xref: /freebsd/sys/dev/bce/if_bce.c (revision 3f0164abf32b9b761e0a2cb4bdca3a8b84f156d4)
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53 
54 #include "opt_bce.h"
55 
56 #include <dev/bce/if_bcereg.h>
57 #include <dev/bce/if_bcefw.h>
58 
59 /****************************************************************************/
60 /* BCE Debug Options                                                        */
61 /****************************************************************************/
62 #ifdef BCE_DEBUG
63 	u32 bce_debug = BCE_WARN;
64 
65 	/*          0 = Never              */
66 	/*          1 = 1 in 2,147,483,648 */
67 	/*        256 = 1 in     8,388,608 */
68 	/*       2048 = 1 in     1,048,576 */
69 	/*      65536 = 1 in        32,768 */
70 	/*    1048576 = 1 in         2,048 */
71 	/*  268435456 =	1 in             8 */
72 	/*  536870912 = 1 in             4 */
73 	/* 1073741824 = 1 in             2 */
74 
75 	/* Controls how often the l2_fhdr frame error check will fail. */
76 	int l2fhdr_error_sim_control = 0;
77 
78 	/* Controls how often the unexpected attention check will fail. */
79 	int unexpected_attention_sim_control = 0;
80 
81 	/* Controls how often to simulate an mbuf allocation failure. */
82 	int mbuf_alloc_failed_sim_control = 0;
83 
84 	/* Controls how often to simulate a DMA mapping failure. */
85 	int dma_map_addr_failed_sim_control = 0;
86 
87 	/* Controls how often to simulate a bootcode failure. */
88 	int bootcode_running_failure_sim_control = 0;
89 #endif
90 
91 /****************************************************************************/
92 /* PCI Device ID Table                                                      */
93 /*                                                                          */
94 /* Used by bce_probe() to identify the devices supported by this driver.    */
95 /****************************************************************************/
96 #define BCE_DEVDESC_MAX		64
97 
98 static const struct bce_type bce_devs[] = {
99 	/* BCM5706C Controllers and OEM boards. */
100 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
101 		"HP NC370T Multifunction Gigabit Server Adapter" },
102 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
103 		"HP NC370i Multifunction Gigabit Server Adapter" },
104 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
105 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
106 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
107 		"HP NC371i Multifunction Gigabit Server Adapter" },
108 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
109 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
110 
111 	/* BCM5706S controllers and OEM boards. */
112 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
113 		"HP NC370F Multifunction Gigabit Server Adapter" },
114 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
115 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
116 
117 	/* BCM5708C controllers and OEM boards. */
118 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
119 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
120 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
121 		"HP NC373i Multifunction Gigabit Server Adapter" },
122 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
123 		"HP NC374m PCIe Multifunction Adapter" },
124 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
125 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
126 
127 	/* BCM5708S controllers and OEM boards. */
128 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
129 		"HP NC373m Multifunction Gigabit Server Adapter" },
130 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
131 		"HP NC373i Multifunction Gigabit Server Adapter" },
132 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
133 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
134 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
135 		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
136 
137 	/* BCM5709C controllers and OEM boards. */
138 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
139 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
140 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
141 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
142 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
143 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
144 
145 	/* BCM5709S controllers and OEM boards. */
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
147 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
149 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
151 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
152 
153 	/* BCM5716 controllers and OEM boards. */
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
155 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
156 
157 	{ 0, 0, 0, 0, NULL }
158 };
159 
160 
161 /****************************************************************************/
162 /* Supported Flash NVRAM device data.                                       */
163 /****************************************************************************/
164 static const struct flash_spec flash_table[] =
165 {
166 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
167 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
168 
169 	/* Slow EEPROM */
170 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
171 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
172 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
173 	 "EEPROM - slow"},
174 	/* Expansion entry 0001 */
175 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
176 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178 	 "Entry 0001"},
179 	/* Saifun SA25F010 (non-buffered flash) */
180 	/* strap, cfg1, & write1 need updates */
181 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
182 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
184 	 "Non-buffered flash (128kB)"},
185 	/* Saifun SA25F020 (non-buffered flash) */
186 	/* strap, cfg1, & write1 need updates */
187 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
188 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
190 	 "Non-buffered flash (256kB)"},
191 	/* Expansion entry 0100 */
192 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0100"},
196 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
197 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
198 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
199 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
200 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
201 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
202 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
203 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
204 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
205 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
206 	/* Saifun SA25F005 (non-buffered flash) */
207 	/* strap, cfg1, & write1 need updates */
208 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
209 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
211 	 "Non-buffered flash (64kB)"},
212 	/* Fast EEPROM */
213 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
214 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
215 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
216 	 "EEPROM - fast"},
217 	/* Expansion entry 1001 */
218 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
219 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 	 "Entry 1001"},
222 	/* Expansion entry 1010 */
223 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 	 "Entry 1010"},
227 	/* ATMEL AT45DB011B (buffered flash) */
228 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
229 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
231 	 "Buffered flash (128kB)"},
232 	/* Expansion entry 1100 */
233 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
234 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
235 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
236 	 "Entry 1100"},
237 	/* Expansion entry 1101 */
238 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
239 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
240 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
241 	 "Entry 1101"},
242 	/* Ateml Expansion entry 1110 */
243 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
244 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
245 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
246 	 "Entry 1110 (Atmel)"},
247 	/* ATMEL AT45DB021B (buffered flash) */
248 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
249 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
250 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
251 	 "Buffered flash (256kB)"},
252 };
253 
254 /*
255  * The BCM5709 controllers transparently handle the
256  * differences between Atmel 264 byte pages and all
257  * flash devices which use 256 byte pages, so no
258  * logical-to-physical mapping is required in the
259  * driver.
260  */
261 static const struct flash_spec flash_5709 = {
262 	.flags		= BCE_NV_BUFFERED,
263 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
264 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
265 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
266 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
267 	.name		= "5709/5716 buffered flash (256kB)",
268 };
269 
270 
271 /****************************************************************************/
272 /* FreeBSD device entry points.                                             */
273 /****************************************************************************/
274 static int  bce_probe			(device_t);
275 static int  bce_attach			(device_t);
276 static int  bce_detach			(device_t);
277 static int  bce_shutdown		(device_t);
278 
279 
280 /****************************************************************************/
281 /* BCE Debug Data Structure Dump Routines                                   */
282 /****************************************************************************/
283 #ifdef BCE_DEBUG
284 static u32  bce_reg_rd				(struct bce_softc *, u32);
285 static void bce_reg_wr				(struct bce_softc *, u32, u32);
286 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
287 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
288 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
289 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
290 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
291 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
292 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
293 static void bce_dump_txbd			(struct bce_softc *,
294     int, struct tx_bd *);
295 static void bce_dump_rxbd			(struct bce_softc *,
296     int, struct rx_bd *);
297 static void bce_dump_pgbd			(struct bce_softc *,
298     int, struct rx_bd *);
299 static void bce_dump_l2fhdr		(struct bce_softc *,
300     int, struct l2_fhdr *);
301 static void bce_dump_ctx			(struct bce_softc *, u16);
302 static void bce_dump_ftqs			(struct bce_softc *);
303 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
304 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
305 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
306 static void bce_dump_status_block	(struct bce_softc *);
307 static void bce_dump_stats_block	(struct bce_softc *);
308 static void bce_dump_driver_state	(struct bce_softc *);
309 static void bce_dump_hw_state		(struct bce_softc *);
310 static void bce_dump_shmem_state	(struct bce_softc *);
311 static void bce_dump_mq_regs		(struct bce_softc *);
312 static void bce_dump_bc_state		(struct bce_softc *);
313 static void bce_dump_txp_state		(struct bce_softc *, int);
314 static void bce_dump_rxp_state		(struct bce_softc *, int);
315 static void bce_dump_tpat_state	(struct bce_softc *, int);
316 static void bce_dump_cp_state		(struct bce_softc *, int);
317 static void bce_dump_com_state		(struct bce_softc *, int);
318 static void bce_dump_rv2p_state	(struct bce_softc *);
319 static void bce_breakpoint			(struct bce_softc *);
320 #endif /*BCE_DEBUG */
321 
322 
323 /****************************************************************************/
324 /* BCE Register/Memory Access Routines                                      */
325 /****************************************************************************/
326 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
327 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
328 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
329 static u32  bce_shmem_rd		(struct bce_softc *, u32);
330 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
331 static int  bce_miibus_read_reg		(device_t, int, int);
332 static int  bce_miibus_write_reg	(device_t, int, int, int);
333 static void bce_miibus_statchg		(device_t);
334 
335 #ifdef BCE_DEBUG
336 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
337 #ifdef BCE_NVRAM_WRITE_SUPPORT
338 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
339 #endif
340 #endif
341 
342 /****************************************************************************/
343 /* BCE NVRAM Access Routines                                                */
344 /****************************************************************************/
345 static int  bce_acquire_nvram_lock	(struct bce_softc *);
346 static int  bce_release_nvram_lock	(struct bce_softc *);
347 static void bce_enable_nvram_access(struct bce_softc *);
348 static void bce_disable_nvram_access(struct bce_softc *);
349 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
350 static int  bce_init_nvram			(struct bce_softc *);
351 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
352 static int  bce_nvram_test			(struct bce_softc *);
353 #ifdef BCE_NVRAM_WRITE_SUPPORT
354 static int  bce_enable_nvram_write	(struct bce_softc *);
355 static void bce_disable_nvram_write(struct bce_softc *);
356 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
357 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
358 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
359 #endif
360 
361 /****************************************************************************/
362 /*                                                                          */
363 /****************************************************************************/
364 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
365 static void bce_get_media			(struct bce_softc *);
366 static void bce_init_media			(struct bce_softc *);
367 static u32 bce_get_rphy_link		(struct bce_softc *);
368 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
369 static int  bce_dma_alloc			(device_t);
370 static void bce_dma_free			(struct bce_softc *);
371 static void bce_release_resources	(struct bce_softc *);
372 
373 /****************************************************************************/
374 /* BCE Firmware Synchronization and Load                                    */
375 /****************************************************************************/
376 static void bce_fw_cap_init			(struct bce_softc *);
377 static int  bce_fw_sync			(struct bce_softc *, u32);
378 static void bce_load_rv2p_fw		(struct bce_softc *, const u32 *, u32,
379     u32);
380 static void bce_load_cpu_fw		(struct bce_softc *,
381     struct cpu_reg *, struct fw_info *);
382 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
383 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
384 static void bce_start_rxp_cpu		(struct bce_softc *);
385 static void bce_init_rxp_cpu		(struct bce_softc *);
386 static void bce_init_txp_cpu 		(struct bce_softc *);
387 static void bce_init_tpat_cpu		(struct bce_softc *);
388 static void bce_init_cp_cpu	  	(struct bce_softc *);
389 static void bce_init_com_cpu	  	(struct bce_softc *);
390 static void bce_init_cpus			(struct bce_softc *);
391 
392 static void bce_print_adapter_info	(struct bce_softc *);
393 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
394 static void bce_stop				(struct bce_softc *);
395 static int  bce_reset				(struct bce_softc *, u32);
396 static int  bce_chipinit 			(struct bce_softc *);
397 static int  bce_blockinit 			(struct bce_softc *);
398 
399 static int  bce_init_tx_chain		(struct bce_softc *);
400 static void bce_free_tx_chain		(struct bce_softc *);
401 
402 static int  bce_get_rx_buf		(struct bce_softc *, u16, u16, u32 *);
403 static int  bce_init_rx_chain		(struct bce_softc *);
404 static void bce_fill_rx_chain		(struct bce_softc *);
405 static void bce_free_rx_chain		(struct bce_softc *);
406 
407 static int  bce_get_pg_buf		(struct bce_softc *, u16, u16);
408 static int  bce_init_pg_chain		(struct bce_softc *);
409 static void bce_fill_pg_chain		(struct bce_softc *);
410 static void bce_free_pg_chain		(struct bce_softc *);
411 
412 static struct mbuf *bce_tso_setup	(struct bce_softc *,
413     struct mbuf **, u16 *);
414 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
415 static void bce_start_locked		(struct ifnet *);
416 static void bce_start				(struct ifnet *);
417 static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
418 static void bce_watchdog			(struct bce_softc *);
419 static int  bce_ifmedia_upd		(struct ifnet *);
420 static int  bce_ifmedia_upd_locked	(struct ifnet *);
421 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
422 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
423 static void bce_init_locked		(struct bce_softc *);
424 static void bce_init				(void *);
425 static void bce_mgmt_init_locked	(struct bce_softc *sc);
426 
427 static int  bce_init_ctx			(struct bce_softc *);
428 static void bce_get_mac_addr		(struct bce_softc *);
429 static void bce_set_mac_addr		(struct bce_softc *);
430 static void bce_phy_intr			(struct bce_softc *);
431 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
432 static void bce_rx_intr			(struct bce_softc *);
433 static void bce_tx_intr			(struct bce_softc *);
434 static void bce_disable_intr		(struct bce_softc *);
435 static void bce_enable_intr		(struct bce_softc *, int);
436 
437 static void bce_intr				(void *);
438 static void bce_set_rx_mode		(struct bce_softc *);
439 static void bce_stats_update		(struct bce_softc *);
440 static void bce_tick				(void *);
441 static void bce_pulse				(void *);
442 static void bce_add_sysctls		(struct bce_softc *);
443 
444 
445 /****************************************************************************/
446 /* FreeBSD device dispatch table.                                           */
447 /****************************************************************************/
448 static device_method_t bce_methods[] = {
449 	/* Device interface (device_if.h) */
450 	DEVMETHOD(device_probe,		bce_probe),
451 	DEVMETHOD(device_attach,	bce_attach),
452 	DEVMETHOD(device_detach,	bce_detach),
453 	DEVMETHOD(device_shutdown,	bce_shutdown),
454 /* Supported by device interface but not used here. */
455 /*	DEVMETHOD(device_identify,	bce_identify),      */
456 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
457 /*	DEVMETHOD(device_resume,	bce_resume),        */
458 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
459 
460 	/* MII interface (miibus_if.h) */
461 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
462 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
463 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
464 /* Supported by MII interface but not used here.       */
465 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
466 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
467 
468 	DEVMETHOD_END
469 };
470 
471 static driver_t bce_driver = {
472 	"bce",
473 	bce_methods,
474 	sizeof(struct bce_softc)
475 };
476 
477 static devclass_t bce_devclass;
478 
479 MODULE_DEPEND(bce, pci, 1, 1, 1);
480 MODULE_DEPEND(bce, ether, 1, 1, 1);
481 MODULE_DEPEND(bce, miibus, 1, 1, 1);
482 
483 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
484 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
485 
486 
487 /****************************************************************************/
488 /* Tunable device values                                                    */
489 /****************************************************************************/
490 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
491 
492 /* Allowable values are TRUE or FALSE */
493 static int bce_verbose = TRUE;
494 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
495 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
496     "Verbose output enable/disable");
497 
498 /* Allowable values are TRUE or FALSE */
499 static int bce_tso_enable = TRUE;
500 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
501 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
502     "TSO Enable/Disable");
503 
504 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
505 /* ToDo: Add MSI-X support. */
506 static int bce_msi_enable = 1;
507 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
508 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
509     "MSI-X|MSI|INTx selector");
510 
511 /* Allowable values are 1, 2, 4, 8. */
512 static int bce_rx_pages = DEFAULT_RX_PAGES;
513 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
514 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
515     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
516 
517 /* Allowable values are 1, 2, 4, 8. */
518 static int bce_tx_pages = DEFAULT_TX_PAGES;
519 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
520 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
521     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
522 
523 /* Allowable values are TRUE or FALSE. */
524 static int bce_hdr_split = TRUE;
525 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
526 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
527     "Frame header/payload splitting Enable/Disable");
528 
529 /* Allowable values are TRUE or FALSE. */
530 static int bce_strict_rx_mtu = FALSE;
531 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
532 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
533     &bce_strict_rx_mtu, 0,
534     "Enable/Disable strict RX frame size checking");
535 
536 /* Allowable values are 0 ... 100 */
537 #ifdef BCE_DEBUG
538 /* Generate 1 interrupt for every transmit completion. */
539 static int bce_tx_quick_cons_trip_int = 1;
540 #else
541 /* Generate 1 interrupt for every 20 transmit completions. */
542 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
543 #endif
544 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
545 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
546     &bce_tx_quick_cons_trip_int, 0,
547     "Transmit BD trip point during interrupts");
548 
549 /* Allowable values are 0 ... 100 */
550 /* Generate 1 interrupt for every transmit completion. */
551 #ifdef BCE_DEBUG
552 static int bce_tx_quick_cons_trip = 1;
553 #else
554 /* Generate 1 interrupt for every 20 transmit completions. */
555 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
556 #endif
557 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
558 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
559     &bce_tx_quick_cons_trip, 0,
560     "Transmit BD trip point");
561 
562 /* Allowable values are 0 ... 100 */
563 #ifdef BCE_DEBUG
564 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
565 static int bce_tx_ticks_int = 0;
566 #else
567 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
568 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
569 #endif
570 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
571 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
572     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
573 
574 /* Allowable values are 0 ... 100 */
575 #ifdef BCE_DEBUG
576 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
577 static int bce_tx_ticks = 0;
578 #else
579 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
580 static int bce_tx_ticks = DEFAULT_TX_TICKS;
581 #endif
582 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
583 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
584     &bce_tx_ticks, 0, "Transmit ticks count");
585 
586 /* Allowable values are 1 ... 100 */
587 #ifdef BCE_DEBUG
588 /* Generate 1 interrupt for every received frame. */
589 static int bce_rx_quick_cons_trip_int = 1;
590 #else
591 /* Generate 1 interrupt for every 6 received frames. */
592 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
593 #endif
594 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
595 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
596     &bce_rx_quick_cons_trip_int, 0,
597     "Receive BD trip point duirng interrupts");
598 
599 /* Allowable values are 1 ... 100 */
600 #ifdef BCE_DEBUG
601 /* Generate 1 interrupt for every received frame. */
602 static int bce_rx_quick_cons_trip = 1;
603 #else
604 /* Generate 1 interrupt for every 6 received frames. */
605 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
606 #endif
607 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
608 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
609     &bce_rx_quick_cons_trip, 0,
610     "Receive BD trip point");
611 
612 /* Allowable values are 0 ... 100 */
613 #ifdef BCE_DEBUG
614 /* Generate an int. if 0us have elapsed since the last received frame. */
615 static int bce_rx_ticks_int = 0;
616 #else
617 /* Generate an int. if 18us have elapsed since the last received frame. */
618 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
619 #endif
620 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
621 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
622     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
623 
624 /* Allowable values are 0 ... 100 */
625 #ifdef BCE_DEBUG
626 /* Generate an int. if 0us have elapsed since the last received frame. */
627 static int bce_rx_ticks = 0;
628 #else
629 /* Generate an int. if 18us have elapsed since the last received frame. */
630 static int bce_rx_ticks = DEFAULT_RX_TICKS;
631 #endif
632 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
633 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
634     &bce_rx_ticks, 0, "Receive ticks count");
635 
636 
637 /****************************************************************************/
638 /* Device probe function.                                                   */
639 /*                                                                          */
640 /* Compares the device to the driver's list of supported devices and        */
641 /* reports back to the OS whether this is the right driver for the device.  */
642 /*                                                                          */
643 /* Returns:                                                                 */
644 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
645 /****************************************************************************/
646 static int
647 bce_probe(device_t dev)
648 {
649 	const struct bce_type *t;
650 	struct bce_softc *sc;
651 	char *descbuf;
652 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
653 
654 	t = bce_devs;
655 
656 	sc = device_get_softc(dev);
657 	sc->bce_unit = device_get_unit(dev);
658 	sc->bce_dev = dev;
659 
660 	/* Get the data for the device to be probed. */
661 	vid  = pci_get_vendor(dev);
662 	did  = pci_get_device(dev);
663 	svid = pci_get_subvendor(dev);
664 	sdid = pci_get_subdevice(dev);
665 
666 	DBPRINT(sc, BCE_EXTREME_LOAD,
667 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
668 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
669 
670 	/* Look through the list of known devices for a match. */
671 	while(t->bce_name != NULL) {
672 
673 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
674 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
675 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
676 
677 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
678 
679 			if (descbuf == NULL)
680 				return(ENOMEM);
681 
682 			/* Print out the device identity. */
683 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
684 			    t->bce_name, (((pci_read_config(dev,
685 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
686 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
687 
688 			device_set_desc_copy(dev, descbuf);
689 			free(descbuf, M_TEMP);
690 			return(BUS_PROBE_DEFAULT);
691 		}
692 		t++;
693 	}
694 
695 	return(ENXIO);
696 }
697 
698 
699 /****************************************************************************/
700 /* PCI Capabilities Probe Function.                                         */
701 /*                                                                          */
702 /* Walks the PCI capabiites list for the device to find what features are   */
703 /* supported.                                                               */
704 /*                                                                          */
705 /* Returns:                                                                 */
706 /*   None.                                                                  */
707 /****************************************************************************/
708 static void
709 bce_print_adapter_info(struct bce_softc *sc)
710 {
711 	int i = 0;
712 
713 	DBENTER(BCE_VERBOSE_LOAD);
714 
715 	if (bce_verbose || bootverbose) {
716 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
717 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
718 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
719 
720 
721 		/* Bus info. */
722 		if (sc->bce_flags & BCE_PCIE_FLAG) {
723 			printf("Bus (PCIe x%d, ", sc->link_width);
724 			switch (sc->link_speed) {
725 			case 1: printf("2.5Gbps); "); break;
726 			case 2:	printf("5Gbps); "); break;
727 			default: printf("Unknown link speed); ");
728 			}
729 		} else {
730 			printf("Bus (PCI%s, %s, %dMHz); ",
731 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
732 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
733 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
734 		}
735 
736 		/* Firmware version and device features. */
737 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
738 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
739 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
740 
741 		if (bce_hdr_split == TRUE) {
742 			printf("SPLT");
743 			i++;
744 		}
745 
746 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
747 			if (i > 0) printf("|");
748 			printf("MSI"); i++;
749 		}
750 
751 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
752 			if (i > 0) printf("|");
753 			printf("MSI-X"); i++;
754 		}
755 
756 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
757 			if (i > 0) printf("|");
758 			printf("2.5G"); i++;
759 		}
760 
761 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
762 			if (i > 0) printf("|");
763 			printf("Remote PHY(%s)",
764 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
765 			    "FIBER" : "TP"); i++;
766 		}
767 
768 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
769 			if (i > 0) printf("|");
770 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
771 		} else {
772 			printf(")\n");
773 		}
774 
775 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
776 		    sc->bce_rx_quick_cons_trip_int,
777 		    sc->bce_rx_quick_cons_trip,
778 		    sc->bce_rx_ticks_int,
779 		    sc->bce_rx_ticks,
780 		    sc->bce_tx_quick_cons_trip_int,
781 		    sc->bce_tx_quick_cons_trip,
782 		    sc->bce_tx_ticks_int,
783 		    sc->bce_tx_ticks);
784 
785 	}
786 
787 	DBEXIT(BCE_VERBOSE_LOAD);
788 }
789 
790 
791 /****************************************************************************/
792 /* PCI Capabilities Probe Function.                                         */
793 /*                                                                          */
794 /* Walks the PCI capabiites list for the device to find what features are   */
795 /* supported.                                                               */
796 /*                                                                          */
797 /* Returns:                                                                 */
798 /*   None.                                                                  */
799 /****************************************************************************/
800 static void
801 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
802 {
803 	u32 reg;
804 
805 	DBENTER(BCE_VERBOSE_LOAD);
806 
807 	/* Check if PCI-X capability is enabled. */
808 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
809 		if (reg != 0)
810 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
811 	}
812 
813 	/* Check if PCIe capability is enabled. */
814 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
815 		if (reg != 0) {
816 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
817 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
818 			    "0x%08X\n",	link_status);
819 			sc->link_speed = link_status & 0xf;
820 			sc->link_width = (link_status >> 4) & 0x3f;
821 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
822 			sc->bce_flags |= BCE_PCIE_FLAG;
823 		}
824 	}
825 
826 	/* Check if MSI capability is enabled. */
827 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
828 		if (reg != 0)
829 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
830 	}
831 
832 	/* Check if MSI-X capability is enabled. */
833 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
834 		if (reg != 0)
835 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
836 	}
837 
838 	DBEXIT(BCE_VERBOSE_LOAD);
839 }
840 
841 
842 /****************************************************************************/
843 /* Load and validate user tunable settings.                                 */
844 /*                                                                          */
845 /* Returns:                                                                 */
846 /*   Nothing.                                                               */
847 /****************************************************************************/
848 static void
849 bce_set_tunables(struct bce_softc *sc)
850 {
851 	/* Set sysctl values for RX page count. */
852 	switch (bce_rx_pages) {
853 	case 1:
854 		/* fall-through */
855 	case 2:
856 		/* fall-through */
857 	case 4:
858 		/* fall-through */
859 	case 8:
860 		sc->rx_pages = bce_rx_pages;
861 		break;
862 	default:
863 		sc->rx_pages = DEFAULT_RX_PAGES;
864 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
865 		    "hw.bce.rx_pages!  Setting default of %d.\n",
866 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
867 	}
868 
869 	/* ToDo: Consider allowing user setting for pg_pages. */
870 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
871 
872 	/* Set sysctl values for TX page count. */
873 	switch (bce_tx_pages) {
874 	case 1:
875 		/* fall-through */
876 	case 2:
877 		/* fall-through */
878 	case 4:
879 		/* fall-through */
880 	case 8:
881 		sc->tx_pages = bce_tx_pages;
882 		break;
883 	default:
884 		sc->tx_pages = DEFAULT_TX_PAGES;
885 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
886 		    "hw.bce.tx_pages!  Setting default of %d.\n",
887 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
888 	}
889 
890 	/*
891 	 * Validate the TX trip point (i.e. the number of
892 	 * TX completions before a status block update is
893 	 * generated and an interrupt is asserted.
894 	 */
895 	if (bce_tx_quick_cons_trip_int <= 100) {
896 		sc->bce_tx_quick_cons_trip_int =
897 		    bce_tx_quick_cons_trip_int;
898 	} else {
899 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
900 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
901 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
902 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
903 		sc->bce_tx_quick_cons_trip_int =
904 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
905 	}
906 
907 	if (bce_tx_quick_cons_trip <= 100) {
908 		sc->bce_tx_quick_cons_trip =
909 		    bce_tx_quick_cons_trip;
910 	} else {
911 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
912 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
913 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
914 		    DEFAULT_TX_QUICK_CONS_TRIP);
915 		sc->bce_tx_quick_cons_trip =
916 		    DEFAULT_TX_QUICK_CONS_TRIP;
917 	}
918 
919 	/*
920 	 * Validate the TX ticks count (i.e. the maximum amount
921 	 * of time to wait after the last TX completion has
922 	 * occurred before a status block update is generated
923 	 * and an interrupt is asserted.
924 	 */
925 	if (bce_tx_ticks_int <= 100) {
926 		sc->bce_tx_ticks_int =
927 		    bce_tx_ticks_int;
928 	} else {
929 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
930 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
931 		    __FILE__, __LINE__, bce_tx_ticks_int,
932 		    DEFAULT_TX_TICKS_INT);
933 		sc->bce_tx_ticks_int =
934 		    DEFAULT_TX_TICKS_INT;
935 	   }
936 
937 	if (bce_tx_ticks <= 100) {
938 		sc->bce_tx_ticks =
939 		    bce_tx_ticks;
940 	} else {
941 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
942 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
943 		    __FILE__, __LINE__, bce_tx_ticks,
944 		    DEFAULT_TX_TICKS);
945 		sc->bce_tx_ticks =
946 		    DEFAULT_TX_TICKS;
947 	}
948 
949 	/*
950 	 * Validate the RX trip point (i.e. the number of
951 	 * RX frames received before a status block update is
952 	 * generated and an interrupt is asserted.
953 	 */
954 	if (bce_rx_quick_cons_trip_int <= 100) {
955 		sc->bce_rx_quick_cons_trip_int =
956 		    bce_rx_quick_cons_trip_int;
957 	} else {
958 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
959 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
960 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
961 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
962 		sc->bce_rx_quick_cons_trip_int =
963 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
964 	}
965 
966 	if (bce_rx_quick_cons_trip <= 100) {
967 		sc->bce_rx_quick_cons_trip =
968 		    bce_rx_quick_cons_trip;
969 	} else {
970 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
971 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
972 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
973 		    DEFAULT_RX_QUICK_CONS_TRIP);
974 		sc->bce_rx_quick_cons_trip =
975 		    DEFAULT_RX_QUICK_CONS_TRIP;
976 	}
977 
978 	/*
979 	 * Validate the RX ticks count (i.e. the maximum amount
980 	 * of time to wait after the last RX frame has been
981 	 * received before a status block update is generated
982 	 * and an interrupt is asserted.
983 	 */
984 	if (bce_rx_ticks_int <= 100) {
985 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
986 	} else {
987 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
988 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
989 		    __FILE__, __LINE__, bce_rx_ticks_int,
990 		    DEFAULT_RX_TICKS_INT);
991 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
992 	}
993 
994 	if (bce_rx_ticks <= 100) {
995 		sc->bce_rx_ticks = bce_rx_ticks;
996 	} else {
997 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
998 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
999 		    __FILE__, __LINE__, bce_rx_ticks,
1000 		    DEFAULT_RX_TICKS);
1001 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1002 	}
1003 
1004 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1005 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1006 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1007 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1008 		   __FILE__, __LINE__);
1009 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1010 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1011 	}
1012 
1013 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1014 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1015 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1016 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1017 		   __FILE__, __LINE__);
1018 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1019 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1020 	}
1021 }
1022 
1023 
1024 /****************************************************************************/
1025 /* Device attach function.                                                  */
1026 /*                                                                          */
1027 /* Allocates device resources, performs secondary chip identification,      */
1028 /* resets and initializes the hardware, and initializes driver instance     */
1029 /* variables.                                                               */
1030 /*                                                                          */
1031 /* Returns:                                                                 */
1032 /*   0 on success, positive value on failure.                               */
1033 /****************************************************************************/
1034 static int
1035 bce_attach(device_t dev)
1036 {
1037 	struct bce_softc *sc;
1038 	struct ifnet *ifp;
1039 	u32 val;
1040 	int count, error, rc = 0, rid;
1041 
1042 	sc = device_get_softc(dev);
1043 	sc->bce_dev = dev;
1044 
1045 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1046 
1047 	sc->bce_unit = device_get_unit(dev);
1048 
1049 	/* Set initial device and PHY flags */
1050 	sc->bce_flags = 0;
1051 	sc->bce_phy_flags = 0;
1052 
1053 	bce_set_tunables(sc);
1054 
1055 	pci_enable_busmaster(dev);
1056 
1057 	/* Allocate PCI memory resources. */
1058 	rid = PCIR_BAR(0);
1059 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1060 		&rid, RF_ACTIVE);
1061 
1062 	if (sc->bce_res_mem == NULL) {
1063 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1064 		    __FILE__, __LINE__);
1065 		rc = ENXIO;
1066 		goto bce_attach_fail;
1067 	}
1068 
1069 	/* Get various resource handles. */
1070 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1071 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1072 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1073 
1074 	bce_probe_pci_caps(dev, sc);
1075 
1076 	rid = 1;
1077 	count = 0;
1078 #if 0
1079 	/* Try allocating MSI-X interrupts. */
1080 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1081 		(bce_msi_enable >= 2) &&
1082 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1083 		&rid, RF_ACTIVE)) != NULL)) {
1084 
1085 		msi_needed = count = 1;
1086 
1087 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1088 			(count != msi_needed)) {
1089 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1090 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1091 				msi_needed, count, error);
1092 			count = 0;
1093 			pci_release_msi(dev);
1094 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1095 				sc->bce_res_irq);
1096 			sc->bce_res_irq = NULL;
1097 		} else {
1098 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1099 				__FUNCTION__);
1100 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1101 		}
1102 	}
1103 #endif
1104 
1105 	/* Try allocating a MSI interrupt. */
1106 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1107 		(bce_msi_enable >= 1) && (count == 0)) {
1108 		count = 1;
1109 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1110 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1111 			    "error = %d\n", __FILE__, __LINE__, error);
1112 			count = 0;
1113 			pci_release_msi(dev);
1114 		} else {
1115 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1116 			    "interrupt.\n", __FUNCTION__);
1117 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1118 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1119 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1120 			rid = 1;
1121 		}
1122 	}
1123 
1124 	/* Try allocating a legacy interrupt. */
1125 	if (count == 0) {
1126 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1127 			__FUNCTION__);
1128 		rid = 0;
1129 	}
1130 
1131 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1132 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1133 
1134 	/* Report any IRQ allocation errors. */
1135 	if (sc->bce_res_irq == NULL) {
1136 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1137 		    __FILE__, __LINE__);
1138 		rc = ENXIO;
1139 		goto bce_attach_fail;
1140 	}
1141 
1142 	/* Initialize mutex for the current device instance. */
1143 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1144 
1145 	/*
1146 	 * Configure byte swap and enable indirect register access.
1147 	 * Rely on CPU to do target byte swapping on big endian systems.
1148 	 * Access to registers outside of PCI configurtion space are not
1149 	 * valid until this is done.
1150 	 */
1151 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1152 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1153 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1154 
1155 	/* Save ASIC revsion info. */
1156 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1157 
1158 	/* Weed out any non-production controller revisions. */
1159 	switch(BCE_CHIP_ID(sc)) {
1160 	case BCE_CHIP_ID_5706_A0:
1161 	case BCE_CHIP_ID_5706_A1:
1162 	case BCE_CHIP_ID_5708_A0:
1163 	case BCE_CHIP_ID_5708_B0:
1164 	case BCE_CHIP_ID_5709_A0:
1165 	case BCE_CHIP_ID_5709_B0:
1166 	case BCE_CHIP_ID_5709_B1:
1167 	case BCE_CHIP_ID_5709_B2:
1168 		BCE_PRINTF("%s(%d): Unsupported controller "
1169 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1170 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1171 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1172 		    PCIR_REVID, 4) & 0xf));
1173 		rc = ENODEV;
1174 		goto bce_attach_fail;
1175 	}
1176 
1177 	/*
1178 	 * The embedded PCIe to PCI-X bridge (EPB)
1179 	 * in the 5708 cannot address memory above
1180 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1181 	 */
1182 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1183 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1184 	else
1185 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1186 
1187 	/*
1188 	 * Find the base address for shared memory access.
1189 	 * Newer versions of bootcode use a signature and offset
1190 	 * while older versions use a fixed address.
1191 	 */
1192 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1193 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1194 		/* Multi-port devices use different offsets in shared memory. */
1195 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1196 		    (pci_get_function(sc->bce_dev) << 2));
1197 	else
1198 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1199 
1200 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1201 	    __FUNCTION__, sc->bce_shmem_base);
1202 
1203 	/* Fetch the bootcode revision. */
1204 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1205 	for (int i = 0, j = 0; i < 3; i++) {
1206 		u8 num;
1207 
1208 		num = (u8) (val >> (24 - (i * 8)));
1209 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1210 			if (num >= k || !skip0 || k == 1) {
1211 				sc->bce_bc_ver[j++] = (num / k) + '0';
1212 				skip0 = 0;
1213 			}
1214 		}
1215 
1216 		if (i != 2)
1217 			sc->bce_bc_ver[j++] = '.';
1218 	}
1219 
1220 	/* Check if any management firwmare is enabled. */
1221 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1222 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1223 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1224 
1225 		/* Allow time for firmware to enter the running state. */
1226 		for (int i = 0; i < 30; i++) {
1227 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1228 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1229 				break;
1230 			DELAY(10000);
1231 		}
1232 
1233 		/* Check if management firmware is running. */
1234 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1235 		val &= BCE_CONDITION_MFW_RUN_MASK;
1236 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1237 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1238 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1239 			int i = 0;
1240 
1241 			/* Read the management firmware version string. */
1242 			for (int j = 0; j < 3; j++) {
1243 				val = bce_reg_rd_ind(sc, addr + j * 4);
1244 				val = bswap32(val);
1245 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1246 				i += 4;
1247 			}
1248 		} else {
1249 			/* May cause firmware synchronization timeouts. */
1250 			BCE_PRINTF("%s(%d): Management firmware enabled "
1251 			    "but not running!\n", __FILE__, __LINE__);
1252 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1253 
1254 			/* ToDo: Any action the driver should take? */
1255 		}
1256 	}
1257 
1258 	/* Get PCI bus information (speed and type). */
1259 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1260 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1261 		u32 clkreg;
1262 
1263 		sc->bce_flags |= BCE_PCIX_FLAG;
1264 
1265 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1266 
1267 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1268 		switch (clkreg) {
1269 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1270 			sc->bus_speed_mhz = 133;
1271 			break;
1272 
1273 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1274 			sc->bus_speed_mhz = 100;
1275 			break;
1276 
1277 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1278 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1279 			sc->bus_speed_mhz = 66;
1280 			break;
1281 
1282 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1283 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1284 			sc->bus_speed_mhz = 50;
1285 			break;
1286 
1287 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1288 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1289 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1290 			sc->bus_speed_mhz = 33;
1291 			break;
1292 		}
1293 	} else {
1294 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1295 			sc->bus_speed_mhz = 66;
1296 		else
1297 			sc->bus_speed_mhz = 33;
1298 	}
1299 
1300 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1301 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1302 
1303 	/* Find the media type for the adapter. */
1304 	bce_get_media(sc);
1305 
1306 	/* Reset controller and announce to bootcode that driver is present. */
1307 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1308 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1309 		    __FILE__, __LINE__);
1310 		rc = ENXIO;
1311 		goto bce_attach_fail;
1312 	}
1313 
1314 	/* Initialize the controller. */
1315 	if (bce_chipinit(sc)) {
1316 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1317 		    __FILE__, __LINE__);
1318 		rc = ENXIO;
1319 		goto bce_attach_fail;
1320 	}
1321 
1322 	/* Perform NVRAM test. */
1323 	if (bce_nvram_test(sc)) {
1324 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1325 		    __FILE__, __LINE__);
1326 		rc = ENXIO;
1327 		goto bce_attach_fail;
1328 	}
1329 
1330 	/* Fetch the permanent Ethernet MAC address. */
1331 	bce_get_mac_addr(sc);
1332 
1333 	/* Update statistics once every second. */
1334 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1335 
1336 	/* Store data needed by PHY driver for backplane applications */
1337 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1338 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1339 
1340 	/* Allocate DMA memory resources. */
1341 	if (bce_dma_alloc(dev)) {
1342 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1343 		    __FILE__, __LINE__);
1344 		rc = ENXIO;
1345 		goto bce_attach_fail;
1346 	}
1347 
1348 	/* Allocate an ifnet structure. */
1349 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1350 	if (ifp == NULL) {
1351 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1352 		    __FILE__, __LINE__);
1353 		rc = ENXIO;
1354 		goto bce_attach_fail;
1355 	}
1356 
1357 	/* Initialize the ifnet interface. */
1358 	ifp->if_softc	= sc;
1359 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1360 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1361 	ifp->if_ioctl	= bce_ioctl;
1362 	ifp->if_start	= bce_start;
1363 	ifp->if_init	= bce_init;
1364 	ifp->if_mtu	= ETHERMTU;
1365 
1366 	if (bce_tso_enable) {
1367 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1368 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1369 		    IFCAP_VLAN_HWTSO;
1370 	} else {
1371 		ifp->if_hwassist = BCE_IF_HWASSIST;
1372 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1373 	}
1374 
1375 #if __FreeBSD_version >= 800505
1376 	/*
1377 	 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1378 	 * so it's approximate value.
1379 	 */
1380 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1381 		ifp->if_capabilities |= IFCAP_LINKSTATE;
1382 #endif
1383 
1384 	ifp->if_capenable = ifp->if_capabilities;
1385 
1386 	/*
1387 	 * Assume standard mbuf sizes for buffer allocation.
1388 	 * This may change later if the MTU size is set to
1389 	 * something other than 1500.
1390 	 */
1391 	bce_get_rx_buffer_sizes(sc,
1392 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1393 
1394 	/* Recalculate our buffer allocation sizes. */
1395 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1396 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1397 	IFQ_SET_READY(&ifp->if_snd);
1398 
1399 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1400 		ifp->if_baudrate = IF_Mbps(2500ULL);
1401 	else
1402 		ifp->if_baudrate = IF_Mbps(1000);
1403 
1404 	/* Handle any special PHY initialization for SerDes PHYs. */
1405 	bce_init_media(sc);
1406 
1407 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1408 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1409 		    bce_ifmedia_sts);
1410 		/*
1411 		 * We can't manually override remote PHY's link and assume
1412 		 * PHY port configuration(Fiber or TP) is not changed after
1413 		 * device attach.  This may not be correct though.
1414 		 */
1415 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1416 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1417 				ifmedia_add(&sc->bce_ifmedia,
1418 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1419 				ifmedia_add(&sc->bce_ifmedia,
1420 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1421 			}
1422 			ifmedia_add(&sc->bce_ifmedia,
1423 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1424 			ifmedia_add(&sc->bce_ifmedia,
1425 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1426 		} else {
1427 			ifmedia_add(&sc->bce_ifmedia,
1428 			    IFM_ETHER | IFM_10_T, 0, NULL);
1429 			ifmedia_add(&sc->bce_ifmedia,
1430 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1431 			ifmedia_add(&sc->bce_ifmedia,
1432 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1433 			ifmedia_add(&sc->bce_ifmedia,
1434 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1435 			ifmedia_add(&sc->bce_ifmedia,
1436 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1437 			ifmedia_add(&sc->bce_ifmedia,
1438 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1439 		}
1440 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1441 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1442 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1443 	} else {
1444 		/* MII child bus by attaching the PHY. */
1445 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1446 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1447 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1448 		if (rc != 0) {
1449 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1450 			    __LINE__);
1451 			goto bce_attach_fail;
1452 		}
1453 	}
1454 
1455 	/* Attach to the Ethernet interface list. */
1456 	ether_ifattach(ifp, sc->eaddr);
1457 
1458 #if __FreeBSD_version < 500000
1459 	callout_init(&sc->bce_tick_callout);
1460 	callout_init(&sc->bce_pulse_callout);
1461 #else
1462 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1463 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1464 #endif
1465 
1466 	/* Hookup IRQ last. */
1467 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1468 		NULL, bce_intr, sc, &sc->bce_intrhand);
1469 
1470 	if (rc) {
1471 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1472 		    __FILE__, __LINE__);
1473 		bce_detach(dev);
1474 		goto bce_attach_exit;
1475 	}
1476 
1477 	/*
1478 	 * At this point we've acquired all the resources
1479 	 * we need to run so there's no turning back, we're
1480 	 * cleared for launch.
1481 	 */
1482 
1483 	/* Print some important debugging info. */
1484 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1485 
1486 	/* Add the supported sysctls to the kernel. */
1487 	bce_add_sysctls(sc);
1488 
1489 	BCE_LOCK(sc);
1490 
1491 	/*
1492 	 * The chip reset earlier notified the bootcode that
1493 	 * a driver is present.  We now need to start our pulse
1494 	 * routine so that the bootcode is reminded that we're
1495 	 * still running.
1496 	 */
1497 	bce_pulse(sc);
1498 
1499 	bce_mgmt_init_locked(sc);
1500 	BCE_UNLOCK(sc);
1501 
1502 	/* Finally, print some useful adapter info */
1503 	bce_print_adapter_info(sc);
1504 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1505 		__FUNCTION__, sc);
1506 
1507 	goto bce_attach_exit;
1508 
1509 bce_attach_fail:
1510 	bce_release_resources(sc);
1511 
1512 bce_attach_exit:
1513 
1514 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1515 
1516 	return(rc);
1517 }
1518 
1519 
1520 /****************************************************************************/
1521 /* Device detach function.                                                  */
1522 /*                                                                          */
1523 /* Stops the controller, resets the controller, and releases resources.     */
1524 /*                                                                          */
1525 /* Returns:                                                                 */
1526 /*   0 on success, positive value on failure.                               */
1527 /****************************************************************************/
1528 static int
1529 bce_detach(device_t dev)
1530 {
1531 	struct bce_softc *sc = device_get_softc(dev);
1532 	struct ifnet *ifp;
1533 	u32 msg;
1534 
1535 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1536 
1537 	ifp = sc->bce_ifp;
1538 
1539 	/* Stop and reset the controller. */
1540 	BCE_LOCK(sc);
1541 
1542 	/* Stop the pulse so the bootcode can go to driver absent state. */
1543 	callout_stop(&sc->bce_pulse_callout);
1544 
1545 	bce_stop(sc);
1546 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1547 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1548 	else
1549 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1550 	bce_reset(sc, msg);
1551 
1552 	BCE_UNLOCK(sc);
1553 
1554 	ether_ifdetach(ifp);
1555 
1556 	/* If we have a child device on the MII bus remove it too. */
1557 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1558 		ifmedia_removeall(&sc->bce_ifmedia);
1559 	else {
1560 		bus_generic_detach(dev);
1561 		device_delete_child(dev, sc->bce_miibus);
1562 	}
1563 
1564 	/* Release all remaining resources. */
1565 	bce_release_resources(sc);
1566 
1567 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1568 
1569 	return(0);
1570 }
1571 
1572 
1573 /****************************************************************************/
1574 /* Device shutdown function.                                                */
1575 /*                                                                          */
1576 /* Stops and resets the controller.                                         */
1577 /*                                                                          */
1578 /* Returns:                                                                 */
1579 /*   0 on success, positive value on failure.                               */
1580 /****************************************************************************/
1581 static int
1582 bce_shutdown(device_t dev)
1583 {
1584 	struct bce_softc *sc = device_get_softc(dev);
1585 	u32 msg;
1586 
1587 	DBENTER(BCE_VERBOSE);
1588 
1589 	BCE_LOCK(sc);
1590 	bce_stop(sc);
1591 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1592 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1593 	else
1594 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1595 	bce_reset(sc, msg);
1596 	BCE_UNLOCK(sc);
1597 
1598 	DBEXIT(BCE_VERBOSE);
1599 
1600 	return (0);
1601 }
1602 
1603 
1604 #ifdef BCE_DEBUG
1605 /****************************************************************************/
1606 /* Register read.                                                           */
1607 /*                                                                          */
1608 /* Returns:                                                                 */
1609 /*   The value of the register.                                             */
1610 /****************************************************************************/
1611 static u32
1612 bce_reg_rd(struct bce_softc *sc, u32 offset)
1613 {
1614 	u32 val = REG_RD(sc, offset);
1615 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1616 		__FUNCTION__, offset, val);
1617 	return val;
1618 }
1619 
1620 
1621 /****************************************************************************/
1622 /* Register write (16 bit).                                                 */
1623 /*                                                                          */
1624 /* Returns:                                                                 */
1625 /*   Nothing.                                                               */
1626 /****************************************************************************/
1627 static void
1628 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1629 {
1630 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1631 		__FUNCTION__, offset, val);
1632 	REG_WR16(sc, offset, val);
1633 }
1634 
1635 
1636 /****************************************************************************/
1637 /* Register write.                                                          */
1638 /*                                                                          */
1639 /* Returns:                                                                 */
1640 /*   Nothing.                                                               */
1641 /****************************************************************************/
1642 static void
1643 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1644 {
1645 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1646 		__FUNCTION__, offset, val);
1647 	REG_WR(sc, offset, val);
1648 }
1649 #endif
1650 
1651 /****************************************************************************/
1652 /* Indirect register read.                                                  */
1653 /*                                                                          */
1654 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1655 /* configuration space.  Using this mechanism avoids issues with posted     */
1656 /* reads but is much slower than memory-mapped I/O.                         */
1657 /*                                                                          */
1658 /* Returns:                                                                 */
1659 /*   The value of the register.                                             */
1660 /****************************************************************************/
1661 static u32
1662 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1663 {
1664 	device_t dev;
1665 	dev = sc->bce_dev;
1666 
1667 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1668 #ifdef BCE_DEBUG
1669 	{
1670 		u32 val;
1671 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1672 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1673 			__FUNCTION__, offset, val);
1674 		return val;
1675 	}
1676 #else
1677 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1678 #endif
1679 }
1680 
1681 
1682 /****************************************************************************/
1683 /* Indirect register write.                                                 */
1684 /*                                                                          */
1685 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1686 /* configuration space.  Using this mechanism avoids issues with posted     */
1687 /* writes but is muchh slower than memory-mapped I/O.                       */
1688 /*                                                                          */
1689 /* Returns:                                                                 */
1690 /*   Nothing.                                                               */
1691 /****************************************************************************/
1692 static void
1693 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1694 {
1695 	device_t dev;
1696 	dev = sc->bce_dev;
1697 
1698 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1699 		__FUNCTION__, offset, val);
1700 
1701 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1702 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1703 }
1704 
1705 
1706 /****************************************************************************/
1707 /* Shared memory write.                                                     */
1708 /*                                                                          */
1709 /* Writes NetXtreme II shared memory region.                                */
1710 /*                                                                          */
1711 /* Returns:                                                                 */
1712 /*   Nothing.                                                               */
1713 /****************************************************************************/
1714 static void
1715 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1716 {
1717 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1718 	    "0x%08X\n",	__FUNCTION__, val, offset);
1719 
1720 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1721 }
1722 
1723 
1724 /****************************************************************************/
1725 /* Shared memory read.                                                      */
1726 /*                                                                          */
1727 /* Reads NetXtreme II shared memory region.                                 */
1728 /*                                                                          */
1729 /* Returns:                                                                 */
1730 /*   The 32 bit value read.                                                 */
1731 /****************************************************************************/
1732 static u32
1733 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1734 {
1735 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1736 
1737 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1738 	    "0x%08X\n",	__FUNCTION__, val, offset);
1739 
1740 	return val;
1741 }
1742 
1743 
1744 #ifdef BCE_DEBUG
1745 /****************************************************************************/
1746 /* Context memory read.                                                     */
1747 /*                                                                          */
1748 /* The NetXtreme II controller uses context memory to track connection      */
1749 /* information for L2 and higher network protocols.                         */
1750 /*                                                                          */
1751 /* Returns:                                                                 */
1752 /*   The requested 32 bit value of context memory.                          */
1753 /****************************************************************************/
1754 static u32
1755 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1756 {
1757 	u32 idx, offset, retry_cnt = 5, val;
1758 
1759 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1760 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1761 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1762 
1763 	offset = ctx_offset + cid_addr;
1764 
1765 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1766 
1767 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1768 
1769 		for (idx = 0; idx < retry_cnt; idx++) {
1770 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1771 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1772 				break;
1773 			DELAY(5);
1774 		}
1775 
1776 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1777 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1778 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1779 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1780 
1781 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1782 	} else {
1783 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1784 		val = REG_RD(sc, BCE_CTX_DATA);
1785 	}
1786 
1787 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1788 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1789 
1790 	return(val);
1791 }
1792 #endif
1793 
1794 
1795 /****************************************************************************/
1796 /* Context memory write.                                                    */
1797 /*                                                                          */
1798 /* The NetXtreme II controller uses context memory to track connection      */
1799 /* information for L2 and higher network protocols.                         */
1800 /*                                                                          */
1801 /* Returns:                                                                 */
1802 /*   Nothing.                                                               */
1803 /****************************************************************************/
1804 static void
1805 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1806 {
1807 	u32 idx, offset = ctx_offset + cid_addr;
1808 	u32 val, retry_cnt = 5;
1809 
1810 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1811 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1812 
1813 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1814 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1815 		    __FUNCTION__, cid_addr));
1816 
1817 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1818 
1819 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1820 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1821 
1822 		for (idx = 0; idx < retry_cnt; idx++) {
1823 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1824 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1825 				break;
1826 			DELAY(5);
1827 		}
1828 
1829 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1830 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1831 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1832 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1833 
1834 	} else {
1835 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1836 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1837 	}
1838 }
1839 
1840 
1841 /****************************************************************************/
1842 /* PHY register read.                                                       */
1843 /*                                                                          */
1844 /* Implements register reads on the MII bus.                                */
1845 /*                                                                          */
1846 /* Returns:                                                                 */
1847 /*   The value of the register.                                             */
1848 /****************************************************************************/
1849 static int
1850 bce_miibus_read_reg(device_t dev, int phy, int reg)
1851 {
1852 	struct bce_softc *sc;
1853 	u32 val;
1854 	int i;
1855 
1856 	sc = device_get_softc(dev);
1857 
1858     /*
1859      * The 5709S PHY is an IEEE Clause 45 PHY
1860      * with special mappings to work with IEEE
1861      * Clause 22 register accesses.
1862      */
1863 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1864 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1865 			reg += 0x10;
1866 	}
1867 
1868     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1869 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1870 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1871 
1872 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1873 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1874 
1875 		DELAY(40);
1876 	}
1877 
1878 
1879 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1880 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1881 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1882 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1883 
1884 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1885 		DELAY(10);
1886 
1887 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1888 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1889 			DELAY(5);
1890 
1891 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1892 			val &= BCE_EMAC_MDIO_COMM_DATA;
1893 
1894 			break;
1895 		}
1896 	}
1897 
1898 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1899 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1900 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1901 		val = 0x0;
1902 	} else {
1903 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1904 	}
1905 
1906 
1907 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1908 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1909 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1910 
1911 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1912 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1913 
1914 		DELAY(40);
1915 	}
1916 
1917 	DB_PRINT_PHY_REG(reg, val);
1918 	return (val & 0xffff);
1919 }
1920 
1921 
1922 /****************************************************************************/
1923 /* PHY register write.                                                      */
1924 /*                                                                          */
1925 /* Implements register writes on the MII bus.                               */
1926 /*                                                                          */
1927 /* Returns:                                                                 */
1928 /*   The value of the register.                                             */
1929 /****************************************************************************/
1930 static int
1931 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1932 {
1933 	struct bce_softc *sc;
1934 	u32 val1;
1935 	int i;
1936 
1937 	sc = device_get_softc(dev);
1938 
1939 	DB_PRINT_PHY_REG(reg, val);
1940 
1941 	/*
1942 	 * The 5709S PHY is an IEEE Clause 45 PHY
1943 	 * with special mappings to work with IEEE
1944 	 * Clause 22 register accesses.
1945 	 */
1946 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1947 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1948 			reg += 0x10;
1949 	}
1950 
1951 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1952 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1953 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1954 
1955 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1956 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1957 
1958 		DELAY(40);
1959 	}
1960 
1961 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1962 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1963 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1964 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1965 
1966 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1967 		DELAY(10);
1968 
1969 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1970 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1971 			DELAY(5);
1972 			break;
1973 		}
1974 	}
1975 
1976 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1977 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1978 		    __FILE__, __LINE__);
1979 
1980 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1981 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1982 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1983 
1984 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1985 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1986 
1987 		DELAY(40);
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 
1994 /****************************************************************************/
1995 /* MII bus status change.                                                   */
1996 /*                                                                          */
1997 /* Called by the MII bus driver when the PHY establishes link to set the    */
1998 /* MAC interface registers.                                                 */
1999 /*                                                                          */
2000 /* Returns:                                                                 */
2001 /*   Nothing.                                                               */
2002 /****************************************************************************/
2003 static void
2004 bce_miibus_statchg(device_t dev)
2005 {
2006 	struct bce_softc *sc;
2007 	struct mii_data *mii;
2008 	struct ifmediareq ifmr;
2009 	int media_active, media_status, val;
2010 
2011 	sc = device_get_softc(dev);
2012 
2013 	DBENTER(BCE_VERBOSE_PHY);
2014 
2015 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2016 		bzero(&ifmr, sizeof(ifmr));
2017 		bce_ifmedia_sts_rphy(sc, &ifmr);
2018 		media_active = ifmr.ifm_active;
2019 		media_status = ifmr.ifm_status;
2020 	} else {
2021 		mii = device_get_softc(sc->bce_miibus);
2022 		media_active = mii->mii_media_active;
2023 		media_status = mii->mii_media_status;
2024 	}
2025 
2026 	/* Ignore invalid media status. */
2027 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2028 	    (IFM_ACTIVE | IFM_AVALID))
2029 		goto bce_miibus_statchg_exit;
2030 
2031 	val = REG_RD(sc, BCE_EMAC_MODE);
2032 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2033 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2034 	    BCE_EMAC_MODE_25G);
2035 
2036 	/* Set MII or GMII interface based on the PHY speed. */
2037 	switch (IFM_SUBTYPE(media_active)) {
2038 	case IFM_10_T:
2039 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2040 			DBPRINT(sc, BCE_INFO_PHY,
2041 			    "Enabling 10Mb interface.\n");
2042 			val |= BCE_EMAC_MODE_PORT_MII_10;
2043 			break;
2044 		}
2045 		/* fall-through */
2046 	case IFM_100_TX:
2047 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2048 		val |= BCE_EMAC_MODE_PORT_MII;
2049 		break;
2050 	case IFM_2500_SX:
2051 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2052 		val |= BCE_EMAC_MODE_25G;
2053 		/* fall-through */
2054 	case IFM_1000_T:
2055 	case IFM_1000_SX:
2056 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2057 		val |= BCE_EMAC_MODE_PORT_GMII;
2058 		break;
2059 	default:
2060 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2061 		    "default GMII interface.\n");
2062 		val |= BCE_EMAC_MODE_PORT_GMII;
2063 	}
2064 
2065 	/* Set half or full duplex based on PHY settings. */
2066 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2067 		DBPRINT(sc, BCE_INFO_PHY,
2068 		    "Setting Half-Duplex interface.\n");
2069 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2070 	} else
2071 		DBPRINT(sc, BCE_INFO_PHY,
2072 		    "Setting Full-Duplex interface.\n");
2073 
2074 	REG_WR(sc, BCE_EMAC_MODE, val);
2075 
2076 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2077 		DBPRINT(sc, BCE_INFO_PHY,
2078 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2079 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2080 		sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2081 	} else {
2082 		DBPRINT(sc, BCE_INFO_PHY,
2083 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2084 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2085 		sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2086 	}
2087 
2088 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2089 		DBPRINT(sc, BCE_INFO_PHY,
2090 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2091 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2092 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2093 	} else {
2094 		DBPRINT(sc, BCE_INFO_PHY,
2095 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2096 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2097 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2098 	}
2099 
2100 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2101 
2102 bce_miibus_statchg_exit:
2103 	DBEXIT(BCE_VERBOSE_PHY);
2104 }
2105 
2106 
2107 /****************************************************************************/
2108 /* Acquire NVRAM lock.                                                      */
2109 /*                                                                          */
2110 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2111 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2112 /* for use by the driver.                                                   */
2113 /*                                                                          */
2114 /* Returns:                                                                 */
2115 /*   0 on success, positive value on failure.                               */
2116 /****************************************************************************/
2117 static int
2118 bce_acquire_nvram_lock(struct bce_softc *sc)
2119 {
2120 	u32 val;
2121 	int j, rc = 0;
2122 
2123 	DBENTER(BCE_VERBOSE_NVRAM);
2124 
2125 	/* Request access to the flash interface. */
2126 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2127 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2128 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2129 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2130 			break;
2131 
2132 		DELAY(5);
2133 	}
2134 
2135 	if (j >= NVRAM_TIMEOUT_COUNT) {
2136 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2137 		rc = EBUSY;
2138 	}
2139 
2140 	DBEXIT(BCE_VERBOSE_NVRAM);
2141 	return (rc);
2142 }
2143 
2144 
2145 /****************************************************************************/
2146 /* Release NVRAM lock.                                                      */
2147 /*                                                                          */
2148 /* When the caller is finished accessing NVRAM the lock must be released.   */
2149 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2150 /* for use by the driver.                                                   */
2151 /*                                                                          */
2152 /* Returns:                                                                 */
2153 /*   0 on success, positive value on failure.                               */
2154 /****************************************************************************/
2155 static int
2156 bce_release_nvram_lock(struct bce_softc *sc)
2157 {
2158 	u32 val;
2159 	int j, rc = 0;
2160 
2161 	DBENTER(BCE_VERBOSE_NVRAM);
2162 
2163 	/*
2164 	 * Relinquish nvram interface.
2165 	 */
2166 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2167 
2168 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2169 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2170 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2171 			break;
2172 
2173 		DELAY(5);
2174 	}
2175 
2176 	if (j >= NVRAM_TIMEOUT_COUNT) {
2177 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2178 		rc = EBUSY;
2179 	}
2180 
2181 	DBEXIT(BCE_VERBOSE_NVRAM);
2182 	return (rc);
2183 }
2184 
2185 
2186 #ifdef BCE_NVRAM_WRITE_SUPPORT
2187 /****************************************************************************/
2188 /* Enable NVRAM write access.                                               */
2189 /*                                                                          */
2190 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2191 /*                                                                          */
2192 /* Returns:                                                                 */
2193 /*   0 on success, positive value on failure.                               */
2194 /****************************************************************************/
2195 static int
2196 bce_enable_nvram_write(struct bce_softc *sc)
2197 {
2198 	u32 val;
2199 	int rc = 0;
2200 
2201 	DBENTER(BCE_VERBOSE_NVRAM);
2202 
2203 	val = REG_RD(sc, BCE_MISC_CFG);
2204 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2205 
2206 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2207 		int j;
2208 
2209 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2210 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2211 
2212 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2213 			DELAY(5);
2214 
2215 			val = REG_RD(sc, BCE_NVM_COMMAND);
2216 			if (val & BCE_NVM_COMMAND_DONE)
2217 				break;
2218 		}
2219 
2220 		if (j >= NVRAM_TIMEOUT_COUNT) {
2221 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2222 			rc = EBUSY;
2223 		}
2224 	}
2225 
2226 	DBENTER(BCE_VERBOSE_NVRAM);
2227 	return (rc);
2228 }
2229 
2230 
2231 /****************************************************************************/
2232 /* Disable NVRAM write access.                                              */
2233 /*                                                                          */
2234 /* When the caller is finished writing to NVRAM write access must be        */
2235 /* disabled.                                                                */
2236 /*                                                                          */
2237 /* Returns:                                                                 */
2238 /*   Nothing.                                                               */
2239 /****************************************************************************/
2240 static void
2241 bce_disable_nvram_write(struct bce_softc *sc)
2242 {
2243 	u32 val;
2244 
2245 	DBENTER(BCE_VERBOSE_NVRAM);
2246 
2247 	val = REG_RD(sc, BCE_MISC_CFG);
2248 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2249 
2250 	DBEXIT(BCE_VERBOSE_NVRAM);
2251 
2252 }
2253 #endif
2254 
2255 
2256 /****************************************************************************/
2257 /* Enable NVRAM access.                                                     */
2258 /*                                                                          */
2259 /* Before accessing NVRAM for read or write operations the caller must      */
2260 /* enabled NVRAM access.                                                    */
2261 /*                                                                          */
2262 /* Returns:                                                                 */
2263 /*   Nothing.                                                               */
2264 /****************************************************************************/
2265 static void
2266 bce_enable_nvram_access(struct bce_softc *sc)
2267 {
2268 	u32 val;
2269 
2270 	DBENTER(BCE_VERBOSE_NVRAM);
2271 
2272 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2273 	/* Enable both bits, even on read. */
2274 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2275 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2276 
2277 	DBEXIT(BCE_VERBOSE_NVRAM);
2278 }
2279 
2280 
2281 /****************************************************************************/
2282 /* Disable NVRAM access.                                                    */
2283 /*                                                                          */
2284 /* When the caller is finished accessing NVRAM access must be disabled.     */
2285 /*                                                                          */
2286 /* Returns:                                                                 */
2287 /*   Nothing.                                                               */
2288 /****************************************************************************/
2289 static void
2290 bce_disable_nvram_access(struct bce_softc *sc)
2291 {
2292 	u32 val;
2293 
2294 	DBENTER(BCE_VERBOSE_NVRAM);
2295 
2296 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2297 
2298 	/* Disable both bits, even after read. */
2299 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2300 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2301 
2302 	DBEXIT(BCE_VERBOSE_NVRAM);
2303 }
2304 
2305 
2306 #ifdef BCE_NVRAM_WRITE_SUPPORT
2307 /****************************************************************************/
2308 /* Erase NVRAM page before writing.                                         */
2309 /*                                                                          */
2310 /* Non-buffered flash parts require that a page be erased before it is      */
2311 /* written.                                                                 */
2312 /*                                                                          */
2313 /* Returns:                                                                 */
2314 /*   0 on success, positive value on failure.                               */
2315 /****************************************************************************/
2316 static int
2317 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2318 {
2319 	u32 cmd;
2320 	int j, rc = 0;
2321 
2322 	DBENTER(BCE_VERBOSE_NVRAM);
2323 
2324 	/* Buffered flash doesn't require an erase. */
2325 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2326 		goto bce_nvram_erase_page_exit;
2327 
2328 	/* Build an erase command. */
2329 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2330 	    BCE_NVM_COMMAND_DOIT;
2331 
2332 	/*
2333 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2334 	 * and issue the erase command.
2335 	 */
2336 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2337 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2338 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2339 
2340 	/* Wait for completion. */
2341 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2342 		u32 val;
2343 
2344 		DELAY(5);
2345 
2346 		val = REG_RD(sc, BCE_NVM_COMMAND);
2347 		if (val & BCE_NVM_COMMAND_DONE)
2348 			break;
2349 	}
2350 
2351 	if (j >= NVRAM_TIMEOUT_COUNT) {
2352 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2353 		rc = EBUSY;
2354 	}
2355 
2356 bce_nvram_erase_page_exit:
2357 	DBEXIT(BCE_VERBOSE_NVRAM);
2358 	return (rc);
2359 }
2360 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2361 
2362 
2363 /****************************************************************************/
2364 /* Read a dword (32 bits) from NVRAM.                                       */
2365 /*                                                                          */
2366 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2367 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2368 /*                                                                          */
2369 /* Returns:                                                                 */
2370 /*   0 on success and the 32 bit value read, positive value on failure.     */
2371 /****************************************************************************/
2372 static int
2373 bce_nvram_read_dword(struct bce_softc *sc,
2374     u32 offset, u8 *ret_val, u32 cmd_flags)
2375 {
2376 	u32 cmd;
2377 	int i, rc = 0;
2378 
2379 	DBENTER(BCE_EXTREME_NVRAM);
2380 
2381 	/* Build the command word. */
2382 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2383 
2384 	/* Calculate the offset for buffered flash if translation is used. */
2385 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2386 		offset = ((offset / sc->bce_flash_info->page_size) <<
2387 		    sc->bce_flash_info->page_bits) +
2388 		    (offset % sc->bce_flash_info->page_size);
2389 	}
2390 
2391 	/*
2392 	 * Clear the DONE bit separately, set the address to read,
2393 	 * and issue the read.
2394 	 */
2395 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2396 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2397 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2398 
2399 	/* Wait for completion. */
2400 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2401 		u32 val;
2402 
2403 		DELAY(5);
2404 
2405 		val = REG_RD(sc, BCE_NVM_COMMAND);
2406 		if (val & BCE_NVM_COMMAND_DONE) {
2407 			val = REG_RD(sc, BCE_NVM_READ);
2408 
2409 			val = bce_be32toh(val);
2410 			memcpy(ret_val, &val, 4);
2411 			break;
2412 		}
2413 	}
2414 
2415 	/* Check for errors. */
2416 	if (i >= NVRAM_TIMEOUT_COUNT) {
2417 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2418 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2419 		rc = EBUSY;
2420 	}
2421 
2422 	DBEXIT(BCE_EXTREME_NVRAM);
2423 	return(rc);
2424 }
2425 
2426 
2427 #ifdef BCE_NVRAM_WRITE_SUPPORT
2428 /****************************************************************************/
2429 /* Write a dword (32 bits) to NVRAM.                                        */
2430 /*                                                                          */
2431 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2432 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2433 /* enabled NVRAM write access.                                              */
2434 /*                                                                          */
2435 /* Returns:                                                                 */
2436 /*   0 on success, positive value on failure.                               */
2437 /****************************************************************************/
2438 static int
2439 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2440 	u32 cmd_flags)
2441 {
2442 	u32 cmd, val32;
2443 	int j, rc = 0;
2444 
2445 	DBENTER(BCE_VERBOSE_NVRAM);
2446 
2447 	/* Build the command word. */
2448 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2449 
2450 	/* Calculate the offset for buffered flash if translation is used. */
2451 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2452 		offset = ((offset / sc->bce_flash_info->page_size) <<
2453 		    sc->bce_flash_info->page_bits) +
2454 		    (offset % sc->bce_flash_info->page_size);
2455 	}
2456 
2457 	/*
2458 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2459 	 * set the NVRAM address to write, and issue the write command
2460 	 */
2461 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2462 	memcpy(&val32, val, 4);
2463 	val32 = htobe32(val32);
2464 	REG_WR(sc, BCE_NVM_WRITE, val32);
2465 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2466 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2467 
2468 	/* Wait for completion. */
2469 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2470 		DELAY(5);
2471 
2472 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2473 			break;
2474 	}
2475 	if (j >= NVRAM_TIMEOUT_COUNT) {
2476 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2477 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2478 		rc = EBUSY;
2479 	}
2480 
2481 	DBEXIT(BCE_VERBOSE_NVRAM);
2482 	return (rc);
2483 }
2484 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2485 
2486 
2487 /****************************************************************************/
2488 /* Initialize NVRAM access.                                                 */
2489 /*                                                                          */
2490 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2491 /* access that device.                                                      */
2492 /*                                                                          */
2493 /* Returns:                                                                 */
2494 /*   0 on success, positive value on failure.                               */
2495 /****************************************************************************/
2496 static int
2497 bce_init_nvram(struct bce_softc *sc)
2498 {
2499 	u32 val;
2500 	int j, entry_count, rc = 0;
2501 	const struct flash_spec *flash;
2502 
2503 	DBENTER(BCE_VERBOSE_NVRAM);
2504 
2505 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2506 		sc->bce_flash_info = &flash_5709;
2507 		goto bce_init_nvram_get_flash_size;
2508 	}
2509 
2510 	/* Determine the selected interface. */
2511 	val = REG_RD(sc, BCE_NVM_CFG1);
2512 
2513 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2514 
2515 	/*
2516 	 * Flash reconfiguration is required to support additional
2517 	 * NVRAM devices not directly supported in hardware.
2518 	 * Check if the flash interface was reconfigured
2519 	 * by the bootcode.
2520 	 */
2521 
2522 	if (val & 0x40000000) {
2523 		/* Flash interface reconfigured by bootcode. */
2524 
2525 		DBPRINT(sc,BCE_INFO_LOAD,
2526 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2527 
2528 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2529 		     j++, flash++) {
2530 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2531 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2532 				sc->bce_flash_info = flash;
2533 				break;
2534 			}
2535 		}
2536 	} else {
2537 		/* Flash interface not yet reconfigured. */
2538 		u32 mask;
2539 
2540 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2541 			__FUNCTION__);
2542 
2543 		if (val & (1 << 23))
2544 			mask = FLASH_BACKUP_STRAP_MASK;
2545 		else
2546 			mask = FLASH_STRAP_MASK;
2547 
2548 		/* Look for the matching NVRAM device configuration data. */
2549 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2550 
2551 			/* Check if the device matches any of the known devices. */
2552 			if ((val & mask) == (flash->strapping & mask)) {
2553 				/* Found a device match. */
2554 				sc->bce_flash_info = flash;
2555 
2556 				/* Request access to the flash interface. */
2557 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2558 					return rc;
2559 
2560 				/* Reconfigure the flash interface. */
2561 				bce_enable_nvram_access(sc);
2562 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2563 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2564 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2565 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2566 				bce_disable_nvram_access(sc);
2567 				bce_release_nvram_lock(sc);
2568 
2569 				break;
2570 			}
2571 		}
2572 	}
2573 
2574 	/* Check if a matching device was found. */
2575 	if (j == entry_count) {
2576 		sc->bce_flash_info = NULL;
2577 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2578 		    __FILE__, __LINE__);
2579 		DBEXIT(BCE_VERBOSE_NVRAM);
2580 		return (ENODEV);
2581 	}
2582 
2583 bce_init_nvram_get_flash_size:
2584 	/* Write the flash config data to the shared memory interface. */
2585 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2586 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2587 	if (val)
2588 		sc->bce_flash_size = val;
2589 	else
2590 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2591 
2592 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2593 	    __FUNCTION__, sc->bce_flash_info->name,
2594 	    sc->bce_flash_info->total_size);
2595 
2596 	DBEXIT(BCE_VERBOSE_NVRAM);
2597 	return rc;
2598 }
2599 
2600 
2601 /****************************************************************************/
2602 /* Read an arbitrary range of data from NVRAM.                              */
2603 /*                                                                          */
2604 /* Prepares the NVRAM interface for access and reads the requested data     */
2605 /* into the supplied buffer.                                                */
2606 /*                                                                          */
2607 /* Returns:                                                                 */
2608 /*   0 on success and the data read, positive value on failure.             */
2609 /****************************************************************************/
2610 static int
2611 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2612 	int buf_size)
2613 {
2614 	int rc = 0;
2615 	u32 cmd_flags, offset32, len32, extra;
2616 
2617 	DBENTER(BCE_VERBOSE_NVRAM);
2618 
2619 	if (buf_size == 0)
2620 		goto bce_nvram_read_exit;
2621 
2622 	/* Request access to the flash interface. */
2623 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2624 		goto bce_nvram_read_exit;
2625 
2626 	/* Enable access to flash interface */
2627 	bce_enable_nvram_access(sc);
2628 
2629 	len32 = buf_size;
2630 	offset32 = offset;
2631 	extra = 0;
2632 
2633 	cmd_flags = 0;
2634 
2635 	if (offset32 & 3) {
2636 		u8 buf[4];
2637 		u32 pre_len;
2638 
2639 		offset32 &= ~3;
2640 		pre_len = 4 - (offset & 3);
2641 
2642 		if (pre_len >= len32) {
2643 			pre_len = len32;
2644 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2645 		}
2646 		else {
2647 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2648 		}
2649 
2650 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2651 
2652 		if (rc)
2653 			return rc;
2654 
2655 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2656 
2657 		offset32 += 4;
2658 		ret_buf += pre_len;
2659 		len32 -= pre_len;
2660 	}
2661 
2662 	if (len32 & 3) {
2663 		extra = 4 - (len32 & 3);
2664 		len32 = (len32 + 4) & ~3;
2665 	}
2666 
2667 	if (len32 == 4) {
2668 		u8 buf[4];
2669 
2670 		if (cmd_flags)
2671 			cmd_flags = BCE_NVM_COMMAND_LAST;
2672 		else
2673 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2674 				    BCE_NVM_COMMAND_LAST;
2675 
2676 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2677 
2678 		memcpy(ret_buf, buf, 4 - extra);
2679 	}
2680 	else if (len32 > 0) {
2681 		u8 buf[4];
2682 
2683 		/* Read the first word. */
2684 		if (cmd_flags)
2685 			cmd_flags = 0;
2686 		else
2687 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2688 
2689 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2690 
2691 		/* Advance to the next dword. */
2692 		offset32 += 4;
2693 		ret_buf += 4;
2694 		len32 -= 4;
2695 
2696 		while (len32 > 4 && rc == 0) {
2697 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2698 
2699 			/* Advance to the next dword. */
2700 			offset32 += 4;
2701 			ret_buf += 4;
2702 			len32 -= 4;
2703 		}
2704 
2705 		if (rc)
2706 			goto bce_nvram_read_locked_exit;
2707 
2708 		cmd_flags = BCE_NVM_COMMAND_LAST;
2709 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2710 
2711 		memcpy(ret_buf, buf, 4 - extra);
2712 	}
2713 
2714 bce_nvram_read_locked_exit:
2715 	/* Disable access to flash interface and release the lock. */
2716 	bce_disable_nvram_access(sc);
2717 	bce_release_nvram_lock(sc);
2718 
2719 bce_nvram_read_exit:
2720 	DBEXIT(BCE_VERBOSE_NVRAM);
2721 	return rc;
2722 }
2723 
2724 
2725 #ifdef BCE_NVRAM_WRITE_SUPPORT
2726 /****************************************************************************/
2727 /* Write an arbitrary range of data from NVRAM.                             */
2728 /*                                                                          */
2729 /* Prepares the NVRAM interface for write access and writes the requested   */
2730 /* data from the supplied buffer.  The caller is responsible for            */
2731 /* calculating any appropriate CRCs.                                        */
2732 /*                                                                          */
2733 /* Returns:                                                                 */
2734 /*   0 on success, positive value on failure.                               */
2735 /****************************************************************************/
2736 static int
2737 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2738 	int buf_size)
2739 {
2740 	u32 written, offset32, len32;
2741 	u8 *buf, start[4], end[4];
2742 	int rc = 0;
2743 	int align_start, align_end;
2744 
2745 	DBENTER(BCE_VERBOSE_NVRAM);
2746 
2747 	buf = data_buf;
2748 	offset32 = offset;
2749 	len32 = buf_size;
2750 	align_start = align_end = 0;
2751 
2752 	if ((align_start = (offset32 & 3))) {
2753 		offset32 &= ~3;
2754 		len32 += align_start;
2755 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2756 			goto bce_nvram_write_exit;
2757 	}
2758 
2759 	if (len32 & 3) {
2760 	       	if ((len32 > 4) || !align_start) {
2761 			align_end = 4 - (len32 & 3);
2762 			len32 += align_end;
2763 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2764 				end, 4))) {
2765 				goto bce_nvram_write_exit;
2766 			}
2767 		}
2768 	}
2769 
2770 	if (align_start || align_end) {
2771 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2772 		if (buf == 0) {
2773 			rc = ENOMEM;
2774 			goto bce_nvram_write_exit;
2775 		}
2776 
2777 		if (align_start) {
2778 			memcpy(buf, start, 4);
2779 		}
2780 
2781 		if (align_end) {
2782 			memcpy(buf + len32 - 4, end, 4);
2783 		}
2784 		memcpy(buf + align_start, data_buf, buf_size);
2785 	}
2786 
2787 	written = 0;
2788 	while ((written < len32) && (rc == 0)) {
2789 		u32 page_start, page_end, data_start, data_end;
2790 		u32 addr, cmd_flags;
2791 		int i;
2792 		u8 flash_buffer[264];
2793 
2794 	    /* Find the page_start addr */
2795 		page_start = offset32 + written;
2796 		page_start -= (page_start % sc->bce_flash_info->page_size);
2797 		/* Find the page_end addr */
2798 		page_end = page_start + sc->bce_flash_info->page_size;
2799 		/* Find the data_start addr */
2800 		data_start = (written == 0) ? offset32 : page_start;
2801 		/* Find the data_end addr */
2802 		data_end = (page_end > offset32 + len32) ?
2803 			(offset32 + len32) : page_end;
2804 
2805 		/* Request access to the flash interface. */
2806 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2807 			goto bce_nvram_write_exit;
2808 
2809 		/* Enable access to flash interface */
2810 		bce_enable_nvram_access(sc);
2811 
2812 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2813 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2814 			int j;
2815 
2816 			/* Read the whole page into the buffer
2817 			 * (non-buffer flash only) */
2818 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2819 				if (j == (sc->bce_flash_info->page_size - 4)) {
2820 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2821 				}
2822 				rc = bce_nvram_read_dword(sc,
2823 					page_start + j,
2824 					&flash_buffer[j],
2825 					cmd_flags);
2826 
2827 				if (rc)
2828 					goto bce_nvram_write_locked_exit;
2829 
2830 				cmd_flags = 0;
2831 			}
2832 		}
2833 
2834 		/* Enable writes to flash interface (unlock write-protect) */
2835 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2836 			goto bce_nvram_write_locked_exit;
2837 
2838 		/* Erase the page */
2839 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2840 			goto bce_nvram_write_locked_exit;
2841 
2842 		/* Re-enable the write again for the actual write */
2843 		bce_enable_nvram_write(sc);
2844 
2845 		/* Loop to write back the buffer data from page_start to
2846 		 * data_start */
2847 		i = 0;
2848 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2849 			for (addr = page_start; addr < data_start;
2850 				addr += 4, i += 4) {
2851 
2852 				rc = bce_nvram_write_dword(sc, addr,
2853 					&flash_buffer[i], cmd_flags);
2854 
2855 				if (rc != 0)
2856 					goto bce_nvram_write_locked_exit;
2857 
2858 				cmd_flags = 0;
2859 			}
2860 		}
2861 
2862 		/* Loop to write the new data from data_start to data_end */
2863 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2864 			if ((addr == page_end - 4) ||
2865 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2866 				(addr == data_end - 4))) {
2867 
2868 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2869 			}
2870 			rc = bce_nvram_write_dword(sc, addr, buf,
2871 				cmd_flags);
2872 
2873 			if (rc != 0)
2874 				goto bce_nvram_write_locked_exit;
2875 
2876 			cmd_flags = 0;
2877 			buf += 4;
2878 		}
2879 
2880 		/* Loop to write back the buffer data from data_end
2881 		 * to page_end */
2882 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2883 			for (addr = data_end; addr < page_end;
2884 				addr += 4, i += 4) {
2885 
2886 				if (addr == page_end-4) {
2887 					cmd_flags = BCE_NVM_COMMAND_LAST;
2888                 		}
2889 				rc = bce_nvram_write_dword(sc, addr,
2890 					&flash_buffer[i], cmd_flags);
2891 
2892 				if (rc != 0)
2893 					goto bce_nvram_write_locked_exit;
2894 
2895 				cmd_flags = 0;
2896 			}
2897 		}
2898 
2899 		/* Disable writes to flash interface (lock write-protect) */
2900 		bce_disable_nvram_write(sc);
2901 
2902 		/* Disable access to flash interface */
2903 		bce_disable_nvram_access(sc);
2904 		bce_release_nvram_lock(sc);
2905 
2906 		/* Increment written */
2907 		written += data_end - data_start;
2908 	}
2909 
2910 	goto bce_nvram_write_exit;
2911 
2912 bce_nvram_write_locked_exit:
2913 	bce_disable_nvram_write(sc);
2914 	bce_disable_nvram_access(sc);
2915 	bce_release_nvram_lock(sc);
2916 
2917 bce_nvram_write_exit:
2918 	if (align_start || align_end)
2919 		free(buf, M_DEVBUF);
2920 
2921 	DBEXIT(BCE_VERBOSE_NVRAM);
2922 	return (rc);
2923 }
2924 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2925 
2926 
2927 /****************************************************************************/
2928 /* Verifies that NVRAM is accessible and contains valid data.               */
2929 /*                                                                          */
2930 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2931 /* correct.                                                                 */
2932 /*                                                                          */
2933 /* Returns:                                                                 */
2934 /*   0 on success, positive value on failure.                               */
2935 /****************************************************************************/
2936 static int
2937 bce_nvram_test(struct bce_softc *sc)
2938 {
2939 	u32 buf[BCE_NVRAM_SIZE / 4];
2940 	u8 *data = (u8 *) buf;
2941 	int rc = 0;
2942 	u32 magic, csum;
2943 
2944 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2945 
2946 	/*
2947 	 * Check that the device NVRAM is valid by reading
2948 	 * the magic value at offset 0.
2949 	 */
2950 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2951 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2952 		    __FILE__, __LINE__);
2953 		goto bce_nvram_test_exit;
2954 	}
2955 
2956 	/*
2957 	 * Verify that offset 0 of the NVRAM contains
2958 	 * a valid magic number.
2959 	 */
2960 	magic = bce_be32toh(buf[0]);
2961 	if (magic != BCE_NVRAM_MAGIC) {
2962 		rc = ENODEV;
2963 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2964 		    "Expected: 0x%08X, Found: 0x%08X\n",
2965 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2966 		goto bce_nvram_test_exit;
2967 	}
2968 
2969 	/*
2970 	 * Verify that the device NVRAM includes valid
2971 	 * configuration data.
2972 	 */
2973 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2974 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2975 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2976 		goto bce_nvram_test_exit;
2977 	}
2978 
2979 	csum = ether_crc32_le(data, 0x100);
2980 	if (csum != BCE_CRC32_RESIDUAL) {
2981 		rc = ENODEV;
2982 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2983 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2984 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2985 		goto bce_nvram_test_exit;
2986 	}
2987 
2988 	csum = ether_crc32_le(data + 0x100, 0x100);
2989 	if (csum != BCE_CRC32_RESIDUAL) {
2990 		rc = ENODEV;
2991 		BCE_PRINTF("%s(%d): Invalid feature configuration "
2992 		    "information NVRAM CRC! Expected: 0x%08X, "
2993 		    "Found: 08%08X\n", __FILE__, __LINE__,
2994 		    BCE_CRC32_RESIDUAL, csum);
2995 	}
2996 
2997 bce_nvram_test_exit:
2998 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2999 	return rc;
3000 }
3001 
3002 
3003 /****************************************************************************/
3004 /* Calculates the size of the buffers to allocate based on the MTU.         */
3005 /*                                                                          */
3006 /* Returns:                                                                 */
3007 /*   Nothing.                                                               */
3008 /****************************************************************************/
3009 static void
3010 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3011 {
3012 	DBENTER(BCE_VERBOSE_LOAD);
3013 
3014 	/* Use a single allocation type when header splitting enabled. */
3015 	if (bce_hdr_split == TRUE) {
3016 		sc->rx_bd_mbuf_alloc_size = MHLEN;
3017 		/* Make sure offset is 16 byte aligned for hardware. */
3018 		sc->rx_bd_mbuf_align_pad =
3019 			roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
3020 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3021 			sc->rx_bd_mbuf_align_pad;
3022 	} else {
3023 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3024 		    ETHER_CRC_LEN) > MCLBYTES) {
3025 			/* Setup for jumbo RX buffer allocations. */
3026 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3027 			sc->rx_bd_mbuf_align_pad  =
3028 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3029 			sc->rx_bd_mbuf_data_len =
3030 			    sc->rx_bd_mbuf_alloc_size -
3031 			    sc->rx_bd_mbuf_align_pad;
3032 		} else {
3033 			/* Setup for standard RX buffer allocations. */
3034 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3035 			sc->rx_bd_mbuf_align_pad  =
3036 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3037 			sc->rx_bd_mbuf_data_len =
3038 			    sc->rx_bd_mbuf_alloc_size -
3039 			    sc->rx_bd_mbuf_align_pad;
3040 		}
3041 	}
3042 
3043 //	DBPRINT(sc, BCE_INFO_LOAD,
3044 	DBPRINT(sc, BCE_WARN,
3045 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3046 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3047 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3048 	   sc->rx_bd_mbuf_align_pad);
3049 
3050 	DBEXIT(BCE_VERBOSE_LOAD);
3051 }
3052 
3053 /****************************************************************************/
3054 /* Identifies the current media type of the controller and sets the PHY     */
3055 /* address.                                                                 */
3056 /*                                                                          */
3057 /* Returns:                                                                 */
3058 /*   Nothing.                                                               */
3059 /****************************************************************************/
3060 static void
3061 bce_get_media(struct bce_softc *sc)
3062 {
3063 	u32 val;
3064 
3065 	DBENTER(BCE_VERBOSE_PHY);
3066 
3067 	/* Assume PHY address for copper controllers. */
3068 	sc->bce_phy_addr = 1;
3069 
3070 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3071  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3072 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3073 		u32 strap;
3074 
3075 		/*
3076 		 * The BCM5709S is software configurable
3077 		 * for Copper or SerDes operation.
3078 		 */
3079 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3080 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3081 			    "for copper.\n");
3082 			goto bce_get_media_exit;
3083 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3084 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3085 			    "for dual media.\n");
3086 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3087 			goto bce_get_media_exit;
3088 		}
3089 
3090 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3091 			strap = (val &
3092 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3093 		else
3094 			strap = (val &
3095 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3096 
3097 		if (pci_get_function(sc->bce_dev) == 0) {
3098 			switch (strap) {
3099 			case 0x4:
3100 			case 0x5:
3101 			case 0x6:
3102 				DBPRINT(sc, BCE_INFO_LOAD,
3103 				    "BCM5709 s/w configured for SerDes.\n");
3104 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3105 				break;
3106 			default:
3107 				DBPRINT(sc, BCE_INFO_LOAD,
3108 				    "BCM5709 s/w configured for Copper.\n");
3109 				break;
3110 			}
3111 		} else {
3112 			switch (strap) {
3113 			case 0x1:
3114 			case 0x2:
3115 			case 0x4:
3116 				DBPRINT(sc, BCE_INFO_LOAD,
3117 				    "BCM5709 s/w configured for SerDes.\n");
3118 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3119 				break;
3120 			default:
3121 				DBPRINT(sc, BCE_INFO_LOAD,
3122 				    "BCM5709 s/w configured for Copper.\n");
3123 				break;
3124 			}
3125 		}
3126 
3127 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3128 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3129 
3130 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3131 
3132 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3133 
3134 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3135 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3136 
3137 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3138 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3139 			sc->bce_phy_addr = 2;
3140 
3141 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3142 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3143 				sc->bce_phy_flags |=
3144 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3145 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3146 				    "capable adapter\n");
3147 			}
3148 		}
3149 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3150 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3151 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3152 
3153 bce_get_media_exit:
3154 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3155 		"Using PHY address %d.\n", sc->bce_phy_addr);
3156 
3157 	DBEXIT(BCE_VERBOSE_PHY);
3158 }
3159 
3160 
3161 /****************************************************************************/
3162 /* Performs PHY initialization required before MII drivers access the       */
3163 /* device.                                                                  */
3164 /*                                                                          */
3165 /* Returns:                                                                 */
3166 /*   Nothing.                                                               */
3167 /****************************************************************************/
3168 static void
3169 bce_init_media(struct bce_softc *sc)
3170 {
3171 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3172 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3173 		/*
3174 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3175 		 * Clause 22 method. Otherwise we have no way to attach
3176 		 * the PHY in mii(4) layer. PHY specific configuration
3177 		 * is done in mii layer.
3178 		 */
3179 
3180 		/* Select auto-negotiation MMD of the PHY. */
3181 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3182 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3183 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3184 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3185 
3186 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3187 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3188 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3189 	}
3190 }
3191 
3192 
3193 /****************************************************************************/
3194 /* Free any DMA memory owned by the driver.                                 */
3195 /*                                                                          */
3196 /* Scans through each data structre that requires DMA memory and frees      */
3197 /* the memory if allocated.                                                 */
3198 /*                                                                          */
3199 /* Returns:                                                                 */
3200 /*   Nothing.                                                               */
3201 /****************************************************************************/
3202 static void
3203 bce_dma_free(struct bce_softc *sc)
3204 {
3205 	int i;
3206 
3207 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3208 
3209 	/* Free, unmap, and destroy the status block. */
3210 	if (sc->status_block != NULL) {
3211 		bus_dmamem_free(
3212 		   sc->status_tag,
3213 		    sc->status_block,
3214 		    sc->status_map);
3215 		sc->status_block = NULL;
3216 	}
3217 
3218 	if (sc->status_map != NULL) {
3219 		bus_dmamap_unload(
3220 		    sc->status_tag,
3221 		    sc->status_map);
3222 		bus_dmamap_destroy(sc->status_tag,
3223 		    sc->status_map);
3224 		sc->status_map = NULL;
3225 	}
3226 
3227 	if (sc->status_tag != NULL) {
3228 		bus_dma_tag_destroy(sc->status_tag);
3229 		sc->status_tag = NULL;
3230 	}
3231 
3232 
3233 	/* Free, unmap, and destroy the statistics block. */
3234 	if (sc->stats_block != NULL) {
3235 		bus_dmamem_free(
3236 		    sc->stats_tag,
3237 		    sc->stats_block,
3238 		    sc->stats_map);
3239 		sc->stats_block = NULL;
3240 	}
3241 
3242 	if (sc->stats_map != NULL) {
3243 		bus_dmamap_unload(
3244 		    sc->stats_tag,
3245 		    sc->stats_map);
3246 		bus_dmamap_destroy(sc->stats_tag,
3247 		    sc->stats_map);
3248 		sc->stats_map = NULL;
3249 	}
3250 
3251 	if (sc->stats_tag != NULL) {
3252 		bus_dma_tag_destroy(sc->stats_tag);
3253 		sc->stats_tag = NULL;
3254 	}
3255 
3256 
3257 	/* Free, unmap and destroy all context memory pages. */
3258 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3259 		for (i = 0; i < sc->ctx_pages; i++ ) {
3260 			if (sc->ctx_block[i] != NULL) {
3261 				bus_dmamem_free(
3262 				    sc->ctx_tag,
3263 				    sc->ctx_block[i],
3264 				    sc->ctx_map[i]);
3265 				sc->ctx_block[i] = NULL;
3266 			}
3267 
3268 			if (sc->ctx_map[i] != NULL) {
3269 				bus_dmamap_unload(
3270 				    sc->ctx_tag,
3271 				    sc->ctx_map[i]);
3272 				bus_dmamap_destroy(
3273 				    sc->ctx_tag,
3274 				    sc->ctx_map[i]);
3275 				sc->ctx_map[i] = NULL;
3276 			}
3277 		}
3278 
3279 		/* Destroy the context memory tag. */
3280 		if (sc->ctx_tag != NULL) {
3281 			bus_dma_tag_destroy(sc->ctx_tag);
3282 			sc->ctx_tag = NULL;
3283 		}
3284 	}
3285 
3286 
3287 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3288 	for (i = 0; i < sc->tx_pages; i++ ) {
3289 		if (sc->tx_bd_chain[i] != NULL) {
3290 			bus_dmamem_free(
3291 			    sc->tx_bd_chain_tag,
3292 			    sc->tx_bd_chain[i],
3293 			    sc->tx_bd_chain_map[i]);
3294 			sc->tx_bd_chain[i] = NULL;
3295 		}
3296 
3297 		if (sc->tx_bd_chain_map[i] != NULL) {
3298 			bus_dmamap_unload(
3299 			    sc->tx_bd_chain_tag,
3300 			    sc->tx_bd_chain_map[i]);
3301 			bus_dmamap_destroy(
3302 			    sc->tx_bd_chain_tag,
3303 			    sc->tx_bd_chain_map[i]);
3304 			sc->tx_bd_chain_map[i] = NULL;
3305 		}
3306 	}
3307 
3308 	/* Destroy the TX buffer descriptor tag. */
3309 	if (sc->tx_bd_chain_tag != NULL) {
3310 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3311 		sc->tx_bd_chain_tag = NULL;
3312 	}
3313 
3314 
3315 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3316 	for (i = 0; i < sc->rx_pages; i++ ) {
3317 		if (sc->rx_bd_chain[i] != NULL) {
3318 			bus_dmamem_free(
3319 			    sc->rx_bd_chain_tag,
3320 			    sc->rx_bd_chain[i],
3321 			    sc->rx_bd_chain_map[i]);
3322 			sc->rx_bd_chain[i] = NULL;
3323 		}
3324 
3325 		if (sc->rx_bd_chain_map[i] != NULL) {
3326 			bus_dmamap_unload(
3327 			    sc->rx_bd_chain_tag,
3328 			    sc->rx_bd_chain_map[i]);
3329 			bus_dmamap_destroy(
3330 			    sc->rx_bd_chain_tag,
3331 			    sc->rx_bd_chain_map[i]);
3332 			sc->rx_bd_chain_map[i] = NULL;
3333 		}
3334 	}
3335 
3336 	/* Destroy the RX buffer descriptor tag. */
3337 	if (sc->rx_bd_chain_tag != NULL) {
3338 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3339 		sc->rx_bd_chain_tag = NULL;
3340 	}
3341 
3342 
3343 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3344 	if (bce_hdr_split == TRUE) {
3345 		for (i = 0; i < sc->pg_pages; i++ ) {
3346 			if (sc->pg_bd_chain[i] != NULL) {
3347 				bus_dmamem_free(
3348 				    sc->pg_bd_chain_tag,
3349 				    sc->pg_bd_chain[i],
3350 				    sc->pg_bd_chain_map[i]);
3351 				sc->pg_bd_chain[i] = NULL;
3352 			}
3353 
3354 			if (sc->pg_bd_chain_map[i] != NULL) {
3355 				bus_dmamap_unload(
3356 				    sc->pg_bd_chain_tag,
3357 				    sc->pg_bd_chain_map[i]);
3358 				bus_dmamap_destroy(
3359 				    sc->pg_bd_chain_tag,
3360 				    sc->pg_bd_chain_map[i]);
3361 				sc->pg_bd_chain_map[i] = NULL;
3362 			}
3363 		}
3364 
3365 		/* Destroy the page buffer descriptor tag. */
3366 		if (sc->pg_bd_chain_tag != NULL) {
3367 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3368 			sc->pg_bd_chain_tag = NULL;
3369 		}
3370 	}
3371 
3372 
3373 	/* Unload and destroy the TX mbuf maps. */
3374 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3375 		if (sc->tx_mbuf_map[i] != NULL) {
3376 			bus_dmamap_unload(sc->tx_mbuf_tag,
3377 			    sc->tx_mbuf_map[i]);
3378 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3379 	 		    sc->tx_mbuf_map[i]);
3380 			sc->tx_mbuf_map[i] = NULL;
3381 		}
3382 	}
3383 
3384 	/* Destroy the TX mbuf tag. */
3385 	if (sc->tx_mbuf_tag != NULL) {
3386 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3387 		sc->tx_mbuf_tag = NULL;
3388 	}
3389 
3390 	/* Unload and destroy the RX mbuf maps. */
3391 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3392 		if (sc->rx_mbuf_map[i] != NULL) {
3393 			bus_dmamap_unload(sc->rx_mbuf_tag,
3394 			    sc->rx_mbuf_map[i]);
3395 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3396 	 		    sc->rx_mbuf_map[i]);
3397 			sc->rx_mbuf_map[i] = NULL;
3398 		}
3399 	}
3400 
3401 	/* Destroy the RX mbuf tag. */
3402 	if (sc->rx_mbuf_tag != NULL) {
3403 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3404 		sc->rx_mbuf_tag = NULL;
3405 	}
3406 
3407 	/* Unload and destroy the page mbuf maps. */
3408 	if (bce_hdr_split == TRUE) {
3409 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3410 			if (sc->pg_mbuf_map[i] != NULL) {
3411 				bus_dmamap_unload(sc->pg_mbuf_tag,
3412 				    sc->pg_mbuf_map[i]);
3413 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3414 				    sc->pg_mbuf_map[i]);
3415 				sc->pg_mbuf_map[i] = NULL;
3416 			}
3417 		}
3418 
3419 		/* Destroy the page mbuf tag. */
3420 		if (sc->pg_mbuf_tag != NULL) {
3421 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3422 			sc->pg_mbuf_tag = NULL;
3423 		}
3424 	}
3425 
3426 	/* Destroy the parent tag */
3427 	if (sc->parent_tag != NULL) {
3428 		bus_dma_tag_destroy(sc->parent_tag);
3429 		sc->parent_tag = NULL;
3430 	}
3431 
3432 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3433 }
3434 
3435 
3436 /****************************************************************************/
3437 /* Get DMA memory from the OS.                                              */
3438 /*                                                                          */
3439 /* Validates that the OS has provided DMA buffers in response to a          */
3440 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3441 /* When the callback is used the OS will return 0 for the mapping function  */
3442 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3443 /* failures back to the caller.                                             */
3444 /*                                                                          */
3445 /* Returns:                                                                 */
3446 /*   Nothing.                                                               */
3447 /****************************************************************************/
3448 static void
3449 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3450 {
3451 	bus_addr_t *busaddr = arg;
3452 
3453 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3454 	    __FUNCTION__, nseg));
3455 	/* Simulate a mapping failure. */
3456 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3457 	    error = ENOMEM);
3458 
3459 	/* ToDo: How to increment debug sim_count variable here? */
3460 
3461 	/* Check for an error and signal the caller that an error occurred. */
3462 	if (error) {
3463 		*busaddr = 0;
3464 	} else {
3465 		*busaddr = segs->ds_addr;
3466 	}
3467 }
3468 
3469 
3470 /****************************************************************************/
3471 /* Allocate any DMA memory needed by the driver.                            */
3472 /*                                                                          */
3473 /* Allocates DMA memory needed for the various global structures needed by  */
3474 /* hardware.                                                                */
3475 /*                                                                          */
3476 /* Memory alignment requirements:                                           */
3477 /* +-----------------+----------+----------+----------+----------+          */
3478 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3479 /* +-----------------+----------+----------+----------+----------+          */
3480 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3481 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3482 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3483 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3484 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3485 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3486 /* |Context Memory   |          |          |          |          |          */
3487 /* +-----------------+----------+----------+----------+----------+          */
3488 /*                                                                          */
3489 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3490 /*                                                                          */
3491 /* Returns:                                                                 */
3492 /*   0 for success, positive value for failure.                             */
3493 /****************************************************************************/
3494 static int
3495 bce_dma_alloc(device_t dev)
3496 {
3497 	struct bce_softc *sc;
3498 	int i, error, rc = 0;
3499 	bus_size_t max_size, max_seg_size;
3500 	int max_segments;
3501 
3502 	sc = device_get_softc(dev);
3503 
3504 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3505 
3506 	/*
3507 	 * Allocate the parent bus DMA tag appropriate for PCI.
3508 	 */
3509 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3510 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3511 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3512 	    &sc->parent_tag)) {
3513 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3514 		    __FILE__, __LINE__);
3515 		rc = ENOMEM;
3516 		goto bce_dma_alloc_exit;
3517 	}
3518 
3519 	/*
3520 	 * Create a DMA tag for the status block, allocate and clear the
3521 	 * memory, map the memory into DMA space, and fetch the physical
3522 	 * address of the block.
3523 	 */
3524 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3525 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3526 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3527 	    0, NULL, NULL, &sc->status_tag)) {
3528 		BCE_PRINTF("%s(%d): Could not allocate status block "
3529 		    "DMA tag!\n", __FILE__, __LINE__);
3530 		rc = ENOMEM;
3531 		goto bce_dma_alloc_exit;
3532 	}
3533 
3534 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3535 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3536 	    &sc->status_map)) {
3537 		BCE_PRINTF("%s(%d): Could not allocate status block "
3538 		    "DMA memory!\n", __FILE__, __LINE__);
3539 		rc = ENOMEM;
3540 		goto bce_dma_alloc_exit;
3541 	}
3542 
3543 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3544 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3545 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3546 
3547 	if (error || sc->status_block_paddr == 0) {
3548 		BCE_PRINTF("%s(%d): Could not map status block "
3549 		    "DMA memory!\n", __FILE__, __LINE__);
3550 		rc = ENOMEM;
3551 		goto bce_dma_alloc_exit;
3552 	}
3553 
3554 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3555 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3556 
3557 	/*
3558 	 * Create a DMA tag for the statistics block, allocate and clear the
3559 	 * memory, map the memory into DMA space, and fetch the physical
3560 	 * address of the block.
3561 	 */
3562 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3563 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3564 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3565 	    0, NULL, NULL, &sc->stats_tag)) {
3566 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3567 		    "DMA tag!\n", __FILE__, __LINE__);
3568 		rc = ENOMEM;
3569 		goto bce_dma_alloc_exit;
3570 	}
3571 
3572 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3573 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3574 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3575 		    "DMA memory!\n", __FILE__, __LINE__);
3576 		rc = ENOMEM;
3577 		goto bce_dma_alloc_exit;
3578 	}
3579 
3580 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3581 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3582 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3583 
3584 	if (error || sc->stats_block_paddr == 0) {
3585 		BCE_PRINTF("%s(%d): Could not map statistics block "
3586 		    "DMA memory!\n", __FILE__, __LINE__);
3587 		rc = ENOMEM;
3588 		goto bce_dma_alloc_exit;
3589 	}
3590 
3591 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3592 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3593 
3594 	/* BCM5709 uses host memory as cache for context memory. */
3595 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3596 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3597 		if (sc->ctx_pages == 0)
3598 			sc->ctx_pages = 1;
3599 
3600 		DBRUNIF((sc->ctx_pages > 512),
3601 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3602 		    __FILE__, __LINE__, sc->ctx_pages));
3603 
3604 		/*
3605 		 * Create a DMA tag for the context pages,
3606 		 * allocate and clear the memory, map the
3607 		 * memory into DMA space, and fetch the
3608 		 * physical address of the block.
3609 		 */
3610 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3611 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3612 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3613 		    0, NULL, NULL, &sc->ctx_tag)) {
3614 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3615 			    "DMA tag!\n", __FILE__, __LINE__);
3616 			rc = ENOMEM;
3617 			goto bce_dma_alloc_exit;
3618 		}
3619 
3620 		for (i = 0; i < sc->ctx_pages; i++) {
3621 
3622 			if(bus_dmamem_alloc(sc->ctx_tag,
3623 			    (void **)&sc->ctx_block[i],
3624 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3625 			    &sc->ctx_map[i])) {
3626 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3627 				    "DMA memory!\n", __FILE__, __LINE__);
3628 				rc = ENOMEM;
3629 				goto bce_dma_alloc_exit;
3630 			}
3631 
3632 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3633 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3634 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3635 
3636 			if (error || sc->ctx_paddr[i] == 0) {
3637 				BCE_PRINTF("%s(%d): Could not map CTX "
3638 				    "DMA memory!\n", __FILE__, __LINE__);
3639 				rc = ENOMEM;
3640 				goto bce_dma_alloc_exit;
3641 			}
3642 
3643 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3644 			    "= 0x%jX\n", __FUNCTION__, i,
3645 			    (uintmax_t) sc->ctx_paddr[i]);
3646 		}
3647 	}
3648 
3649 	/*
3650 	 * Create a DMA tag for the TX buffer descriptor chain,
3651 	 * allocate and clear the  memory, and fetch the
3652 	 * physical address of the block.
3653 	 */
3654 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3655 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3656 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3657 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3658 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3659 		    "chain DMA tag!\n", __FILE__, __LINE__);
3660 		rc = ENOMEM;
3661 		goto bce_dma_alloc_exit;
3662 	}
3663 
3664 	for (i = 0; i < sc->tx_pages; i++) {
3665 
3666 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3667 		    (void **)&sc->tx_bd_chain[i],
3668 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3669 		    &sc->tx_bd_chain_map[i])) {
3670 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3671 			    "chain DMA memory!\n", __FILE__, __LINE__);
3672 			rc = ENOMEM;
3673 			goto bce_dma_alloc_exit;
3674 		}
3675 
3676 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3677 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3678 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3679 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3680 
3681 		if (error || sc->tx_bd_chain_paddr[i] == 0) {
3682 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3683 			    "chain DMA memory!\n", __FILE__, __LINE__);
3684 			rc = ENOMEM;
3685 			goto bce_dma_alloc_exit;
3686 		}
3687 
3688 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3689 		    "0x%jX\n", __FUNCTION__, i,
3690 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3691 	}
3692 
3693 	/* Check the required size before mapping to conserve resources. */
3694 	if (bce_tso_enable) {
3695 		max_size     = BCE_TSO_MAX_SIZE;
3696 		max_segments = BCE_MAX_SEGMENTS;
3697 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3698 	} else {
3699 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3700 		max_segments = BCE_MAX_SEGMENTS;
3701 		max_seg_size = MCLBYTES;
3702 	}
3703 
3704 	/* Create a DMA tag for TX mbufs. */
3705 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3706 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3707 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3708 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3709 		    __FILE__, __LINE__);
3710 		rc = ENOMEM;
3711 		goto bce_dma_alloc_exit;
3712 	}
3713 
3714 	/* Create DMA maps for the TX mbufs clusters. */
3715 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3716 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3717 			&sc->tx_mbuf_map[i])) {
3718 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3719 			    "map!\n", __FILE__, __LINE__);
3720 			rc = ENOMEM;
3721 			goto bce_dma_alloc_exit;
3722 		}
3723 	}
3724 
3725 	/*
3726 	 * Create a DMA tag for the RX buffer descriptor chain,
3727 	 * allocate and clear the memory, and fetch the physical
3728 	 * address of the blocks.
3729 	 */
3730 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3731 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3732 			sc->max_bus_addr, NULL, NULL,
3733 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3734 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3735 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3736 		    "DMA tag!\n", __FILE__, __LINE__);
3737 		rc = ENOMEM;
3738 		goto bce_dma_alloc_exit;
3739 	}
3740 
3741 	for (i = 0; i < sc->rx_pages; i++) {
3742 
3743 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3744 		    (void **)&sc->rx_bd_chain[i],
3745 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3746 		    &sc->rx_bd_chain_map[i])) {
3747 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3748 			    "chain DMA memory!\n", __FILE__, __LINE__);
3749 			rc = ENOMEM;
3750 			goto bce_dma_alloc_exit;
3751 		}
3752 
3753 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3754 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3755 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3756 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3757 
3758 		if (error || sc->rx_bd_chain_paddr[i] == 0) {
3759 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3760 			    "chain DMA memory!\n", __FILE__, __LINE__);
3761 			rc = ENOMEM;
3762 			goto bce_dma_alloc_exit;
3763 		}
3764 
3765 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3766 		    "0x%jX\n", __FUNCTION__, i,
3767 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3768 	}
3769 
3770 	/*
3771 	 * Create a DMA tag for RX mbufs.
3772 	 */
3773 	if (bce_hdr_split == TRUE)
3774 		max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3775 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3776 	else
3777 		max_size = MJUM9BYTES;
3778 
3779 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3780 	    "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3781 
3782 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3783 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3784 	    max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3785 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3786 		    __FILE__, __LINE__);
3787 		rc = ENOMEM;
3788 		goto bce_dma_alloc_exit;
3789 	}
3790 
3791 	/* Create DMA maps for the RX mbuf clusters. */
3792 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3793 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3794 		    &sc->rx_mbuf_map[i])) {
3795 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3796 			    "DMA map!\n", __FILE__, __LINE__);
3797 			rc = ENOMEM;
3798 			goto bce_dma_alloc_exit;
3799 		}
3800 	}
3801 
3802 	if (bce_hdr_split == TRUE) {
3803 		/*
3804 		 * Create a DMA tag for the page buffer descriptor chain,
3805 		 * allocate and clear the memory, and fetch the physical
3806 		 * address of the blocks.
3807 		 */
3808 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3809 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3810 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3811 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3812 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3813 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3814 			rc = ENOMEM;
3815 			goto bce_dma_alloc_exit;
3816 		}
3817 
3818 		for (i = 0; i < sc->pg_pages; i++) {
3819 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3820 			    (void **)&sc->pg_bd_chain[i],
3821 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3822 			    &sc->pg_bd_chain_map[i])) {
3823 				BCE_PRINTF("%s(%d): Could not allocate page "
3824 				    "descriptor chain DMA memory!\n",
3825 				    __FILE__, __LINE__);
3826 				rc = ENOMEM;
3827 				goto bce_dma_alloc_exit;
3828 			}
3829 
3830 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3831 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3832 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3833 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3834 
3835 			if (error || sc->pg_bd_chain_paddr[i] == 0) {
3836 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3837 					"chain DMA memory!\n", __FILE__, __LINE__);
3838 				rc = ENOMEM;
3839 				goto bce_dma_alloc_exit;
3840 			}
3841 
3842 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3843 				"0x%jX\n", __FUNCTION__, i,
3844 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3845 		}
3846 
3847 		/*
3848 		 * Create a DMA tag for page mbufs.
3849 		 */
3850 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3851 		    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3852 		    1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3853 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3854 				"DMA tag!\n", __FILE__, __LINE__);
3855 			rc = ENOMEM;
3856 			goto bce_dma_alloc_exit;
3857 		}
3858 
3859 		/* Create DMA maps for the page mbuf clusters. */
3860 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3861 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3862 				&sc->pg_mbuf_map[i])) {
3863 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3864 					"DMA map!\n", __FILE__, __LINE__);
3865 				rc = ENOMEM;
3866 				goto bce_dma_alloc_exit;
3867 			}
3868 		}
3869 	}
3870 
3871 bce_dma_alloc_exit:
3872 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3873 	return(rc);
3874 }
3875 
3876 
3877 /****************************************************************************/
3878 /* Release all resources used by the driver.                                */
3879 /*                                                                          */
3880 /* Releases all resources acquired by the driver including interrupts,      */
3881 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3882 /*                                                                          */
3883 /* Returns:                                                                 */
3884 /*   Nothing.                                                               */
3885 /****************************************************************************/
3886 static void
3887 bce_release_resources(struct bce_softc *sc)
3888 {
3889 	device_t dev;
3890 
3891 	DBENTER(BCE_VERBOSE_RESET);
3892 
3893 	dev = sc->bce_dev;
3894 
3895 	bce_dma_free(sc);
3896 
3897 	if (sc->bce_intrhand != NULL) {
3898 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3899 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3900 	}
3901 
3902 	if (sc->bce_res_irq != NULL) {
3903 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3904 		bus_release_resource(dev, SYS_RES_IRQ,
3905 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3906 	}
3907 
3908 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3909 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3910 		pci_release_msi(dev);
3911 	}
3912 
3913 	if (sc->bce_res_mem != NULL) {
3914 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3915 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3916 		    sc->bce_res_mem);
3917 	}
3918 
3919 	if (sc->bce_ifp != NULL) {
3920 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3921 		if_free(sc->bce_ifp);
3922 	}
3923 
3924 	if (mtx_initialized(&sc->bce_mtx))
3925 		BCE_LOCK_DESTROY(sc);
3926 
3927 	DBEXIT(BCE_VERBOSE_RESET);
3928 }
3929 
3930 
3931 /****************************************************************************/
3932 /* Firmware synchronization.                                                */
3933 /*                                                                          */
3934 /* Before performing certain events such as a chip reset, synchronize with  */
3935 /* the firmware first.                                                      */
3936 /*                                                                          */
3937 /* Returns:                                                                 */
3938 /*   0 for success, positive value for failure.                             */
3939 /****************************************************************************/
3940 static int
3941 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3942 {
3943 	int i, rc = 0;
3944 	u32 val;
3945 
3946 	DBENTER(BCE_VERBOSE_RESET);
3947 
3948 	/* Don't waste any time if we've timed out before. */
3949 	if (sc->bce_fw_timed_out == TRUE) {
3950 		rc = EBUSY;
3951 		goto bce_fw_sync_exit;
3952 	}
3953 
3954 	/* Increment the message sequence number. */
3955 	sc->bce_fw_wr_seq++;
3956 	msg_data |= sc->bce_fw_wr_seq;
3957 
3958  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3959 	    "0x%08X\n",	msg_data);
3960 
3961 	/* Send the message to the bootcode driver mailbox. */
3962 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3963 
3964 	/* Wait for the bootcode to acknowledge the message. */
3965 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3966 		/* Check for a response in the bootcode firmware mailbox. */
3967 		val = bce_shmem_rd(sc, BCE_FW_MB);
3968 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3969 			break;
3970 		DELAY(1000);
3971 	}
3972 
3973 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3974 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3975 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3976 
3977 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3978 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3979 
3980 		msg_data &= ~BCE_DRV_MSG_CODE;
3981 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3982 
3983 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3984 
3985 		sc->bce_fw_timed_out = TRUE;
3986 		rc = EBUSY;
3987 	}
3988 
3989 bce_fw_sync_exit:
3990 	DBEXIT(BCE_VERBOSE_RESET);
3991 	return (rc);
3992 }
3993 
3994 
3995 /****************************************************************************/
3996 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3997 /*                                                                          */
3998 /* Returns:                                                                 */
3999 /*   Nothing.                                                               */
4000 /****************************************************************************/
4001 static void
4002 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
4003 	u32 rv2p_code_len, u32 rv2p_proc)
4004 {
4005 	int i;
4006 	u32 val;
4007 
4008 	DBENTER(BCE_VERBOSE_RESET);
4009 
4010 	/* Set the page size used by RV2P. */
4011 	if (rv2p_proc == RV2P_PROC2) {
4012 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4013 	}
4014 
4015 	for (i = 0; i < rv2p_code_len; i += 8) {
4016 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4017 		rv2p_code++;
4018 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4019 		rv2p_code++;
4020 
4021 		if (rv2p_proc == RV2P_PROC1) {
4022 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4023 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4024 		}
4025 		else {
4026 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4027 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4028 		}
4029 	}
4030 
4031 	/* Reset the processor, un-stall is done later. */
4032 	if (rv2p_proc == RV2P_PROC1) {
4033 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4034 	}
4035 	else {
4036 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4037 	}
4038 
4039 	DBEXIT(BCE_VERBOSE_RESET);
4040 }
4041 
4042 
4043 /****************************************************************************/
4044 /* Load RISC processor firmware.                                            */
4045 /*                                                                          */
4046 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4047 /* associated with a particular processor.                                  */
4048 /*                                                                          */
4049 /* Returns:                                                                 */
4050 /*   Nothing.                                                               */
4051 /****************************************************************************/
4052 static void
4053 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4054 	struct fw_info *fw)
4055 {
4056 	u32 offset;
4057 
4058 	DBENTER(BCE_VERBOSE_RESET);
4059 
4060     bce_halt_cpu(sc, cpu_reg);
4061 
4062 	/* Load the Text area. */
4063 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4064 	if (fw->text) {
4065 		int j;
4066 
4067 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4068 			REG_WR_IND(sc, offset, fw->text[j]);
4069 	        }
4070 	}
4071 
4072 	/* Load the Data area. */
4073 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4074 	if (fw->data) {
4075 		int j;
4076 
4077 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4078 			REG_WR_IND(sc, offset, fw->data[j]);
4079 		}
4080 	}
4081 
4082 	/* Load the SBSS area. */
4083 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4084 	if (fw->sbss) {
4085 		int j;
4086 
4087 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4088 			REG_WR_IND(sc, offset, fw->sbss[j]);
4089 		}
4090 	}
4091 
4092 	/* Load the BSS area. */
4093 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4094 	if (fw->bss) {
4095 		int j;
4096 
4097 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4098 			REG_WR_IND(sc, offset, fw->bss[j]);
4099 		}
4100 	}
4101 
4102 	/* Load the Read-Only area. */
4103 	offset = cpu_reg->spad_base +
4104 		(fw->rodata_addr - cpu_reg->mips_view_base);
4105 	if (fw->rodata) {
4106 		int j;
4107 
4108 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4109 			REG_WR_IND(sc, offset, fw->rodata[j]);
4110 		}
4111 	}
4112 
4113 	/* Clear the pre-fetch instruction and set the FW start address. */
4114 	REG_WR_IND(sc, cpu_reg->inst, 0);
4115 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4116 
4117 	DBEXIT(BCE_VERBOSE_RESET);
4118 }
4119 
4120 
4121 /****************************************************************************/
4122 /* Starts the RISC processor.                                               */
4123 /*                                                                          */
4124 /* Assumes the CPU starting address has already been set.                   */
4125 /*                                                                          */
4126 /* Returns:                                                                 */
4127 /*   Nothing.                                                               */
4128 /****************************************************************************/
4129 static void
4130 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4131 {
4132 	u32 val;
4133 
4134 	DBENTER(BCE_VERBOSE_RESET);
4135 
4136 	/* Start the CPU. */
4137 	val = REG_RD_IND(sc, cpu_reg->mode);
4138 	val &= ~cpu_reg->mode_value_halt;
4139 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4140 	REG_WR_IND(sc, cpu_reg->mode, val);
4141 
4142 	DBEXIT(BCE_VERBOSE_RESET);
4143 }
4144 
4145 
4146 /****************************************************************************/
4147 /* Halts the RISC processor.                                                */
4148 /*                                                                          */
4149 /* Returns:                                                                 */
4150 /*   Nothing.                                                               */
4151 /****************************************************************************/
4152 static void
4153 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4154 {
4155 	u32 val;
4156 
4157 	DBENTER(BCE_VERBOSE_RESET);
4158 
4159 	/* Halt the CPU. */
4160 	val = REG_RD_IND(sc, cpu_reg->mode);
4161 	val |= cpu_reg->mode_value_halt;
4162 	REG_WR_IND(sc, cpu_reg->mode, val);
4163 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4164 
4165 	DBEXIT(BCE_VERBOSE_RESET);
4166 }
4167 
4168 
4169 /****************************************************************************/
4170 /* Initialize the RX CPU.                                                   */
4171 /*                                                                          */
4172 /* Returns:                                                                 */
4173 /*   Nothing.                                                               */
4174 /****************************************************************************/
4175 static void
4176 bce_start_rxp_cpu(struct bce_softc *sc)
4177 {
4178 	struct cpu_reg cpu_reg;
4179 
4180 	DBENTER(BCE_VERBOSE_RESET);
4181 
4182 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4183 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4184 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4185 	cpu_reg.state = BCE_RXP_CPU_STATE;
4186 	cpu_reg.state_value_clear = 0xffffff;
4187 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4188 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4189 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4190 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4191 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4192 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4193 	cpu_reg.mips_view_base = 0x8000000;
4194 
4195 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4196 	bce_start_cpu(sc, &cpu_reg);
4197 
4198 	DBEXIT(BCE_VERBOSE_RESET);
4199 }
4200 
4201 
4202 /****************************************************************************/
4203 /* Initialize the RX CPU.                                                   */
4204 /*                                                                          */
4205 /* Returns:                                                                 */
4206 /*   Nothing.                                                               */
4207 /****************************************************************************/
4208 static void
4209 bce_init_rxp_cpu(struct bce_softc *sc)
4210 {
4211 	struct cpu_reg cpu_reg;
4212 	struct fw_info fw;
4213 
4214 	DBENTER(BCE_VERBOSE_RESET);
4215 
4216 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4217 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4218 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4219 	cpu_reg.state = BCE_RXP_CPU_STATE;
4220 	cpu_reg.state_value_clear = 0xffffff;
4221 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4222 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4223 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4224 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4225 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4226 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4227 	cpu_reg.mips_view_base = 0x8000000;
4228 
4229 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4230  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4231 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4232 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4233 		fw.start_addr = bce_RXP_b09FwStartAddr;
4234 
4235 		fw.text_addr = bce_RXP_b09FwTextAddr;
4236 		fw.text_len = bce_RXP_b09FwTextLen;
4237 		fw.text_index = 0;
4238 		fw.text = bce_RXP_b09FwText;
4239 
4240 		fw.data_addr = bce_RXP_b09FwDataAddr;
4241 		fw.data_len = bce_RXP_b09FwDataLen;
4242 		fw.data_index = 0;
4243 		fw.data = bce_RXP_b09FwData;
4244 
4245 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4246 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4247 		fw.sbss_index = 0;
4248 		fw.sbss = bce_RXP_b09FwSbss;
4249 
4250 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4251 		fw.bss_len = bce_RXP_b09FwBssLen;
4252 		fw.bss_index = 0;
4253 		fw.bss = bce_RXP_b09FwBss;
4254 
4255 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4256 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4257 		fw.rodata_index = 0;
4258 		fw.rodata = bce_RXP_b09FwRodata;
4259 	} else {
4260 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4261 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4262 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4263 		fw.start_addr = bce_RXP_b06FwStartAddr;
4264 
4265 		fw.text_addr = bce_RXP_b06FwTextAddr;
4266 		fw.text_len = bce_RXP_b06FwTextLen;
4267 		fw.text_index = 0;
4268 		fw.text = bce_RXP_b06FwText;
4269 
4270 		fw.data_addr = bce_RXP_b06FwDataAddr;
4271 		fw.data_len = bce_RXP_b06FwDataLen;
4272 		fw.data_index = 0;
4273 		fw.data = bce_RXP_b06FwData;
4274 
4275 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4276 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4277 		fw.sbss_index = 0;
4278 		fw.sbss = bce_RXP_b06FwSbss;
4279 
4280 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4281 		fw.bss_len = bce_RXP_b06FwBssLen;
4282 		fw.bss_index = 0;
4283 		fw.bss = bce_RXP_b06FwBss;
4284 
4285 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4286 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4287 		fw.rodata_index = 0;
4288 		fw.rodata = bce_RXP_b06FwRodata;
4289 	}
4290 
4291 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4292 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4293 
4294     /* Delay RXP start until initialization is complete. */
4295 
4296 	DBEXIT(BCE_VERBOSE_RESET);
4297 }
4298 
4299 
4300 /****************************************************************************/
4301 /* Initialize the TX CPU.                                                   */
4302 /*                                                                          */
4303 /* Returns:                                                                 */
4304 /*   Nothing.                                                               */
4305 /****************************************************************************/
4306 static void
4307 bce_init_txp_cpu(struct bce_softc *sc)
4308 {
4309 	struct cpu_reg cpu_reg;
4310 	struct fw_info fw;
4311 
4312 	DBENTER(BCE_VERBOSE_RESET);
4313 
4314 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4315 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4316 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4317 	cpu_reg.state = BCE_TXP_CPU_STATE;
4318 	cpu_reg.state_value_clear = 0xffffff;
4319 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4320 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4321 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4322 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4323 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4324 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4325 	cpu_reg.mips_view_base = 0x8000000;
4326 
4327 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4328 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4329 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4330 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4331 		fw.start_addr = bce_TXP_b09FwStartAddr;
4332 
4333 		fw.text_addr = bce_TXP_b09FwTextAddr;
4334 		fw.text_len = bce_TXP_b09FwTextLen;
4335 		fw.text_index = 0;
4336 		fw.text = bce_TXP_b09FwText;
4337 
4338 		fw.data_addr = bce_TXP_b09FwDataAddr;
4339 		fw.data_len = bce_TXP_b09FwDataLen;
4340 		fw.data_index = 0;
4341 		fw.data = bce_TXP_b09FwData;
4342 
4343 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4344 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4345 		fw.sbss_index = 0;
4346 		fw.sbss = bce_TXP_b09FwSbss;
4347 
4348 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4349 		fw.bss_len = bce_TXP_b09FwBssLen;
4350 		fw.bss_index = 0;
4351 		fw.bss = bce_TXP_b09FwBss;
4352 
4353 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4354 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4355 		fw.rodata_index = 0;
4356 		fw.rodata = bce_TXP_b09FwRodata;
4357 	} else {
4358 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4359 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4360 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4361 		fw.start_addr = bce_TXP_b06FwStartAddr;
4362 
4363 		fw.text_addr = bce_TXP_b06FwTextAddr;
4364 		fw.text_len = bce_TXP_b06FwTextLen;
4365 		fw.text_index = 0;
4366 		fw.text = bce_TXP_b06FwText;
4367 
4368 		fw.data_addr = bce_TXP_b06FwDataAddr;
4369 		fw.data_len = bce_TXP_b06FwDataLen;
4370 		fw.data_index = 0;
4371 		fw.data = bce_TXP_b06FwData;
4372 
4373 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4374 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4375 		fw.sbss_index = 0;
4376 		fw.sbss = bce_TXP_b06FwSbss;
4377 
4378 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4379 		fw.bss_len = bce_TXP_b06FwBssLen;
4380 		fw.bss_index = 0;
4381 		fw.bss = bce_TXP_b06FwBss;
4382 
4383 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4384 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4385 		fw.rodata_index = 0;
4386 		fw.rodata = bce_TXP_b06FwRodata;
4387 	}
4388 
4389 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4390 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4391     bce_start_cpu(sc, &cpu_reg);
4392 
4393 	DBEXIT(BCE_VERBOSE_RESET);
4394 }
4395 
4396 
4397 /****************************************************************************/
4398 /* Initialize the TPAT CPU.                                                 */
4399 /*                                                                          */
4400 /* Returns:                                                                 */
4401 /*   Nothing.                                                               */
4402 /****************************************************************************/
4403 static void
4404 bce_init_tpat_cpu(struct bce_softc *sc)
4405 {
4406 	struct cpu_reg cpu_reg;
4407 	struct fw_info fw;
4408 
4409 	DBENTER(BCE_VERBOSE_RESET);
4410 
4411 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4412 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4413 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4414 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4415 	cpu_reg.state_value_clear = 0xffffff;
4416 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4417 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4418 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4419 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4420 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4421 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4422 	cpu_reg.mips_view_base = 0x8000000;
4423 
4424 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4425 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4426 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4427 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4428 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4429 
4430 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4431 		fw.text_len = bce_TPAT_b09FwTextLen;
4432 		fw.text_index = 0;
4433 		fw.text = bce_TPAT_b09FwText;
4434 
4435 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4436 		fw.data_len = bce_TPAT_b09FwDataLen;
4437 		fw.data_index = 0;
4438 		fw.data = bce_TPAT_b09FwData;
4439 
4440 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4441 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4442 		fw.sbss_index = 0;
4443 		fw.sbss = bce_TPAT_b09FwSbss;
4444 
4445 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4446 		fw.bss_len = bce_TPAT_b09FwBssLen;
4447 		fw.bss_index = 0;
4448 		fw.bss = bce_TPAT_b09FwBss;
4449 
4450 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4451 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4452 		fw.rodata_index = 0;
4453 		fw.rodata = bce_TPAT_b09FwRodata;
4454 	} else {
4455 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4456 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4457 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4458 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4459 
4460 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4461 		fw.text_len = bce_TPAT_b06FwTextLen;
4462 		fw.text_index = 0;
4463 		fw.text = bce_TPAT_b06FwText;
4464 
4465 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4466 		fw.data_len = bce_TPAT_b06FwDataLen;
4467 		fw.data_index = 0;
4468 		fw.data = bce_TPAT_b06FwData;
4469 
4470 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4471 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4472 		fw.sbss_index = 0;
4473 		fw.sbss = bce_TPAT_b06FwSbss;
4474 
4475 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4476 		fw.bss_len = bce_TPAT_b06FwBssLen;
4477 		fw.bss_index = 0;
4478 		fw.bss = bce_TPAT_b06FwBss;
4479 
4480 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4481 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4482 		fw.rodata_index = 0;
4483 		fw.rodata = bce_TPAT_b06FwRodata;
4484 	}
4485 
4486 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4487 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4488 	bce_start_cpu(sc, &cpu_reg);
4489 
4490 	DBEXIT(BCE_VERBOSE_RESET);
4491 }
4492 
4493 
4494 /****************************************************************************/
4495 /* Initialize the CP CPU.                                                   */
4496 /*                                                                          */
4497 /* Returns:                                                                 */
4498 /*   Nothing.                                                               */
4499 /****************************************************************************/
4500 static void
4501 bce_init_cp_cpu(struct bce_softc *sc)
4502 {
4503 	struct cpu_reg cpu_reg;
4504 	struct fw_info fw;
4505 
4506 	DBENTER(BCE_VERBOSE_RESET);
4507 
4508 	cpu_reg.mode = BCE_CP_CPU_MODE;
4509 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4510 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4511 	cpu_reg.state = BCE_CP_CPU_STATE;
4512 	cpu_reg.state_value_clear = 0xffffff;
4513 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4514 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4515 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4516 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4517 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4518 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4519 	cpu_reg.mips_view_base = 0x8000000;
4520 
4521 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4522 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4523 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4524 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4525 		fw.start_addr = bce_CP_b09FwStartAddr;
4526 
4527 		fw.text_addr = bce_CP_b09FwTextAddr;
4528 		fw.text_len = bce_CP_b09FwTextLen;
4529 		fw.text_index = 0;
4530 		fw.text = bce_CP_b09FwText;
4531 
4532 		fw.data_addr = bce_CP_b09FwDataAddr;
4533 		fw.data_len = bce_CP_b09FwDataLen;
4534 		fw.data_index = 0;
4535 		fw.data = bce_CP_b09FwData;
4536 
4537 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4538 		fw.sbss_len = bce_CP_b09FwSbssLen;
4539 		fw.sbss_index = 0;
4540 		fw.sbss = bce_CP_b09FwSbss;
4541 
4542 		fw.bss_addr = bce_CP_b09FwBssAddr;
4543 		fw.bss_len = bce_CP_b09FwBssLen;
4544 		fw.bss_index = 0;
4545 		fw.bss = bce_CP_b09FwBss;
4546 
4547 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4548 		fw.rodata_len = bce_CP_b09FwRodataLen;
4549 		fw.rodata_index = 0;
4550 		fw.rodata = bce_CP_b09FwRodata;
4551 	} else {
4552 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4553 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4554 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4555 		fw.start_addr = bce_CP_b06FwStartAddr;
4556 
4557 		fw.text_addr = bce_CP_b06FwTextAddr;
4558 		fw.text_len = bce_CP_b06FwTextLen;
4559 		fw.text_index = 0;
4560 		fw.text = bce_CP_b06FwText;
4561 
4562 		fw.data_addr = bce_CP_b06FwDataAddr;
4563 		fw.data_len = bce_CP_b06FwDataLen;
4564 		fw.data_index = 0;
4565 		fw.data = bce_CP_b06FwData;
4566 
4567 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4568 		fw.sbss_len = bce_CP_b06FwSbssLen;
4569 		fw.sbss_index = 0;
4570 		fw.sbss = bce_CP_b06FwSbss;
4571 
4572 		fw.bss_addr = bce_CP_b06FwBssAddr;
4573 		fw.bss_len = bce_CP_b06FwBssLen;
4574 		fw.bss_index = 0;
4575 		fw.bss = bce_CP_b06FwBss;
4576 
4577 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4578 		fw.rodata_len = bce_CP_b06FwRodataLen;
4579 		fw.rodata_index = 0;
4580 		fw.rodata = bce_CP_b06FwRodata;
4581 	}
4582 
4583 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4584 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4585 	bce_start_cpu(sc, &cpu_reg);
4586 
4587 	DBEXIT(BCE_VERBOSE_RESET);
4588 }
4589 
4590 
4591 /****************************************************************************/
4592 /* Initialize the COM CPU.                                                 */
4593 /*                                                                          */
4594 /* Returns:                                                                 */
4595 /*   Nothing.                                                               */
4596 /****************************************************************************/
4597 static void
4598 bce_init_com_cpu(struct bce_softc *sc)
4599 {
4600 	struct cpu_reg cpu_reg;
4601 	struct fw_info fw;
4602 
4603 	DBENTER(BCE_VERBOSE_RESET);
4604 
4605 	cpu_reg.mode = BCE_COM_CPU_MODE;
4606 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4607 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4608 	cpu_reg.state = BCE_COM_CPU_STATE;
4609 	cpu_reg.state_value_clear = 0xffffff;
4610 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4611 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4612 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4613 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4614 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4615 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4616 	cpu_reg.mips_view_base = 0x8000000;
4617 
4618 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4619 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4620 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4621 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4622 		fw.start_addr = bce_COM_b09FwStartAddr;
4623 
4624 		fw.text_addr = bce_COM_b09FwTextAddr;
4625 		fw.text_len = bce_COM_b09FwTextLen;
4626 		fw.text_index = 0;
4627 		fw.text = bce_COM_b09FwText;
4628 
4629 		fw.data_addr = bce_COM_b09FwDataAddr;
4630 		fw.data_len = bce_COM_b09FwDataLen;
4631 		fw.data_index = 0;
4632 		fw.data = bce_COM_b09FwData;
4633 
4634 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4635 		fw.sbss_len = bce_COM_b09FwSbssLen;
4636 		fw.sbss_index = 0;
4637 		fw.sbss = bce_COM_b09FwSbss;
4638 
4639 		fw.bss_addr = bce_COM_b09FwBssAddr;
4640 		fw.bss_len = bce_COM_b09FwBssLen;
4641 		fw.bss_index = 0;
4642 		fw.bss = bce_COM_b09FwBss;
4643 
4644 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4645 		fw.rodata_len = bce_COM_b09FwRodataLen;
4646 		fw.rodata_index = 0;
4647 		fw.rodata = bce_COM_b09FwRodata;
4648 	} else {
4649 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4650 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4651 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4652 		fw.start_addr = bce_COM_b06FwStartAddr;
4653 
4654 		fw.text_addr = bce_COM_b06FwTextAddr;
4655 		fw.text_len = bce_COM_b06FwTextLen;
4656 		fw.text_index = 0;
4657 		fw.text = bce_COM_b06FwText;
4658 
4659 		fw.data_addr = bce_COM_b06FwDataAddr;
4660 		fw.data_len = bce_COM_b06FwDataLen;
4661 		fw.data_index = 0;
4662 		fw.data = bce_COM_b06FwData;
4663 
4664 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4665 		fw.sbss_len = bce_COM_b06FwSbssLen;
4666 		fw.sbss_index = 0;
4667 		fw.sbss = bce_COM_b06FwSbss;
4668 
4669 		fw.bss_addr = bce_COM_b06FwBssAddr;
4670 		fw.bss_len = bce_COM_b06FwBssLen;
4671 		fw.bss_index = 0;
4672 		fw.bss = bce_COM_b06FwBss;
4673 
4674 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4675 		fw.rodata_len = bce_COM_b06FwRodataLen;
4676 		fw.rodata_index = 0;
4677 		fw.rodata = bce_COM_b06FwRodata;
4678 	}
4679 
4680 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4681 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4682 	bce_start_cpu(sc, &cpu_reg);
4683 
4684 	DBEXIT(BCE_VERBOSE_RESET);
4685 }
4686 
4687 
4688 /****************************************************************************/
4689 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4690 /*                                                                          */
4691 /* Loads the firmware for each CPU and starts the CPU.                      */
4692 /*                                                                          */
4693 /* Returns:                                                                 */
4694 /*   Nothing.                                                               */
4695 /****************************************************************************/
4696 static void
4697 bce_init_cpus(struct bce_softc *sc)
4698 {
4699 	DBENTER(BCE_VERBOSE_RESET);
4700 
4701 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4702 
4703 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4704 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4705 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4706 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4707 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4708 		} else {
4709 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4710 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4711 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4712 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4713 		}
4714 
4715 	} else {
4716 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4717 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4718 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4719 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4720 	}
4721 
4722 	bce_init_rxp_cpu(sc);
4723 	bce_init_txp_cpu(sc);
4724 	bce_init_tpat_cpu(sc);
4725 	bce_init_com_cpu(sc);
4726 	bce_init_cp_cpu(sc);
4727 
4728 	DBEXIT(BCE_VERBOSE_RESET);
4729 }
4730 
4731 
4732 /****************************************************************************/
4733 /* Initialize context memory.                                               */
4734 /*                                                                          */
4735 /* Clears the memory associated with each Context ID (CID).                 */
4736 /*                                                                          */
4737 /* Returns:                                                                 */
4738 /*   Nothing.                                                               */
4739 /****************************************************************************/
4740 static int
4741 bce_init_ctx(struct bce_softc *sc)
4742 {
4743 	u32 offset, val, vcid_addr;
4744 	int i, j, rc, retry_cnt;
4745 
4746 	rc = 0;
4747 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4748 
4749 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4750 		retry_cnt = CTX_INIT_RETRY_COUNT;
4751 
4752 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4753 
4754 		/*
4755 		 * BCM5709 context memory may be cached
4756 		 * in host memory so prepare the host memory
4757 		 * for access.
4758 		 */
4759 		val = BCE_CTX_COMMAND_ENABLED |
4760 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4761 		val |= (BCM_PAGE_BITS - 8) << 16;
4762 		REG_WR(sc, BCE_CTX_COMMAND, val);
4763 
4764 		/* Wait for mem init command to complete. */
4765 		for (i = 0; i < retry_cnt; i++) {
4766 			val = REG_RD(sc, BCE_CTX_COMMAND);
4767 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4768 				break;
4769 			DELAY(2);
4770 		}
4771 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4772 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4773 			    __FUNCTION__);
4774 			rc = EBUSY;
4775 			goto init_ctx_fail;
4776 		}
4777 
4778 		for (i = 0; i < sc->ctx_pages; i++) {
4779 			/* Set the physical address of the context memory. */
4780 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4781 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4782 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4783 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4784 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4785 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4786 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4787 
4788 			/* Verify the context memory write was successful. */
4789 			for (j = 0; j < retry_cnt; j++) {
4790 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4791 				if ((val &
4792 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4793 					break;
4794 				DELAY(5);
4795 			}
4796 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4797 				BCE_PRINTF("%s(): Failed to initialize "
4798 				    "context page %d!\n", __FUNCTION__, i);
4799 				rc = EBUSY;
4800 				goto init_ctx_fail;
4801 			}
4802 		}
4803 	} else {
4804 
4805 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4806 
4807 		/*
4808 		 * For the 5706/5708, context memory is local to
4809 		 * the controller, so initialize the controller
4810 		 * context memory.
4811 		 */
4812 
4813 		vcid_addr = GET_CID_ADDR(96);
4814 		while (vcid_addr) {
4815 
4816 			vcid_addr -= PHY_CTX_SIZE;
4817 
4818 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4819 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4820 
4821 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4822 				CTX_WR(sc, 0x00, offset, 0);
4823 			}
4824 
4825 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4826 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4827 		}
4828 
4829 	}
4830 init_ctx_fail:
4831 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4832 	return (rc);
4833 }
4834 
4835 
4836 /****************************************************************************/
4837 /* Fetch the permanent MAC address of the controller.                       */
4838 /*                                                                          */
4839 /* Returns:                                                                 */
4840 /*   Nothing.                                                               */
4841 /****************************************************************************/
4842 static void
4843 bce_get_mac_addr(struct bce_softc *sc)
4844 {
4845 	u32 mac_lo = 0, mac_hi = 0;
4846 
4847 	DBENTER(BCE_VERBOSE_RESET);
4848 
4849 	/*
4850 	 * The NetXtreme II bootcode populates various NIC
4851 	 * power-on and runtime configuration items in a
4852 	 * shared memory area.  The factory configured MAC
4853 	 * address is available from both NVRAM and the
4854 	 * shared memory area so we'll read the value from
4855 	 * shared memory for speed.
4856 	 */
4857 
4858 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4859 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4860 
4861 	if ((mac_lo == 0) && (mac_hi == 0)) {
4862 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4863 		    __FILE__, __LINE__);
4864 	} else {
4865 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4866 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4867 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4868 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4869 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4870 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4871 	}
4872 
4873 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4874 	    "address = %6D\n", sc->eaddr, ":");
4875 	DBEXIT(BCE_VERBOSE_RESET);
4876 }
4877 
4878 
4879 /****************************************************************************/
4880 /* Program the MAC address.                                                 */
4881 /*                                                                          */
4882 /* Returns:                                                                 */
4883 /*   Nothing.                                                               */
4884 /****************************************************************************/
4885 static void
4886 bce_set_mac_addr(struct bce_softc *sc)
4887 {
4888 	u32 val;
4889 	u8 *mac_addr = sc->eaddr;
4890 
4891 	/* ToDo: Add support for setting multiple MAC addresses. */
4892 
4893 	DBENTER(BCE_VERBOSE_RESET);
4894 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4895 	    "%6D\n", sc->eaddr, ":");
4896 
4897 	val = (mac_addr[0] << 8) | mac_addr[1];
4898 
4899 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4900 
4901 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4902 	    (mac_addr[4] << 8) | mac_addr[5];
4903 
4904 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4905 
4906 	DBEXIT(BCE_VERBOSE_RESET);
4907 }
4908 
4909 
4910 /****************************************************************************/
4911 /* Stop the controller.                                                     */
4912 /*                                                                          */
4913 /* Returns:                                                                 */
4914 /*   Nothing.                                                               */
4915 /****************************************************************************/
4916 static void
4917 bce_stop(struct bce_softc *sc)
4918 {
4919 	struct ifnet *ifp;
4920 
4921 	DBENTER(BCE_VERBOSE_RESET);
4922 
4923 	BCE_LOCK_ASSERT(sc);
4924 
4925 	ifp = sc->bce_ifp;
4926 
4927 	callout_stop(&sc->bce_tick_callout);
4928 
4929 	/* Disable the transmit/receive blocks. */
4930 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4931 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4932 	DELAY(20);
4933 
4934 	bce_disable_intr(sc);
4935 
4936 	/* Free RX buffers. */
4937 	if (bce_hdr_split == TRUE) {
4938 		bce_free_pg_chain(sc);
4939 	}
4940 	bce_free_rx_chain(sc);
4941 
4942 	/* Free TX buffers. */
4943 	bce_free_tx_chain(sc);
4944 
4945 	sc->watchdog_timer = 0;
4946 
4947 	sc->bce_link_up = FALSE;
4948 
4949 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4950 
4951 	DBEXIT(BCE_VERBOSE_RESET);
4952 }
4953 
4954 
4955 static int
4956 bce_reset(struct bce_softc *sc, u32 reset_code)
4957 {
4958 	u32 emac_mode_save, val;
4959 	int i, rc = 0;
4960 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4961 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4962 
4963 	DBENTER(BCE_VERBOSE_RESET);
4964 
4965 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4966 	    __FUNCTION__, reset_code);
4967 
4968 	/*
4969 	 * If ASF/IPMI is operational, then the EMAC Mode register already
4970 	 * contains appropriate values for the link settings that have
4971 	 * been auto-negotiated.  Resetting the chip will clobber those
4972 	 * values.  Save the important bits so we can restore them after
4973 	 * the reset.
4974 	 */
4975 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4976 
4977 	/* Wait for pending PCI transactions to complete. */
4978 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4979 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4980 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4981 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4982 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4983 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4984 	DELAY(5);
4985 
4986 	/* Disable DMA */
4987 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4988 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4989 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4990 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4991 	}
4992 
4993 	/* Assume bootcode is running. */
4994 	sc->bce_fw_timed_out = FALSE;
4995 	sc->bce_drv_cardiac_arrest = FALSE;
4996 
4997 	/* Give the firmware a chance to prepare for the reset. */
4998 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4999 	if (rc)
5000 		goto bce_reset_exit;
5001 
5002 	/* Set a firmware reminder that this is a soft reset. */
5003 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5004 
5005 	/* Dummy read to force the chip to complete all current transactions. */
5006 	val = REG_RD(sc, BCE_MISC_ID);
5007 
5008 	/* Chip reset. */
5009 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5010 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5011 		REG_RD(sc, BCE_MISC_COMMAND);
5012 		DELAY(5);
5013 
5014 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5015 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5016 
5017 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5018 	} else {
5019 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5020 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5021 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5022 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5023 
5024 		/* Allow up to 30us for reset to complete. */
5025 		for (i = 0; i < 10; i++) {
5026 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5027 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5028 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5029 				break;
5030 			}
5031 			DELAY(10);
5032 		}
5033 
5034 		/* Check that reset completed successfully. */
5035 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5036 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5037 			BCE_PRINTF("%s(%d): Reset failed!\n",
5038 			    __FILE__, __LINE__);
5039 			rc = EBUSY;
5040 			goto bce_reset_exit;
5041 		}
5042 	}
5043 
5044 	/* Make sure byte swapping is properly configured. */
5045 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5046 	if (val != 0x01020304) {
5047 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5048 		    __FILE__, __LINE__);
5049 		rc = ENODEV;
5050 		goto bce_reset_exit;
5051 	}
5052 
5053 	/* Just completed a reset, assume that firmware is running again. */
5054 	sc->bce_fw_timed_out = FALSE;
5055 	sc->bce_drv_cardiac_arrest = FALSE;
5056 
5057 	/* Wait for the firmware to finish its initialization. */
5058 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5059 	if (rc)
5060 		BCE_PRINTF("%s(%d): Firmware did not complete "
5061 		    "initialization!\n", __FILE__, __LINE__);
5062 	/* Get firmware capabilities. */
5063 	bce_fw_cap_init(sc);
5064 
5065 bce_reset_exit:
5066 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5067 	val = REG_RD(sc, BCE_EMAC_MODE);
5068 	val = (val & ~emac_mode_mask) | emac_mode_save;
5069 	REG_WR(sc, BCE_EMAC_MODE, val);
5070 
5071 	DBEXIT(BCE_VERBOSE_RESET);
5072 	return (rc);
5073 }
5074 
5075 
5076 static int
5077 bce_chipinit(struct bce_softc *sc)
5078 {
5079 	u32 val;
5080 	int rc = 0;
5081 
5082 	DBENTER(BCE_VERBOSE_RESET);
5083 
5084 	bce_disable_intr(sc);
5085 
5086 	/*
5087 	 * Initialize DMA byte/word swapping, configure the number of DMA
5088 	 * channels and PCI clock compensation delay.
5089 	 */
5090 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5091 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5092 #if BYTE_ORDER == BIG_ENDIAN
5093 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5094 #endif
5095 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5096 	    DMA_READ_CHANS << 12 |
5097 	    DMA_WRITE_CHANS << 16;
5098 
5099 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5100 
5101 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5102 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5103 
5104 	/*
5105 	 * This setting resolves a problem observed on certain Intel PCI
5106 	 * chipsets that cannot handle multiple outstanding DMA operations.
5107 	 * See errata E9_5706A1_65.
5108 	 */
5109 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5110 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5111 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5112 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5113 
5114 	REG_WR(sc, BCE_DMA_CONFIG, val);
5115 
5116 	/* Enable the RX_V2P and Context state machines before access. */
5117 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5118 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5119 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5120 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5121 
5122 	/* Initialize context mapping and zero out the quick contexts. */
5123 	if ((rc = bce_init_ctx(sc)) != 0)
5124 		goto bce_chipinit_exit;
5125 
5126 	/* Initialize the on-boards CPUs */
5127 	bce_init_cpus(sc);
5128 
5129 	/* Enable management frames (NC-SI) to flow to the MCP. */
5130 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5131 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5132 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5133 	}
5134 
5135 	/* Prepare NVRAM for access. */
5136 	if ((rc = bce_init_nvram(sc)) != 0)
5137 		goto bce_chipinit_exit;
5138 
5139 	/* Set the kernel bypass block size */
5140 	val = REG_RD(sc, BCE_MQ_CONFIG);
5141 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5142 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5143 
5144 	/* Enable bins used on the 5709. */
5145 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5146 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5147 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5148 			val |= BCE_MQ_CONFIG_HALT_DIS;
5149 	}
5150 
5151 	REG_WR(sc, BCE_MQ_CONFIG, val);
5152 
5153 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5154 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5155 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5156 
5157 	/* Set the page size and clear the RV2P processor stall bits. */
5158 	val = (BCM_PAGE_BITS - 8) << 24;
5159 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5160 
5161 	/* Configure page size. */
5162 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5163 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5164 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5165 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5166 
5167 	/* Set the perfect match control register to default. */
5168 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5169 
5170 bce_chipinit_exit:
5171 	DBEXIT(BCE_VERBOSE_RESET);
5172 
5173 	return(rc);
5174 }
5175 
5176 
5177 /****************************************************************************/
5178 /* Initialize the controller in preparation to send/receive traffic.        */
5179 /*                                                                          */
5180 /* Returns:                                                                 */
5181 /*   0 for success, positive value for failure.                             */
5182 /****************************************************************************/
5183 static int
5184 bce_blockinit(struct bce_softc *sc)
5185 {
5186 	u32 reg, val;
5187 	int rc = 0;
5188 
5189 	DBENTER(BCE_VERBOSE_RESET);
5190 
5191 	/* Load the hardware default MAC address. */
5192 	bce_set_mac_addr(sc);
5193 
5194 	/* Set the Ethernet backoff seed value */
5195 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5196 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5197 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5198 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5199 
5200 	sc->last_status_idx = 0;
5201 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5202 
5203 	/* Set up link change interrupt generation. */
5204 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5205 
5206 	/* Program the physical address of the status block. */
5207 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5208 	    BCE_ADDR_LO(sc->status_block_paddr));
5209 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5210 	    BCE_ADDR_HI(sc->status_block_paddr));
5211 
5212 	/* Program the physical address of the statistics block. */
5213 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5214 	    BCE_ADDR_LO(sc->stats_block_paddr));
5215 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5216 	    BCE_ADDR_HI(sc->stats_block_paddr));
5217 
5218 	/*
5219 	 * Program various host coalescing parameters.
5220 	 * Trip points control how many BDs should be ready before generating
5221 	 * an interrupt while ticks control how long a BD can sit in the chain
5222 	 * before generating an interrupt.
5223 	 */
5224 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5225 	    (sc->bce_tx_quick_cons_trip_int << 16) |
5226 	    sc->bce_tx_quick_cons_trip);
5227 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5228 	    (sc->bce_rx_quick_cons_trip_int << 16) |
5229 	    sc->bce_rx_quick_cons_trip);
5230 	REG_WR(sc, BCE_HC_TX_TICKS,
5231 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5232 	REG_WR(sc, BCE_HC_RX_TICKS,
5233 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5234 	REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5235 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5236 	/* Not used for L2. */
5237 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5238 	REG_WR(sc, BCE_HC_COM_TICKS, 0);
5239 	REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5240 
5241 	/* Configure the Host Coalescing block. */
5242 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5243 	    BCE_HC_CONFIG_COLLECT_STATS;
5244 
5245 #if 0
5246 	/* ToDo: Add MSI-X support. */
5247 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5248 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5249 		    BCE_HC_SB_CONFIG_1;
5250 
5251 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5252 
5253 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5254 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5255 
5256 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5257 		    (sc->tx_quick_cons_trip_int << 16) |
5258 		     sc->tx_quick_cons_trip);
5259 
5260 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5261 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5262 
5263 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5264 	}
5265 
5266 	/*
5267 	 * Tell the HC block to automatically set the
5268 	 * INT_MASK bit after an MSI/MSI-X interrupt
5269 	 * is generated so the driver doesn't have to.
5270 	 */
5271 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5272 		val |= BCE_HC_CONFIG_ONE_SHOT;
5273 
5274 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5275 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5276 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5277 #endif
5278 
5279 	REG_WR(sc, BCE_HC_CONFIG, val);
5280 
5281 	/* Clear the internal statistics counters. */
5282 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5283 
5284 	/* Verify that bootcode is running. */
5285 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5286 
5287 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5288 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5289 	    __FILE__, __LINE__);
5290 	    reg = 0);
5291 
5292 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5293 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5294 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5295 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5296 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5297 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5298 		rc = ENODEV;
5299 		goto bce_blockinit_exit;
5300 	}
5301 
5302 	/* Enable DMA */
5303 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5304 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5305 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5306 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5307 	}
5308 
5309 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5310 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5311 	    BCE_DRV_MSG_CODE_RESET);
5312 
5313 	/* Enable link state change interrupt generation. */
5314 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5315 
5316 	/* Enable the RXP. */
5317 	bce_start_rxp_cpu(sc);
5318 
5319 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5320 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5321 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5322 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5323 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5324 	}
5325 
5326 	/* Enable all remaining blocks in the MAC. */
5327 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5328 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5329 		    BCE_MISC_ENABLE_DEFAULT_XI);
5330 	else
5331 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5332 		    BCE_MISC_ENABLE_DEFAULT);
5333 
5334 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5335 	DELAY(20);
5336 
5337 	/* Save the current host coalescing block settings. */
5338 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5339 
5340 bce_blockinit_exit:
5341 	DBEXIT(BCE_VERBOSE_RESET);
5342 
5343 	return (rc);
5344 }
5345 
5346 
5347 /****************************************************************************/
5348 /* Encapsulate an mbuf into the rx_bd chain.                                */
5349 /*                                                                          */
5350 /* Returns:                                                                 */
5351 /*   0 for success, positive value for failure.                             */
5352 /****************************************************************************/
5353 static int
5354 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5355 {
5356 	bus_dma_segment_t segs[1];
5357 	struct mbuf *m_new = NULL;
5358 	struct rx_bd *rxbd;
5359 	int nsegs, error, rc = 0;
5360 #ifdef BCE_DEBUG
5361 	u16 debug_chain_prod = chain_prod;
5362 #endif
5363 
5364 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5365 
5366 	/* Make sure the inputs are valid. */
5367 	DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5368 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5369 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5370 	    chain_prod, (u16)MAX_RX_BD_ALLOC));
5371 
5372 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5373 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5374 	    prod, chain_prod, *prod_bseq);
5375 
5376 	/* Update some debug statistic counters */
5377 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5378 	    sc->rx_low_watermark = sc->free_rx_bd);
5379 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5380 	    sc->rx_empty_count++);
5381 
5382 	/* Simulate an mbuf allocation failure. */
5383 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5384 	    sc->mbuf_alloc_failed_count++;
5385 	    sc->mbuf_alloc_failed_sim_count++;
5386 	    rc = ENOBUFS;
5387 	    goto bce_get_rx_buf_exit);
5388 
5389 	/* This is a new mbuf allocation. */
5390 	if (bce_hdr_split == TRUE)
5391 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
5392 	else
5393 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5394 		    sc->rx_bd_mbuf_alloc_size);
5395 
5396 	if (m_new == NULL) {
5397 		sc->mbuf_alloc_failed_count++;
5398 		rc = ENOBUFS;
5399 		goto bce_get_rx_buf_exit;
5400 	}
5401 
5402 	DBRUN(sc->debug_rx_mbuf_alloc++);
5403 
5404 	/* Make sure we have a valid packet header. */
5405 	M_ASSERTPKTHDR(m_new);
5406 
5407 	/* Initialize the mbuf size and pad if necessary for alignment. */
5408 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5409 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5410 
5411 	/* ToDo: Consider calling m_fragment() to test error handling. */
5412 
5413 	/* Map the mbuf cluster into device memory. */
5414 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5415 	    sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5416 
5417 	/* Handle any mapping errors. */
5418 	if (error) {
5419 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5420 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5421 
5422 		sc->dma_map_addr_rx_failed_count++;
5423 		m_freem(m_new);
5424 
5425 		DBRUN(sc->debug_rx_mbuf_alloc--);
5426 
5427 		rc = ENOBUFS;
5428 		goto bce_get_rx_buf_exit;
5429 	}
5430 
5431 	/* All mbufs must map to a single segment. */
5432 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5433 	    __FUNCTION__, nsegs));
5434 
5435 	/* Setup the rx_bd for the segment. */
5436 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5437 
5438 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5439 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5440 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5441 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5442 	*prod_bseq += segs[0].ds_len;
5443 
5444 	/* Save the mbuf and update our counter. */
5445 	sc->rx_mbuf_ptr[chain_prod] = m_new;
5446 	sc->free_rx_bd -= nsegs;
5447 
5448 	DBRUNMSG(BCE_INSANE_RECV,
5449 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5450 
5451 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5452 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5453 	    chain_prod, *prod_bseq);
5454 
5455 bce_get_rx_buf_exit:
5456 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5457 
5458 	return(rc);
5459 }
5460 
5461 
5462 /****************************************************************************/
5463 /* Encapsulate an mbuf cluster into the page chain.                         */
5464 /*                                                                          */
5465 /* Returns:                                                                 */
5466 /*   0 for success, positive value for failure.                             */
5467 /****************************************************************************/
5468 static int
5469 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5470 {
5471 	bus_dma_segment_t segs[1];
5472 	struct mbuf *m_new = NULL;
5473 	struct rx_bd *pgbd;
5474 	int error, nsegs, rc = 0;
5475 #ifdef BCE_DEBUG
5476 	u16 debug_prod_idx = prod_idx;
5477 #endif
5478 
5479 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5480 
5481 	/* Make sure the inputs are valid. */
5482 	DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5483 	    BCE_PRINTF("%s(%d): page producer out of range: "
5484 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5485 	    prod_idx, (u16)MAX_PG_BD_ALLOC));
5486 
5487 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5488 	    "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5489 
5490 	/* Update counters if we've hit a new low or run out of pages. */
5491 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5492 	    sc->pg_low_watermark = sc->free_pg_bd);
5493 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5494 
5495 	/* Simulate an mbuf allocation failure. */
5496 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5497 	    sc->mbuf_alloc_failed_count++;
5498 	    sc->mbuf_alloc_failed_sim_count++;
5499 	    rc = ENOBUFS;
5500 	    goto bce_get_pg_buf_exit);
5501 
5502 	/* This is a new mbuf allocation. */
5503 	m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5504 	if (m_new == NULL) {
5505 		sc->mbuf_alloc_failed_count++;
5506 		rc = ENOBUFS;
5507 		goto bce_get_pg_buf_exit;
5508 	}
5509 
5510 	DBRUN(sc->debug_pg_mbuf_alloc++);
5511 
5512 	m_new->m_len = MCLBYTES;
5513 
5514 	/* ToDo: Consider calling m_fragment() to test error handling. */
5515 
5516 	/* Map the mbuf cluster into device memory. */
5517 	error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5518 	    sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5519 
5520 	/* Handle any mapping errors. */
5521 	if (error) {
5522 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5523 		    __FILE__, __LINE__);
5524 
5525 		m_freem(m_new);
5526 		DBRUN(sc->debug_pg_mbuf_alloc--);
5527 
5528 		rc = ENOBUFS;
5529 		goto bce_get_pg_buf_exit;
5530 	}
5531 
5532 	/* All mbufs must map to a single segment. */
5533 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5534 	    __FUNCTION__, nsegs));
5535 
5536 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5537 
5538 	/*
5539 	 * The page chain uses the same rx_bd data structure
5540 	 * as the receive chain but doesn't require a byte sequence (bseq).
5541 	 */
5542 	pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5543 
5544 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5545 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5546 	pgbd->rx_bd_len       = htole32(MCLBYTES);
5547 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5548 
5549 	/* Save the mbuf and update our counter. */
5550 	sc->pg_mbuf_ptr[prod_idx] = m_new;
5551 	sc->free_pg_bd--;
5552 
5553 	DBRUNMSG(BCE_INSANE_RECV,
5554 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5555 
5556 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5557 	    "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5558 
5559 bce_get_pg_buf_exit:
5560 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5561 
5562 	return(rc);
5563 }
5564 
5565 
5566 /****************************************************************************/
5567 /* Initialize the TX context memory.                                        */
5568 /*                                                                          */
5569 /* Returns:                                                                 */
5570 /*   Nothing                                                                */
5571 /****************************************************************************/
5572 static void
5573 bce_init_tx_context(struct bce_softc *sc)
5574 {
5575 	u32 val;
5576 
5577 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5578 
5579 	/* Initialize the context ID for an L2 TX chain. */
5580 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5581 		/* Set the CID type to support an L2 connection. */
5582 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5583 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5584 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5585 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5586 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5587 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5588 
5589 		/* Point the hardware to the first page in the chain. */
5590 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5591 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5592 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5593 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5594 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5595 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5596 	} else {
5597 		/* Set the CID type to support an L2 connection. */
5598 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5599 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5600 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5601 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5602 
5603 		/* Point the hardware to the first page in the chain. */
5604 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5605 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5606 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5607 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5608 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5609 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5610 	}
5611 
5612 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5613 }
5614 
5615 
5616 /****************************************************************************/
5617 /* Allocate memory and initialize the TX data structures.                   */
5618 /*                                                                          */
5619 /* Returns:                                                                 */
5620 /*   0 for success, positive value for failure.                             */
5621 /****************************************************************************/
5622 static int
5623 bce_init_tx_chain(struct bce_softc *sc)
5624 {
5625 	struct tx_bd *txbd;
5626 	int i, rc = 0;
5627 
5628 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5629 
5630 	/* Set the initial TX producer/consumer indices. */
5631 	sc->tx_prod        = 0;
5632 	sc->tx_cons        = 0;
5633 	sc->tx_prod_bseq   = 0;
5634 	sc->used_tx_bd     = 0;
5635 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5636 	DBRUN(sc->tx_hi_watermark = 0);
5637 	DBRUN(sc->tx_full_count = 0);
5638 
5639 	/*
5640 	 * The NetXtreme II supports a linked-list structre called
5641 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5642 	 * consists of a series of 1 or more chain pages, each of which
5643 	 * consists of a fixed number of BD entries.
5644 	 * The last BD entry on each page is a pointer to the next page
5645 	 * in the chain, and the last pointer in the BD chain
5646 	 * points back to the beginning of the chain.
5647 	 */
5648 
5649 	/* Set the TX next pointer chain entries. */
5650 	for (i = 0; i < sc->tx_pages; i++) {
5651 		int j;
5652 
5653 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5654 
5655 		/* Check if we've reached the last page. */
5656 		if (i == (sc->tx_pages - 1))
5657 			j = 0;
5658 		else
5659 			j = i + 1;
5660 
5661 		txbd->tx_bd_haddr_hi =
5662 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5663 		txbd->tx_bd_haddr_lo =
5664 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5665 	}
5666 
5667 	bce_init_tx_context(sc);
5668 
5669 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5670 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5671 
5672 	return(rc);
5673 }
5674 
5675 
5676 /****************************************************************************/
5677 /* Free memory and clear the TX data structures.                            */
5678 /*                                                                          */
5679 /* Returns:                                                                 */
5680 /*   Nothing.                                                               */
5681 /****************************************************************************/
5682 static void
5683 bce_free_tx_chain(struct bce_softc *sc)
5684 {
5685 	int i;
5686 
5687 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5688 
5689 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5690 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5691 		if (sc->tx_mbuf_ptr[i] != NULL) {
5692 			if (sc->tx_mbuf_map[i] != NULL)
5693 				bus_dmamap_sync(sc->tx_mbuf_tag,
5694 				    sc->tx_mbuf_map[i],
5695 				    BUS_DMASYNC_POSTWRITE);
5696 			m_freem(sc->tx_mbuf_ptr[i]);
5697 			sc->tx_mbuf_ptr[i] = NULL;
5698 			DBRUN(sc->debug_tx_mbuf_alloc--);
5699 		}
5700 	}
5701 
5702 	/* Clear each TX chain page. */
5703 	for (i = 0; i < sc->tx_pages; i++)
5704 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5705 
5706 	sc->used_tx_bd = 0;
5707 
5708 	/* Check if we lost any mbufs in the process. */
5709 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5710 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5711 	    "from tx chain!\n",	__FILE__, __LINE__,
5712 	    sc->debug_tx_mbuf_alloc));
5713 
5714 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5715 }
5716 
5717 
5718 /****************************************************************************/
5719 /* Initialize the RX context memory.                                        */
5720 /*                                                                          */
5721 /* Returns:                                                                 */
5722 /*   Nothing                                                                */
5723 /****************************************************************************/
5724 static void
5725 bce_init_rx_context(struct bce_softc *sc)
5726 {
5727 	u32 val;
5728 
5729 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5730 
5731 	/* Init the type, size, and BD cache levels for the RX context. */
5732 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5733 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5734 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5735 
5736 	/*
5737 	 * Set the level for generating pause frames
5738 	 * when the number of available rx_bd's gets
5739 	 * too low (the low watermark) and the level
5740 	 * when pause frames can be stopped (the high
5741 	 * watermark).
5742 	 */
5743 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5744 		u32 lo_water, hi_water;
5745 
5746 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5747 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5748 		} else {
5749 			lo_water = 0;
5750 		}
5751 
5752 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5753 			lo_water = 0;
5754 		}
5755 
5756 		hi_water = USABLE_RX_BD_ALLOC / 4;
5757 
5758 		if (hi_water <= lo_water) {
5759 			lo_water = 0;
5760 		}
5761 
5762 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5763 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5764 
5765 		if (hi_water > 0xf)
5766 			hi_water = 0xf;
5767 		else if (hi_water == 0)
5768 			lo_water = 0;
5769 
5770 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5771 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5772 	}
5773 
5774 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5775 
5776 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5777 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5778 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5779 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5780 	}
5781 
5782 	/* Point the hardware to the first page in the chain. */
5783 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5784 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5785 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5786 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5787 
5788 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5789 }
5790 
5791 
5792 /****************************************************************************/
5793 /* Allocate memory and initialize the RX data structures.                   */
5794 /*                                                                          */
5795 /* Returns:                                                                 */
5796 /*   0 for success, positive value for failure.                             */
5797 /****************************************************************************/
5798 static int
5799 bce_init_rx_chain(struct bce_softc *sc)
5800 {
5801 	struct rx_bd *rxbd;
5802 	int i, rc = 0;
5803 
5804 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5805 	    BCE_VERBOSE_CTX);
5806 
5807 	/* Initialize the RX producer and consumer indices. */
5808 	sc->rx_prod        = 0;
5809 	sc->rx_cons        = 0;
5810 	sc->rx_prod_bseq   = 0;
5811 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5812 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5813 
5814 	/* Initialize the RX next pointer chain entries. */
5815 	for (i = 0; i < sc->rx_pages; i++) {
5816 		int j;
5817 
5818 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5819 
5820 		/* Check if we've reached the last page. */
5821 		if (i == (sc->rx_pages - 1))
5822 			j = 0;
5823 		else
5824 			j = i + 1;
5825 
5826 		/* Setup the chain page pointers. */
5827 		rxbd->rx_bd_haddr_hi =
5828 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5829 		rxbd->rx_bd_haddr_lo =
5830 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5831 	}
5832 
5833 	/* Fill up the RX chain. */
5834 	bce_fill_rx_chain(sc);
5835 
5836 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5837 	DBRUN(sc->rx_empty_count = 0);
5838 	for (i = 0; i < sc->rx_pages; i++) {
5839 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5840 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5841 	}
5842 
5843 	bce_init_rx_context(sc);
5844 
5845 	DBRUNMSG(BCE_EXTREME_RECV,
5846 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5847 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5848 	    BCE_VERBOSE_CTX);
5849 
5850 	/* ToDo: Are there possible failure modes here? */
5851 
5852 	return(rc);
5853 }
5854 
5855 
5856 /****************************************************************************/
5857 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5858 /* occurs.                                                                  */
5859 /*                                                                          */
5860 /* Returns:                                                                 */
5861 /*   Nothing                                                                */
5862 /****************************************************************************/
5863 static void
5864 bce_fill_rx_chain(struct bce_softc *sc)
5865 {
5866 	u16 prod, prod_idx;
5867 	u32 prod_bseq;
5868 
5869 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5870 	    BCE_VERBOSE_CTX);
5871 
5872 	/* Get the RX chain producer indices. */
5873 	prod      = sc->rx_prod;
5874 	prod_bseq = sc->rx_prod_bseq;
5875 
5876 	/* Keep filling the RX chain until it's full. */
5877 	while (sc->free_rx_bd > 0) {
5878 		prod_idx = RX_CHAIN_IDX(prod);
5879 		if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5880 			/* Bail out if we can't add an mbuf to the chain. */
5881 			break;
5882 		}
5883 		prod = NEXT_RX_BD(prod);
5884 	}
5885 
5886 	/* Save the RX chain producer indices. */
5887 	sc->rx_prod      = prod;
5888 	sc->rx_prod_bseq = prod_bseq;
5889 
5890 	/* We should never end up pointing to a next page pointer. */
5891 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5892 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5893 	    __FUNCTION__, rx_prod));
5894 
5895 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5896 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5897 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5898 
5899 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5900 	    BCE_VERBOSE_CTX);
5901 }
5902 
5903 
5904 /****************************************************************************/
5905 /* Free memory and clear the RX data structures.                            */
5906 /*                                                                          */
5907 /* Returns:                                                                 */
5908 /*   Nothing.                                                               */
5909 /****************************************************************************/
5910 static void
5911 bce_free_rx_chain(struct bce_softc *sc)
5912 {
5913 	int i;
5914 
5915 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5916 
5917 	/* Free any mbufs still in the RX mbuf chain. */
5918 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5919 		if (sc->rx_mbuf_ptr[i] != NULL) {
5920 			if (sc->rx_mbuf_map[i] != NULL)
5921 				bus_dmamap_sync(sc->rx_mbuf_tag,
5922 				    sc->rx_mbuf_map[i],
5923 				    BUS_DMASYNC_POSTREAD);
5924 			m_freem(sc->rx_mbuf_ptr[i]);
5925 			sc->rx_mbuf_ptr[i] = NULL;
5926 			DBRUN(sc->debug_rx_mbuf_alloc--);
5927 		}
5928 	}
5929 
5930 	/* Clear each RX chain page. */
5931 	for (i = 0; i < sc->rx_pages; i++)
5932 		if (sc->rx_bd_chain[i] != NULL)
5933 			bzero((char *)sc->rx_bd_chain[i],
5934 			    BCE_RX_CHAIN_PAGE_SZ);
5935 
5936 	sc->free_rx_bd = sc->max_rx_bd;
5937 
5938 	/* Check if we lost any mbufs in the process. */
5939 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5940 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5941 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5942 
5943 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5944 }
5945 
5946 
5947 /****************************************************************************/
5948 /* Allocate memory and initialize the page data structures.                 */
5949 /* Assumes that bce_init_rx_chain() has not already been called.            */
5950 /*                                                                          */
5951 /* Returns:                                                                 */
5952 /*   0 for success, positive value for failure.                             */
5953 /****************************************************************************/
5954 static int
5955 bce_init_pg_chain(struct bce_softc *sc)
5956 {
5957 	struct rx_bd *pgbd;
5958 	int i, rc = 0;
5959 	u32 val;
5960 
5961 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5962 		BCE_VERBOSE_CTX);
5963 
5964 	/* Initialize the page producer and consumer indices. */
5965 	sc->pg_prod        = 0;
5966 	sc->pg_cons        = 0;
5967 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5968 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5969 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5970 	DBRUN(sc->pg_empty_count = 0);
5971 
5972 	/* Initialize the page next pointer chain entries. */
5973 	for (i = 0; i < sc->pg_pages; i++) {
5974 		int j;
5975 
5976 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5977 
5978 		/* Check if we've reached the last page. */
5979 		if (i == (sc->pg_pages - 1))
5980 			j = 0;
5981 		else
5982 			j = i + 1;
5983 
5984 		/* Setup the chain page pointers. */
5985 		pgbd->rx_bd_haddr_hi =
5986 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5987 		pgbd->rx_bd_haddr_lo =
5988 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5989 	}
5990 
5991 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5992 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5993 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5994 
5995 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5996 
5997 	/* Configure the rx_bd and page chain mbuf cluster size. */
5998 	val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
5999 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6000 
6001 	/* Configure the context reserved for jumbo support. */
6002 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6003 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6004 
6005 	/* Point the hardware to the first page in the page chain. */
6006 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6007 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6008 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6009 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6010 
6011 	/* Fill up the page chain. */
6012 	bce_fill_pg_chain(sc);
6013 
6014 	for (i = 0; i < sc->pg_pages; i++) {
6015 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6016 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6017 	}
6018 
6019 	DBRUNMSG(BCE_EXTREME_RECV,
6020 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6021 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6022 		BCE_VERBOSE_CTX);
6023 	return(rc);
6024 }
6025 
6026 
6027 /****************************************************************************/
6028 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6029 /* occurs.                                                                  */
6030 /*                                                                          */
6031 /* Returns:                                                                 */
6032 /*   Nothing                                                                */
6033 /****************************************************************************/
6034 static void
6035 bce_fill_pg_chain(struct bce_softc *sc)
6036 {
6037 	u16 prod, prod_idx;
6038 
6039 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6040 	    BCE_VERBOSE_CTX);
6041 
6042 	/* Get the page chain prodcuer index. */
6043 	prod = sc->pg_prod;
6044 
6045 	/* Keep filling the page chain until it's full. */
6046 	while (sc->free_pg_bd > 0) {
6047 		prod_idx = PG_CHAIN_IDX(prod);
6048 		if (bce_get_pg_buf(sc, prod, prod_idx)) {
6049 			/* Bail out if we can't add an mbuf to the chain. */
6050 			break;
6051 		}
6052 		prod = NEXT_PG_BD(prod);
6053 	}
6054 
6055 	/* Save the page chain producer index. */
6056 	sc->pg_prod = prod;
6057 
6058 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6059 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6060 	    __FUNCTION__, pg_prod));
6061 
6062 	/*
6063 	 * Write the mailbox and tell the chip about
6064 	 * the new rx_bd's in the page chain.
6065 	 */
6066 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6067 	    prod);
6068 
6069 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6070 	    BCE_VERBOSE_CTX);
6071 }
6072 
6073 
6074 /****************************************************************************/
6075 /* Free memory and clear the RX data structures.                            */
6076 /*                                                                          */
6077 /* Returns:                                                                 */
6078 /*   Nothing.                                                               */
6079 /****************************************************************************/
6080 static void
6081 bce_free_pg_chain(struct bce_softc *sc)
6082 {
6083 	int i;
6084 
6085 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6086 
6087 	/* Free any mbufs still in the mbuf page chain. */
6088 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6089 		if (sc->pg_mbuf_ptr[i] != NULL) {
6090 			if (sc->pg_mbuf_map[i] != NULL)
6091 				bus_dmamap_sync(sc->pg_mbuf_tag,
6092 				    sc->pg_mbuf_map[i],
6093 				    BUS_DMASYNC_POSTREAD);
6094 			m_freem(sc->pg_mbuf_ptr[i]);
6095 			sc->pg_mbuf_ptr[i] = NULL;
6096 			DBRUN(sc->debug_pg_mbuf_alloc--);
6097 		}
6098 	}
6099 
6100 	/* Clear each page chain pages. */
6101 	for (i = 0; i < sc->pg_pages; i++)
6102 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6103 
6104 	sc->free_pg_bd = sc->max_pg_bd;
6105 
6106 	/* Check if we lost any mbufs in the process. */
6107 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6108 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6109 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6110 
6111 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6112 }
6113 
6114 
6115 static u32
6116 bce_get_rphy_link(struct bce_softc *sc)
6117 {
6118 	u32 advertise, link;
6119 	int fdpx;
6120 
6121 	advertise = 0;
6122 	fdpx = 0;
6123 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6124 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6125 	else
6126 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6127 	if (link & BCE_NETLINK_ANEG_ENB)
6128 		advertise |= BCE_NETLINK_ANEG_ENB;
6129 	if (link & BCE_NETLINK_SPEED_10HALF)
6130 		advertise |= BCE_NETLINK_SPEED_10HALF;
6131 	if (link & BCE_NETLINK_SPEED_10FULL) {
6132 		advertise |= BCE_NETLINK_SPEED_10FULL;
6133 		fdpx++;
6134 	}
6135 	if (link & BCE_NETLINK_SPEED_100HALF)
6136 		advertise |= BCE_NETLINK_SPEED_100HALF;
6137 	if (link & BCE_NETLINK_SPEED_100FULL) {
6138 		advertise |= BCE_NETLINK_SPEED_100FULL;
6139 		fdpx++;
6140 	}
6141 	if (link & BCE_NETLINK_SPEED_1000HALF)
6142 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6143 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6144 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6145 		fdpx++;
6146 	}
6147 	if (link & BCE_NETLINK_SPEED_2500HALF)
6148 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6149 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6150 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6151 		fdpx++;
6152 	}
6153 	if (fdpx)
6154 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6155 		    BCE_NETLINK_FC_PAUSE_ASYM;
6156 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6157 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6158 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6159 
6160 	return (advertise);
6161 }
6162 
6163 
6164 /****************************************************************************/
6165 /* Set media options.                                                       */
6166 /*                                                                          */
6167 /* Returns:                                                                 */
6168 /*   0 for success, positive value for failure.                             */
6169 /****************************************************************************/
6170 static int
6171 bce_ifmedia_upd(struct ifnet *ifp)
6172 {
6173 	struct bce_softc *sc = ifp->if_softc;
6174 	int error;
6175 
6176 	DBENTER(BCE_VERBOSE);
6177 
6178 	BCE_LOCK(sc);
6179 	error = bce_ifmedia_upd_locked(ifp);
6180 	BCE_UNLOCK(sc);
6181 
6182 	DBEXIT(BCE_VERBOSE);
6183 	return (error);
6184 }
6185 
6186 
6187 /****************************************************************************/
6188 /* Set media options.                                                       */
6189 /*                                                                          */
6190 /* Returns:                                                                 */
6191 /*   Nothing.                                                               */
6192 /****************************************************************************/
6193 static int
6194 bce_ifmedia_upd_locked(struct ifnet *ifp)
6195 {
6196 	struct bce_softc *sc = ifp->if_softc;
6197 	struct mii_data *mii;
6198 	struct mii_softc *miisc;
6199 	struct ifmedia *ifm;
6200 	u32 link;
6201 	int error, fdx;
6202 
6203 	DBENTER(BCE_VERBOSE_PHY);
6204 
6205 	error = 0;
6206 	BCE_LOCK_ASSERT(sc);
6207 
6208 	sc->bce_link_up = FALSE;
6209 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6210 		ifm = &sc->bce_ifmedia;
6211 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6212 			return (EINVAL);
6213 		link = 0;
6214 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6215 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6216 		case IFM_AUTO:
6217 			/*
6218 			 * Check advertised link of remote PHY by reading
6219 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6220 			 * Always use the same link type of remote PHY.
6221 			 */
6222 			link = bce_get_rphy_link(sc);
6223 			break;
6224 		case IFM_2500_SX:
6225 			if ((sc->bce_phy_flags &
6226 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6227 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6228 				return (EINVAL);
6229 			/*
6230 			 * XXX
6231 			 * Have to enable forced 2.5Gbps configuration.
6232 			 */
6233 			if (fdx != 0)
6234 				link |= BCE_NETLINK_SPEED_2500FULL;
6235 			else
6236 				link |= BCE_NETLINK_SPEED_2500HALF;
6237 			break;
6238 		case IFM_1000_SX:
6239 			if ((sc->bce_phy_flags &
6240 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6241 				return (EINVAL);
6242 			/*
6243 			 * XXX
6244 			 * Have to disable 2.5Gbps configuration.
6245 			 */
6246 			if (fdx != 0)
6247 				link = BCE_NETLINK_SPEED_1000FULL;
6248 			else
6249 				link = BCE_NETLINK_SPEED_1000HALF;
6250 			break;
6251 		case IFM_1000_T:
6252 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6253 				return (EINVAL);
6254 			if (fdx != 0)
6255 				link = BCE_NETLINK_SPEED_1000FULL;
6256 			else
6257 				link = BCE_NETLINK_SPEED_1000HALF;
6258 			break;
6259 		case IFM_100_TX:
6260 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6261 				return (EINVAL);
6262 			if (fdx != 0)
6263 				link = BCE_NETLINK_SPEED_100FULL;
6264 			else
6265 				link = BCE_NETLINK_SPEED_100HALF;
6266 			break;
6267 		case IFM_10_T:
6268 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6269 				return (EINVAL);
6270 			if (fdx != 0)
6271 				link = BCE_NETLINK_SPEED_10FULL;
6272 			else
6273 				link = BCE_NETLINK_SPEED_10HALF;
6274 			break;
6275 		default:
6276 			return (EINVAL);
6277 		}
6278 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6279 			/*
6280 			 * XXX
6281 			 * Advertise pause capability for full-duplex media.
6282 			 */
6283 			if (fdx != 0)
6284 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6285 				    BCE_NETLINK_FC_PAUSE_ASYM;
6286 			if ((sc->bce_phy_flags &
6287 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6288 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6289 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6290 		}
6291 
6292 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6293 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6294 	} else {
6295 		mii = device_get_softc(sc->bce_miibus);
6296 
6297 		/* Make sure the MII bus has been enumerated. */
6298 		if (mii) {
6299 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6300 				PHY_RESET(miisc);
6301 			error = mii_mediachg(mii);
6302 		}
6303 	}
6304 
6305 	DBEXIT(BCE_VERBOSE_PHY);
6306 	return (error);
6307 }
6308 
6309 
6310 static void
6311 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6312 {
6313 	struct ifnet *ifp;
6314 	u32 link;
6315 
6316 	ifp = sc->bce_ifp;
6317 	BCE_LOCK_ASSERT(sc);
6318 
6319 	ifmr->ifm_status = IFM_AVALID;
6320 	ifmr->ifm_active = IFM_ETHER;
6321 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6322 	/* XXX Handle heart beat status? */
6323 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6324 		ifmr->ifm_status |= IFM_ACTIVE;
6325 	else {
6326 		ifmr->ifm_active |= IFM_NONE;
6327 		ifp->if_baudrate = 0;
6328 		return;
6329 	}
6330 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6331 	case BCE_LINK_STATUS_10HALF:
6332 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6333 		ifp->if_baudrate = IF_Mbps(10UL);
6334 		break;
6335 	case BCE_LINK_STATUS_10FULL:
6336 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6337 		ifp->if_baudrate = IF_Mbps(10UL);
6338 		break;
6339 	case BCE_LINK_STATUS_100HALF:
6340 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6341 		ifp->if_baudrate = IF_Mbps(100UL);
6342 		break;
6343 	case BCE_LINK_STATUS_100FULL:
6344 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6345 		ifp->if_baudrate = IF_Mbps(100UL);
6346 		break;
6347 	case BCE_LINK_STATUS_1000HALF:
6348 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6349 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6350 		else
6351 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6352 		ifp->if_baudrate = IF_Mbps(1000UL);
6353 		break;
6354 	case BCE_LINK_STATUS_1000FULL:
6355 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6356 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6357 		else
6358 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6359 		ifp->if_baudrate = IF_Mbps(1000UL);
6360 		break;
6361 	case BCE_LINK_STATUS_2500HALF:
6362 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6363 			ifmr->ifm_active |= IFM_NONE;
6364 			return;
6365 		} else
6366 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6367 		ifp->if_baudrate = IF_Mbps(2500UL);
6368 		break;
6369 	case BCE_LINK_STATUS_2500FULL:
6370 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6371 			ifmr->ifm_active |= IFM_NONE;
6372 			return;
6373 		} else
6374 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6375 		ifp->if_baudrate = IF_Mbps(2500UL);
6376 		break;
6377 	default:
6378 		ifmr->ifm_active |= IFM_NONE;
6379 		return;
6380 	}
6381 
6382 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6383 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6384 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6385 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6386 }
6387 
6388 
6389 /****************************************************************************/
6390 /* Reports current media status.                                            */
6391 /*                                                                          */
6392 /* Returns:                                                                 */
6393 /*   Nothing.                                                               */
6394 /****************************************************************************/
6395 static void
6396 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6397 {
6398 	struct bce_softc *sc = ifp->if_softc;
6399 	struct mii_data *mii;
6400 
6401 	DBENTER(BCE_VERBOSE_PHY);
6402 
6403 	BCE_LOCK(sc);
6404 
6405 	if ((ifp->if_flags & IFF_UP) == 0) {
6406 		BCE_UNLOCK(sc);
6407 		return;
6408 	}
6409 
6410 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6411 		bce_ifmedia_sts_rphy(sc, ifmr);
6412 	else {
6413 		mii = device_get_softc(sc->bce_miibus);
6414 		mii_pollstat(mii);
6415 		ifmr->ifm_active = mii->mii_media_active;
6416 		ifmr->ifm_status = mii->mii_media_status;
6417 	}
6418 
6419 	BCE_UNLOCK(sc);
6420 
6421 	DBEXIT(BCE_VERBOSE_PHY);
6422 }
6423 
6424 
6425 /****************************************************************************/
6426 /* Handles PHY generated interrupt events.                                  */
6427 /*                                                                          */
6428 /* Returns:                                                                 */
6429 /*   Nothing.                                                               */
6430 /****************************************************************************/
6431 static void
6432 bce_phy_intr(struct bce_softc *sc)
6433 {
6434 	u32 new_link_state, old_link_state;
6435 
6436 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6437 
6438 	DBRUN(sc->phy_interrupts++);
6439 
6440 	new_link_state = sc->status_block->status_attn_bits &
6441 	    STATUS_ATTN_BITS_LINK_STATE;
6442 	old_link_state = sc->status_block->status_attn_bits_ack &
6443 	    STATUS_ATTN_BITS_LINK_STATE;
6444 
6445 	/* Handle any changes if the link state has changed. */
6446 	if (new_link_state != old_link_state) {
6447 
6448 		/* Update the status_attn_bits_ack field. */
6449 		if (new_link_state) {
6450 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6451 			    STATUS_ATTN_BITS_LINK_STATE);
6452 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6453 			    __FUNCTION__);
6454 		} else {
6455 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6456 			    STATUS_ATTN_BITS_LINK_STATE);
6457 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6458 			    __FUNCTION__);
6459 		}
6460 
6461 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6462 			if (new_link_state) {
6463 				if (bootverbose)
6464 					if_printf(sc->bce_ifp, "link UP\n");
6465 				if_link_state_change(sc->bce_ifp,
6466 				    LINK_STATE_UP);
6467 			} else {
6468 				if (bootverbose)
6469 					if_printf(sc->bce_ifp, "link DOWN\n");
6470 				if_link_state_change(sc->bce_ifp,
6471 				    LINK_STATE_DOWN);
6472 			}
6473 		}
6474 		/*
6475 		 * Assume link is down and allow
6476 		 * tick routine to update the state
6477 		 * based on the actual media state.
6478 		 */
6479 		sc->bce_link_up = FALSE;
6480 		callout_stop(&sc->bce_tick_callout);
6481 		bce_tick(sc);
6482 	}
6483 
6484 	/* Acknowledge the link change interrupt. */
6485 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6486 
6487 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6488 }
6489 
6490 
6491 /****************************************************************************/
6492 /* Reads the receive consumer value from the status block (skipping over    */
6493 /* chain page pointer if necessary).                                        */
6494 /*                                                                          */
6495 /* Returns:                                                                 */
6496 /*   hw_cons                                                                */
6497 /****************************************************************************/
6498 static inline u16
6499 bce_get_hw_rx_cons(struct bce_softc *sc)
6500 {
6501 	u16 hw_cons;
6502 
6503 	rmb();
6504 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6505 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6506 		hw_cons++;
6507 
6508 	return hw_cons;
6509 }
6510 
6511 /****************************************************************************/
6512 /* Handles received frame interrupt events.                                 */
6513 /*                                                                          */
6514 /* Returns:                                                                 */
6515 /*   Nothing.                                                               */
6516 /****************************************************************************/
6517 static void
6518 bce_rx_intr(struct bce_softc *sc)
6519 {
6520 	struct ifnet *ifp = sc->bce_ifp;
6521 	struct l2_fhdr *l2fhdr;
6522 	struct ether_vlan_header *vh;
6523 	unsigned int pkt_len;
6524 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6525 	u32 status;
6526 	unsigned int rem_len;
6527 	u16 sw_pg_cons, sw_pg_cons_idx;
6528 
6529 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6530 	DBRUN(sc->interrupts_rx++);
6531 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6532 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6533 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6534 
6535 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6536 	for (int i = 0; i < sc->rx_pages; i++)
6537 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6538 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6539 
6540 	/* Prepare the page chain pages to be accessed by the host CPU. */
6541 	if (bce_hdr_split == TRUE) {
6542 		for (int i = 0; i < sc->pg_pages; i++)
6543 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6544 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6545 	}
6546 
6547 	/* Get the hardware's view of the RX consumer index. */
6548 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6549 
6550 	/* Get working copies of the driver's view of the consumer indices. */
6551 	sw_rx_cons = sc->rx_cons;
6552 	sw_pg_cons = sc->pg_cons;
6553 
6554 	/* Update some debug statistics counters */
6555 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6556 	    sc->rx_low_watermark = sc->free_rx_bd);
6557 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6558 	    sc->rx_empty_count++);
6559 
6560 	/* Scan through the receive chain as long as there is work to do */
6561 	/* ToDo: Consider setting a limit on the number of packets processed. */
6562 	rmb();
6563 	while (sw_rx_cons != hw_rx_cons) {
6564 		struct mbuf *m0;
6565 
6566 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6567 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6568 
6569 		/* Unmap the mbuf from DMA space. */
6570 		bus_dmamap_sync(sc->rx_mbuf_tag,
6571 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6572 		    BUS_DMASYNC_POSTREAD);
6573 		bus_dmamap_unload(sc->rx_mbuf_tag,
6574 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6575 
6576 		/* Remove the mbuf from the RX chain. */
6577 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6578 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6579 		DBRUN(sc->debug_rx_mbuf_alloc--);
6580 		sc->free_rx_bd++;
6581 
6582 		/*
6583  		 * Frames received on the NetXteme II are prepended
6584  		 * with an l2_fhdr structure which provides status
6585  		 * information about the received frame (including
6586  		 * VLAN tags and checksum info).  The frames are
6587 		 * also automatically adjusted to word align the IP
6588  		 * header (i.e. two null bytes are inserted before
6589  		 * the Ethernet	header).  As a result the data
6590  		 * DMA'd by the controller into	the mbuf looks
6591 		 * like this:
6592 		 *
6593 		 * +---------+-----+---------------------+-----+
6594 		 * | l2_fhdr | pad | packet data         | FCS |
6595 		 * +---------+-----+---------------------+-----+
6596 		 *
6597  		 * The l2_fhdr needs to be checked and skipped and
6598  		 * the FCS needs to be stripped before sending the
6599 		 * packet up the stack.
6600 		 */
6601 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6602 
6603 		/* Get the packet data + FCS length and the status. */
6604 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6605 		status  = l2fhdr->l2_fhdr_status;
6606 
6607 		/*
6608 		 * Skip over the l2_fhdr and pad, resulting in the
6609 		 * following data in the mbuf:
6610 		 * +---------------------+-----+
6611 		 * | packet data         | FCS |
6612 		 * +---------------------+-----+
6613 		 */
6614 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6615 
6616 		/*
6617  		 * When split header mode is used, an ethernet frame
6618  		 * may be split across the receive chain and the
6619  		 * page chain. If that occurs an mbuf cluster must be
6620  		 * reassembled from the individual mbuf pieces.
6621 		 */
6622 		if (bce_hdr_split == TRUE) {
6623 			/*
6624 			 * Check whether the received frame fits in a single
6625 			 * mbuf or not (i.e. packet data + FCS <=
6626 			 * sc->rx_bd_mbuf_data_len bytes).
6627 			 */
6628 			if (pkt_len > m0->m_len) {
6629 				/*
6630 				 * The received frame is larger than a single mbuf.
6631 				 * If the frame was a TCP frame then only the TCP
6632 				 * header is placed in the mbuf, the remaining
6633 				 * payload (including FCS) is placed in the page
6634 				 * chain, the SPLIT flag is set, and the header
6635 				 * length is placed in the IP checksum field.
6636 				 * If the frame is not a TCP frame then the mbuf
6637 				 * is filled and the remaining bytes are placed
6638 				 * in the page chain.
6639 				 */
6640 
6641 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6642 					"packet.\n", __FUNCTION__);
6643 				DBRUN(sc->split_header_frames_rcvd++);
6644 
6645 				/*
6646 				 * When the page chain is enabled and the TCP
6647 				 * header has been split from the TCP payload,
6648 				 * the ip_xsum structure will reflect the length
6649 				 * of the TCP header, not the IP checksum.  Set
6650 				 * the packet length of the mbuf accordingly.
6651 				 */
6652 				if (status & L2_FHDR_STATUS_SPLIT) {
6653 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6654 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6655 				}
6656 
6657 				rem_len = pkt_len - m0->m_len;
6658 
6659 				/* Pull mbufs off the page chain for any remaining data. */
6660 				while (rem_len > 0) {
6661 					struct mbuf *m_pg;
6662 
6663 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6664 
6665 					/* Remove the mbuf from the page chain. */
6666 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6667 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6668 					DBRUN(sc->debug_pg_mbuf_alloc--);
6669 					sc->free_pg_bd++;
6670 
6671 					/* Unmap the page chain mbuf from DMA space. */
6672 					bus_dmamap_sync(sc->pg_mbuf_tag,
6673 						sc->pg_mbuf_map[sw_pg_cons_idx],
6674 						BUS_DMASYNC_POSTREAD);
6675 					bus_dmamap_unload(sc->pg_mbuf_tag,
6676 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6677 
6678 					/* Adjust the mbuf length. */
6679 					if (rem_len < m_pg->m_len) {
6680 						/* The mbuf chain is complete. */
6681 						m_pg->m_len = rem_len;
6682 						rem_len = 0;
6683 					} else {
6684 						/* More packet data is waiting. */
6685 						rem_len -= m_pg->m_len;
6686 					}
6687 
6688 					/* Concatenate the mbuf cluster to the mbuf. */
6689 					m_cat(m0, m_pg);
6690 
6691 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6692 				}
6693 
6694 				/* Set the total packet length. */
6695 				m0->m_pkthdr.len = pkt_len;
6696 
6697 			} else {
6698 				/*
6699 				 * The received packet is small and fits in a
6700 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6701 				 * FCS <= MHLEN).  In other words, the packet is
6702 				 * 154 bytes or less in size.
6703 				 */
6704 
6705 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6706 					"packet.\n", __FUNCTION__);
6707 
6708 				/* Set the total packet length. */
6709 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6710 			}
6711 		} else
6712 			/* Set the total packet length. */
6713 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6714 
6715 		/* Remove the trailing Ethernet FCS. */
6716 		m_adj(m0, -ETHER_CRC_LEN);
6717 
6718 		/* Check that the resulting mbuf chain is valid. */
6719 		DBRUN(m_sanity(m0, FALSE));
6720 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6721 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6722 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6723 		    m_print(m0, 128));
6724 
6725 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6726 		    sc->l2fhdr_error_sim_count++;
6727 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6728 
6729 		/* Check the received frame for errors. */
6730 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6731 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6732 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6733 
6734 			/* Log the error and release the mbuf. */
6735 			ifp->if_ierrors++;
6736 			sc->l2fhdr_error_count++;
6737 
6738 			m_freem(m0);
6739 			m0 = NULL;
6740 			goto bce_rx_intr_next_rx;
6741 		}
6742 
6743 		/* Send the packet to the appropriate interface. */
6744 		m0->m_pkthdr.rcvif = ifp;
6745 
6746 		/* Assume no hardware checksum. */
6747 		m0->m_pkthdr.csum_flags = 0;
6748 
6749 		/* Validate the checksum if offload enabled. */
6750 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6751 			/* Check for an IP datagram. */
6752 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6753 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6754 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6755 				DBRUN(sc->csum_offload_ip++);
6756 				/* Check if the IP checksum is valid. */
6757 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6758 					m0->m_pkthdr.csum_flags |=
6759 					    CSUM_IP_VALID;
6760 			}
6761 
6762 			/* Check for a valid TCP/UDP frame. */
6763 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6764 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6765 
6766 				/* Check for a good TCP/UDP checksum. */
6767 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6768 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6769 					DBRUN(sc->csum_offload_tcp_udp++);
6770 					m0->m_pkthdr.csum_data =
6771 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6772 					m0->m_pkthdr.csum_flags |=
6773 					    (CSUM_DATA_VALID
6774 					    | CSUM_PSEUDO_HDR);
6775 				}
6776 			}
6777 		}
6778 
6779 		/* Attach the VLAN tag.	*/
6780 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6781 		    !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6782 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6783 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6784 				DBRUN(sc->vlan_tagged_frames_stripped++);
6785 #if __FreeBSD_version < 700000
6786 				VLAN_INPUT_TAG(ifp, m0,
6787 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6788 #else
6789 				m0->m_pkthdr.ether_vtag =
6790 				    l2fhdr->l2_fhdr_vlan_tag;
6791 				m0->m_flags |= M_VLANTAG;
6792 #endif
6793 			} else {
6794 				/*
6795 				 * bce(4) controllers can't disable VLAN
6796 				 * tag stripping if management firmware
6797 				 * (ASF/IPMI/UMP) is running. So we always
6798 				 * strip VLAN tag and manually reconstruct
6799 				 * the VLAN frame by appending stripped
6800 				 * VLAN tag in driver if VLAN tag stripping
6801 				 * was disabled.
6802 				 *
6803 				 * TODO: LLC SNAP handling.
6804 				 */
6805 				bcopy(mtod(m0, uint8_t *),
6806 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6807 				    ETHER_ADDR_LEN * 2);
6808 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6809 				vh = mtod(m0, struct ether_vlan_header *);
6810 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6811 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6812 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6813 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6814 			}
6815 		}
6816 
6817 		/* Increment received packet statistics. */
6818 		ifp->if_ipackets++;
6819 
6820 bce_rx_intr_next_rx:
6821 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6822 
6823 		/* If we have a packet, pass it up the stack */
6824 		if (m0) {
6825 			/* Make sure we don't lose our place when we release the lock. */
6826 			sc->rx_cons = sw_rx_cons;
6827 			sc->pg_cons = sw_pg_cons;
6828 
6829 			BCE_UNLOCK(sc);
6830 			(*ifp->if_input)(ifp, m0);
6831 			BCE_LOCK(sc);
6832 
6833 			/* Recover our place. */
6834 			sw_rx_cons = sc->rx_cons;
6835 			sw_pg_cons = sc->pg_cons;
6836 		}
6837 
6838 		/* Refresh hw_cons to see if there's new work */
6839 		if (sw_rx_cons == hw_rx_cons)
6840 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6841 	}
6842 
6843 	/* No new packets.  Refill the page chain. */
6844 	if (bce_hdr_split == TRUE) {
6845 		sc->pg_cons = sw_pg_cons;
6846 		bce_fill_pg_chain(sc);
6847 	}
6848 
6849 	/* No new packets.  Refill the RX chain. */
6850 	sc->rx_cons = sw_rx_cons;
6851 	bce_fill_rx_chain(sc);
6852 
6853 	/* Prepare the page chain pages to be accessed by the NIC. */
6854 	for (int i = 0; i < sc->rx_pages; i++)
6855 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6856 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6857 
6858 	if (bce_hdr_split == TRUE) {
6859 		for (int i = 0; i < sc->pg_pages; i++)
6860 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6861 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6862 	}
6863 
6864 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6865 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6866 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6867 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6868 }
6869 
6870 
6871 /****************************************************************************/
6872 /* Reads the transmit consumer value from the status block (skipping over   */
6873 /* chain page pointer if necessary).                                        */
6874 /*                                                                          */
6875 /* Returns:                                                                 */
6876 /*   hw_cons                                                                */
6877 /****************************************************************************/
6878 static inline u16
6879 bce_get_hw_tx_cons(struct bce_softc *sc)
6880 {
6881 	u16 hw_cons;
6882 
6883 	mb();
6884 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6885 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6886 		hw_cons++;
6887 
6888 	return hw_cons;
6889 }
6890 
6891 
6892 /****************************************************************************/
6893 /* Handles transmit completion interrupt events.                            */
6894 /*                                                                          */
6895 /* Returns:                                                                 */
6896 /*   Nothing.                                                               */
6897 /****************************************************************************/
6898 static void
6899 bce_tx_intr(struct bce_softc *sc)
6900 {
6901 	struct ifnet *ifp = sc->bce_ifp;
6902 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6903 
6904 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6905 	DBRUN(sc->interrupts_tx++);
6906 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6907 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6908 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6909 
6910 	BCE_LOCK_ASSERT(sc);
6911 
6912 	/* Get the hardware's view of the TX consumer index. */
6913 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6914 	sw_tx_cons = sc->tx_cons;
6915 
6916 	/* Prevent speculative reads of the status block. */
6917 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6918 	    BUS_SPACE_BARRIER_READ);
6919 
6920 	/* Cycle through any completed TX chain page entries. */
6921 	while (sw_tx_cons != hw_tx_cons) {
6922 #ifdef BCE_DEBUG
6923 		struct tx_bd *txbd = NULL;
6924 #endif
6925 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6926 
6927 		DBPRINT(sc, BCE_INFO_SEND,
6928 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6929 		    "sw_tx_chain_cons = 0x%04X\n",
6930 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6931 
6932 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6933 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6934 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6935 		    (int) MAX_TX_BD_ALLOC);
6936 		    bce_breakpoint(sc));
6937 
6938 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6939 		    [TX_IDX(sw_tx_chain_cons)]);
6940 
6941 		DBRUNIF((txbd == NULL),
6942 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6943 		    __FILE__, __LINE__, sw_tx_chain_cons);
6944 		    bce_breakpoint(sc));
6945 
6946 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6947 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6948 
6949 		/*
6950 		 * Free the associated mbuf. Remember
6951 		 * that only the last tx_bd of a packet
6952 		 * has an mbuf pointer and DMA map.
6953 		 */
6954 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6955 
6956 			/* Validate that this is the last tx_bd. */
6957 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6958 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6959 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6960 			    bce_breakpoint(sc));
6961 
6962 			DBRUNMSG(BCE_INFO_SEND,
6963 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6964 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6965 			    sw_tx_chain_cons));
6966 
6967 			/* Unmap the mbuf. */
6968 			bus_dmamap_unload(sc->tx_mbuf_tag,
6969 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6970 
6971 			/* Free the mbuf. */
6972 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6973 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6974 			DBRUN(sc->debug_tx_mbuf_alloc--);
6975 
6976 			ifp->if_opackets++;
6977 		}
6978 
6979 		sc->used_tx_bd--;
6980 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6981 
6982 		/* Refresh hw_cons to see if there's new work. */
6983 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6984 
6985 		/* Prevent speculative reads of the status block. */
6986 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6987 		    BUS_SPACE_BARRIER_READ);
6988 	}
6989 
6990 	/* Clear the TX timeout timer. */
6991 	sc->watchdog_timer = 0;
6992 
6993 	/* Clear the tx hardware queue full flag. */
6994 	if (sc->used_tx_bd < sc->max_tx_bd) {
6995 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6996 		    DBPRINT(sc, BCE_INFO_SEND,
6997 		    "%s(): Open TX chain! %d/%d (used/total)\n",
6998 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6999 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7000 	}
7001 
7002 	sc->tx_cons = sw_tx_cons;
7003 
7004 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7005 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7006 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7007 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7008 }
7009 
7010 
7011 /****************************************************************************/
7012 /* Disables interrupt generation.                                           */
7013 /*                                                                          */
7014 /* Returns:                                                                 */
7015 /*   Nothing.                                                               */
7016 /****************************************************************************/
7017 static void
7018 bce_disable_intr(struct bce_softc *sc)
7019 {
7020 	DBENTER(BCE_VERBOSE_INTR);
7021 
7022 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7023 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7024 
7025 	DBEXIT(BCE_VERBOSE_INTR);
7026 }
7027 
7028 
7029 /****************************************************************************/
7030 /* Enables interrupt generation.                                            */
7031 /*                                                                          */
7032 /* Returns:                                                                 */
7033 /*   Nothing.                                                               */
7034 /****************************************************************************/
7035 static void
7036 bce_enable_intr(struct bce_softc *sc, int coal_now)
7037 {
7038 	DBENTER(BCE_VERBOSE_INTR);
7039 
7040 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7041 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7042 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7043 
7044 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7045 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7046 
7047 	/* Force an immediate interrupt (whether there is new data or not). */
7048 	if (coal_now)
7049 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7050 
7051 	DBEXIT(BCE_VERBOSE_INTR);
7052 }
7053 
7054 
7055 /****************************************************************************/
7056 /* Handles controller initialization.                                       */
7057 /*                                                                          */
7058 /* Returns:                                                                 */
7059 /*   Nothing.                                                               */
7060 /****************************************************************************/
7061 static void
7062 bce_init_locked(struct bce_softc *sc)
7063 {
7064 	struct ifnet *ifp;
7065 	u32 ether_mtu = 0;
7066 
7067 	DBENTER(BCE_VERBOSE_RESET);
7068 
7069 	BCE_LOCK_ASSERT(sc);
7070 
7071 	ifp = sc->bce_ifp;
7072 
7073 	/* Check if the driver is still running and bail out if it is. */
7074 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7075 		goto bce_init_locked_exit;
7076 
7077 	bce_stop(sc);
7078 
7079 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7080 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
7081 		    __FILE__, __LINE__);
7082 		goto bce_init_locked_exit;
7083 	}
7084 
7085 	if (bce_chipinit(sc)) {
7086 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7087 		    __FILE__, __LINE__);
7088 		goto bce_init_locked_exit;
7089 	}
7090 
7091 	if (bce_blockinit(sc)) {
7092 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
7093 		    __FILE__, __LINE__);
7094 		goto bce_init_locked_exit;
7095 	}
7096 
7097 	/* Load our MAC address. */
7098 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7099 	bce_set_mac_addr(sc);
7100 
7101 	if (bce_hdr_split == FALSE)
7102 		bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7103 	/*
7104 	 * Calculate and program the hardware Ethernet MTU
7105  	 * size. Be generous on the receive if we have room
7106  	 * and allowed by the user.
7107 	 */
7108 	if (bce_strict_rx_mtu == TRUE)
7109 		ether_mtu = ifp->if_mtu;
7110 	else {
7111 		if (bce_hdr_split == TRUE) {
7112 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7113 				ether_mtu = sc->rx_bd_mbuf_data_len +
7114 				    MCLBYTES;
7115 			else
7116 				ether_mtu = ifp->if_mtu;
7117 		} else {
7118 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7119 				ether_mtu = sc->rx_bd_mbuf_data_len;
7120 			else
7121 				ether_mtu = ifp->if_mtu;
7122 		}
7123 	}
7124 
7125 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7126 
7127 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7128 	    __FUNCTION__, ether_mtu);
7129 
7130 	/* Program the mtu, enabling jumbo frame support if necessary. */
7131 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7132 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7133 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7134 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7135 	else
7136 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7137 
7138 	/* Program appropriate promiscuous/multicast filtering. */
7139 	bce_set_rx_mode(sc);
7140 
7141 	if (bce_hdr_split == TRUE) {
7142 		/* Init page buffer descriptor chain. */
7143 		bce_init_pg_chain(sc);
7144 	}
7145 
7146 	/* Init RX buffer descriptor chain. */
7147 	bce_init_rx_chain(sc);
7148 
7149 	/* Init TX buffer descriptor chain. */
7150 	bce_init_tx_chain(sc);
7151 
7152 	/* Enable host interrupts. */
7153 	bce_enable_intr(sc, 1);
7154 
7155 	bce_ifmedia_upd_locked(ifp);
7156 
7157 	/* Let the OS know the driver is up and running. */
7158 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7159 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7160 
7161 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7162 
7163 bce_init_locked_exit:
7164 	DBEXIT(BCE_VERBOSE_RESET);
7165 }
7166 
7167 
7168 /****************************************************************************/
7169 /* Initialize the controller just enough so that any management firmware    */
7170 /* running on the device will continue to operate correctly.                */
7171 /*                                                                          */
7172 /* Returns:                                                                 */
7173 /*   Nothing.                                                               */
7174 /****************************************************************************/
7175 static void
7176 bce_mgmt_init_locked(struct bce_softc *sc)
7177 {
7178 	struct ifnet *ifp;
7179 
7180 	DBENTER(BCE_VERBOSE_RESET);
7181 
7182 	BCE_LOCK_ASSERT(sc);
7183 
7184 	/* Bail out if management firmware is not running. */
7185 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7186 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7187 		    "No management firmware running...\n");
7188 		goto bce_mgmt_init_locked_exit;
7189 	}
7190 
7191 	ifp = sc->bce_ifp;
7192 
7193 	/* Enable all critical blocks in the MAC. */
7194 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7195 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7196 	DELAY(20);
7197 
7198 	bce_ifmedia_upd_locked(ifp);
7199 
7200 bce_mgmt_init_locked_exit:
7201 	DBEXIT(BCE_VERBOSE_RESET);
7202 }
7203 
7204 
7205 /****************************************************************************/
7206 /* Handles controller initialization when called from an unlocked routine.  */
7207 /*                                                                          */
7208 /* Returns:                                                                 */
7209 /*   Nothing.                                                               */
7210 /****************************************************************************/
7211 static void
7212 bce_init(void *xsc)
7213 {
7214 	struct bce_softc *sc = xsc;
7215 
7216 	DBENTER(BCE_VERBOSE_RESET);
7217 
7218 	BCE_LOCK(sc);
7219 	bce_init_locked(sc);
7220 	BCE_UNLOCK(sc);
7221 
7222 	DBEXIT(BCE_VERBOSE_RESET);
7223 }
7224 
7225 
7226 /****************************************************************************/
7227 /* Modifies an mbuf for TSO on the hardware.                                */
7228 /*                                                                          */
7229 /* Returns:                                                                 */
7230 /*   Pointer to a modified mbuf.                                            */
7231 /****************************************************************************/
7232 static struct mbuf *
7233 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7234 {
7235 	struct mbuf *m;
7236 	struct ether_header *eh;
7237 	struct ip *ip;
7238 	struct tcphdr *th;
7239 	u16 etype;
7240 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7241 
7242 	DBRUN(sc->tso_frames_requested++);
7243 
7244 	/* Controller may modify mbuf chains. */
7245 	if (M_WRITABLE(*m_head) == 0) {
7246 		m = m_dup(*m_head, M_NOWAIT);
7247 		m_freem(*m_head);
7248 		if (m == NULL) {
7249 			sc->mbuf_alloc_failed_count++;
7250 			*m_head = NULL;
7251 			return (NULL);
7252 		}
7253 		*m_head = m;
7254 	}
7255 
7256 	/*
7257 	 * For TSO the controller needs two pieces of info,
7258 	 * the MSS and the IP+TCP options length.
7259 	 */
7260 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7261 	if (m == NULL) {
7262 		*m_head = NULL;
7263 		return (NULL);
7264 	}
7265 	eh = mtod(m, struct ether_header *);
7266 	etype = ntohs(eh->ether_type);
7267 
7268 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7269 	switch (etype) {
7270 	case ETHERTYPE_IP:
7271 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7272 		/* TSO only supported for TCP protocol. */
7273 		if (ip->ip_p != IPPROTO_TCP) {
7274 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7275 			    __FILE__, __LINE__);
7276 			m_freem(*m_head);
7277 			*m_head = NULL;
7278 			return (NULL);
7279 		}
7280 
7281 		/* Get IP header length in bytes (min 20) */
7282 		ip_hlen = ip->ip_hl << 2;
7283 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7284 		    sizeof(struct tcphdr));
7285 		if (m == NULL) {
7286 			*m_head = NULL;
7287 			return (NULL);
7288 		}
7289 
7290 		/* Get the TCP header length in bytes (min 20) */
7291 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7292 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7293 		tcp_hlen = (th->th_off << 2);
7294 
7295 		/* Make sure all IP/TCP options live in the same buffer. */
7296 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7297 		    tcp_hlen);
7298 		if (m == NULL) {
7299 			*m_head = NULL;
7300 			return (NULL);
7301 		}
7302 
7303 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7304 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7305 		ip_len = ip->ip_len;
7306 		ip->ip_len = 0;
7307 		ip->ip_sum = 0;
7308 		break;
7309 	case ETHERTYPE_IPV6:
7310 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7311 		    __FILE__, __LINE__);
7312 		m_freem(*m_head);
7313 		*m_head = NULL;
7314 		return (NULL);
7315 		/* NOT REACHED */
7316 	default:
7317 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7318 		    __FILE__, __LINE__);
7319 		m_freem(*m_head);
7320 		*m_head = NULL;
7321 		return (NULL);
7322 	}
7323 
7324 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7325 
7326 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7327 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7328 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7329 	    tcp_hlen, ip_len);
7330 
7331 	/* Set the LSO flag in the TX BD */
7332 	*flags |= TX_BD_FLAGS_SW_LSO;
7333 
7334 	/* Set the length of IP + TCP options (in 32 bit words) */
7335 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7336 	    sizeof(struct tcphdr)) >> 2) << 8);
7337 
7338 	DBRUN(sc->tso_frames_completed++);
7339 	return (*m_head);
7340 }
7341 
7342 
7343 /****************************************************************************/
7344 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7345 /* memory visible to the controller.                                        */
7346 /*                                                                          */
7347 /* Returns:                                                                 */
7348 /*   0 for success, positive value for failure.                             */
7349 /* Modified:                                                                */
7350 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7351 /****************************************************************************/
7352 static int
7353 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7354 {
7355 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7356 	bus_dmamap_t map;
7357 	struct tx_bd *txbd = NULL;
7358 	struct mbuf *m0;
7359 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7360 	u32 prod_bseq;
7361 
7362 #ifdef BCE_DEBUG
7363 	u16 debug_prod;
7364 #endif
7365 
7366 	int i, error, nsegs, rc = 0;
7367 
7368 	DBENTER(BCE_VERBOSE_SEND);
7369 
7370 	/* Make sure we have room in the TX chain. */
7371 	if (sc->used_tx_bd >= sc->max_tx_bd)
7372 		goto bce_tx_encap_exit;
7373 
7374 	/* Transfer any checksum offload flags to the bd. */
7375 	m0 = *m_head;
7376 	if (m0->m_pkthdr.csum_flags) {
7377 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7378 			m0 = bce_tso_setup(sc, m_head, &flags);
7379 			if (m0 == NULL) {
7380 				DBRUN(sc->tso_frames_failed++);
7381 				goto bce_tx_encap_exit;
7382 			}
7383 			mss = htole16(m0->m_pkthdr.tso_segsz);
7384 		} else {
7385 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7386 				flags |= TX_BD_FLAGS_IP_CKSUM;
7387 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7388 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7389 		}
7390 	}
7391 
7392 	/* Transfer any VLAN tags to the bd. */
7393 	if (m0->m_flags & M_VLANTAG) {
7394 		flags |= TX_BD_FLAGS_VLAN_TAG;
7395 		vlan_tag = m0->m_pkthdr.ether_vtag;
7396 	}
7397 
7398 	/* Map the mbuf into DMAable memory. */
7399 	prod = sc->tx_prod;
7400 	chain_prod = TX_CHAIN_IDX(prod);
7401 	map = sc->tx_mbuf_map[chain_prod];
7402 
7403 	/* Map the mbuf into our DMA address space. */
7404 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7405 	    segs, &nsegs, BUS_DMA_NOWAIT);
7406 
7407 	/* Check if the DMA mapping was successful */
7408 	if (error == EFBIG) {
7409 		sc->mbuf_frag_count++;
7410 
7411 		/* Try to defrag the mbuf. */
7412 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7413 		if (m0 == NULL) {
7414 			/* Defrag was unsuccessful */
7415 			m_freem(*m_head);
7416 			*m_head = NULL;
7417 			sc->mbuf_alloc_failed_count++;
7418 			rc = ENOBUFS;
7419 			goto bce_tx_encap_exit;
7420 		}
7421 
7422 		/* Defrag was successful, try mapping again */
7423 		*m_head = m0;
7424 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7425 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7426 
7427 		/* Still getting an error after a defrag. */
7428 		if (error == ENOMEM) {
7429 			/* Insufficient DMA buffers available. */
7430 			sc->dma_map_addr_tx_failed_count++;
7431 			rc = error;
7432 			goto bce_tx_encap_exit;
7433 		} else if (error != 0) {
7434 			/* Release it and return an error. */
7435 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7436 			    "TX chain!\n", __FILE__, __LINE__);
7437 			m_freem(m0);
7438 			*m_head = NULL;
7439 			sc->dma_map_addr_tx_failed_count++;
7440 			rc = ENOBUFS;
7441 			goto bce_tx_encap_exit;
7442 		}
7443 	} else if (error == ENOMEM) {
7444 		/* Insufficient DMA buffers available. */
7445 		sc->dma_map_addr_tx_failed_count++;
7446 		rc = error;
7447 		goto bce_tx_encap_exit;
7448 	} else if (error != 0) {
7449 		m_freem(m0);
7450 		*m_head = NULL;
7451 		sc->dma_map_addr_tx_failed_count++;
7452 		rc = error;
7453 		goto bce_tx_encap_exit;
7454 	}
7455 
7456 	/* Make sure there's room in the chain */
7457 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7458 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7459 		rc = ENOBUFS;
7460 		goto bce_tx_encap_exit;
7461 	}
7462 
7463 	/* prod points to an empty tx_bd at this point. */
7464 	prod_bseq  = sc->tx_prod_bseq;
7465 
7466 #ifdef BCE_DEBUG
7467 	debug_prod = chain_prod;
7468 #endif
7469 
7470 	DBPRINT(sc, BCE_INFO_SEND,
7471 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7472 	    "prod_bseq = 0x%08X\n",
7473 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7474 
7475 	/*
7476 	 * Cycle through each mbuf segment that makes up
7477 	 * the outgoing frame, gathering the mapping info
7478 	 * for that segment and creating a tx_bd for
7479 	 * the mbuf.
7480 	 */
7481 	for (i = 0; i < nsegs ; i++) {
7482 
7483 		chain_prod = TX_CHAIN_IDX(prod);
7484 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7485 		    [TX_IDX(chain_prod)];
7486 
7487 		txbd->tx_bd_haddr_lo =
7488 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7489 		txbd->tx_bd_haddr_hi =
7490 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7491 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7492 		    htole16(segs[i].ds_len);
7493 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7494 		txbd->tx_bd_flags = htole16(flags);
7495 		prod_bseq += segs[i].ds_len;
7496 		if (i == 0)
7497 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7498 		prod = NEXT_TX_BD(prod);
7499 	}
7500 
7501 	/* Set the END flag on the last TX buffer descriptor. */
7502 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7503 
7504 	DBRUNMSG(BCE_EXTREME_SEND,
7505 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7506 
7507 	/*
7508 	 * Ensure that the mbuf pointer for this transmission
7509 	 * is placed at the array index of the last
7510 	 * descriptor in this chain.  This is done
7511 	 * because a single map is used for all
7512 	 * segments of the mbuf and we don't want to
7513 	 * unload the map before all of the segments
7514 	 * have been freed.
7515 	 */
7516 	sc->tx_mbuf_ptr[chain_prod] = m0;
7517 	sc->used_tx_bd += nsegs;
7518 
7519 	/* Update some debug statistic counters */
7520 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7521 	    sc->tx_hi_watermark = sc->used_tx_bd);
7522 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7523 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7524 
7525 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7526 
7527 	/* prod points to the next free tx_bd at this point. */
7528 	sc->tx_prod = prod;
7529 	sc->tx_prod_bseq = prod_bseq;
7530 
7531 	/* Tell the chip about the waiting TX frames. */
7532 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7533 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7534 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7535 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7536 
7537 bce_tx_encap_exit:
7538 	DBEXIT(BCE_VERBOSE_SEND);
7539 	return(rc);
7540 }
7541 
7542 
7543 /****************************************************************************/
7544 /* Main transmit routine when called from another routine with a lock.      */
7545 /*                                                                          */
7546 /* Returns:                                                                 */
7547 /*   Nothing.                                                               */
7548 /****************************************************************************/
7549 static void
7550 bce_start_locked(struct ifnet *ifp)
7551 {
7552 	struct bce_softc *sc = ifp->if_softc;
7553 	struct mbuf *m_head = NULL;
7554 	int count = 0;
7555 	u16 tx_prod, tx_chain_prod;
7556 
7557 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7558 
7559 	BCE_LOCK_ASSERT(sc);
7560 
7561 	/* prod points to the next free tx_bd. */
7562 	tx_prod = sc->tx_prod;
7563 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7564 
7565 	DBPRINT(sc, BCE_INFO_SEND,
7566 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7567 	    "tx_prod_bseq = 0x%08X\n",
7568 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7569 
7570 	/* If there's no link or the transmit queue is empty then just exit. */
7571 	if (sc->bce_link_up == FALSE) {
7572 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7573 		    __FUNCTION__);
7574 		goto bce_start_locked_exit;
7575 	}
7576 
7577 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7578 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7579 		    __FUNCTION__);
7580 		goto bce_start_locked_exit;
7581 	}
7582 
7583 	/*
7584 	 * Keep adding entries while there is space in the ring.
7585 	 */
7586 	while (sc->used_tx_bd < sc->max_tx_bd) {
7587 
7588 		/* Check for any frames to send. */
7589 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7590 
7591 		/* Stop when the transmit queue is empty. */
7592 		if (m_head == NULL)
7593 			break;
7594 
7595 		/*
7596 		 * Pack the data into the transmit ring. If we
7597 		 * don't have room, place the mbuf back at the
7598 		 * head of the queue and set the OACTIVE flag
7599 		 * to wait for the NIC to drain the chain.
7600 		 */
7601 		if (bce_tx_encap(sc, &m_head)) {
7602 			if (m_head != NULL)
7603 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7604 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7605 			DBPRINT(sc, BCE_INFO_SEND,
7606 			    "TX chain is closed for business! Total "
7607 			    "tx_bd used = %d\n", sc->used_tx_bd);
7608 			break;
7609 		}
7610 
7611 		count++;
7612 
7613 		/* Send a copy of the frame to any BPF listeners. */
7614 		ETHER_BPF_MTAP(ifp, m_head);
7615 	}
7616 
7617 	/* Exit if no packets were dequeued. */
7618 	if (count == 0) {
7619 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7620 		    "dequeued\n", __FUNCTION__);
7621 		goto bce_start_locked_exit;
7622 	}
7623 
7624 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7625 	    "send queue.\n", __FUNCTION__, count);
7626 
7627 	/* Set the tx timeout. */
7628 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7629 
7630 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7631 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7632 
7633 bce_start_locked_exit:
7634 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7635 }
7636 
7637 
7638 /****************************************************************************/
7639 /* Main transmit routine when called from another routine without a lock.   */
7640 /*                                                                          */
7641 /* Returns:                                                                 */
7642 /*   Nothing.                                                               */
7643 /****************************************************************************/
7644 static void
7645 bce_start(struct ifnet *ifp)
7646 {
7647 	struct bce_softc *sc = ifp->if_softc;
7648 
7649 	DBENTER(BCE_VERBOSE_SEND);
7650 
7651 	BCE_LOCK(sc);
7652 	bce_start_locked(ifp);
7653 	BCE_UNLOCK(sc);
7654 
7655 	DBEXIT(BCE_VERBOSE_SEND);
7656 }
7657 
7658 
7659 /****************************************************************************/
7660 /* Handles any IOCTL calls from the operating system.                       */
7661 /*                                                                          */
7662 /* Returns:                                                                 */
7663 /*   0 for success, positive value for failure.                             */
7664 /****************************************************************************/
7665 static int
7666 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7667 {
7668 	struct bce_softc *sc = ifp->if_softc;
7669 	struct ifreq *ifr = (struct ifreq *) data;
7670 	struct mii_data *mii;
7671 	int mask, error = 0;
7672 
7673 	DBENTER(BCE_VERBOSE_MISC);
7674 
7675 	switch(command) {
7676 
7677 	/* Set the interface MTU. */
7678 	case SIOCSIFMTU:
7679 		/* Check that the MTU setting is supported. */
7680 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7681 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7682 			error = EINVAL;
7683 			break;
7684 		}
7685 
7686 		DBPRINT(sc, BCE_INFO_MISC,
7687 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7688 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7689 
7690 		BCE_LOCK(sc);
7691 		ifp->if_mtu = ifr->ifr_mtu;
7692 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7693 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7694 			bce_init_locked(sc);
7695 		}
7696 		BCE_UNLOCK(sc);
7697 		break;
7698 
7699 	/* Set interface flags. */
7700 	case SIOCSIFFLAGS:
7701 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7702 
7703 		BCE_LOCK(sc);
7704 
7705 		/* Check if the interface is up. */
7706 		if (ifp->if_flags & IFF_UP) {
7707 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7708 				/* Change promiscuous/multicast flags as necessary. */
7709 				bce_set_rx_mode(sc);
7710 			} else {
7711 				/* Start the HW */
7712 				bce_init_locked(sc);
7713 			}
7714 		} else {
7715 			/* The interface is down, check if driver is running. */
7716 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7717 				bce_stop(sc);
7718 
7719 				/* If MFW is running, restart the controller a bit. */
7720 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7721 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7722 					bce_chipinit(sc);
7723 					bce_mgmt_init_locked(sc);
7724 				}
7725 			}
7726 		}
7727 
7728 		BCE_UNLOCK(sc);
7729 		break;
7730 
7731 	/* Add/Delete multicast address */
7732 	case SIOCADDMULTI:
7733 	case SIOCDELMULTI:
7734 		DBPRINT(sc, BCE_VERBOSE_MISC,
7735 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7736 
7737 		BCE_LOCK(sc);
7738 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7739 			bce_set_rx_mode(sc);
7740 		BCE_UNLOCK(sc);
7741 
7742 		break;
7743 
7744 	/* Set/Get Interface media */
7745 	case SIOCSIFMEDIA:
7746 	case SIOCGIFMEDIA:
7747 		DBPRINT(sc, BCE_VERBOSE_MISC,
7748 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7749 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7750 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7751 			    command);
7752 		else {
7753 			mii = device_get_softc(sc->bce_miibus);
7754 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7755 			    command);
7756 		}
7757 		break;
7758 
7759 	/* Set interface capability */
7760 	case SIOCSIFCAP:
7761 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7762 		DBPRINT(sc, BCE_INFO_MISC,
7763 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7764 
7765 		/* Toggle the TX checksum capabilities enable flag. */
7766 		if (mask & IFCAP_TXCSUM &&
7767 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7768 			ifp->if_capenable ^= IFCAP_TXCSUM;
7769 			if (IFCAP_TXCSUM & ifp->if_capenable)
7770 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7771 			else
7772 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7773 		}
7774 
7775 		/* Toggle the RX checksum capabilities enable flag. */
7776 		if (mask & IFCAP_RXCSUM &&
7777 		    ifp->if_capabilities & IFCAP_RXCSUM)
7778 			ifp->if_capenable ^= IFCAP_RXCSUM;
7779 
7780 		/* Toggle the TSO capabilities enable flag. */
7781 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7782 		    ifp->if_capabilities & IFCAP_TSO4) {
7783 			ifp->if_capenable ^= IFCAP_TSO4;
7784 			if (IFCAP_TSO4 & ifp->if_capenable)
7785 				ifp->if_hwassist |= CSUM_TSO;
7786 			else
7787 				ifp->if_hwassist &= ~CSUM_TSO;
7788 		}
7789 
7790 		if (mask & IFCAP_VLAN_HWCSUM &&
7791 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7792 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7793 
7794 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7795 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7796 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7797 		/*
7798 		 * Don't actually disable VLAN tag stripping as
7799 		 * management firmware (ASF/IPMI/UMP) requires the
7800 		 * feature. If VLAN tag stripping is disabled driver
7801 		 * will manually reconstruct the VLAN frame by
7802 		 * appending stripped VLAN tag.
7803 		 */
7804 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7805 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7806 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7807 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7808 			    == 0)
7809 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7810 		}
7811 		VLAN_CAPABILITIES(ifp);
7812 		break;
7813 	default:
7814 		/* We don't know how to handle the IOCTL, pass it on. */
7815 		error = ether_ioctl(ifp, command, data);
7816 		break;
7817 	}
7818 
7819 	DBEXIT(BCE_VERBOSE_MISC);
7820 	return(error);
7821 }
7822 
7823 
7824 /****************************************************************************/
7825 /* Transmit timeout handler.                                                */
7826 /*                                                                          */
7827 /* Returns:                                                                 */
7828 /*   Nothing.                                                               */
7829 /****************************************************************************/
7830 static void
7831 bce_watchdog(struct bce_softc *sc)
7832 {
7833 	uint32_t status;
7834 
7835 	DBENTER(BCE_EXTREME_SEND);
7836 
7837 	BCE_LOCK_ASSERT(sc);
7838 
7839 	status = 0;
7840 	/* If the watchdog timer hasn't expired then just exit. */
7841 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7842 		goto bce_watchdog_exit;
7843 
7844 	status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7845 	/* If pause frames are active then don't reset the hardware. */
7846 	if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7847 		if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7848 			/*
7849 			 * If link partner has us in XOFF state then wait for
7850 			 * the condition to clear.
7851 			 */
7852 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7853 			goto bce_watchdog_exit;
7854 		} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7855 			(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7856 			/*
7857 			 * If we're not currently XOFF'ed but have recently
7858 			 * been XOFF'd/XON'd then assume that's delaying TX
7859 			 * this time around.
7860 			 */
7861 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7862 			goto bce_watchdog_exit;
7863 		}
7864 		/*
7865 		 * Any other condition is unexpected and the controller
7866 		 * should be reset.
7867 		 */
7868 	}
7869 
7870 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7871 	    __FILE__, __LINE__);
7872 
7873 	DBRUNMSG(BCE_INFO,
7874 	    bce_dump_driver_state(sc);
7875 	    bce_dump_status_block(sc);
7876 	    bce_dump_stats_block(sc);
7877 	    bce_dump_ftqs(sc);
7878 	    bce_dump_txp_state(sc, 0);
7879 	    bce_dump_rxp_state(sc, 0);
7880 	    bce_dump_tpat_state(sc, 0);
7881 	    bce_dump_cp_state(sc, 0);
7882 	    bce_dump_com_state(sc, 0));
7883 
7884 	DBRUN(bce_breakpoint(sc));
7885 
7886 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7887 
7888 	bce_init_locked(sc);
7889 	sc->bce_ifp->if_oerrors++;
7890 
7891 bce_watchdog_exit:
7892 	REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7893 	DBEXIT(BCE_EXTREME_SEND);
7894 }
7895 
7896 
7897 /*
7898  * Interrupt handler.
7899  */
7900 /****************************************************************************/
7901 /* Main interrupt entry point.  Verifies that the controller generated the  */
7902 /* interrupt and then calls a separate routine for handle the various       */
7903 /* interrupt causes (PHY, TX, RX).                                          */
7904 /*                                                                          */
7905 /* Returns:                                                                 */
7906 /*   Nothing.                                                               */
7907 /****************************************************************************/
7908 static void
7909 bce_intr(void *xsc)
7910 {
7911 	struct bce_softc *sc;
7912 	struct ifnet *ifp;
7913 	u32 status_attn_bits;
7914 	u16 hw_rx_cons, hw_tx_cons;
7915 
7916 	sc = xsc;
7917 	ifp = sc->bce_ifp;
7918 
7919 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7920 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7921 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7922 
7923 	BCE_LOCK(sc);
7924 
7925 	DBRUN(sc->interrupts_generated++);
7926 
7927 	/* Synchnorize before we read from interface's status block */
7928 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7929 
7930 	/*
7931 	 * If the hardware status block index matches the last value read
7932 	 * by the driver and we haven't asserted our interrupt then there's
7933 	 * nothing to do.  This may only happen in case of INTx due to the
7934 	 * interrupt arriving at the CPU before the status block is updated.
7935 	 */
7936 	if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7937 	    sc->status_block->status_idx == sc->last_status_idx &&
7938 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7939 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7940 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7941 		    __FUNCTION__);
7942 		goto bce_intr_exit;
7943 	}
7944 
7945 	/* Ack the interrupt and stop others from occuring. */
7946 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7947 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7948 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7949 
7950 	/* Check if the hardware has finished any work. */
7951 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7952 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7953 
7954 	/* Keep processing data as long as there is work to do. */
7955 	for (;;) {
7956 
7957 		status_attn_bits = sc->status_block->status_attn_bits;
7958 
7959 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7960 		    BCE_PRINTF("Simulating unexpected status attention "
7961 		    "bit set.");
7962 		    sc->unexpected_attention_sim_count++;
7963 		    status_attn_bits = status_attn_bits |
7964 		    STATUS_ATTN_BITS_PARITY_ERROR);
7965 
7966 		/* Was it a link change interrupt? */
7967 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7968 		    (sc->status_block->status_attn_bits_ack &
7969 		     STATUS_ATTN_BITS_LINK_STATE)) {
7970 			bce_phy_intr(sc);
7971 
7972 			/* Clear transient updates during link state change. */
7973 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7974 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7975 			REG_RD(sc, BCE_HC_COMMAND);
7976 		}
7977 
7978 		/* If any other attention is asserted, the chip is toast. */
7979 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7980 		    (sc->status_block->status_attn_bits_ack &
7981 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7982 
7983 			sc->unexpected_attention_count++;
7984 
7985 			BCE_PRINTF("%s(%d): Fatal attention detected: "
7986 			    "0x%08X\n",	__FILE__, __LINE__,
7987 			    sc->status_block->status_attn_bits);
7988 
7989 			DBRUNMSG(BCE_FATAL,
7990 			    if (unexpected_attention_sim_control == 0)
7991 				bce_breakpoint(sc));
7992 
7993 			bce_init_locked(sc);
7994 			goto bce_intr_exit;
7995 		}
7996 
7997 		/* Check for any completed RX frames. */
7998 		if (hw_rx_cons != sc->hw_rx_cons)
7999 			bce_rx_intr(sc);
8000 
8001 		/* Check for any completed TX frames. */
8002 		if (hw_tx_cons != sc->hw_tx_cons)
8003 			bce_tx_intr(sc);
8004 
8005 		/* Save status block index value for the next interrupt. */
8006 		sc->last_status_idx = sc->status_block->status_idx;
8007 
8008  		/*
8009  		 * Prevent speculative reads from getting
8010  		 * ahead of the status block.
8011 		 */
8012 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8013 		    BUS_SPACE_BARRIER_READ);
8014 
8015  		/*
8016  		 * If there's no work left then exit the
8017  		 * interrupt service routine.
8018 		 */
8019 		hw_rx_cons = bce_get_hw_rx_cons(sc);
8020 		hw_tx_cons = bce_get_hw_tx_cons(sc);
8021 
8022 		if ((hw_rx_cons == sc->hw_rx_cons) &&
8023 		    (hw_tx_cons == sc->hw_tx_cons))
8024 			break;
8025 	}
8026 
8027 	bus_dmamap_sync(sc->status_tag,	sc->status_map, BUS_DMASYNC_PREREAD);
8028 
8029 	/* Re-enable interrupts. */
8030 	bce_enable_intr(sc, 0);
8031 
8032 	/* Handle any frames that arrived while handling the interrupt. */
8033 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8034 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8035 		bce_start_locked(ifp);
8036 
8037 bce_intr_exit:
8038 	BCE_UNLOCK(sc);
8039 
8040 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8041 }
8042 
8043 
8044 /****************************************************************************/
8045 /* Programs the various packet receive modes (broadcast and multicast).     */
8046 /*                                                                          */
8047 /* Returns:                                                                 */
8048 /*   Nothing.                                                               */
8049 /****************************************************************************/
8050 static void
8051 bce_set_rx_mode(struct bce_softc *sc)
8052 {
8053 	struct ifnet *ifp;
8054 	struct ifmultiaddr *ifma;
8055 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8056 	u32 rx_mode, sort_mode;
8057 	int h, i;
8058 
8059 	DBENTER(BCE_VERBOSE_MISC);
8060 
8061 	BCE_LOCK_ASSERT(sc);
8062 
8063 	ifp = sc->bce_ifp;
8064 
8065 	/* Initialize receive mode default settings. */
8066 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8067 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8068 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8069 
8070 	/*
8071 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8072 	 * be enbled.
8073 	 */
8074 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8075 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8076 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8077 
8078 	/*
8079 	 * Check for promiscuous, all multicast, or selected
8080 	 * multicast address filtering.
8081 	 */
8082 	if (ifp->if_flags & IFF_PROMISC) {
8083 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8084 
8085 		/* Enable promiscuous mode. */
8086 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8087 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8088 	} else if (ifp->if_flags & IFF_ALLMULTI) {
8089 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8090 
8091 		/* Enable all multicast addresses. */
8092 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8093 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8094 			    0xffffffff);
8095 		}
8096 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8097 	} else {
8098 		/* Accept one or more multicast(s). */
8099 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8100 
8101 		if_maddr_rlock(ifp);
8102 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8103 			if (ifma->ifma_addr->sa_family != AF_LINK)
8104 				continue;
8105 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8106 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8107 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8108 		}
8109 		if_maddr_runlock(ifp);
8110 
8111 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8112 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8113 
8114 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8115 	}
8116 
8117 	/* Only make changes if the recive mode has actually changed. */
8118 	if (rx_mode != sc->rx_mode) {
8119 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8120 		    "0x%08X\n", rx_mode);
8121 
8122 		sc->rx_mode = rx_mode;
8123 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8124 	}
8125 
8126 	/* Disable and clear the exisitng sort before enabling a new sort. */
8127 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8128 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8129 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8130 
8131 	DBEXIT(BCE_VERBOSE_MISC);
8132 }
8133 
8134 
8135 /****************************************************************************/
8136 /* Called periodically to updates statistics from the controllers           */
8137 /* statistics block.                                                        */
8138 /*                                                                          */
8139 /* Returns:                                                                 */
8140 /*   Nothing.                                                               */
8141 /****************************************************************************/
8142 static void
8143 bce_stats_update(struct bce_softc *sc)
8144 {
8145 	struct ifnet *ifp;
8146 	struct statistics_block *stats;
8147 
8148 	DBENTER(BCE_EXTREME_MISC);
8149 
8150 	ifp = sc->bce_ifp;
8151 
8152 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8153 
8154 	stats = (struct statistics_block *) sc->stats_block;
8155 
8156 	/*
8157 	 * Certain controllers don't report
8158 	 * carrier sense errors correctly.
8159 	 * See errata E11_5708CA0_1165.
8160 	 */
8161 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8162 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8163 		ifp->if_oerrors +=
8164 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
8165 
8166 	/*
8167 	 * Update the sysctl statistics from the
8168 	 * hardware statistics.
8169 	 */
8170 	sc->stat_IfHCInOctets =
8171 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8172 	     (u64) stats->stat_IfHCInOctets_lo;
8173 
8174 	sc->stat_IfHCInBadOctets =
8175 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8176 	     (u64) stats->stat_IfHCInBadOctets_lo;
8177 
8178 	sc->stat_IfHCOutOctets =
8179 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8180 	     (u64) stats->stat_IfHCOutOctets_lo;
8181 
8182 	sc->stat_IfHCOutBadOctets =
8183 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8184 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8185 
8186 	sc->stat_IfHCInUcastPkts =
8187 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8188 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8189 
8190 	sc->stat_IfHCInMulticastPkts =
8191 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8192 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8193 
8194 	sc->stat_IfHCInBroadcastPkts =
8195 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8196 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8197 
8198 	sc->stat_IfHCOutUcastPkts =
8199 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8200 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8201 
8202 	sc->stat_IfHCOutMulticastPkts =
8203 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8204 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8205 
8206 	sc->stat_IfHCOutBroadcastPkts =
8207 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8208 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8209 
8210 	/* ToDo: Preserve counters beyond 32 bits? */
8211 	/* ToDo: Read the statistics from auto-clear regs? */
8212 
8213 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8214 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8215 
8216 	sc->stat_Dot3StatsCarrierSenseErrors =
8217 	    stats->stat_Dot3StatsCarrierSenseErrors;
8218 
8219 	sc->stat_Dot3StatsFCSErrors =
8220 	    stats->stat_Dot3StatsFCSErrors;
8221 
8222 	sc->stat_Dot3StatsAlignmentErrors =
8223 	    stats->stat_Dot3StatsAlignmentErrors;
8224 
8225 	sc->stat_Dot3StatsSingleCollisionFrames =
8226 	    stats->stat_Dot3StatsSingleCollisionFrames;
8227 
8228 	sc->stat_Dot3StatsMultipleCollisionFrames =
8229 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8230 
8231 	sc->stat_Dot3StatsDeferredTransmissions =
8232 	    stats->stat_Dot3StatsDeferredTransmissions;
8233 
8234 	sc->stat_Dot3StatsExcessiveCollisions =
8235 	    stats->stat_Dot3StatsExcessiveCollisions;
8236 
8237 	sc->stat_Dot3StatsLateCollisions =
8238 	    stats->stat_Dot3StatsLateCollisions;
8239 
8240 	sc->stat_EtherStatsCollisions =
8241 	    stats->stat_EtherStatsCollisions;
8242 
8243 	sc->stat_EtherStatsFragments =
8244 	    stats->stat_EtherStatsFragments;
8245 
8246 	sc->stat_EtherStatsJabbers =
8247 	    stats->stat_EtherStatsJabbers;
8248 
8249 	sc->stat_EtherStatsUndersizePkts =
8250 	    stats->stat_EtherStatsUndersizePkts;
8251 
8252 	sc->stat_EtherStatsOversizePkts =
8253 	     stats->stat_EtherStatsOversizePkts;
8254 
8255 	sc->stat_EtherStatsPktsRx64Octets =
8256 	    stats->stat_EtherStatsPktsRx64Octets;
8257 
8258 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8259 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8260 
8261 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8262 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8263 
8264 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8265 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8266 
8267 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8268 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8269 
8270 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8271 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8272 
8273 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8274 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8275 
8276 	sc->stat_EtherStatsPktsTx64Octets =
8277 	    stats->stat_EtherStatsPktsTx64Octets;
8278 
8279 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8280 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8281 
8282 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8283 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8284 
8285 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8286 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8287 
8288 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8289 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8290 
8291 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8292 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8293 
8294 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8295 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8296 
8297 	sc->stat_XonPauseFramesReceived =
8298 	    stats->stat_XonPauseFramesReceived;
8299 
8300 	sc->stat_XoffPauseFramesReceived =
8301 	    stats->stat_XoffPauseFramesReceived;
8302 
8303 	sc->stat_OutXonSent =
8304 	    stats->stat_OutXonSent;
8305 
8306 	sc->stat_OutXoffSent =
8307 	    stats->stat_OutXoffSent;
8308 
8309 	sc->stat_FlowControlDone =
8310 	    stats->stat_FlowControlDone;
8311 
8312 	sc->stat_MacControlFramesReceived =
8313 	    stats->stat_MacControlFramesReceived;
8314 
8315 	sc->stat_XoffStateEntered =
8316 	    stats->stat_XoffStateEntered;
8317 
8318 	sc->stat_IfInFramesL2FilterDiscards =
8319 	    stats->stat_IfInFramesL2FilterDiscards;
8320 
8321 	sc->stat_IfInRuleCheckerDiscards =
8322 	    stats->stat_IfInRuleCheckerDiscards;
8323 
8324 	sc->stat_IfInFTQDiscards =
8325 	    stats->stat_IfInFTQDiscards;
8326 
8327 	sc->stat_IfInMBUFDiscards =
8328 	    stats->stat_IfInMBUFDiscards;
8329 
8330 	sc->stat_IfInRuleCheckerP4Hit =
8331 	    stats->stat_IfInRuleCheckerP4Hit;
8332 
8333 	sc->stat_CatchupInRuleCheckerDiscards =
8334 	    stats->stat_CatchupInRuleCheckerDiscards;
8335 
8336 	sc->stat_CatchupInFTQDiscards =
8337 	    stats->stat_CatchupInFTQDiscards;
8338 
8339 	sc->stat_CatchupInMBUFDiscards =
8340 	    stats->stat_CatchupInMBUFDiscards;
8341 
8342 	sc->stat_CatchupInRuleCheckerP4Hit =
8343 	    stats->stat_CatchupInRuleCheckerP4Hit;
8344 
8345 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8346 
8347 	/*
8348 	 * Update the interface statistics from the
8349 	 * hardware statistics.
8350 	 */
8351 	ifp->if_collisions =
8352 	    (u_long) sc->stat_EtherStatsCollisions;
8353 
8354 	/* ToDo: This method loses soft errors. */
8355 	ifp->if_ierrors =
8356 	    (u_long) sc->stat_EtherStatsUndersizePkts +
8357 	    (u_long) sc->stat_EtherStatsOversizePkts +
8358 	    (u_long) sc->stat_IfInMBUFDiscards +
8359 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
8360 	    (u_long) sc->stat_Dot3StatsFCSErrors +
8361 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
8362 	    (u_long) sc->stat_IfInFTQDiscards +
8363 	    (u_long) sc->com_no_buffers;
8364 
8365 	/* ToDo: This method loses soft errors. */
8366 	ifp->if_oerrors =
8367 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8368 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8369 	    (u_long) sc->stat_Dot3StatsLateCollisions;
8370 
8371 	/* ToDo: Add additional statistics? */
8372 
8373 	DBEXIT(BCE_EXTREME_MISC);
8374 }
8375 
8376 
8377 /****************************************************************************/
8378 /* Periodic function to notify the bootcode that the driver is still        */
8379 /* present.                                                                 */
8380 /*                                                                          */
8381 /* Returns:                                                                 */
8382 /*   Nothing.                                                               */
8383 /****************************************************************************/
8384 static void
8385 bce_pulse(void *xsc)
8386 {
8387 	struct bce_softc *sc = xsc;
8388 	u32 msg;
8389 
8390 	DBENTER(BCE_EXTREME_MISC);
8391 
8392 	BCE_LOCK_ASSERT(sc);
8393 
8394 	/* Tell the firmware that the driver is still running. */
8395 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8396 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8397 
8398 	/* Update the bootcode condition. */
8399 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8400 
8401 	/* Report whether the bootcode still knows the driver is running. */
8402 	if (bce_verbose || bootverbose) {
8403 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8404 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8405 				sc->bce_drv_cardiac_arrest = TRUE;
8406 				BCE_PRINTF("%s(): Warning: bootcode "
8407 				    "thinks driver is absent! "
8408 				    "(bc_state = 0x%08X)\n",
8409 				    __FUNCTION__, sc->bc_state);
8410 			}
8411 		} else {
8412 			/*
8413 			 * Not supported by all bootcode versions.
8414 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8415 			 * will require the driver to reset the
8416 			 * controller to clear this condition.
8417 			 */
8418 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8419 				sc->bce_drv_cardiac_arrest = FALSE;
8420 				BCE_PRINTF("%s(): Bootcode found the "
8421 				    "driver pulse! (bc_state = 0x%08X)\n",
8422 				    __FUNCTION__, sc->bc_state);
8423 			}
8424 		}
8425 	}
8426 
8427 
8428 	/* Schedule the next pulse. */
8429 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8430 
8431 	DBEXIT(BCE_EXTREME_MISC);
8432 }
8433 
8434 
8435 /****************************************************************************/
8436 /* Periodic function to perform maintenance tasks.                          */
8437 /*                                                                          */
8438 /* Returns:                                                                 */
8439 /*   Nothing.                                                               */
8440 /****************************************************************************/
8441 static void
8442 bce_tick(void *xsc)
8443 {
8444 	struct bce_softc *sc = xsc;
8445 	struct mii_data *mii;
8446 	struct ifnet *ifp;
8447 	struct ifmediareq ifmr;
8448 
8449 	ifp = sc->bce_ifp;
8450 
8451 	DBENTER(BCE_EXTREME_MISC);
8452 
8453 	BCE_LOCK_ASSERT(sc);
8454 
8455 	/* Schedule the next tick. */
8456 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8457 
8458 	/* Update the statistics from the hardware statistics block. */
8459 	bce_stats_update(sc);
8460 
8461  	/* Ensure page and RX chains get refilled in low-memory situations. */
8462 	if (bce_hdr_split == TRUE)
8463 		bce_fill_pg_chain(sc);
8464 	bce_fill_rx_chain(sc);
8465 
8466 	/* Check that chip hasn't hung. */
8467 	bce_watchdog(sc);
8468 
8469 	/* If link is up already up then we're done. */
8470 	if (sc->bce_link_up == TRUE)
8471 		goto bce_tick_exit;
8472 
8473 	/* Link is down.  Check what the PHY's doing. */
8474 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8475 		bzero(&ifmr, sizeof(ifmr));
8476 		bce_ifmedia_sts_rphy(sc, &ifmr);
8477 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8478 		    (IFM_ACTIVE | IFM_AVALID)) {
8479 			sc->bce_link_up = TRUE;
8480 			bce_miibus_statchg(sc->bce_dev);
8481 		}
8482 	} else {
8483 		mii = device_get_softc(sc->bce_miibus);
8484 		mii_tick(mii);
8485 		/* Check if the link has come up. */
8486 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8487 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8488 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8489 			    __FUNCTION__);
8490 			sc->bce_link_up = TRUE;
8491 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8492 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8493 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8494 			    (bce_verbose || bootverbose))
8495 				BCE_PRINTF("Gigabit link up!\n");
8496 		}
8497 
8498 	}
8499 	if (sc->bce_link_up == TRUE) {
8500 		/* Now that link is up, handle any outstanding TX traffic. */
8501 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8502 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8503 			    "pending TX traffic.\n", __FUNCTION__);
8504 			bce_start_locked(ifp);
8505 		}
8506 	}
8507 
8508 bce_tick_exit:
8509 	DBEXIT(BCE_EXTREME_MISC);
8510 }
8511 
8512 static void
8513 bce_fw_cap_init(struct bce_softc *sc)
8514 {
8515 	u32 ack, cap, link;
8516 
8517 	ack = 0;
8518 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8519 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8520 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8521 		return;
8522 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8523 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8524 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8525 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8526 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8527 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8528 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8529 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8530 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8531 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8532 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8533 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8534 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8535 	}
8536 
8537 	if (ack != 0)
8538 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8539 }
8540 
8541 
8542 #ifdef BCE_DEBUG
8543 /****************************************************************************/
8544 /* Allows the driver state to be dumped through the sysctl interface.       */
8545 /*                                                                          */
8546 /* Returns:                                                                 */
8547 /*   0 for success, positive value for failure.                             */
8548 /****************************************************************************/
8549 static int
8550 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8551 {
8552 	int error;
8553 	int result;
8554 	struct bce_softc *sc;
8555 
8556 	result = -1;
8557 	error = sysctl_handle_int(oidp, &result, 0, req);
8558 
8559 	if (error || !req->newptr)
8560 		return (error);
8561 
8562 	if (result == 1) {
8563 		sc = (struct bce_softc *)arg1;
8564 		bce_dump_driver_state(sc);
8565 	}
8566 
8567 	return error;
8568 }
8569 
8570 
8571 /****************************************************************************/
8572 /* Allows the hardware state to be dumped through the sysctl interface.     */
8573 /*                                                                          */
8574 /* Returns:                                                                 */
8575 /*   0 for success, positive value for failure.                             */
8576 /****************************************************************************/
8577 static int
8578 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8579 {
8580 	int error;
8581 	int result;
8582 	struct bce_softc *sc;
8583 
8584 	result = -1;
8585 	error = sysctl_handle_int(oidp, &result, 0, req);
8586 
8587 	if (error || !req->newptr)
8588 		return (error);
8589 
8590 	if (result == 1) {
8591 		sc = (struct bce_softc *)arg1;
8592 		bce_dump_hw_state(sc);
8593 	}
8594 
8595 	return error;
8596 }
8597 
8598 
8599 /****************************************************************************/
8600 /* Allows the status block to be dumped through the sysctl interface.       */
8601 /*                                                                          */
8602 /* Returns:                                                                 */
8603 /*   0 for success, positive value for failure.                             */
8604 /****************************************************************************/
8605 static int
8606 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8607 {
8608 	int error;
8609 	int result;
8610 	struct bce_softc *sc;
8611 
8612 	result = -1;
8613 	error = sysctl_handle_int(oidp, &result, 0, req);
8614 
8615 	if (error || !req->newptr)
8616 		return (error);
8617 
8618 	if (result == 1) {
8619 		sc = (struct bce_softc *)arg1;
8620 		bce_dump_status_block(sc);
8621 	}
8622 
8623 	return error;
8624 }
8625 
8626 
8627 /****************************************************************************/
8628 /* Allows the stats block to be dumped through the sysctl interface.        */
8629 /*                                                                          */
8630 /* Returns:                                                                 */
8631 /*   0 for success, positive value for failure.                             */
8632 /****************************************************************************/
8633 static int
8634 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8635 {
8636 	int error;
8637 	int result;
8638 	struct bce_softc *sc;
8639 
8640 	result = -1;
8641 	error = sysctl_handle_int(oidp, &result, 0, req);
8642 
8643 	if (error || !req->newptr)
8644 		return (error);
8645 
8646 	if (result == 1) {
8647 		sc = (struct bce_softc *)arg1;
8648 		bce_dump_stats_block(sc);
8649 	}
8650 
8651 	return error;
8652 }
8653 
8654 
8655 /****************************************************************************/
8656 /* Allows the stat counters to be cleared without unloading/reloading the   */
8657 /* driver.                                                                  */
8658 /*                                                                          */
8659 /* Returns:                                                                 */
8660 /*   0 for success, positive value for failure.                             */
8661 /****************************************************************************/
8662 static int
8663 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8664 {
8665 	int error;
8666 	int result;
8667 	struct bce_softc *sc;
8668 
8669 	result = -1;
8670 	error = sysctl_handle_int(oidp, &result, 0, req);
8671 
8672 	if (error || !req->newptr)
8673 		return (error);
8674 
8675 	if (result == 1) {
8676 		sc = (struct bce_softc *)arg1;
8677 		struct statistics_block *stats;
8678 
8679 		stats = (struct statistics_block *) sc->stats_block;
8680 		bzero(stats, sizeof(struct statistics_block));
8681 		bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8682 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8683 
8684 		/* Clear the internal H/W statistics counters. */
8685 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8686 
8687 		/* Reset the driver maintained statistics. */
8688 		sc->interrupts_rx =
8689 		    sc->interrupts_tx = 0;
8690 		sc->tso_frames_requested =
8691 		    sc->tso_frames_completed =
8692 		    sc->tso_frames_failed = 0;
8693 		sc->rx_empty_count =
8694 		    sc->tx_full_count = 0;
8695 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8696 		sc->tx_hi_watermark = 0;
8697 		sc->l2fhdr_error_count =
8698 		    sc->l2fhdr_error_sim_count = 0;
8699 		sc->mbuf_alloc_failed_count =
8700 		    sc->mbuf_alloc_failed_sim_count = 0;
8701 		sc->dma_map_addr_rx_failed_count =
8702 		    sc->dma_map_addr_tx_failed_count = 0;
8703 		sc->mbuf_frag_count = 0;
8704 		sc->csum_offload_tcp_udp =
8705 		    sc->csum_offload_ip = 0;
8706 		sc->vlan_tagged_frames_rcvd =
8707 		    sc->vlan_tagged_frames_stripped = 0;
8708 		sc->split_header_frames_rcvd =
8709 		    sc->split_header_tcp_frames_rcvd = 0;
8710 
8711 		/* Clear firmware maintained statistics. */
8712 		REG_WR_IND(sc, 0x120084, 0);
8713 	}
8714 
8715 	return error;
8716 }
8717 
8718 
8719 /****************************************************************************/
8720 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8721 /* interface.                                                               */
8722 /*                                                                          */
8723 /* Returns:                                                                 */
8724 /*   0 for success, positive value for failure.                             */
8725 /****************************************************************************/
8726 static int
8727 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8728 {
8729 	int error;
8730 	int result;
8731 	struct bce_softc *sc;
8732 
8733 	result = -1;
8734 	error = sysctl_handle_int(oidp, &result, 0, req);
8735 
8736 	if (error || !req->newptr)
8737 		return (error);
8738 
8739 	if (result == 1) {
8740 		sc = (struct bce_softc *)arg1;
8741 		bce_dump_shmem_state(sc);
8742 	}
8743 
8744 	return error;
8745 }
8746 
8747 
8748 /****************************************************************************/
8749 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8750 /*                                                                          */
8751 /* Returns:                                                                 */
8752 /*   0 for success, positive value for failure.                             */
8753 /****************************************************************************/
8754 static int
8755 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8756 {
8757 	int error;
8758 	int result;
8759 	struct bce_softc *sc;
8760 
8761 	result = -1;
8762 	error = sysctl_handle_int(oidp, &result, 0, req);
8763 
8764 	if (error || !req->newptr)
8765 		return (error);
8766 
8767 	if (result == 1) {
8768 		sc = (struct bce_softc *)arg1;
8769 		bce_dump_bc_state(sc);
8770 	}
8771 
8772 	return error;
8773 }
8774 
8775 
8776 /****************************************************************************/
8777 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8778 /*                                                                          */
8779 /* Returns:                                                                 */
8780 /*   0 for success, positive value for failure.                             */
8781 /****************************************************************************/
8782 static int
8783 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8784 {
8785 	int error;
8786 	int result;
8787 	struct bce_softc *sc;
8788 
8789 	result = -1;
8790 	error = sysctl_handle_int(oidp, &result, 0, req);
8791 
8792 	if (error || !req->newptr)
8793 		return (error);
8794 
8795 	if (result == 1) {
8796 		sc = (struct bce_softc *)arg1;
8797 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8798 	}
8799 
8800 	return error;
8801 }
8802 
8803 
8804 /****************************************************************************/
8805 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8806 /*                                                                          */
8807 /* Returns:                                                                 */
8808 /*   0 for success, positive value for failure.                             */
8809 /****************************************************************************/
8810 static int
8811 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8812 {
8813 	int error;
8814 	int result;
8815 	struct bce_softc *sc;
8816 
8817 	result = -1;
8818 	error = sysctl_handle_int(oidp, &result, 0, req);
8819 
8820 	if (error || !req->newptr)
8821 		return (error);
8822 
8823 	if (result == 1) {
8824 		sc = (struct bce_softc *)arg1;
8825 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8826 	}
8827 
8828 	return error;
8829 }
8830 
8831 
8832 /****************************************************************************/
8833 /* Provides a sysctl interface to allow dumping the TX chain.               */
8834 /*                                                                          */
8835 /* Returns:                                                                 */
8836 /*   0 for success, positive value for failure.                             */
8837 /****************************************************************************/
8838 static int
8839 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8840 {
8841 	int error;
8842 	int result;
8843 	struct bce_softc *sc;
8844 
8845 	result = -1;
8846 	error = sysctl_handle_int(oidp, &result, 0, req);
8847 
8848 	if (error || !req->newptr)
8849 		return (error);
8850 
8851 	if (result == 1) {
8852 		sc = (struct bce_softc *)arg1;
8853 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8854 	}
8855 
8856 	return error;
8857 }
8858 
8859 
8860 /****************************************************************************/
8861 /* Provides a sysctl interface to allow dumping the page chain.             */
8862 /*                                                                          */
8863 /* Returns:                                                                 */
8864 /*   0 for success, positive value for failure.                             */
8865 /****************************************************************************/
8866 static int
8867 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8868 {
8869 	int error;
8870 	int result;
8871 	struct bce_softc *sc;
8872 
8873 	result = -1;
8874 	error = sysctl_handle_int(oidp, &result, 0, req);
8875 
8876 	if (error || !req->newptr)
8877 		return (error);
8878 
8879 	if (result == 1) {
8880 		sc = (struct bce_softc *)arg1;
8881 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8882 	}
8883 
8884 	return error;
8885 }
8886 
8887 /****************************************************************************/
8888 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8889 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8890 /*                                                                          */
8891 /* Returns:                                                                 */
8892 /*   0 for success, positive value for failure.                             */
8893 /****************************************************************************/
8894 static int
8895 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8896 {
8897 	struct bce_softc *sc = (struct bce_softc *)arg1;
8898 	int error;
8899 	u32 result;
8900 	u32 val[1];
8901 	u8 *data = (u8 *) val;
8902 
8903 	result = -1;
8904 	error = sysctl_handle_int(oidp, &result, 0, req);
8905 	if (error || (req->newptr == NULL))
8906 		return (error);
8907 
8908 	error = bce_nvram_read(sc, result, data, 4);
8909 
8910 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8911 
8912 	return (error);
8913 }
8914 
8915 
8916 /****************************************************************************/
8917 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8918 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8919 /*                                                                          */
8920 /* Returns:                                                                 */
8921 /*   0 for success, positive value for failure.                             */
8922 /****************************************************************************/
8923 static int
8924 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8925 {
8926 	struct bce_softc *sc = (struct bce_softc *)arg1;
8927 	int error;
8928 	u32 val, result;
8929 
8930 	result = -1;
8931 	error = sysctl_handle_int(oidp, &result, 0, req);
8932 	if (error || (req->newptr == NULL))
8933 		return (error);
8934 
8935 	/* Make sure the register is accessible. */
8936 	if (result < 0x8000) {
8937 		val = REG_RD(sc, result);
8938 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8939 	} else if (result < 0x0280000) {
8940 		val = REG_RD_IND(sc, result);
8941 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8942 	}
8943 
8944 	return (error);
8945 }
8946 
8947 
8948 /****************************************************************************/
8949 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8950 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8951 /*                                                                          */
8952 /* Returns:                                                                 */
8953 /*   0 for success, positive value for failure.                             */
8954 /****************************************************************************/
8955 static int
8956 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8957 {
8958 	struct bce_softc *sc;
8959 	device_t dev;
8960 	int error, result;
8961 	u16 val;
8962 
8963 	result = -1;
8964 	error = sysctl_handle_int(oidp, &result, 0, req);
8965 	if (error || (req->newptr == NULL))
8966 		return (error);
8967 
8968 	/* Make sure the register is accessible. */
8969 	if (result < 0x20) {
8970 		sc = (struct bce_softc *)arg1;
8971 		dev = sc->bce_dev;
8972 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8973 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8974 	}
8975 	return (error);
8976 }
8977 
8978 
8979 /****************************************************************************/
8980 /* Provides a sysctl interface for dumping the nvram contents.              */
8981 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8982 /*									    */
8983 /* Returns:								    */
8984 /*   0 for success, positive errno for failure.				    */
8985 /****************************************************************************/
8986 static int
8987 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8988 {
8989 	struct bce_softc *sc = (struct bce_softc *)arg1;
8990 	int error, i;
8991 
8992 	if (sc->nvram_buf == NULL)
8993 		sc->nvram_buf = malloc(sc->bce_flash_size,
8994 				    M_TEMP, M_ZERO | M_WAITOK);
8995 
8996 	error = 0;
8997 	if (req->oldlen == sc->bce_flash_size) {
8998 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8999 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9000 	}
9001 
9002 	if (error == 0)
9003 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9004 
9005 	return error;
9006 }
9007 
9008 #ifdef BCE_NVRAM_WRITE_SUPPORT
9009 /****************************************************************************/
9010 /* Provides a sysctl interface for writing to nvram.                        */
9011 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9012 /*									    */
9013 /* Returns:								    */
9014 /*   0 for success, positive errno for failure.				    */
9015 /****************************************************************************/
9016 static int
9017 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9018 {
9019 	struct bce_softc *sc = (struct bce_softc *)arg1;
9020 	int error;
9021 
9022 	if (sc->nvram_buf == NULL)
9023 		sc->nvram_buf = malloc(sc->bce_flash_size,
9024 				    M_TEMP, M_ZERO | M_WAITOK);
9025 	else
9026 		bzero(sc->nvram_buf, sc->bce_flash_size);
9027 
9028 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9029 	if (error == 0)
9030 		return (error);
9031 
9032 	if (req->newlen == sc->bce_flash_size)
9033 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
9034 			    sc->bce_flash_size);
9035 
9036 
9037 	return error;
9038 }
9039 #endif
9040 
9041 
9042 /****************************************************************************/
9043 /* Provides a sysctl interface to allow reading a CID.                      */
9044 /*                                                                          */
9045 /* Returns:                                                                 */
9046 /*   0 for success, positive value for failure.                             */
9047 /****************************************************************************/
9048 static int
9049 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9050 {
9051 	struct bce_softc *sc;
9052 	int error, result;
9053 
9054 	result = -1;
9055 	error = sysctl_handle_int(oidp, &result, 0, req);
9056 	if (error || (req->newptr == NULL))
9057 		return (error);
9058 
9059 	/* Make sure the register is accessible. */
9060 	if (result <= TX_CID) {
9061 		sc = (struct bce_softc *)arg1;
9062 		bce_dump_ctx(sc, result);
9063 	}
9064 
9065 	return (error);
9066 }
9067 
9068 
9069 /****************************************************************************/
9070 /* Provides a sysctl interface to forcing the driver to dump state and      */
9071 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9072 /*                                                                          */
9073 /* Returns:                                                                 */
9074 /*   0 for success, positive value for failure.                             */
9075 /****************************************************************************/
9076 static int
9077 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9078 {
9079 	int error;
9080 	int result;
9081 	struct bce_softc *sc;
9082 
9083 	result = -1;
9084 	error = sysctl_handle_int(oidp, &result, 0, req);
9085 
9086 	if (error || !req->newptr)
9087 		return (error);
9088 
9089 	if (result == 1) {
9090 		sc = (struct bce_softc *)arg1;
9091 		bce_breakpoint(sc);
9092 	}
9093 
9094 	return error;
9095 }
9096 #endif
9097 
9098 /****************************************************************************/
9099 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9100 /*                                                                          */
9101 /* Returns:                                                                 */
9102 /*   0 for success, positive value for failure.                             */
9103 /****************************************************************************/
9104 static void
9105 bce_add_sysctls(struct bce_softc *sc)
9106 {
9107 	struct sysctl_ctx_list *ctx;
9108 	struct sysctl_oid_list *children;
9109 
9110 	DBENTER(BCE_VERBOSE_MISC);
9111 
9112 	ctx = device_get_sysctl_ctx(sc->bce_dev);
9113 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9114 
9115 #ifdef BCE_DEBUG
9116 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9117 	    "l2fhdr_error_sim_control",
9118 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
9119 	    0, "Debug control to force l2fhdr errors");
9120 
9121 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9122 	    "l2fhdr_error_sim_count",
9123 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9124 	    0, "Number of simulated l2_fhdr errors");
9125 #endif
9126 
9127 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9128 	    "l2fhdr_error_count",
9129 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
9130 	    0, "Number of l2_fhdr errors");
9131 
9132 #ifdef BCE_DEBUG
9133 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9134 	    "mbuf_alloc_failed_sim_control",
9135 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9136 	    0, "Debug control to force mbuf allocation failures");
9137 
9138 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9139 	    "mbuf_alloc_failed_sim_count",
9140 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9141 	    0, "Number of simulated mbuf cluster allocation failures");
9142 #endif
9143 
9144 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9145 	    "mbuf_alloc_failed_count",
9146 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9147 	    0, "Number of mbuf allocation failures");
9148 
9149 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9150 	    "mbuf_frag_count",
9151 	    CTLFLAG_RD, &sc->mbuf_frag_count,
9152 	    0, "Number of fragmented mbufs");
9153 
9154 #ifdef BCE_DEBUG
9155 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9156 	    "dma_map_addr_failed_sim_control",
9157 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9158 	    0, "Debug control to force DMA mapping failures");
9159 
9160 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9161 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9162 	    "dma_map_addr_failed_sim_count",
9163 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9164 	    0, "Number of simulated DMA mapping failures");
9165 
9166 #endif
9167 
9168 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9169 	    "dma_map_addr_rx_failed_count",
9170 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9171 	    0, "Number of RX DMA mapping failures");
9172 
9173 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9174 	    "dma_map_addr_tx_failed_count",
9175 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9176 	    0, "Number of TX DMA mapping failures");
9177 
9178 #ifdef BCE_DEBUG
9179 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9180 	    "unexpected_attention_sim_control",
9181 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9182 	    0, "Debug control to simulate unexpected attentions");
9183 
9184 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9185 	    "unexpected_attention_sim_count",
9186 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9187 	    0, "Number of simulated unexpected attentions");
9188 #endif
9189 
9190 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9191 	    "unexpected_attention_count",
9192 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9193 	    0, "Number of unexpected attentions");
9194 
9195 #ifdef BCE_DEBUG
9196 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9197 	    "debug_bootcode_running_failure",
9198 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9199 	    0, "Debug control to force bootcode running failures");
9200 
9201 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9202 	    "rx_low_watermark",
9203 	    CTLFLAG_RD, &sc->rx_low_watermark,
9204 	    0, "Lowest level of free rx_bd's");
9205 
9206 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9207 	    "rx_empty_count",
9208 	    CTLFLAG_RD, &sc->rx_empty_count,
9209 	    "Number of times the RX chain was empty");
9210 
9211 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9212 	    "tx_hi_watermark",
9213 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9214 	    0, "Highest level of used tx_bd's");
9215 
9216 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9217 	    "tx_full_count",
9218 	    CTLFLAG_RD, &sc->tx_full_count,
9219 	    "Number of times the TX chain was full");
9220 
9221 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9222 	    "tso_frames_requested",
9223 	    CTLFLAG_RD, &sc->tso_frames_requested,
9224 	    "Number of TSO frames requested");
9225 
9226 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9227 	    "tso_frames_completed",
9228 	    CTLFLAG_RD, &sc->tso_frames_completed,
9229 	    "Number of TSO frames completed");
9230 
9231 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9232 	    "tso_frames_failed",
9233 	    CTLFLAG_RD, &sc->tso_frames_failed,
9234 	    "Number of TSO frames failed");
9235 
9236 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9237 	    "csum_offload_ip",
9238 	    CTLFLAG_RD, &sc->csum_offload_ip,
9239 	    "Number of IP checksum offload frames");
9240 
9241 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9242 	    "csum_offload_tcp_udp",
9243 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9244 	    "Number of TCP/UDP checksum offload frames");
9245 
9246 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9247 	    "vlan_tagged_frames_rcvd",
9248 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9249 	    "Number of VLAN tagged frames received");
9250 
9251 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9252 	    "vlan_tagged_frames_stripped",
9253 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9254 	    "Number of VLAN tagged frames stripped");
9255 
9256 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9257 	    "interrupts_rx",
9258 	    CTLFLAG_RD, &sc->interrupts_rx,
9259 	    "Number of RX interrupts");
9260 
9261 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9262 	    "interrupts_tx",
9263 	    CTLFLAG_RD, &sc->interrupts_tx,
9264 	    "Number of TX interrupts");
9265 
9266 	if (bce_hdr_split == TRUE) {
9267 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9268 		    "split_header_frames_rcvd",
9269 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9270 		    "Number of split header frames received");
9271 
9272 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9273 		    "split_header_tcp_frames_rcvd",
9274 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9275 		    "Number of split header TCP frames received");
9276 	}
9277 
9278 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9279 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9280 	    (void *)sc, 0,
9281 	    bce_sysctl_nvram_dump, "S", "");
9282 
9283 #ifdef BCE_NVRAM_WRITE_SUPPORT
9284 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9285 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9286 	    (void *)sc, 0,
9287 	    bce_sysctl_nvram_write, "S", "");
9288 #endif
9289 #endif /* BCE_DEBUG */
9290 
9291 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9292 	    "stat_IfHcInOctets",
9293 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9294 	    "Bytes received");
9295 
9296 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9297 	    "stat_IfHCInBadOctets",
9298 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9299 	    "Bad bytes received");
9300 
9301 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9302 	    "stat_IfHCOutOctets",
9303 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9304 	    "Bytes sent");
9305 
9306 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9307 	    "stat_IfHCOutBadOctets",
9308 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9309 	    "Bad bytes sent");
9310 
9311 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9312 	    "stat_IfHCInUcastPkts",
9313 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9314 	    "Unicast packets received");
9315 
9316 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9317 	    "stat_IfHCInMulticastPkts",
9318 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9319 	    "Multicast packets received");
9320 
9321 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9322 	    "stat_IfHCInBroadcastPkts",
9323 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9324 	    "Broadcast packets received");
9325 
9326 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9327 	    "stat_IfHCOutUcastPkts",
9328 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9329 	    "Unicast packets sent");
9330 
9331 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9332 	    "stat_IfHCOutMulticastPkts",
9333 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9334 	    "Multicast packets sent");
9335 
9336 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9337 	    "stat_IfHCOutBroadcastPkts",
9338 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9339 	    "Broadcast packets sent");
9340 
9341 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9342 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9343 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9344 	    0, "Internal MAC transmit errors");
9345 
9346 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9347 	    "stat_Dot3StatsCarrierSenseErrors",
9348 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9349 	    0, "Carrier sense errors");
9350 
9351 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9352 	    "stat_Dot3StatsFCSErrors",
9353 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9354 	    0, "Frame check sequence errors");
9355 
9356 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9357 	    "stat_Dot3StatsAlignmentErrors",
9358 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9359 	    0, "Alignment errors");
9360 
9361 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9362 	    "stat_Dot3StatsSingleCollisionFrames",
9363 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9364 	    0, "Single Collision Frames");
9365 
9366 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9367 	    "stat_Dot3StatsMultipleCollisionFrames",
9368 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9369 	    0, "Multiple Collision Frames");
9370 
9371 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9372 	    "stat_Dot3StatsDeferredTransmissions",
9373 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9374 	    0, "Deferred Transmissions");
9375 
9376 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9377 	    "stat_Dot3StatsExcessiveCollisions",
9378 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9379 	    0, "Excessive Collisions");
9380 
9381 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9382 	    "stat_Dot3StatsLateCollisions",
9383 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9384 	    0, "Late Collisions");
9385 
9386 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9387 	    "stat_EtherStatsCollisions",
9388 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9389 	    0, "Collisions");
9390 
9391 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9392 	    "stat_EtherStatsFragments",
9393 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9394 	    0, "Fragments");
9395 
9396 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9397 	    "stat_EtherStatsJabbers",
9398 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9399 	    0, "Jabbers");
9400 
9401 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9402 	    "stat_EtherStatsUndersizePkts",
9403 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9404 	    0, "Undersize packets");
9405 
9406 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9407 	    "stat_EtherStatsOversizePkts",
9408 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9409 	    0, "stat_EtherStatsOversizePkts");
9410 
9411 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9412 	    "stat_EtherStatsPktsRx64Octets",
9413 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9414 	    0, "Bytes received in 64 byte packets");
9415 
9416 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9417 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9418 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9419 	    0, "Bytes received in 65 to 127 byte packets");
9420 
9421 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9422 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9423 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9424 	    0, "Bytes received in 128 to 255 byte packets");
9425 
9426 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9427 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9428 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9429 	    0, "Bytes received in 256 to 511 byte packets");
9430 
9431 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9432 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9433 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9434 	    0, "Bytes received in 512 to 1023 byte packets");
9435 
9436 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9437 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9438 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9439 	    0, "Bytes received in 1024 t0 1522 byte packets");
9440 
9441 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9442 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9443 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9444 	    0, "Bytes received in 1523 to 9022 byte packets");
9445 
9446 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9447 	    "stat_EtherStatsPktsTx64Octets",
9448 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9449 	    0, "Bytes sent in 64 byte packets");
9450 
9451 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9452 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9453 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9454 	    0, "Bytes sent in 65 to 127 byte packets");
9455 
9456 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9457 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9458 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9459 	    0, "Bytes sent in 128 to 255 byte packets");
9460 
9461 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9462 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9463 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9464 	    0, "Bytes sent in 256 to 511 byte packets");
9465 
9466 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9467 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9468 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9469 	    0, "Bytes sent in 512 to 1023 byte packets");
9470 
9471 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9472 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9473 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9474 	    0, "Bytes sent in 1024 to 1522 byte packets");
9475 
9476 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9477 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9478 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9479 	    0, "Bytes sent in 1523 to 9022 byte packets");
9480 
9481 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9482 	    "stat_XonPauseFramesReceived",
9483 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9484 	    0, "XON pause frames receved");
9485 
9486 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9487 	    "stat_XoffPauseFramesReceived",
9488 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9489 	    0, "XOFF pause frames received");
9490 
9491 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9492 	    "stat_OutXonSent",
9493 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9494 	    0, "XON pause frames sent");
9495 
9496 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9497 	    "stat_OutXoffSent",
9498 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9499 	    0, "XOFF pause frames sent");
9500 
9501 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9502 	    "stat_FlowControlDone",
9503 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9504 	    0, "Flow control done");
9505 
9506 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9507 	    "stat_MacControlFramesReceived",
9508 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9509 	    0, "MAC control frames received");
9510 
9511 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9512 	    "stat_XoffStateEntered",
9513 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9514 	    0, "XOFF state entered");
9515 
9516 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9517 	    "stat_IfInFramesL2FilterDiscards",
9518 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9519 	    0, "Received L2 packets discarded");
9520 
9521 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9522 	    "stat_IfInRuleCheckerDiscards",
9523 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9524 	    0, "Received packets discarded by rule");
9525 
9526 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9527 	    "stat_IfInFTQDiscards",
9528 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9529 	    0, "Received packet FTQ discards");
9530 
9531 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9532 	    "stat_IfInMBUFDiscards",
9533 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9534 	    0, "Received packets discarded due to lack "
9535 	    "of controller buffer memory");
9536 
9537 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9538 	    "stat_IfInRuleCheckerP4Hit",
9539 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9540 	    0, "Received packets rule checker hits");
9541 
9542 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9543 	    "stat_CatchupInRuleCheckerDiscards",
9544 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9545 	    0, "Received packets discarded in Catchup path");
9546 
9547 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9548 	    "stat_CatchupInFTQDiscards",
9549 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9550 	    0, "Received packets discarded in FTQ in Catchup path");
9551 
9552 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9553 	    "stat_CatchupInMBUFDiscards",
9554 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9555 	    0, "Received packets discarded in controller "
9556 	    "buffer memory in Catchup path");
9557 
9558 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9559 	    "stat_CatchupInRuleCheckerP4Hit",
9560 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9561 	    0, "Received packets rule checker hits in Catchup path");
9562 
9563 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9564 	    "com_no_buffers",
9565 	    CTLFLAG_RD, &sc->com_no_buffers,
9566 	    0, "Valid packets received but no RX buffers available");
9567 
9568 #ifdef BCE_DEBUG
9569 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9570 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9571 	    (void *)sc, 0,
9572 	    bce_sysctl_driver_state, "I", "Drive state information");
9573 
9574 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9575 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9576 	    (void *)sc, 0,
9577 	    bce_sysctl_hw_state, "I", "Hardware state information");
9578 
9579 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9580 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9581 	    (void *)sc, 0,
9582 	    bce_sysctl_status_block, "I", "Dump status block");
9583 
9584 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9585 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9586 	    (void *)sc, 0,
9587 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9588 
9589 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9590 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9591 	    (void *)sc, 0,
9592 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9593 
9594 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9595 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9596 	    (void *)sc, 0,
9597 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9598 
9599 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9600 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9601 	    (void *)sc, 0,
9602 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9603 
9604 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9605 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9606 	    (void *)sc, 0,
9607 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9608 
9609 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9610 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9611 	    (void *)sc, 0,
9612 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9613 
9614 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9615 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9616 	    (void *)sc, 0,
9617 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9618 
9619 	if (bce_hdr_split == TRUE) {
9620 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9621 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9622 		    (void *)sc, 0,
9623 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9624 	}
9625 
9626 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9627 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9628 	    (void *)sc, 0,
9629 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9630 
9631 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9632 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9633 	    (void *)sc, 0,
9634 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9635 
9636 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9637 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9638 	    (void *)sc, 0,
9639 	    bce_sysctl_reg_read, "I", "Register read");
9640 
9641 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9642 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9643 	    (void *)sc, 0,
9644 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9645 
9646 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9647 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9648 	    (void *)sc, 0,
9649 	    bce_sysctl_phy_read, "I", "PHY register read");
9650 
9651 #endif
9652 
9653 	DBEXIT(BCE_VERBOSE_MISC);
9654 }
9655 
9656 
9657 /****************************************************************************/
9658 /* BCE Debug Routines                                                       */
9659 /****************************************************************************/
9660 #ifdef BCE_DEBUG
9661 
9662 /****************************************************************************/
9663 /* Freezes the controller to allow for a cohesive state dump.               */
9664 /*                                                                          */
9665 /* Returns:                                                                 */
9666 /*   Nothing.                                                               */
9667 /****************************************************************************/
9668 static __attribute__ ((noinline)) void
9669 bce_freeze_controller(struct bce_softc *sc)
9670 {
9671 	u32 val;
9672 	val = REG_RD(sc, BCE_MISC_COMMAND);
9673 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9674 	REG_WR(sc, BCE_MISC_COMMAND, val);
9675 }
9676 
9677 
9678 /****************************************************************************/
9679 /* Unfreezes the controller after a freeze operation.  This may not always  */
9680 /* work and the controller will require a reset!                            */
9681 /*                                                                          */
9682 /* Returns:                                                                 */
9683 /*   Nothing.                                                               */
9684 /****************************************************************************/
9685 static __attribute__ ((noinline)) void
9686 bce_unfreeze_controller(struct bce_softc *sc)
9687 {
9688 	u32 val;
9689 	val = REG_RD(sc, BCE_MISC_COMMAND);
9690 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9691 	REG_WR(sc, BCE_MISC_COMMAND, val);
9692 }
9693 
9694 
9695 /****************************************************************************/
9696 /* Prints out Ethernet frame information from an mbuf.                      */
9697 /*                                                                          */
9698 /* Partially decode an Ethernet frame to look at some important headers.    */
9699 /*                                                                          */
9700 /* Returns:                                                                 */
9701 /*   Nothing.                                                               */
9702 /****************************************************************************/
9703 static __attribute__ ((noinline)) void
9704 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9705 {
9706 	struct ether_vlan_header *eh;
9707 	u16 etype;
9708 	int ehlen;
9709 	struct ip *ip;
9710 	struct tcphdr *th;
9711 	struct udphdr *uh;
9712 	struct arphdr *ah;
9713 
9714 	BCE_PRINTF(
9715 	    "-----------------------------"
9716 	    " Frame Decode "
9717 	    "-----------------------------\n");
9718 
9719 	eh = mtod(m, struct ether_vlan_header *);
9720 
9721 	/* Handle VLAN encapsulation if present. */
9722 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9723 		etype = ntohs(eh->evl_proto);
9724 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9725 	} else {
9726 		etype = ntohs(eh->evl_encap_proto);
9727 		ehlen = ETHER_HDR_LEN;
9728 	}
9729 
9730 	/* ToDo: Add VLAN output. */
9731 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9732 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9733 
9734 	switch (etype) {
9735 	case ETHERTYPE_IP:
9736 		ip = (struct ip *)(m->m_data + ehlen);
9737 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9738 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9739 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9740 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9741 
9742 		switch (ip->ip_p) {
9743 		case IPPROTO_TCP:
9744 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9745 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9746 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9747 			    ntohs(th->th_dport), ntohs(th->th_sport),
9748 			    (th->th_off << 2), th->th_flags,
9749 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9750 			    "\02SYN\01FIN", ntohs(th->th_sum));
9751 			break;
9752 		case IPPROTO_UDP:
9753 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9754 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9755 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9756 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9757 			    ntohs(uh->uh_sum));
9758 			break;
9759 		case IPPROTO_ICMP:
9760 			BCE_PRINTF("icmp:\n");
9761 			break;
9762 		default:
9763 			BCE_PRINTF("----: Other IP protocol.\n");
9764 			}
9765 		break;
9766 	case ETHERTYPE_IPV6:
9767 		BCE_PRINTF("ipv6: No decode supported.\n");
9768 		break;
9769 	case ETHERTYPE_ARP:
9770 		BCE_PRINTF("-arp: ");
9771 		ah = (struct arphdr *) (m->m_data + ehlen);
9772 		switch (ntohs(ah->ar_op)) {
9773 		case ARPOP_REVREQUEST:
9774 			printf("reverse ARP request\n");
9775 			break;
9776 		case ARPOP_REVREPLY:
9777 			printf("reverse ARP reply\n");
9778 			break;
9779 		case ARPOP_REQUEST:
9780 			printf("ARP request\n");
9781 			break;
9782 		case ARPOP_REPLY:
9783 			printf("ARP reply\n");
9784 			break;
9785 		default:
9786 			printf("other ARP operation\n");
9787 		}
9788 		break;
9789 	default:
9790 		BCE_PRINTF("----: Other protocol.\n");
9791 	}
9792 
9793 	BCE_PRINTF(
9794 		"-----------------------------"
9795 		"--------------"
9796 		"-----------------------------\n");
9797 }
9798 
9799 
9800 /****************************************************************************/
9801 /* Prints out information about an mbuf.                                    */
9802 /*                                                                          */
9803 /* Returns:                                                                 */
9804 /*   Nothing.                                                               */
9805 /****************************************************************************/
9806 static __attribute__ ((noinline)) void
9807 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9808 {
9809 	struct mbuf *mp = m;
9810 
9811 	if (m == NULL) {
9812 		BCE_PRINTF("mbuf: null pointer\n");
9813 		return;
9814 	}
9815 
9816 	while (mp) {
9817 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9818 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9819 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9820 
9821 		if (mp->m_flags & M_PKTHDR) {
9822 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9823 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9824 			    mp->m_flags, M_FLAG_PRINTF,
9825 			    mp->m_pkthdr.csum_flags,
9826 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP"
9827 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9828 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9829 			    "\14CSUM_PSEUDO_HDR");
9830 		}
9831 
9832 		if (mp->m_flags & M_EXT) {
9833 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9834 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9835 			switch (mp->m_ext.ext_type) {
9836 			case EXT_CLUSTER:
9837 				printf("EXT_CLUSTER\n"); break;
9838 			case EXT_SFBUF:
9839 				printf("EXT_SFBUF\n"); break;
9840 			case EXT_JUMBO9:
9841 				printf("EXT_JUMBO9\n"); break;
9842 			case EXT_JUMBO16:
9843 				printf("EXT_JUMBO16\n"); break;
9844 			case EXT_PACKET:
9845 				printf("EXT_PACKET\n"); break;
9846 			case EXT_MBUF:
9847 				printf("EXT_MBUF\n"); break;
9848 			case EXT_NET_DRV:
9849 				printf("EXT_NET_DRV\n"); break;
9850 			case EXT_MOD_TYPE:
9851 				printf("EXT_MDD_TYPE\n"); break;
9852 			case EXT_DISPOSABLE:
9853 				printf("EXT_DISPOSABLE\n"); break;
9854 			case EXT_EXTREF:
9855 				printf("EXT_EXTREF\n"); break;
9856 			default:
9857 				printf("UNKNOWN\n");
9858 			}
9859 		}
9860 
9861 		mp = mp->m_next;
9862 	}
9863 }
9864 
9865 
9866 /****************************************************************************/
9867 /* Prints out the mbufs in the TX mbuf chain.                               */
9868 /*                                                                          */
9869 /* Returns:                                                                 */
9870 /*   Nothing.                                                               */
9871 /****************************************************************************/
9872 static __attribute__ ((noinline)) void
9873 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9874 {
9875 	struct mbuf *m;
9876 
9877 	BCE_PRINTF(
9878 		"----------------------------"
9879 		"  tx mbuf data  "
9880 		"----------------------------\n");
9881 
9882 	for (int i = 0; i < count; i++) {
9883 	 	m = sc->tx_mbuf_ptr[chain_prod];
9884 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9885 		bce_dump_mbuf(sc, m);
9886 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9887 	}
9888 
9889 	BCE_PRINTF(
9890 		"----------------------------"
9891 		"----------------"
9892 		"----------------------------\n");
9893 }
9894 
9895 
9896 /****************************************************************************/
9897 /* Prints out the mbufs in the RX mbuf chain.                               */
9898 /*                                                                          */
9899 /* Returns:                                                                 */
9900 /*   Nothing.                                                               */
9901 /****************************************************************************/
9902 static __attribute__ ((noinline)) void
9903 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9904 {
9905 	struct mbuf *m;
9906 
9907 	BCE_PRINTF(
9908 		"----------------------------"
9909 		"  rx mbuf data  "
9910 		"----------------------------\n");
9911 
9912 	for (int i = 0; i < count; i++) {
9913 	 	m = sc->rx_mbuf_ptr[chain_prod];
9914 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9915 		bce_dump_mbuf(sc, m);
9916 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9917 	}
9918 
9919 
9920 	BCE_PRINTF(
9921 		"----------------------------"
9922 		"----------------"
9923 		"----------------------------\n");
9924 }
9925 
9926 
9927 /****************************************************************************/
9928 /* Prints out the mbufs in the mbuf page chain.                             */
9929 /*                                                                          */
9930 /* Returns:                                                                 */
9931 /*   Nothing.                                                               */
9932 /****************************************************************************/
9933 static __attribute__ ((noinline)) void
9934 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9935 {
9936 	struct mbuf *m;
9937 
9938 	BCE_PRINTF(
9939 		"----------------------------"
9940 		"  pg mbuf data  "
9941 		"----------------------------\n");
9942 
9943 	for (int i = 0; i < count; i++) {
9944 	 	m = sc->pg_mbuf_ptr[chain_prod];
9945 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9946 		bce_dump_mbuf(sc, m);
9947 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9948 	}
9949 
9950 
9951 	BCE_PRINTF(
9952 		"----------------------------"
9953 		"----------------"
9954 		"----------------------------\n");
9955 }
9956 
9957 
9958 /****************************************************************************/
9959 /* Prints out a tx_bd structure.                                            */
9960 /*                                                                          */
9961 /* Returns:                                                                 */
9962 /*   Nothing.                                                               */
9963 /****************************************************************************/
9964 static __attribute__ ((noinline)) void
9965 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9966 {
9967 	int i = 0;
9968 
9969 	if (idx > MAX_TX_BD_ALLOC)
9970 		/* Index out of range. */
9971 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9972 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9973 		/* TX Chain page pointer. */
9974 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9975 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9976 		    txbd->tx_bd_haddr_lo);
9977 	else {
9978 		/* Normal tx_bd entry. */
9979 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9980 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9981 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9982 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9983 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9984 
9985 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9986 			if (i>0)
9987 				printf("|");
9988 			printf("CONN_FAULT");
9989 			i++;
9990 		}
9991 
9992 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9993 			if (i>0)
9994 				printf("|");
9995 			printf("TCP_UDP_CKSUM");
9996 			i++;
9997 		}
9998 
9999 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10000 			if (i>0)
10001 				printf("|");
10002 			printf("IP_CKSUM");
10003 			i++;
10004 		}
10005 
10006 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10007 			if (i>0)
10008 				printf("|");
10009 			printf("VLAN");
10010 			i++;
10011 		}
10012 
10013 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10014 			if (i>0)
10015 				printf("|");
10016 			printf("COAL_NOW");
10017 			i++;
10018 		}
10019 
10020 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10021 			if (i>0)
10022 				printf("|");
10023 			printf("DONT_GEN_CRC");
10024 			i++;
10025 		}
10026 
10027 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10028 			if (i>0)
10029 				printf("|");
10030 			printf("START");
10031 			i++;
10032 		}
10033 
10034 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10035 			if (i>0)
10036 				printf("|");
10037 			printf("END");
10038 			i++;
10039 		}
10040 
10041 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10042 			if (i>0)
10043 				printf("|");
10044 			printf("LSO");
10045 			i++;
10046 		}
10047 
10048 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10049 			if (i>0)
10050 				printf("|");
10051 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10052 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10053 		}
10054 
10055 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10056 			if (i>0)
10057 				printf("|");
10058 			printf("SW_FLAGS");
10059 			i++;
10060 		}
10061 
10062 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10063 			if (i>0)
10064 				printf("|");
10065 			printf("SNAP)");
10066 		} else {
10067 			printf(")\n");
10068 		}
10069 	}
10070 }
10071 
10072 
10073 /****************************************************************************/
10074 /* Prints out a rx_bd structure.                                            */
10075 /*                                                                          */
10076 /* Returns:                                                                 */
10077 /*   Nothing.                                                               */
10078 /****************************************************************************/
10079 static __attribute__ ((noinline)) void
10080 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10081 {
10082 	if (idx > MAX_RX_BD_ALLOC)
10083 		/* Index out of range. */
10084 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10085 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10086 		/* RX Chain page pointer. */
10087 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10088 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10089 		    rxbd->rx_bd_haddr_lo);
10090 	else
10091 		/* Normal rx_bd entry. */
10092 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10093 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10094 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10095 		    rxbd->rx_bd_flags);
10096 }
10097 
10098 
10099 /****************************************************************************/
10100 /* Prints out a rx_bd structure in the page chain.                          */
10101 /*                                                                          */
10102 /* Returns:                                                                 */
10103 /*   Nothing.                                                               */
10104 /****************************************************************************/
10105 static __attribute__ ((noinline)) void
10106 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10107 {
10108 	if (idx > MAX_PG_BD_ALLOC)
10109 		/* Index out of range. */
10110 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10111 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10112 		/* Page Chain page pointer. */
10113 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10114 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10115 	else
10116 		/* Normal rx_bd entry. */
10117 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10118 			"flags = 0x%08X\n", idx,
10119 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10120 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
10121 }
10122 
10123 
10124 /****************************************************************************/
10125 /* Prints out a l2_fhdr structure.                                          */
10126 /*                                                                          */
10127 /* Returns:                                                                 */
10128 /*   Nothing.                                                               */
10129 /****************************************************************************/
10130 static __attribute__ ((noinline)) void
10131 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10132 {
10133 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10134 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10135 		"tcp_udp_xsum = 0x%04X\n", idx,
10136 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10137 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10138 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10139 }
10140 
10141 
10142 /****************************************************************************/
10143 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10144 /*                                                                          */
10145 /* Returns:                                                                 */
10146 /*   Nothing.                                                               */
10147 /****************************************************************************/
10148 static __attribute__ ((noinline)) void
10149 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10150 {
10151 	if (cid > TX_CID) {
10152 		BCE_PRINTF(" Unknown CID\n");
10153 		return;
10154 	}
10155 
10156 	BCE_PRINTF(
10157 	    "----------------------------"
10158 	    "    CTX Data    "
10159 	    "----------------------------\n");
10160 
10161 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10162 
10163 	if (cid == RX_CID) {
10164 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10165 		   "producer index\n",
10166 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10167 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10168 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10169 		    BCE_L2CTX_RX_HOST_BSEQ));
10170 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10171 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10172 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10173 		    "descriptor address\n",
10174  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10175 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10176 		    "descriptor address\n",
10177 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10178 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10179 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10180 		    BCE_L2CTX_RX_NX_BDIDX));
10181 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10182 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10183 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10184 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10185 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10186 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10187 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10188 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10189 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10190 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10191 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10192 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10193 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10194 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10195 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10196 	} else if (cid == TX_CID) {
10197 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10198 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10199 			    CTX_RD(sc, GET_CID_ADDR(cid),
10200 			    BCE_L2CTX_TX_TYPE_XI));
10201 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10202 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10203 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10204 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10205 			    "h/w buffer descriptor address\n",
10206 			    CTX_RD(sc, GET_CID_ADDR(cid),
10207 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10208 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10209 			    "h/w buffer	descriptor address\n",
10210 			    CTX_RD(sc, GET_CID_ADDR(cid),
10211 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10212 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10213 			    "host producer index\n",
10214 			    CTX_RD(sc, GET_CID_ADDR(cid),
10215 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10216 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10217 			    "host byte sequence\n",
10218 			    CTX_RD(sc, GET_CID_ADDR(cid),
10219 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10220 		} else {
10221 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10222 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10223 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10224 			    CTX_RD(sc, GET_CID_ADDR(cid),
10225 			    BCE_L2CTX_TX_CMD_TYPE));
10226 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10227 			    "h/w buffer	descriptor address\n",
10228 			    CTX_RD(sc, GET_CID_ADDR(cid),
10229 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10230 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10231 			    "h/w buffer	descriptor address\n",
10232 			    CTX_RD(sc, GET_CID_ADDR(cid),
10233 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10234 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10235 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10236 			    BCE_L2CTX_TX_HOST_BIDX));
10237 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10238 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10239 			    BCE_L2CTX_TX_HOST_BSEQ));
10240 		}
10241 	}
10242 
10243 	BCE_PRINTF(
10244 	   "----------------------------"
10245 	   "    Raw CTX     "
10246 	   "----------------------------\n");
10247 
10248 	for (int i = 0x0; i < 0x300; i += 0x10) {
10249 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10250 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10251 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10252 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10253 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10254 	}
10255 
10256 
10257 	BCE_PRINTF(
10258 	   "----------------------------"
10259 	   "----------------"
10260 	   "----------------------------\n");
10261 }
10262 
10263 
10264 /****************************************************************************/
10265 /* Prints out the FTQ data.                                                 */
10266 /*                                                                          */
10267 /* Returns:                                                                */
10268 /*   Nothing.                                                               */
10269 /****************************************************************************/
10270 static __attribute__ ((noinline)) void
10271 bce_dump_ftqs(struct bce_softc *sc)
10272 {
10273 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10274 
10275 	BCE_PRINTF(
10276 	    "----------------------------"
10277 	    "    FTQ Data    "
10278 	    "----------------------------\n");
10279 
10280 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10281 	    "Max_Depth  Valid_Cnt \n");
10282 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10283 	    "---------- ----------\n");
10284 
10285 	/* Setup the generic statistic counters for the FTQ valid count. */
10286 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10287 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10288 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10289 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10290 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10291 
10292 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10293 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10294 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10295 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10296 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10297 
10298 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10299 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10300 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10301 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10302 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10303 
10304 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10305 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10306 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10307 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10308 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10309 
10310 	/* Input queue to the Receive Lookup state machine */
10311 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10312 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10313 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10314 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10315 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10316 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10317 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10318 
10319 	/* Input queue to the Receive Processor */
10320 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10321 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10322 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10323 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10324 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10325 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10326 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10327 
10328 	/* Input queue to the Recevie Processor */
10329 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10330 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10331 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10332 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10333 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10334 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10335 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10336 
10337 	/* Input queue to the Receive Virtual to Physical state machine */
10338 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10339 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10340 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10341 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10342 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10343 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10344 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10345 
10346 	/* Input queue to the Recevie Virtual to Physical state machine */
10347 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10348 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10349 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10350 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10351 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10352 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10353 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10354 
10355 	/* Input queue to the Receive Virtual to Physical state machine */
10356 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10357 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10358 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10359 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10360 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10361 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10362 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10363 
10364 	/* Input queue to the Receive DMA state machine */
10365 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10366 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10367 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10368 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10369 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10370 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10371 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10372 
10373 	/* Input queue to the Transmit Scheduler state machine */
10374 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10375 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10376 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10377 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10378 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10379 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10380 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10381 
10382 	/* Input queue to the Transmit Buffer Descriptor state machine */
10383 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10384 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10385 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10386 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10387 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10388 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10389 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10390 
10391 	/* Input queue to the Transmit Processor */
10392 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10393 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10394 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10395 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10396 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10397 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10398 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10399 
10400 	/* Input queue to the Transmit DMA state machine */
10401 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10402 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10403 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10404 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10405 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10406 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10407 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10408 
10409 	/* Input queue to the Transmit Patch-Up Processor */
10410 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10411 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10412 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10413 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10414 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10415 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10416 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10417 
10418 	/* Input queue to the Transmit Assembler state machine */
10419 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10420 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10421 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10422 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10423 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10424 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10425 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10426 
10427 	/* Input queue to the Completion Processor */
10428 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10429 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10430 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10431 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10432 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10433 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10434 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10435 
10436 	/* Input queue to the Completion Processor */
10437 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10438 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10439 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10440 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10441 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10442 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10443 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10444 
10445 	/* Input queue to the Completion Processor */
10446 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10447 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10448 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10449 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10450 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10451 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10452 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10453 
10454 	/* Setup the generic statistic counters for the FTQ valid count. */
10455 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10456 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10457 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10458 
10459 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10460 		val = val |
10461 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10462 		     24);
10463 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10464 
10465 	/* Input queue to the Management Control Processor */
10466 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10467 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10468 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10469 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10470 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10471 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10472 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10473 
10474 	/* Input queue to the Command Processor */
10475 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10476 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10477 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10478 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10479 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10480 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10481 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10482 
10483 	/* Input queue to the Completion Scheduler state machine */
10484 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10485 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10486 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10487 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10488 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10489 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10490 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10491 
10492 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10493 		/* Input queue to the RV2P Command Scheduler */
10494 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10495 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10496 		cur_depth = (ctl & 0xFFC00000) >> 22;
10497 		max_depth = (ctl & 0x003FF000) >> 12;
10498 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10499 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10500 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10501 	}
10502 
10503 	BCE_PRINTF(
10504 	    "----------------------------"
10505 	    "----------------"
10506 	    "----------------------------\n");
10507 }
10508 
10509 
10510 /****************************************************************************/
10511 /* Prints out the TX chain.                                                 */
10512 /*                                                                          */
10513 /* Returns:                                                                 */
10514 /*   Nothing.                                                               */
10515 /****************************************************************************/
10516 static __attribute__ ((noinline)) void
10517 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10518 {
10519 	struct tx_bd *txbd;
10520 
10521 	/* First some info about the tx_bd chain structure. */
10522 	BCE_PRINTF(
10523 	    "----------------------------"
10524 	    "  tx_bd  chain  "
10525 	    "----------------------------\n");
10526 
10527 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10528 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10529 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10530 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10531 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10532 
10533 	BCE_PRINTF(
10534 	    "----------------------------"
10535 	    "   tx_bd data   "
10536 	    "----------------------------\n");
10537 
10538 	/* Now print out a decoded list of TX buffer descriptors. */
10539 	for (int i = 0; i < count; i++) {
10540 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10541 		bce_dump_txbd(sc, tx_prod, txbd);
10542 		tx_prod++;
10543 	}
10544 
10545 	BCE_PRINTF(
10546 	    "----------------------------"
10547 	    "----------------"
10548 	    "----------------------------\n");
10549 }
10550 
10551 
10552 /****************************************************************************/
10553 /* Prints out the RX chain.                                                 */
10554 /*                                                                          */
10555 /* Returns:                                                                 */
10556 /*   Nothing.                                                               */
10557 /****************************************************************************/
10558 static __attribute__ ((noinline)) void
10559 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10560 {
10561 	struct rx_bd *rxbd;
10562 
10563 	/* First some info about the rx_bd chain structure. */
10564 	BCE_PRINTF(
10565 	    "----------------------------"
10566 	    "  rx_bd  chain  "
10567 	    "----------------------------\n");
10568 
10569 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10570 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10571 
10572 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10573 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10574 
10575 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10576 
10577 	BCE_PRINTF(
10578 	    "----------------------------"
10579 	    "   rx_bd data   "
10580 	    "----------------------------\n");
10581 
10582 	/* Now print out the rx_bd's themselves. */
10583 	for (int i = 0; i < count; i++) {
10584 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10585 		bce_dump_rxbd(sc, rx_prod, rxbd);
10586 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10587 	}
10588 
10589 	BCE_PRINTF(
10590 	    "----------------------------"
10591 	    "----------------"
10592 	    "----------------------------\n");
10593 }
10594 
10595 
10596 /****************************************************************************/
10597 /* Prints out the page chain.                                               */
10598 /*                                                                          */
10599 /* Returns:                                                                 */
10600 /*   Nothing.                                                               */
10601 /****************************************************************************/
10602 static __attribute__ ((noinline)) void
10603 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10604 {
10605 	struct rx_bd *pgbd;
10606 
10607 	/* First some info about the page chain structure. */
10608 	BCE_PRINTF(
10609 	    "----------------------------"
10610 	    "   page chain   "
10611 	    "----------------------------\n");
10612 
10613 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10614 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10615 
10616 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10617 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10618 
10619 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10620 
10621 	BCE_PRINTF(
10622 	    "----------------------------"
10623 	    "   page data    "
10624 	    "----------------------------\n");
10625 
10626 	/* Now print out the rx_bd's themselves. */
10627 	for (int i = 0; i < count; i++) {
10628 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10629 		bce_dump_pgbd(sc, pg_prod, pgbd);
10630 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10631 	}
10632 
10633 	BCE_PRINTF(
10634 	    "----------------------------"
10635 	    "----------------"
10636 	    "----------------------------\n");
10637 }
10638 
10639 
10640 #define BCE_PRINT_RX_CONS(arg)						\
10641 if (sblk->status_rx_quick_consumer_index##arg)				\
10642 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10643 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10644 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10645 	    arg);
10646 
10647 
10648 #define BCE_PRINT_TX_CONS(arg)						\
10649 if (sblk->status_tx_quick_consumer_index##arg)				\
10650 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10651 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10652 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10653 	    arg);
10654 
10655 /****************************************************************************/
10656 /* Prints out the status block from host memory.                            */
10657 /*                                                                          */
10658 /* Returns:                                                                 */
10659 /*   Nothing.                                                               */
10660 /****************************************************************************/
10661 static __attribute__ ((noinline)) void
10662 bce_dump_status_block(struct bce_softc *sc)
10663 {
10664 	struct status_block *sblk;
10665 
10666 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10667 
10668 	sblk = sc->status_block;
10669 
10670 	BCE_PRINTF(
10671 	    "----------------------------"
10672 	    "  Status Block  "
10673 	    "----------------------------\n");
10674 
10675 	/* Theses indices are used for normal L2 drivers. */
10676 	BCE_PRINTF("    0x%08X - attn_bits\n",
10677 	    sblk->status_attn_bits);
10678 
10679 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10680 	    sblk->status_attn_bits_ack);
10681 
10682 	BCE_PRINT_RX_CONS(0);
10683 	BCE_PRINT_TX_CONS(0)
10684 
10685 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10686 
10687 	/* Theses indices are not used for normal L2 drivers. */
10688 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10689 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10690 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10691 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10692 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10693 
10694 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10695 
10696 	if (sblk->status_completion_producer_index ||
10697 	    sblk->status_cmd_consumer_index)
10698 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10699 		    sblk->status_completion_producer_index,
10700 		    sblk->status_cmd_consumer_index);
10701 
10702 	BCE_PRINTF(
10703 	    "----------------------------"
10704 	    "----------------"
10705 	    "----------------------------\n");
10706 }
10707 
10708 
10709 #define BCE_PRINT_64BIT_STAT(arg) 				\
10710 if (sblk->arg##_lo || sblk->arg##_hi)				\
10711 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10712 	    sblk->arg##_lo, #arg);
10713 
10714 #define BCE_PRINT_32BIT_STAT(arg)				\
10715 if (sblk->arg)							\
10716 	BCE_PRINTF("         0x%08X : %s\n", 			\
10717 	    sblk->arg, #arg);
10718 
10719 /****************************************************************************/
10720 /* Prints out the statistics block from host memory.                        */
10721 /*                                                                          */
10722 /* Returns:                                                                 */
10723 /*   Nothing.                                                               */
10724 /****************************************************************************/
10725 static __attribute__ ((noinline)) void
10726 bce_dump_stats_block(struct bce_softc *sc)
10727 {
10728 	struct statistics_block *sblk;
10729 
10730 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10731 
10732 	sblk = sc->stats_block;
10733 
10734 	BCE_PRINTF(
10735 	    "---------------"
10736 	    " Stats Block  (All Stats Not Shown Are 0) "
10737 	    "---------------\n");
10738 
10739 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10740 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10741 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10742 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10743 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10744 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10745 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10746 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10747 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10748 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10749 	BCE_PRINT_32BIT_STAT(
10750 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10751 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10752 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10753 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10754 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10755 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10756 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10757 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10758 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10759 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10760 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10761 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10762 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10763 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10764 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10765 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10766 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10767 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10768 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10769 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10770 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10771 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10772 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10773 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10774 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10775 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10776 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10777 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10778 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10779 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10780 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10781 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10782 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10783 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10784 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10785 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10786 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10787 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10788 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10789 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10790 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10791 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10792 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10793 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10794 
10795 	BCE_PRINTF(
10796 	    "----------------------------"
10797 	    "----------------"
10798 	    "----------------------------\n");
10799 }
10800 
10801 
10802 /****************************************************************************/
10803 /* Prints out a summary of the driver state.                                */
10804 /*                                                                          */
10805 /* Returns:                                                                 */
10806 /*   Nothing.                                                               */
10807 /****************************************************************************/
10808 static __attribute__ ((noinline)) void
10809 bce_dump_driver_state(struct bce_softc *sc)
10810 {
10811 	u32 val_hi, val_lo;
10812 
10813 	BCE_PRINTF(
10814 	    "-----------------------------"
10815 	    " Driver State "
10816 	    "-----------------------------\n");
10817 
10818 	val_hi = BCE_ADDR_HI(sc);
10819 	val_lo = BCE_ADDR_LO(sc);
10820 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10821 	    "address\n", val_hi, val_lo);
10822 
10823 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10824 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10825 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10826 	    "address\n", val_hi, val_lo);
10827 
10828 	val_hi = BCE_ADDR_HI(sc->status_block);
10829 	val_lo = BCE_ADDR_LO(sc->status_block);
10830 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10831 	    "virtual address\n",	val_hi, val_lo);
10832 
10833 	val_hi = BCE_ADDR_HI(sc->stats_block);
10834 	val_lo = BCE_ADDR_LO(sc->stats_block);
10835 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10836 	    "virtual address\n", val_hi, val_lo);
10837 
10838 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10839 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10840 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10841 	    "virtual adddress\n", val_hi, val_lo);
10842 
10843 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10844 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10845 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10846 	    "virtual address\n", val_hi, val_lo);
10847 
10848 	if (bce_hdr_split == TRUE) {
10849 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10850 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10851 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10852 		    "virtual address\n", val_hi, val_lo);
10853 	}
10854 
10855 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10856 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10857 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10858 	    "virtual address\n",	val_hi, val_lo);
10859 
10860 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10861 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10862 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10863 	    "virtual address\n", val_hi, val_lo);
10864 
10865 	if (bce_hdr_split == TRUE) {
10866 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10867 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10868 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10869 		    "virtual address\n", val_hi, val_lo);
10870 	}
10871 
10872 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10873 	    "h/w intrs\n",
10874 	    (long long unsigned int) sc->interrupts_generated);
10875 
10876 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10877 	    "rx interrupts handled\n",
10878 	    (long long unsigned int) sc->interrupts_rx);
10879 
10880 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10881 	    "tx interrupts handled\n",
10882 	    (long long unsigned int) sc->interrupts_tx);
10883 
10884 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10885 	    "phy interrupts handled\n",
10886 	    (long long unsigned int) sc->phy_interrupts);
10887 
10888 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10889 	    "status block index\n", sc->last_status_idx);
10890 
10891 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10892 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10893 
10894 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10895 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10896 
10897 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10898 	    "byte seq index\n",	sc->tx_prod_bseq);
10899 
10900 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10901 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10902 
10903 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10904 	    "tx_bd's\n", sc->used_tx_bd);
10905 
10906 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10907 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10908 
10909 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10910 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10911 
10912 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10913 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10914 
10915 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10916 	    "byte seq index\n",	sc->rx_prod_bseq);
10917 
10918 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10919 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10920 
10921 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10922 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10923 
10924 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10925 	    "rx_bd's\n", sc->free_rx_bd);
10926 
10927 	if (bce_hdr_split == TRUE) {
10928 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10929 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10930 
10931 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10932 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10933 
10934 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10935 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10936 	}
10937 
10938 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10939 	    "rx_bd's\n", sc->free_pg_bd);
10940 
10941 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10942 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10943 
10944 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10945 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10946 
10947 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10948 	    "bce mac flags\n", sc->bce_flags);
10949 
10950 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10951 	    "bce phy flags\n", sc->bce_phy_flags);
10952 
10953 	BCE_PRINTF(
10954 	    "----------------------------"
10955 	    "----------------"
10956 	    "----------------------------\n");
10957 }
10958 
10959 
10960 /****************************************************************************/
10961 /* Prints out the hardware state through a summary of important register,   */
10962 /* followed by a complete register dump.                                    */
10963 /*                                                                          */
10964 /* Returns:                                                                 */
10965 /*   Nothing.                                                               */
10966 /****************************************************************************/
10967 static __attribute__ ((noinline)) void
10968 bce_dump_hw_state(struct bce_softc *sc)
10969 {
10970 	u32 val;
10971 
10972 	BCE_PRINTF(
10973 	    "----------------------------"
10974 	    " Hardware State "
10975 	    "----------------------------\n");
10976 
10977 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10978 
10979 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10980 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10981 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10982 
10983 	val = REG_RD(sc, BCE_DMA_STATUS);
10984 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10985 	    val, BCE_DMA_STATUS);
10986 
10987 	val = REG_RD(sc, BCE_CTX_STATUS);
10988 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10989 	    val, BCE_CTX_STATUS);
10990 
10991 	val = REG_RD(sc, BCE_EMAC_STATUS);
10992 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10993 	    val, BCE_EMAC_STATUS);
10994 
10995 	val = REG_RD(sc, BCE_RPM_STATUS);
10996 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10997 	    val, BCE_RPM_STATUS);
10998 
10999 	/* ToDo: Create a #define for this constant. */
11000 	val = REG_RD(sc, 0x2004);
11001 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11002 	    val, 0x2004);
11003 
11004 	val = REG_RD(sc, BCE_RV2P_STATUS);
11005 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11006 	    val, BCE_RV2P_STATUS);
11007 
11008 	/* ToDo: Create a #define for this constant. */
11009 	val = REG_RD(sc, 0x2c04);
11010 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11011 	    val, 0x2c04);
11012 
11013 	val = REG_RD(sc, BCE_TBDR_STATUS);
11014 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11015 	    val, BCE_TBDR_STATUS);
11016 
11017 	val = REG_RD(sc, BCE_TDMA_STATUS);
11018 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11019 	    val, BCE_TDMA_STATUS);
11020 
11021 	val = REG_RD(sc, BCE_HC_STATUS);
11022 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11023 	    val, BCE_HC_STATUS);
11024 
11025 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11026 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11027 	    val, BCE_TXP_CPU_STATE);
11028 
11029 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11030 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11031 	    val, BCE_TPAT_CPU_STATE);
11032 
11033 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11034 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11035 	    val, BCE_RXP_CPU_STATE);
11036 
11037 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11038 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11039 	    val, BCE_COM_CPU_STATE);
11040 
11041 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11042 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11043 	    val, BCE_MCP_CPU_STATE);
11044 
11045 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11046 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11047 	    val, BCE_CP_CPU_STATE);
11048 
11049 	BCE_PRINTF(
11050 	    "----------------------------"
11051 	    "----------------"
11052 	    "----------------------------\n");
11053 
11054 	BCE_PRINTF(
11055 	    "----------------------------"
11056 	    " Register  Dump "
11057 	    "----------------------------\n");
11058 
11059 	for (int i = 0x400; i < 0x8000; i += 0x10) {
11060 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11061 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11062 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11063 	}
11064 
11065 	BCE_PRINTF(
11066 	    "----------------------------"
11067 	    "----------------"
11068 	    "----------------------------\n");
11069 }
11070 
11071 
11072 /****************************************************************************/
11073 /* Prints out the contentst of shared memory which is used for host driver  */
11074 /* to bootcode firmware communication.                                      */
11075 /*                                                                          */
11076 /* Returns:                                                                 */
11077 /*   Nothing.                                                               */
11078 /****************************************************************************/
11079 static __attribute__ ((noinline)) void
11080 bce_dump_shmem_state(struct bce_softc *sc)
11081 {
11082 	BCE_PRINTF(
11083 	    "----------------------------"
11084 	    " Hardware State "
11085 	    "----------------------------\n");
11086 
11087 	BCE_PRINTF("0x%08X - Shared memory base address\n",
11088 	    sc->bce_shmem_base);
11089 	BCE_PRINTF("%s - bootcode version\n",
11090 	    sc->bce_bc_ver);
11091 
11092 	BCE_PRINTF(
11093 	    "----------------------------"
11094 	    "   Shared Mem   "
11095 	    "----------------------------\n");
11096 
11097 	for (int i = 0x0; i < 0x200; i += 0x10) {
11098 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11099 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11100 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11101 	}
11102 
11103 	BCE_PRINTF(
11104 	    "----------------------------"
11105 	    "----------------"
11106 	    "----------------------------\n");
11107 }
11108 
11109 
11110 /****************************************************************************/
11111 /* Prints out the mailbox queue registers.                                  */
11112 /*                                                                          */
11113 /* Returns:                                                                 */
11114 /*   Nothing.                                                               */
11115 /****************************************************************************/
11116 static __attribute__ ((noinline)) void
11117 bce_dump_mq_regs(struct bce_softc *sc)
11118 {
11119 	BCE_PRINTF(
11120 	    "----------------------------"
11121 	    "    MQ Regs     "
11122 	    "----------------------------\n");
11123 
11124 	BCE_PRINTF(
11125 	    "----------------------------"
11126 	    "----------------"
11127 	    "----------------------------\n");
11128 
11129 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11130 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11131 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11132 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11133 	}
11134 
11135 	BCE_PRINTF(
11136 	    "----------------------------"
11137 	    "----------------"
11138 	    "----------------------------\n");
11139 }
11140 
11141 
11142 /****************************************************************************/
11143 /* Prints out the bootcode state.                                           */
11144 /*                                                                          */
11145 /* Returns:                                                                 */
11146 /*   Nothing.                                                               */
11147 /****************************************************************************/
11148 static __attribute__ ((noinline)) void
11149 bce_dump_bc_state(struct bce_softc *sc)
11150 {
11151 	u32 val;
11152 
11153 	BCE_PRINTF(
11154 	    "----------------------------"
11155 	    " Bootcode State "
11156 	    "----------------------------\n");
11157 
11158 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11159 
11160 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11161 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11162 	    val, BCE_BC_RESET_TYPE);
11163 
11164 	val = bce_shmem_rd(sc, BCE_BC_STATE);
11165 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
11166 	    val, BCE_BC_STATE);
11167 
11168 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11169 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11170 	    val, BCE_BC_STATE_CONDITION);
11171 
11172 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11173 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11174 	    val, BCE_BC_STATE_DEBUG_CMD);
11175 
11176 	BCE_PRINTF(
11177 	    "----------------------------"
11178 	    "----------------"
11179 	    "----------------------------\n");
11180 }
11181 
11182 
11183 /****************************************************************************/
11184 /* Prints out the TXP processor state.                                      */
11185 /*                                                                          */
11186 /* Returns:                                                                 */
11187 /*   Nothing.                                                               */
11188 /****************************************************************************/
11189 static __attribute__ ((noinline)) void
11190 bce_dump_txp_state(struct bce_softc *sc, int regs)
11191 {
11192 	u32 val;
11193 	u32 fw_version[3];
11194 
11195 	BCE_PRINTF(
11196 	    "----------------------------"
11197 	    "   TXP  State   "
11198 	    "----------------------------\n");
11199 
11200 	for (int i = 0; i < 3; i++)
11201 		fw_version[i] = htonl(REG_RD_IND(sc,
11202 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11203 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11204 
11205 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11206 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11207 	    val, BCE_TXP_CPU_MODE);
11208 
11209 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11210 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11211 	    val, BCE_TXP_CPU_STATE);
11212 
11213 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11214 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11215 	    val, BCE_TXP_CPU_EVENT_MASK);
11216 
11217 	if (regs) {
11218 		BCE_PRINTF(
11219 		    "----------------------------"
11220 		    " Register  Dump "
11221 		    "----------------------------\n");
11222 
11223 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11224 			/* Skip the big blank spaces */
11225 			if (i < 0x454000 && i > 0x5ffff)
11226 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11227 				    "0x%08X 0x%08X\n", i,
11228 				    REG_RD_IND(sc, i),
11229 				    REG_RD_IND(sc, i + 0x4),
11230 				    REG_RD_IND(sc, i + 0x8),
11231 				    REG_RD_IND(sc, i + 0xC));
11232 		}
11233 	}
11234 
11235 	BCE_PRINTF(
11236 	    "----------------------------"
11237 	    "----------------"
11238 	    "----------------------------\n");
11239 }
11240 
11241 
11242 /****************************************************************************/
11243 /* Prints out the RXP processor state.                                      */
11244 /*                                                                          */
11245 /* Returns:                                                                 */
11246 /*   Nothing.                                                               */
11247 /****************************************************************************/
11248 static __attribute__ ((noinline)) void
11249 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11250 {
11251 	u32 val;
11252 	u32 fw_version[3];
11253 
11254 	BCE_PRINTF(
11255 	    "----------------------------"
11256 	    "   RXP  State   "
11257 	    "----------------------------\n");
11258 
11259 	for (int i = 0; i < 3; i++)
11260 		fw_version[i] = htonl(REG_RD_IND(sc,
11261 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11262 
11263 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11264 
11265 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11266 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11267 	    val, BCE_RXP_CPU_MODE);
11268 
11269 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11270 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11271 	    val, BCE_RXP_CPU_STATE);
11272 
11273 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11274 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11275 	    val, BCE_RXP_CPU_EVENT_MASK);
11276 
11277 	if (regs) {
11278 		BCE_PRINTF(
11279 		    "----------------------------"
11280 		    " Register  Dump "
11281 		    "----------------------------\n");
11282 
11283 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11284 			/* Skip the big blank sapces */
11285 			if (i < 0xc5400 && i > 0xdffff)
11286 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11287 				    "0x%08X 0x%08X\n", i,
11288 				    REG_RD_IND(sc, i),
11289 				    REG_RD_IND(sc, i + 0x4),
11290 				    REG_RD_IND(sc, i + 0x8),
11291 				    REG_RD_IND(sc, i + 0xC));
11292 		}
11293 	}
11294 
11295 	BCE_PRINTF(
11296 	    "----------------------------"
11297 	    "----------------"
11298 	    "----------------------------\n");
11299 }
11300 
11301 
11302 /****************************************************************************/
11303 /* Prints out the TPAT processor state.                                     */
11304 /*                                                                          */
11305 /* Returns:                                                                 */
11306 /*   Nothing.                                                               */
11307 /****************************************************************************/
11308 static __attribute__ ((noinline)) void
11309 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11310 {
11311 	u32 val;
11312 	u32 fw_version[3];
11313 
11314 	BCE_PRINTF(
11315 	    "----------------------------"
11316 	    "   TPAT State   "
11317 	    "----------------------------\n");
11318 
11319 	for (int i = 0; i < 3; i++)
11320 		fw_version[i] = htonl(REG_RD_IND(sc,
11321 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11322 
11323 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11324 
11325 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11326 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11327 	    val, BCE_TPAT_CPU_MODE);
11328 
11329 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11330 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11331 	    val, BCE_TPAT_CPU_STATE);
11332 
11333 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11334 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11335 	    val, BCE_TPAT_CPU_EVENT_MASK);
11336 
11337 	if (regs) {
11338 		BCE_PRINTF(
11339 		    "----------------------------"
11340 		    " Register  Dump "
11341 		    "----------------------------\n");
11342 
11343 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11344 			/* Skip the big blank spaces */
11345 			if (i < 0x854000 && i > 0x9ffff)
11346 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11347 				    "0x%08X 0x%08X\n", i,
11348 				    REG_RD_IND(sc, i),
11349 				    REG_RD_IND(sc, i + 0x4),
11350 				    REG_RD_IND(sc, i + 0x8),
11351 				    REG_RD_IND(sc, i + 0xC));
11352 		}
11353 	}
11354 
11355 	BCE_PRINTF(
11356 		"----------------------------"
11357 		"----------------"
11358 		"----------------------------\n");
11359 }
11360 
11361 
11362 /****************************************************************************/
11363 /* Prints out the Command Procesor (CP) state.                              */
11364 /*                                                                          */
11365 /* Returns:                                                                 */
11366 /*   Nothing.                                                               */
11367 /****************************************************************************/
11368 static __attribute__ ((noinline)) void
11369 bce_dump_cp_state(struct bce_softc *sc, int regs)
11370 {
11371 	u32 val;
11372 	u32 fw_version[3];
11373 
11374 	BCE_PRINTF(
11375 	    "----------------------------"
11376 	    "    CP State    "
11377 	    "----------------------------\n");
11378 
11379 	for (int i = 0; i < 3; i++)
11380 		fw_version[i] = htonl(REG_RD_IND(sc,
11381 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11382 
11383 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11384 
11385 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11386 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11387 	    val, BCE_CP_CPU_MODE);
11388 
11389 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11390 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11391 	    val, BCE_CP_CPU_STATE);
11392 
11393 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11394 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11395 	    BCE_CP_CPU_EVENT_MASK);
11396 
11397 	if (regs) {
11398 		BCE_PRINTF(
11399 		    "----------------------------"
11400 		    " Register  Dump "
11401 		    "----------------------------\n");
11402 
11403 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11404 			/* Skip the big blank spaces */
11405 			if (i < 0x185400 && i > 0x19ffff)
11406 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11407 				    "0x%08X 0x%08X\n", i,
11408 				    REG_RD_IND(sc, i),
11409 				    REG_RD_IND(sc, i + 0x4),
11410 				    REG_RD_IND(sc, i + 0x8),
11411 				    REG_RD_IND(sc, i + 0xC));
11412 		}
11413 	}
11414 
11415 	BCE_PRINTF(
11416 	    "----------------------------"
11417 	    "----------------"
11418 	    "----------------------------\n");
11419 }
11420 
11421 
11422 /****************************************************************************/
11423 /* Prints out the Completion Procesor (COM) state.                          */
11424 /*                                                                          */
11425 /* Returns:                                                                 */
11426 /*   Nothing.                                                               */
11427 /****************************************************************************/
11428 static __attribute__ ((noinline)) void
11429 bce_dump_com_state(struct bce_softc *sc, int regs)
11430 {
11431 	u32 val;
11432 	u32 fw_version[4];
11433 
11434 	BCE_PRINTF(
11435 	    "----------------------------"
11436 	    "   COM State    "
11437 	    "----------------------------\n");
11438 
11439 	for (int i = 0; i < 3; i++)
11440 		fw_version[i] = htonl(REG_RD_IND(sc,
11441 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11442 
11443 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11444 
11445 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11446 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11447 	    val, BCE_COM_CPU_MODE);
11448 
11449 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11450 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11451 	    val, BCE_COM_CPU_STATE);
11452 
11453 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11454 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11455 	    BCE_COM_CPU_EVENT_MASK);
11456 
11457 	if (regs) {
11458 		BCE_PRINTF(
11459 		    "----------------------------"
11460 		    " Register  Dump "
11461 		    "----------------------------\n");
11462 
11463 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11464 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11465 			    "0x%08X 0x%08X\n", i,
11466 			    REG_RD_IND(sc, i),
11467 			    REG_RD_IND(sc, i + 0x4),
11468 			    REG_RD_IND(sc, i + 0x8),
11469 			    REG_RD_IND(sc, i + 0xC));
11470 		}
11471 	}
11472 
11473 	BCE_PRINTF(
11474 		"----------------------------"
11475 		"----------------"
11476 		"----------------------------\n");
11477 }
11478 
11479 
11480 /****************************************************************************/
11481 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11482 /*                                                                          */
11483 /* Returns:                                                                 */
11484 /*   Nothing.                                                               */
11485 /****************************************************************************/
11486 static __attribute__ ((noinline)) void
11487 bce_dump_rv2p_state(struct bce_softc *sc)
11488 {
11489 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11490 
11491 	BCE_PRINTF(
11492 	    "----------------------------"
11493 	    "   RV2P State   "
11494 	    "----------------------------\n");
11495 
11496 	/* Stall the RV2P processors. */
11497 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11498 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11499 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11500 
11501 	/* Read the firmware version. */
11502 	val = 0x00000001;
11503 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11504 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11505 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11506 	    BCE_RV2P_INSTR_HIGH_HIGH;
11507 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11508 	    fw_ver_high, fw_ver_low);
11509 
11510 	val = 0x00000001;
11511 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11512 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11513 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11514 	    BCE_RV2P_INSTR_HIGH_HIGH;
11515 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11516 	    fw_ver_high, fw_ver_low);
11517 
11518 	/* Resume the RV2P processors. */
11519 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11520 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11521 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11522 
11523 	/* Fetch the program counter value. */
11524 	val = 0x68007800;
11525 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11526 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11527 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11528 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11529 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11530 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11531 
11532 	/* Fetch the program counter value again to see if it is advancing. */
11533 	val = 0x68007800;
11534 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11535 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11536 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11537 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11538 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11539 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11540 
11541 	BCE_PRINTF(
11542 	    "----------------------------"
11543 	    "----------------"
11544 	    "----------------------------\n");
11545 }
11546 
11547 
11548 /****************************************************************************/
11549 /* Prints out the driver state and then enters the debugger.                */
11550 /*                                                                          */
11551 /* Returns:                                                                 */
11552 /*   Nothing.                                                               */
11553 /****************************************************************************/
11554 static __attribute__ ((noinline)) void
11555 bce_breakpoint(struct bce_softc *sc)
11556 {
11557 
11558 	/*
11559 	 * Unreachable code to silence compiler warnings
11560 	 * about unused functions.
11561 	 */
11562 	if (0) {
11563 		bce_freeze_controller(sc);
11564 		bce_unfreeze_controller(sc);
11565 		bce_dump_enet(sc, NULL);
11566 		bce_dump_txbd(sc, 0, NULL);
11567 		bce_dump_rxbd(sc, 0, NULL);
11568 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11569 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11570 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11571 		bce_dump_l2fhdr(sc, 0, NULL);
11572 		bce_dump_ctx(sc, RX_CID);
11573 		bce_dump_ftqs(sc);
11574 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11575 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11576 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11577 		bce_dump_status_block(sc);
11578 		bce_dump_stats_block(sc);
11579 		bce_dump_driver_state(sc);
11580 		bce_dump_hw_state(sc);
11581 		bce_dump_bc_state(sc);
11582 		bce_dump_txp_state(sc, 0);
11583 		bce_dump_rxp_state(sc, 0);
11584 		bce_dump_tpat_state(sc, 0);
11585 		bce_dump_cp_state(sc, 0);
11586 		bce_dump_com_state(sc, 0);
11587 		bce_dump_rv2p_state(sc);
11588 		bce_dump_pgbd(sc, 0, NULL);
11589 	}
11590 
11591 	bce_dump_status_block(sc);
11592 	bce_dump_driver_state(sc);
11593 
11594 	/* Call the debugger. */
11595 	breakpoint();
11596 }
11597 #endif
11598