 
7480 	/* Top off the receive and page chains. */
7481 #ifdef BCE_USE_SPLIT_HEADER
7482 	bce_fill_pg_chain(sc);
7483 #endif
7484 	bce_fill_rx_chain(sc);
7485 
7486 	/* Check that chip hasn't hung. */
7487 	bce_watchdog(sc);
7488 
7489 	/* If link is up already up then we're done. */
7490 	if (sc->bce_link)
7491 		goto bce_tick_exit;
7492 
7493 	/* Link is down.  Check what the PHY's doing. */
7494 	mii = device_get_softc(sc->bce_miibus);
7495 	mii_tick(mii);
7496 
7497 	/* Check if the link has come up. */
7498 	if ((mii->mii_media_status & IFM_ACTIVE) &&
7499 	    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
7500 		DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", __FUNCTION__);
7501 		sc->bce_link++;
7502 		if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
7503 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) &&
7504 		    bootverbose)
7505 			BCE_PRINTF("Gigabit link up!\n");
7506 		/* Now that link is up, handle any outstanding TX traffic. */
7507 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7508 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found pending TX traffic.\n",
7509 				 __FUNCTION__);
7510 			bce_start_locked(ifp);
7511 		}
7512 	}
7513 
7514 bce_tick_exit:
7515 	DBEXIT(BCE_EXTREME_MISC);
7516 	return;
7517 }
7518 
7519 
7520 #ifdef BCE_DEBUG
7521 /****************************************************************************/
7522 /* Allows the driver state to be dumped through the sysctl interface.       */
7523 /*                                                                          */
7524 /* Returns:                                                                 */
7525 /*   0 for success, positive value for failure.                             */
7526 /****************************************************************************/
7527 static int
7528 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
7529 {
7530         int error;
7531         int result;
7532         struct bce_softc *sc;
7533 
7534         result = -1;
7535         error = sysctl_handle_int(oidp, &result, 0, req);
7536 
7537         if (error || !req->newptr)
7538                 return (error);
7539 
7540         if (result == 1) {
7541                 sc = (struct bce_softc *)arg1;
7542                 bce_dump_driver_state(sc);
7543         }
7544 
7545         return error;
7546 }
7547 
7548 
7549 /****************************************************************************/
7550 /* Allows the hardware state to be dumped through the sysctl interface.     */
7551 /*                                                                          */
7552 /* Returns:                                                                 */
7553 /*   0 for success, positive value for failure.                             */
7554 /****************************************************************************/
7555 static int
7556 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
7557 {
7558         int error;
7559         int result;
7560         struct bce_softc *sc;
7561 
7562         result = -1;
7563         error = sysctl_handle_int(oidp, &result, 0, req);
7564 
7565         if (error || !req->newptr)
7566                 return (error);
7567 
7568         if (result == 1) {
7569                 sc = (struct bce_softc *)arg1;
7570                 bce_dump_hw_state(sc);
7571         }
7572 
7573         return error;
7574 }
7575 
7576 
7577 /****************************************************************************/
7578 /* Allows the bootcode state to be dumped through the sysctl interface.     */
7579 /*                                                                          */
7580 /* Returns:                                                                 */
7581 /*   0 for success, positive value for failure.                             */
7582 /****************************************************************************/
7583 static int
7584 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
7585 {
7586         int error;
7587         int result;
7588         struct bce_softc *sc;
7589 
7590         result = -1;
7591         error = sysctl_handle_int(oidp, &result, 0, req);
7592 
7593         if (error || !req->newptr)
7594                 return (error);
7595 
7596         if (result == 1) {
7597                 sc = (struct bce_softc *)arg1;
7598                 bce_dump_bc_state(sc);
7599         }
7600 
7601         return error;
7602 }
7603 
7604 
7605 /****************************************************************************/
7606 /* Provides a sysctl interface to allow dumping the RX chain.               */
7607 /*                                                                          */
7608 /* Returns:                                                                 */
7609 /*   0 for success, positive value for failure.                             */
7610 /****************************************************************************/
7611 static int
7612 bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS)
7613 {
7614         int error;
7615         int result;
7616         struct bce_softc *sc;
7617 
7618         result = -1;
7619         error = sysctl_handle_int(oidp, &result, 0, req);
7620 
7621         if (error || !req->newptr)
7622                 return (error);
7623 
7624         if (result == 1) {
7625                 sc = (struct bce_softc *)arg1;
7626                 bce_dump_rx_chain(sc, 0, TOTAL_RX_BD);
7627         }
7628 
7629         return error;
7630 }
7631 
7632 
7633 /****************************************************************************/
7634 /* Provides a sysctl interface to allow dumping the TX chain.               */
7635 /*                                                                          */
7636 /* Returns:                                                                 */
7637 /*   0 for success, positive value for failure.                             */
7638 /****************************************************************************/
7639 static int
7640 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
7641 {
7642         int error;
7643         int result;
7644         struct bce_softc *sc;
7645 
7646         result = -1;
7647         error = sysctl_handle_int(oidp, &result, 0, req);
7648 
7649         if (error || !req->newptr)
7650                 return (error);
7651 
7652         if (result == 1) {
7653                 sc = (struct bce_softc *)arg1;
7654                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
7655         }
7656 
7657         return error;
7658 }
7659 
7660 
7661 #ifdef BCE_USE_SPLIT_HEADER
7662 /****************************************************************************/
7663 /* Provides a sysctl interface to allow dumping the page chain.             */
7664 /*                                                                          */
7665 /* Returns:                                                                 */
7666 /*   0 for success, positive value for failure.                             */
7667 /****************************************************************************/
7668 static int
7669 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
7670 {
7671         int error;
7672         int result;
7673         struct bce_softc *sc;
7674 
7675         result = -1;
7676         error = sysctl_handle_int(oidp, &result, 0, req);
7677 
7678         if (error || !req->newptr)
7679                 return (error);
7680 
7681         if (result == 1) {
7682                 sc = (struct bce_softc *)arg1;
7683                 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD);
7684         }
7685 
7686         return error;
7687 }
7688 #endif
7689 
7690 /****************************************************************************/
7691 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
7692 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
7693 /*                                                                          */
7694 /* Returns:                                                                 */
7695 /*   0 for success, positive value for failure.                             */
7696 /****************************************************************************/
7697 static int
7698 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
7699 {
7700 	struct bce_softc *sc = (struct bce_softc *)arg1;
7701 	int error;
7702 	u32 result;
7703 	u32 val[1];
7704 	u8 *data = (u8 *) val;
7705 
7706 	result = -1;
7707 	error = sysctl_handle_int(oidp, &result, 0, req);
7708 	if (error || (req->newptr == NULL))
7709 		return (error);
7710 
7711 	bce_nvram_read(sc, result, data, 4);
7712 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
7713 
7714 	return (error);
7715 }
7716 
7717 
7718 /****************************************************************************/
7719 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
7720 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
7721 /*                                                                          */
7722 /* Returns:                                                                 */
7723 /*   0 for success, positive value for failure.                             */
7724 /****************************************************************************/
7725 static int
7726 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
7727 {
7728 	struct bce_softc *sc = (struct bce_softc *)arg1;
7729 	int error;
7730 	u32 val, result;
7731 
7732 	result = -1;
7733 	error = sysctl_handle_int(oidp, &result, 0, req);
7734 	if (error || (req->newptr == NULL))
7735 		return (error);
7736 
7737 	/* Make sure the register is accessible. */
7738 	if (result < 0x8000) {
7739 		val = REG_RD(sc, result);
7740 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
7741 	} else if (result < 0x0280000) {
7742 		val = REG_RD_IND(sc, result);
7743 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
7744 	}
7745 
7746 	return (error);
7747 }
7748 
7749 
7750 /****************************************************************************/
7751 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
7752 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
7753 /*                                                                          */
7754 /* Returns:                                                                 */
7755 /*   0 for success, positive value for failure.                             */
7756 /****************************************************************************/
7757 static int
7758 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
7759 {
7760 	struct bce_softc *sc;
7761 	device_t dev;
7762 	int error, result;
7763 	u16 val;
7764 
7765 	result = -1;
7766 	error = sysctl_handle_int(oidp, &result, 0, req);
7767 	if (error || (req->newptr == NULL))
7768 		return (error);
7769 
7770 	/* Make sure the register is accessible. */
7771 	if (result < 0x20) {
7772 		sc = (struct bce_softc *)arg1;
7773 		dev = sc->bce_dev;
7774 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
7775 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
7776 	}
7777 	return (error);
7778 }
7779 
7780 
7781 /****************************************************************************/
7782 /* Provides a sysctl interface to allow reading a CID.                      */
7783 /*                                                                          */
7784 /* Returns:                                                                 */
7785 /*   0 for success, positive value for failure.                             */
7786 /****************************************************************************/
7787 static int
7788 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
7789 {
7790 	struct bce_softc *sc;
7791 	int error;
7792 	u16 result;
7793 
7794 	result = -1;
7795 	error = sysctl_handle_int(oidp, &result, 0, req);
7796 	if (error || (req->newptr == NULL))
7797 		return (error);
7798 
7799 	/* Make sure the register is accessible. */
7800 	if (result <= TX_CID) {
7801 		sc = (struct bce_softc *)arg1;
7802 		bce_dump_ctx(sc, result);
7803 	}
7804 
7805 	return (error);
7806 }
7807 
7808 
7809  /****************************************************************************/
7810 /* Provides a sysctl interface to forcing the driver to dump state and      */
7811 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
7812 /*                                                                          */
7813 /* Returns:                                                                 */
7814 /*   0 for success, positive value for failure.                             */
7815 /****************************************************************************/
7816 static int
7817 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
7818 {
7819         int error;
7820         int result;
7821         struct bce_softc *sc;
7822 
7823         result = -1;
7824         error = sysctl_handle_int(oidp, &result, 0, req);
7825 
7826         if (error || !req->newptr)
7827                 return (error);
7828 
7829         if (result == 1) {
7830                 sc = (struct bce_softc *)arg1;
7831                 bce_breakpoint(sc);
7832         }
7833 
7834         return error;
7835 }
7836 #endif
7837 
7838 
7839 /****************************************************************************/
7840 /* Adds any sysctl parameters for tuning or debugging purposes.             */
7841 /*                                                                          */
7842 /* Returns:                                                                 */
7843 /*   0 for success, positive value for failure.                             */
7844 /****************************************************************************/
7845 static void
7846 bce_add_sysctls(struct bce_softc *sc)
7847 {
7848 	struct sysctl_ctx_list *ctx;
7849 	struct sysctl_oid_list *children;
7850 
7851 	DBENTER(BCE_VERBOSE_MISC);
7852 
7853 	ctx = device_get_sysctl_ctx(sc->bce_dev);
7854 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
7855 
7856 #ifdef BCE_DEBUG
7857 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7858 		"rx_low_watermark",
7859 		CTLFLAG_RD, &sc->rx_low_watermark,
7860 		0, "Lowest level of free rx_bd's");
7861 
7862 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7863 		"rx_empty_count",
7864 		CTLFLAG_RD, &sc->rx_empty_count,
7865 		0, "Number of times the RX chain was empty");
7866 
7867 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7868 		"tx_hi_watermark",
7869 		CTLFLAG_RD, &sc->tx_hi_watermark,
7870 		0, "Highest level of used tx_bd's");
7871 
7872 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7873 		"tx_full_count",
7874 		CTLFLAG_RD, &sc->tx_full_count,
7875 		0, "Number of times the TX chain was full");
7876 
7877 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7878 		"l2fhdr_status_errors",
7879 		CTLFLAG_RD, &sc->l2fhdr_status_errors,
7880 		0, "l2_fhdr status errors");
7881 
7882 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7883 		"unexpected_attentions",
7884 		CTLFLAG_RD, &sc->unexpected_attentions,
7885 		0, "Unexpected attentions");
7886 
7887 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7888 		"lost_status_block_updates",
7889 		CTLFLAG_RD, &sc->lost_status_block_updates,
7890 		0, "Lost status block updates");
7891 
7892 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7893 		"debug_mbuf_sim_alloc_failed",
7894 		CTLFLAG_RD, &sc->debug_mbuf_sim_alloc_failed,
7895 		0, "Simulated mbuf cluster allocation failures");
7896 
7897 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7898 		"requested_tso_frames",
7899 		CTLFLAG_RD, &sc->requested_tso_frames,
7900 		0, "Number of TSO frames received");
7901 
7902 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
7903 		"rx_interrupts",
7904 		CTLFLAG_RD, &sc->rx_interrupts,
7905 		0, "Number of RX interrupts");
7906 
7907 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
7908 		"tx_interrupts",
7909 		CTLFLAG_RD, &sc->tx_interrupts,
7910 		0, "Number of TX interrupts");
7911 
7912 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7913 		"rx_intr_time",
7914 		CTLFLAG_RD, &sc->rx_intr_time,
7915 		"RX interrupt time");
7916 
7917 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7918 		"tx_intr_time",
7919 		CTLFLAG_RD, &sc->tx_intr_time,
7920 		"TX interrupt time");
7921 #endif
7922 
7923 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7924 		"mbuf_alloc_failed",
7925 		CTLFLAG_RD, &sc->mbuf_alloc_failed,
7926 		0, "mbuf cluster allocation failures");
7927 
7928 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7929 		"tx_dma_map_failures",
7930 		CTLFLAG_RD, &sc->tx_dma_map_failures,
7931 		0, "tx dma mapping failures");
7932 
7933 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7934 		"stat_IfHcInOctets",
7935 		CTLFLAG_RD, &sc->stat_IfHCInOctets,
7936 		"Bytes received");
7937 
7938 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7939 		"stat_IfHCInBadOctets",
7940 		CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
7941 		"Bad bytes received");
7942 
7943 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7944 		"stat_IfHCOutOctets",
7945 		CTLFLAG_RD, &sc->stat_IfHCOutOctets,
7946 		"Bytes sent");
7947 
7948 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7949 		"stat_IfHCOutBadOctets",
7950 		CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
7951 		"Bad bytes sent");
7952 
7953 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7954 		"stat_IfHCInUcastPkts",
7955 		CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
7956 		"Unicast packets received");
7957 
7958 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7959 		"stat_IfHCInMulticastPkts",
7960 		CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
7961 		"Multicast packets received");
7962 
7963 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7964 		"stat_IfHCInBroadcastPkts",
7965 		CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
7966 		"Broadcast packets received");
7967 
7968 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7969 		"stat_IfHCOutUcastPkts",
7970 		CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
7971 		"Unicast packets sent");
7972 
7973 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7974 		"stat_IfHCOutMulticastPkts",
7975 		CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
7976 		"Multicast packets sent");
7977 
7978 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
7979 		"stat_IfHCOutBroadcastPkts",
7980 		CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
7981 		"Broadcast packets sent");
7982 
7983 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
7984 		"stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
7985 		CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
7986 		0, "Internal MAC transmit errors");
7987 
7988 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
7989 		"stat_Dot3StatsCarrierSenseErrors",
7990 		CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
7991 		0, "Carrier sense errors");
7992 
7993 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
7994 		"stat_Dot3StatsFCSErrors",
7995 		CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
7996 		0, "Frame check sequence errors");
7997 
7998 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
7999 		"stat_Dot3StatsAlignmentErrors",
8000 		CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
8001 		0, "Alignment errors");
8002 
8003 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8004 		"stat_Dot3StatsSingleCollisionFrames",
8005 		CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
8006 		0, "Single Collision Frames");
8007 
8008 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8009 		"stat_Dot3StatsMultipleCollisionFrames",
8010 		CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
8011 		0, "Multiple Collision Frames");
8012 
8013 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8014 		"stat_Dot3StatsDeferredTransmissions",
8015 		CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
8016 		0, "Deferred Transmissions");
8017 
8018 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8019 		"stat_Dot3StatsExcessiveCollisions",
8020 		CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
8021 		0, "Excessive Collisions");
8022 
8023 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8024 		"stat_Dot3StatsLateCollisions",
8025 		CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
8026 		0, "Late Collisions");
8027 
8028 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8029 		"stat_EtherStatsCollisions",
8030 		CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
8031 		0, "Collisions");
8032 
8033 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8034 		"stat_EtherStatsFragments",
8035 		CTLFLAG_RD, &sc->stat_EtherStatsFragments,
8036 		0, "Fragments");
8037 
8038 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8039 		"stat_EtherStatsJabbers",
8040 		CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
8041 		0, "Jabbers");
8042 
8043 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8044 		"stat_EtherStatsUndersizePkts",
8045 		CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
8046 		0, "Undersize packets");
8047 
8048 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8049 		"stat_EtherStatsOverrsizePkts",
8050 		CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts,
8051 		0, "stat_EtherStatsOverrsizePkts");
8052 
8053 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8054 		"stat_EtherStatsPktsRx64Octets",
8055 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
8056 		0, "Bytes received in 64 byte packets");
8057 
8058 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8059 		"stat_EtherStatsPktsRx65Octetsto127Octets",
8060 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
8061 		0, "Bytes received in 65 to 127 byte packets");
8062 
8063 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8064 		"stat_EtherStatsPktsRx128Octetsto255Octets",
8065 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
8066 		0, "Bytes received in 128 to 255 byte packets");
8067 
8068 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8069 		"stat_EtherStatsPktsRx256Octetsto511Octets",
8070 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
8071 		0, "Bytes received in 256 to 511 byte packets");
8072 
8073 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8074 		"stat_EtherStatsPktsRx512Octetsto1023Octets",
8075 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
8076 		0, "Bytes received in 512 to 1023 byte packets");
8077 
8078 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8079 		"stat_EtherStatsPktsRx1024Octetsto1522Octets",
8080 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
8081 		0, "Bytes received in 1024 t0 1522 byte packets");
8082 
8083 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8084 		"stat_EtherStatsPktsRx1523Octetsto9022Octets",
8085 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
8086 		0, "Bytes received in 1523 to 9022 byte packets");
8087 
8088 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8089 		"stat_EtherStatsPktsTx64Octets",
8090 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
8091 		0, "Bytes sent in 64 byte packets");
8092 
8093 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8094 		"stat_EtherStatsPktsTx65Octetsto127Octets",
8095 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
8096 		0, "Bytes sent in 65 to 127 byte packets");
8097 
8098 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8099 		"stat_EtherStatsPktsTx128Octetsto255Octets",
8100 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
8101 		0, "Bytes sent in 128 to 255 byte packets");
8102 
8103 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8104 		"stat_EtherStatsPktsTx256Octetsto511Octets",
8105 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
8106 		0, "Bytes sent in 256 to 511 byte packets");
8107 
8108 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8109 		"stat_EtherStatsPktsTx512Octetsto1023Octets",
8110 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
8111 		0, "Bytes sent in 512 to 1023 byte packets");
8112 
8113 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8114 		"stat_EtherStatsPktsTx1024Octetsto1522Octets",
8115 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
8116 		0, "Bytes sent in 1024 to 1522 byte packets");
8117 
8118 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8119 		"stat_EtherStatsPktsTx1523Octetsto9022Octets",
8120 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
8121 		0, "Bytes sent in 1523 to 9022 byte packets");
8122 
8123 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8124 		"stat_XonPauseFramesReceived",
8125 		CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
8126 		0, "XON pause frames receved");
8127 
8128 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8129 		"stat_XoffPauseFramesReceived",
8130 		CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
8131 		0, "XOFF pause frames received");
8132 
8133 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8134 		"stat_OutXonSent",
8135 		CTLFLAG_RD, &sc->stat_OutXonSent,
8136 		0, "XON pause frames sent");
8137 
8138 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8139 		"stat_OutXoffSent",
8140 		CTLFLAG_RD, &sc->stat_OutXoffSent,
8141 		0, "XOFF pause frames sent");
8142 
8143 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8144 		"stat_FlowControlDone",
8145 		CTLFLAG_RD, &sc->stat_FlowControlDone,
8146 		0, "Flow control done");
8147 
8148 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8149 		"stat_MacControlFramesReceived",
8150 		CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
8151 		0, "MAC control frames received");
8152 
8153 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8154 		"stat_XoffStateEntered",
8155 		CTLFLAG_RD, &sc->stat_XoffStateEntered,
8156 		0, "XOFF state entered");
8157 
8158 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8159 		"stat_IfInFramesL2FilterDiscards",
8160 		CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
8161 		0, "Received L2 packets discarded");
8162 
8163 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8164 		"stat_IfInRuleCheckerDiscards",
8165 		CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
8166 		0, "Received packets discarded by rule");
8167 
8168 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8169 		"stat_IfInFTQDiscards",
8170 		CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
8171 		0, "Received packet FTQ discards");
8172 
8173 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8174 		"stat_IfInMBUFDiscards",
8175 		CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
8176 		0, "Received packets discarded due to lack of controller buffer memory");
8177 
8178 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8179 		"stat_IfInRuleCheckerP4Hit",
8180 		CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
8181 		0, "Received packets rule checker hits");
8182 
8183 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8184 		"stat_CatchupInRuleCheckerDiscards",
8185 		CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
8186 		0, "Received packets discarded in Catchup path");
8187 
8188 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8189 		"stat_CatchupInFTQDiscards",
8190 		CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
8191 		0, "Received packets discarded in FTQ in Catchup path");
8192 
8193 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8194 		"stat_CatchupInMBUFDiscards",
8195 		CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
8196 		0, "Received packets discarded in controller buffer memory in Catchup path");
8197 
8198 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8199 		"stat_CatchupInRuleCheckerP4Hit",
8200 		CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
8201 		0, "Received packets rule checker hits in Catchup path");
8202 
8203 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8204 		"com_no_buffers",
8205 		CTLFLAG_RD, &sc->com_no_buffers,
8206 		0, "Valid packets received but no RX buffers available");
8207 
8208 #ifdef BCE_DEBUG
8209 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8210 		"driver_state", CTLTYPE_INT | CTLFLAG_RW,
8211 		(void *)sc, 0,
8212 		bce_sysctl_driver_state, "I", "Drive state information");
8213 
8214 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8215 		"hw_state", CTLTYPE_INT | CTLFLAG_RW,
8216 		(void *)sc, 0,
8217 		bce_sysctl_hw_state, "I", "Hardware state information");
8218 
8219 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8220 		"bc_state", CTLTYPE_INT | CTLFLAG_RW,
8221 		(void *)sc, 0,
8222 		bce_sysctl_bc_state, "I", "Bootcode state information");
8223 
8224 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8225 		"dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW,
8226 		(void *)sc, 0,
8227 		bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain");
8228 
8229 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8230 		"dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
8231 		(void *)sc, 0,
8232 		bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
8233 
8234 #ifdef BCE_USE_SPLIT_HEADER
8235 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8236 		"dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
8237 		(void *)sc, 0,
8238 		bce_sysctl_dump_pg_chain, "I", "Dump page chain");
8239 #endif
8240 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8241 		"dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
8242 		(void *)sc, 0,
8243 		bce_sysctl_dump_ctx, "I", "Dump context memory");
8244 
8245 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8246 		"breakpoint", CTLTYPE_INT | CTLFLAG_RW,
8247 		(void *)sc, 0,
8248 		bce_sysctl_breakpoint, "I", "Driver breakpoint");
8249 
8250 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8251 		"reg_read", CTLTYPE_INT | CTLFLAG_RW,
8252 		(void *)sc, 0,
8253 		bce_sysctl_reg_read, "I", "Register read");
8254 
8255 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8256 		"nvram_read", CTLTYPE_INT | CTLFLAG_RW,
8257 		(void *)sc, 0,
8258 		bce_sysctl_nvram_read, "I", "NVRAM read");
8259 
8260 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8261 		"phy_read", CTLTYPE_INT | CTLFLAG_RW,
8262 		(void *)sc, 0,
8263 		bce_sysctl_phy_read, "I", "PHY register read");
8264 
8265 #endif
8266 
8267 	DBEXIT(BCE_VERBOSE_MISC);
8268 }
8269 
8270 
8271 /****************************************************************************/
8272 /* BCE Debug Routines                                                       */
8273 /****************************************************************************/
8274 #ifdef BCE_DEBUG
8275 
8276 /****************************************************************************/
8277 /* Freezes the controller to allow for a cohesive state dump.               */
8278 /*                                                                          */
8279 /* Returns:                                                                 */
8280 /*   Nothing.                                                               */
8281 /****************************************************************************/
8282 static void
8283 bce_freeze_controller(struct bce_softc *sc)
8284 {
8285 	u32 val;
8286 	val = REG_RD(sc, BCE_MISC_COMMAND);
8287 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
8288 	REG_WR(sc, BCE_MISC_COMMAND, val);
8289 }
8290 
8291 
8292 /****************************************************************************/
8293 /* Unfreezes the controller after a freeze operation.  This may not always  */
8294 /* work and the controller will require a reset!                            */
8295 /*                                                                          */
8296 /* Returns:                                                                 */
8297 /*   Nothing.                                                               */
8298 /****************************************************************************/
8299 static void
8300 bce_unfreeze_controller(struct bce_softc *sc)
8301 {
8302 	u32 val;
8303 	val = REG_RD(sc, BCE_MISC_COMMAND);
8304 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
8305 	REG_WR(sc, BCE_MISC_COMMAND, val);
8306 }
8307 
8308 
8309 /****************************************************************************/
8310 /* Prints out Ethernet frame information from an mbuf.                      */
8311 /*                                                                          */
8312 /* Partially decode an Ethernet frame to look at some important headers.    */
8313 /*                                                                          */
8314 /* Returns:                                                                 */
8315 /*   Nothing.                                                               */
8316 /****************************************************************************/
8317 static void
8318 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
8319 {
8320 	struct ether_vlan_header *eh;
8321 	u16 etype;
8322 	int ehlen;
8323 	struct ip *ip;
8324 	struct tcphdr *th;
8325 	struct udphdr *uh;
8326 	struct arphdr *ah;
8327 
8328 		BCE_PRINTF(
8329 			"-----------------------------"
8330 			" Frame Decode "
8331 			"-----------------------------\n");
8332 
8333 	eh = mtod(m, struct ether_vlan_header *);
8334 
8335 	/* Handle VLAN encapsulation if present. */
8336 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
8337 		etype = ntohs(eh->evl_proto);
8338 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
8339 	} else {
8340 		etype = ntohs(eh->evl_encap_proto);
8341 		ehlen = ETHER_HDR_LEN;
8342 	}
8343 
8344 	/* ToDo: Add VLAN output. */
8345 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
8346 		eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
8347 
8348 	switch (etype) {
8349 		case ETHERTYPE_IP:
8350 			ip = (struct ip *)(m->m_data + ehlen);
8351 			BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, len = %d bytes, "
8352 				"protocol = 0x%02X, xsum = 0x%04X\n",
8353 				ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
8354 				ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
8355 
8356 			switch (ip->ip_p) {
8357 				case IPPROTO_TCP:
8358 					th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
8359 					BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = %d bytes, "
8360 						"flags = 0x%b, csum = 0x%04X\n",
8361 						ntohs(th->th_dport), ntohs(th->th_sport), (th->th_off << 2),
8362 						th->th_flags, "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST\02SYN\01FIN",
8363 						ntohs(th->th_sum));
8364 					break;
8365 				case IPPROTO_UDP:
8366         		    uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
8367 					BCE_PRINTF("-udp: dest = %d, src = %d, len = %d bytes, "
8368 						"csum = 0x%04X\n", ntohs(uh->uh_dport), ntohs(uh->uh_sport),
8369 						ntohs(uh->uh_ulen), ntohs(uh->uh_sum));
8370 					break;
8371 				case IPPROTO_ICMP:
8372 					BCE_PRINTF("icmp:\n");
8373 					break;
8374 				default:
8375 					BCE_PRINTF("----: Other IP protocol.\n");
8376 			}
8377 			break;
8378 		case ETHERTYPE_IPV6:
8379 			BCE_PRINTF("ipv6: No decode supported.\n");
8380 			break;
8381 		case ETHERTYPE_ARP:
8382 			BCE_PRINTF("-arp: ");
8383 			ah = (struct arphdr *) (m->m_data + ehlen);
8384 			switch (ntohs(ah->ar_op)) {
8385 				case ARPOP_REVREQUEST:
8386 					printf("reverse ARP request\n");
8387 					break;
8388 				case ARPOP_REVREPLY:
8389 					printf("reverse ARP reply\n");
8390 					break;
8391 				case ARPOP_REQUEST:
8392 					printf("ARP request\n");
8393 					break;
8394 				case ARPOP_REPLY:
8395 					printf("ARP reply\n");
8396 					break;
8397 				default:
8398 					printf("other ARP operation\n");
8399 			}
8400 			break;
8401 		default:
8402 			BCE_PRINTF("----: Other protocol.\n");
8403 	}
8404 
8405 	BCE_PRINTF(
8406 		"-----------------------------"
8407 		"--------------"
8408 		"-----------------------------\n");
8409 }
8410 
8411 
8412 /****************************************************************************/
8413 /* Prints out information about an mbuf.                                    */
8414 /*                                                                          */
8415 /* Returns:                                                                 */
8416 /*   Nothing.                                                               */
8417 /****************************************************************************/
8418 static __attribute__ ((noinline)) void
8419 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
8420 {
8421 	struct mbuf *mp = m;
8422 
8423 	if (m == NULL) {
8424 		BCE_PRINTF("mbuf: null pointer\n");
8425 		return;
8426 	}
8427 
8428 	while (mp) {
8429 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, m_data = %p\n",
8430 			mp, mp->m_len, mp->m_flags,
8431 			"\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY",
8432 			mp->m_data);
8433 
8434 		if (mp->m_flags & M_PKTHDR) {
8435 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, csum_flags = %b\n",
8436 				mp->m_pkthdr.len, mp->m_flags,
8437 				"\20\12M_BCAST\13M_MCAST\14M_FRAG\15M_FIRSTFRAG"
8438 				"\16M_LASTFRAG\21M_VLANTAG\22M_PROMISC\23M_NOFREE",
8439 				mp->m_pkthdr.csum_flags,
8440 				"\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
8441 				"\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
8442 				"\12CSUM_IP_VALID\13CSUM_DATA_VALID\14CSUM_PSEUDO_HDR");
8443 		}
8444 
8445 		if (mp->m_flags & M_EXT) {
8446 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
8447 				mp->m_ext.ext_buf, mp->m_ext.ext_size);
8448 			switch (mp->m_ext.ext_type) {
8449 				case EXT_CLUSTER:    printf("EXT_CLUSTER\n"); break;
8450 				case EXT_SFBUF:      printf("EXT_SFBUF\n"); break;
8451 				case EXT_JUMBO9:     printf("EXT_JUMBO9\n"); break;
8452 				case EXT_JUMBO16:    printf("EXT_JUMBO16\n"); break;
8453 				case EXT_PACKET:     printf("EXT_PACKET\n"); break;
8454 				case EXT_MBUF:       printf("EXT_MBUF\n"); break;
8455 				case EXT_NET_DRV:    printf("EXT_NET_DRV\n"); break;
8456 				case EXT_MOD_TYPE:   printf("EXT_MDD_TYPE\n"); break;
8457 				case EXT_DISPOSABLE: printf("EXT_DISPOSABLE\n"); break;
8458 				case EXT_EXTREF:     printf("EXT_EXTREF\n"); break;
8459 				default:             printf("UNKNOWN\n");
8460 			}
8461 		}
8462 
8463 		mp = mp->m_next;
8464 	}
8465 }
8466 
8467 
8468 /****************************************************************************/
8469 /* Prints out the mbufs in the TX mbuf chain.                               */
8470 /*                                                                          */
8471 /* Returns:                                                                 */
8472 /*   Nothing.                                                               */
8473 /****************************************************************************/
8474 static __attribute__ ((noinline)) void
8475 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
8476 {
8477 	struct mbuf *m;
8478 
8479 	BCE_PRINTF(
8480 		"----------------------------"
8481 		"  tx mbuf data  "
8482 		"----------------------------\n");
8483 
8484 	for (int i = 0; i < count; i++) {
8485 	 	m = sc->tx_mbuf_ptr[chain_prod];
8486 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
8487 		bce_dump_mbuf(sc, m);
8488 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
8489 	}
8490 
8491 	BCE_PRINTF(
8492 		"----------------------------"
8493 		"----------------"
8494 		"----------------------------\n");
8495 }
8496 
8497 
8498 /****************************************************************************/
8499 /* Prints out the mbufs in the RX mbuf chain.                               */
8500 /*                                                                          */
8501 /* Returns:                                                                 */
8502 /*   Nothing.                                                               */
8503 /****************************************************************************/
8504 static __attribute__ ((noinline)) void
8505 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
8506 {
8507 	struct mbuf *m;
8508 
8509 	BCE_PRINTF(
8510 		"----------------------------"
8511 		"  rx mbuf data  "
8512 		"----------------------------\n");
8513 
8514 	for (int i = 0; i < count; i++) {
8515 	 	m = sc->rx_mbuf_ptr[chain_prod];
8516 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
8517 		bce_dump_mbuf(sc, m);
8518 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
8519 	}
8520 
8521 
8522 	BCE_PRINTF(
8523 		"----------------------------"
8524 		"----------------"
8525 		"----------------------------\n");
8526 }
8527 
8528 
8529 #ifdef BCE_USE_SPLIT_HEADER
8530 /****************************************************************************/
8531 /* Prints out the mbufs in the mbuf page chain.                             */
8532 /*                                                                          */
8533 /* Returns:                                                                 */
8534 /*   Nothing.                                                               */
8535 /****************************************************************************/
8536 static __attribute__ ((noinline)) void
8537 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
8538 {
8539 	struct mbuf *m;
8540 
8541 	BCE_PRINTF(
8542 		"----------------------------"
8543 		"  pg mbuf data  "
8544 		"----------------------------\n");
8545 
8546 	for (int i = 0; i < count; i++) {
8547 	 	m = sc->pg_mbuf_ptr[chain_prod];
8548 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
8549 		bce_dump_mbuf(sc, m);
8550 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
8551 	}
8552 
8553 
8554 	BCE_PRINTF(
8555 		"----------------------------"
8556 		"----------------"
8557 		"----------------------------\n");
8558 }
8559 #endif
8560 
8561 
8562 /****************************************************************************/
8563 /* Prints out a tx_bd structure.                                            */
8564 /*                                                                          */
8565 /* Returns:                                                                 */
8566 /*   Nothing.                                                               */
8567 /****************************************************************************/
8568 static __attribute__ ((noinline)) void
8569 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
8570 {
8571 	if (idx > MAX_TX_BD)
8572 		/* Index out of range. */
8573 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
8574 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
8575 		/* TX Chain page pointer. */
8576 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
8577 			idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo);
8578 	else {
8579 			/* Normal tx_bd entry. */
8580 			BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
8581 				"vlan tag= 0x%04X, flags = 0x%04X (", idx,
8582 				txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
8583 				txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
8584 				txbd->tx_bd_flags);
8585 
8586 			if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT)
8587 				printf(" CONN_FAULT");
8588 
8589 			if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM)
8590 				printf(" TCP_UDP_CKSUM");
8591 
8592 			if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM)
8593 				printf(" IP_CKSUM");
8594 
8595 			if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG)
8596 				printf("  VLAN");
8597 
8598 			if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW)
8599 				printf(" COAL_NOW");
8600 
8601 			if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC)
8602 				printf(" DONT_GEN_CRC");
8603 
8604 			if (txbd->tx_bd_flags & TX_BD_FLAGS_START)
8605 				printf(" START");
8606 
8607 			if (txbd->tx_bd_flags & TX_BD_FLAGS_END)
8608 				printf(" END");
8609 
8610 			if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO)
8611 				printf(" LSO");
8612 
8613 			if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD)
8614 				printf(" OPTION_WORD");
8615 
8616 			if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS)
8617 				printf(" FLAGS");
8618 
8619 			if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP)
8620 				printf(" SNAP");
8621 
8622 			printf(" )\n");
8623 		}
8624 
8625 }
8626 
8627 
8628 /****************************************************************************/
8629 /* Prints out a rx_bd structure.                                            */
8630 /*                                                                          */
8631 /* Returns:                                                                 */
8632 /*   Nothing.                                                               */
8633 /****************************************************************************/
8634 static __attribute__ ((noinline)) void
8635 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
8636 {
8637 	if (idx > MAX_RX_BD)
8638 		/* Index out of range. */
8639 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
8640 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
8641 		/* RX Chain page pointer. */
8642 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
8643 			idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo);
8644 	else
8645 		/* Normal rx_bd entry. */
8646 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
8647 			"flags = 0x%08X\n", idx,
8648 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
8649 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
8650 }
8651 
8652 
8653 #ifdef BCE_USE_SPLIT_HEADER
8654 /****************************************************************************/
8655 /* Prints out a rx_bd structure in the page chain.                          */
8656 /*                                                                          */
8657 /* Returns:                                                                 */
8658 /*   Nothing.                                                               */
8659 /****************************************************************************/
8660 static __attribute__ ((noinline)) void
8661 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
8662 {
8663 	if (idx > MAX_PG_BD)
8664 		/* Index out of range. */
8665 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
8666 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
8667 		/* Page Chain page pointer. */
8668 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
8669 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
8670 	else
8671 		/* Normal rx_bd entry. */
8672 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
8673 			"flags = 0x%08X\n", idx,
8674 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
8675 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
8676 }
8677 #endif
8678 
8679 
8680 /****************************************************************************/
8681 /* Prints out a l2_fhdr structure.                                          */
8682 /*                                                                          */
8683 /* Returns:                                                                 */
8684 /*   Nothing.                                                               */
8685 /****************************************************************************/
8686 static __attribute__ ((noinline)) void
8687 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
8688 {
8689 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
8690 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
8691 		"tcp_udp_xsum = 0x%04X\n", idx,
8692 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
8693 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
8694 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
8695 }
8696 
8697 
8698 /****************************************************************************/
8699 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
8700 /*                                                                          */
8701 /* Returns:                                                                 */
8702 /*   Nothing.                                                               */
8703 /****************************************************************************/
8704 static __attribute__ ((noinline)) void
8705 bce_dump_ctx(struct bce_softc *sc, u16 cid)
8706 {
8707 	if (cid <= TX_CID) {
8708 		BCE_PRINTF(
8709 			"----------------------------"
8710 			"    CTX Data    "
8711 			"----------------------------\n");
8712 
8713 		BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
8714 
8715 		if (cid == RX_CID) {
8716 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
8717 				"producer index\n",
8718 				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
8719 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host byte sequence\n",
8720 				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BSEQ));
8721 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
8722 				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
8723 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
8724 				"descriptor address\n",
8725  				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
8726 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
8727 				"descriptor address\n",
8728 				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
8729 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer index\n",
8730 				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDIDX));
8731 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
8732 				"producer index\n",
8733 				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_PG_BDIDX));
8734 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
8735 				"buffer size\n",
8736 				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_PG_BUF_SIZE));
8737 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
8738 				"chain address\n",
8739 				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
8740 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
8741 				"chain address\n",
8742 				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
8743 			BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
8744 				"consumer index\n",
8745 				CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDIDX));
8746 		} else if (cid == TX_CID) {
8747 			if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
8748 				(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
8749 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
8750 					CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE_XI));
8751 				BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx cmd\n",
8752 					CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE_XI));
8753 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) h/w buffer "
8754 					"descriptor address\n",	CTX_RD(sc,
8755 					GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
8756 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) h/w buffer "
8757 					"descriptor address\n", CTX_RD(sc,
8758 					GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
8759 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) host producer "
8760 					"index\n", CTX_RD(sc, GET_CID_ADDR(cid),
8761 					BCE_L2CTX_TX_HOST_BIDX_XI));
8762 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) host byte "
8763 					"sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
8764 					BCE_L2CTX_TX_HOST_BSEQ_XI));
8765 			} else {
8766 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
8767 					CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
8768 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
8769 					CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE));
8770 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) h/w buffer "
8771 					"descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid),
8772 					BCE_L2CTX_TX_TBDR_BHADDR_HI));
8773 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) h/w buffer "
8774 					"descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid),
8775 					BCE_L2CTX_TX_TBDR_BHADDR_LO));
8776 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host producer "
8777 					"index\n", CTX_RD(sc, GET_CID_ADDR(cid),
8778 					BCE_L2CTX_TX_HOST_BIDX));
8779 				BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
8780 					"sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
8781 					BCE_L2CTX_TX_HOST_BSEQ));
8782 			}
8783 		} else
8784 			BCE_PRINTF(" Unknown CID\n");
8785 
8786 		BCE_PRINTF(
8787 			"----------------------------"
8788 			"    Raw CTX     "
8789 			"----------------------------\n");
8790 
8791 		for (int i = 0x0; i < 0x300; i += 0x10) {
8792 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
8793 				CTX_RD(sc, GET_CID_ADDR(cid), i),
8794 				CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
8795 				CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
8796 				CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
8797 		}
8798 
8799 
8800 		BCE_PRINTF(
8801 			"----------------------------"
8802 			"----------------"
8803 			"----------------------------\n");
8804 	}
8805 }
8806 
8807 
8808 /****************************************************************************/
8809 /* Prints out the FTQ data.                                                 */
8810 /*                                                                          */
8811 /* Returns:                                                                */
8812 /*   Nothing.                                                               */
8813 /****************************************************************************/
8814 static __attribute__ ((noinline)) void
8815 bce_dump_ftqs(struct bce_softc *sc)
8816 {
8817 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
8818 
8819 	BCE_PRINTF(
8820 		"----------------------------"
8821 		"    FTQ Data    "
8822 		"----------------------------\n");
8823 
8824 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  Max_Depth  Valid_Cnt \n");
8825 	BCE_PRINTF(" ------- ---------- ---------- ---------- ---------- ----------\n");
8826 
8827 	/* Setup the generic statistic counters for the FTQ valid count. */
8828 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
8829 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
8830 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
8831 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
8832 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
8833 
8834 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
8835 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
8836 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
8837 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
8838 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
8839 
8840 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
8841 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
8842 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
8843 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
8844 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
8845 
8846 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
8847 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
8848 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
8849 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
8850 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
8851 
8852 	/* Input queue to the Receive Lookup state machine */
8853 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
8854 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
8855 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
8856 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
8857 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
8858 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8859 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8860 
8861 	/* Input queue to the Receive Processor */
8862 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
8863 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
8864 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
8865 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
8866 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
8867 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8868 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8869 
8870 	/* Input queue to the Recevie Processor */
8871 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
8872 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
8873 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
8874 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
8875 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
8876 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8877 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8878 
8879 	/* Input queue to the Receive Virtual to Physical state machine */
8880 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
8881 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
8882 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
8883 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
8884 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
8885 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8886 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8887 
8888 	/* Input queue to the Recevie Virtual to Physical state machine */
8889 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
8890 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
8891 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
8892 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
8893 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
8894 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8895 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8896 
8897 	/* Input queue to the Receive Virtual to Physical state machine */
8898 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
8899 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
8900 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
8901 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
8902 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
8903 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8904 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8905 
8906 	/* Input queue to the Receive DMA state machine */
8907 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
8908 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
8909 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
8910 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
8911 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
8912 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8913 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8914 
8915 	/* Input queue to the Transmit Scheduler state machine */
8916 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
8917 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
8918 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
8919 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
8920 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
8921 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8922 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8923 
8924 	/* Input queue to the Transmit Buffer Descriptor state machine */
8925 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
8926 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
8927 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
8928 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
8929 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
8930 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8931 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8932 
8933 	/* Input queue to the Transmit Processor */
8934 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
8935 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
8936 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
8937 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
8938 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
8939 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8940 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8941 
8942 	/* Input queue to the Transmit DMA state machine */
8943 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
8944 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
8945 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
8946 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
8947 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
8948 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8949 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8950 
8951 	/* Input queue to the Transmit Patch-Up Processor */
8952 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
8953 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
8954 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
8955 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
8956 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
8957 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8958 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8959 
8960 	/* Input queue to the Transmit Assembler state machine */
8961 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
8962 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
8963 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
8964 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
8965 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
8966 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8967 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8968 
8969 	/* Input queue to the Completion Processor */
8970 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
8971 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
8972 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
8973 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
8974 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
8975 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8976 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8977 
8978 	/* Input queue to the Completion Processor */
8979 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
8980 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
8981 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
8982 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
8983 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
8984 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8985 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8986 
8987 	/* Input queue to the Completion Processor */
8988 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
8989 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
8990 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
8991 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
8992 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
8993 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
8994 		cmd, ctl, cur_depth, max_depth, valid_cnt);
8995 
8996 	/* Setup the generic statistic counters for the FTQ valid count. */
8997 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
8998 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
8999 		(BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
9000 
9001 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)	||
9002 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
9003 		val = val | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 24);
9004 		REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9005 
9006 	/* Input queue to the Management Control Processor */
9007 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
9008 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
9009 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9010 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9011 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9012 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9013 		cmd, ctl, cur_depth, max_depth, valid_cnt);
9014 
9015 	/* Input queue to the Command Processor */
9016 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
9017 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
9018 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9019 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9020 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9021 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9022 		cmd, ctl, cur_depth, max_depth, valid_cnt);
9023 
9024 	/* Input queue to the Completion Scheduler state machine */
9025 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
9026 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
9027 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
9028 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
9029 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9030 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9031 		cmd, ctl, cur_depth, max_depth, valid_cnt);
9032 
9033 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9034 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9035 		/* Input queue to the Receive Virtual to Physical Command Scheduler */
9036 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
9037 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
9038 		cur_depth = (ctl & 0xFFC00000) >> 22;
9039 		max_depth = (ctl & 0x003FF000) >> 12;
9040 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9041 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9042 			cmd, ctl, cur_depth, max_depth, valid_cnt);
9043 	}
9044 
9045 	BCE_PRINTF(
9046 		"----------------------------"
9047 		"----------------"
9048 		"----------------------------\n");
9049 }
9050 
9051 
9052 /****************************************************************************/
9053 /* Prints out the TX chain.                                                 */
9054 /*                                                                          */
9055 /* Returns:                                                                 */
9056 /*   Nothing.                                                               */
9057 /****************************************************************************/
9058 static __attribute__ ((noinline)) void
9059 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
9060 {
9061 	struct tx_bd *txbd;
9062 
9063 	/* First some info about the tx_bd chain structure. */
9064 	BCE_PRINTF(
9065 		"----------------------------"
9066 		"  tx_bd  chain  "
9067 		"----------------------------\n");
9068 
9069 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
9070 		(u32) BCM_PAGE_SIZE, (u32) TX_PAGES);
9071 
9072 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
9073 		(u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
9074 
9075 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD);
9076 
9077 	BCE_PRINTF(
9078 		"----------------------------"
9079 		"   tx_bd data   "
9080 		"----------------------------\n");
9081 
9082 	/* Now print out the tx_bd's themselves. */
9083 	for (int i = 0; i < count; i++) {
9084 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
9085 		bce_dump_txbd(sc, tx_prod, txbd);
9086 		tx_prod = NEXT_TX_BD(tx_prod);
9087 	}
9088 
9089 	BCE_PRINTF(
9090 		"----------------------------"
9091 		"----------------"
9092 		"----------------------------\n");
9093 }
9094 
9095 
9096 /****************************************************************************/
9097 /* Prints out the RX chain.                                                 */
9098 /*                                                                          */
9099 /* Returns:                                                                 */
9100 /*   Nothing.                                                               */
9101 /****************************************************************************/
9102 static __attribute__ ((noinline)) void
9103 bce_dump_rx_chain(struct bce_softc *sc, u16 rx_prod, int count)
9104 {
9105 	struct rx_bd *rxbd;
9106 
9107 	/* First some info about the rx_bd chain structure. */
9108 	BCE_PRINTF(
9109 		"----------------------------"
9110 		"  rx_bd  chain  "
9111 		"----------------------------\n");
9112 
9113 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
9114 		(u32) BCM_PAGE_SIZE, (u32) RX_PAGES);
9115 
9116 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9117 		(u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
9118 
9119 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD);
9120 
9121 	BCE_PRINTF(
9122 		"----------------------------"
9123 		"   rx_bd data   "
9124 		"----------------------------\n");
9125 
9126 	/* Now print out the rx_bd's themselves. */
9127 	for (int i = 0; i < count; i++) {
9128 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
9129 		bce_dump_rxbd(sc, rx_prod, rxbd);
9130 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
9131 	}
9132 
9133 	BCE_PRINTF(
9134 		"----------------------------"
9135 		"----------------"
9136 		"----------------------------\n");
9137 }
9138 
9139 
9140 #ifdef BCE_USE_SPLIT_HEADER
9141 /****************************************************************************/
9142 /* Prints out the page chain.                                               */
9143 /*                                                                          */
9144 /* Returns:                                                                 */
9145 /*   Nothing.                                                               */
9146 /****************************************************************************/
9147 static __attribute__ ((noinline)) void
9148 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
9149 {
9150 	struct rx_bd *pgbd;
9151 
9152 	/* First some info about the page chain structure. */
9153 	BCE_PRINTF(
9154 		"----------------------------"
9155 		"   page chain   "
9156 		"----------------------------\n");
9157 
9158 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
9159 		(u32) BCM_PAGE_SIZE, (u32) PG_PAGES);
9160 
9161 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9162 		(u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
9163 
9164 	BCE_PRINTF("total rx_bd    = 0x%08X, max_pg_bd             = 0x%08X\n",
9165 		(u32) TOTAL_PG_BD, (u32) MAX_PG_BD);
9166 
9167 	BCE_PRINTF(
9168 		"----------------------------"
9169 		"   page data    "
9170 		"----------------------------\n");
9171 
9172 	/* Now print out the rx_bd's themselves. */
9173 	for (int i = 0; i < count; i++) {
9174 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
9175 		bce_dump_pgbd(sc, pg_prod, pgbd);
9176 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
9177 	}
9178 
9179 	BCE_PRINTF(
9180 		"----------------------------"
9181 		"----------------"
9182 		"----------------------------\n");
9183 }
9184 #endif
9185 
9186 
9187 /****************************************************************************/
9188 /* Prints out the status block from host memory.                            */
9189 /*                                                                          */
9190 /* Returns:                                                                 */
9191 /*   Nothing.                                                               */
9192 /****************************************************************************/
9193 static __attribute__ ((noinline)) void
9194 bce_dump_status_block(struct bce_softc *sc)
9195 {
9196 	struct status_block *sblk;
9197 
9198 	sblk = sc->status_block;
9199 
9200    	BCE_PRINTF(
9201 		"----------------------------"
9202 		"  Status Block  "
9203 		"----------------------------\n");
9204 
9205 	BCE_PRINTF("    0x%08X - attn_bits\n",
9206 		sblk->status_attn_bits);
9207 
9208 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
9209 		sblk->status_attn_bits_ack);
9210 
9211 	BCE_PRINTF("0x%04X(0x%04X) - rx_cons0\n",
9212 		sblk->status_rx_quick_consumer_index0,
9213 		(u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index0));
9214 
9215 	BCE_PRINTF("0x%04X(0x%04X) - tx_cons0\n",
9216 		sblk->status_tx_quick_consumer_index0,
9217 		(u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index0));
9218 
9219 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
9220 
9221 	/* Theses indices are not used for normal L2 drivers. */
9222 	if (sblk->status_rx_quick_consumer_index1)
9223 		BCE_PRINTF("0x%04X(0x%04X) - rx_cons1\n",
9224 			sblk->status_rx_quick_consumer_index1,
9225 			(u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index1));
9226 
9227 	if (sblk->status_tx_quick_consumer_index1)
9228 		BCE_PRINTF("0x%04X(0x%04X) - tx_cons1\n",
9229 			sblk->status_tx_quick_consumer_index1,
9230 			(u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index1));
9231 
9232 	if (sblk->status_rx_quick_consumer_index2)
9233 		BCE_PRINTF("0x%04X(0x%04X)- rx_cons2\n",
9234 			sblk->status_rx_quick_consumer_index2,
9235 			(u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index2));
9236 
9237 	if (sblk->status_tx_quick_consumer_index2)
9238 		BCE_PRINTF("0x%04X(0x%04X) - tx_cons2\n",
9239 			sblk->status_tx_quick_consumer_index2,
9240 			(u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index2));
9241 
9242 	if (sblk->status_rx_quick_consumer_index3)
9243 		BCE_PRINTF("0x%04X(0x%04X) - rx_cons3\n",
9244 			sblk->status_rx_quick_consumer_index3,
9245 			(u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index3));
9246 
9247 	if (sblk->status_tx_quick_consumer_index3)
9248 		BCE_PRINTF("0x%04X(0x%04X) - tx_cons3\n",
9249 			sblk->status_tx_quick_consumer_index3,
9250 			(u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index3));
9251 
9252 	if (sblk->status_rx_quick_consumer_index4 ||
9253 		sblk->status_rx_quick_consumer_index5)
9254 		BCE_PRINTF("rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
9255 			sblk->status_rx_quick_consumer_index4,
9256 			sblk->status_rx_quick_consumer_index5);
9257 
9258 	if (sblk->status_rx_quick_consumer_index6 ||
9259 		sblk->status_rx_quick_consumer_index7)
9260 		BCE_PRINTF("rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
9261 			sblk->status_rx_quick_consumer_index6,
9262 			sblk->status_rx_quick_consumer_index7);
9263 
9264 	if (sblk->status_rx_quick_consumer_index8 ||
9265 		sblk->status_rx_quick_consumer_index9)
9266 		BCE_PRINTF("rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
9267 			sblk->status_rx_quick_consumer_index8,
9268 			sblk->status_rx_quick_consumer_index9);
9269 
9270 	if (sblk->status_rx_quick_consumer_index10 ||
9271 		sblk->status_rx_quick_consumer_index11)
9272 		BCE_PRINTF("rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
9273 			sblk->status_rx_quick_consumer_index10,
9274 			sblk->status_rx_quick_consumer_index11);
9275 
9276 	if (sblk->status_rx_quick_consumer_index12 ||
9277 		sblk->status_rx_quick_consumer_index13)
9278 		BCE_PRINTF("rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
9279 			sblk->status_rx_quick_consumer_index12,
9280 			sblk->status_rx_quick_consumer_index13);
9281 
9282 	if (sblk->status_rx_quick_consumer_index14 ||
9283 		sblk->status_rx_quick_consumer_index15)
9284 		BCE_PRINTF("rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
9285 			sblk->status_rx_quick_consumer_index14,
9286 			sblk->status_rx_quick_consumer_index15);
9287 
9288 	if (sblk->status_completion_producer_index ||
9289 		sblk->status_cmd_consumer_index)
9290 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
9291 			sblk->status_completion_producer_index,
9292 			sblk->status_cmd_consumer_index);
9293 
9294 	BCE_PRINTF(
9295 		"----------------------------"
9296 		"----------------"
9297 		"----------------------------\n");
9298 }
9299 
9300 
9301 /****************************************************************************/
9302 /* Prints out the statistics block from host memory.                        */
9303 /*                                                                          */
9304 /* Returns:                                                                 */
9305 /*   Nothing.                                                               */
9306 /****************************************************************************/
9307 static __attribute__ ((noinline)) void
9308 bce_dump_stats_block(struct bce_softc *sc)
9309 {
9310 	struct statistics_block *sblk;
9311 
9312 	sblk = sc->stats_block;
9313 
9314 	BCE_PRINTF(
9315 		"---------------"
9316 		" Stats Block  (All Stats Not Shown Are 0) "
9317 		"---------------\n");
9318 
9319 	if (sblk->stat_IfHCInOctets_hi
9320 		|| sblk->stat_IfHCInOctets_lo)
9321 		BCE_PRINTF("0x%08X:%08X : "
9322 			"IfHcInOctets\n",
9323 			sblk->stat_IfHCInOctets_hi,
9324 			sblk->stat_IfHCInOctets_lo);
9325 
9326 	if (sblk->stat_IfHCInBadOctets_hi
9327 		|| sblk->stat_IfHCInBadOctets_lo)
9328 		BCE_PRINTF("0x%08X:%08X : "
9329 			"IfHcInBadOctets\n",
9330 			sblk->stat_IfHCInBadOctets_hi,
9331 			sblk->stat_IfHCInBadOctets_lo);
9332 
9333 	if (sblk->stat_IfHCOutOctets_hi
9334 		|| sblk->stat_IfHCOutOctets_lo)
9335 		BCE_PRINTF("0x%08X:%08X : "
9336 			"IfHcOutOctets\n",
9337 			sblk->stat_IfHCOutOctets_hi,
9338 			sblk->stat_IfHCOutOctets_lo);
9339 
9340 	if (sblk->stat_IfHCOutBadOctets_hi
9341 		|| sblk->stat_IfHCOutBadOctets_lo)
9342 		BCE_PRINTF("0x%08X:%08X : "
9343 			"IfHcOutBadOctets\n",
9344 			sblk->stat_IfHCOutBadOctets_hi,
9345 			sblk->stat_IfHCOutBadOctets_lo);
9346 
9347 	if (sblk->stat_IfHCInUcastPkts_hi
9348 		|| sblk->stat_IfHCInUcastPkts_lo)
9349 		BCE_PRINTF("0x%08X:%08X : "
9350 			"IfHcInUcastPkts\n",
9351 			sblk->stat_IfHCInUcastPkts_hi,
9352 			sblk->stat_IfHCInUcastPkts_lo);
9353 
9354 	if (sblk->stat_IfHCInBroadcastPkts_hi
9355 		|| sblk->stat_IfHCInBroadcastPkts_lo)
9356 		BCE_PRINTF("0x%08X:%08X : "
9357 			"IfHcInBroadcastPkts\n",
9358 			sblk->stat_IfHCInBroadcastPkts_hi,
9359 			sblk->stat_IfHCInBroadcastPkts_lo);
9360 
9361 	if (sblk->stat_IfHCInMulticastPkts_hi
9362 		|| sblk->stat_IfHCInMulticastPkts_lo)
9363 		BCE_PRINTF("0x%08X:%08X : "
9364 			"IfHcInMulticastPkts\n",
9365 			sblk->stat_IfHCInMulticastPkts_hi,
9366 			sblk->stat_IfHCInMulticastPkts_lo);
9367 
9368 	if (sblk->stat_IfHCOutUcastPkts_hi
9369 		|| sblk->stat_IfHCOutUcastPkts_lo)
9370 		BCE_PRINTF("0x%08X:%08X : "
9371 			"IfHcOutUcastPkts\n",
9372 			sblk->stat_IfHCOutUcastPkts_hi,
9373 			sblk->stat_IfHCOutUcastPkts_lo);
9374 
9375 	if (sblk->stat_IfHCOutBroadcastPkts_hi
9376 		|| sblk->stat_IfHCOutBroadcastPkts_lo)
9377 		BCE_PRINTF("0x%08X:%08X : "
9378 			"IfHcOutBroadcastPkts\n",
9379 			sblk->stat_IfHCOutBroadcastPkts_hi,
9380 			sblk->stat_IfHCOutBroadcastPkts_lo);
9381 
9382 	if (sblk->stat_IfHCOutMulticastPkts_hi
9383 		|| sblk->stat_IfHCOutMulticastPkts_lo)
9384 		BCE_PRINTF("0x%08X:%08X : "
9385 			"IfHcOutMulticastPkts\n",
9386 			sblk->stat_IfHCOutMulticastPkts_hi,
9387 			sblk->stat_IfHCOutMulticastPkts_lo);
9388 
9389 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
9390 		BCE_PRINTF("         0x%08X : "
9391 			"emac_tx_stat_dot3statsinternalmactransmiterrors\n",
9392 			sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
9393 
9394 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
9395 		BCE_PRINTF("         0x%08X : Dot3StatsCarrierSenseErrors\n",
9396 			sblk->stat_Dot3StatsCarrierSenseErrors);
9397 
9398 	if (sblk->stat_Dot3StatsFCSErrors)
9399 		BCE_PRINTF("         0x%08X : Dot3StatsFCSErrors\n",
9400 			sblk->stat_Dot3StatsFCSErrors);
9401 
9402 	if (sblk->stat_Dot3StatsAlignmentErrors)
9403 		BCE_PRINTF("         0x%08X : Dot3StatsAlignmentErrors\n",
9404 			sblk->stat_Dot3StatsAlignmentErrors);
9405 
9406 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
9407 		BCE_PRINTF("         0x%08X : Dot3StatsSingleCollisionFrames\n",
9408 			sblk->stat_Dot3StatsSingleCollisionFrames);
9409 
9410 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
9411 		BCE_PRINTF("         0x%08X : Dot3StatsMultipleCollisionFrames\n",
9412 			sblk->stat_Dot3StatsMultipleCollisionFrames);
9413 
9414 	if (sblk->stat_Dot3StatsDeferredTransmissions)
9415 		BCE_PRINTF("         0x%08X : Dot3StatsDeferredTransmissions\n",
9416 			sblk->stat_Dot3StatsDeferredTransmissions);
9417 
9418 	if (sblk->stat_Dot3StatsExcessiveCollisions)
9419 		BCE_PRINTF("         0x%08X : Dot3StatsExcessiveCollisions\n",
9420 			sblk->stat_Dot3StatsExcessiveCollisions);
9421 
9422 	if (sblk->stat_Dot3StatsLateCollisions)
9423 		BCE_PRINTF("         0x%08X : Dot3StatsLateCollisions\n",
9424 			sblk->stat_Dot3StatsLateCollisions);
9425 
9426 	if (sblk->stat_EtherStatsCollisions)
9427 		BCE_PRINTF("         0x%08X : EtherStatsCollisions\n",
9428 			sblk->stat_EtherStatsCollisions);
9429 
9430 	if (sblk->stat_EtherStatsFragments)
9431 		BCE_PRINTF("         0x%08X : EtherStatsFragments\n",
9432 			sblk->stat_EtherStatsFragments);
9433 
9434 	if (sblk->stat_EtherStatsJabbers)
9435 		BCE_PRINTF("         0x%08X : EtherStatsJabbers\n",
9436 			sblk->stat_EtherStatsJabbers);
9437 
9438 	if (sblk->stat_EtherStatsUndersizePkts)
9439 		BCE_PRINTF("         0x%08X : EtherStatsUndersizePkts\n",
9440 			sblk->stat_EtherStatsUndersizePkts);
9441 
9442 	if (sblk->stat_EtherStatsOverrsizePkts)
9443 		BCE_PRINTF("         0x%08X : EtherStatsOverrsizePkts\n",
9444 			sblk->stat_EtherStatsOverrsizePkts);
9445 
9446 	if (sblk->stat_EtherStatsPktsRx64Octets)
9447 		BCE_PRINTF("         0x%08X : EtherStatsPktsRx64Octets\n",
9448 			sblk->stat_EtherStatsPktsRx64Octets);
9449 
9450 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
9451 		BCE_PRINTF("         0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
9452 			sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
9453 
9454 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
9455 		BCE_PRINTF("         0x%08X : EtherStatsPktsRx128Octetsto255Octets\n",
9456 			sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
9457 
9458 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
9459 		BCE_PRINTF("         0x%08X : EtherStatsPktsRx256Octetsto511Octets\n",
9460 			sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
9461 
9462 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
9463 		BCE_PRINTF("         0x%08X : EtherStatsPktsRx512Octetsto1023Octets\n",
9464 			sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
9465 
9466 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
9467 		BCE_PRINTF("         0x%08X : EtherStatsPktsRx1024Octetsto1522Octets\n",
9468 			sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
9469 
9470 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
9471 		BCE_PRINTF("         0x%08X : EtherStatsPktsRx1523Octetsto9022Octets\n",
9472 			sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
9473 
9474 	if (sblk->stat_EtherStatsPktsTx64Octets)
9475 		BCE_PRINTF("         0x%08X : EtherStatsPktsTx64Octets\n",
9476 			sblk->stat_EtherStatsPktsTx64Octets);
9477 
9478 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
9479 		BCE_PRINTF("         0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
9480 			sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
9481 
9482 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
9483 		BCE_PRINTF("         0x%08X : EtherStatsPktsTx128Octetsto255Octets\n",
9484 			sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
9485 
9486 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
9487 		BCE_PRINTF("         0x%08X : EtherStatsPktsTx256Octetsto511Octets\n",
9488 			sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
9489 
9490 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
9491 		BCE_PRINTF("         0x%08X : EtherStatsPktsTx512Octetsto1023Octets\n",
9492 			sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
9493 
9494 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
9495 		BCE_PRINTF("         0x%08X : EtherStatsPktsTx1024Octetsto1522Octets\n",
9496 			sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
9497 
9498 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
9499 		BCE_PRINTF("         0x%08X : EtherStatsPktsTx1523Octetsto9022Octets\n",
9500 			sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
9501 
9502 	if (sblk->stat_XonPauseFramesReceived)
9503 		BCE_PRINTF("         0x%08X : XonPauseFramesReceived\n",
9504 			sblk->stat_XonPauseFramesReceived);
9505 
9506 	if (sblk->stat_XoffPauseFramesReceived)
9507 	   BCE_PRINTF("          0x%08X : XoffPauseFramesReceived\n",
9508 			sblk->stat_XoffPauseFramesReceived);
9509 
9510 	if (sblk->stat_OutXonSent)
9511 		BCE_PRINTF("         0x%08X : OutXonSent\n",
9512 			sblk->stat_OutXonSent);
9513 
9514 	if (sblk->stat_OutXoffSent)
9515 		BCE_PRINTF("         0x%08X : OutXoffSent\n",
9516 			sblk->stat_OutXoffSent);
9517 
9518 	if (sblk->stat_FlowControlDone)
9519 		BCE_PRINTF("         0x%08X : FlowControlDone\n",
9520 			sblk->stat_FlowControlDone);
9521 
9522 	if (sblk->stat_MacControlFramesReceived)
9523 		BCE_PRINTF("         0x%08X : MacControlFramesReceived\n",
9524 			sblk->stat_MacControlFramesReceived);
9525 
9526 	if (sblk->stat_XoffStateEntered)
9527 		BCE_PRINTF("         0x%08X : XoffStateEntered\n",
9528 			sblk->stat_XoffStateEntered);
9529 
9530 	if (sblk->stat_IfInFramesL2FilterDiscards)
9531 		BCE_PRINTF("         0x%08X : IfInFramesL2FilterDiscards\n",
9532 			sblk->stat_IfInFramesL2FilterDiscards);
9533 
9534 	if (sblk->stat_IfInRuleCheckerDiscards)
9535 		BCE_PRINTF("         0x%08X : IfInRuleCheckerDiscards\n",
9536 			sblk->stat_IfInRuleCheckerDiscards);
9537 
9538 	if (sblk->stat_IfInFTQDiscards)
9539 		BCE_PRINTF("         0x%08X : IfInFTQDiscards\n",
9540 			sblk->stat_IfInFTQDiscards);
9541 
9542 	if (sblk->stat_IfInMBUFDiscards)
9543 		BCE_PRINTF("         0x%08X : IfInMBUFDiscards\n",
9544 			sblk->stat_IfInMBUFDiscards);
9545 
9546 	if (sblk->stat_IfInRuleCheckerP4Hit)
9547 		BCE_PRINTF("         0x%08X : IfInRuleCheckerP4Hit\n",
9548 			sblk->stat_IfInRuleCheckerP4Hit);
9549 
9550 	if (sblk->stat_CatchupInRuleCheckerDiscards)
9551 		BCE_PRINTF("         0x%08X : CatchupInRuleCheckerDiscards\n",
9552 			sblk->stat_CatchupInRuleCheckerDiscards);
9553 
9554 	if (sblk->stat_CatchupInFTQDiscards)
9555 		BCE_PRINTF("         0x%08X : CatchupInFTQDiscards\n",
9556 			sblk->stat_CatchupInFTQDiscards);
9557 
9558 	if (sblk->stat_CatchupInMBUFDiscards)
9559 		BCE_PRINTF("         0x%08X : CatchupInMBUFDiscards\n",
9560 			sblk->stat_CatchupInMBUFDiscards);
9561 
9562 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
9563 		BCE_PRINTF("         0x%08X : CatchupInRuleCheckerP4Hit\n",
9564 			sblk->stat_CatchupInRuleCheckerP4Hit);
9565 
9566 	BCE_PRINTF(
9567 		"----------------------------"
9568 		"----------------"
9569 		"----------------------------\n");
9570 }
9571 
9572 
9573 /****************************************************************************/
9574 /* Prints out a summary of the driver state.                                */
9575 /*                                                                          */
9576 /* Returns:                                                                 */
9577 /*   Nothing.                                                               */
9578 /****************************************************************************/
9579 static __attribute__ ((noinline)) void
9580 bce_dump_driver_state(struct bce_softc *sc)
9581 {
9582 	u32 val_hi, val_lo;
9583 
9584 	BCE_PRINTF(
9585 		"-----------------------------"
9586 		" Driver State "
9587 		"-----------------------------\n");
9588 
9589 	val_hi = BCE_ADDR_HI(sc);
9590 	val_lo = BCE_ADDR_LO(sc);
9591 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual address\n",
9592 		val_hi, val_lo);
9593 
9594 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
9595 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
9596 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual address\n",
9597 		val_hi, val_lo);
9598 
9599 	val_hi = BCE_ADDR_HI(sc->status_block);
9600 	val_lo = BCE_ADDR_LO(sc->status_block);
9601 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block virtual address\n",
9602 		val_hi, val_lo);
9603 
9604 	val_hi = BCE_ADDR_HI(sc->stats_block);
9605 	val_lo = BCE_ADDR_LO(sc->stats_block);
9606 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block virtual address\n",
9607 		val_hi, val_lo);
9608 
9609 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
9610 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
9611 	BCE_PRINTF(
9612 		"0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain virtual adddress\n",
9613 		val_hi, val_lo);
9614 
9615 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
9616 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
9617 	BCE_PRINTF(
9618 		"0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain virtual address\n",
9619 		val_hi, val_lo);
9620 
9621 #ifdef BCE_USE_SPLIT_HEADER
9622 	val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
9623 	val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
9624 	BCE_PRINTF(
9625 		"0x%08X:%08X - (sc->pg_bd_chain) page chain virtual address\n",
9626 		val_hi, val_lo);
9627 #endif
9628 
9629 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
9630 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
9631 	BCE_PRINTF(
9632 		"0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
9633 		val_hi, val_lo);
9634 
9635 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
9636 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
9637 	BCE_PRINTF(
9638 		"0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
9639 		val_hi, val_lo);
9640 
9641 #ifdef BCE_USE_SPLIT_HEADER
9642 	val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
9643 	val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
9644 	BCE_PRINTF(
9645 		"0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain virtual address\n",
9646 		val_hi, val_lo);
9647 #endif
9648 
9649 	BCE_PRINTF("         0x%08X - (sc->interrupts_generated) h/w intrs\n",
9650 		sc->interrupts_generated);
9651 
9652 	BCE_PRINTF("         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
9653 		sc->rx_interrupts);
9654 
9655 	BCE_PRINTF("         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
9656 		sc->tx_interrupts);
9657 
9658 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) status block index\n",
9659 		sc->last_status_idx);
9660 
9661 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer index\n",
9662 		sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
9663 
9664 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer index\n",
9665 		sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
9666 
9667 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
9668 		sc->tx_prod_bseq);
9669 
9670 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx mbufs allocated\n",
9671 		sc->debug_tx_mbuf_alloc);
9672 
9673 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
9674 		sc->used_tx_bd);
9675 
9676 	BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
9677 		sc->tx_hi_watermark, sc->max_tx_bd);
9678 
9679 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer index\n",
9680 		sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
9681 
9682 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer index\n",
9683 		sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
9684 
9685 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
9686 		sc->rx_prod_bseq);
9687 
9688 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx mbufs allocated\n",
9689 		sc->debug_rx_mbuf_alloc);
9690 
9691 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
9692 		sc->free_rx_bd);
9693 
9694 #ifdef BCE_USE_SPLIT_HEADER
9695 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer index\n",
9696 		sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
9697 
9698 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer index\n",
9699 		sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
9700 
9701 	BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page mbufs allocated\n",
9702 		sc->debug_pg_mbuf_alloc);
9703 
9704 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page rx_bd's\n",
9705 		sc->free_pg_bd);
9706 
9707 	BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low watermark\n",
9708 		sc->pg_low_watermark, sc->max_pg_bd);
9709 #endif
9710 
9711 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed) "
9712 		"mbuf alloc failures\n",
9713 		sc->mbuf_alloc_failed);
9714 
9715 	BCE_PRINTF("         0x%08X - (sc->debug_mbuf_sim_alloc_failed) "
9716 		"simulated mbuf alloc failures\n",
9717 		sc->debug_mbuf_sim_alloc_failed);
9718 
9719 	BCE_PRINTF("         0x%08X - (sc->bce_flags) bce mac flags\n",
9720 		sc->bce_flags);
9721 
9722 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) bce phy flags\n",
9723 		sc->bce_phy_flags);
9724 
9725 	BCE_PRINTF(
9726 		"----------------------------"
9727 		"----------------"
9728 		"----------------------------\n");
9729 }
9730 
9731 
9732 /****************************************************************************/
9733 /* Prints out the hardware state through a summary of important register,   */
9734 /* followed by a complete register dump.                                    */
9735 /*                                                                          */
9736 /* Returns:                                                                 */
9737 /*   Nothing.                                                               */
9738 /****************************************************************************/
9739 static __attribute__ ((noinline)) void
9740 bce_dump_hw_state(struct bce_softc *sc)
9741 {
9742 	u32 val;
9743 
9744 	BCE_PRINTF(
9745 		"----------------------------"
9746 		" Hardware State "
9747 		"----------------------------\n");
9748 
9749 	BCE_PRINTF("0x%08X - bootcode version\n", sc->bce_fw_ver);
9750 
9751 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
9752 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
9753 		val, BCE_MISC_ENABLE_STATUS_BITS);
9754 
9755 	val = REG_RD(sc, BCE_DMA_STATUS);
9756 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", val, BCE_DMA_STATUS);
9757 
9758 	val = REG_RD(sc, BCE_CTX_STATUS);
9759 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", val, BCE_CTX_STATUS);
9760 
9761 	val = REG_RD(sc, BCE_EMAC_STATUS);
9762 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", val, BCE_EMAC_STATUS);
9763 
9764 	val = REG_RD(sc, BCE_RPM_STATUS);
9765 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", val, BCE_RPM_STATUS);
9766 
9767 	val = REG_RD(sc, 0x2004);
9768 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", val, 0x2004);
9769 
9770 	val = REG_RD(sc, BCE_RV2P_STATUS);
9771 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", val, BCE_RV2P_STATUS);
9772 
9773 	val = REG_RD(sc, 0x2c04);
9774 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", val, 0x2c04);
9775 
9776 	val = REG_RD(sc, BCE_TBDR_STATUS);
9777 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", val, BCE_TBDR_STATUS);
9778 
9779 	val = REG_RD(sc, BCE_TDMA_STATUS);
9780 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", val, BCE_TDMA_STATUS);
9781 
9782 	val = REG_RD(sc, BCE_HC_STATUS);
9783 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", val, BCE_HC_STATUS);
9784 
9785 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
9786 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE);
9787 
9788 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
9789 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE);
9790 
9791 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
9792 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE);
9793 
9794 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
9795 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE);
9796 
9797 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
9798 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", val, BCE_MCP_CPU_STATE);
9799 
9800 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
9801 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE);
9802 
9803 	BCE_PRINTF(
9804 		"----------------------------"
9805 		"----------------"
9806 		"----------------------------\n");
9807 
9808 	BCE_PRINTF(
9809 		"----------------------------"
9810 		" Register  Dump "
9811 		"----------------------------\n");
9812 
9813 	for (int i = 0x400; i < 0x8000; i += 0x10) {
9814 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
9815 			i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
9816 			REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
9817 	}
9818 
9819 	BCE_PRINTF(
9820 		"----------------------------"
9821 		"----------------"
9822 		"----------------------------\n");
9823 }
9824 
9825 
9826 /****************************************************************************/
9827 /* Prints out the mailbox queue registers.                                  */
9828 /*                                                                          */
9829 /* Returns:                                                                 */
9830 /*   Nothing.                                                               */
9831 /****************************************************************************/
9832 static __attribute__ ((noinline)) void
9833 bce_dump_mq_regs(struct bce_softc *sc)
9834 {
9835 	BCE_PRINTF(
9836 		"----------------------------"
9837 		"    MQ Regs     "
9838 		"----------------------------\n");
9839 
9840 	BCE_PRINTF(
9841 		"----------------------------"
9842 		"----------------"
9843 		"----------------------------\n");
9844 
9845 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
9846 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
9847 			i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
9848 			REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
9849 	}
9850 
9851 	BCE_PRINTF(
9852 		"----------------------------"
9853 		"----------------"
9854 		"----------------------------\n");
9855 }
9856 
9857 
9858 /****************************************************************************/
9859 /* Prints out the bootcode state.                                           */
9860 /*                                                                          */
9861 /* Returns:                                                                 */
9862 /*   Nothing.                                                               */
9863 /****************************************************************************/
9864 static __attribute__ ((noinline)) void
9865 bce_dump_bc_state(struct bce_softc *sc)
9866 {
9867 	u32 val;
9868 
9869 	BCE_PRINTF(
9870 		"----------------------------"
9871 		" Bootcode State "
9872 		"----------------------------\n");
9873 
9874 	BCE_PRINTF("0x%08X - bootcode version\n", sc->bce_fw_ver);
9875 
9876 	val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_RESET_TYPE);
9877 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
9878 		val, BCE_BC_RESET_TYPE);
9879 
9880 	val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_STATE);
9881 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
9882 		val, BCE_BC_STATE);
9883 
9884 	val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_CONDITION);
9885 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
9886 		val, BCE_BC_CONDITION);
9887 
9888 	val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_STATE_DEBUG_CMD);
9889 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
9890 		val, BCE_BC_STATE_DEBUG_CMD);
9891 
9892 	BCE_PRINTF(
9893 		"----------------------------"
9894 		"----------------"
9895 		"----------------------------\n");
9896 }
9897 
9898 
9899 /****************************************************************************/
9900 /* Prints out the TXP processor state.                                      */
9901 /*                                                                          */
9902 /* Returns:                                                                 */
9903 /*   Nothing.                                                               */
9904 /****************************************************************************/
9905 static __attribute__ ((noinline)) void
9906 bce_dump_txp_state(struct bce_softc *sc, int regs)
9907 {
9908 	u32 val;
9909 	u32 fw_version[3];
9910 
9911 	BCE_PRINTF(
9912 		"----------------------------"
9913 		"   TXP  State   "
9914 		"----------------------------\n");
9915 
9916 	for (int i = 0; i < 3; i++)
9917 		fw_version[i] = htonl(REG_RD_IND(sc,
9918 			(BCE_TXP_SCRATCH + 0x10 + i * 4)));
9919 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
9920 
9921 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
9922 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", val, BCE_TXP_CPU_MODE);
9923 
9924 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
9925 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE);
9926 
9927 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
9928 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", val,
9929 		BCE_TXP_CPU_EVENT_MASK);
9930 
9931 	if (regs) {
9932 		BCE_PRINTF(
9933 			"----------------------------"
9934 			" Register  Dump "
9935 			"----------------------------\n");
9936 
9937 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
9938 			/* Skip the big blank spaces */
9939 			if (i < 0x454000 && i > 0x5ffff)
9940 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
9941 					i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4),
9942 					REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC));
9943 		}
9944 	}
9945 
9946 	BCE_PRINTF(
9947 		"----------------------------"
9948 		"----------------"
9949 		"----------------------------\n");
9950 }
9951 
9952 
9953 /****************************************************************************/
9954 /* Prints out the RXP processor state.                                      */
9955 /*                                                                          */
9956 /* Returns:                                                                 */
9957 /*   Nothing.                                                               */
9958 /****************************************************************************/
9959 static __attribute__ ((noinline)) void
9960 bce_dump_rxp_state(struct bce_softc *sc, int regs)
9961 {
9962 	u32 val;
9963 	u32 fw_version[3];
9964 
9965 	BCE_PRINTF(
9966 		"----------------------------"
9967 		"   RXP  State   "
9968 		"----------------------------\n");
9969 
9970 	for (int i = 0; i < 3; i++)
9971 		fw_version[i] = htonl(REG_RD_IND(sc,
9972 			(BCE_RXP_SCRATCH + 0x10 + i * 4)));
9973 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
9974 
9975 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
9976 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", val, BCE_RXP_CPU_MODE);
9977 
9978 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
9979 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE);
9980 
9981 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
9982 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", val,
9983 		BCE_RXP_CPU_EVENT_MASK);
9984 
9985 	if (regs) {
9986 		BCE_PRINTF(
9987 			"----------------------------"
9988 			" Register  Dump "
9989 			"----------------------------\n");
9990 
9991 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
9992 			/* Skip the big blank sapces */
9993 			if (i < 0xc5400 && i > 0xdffff)
9994 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
9995 	 				i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4),
9996 					REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC));
9997 		}
9998 	}
9999 
10000 	BCE_PRINTF(
10001 		"----------------------------"
10002 		"----------------"
10003 		"----------------------------\n");
10004 }
10005 
10006 
10007 /****************************************************************************/
10008 /* Prints out the TPAT processor state.                                     */
10009 /*                                                                          */
10010 /* Returns:                                                                 */
10011 /*   Nothing.                                                               */
10012 /****************************************************************************/
10013 static __attribute__ ((noinline)) void
10014 bce_dump_tpat_state(struct bce_softc *sc, int regs)
10015 {
10016 	u32 val;
10017 	u32 fw_version[3];
10018 
10019 	BCE_PRINTF(
10020 		"----------------------------"
10021 		"   TPAT State   "
10022 		"----------------------------\n");
10023 
10024 	for (int i = 0; i < 3; i++)
10025 		fw_version[i] = htonl(REG_RD_IND(sc,
10026 			(BCE_TPAT_SCRATCH + 0x410 + i * 4)));
10027 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10028 
10029 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
10030 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", val, BCE_TPAT_CPU_MODE);
10031 
10032 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10033 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE);
10034 
10035 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
10036 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", val,
10037 		BCE_TPAT_CPU_EVENT_MASK);
10038 
10039 	if (regs) {
10040 		BCE_PRINTF(
10041 			"----------------------------"
10042 			" Register  Dump "
10043 			"----------------------------\n");
10044 
10045 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
10046 			/* Skip the big blank spaces */
10047 			if (i < 0x854000 && i > 0x9ffff)
10048 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10049 					i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4),
10050 					REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC));
10051 		}
10052 	}
10053 
10054 	BCE_PRINTF(
10055 		"----------------------------"
10056 		"----------------"
10057 		"----------------------------\n");
10058 }
10059 
10060 
10061 /****************************************************************************/
10062 /* Prints out the Command Procesor (CP) state.                              */
10063 /*                                                                          */
10064 /* Returns:                                                                 */
10065 /*   Nothing.                                                               */
10066 /****************************************************************************/
10067 static __attribute__ ((noinline)) void
10068 bce_dump_cp_state(struct bce_softc *sc, int regs)
10069 {
10070 	u32 val;
10071 	u32 fw_version[3];
10072 
10073 	BCE_PRINTF(
10074 		"----------------------------"
10075 		"    CP State    "
10076 		"----------------------------\n");
10077 
10078 	for (int i = 0; i < 3; i++)
10079 		fw_version[i] = htonl(REG_RD_IND(sc,
10080 			(BCE_CP_SCRATCH + 0x10 + i * 4)));
10081 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10082 
10083 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
10084 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", val, BCE_CP_CPU_MODE);
10085 
10086 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10087 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE);
10088 
10089 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
10090 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
10091 		BCE_CP_CPU_EVENT_MASK);
10092 
10093 	if (regs) {
10094 		BCE_PRINTF(
10095 			"----------------------------"
10096 			" Register  Dump "
10097 			"----------------------------\n");
10098 
10099 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
10100 			/* Skip the big blank spaces */
10101 			if (i < 0x185400 && i > 0x19ffff)
10102 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10103 					i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4),
10104 					REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC));
10105 		}
10106 	}
10107 
10108 	BCE_PRINTF(
10109 		"----------------------------"
10110 		"----------------"
10111 		"----------------------------\n");
10112 }
10113 
10114 
10115 /****************************************************************************/
10116 /* Prints out the Completion Procesor (COM) state.                          */
10117 /*                                                                          */
10118 /* Returns:                                                                 */
10119 /*   Nothing.                                                               */
10120 /****************************************************************************/
10121 static __attribute__ ((noinline)) void
10122 bce_dump_com_state(struct bce_softc *sc, int regs)
10123 {
10124 	u32 val;
10125 	u32 fw_version[3];
10126 
10127 	BCE_PRINTF(
10128 		"----------------------------"
10129 		"   COM State    "
10130 		"----------------------------\n");
10131 
10132 	for (int i = 0; i < 3; i++)
10133 		fw_version[i] = htonl(REG_RD_IND(sc,
10134 			(BCE_COM_SCRATCH + 0x10 + i * 4)));
10135 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10136 
10137 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
10138 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", val, BCE_COM_CPU_MODE);
10139 
10140 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10141 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE);
10142 
10143 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
10144 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
10145 		BCE_COM_CPU_EVENT_MASK);
10146 
10147 	if (regs) {
10148 		BCE_PRINTF(
10149 			"----------------------------"
10150 			" Register  Dump "
10151 			"----------------------------\n");
10152 
10153 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
10154 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10155 				i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4),
10156 				REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC));
10157 		}
10158 	}
10159 
10160 	BCE_PRINTF(
10161 		"----------------------------"
10162 		"----------------"
10163 		"----------------------------\n");
10164 }
10165 
10166 
10167 /****************************************************************************/
10168 /* Prints out the driver state and then enters the debugger.                */
10169 /*                                                                          */
10170 /* Returns:                                                                 */
10171 /*   Nothing.                                                               */
10172 /****************************************************************************/
10173 static void
10174 bce_breakpoint(struct bce_softc *sc)
10175 {
10176 
10177 	/*
10178 	 * Unreachable code to silence compiler warnings
10179 	 * about unused functions.
10180 	 */
10181 	if (0) {
10182 		bce_freeze_controller(sc);
10183 		bce_unfreeze_controller(sc);
10184 		bce_dump_enet(sc, NULL);
10185    		bce_dump_txbd(sc, 0, NULL);
10186 		bce_dump_rxbd(sc, 0, NULL);
10187 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
10188 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
10189 		bce_dump_l2fhdr(sc, 0, NULL);
10190 		bce_dump_ctx(sc, RX_CID);
10191 		bce_dump_ftqs(sc);
10192 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
10193 		bce_dump_rx_chain(sc, 0, USABLE_RX_BD);
10194 		bce_dump_status_block(sc);
10195 		bce_dump_stats_block(sc);
10196 		bce_dump_driver_state(sc);
10197 		bce_dump_hw_state(sc);
10198 		bce_dump_bc_state(sc);
10199 		bce_dump_txp_state(sc, 0);
10200 		bce_dump_rxp_state(sc, 0);
10201 		bce_dump_tpat_state(sc, 0);
10202 		bce_dump_cp_state(sc, 0);
10203 		bce_dump_com_state(sc, 0);
10204 #ifdef BCE_USE_SPLIT_HEADER
10205 		bce_dump_pgbd(sc, 0, NULL);
10206 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD);
10207 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD);
10208 #endif
10209 	}
10210 
10211 	bce_dump_status_block(sc);
10212 	bce_dump_driver_state(sc);
10213 
10214 	/* Call the debugger. */
10215 	breakpoint();
10216 
10217 	return;
10218 }
10219 #endif
10220 
10221