1 /*- 2 * Copyright (c) 2006-2007 Broadcom Corporation 3 * David Christensen <davidch@broadcom.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written consent. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * The following controllers are supported by this driver: 36 * BCM5706C A2, A3 37 * BCM5708C B1, B2 38 * 39 * The following controllers are not supported by this driver: 40 * BCM5706C A0, A1 41 * BCM5706S A0, A1, A2, A3 42 * BCM5708C A0, B0 43 * BCM5708S A0, B0, B1, B2 44 */ 45 46 #include "opt_bce.h" 47 48 #include <dev/bce/if_bcereg.h> 49 #include <dev/bce/if_bcefw.h> 50 51 /****************************************************************************/ 52 /* BCE Debug Options */ 53 /****************************************************************************/ 54 #ifdef BCE_DEBUG 55 u32 bce_debug = BCE_WARN; 56 57 /* 0 = Never */ 58 /* 1 = 1 in 2,147,483,648 */ 59 /* 256 = 1 in 8,388,608 */ 60 /* 2048 = 1 in 1,048,576 */ 61 /* 65536 = 1 in 32,768 */ 62 /* 1048576 = 1 in 2,048 */ 63 /* 268435456 = 1 in 8 */ 64 /* 536870912 = 1 in 4 */ 65 /* 1073741824 = 1 in 2 */ 66 67 /* Controls how often the l2_fhdr frame error check will fail. */ 68 int bce_debug_l2fhdr_status_check = 0; 69 70 /* Controls how often the unexpected attention check will fail. */ 71 int bce_debug_unexpected_attention = 0; 72 73 /* Controls how often to simulate an mbuf allocation failure. */ 74 int bce_debug_mbuf_allocation_failure = 0; 75 76 /* Controls how often to simulate a DMA mapping failure. */ 77 int bce_debug_dma_map_addr_failure = 0; 78 79 /* Controls how often to simulate a bootcode failure. */ 80 int bce_debug_bootcode_running_failure = 0; 81 #endif 82 83 84 /****************************************************************************/ 85 /* PCI Device ID Table */ 86 /* */ 87 /* Used by bce_probe() to identify the devices supported by this driver. */ 88 /****************************************************************************/ 89 #define BCE_DEVDESC_MAX 64 90 91 static struct bce_type bce_devs[] = { 92 /* BCM5706C Controllers and OEM boards. */ 93 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 94 "HP NC370T Multifunction Gigabit Server Adapter" }, 95 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 96 "HP NC370i Multifunction Gigabit Server Adapter" }, 97 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 98 "Broadcom NetXtreme II BCM5706 1000Base-T" }, 99 100 /* BCM5706S controllers and OEM boards. */ 101 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 102 "HP NC370F Multifunction Gigabit Server Adapter" }, 103 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 104 "Broadcom NetXtreme II BCM5706 1000Base-SX" }, 105 106 /* BCM5708C controllers and OEM boards. */ 107 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 108 "Broadcom NetXtreme II BCM5708 1000Base-T" }, 109 110 /* BCM5708S controllers and OEM boards. */ 111 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 112 "Broadcom NetXtreme II BCM5708 1000Base-SX" }, 113 { 0, 0, 0, 0, NULL } 114 }; 115 116 117 /****************************************************************************/ 118 /* Supported Flash NVRAM device data. */ 119 /****************************************************************************/ 120 static struct flash_spec flash_table[] = 121 { 122 /* Slow EEPROM */ 123 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 124 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 125 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 126 "EEPROM - slow"}, 127 /* Expansion entry 0001 */ 128 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 129 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 130 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 131 "Entry 0001"}, 132 /* Saifun SA25F010 (non-buffered flash) */ 133 /* strap, cfg1, & write1 need updates */ 134 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 135 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 136 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 137 "Non-buffered flash (128kB)"}, 138 /* Saifun SA25F020 (non-buffered flash) */ 139 /* strap, cfg1, & write1 need updates */ 140 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 141 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 142 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 143 "Non-buffered flash (256kB)"}, 144 /* Expansion entry 0100 */ 145 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 146 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 147 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 148 "Entry 0100"}, 149 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 150 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 151 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 152 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 153 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 154 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 155 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 156 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 157 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 158 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 159 /* Saifun SA25F005 (non-buffered flash) */ 160 /* strap, cfg1, & write1 need updates */ 161 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 162 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 163 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 164 "Non-buffered flash (64kB)"}, 165 /* Fast EEPROM */ 166 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 167 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 168 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 169 "EEPROM - fast"}, 170 /* Expansion entry 1001 */ 171 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 172 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 173 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 174 "Entry 1001"}, 175 /* Expansion entry 1010 */ 176 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 177 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 178 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 179 "Entry 1010"}, 180 /* ATMEL AT45DB011B (buffered flash) */ 181 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 182 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 183 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 184 "Buffered flash (128kB)"}, 185 /* Expansion entry 1100 */ 186 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 187 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 188 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 189 "Entry 1100"}, 190 /* Expansion entry 1101 */ 191 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 192 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 193 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 194 "Entry 1101"}, 195 /* Ateml Expansion entry 1110 */ 196 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 197 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 198 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 199 "Entry 1110 (Atmel)"}, 200 /* ATMEL AT45DB021B (buffered flash) */ 201 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 202 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 203 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 204 "Buffered flash (256kB)"}, 205 }; 206 207 208 /****************************************************************************/ 209 /* FreeBSD device entry points. */ 210 /****************************************************************************/ 211 static int bce_probe (device_t); 212 static int bce_attach (device_t); 213 static int bce_detach (device_t); 214 static int bce_shutdown (device_t); 215 216 217 /****************************************************************************/ 218 /* BCE Debug Data Structure Dump Routines */ 219 /****************************************************************************/ 220 #ifdef BCE_DEBUG 221 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 222 static void bce_dump_tx_mbuf_chain (struct bce_softc *, int, int); 223 static void bce_dump_rx_mbuf_chain (struct bce_softc *, int, int); 224 static void bce_dump_txbd (struct bce_softc *, int, struct tx_bd *); 225 static void bce_dump_rxbd (struct bce_softc *, int, struct rx_bd *); 226 static void bce_dump_l2fhdr (struct bce_softc *, int, struct l2_fhdr *); 227 static void bce_dump_tx_chain (struct bce_softc *, int, int); 228 static void bce_dump_rx_chain (struct bce_softc *, int, int); 229 static void bce_dump_status_block (struct bce_softc *); 230 static void bce_dump_stats_block (struct bce_softc *); 231 static void bce_dump_driver_state (struct bce_softc *); 232 static void bce_dump_hw_state (struct bce_softc *); 233 static void bce_dump_bc_state (struct bce_softc *); 234 static void bce_breakpoint (struct bce_softc *); 235 #endif 236 237 238 /****************************************************************************/ 239 /* BCE Register/Memory Access Routines */ 240 /****************************************************************************/ 241 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 242 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 243 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 244 static int bce_miibus_read_reg (device_t, int, int); 245 static int bce_miibus_write_reg (device_t, int, int, int); 246 static void bce_miibus_statchg (device_t); 247 248 249 /****************************************************************************/ 250 /* BCE NVRAM Access Routines */ 251 /****************************************************************************/ 252 static int bce_acquire_nvram_lock (struct bce_softc *); 253 static int bce_release_nvram_lock (struct bce_softc *); 254 static void bce_enable_nvram_access (struct bce_softc *); 255 static void bce_disable_nvram_access(struct bce_softc *); 256 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 257 static int bce_init_nvram (struct bce_softc *); 258 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 259 static int bce_nvram_test (struct bce_softc *); 260 #ifdef BCE_NVRAM_WRITE_SUPPORT 261 static int bce_enable_nvram_write (struct bce_softc *); 262 static void bce_disable_nvram_write (struct bce_softc *); 263 static int bce_nvram_erase_page (struct bce_softc *, u32); 264 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 265 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 266 #endif 267 268 /****************************************************************************/ 269 /* */ 270 /****************************************************************************/ 271 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); 272 static int bce_dma_alloc (device_t); 273 static void bce_dma_free (struct bce_softc *); 274 static void bce_release_resources (struct bce_softc *); 275 276 /****************************************************************************/ 277 /* BCE Firmware Synchronization and Load */ 278 /****************************************************************************/ 279 static int bce_fw_sync (struct bce_softc *, u32); 280 static void bce_load_rv2p_fw (struct bce_softc *, u32 *, u32, u32); 281 static void bce_load_cpu_fw (struct bce_softc *, struct cpu_reg *, struct fw_info *); 282 static void bce_init_cpus (struct bce_softc *); 283 284 static void bce_stop (struct bce_softc *); 285 static int bce_reset (struct bce_softc *, u32); 286 static int bce_chipinit (struct bce_softc *); 287 static int bce_blockinit (struct bce_softc *); 288 static int bce_get_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *); 289 290 static int bce_init_tx_chain (struct bce_softc *); 291 static void bce_fill_rx_chain (struct bce_softc *); 292 static int bce_init_rx_chain (struct bce_softc *); 293 static void bce_free_rx_chain (struct bce_softc *); 294 static void bce_free_tx_chain (struct bce_softc *); 295 296 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 297 static void bce_start_locked (struct ifnet *); 298 static void bce_start (struct ifnet *); 299 static int bce_ioctl (struct ifnet *, u_long, caddr_t); 300 static void bce_watchdog (struct bce_softc *); 301 static int bce_ifmedia_upd (struct ifnet *); 302 static void bce_ifmedia_upd_locked (struct ifnet *); 303 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); 304 static void bce_init_locked (struct bce_softc *); 305 static void bce_init (void *); 306 static void bce_mgmt_init_locked (struct bce_softc *sc); 307 308 static void bce_init_context (struct bce_softc *); 309 static void bce_get_mac_addr (struct bce_softc *); 310 static void bce_set_mac_addr (struct bce_softc *); 311 static void bce_phy_intr (struct bce_softc *); 312 static void bce_rx_intr (struct bce_softc *); 313 static void bce_tx_intr (struct bce_softc *); 314 static void bce_disable_intr (struct bce_softc *); 315 static void bce_enable_intr (struct bce_softc *); 316 317 #ifdef DEVICE_POLLING 318 static void bce_poll_locked (struct ifnet *, enum poll_cmd, int); 319 static void bce_poll (struct ifnet *, enum poll_cmd, int); 320 #endif 321 static void bce_intr (void *); 322 static void bce_set_rx_mode (struct bce_softc *); 323 static void bce_stats_update (struct bce_softc *); 324 static void bce_tick (void *); 325 static void bce_pulse (void *); 326 static void bce_add_sysctls (struct bce_softc *); 327 328 329 /****************************************************************************/ 330 /* FreeBSD device dispatch table. */ 331 /****************************************************************************/ 332 static device_method_t bce_methods[] = { 333 /* Device interface */ 334 DEVMETHOD(device_probe, bce_probe), 335 DEVMETHOD(device_attach, bce_attach), 336 DEVMETHOD(device_detach, bce_detach), 337 DEVMETHOD(device_shutdown, bce_shutdown), 338 339 /* bus interface */ 340 DEVMETHOD(bus_print_child, bus_generic_print_child), 341 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 342 343 /* MII interface */ 344 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 345 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 346 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 347 348 { 0, 0 } 349 }; 350 351 static driver_t bce_driver = { 352 "bce", 353 bce_methods, 354 sizeof(struct bce_softc) 355 }; 356 357 static devclass_t bce_devclass; 358 359 MODULE_DEPEND(bce, pci, 1, 1, 1); 360 MODULE_DEPEND(bce, ether, 1, 1, 1); 361 MODULE_DEPEND(bce, miibus, 1, 1, 1); 362 363 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0); 364 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0); 365 366 367 /****************************************************************************/ 368 /* Tunable device values */ 369 /****************************************************************************/ 370 static int bce_tso_enable = TRUE; 371 static int bce_msi_enable = 1; 372 373 /* Allowable values are TRUE or FALSE */ 374 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable); 375 /* Allowable values are 0 (IRQ only) and 1 (IRQ or MSI) */ 376 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable); 377 378 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters"); 379 SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 380 "TSO Enable/Disable"); 381 SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 382 "MSI | INTx selector"); 383 384 /****************************************************************************/ 385 /* Device probe function. */ 386 /* */ 387 /* Compares the device to the driver's list of supported devices and */ 388 /* reports back to the OS whether this is the right driver for the device. */ 389 /* */ 390 /* Returns: */ 391 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 392 /****************************************************************************/ 393 static int 394 bce_probe(device_t dev) 395 { 396 struct bce_type *t; 397 struct bce_softc *sc; 398 char *descbuf; 399 u16 vid = 0, did = 0, svid = 0, sdid = 0; 400 401 t = bce_devs; 402 403 sc = device_get_softc(dev); 404 bzero(sc, sizeof(struct bce_softc)); 405 sc->bce_unit = device_get_unit(dev); 406 sc->bce_dev = dev; 407 408 /* Get the data for the device to be probed. */ 409 vid = pci_get_vendor(dev); 410 did = pci_get_device(dev); 411 svid = pci_get_subvendor(dev); 412 sdid = pci_get_subdevice(dev); 413 414 DBPRINT(sc, BCE_VERBOSE_LOAD, 415 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 416 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 417 418 /* Look through the list of known devices for a match. */ 419 while(t->bce_name != NULL) { 420 421 if ((vid == t->bce_vid) && (did == t->bce_did) && 422 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 423 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 424 425 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 426 427 if (descbuf == NULL) 428 return(ENOMEM); 429 430 /* Print out the device identity. */ 431 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", 432 t->bce_name, 433 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 434 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 435 436 device_set_desc_copy(dev, descbuf); 437 free(descbuf, M_TEMP); 438 return(BUS_PROBE_DEFAULT); 439 } 440 t++; 441 } 442 443 return(ENXIO); 444 } 445 446 447 /****************************************************************************/ 448 /* Device attach function. */ 449 /* */ 450 /* Allocates device resources, performs secondary chip identification, */ 451 /* resets and initializes the hardware, and initializes driver instance */ 452 /* variables. */ 453 /* */ 454 /* Returns: */ 455 /* 0 on success, positive value on failure. */ 456 /****************************************************************************/ 457 static int 458 bce_attach(device_t dev) 459 { 460 struct bce_softc *sc; 461 struct ifnet *ifp; 462 u32 val; 463 int count, mbuf, rid, rc = 0; 464 465 sc = device_get_softc(dev); 466 sc->bce_dev = dev; 467 468 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 469 470 mbuf = device_get_unit(dev); 471 472 /* Set initial device and PHY flags */ 473 sc->bce_flags = 0; 474 sc->bce_phy_flags = 0; 475 476 sc->bce_unit = mbuf; 477 478 pci_enable_busmaster(dev); 479 480 /* Allocate PCI memory resources. */ 481 rid = PCIR_BAR(0); 482 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 483 &rid, RF_ACTIVE | PCI_RF_DENSE); 484 485 if (sc->bce_res_mem == NULL) { 486 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 487 __FILE__, __LINE__); 488 rc = ENXIO; 489 goto bce_attach_fail; 490 } 491 492 /* Get various resource handles. */ 493 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 494 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 495 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 496 497 /* If MSI is enabled in the driver, get the vector count. */ 498 count = bce_msi_enable ? pci_msi_count(dev) : 0; 499 500 /* Allocate PCI IRQ resources. */ 501 if (count == 1 && pci_alloc_msi(dev, &count) == 0 && count == 1) { 502 rid = 1; 503 sc->bce_flags |= BCE_USING_MSI_FLAG; 504 DBPRINT(sc, BCE_VERBOSE_LOAD, 505 "Allocating %d MSI interrupt(s)\n", count); 506 } else { 507 rid = 0; 508 DBPRINT(sc, BCE_VERBOSE_LOAD, "Allocating IRQ interrupt\n"); 509 } 510 511 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 512 RF_SHAREABLE | RF_ACTIVE); 513 514 if (sc->bce_res_irq == NULL) { 515 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 516 __FILE__, __LINE__); 517 rc = ENXIO; 518 goto bce_attach_fail; 519 } 520 521 /* Initialize mutex for the current device instance. */ 522 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 523 524 /* 525 * Configure byte swap and enable indirect register access. 526 * Rely on CPU to do target byte swapping on big endian systems. 527 * Access to registers outside of PCI configurtion space are not 528 * valid until this is done. 529 */ 530 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 531 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 532 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 533 534 /* Save ASIC revsion info. */ 535 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 536 537 /* Weed out any non-production controller revisions. */ 538 switch(BCE_CHIP_ID(sc)) { 539 case BCE_CHIP_ID_5706_A0: 540 case BCE_CHIP_ID_5706_A1: 541 case BCE_CHIP_ID_5708_A0: 542 case BCE_CHIP_ID_5708_B0: 543 BCE_PRINTF("%s(%d): Unsupported controller revision (%c%d)!\n", 544 __FILE__, __LINE__, 545 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 546 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 547 rc = ENODEV; 548 goto bce_attach_fail; 549 } 550 551 /* 552 * The embedded PCIe to PCI-X bridge (EPB) 553 * in the 5708 cannot address memory above 554 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 555 */ 556 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 557 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 558 else 559 sc->max_bus_addr = BUS_SPACE_MAXADDR; 560 561 /* 562 * Find the base address for shared memory access. 563 * Newer versions of bootcode use a signature and offset 564 * while older versions use a fixed address. 565 */ 566 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 567 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 568 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0); 569 else 570 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 571 572 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 573 __FUNCTION__, sc->bce_shmem_base); 574 575 sc->bce_fw_ver = REG_RD_IND(sc, sc->bce_shmem_base + 576 BCE_DEV_INFO_BC_REV); 577 DBPRINT(sc, BCE_INFO_FIRMWARE, "%s(): bce_fw_ver = 0x%08X\n", 578 __FUNCTION__, sc->bce_fw_ver); 579 580 /* Check if any management firmware is running. */ 581 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_PORT_FEATURE); 582 if (val & (BCE_PORT_FEATURE_ASF_ENABLED | BCE_PORT_FEATURE_IMD_ENABLED)) { 583 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 584 DBPRINT(sc, BCE_INFO_LOAD, "%s(): BCE_MFW_ENABLE_FLAG\n", 585 __FUNCTION__); 586 } 587 588 /* Get PCI bus information (speed and type). */ 589 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 590 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 591 u32 clkreg; 592 593 sc->bce_flags |= BCE_PCIX_FLAG; 594 595 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 596 597 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 598 switch (clkreg) { 599 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 600 sc->bus_speed_mhz = 133; 601 break; 602 603 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 604 sc->bus_speed_mhz = 100; 605 break; 606 607 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 608 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 609 sc->bus_speed_mhz = 66; 610 break; 611 612 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 613 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 614 sc->bus_speed_mhz = 50; 615 break; 616 617 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 618 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 619 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 620 sc->bus_speed_mhz = 33; 621 break; 622 } 623 } else { 624 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 625 sc->bus_speed_mhz = 66; 626 else 627 sc->bus_speed_mhz = 33; 628 } 629 630 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 631 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 632 633 /* Reset the controller and announce to bootcode that driver is present. */ 634 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 635 BCE_PRINTF("%s(%d): Controller reset failed!\n", 636 __FILE__, __LINE__); 637 rc = ENXIO; 638 goto bce_attach_fail; 639 } 640 641 /* Initialize the controller. */ 642 if (bce_chipinit(sc)) { 643 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 644 __FILE__, __LINE__); 645 rc = ENXIO; 646 goto bce_attach_fail; 647 } 648 649 /* Perform NVRAM test. */ 650 if (bce_nvram_test(sc)) { 651 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 652 __FILE__, __LINE__); 653 rc = ENXIO; 654 goto bce_attach_fail; 655 } 656 657 /* Fetch the permanent Ethernet MAC address. */ 658 bce_get_mac_addr(sc); 659 660 /* 661 * Trip points control how many BDs 662 * should be ready before generating an 663 * interrupt while ticks control how long 664 * a BD can sit in the chain before 665 * generating an interrupt. Set the default 666 * values for the RX and TX chains. 667 */ 668 669 #ifdef BCE_DEBUG 670 /* Force more frequent interrupts. */ 671 sc->bce_tx_quick_cons_trip_int = 1; 672 sc->bce_tx_quick_cons_trip = 1; 673 sc->bce_tx_ticks_int = 0; 674 sc->bce_tx_ticks = 0; 675 676 sc->bce_rx_quick_cons_trip_int = 1; 677 sc->bce_rx_quick_cons_trip = 1; 678 sc->bce_rx_ticks_int = 0; 679 sc->bce_rx_ticks = 0; 680 #else 681 /* Improve throughput at the expense of increased latency. */ 682 sc->bce_tx_quick_cons_trip_int = 20; 683 sc->bce_tx_quick_cons_trip = 20; 684 sc->bce_tx_ticks_int = 80; 685 sc->bce_tx_ticks = 80; 686 687 sc->bce_rx_quick_cons_trip_int = 6; 688 sc->bce_rx_quick_cons_trip = 6; 689 sc->bce_rx_ticks_int = 18; 690 sc->bce_rx_ticks = 18; 691 #endif 692 693 /* Update statistics once every second. */ 694 sc->bce_stats_ticks = 1000000 & 0xffff00; 695 696 /* 697 * The SerDes based NetXtreme II controllers 698 * that support 2.5Gb operation (currently 699 * 5708S) use a PHY at address 2, otherwise 700 * the PHY is present at address 1. 701 */ 702 sc->bce_phy_addr = 1; 703 704 if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) { 705 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 706 sc->bce_flags |= BCE_NO_WOL_FLAG; 707 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 708 sc->bce_phy_addr = 2; 709 val = REG_RD_IND(sc, sc->bce_shmem_base + 710 BCE_SHARED_HW_CFG_CONFIG); 711 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 712 sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG; 713 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb capable adapter\n"); 714 } 715 } 716 } 717 718 /* Store data needed by PHY driver for backplane applications */ 719 sc->bce_shared_hw_cfg = REG_RD_IND(sc, sc->bce_shmem_base + 720 BCE_SHARED_HW_CFG_CONFIG); 721 sc->bce_port_hw_cfg = REG_RD_IND(sc, sc->bce_shmem_base + 722 BCE_SHARED_HW_CFG_CONFIG); 723 724 /* Allocate DMA memory resources. */ 725 if (bce_dma_alloc(dev)) { 726 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 727 __FILE__, __LINE__); 728 rc = ENXIO; 729 goto bce_attach_fail; 730 } 731 732 /* Allocate an ifnet structure. */ 733 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 734 if (ifp == NULL) { 735 BCE_PRINTF("%s(%d): Interface allocation failed!\n", 736 __FILE__, __LINE__); 737 rc = ENXIO; 738 goto bce_attach_fail; 739 } 740 741 /* Initialize the ifnet interface. */ 742 ifp->if_softc = sc; 743 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 744 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 745 ifp->if_ioctl = bce_ioctl; 746 ifp->if_start = bce_start; 747 ifp->if_init = bce_init; 748 ifp->if_mtu = ETHERMTU; 749 750 if (bce_tso_enable) { 751 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; 752 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4; 753 } else { 754 ifp->if_hwassist = BCE_IF_HWASSIST; 755 ifp->if_capabilities = BCE_IF_CAPABILITIES; 756 } 757 758 ifp->if_capenable = ifp->if_capabilities; 759 760 /* Assume a standard 1500 byte MTU size for mbuf allocations. */ 761 sc->mbuf_alloc_size = MCLBYTES; 762 #ifdef DEVICE_POLLING 763 ifp->if_capabilities |= IFCAP_POLLING; 764 #endif 765 766 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD; 767 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 768 IFQ_SET_READY(&ifp->if_snd); 769 770 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 771 ifp->if_baudrate = IF_Mbps(2500ULL); 772 else 773 ifp->if_baudrate = IF_Mbps(1000); 774 775 /* Check for an MII child bus by probing the PHY. */ 776 if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd, 777 bce_ifmedia_sts)) { 778 BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n", 779 __FILE__, __LINE__); 780 rc = ENXIO; 781 goto bce_attach_fail; 782 } 783 784 /* Attach to the Ethernet interface list. */ 785 ether_ifattach(ifp, sc->eaddr); 786 787 #if __FreeBSD_version < 500000 788 callout_init(&sc->bce_tick_callout); 789 callout_init(&sc->bce_pulse_callout); 790 #else 791 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 792 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 793 #endif 794 795 /* Hookup IRQ last. */ 796 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, 797 bce_intr, sc, &sc->bce_intrhand); 798 799 if (rc) { 800 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 801 __FILE__, __LINE__); 802 bce_detach(dev); 803 goto bce_attach_exit; 804 } 805 806 /* 807 * At this point we've acquired all the resources 808 * we need to run so there's no turning back, we're 809 * cleared for launch. 810 */ 811 812 /* Print some important debugging info. */ 813 DBRUN(BCE_INFO, bce_dump_driver_state(sc)); 814 815 /* Add the supported sysctls to the kernel. */ 816 bce_add_sysctls(sc); 817 818 BCE_LOCK(sc); 819 /* 820 * The chip reset earlier notified the bootcode that 821 * a driver is present. We now need to start our pulse 822 * routine so that the bootcode is reminded that we're 823 * still running. 824 */ 825 bce_pulse(sc); 826 827 bce_mgmt_init_locked(sc); 828 BCE_UNLOCK(sc); 829 830 /* Finally, print some useful adapter info */ 831 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 832 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A', 833 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 834 printf("Bus (PCI%s, %s, %dMHz); ", 835 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 836 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"), 837 sc->bus_speed_mhz); 838 printf("F/W (0x%08X); Flags( ", sc->bce_fw_ver); 839 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) 840 printf("MFW "); 841 if (sc->bce_flags & BCE_USING_MSI_FLAG) 842 printf("MSI "); 843 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 844 printf("2.5G "); 845 printf(")\n"); 846 847 goto bce_attach_exit; 848 849 bce_attach_fail: 850 bce_release_resources(sc); 851 852 bce_attach_exit: 853 854 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 855 856 return(rc); 857 } 858 859 860 /****************************************************************************/ 861 /* Device detach function. */ 862 /* */ 863 /* Stops the controller, resets the controller, and releases resources. */ 864 /* */ 865 /* Returns: */ 866 /* 0 on success, positive value on failure. */ 867 /****************************************************************************/ 868 static int 869 bce_detach(device_t dev) 870 { 871 struct bce_softc *sc = device_get_softc(dev); 872 struct ifnet *ifp; 873 u32 msg; 874 875 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 876 877 ifp = sc->bce_ifp; 878 879 #ifdef DEVICE_POLLING 880 if (ifp->if_capenable & IFCAP_POLLING) 881 ether_poll_deregister(ifp); 882 #endif 883 884 /* Stop the pulse so the bootcode can go to driver absent state. */ 885 callout_stop(&sc->bce_pulse_callout); 886 887 /* Stop and reset the controller. */ 888 BCE_LOCK(sc); 889 bce_stop(sc); 890 if (sc->bce_flags & BCE_NO_WOL_FLAG) 891 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 892 else 893 msg = BCE_DRV_MSG_CODE_UNLOAD; 894 bce_reset(sc, msg); 895 BCE_UNLOCK(sc); 896 897 ether_ifdetach(ifp); 898 899 /* If we have a child device on the MII bus remove it too. */ 900 bus_generic_detach(dev); 901 device_delete_child(dev, sc->bce_miibus); 902 903 /* Release all remaining resources. */ 904 bce_release_resources(sc); 905 906 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 907 908 return(0); 909 } 910 911 912 /****************************************************************************/ 913 /* Device shutdown function. */ 914 /* */ 915 /* Stops and resets the controller. */ 916 /* */ 917 /* Returns: */ 918 /* 0 on success, positive value on failure. */ 919 /****************************************************************************/ 920 static int 921 bce_shutdown(device_t dev) 922 { 923 struct bce_softc *sc = device_get_softc(dev); 924 u32 msg; 925 926 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Entering %s()\n", __FUNCTION__); 927 928 BCE_LOCK(sc); 929 bce_stop(sc); 930 if (sc->bce_flags & BCE_NO_WOL_FLAG) 931 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 932 else 933 msg = BCE_DRV_MSG_CODE_UNLOAD; 934 bce_reset(sc, msg); 935 BCE_UNLOCK(sc); 936 937 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Exiting %s()\n", __FUNCTION__); 938 939 return (0); 940 } 941 942 943 /****************************************************************************/ 944 /* Indirect register read. */ 945 /* */ 946 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 947 /* configuration space. Using this mechanism avoids issues with posted */ 948 /* reads but is much slower than memory-mapped I/O. */ 949 /* */ 950 /* Returns: */ 951 /* The value of the register. */ 952 /****************************************************************************/ 953 static u32 954 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 955 { 956 device_t dev; 957 dev = sc->bce_dev; 958 959 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 960 #ifdef BCE_DEBUG 961 { 962 u32 val; 963 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 964 DBPRINT(sc, BCE_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n", 965 __FUNCTION__, offset, val); 966 return val; 967 } 968 #else 969 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 970 #endif 971 } 972 973 974 /****************************************************************************/ 975 /* Indirect register write. */ 976 /* */ 977 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 978 /* configuration space. Using this mechanism avoids issues with posted */ 979 /* writes but is muchh slower than memory-mapped I/O. */ 980 /* */ 981 /* Returns: */ 982 /* Nothing. */ 983 /****************************************************************************/ 984 static void 985 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 986 { 987 device_t dev; 988 dev = sc->bce_dev; 989 990 DBPRINT(sc, BCE_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n", 991 __FUNCTION__, offset, val); 992 993 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 994 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 995 } 996 997 998 /****************************************************************************/ 999 /* Context memory write. */ 1000 /* */ 1001 /* The NetXtreme II controller uses context memory to track connection */ 1002 /* information for L2 and higher network protocols. */ 1003 /* */ 1004 /* Returns: */ 1005 /* Nothing. */ 1006 /****************************************************************************/ 1007 static void 1008 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 offset, u32 val) 1009 { 1010 1011 DBPRINT(sc, BCE_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1012 "val = 0x%08X\n", __FUNCTION__, cid_addr, offset, val); 1013 1014 offset += cid_addr; 1015 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1016 REG_WR(sc, BCE_CTX_DATA, val); 1017 } 1018 1019 1020 /****************************************************************************/ 1021 /* PHY register read. */ 1022 /* */ 1023 /* Implements register reads on the MII bus. */ 1024 /* */ 1025 /* Returns: */ 1026 /* The value of the register. */ 1027 /****************************************************************************/ 1028 static int 1029 bce_miibus_read_reg(device_t dev, int phy, int reg) 1030 { 1031 struct bce_softc *sc; 1032 u32 val; 1033 int i; 1034 1035 sc = device_get_softc(dev); 1036 1037 /* Make sure we are accessing the correct PHY address. */ 1038 if (phy != sc->bce_phy_addr) { 1039 DBPRINT(sc, BCE_EXCESSIVE_PHY, "Invalid PHY address %d for PHY read!\n", phy); 1040 return(0); 1041 } 1042 1043 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1044 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1045 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1046 1047 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1048 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1049 1050 DELAY(40); 1051 } 1052 1053 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1054 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1055 BCE_EMAC_MDIO_COMM_START_BUSY; 1056 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1057 1058 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1059 DELAY(10); 1060 1061 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1062 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1063 DELAY(5); 1064 1065 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1066 val &= BCE_EMAC_MDIO_COMM_DATA; 1067 1068 break; 1069 } 1070 } 1071 1072 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1073 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, reg = 0x%04X\n", 1074 __FILE__, __LINE__, phy, reg); 1075 val = 0x0; 1076 } else { 1077 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1078 } 1079 1080 DBPRINT(sc, BCE_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", 1081 __FUNCTION__, phy, (u16) reg & 0xffff, (u16) val & 0xffff); 1082 1083 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1084 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1085 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1086 1087 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1088 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1089 1090 DELAY(40); 1091 } 1092 1093 return (val & 0xffff); 1094 1095 } 1096 1097 1098 /****************************************************************************/ 1099 /* PHY register write. */ 1100 /* */ 1101 /* Implements register writes on the MII bus. */ 1102 /* */ 1103 /* Returns: */ 1104 /* The value of the register. */ 1105 /****************************************************************************/ 1106 static int 1107 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1108 { 1109 struct bce_softc *sc; 1110 u32 val1; 1111 int i; 1112 1113 sc = device_get_softc(dev); 1114 1115 /* Make sure we are accessing the correct PHY address. */ 1116 if (phy != sc->bce_phy_addr) { 1117 DBPRINT(sc, BCE_EXCESSIVE_PHY, "Invalid PHY address %d for PHY write!\n", phy); 1118 return(0); 1119 } 1120 1121 DBPRINT(sc, BCE_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", 1122 __FUNCTION__, phy, (u16) reg & 0xffff, (u16) val & 0xffff); 1123 1124 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1125 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1126 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1127 1128 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1129 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1130 1131 DELAY(40); 1132 } 1133 1134 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1135 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1136 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1137 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1138 1139 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1140 DELAY(10); 1141 1142 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1143 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1144 DELAY(5); 1145 break; 1146 } 1147 } 1148 1149 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 1150 BCE_PRINTF("%s(%d): PHY write timeout!\n", 1151 __FILE__, __LINE__); 1152 1153 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1154 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1155 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1156 1157 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1158 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1159 1160 DELAY(40); 1161 } 1162 1163 return 0; 1164 } 1165 1166 1167 /****************************************************************************/ 1168 /* MII bus status change. */ 1169 /* */ 1170 /* Called by the MII bus driver when the PHY establishes link to set the */ 1171 /* MAC interface registers. */ 1172 /* */ 1173 /* Returns: */ 1174 /* Nothing. */ 1175 /****************************************************************************/ 1176 static void 1177 bce_miibus_statchg(device_t dev) 1178 { 1179 struct bce_softc *sc; 1180 struct mii_data *mii; 1181 int val; 1182 1183 sc = device_get_softc(dev); 1184 1185 mii = device_get_softc(sc->bce_miibus); 1186 1187 val = REG_RD(sc, BCE_EMAC_MODE); 1188 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 1189 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 1190 BCE_EMAC_MODE_25G); 1191 1192 /* Set MII or GMII interface based on the speed negotiated by the PHY. */ 1193 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1194 case IFM_10_T: 1195 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 1196 DBPRINT(sc, BCE_INFO, "Enabling 10Mb interface.\n"); 1197 val |= BCE_EMAC_MODE_PORT_MII_10; 1198 break; 1199 } 1200 /* fall-through */ 1201 case IFM_100_TX: 1202 DBPRINT(sc, BCE_INFO, "Enabling MII interface.\n"); 1203 val |= BCE_EMAC_MODE_PORT_MII; 1204 break; 1205 case IFM_2500_SX: 1206 DBPRINT(sc, BCE_INFO, "Enabling 2.5G MAC mode.\n"); 1207 val |= BCE_EMAC_MODE_25G; 1208 /* fall-through */ 1209 case IFM_1000_T: 1210 case IFM_1000_SX: 1211 DBPRINT(sc, BCE_INFO, "Enabling GMII interface.\n"); 1212 val |= BCE_EMAC_MODE_PORT_GMII; 1213 break; 1214 default: 1215 DBPRINT(sc, BCE_INFO, "Enabling default GMII interface.\n"); 1216 val |= BCE_EMAC_MODE_PORT_GMII; 1217 } 1218 1219 /* Set half or full duplex based on the duplicity negotiated by the PHY. */ 1220 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 1221 DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n"); 1222 val |= BCE_EMAC_MODE_HALF_DUPLEX; 1223 } else 1224 DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n"); 1225 1226 REG_WR(sc, BCE_EMAC_MODE, val); 1227 1228 #if 0 1229 /* Todo: Enable flow control support in brgphy and bge. */ 1230 /* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */ 1231 if (mii->mii_media_active & IFM_FLAG0) 1232 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 1233 if (mii->mii_media_active & IFM_FLAG1) 1234 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 1235 #endif 1236 1237 } 1238 1239 1240 /****************************************************************************/ 1241 /* Acquire NVRAM lock. */ 1242 /* */ 1243 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 1244 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1245 /* for use by the driver. */ 1246 /* */ 1247 /* Returns: */ 1248 /* 0 on success, positive value on failure. */ 1249 /****************************************************************************/ 1250 static int 1251 bce_acquire_nvram_lock(struct bce_softc *sc) 1252 { 1253 u32 val; 1254 int j; 1255 1256 DBPRINT(sc, BCE_VERBOSE_NVRAM, "Acquiring NVRAM lock.\n"); 1257 1258 /* Request access to the flash interface. */ 1259 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 1260 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1261 val = REG_RD(sc, BCE_NVM_SW_ARB); 1262 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 1263 break; 1264 1265 DELAY(5); 1266 } 1267 1268 if (j >= NVRAM_TIMEOUT_COUNT) { 1269 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 1270 return EBUSY; 1271 } 1272 1273 return 0; 1274 } 1275 1276 1277 /****************************************************************************/ 1278 /* Release NVRAM lock. */ 1279 /* */ 1280 /* When the caller is finished accessing NVRAM the lock must be released. */ 1281 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1282 /* for use by the driver. */ 1283 /* */ 1284 /* Returns: */ 1285 /* 0 on success, positive value on failure. */ 1286 /****************************************************************************/ 1287 static int 1288 bce_release_nvram_lock(struct bce_softc *sc) 1289 { 1290 int j; 1291 u32 val; 1292 1293 DBPRINT(sc, BCE_VERBOSE_NVRAM, "Releasing NVRAM lock.\n"); 1294 1295 /* 1296 * Relinquish nvram interface. 1297 */ 1298 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 1299 1300 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1301 val = REG_RD(sc, BCE_NVM_SW_ARB); 1302 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 1303 break; 1304 1305 DELAY(5); 1306 } 1307 1308 if (j >= NVRAM_TIMEOUT_COUNT) { 1309 DBPRINT(sc, BCE_WARN, "Timeout reeasing NVRAM lock!\n"); 1310 return EBUSY; 1311 } 1312 1313 return 0; 1314 } 1315 1316 1317 #ifdef BCE_NVRAM_WRITE_SUPPORT 1318 /****************************************************************************/ 1319 /* Enable NVRAM write access. */ 1320 /* */ 1321 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 1322 /* */ 1323 /* Returns: */ 1324 /* 0 on success, positive value on failure. */ 1325 /****************************************************************************/ 1326 static int 1327 bce_enable_nvram_write(struct bce_softc *sc) 1328 { 1329 u32 val; 1330 1331 DBPRINT(sc, BCE_VERBOSE_NVRAM, "Enabling NVRAM write.\n"); 1332 1333 val = REG_RD(sc, BCE_MISC_CFG); 1334 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 1335 1336 if (!sc->bce_flash_info->buffered) { 1337 int j; 1338 1339 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1340 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 1341 1342 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1343 DELAY(5); 1344 1345 val = REG_RD(sc, BCE_NVM_COMMAND); 1346 if (val & BCE_NVM_COMMAND_DONE) 1347 break; 1348 } 1349 1350 if (j >= NVRAM_TIMEOUT_COUNT) { 1351 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 1352 return EBUSY; 1353 } 1354 } 1355 return 0; 1356 } 1357 1358 1359 /****************************************************************************/ 1360 /* Disable NVRAM write access. */ 1361 /* */ 1362 /* When the caller is finished writing to NVRAM write access must be */ 1363 /* disabled. */ 1364 /* */ 1365 /* Returns: */ 1366 /* Nothing. */ 1367 /****************************************************************************/ 1368 static void 1369 bce_disable_nvram_write(struct bce_softc *sc) 1370 { 1371 u32 val; 1372 1373 DBPRINT(sc, BCE_VERBOSE_NVRAM, "Disabling NVRAM write.\n"); 1374 1375 val = REG_RD(sc, BCE_MISC_CFG); 1376 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 1377 } 1378 #endif 1379 1380 1381 /****************************************************************************/ 1382 /* Enable NVRAM access. */ 1383 /* */ 1384 /* Before accessing NVRAM for read or write operations the caller must */ 1385 /* enabled NVRAM access. */ 1386 /* */ 1387 /* Returns: */ 1388 /* Nothing. */ 1389 /****************************************************************************/ 1390 static void 1391 bce_enable_nvram_access(struct bce_softc *sc) 1392 { 1393 u32 val; 1394 1395 DBPRINT(sc, BCE_VERBOSE_NVRAM, "Enabling NVRAM access.\n"); 1396 1397 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1398 /* Enable both bits, even on read. */ 1399 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1400 val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 1401 } 1402 1403 1404 /****************************************************************************/ 1405 /* Disable NVRAM access. */ 1406 /* */ 1407 /* When the caller is finished accessing NVRAM access must be disabled. */ 1408 /* */ 1409 /* Returns: */ 1410 /* Nothing. */ 1411 /****************************************************************************/ 1412 static void 1413 bce_disable_nvram_access(struct bce_softc *sc) 1414 { 1415 u32 val; 1416 1417 DBPRINT(sc, BCE_VERBOSE_NVRAM, "Disabling NVRAM access.\n"); 1418 1419 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1420 1421 /* Disable both bits, even after read. */ 1422 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1423 val & ~(BCE_NVM_ACCESS_ENABLE_EN | 1424 BCE_NVM_ACCESS_ENABLE_WR_EN)); 1425 } 1426 1427 1428 #ifdef BCE_NVRAM_WRITE_SUPPORT 1429 /****************************************************************************/ 1430 /* Erase NVRAM page before writing. */ 1431 /* */ 1432 /* Non-buffered flash parts require that a page be erased before it is */ 1433 /* written. */ 1434 /* */ 1435 /* Returns: */ 1436 /* 0 on success, positive value on failure. */ 1437 /****************************************************************************/ 1438 static int 1439 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 1440 { 1441 u32 cmd; 1442 int j; 1443 1444 /* Buffered flash doesn't require an erase. */ 1445 if (sc->bce_flash_info->buffered) 1446 return 0; 1447 1448 DBPRINT(sc, BCE_VERBOSE_NVRAM, "Erasing NVRAM page.\n"); 1449 1450 /* Build an erase command. */ 1451 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 1452 BCE_NVM_COMMAND_DOIT; 1453 1454 /* 1455 * Clear the DONE bit separately, set the NVRAM adress to erase, 1456 * and issue the erase command. 1457 */ 1458 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1459 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1460 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1461 1462 /* Wait for completion. */ 1463 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1464 u32 val; 1465 1466 DELAY(5); 1467 1468 val = REG_RD(sc, BCE_NVM_COMMAND); 1469 if (val & BCE_NVM_COMMAND_DONE) 1470 break; 1471 } 1472 1473 if (j >= NVRAM_TIMEOUT_COUNT) { 1474 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 1475 return EBUSY; 1476 } 1477 1478 return 0; 1479 } 1480 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 1481 1482 1483 /****************************************************************************/ 1484 /* Read a dword (32 bits) from NVRAM. */ 1485 /* */ 1486 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 1487 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 1488 /* */ 1489 /* Returns: */ 1490 /* 0 on success and the 32 bit value read, positive value on failure. */ 1491 /****************************************************************************/ 1492 static int 1493 bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val, 1494 u32 cmd_flags) 1495 { 1496 u32 cmd; 1497 int i, rc = 0; 1498 1499 /* Build the command word. */ 1500 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 1501 1502 /* Calculate the offset for buffered flash. */ 1503 if (sc->bce_flash_info->buffered) { 1504 offset = ((offset / sc->bce_flash_info->page_size) << 1505 sc->bce_flash_info->page_bits) + 1506 (offset % sc->bce_flash_info->page_size); 1507 } 1508 1509 /* 1510 * Clear the DONE bit separately, set the address to read, 1511 * and issue the read. 1512 */ 1513 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1514 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1515 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1516 1517 /* Wait for completion. */ 1518 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 1519 u32 val; 1520 1521 DELAY(5); 1522 1523 val = REG_RD(sc, BCE_NVM_COMMAND); 1524 if (val & BCE_NVM_COMMAND_DONE) { 1525 val = REG_RD(sc, BCE_NVM_READ); 1526 1527 val = bce_be32toh(val); 1528 memcpy(ret_val, &val, 4); 1529 break; 1530 } 1531 } 1532 1533 /* Check for errors. */ 1534 if (i >= NVRAM_TIMEOUT_COUNT) { 1535 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n", 1536 __FILE__, __LINE__, offset); 1537 rc = EBUSY; 1538 } 1539 1540 return(rc); 1541 } 1542 1543 1544 #ifdef BCE_NVRAM_WRITE_SUPPORT 1545 /****************************************************************************/ 1546 /* Write a dword (32 bits) to NVRAM. */ 1547 /* */ 1548 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 1549 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 1550 /* enabled NVRAM write access. */ 1551 /* */ 1552 /* Returns: */ 1553 /* 0 on success, positive value on failure. */ 1554 /****************************************************************************/ 1555 static int 1556 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 1557 u32 cmd_flags) 1558 { 1559 u32 cmd, val32; 1560 int j; 1561 1562 /* Build the command word. */ 1563 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 1564 1565 /* Calculate the offset for buffered flash. */ 1566 if (sc->bce_flash_info->buffered) { 1567 offset = ((offset / sc->bce_flash_info->page_size) << 1568 sc->bce_flash_info->page_bits) + 1569 (offset % sc->bce_flash_info->page_size); 1570 } 1571 1572 /* 1573 * Clear the DONE bit separately, convert NVRAM data to big-endian, 1574 * set the NVRAM address to write, and issue the write command 1575 */ 1576 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1577 memcpy(&val32, val, 4); 1578 val32 = htobe32(val32); 1579 REG_WR(sc, BCE_NVM_WRITE, val32); 1580 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1581 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1582 1583 /* Wait for completion. */ 1584 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1585 DELAY(5); 1586 1587 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 1588 break; 1589 } 1590 if (j >= NVRAM_TIMEOUT_COUNT) { 1591 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at offset 0x%08X\n", 1592 __FILE__, __LINE__, offset); 1593 return EBUSY; 1594 } 1595 1596 return 0; 1597 } 1598 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 1599 1600 1601 /****************************************************************************/ 1602 /* Initialize NVRAM access. */ 1603 /* */ 1604 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 1605 /* access that device. */ 1606 /* */ 1607 /* Returns: */ 1608 /* 0 on success, positive value on failure. */ 1609 /****************************************************************************/ 1610 static int 1611 bce_init_nvram(struct bce_softc *sc) 1612 { 1613 u32 val; 1614 int j, entry_count, rc; 1615 struct flash_spec *flash; 1616 1617 DBPRINT(sc, BCE_VERBOSE_NVRAM, "Entering %s()\n", __FUNCTION__); 1618 1619 /* Determine the selected interface. */ 1620 val = REG_RD(sc, BCE_NVM_CFG1); 1621 1622 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 1623 1624 rc = 0; 1625 1626 /* 1627 * Flash reconfiguration is required to support additional 1628 * NVRAM devices not directly supported in hardware. 1629 * Check if the flash interface was reconfigured 1630 * by the bootcode. 1631 */ 1632 1633 if (val & 0x40000000) { 1634 /* Flash interface reconfigured by bootcode. */ 1635 1636 DBPRINT(sc,BCE_INFO_LOAD, 1637 "bce_init_nvram(): Flash WAS reconfigured.\n"); 1638 1639 for (j = 0, flash = &flash_table[0]; j < entry_count; 1640 j++, flash++) { 1641 if ((val & FLASH_BACKUP_STRAP_MASK) == 1642 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 1643 sc->bce_flash_info = flash; 1644 break; 1645 } 1646 } 1647 } else { 1648 /* Flash interface not yet reconfigured. */ 1649 u32 mask; 1650 1651 DBPRINT(sc,BCE_INFO_LOAD, 1652 "bce_init_nvram(): Flash was NOT reconfigured.\n"); 1653 1654 if (val & (1 << 23)) 1655 mask = FLASH_BACKUP_STRAP_MASK; 1656 else 1657 mask = FLASH_STRAP_MASK; 1658 1659 /* Look for the matching NVRAM device configuration data. */ 1660 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 1661 1662 /* Check if the device matches any of the known devices. */ 1663 if ((val & mask) == (flash->strapping & mask)) { 1664 /* Found a device match. */ 1665 sc->bce_flash_info = flash; 1666 1667 /* Request access to the flash interface. */ 1668 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 1669 return rc; 1670 1671 /* Reconfigure the flash interface. */ 1672 bce_enable_nvram_access(sc); 1673 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 1674 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 1675 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 1676 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 1677 bce_disable_nvram_access(sc); 1678 bce_release_nvram_lock(sc); 1679 1680 break; 1681 } 1682 } 1683 } 1684 1685 /* Check if a matching device was found. */ 1686 if (j == entry_count) { 1687 sc->bce_flash_info = NULL; 1688 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 1689 __FILE__, __LINE__); 1690 rc = ENODEV; 1691 } 1692 1693 /* Write the flash config data to the shared memory interface. */ 1694 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_SHARED_HW_CFG_CONFIG2); 1695 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 1696 if (val) 1697 sc->bce_flash_size = val; 1698 else 1699 sc->bce_flash_size = sc->bce_flash_info->total_size; 1700 1701 DBPRINT(sc, BCE_INFO_LOAD, "bce_init_nvram() flash->total_size = 0x%08X\n", 1702 sc->bce_flash_info->total_size); 1703 1704 DBPRINT(sc, BCE_VERBOSE_NVRAM, "Exiting %s()\n", __FUNCTION__); 1705 1706 return rc; 1707 } 1708 1709 1710 /****************************************************************************/ 1711 /* Read an arbitrary range of data from NVRAM. */ 1712 /* */ 1713 /* Prepares the NVRAM interface for access and reads the requested data */ 1714 /* into the supplied buffer. */ 1715 /* */ 1716 /* Returns: */ 1717 /* 0 on success and the data read, positive value on failure. */ 1718 /****************************************************************************/ 1719 static int 1720 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 1721 int buf_size) 1722 { 1723 int rc = 0; 1724 u32 cmd_flags, offset32, len32, extra; 1725 1726 if (buf_size == 0) 1727 return 0; 1728 1729 /* Request access to the flash interface. */ 1730 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 1731 return rc; 1732 1733 /* Enable access to flash interface */ 1734 bce_enable_nvram_access(sc); 1735 1736 len32 = buf_size; 1737 offset32 = offset; 1738 extra = 0; 1739 1740 cmd_flags = 0; 1741 1742 if (offset32 & 3) { 1743 u8 buf[4]; 1744 u32 pre_len; 1745 1746 offset32 &= ~3; 1747 pre_len = 4 - (offset & 3); 1748 1749 if (pre_len >= len32) { 1750 pre_len = len32; 1751 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 1752 } 1753 else { 1754 cmd_flags = BCE_NVM_COMMAND_FIRST; 1755 } 1756 1757 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 1758 1759 if (rc) 1760 return rc; 1761 1762 memcpy(ret_buf, buf + (offset & 3), pre_len); 1763 1764 offset32 += 4; 1765 ret_buf += pre_len; 1766 len32 -= pre_len; 1767 } 1768 1769 if (len32 & 3) { 1770 extra = 4 - (len32 & 3); 1771 len32 = (len32 + 4) & ~3; 1772 } 1773 1774 if (len32 == 4) { 1775 u8 buf[4]; 1776 1777 if (cmd_flags) 1778 cmd_flags = BCE_NVM_COMMAND_LAST; 1779 else 1780 cmd_flags = BCE_NVM_COMMAND_FIRST | 1781 BCE_NVM_COMMAND_LAST; 1782 1783 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 1784 1785 memcpy(ret_buf, buf, 4 - extra); 1786 } 1787 else if (len32 > 0) { 1788 u8 buf[4]; 1789 1790 /* Read the first word. */ 1791 if (cmd_flags) 1792 cmd_flags = 0; 1793 else 1794 cmd_flags = BCE_NVM_COMMAND_FIRST; 1795 1796 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 1797 1798 /* Advance to the next dword. */ 1799 offset32 += 4; 1800 ret_buf += 4; 1801 len32 -= 4; 1802 1803 while (len32 > 4 && rc == 0) { 1804 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 1805 1806 /* Advance to the next dword. */ 1807 offset32 += 4; 1808 ret_buf += 4; 1809 len32 -= 4; 1810 } 1811 1812 if (rc) 1813 return rc; 1814 1815 cmd_flags = BCE_NVM_COMMAND_LAST; 1816 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 1817 1818 memcpy(ret_buf, buf, 4 - extra); 1819 } 1820 1821 /* Disable access to flash interface and release the lock. */ 1822 bce_disable_nvram_access(sc); 1823 bce_release_nvram_lock(sc); 1824 1825 return rc; 1826 } 1827 1828 1829 #ifdef BCE_NVRAM_WRITE_SUPPORT 1830 /****************************************************************************/ 1831 /* Write an arbitrary range of data from NVRAM. */ 1832 /* */ 1833 /* Prepares the NVRAM interface for write access and writes the requested */ 1834 /* data from the supplied buffer. The caller is responsible for */ 1835 /* calculating any appropriate CRCs. */ 1836 /* */ 1837 /* Returns: */ 1838 /* 0 on success, positive value on failure. */ 1839 /****************************************************************************/ 1840 static int 1841 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 1842 int buf_size) 1843 { 1844 u32 written, offset32, len32; 1845 u8 *buf, start[4], end[4]; 1846 int rc = 0; 1847 int align_start, align_end; 1848 1849 buf = data_buf; 1850 offset32 = offset; 1851 len32 = buf_size; 1852 align_start = align_end = 0; 1853 1854 if ((align_start = (offset32 & 3))) { 1855 offset32 &= ~3; 1856 len32 += align_start; 1857 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 1858 return rc; 1859 } 1860 1861 if (len32 & 3) { 1862 if ((len32 > 4) || !align_start) { 1863 align_end = 4 - (len32 & 3); 1864 len32 += align_end; 1865 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 1866 end, 4))) { 1867 return rc; 1868 } 1869 } 1870 } 1871 1872 if (align_start || align_end) { 1873 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 1874 if (buf == 0) 1875 return ENOMEM; 1876 if (align_start) { 1877 memcpy(buf, start, 4); 1878 } 1879 if (align_end) { 1880 memcpy(buf + len32 - 4, end, 4); 1881 } 1882 memcpy(buf + align_start, data_buf, buf_size); 1883 } 1884 1885 written = 0; 1886 while ((written < len32) && (rc == 0)) { 1887 u32 page_start, page_end, data_start, data_end; 1888 u32 addr, cmd_flags; 1889 int i; 1890 u8 flash_buffer[264]; 1891 1892 /* Find the page_start addr */ 1893 page_start = offset32 + written; 1894 page_start -= (page_start % sc->bce_flash_info->page_size); 1895 /* Find the page_end addr */ 1896 page_end = page_start + sc->bce_flash_info->page_size; 1897 /* Find the data_start addr */ 1898 data_start = (written == 0) ? offset32 : page_start; 1899 /* Find the data_end addr */ 1900 data_end = (page_end > offset32 + len32) ? 1901 (offset32 + len32) : page_end; 1902 1903 /* Request access to the flash interface. */ 1904 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 1905 goto nvram_write_end; 1906 1907 /* Enable access to flash interface */ 1908 bce_enable_nvram_access(sc); 1909 1910 cmd_flags = BCE_NVM_COMMAND_FIRST; 1911 if (sc->bce_flash_info->buffered == 0) { 1912 int j; 1913 1914 /* Read the whole page into the buffer 1915 * (non-buffer flash only) */ 1916 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 1917 if (j == (sc->bce_flash_info->page_size - 4)) { 1918 cmd_flags |= BCE_NVM_COMMAND_LAST; 1919 } 1920 rc = bce_nvram_read_dword(sc, 1921 page_start + j, 1922 &flash_buffer[j], 1923 cmd_flags); 1924 1925 if (rc) 1926 goto nvram_write_end; 1927 1928 cmd_flags = 0; 1929 } 1930 } 1931 1932 /* Enable writes to flash interface (unlock write-protect) */ 1933 if ((rc = bce_enable_nvram_write(sc)) != 0) 1934 goto nvram_write_end; 1935 1936 /* Erase the page */ 1937 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 1938 goto nvram_write_end; 1939 1940 /* Re-enable the write again for the actual write */ 1941 bce_enable_nvram_write(sc); 1942 1943 /* Loop to write back the buffer data from page_start to 1944 * data_start */ 1945 i = 0; 1946 if (sc->bce_flash_info->buffered == 0) { 1947 for (addr = page_start; addr < data_start; 1948 addr += 4, i += 4) { 1949 1950 rc = bce_nvram_write_dword(sc, addr, 1951 &flash_buffer[i], cmd_flags); 1952 1953 if (rc != 0) 1954 goto nvram_write_end; 1955 1956 cmd_flags = 0; 1957 } 1958 } 1959 1960 /* Loop to write the new data from data_start to data_end */ 1961 for (addr = data_start; addr < data_end; addr += 4, i++) { 1962 if ((addr == page_end - 4) || 1963 ((sc->bce_flash_info->buffered) && 1964 (addr == data_end - 4))) { 1965 1966 cmd_flags |= BCE_NVM_COMMAND_LAST; 1967 } 1968 rc = bce_nvram_write_dword(sc, addr, buf, 1969 cmd_flags); 1970 1971 if (rc != 0) 1972 goto nvram_write_end; 1973 1974 cmd_flags = 0; 1975 buf += 4; 1976 } 1977 1978 /* Loop to write back the buffer data from data_end 1979 * to page_end */ 1980 if (sc->bce_flash_info->buffered == 0) { 1981 for (addr = data_end; addr < page_end; 1982 addr += 4, i += 4) { 1983 1984 if (addr == page_end-4) { 1985 cmd_flags = BCE_NVM_COMMAND_LAST; 1986 } 1987 rc = bce_nvram_write_dword(sc, addr, 1988 &flash_buffer[i], cmd_flags); 1989 1990 if (rc != 0) 1991 goto nvram_write_end; 1992 1993 cmd_flags = 0; 1994 } 1995 } 1996 1997 /* Disable writes to flash interface (lock write-protect) */ 1998 bce_disable_nvram_write(sc); 1999 2000 /* Disable access to flash interface */ 2001 bce_disable_nvram_access(sc); 2002 bce_release_nvram_lock(sc); 2003 2004 /* Increment written */ 2005 written += data_end - data_start; 2006 } 2007 2008 nvram_write_end: 2009 if (align_start || align_end) 2010 free(buf, M_DEVBUF); 2011 2012 return rc; 2013 } 2014 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2015 2016 2017 /****************************************************************************/ 2018 /* Verifies that NVRAM is accessible and contains valid data. */ 2019 /* */ 2020 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2021 /* correct. */ 2022 /* */ 2023 /* Returns: */ 2024 /* 0 on success, positive value on failure. */ 2025 /****************************************************************************/ 2026 static int 2027 bce_nvram_test(struct bce_softc *sc) 2028 { 2029 u32 buf[BCE_NVRAM_SIZE / 4]; 2030 u8 *data = (u8 *) buf; 2031 int rc = 0; 2032 u32 magic, csum; 2033 2034 2035 /* 2036 * Check that the device NVRAM is valid by reading 2037 * the magic value at offset 0. 2038 */ 2039 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) 2040 goto bce_nvram_test_done; 2041 2042 2043 magic = bce_be32toh(buf[0]); 2044 if (magic != BCE_NVRAM_MAGIC) { 2045 rc = ENODEV; 2046 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, " 2047 "Found: 0x%08X\n", 2048 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 2049 goto bce_nvram_test_done; 2050 } 2051 2052 /* 2053 * Verify that the device NVRAM includes valid 2054 * configuration data. 2055 */ 2056 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) 2057 goto bce_nvram_test_done; 2058 2059 csum = ether_crc32_le(data, 0x100); 2060 if (csum != BCE_CRC32_RESIDUAL) { 2061 rc = ENODEV; 2062 BCE_PRINTF("%s(%d): Invalid Manufacturing Information NVRAM CRC! " 2063 "Expected: 0x%08X, Found: 0x%08X\n", 2064 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2065 goto bce_nvram_test_done; 2066 } 2067 2068 csum = ether_crc32_le(data + 0x100, 0x100); 2069 if (csum != BCE_CRC32_RESIDUAL) { 2070 BCE_PRINTF("%s(%d): Invalid Feature Configuration Information " 2071 "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", 2072 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2073 rc = ENODEV; 2074 } 2075 2076 bce_nvram_test_done: 2077 return rc; 2078 } 2079 2080 2081 /****************************************************************************/ 2082 /* Free any DMA memory owned by the driver. */ 2083 /* */ 2084 /* Scans through each data structre that requires DMA memory and frees */ 2085 /* the memory if allocated. */ 2086 /* */ 2087 /* Returns: */ 2088 /* Nothing. */ 2089 /****************************************************************************/ 2090 static void 2091 bce_dma_free(struct bce_softc *sc) 2092 { 2093 int i; 2094 2095 DBPRINT(sc,BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 2096 2097 /* Destroy the status block. */ 2098 if (sc->status_block != NULL) 2099 bus_dmamem_free( 2100 sc->status_tag, 2101 sc->status_block, 2102 sc->status_map); 2103 2104 if (sc->status_map != NULL) { 2105 bus_dmamap_unload( 2106 sc->status_tag, 2107 sc->status_map); 2108 bus_dmamap_destroy(sc->status_tag, 2109 sc->status_map); 2110 } 2111 2112 if (sc->status_tag != NULL) 2113 bus_dma_tag_destroy(sc->status_tag); 2114 2115 2116 /* Destroy the statistics block. */ 2117 if (sc->stats_block != NULL) 2118 bus_dmamem_free( 2119 sc->stats_tag, 2120 sc->stats_block, 2121 sc->stats_map); 2122 2123 if (sc->stats_map != NULL) { 2124 bus_dmamap_unload( 2125 sc->stats_tag, 2126 sc->stats_map); 2127 bus_dmamap_destroy(sc->stats_tag, 2128 sc->stats_map); 2129 } 2130 2131 if (sc->stats_tag != NULL) 2132 bus_dma_tag_destroy(sc->stats_tag); 2133 2134 2135 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 2136 for (i = 0; i < TX_PAGES; i++ ) { 2137 if (sc->tx_bd_chain[i] != NULL) 2138 bus_dmamem_free( 2139 sc->tx_bd_chain_tag, 2140 sc->tx_bd_chain[i], 2141 sc->tx_bd_chain_map[i]); 2142 2143 if (sc->tx_bd_chain_map[i] != NULL) { 2144 bus_dmamap_unload( 2145 sc->tx_bd_chain_tag, 2146 sc->tx_bd_chain_map[i]); 2147 bus_dmamap_destroy( 2148 sc->tx_bd_chain_tag, 2149 sc->tx_bd_chain_map[i]); 2150 } 2151 2152 } 2153 2154 /* Destroy the TX buffer descriptor tag. */ 2155 if (sc->tx_bd_chain_tag != NULL) 2156 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 2157 2158 2159 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 2160 for (i = 0; i < RX_PAGES; i++ ) { 2161 if (sc->rx_bd_chain[i] != NULL) 2162 bus_dmamem_free( 2163 sc->rx_bd_chain_tag, 2164 sc->rx_bd_chain[i], 2165 sc->rx_bd_chain_map[i]); 2166 2167 if (sc->rx_bd_chain_map[i] != NULL) { 2168 bus_dmamap_unload( 2169 sc->rx_bd_chain_tag, 2170 sc->rx_bd_chain_map[i]); 2171 bus_dmamap_destroy( 2172 sc->rx_bd_chain_tag, 2173 sc->rx_bd_chain_map[i]); 2174 } 2175 } 2176 2177 /* Destroy the RX buffer descriptor tag. */ 2178 if (sc->rx_bd_chain_tag != NULL) 2179 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 2180 2181 2182 /* Unload and destroy the TX mbuf maps. */ 2183 for (i = 0; i < TOTAL_TX_BD; i++) { 2184 if (sc->tx_mbuf_map[i] != NULL) { 2185 bus_dmamap_unload(sc->tx_mbuf_tag, 2186 sc->tx_mbuf_map[i]); 2187 bus_dmamap_destroy(sc->tx_mbuf_tag, 2188 sc->tx_mbuf_map[i]); 2189 } 2190 } 2191 2192 /* Destroy the TX mbuf tag. */ 2193 if (sc->tx_mbuf_tag != NULL) 2194 bus_dma_tag_destroy(sc->tx_mbuf_tag); 2195 2196 2197 /* Unload and destroy the RX mbuf maps. */ 2198 for (i = 0; i < TOTAL_RX_BD; i++) { 2199 if (sc->rx_mbuf_map[i] != NULL) { 2200 bus_dmamap_unload(sc->rx_mbuf_tag, 2201 sc->rx_mbuf_map[i]); 2202 bus_dmamap_destroy(sc->rx_mbuf_tag, 2203 sc->rx_mbuf_map[i]); 2204 } 2205 } 2206 2207 /* Destroy the RX mbuf tag. */ 2208 if (sc->rx_mbuf_tag != NULL) 2209 bus_dma_tag_destroy(sc->rx_mbuf_tag); 2210 2211 2212 /* Destroy the parent tag */ 2213 if (sc->parent_tag != NULL) 2214 bus_dma_tag_destroy(sc->parent_tag); 2215 2216 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 2217 2218 } 2219 2220 2221 /****************************************************************************/ 2222 /* Get DMA memory from the OS. */ 2223 /* */ 2224 /* Validates that the OS has provided DMA buffers in response to a */ 2225 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 2226 /* When the callback is used the OS will return 0 for the mapping function */ 2227 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 2228 /* failures back to the caller. */ 2229 /* */ 2230 /* Returns: */ 2231 /* Nothing. */ 2232 /****************************************************************************/ 2233 static void 2234 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2235 { 2236 bus_addr_t *busaddr = arg; 2237 2238 /* Simulate a mapping failure. */ 2239 DBRUNIF(DB_RANDOMTRUE(bce_debug_dma_map_addr_failure), 2240 printf("bce: %s(%d): Simulating DMA mapping error.\n", 2241 __FILE__, __LINE__); 2242 error = ENOMEM); 2243 2244 /* Check for an error and signal the caller that an error occurred. */ 2245 if (error) { 2246 printf("bce %s(%d): DMA mapping error! error = %d, " 2247 "nseg = %d\n", __FILE__, __LINE__, error, nseg); 2248 *busaddr = 0; 2249 return; 2250 } 2251 2252 *busaddr = segs->ds_addr; 2253 return; 2254 } 2255 2256 2257 /****************************************************************************/ 2258 /* Allocate any DMA memory needed by the driver. */ 2259 /* */ 2260 /* Allocates DMA memory needed for the various global structures needed by */ 2261 /* hardware. */ 2262 /* */ 2263 /* Returns: */ 2264 /* 0 for success, positive value for failure. */ 2265 /****************************************************************************/ 2266 static int 2267 bce_dma_alloc(device_t dev) 2268 { 2269 struct bce_softc *sc; 2270 int i, error, rc = 0; 2271 bus_addr_t busaddr; 2272 bus_size_t max_size, max_seg_size; 2273 int max_segments; 2274 2275 sc = device_get_softc(dev); 2276 2277 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 2278 2279 /* 2280 * Allocate the parent bus DMA tag appropriate for PCI. 2281 */ 2282 if (bus_dma_tag_create(NULL, 2283 1, 2284 BCE_DMA_BOUNDARY, 2285 sc->max_bus_addr, 2286 BUS_SPACE_MAXADDR, 2287 NULL, NULL, 2288 MAXBSIZE, 2289 BUS_SPACE_UNRESTRICTED, 2290 BUS_SPACE_MAXSIZE_32BIT, 2291 0, 2292 NULL, NULL, 2293 &sc->parent_tag)) { 2294 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 2295 __FILE__, __LINE__); 2296 rc = ENOMEM; 2297 goto bce_dma_alloc_exit; 2298 } 2299 2300 /* 2301 * Create a DMA tag for the status block, allocate and clear the 2302 * memory, map the memory into DMA space, and fetch the physical 2303 * address of the block. 2304 */ 2305 if (bus_dma_tag_create(sc->parent_tag, 2306 BCE_DMA_ALIGN, 2307 BCE_DMA_BOUNDARY, 2308 sc->max_bus_addr, 2309 BUS_SPACE_MAXADDR, 2310 NULL, NULL, 2311 BCE_STATUS_BLK_SZ, 2312 1, 2313 BCE_STATUS_BLK_SZ, 2314 0, 2315 NULL, NULL, 2316 &sc->status_tag)) { 2317 BCE_PRINTF("%s(%d): Could not allocate status block DMA tag!\n", 2318 __FILE__, __LINE__); 2319 rc = ENOMEM; 2320 goto bce_dma_alloc_exit; 2321 } 2322 2323 if(bus_dmamem_alloc(sc->status_tag, 2324 (void **)&sc->status_block, 2325 BUS_DMA_NOWAIT, 2326 &sc->status_map)) { 2327 BCE_PRINTF("%s(%d): Could not allocate status block DMA memory!\n", 2328 __FILE__, __LINE__); 2329 rc = ENOMEM; 2330 goto bce_dma_alloc_exit; 2331 } 2332 2333 bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ); 2334 2335 error = bus_dmamap_load(sc->status_tag, 2336 sc->status_map, 2337 sc->status_block, 2338 BCE_STATUS_BLK_SZ, 2339 bce_dma_map_addr, 2340 &busaddr, 2341 BUS_DMA_NOWAIT); 2342 2343 if (error) { 2344 BCE_PRINTF("%s(%d): Could not map status block DMA memory!\n", 2345 __FILE__, __LINE__); 2346 rc = ENOMEM; 2347 goto bce_dma_alloc_exit; 2348 } 2349 2350 sc->status_block_paddr = busaddr; 2351 /* DRC - Fix for 64 bit addresses. */ 2352 DBPRINT(sc, BCE_INFO, "status_block_paddr = 0x%08X\n", 2353 (u32) sc->status_block_paddr); 2354 2355 /* 2356 * Create a DMA tag for the statistics block, allocate and clear the 2357 * memory, map the memory into DMA space, and fetch the physical 2358 * address of the block. 2359 */ 2360 if (bus_dma_tag_create(sc->parent_tag, 2361 BCE_DMA_ALIGN, 2362 BCE_DMA_BOUNDARY, 2363 sc->max_bus_addr, 2364 BUS_SPACE_MAXADDR, 2365 NULL, NULL, 2366 BCE_STATS_BLK_SZ, 2367 1, 2368 BCE_STATS_BLK_SZ, 2369 0, 2370 NULL, NULL, 2371 &sc->stats_tag)) { 2372 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA tag!\n", 2373 __FILE__, __LINE__); 2374 rc = ENOMEM; 2375 goto bce_dma_alloc_exit; 2376 } 2377 2378 if (bus_dmamem_alloc(sc->stats_tag, 2379 (void **)&sc->stats_block, 2380 BUS_DMA_NOWAIT, 2381 &sc->stats_map)) { 2382 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA memory!\n", 2383 __FILE__, __LINE__); 2384 rc = ENOMEM; 2385 goto bce_dma_alloc_exit; 2386 } 2387 2388 bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ); 2389 2390 error = bus_dmamap_load(sc->stats_tag, 2391 sc->stats_map, 2392 sc->stats_block, 2393 BCE_STATS_BLK_SZ, 2394 bce_dma_map_addr, 2395 &busaddr, 2396 BUS_DMA_NOWAIT); 2397 2398 if(error) { 2399 BCE_PRINTF("%s(%d): Could not map statistics block DMA memory!\n", 2400 __FILE__, __LINE__); 2401 rc = ENOMEM; 2402 goto bce_dma_alloc_exit; 2403 } 2404 2405 sc->stats_block_paddr = busaddr; 2406 /* DRC - Fix for 64 bit address. */ 2407 DBPRINT(sc,BCE_INFO, "stats_block_paddr = 0x%08X\n", 2408 (u32) sc->stats_block_paddr); 2409 2410 /* 2411 * Create a DMA tag for the TX buffer descriptor chain, 2412 * allocate and clear the memory, and fetch the 2413 * physical address of the block. 2414 */ 2415 if(bus_dma_tag_create(sc->parent_tag, 2416 BCM_PAGE_SIZE, 2417 BCE_DMA_BOUNDARY, 2418 sc->max_bus_addr, 2419 BUS_SPACE_MAXADDR, 2420 NULL, NULL, 2421 BCE_TX_CHAIN_PAGE_SZ, 2422 1, 2423 BCE_TX_CHAIN_PAGE_SZ, 2424 0, 2425 NULL, NULL, 2426 &sc->tx_bd_chain_tag)) { 2427 BCE_PRINTF("%s(%d): Could not allocate TX descriptor chain DMA tag!\n", 2428 __FILE__, __LINE__); 2429 rc = ENOMEM; 2430 goto bce_dma_alloc_exit; 2431 } 2432 2433 for (i = 0; i < TX_PAGES; i++) { 2434 2435 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 2436 (void **)&sc->tx_bd_chain[i], 2437 BUS_DMA_NOWAIT, 2438 &sc->tx_bd_chain_map[i])) { 2439 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 2440 "chain DMA memory!\n", __FILE__, __LINE__); 2441 rc = ENOMEM; 2442 goto bce_dma_alloc_exit; 2443 } 2444 2445 error = bus_dmamap_load(sc->tx_bd_chain_tag, 2446 sc->tx_bd_chain_map[i], 2447 sc->tx_bd_chain[i], 2448 BCE_TX_CHAIN_PAGE_SZ, 2449 bce_dma_map_addr, 2450 &busaddr, 2451 BUS_DMA_NOWAIT); 2452 2453 if (error) { 2454 BCE_PRINTF("%s(%d): Could not map TX descriptor chain DMA memory!\n", 2455 __FILE__, __LINE__); 2456 rc = ENOMEM; 2457 goto bce_dma_alloc_exit; 2458 } 2459 2460 sc->tx_bd_chain_paddr[i] = busaddr; 2461 /* DRC - Fix for 64 bit systems. */ 2462 DBPRINT(sc, BCE_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n", 2463 i, (u32) sc->tx_bd_chain_paddr[i]); 2464 } 2465 2466 /* Check the required size before mapping to conserve resources. */ 2467 if (bce_tso_enable) { 2468 max_size = BCE_TSO_MAX_SIZE; 2469 max_segments = BCE_MAX_SEGMENTS; 2470 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 2471 } else { 2472 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 2473 max_segments = BCE_MAX_SEGMENTS; 2474 max_seg_size = MCLBYTES; 2475 } 2476 2477 /* Create a DMA tag for TX mbufs. */ 2478 if (bus_dma_tag_create(sc->parent_tag, 2479 1, 2480 BCE_DMA_BOUNDARY, 2481 sc->max_bus_addr, 2482 BUS_SPACE_MAXADDR, 2483 NULL, NULL, 2484 max_size, 2485 max_segments, 2486 max_seg_size, 2487 0, 2488 NULL, NULL, 2489 &sc->tx_mbuf_tag)) { 2490 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 2491 __FILE__, __LINE__); 2492 rc = ENOMEM; 2493 goto bce_dma_alloc_exit; 2494 } 2495 2496 /* Create DMA maps for the TX mbufs clusters. */ 2497 for (i = 0; i < TOTAL_TX_BD; i++) { 2498 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 2499 &sc->tx_mbuf_map[i])) { 2500 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA map!\n", 2501 __FILE__, __LINE__); 2502 rc = ENOMEM; 2503 goto bce_dma_alloc_exit; 2504 } 2505 } 2506 2507 /* 2508 * Create a DMA tag for the RX buffer descriptor chain, 2509 * allocate and clear the memory, and fetch the physical 2510 * address of the blocks. 2511 */ 2512 if (bus_dma_tag_create(sc->parent_tag, 2513 BCM_PAGE_SIZE, 2514 BCE_DMA_BOUNDARY, 2515 BUS_SPACE_MAXADDR, 2516 sc->max_bus_addr, 2517 NULL, NULL, 2518 BCE_RX_CHAIN_PAGE_SZ, 2519 1, 2520 BCE_RX_CHAIN_PAGE_SZ, 2521 0, 2522 NULL, NULL, 2523 &sc->rx_bd_chain_tag)) { 2524 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain DMA tag!\n", 2525 __FILE__, __LINE__); 2526 rc = ENOMEM; 2527 goto bce_dma_alloc_exit; 2528 } 2529 2530 for (i = 0; i < RX_PAGES; i++) { 2531 2532 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 2533 (void **)&sc->rx_bd_chain[i], 2534 BUS_DMA_NOWAIT, 2535 &sc->rx_bd_chain_map[i])) { 2536 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 2537 "DMA memory!\n", __FILE__, __LINE__); 2538 rc = ENOMEM; 2539 goto bce_dma_alloc_exit; 2540 } 2541 2542 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 2543 2544 error = bus_dmamap_load(sc->rx_bd_chain_tag, 2545 sc->rx_bd_chain_map[i], 2546 sc->rx_bd_chain[i], 2547 BCE_RX_CHAIN_PAGE_SZ, 2548 bce_dma_map_addr, 2549 &busaddr, 2550 BUS_DMA_NOWAIT); 2551 2552 if (error) { 2553 BCE_PRINTF("%s(%d): Could not map RX descriptor chain DMA memory!\n", 2554 __FILE__, __LINE__); 2555 rc = ENOMEM; 2556 goto bce_dma_alloc_exit; 2557 } 2558 2559 sc->rx_bd_chain_paddr[i] = busaddr; 2560 /* DRC - Fix for 64 bit systems. */ 2561 DBPRINT(sc, BCE_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n", 2562 i, (u32) sc->rx_bd_chain_paddr[i]); 2563 } 2564 2565 /* 2566 * Create a DMA tag for RX mbufs. 2567 */ 2568 if (bus_dma_tag_create(sc->parent_tag, 2569 1, 2570 BCE_DMA_BOUNDARY, 2571 sc->max_bus_addr, 2572 BUS_SPACE_MAXADDR, 2573 NULL, NULL, 2574 MJUM9BYTES, 2575 BCE_MAX_SEGMENTS, 2576 MJUM9BYTES, 2577 0, 2578 NULL, NULL, 2579 &sc->rx_mbuf_tag)) { 2580 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 2581 __FILE__, __LINE__); 2582 rc = ENOMEM; 2583 goto bce_dma_alloc_exit; 2584 } 2585 2586 /* Create DMA maps for the RX mbuf clusters. */ 2587 for (i = 0; i < TOTAL_RX_BD; i++) { 2588 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 2589 &sc->rx_mbuf_map[i])) { 2590 BCE_PRINTF("%s(%d): Unable to create RX mbuf DMA map!\n", 2591 __FILE__, __LINE__); 2592 rc = ENOMEM; 2593 goto bce_dma_alloc_exit; 2594 } 2595 } 2596 2597 bce_dma_alloc_exit: 2598 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 2599 2600 return(rc); 2601 } 2602 2603 2604 /****************************************************************************/ 2605 /* Release all resources used by the driver. */ 2606 /* */ 2607 /* Releases all resources acquired by the driver including interrupts, */ 2608 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 2609 /* */ 2610 /* Returns: */ 2611 /* Nothing. */ 2612 /****************************************************************************/ 2613 static void 2614 bce_release_resources(struct bce_softc *sc) 2615 { 2616 device_t dev; 2617 2618 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 2619 2620 dev = sc->bce_dev; 2621 2622 bce_dma_free(sc); 2623 2624 if (sc->bce_intrhand != NULL) { 2625 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 2626 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 2627 } 2628 2629 if (sc->bce_res_irq != NULL) { 2630 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 2631 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_flags & BCE_USING_MSI_FLAG ? 1 : 0, 2632 sc->bce_res_irq); 2633 } 2634 2635 if (sc->bce_flags & BCE_USING_MSI_FLAG) { 2636 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI vector.\n"); 2637 pci_release_msi(dev); 2638 } 2639 2640 if (sc->bce_res_mem != NULL) { 2641 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 2642 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->bce_res_mem); 2643 } 2644 2645 if (sc->bce_ifp != NULL) { 2646 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 2647 if_free(sc->bce_ifp); 2648 } 2649 2650 if (mtx_initialized(&sc->bce_mtx)) 2651 BCE_LOCK_DESTROY(sc); 2652 2653 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 2654 2655 } 2656 2657 2658 /****************************************************************************/ 2659 /* Firmware synchronization. */ 2660 /* */ 2661 /* Before performing certain events such as a chip reset, synchronize with */ 2662 /* the firmware first. */ 2663 /* */ 2664 /* Returns: */ 2665 /* 0 for success, positive value for failure. */ 2666 /****************************************************************************/ 2667 static int 2668 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 2669 { 2670 int i, rc = 0; 2671 u32 val; 2672 2673 /* Don't waste any time if we've timed out before. */ 2674 if (sc->bce_fw_timed_out) { 2675 rc = EBUSY; 2676 goto bce_fw_sync_exit; 2677 } 2678 2679 /* Increment the message sequence number. */ 2680 sc->bce_fw_wr_seq++; 2681 msg_data |= sc->bce_fw_wr_seq; 2682 2683 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = 0x%08X\n", msg_data); 2684 2685 /* Send the message to the bootcode driver mailbox. */ 2686 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data); 2687 2688 /* Wait for the bootcode to acknowledge the message. */ 2689 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 2690 /* Check for a response in the bootcode firmware mailbox. */ 2691 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_FW_MB); 2692 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 2693 break; 2694 DELAY(1000); 2695 } 2696 2697 /* If we've timed out, tell the bootcode that we've stopped waiting. */ 2698 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 2699 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 2700 2701 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 2702 "msg_data = 0x%08X\n", 2703 __FILE__, __LINE__, msg_data); 2704 2705 msg_data &= ~BCE_DRV_MSG_CODE; 2706 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 2707 2708 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data); 2709 2710 sc->bce_fw_timed_out = 1; 2711 rc = EBUSY; 2712 } 2713 2714 bce_fw_sync_exit: 2715 return (rc); 2716 } 2717 2718 2719 /****************************************************************************/ 2720 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 2721 /* */ 2722 /* Returns: */ 2723 /* Nothing. */ 2724 /****************************************************************************/ 2725 static void 2726 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code, 2727 u32 rv2p_code_len, u32 rv2p_proc) 2728 { 2729 int i; 2730 u32 val; 2731 2732 for (i = 0; i < rv2p_code_len; i += 8) { 2733 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 2734 rv2p_code++; 2735 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 2736 rv2p_code++; 2737 2738 if (rv2p_proc == RV2P_PROC1) { 2739 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 2740 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 2741 } 2742 else { 2743 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 2744 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 2745 } 2746 } 2747 2748 /* Reset the processor, un-stall is done later. */ 2749 if (rv2p_proc == RV2P_PROC1) { 2750 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 2751 } 2752 else { 2753 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 2754 } 2755 } 2756 2757 2758 /****************************************************************************/ 2759 /* Load RISC processor firmware. */ 2760 /* */ 2761 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 2762 /* associated with a particular processor. */ 2763 /* */ 2764 /* Returns: */ 2765 /* Nothing. */ 2766 /****************************************************************************/ 2767 static void 2768 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 2769 struct fw_info *fw) 2770 { 2771 u32 offset; 2772 u32 val; 2773 2774 /* Halt the CPU. */ 2775 val = REG_RD_IND(sc, cpu_reg->mode); 2776 val |= cpu_reg->mode_value_halt; 2777 REG_WR_IND(sc, cpu_reg->mode, val); 2778 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 2779 2780 /* Load the Text area. */ 2781 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 2782 if (fw->text) { 2783 int j; 2784 2785 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 2786 REG_WR_IND(sc, offset, fw->text[j]); 2787 } 2788 } 2789 2790 /* Load the Data area. */ 2791 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 2792 if (fw->data) { 2793 int j; 2794 2795 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 2796 REG_WR_IND(sc, offset, fw->data[j]); 2797 } 2798 } 2799 2800 /* Load the SBSS area. */ 2801 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 2802 if (fw->sbss) { 2803 int j; 2804 2805 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 2806 REG_WR_IND(sc, offset, fw->sbss[j]); 2807 } 2808 } 2809 2810 /* Load the BSS area. */ 2811 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 2812 if (fw->bss) { 2813 int j; 2814 2815 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 2816 REG_WR_IND(sc, offset, fw->bss[j]); 2817 } 2818 } 2819 2820 /* Load the Read-Only area. */ 2821 offset = cpu_reg->spad_base + 2822 (fw->rodata_addr - cpu_reg->mips_view_base); 2823 if (fw->rodata) { 2824 int j; 2825 2826 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 2827 REG_WR_IND(sc, offset, fw->rodata[j]); 2828 } 2829 } 2830 2831 /* Clear the pre-fetch instruction. */ 2832 REG_WR_IND(sc, cpu_reg->inst, 0); 2833 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 2834 2835 /* Start the CPU. */ 2836 val = REG_RD_IND(sc, cpu_reg->mode); 2837 val &= ~cpu_reg->mode_value_halt; 2838 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 2839 REG_WR_IND(sc, cpu_reg->mode, val); 2840 } 2841 2842 2843 /****************************************************************************/ 2844 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */ 2845 /* */ 2846 /* Loads the firmware for each CPU and starts the CPU. */ 2847 /* */ 2848 /* Returns: */ 2849 /* Nothing. */ 2850 /****************************************************************************/ 2851 static void 2852 bce_init_cpus(struct bce_softc *sc) 2853 { 2854 struct cpu_reg cpu_reg; 2855 struct fw_info fw; 2856 2857 /* Initialize the RV2P processor. */ 2858 bce_load_rv2p_fw(sc, bce_rv2p_proc1, sizeof(bce_rv2p_proc1), RV2P_PROC1); 2859 bce_load_rv2p_fw(sc, bce_rv2p_proc2, sizeof(bce_rv2p_proc2), RV2P_PROC2); 2860 2861 /* Initialize the RX Processor. */ 2862 cpu_reg.mode = BCE_RXP_CPU_MODE; 2863 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 2864 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 2865 cpu_reg.state = BCE_RXP_CPU_STATE; 2866 cpu_reg.state_value_clear = 0xffffff; 2867 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 2868 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 2869 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 2870 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 2871 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 2872 cpu_reg.spad_base = BCE_RXP_SCRATCH; 2873 cpu_reg.mips_view_base = 0x8000000; 2874 2875 fw.ver_major = bce_RXP_b06FwReleaseMajor; 2876 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 2877 fw.ver_fix = bce_RXP_b06FwReleaseFix; 2878 fw.start_addr = bce_RXP_b06FwStartAddr; 2879 2880 fw.text_addr = bce_RXP_b06FwTextAddr; 2881 fw.text_len = bce_RXP_b06FwTextLen; 2882 fw.text_index = 0; 2883 fw.text = bce_RXP_b06FwText; 2884 2885 fw.data_addr = bce_RXP_b06FwDataAddr; 2886 fw.data_len = bce_RXP_b06FwDataLen; 2887 fw.data_index = 0; 2888 fw.data = bce_RXP_b06FwData; 2889 2890 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 2891 fw.sbss_len = bce_RXP_b06FwSbssLen; 2892 fw.sbss_index = 0; 2893 fw.sbss = bce_RXP_b06FwSbss; 2894 2895 fw.bss_addr = bce_RXP_b06FwBssAddr; 2896 fw.bss_len = bce_RXP_b06FwBssLen; 2897 fw.bss_index = 0; 2898 fw.bss = bce_RXP_b06FwBss; 2899 2900 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 2901 fw.rodata_len = bce_RXP_b06FwRodataLen; 2902 fw.rodata_index = 0; 2903 fw.rodata = bce_RXP_b06FwRodata; 2904 2905 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 2906 bce_load_cpu_fw(sc, &cpu_reg, &fw); 2907 2908 /* Initialize the TX Processor. */ 2909 cpu_reg.mode = BCE_TXP_CPU_MODE; 2910 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 2911 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 2912 cpu_reg.state = BCE_TXP_CPU_STATE; 2913 cpu_reg.state_value_clear = 0xffffff; 2914 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 2915 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 2916 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 2917 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 2918 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 2919 cpu_reg.spad_base = BCE_TXP_SCRATCH; 2920 cpu_reg.mips_view_base = 0x8000000; 2921 2922 fw.ver_major = bce_TXP_b06FwReleaseMajor; 2923 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 2924 fw.ver_fix = bce_TXP_b06FwReleaseFix; 2925 fw.start_addr = bce_TXP_b06FwStartAddr; 2926 2927 fw.text_addr = bce_TXP_b06FwTextAddr; 2928 fw.text_len = bce_TXP_b06FwTextLen; 2929 fw.text_index = 0; 2930 fw.text = bce_TXP_b06FwText; 2931 2932 fw.data_addr = bce_TXP_b06FwDataAddr; 2933 fw.data_len = bce_TXP_b06FwDataLen; 2934 fw.data_index = 0; 2935 fw.data = bce_TXP_b06FwData; 2936 2937 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 2938 fw.sbss_len = bce_TXP_b06FwSbssLen; 2939 fw.sbss_index = 0; 2940 fw.sbss = bce_TXP_b06FwSbss; 2941 2942 fw.bss_addr = bce_TXP_b06FwBssAddr; 2943 fw.bss_len = bce_TXP_b06FwBssLen; 2944 fw.bss_index = 0; 2945 fw.bss = bce_TXP_b06FwBss; 2946 2947 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 2948 fw.rodata_len = bce_TXP_b06FwRodataLen; 2949 fw.rodata_index = 0; 2950 fw.rodata = bce_TXP_b06FwRodata; 2951 2952 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 2953 bce_load_cpu_fw(sc, &cpu_reg, &fw); 2954 2955 /* Initialize the TX Patch-up Processor. */ 2956 cpu_reg.mode = BCE_TPAT_CPU_MODE; 2957 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 2958 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 2959 cpu_reg.state = BCE_TPAT_CPU_STATE; 2960 cpu_reg.state_value_clear = 0xffffff; 2961 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 2962 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 2963 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 2964 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 2965 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 2966 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 2967 cpu_reg.mips_view_base = 0x8000000; 2968 2969 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 2970 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 2971 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 2972 fw.start_addr = bce_TPAT_b06FwStartAddr; 2973 2974 fw.text_addr = bce_TPAT_b06FwTextAddr; 2975 fw.text_len = bce_TPAT_b06FwTextLen; 2976 fw.text_index = 0; 2977 fw.text = bce_TPAT_b06FwText; 2978 2979 fw.data_addr = bce_TPAT_b06FwDataAddr; 2980 fw.data_len = bce_TPAT_b06FwDataLen; 2981 fw.data_index = 0; 2982 fw.data = bce_TPAT_b06FwData; 2983 2984 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 2985 fw.sbss_len = bce_TPAT_b06FwSbssLen; 2986 fw.sbss_index = 0; 2987 fw.sbss = bce_TPAT_b06FwSbss; 2988 2989 fw.bss_addr = bce_TPAT_b06FwBssAddr; 2990 fw.bss_len = bce_TPAT_b06FwBssLen; 2991 fw.bss_index = 0; 2992 fw.bss = bce_TPAT_b06FwBss; 2993 2994 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 2995 fw.rodata_len = bce_TPAT_b06FwRodataLen; 2996 fw.rodata_index = 0; 2997 fw.rodata = bce_TPAT_b06FwRodata; 2998 2999 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 3000 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3001 3002 /* Initialize the Completion Processor. */ 3003 cpu_reg.mode = BCE_COM_CPU_MODE; 3004 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 3005 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 3006 cpu_reg.state = BCE_COM_CPU_STATE; 3007 cpu_reg.state_value_clear = 0xffffff; 3008 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 3009 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 3010 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 3011 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 3012 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 3013 cpu_reg.spad_base = BCE_COM_SCRATCH; 3014 cpu_reg.mips_view_base = 0x8000000; 3015 3016 fw.ver_major = bce_COM_b06FwReleaseMajor; 3017 fw.ver_minor = bce_COM_b06FwReleaseMinor; 3018 fw.ver_fix = bce_COM_b06FwReleaseFix; 3019 fw.start_addr = bce_COM_b06FwStartAddr; 3020 3021 fw.text_addr = bce_COM_b06FwTextAddr; 3022 fw.text_len = bce_COM_b06FwTextLen; 3023 fw.text_index = 0; 3024 fw.text = bce_COM_b06FwText; 3025 3026 fw.data_addr = bce_COM_b06FwDataAddr; 3027 fw.data_len = bce_COM_b06FwDataLen; 3028 fw.data_index = 0; 3029 fw.data = bce_COM_b06FwData; 3030 3031 fw.sbss_addr = bce_COM_b06FwSbssAddr; 3032 fw.sbss_len = bce_COM_b06FwSbssLen; 3033 fw.sbss_index = 0; 3034 fw.sbss = bce_COM_b06FwSbss; 3035 3036 fw.bss_addr = bce_COM_b06FwBssAddr; 3037 fw.bss_len = bce_COM_b06FwBssLen; 3038 fw.bss_index = 0; 3039 fw.bss = bce_COM_b06FwBss; 3040 3041 fw.rodata_addr = bce_COM_b06FwRodataAddr; 3042 fw.rodata_len = bce_COM_b06FwRodataLen; 3043 fw.rodata_index = 0; 3044 fw.rodata = bce_COM_b06FwRodata; 3045 3046 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 3047 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3048 } 3049 3050 3051 /****************************************************************************/ 3052 /* Initialize context memory. */ 3053 /* */ 3054 /* Clears the memory associated with each Context ID (CID). */ 3055 /* */ 3056 /* Returns: */ 3057 /* Nothing. */ 3058 /****************************************************************************/ 3059 static void 3060 bce_init_context(struct bce_softc *sc) 3061 { 3062 u32 vcid; 3063 3064 vcid = 96; 3065 while (vcid) { 3066 u32 vcid_addr, pcid_addr, offset; 3067 3068 vcid--; 3069 3070 vcid_addr = GET_CID_ADDR(vcid); 3071 pcid_addr = vcid_addr; 3072 3073 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0x00); 3074 REG_WR(sc, BCE_CTX_PAGE_TBL, pcid_addr); 3075 3076 /* Zero out the context. */ 3077 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 3078 CTX_WR(sc, 0x00, offset, 0); 3079 } 3080 3081 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 3082 REG_WR(sc, BCE_CTX_PAGE_TBL, pcid_addr); 3083 } 3084 } 3085 3086 3087 /****************************************************************************/ 3088 /* Fetch the permanent MAC address of the controller. */ 3089 /* */ 3090 /* Returns: */ 3091 /* Nothing. */ 3092 /****************************************************************************/ 3093 static void 3094 bce_get_mac_addr(struct bce_softc *sc) 3095 { 3096 u32 mac_lo = 0, mac_hi = 0; 3097 3098 /* 3099 * The NetXtreme II bootcode populates various NIC 3100 * power-on and runtime configuration items in a 3101 * shared memory area. The factory configured MAC 3102 * address is available from both NVRAM and the 3103 * shared memory area so we'll read the value from 3104 * shared memory for speed. 3105 */ 3106 3107 mac_hi = REG_RD_IND(sc, sc->bce_shmem_base + 3108 BCE_PORT_HW_CFG_MAC_UPPER); 3109 mac_lo = REG_RD_IND(sc, sc->bce_shmem_base + 3110 BCE_PORT_HW_CFG_MAC_LOWER); 3111 3112 if ((mac_lo == 0) && (mac_hi == 0)) { 3113 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 3114 __FILE__, __LINE__); 3115 } else { 3116 sc->eaddr[0] = (u_char)(mac_hi >> 8); 3117 sc->eaddr[1] = (u_char)(mac_hi >> 0); 3118 sc->eaddr[2] = (u_char)(mac_lo >> 24); 3119 sc->eaddr[3] = (u_char)(mac_lo >> 16); 3120 sc->eaddr[4] = (u_char)(mac_lo >> 8); 3121 sc->eaddr[5] = (u_char)(mac_lo >> 0); 3122 } 3123 3124 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet address = %6D\n", sc->eaddr, ":"); 3125 } 3126 3127 3128 /****************************************************************************/ 3129 /* Program the MAC address. */ 3130 /* */ 3131 /* Returns: */ 3132 /* Nothing. */ 3133 /****************************************************************************/ 3134 static void 3135 bce_set_mac_addr(struct bce_softc *sc) 3136 { 3137 u32 val; 3138 u8 *mac_addr = sc->eaddr; 3139 3140 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = %6D\n", sc->eaddr, ":"); 3141 3142 val = (mac_addr[0] << 8) | mac_addr[1]; 3143 3144 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 3145 3146 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3147 (mac_addr[4] << 8) | mac_addr[5]; 3148 3149 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 3150 } 3151 3152 3153 /****************************************************************************/ 3154 /* Stop the controller. */ 3155 /* */ 3156 /* Returns: */ 3157 /* Nothing. */ 3158 /****************************************************************************/ 3159 static void 3160 bce_stop(struct bce_softc *sc) 3161 { 3162 struct ifnet *ifp; 3163 struct ifmedia_entry *ifm; 3164 struct mii_data *mii = NULL; 3165 int mtmp, itmp; 3166 3167 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3168 3169 BCE_LOCK_ASSERT(sc); 3170 3171 ifp = sc->bce_ifp; 3172 3173 mii = device_get_softc(sc->bce_miibus); 3174 3175 callout_stop(&sc->bce_tick_callout); 3176 3177 /* Disable the transmit/receive blocks. */ 3178 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 0x5ffffff); 3179 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 3180 DELAY(20); 3181 3182 bce_disable_intr(sc); 3183 3184 /* Free RX buffers. */ 3185 bce_free_rx_chain(sc); 3186 3187 /* Free TX buffers. */ 3188 bce_free_tx_chain(sc); 3189 3190 /* 3191 * Isolate/power down the PHY, but leave the media selection 3192 * unchanged so that things will be put back to normal when 3193 * we bring the interface back up. 3194 */ 3195 3196 itmp = ifp->if_flags; 3197 ifp->if_flags |= IFF_UP; 3198 3199 /* If we are called from bce_detach(), mii is already NULL. */ 3200 if (mii != NULL) { 3201 ifm = mii->mii_media.ifm_cur; 3202 mtmp = ifm->ifm_media; 3203 ifm->ifm_media = IFM_ETHER | IFM_NONE; 3204 mii_mediachg(mii); 3205 ifm->ifm_media = mtmp; 3206 } 3207 3208 ifp->if_flags = itmp; 3209 sc->watchdog_timer = 0; 3210 3211 sc->bce_link = 0; 3212 3213 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3214 3215 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3216 } 3217 3218 3219 static int 3220 bce_reset(struct bce_softc *sc, u32 reset_code) 3221 { 3222 u32 val; 3223 int i, rc = 0; 3224 3225 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 3226 __FUNCTION__, reset_code); 3227 3228 /* Wait for pending PCI transactions to complete. */ 3229 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 3230 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 3231 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 3232 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 3233 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 3234 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 3235 DELAY(5); 3236 3237 /* Assume bootcode is running. */ 3238 sc->bce_fw_timed_out = 0; 3239 3240 /* Give the firmware a chance to prepare for the reset. */ 3241 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 3242 if (rc) 3243 goto bce_reset_exit; 3244 3245 /* Set a firmware reminder that this is a soft reset. */ 3246 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_RESET_SIGNATURE, 3247 BCE_DRV_RESET_SIGNATURE_MAGIC); 3248 3249 /* Dummy read to force the chip to complete all current transactions. */ 3250 val = REG_RD(sc, BCE_MISC_ID); 3251 3252 /* Chip reset. */ 3253 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3254 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 3255 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 3256 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 3257 3258 /* Allow up to 30us for reset to complete. */ 3259 for (i = 0; i < 10; i++) { 3260 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 3261 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3262 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 3263 break; 3264 } 3265 DELAY(10); 3266 } 3267 3268 /* Check that reset completed successfully. */ 3269 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3270 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 3271 BCE_PRINTF("%s(%d): Reset failed!\n", 3272 __FILE__, __LINE__); 3273 rc = EBUSY; 3274 goto bce_reset_exit; 3275 } 3276 3277 /* Make sure byte swapping is properly configured. */ 3278 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 3279 if (val != 0x01020304) { 3280 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 3281 __FILE__, __LINE__); 3282 rc = ENODEV; 3283 goto bce_reset_exit; 3284 } 3285 3286 /* Just completed a reset, assume that firmware is running again. */ 3287 sc->bce_fw_timed_out = 0; 3288 3289 /* Wait for the firmware to finish its initialization. */ 3290 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 3291 if (rc) 3292 BCE_PRINTF("%s(%d): Firmware did not complete initialization!\n", 3293 __FILE__, __LINE__); 3294 3295 bce_reset_exit: 3296 return (rc); 3297 } 3298 3299 3300 static int 3301 bce_chipinit(struct bce_softc *sc) 3302 { 3303 u32 val; 3304 int rc = 0; 3305 3306 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3307 3308 /* Make sure the interrupt is not active. */ 3309 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 3310 3311 /* 3312 * Initialize DMA byte/word swapping, configure the number of DMA 3313 * channels and PCI clock compensation delay. 3314 */ 3315 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 3316 BCE_DMA_CONFIG_DATA_WORD_SWAP | 3317 #if BYTE_ORDER == BIG_ENDIAN 3318 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 3319 #endif 3320 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 3321 DMA_READ_CHANS << 12 | 3322 DMA_WRITE_CHANS << 16; 3323 3324 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 3325 3326 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 3327 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 3328 3329 /* 3330 * This setting resolves a problem observed on certain Intel PCI 3331 * chipsets that cannot handle multiple outstanding DMA operations. 3332 * See errata E9_5706A1_65. 3333 */ 3334 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 3335 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 3336 !(sc->bce_flags & BCE_PCIX_FLAG)) 3337 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 3338 3339 REG_WR(sc, BCE_DMA_CONFIG, val); 3340 3341 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */ 3342 if (sc->bce_flags & BCE_PCIX_FLAG) { 3343 u16 val; 3344 3345 val = pci_read_config(sc->bce_dev, BCE_PCI_PCIX_CMD, 2); 3346 pci_write_config(sc->bce_dev, BCE_PCI_PCIX_CMD, val & ~0x2, 2); 3347 } 3348 3349 /* Enable the RX_V2P and Context state machines before access. */ 3350 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 3351 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 3352 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 3353 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 3354 3355 /* Initialize context mapping and zero out the quick contexts. */ 3356 bce_init_context(sc); 3357 3358 /* Initialize the on-boards CPUs */ 3359 bce_init_cpus(sc); 3360 3361 /* Prepare NVRAM for access. */ 3362 if (bce_init_nvram(sc)) { 3363 rc = ENODEV; 3364 goto bce_chipinit_exit; 3365 } 3366 3367 /* Set the kernel bypass block size */ 3368 val = REG_RD(sc, BCE_MQ_CONFIG); 3369 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 3370 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 3371 REG_WR(sc, BCE_MQ_CONFIG, val); 3372 3373 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 3374 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 3375 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 3376 3377 /* Set the page size and clear the RV2P processor stall bits. */ 3378 val = (BCM_PAGE_BITS - 8) << 24; 3379 REG_WR(sc, BCE_RV2P_CONFIG, val); 3380 3381 /* Configure page size. */ 3382 val = REG_RD(sc, BCE_TBDR_CONFIG); 3383 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 3384 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 3385 REG_WR(sc, BCE_TBDR_CONFIG, val); 3386 3387 bce_chipinit_exit: 3388 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3389 3390 return(rc); 3391 } 3392 3393 3394 /****************************************************************************/ 3395 /* Initialize the controller in preparation to send/receive traffic. */ 3396 /* */ 3397 /* Returns: */ 3398 /* 0 for success, positive value for failure. */ 3399 /****************************************************************************/ 3400 static int 3401 bce_blockinit(struct bce_softc *sc) 3402 { 3403 u32 reg, val; 3404 int rc = 0; 3405 3406 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3407 3408 /* Load the hardware default MAC address. */ 3409 bce_set_mac_addr(sc); 3410 3411 /* Set the Ethernet backoff seed value */ 3412 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 3413 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 3414 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 3415 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 3416 3417 sc->last_status_idx = 0; 3418 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 3419 3420 /* Set up link change interrupt generation. */ 3421 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 3422 3423 /* Program the physical address of the status block. */ 3424 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 3425 BCE_ADDR_LO(sc->status_block_paddr)); 3426 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 3427 BCE_ADDR_HI(sc->status_block_paddr)); 3428 3429 /* Program the physical address of the statistics block. */ 3430 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 3431 BCE_ADDR_LO(sc->stats_block_paddr)); 3432 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 3433 BCE_ADDR_HI(sc->stats_block_paddr)); 3434 3435 /* Program various host coalescing parameters. */ 3436 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 3437 (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); 3438 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 3439 (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); 3440 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 3441 (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip); 3442 REG_WR(sc, BCE_HC_TX_TICKS, 3443 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 3444 REG_WR(sc, BCE_HC_RX_TICKS, 3445 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 3446 REG_WR(sc, BCE_HC_COM_TICKS, 3447 (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks); 3448 REG_WR(sc, BCE_HC_CMD_TICKS, 3449 (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks); 3450 REG_WR(sc, BCE_HC_STATS_TICKS, 3451 (sc->bce_stats_ticks & 0xffff00)); 3452 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 3453 0xbb8); /* 3ms */ 3454 REG_WR(sc, BCE_HC_CONFIG, 3455 (BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 3456 BCE_HC_CONFIG_COLLECT_STATS)); 3457 3458 /* Clear the internal statistics counters. */ 3459 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 3460 3461 /* Verify that bootcode is running. */ 3462 reg = REG_RD_IND(sc, sc->bce_shmem_base + BCE_DEV_INFO_SIGNATURE); 3463 3464 DBRUNIF(DB_RANDOMTRUE(bce_debug_bootcode_running_failure), 3465 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 3466 __FILE__, __LINE__); 3467 reg = 0); 3468 3469 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 3470 BCE_DEV_INFO_SIGNATURE_MAGIC) { 3471 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 3472 "Expected: 08%08X\n", __FILE__, __LINE__, 3473 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 3474 BCE_DEV_INFO_SIGNATURE_MAGIC); 3475 rc = ENODEV; 3476 goto bce_blockinit_exit; 3477 } 3478 3479 /* Allow bootcode to apply any additional fixes before enabling MAC. */ 3480 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET); 3481 3482 /* Enable link state change interrupt generation. */ 3483 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 3484 3485 /* Enable all remaining blocks in the MAC. */ 3486 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 0x5ffffff); 3487 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 3488 DELAY(20); 3489 3490 bce_blockinit_exit: 3491 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3492 3493 return (rc); 3494 } 3495 3496 3497 /****************************************************************************/ 3498 /* Encapsulate an mbuf cluster into the rx_bd chain. */ 3499 /* */ 3500 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */ 3501 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */ 3502 /* necessary. */ 3503 /* */ 3504 /* Todo: Consider writing the hardware mailboxes here to make rx_bd's */ 3505 /* available to the hardware as soon as possible. */ 3506 /* */ 3507 /* Returns: */ 3508 /* 0 for success, positive value for failure. */ 3509 /****************************************************************************/ 3510 static int 3511 bce_get_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, u16 *chain_prod, 3512 u32 *prod_bseq) 3513 { 3514 bus_dmamap_t map; 3515 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 3516 struct mbuf *m_new = NULL; 3517 struct rx_bd *rxbd; 3518 int i, nsegs, error, rc = 0; 3519 #ifdef BCE_DEBUG 3520 u16 debug_chain_prod = *chain_prod; 3521 #endif 3522 3523 DBPRINT(sc, (BCE_VERBOSE_RESET | BCE_VERBOSE_RECV), "Entering %s()\n", 3524 __FUNCTION__); 3525 3526 /* Make sure the inputs are valid. */ 3527 DBRUNIF((*chain_prod > MAX_RX_BD), 3528 BCE_PRINTF("%s(%d): RX producer out of range: 0x%04X > 0x%04X\n", 3529 __FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD)); 3530 3531 DBPRINT(sc, BCE_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, " 3532 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); 3533 3534 /* Check whether this is a new mbuf allocation. */ 3535 if (m == NULL) { 3536 3537 /* Simulate an mbuf allocation failure. */ 3538 DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure), 3539 sc->mbuf_alloc_failed++; 3540 sc->mbuf_sim_alloc_failed++; 3541 rc = ENOBUFS; 3542 goto bce_get_buf_exit); 3543 3544 /* This is a new mbuf allocation. */ 3545 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 3546 if (m_new == NULL) { 3547 3548 DBPRINT(sc, BCE_WARN, "%s(%d): RX mbuf header allocation failed!\n", 3549 __FILE__, __LINE__); 3550 3551 sc->mbuf_alloc_failed++; 3552 3553 rc = ENOBUFS; 3554 goto bce_get_buf_exit; 3555 } 3556 3557 DBRUNIF(1, sc->rx_mbuf_alloc++); 3558 3559 /* Simulate an mbuf cluster allocation failure. */ 3560 DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure), 3561 m_freem(m_new); 3562 sc->rx_mbuf_alloc--; 3563 sc->mbuf_alloc_failed++; 3564 sc->mbuf_sim_alloc_failed++; 3565 rc = ENOBUFS; 3566 goto bce_get_buf_exit); 3567 3568 /* Attach a cluster to the mbuf. */ 3569 m_cljget(m_new, M_DONTWAIT, sc->mbuf_alloc_size); 3570 if (!(m_new->m_flags & M_EXT)) { 3571 3572 DBPRINT(sc, BCE_WARN, "%s(%d): RX mbuf chain allocation failed!\n", 3573 __FILE__, __LINE__); 3574 3575 m_freem(m_new); 3576 DBRUNIF(1, sc->rx_mbuf_alloc--); 3577 3578 sc->mbuf_alloc_failed++; 3579 rc = ENOBUFS; 3580 goto bce_get_buf_exit; 3581 } 3582 3583 /* Initialize the mbuf cluster. */ 3584 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size; 3585 } else { 3586 /* Reuse an existing mbuf. */ 3587 m_new = m; 3588 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size; 3589 m_new->m_data = m_new->m_ext.ext_buf; 3590 } 3591 3592 /* Map the mbuf cluster into device memory. */ 3593 map = sc->rx_mbuf_map[*chain_prod]; 3594 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new, 3595 segs, &nsegs, BUS_DMA_NOWAIT); 3596 3597 /* Handle any mapping errors. */ 3598 if (error) { 3599 BCE_PRINTF("%s(%d): Error mapping mbuf into RX chain!\n", 3600 __FILE__, __LINE__); 3601 3602 m_freem(m_new); 3603 DBRUNIF(1, sc->rx_mbuf_alloc--); 3604 3605 rc = ENOBUFS; 3606 goto bce_get_buf_exit; 3607 } 3608 3609 /* Make sure there is room in the receive chain. */ 3610 if (nsegs > sc->free_rx_bd) { 3611 bus_dmamap_unload(sc->rx_mbuf_tag, map); 3612 3613 m_freem(m_new); 3614 DBRUNIF(1, sc->rx_mbuf_alloc--); 3615 3616 rc = EFBIG; 3617 goto bce_get_buf_exit; 3618 } 3619 3620 #ifdef BCE_DEBUG 3621 /* Track the distribution of buffer segments. */ 3622 sc->rx_mbuf_segs[nsegs]++; 3623 #endif 3624 3625 /* Update some debug statistic counters */ 3626 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 3627 sc->rx_low_watermark = sc->free_rx_bd); 3628 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 3629 3630 /* Setup the rx_bd for the first segment. */ 3631 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 3632 3633 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 3634 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 3635 rxbd->rx_bd_len = htole32(segs[0].ds_len); 3636 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START); 3637 *prod_bseq += segs[0].ds_len; 3638 3639 for (i = 1; i < nsegs; i++) { 3640 3641 *prod = NEXT_RX_BD(*prod); 3642 *chain_prod = RX_CHAIN_IDX(*prod); 3643 3644 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 3645 3646 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr)); 3647 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr)); 3648 rxbd->rx_bd_len = htole32(segs[i].ds_len); 3649 rxbd->rx_bd_flags = 0; 3650 *prod_bseq += segs[i].ds_len; 3651 } 3652 3653 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END); 3654 3655 /* Save the mbuf and update our counter. */ 3656 sc->rx_mbuf_ptr[*chain_prod] = m_new; 3657 sc->free_rx_bd -= nsegs; 3658 3659 DBRUN(BCE_VERBOSE_RECV, bce_dump_rx_mbuf_chain(sc, debug_chain_prod, 3660 nsegs)); 3661 3662 DBPRINT(sc, BCE_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, " 3663 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); 3664 3665 bce_get_buf_exit: 3666 DBPRINT(sc, (BCE_VERBOSE_RESET | BCE_VERBOSE_RECV), "Exiting %s()\n", 3667 __FUNCTION__); 3668 3669 return(rc); 3670 } 3671 3672 3673 /****************************************************************************/ 3674 /* Allocate memory and initialize the TX data structures. */ 3675 /* */ 3676 /* Returns: */ 3677 /* 0 for success, positive value for failure. */ 3678 /****************************************************************************/ 3679 static int 3680 bce_init_tx_chain(struct bce_softc *sc) 3681 { 3682 struct tx_bd *txbd; 3683 u32 val; 3684 int i, rc = 0; 3685 3686 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3687 3688 /* Set the initial TX producer/consumer indices. */ 3689 sc->tx_prod = 0; 3690 sc->tx_cons = 0; 3691 sc->tx_prod_bseq = 0; 3692 sc->used_tx_bd = 0; 3693 sc->max_tx_bd = USABLE_TX_BD; 3694 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD); 3695 DBRUNIF(1, sc->tx_full_count = 0); 3696 3697 /* 3698 * The NetXtreme II supports a linked-list structre called 3699 * a Buffer Descriptor Chain (or BD chain). A BD chain 3700 * consists of a series of 1 or more chain pages, each of which 3701 * consists of a fixed number of BD entries. 3702 * The last BD entry on each page is a pointer to the next page 3703 * in the chain, and the last pointer in the BD chain 3704 * points back to the beginning of the chain. 3705 */ 3706 3707 /* Set the TX next pointer chain entries. */ 3708 for (i = 0; i < TX_PAGES; i++) { 3709 int j; 3710 3711 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 3712 3713 /* Check if we've reached the last page. */ 3714 if (i == (TX_PAGES - 1)) 3715 j = 0; 3716 else 3717 j = i + 1; 3718 3719 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 3720 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 3721 } 3722 3723 /* Initialize the context ID for an L2 TX chain. */ 3724 val = BCE_L2CTX_TYPE_TYPE_L2; 3725 val |= BCE_L2CTX_TYPE_SIZE_L2; 3726 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TYPE, val); 3727 3728 val = BCE_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); 3729 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_CMD_TYPE, val); 3730 3731 /* Point the hardware to the first page in the chain. */ 3732 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 3733 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TBDR_BHADDR_HI, val); 3734 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 3735 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TBDR_BHADDR_LO, val); 3736 3737 DBRUN(BCE_VERBOSE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD)); 3738 3739 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3740 3741 return(rc); 3742 } 3743 3744 3745 /****************************************************************************/ 3746 /* Free memory and clear the TX data structures. */ 3747 /* */ 3748 /* Returns: */ 3749 /* Nothing. */ 3750 /****************************************************************************/ 3751 static void 3752 bce_free_tx_chain(struct bce_softc *sc) 3753 { 3754 int i; 3755 3756 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3757 3758 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 3759 for (i = 0; i < TOTAL_TX_BD; i++) { 3760 if (sc->tx_mbuf_ptr[i] != NULL) { 3761 if (sc->tx_mbuf_map != NULL) 3762 bus_dmamap_sync(sc->tx_mbuf_tag, sc->tx_mbuf_map[i], 3763 BUS_DMASYNC_POSTWRITE); 3764 m_freem(sc->tx_mbuf_ptr[i]); 3765 sc->tx_mbuf_ptr[i] = NULL; 3766 DBRUNIF(1, sc->tx_mbuf_alloc--); 3767 } 3768 } 3769 3770 /* Clear each TX chain page. */ 3771 for (i = 0; i < TX_PAGES; i++) 3772 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 3773 3774 sc->used_tx_bd = 0; 3775 3776 /* Check if we lost any mbufs in the process. */ 3777 DBRUNIF((sc->tx_mbuf_alloc), 3778 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 3779 "from tx chain!\n", 3780 __FILE__, __LINE__, sc->tx_mbuf_alloc)); 3781 3782 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3783 } 3784 3785 3786 /****************************************************************************/ 3787 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 3788 /* occurs. */ 3789 /* */ 3790 /* Returns: */ 3791 /* Nothing */ 3792 /****************************************************************************/ 3793 static void 3794 bce_fill_rx_chain(struct bce_softc *sc) 3795 { 3796 u16 prod, chain_prod; 3797 u32 prod_bseq; 3798 #ifdef BCE_DEBUG 3799 int rx_mbuf_alloc_before, free_rx_bd_before; 3800 #endif 3801 3802 DBPRINT(sc, BCE_EXCESSIVE_RECV, "Entering %s()\n", __FUNCTION__); 3803 3804 prod = sc->rx_prod; 3805 prod_bseq = sc->rx_prod_bseq; 3806 3807 #ifdef BCE_DEBUG 3808 rx_mbuf_alloc_before = sc->rx_mbuf_alloc; 3809 free_rx_bd_before = sc->free_rx_bd; 3810 #endif 3811 3812 /* Keep filling the RX chain until it's full. */ 3813 while (sc->free_rx_bd > 0) { 3814 chain_prod = RX_CHAIN_IDX(prod); 3815 if (bce_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) { 3816 /* Bail out if we can't add an mbuf to the chain. */ 3817 break; 3818 } 3819 prod = NEXT_RX_BD(prod); 3820 } 3821 3822 #if 0 3823 DBRUNIF((sc->rx_mbuf_alloc - rx_mbuf_alloc_before), 3824 BCE_PRINTF("%s(): Installed %d mbufs in %d rx_bd entries.\n", 3825 __FUNCTION__, (sc->rx_mbuf_alloc - rx_mbuf_alloc_before), 3826 (free_rx_bd_before - sc->free_rx_bd))); 3827 #endif 3828 3829 /* Save the RX chain producer index. */ 3830 sc->rx_prod = prod; 3831 sc->rx_prod_bseq = prod_bseq; 3832 3833 /* Tell the chip about the waiting rx_bd's. */ 3834 REG_WR16(sc, MB_RX_CID_ADDR + BCE_L2CTX_HOST_BDIDX, sc->rx_prod); 3835 REG_WR(sc, MB_RX_CID_ADDR + BCE_L2CTX_HOST_BSEQ, sc->rx_prod_bseq); 3836 3837 DBPRINT(sc, BCE_EXCESSIVE_RECV, "Exiting %s()\n", __FUNCTION__); 3838 3839 } 3840 3841 3842 /****************************************************************************/ 3843 /* Allocate memory and initialize the RX data structures. */ 3844 /* */ 3845 /* Returns: */ 3846 /* 0 for success, positive value for failure. */ 3847 /****************************************************************************/ 3848 static int 3849 bce_init_rx_chain(struct bce_softc *sc) 3850 { 3851 struct rx_bd *rxbd; 3852 int i, rc = 0; 3853 u32 val; 3854 3855 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3856 3857 /* Initialize the RX producer and consumer indices. */ 3858 sc->rx_prod = 0; 3859 sc->rx_cons = 0; 3860 sc->rx_prod_bseq = 0; 3861 sc->free_rx_bd = USABLE_RX_BD; 3862 sc->max_rx_bd = USABLE_RX_BD; 3863 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD); 3864 DBRUNIF(1, sc->rx_empty_count = 0); 3865 3866 /* Initialize the RX next pointer chain entries. */ 3867 for (i = 0; i < RX_PAGES; i++) { 3868 int j; 3869 3870 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 3871 3872 /* Check if we've reached the last page. */ 3873 if (i == (RX_PAGES - 1)) 3874 j = 0; 3875 else 3876 j = i + 1; 3877 3878 /* Setup the chain page pointers. */ 3879 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 3880 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 3881 } 3882 3883 /* Initialize the context ID for an L2 RX chain. */ 3884 val = BCE_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE; 3885 val |= BCE_L2CTX_CTX_TYPE_SIZE_L2; 3886 val |= 0x02 << 8; 3887 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_CTX_TYPE, val); 3888 3889 /* Point the hardware to the first page in the chain. */ 3890 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 3891 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_NX_BDHADDR_HI, val); 3892 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 3893 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_NX_BDHADDR_LO, val); 3894 3895 3896 /* Fill up the RX chain. */ 3897 bce_fill_rx_chain(sc); 3898 3899 3900 for (i = 0; i < RX_PAGES; i++) { 3901 bus_dmamap_sync( 3902 sc->rx_bd_chain_tag, 3903 sc->rx_bd_chain_map[i], 3904 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3905 } 3906 3907 DBRUN(BCE_VERBOSE_RECV, bce_dump_rx_chain(sc, 0, TOTAL_RX_BD)); 3908 3909 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3910 3911 return(rc); 3912 } 3913 3914 3915 /****************************************************************************/ 3916 /* Free memory and clear the RX data structures. */ 3917 /* */ 3918 /* Returns: */ 3919 /* Nothing. */ 3920 /****************************************************************************/ 3921 static void 3922 bce_free_rx_chain(struct bce_softc *sc) 3923 { 3924 int i; 3925 #ifdef BCE_DEBUG 3926 int rx_mbuf_alloc_before; 3927 #endif 3928 3929 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3930 3931 #ifdef BCE_DEBUG 3932 rx_mbuf_alloc_before = sc->rx_mbuf_alloc; 3933 #endif 3934 3935 /* Free any mbufs still in the RX mbuf chain. */ 3936 for (i = 0; i < TOTAL_RX_BD; i++) { 3937 if (sc->rx_mbuf_ptr[i] != NULL) { 3938 if (sc->rx_mbuf_map[i] != NULL) 3939 bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[i], 3940 BUS_DMASYNC_POSTREAD); 3941 m_freem(sc->rx_mbuf_ptr[i]); 3942 sc->rx_mbuf_ptr[i] = NULL; 3943 DBRUNIF(1, sc->rx_mbuf_alloc--); 3944 } 3945 } 3946 3947 DBRUNIF((rx_mbuf_alloc_before - sc->rx_mbuf_alloc), 3948 BCE_PRINTF("%s(): Released %d mbufs.\n", 3949 __FUNCTION__, (rx_mbuf_alloc_before - sc->rx_mbuf_alloc))); 3950 3951 /* Clear each RX chain page. */ 3952 for (i = 0; i < RX_PAGES; i++) 3953 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 3954 3955 sc->free_rx_bd = sc->max_rx_bd; 3956 3957 /* Check if we lost any mbufs in the process. */ 3958 DBRUNIF((sc->rx_mbuf_alloc), 3959 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs from rx chain!\n", 3960 __FILE__, __LINE__, sc->rx_mbuf_alloc)); 3961 3962 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3963 } 3964 3965 3966 /****************************************************************************/ 3967 /* Set media options. */ 3968 /* */ 3969 /* Returns: */ 3970 /* 0 for success, positive value for failure. */ 3971 /****************************************************************************/ 3972 static int 3973 bce_ifmedia_upd(struct ifnet *ifp) 3974 { 3975 struct bce_softc *sc; 3976 3977 sc = ifp->if_softc; 3978 BCE_LOCK(sc); 3979 bce_ifmedia_upd_locked(ifp); 3980 BCE_UNLOCK(sc); 3981 return (0); 3982 } 3983 3984 3985 /****************************************************************************/ 3986 /* Set media options. */ 3987 /* */ 3988 /* Returns: */ 3989 /* Nothing. */ 3990 /****************************************************************************/ 3991 static void 3992 bce_ifmedia_upd_locked(struct ifnet *ifp) 3993 { 3994 struct bce_softc *sc; 3995 struct mii_data *mii; 3996 struct ifmedia *ifm; 3997 3998 sc = ifp->if_softc; 3999 ifm = &sc->bce_ifmedia; 4000 BCE_LOCK_ASSERT(sc); 4001 4002 mii = device_get_softc(sc->bce_miibus); 4003 4004 /* Make sure the MII bus has been enumerated. */ 4005 if (mii) { 4006 sc->bce_link = 0; 4007 if (mii->mii_instance) { 4008 struct mii_softc *miisc; 4009 4010 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 4011 mii_phy_reset(miisc); 4012 } 4013 mii_mediachg(mii); 4014 } 4015 } 4016 4017 4018 /****************************************************************************/ 4019 /* Reports current media status. */ 4020 /* */ 4021 /* Returns: */ 4022 /* Nothing. */ 4023 /****************************************************************************/ 4024 static void 4025 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 4026 { 4027 struct bce_softc *sc; 4028 struct mii_data *mii; 4029 4030 sc = ifp->if_softc; 4031 4032 BCE_LOCK(sc); 4033 4034 mii = device_get_softc(sc->bce_miibus); 4035 4036 mii_pollstat(mii); 4037 ifmr->ifm_active = mii->mii_media_active; 4038 ifmr->ifm_status = mii->mii_media_status; 4039 4040 BCE_UNLOCK(sc); 4041 } 4042 4043 4044 /****************************************************************************/ 4045 /* Handles PHY generated interrupt events. */ 4046 /* */ 4047 /* Returns: */ 4048 /* Nothing. */ 4049 /****************************************************************************/ 4050 static void 4051 bce_phy_intr(struct bce_softc *sc) 4052 { 4053 u32 new_link_state, old_link_state; 4054 4055 new_link_state = sc->status_block->status_attn_bits & 4056 STATUS_ATTN_BITS_LINK_STATE; 4057 old_link_state = sc->status_block->status_attn_bits_ack & 4058 STATUS_ATTN_BITS_LINK_STATE; 4059 4060 /* Handle any changes if the link state has changed. */ 4061 if (new_link_state != old_link_state) { 4062 4063 DBRUN(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 4064 4065 sc->bce_link = 0; 4066 callout_stop(&sc->bce_tick_callout); 4067 bce_tick(sc); 4068 4069 /* Update the status_attn_bits_ack field in the status block. */ 4070 if (new_link_state) { 4071 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 4072 STATUS_ATTN_BITS_LINK_STATE); 4073 DBPRINT(sc, BCE_INFO_MISC, "Link is now UP.\n"); 4074 } 4075 else { 4076 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 4077 STATUS_ATTN_BITS_LINK_STATE); 4078 DBPRINT(sc, BCE_INFO_MISC, "Link is now DOWN.\n"); 4079 } 4080 4081 } 4082 4083 /* Acknowledge the link change interrupt. */ 4084 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 4085 } 4086 4087 4088 /****************************************************************************/ 4089 /* Handles received frame interrupt events. */ 4090 /* */ 4091 /* Returns: */ 4092 /* Nothing. */ 4093 /****************************************************************************/ 4094 static void 4095 bce_rx_intr(struct bce_softc *sc) 4096 { 4097 struct status_block *sblk = sc->status_block; 4098 struct ifnet *ifp = sc->bce_ifp; 4099 u16 hw_cons, sw_cons, sw_chain_cons, sw_prod, sw_chain_prod; 4100 u32 sw_prod_bseq; 4101 struct l2_fhdr *l2fhdr; 4102 4103 DBRUNIF(1, sc->rx_interrupts++); 4104 4105 /* Prepare the RX chain pages to be accessed by the host CPU. */ 4106 for (int i = 0; i < RX_PAGES; i++) 4107 bus_dmamap_sync(sc->rx_bd_chain_tag, 4108 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTWRITE); 4109 4110 /* Get the hardware's view of the RX consumer index. */ 4111 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0; 4112 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 4113 hw_cons++; 4114 4115 /* Get working copies of the driver's view of the RX indices. */ 4116 sw_cons = sc->rx_cons; 4117 sw_prod = sc->rx_prod; 4118 sw_prod_bseq = sc->rx_prod_bseq; 4119 4120 DBPRINT(sc, BCE_INFO_RECV, "%s(enter): sw_prod = 0x%04X, " 4121 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n", 4122 __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq); 4123 4124 /* Prevent speculative reads from getting ahead of the status block. */ 4125 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 4126 BUS_SPACE_BARRIER_READ); 4127 4128 /* Update some debug statistics counters */ 4129 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 4130 sc->rx_low_watermark = sc->free_rx_bd); 4131 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++); 4132 4133 /* Scan through the receive chain as long as there is work to do */ 4134 while (sw_cons != hw_cons) { 4135 struct mbuf *m; 4136 struct rx_bd *rxbd; 4137 unsigned int len; 4138 u32 status; 4139 4140 /* Clear the mbuf pointer. */ 4141 m = NULL; 4142 4143 /* Convert the producer/consumer indices to an actual rx_bd index. */ 4144 sw_chain_cons = RX_CHAIN_IDX(sw_cons); 4145 sw_chain_prod = RX_CHAIN_IDX(sw_prod); 4146 4147 /* Get the used rx_bd. */ 4148 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)]; 4149 sc->free_rx_bd++; 4150 4151 DBRUN(BCE_VERBOSE_RECV, 4152 BCE_PRINTF("%s(): ", __FUNCTION__); 4153 bce_dump_rxbd(sc, sw_chain_cons, rxbd)); 4154 4155 #ifdef DEVICE_POLLING 4156 if (ifp->if_capenable & IFCAP_POLLING) { 4157 if (sc->bce_rxcycles <= 0) 4158 break; 4159 sc->bce_rxcycles--; 4160 } 4161 #endif 4162 4163 /* The mbuf is stored with the last rx_bd entry of a packet. */ 4164 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) { 4165 4166 /* Validate that this is the last rx_bd. */ 4167 DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)), 4168 BCE_PRINTF("%s(%d): Unexpected mbuf found in rx_bd[0x%04X]!\n", 4169 __FILE__, __LINE__, sw_chain_cons); 4170 bce_breakpoint(sc)); 4171 4172 /* 4173 * ToDo: If the received packet is small enough 4174 * to fit into a single, non-M_EXT mbuf, 4175 * allocate a new mbuf here, copy the data to 4176 * that mbuf, and recycle the mapped jumbo frame. 4177 */ 4178 4179 /* Unmap the mbuf from DMA space. */ 4180 bus_dmamap_sync(sc->rx_mbuf_tag, 4181 sc->rx_mbuf_map[sw_chain_cons], 4182 BUS_DMASYNC_POSTREAD); 4183 bus_dmamap_unload(sc->rx_mbuf_tag, 4184 sc->rx_mbuf_map[sw_chain_cons]); 4185 4186 /* Remove the mbuf from the RX chain. */ 4187 m = sc->rx_mbuf_ptr[sw_chain_cons]; 4188 sc->rx_mbuf_ptr[sw_chain_cons] = NULL; 4189 4190 /* 4191 * Frames received on the NetXteme II are prepended 4192 * with an l2_fhdr structure which provides status 4193 * information about the received frame (including 4194 * VLAN tags and checksum info). The frames are also 4195 * automatically adjusted to align the IP header 4196 * (i.e. two null bytes are inserted before the 4197 * Ethernet header). 4198 */ 4199 l2fhdr = mtod(m, struct l2_fhdr *); 4200 4201 len = l2fhdr->l2_fhdr_pkt_len; 4202 status = l2fhdr->l2_fhdr_status; 4203 4204 DBRUNIF(DB_RANDOMTRUE(bce_debug_l2fhdr_status_check), 4205 BCE_PRINTF("Simulating l2_fhdr status error.\n"); 4206 status = status | L2_FHDR_ERRORS_PHY_DECODE); 4207 4208 /* Watch for unusual sized frames. */ 4209 DBRUNIF(((len < BCE_MIN_MTU) || (len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 4210 BCE_PRINTF("%s(%d): Unusual frame size found. " 4211 "Min(%d), Actual(%d), Max(%d)\n", 4212 __FILE__, __LINE__, (int) BCE_MIN_MTU, 4213 len, (int) BCE_MAX_JUMBO_ETHER_MTU_VLAN); 4214 bce_dump_mbuf(sc, m); 4215 bce_breakpoint(sc)); 4216 4217 len -= ETHER_CRC_LEN; 4218 4219 /* Check the received frame for errors. */ 4220 if (status & (L2_FHDR_ERRORS_BAD_CRC | 4221 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 4222 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 4223 4224 /* Log the error and release the mbuf. */ 4225 ifp->if_ierrors++; 4226 DBRUNIF(1, sc->l2fhdr_status_errors++); 4227 4228 /* Todo: Reuse the mbuf to improve performance. */ 4229 4230 m_freem(m); 4231 m = NULL; 4232 goto bce_rx_int_next_rx; 4233 } 4234 4235 /* Skip over the l2_fhdr when passing the data up the stack. */ 4236 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN); 4237 4238 /* Adjust the packet length to match the received data. */ 4239 m->m_pkthdr.len = m->m_len = len; 4240 4241 /* Send the packet to the appropriate interface. */ 4242 m->m_pkthdr.rcvif = ifp; 4243 4244 DBRUN(BCE_VERBOSE_RECV, 4245 struct ether_header *eh; 4246 eh = mtod(m, struct ether_header *); 4247 BCE_PRINTF("%s(): to: %6D, from: %6D, type: 0x%04X\n", 4248 __FUNCTION__, eh->ether_dhost, ":", 4249 eh->ether_shost, ":", htons(eh->ether_type))); 4250 4251 /* Validate the checksum if offload enabled. */ 4252 if (ifp->if_capenable & IFCAP_RXCSUM) { 4253 4254 /* Check for an IP datagram. */ 4255 if (status & L2_FHDR_STATUS_IP_DATAGRAM) { 4256 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4257 4258 /* Check if the IP checksum is valid. */ 4259 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 4260 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4261 else 4262 DBPRINT(sc, BCE_WARN_SEND, 4263 "%s(): Invalid IP checksum = 0x%04X!\n", 4264 __FUNCTION__, l2fhdr->l2_fhdr_ip_xsum); 4265 } 4266 4267 /* Check for a valid TCP/UDP frame. */ 4268 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 4269 L2_FHDR_STATUS_UDP_DATAGRAM)) { 4270 4271 /* Check for a good TCP/UDP checksum. */ 4272 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 4273 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 4274 m->m_pkthdr.csum_data = 4275 l2fhdr->l2_fhdr_tcp_udp_xsum; 4276 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID 4277 | CSUM_PSEUDO_HDR); 4278 } else 4279 DBPRINT(sc, BCE_WARN_SEND, 4280 "%s(): Invalid TCP/UDP checksum = 0x%04X!\n", 4281 __FUNCTION__, l2fhdr->l2_fhdr_tcp_udp_xsum); 4282 } 4283 } 4284 4285 4286 /* 4287 * If we received a packet with a vlan tag, 4288 * attach that information to the packet. 4289 */ 4290 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) { 4291 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): VLAN tag = 0x%04X\n", 4292 __FUNCTION__, l2fhdr->l2_fhdr_vlan_tag); 4293 #if __FreeBSD_version < 700000 4294 VLAN_INPUT_TAG(ifp, m, l2fhdr->l2_fhdr_vlan_tag, continue); 4295 #else 4296 m->m_pkthdr.ether_vtag = l2fhdr->l2_fhdr_vlan_tag; 4297 m->m_flags |= M_VLANTAG; 4298 #endif 4299 } 4300 4301 /* Pass the mbuf off to the upper layers. */ 4302 ifp->if_ipackets++; 4303 4304 bce_rx_int_next_rx: 4305 sw_prod = NEXT_RX_BD(sw_prod); 4306 } 4307 4308 sw_cons = NEXT_RX_BD(sw_cons); 4309 4310 /* If we have a packet, pass it up the stack */ 4311 if (m) { 4312 /* Make sure we don't lose our place when we release the lock. */ 4313 sc->rx_cons = sw_cons; 4314 4315 DBPRINT(sc, BCE_VERBOSE_RECV, "%s(): Passing received frame up.\n", 4316 __FUNCTION__); 4317 BCE_UNLOCK(sc); 4318 (*ifp->if_input)(ifp, m); 4319 DBRUNIF(1, sc->rx_mbuf_alloc--); 4320 BCE_LOCK(sc); 4321 4322 /* Recover our place. */ 4323 sw_cons = sc->rx_cons; 4324 } 4325 4326 /* Refresh hw_cons to see if there's new work */ 4327 if (sw_cons == hw_cons) { 4328 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0; 4329 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 4330 hw_cons++; 4331 } 4332 4333 /* Prevent speculative reads from getting ahead of the status block. */ 4334 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 4335 BUS_SPACE_BARRIER_READ); 4336 } 4337 4338 /* No new packets to process. Refill the RX chain and exit. */ 4339 sc->rx_cons = sw_cons; 4340 bce_fill_rx_chain(sc); 4341 4342 for (int i = 0; i < RX_PAGES; i++) 4343 bus_dmamap_sync(sc->rx_bd_chain_tag, 4344 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 4345 4346 DBPRINT(sc, BCE_INFO_RECV, "%s(exit): rx_prod = 0x%04X, " 4347 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 4348 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 4349 } 4350 4351 4352 /****************************************************************************/ 4353 /* Handles transmit completion interrupt events. */ 4354 /* */ 4355 /* Returns: */ 4356 /* Nothing. */ 4357 /****************************************************************************/ 4358 static void 4359 bce_tx_intr(struct bce_softc *sc) 4360 { 4361 struct status_block *sblk = sc->status_block; 4362 struct ifnet *ifp = sc->bce_ifp; 4363 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 4364 4365 BCE_LOCK_ASSERT(sc); 4366 4367 DBRUNIF(1, sc->tx_interrupts++); 4368 4369 /* Get the hardware's view of the TX consumer index. */ 4370 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0; 4371 4372 /* Skip to the next entry if this is a chain page pointer. */ 4373 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 4374 hw_tx_cons++; 4375 4376 sw_tx_cons = sc->tx_cons; 4377 4378 /* Prevent speculative reads from getting ahead of the status block. */ 4379 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 4380 BUS_SPACE_BARRIER_READ); 4381 4382 /* Cycle through any completed TX chain page entries. */ 4383 while (sw_tx_cons != hw_tx_cons) { 4384 #ifdef BCE_DEBUG 4385 struct tx_bd *txbd = NULL; 4386 #endif 4387 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 4388 4389 DBPRINT(sc, BCE_INFO_SEND, 4390 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 4391 "sw_tx_chain_cons = 0x%04X\n", 4392 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 4393 4394 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), 4395 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 4396 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 4397 (int) MAX_TX_BD); 4398 bce_breakpoint(sc)); 4399 4400 DBRUNIF(1, txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 4401 [TX_IDX(sw_tx_chain_cons)]); 4402 4403 DBRUNIF((txbd == NULL), 4404 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 4405 __FILE__, __LINE__, sw_tx_chain_cons); 4406 bce_breakpoint(sc)); 4407 4408 DBRUN(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 4409 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 4410 4411 /* 4412 * Free the associated mbuf. Remember 4413 * that only the last tx_bd of a packet 4414 * has an mbuf pointer and DMA map. 4415 */ 4416 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 4417 4418 /* Validate that this is the last tx_bd. */ 4419 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 4420 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 4421 "txmbuf == NULL!\n", __FILE__, __LINE__); 4422 bce_breakpoint(sc)); 4423 4424 DBRUN(BCE_INFO_SEND, 4425 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 4426 "from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons)); 4427 4428 /* Unmap the mbuf. */ 4429 bus_dmamap_unload(sc->tx_mbuf_tag, 4430 sc->tx_mbuf_map[sw_tx_chain_cons]); 4431 4432 /* Free the mbuf. */ 4433 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 4434 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 4435 DBRUNIF(1, sc->tx_mbuf_alloc--); 4436 4437 ifp->if_opackets++; 4438 } 4439 4440 sc->used_tx_bd--; 4441 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 4442 4443 /* Refresh hw_cons to see if there's new work. */ 4444 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0; 4445 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 4446 hw_tx_cons++; 4447 4448 /* Prevent speculative reads from getting ahead of the status block. */ 4449 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 4450 BUS_SPACE_BARRIER_READ); 4451 } 4452 4453 /* Clear the TX timeout timer. */ 4454 sc->watchdog_timer = 0; 4455 4456 /* Clear the tx hardware queue full flag. */ 4457 if (sc->used_tx_bd < sc->max_tx_bd) { 4458 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), 4459 DBPRINT(sc, BCE_INFO_SEND, 4460 "%s(): Open TX chain! %d/%d (used/total)\n", 4461 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 4462 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4463 } 4464 4465 sc->tx_cons = sw_tx_cons; 4466 } 4467 4468 4469 /****************************************************************************/ 4470 /* Disables interrupt generation. */ 4471 /* */ 4472 /* Returns: */ 4473 /* Nothing. */ 4474 /****************************************************************************/ 4475 static void 4476 bce_disable_intr(struct bce_softc *sc) 4477 { 4478 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 4479 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 4480 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 4481 } 4482 4483 4484 /****************************************************************************/ 4485 /* Enables interrupt generation. */ 4486 /* */ 4487 /* Returns: */ 4488 /* Nothing. */ 4489 /****************************************************************************/ 4490 static void 4491 bce_enable_intr(struct bce_softc *sc) 4492 { 4493 u32 val; 4494 4495 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 4496 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 4497 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 4498 4499 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 4500 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 4501 4502 val = REG_RD(sc, BCE_HC_COMMAND); 4503 REG_WR(sc, BCE_HC_COMMAND, val | BCE_HC_COMMAND_COAL_NOW); 4504 } 4505 4506 4507 /****************************************************************************/ 4508 /* Handles controller initialization. */ 4509 /* */ 4510 /* Returns: */ 4511 /* Nothing. */ 4512 /****************************************************************************/ 4513 static void 4514 bce_init_locked(struct bce_softc *sc) 4515 { 4516 struct ifnet *ifp; 4517 u32 ether_mtu; 4518 4519 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 4520 4521 BCE_LOCK_ASSERT(sc); 4522 4523 ifp = sc->bce_ifp; 4524 4525 /* Check if the driver is still running and bail out if it is. */ 4526 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4527 goto bce_init_locked_exit; 4528 4529 bce_stop(sc); 4530 4531 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 4532 BCE_PRINTF("%s(%d): Controller reset failed!\n", 4533 __FILE__, __LINE__); 4534 goto bce_init_locked_exit; 4535 } 4536 4537 if (bce_chipinit(sc)) { 4538 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 4539 __FILE__, __LINE__); 4540 goto bce_init_locked_exit; 4541 } 4542 4543 if (bce_blockinit(sc)) { 4544 BCE_PRINTF("%s(%d): Block initialization failed!\n", 4545 __FILE__, __LINE__); 4546 goto bce_init_locked_exit; 4547 } 4548 4549 /* Load our MAC address. */ 4550 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 4551 bce_set_mac_addr(sc); 4552 4553 /* Calculate and program the Ethernet MTU size. */ 4554 ether_mtu = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + 4555 ETHER_CRC_LEN; 4556 4557 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting mtu = %d\n",__FUNCTION__, ether_mtu); 4558 4559 /* 4560 * Program the mtu, enabling jumbo frame 4561 * support if necessary. Also set the mbuf 4562 * allocation count for RX frames. 4563 */ 4564 if (ether_mtu > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) { 4565 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 4566 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 4567 sc->mbuf_alloc_size = MJUM9BYTES; 4568 } else { 4569 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 4570 sc->mbuf_alloc_size = MCLBYTES; 4571 } 4572 4573 /* Calculate the RX Ethernet frame size for rx_bd's. */ 4574 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8; 4575 4576 DBPRINT(sc, BCE_INFO_RECV, 4577 "%s(): mclbytes = %d, mbuf_alloc_size = %d, " 4578 "max_frame_size = %d\n", 4579 __FUNCTION__, (int) MCLBYTES, sc->mbuf_alloc_size, sc->max_frame_size); 4580 4581 /* Program appropriate promiscuous/multicast filtering. */ 4582 bce_set_rx_mode(sc); 4583 4584 /* Init RX buffer descriptor chain. */ 4585 bce_init_rx_chain(sc); 4586 4587 /* Init TX buffer descriptor chain. */ 4588 bce_init_tx_chain(sc); 4589 4590 #ifdef DEVICE_POLLING 4591 /* Disable interrupts if we are polling. */ 4592 if (ifp->if_capenable & IFCAP_POLLING) { 4593 bce_disable_intr(sc); 4594 4595 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 4596 (1 << 16) | sc->bce_rx_quick_cons_trip); 4597 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 4598 (1 << 16) | sc->bce_tx_quick_cons_trip); 4599 } else 4600 #endif 4601 /* Enable host interrupts. */ 4602 bce_enable_intr(sc); 4603 4604 bce_ifmedia_upd_locked(ifp); 4605 4606 ifp->if_drv_flags |= IFF_DRV_RUNNING; 4607 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4608 4609 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 4610 4611 bce_init_locked_exit: 4612 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 4613 4614 return; 4615 } 4616 4617 4618 /****************************************************************************/ 4619 /* Initialize the controller just enough so that any management firmware */ 4620 /* running on the device will continue to operate correctly. */ 4621 /* */ 4622 /* Returns: */ 4623 /* Nothing. */ 4624 /****************************************************************************/ 4625 static void 4626 bce_mgmt_init_locked(struct bce_softc *sc) 4627 { 4628 struct ifnet *ifp; 4629 4630 DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 4631 4632 BCE_LOCK_ASSERT(sc); 4633 4634 /* Bail out if management firmware is not running. */ 4635 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 4636 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 4637 "No management firmware running...\n"); 4638 goto bce_mgmt_init_locked_exit; 4639 } 4640 4641 ifp = sc->bce_ifp; 4642 4643 /* Enable all critical blocks in the MAC. */ 4644 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 0x5ffffff); 4645 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 4646 DELAY(20); 4647 4648 bce_ifmedia_upd_locked(ifp); 4649 bce_mgmt_init_locked_exit: 4650 DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 4651 4652 return; 4653 } 4654 4655 4656 /****************************************************************************/ 4657 /* Handles controller initialization when called from an unlocked routine. */ 4658 /* */ 4659 /* Returns: */ 4660 /* Nothing. */ 4661 /****************************************************************************/ 4662 static void 4663 bce_init(void *xsc) 4664 { 4665 struct bce_softc *sc = xsc; 4666 4667 BCE_LOCK(sc); 4668 bce_init_locked(sc); 4669 BCE_UNLOCK(sc); 4670 } 4671 4672 4673 /****************************************************************************/ 4674 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 4675 /* memory visible to the controller. */ 4676 /* */ 4677 /* Returns: */ 4678 /* 0 for success, positive value for failure. */ 4679 /* Modified: */ 4680 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 4681 /****************************************************************************/ 4682 static int 4683 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 4684 { 4685 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 4686 bus_dmamap_t map; 4687 struct tx_bd *txbd = NULL; 4688 struct mbuf *m0; 4689 struct ether_vlan_header *eh; 4690 struct ip *ip; 4691 struct tcphdr *th; 4692 u16 prod, chain_prod, etype, mss = 0, vlan_tag = 0, flags = 0; 4693 u32 prod_bseq; 4694 int hdr_len = 0, e_hlen = 0, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; 4695 4696 4697 #ifdef BCE_DEBUG 4698 u16 debug_prod; 4699 #endif 4700 int i, error, nsegs, rc = 0; 4701 4702 /* Transfer any checksum offload flags to the bd. */ 4703 m0 = *m_head; 4704 if (m0->m_pkthdr.csum_flags) { 4705 if (m0->m_pkthdr.csum_flags & CSUM_IP) 4706 flags |= TX_BD_FLAGS_IP_CKSUM; 4707 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 4708 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 4709 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 4710 /* For TSO the controller needs two pieces of info, */ 4711 /* the MSS and the IP+TCP options length. */ 4712 mss = htole16(m0->m_pkthdr.tso_segsz); 4713 4714 /* Map the header and find the Ethernet type & header length */ 4715 eh = mtod(m0, struct ether_vlan_header *); 4716 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4717 etype = ntohs(eh->evl_proto); 4718 e_hlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 4719 } else { 4720 etype = ntohs(eh->evl_encap_proto); 4721 e_hlen = ETHER_HDR_LEN; 4722 } 4723 4724 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 4725 switch (etype) { 4726 case ETHERTYPE_IP: 4727 ip = (struct ip *)(m0->m_data + e_hlen); 4728 4729 /* TSO only supported for TCP protocol */ 4730 if (ip->ip_p != IPPROTO_TCP) { 4731 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 4732 __FILE__, __LINE__); 4733 goto bce_tx_encap_skip_tso; 4734 } 4735 4736 /* Get IP header length in bytes (min 20) */ 4737 ip_hlen = ip->ip_hl << 2; 4738 4739 /* Get the TCP header length in bytes (min 20) */ 4740 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 4741 tcp_hlen = (th->th_off << 2); 4742 4743 /* IP header length and checksum will be calc'd by hardware */ 4744 ip_len = ip->ip_len; 4745 ip->ip_len = 0; 4746 ip->ip_sum = 0; 4747 break; 4748 case ETHERTYPE_IPV6: 4749 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 4750 __FILE__, __LINE__); 4751 goto bce_tx_encap_skip_tso; 4752 default: 4753 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 4754 __FILE__, __LINE__); 4755 goto bce_tx_encap_skip_tso; 4756 } 4757 4758 hdr_len = e_hlen + ip_hlen + tcp_hlen; 4759 4760 DBPRINT(sc, BCE_EXCESSIVE_SEND, 4761 "%s(): hdr_len = %d, e_hlen = %d, ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 4762 __FUNCTION__, hdr_len, e_hlen, ip_hlen, tcp_hlen, ip_len); 4763 4764 /* Set the LSO flag in the TX BD */ 4765 flags |= TX_BD_FLAGS_SW_LSO; 4766 /* Set the length of IP + TCP options (in 32 bit words) */ 4767 flags |= (((ip_hlen + tcp_hlen - 40) >> 2) << 8); 4768 4769 bce_tx_encap_skip_tso: 4770 DBRUNIF(1, sc->requested_tso_frames++); 4771 } 4772 } 4773 4774 /* Transfer any VLAN tags to the bd. */ 4775 if (m0->m_flags & M_VLANTAG) { 4776 flags |= TX_BD_FLAGS_VLAN_TAG; 4777 vlan_tag = m0->m_pkthdr.ether_vtag; 4778 } 4779 4780 /* Map the mbuf into DMAable memory. */ 4781 prod = sc->tx_prod; 4782 chain_prod = TX_CHAIN_IDX(prod); 4783 map = sc->tx_mbuf_map[chain_prod]; 4784 4785 /* Map the mbuf into our DMA address space. */ 4786 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 4787 segs, &nsegs, BUS_DMA_NOWAIT); 4788 4789 /* Check if the DMA mapping was successful */ 4790 if (error == EFBIG) { 4791 4792 /* The mbuf is too fragmented for our DMA mapping. */ 4793 DBPRINT(sc, BCE_WARN, "%s(): fragmented mbuf (%d pieces)\n", 4794 __FUNCTION__, nsegs); 4795 DBRUNIF(1, bce_dump_mbuf(sc, m0);); 4796 4797 /* Try to defrag the mbuf. */ 4798 m0 = m_defrag(*m_head, M_DONTWAIT); 4799 if (m0 == NULL) { 4800 /* Defrag was unsuccessful */ 4801 m_freem(*m_head); 4802 *m_head = NULL; 4803 sc->mbuf_alloc_failed++; 4804 return (ENOBUFS); 4805 } 4806 4807 /* Defrag was successful, try mapping again */ 4808 *m_head = m0; 4809 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 4810 segs, &nsegs, BUS_DMA_NOWAIT); 4811 4812 /* Still getting an error after a defrag. */ 4813 if (error == ENOMEM) { 4814 /* Insufficient DMA buffers available. */ 4815 sc->tx_dma_map_failures++; 4816 return (error); 4817 } else if (error != 0) { 4818 /* Still can't map the mbuf, release it and return an error. */ 4819 BCE_PRINTF( 4820 "%s(%d): Unknown error mapping mbuf into TX chain!\n", 4821 __FILE__, __LINE__); 4822 m_freem(m0); 4823 *m_head = NULL; 4824 sc->tx_dma_map_failures++; 4825 return (ENOBUFS); 4826 } 4827 } else if (error == ENOMEM) { 4828 /* Insufficient DMA buffers available. */ 4829 sc->tx_dma_map_failures++; 4830 return (error); 4831 } else if (error != 0) { 4832 m_freem(m0); 4833 *m_head = NULL; 4834 sc->tx_dma_map_failures++; 4835 return (error); 4836 } 4837 4838 /* Make sure there's room in the chain */ 4839 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 4840 bus_dmamap_unload(sc->tx_mbuf_tag, map); 4841 return (ENOBUFS); 4842 } 4843 4844 /* prod points to an empty tx_bd at this point. */ 4845 prod_bseq = sc->tx_prod_bseq; 4846 4847 #ifdef BCE_DEBUG 4848 debug_prod = chain_prod; 4849 #endif 4850 4851 DBPRINT(sc, BCE_INFO_SEND, 4852 "%s(): Start: prod = 0x%04X, chain_prod = %04X, " 4853 "prod_bseq = 0x%08X\n", 4854 __FUNCTION__, prod, chain_prod, prod_bseq); 4855 4856 /* 4857 * Cycle through each mbuf segment that makes up 4858 * the outgoing frame, gathering the mapping info 4859 * for that segment and creating a tx_bd to for 4860 * the mbuf. 4861 */ 4862 for (i = 0; i < nsegs ; i++) { 4863 4864 chain_prod = TX_CHAIN_IDX(prod); 4865 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; 4866 4867 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr)); 4868 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr)); 4869 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | htole16(segs[i].ds_len); 4870 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 4871 txbd->tx_bd_flags = htole16(flags); 4872 prod_bseq += segs[i].ds_len; 4873 if (i == 0) 4874 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 4875 prod = NEXT_TX_BD(prod); 4876 } 4877 4878 /* Set the END flag on the last TX buffer descriptor. */ 4879 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 4880 4881 DBRUN(BCE_EXCESSIVE_SEND, bce_dump_tx_chain(sc, debug_prod, nsegs)); 4882 4883 DBPRINT(sc, BCE_INFO_SEND, 4884 "%s(): End: prod = 0x%04X, chain_prod = %04X, " 4885 "prod_bseq = 0x%08X\n", 4886 __FUNCTION__, prod, chain_prod, prod_bseq); 4887 4888 /* 4889 * Ensure that the mbuf pointer for this transmission 4890 * is placed at the array index of the last 4891 * descriptor in this chain. This is done 4892 * because a single map is used for all 4893 * segments of the mbuf and we don't want to 4894 * unload the map before all of the segments 4895 * have been freed. 4896 */ 4897 sc->tx_mbuf_ptr[chain_prod] = m0; 4898 sc->used_tx_bd += nsegs; 4899 4900 /* Update some debug statistic counters */ 4901 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 4902 sc->tx_hi_watermark = sc->used_tx_bd); 4903 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 4904 DBRUNIF(1, sc->tx_mbuf_alloc++); 4905 4906 DBRUN(BCE_VERBOSE_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, nsegs)); 4907 4908 /* prod points to the next free tx_bd at this point. */ 4909 sc->tx_prod = prod; 4910 sc->tx_prod_bseq = prod_bseq; 4911 4912 return(rc); 4913 } 4914 4915 4916 /****************************************************************************/ 4917 /* Main transmit routine when called from another routine with a lock. */ 4918 /* */ 4919 /* Returns: */ 4920 /* Nothing. */ 4921 /****************************************************************************/ 4922 static void 4923 bce_start_locked(struct ifnet *ifp) 4924 { 4925 struct bce_softc *sc = ifp->if_softc; 4926 struct mbuf *m_head = NULL; 4927 int count = 0; 4928 u16 tx_prod, tx_chain_prod; 4929 4930 /* If there's no link or the transmit queue is empty then just exit. */ 4931 if (!sc->bce_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 4932 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link or transmit queue empty.\n", 4933 __FUNCTION__); 4934 goto bce_start_locked_exit; 4935 } 4936 4937 /* prod points to the next free tx_bd. */ 4938 tx_prod = sc->tx_prod; 4939 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 4940 4941 DBPRINT(sc, BCE_INFO_SEND, 4942 "%s(): Start: tx_prod = 0x%04X, tx_chain_prod = %04X, " 4943 "tx_prod_bseq = 0x%08X\n", 4944 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 4945 4946 /* 4947 * Keep adding entries while there is space in the ring. 4948 */ 4949 while (sc->used_tx_bd < sc->max_tx_bd) { 4950 4951 /* Check for any frames to send. */ 4952 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 4953 if (m_head == NULL) 4954 break; 4955 4956 /* 4957 * Pack the data into the transmit ring. If we 4958 * don't have room, place the mbuf back at the 4959 * head of the queue and set the OACTIVE flag 4960 * to wait for the NIC to drain the chain. 4961 */ 4962 if (bce_tx_encap(sc, &m_head)) { 4963 if (m_head != NULL) 4964 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4965 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4966 DBPRINT(sc, BCE_INFO_SEND, 4967 "TX chain is closed for business! Total tx_bd used = %d\n", 4968 sc->used_tx_bd); 4969 break; 4970 } 4971 4972 count++; 4973 4974 /* Send a copy of the frame to any BPF listeners. */ 4975 ETHER_BPF_MTAP(ifp, m_head); 4976 } 4977 4978 if (count == 0) { 4979 /* no packets were dequeued */ 4980 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were dequeued\n", 4981 __FUNCTION__); 4982 goto bce_start_locked_exit; 4983 } 4984 4985 /* Update the driver's counters. */ 4986 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod); 4987 4988 DBPRINT(sc, BCE_INFO_SEND, 4989 "%s(): End: tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 4990 "tx_prod_bseq = 0x%08X\n", 4991 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 4992 4993 /* Start the transmit. */ 4994 REG_WR16(sc, MB_TX_CID_ADDR + BCE_L2CTX_TX_HOST_BIDX, sc->tx_prod); 4995 REG_WR(sc, MB_TX_CID_ADDR + BCE_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq); 4996 4997 /* Set the tx timeout. */ 4998 sc->watchdog_timer = BCE_TX_TIMEOUT; 4999 5000 bce_start_locked_exit: 5001 return; 5002 } 5003 5004 5005 /****************************************************************************/ 5006 /* Main transmit routine when called from another routine without a lock. */ 5007 /* */ 5008 /* Returns: */ 5009 /* Nothing. */ 5010 /****************************************************************************/ 5011 static void 5012 bce_start(struct ifnet *ifp) 5013 { 5014 struct bce_softc *sc = ifp->if_softc; 5015 5016 BCE_LOCK(sc); 5017 bce_start_locked(ifp); 5018 BCE_UNLOCK(sc); 5019 } 5020 5021 5022 /****************************************************************************/ 5023 /* Handles any IOCTL calls from the operating system. */ 5024 /* */ 5025 /* Returns: */ 5026 /* 0 for success, positive value for failure. */ 5027 /****************************************************************************/ 5028 static int 5029 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 5030 { 5031 struct bce_softc *sc = ifp->if_softc; 5032 struct ifreq *ifr = (struct ifreq *) data; 5033 struct mii_data *mii; 5034 int mask, error = 0; 5035 5036 switch(command) { 5037 5038 /* Set the interface MTU. */ 5039 case SIOCSIFMTU: 5040 /* Check that the MTU setting is supported. */ 5041 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 5042 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 5043 error = EINVAL; 5044 break; 5045 } 5046 5047 DBPRINT(sc, BCE_INFO_MISC, 5048 "SIOCSIFMTU: Changing MTU from %d to %d\n", 5049 (int) ifp->if_mtu, (int) ifr->ifr_mtu); 5050 5051 BCE_LOCK(sc); 5052 ifp->if_mtu = ifr->ifr_mtu; 5053 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5054 bce_init_locked(sc); 5055 BCE_UNLOCK(sc); 5056 break; 5057 5058 /* Set interface flags. */ 5059 case SIOCSIFFLAGS: 5060 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 5061 5062 BCE_LOCK(sc); 5063 5064 /* Check if the interface is up. */ 5065 if (ifp->if_flags & IFF_UP) { 5066 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5067 /* Change promiscuous/multicast flags as necessary. */ 5068 bce_set_rx_mode(sc); 5069 } else { 5070 /* Start the HW */ 5071 bce_init_locked(sc); 5072 } 5073 } else { 5074 /* The interface is down, check if driver is running. */ 5075 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5076 bce_stop(sc); 5077 5078 /* If MFW is running, restart the controller a bit. */ 5079 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5080 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 5081 bce_chipinit(sc); 5082 bce_mgmt_init_locked(sc); 5083 } 5084 } 5085 } 5086 5087 BCE_UNLOCK(sc); 5088 error = 0; 5089 5090 break; 5091 5092 /* Add/Delete multicast address */ 5093 case SIOCADDMULTI: 5094 case SIOCDELMULTI: 5095 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCADDMULTI/SIOCDELMULTI\n"); 5096 5097 BCE_LOCK(sc); 5098 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5099 bce_set_rx_mode(sc); 5100 error = 0; 5101 } 5102 BCE_UNLOCK(sc); 5103 5104 break; 5105 5106 /* Set/Get Interface media */ 5107 case SIOCSIFMEDIA: 5108 case SIOCGIFMEDIA: 5109 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 5110 5111 mii = device_get_softc(sc->bce_miibus); 5112 error = ifmedia_ioctl(ifp, ifr, 5113 &mii->mii_media, command); 5114 break; 5115 5116 /* Set interface capability */ 5117 case SIOCSIFCAP: 5118 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 5119 DBPRINT(sc, BCE_INFO_MISC, "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 5120 5121 #ifdef DEVICE_POLLING 5122 if (mask & IFCAP_POLLING) { 5123 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5124 5125 /* Setup the poll routine to call. */ 5126 error = ether_poll_register(bce_poll, ifp); 5127 if (error) { 5128 BCE_PRINTF("%s(%d): Error registering poll function!\n", 5129 __FILE__, __LINE__); 5130 goto bce_ioctl_exit; 5131 } 5132 5133 /* Clear the interrupt. */ 5134 BCE_LOCK(sc); 5135 bce_disable_intr(sc); 5136 5137 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 5138 (1 << 16) | sc->bce_rx_quick_cons_trip); 5139 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 5140 (1 << 16) | sc->bce_tx_quick_cons_trip); 5141 5142 ifp->if_capenable |= IFCAP_POLLING; 5143 BCE_UNLOCK(sc); 5144 } else { 5145 /* Clear the poll routine. */ 5146 error = ether_poll_deregister(ifp); 5147 5148 /* Enable interrupt even in error case */ 5149 BCE_LOCK(sc); 5150 bce_enable_intr(sc); 5151 5152 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 5153 (sc->bce_tx_quick_cons_trip_int << 16) | 5154 sc->bce_tx_quick_cons_trip); 5155 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 5156 (sc->bce_rx_quick_cons_trip_int << 16) | 5157 sc->bce_rx_quick_cons_trip); 5158 5159 ifp->if_capenable &= ~IFCAP_POLLING; 5160 BCE_UNLOCK(sc); 5161 } 5162 } 5163 #endif /*DEVICE_POLLING */ 5164 5165 /* Toggle the TX checksum capabilites enable flag. */ 5166 if (mask & IFCAP_TXCSUM) { 5167 ifp->if_capenable ^= IFCAP_TXCSUM; 5168 if (IFCAP_TXCSUM & ifp->if_capenable) 5169 ifp->if_hwassist = BCE_IF_HWASSIST; 5170 else 5171 ifp->if_hwassist = 0; 5172 } 5173 5174 /* Toggle the RX checksum capabilities enable flag. */ 5175 if (mask & IFCAP_RXCSUM) { 5176 ifp->if_capenable ^= IFCAP_RXCSUM; 5177 if (IFCAP_RXCSUM & ifp->if_capenable) 5178 ifp->if_hwassist = BCE_IF_HWASSIST; 5179 else 5180 ifp->if_hwassist = 0; 5181 } 5182 5183 /* Toggle the TSO capabilities enable flag. */ 5184 if (bce_tso_enable && (mask & IFCAP_TSO4)) { 5185 ifp->if_capenable ^= IFCAP_TSO4; 5186 if (IFCAP_RXCSUM & ifp->if_capenable) 5187 ifp->if_hwassist = BCE_IF_HWASSIST; 5188 else 5189 ifp->if_hwassist = 0; 5190 } 5191 5192 /* Toggle VLAN_MTU capabilities enable flag. */ 5193 if (mask & IFCAP_VLAN_MTU) { 5194 BCE_PRINTF("%s(%d): Changing VLAN_MTU not supported.\n", 5195 __FILE__, __LINE__); 5196 } 5197 5198 /* Toggle VLANHWTAG capabilities enabled flag. */ 5199 if (mask & IFCAP_VLAN_HWTAGGING) { 5200 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) 5201 BCE_PRINTF("%s(%d): Cannot change VLAN_HWTAGGING while " 5202 "management firmware (ASF/IPMI/UMP) is running!\n", 5203 __FILE__, __LINE__); 5204 else 5205 BCE_PRINTF("%s(%d): Changing VLAN_HWTAGGING not supported!\n", 5206 __FILE__, __LINE__); 5207 } 5208 5209 break; 5210 default: 5211 /* We don't know how to handle the IOCTL, pass it on. */ 5212 error = ether_ioctl(ifp, command, data); 5213 break; 5214 } 5215 5216 #ifdef DEVICE_POLLING 5217 bce_ioctl_exit: 5218 #endif 5219 return(error); 5220 } 5221 5222 5223 /****************************************************************************/ 5224 /* Transmit timeout handler. */ 5225 /* */ 5226 /* Returns: */ 5227 /* Nothing. */ 5228 /****************************************************************************/ 5229 static void 5230 bce_watchdog(struct bce_softc *sc) 5231 { 5232 5233 BCE_LOCK_ASSERT(sc); 5234 5235 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 5236 return; 5237 5238 /* 5239 * If we are in this routine because of pause frames, then 5240 * don't reset the hardware. 5241 */ 5242 if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 5243 return; 5244 5245 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 5246 __FILE__, __LINE__); 5247 5248 DBRUN(BCE_VERBOSE_SEND, 5249 bce_dump_driver_state(sc); 5250 bce_dump_status_block(sc)); 5251 5252 /* DBRUN(BCE_FATAL, bce_breakpoint(sc)); */ 5253 5254 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5255 5256 bce_init_locked(sc); 5257 sc->bce_ifp->if_oerrors++; 5258 5259 } 5260 5261 5262 #ifdef DEVICE_POLLING 5263 static void 5264 bce_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) 5265 { 5266 struct bce_softc *sc = ifp->if_softc; 5267 5268 BCE_LOCK_ASSERT(sc); 5269 5270 sc->bce_rxcycles = count; 5271 5272 bus_dmamap_sync(sc->status_tag, sc->status_map, 5273 BUS_DMASYNC_POSTWRITE); 5274 5275 /* Check for any completed RX frames. */ 5276 if (sc->status_block->status_rx_quick_consumer_index0 != 5277 sc->hw_rx_cons) 5278 bce_rx_intr(sc); 5279 5280 /* Check for any completed TX frames. */ 5281 if (sc->status_block->status_tx_quick_consumer_index0 != 5282 sc->hw_tx_cons) 5283 bce_tx_intr(sc); 5284 5285 /* Check for new frames to transmit. */ 5286 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 5287 bce_start_locked(ifp); 5288 5289 } 5290 5291 5292 static void 5293 bce_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 5294 { 5295 struct bce_softc *sc = ifp->if_softc; 5296 5297 BCE_LOCK(sc); 5298 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5299 bce_poll_locked(ifp, cmd, count); 5300 BCE_UNLOCK(sc); 5301 } 5302 #endif /* DEVICE_POLLING */ 5303 5304 5305 #if 0 5306 static inline int 5307 bce_has_work(struct bce_softc *sc) 5308 { 5309 struct status_block *stat = sc->status_block; 5310 5311 if ((stat->status_rx_quick_consumer_index0 != sc->hw_rx_cons) || 5312 (stat->status_tx_quick_consumer_index0 != sc->hw_tx_cons)) 5313 return 1; 5314 5315 if (((stat->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) != 5316 bp->link_up) 5317 return 1; 5318 5319 return 0; 5320 } 5321 #endif 5322 5323 5324 /* 5325 * Interrupt handler. 5326 */ 5327 /****************************************************************************/ 5328 /* Main interrupt entry point. Verifies that the controller generated the */ 5329 /* interrupt and then calls a separate routine for handle the various */ 5330 /* interrupt causes (PHY, TX, RX). */ 5331 /* */ 5332 /* Returns: */ 5333 /* 0 for success, positive value for failure. */ 5334 /****************************************************************************/ 5335 static void 5336 bce_intr(void *xsc) 5337 { 5338 struct bce_softc *sc; 5339 struct ifnet *ifp; 5340 u32 status_attn_bits; 5341 5342 sc = xsc; 5343 ifp = sc->bce_ifp; 5344 5345 DBPRINT(sc, BCE_EXCESSIVE, "Entering %s()\n", __FUNCTION__); 5346 BCE_LOCK(sc); 5347 5348 DBRUNIF(1, sc->interrupts_generated++); 5349 5350 #ifdef DEVICE_POLLING 5351 if (ifp->if_capenable & IFCAP_POLLING) { 5352 DBPRINT(sc, BCE_INFO_MISC, "Polling enabled!\n"); 5353 goto bce_intr_exit; 5354 } 5355 #endif 5356 5357 bus_dmamap_sync(sc->status_tag, sc->status_map, 5358 BUS_DMASYNC_POSTWRITE); 5359 5360 /* 5361 * If the hardware status block index 5362 * matches the last value read by the 5363 * driver and we haven't asserted our 5364 * interrupt then there's nothing to do. 5365 */ 5366 if ((sc->status_block->status_idx == sc->last_status_idx) && 5367 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE)) 5368 goto bce_intr_exit; 5369 5370 /* Ack the interrupt and stop others from occuring. */ 5371 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 5372 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 5373 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 5374 5375 /* Keep processing data as long as there is work to do. */ 5376 for (;;) { 5377 5378 status_attn_bits = sc->status_block->status_attn_bits; 5379 5380 DBRUNIF(DB_RANDOMTRUE(bce_debug_unexpected_attention), 5381 BCE_PRINTF("Simulating unexpected status attention bit set."); 5382 status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR); 5383 5384 /* Was it a link change interrupt? */ 5385 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 5386 (sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) 5387 bce_phy_intr(sc); 5388 5389 /* If any other attention is asserted then the chip is toast. */ 5390 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 5391 (sc->status_block->status_attn_bits_ack & 5392 ~STATUS_ATTN_BITS_LINK_STATE))) { 5393 5394 DBRUN(1, sc->unexpected_attentions++); 5395 5396 BCE_PRINTF("%s(%d): Fatal attention detected: 0x%08X\n", 5397 __FILE__, __LINE__, sc->status_block->status_attn_bits); 5398 5399 DBRUN(BCE_FATAL, 5400 if (bce_debug_unexpected_attention == 0) 5401 bce_breakpoint(sc)); 5402 5403 bce_init_locked(sc); 5404 goto bce_intr_exit; 5405 } 5406 5407 /* Check for any completed RX frames. */ 5408 if (sc->status_block->status_rx_quick_consumer_index0 != sc->hw_rx_cons) 5409 bce_rx_intr(sc); 5410 5411 /* Check for any completed TX frames. */ 5412 if (sc->status_block->status_tx_quick_consumer_index0 != sc->hw_tx_cons) 5413 bce_tx_intr(sc); 5414 5415 /* Save the status block index value for use during the next interrupt. */ 5416 sc->last_status_idx = sc->status_block->status_idx; 5417 5418 /* Prevent speculative reads from getting ahead of the status block. */ 5419 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 5420 BUS_SPACE_BARRIER_READ); 5421 5422 /* If there's no work left then exit the interrupt service routine. */ 5423 if ((sc->status_block->status_rx_quick_consumer_index0 == sc->hw_rx_cons) && 5424 (sc->status_block->status_tx_quick_consumer_index0 == sc->hw_tx_cons)) 5425 break; 5426 5427 } 5428 5429 bus_dmamap_sync(sc->status_tag, sc->status_map, 5430 BUS_DMASYNC_PREWRITE); 5431 5432 /* Re-enable interrupts. */ 5433 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 5434 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx | 5435 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 5436 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 5437 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 5438 5439 /* Handle any frames that arrived while handling the interrupt. */ 5440 if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 5441 bce_start_locked(ifp); 5442 5443 bce_intr_exit: 5444 BCE_UNLOCK(sc); 5445 } 5446 5447 5448 /****************************************************************************/ 5449 /* Programs the various packet receive modes (broadcast and multicast). */ 5450 /* */ 5451 /* Returns: */ 5452 /* Nothing. */ 5453 /****************************************************************************/ 5454 static void 5455 bce_set_rx_mode(struct bce_softc *sc) 5456 { 5457 struct ifnet *ifp; 5458 struct ifmultiaddr *ifma; 5459 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 5460 u32 rx_mode, sort_mode; 5461 int h, i; 5462 5463 BCE_LOCK_ASSERT(sc); 5464 5465 ifp = sc->bce_ifp; 5466 5467 /* Initialize receive mode default settings. */ 5468 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 5469 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 5470 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 5471 5472 /* 5473 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 5474 * be enbled. 5475 */ 5476 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 5477 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 5478 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 5479 5480 /* 5481 * Check for promiscuous, all multicast, or selected 5482 * multicast address filtering. 5483 */ 5484 if (ifp->if_flags & IFF_PROMISC) { 5485 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 5486 5487 /* Enable promiscuous mode. */ 5488 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 5489 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 5490 } else if (ifp->if_flags & IFF_ALLMULTI) { 5491 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 5492 5493 /* Enable all multicast addresses. */ 5494 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 5495 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); 5496 } 5497 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 5498 } else { 5499 /* Accept one or more multicast(s). */ 5500 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 5501 5502 IF_ADDR_LOCK(ifp); 5503 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 5504 if (ifma->ifma_addr->sa_family != AF_LINK) 5505 continue; 5506 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 5507 ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; 5508 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 5509 } 5510 IF_ADDR_UNLOCK(ifp); 5511 5512 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 5513 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 5514 5515 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 5516 } 5517 5518 /* Only make changes if the recive mode has actually changed. */ 5519 if (rx_mode != sc->rx_mode) { 5520 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: 0x%08X\n", 5521 rx_mode); 5522 5523 sc->rx_mode = rx_mode; 5524 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 5525 } 5526 5527 /* Disable and clear the exisitng sort before enabling a new sort. */ 5528 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 5529 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 5530 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 5531 } 5532 5533 5534 /****************************************************************************/ 5535 /* Called periodically to updates statistics from the controllers */ 5536 /* statistics block. */ 5537 /* */ 5538 /* Returns: */ 5539 /* Nothing. */ 5540 /****************************************************************************/ 5541 static void 5542 bce_stats_update(struct bce_softc *sc) 5543 { 5544 struct ifnet *ifp; 5545 struct statistics_block *stats; 5546 5547 DBPRINT(sc, BCE_EXCESSIVE, "Entering %s()\n", __FUNCTION__); 5548 5549 ifp = sc->bce_ifp; 5550 5551 stats = (struct statistics_block *) sc->stats_block; 5552 5553 /* 5554 * Update the interface statistics from the 5555 * hardware statistics. 5556 */ 5557 ifp->if_collisions = (u_long) stats->stat_EtherStatsCollisions; 5558 5559 ifp->if_ierrors = (u_long) stats->stat_EtherStatsUndersizePkts + 5560 (u_long) stats->stat_EtherStatsOverrsizePkts + 5561 (u_long) stats->stat_IfInMBUFDiscards + 5562 (u_long) stats->stat_Dot3StatsAlignmentErrors + 5563 (u_long) stats->stat_Dot3StatsFCSErrors; 5564 5565 ifp->if_oerrors = (u_long) stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 5566 (u_long) stats->stat_Dot3StatsExcessiveCollisions + 5567 (u_long) stats->stat_Dot3StatsLateCollisions; 5568 5569 /* 5570 * Certain controllers don't report 5571 * carrier sense errors correctly. 5572 * See errata E11_5708CA0_1165. 5573 */ 5574 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 5575 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 5576 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 5577 5578 /* 5579 * Update the sysctl statistics from the 5580 * hardware statistics. 5581 */ 5582 sc->stat_IfHCInOctets = 5583 ((u64) stats->stat_IfHCInOctets_hi << 32) + 5584 (u64) stats->stat_IfHCInOctets_lo; 5585 5586 sc->stat_IfHCInBadOctets = 5587 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 5588 (u64) stats->stat_IfHCInBadOctets_lo; 5589 5590 sc->stat_IfHCOutOctets = 5591 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 5592 (u64) stats->stat_IfHCOutOctets_lo; 5593 5594 sc->stat_IfHCOutBadOctets = 5595 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 5596 (u64) stats->stat_IfHCOutBadOctets_lo; 5597 5598 sc->stat_IfHCInUcastPkts = 5599 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 5600 (u64) stats->stat_IfHCInUcastPkts_lo; 5601 5602 sc->stat_IfHCInMulticastPkts = 5603 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 5604 (u64) stats->stat_IfHCInMulticastPkts_lo; 5605 5606 sc->stat_IfHCInBroadcastPkts = 5607 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 5608 (u64) stats->stat_IfHCInBroadcastPkts_lo; 5609 5610 sc->stat_IfHCOutUcastPkts = 5611 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 5612 (u64) stats->stat_IfHCOutUcastPkts_lo; 5613 5614 sc->stat_IfHCOutMulticastPkts = 5615 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 5616 (u64) stats->stat_IfHCOutMulticastPkts_lo; 5617 5618 sc->stat_IfHCOutBroadcastPkts = 5619 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 5620 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 5621 5622 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 5623 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 5624 5625 sc->stat_Dot3StatsCarrierSenseErrors = 5626 stats->stat_Dot3StatsCarrierSenseErrors; 5627 5628 sc->stat_Dot3StatsFCSErrors = 5629 stats->stat_Dot3StatsFCSErrors; 5630 5631 sc->stat_Dot3StatsAlignmentErrors = 5632 stats->stat_Dot3StatsAlignmentErrors; 5633 5634 sc->stat_Dot3StatsSingleCollisionFrames = 5635 stats->stat_Dot3StatsSingleCollisionFrames; 5636 5637 sc->stat_Dot3StatsMultipleCollisionFrames = 5638 stats->stat_Dot3StatsMultipleCollisionFrames; 5639 5640 sc->stat_Dot3StatsDeferredTransmissions = 5641 stats->stat_Dot3StatsDeferredTransmissions; 5642 5643 sc->stat_Dot3StatsExcessiveCollisions = 5644 stats->stat_Dot3StatsExcessiveCollisions; 5645 5646 sc->stat_Dot3StatsLateCollisions = 5647 stats->stat_Dot3StatsLateCollisions; 5648 5649 sc->stat_EtherStatsCollisions = 5650 stats->stat_EtherStatsCollisions; 5651 5652 sc->stat_EtherStatsFragments = 5653 stats->stat_EtherStatsFragments; 5654 5655 sc->stat_EtherStatsJabbers = 5656 stats->stat_EtherStatsJabbers; 5657 5658 sc->stat_EtherStatsUndersizePkts = 5659 stats->stat_EtherStatsUndersizePkts; 5660 5661 sc->stat_EtherStatsOverrsizePkts = 5662 stats->stat_EtherStatsOverrsizePkts; 5663 5664 sc->stat_EtherStatsPktsRx64Octets = 5665 stats->stat_EtherStatsPktsRx64Octets; 5666 5667 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 5668 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 5669 5670 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 5671 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 5672 5673 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 5674 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 5675 5676 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 5677 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 5678 5679 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 5680 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 5681 5682 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 5683 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 5684 5685 sc->stat_EtherStatsPktsTx64Octets = 5686 stats->stat_EtherStatsPktsTx64Octets; 5687 5688 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 5689 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 5690 5691 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 5692 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 5693 5694 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 5695 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 5696 5697 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 5698 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 5699 5700 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 5701 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 5702 5703 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 5704 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 5705 5706 sc->stat_XonPauseFramesReceived = 5707 stats->stat_XonPauseFramesReceived; 5708 5709 sc->stat_XoffPauseFramesReceived = 5710 stats->stat_XoffPauseFramesReceived; 5711 5712 sc->stat_OutXonSent = 5713 stats->stat_OutXonSent; 5714 5715 sc->stat_OutXoffSent = 5716 stats->stat_OutXoffSent; 5717 5718 sc->stat_FlowControlDone = 5719 stats->stat_FlowControlDone; 5720 5721 sc->stat_MacControlFramesReceived = 5722 stats->stat_MacControlFramesReceived; 5723 5724 sc->stat_XoffStateEntered = 5725 stats->stat_XoffStateEntered; 5726 5727 sc->stat_IfInFramesL2FilterDiscards = 5728 stats->stat_IfInFramesL2FilterDiscards; 5729 5730 sc->stat_IfInRuleCheckerDiscards = 5731 stats->stat_IfInRuleCheckerDiscards; 5732 5733 sc->stat_IfInFTQDiscards = 5734 stats->stat_IfInFTQDiscards; 5735 5736 sc->stat_IfInMBUFDiscards = 5737 stats->stat_IfInMBUFDiscards; 5738 5739 sc->stat_IfInRuleCheckerP4Hit = 5740 stats->stat_IfInRuleCheckerP4Hit; 5741 5742 sc->stat_CatchupInRuleCheckerDiscards = 5743 stats->stat_CatchupInRuleCheckerDiscards; 5744 5745 sc->stat_CatchupInFTQDiscards = 5746 stats->stat_CatchupInFTQDiscards; 5747 5748 sc->stat_CatchupInMBUFDiscards = 5749 stats->stat_CatchupInMBUFDiscards; 5750 5751 sc->stat_CatchupInRuleCheckerP4Hit = 5752 stats->stat_CatchupInRuleCheckerP4Hit; 5753 5754 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 5755 5756 DBPRINT(sc, BCE_EXCESSIVE, "Exiting %s()\n", __FUNCTION__); 5757 } 5758 5759 5760 /****************************************************************************/ 5761 /* Periodic function to notify the bootcode that the driver is still */ 5762 /* present. */ 5763 /* */ 5764 /* Returns: */ 5765 /* Nothing. */ 5766 /****************************************************************************/ 5767 static void 5768 bce_pulse(void *xsc) 5769 { 5770 struct bce_softc *sc = xsc; 5771 u32 msg; 5772 5773 DBPRINT(sc, BCE_EXCESSIVE_MISC, "pulse\n"); 5774 5775 BCE_LOCK_ASSERT(sc); 5776 5777 /* Tell the firmware that the driver is still running. */ 5778 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 5779 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_PULSE_MB, msg); 5780 5781 /* Schedule the next pulse. */ 5782 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 5783 5784 return; 5785 } 5786 5787 5788 /****************************************************************************/ 5789 /* Periodic function to perform maintenance tasks. */ 5790 /* */ 5791 /* Returns: */ 5792 /* Nothing. */ 5793 /****************************************************************************/ 5794 static void 5795 bce_tick(void *xsc) 5796 { 5797 struct bce_softc *sc = xsc; 5798 struct mii_data *mii; 5799 struct ifnet *ifp; 5800 5801 ifp = sc->bce_ifp; 5802 5803 BCE_LOCK_ASSERT(sc); 5804 5805 /* Update the statistics from the hardware statistics block. */ 5806 bce_stats_update(sc); 5807 5808 /* Check that chip hasn't hung. */ 5809 bce_watchdog(sc); 5810 5811 /* Schedule the next tick. */ 5812 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 5813 5814 /* If link is up already up then we're done. */ 5815 if (sc->bce_link) 5816 goto bce_tick_locked_exit; 5817 5818 mii = device_get_softc(sc->bce_miibus); 5819 mii_tick(mii); 5820 5821 /* Check if the link has come up. */ 5822 if (!sc->bce_link && mii->mii_media_status & IFM_ACTIVE && 5823 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5824 sc->bce_link++; 5825 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 5826 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) && 5827 bootverbose) 5828 BCE_PRINTF("Gigabit link up\n"); 5829 /* Now that link is up, handle any outstanding TX traffic. */ 5830 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 5831 bce_start_locked(ifp); 5832 } 5833 5834 bce_tick_locked_exit: 5835 return; 5836 } 5837 5838 5839 #ifdef BCE_DEBUG 5840 /****************************************************************************/ 5841 /* Allows the driver state to be dumped through the sysctl interface. */ 5842 /* */ 5843 /* Returns: */ 5844 /* 0 for success, positive value for failure. */ 5845 /****************************************************************************/ 5846 static int 5847 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 5848 { 5849 int error; 5850 int result; 5851 struct bce_softc *sc; 5852 5853 result = -1; 5854 error = sysctl_handle_int(oidp, &result, 0, req); 5855 5856 if (error || !req->newptr) 5857 return (error); 5858 5859 if (result == 1) { 5860 sc = (struct bce_softc *)arg1; 5861 bce_dump_driver_state(sc); 5862 } 5863 5864 return error; 5865 } 5866 5867 5868 /****************************************************************************/ 5869 /* Allows the hardware state to be dumped through the sysctl interface. */ 5870 /* */ 5871 /* Returns: */ 5872 /* 0 for success, positive value for failure. */ 5873 /****************************************************************************/ 5874 static int 5875 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 5876 { 5877 int error; 5878 int result; 5879 struct bce_softc *sc; 5880 5881 result = -1; 5882 error = sysctl_handle_int(oidp, &result, 0, req); 5883 5884 if (error || !req->newptr) 5885 return (error); 5886 5887 if (result == 1) { 5888 sc = (struct bce_softc *)arg1; 5889 bce_dump_hw_state(sc); 5890 } 5891 5892 return error; 5893 } 5894 5895 5896 /****************************************************************************/ 5897 /* Allows the bootcode state to be dumped through the sysctl interface. */ 5898 /* */ 5899 /* Returns: */ 5900 /* 0 for success, positive value for failure. */ 5901 /****************************************************************************/ 5902 static int 5903 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 5904 { 5905 int error; 5906 int result; 5907 struct bce_softc *sc; 5908 5909 result = -1; 5910 error = sysctl_handle_int(oidp, &result, 0, req); 5911 5912 if (error || !req->newptr) 5913 return (error); 5914 5915 if (result == 1) { 5916 sc = (struct bce_softc *)arg1; 5917 bce_dump_bc_state(sc); 5918 } 5919 5920 return error; 5921 } 5922 5923 5924 /****************************************************************************/ 5925 /* Provides a sysctl interface to allow dumping the RX chain. */ 5926 /* */ 5927 /* Returns: */ 5928 /* 0 for success, positive value for failure. */ 5929 /****************************************************************************/ 5930 static int 5931 bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS) 5932 { 5933 int error; 5934 int result; 5935 struct bce_softc *sc; 5936 5937 result = -1; 5938 error = sysctl_handle_int(oidp, &result, 0, req); 5939 5940 if (error || !req->newptr) 5941 return (error); 5942 5943 if (result == 1) { 5944 sc = (struct bce_softc *)arg1; 5945 bce_dump_rx_chain(sc, 0, sc->max_rx_bd); 5946 } 5947 5948 return error; 5949 } 5950 5951 5952 /****************************************************************************/ 5953 /* Provides a sysctl interface to allow dumping the TX chain. */ 5954 /* */ 5955 /* Returns: */ 5956 /* 0 for success, positive value for failure. */ 5957 /****************************************************************************/ 5958 static int 5959 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 5960 { 5961 int error; 5962 int result; 5963 struct bce_softc *sc; 5964 5965 result = -1; 5966 error = sysctl_handle_int(oidp, &result, 0, req); 5967 5968 if (error || !req->newptr) 5969 return (error); 5970 5971 if (result == 1) { 5972 sc = (struct bce_softc *)arg1; 5973 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 5974 } 5975 5976 return error; 5977 } 5978 5979 5980 /****************************************************************************/ 5981 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 5982 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 5983 /* */ 5984 /* Returns: */ 5985 /* 0 for success, positive value for failure. */ 5986 /****************************************************************************/ 5987 static int 5988 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 5989 { 5990 struct bce_softc *sc; 5991 int error; 5992 u32 val, result; 5993 5994 result = -1; 5995 error = sysctl_handle_int(oidp, &result, 0, req); 5996 if (error || (req->newptr == NULL)) 5997 return (error); 5998 5999 /* Make sure the register is accessible. */ 6000 if (result < 0x8000) { 6001 sc = (struct bce_softc *)arg1; 6002 val = REG_RD(sc, result); 6003 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 6004 } else if (result < 0x0280000) { 6005 sc = (struct bce_softc *)arg1; 6006 val = REG_RD_IND(sc, result); 6007 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 6008 } 6009 6010 return (error); 6011 } 6012 6013 6014 /****************************************************************************/ 6015 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 6016 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 6017 /* */ 6018 /* Returns: */ 6019 /* 0 for success, positive value for failure. */ 6020 /****************************************************************************/ 6021 static int 6022 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 6023 { 6024 struct bce_softc *sc; 6025 device_t dev; 6026 int error, result; 6027 u16 val; 6028 6029 result = -1; 6030 error = sysctl_handle_int(oidp, &result, 0, req); 6031 if (error || (req->newptr == NULL)) 6032 return (error); 6033 6034 /* Make sure the register is accessible. */ 6035 if (result < 0x20) { 6036 sc = (struct bce_softc *)arg1; 6037 dev = sc->bce_dev; 6038 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 6039 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 6040 } 6041 return (error); 6042 } 6043 6044 6045 /****************************************************************************/ 6046 /* Provides a sysctl interface to forcing the driver to dump state and */ 6047 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 6048 /* */ 6049 /* Returns: */ 6050 /* 0 for success, positive value for failure. */ 6051 /****************************************************************************/ 6052 static int 6053 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 6054 { 6055 int error; 6056 int result; 6057 struct bce_softc *sc; 6058 6059 result = -1; 6060 error = sysctl_handle_int(oidp, &result, 0, req); 6061 6062 if (error || !req->newptr) 6063 return (error); 6064 6065 if (result == 1) { 6066 sc = (struct bce_softc *)arg1; 6067 bce_breakpoint(sc); 6068 } 6069 6070 return error; 6071 } 6072 #endif 6073 6074 6075 /****************************************************************************/ 6076 /* Adds any sysctl parameters for tuning or debugging purposes. */ 6077 /* */ 6078 /* Returns: */ 6079 /* 0 for success, positive value for failure. */ 6080 /****************************************************************************/ 6081 static void 6082 bce_add_sysctls(struct bce_softc *sc) 6083 { 6084 struct sysctl_ctx_list *ctx; 6085 struct sysctl_oid_list *children; 6086 6087 ctx = device_get_sysctl_ctx(sc->bce_dev); 6088 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 6089 6090 #ifdef BCE_DEBUG 6091 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6092 "rx_low_watermark", 6093 CTLFLAG_RD, &sc->rx_low_watermark, 6094 0, "Lowest level of free rx_bd's"); 6095 6096 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6097 "rx_empty_count", 6098 CTLFLAG_RD, &sc->rx_empty_count, 6099 0, "Number of times the RX chain was empty"); 6100 6101 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6102 "tx_hi_watermark", 6103 CTLFLAG_RD, &sc->tx_hi_watermark, 6104 0, "Highest level of used tx_bd's"); 6105 6106 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6107 "tx_full_count", 6108 CTLFLAG_RD, &sc->tx_full_count, 6109 0, "Number of times the TX chain was full"); 6110 6111 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6112 "l2fhdr_status_errors", 6113 CTLFLAG_RD, &sc->l2fhdr_status_errors, 6114 0, "l2_fhdr status errors"); 6115 6116 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6117 "unexpected_attentions", 6118 CTLFLAG_RD, &sc->unexpected_attentions, 6119 0, "unexpected attentions"); 6120 6121 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6122 "lost_status_block_updates", 6123 CTLFLAG_RD, &sc->lost_status_block_updates, 6124 0, "lost status block updates"); 6125 6126 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6127 "mbuf_sim_alloc_failed", 6128 CTLFLAG_RD, &sc->mbuf_sim_alloc_failed, 6129 0, "mbuf cluster simulated allocation failures"); 6130 6131 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6132 "requested_tso_frames", 6133 CTLFLAG_RD, &sc->requested_tso_frames, 6134 0, "The number of TSO frames received"); 6135 6136 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6137 "rx_mbuf_segs[1]", 6138 CTLFLAG_RD, &sc->rx_mbuf_segs[1], 6139 0, "mbuf cluster with 1 segment"); 6140 6141 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6142 "rx_mbuf_segs[2]", 6143 CTLFLAG_RD, &sc->rx_mbuf_segs[2], 6144 0, "mbuf cluster with 2 segments"); 6145 6146 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6147 "rx_mbuf_segs[3]", 6148 CTLFLAG_RD, &sc->rx_mbuf_segs[3], 6149 0, "mbuf cluster with 3 segments"); 6150 6151 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6152 "rx_mbuf_segs[4]", 6153 CTLFLAG_RD, &sc->rx_mbuf_segs[4], 6154 0, "mbuf cluster with 4 segments"); 6155 6156 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6157 "rx_mbuf_segs[5]", 6158 CTLFLAG_RD, &sc->rx_mbuf_segs[5], 6159 0, "mbuf cluster with 5 segments"); 6160 6161 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6162 "rx_mbuf_segs[6]", 6163 CTLFLAG_RD, &sc->rx_mbuf_segs[6], 6164 0, "mbuf cluster with 6 segments"); 6165 6166 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6167 "rx_mbuf_segs[7]", 6168 CTLFLAG_RD, &sc->rx_mbuf_segs[7], 6169 0, "mbuf cluster with 7 segments"); 6170 6171 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6172 "rx_mbuf_segs[8]", 6173 CTLFLAG_RD, &sc->rx_mbuf_segs[8], 6174 0, "mbuf cluster with 8 segments"); 6175 6176 #endif 6177 6178 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6179 "mbuf_alloc_failed", 6180 CTLFLAG_RD, &sc->mbuf_alloc_failed, 6181 0, "mbuf cluster allocation failures"); 6182 6183 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6184 "tx_dma_map_failures", 6185 CTLFLAG_RD, &sc->tx_dma_map_failures, 6186 0, "tx dma mapping failures"); 6187 6188 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 6189 "stat_IfHcInOctets", 6190 CTLFLAG_RD, &sc->stat_IfHCInOctets, 6191 "Bytes received"); 6192 6193 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 6194 "stat_IfHCInBadOctets", 6195 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 6196 "Bad bytes received"); 6197 6198 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 6199 "stat_IfHCOutOctets", 6200 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 6201 "Bytes sent"); 6202 6203 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 6204 "stat_IfHCOutBadOctets", 6205 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 6206 "Bad bytes sent"); 6207 6208 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 6209 "stat_IfHCInUcastPkts", 6210 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 6211 "Unicast packets received"); 6212 6213 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 6214 "stat_IfHCInMulticastPkts", 6215 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 6216 "Multicast packets received"); 6217 6218 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 6219 "stat_IfHCInBroadcastPkts", 6220 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 6221 "Broadcast packets received"); 6222 6223 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 6224 "stat_IfHCOutUcastPkts", 6225 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 6226 "Unicast packets sent"); 6227 6228 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 6229 "stat_IfHCOutMulticastPkts", 6230 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 6231 "Multicast packets sent"); 6232 6233 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 6234 "stat_IfHCOutBroadcastPkts", 6235 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 6236 "Broadcast packets sent"); 6237 6238 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6239 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 6240 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 6241 0, "Internal MAC transmit errors"); 6242 6243 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6244 "stat_Dot3StatsCarrierSenseErrors", 6245 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 6246 0, "Carrier sense errors"); 6247 6248 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6249 "stat_Dot3StatsFCSErrors", 6250 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 6251 0, "Frame check sequence errors"); 6252 6253 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6254 "stat_Dot3StatsAlignmentErrors", 6255 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 6256 0, "Alignment errors"); 6257 6258 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6259 "stat_Dot3StatsSingleCollisionFrames", 6260 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 6261 0, "Single Collision Frames"); 6262 6263 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6264 "stat_Dot3StatsMultipleCollisionFrames", 6265 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 6266 0, "Multiple Collision Frames"); 6267 6268 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6269 "stat_Dot3StatsDeferredTransmissions", 6270 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 6271 0, "Deferred Transmissions"); 6272 6273 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6274 "stat_Dot3StatsExcessiveCollisions", 6275 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 6276 0, "Excessive Collisions"); 6277 6278 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6279 "stat_Dot3StatsLateCollisions", 6280 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 6281 0, "Late Collisions"); 6282 6283 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6284 "stat_EtherStatsCollisions", 6285 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 6286 0, "Collisions"); 6287 6288 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6289 "stat_EtherStatsFragments", 6290 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 6291 0, "Fragments"); 6292 6293 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6294 "stat_EtherStatsJabbers", 6295 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 6296 0, "Jabbers"); 6297 6298 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6299 "stat_EtherStatsUndersizePkts", 6300 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 6301 0, "Undersize packets"); 6302 6303 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6304 "stat_EtherStatsOverrsizePkts", 6305 CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts, 6306 0, "stat_EtherStatsOverrsizePkts"); 6307 6308 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6309 "stat_EtherStatsPktsRx64Octets", 6310 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 6311 0, "Bytes received in 64 byte packets"); 6312 6313 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6314 "stat_EtherStatsPktsRx65Octetsto127Octets", 6315 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 6316 0, "Bytes received in 65 to 127 byte packets"); 6317 6318 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6319 "stat_EtherStatsPktsRx128Octetsto255Octets", 6320 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 6321 0, "Bytes received in 128 to 255 byte packets"); 6322 6323 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6324 "stat_EtherStatsPktsRx256Octetsto511Octets", 6325 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 6326 0, "Bytes received in 256 to 511 byte packets"); 6327 6328 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6329 "stat_EtherStatsPktsRx512Octetsto1023Octets", 6330 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 6331 0, "Bytes received in 512 to 1023 byte packets"); 6332 6333 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6334 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 6335 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 6336 0, "Bytes received in 1024 t0 1522 byte packets"); 6337 6338 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6339 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 6340 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 6341 0, "Bytes received in 1523 to 9022 byte packets"); 6342 6343 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6344 "stat_EtherStatsPktsTx64Octets", 6345 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 6346 0, "Bytes sent in 64 byte packets"); 6347 6348 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6349 "stat_EtherStatsPktsTx65Octetsto127Octets", 6350 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 6351 0, "Bytes sent in 65 to 127 byte packets"); 6352 6353 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6354 "stat_EtherStatsPktsTx128Octetsto255Octets", 6355 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 6356 0, "Bytes sent in 128 to 255 byte packets"); 6357 6358 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6359 "stat_EtherStatsPktsTx256Octetsto511Octets", 6360 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 6361 0, "Bytes sent in 256 to 511 byte packets"); 6362 6363 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6364 "stat_EtherStatsPktsTx512Octetsto1023Octets", 6365 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 6366 0, "Bytes sent in 512 to 1023 byte packets"); 6367 6368 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6369 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 6370 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 6371 0, "Bytes sent in 1024 to 1522 byte packets"); 6372 6373 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6374 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 6375 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 6376 0, "Bytes sent in 1523 to 9022 byte packets"); 6377 6378 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6379 "stat_XonPauseFramesReceived", 6380 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 6381 0, "XON pause frames receved"); 6382 6383 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6384 "stat_XoffPauseFramesReceived", 6385 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 6386 0, "XOFF pause frames received"); 6387 6388 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6389 "stat_OutXonSent", 6390 CTLFLAG_RD, &sc->stat_OutXonSent, 6391 0, "XON pause frames sent"); 6392 6393 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6394 "stat_OutXoffSent", 6395 CTLFLAG_RD, &sc->stat_OutXoffSent, 6396 0, "XOFF pause frames sent"); 6397 6398 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6399 "stat_FlowControlDone", 6400 CTLFLAG_RD, &sc->stat_FlowControlDone, 6401 0, "Flow control done"); 6402 6403 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6404 "stat_MacControlFramesReceived", 6405 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 6406 0, "MAC control frames received"); 6407 6408 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6409 "stat_XoffStateEntered", 6410 CTLFLAG_RD, &sc->stat_XoffStateEntered, 6411 0, "XOFF state entered"); 6412 6413 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6414 "stat_IfInFramesL2FilterDiscards", 6415 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 6416 0, "Received L2 packets discarded"); 6417 6418 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6419 "stat_IfInRuleCheckerDiscards", 6420 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 6421 0, "Received packets discarded by rule"); 6422 6423 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6424 "stat_IfInFTQDiscards", 6425 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 6426 0, "Received packet FTQ discards"); 6427 6428 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6429 "stat_IfInMBUFDiscards", 6430 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 6431 0, "Received packets discarded due to lack of controller buffer memory"); 6432 6433 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6434 "stat_IfInRuleCheckerP4Hit", 6435 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 6436 0, "Received packets rule checker hits"); 6437 6438 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6439 "stat_CatchupInRuleCheckerDiscards", 6440 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 6441 0, "Received packets discarded in Catchup path"); 6442 6443 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6444 "stat_CatchupInFTQDiscards", 6445 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 6446 0, "Received packets discarded in FTQ in Catchup path"); 6447 6448 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6449 "stat_CatchupInMBUFDiscards", 6450 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 6451 0, "Received packets discarded in controller buffer memory in Catchup path"); 6452 6453 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6454 "stat_CatchupInRuleCheckerP4Hit", 6455 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 6456 0, "Received packets rule checker hits in Catchup path"); 6457 6458 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 6459 "com_no_buffers", 6460 CTLFLAG_RD, &sc->com_no_buffers, 6461 0, "Valid packets received but no RX buffers available"); 6462 6463 #ifdef BCE_DEBUG 6464 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 6465 "driver_state", CTLTYPE_INT | CTLFLAG_RW, 6466 (void *)sc, 0, 6467 bce_sysctl_driver_state, "I", "Drive state information"); 6468 6469 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 6470 "hw_state", CTLTYPE_INT | CTLFLAG_RW, 6471 (void *)sc, 0, 6472 bce_sysctl_hw_state, "I", "Hardware state information"); 6473 6474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 6475 "bc_state", CTLTYPE_INT | CTLFLAG_RW, 6476 (void *)sc, 0, 6477 bce_sysctl_bc_state, "I", "Bootcode state information"); 6478 6479 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 6480 "dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW, 6481 (void *)sc, 0, 6482 bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain"); 6483 6484 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 6485 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW, 6486 (void *)sc, 0, 6487 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 6488 6489 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 6490 "breakpoint", CTLTYPE_INT | CTLFLAG_RW, 6491 (void *)sc, 0, 6492 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 6493 6494 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 6495 "reg_read", CTLTYPE_INT | CTLFLAG_RW, 6496 (void *)sc, 0, 6497 bce_sysctl_reg_read, "I", "Register read"); 6498 6499 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 6500 "phy_read", CTLTYPE_INT | CTLFLAG_RW, 6501 (void *)sc, 0, 6502 bce_sysctl_phy_read, "I", "PHY register read"); 6503 6504 #endif 6505 6506 } 6507 6508 6509 /****************************************************************************/ 6510 /* BCE Debug Routines */ 6511 /****************************************************************************/ 6512 #ifdef BCE_DEBUG 6513 6514 /****************************************************************************/ 6515 /* Freezes the controller to allow for a cohesive state dump. */ 6516 /* */ 6517 /* Returns: */ 6518 /* Nothing. */ 6519 /****************************************************************************/ 6520 static void 6521 bce_freeze_controller(struct bce_softc *sc) 6522 { 6523 u32 val; 6524 val = REG_RD(sc, BCE_MISC_COMMAND); 6525 val |= BCE_MISC_COMMAND_DISABLE_ALL; 6526 REG_WR(sc, BCE_MISC_COMMAND, val); 6527 6528 } 6529 6530 6531 /****************************************************************************/ 6532 /* Unfreezes the controller after a freeze operation. This may not always */ 6533 /* work and the controller will require a reset! */ 6534 /* */ 6535 /* Returns: */ 6536 /* Nothing. */ 6537 /****************************************************************************/ 6538 static void 6539 bce_unfreeze_controller(struct bce_softc *sc) 6540 { 6541 u32 val; 6542 val = REG_RD(sc, BCE_MISC_COMMAND); 6543 val |= BCE_MISC_COMMAND_ENABLE_ALL; 6544 REG_WR(sc, BCE_MISC_COMMAND, val); 6545 6546 } 6547 6548 /****************************************************************************/ 6549 /* Prints out information about an mbuf. */ 6550 /* */ 6551 /* Returns: */ 6552 /* Nothing. */ 6553 /****************************************************************************/ 6554 static void 6555 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 6556 { 6557 u32 val_hi, val_lo; 6558 struct mbuf *mp = m; 6559 6560 if (m == NULL) { 6561 BCE_PRINTF("mbuf: null pointer\n"); 6562 return; 6563 } 6564 6565 while (mp) { 6566 val_hi = BCE_ADDR_HI(mp); 6567 val_lo = BCE_ADDR_LO(mp); 6568 BCE_PRINTF("mbuf: vaddr = 0x%08X:%08X, m_len = %d, m_flags = ( ", 6569 val_hi, val_lo, mp->m_len); 6570 6571 if (mp->m_flags & M_EXT) 6572 printf("M_EXT "); 6573 if (mp->m_flags & M_PKTHDR) 6574 printf("M_PKTHDR "); 6575 if (mp->m_flags & M_EOR) 6576 printf("M_EOR "); 6577 if (mp->m_flags & M_RDONLY) 6578 printf("M_RDONLY "); 6579 6580 val_hi = BCE_ADDR_HI(mp->m_data); 6581 val_lo = BCE_ADDR_LO(mp->m_data); 6582 printf(") m_data = 0x%08X:%08X\n", 6583 val_hi, val_lo); 6584 6585 if (mp->m_flags & M_PKTHDR) { 6586 BCE_PRINTF("- m_pkthdr: flags = ( "); 6587 if (mp->m_flags & M_BCAST) 6588 printf("M_BCAST "); 6589 if (mp->m_flags & M_MCAST) 6590 printf("M_MCAST "); 6591 if (mp->m_flags & M_FRAG) 6592 printf("M_FRAG "); 6593 if (mp->m_flags & M_FIRSTFRAG) 6594 printf("M_FIRSTFRAG "); 6595 if (mp->m_flags & M_LASTFRAG) 6596 printf("M_LASTFRAG "); 6597 if (mp->m_flags & M_VLANTAG) 6598 printf("M_VLANTAG "); 6599 if (mp->m_flags & M_PROMISC) 6600 printf("M_PROMISC "); 6601 printf(") csum_flags = ( "); 6602 if (mp->m_pkthdr.csum_flags & CSUM_IP) 6603 printf("CSUM_IP "); 6604 if (mp->m_pkthdr.csum_flags & CSUM_TCP) 6605 printf("CSUM_TCP "); 6606 if (mp->m_pkthdr.csum_flags & CSUM_UDP) 6607 printf("CSUM_UDP "); 6608 if (mp->m_pkthdr.csum_flags & CSUM_IP_FRAGS) 6609 printf("CSUM_IP_FRAGS "); 6610 if (mp->m_pkthdr.csum_flags & CSUM_FRAGMENT) 6611 printf("CSUM_FRAGMENT "); 6612 if (mp->m_pkthdr.csum_flags & CSUM_TSO) 6613 printf("CSUM_TSO "); 6614 if (mp->m_pkthdr.csum_flags & CSUM_IP_CHECKED) 6615 printf("CSUM_IP_CHECKED "); 6616 if (mp->m_pkthdr.csum_flags & CSUM_IP_VALID) 6617 printf("CSUM_IP_VALID "); 6618 if (mp->m_pkthdr.csum_flags & CSUM_DATA_VALID) 6619 printf("CSUM_DATA_VALID "); 6620 printf(")\n"); 6621 } 6622 6623 if (mp->m_flags & M_EXT) { 6624 val_hi = BCE_ADDR_HI(mp->m_ext.ext_buf); 6625 val_lo = BCE_ADDR_LO(mp->m_ext.ext_buf); 6626 BCE_PRINTF("- m_ext: vaddr = 0x%08X:%08X, ext_size = %d, type = ", 6627 val_hi, val_lo, mp->m_ext.ext_size); 6628 switch (mp->m_ext.ext_type) { 6629 case EXT_CLUSTER: printf("EXT_CLUSTER\n"); break; 6630 case EXT_SFBUF: printf("EXT_SFBUF\n"); break; 6631 case EXT_JUMBO9: printf("EXT_JUMBO9\n"); break; 6632 case EXT_JUMBO16: printf("EXT_JUMBO16\n"); break; 6633 case EXT_PACKET: printf("EXT_PACKET\n"); break; 6634 case EXT_MBUF: printf("EXT_MBUF\n"); break; 6635 case EXT_NET_DRV: printf("EXT_NET_DRV\n"); break; 6636 case EXT_MOD_TYPE: printf("EXT_MDD_TYPE\n"); break; 6637 case EXT_DISPOSABLE: printf("EXT_DISPOSABLE\n"); break; 6638 case EXT_EXTREF: printf("EXT_EXTREF\n"); break; 6639 default: printf("UNKNOWN\n"); 6640 } 6641 } 6642 6643 mp = mp->m_next; 6644 } 6645 } 6646 6647 6648 /****************************************************************************/ 6649 /* Prints out the mbufs in the TX mbuf chain. */ 6650 /* */ 6651 /* Returns: */ 6652 /* Nothing. */ 6653 /****************************************************************************/ 6654 static void 6655 bce_dump_tx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count) 6656 { 6657 struct mbuf *m; 6658 6659 BCE_PRINTF( 6660 "----------------------------" 6661 " tx mbuf data " 6662 "----------------------------\n"); 6663 6664 for (int i = 0; i < count; i++) { 6665 m = sc->tx_mbuf_ptr[chain_prod]; 6666 BCE_PRINTF("txmbuf[%d]\n", chain_prod); 6667 bce_dump_mbuf(sc, m); 6668 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 6669 } 6670 6671 BCE_PRINTF( 6672 "----------------------------" 6673 "----------------" 6674 "----------------------------\n"); 6675 } 6676 6677 6678 /****************************************************************************/ 6679 /* Prints out the mbufs in the RX mbuf chain. */ 6680 /* */ 6681 /* Returns: */ 6682 /* Nothing. */ 6683 /****************************************************************************/ 6684 static void 6685 bce_dump_rx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count) 6686 { 6687 struct mbuf *m; 6688 6689 BCE_PRINTF( 6690 "----------------------------" 6691 " rx mbuf data " 6692 "----------------------------\n"); 6693 6694 for (int i = 0; i < count; i++) { 6695 m = sc->rx_mbuf_ptr[chain_prod]; 6696 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 6697 bce_dump_mbuf(sc, m); 6698 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 6699 } 6700 6701 6702 BCE_PRINTF( 6703 "----------------------------" 6704 "----------------" 6705 "----------------------------\n"); 6706 } 6707 6708 6709 /****************************************************************************/ 6710 /* Prints out a tx_bd structure. */ 6711 /* */ 6712 /* Returns: */ 6713 /* Nothing. */ 6714 /****************************************************************************/ 6715 static void 6716 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 6717 { 6718 if (idx > MAX_TX_BD) 6719 /* Index out of range. */ 6720 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 6721 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6722 /* TX Chain page pointer. */ 6723 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 6724 idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo); 6725 else { 6726 /* Normal tx_bd entry. */ 6727 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 6728 "vlan tag= 0x%04X, flags = 0x%04X (", idx, 6729 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, 6730 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, 6731 txbd->tx_bd_flags); 6732 6733 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) 6734 printf(" CONN_FAULT"); 6735 6736 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) 6737 printf(" TCP_UDP_CKSUM"); 6738 6739 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) 6740 printf(" IP_CKSUM"); 6741 6742 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) 6743 printf(" VLAN"); 6744 6745 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) 6746 printf(" COAL_NOW"); 6747 6748 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) 6749 printf(" DONT_GEN_CRC"); 6750 6751 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) 6752 printf(" START"); 6753 6754 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) 6755 printf(" END"); 6756 6757 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) 6758 printf(" LSO"); 6759 6760 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) 6761 printf(" OPTION_WORD"); 6762 6763 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) 6764 printf(" FLAGS"); 6765 6766 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) 6767 printf(" SNAP"); 6768 6769 printf(" )\n"); 6770 } 6771 6772 } 6773 6774 6775 /****************************************************************************/ 6776 /* Prints out a rx_bd structure. */ 6777 /* */ 6778 /* Returns: */ 6779 /* Nothing. */ 6780 /****************************************************************************/ 6781 static void 6782 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 6783 { 6784 if (idx > MAX_RX_BD) 6785 /* Index out of range. */ 6786 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 6787 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 6788 /* TX Chain page pointer. */ 6789 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 6790 idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo); 6791 else 6792 /* Normal tx_bd entry. */ 6793 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 6794 "flags = 0x%08X\n", idx, 6795 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, 6796 rxbd->rx_bd_len, rxbd->rx_bd_flags); 6797 } 6798 6799 6800 /****************************************************************************/ 6801 /* Prints out a l2_fhdr structure. */ 6802 /* */ 6803 /* Returns: */ 6804 /* Nothing. */ 6805 /****************************************************************************/ 6806 static void 6807 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 6808 { 6809 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%08X, " 6810 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " 6811 "tcp_udp_xsum = 0x%04X\n", idx, 6812 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, 6813 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum, 6814 l2fhdr->l2_fhdr_tcp_udp_xsum); 6815 } 6816 6817 6818 /****************************************************************************/ 6819 /* Prints out the TX chain. */ 6820 /* */ 6821 /* Returns: */ 6822 /* Nothing. */ 6823 /****************************************************************************/ 6824 static void 6825 bce_dump_tx_chain(struct bce_softc *sc, int tx_prod, int count) 6826 { 6827 struct tx_bd *txbd; 6828 6829 /* First some info about the tx_bd chain structure. */ 6830 BCE_PRINTF( 6831 "----------------------------" 6832 " tx_bd chain " 6833 "----------------------------\n"); 6834 6835 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 6836 (u32) BCM_PAGE_SIZE, (u32) TX_PAGES); 6837 6838 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 6839 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 6840 6841 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD); 6842 6843 BCE_PRINTF( 6844 "----------------------------" 6845 " tx_bd data " 6846 "----------------------------\n"); 6847 6848 /* Now print out the tx_bd's themselves. */ 6849 for (int i = 0; i < count; i++) { 6850 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 6851 bce_dump_txbd(sc, tx_prod, txbd); 6852 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod)); 6853 } 6854 6855 BCE_PRINTF( 6856 "----------------------------" 6857 "----------------" 6858 "----------------------------\n"); 6859 } 6860 6861 6862 /****************************************************************************/ 6863 /* Prints out the RX chain. */ 6864 /* */ 6865 /* Returns: */ 6866 /* Nothing. */ 6867 /****************************************************************************/ 6868 static void 6869 bce_dump_rx_chain(struct bce_softc *sc, int rx_prod, int count) 6870 { 6871 struct rx_bd *rxbd; 6872 6873 /* First some info about the tx_bd chain structure. */ 6874 BCE_PRINTF( 6875 "----------------------------" 6876 " rx_bd chain " 6877 "----------------------------\n"); 6878 6879 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 6880 (u32) BCM_PAGE_SIZE, (u32) RX_PAGES); 6881 6882 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 6883 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 6884 6885 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD); 6886 6887 BCE_PRINTF( 6888 "----------------------------" 6889 " rx_bd data " 6890 "----------------------------\n"); 6891 6892 /* Now print out the rx_bd's themselves. */ 6893 for (int i = 0; i < count; i++) { 6894 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 6895 bce_dump_rxbd(sc, rx_prod, rxbd); 6896 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod)); 6897 } 6898 6899 BCE_PRINTF( 6900 "----------------------------" 6901 "----------------" 6902 "----------------------------\n"); 6903 } 6904 6905 6906 /****************************************************************************/ 6907 /* Prints out the status block from host memory. */ 6908 /* */ 6909 /* Returns: */ 6910 /* Nothing. */ 6911 /****************************************************************************/ 6912 static void 6913 bce_dump_status_block(struct bce_softc *sc) 6914 { 6915 struct status_block *sblk; 6916 6917 sblk = sc->status_block; 6918 6919 BCE_PRINTF( 6920 "----------------------------" 6921 " Status Block " 6922 "----------------------------\n"); 6923 6924 BCE_PRINTF(" 0x%08X - attn_bits\n", 6925 sblk->status_attn_bits); 6926 6927 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 6928 sblk->status_attn_bits_ack); 6929 6930 BCE_PRINTF("0x%04X(0x%04X) - rx_cons0\n", 6931 sblk->status_rx_quick_consumer_index0, 6932 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index0)); 6933 6934 BCE_PRINTF("0x%04X(0x%04X) - tx_cons0\n", 6935 sblk->status_tx_quick_consumer_index0, 6936 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index0)); 6937 6938 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 6939 6940 /* Theses indices are not used for normal L2 drivers. */ 6941 if (sblk->status_rx_quick_consumer_index1) 6942 BCE_PRINTF("0x%04X(0x%04X) - rx_cons1\n", 6943 sblk->status_rx_quick_consumer_index1, 6944 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index1)); 6945 6946 if (sblk->status_tx_quick_consumer_index1) 6947 BCE_PRINTF("0x%04X(0x%04X) - tx_cons1\n", 6948 sblk->status_tx_quick_consumer_index1, 6949 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index1)); 6950 6951 if (sblk->status_rx_quick_consumer_index2) 6952 BCE_PRINTF("0x%04X(0x%04X)- rx_cons2\n", 6953 sblk->status_rx_quick_consumer_index2, 6954 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index2)); 6955 6956 if (sblk->status_tx_quick_consumer_index2) 6957 BCE_PRINTF("0x%04X(0x%04X) - tx_cons2\n", 6958 sblk->status_tx_quick_consumer_index2, 6959 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index2)); 6960 6961 if (sblk->status_rx_quick_consumer_index3) 6962 BCE_PRINTF("0x%04X(0x%04X) - rx_cons3\n", 6963 sblk->status_rx_quick_consumer_index3, 6964 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index3)); 6965 6966 if (sblk->status_tx_quick_consumer_index3) 6967 BCE_PRINTF("0x%04X(0x%04X) - tx_cons3\n", 6968 sblk->status_tx_quick_consumer_index3, 6969 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index3)); 6970 6971 if (sblk->status_rx_quick_consumer_index4 || 6972 sblk->status_rx_quick_consumer_index5) 6973 BCE_PRINTF("rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", 6974 sblk->status_rx_quick_consumer_index4, 6975 sblk->status_rx_quick_consumer_index5); 6976 6977 if (sblk->status_rx_quick_consumer_index6 || 6978 sblk->status_rx_quick_consumer_index7) 6979 BCE_PRINTF("rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", 6980 sblk->status_rx_quick_consumer_index6, 6981 sblk->status_rx_quick_consumer_index7); 6982 6983 if (sblk->status_rx_quick_consumer_index8 || 6984 sblk->status_rx_quick_consumer_index9) 6985 BCE_PRINTF("rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", 6986 sblk->status_rx_quick_consumer_index8, 6987 sblk->status_rx_quick_consumer_index9); 6988 6989 if (sblk->status_rx_quick_consumer_index10 || 6990 sblk->status_rx_quick_consumer_index11) 6991 BCE_PRINTF("rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", 6992 sblk->status_rx_quick_consumer_index10, 6993 sblk->status_rx_quick_consumer_index11); 6994 6995 if (sblk->status_rx_quick_consumer_index12 || 6996 sblk->status_rx_quick_consumer_index13) 6997 BCE_PRINTF("rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", 6998 sblk->status_rx_quick_consumer_index12, 6999 sblk->status_rx_quick_consumer_index13); 7000 7001 if (sblk->status_rx_quick_consumer_index14 || 7002 sblk->status_rx_quick_consumer_index15) 7003 BCE_PRINTF("rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", 7004 sblk->status_rx_quick_consumer_index14, 7005 sblk->status_rx_quick_consumer_index15); 7006 7007 if (sblk->status_completion_producer_index || 7008 sblk->status_cmd_consumer_index) 7009 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 7010 sblk->status_completion_producer_index, 7011 sblk->status_cmd_consumer_index); 7012 7013 BCE_PRINTF( 7014 "----------------------------" 7015 "----------------" 7016 "----------------------------\n"); 7017 } 7018 7019 7020 /****************************************************************************/ 7021 /* Prints out the statistics block from host memory. */ 7022 /* */ 7023 /* Returns: */ 7024 /* Nothing. */ 7025 /****************************************************************************/ 7026 static void 7027 bce_dump_stats_block(struct bce_softc *sc) 7028 { 7029 struct statistics_block *sblk; 7030 7031 sblk = sc->stats_block; 7032 7033 BCE_PRINTF( 7034 "---------------" 7035 " Stats Block (All Stats Not Shown Are 0) " 7036 "---------------\n"); 7037 7038 if (sblk->stat_IfHCInOctets_hi 7039 || sblk->stat_IfHCInOctets_lo) 7040 BCE_PRINTF("0x%08X:%08X : " 7041 "IfHcInOctets\n", 7042 sblk->stat_IfHCInOctets_hi, 7043 sblk->stat_IfHCInOctets_lo); 7044 7045 if (sblk->stat_IfHCInBadOctets_hi 7046 || sblk->stat_IfHCInBadOctets_lo) 7047 BCE_PRINTF("0x%08X:%08X : " 7048 "IfHcInBadOctets\n", 7049 sblk->stat_IfHCInBadOctets_hi, 7050 sblk->stat_IfHCInBadOctets_lo); 7051 7052 if (sblk->stat_IfHCOutOctets_hi 7053 || sblk->stat_IfHCOutOctets_lo) 7054 BCE_PRINTF("0x%08X:%08X : " 7055 "IfHcOutOctets\n", 7056 sblk->stat_IfHCOutOctets_hi, 7057 sblk->stat_IfHCOutOctets_lo); 7058 7059 if (sblk->stat_IfHCOutBadOctets_hi 7060 || sblk->stat_IfHCOutBadOctets_lo) 7061 BCE_PRINTF("0x%08X:%08X : " 7062 "IfHcOutBadOctets\n", 7063 sblk->stat_IfHCOutBadOctets_hi, 7064 sblk->stat_IfHCOutBadOctets_lo); 7065 7066 if (sblk->stat_IfHCInUcastPkts_hi 7067 || sblk->stat_IfHCInUcastPkts_lo) 7068 BCE_PRINTF("0x%08X:%08X : " 7069 "IfHcInUcastPkts\n", 7070 sblk->stat_IfHCInUcastPkts_hi, 7071 sblk->stat_IfHCInUcastPkts_lo); 7072 7073 if (sblk->stat_IfHCInBroadcastPkts_hi 7074 || sblk->stat_IfHCInBroadcastPkts_lo) 7075 BCE_PRINTF("0x%08X:%08X : " 7076 "IfHcInBroadcastPkts\n", 7077 sblk->stat_IfHCInBroadcastPkts_hi, 7078 sblk->stat_IfHCInBroadcastPkts_lo); 7079 7080 if (sblk->stat_IfHCInMulticastPkts_hi 7081 || sblk->stat_IfHCInMulticastPkts_lo) 7082 BCE_PRINTF("0x%08X:%08X : " 7083 "IfHcInMulticastPkts\n", 7084 sblk->stat_IfHCInMulticastPkts_hi, 7085 sblk->stat_IfHCInMulticastPkts_lo); 7086 7087 if (sblk->stat_IfHCOutUcastPkts_hi 7088 || sblk->stat_IfHCOutUcastPkts_lo) 7089 BCE_PRINTF("0x%08X:%08X : " 7090 "IfHcOutUcastPkts\n", 7091 sblk->stat_IfHCOutUcastPkts_hi, 7092 sblk->stat_IfHCOutUcastPkts_lo); 7093 7094 if (sblk->stat_IfHCOutBroadcastPkts_hi 7095 || sblk->stat_IfHCOutBroadcastPkts_lo) 7096 BCE_PRINTF("0x%08X:%08X : " 7097 "IfHcOutBroadcastPkts\n", 7098 sblk->stat_IfHCOutBroadcastPkts_hi, 7099 sblk->stat_IfHCOutBroadcastPkts_lo); 7100 7101 if (sblk->stat_IfHCOutMulticastPkts_hi 7102 || sblk->stat_IfHCOutMulticastPkts_lo) 7103 BCE_PRINTF("0x%08X:%08X : " 7104 "IfHcOutMulticastPkts\n", 7105 sblk->stat_IfHCOutMulticastPkts_hi, 7106 sblk->stat_IfHCOutMulticastPkts_lo); 7107 7108 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) 7109 BCE_PRINTF(" 0x%08X : " 7110 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 7111 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 7112 7113 if (sblk->stat_Dot3StatsCarrierSenseErrors) 7114 BCE_PRINTF(" 0x%08X : Dot3StatsCarrierSenseErrors\n", 7115 sblk->stat_Dot3StatsCarrierSenseErrors); 7116 7117 if (sblk->stat_Dot3StatsFCSErrors) 7118 BCE_PRINTF(" 0x%08X : Dot3StatsFCSErrors\n", 7119 sblk->stat_Dot3StatsFCSErrors); 7120 7121 if (sblk->stat_Dot3StatsAlignmentErrors) 7122 BCE_PRINTF(" 0x%08X : Dot3StatsAlignmentErrors\n", 7123 sblk->stat_Dot3StatsAlignmentErrors); 7124 7125 if (sblk->stat_Dot3StatsSingleCollisionFrames) 7126 BCE_PRINTF(" 0x%08X : Dot3StatsSingleCollisionFrames\n", 7127 sblk->stat_Dot3StatsSingleCollisionFrames); 7128 7129 if (sblk->stat_Dot3StatsMultipleCollisionFrames) 7130 BCE_PRINTF(" 0x%08X : Dot3StatsMultipleCollisionFrames\n", 7131 sblk->stat_Dot3StatsMultipleCollisionFrames); 7132 7133 if (sblk->stat_Dot3StatsDeferredTransmissions) 7134 BCE_PRINTF(" 0x%08X : Dot3StatsDeferredTransmissions\n", 7135 sblk->stat_Dot3StatsDeferredTransmissions); 7136 7137 if (sblk->stat_Dot3StatsExcessiveCollisions) 7138 BCE_PRINTF(" 0x%08X : Dot3StatsExcessiveCollisions\n", 7139 sblk->stat_Dot3StatsExcessiveCollisions); 7140 7141 if (sblk->stat_Dot3StatsLateCollisions) 7142 BCE_PRINTF(" 0x%08X : Dot3StatsLateCollisions\n", 7143 sblk->stat_Dot3StatsLateCollisions); 7144 7145 if (sblk->stat_EtherStatsCollisions) 7146 BCE_PRINTF(" 0x%08X : EtherStatsCollisions\n", 7147 sblk->stat_EtherStatsCollisions); 7148 7149 if (sblk->stat_EtherStatsFragments) 7150 BCE_PRINTF(" 0x%08X : EtherStatsFragments\n", 7151 sblk->stat_EtherStatsFragments); 7152 7153 if (sblk->stat_EtherStatsJabbers) 7154 BCE_PRINTF(" 0x%08X : EtherStatsJabbers\n", 7155 sblk->stat_EtherStatsJabbers); 7156 7157 if (sblk->stat_EtherStatsUndersizePkts) 7158 BCE_PRINTF(" 0x%08X : EtherStatsUndersizePkts\n", 7159 sblk->stat_EtherStatsUndersizePkts); 7160 7161 if (sblk->stat_EtherStatsOverrsizePkts) 7162 BCE_PRINTF(" 0x%08X : EtherStatsOverrsizePkts\n", 7163 sblk->stat_EtherStatsOverrsizePkts); 7164 7165 if (sblk->stat_EtherStatsPktsRx64Octets) 7166 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx64Octets\n", 7167 sblk->stat_EtherStatsPktsRx64Octets); 7168 7169 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) 7170 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx65Octetsto127Octets\n", 7171 sblk->stat_EtherStatsPktsRx65Octetsto127Octets); 7172 7173 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) 7174 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx128Octetsto255Octets\n", 7175 sblk->stat_EtherStatsPktsRx128Octetsto255Octets); 7176 7177 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) 7178 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx256Octetsto511Octets\n", 7179 sblk->stat_EtherStatsPktsRx256Octetsto511Octets); 7180 7181 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) 7182 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx512Octetsto1023Octets\n", 7183 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets); 7184 7185 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) 7186 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1024Octetsto1522Octets\n", 7187 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets); 7188 7189 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) 7190 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1523Octetsto9022Octets\n", 7191 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets); 7192 7193 if (sblk->stat_EtherStatsPktsTx64Octets) 7194 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx64Octets\n", 7195 sblk->stat_EtherStatsPktsTx64Octets); 7196 7197 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) 7198 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx65Octetsto127Octets\n", 7199 sblk->stat_EtherStatsPktsTx65Octetsto127Octets); 7200 7201 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) 7202 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx128Octetsto255Octets\n", 7203 sblk->stat_EtherStatsPktsTx128Octetsto255Octets); 7204 7205 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) 7206 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx256Octetsto511Octets\n", 7207 sblk->stat_EtherStatsPktsTx256Octetsto511Octets); 7208 7209 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) 7210 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx512Octetsto1023Octets\n", 7211 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets); 7212 7213 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) 7214 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1024Octetsto1522Octets\n", 7215 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets); 7216 7217 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) 7218 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1523Octetsto9022Octets\n", 7219 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets); 7220 7221 if (sblk->stat_XonPauseFramesReceived) 7222 BCE_PRINTF(" 0x%08X : XonPauseFramesReceived\n", 7223 sblk->stat_XonPauseFramesReceived); 7224 7225 if (sblk->stat_XoffPauseFramesReceived) 7226 BCE_PRINTF(" 0x%08X : XoffPauseFramesReceived\n", 7227 sblk->stat_XoffPauseFramesReceived); 7228 7229 if (sblk->stat_OutXonSent) 7230 BCE_PRINTF(" 0x%08X : OutXonSent\n", 7231 sblk->stat_OutXonSent); 7232 7233 if (sblk->stat_OutXoffSent) 7234 BCE_PRINTF(" 0x%08X : OutXoffSent\n", 7235 sblk->stat_OutXoffSent); 7236 7237 if (sblk->stat_FlowControlDone) 7238 BCE_PRINTF(" 0x%08X : FlowControlDone\n", 7239 sblk->stat_FlowControlDone); 7240 7241 if (sblk->stat_MacControlFramesReceived) 7242 BCE_PRINTF(" 0x%08X : MacControlFramesReceived\n", 7243 sblk->stat_MacControlFramesReceived); 7244 7245 if (sblk->stat_XoffStateEntered) 7246 BCE_PRINTF(" 0x%08X : XoffStateEntered\n", 7247 sblk->stat_XoffStateEntered); 7248 7249 if (sblk->stat_IfInFramesL2FilterDiscards) 7250 BCE_PRINTF(" 0x%08X : IfInFramesL2FilterDiscards\n", 7251 sblk->stat_IfInFramesL2FilterDiscards); 7252 7253 if (sblk->stat_IfInRuleCheckerDiscards) 7254 BCE_PRINTF(" 0x%08X : IfInRuleCheckerDiscards\n", 7255 sblk->stat_IfInRuleCheckerDiscards); 7256 7257 if (sblk->stat_IfInFTQDiscards) 7258 BCE_PRINTF(" 0x%08X : IfInFTQDiscards\n", 7259 sblk->stat_IfInFTQDiscards); 7260 7261 if (sblk->stat_IfInMBUFDiscards) 7262 BCE_PRINTF(" 0x%08X : IfInMBUFDiscards\n", 7263 sblk->stat_IfInMBUFDiscards); 7264 7265 if (sblk->stat_IfInRuleCheckerP4Hit) 7266 BCE_PRINTF(" 0x%08X : IfInRuleCheckerP4Hit\n", 7267 sblk->stat_IfInRuleCheckerP4Hit); 7268 7269 if (sblk->stat_CatchupInRuleCheckerDiscards) 7270 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerDiscards\n", 7271 sblk->stat_CatchupInRuleCheckerDiscards); 7272 7273 if (sblk->stat_CatchupInFTQDiscards) 7274 BCE_PRINTF(" 0x%08X : CatchupInFTQDiscards\n", 7275 sblk->stat_CatchupInFTQDiscards); 7276 7277 if (sblk->stat_CatchupInMBUFDiscards) 7278 BCE_PRINTF(" 0x%08X : CatchupInMBUFDiscards\n", 7279 sblk->stat_CatchupInMBUFDiscards); 7280 7281 if (sblk->stat_CatchupInRuleCheckerP4Hit) 7282 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerP4Hit\n", 7283 sblk->stat_CatchupInRuleCheckerP4Hit); 7284 7285 BCE_PRINTF( 7286 "----------------------------" 7287 "----------------" 7288 "----------------------------\n"); 7289 } 7290 7291 7292 /****************************************************************************/ 7293 /* Prints out a summary of the driver state. */ 7294 /* */ 7295 /* Returns: */ 7296 /* Nothing. */ 7297 /****************************************************************************/ 7298 static void 7299 bce_dump_driver_state(struct bce_softc *sc) 7300 { 7301 u32 val_hi, val_lo; 7302 7303 BCE_PRINTF( 7304 "-----------------------------" 7305 " Driver State " 7306 "-----------------------------\n"); 7307 7308 val_hi = BCE_ADDR_HI(sc); 7309 val_lo = BCE_ADDR_LO(sc); 7310 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual address\n", 7311 val_hi, val_lo); 7312 7313 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 7314 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 7315 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual address\n", 7316 val_hi, val_lo); 7317 7318 val_hi = BCE_ADDR_HI(sc->status_block); 7319 val_lo = BCE_ADDR_LO(sc->status_block); 7320 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block virtual address\n", 7321 val_hi, val_lo); 7322 7323 val_hi = BCE_ADDR_HI(sc->stats_block); 7324 val_lo = BCE_ADDR_LO(sc->stats_block); 7325 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block virtual address\n", 7326 val_hi, val_lo); 7327 7328 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 7329 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 7330 BCE_PRINTF( 7331 "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain virtual adddress\n", 7332 val_hi, val_lo); 7333 7334 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 7335 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 7336 BCE_PRINTF( 7337 "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain virtual address\n", 7338 val_hi, val_lo); 7339 7340 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 7341 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 7342 BCE_PRINTF( 7343 "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n", 7344 val_hi, val_lo); 7345 7346 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 7347 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 7348 BCE_PRINTF( 7349 "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n", 7350 val_hi, val_lo); 7351 7352 BCE_PRINTF(" 0x%08X - (sc->interrupts_generated) h/w intrs\n", 7353 sc->interrupts_generated); 7354 7355 BCE_PRINTF(" 0x%08X - (sc->rx_interrupts) rx interrupts handled\n", 7356 sc->rx_interrupts); 7357 7358 BCE_PRINTF(" 0x%08X - (sc->tx_interrupts) tx interrupts handled\n", 7359 sc->tx_interrupts); 7360 7361 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) status block index\n", 7362 sc->last_status_idx); 7363 7364 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer index\n", 7365 sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 7366 7367 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer index\n", 7368 sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 7369 7370 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n", 7371 sc->tx_prod_bseq); 7372 7373 BCE_PRINTF(" 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n", 7374 sc->tx_mbuf_alloc); 7375 7376 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used tx_bd's\n", 7377 sc->used_tx_bd); 7378 7379 BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n", 7380 sc->tx_hi_watermark, sc->max_tx_bd); 7381 7382 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer index\n", 7383 sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 7384 7385 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer index\n", 7386 sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 7387 7388 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n", 7389 sc->rx_prod_bseq); 7390 7391 BCE_PRINTF(" 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n", 7392 sc->rx_mbuf_alloc); 7393 7394 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free rx_bd's\n", 7395 sc->free_rx_bd); 7396 7397 BCE_PRINTF("0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n", 7398 sc->rx_low_watermark, sc->max_rx_bd); 7399 7400 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed) " 7401 "mbuf alloc failures\n", 7402 sc->mbuf_alloc_failed); 7403 7404 BCE_PRINTF(" 0x%08X - (sc->mbuf_sim_alloc_failed) " 7405 "simulated mbuf alloc failures\n", 7406 sc->mbuf_sim_alloc_failed); 7407 7408 BCE_PRINTF( 7409 "----------------------------" 7410 "----------------" 7411 "----------------------------\n"); 7412 } 7413 7414 7415 /****************************************************************************/ 7416 /* Prints out the hardware state through a summary of important register, */ 7417 /* followed by a complete register dump. */ 7418 /* */ 7419 /* Returns: */ 7420 /* Nothing. */ 7421 /****************************************************************************/ 7422 static void 7423 bce_dump_hw_state(struct bce_softc *sc) 7424 { 7425 u32 val1; 7426 7427 BCE_PRINTF( 7428 "----------------------------" 7429 " Hardware State " 7430 "----------------------------\n"); 7431 7432 BCE_PRINTF("0x%08X - bootcode version\n", sc->bce_fw_ver); 7433 7434 val1 = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 7435 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 7436 val1, BCE_MISC_ENABLE_STATUS_BITS); 7437 7438 val1 = REG_RD(sc, BCE_DMA_STATUS); 7439 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", val1, BCE_DMA_STATUS); 7440 7441 val1 = REG_RD(sc, BCE_CTX_STATUS); 7442 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", val1, BCE_CTX_STATUS); 7443 7444 val1 = REG_RD(sc, BCE_EMAC_STATUS); 7445 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", val1, BCE_EMAC_STATUS); 7446 7447 val1 = REG_RD(sc, BCE_RPM_STATUS); 7448 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", val1, BCE_RPM_STATUS); 7449 7450 val1 = REG_RD(sc, BCE_TBDR_STATUS); 7451 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", val1, BCE_TBDR_STATUS); 7452 7453 val1 = REG_RD(sc, BCE_TDMA_STATUS); 7454 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", val1, BCE_TDMA_STATUS); 7455 7456 val1 = REG_RD(sc, BCE_HC_STATUS); 7457 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", val1, BCE_HC_STATUS); 7458 7459 val1 = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 7460 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val1, BCE_TXP_CPU_STATE); 7461 7462 val1 = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 7463 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val1, BCE_TPAT_CPU_STATE); 7464 7465 val1 = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 7466 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val1, BCE_RXP_CPU_STATE); 7467 7468 val1 = REG_RD_IND(sc, BCE_COM_CPU_STATE); 7469 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val1, BCE_COM_CPU_STATE); 7470 7471 val1 = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 7472 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", val1, BCE_MCP_CPU_STATE); 7473 7474 val1 = REG_RD_IND(sc, BCE_CP_CPU_STATE); 7475 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val1, BCE_CP_CPU_STATE); 7476 7477 BCE_PRINTF( 7478 "----------------------------" 7479 "----------------" 7480 "----------------------------\n"); 7481 7482 BCE_PRINTF( 7483 "----------------------------" 7484 " Register Dump " 7485 "----------------------------\n"); 7486 7487 for (int i = 0x400; i < 0x8000; i += 0x10) 7488 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 7489 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 7490 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 7491 7492 BCE_PRINTF( 7493 "----------------------------" 7494 "----------------" 7495 "----------------------------\n"); 7496 } 7497 7498 7499 /****************************************************************************/ 7500 /* Prints out the bootcode state. */ 7501 /* */ 7502 /* Returns: */ 7503 /* Nothing. */ 7504 /****************************************************************************/ 7505 static void 7506 bce_dump_bc_state(struct bce_softc *sc) 7507 { 7508 u32 val; 7509 7510 BCE_PRINTF( 7511 "----------------------------" 7512 " Bootcode State " 7513 "----------------------------\n"); 7514 7515 BCE_PRINTF("0x%08X - bootcode version\n", sc->bce_fw_ver); 7516 7517 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_RESET_TYPE); 7518 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 7519 val, BCE_BC_RESET_TYPE); 7520 7521 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_STATE); 7522 BCE_PRINTF("0x%08X - (0x%06X) state\n", 7523 val, BCE_BC_STATE); 7524 7525 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_CONDITION); 7526 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 7527 val, BCE_BC_CONDITION); 7528 7529 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_STATE_DEBUG_CMD); 7530 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 7531 val, BCE_BC_STATE_DEBUG_CMD); 7532 7533 BCE_PRINTF( 7534 "----------------------------" 7535 "----------------" 7536 "----------------------------\n"); 7537 } 7538 7539 7540 /****************************************************************************/ 7541 /* Prints out the TXP state. */ 7542 /* */ 7543 /* Returns: */ 7544 /* Nothing. */ 7545 /****************************************************************************/ 7546 static void 7547 bce_dump_txp_state(struct bce_softc *sc) 7548 { 7549 u32 val1; 7550 7551 BCE_PRINTF( 7552 "----------------------------" 7553 " TXP State " 7554 "----------------------------\n"); 7555 7556 val1 = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 7557 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", val1, BCE_TXP_CPU_MODE); 7558 7559 val1 = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 7560 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val1, BCE_TXP_CPU_STATE); 7561 7562 val1 = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 7563 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", val1, BCE_TXP_CPU_EVENT_MASK); 7564 7565 BCE_PRINTF( 7566 "----------------------------" 7567 " Register Dump " 7568 "----------------------------\n"); 7569 7570 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 7571 /* Skip the big blank spaces */ 7572 if (i < 0x454000 && i > 0x5ffff) 7573 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 7574 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 7575 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 7576 } 7577 7578 BCE_PRINTF( 7579 "----------------------------" 7580 "----------------" 7581 "----------------------------\n"); 7582 } 7583 7584 7585 /****************************************************************************/ 7586 /* Prints out the RXP state. */ 7587 /* */ 7588 /* Returns: */ 7589 /* Nothing. */ 7590 /****************************************************************************/ 7591 static void 7592 bce_dump_rxp_state(struct bce_softc *sc) 7593 { 7594 u32 val1; 7595 7596 BCE_PRINTF( 7597 "----------------------------" 7598 " RXP State " 7599 "----------------------------\n"); 7600 7601 val1 = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 7602 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", val1, BCE_RXP_CPU_MODE); 7603 7604 val1 = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 7605 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val1, BCE_RXP_CPU_STATE); 7606 7607 val1 = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 7608 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", val1, BCE_RXP_CPU_EVENT_MASK); 7609 7610 BCE_PRINTF( 7611 "----------------------------" 7612 " Register Dump " 7613 "----------------------------\n"); 7614 7615 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 7616 /* Skip the big blank sapces */ 7617 if (i < 0xc5400 && i > 0xdffff) 7618 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 7619 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 7620 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 7621 } 7622 7623 BCE_PRINTF( 7624 "----------------------------" 7625 "----------------" 7626 "----------------------------\n"); 7627 } 7628 7629 7630 /****************************************************************************/ 7631 /* Prints out the TPAT state. */ 7632 /* */ 7633 /* Returns: */ 7634 /* Nothing. */ 7635 /****************************************************************************/ 7636 static void 7637 bce_dump_tpat_state(struct bce_softc *sc) 7638 { 7639 u32 val1; 7640 7641 BCE_PRINTF( 7642 "----------------------------" 7643 " TPAT State " 7644 "----------------------------\n"); 7645 7646 val1 = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 7647 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", val1, BCE_TPAT_CPU_MODE); 7648 7649 val1 = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 7650 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val1, BCE_TPAT_CPU_STATE); 7651 7652 val1 = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 7653 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", val1, BCE_TPAT_CPU_EVENT_MASK); 7654 7655 BCE_PRINTF( 7656 "----------------------------" 7657 " Register Dump " 7658 "----------------------------\n"); 7659 7660 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 7661 /* Skip the big blank spaces */ 7662 if (i < 0x854000 && i > 0x9ffff) 7663 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 7664 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 7665 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 7666 } 7667 7668 BCE_PRINTF( 7669 "----------------------------" 7670 "----------------" 7671 "----------------------------\n"); 7672 } 7673 7674 7675 /****************************************************************************/ 7676 /* Prints out the driver state and then enters the debugger. */ 7677 /* */ 7678 /* Returns: */ 7679 /* Nothing. */ 7680 /****************************************************************************/ 7681 static void 7682 bce_breakpoint(struct bce_softc *sc) 7683 { 7684 7685 /* Unreachable code to shut the compiler up about unused functions. */ 7686 if (0) { 7687 bce_freeze_controller(sc); 7688 bce_unfreeze_controller(sc); 7689 bce_dump_txbd(sc, 0, NULL); 7690 bce_dump_rxbd(sc, 0, NULL); 7691 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); 7692 bce_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd); 7693 bce_dump_l2fhdr(sc, 0, NULL); 7694 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 7695 bce_dump_rx_chain(sc, 0, sc->max_rx_bd); 7696 bce_dump_status_block(sc); 7697 bce_dump_stats_block(sc); 7698 bce_dump_driver_state(sc); 7699 bce_dump_hw_state(sc); 7700 bce_dump_bc_state(sc); 7701 bce_dump_txp_state(sc); 7702 bce_dump_rxp_state(sc); 7703 bce_dump_tpat_state(sc); 7704 } 7705 7706 /* bce_freeze_controller(sc); */ 7707 bce_dump_driver_state(sc); 7708 bce_dump_status_block(sc); 7709 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD); 7710 bce_dump_hw_state(sc); 7711 bce_dump_txp_state(sc); 7712 /* bce_unfreeze_controller(sc); */ 7713 7714 /* Call the debugger. */ 7715 breakpoint(); 7716 7717 return; 7718 } 7719 #endif 7720 7721