xref: /freebsd/sys/dev/bce/if_bce.c (revision 1d386b48a555f61cb7325543adbbb5c3f3407a66)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2006-2014 QLogic Corporation
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * The following controllers are supported by this driver:
32  *   BCM5706C A2, A3
33  *   BCM5706S A2, A3
34  *   BCM5708C B1, B2
35  *   BCM5708S B1, B2
36  *   BCM5709C A1, C0
37  *   BCM5709S A1, C0
38  *   BCM5716C C0
39  *   BCM5716S C0
40  *
41  * The following controllers are not supported by this driver:
42  *   BCM5706C A0, A1 (pre-production)
43  *   BCM5706S A0, A1 (pre-production)
44  *   BCM5708C A0, B0 (pre-production)
45  *   BCM5708S A0, B0 (pre-production)
46  *   BCM5709C A0  B0, B1, B2 (pre-production)
47  *   BCM5709S A0, B0, B1, B2 (pre-production)
48  */
49 
50 #include "opt_bce.h"
51 
52 #include <sys/param.h>
53 #include <sys/endian.h>
54 #include <sys/systm.h>
55 #include <sys/sockio.h>
56 #include <sys/lock.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/kernel.h>
61 #include <sys/module.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/queue.h>
65 
66 #include <net/bpf.h>
67 #include <net/ethernet.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 
74 #include <net/if_types.h>
75 #include <net/if_vlan_var.h>
76 
77 #include <netinet/in_systm.h>
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip6.h>
82 #include <netinet/tcp.h>
83 #include <netinet/udp.h>
84 
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <sys/bus.h>
88 #include <sys/rman.h>
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include "miidevs.h"
93 #include <dev/mii/brgphyreg.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include "miibus_if.h"
99 
100 #include <dev/bce/if_bcereg.h>
101 #include <dev/bce/if_bcefw.h>
102 
103 /****************************************************************************/
104 /* BCE Debug Options                                                        */
105 /****************************************************************************/
106 #ifdef BCE_DEBUG
107 	u32 bce_debug = BCE_WARN;
108 
109 	/*          0 = Never              */
110 	/*          1 = 1 in 2,147,483,648 */
111 	/*        256 = 1 in     8,388,608 */
112 	/*       2048 = 1 in     1,048,576 */
113 	/*      65536 = 1 in        32,768 */
114 	/*    1048576 = 1 in         2,048 */
115 	/*  268435456 =	1 in             8 */
116 	/*  536870912 = 1 in             4 */
117 	/* 1073741824 = 1 in             2 */
118 
119 	/* Controls how often the l2_fhdr frame error check will fail. */
120 	int l2fhdr_error_sim_control = 0;
121 
122 	/* Controls how often the unexpected attention check will fail. */
123 	int unexpected_attention_sim_control = 0;
124 
125 	/* Controls how often to simulate an mbuf allocation failure. */
126 	int mbuf_alloc_failed_sim_control = 0;
127 
128 	/* Controls how often to simulate a DMA mapping failure. */
129 	int dma_map_addr_failed_sim_control = 0;
130 
131 	/* Controls how often to simulate a bootcode failure. */
132 	int bootcode_running_failure_sim_control = 0;
133 #endif
134 
135 /****************************************************************************/
136 /* PCI Device ID Table                                                      */
137 /*                                                                          */
138 /* Used by bce_probe() to identify the devices supported by this driver.    */
139 /****************************************************************************/
140 #define BCE_DEVDESC_MAX		64
141 
142 static const struct bce_type bce_devs[] = {
143 	/* BCM5706C Controllers and OEM boards. */
144 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
145 		"HP NC370T Multifunction Gigabit Server Adapter" },
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
147 		"HP NC370i Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
149 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
151 		"HP NC371i Multifunction Gigabit Server Adapter" },
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
153 		"QLogic NetXtreme II BCM5706 1000Base-T" },
154 
155 	/* BCM5706S controllers and OEM boards. */
156 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
157 		"HP NC370F Multifunction Gigabit Server Adapter" },
158 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
159 		"QLogic NetXtreme II BCM5706 1000Base-SX" },
160 
161 	/* BCM5708C controllers and OEM boards. */
162 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
163 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
164 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
165 		"HP NC373i Multifunction Gigabit Server Adapter" },
166 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
167 		"HP NC374m PCIe Multifunction Adapter" },
168 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
169 		"QLogic NetXtreme II BCM5708 1000Base-T" },
170 
171 	/* BCM5708S controllers and OEM boards. */
172 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
173 		"HP NC373m Multifunction Gigabit Server Adapter" },
174 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
175 		"HP NC373i Multifunction Gigabit Server Adapter" },
176 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
177 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
178 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
179 		"QLogic NetXtreme II BCM5708 1000Base-SX" },
180 
181 	/* BCM5709C controllers and OEM boards. */
182 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
183 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
184 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
185 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
186 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
187 		"QLogic NetXtreme II BCM5709 1000Base-T" },
188 
189 	/* BCM5709S controllers and OEM boards. */
190 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
191 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
192 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
193 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
194 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
195 		"QLogic NetXtreme II BCM5709 1000Base-SX" },
196 
197 	/* BCM5716 controllers and OEM boards. */
198 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
199 		"QLogic NetXtreme II BCM5716 1000Base-T" },
200 	{ 0, 0, 0, 0, NULL }
201 };
202 
203 /****************************************************************************/
204 /* Supported Flash NVRAM device data.                                       */
205 /****************************************************************************/
206 static const struct flash_spec flash_table[] =
207 {
208 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
209 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
210 
211 	/* Slow EEPROM */
212 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
213 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
214 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
215 	 "EEPROM - slow"},
216 	/* Expansion entry 0001 */
217 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
218 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
219 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
220 	 "Entry 0001"},
221 	/* Saifun SA25F010 (non-buffered flash) */
222 	/* strap, cfg1, & write1 need updates */
223 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
226 	 "Non-buffered flash (128kB)"},
227 	/* Saifun SA25F020 (non-buffered flash) */
228 	/* strap, cfg1, & write1 need updates */
229 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
230 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
232 	 "Non-buffered flash (256kB)"},
233 	/* Expansion entry 0100 */
234 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
235 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
236 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
237 	 "Entry 0100"},
238 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
239 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
240 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
241 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
242 	 "Entry 0101: ST M45PE10 (128kB non-buffered)"},
243 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
244 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
245 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
246 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
247 	 "Entry 0110: ST M45PE20 (256kB non-buffered)"},
248 	/* Saifun SA25F005 (non-buffered flash) */
249 	/* strap, cfg1, & write1 need updates */
250 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
253 	 "Non-buffered flash (64kB)"},
254 	/* Fast EEPROM */
255 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
256 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
257 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
258 	 "EEPROM - fast"},
259 	/* Expansion entry 1001 */
260 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
261 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
262 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
263 	 "Entry 1001"},
264 	/* Expansion entry 1010 */
265 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
266 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
267 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
268 	 "Entry 1010"},
269 	/* ATMEL AT45DB011B (buffered flash) */
270 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
271 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
272 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
273 	 "Buffered flash (128kB)"},
274 	/* Expansion entry 1100 */
275 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
276 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
277 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
278 	 "Entry 1100"},
279 	/* Expansion entry 1101 */
280 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
281 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
282 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
283 	 "Entry 1101"},
284 	/* Ateml Expansion entry 1110 */
285 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
286 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
287 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
288 	 "Entry 1110 (Atmel)"},
289 	/* ATMEL AT45DB021B (buffered flash) */
290 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
291 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
292 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
293 	 "Buffered flash (256kB)"},
294 };
295 
296 /*
297  * The BCM5709 controllers transparently handle the
298  * differences between Atmel 264 byte pages and all
299  * flash devices which use 256 byte pages, so no
300  * logical-to-physical mapping is required in the
301  * driver.
302  */
303 static const struct flash_spec flash_5709 = {
304 	.flags		= BCE_NV_BUFFERED,
305 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
306 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
307 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
308 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
309 	.name		= "5709/5716 buffered flash (256kB)",
310 };
311 
312 /****************************************************************************/
313 /* FreeBSD device entry points.                                             */
314 /****************************************************************************/
315 static int  bce_probe			(device_t);
316 static int  bce_attach			(device_t);
317 static int  bce_detach			(device_t);
318 static int  bce_shutdown		(device_t);
319 
320 /****************************************************************************/
321 /* BCE Debug Data Structure Dump Routines                                   */
322 /****************************************************************************/
323 #ifdef BCE_DEBUG
324 static u32  bce_reg_rd				(struct bce_softc *, u32);
325 static void bce_reg_wr				(struct bce_softc *, u32, u32);
326 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
327 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
328 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
329 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
330 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
331 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
332 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
333 static void bce_dump_txbd			(struct bce_softc *,
334     int, struct tx_bd *);
335 static void bce_dump_rxbd			(struct bce_softc *,
336     int, struct rx_bd *);
337 static void bce_dump_pgbd			(struct bce_softc *,
338     int, struct rx_bd *);
339 static void bce_dump_l2fhdr		(struct bce_softc *,
340     int, struct l2_fhdr *);
341 static void bce_dump_ctx			(struct bce_softc *, u16);
342 static void bce_dump_ftqs			(struct bce_softc *);
343 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
344 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
345 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
346 static void bce_dump_status_block	(struct bce_softc *);
347 static void bce_dump_stats_block	(struct bce_softc *);
348 static void bce_dump_driver_state	(struct bce_softc *);
349 static void bce_dump_hw_state		(struct bce_softc *);
350 static void bce_dump_shmem_state	(struct bce_softc *);
351 static void bce_dump_mq_regs		(struct bce_softc *);
352 static void bce_dump_bc_state		(struct bce_softc *);
353 static void bce_dump_txp_state		(struct bce_softc *, int);
354 static void bce_dump_rxp_state		(struct bce_softc *, int);
355 static void bce_dump_tpat_state	(struct bce_softc *, int);
356 static void bce_dump_cp_state		(struct bce_softc *, int);
357 static void bce_dump_com_state		(struct bce_softc *, int);
358 static void bce_dump_rv2p_state	(struct bce_softc *);
359 static void bce_breakpoint			(struct bce_softc *);
360 #endif /*BCE_DEBUG */
361 
362 /****************************************************************************/
363 /* BCE Register/Memory Access Routines                                      */
364 /****************************************************************************/
365 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
366 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
367 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
368 static u32  bce_shmem_rd		(struct bce_softc *, u32);
369 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
370 static int  bce_miibus_read_reg		(device_t, int, int);
371 static int  bce_miibus_write_reg	(device_t, int, int, int);
372 static void bce_miibus_statchg		(device_t);
373 
374 #ifdef BCE_DEBUG
375 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
376 #ifdef BCE_NVRAM_WRITE_SUPPORT
377 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
378 #endif
379 #endif
380 
381 /****************************************************************************/
382 /* BCE NVRAM Access Routines                                                */
383 /****************************************************************************/
384 static int  bce_acquire_nvram_lock	(struct bce_softc *);
385 static int  bce_release_nvram_lock	(struct bce_softc *);
386 static void bce_enable_nvram_access(struct bce_softc *);
387 static void bce_disable_nvram_access(struct bce_softc *);
388 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
389 static int  bce_init_nvram			(struct bce_softc *);
390 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
391 static int  bce_nvram_test			(struct bce_softc *);
392 #ifdef BCE_NVRAM_WRITE_SUPPORT
393 static int  bce_enable_nvram_write	(struct bce_softc *);
394 static void bce_disable_nvram_write(struct bce_softc *);
395 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
396 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
397 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
398 #endif
399 
400 /****************************************************************************/
401 /*                                                                          */
402 /****************************************************************************/
403 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
404 static void bce_get_media			(struct bce_softc *);
405 static void bce_init_media			(struct bce_softc *);
406 static u32 bce_get_rphy_link		(struct bce_softc *);
407 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
408 static int  bce_dma_alloc			(device_t);
409 static void bce_dma_free			(struct bce_softc *);
410 static void bce_release_resources	(struct bce_softc *);
411 
412 /****************************************************************************/
413 /* BCE Firmware Synchronization and Load                                    */
414 /****************************************************************************/
415 static void bce_fw_cap_init			(struct bce_softc *);
416 static int  bce_fw_sync			(struct bce_softc *, u32);
417 static void bce_load_rv2p_fw		(struct bce_softc *, const u32 *, u32,
418     u32);
419 static void bce_load_cpu_fw		(struct bce_softc *,
420     struct cpu_reg *, struct fw_info *);
421 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
422 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
423 static void bce_start_rxp_cpu		(struct bce_softc *);
424 static void bce_init_rxp_cpu		(struct bce_softc *);
425 static void bce_init_txp_cpu 		(struct bce_softc *);
426 static void bce_init_tpat_cpu		(struct bce_softc *);
427 static void bce_init_cp_cpu	  	(struct bce_softc *);
428 static void bce_init_com_cpu	  	(struct bce_softc *);
429 static void bce_init_cpus			(struct bce_softc *);
430 
431 static void bce_print_adapter_info	(struct bce_softc *);
432 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
433 static void bce_stop				(struct bce_softc *);
434 static int  bce_reset				(struct bce_softc *, u32);
435 static int  bce_chipinit 			(struct bce_softc *);
436 static int  bce_blockinit 			(struct bce_softc *);
437 
438 static int  bce_init_tx_chain		(struct bce_softc *);
439 static void bce_free_tx_chain		(struct bce_softc *);
440 
441 static int  bce_get_rx_buf		(struct bce_softc *, u16, u16, u32 *);
442 static int  bce_init_rx_chain		(struct bce_softc *);
443 static void bce_fill_rx_chain		(struct bce_softc *);
444 static void bce_free_rx_chain		(struct bce_softc *);
445 
446 static int  bce_get_pg_buf		(struct bce_softc *, u16, u16);
447 static int  bce_init_pg_chain		(struct bce_softc *);
448 static void bce_fill_pg_chain		(struct bce_softc *);
449 static void bce_free_pg_chain		(struct bce_softc *);
450 
451 static struct mbuf *bce_tso_setup	(struct bce_softc *,
452     struct mbuf **, u16 *);
453 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
454 static void bce_start_locked		(if_t);
455 static void bce_start			(if_t);
456 static int  bce_ioctl			(if_t, u_long, caddr_t);
457 static uint64_t bce_get_counter		(if_t, ift_counter);
458 static void bce_watchdog		(struct bce_softc *);
459 static int  bce_ifmedia_upd		(if_t);
460 static int  bce_ifmedia_upd_locked	(if_t);
461 static void bce_ifmedia_sts		(if_t, struct ifmediareq *);
462 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
463 static void bce_init_locked		(struct bce_softc *);
464 static void bce_init				(void *);
465 static void bce_mgmt_init_locked	(struct bce_softc *sc);
466 
467 static int  bce_init_ctx			(struct bce_softc *);
468 static void bce_get_mac_addr		(struct bce_softc *);
469 static void bce_set_mac_addr		(struct bce_softc *);
470 static void bce_phy_intr			(struct bce_softc *);
471 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
472 static void bce_rx_intr			(struct bce_softc *);
473 static void bce_tx_intr			(struct bce_softc *);
474 static void bce_disable_intr		(struct bce_softc *);
475 static void bce_enable_intr		(struct bce_softc *, int);
476 
477 static void bce_intr				(void *);
478 static void bce_set_rx_mode		(struct bce_softc *);
479 static void bce_stats_update		(struct bce_softc *);
480 static void bce_tick				(void *);
481 static void bce_pulse				(void *);
482 static void bce_add_sysctls		(struct bce_softc *);
483 
484 /****************************************************************************/
485 /* FreeBSD device dispatch table.                                           */
486 /****************************************************************************/
487 static device_method_t bce_methods[] = {
488 	/* Device interface (device_if.h) */
489 	DEVMETHOD(device_probe,		bce_probe),
490 	DEVMETHOD(device_attach,	bce_attach),
491 	DEVMETHOD(device_detach,	bce_detach),
492 	DEVMETHOD(device_shutdown,	bce_shutdown),
493 /* Supported by device interface but not used here. */
494 /*	DEVMETHOD(device_identify,	bce_identify),      */
495 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
496 /*	DEVMETHOD(device_resume,	bce_resume),        */
497 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
498 
499 	/* MII interface (miibus_if.h) */
500 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
501 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
502 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
503 /* Supported by MII interface but not used here.       */
504 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
505 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
506 
507 	DEVMETHOD_END
508 };
509 
510 static driver_t bce_driver = {
511 	"bce",
512 	bce_methods,
513 	sizeof(struct bce_softc)
514 };
515 
516 MODULE_DEPEND(bce, pci, 1, 1, 1);
517 MODULE_DEPEND(bce, ether, 1, 1, 1);
518 MODULE_DEPEND(bce, miibus, 1, 1, 1);
519 
520 DRIVER_MODULE(bce, pci, bce_driver, NULL, NULL);
521 DRIVER_MODULE(miibus, bce, miibus_driver, NULL, NULL);
522 MODULE_PNP_INFO("U16:vendor;U16:device;U16:#;U16:#;D:#", pci, bce,
523     bce_devs, nitems(bce_devs) - 1);
524 
525 /****************************************************************************/
526 /* Tunable device values                                                    */
527 /****************************************************************************/
528 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
529     "bce driver parameters");
530 
531 /* Allowable values are TRUE or FALSE */
532 static int bce_verbose = TRUE;
533 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
534     "Verbose output enable/disable");
535 
536 /* Allowable values are TRUE or FALSE */
537 static int bce_tso_enable = TRUE;
538 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
539     "TSO Enable/Disable");
540 
541 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
542 /* ToDo: Add MSI-X support. */
543 static int bce_msi_enable = 1;
544 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
545     "MSI-X|MSI|INTx selector");
546 
547 /* Allowable values are 1, 2, 4, 8. */
548 static int bce_rx_pages = DEFAULT_RX_PAGES;
549 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
550     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
551 
552 /* Allowable values are 1, 2, 4, 8. */
553 static int bce_tx_pages = DEFAULT_TX_PAGES;
554 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
555     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
556 
557 /* Allowable values are TRUE or FALSE. */
558 static int bce_hdr_split = TRUE;
559 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
560     "Frame header/payload splitting Enable/Disable");
561 
562 /* Allowable values are TRUE or FALSE. */
563 static int bce_strict_rx_mtu = FALSE;
564 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
565     &bce_strict_rx_mtu, 0,
566     "Enable/Disable strict RX frame size checking");
567 
568 /* Allowable values are 0 ... 100 */
569 #ifdef BCE_DEBUG
570 /* Generate 1 interrupt for every transmit completion. */
571 static int bce_tx_quick_cons_trip_int = 1;
572 #else
573 /* Generate 1 interrupt for every 20 transmit completions. */
574 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
575 #endif
576 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
577     &bce_tx_quick_cons_trip_int, 0,
578     "Transmit BD trip point during interrupts");
579 
580 /* Allowable values are 0 ... 100 */
581 /* Generate 1 interrupt for every transmit completion. */
582 #ifdef BCE_DEBUG
583 static int bce_tx_quick_cons_trip = 1;
584 #else
585 /* Generate 1 interrupt for every 20 transmit completions. */
586 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
587 #endif
588 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
589     &bce_tx_quick_cons_trip, 0,
590     "Transmit BD trip point");
591 
592 /* Allowable values are 0 ... 100 */
593 #ifdef BCE_DEBUG
594 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
595 static int bce_tx_ticks_int = 0;
596 #else
597 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
598 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
599 #endif
600 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
601     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
602 
603 /* Allowable values are 0 ... 100 */
604 #ifdef BCE_DEBUG
605 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
606 static int bce_tx_ticks = 0;
607 #else
608 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
609 static int bce_tx_ticks = DEFAULT_TX_TICKS;
610 #endif
611 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
612     &bce_tx_ticks, 0, "Transmit ticks count");
613 
614 /* Allowable values are 1 ... 100 */
615 #ifdef BCE_DEBUG
616 /* Generate 1 interrupt for every received frame. */
617 static int bce_rx_quick_cons_trip_int = 1;
618 #else
619 /* Generate 1 interrupt for every 6 received frames. */
620 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
621 #endif
622 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
623     &bce_rx_quick_cons_trip_int, 0,
624     "Receive BD trip point during interrupts");
625 
626 /* Allowable values are 1 ... 100 */
627 #ifdef BCE_DEBUG
628 /* Generate 1 interrupt for every received frame. */
629 static int bce_rx_quick_cons_trip = 1;
630 #else
631 /* Generate 1 interrupt for every 6 received frames. */
632 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
633 #endif
634 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
635     &bce_rx_quick_cons_trip, 0,
636     "Receive BD trip point");
637 
638 /* Allowable values are 0 ... 100 */
639 #ifdef BCE_DEBUG
640 /* Generate an int. if 0us have elapsed since the last received frame. */
641 static int bce_rx_ticks_int = 0;
642 #else
643 /* Generate an int. if 18us have elapsed since the last received frame. */
644 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
645 #endif
646 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
647     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
648 
649 /* Allowable values are 0 ... 100 */
650 #ifdef BCE_DEBUG
651 /* Generate an int. if 0us have elapsed since the last received frame. */
652 static int bce_rx_ticks = 0;
653 #else
654 /* Generate an int. if 18us have elapsed since the last received frame. */
655 static int bce_rx_ticks = DEFAULT_RX_TICKS;
656 #endif
657 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
658     &bce_rx_ticks, 0, "Receive ticks count");
659 
660 /****************************************************************************/
661 /* Device probe function.                                                   */
662 /*                                                                          */
663 /* Compares the device to the driver's list of supported devices and        */
664 /* reports back to the OS whether this is the right driver for the device.  */
665 /*                                                                          */
666 /* Returns:                                                                 */
667 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
668 /****************************************************************************/
669 static int
670 bce_probe(device_t dev)
671 {
672 	const struct bce_type *t;
673 	struct bce_softc *sc;
674 	char *descbuf;
675 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
676 
677 	t = bce_devs;
678 
679 	sc = device_get_softc(dev);
680 	sc->bce_unit = device_get_unit(dev);
681 	sc->bce_dev = dev;
682 
683 	/* Get the data for the device to be probed. */
684 	vid  = pci_get_vendor(dev);
685 	did  = pci_get_device(dev);
686 	svid = pci_get_subvendor(dev);
687 	sdid = pci_get_subdevice(dev);
688 
689 	DBPRINT(sc, BCE_EXTREME_LOAD,
690 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
691 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
692 
693 	/* Look through the list of known devices for a match. */
694 	while(t->bce_name != NULL) {
695 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
696 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
697 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
698 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
699 
700 			if (descbuf == NULL)
701 				return(ENOMEM);
702 
703 			/* Print out the device identity. */
704 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
705 			    t->bce_name, (((pci_read_config(dev,
706 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
707 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
708 
709 			device_set_desc_copy(dev, descbuf);
710 			free(descbuf, M_TEMP);
711 			return(BUS_PROBE_DEFAULT);
712 		}
713 		t++;
714 	}
715 
716 	return(ENXIO);
717 }
718 
719 /****************************************************************************/
720 /* PCI Capabilities Probe Function.                                         */
721 /*                                                                          */
722 /* Walks the PCI capabiites list for the device to find what features are   */
723 /* supported.                                                               */
724 /*                                                                          */
725 /* Returns:                                                                 */
726 /*   None.                                                                  */
727 /****************************************************************************/
728 static void
729 bce_print_adapter_info(struct bce_softc *sc)
730 {
731 	int i = 0;
732 
733 	DBENTER(BCE_VERBOSE_LOAD);
734 
735 	if (bce_verbose || bootverbose) {
736 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
737 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
738 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
739 
740 		/* Bus info. */
741 		if (sc->bce_flags & BCE_PCIE_FLAG) {
742 			printf("Bus (PCIe x%d, ", sc->link_width);
743 			switch (sc->link_speed) {
744 			case 1: printf("2.5Gbps); "); break;
745 			case 2:	printf("5Gbps); "); break;
746 			default: printf("Unknown link speed); ");
747 			}
748 		} else {
749 			printf("Bus (PCI%s, %s, %dMHz); ",
750 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
751 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
752 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
753 		}
754 
755 		/* Firmware version and device features. */
756 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
757 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
758 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
759 
760 		if (bce_hdr_split == TRUE) {
761 			printf("SPLT");
762 			i++;
763 		}
764 
765 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
766 			if (i > 0) printf("|");
767 			printf("MSI"); i++;
768 		}
769 
770 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
771 			if (i > 0) printf("|");
772 			printf("MSI-X"); i++;
773 		}
774 
775 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
776 			if (i > 0) printf("|");
777 			printf("2.5G"); i++;
778 		}
779 
780 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
781 			if (i > 0) printf("|");
782 			printf("Remote PHY(%s)",
783 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
784 			    "FIBER" : "TP"); i++;
785 		}
786 
787 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
788 			if (i > 0) printf("|");
789 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
790 		} else {
791 			printf(")\n");
792 		}
793 
794 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
795 		    sc->bce_rx_quick_cons_trip_int,
796 		    sc->bce_rx_quick_cons_trip,
797 		    sc->bce_rx_ticks_int,
798 		    sc->bce_rx_ticks,
799 		    sc->bce_tx_quick_cons_trip_int,
800 		    sc->bce_tx_quick_cons_trip,
801 		    sc->bce_tx_ticks_int,
802 		    sc->bce_tx_ticks);
803 	}
804 
805 	DBEXIT(BCE_VERBOSE_LOAD);
806 }
807 
808 /****************************************************************************/
809 /* PCI Capabilities Probe Function.                                         */
810 /*                                                                          */
811 /* Walks the PCI capabiites list for the device to find what features are   */
812 /* supported.                                                               */
813 /*                                                                          */
814 /* Returns:                                                                 */
815 /*   None.                                                                  */
816 /****************************************************************************/
817 static void
818 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
819 {
820 	u32 reg;
821 
822 	DBENTER(BCE_VERBOSE_LOAD);
823 
824 	/* Check if PCI-X capability is enabled. */
825 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
826 		if (reg != 0)
827 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
828 	}
829 
830 	/* Check if PCIe capability is enabled. */
831 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
832 		if (reg != 0) {
833 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
834 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
835 			    "0x%08X\n",	link_status);
836 			sc->link_speed = link_status & 0xf;
837 			sc->link_width = (link_status >> 4) & 0x3f;
838 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
839 			sc->bce_flags |= BCE_PCIE_FLAG;
840 		}
841 	}
842 
843 	/* Check if MSI capability is enabled. */
844 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
845 		if (reg != 0)
846 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
847 	}
848 
849 	/* Check if MSI-X capability is enabled. */
850 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
851 		if (reg != 0)
852 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
853 	}
854 
855 	DBEXIT(BCE_VERBOSE_LOAD);
856 }
857 
858 /****************************************************************************/
859 /* Load and validate user tunable settings.                                 */
860 /*                                                                          */
861 /* Returns:                                                                 */
862 /*   Nothing.                                                               */
863 /****************************************************************************/
864 static void
865 bce_set_tunables(struct bce_softc *sc)
866 {
867 	/* Set sysctl values for RX page count. */
868 	switch (bce_rx_pages) {
869 	case 1:
870 		/* fall-through */
871 	case 2:
872 		/* fall-through */
873 	case 4:
874 		/* fall-through */
875 	case 8:
876 		sc->rx_pages = bce_rx_pages;
877 		break;
878 	default:
879 		sc->rx_pages = DEFAULT_RX_PAGES;
880 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
881 		    "hw.bce.rx_pages!  Setting default of %d.\n",
882 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
883 	}
884 
885 	/* ToDo: Consider allowing user setting for pg_pages. */
886 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
887 
888 	/* Set sysctl values for TX page count. */
889 	switch (bce_tx_pages) {
890 	case 1:
891 		/* fall-through */
892 	case 2:
893 		/* fall-through */
894 	case 4:
895 		/* fall-through */
896 	case 8:
897 		sc->tx_pages = bce_tx_pages;
898 		break;
899 	default:
900 		sc->tx_pages = DEFAULT_TX_PAGES;
901 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
902 		    "hw.bce.tx_pages!  Setting default of %d.\n",
903 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
904 	}
905 
906 	/*
907 	 * Validate the TX trip point (i.e. the number of
908 	 * TX completions before a status block update is
909 	 * generated and an interrupt is asserted.
910 	 */
911 	if (bce_tx_quick_cons_trip_int <= 100) {
912 		sc->bce_tx_quick_cons_trip_int =
913 		    bce_tx_quick_cons_trip_int;
914 	} else {
915 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
916 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
917 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
918 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
919 		sc->bce_tx_quick_cons_trip_int =
920 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
921 	}
922 
923 	if (bce_tx_quick_cons_trip <= 100) {
924 		sc->bce_tx_quick_cons_trip =
925 		    bce_tx_quick_cons_trip;
926 	} else {
927 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
928 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
929 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
930 		    DEFAULT_TX_QUICK_CONS_TRIP);
931 		sc->bce_tx_quick_cons_trip =
932 		    DEFAULT_TX_QUICK_CONS_TRIP;
933 	}
934 
935 	/*
936 	 * Validate the TX ticks count (i.e. the maximum amount
937 	 * of time to wait after the last TX completion has
938 	 * occurred before a status block update is generated
939 	 * and an interrupt is asserted.
940 	 */
941 	if (bce_tx_ticks_int <= 100) {
942 		sc->bce_tx_ticks_int =
943 		    bce_tx_ticks_int;
944 	} else {
945 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
946 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
947 		    __FILE__, __LINE__, bce_tx_ticks_int,
948 		    DEFAULT_TX_TICKS_INT);
949 		sc->bce_tx_ticks_int =
950 		    DEFAULT_TX_TICKS_INT;
951 	   }
952 
953 	if (bce_tx_ticks <= 100) {
954 		sc->bce_tx_ticks =
955 		    bce_tx_ticks;
956 	} else {
957 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
958 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
959 		    __FILE__, __LINE__, bce_tx_ticks,
960 		    DEFAULT_TX_TICKS);
961 		sc->bce_tx_ticks =
962 		    DEFAULT_TX_TICKS;
963 	}
964 
965 	/*
966 	 * Validate the RX trip point (i.e. the number of
967 	 * RX frames received before a status block update is
968 	 * generated and an interrupt is asserted.
969 	 */
970 	if (bce_rx_quick_cons_trip_int <= 100) {
971 		sc->bce_rx_quick_cons_trip_int =
972 		    bce_rx_quick_cons_trip_int;
973 	} else {
974 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
975 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
976 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
977 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
978 		sc->bce_rx_quick_cons_trip_int =
979 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
980 	}
981 
982 	if (bce_rx_quick_cons_trip <= 100) {
983 		sc->bce_rx_quick_cons_trip =
984 		    bce_rx_quick_cons_trip;
985 	} else {
986 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
987 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
988 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
989 		    DEFAULT_RX_QUICK_CONS_TRIP);
990 		sc->bce_rx_quick_cons_trip =
991 		    DEFAULT_RX_QUICK_CONS_TRIP;
992 	}
993 
994 	/*
995 	 * Validate the RX ticks count (i.e. the maximum amount
996 	 * of time to wait after the last RX frame has been
997 	 * received before a status block update is generated
998 	 * and an interrupt is asserted.
999 	 */
1000 	if (bce_rx_ticks_int <= 100) {
1001 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
1002 	} else {
1003 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1004 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
1005 		    __FILE__, __LINE__, bce_rx_ticks_int,
1006 		    DEFAULT_RX_TICKS_INT);
1007 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1008 	}
1009 
1010 	if (bce_rx_ticks <= 100) {
1011 		sc->bce_rx_ticks = bce_rx_ticks;
1012 	} else {
1013 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1014 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1015 		    __FILE__, __LINE__, bce_rx_ticks,
1016 		    DEFAULT_RX_TICKS);
1017 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1018 	}
1019 
1020 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1021 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1022 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1023 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1024 		   __FILE__, __LINE__);
1025 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1026 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1027 	}
1028 
1029 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1030 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1031 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1032 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1033 		   __FILE__, __LINE__);
1034 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1035 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1036 	}
1037 }
1038 
1039 /****************************************************************************/
1040 /* Device attach function.                                                  */
1041 /*                                                                          */
1042 /* Allocates device resources, performs secondary chip identification,      */
1043 /* resets and initializes the hardware, and initializes driver instance     */
1044 /* variables.                                                               */
1045 /*                                                                          */
1046 /* Returns:                                                                 */
1047 /*   0 on success, positive value on failure.                               */
1048 /****************************************************************************/
1049 static int
1050 bce_attach(device_t dev)
1051 {
1052 	struct bce_softc *sc;
1053 	if_t ifp;
1054 	u32 val;
1055 	int count, error, rc = 0, rid;
1056 
1057 	sc = device_get_softc(dev);
1058 	sc->bce_dev = dev;
1059 
1060 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1061 
1062 	sc->bce_unit = device_get_unit(dev);
1063 
1064 	/* Set initial device and PHY flags */
1065 	sc->bce_flags = 0;
1066 	sc->bce_phy_flags = 0;
1067 
1068 	bce_set_tunables(sc);
1069 
1070 	pci_enable_busmaster(dev);
1071 
1072 	/* Allocate PCI memory resources. */
1073 	rid = PCIR_BAR(0);
1074 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1075 		&rid, RF_ACTIVE);
1076 
1077 	if (sc->bce_res_mem == NULL) {
1078 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1079 		    __FILE__, __LINE__);
1080 		rc = ENXIO;
1081 		goto bce_attach_fail;
1082 	}
1083 
1084 	/* Get various resource handles. */
1085 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1086 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1087 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1088 
1089 	bce_probe_pci_caps(dev, sc);
1090 
1091 	rid = 1;
1092 	count = 0;
1093 #if 0
1094 	/* Try allocating MSI-X interrupts. */
1095 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1096 		(bce_msi_enable >= 2) &&
1097 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1098 		&rid, RF_ACTIVE)) != NULL)) {
1099 		msi_needed = count = 1;
1100 
1101 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1102 			(count != msi_needed)) {
1103 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1104 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1105 				msi_needed, count, error);
1106 			count = 0;
1107 			pci_release_msi(dev);
1108 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1109 				sc->bce_res_irq);
1110 			sc->bce_res_irq = NULL;
1111 		} else {
1112 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1113 				__FUNCTION__);
1114 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1115 		}
1116 	}
1117 #endif
1118 
1119 	/* Try allocating a MSI interrupt. */
1120 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1121 		(bce_msi_enable >= 1) && (count == 0)) {
1122 		count = 1;
1123 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1124 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1125 			    "error = %d\n", __FILE__, __LINE__, error);
1126 			count = 0;
1127 			pci_release_msi(dev);
1128 		} else {
1129 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1130 			    "interrupt.\n", __FUNCTION__);
1131 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1132 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1133 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1134 			rid = 1;
1135 		}
1136 	}
1137 
1138 	/* Try allocating a legacy interrupt. */
1139 	if (count == 0) {
1140 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1141 			__FUNCTION__);
1142 		rid = 0;
1143 	}
1144 
1145 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1146 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1147 
1148 	/* Report any IRQ allocation errors. */
1149 	if (sc->bce_res_irq == NULL) {
1150 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1151 		    __FILE__, __LINE__);
1152 		rc = ENXIO;
1153 		goto bce_attach_fail;
1154 	}
1155 
1156 	/* Initialize mutex for the current device instance. */
1157 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1158 
1159 	/*
1160 	 * Configure byte swap and enable indirect register access.
1161 	 * Rely on CPU to do target byte swapping on big endian systems.
1162 	 * Access to registers outside of PCI configurtion space are not
1163 	 * valid until this is done.
1164 	 */
1165 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1166 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1167 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1168 
1169 	/* Save ASIC revsion info. */
1170 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1171 
1172 	/* Weed out any non-production controller revisions. */
1173 	switch(BCE_CHIP_ID(sc)) {
1174 	case BCE_CHIP_ID_5706_A0:
1175 	case BCE_CHIP_ID_5706_A1:
1176 	case BCE_CHIP_ID_5708_A0:
1177 	case BCE_CHIP_ID_5708_B0:
1178 	case BCE_CHIP_ID_5709_A0:
1179 	case BCE_CHIP_ID_5709_B0:
1180 	case BCE_CHIP_ID_5709_B1:
1181 	case BCE_CHIP_ID_5709_B2:
1182 		BCE_PRINTF("%s(%d): Unsupported controller "
1183 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1184 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1185 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1186 		    PCIR_REVID, 4) & 0xf));
1187 		rc = ENODEV;
1188 		goto bce_attach_fail;
1189 	}
1190 
1191 	/*
1192 	 * The embedded PCIe to PCI-X bridge (EPB)
1193 	 * in the 5708 cannot address memory above
1194 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1195 	 */
1196 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1197 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1198 	else
1199 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1200 
1201 	/*
1202 	 * Find the base address for shared memory access.
1203 	 * Newer versions of bootcode use a signature and offset
1204 	 * while older versions use a fixed address.
1205 	 */
1206 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1207 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1208 		/* Multi-port devices use different offsets in shared memory. */
1209 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1210 		    (pci_get_function(sc->bce_dev) << 2));
1211 	else
1212 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1213 
1214 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1215 	    __FUNCTION__, sc->bce_shmem_base);
1216 
1217 	/* Fetch the bootcode revision. */
1218 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1219 	for (int i = 0, j = 0; i < 3; i++) {
1220 		u8 num;
1221 
1222 		num = (u8) (val >> (24 - (i * 8)));
1223 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1224 			if (num >= k || !skip0 || k == 1) {
1225 				sc->bce_bc_ver[j++] = (num / k) + '0';
1226 				skip0 = 0;
1227 			}
1228 		}
1229 
1230 		if (i != 2)
1231 			sc->bce_bc_ver[j++] = '.';
1232 	}
1233 
1234 	/* Check if any management firwmare is enabled. */
1235 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1236 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1237 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1238 
1239 		/* Allow time for firmware to enter the running state. */
1240 		for (int i = 0; i < 30; i++) {
1241 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1242 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1243 				break;
1244 			DELAY(10000);
1245 		}
1246 
1247 		/* Check if management firmware is running. */
1248 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1249 		val &= BCE_CONDITION_MFW_RUN_MASK;
1250 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1251 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1252 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1253 			int i = 0;
1254 
1255 			/* Read the management firmware version string. */
1256 			for (int j = 0; j < 3; j++) {
1257 				val = bce_reg_rd_ind(sc, addr + j * 4);
1258 				val = bswap32(val);
1259 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1260 				i += 4;
1261 			}
1262 		} else {
1263 			/* May cause firmware synchronization timeouts. */
1264 			BCE_PRINTF("%s(%d): Management firmware enabled "
1265 			    "but not running!\n", __FILE__, __LINE__);
1266 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1267 
1268 			/* ToDo: Any action the driver should take? */
1269 		}
1270 	}
1271 
1272 	/* Get PCI bus information (speed and type). */
1273 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1274 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1275 		u32 clkreg;
1276 
1277 		sc->bce_flags |= BCE_PCIX_FLAG;
1278 
1279 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1280 
1281 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1282 		switch (clkreg) {
1283 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1284 			sc->bus_speed_mhz = 133;
1285 			break;
1286 
1287 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1288 			sc->bus_speed_mhz = 100;
1289 			break;
1290 
1291 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1292 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1293 			sc->bus_speed_mhz = 66;
1294 			break;
1295 
1296 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1297 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1298 			sc->bus_speed_mhz = 50;
1299 			break;
1300 
1301 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1302 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1303 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1304 			sc->bus_speed_mhz = 33;
1305 			break;
1306 		}
1307 	} else {
1308 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1309 			sc->bus_speed_mhz = 66;
1310 		else
1311 			sc->bus_speed_mhz = 33;
1312 	}
1313 
1314 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1315 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1316 
1317 	/* Find the media type for the adapter. */
1318 	bce_get_media(sc);
1319 
1320 	/* Reset controller and announce to bootcode that driver is present. */
1321 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1322 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1323 		    __FILE__, __LINE__);
1324 		rc = ENXIO;
1325 		goto bce_attach_fail;
1326 	}
1327 
1328 	/* Initialize the controller. */
1329 	if (bce_chipinit(sc)) {
1330 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1331 		    __FILE__, __LINE__);
1332 		rc = ENXIO;
1333 		goto bce_attach_fail;
1334 	}
1335 
1336 	/* Perform NVRAM test. */
1337 	if (bce_nvram_test(sc)) {
1338 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1339 		    __FILE__, __LINE__);
1340 		rc = ENXIO;
1341 		goto bce_attach_fail;
1342 	}
1343 
1344 	/* Fetch the permanent Ethernet MAC address. */
1345 	bce_get_mac_addr(sc);
1346 
1347 	/* Update statistics once every second. */
1348 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1349 
1350 	/* Store data needed by PHY driver for backplane applications */
1351 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1352 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1353 
1354 	/* Allocate DMA memory resources. */
1355 	if (bce_dma_alloc(dev)) {
1356 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1357 		    __FILE__, __LINE__);
1358 		rc = ENXIO;
1359 		goto bce_attach_fail;
1360 	}
1361 
1362 	/* Allocate an ifnet structure. */
1363 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1364 	if (ifp == NULL) {
1365 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1366 		    __FILE__, __LINE__);
1367 		rc = ENXIO;
1368 		goto bce_attach_fail;
1369 	}
1370 
1371 	/* Initialize the ifnet interface. */
1372 	if_setsoftc(ifp, sc);
1373 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1374 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1375 	if_setioctlfn(ifp, bce_ioctl);
1376 	if_setstartfn(ifp, bce_start);
1377 	if_setgetcounterfn(ifp, bce_get_counter);
1378 	if_setinitfn(ifp, bce_init);
1379 	if_setmtu(ifp, ETHERMTU);
1380 
1381 	if (bce_tso_enable) {
1382 		if_sethwassist(ifp, BCE_IF_HWASSIST | CSUM_TSO);
1383 		if_setcapabilities(ifp, BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1384 		    IFCAP_VLAN_HWTSO);
1385 	} else {
1386 		if_sethwassist(ifp, BCE_IF_HWASSIST);
1387 		if_setcapabilities(ifp, BCE_IF_CAPABILITIES);
1388 	}
1389 
1390 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1391 		if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0);
1392 
1393 	if_setcapenable(ifp, if_getcapabilities(ifp));
1394 
1395 	/*
1396 	 * Assume standard mbuf sizes for buffer allocation.
1397 	 * This may change later if the MTU size is set to
1398 	 * something other than 1500.
1399 	 */
1400 	bce_get_rx_buffer_sizes(sc,
1401 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1402 
1403 	/* Recalculate our buffer allocation sizes. */
1404 	if_setsendqlen(ifp, USABLE_TX_BD_ALLOC);
1405 	if_setsendqready(ifp);
1406 
1407 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1408 		if_setbaudrate(ifp, IF_Mbps(2500ULL));
1409 	else
1410 		if_setbaudrate(ifp, IF_Mbps(1000));
1411 
1412 	/* Handle any special PHY initialization for SerDes PHYs. */
1413 	bce_init_media(sc);
1414 
1415 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1416 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1417 		    bce_ifmedia_sts);
1418 		/*
1419 		 * We can't manually override remote PHY's link and assume
1420 		 * PHY port configuration(Fiber or TP) is not changed after
1421 		 * device attach.  This may not be correct though.
1422 		 */
1423 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1424 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1425 				ifmedia_add(&sc->bce_ifmedia,
1426 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1427 				ifmedia_add(&sc->bce_ifmedia,
1428 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1429 			}
1430 			ifmedia_add(&sc->bce_ifmedia,
1431 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1432 			ifmedia_add(&sc->bce_ifmedia,
1433 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1434 		} else {
1435 			ifmedia_add(&sc->bce_ifmedia,
1436 			    IFM_ETHER | IFM_10_T, 0, NULL);
1437 			ifmedia_add(&sc->bce_ifmedia,
1438 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1439 			ifmedia_add(&sc->bce_ifmedia,
1440 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1441 			ifmedia_add(&sc->bce_ifmedia,
1442 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1443 			ifmedia_add(&sc->bce_ifmedia,
1444 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1445 			ifmedia_add(&sc->bce_ifmedia,
1446 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1447 		}
1448 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1449 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1450 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1451 	} else {
1452 		/* MII child bus by attaching the PHY. */
1453 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1454 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1455 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1456 		if (rc != 0) {
1457 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1458 			    __LINE__);
1459 			goto bce_attach_fail;
1460 		}
1461 	}
1462 
1463 	/* Attach to the Ethernet interface list. */
1464 	ether_ifattach(ifp, sc->eaddr);
1465 
1466 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1467 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1468 
1469 	/* Hookup IRQ last. */
1470 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1471 		NULL, bce_intr, sc, &sc->bce_intrhand);
1472 
1473 	if (rc) {
1474 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1475 		    __FILE__, __LINE__);
1476 		bce_detach(dev);
1477 		goto bce_attach_exit;
1478 	}
1479 
1480 	/*
1481 	 * At this point we've acquired all the resources
1482 	 * we need to run so there's no turning back, we're
1483 	 * cleared for launch.
1484 	 */
1485 
1486 	/* Print some important debugging info. */
1487 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1488 
1489 	/* Add the supported sysctls to the kernel. */
1490 	bce_add_sysctls(sc);
1491 
1492 	BCE_LOCK(sc);
1493 
1494 	/*
1495 	 * The chip reset earlier notified the bootcode that
1496 	 * a driver is present.  We now need to start our pulse
1497 	 * routine so that the bootcode is reminded that we're
1498 	 * still running.
1499 	 */
1500 	bce_pulse(sc);
1501 
1502 	bce_mgmt_init_locked(sc);
1503 	BCE_UNLOCK(sc);
1504 
1505 	/* Finally, print some useful adapter info */
1506 	bce_print_adapter_info(sc);
1507 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1508 		__FUNCTION__, sc);
1509 
1510 	goto bce_attach_exit;
1511 
1512 bce_attach_fail:
1513 	bce_release_resources(sc);
1514 
1515 bce_attach_exit:
1516 
1517 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1518 
1519 	return(rc);
1520 }
1521 
1522 /****************************************************************************/
1523 /* Device detach function.                                                  */
1524 /*                                                                          */
1525 /* Stops the controller, resets the controller, and releases resources.     */
1526 /*                                                                          */
1527 /* Returns:                                                                 */
1528 /*   0 on success, positive value on failure.                               */
1529 /****************************************************************************/
1530 static int
1531 bce_detach(device_t dev)
1532 {
1533 	struct bce_softc *sc = device_get_softc(dev);
1534 	if_t ifp;
1535 	u32 msg;
1536 
1537 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1538 
1539 	ifp = sc->bce_ifp;
1540 
1541 	/* Stop and reset the controller. */
1542 	BCE_LOCK(sc);
1543 
1544 	/* Stop the pulse so the bootcode can go to driver absent state. */
1545 	callout_stop(&sc->bce_pulse_callout);
1546 
1547 	bce_stop(sc);
1548 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1549 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1550 	else
1551 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1552 	bce_reset(sc, msg);
1553 
1554 	BCE_UNLOCK(sc);
1555 
1556 	ether_ifdetach(ifp);
1557 
1558 	/* If we have a child device on the MII bus remove it too. */
1559 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1560 		ifmedia_removeall(&sc->bce_ifmedia);
1561 	else {
1562 		bus_generic_detach(dev);
1563 		device_delete_child(dev, sc->bce_miibus);
1564 	}
1565 
1566 	/* Release all remaining resources. */
1567 	bce_release_resources(sc);
1568 
1569 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1570 
1571 	return(0);
1572 }
1573 
1574 /****************************************************************************/
1575 /* Device shutdown function.                                                */
1576 /*                                                                          */
1577 /* Stops and resets the controller.                                         */
1578 /*                                                                          */
1579 /* Returns:                                                                 */
1580 /*   0 on success, positive value on failure.                               */
1581 /****************************************************************************/
1582 static int
1583 bce_shutdown(device_t dev)
1584 {
1585 	struct bce_softc *sc = device_get_softc(dev);
1586 	u32 msg;
1587 
1588 	DBENTER(BCE_VERBOSE);
1589 
1590 	BCE_LOCK(sc);
1591 	bce_stop(sc);
1592 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1593 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1594 	else
1595 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1596 	bce_reset(sc, msg);
1597 	BCE_UNLOCK(sc);
1598 
1599 	DBEXIT(BCE_VERBOSE);
1600 
1601 	return (0);
1602 }
1603 
1604 #ifdef BCE_DEBUG
1605 /****************************************************************************/
1606 /* Register read.                                                           */
1607 /*                                                                          */
1608 /* Returns:                                                                 */
1609 /*   The value of the register.                                             */
1610 /****************************************************************************/
1611 static u32
1612 bce_reg_rd(struct bce_softc *sc, u32 offset)
1613 {
1614 	u32 val = REG_RD(sc, offset);
1615 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1616 		__FUNCTION__, offset, val);
1617 	return val;
1618 }
1619 
1620 /****************************************************************************/
1621 /* Register write (16 bit).                                                 */
1622 /*                                                                          */
1623 /* Returns:                                                                 */
1624 /*   Nothing.                                                               */
1625 /****************************************************************************/
1626 static void
1627 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1628 {
1629 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1630 		__FUNCTION__, offset, val);
1631 	REG_WR16(sc, offset, val);
1632 }
1633 
1634 /****************************************************************************/
1635 /* Register write.                                                          */
1636 /*                                                                          */
1637 /* Returns:                                                                 */
1638 /*   Nothing.                                                               */
1639 /****************************************************************************/
1640 static void
1641 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1642 {
1643 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1644 		__FUNCTION__, offset, val);
1645 	REG_WR(sc, offset, val);
1646 }
1647 #endif
1648 
1649 /****************************************************************************/
1650 /* Indirect register read.                                                  */
1651 /*                                                                          */
1652 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1653 /* configuration space.  Using this mechanism avoids issues with posted     */
1654 /* reads but is much slower than memory-mapped I/O.                         */
1655 /*                                                                          */
1656 /* Returns:                                                                 */
1657 /*   The value of the register.                                             */
1658 /****************************************************************************/
1659 static u32
1660 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1661 {
1662 	device_t dev;
1663 	dev = sc->bce_dev;
1664 
1665 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1666 #ifdef BCE_DEBUG
1667 	{
1668 		u32 val;
1669 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1670 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1671 			__FUNCTION__, offset, val);
1672 		return val;
1673 	}
1674 #else
1675 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1676 #endif
1677 }
1678 
1679 /****************************************************************************/
1680 /* Indirect register write.                                                 */
1681 /*                                                                          */
1682 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1683 /* configuration space.  Using this mechanism avoids issues with posted     */
1684 /* writes but is muchh slower than memory-mapped I/O.                       */
1685 /*                                                                          */
1686 /* Returns:                                                                 */
1687 /*   Nothing.                                                               */
1688 /****************************************************************************/
1689 static void
1690 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1691 {
1692 	device_t dev;
1693 	dev = sc->bce_dev;
1694 
1695 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1696 		__FUNCTION__, offset, val);
1697 
1698 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1699 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1700 }
1701 
1702 /****************************************************************************/
1703 /* Shared memory write.                                                     */
1704 /*                                                                          */
1705 /* Writes NetXtreme II shared memory region.                                */
1706 /*                                                                          */
1707 /* Returns:                                                                 */
1708 /*   Nothing.                                                               */
1709 /****************************************************************************/
1710 static void
1711 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1712 {
1713 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1714 	    "0x%08X\n",	__FUNCTION__, val, offset);
1715 
1716 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1717 }
1718 
1719 /****************************************************************************/
1720 /* Shared memory read.                                                      */
1721 /*                                                                          */
1722 /* Reads NetXtreme II shared memory region.                                 */
1723 /*                                                                          */
1724 /* Returns:                                                                 */
1725 /*   The 32 bit value read.                                                 */
1726 /****************************************************************************/
1727 static u32
1728 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1729 {
1730 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1731 
1732 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1733 	    "0x%08X\n",	__FUNCTION__, val, offset);
1734 
1735 	return val;
1736 }
1737 
1738 #ifdef BCE_DEBUG
1739 /****************************************************************************/
1740 /* Context memory read.                                                     */
1741 /*                                                                          */
1742 /* The NetXtreme II controller uses context memory to track connection      */
1743 /* information for L2 and higher network protocols.                         */
1744 /*                                                                          */
1745 /* Returns:                                                                 */
1746 /*   The requested 32 bit value of context memory.                          */
1747 /****************************************************************************/
1748 static u32
1749 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1750 {
1751 	u32 idx, offset, retry_cnt = 5, val;
1752 
1753 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1754 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1755 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1756 
1757 	offset = ctx_offset + cid_addr;
1758 
1759 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1760 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1761 
1762 		for (idx = 0; idx < retry_cnt; idx++) {
1763 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1764 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1765 				break;
1766 			DELAY(5);
1767 		}
1768 
1769 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1770 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1771 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1772 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1773 
1774 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1775 	} else {
1776 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1777 		val = REG_RD(sc, BCE_CTX_DATA);
1778 	}
1779 
1780 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1781 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1782 
1783 	return(val);
1784 }
1785 #endif
1786 
1787 /****************************************************************************/
1788 /* Context memory write.                                                    */
1789 /*                                                                          */
1790 /* The NetXtreme II controller uses context memory to track connection      */
1791 /* information for L2 and higher network protocols.                         */
1792 /*                                                                          */
1793 /* Returns:                                                                 */
1794 /*   Nothing.                                                               */
1795 /****************************************************************************/
1796 static void
1797 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1798 {
1799 	u32 idx, offset = ctx_offset + cid_addr;
1800 	u32 val, retry_cnt = 5;
1801 
1802 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1803 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1804 
1805 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1806 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1807 		    __FUNCTION__, cid_addr));
1808 
1809 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1810 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1811 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1812 
1813 		for (idx = 0; idx < retry_cnt; idx++) {
1814 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1815 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1816 				break;
1817 			DELAY(5);
1818 		}
1819 
1820 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1821 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1822 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1823 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1824 
1825 	} else {
1826 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1827 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1828 	}
1829 }
1830 
1831 /****************************************************************************/
1832 /* PHY register read.                                                       */
1833 /*                                                                          */
1834 /* Implements register reads on the MII bus.                                */
1835 /*                                                                          */
1836 /* Returns:                                                                 */
1837 /*   The value of the register.                                             */
1838 /****************************************************************************/
1839 static int
1840 bce_miibus_read_reg(device_t dev, int phy, int reg)
1841 {
1842 	struct bce_softc *sc;
1843 	u32 val;
1844 	int i;
1845 
1846 	sc = device_get_softc(dev);
1847 
1848     /*
1849      * The 5709S PHY is an IEEE Clause 45 PHY
1850      * with special mappings to work with IEEE
1851      * Clause 22 register accesses.
1852      */
1853 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1854 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1855 			reg += 0x10;
1856 	}
1857 
1858     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1859 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1860 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1861 
1862 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1863 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1864 
1865 		DELAY(40);
1866 	}
1867 
1868 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1869 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1870 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1871 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1872 
1873 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1874 		DELAY(10);
1875 
1876 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1877 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1878 			DELAY(5);
1879 
1880 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1881 			val &= BCE_EMAC_MDIO_COMM_DATA;
1882 
1883 			break;
1884 		}
1885 	}
1886 
1887 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1888 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1889 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1890 		val = 0x0;
1891 	} else {
1892 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1893 	}
1894 
1895 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1896 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1897 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1898 
1899 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1900 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1901 
1902 		DELAY(40);
1903 	}
1904 
1905 	DB_PRINT_PHY_REG(reg, val);
1906 	return (val & 0xffff);
1907 }
1908 
1909 /****************************************************************************/
1910 /* PHY register write.                                                      */
1911 /*                                                                          */
1912 /* Implements register writes on the MII bus.                               */
1913 /*                                                                          */
1914 /* Returns:                                                                 */
1915 /*   The value of the register.                                             */
1916 /****************************************************************************/
1917 static int
1918 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1919 {
1920 	struct bce_softc *sc;
1921 	u32 val1;
1922 	int i;
1923 
1924 	sc = device_get_softc(dev);
1925 
1926 	DB_PRINT_PHY_REG(reg, val);
1927 
1928 	/*
1929 	 * The 5709S PHY is an IEEE Clause 45 PHY
1930 	 * with special mappings to work with IEEE
1931 	 * Clause 22 register accesses.
1932 	 */
1933 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1934 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1935 			reg += 0x10;
1936 	}
1937 
1938 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1939 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1940 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1941 
1942 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1943 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1944 
1945 		DELAY(40);
1946 	}
1947 
1948 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1949 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1950 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1951 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1952 
1953 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1954 		DELAY(10);
1955 
1956 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1957 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1958 			DELAY(5);
1959 			break;
1960 		}
1961 	}
1962 
1963 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1964 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1965 		    __FILE__, __LINE__);
1966 
1967 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1968 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1969 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1970 
1971 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1972 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1973 
1974 		DELAY(40);
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 /****************************************************************************/
1981 /* MII bus status change.                                                   */
1982 /*                                                                          */
1983 /* Called by the MII bus driver when the PHY establishes link to set the    */
1984 /* MAC interface registers.                                                 */
1985 /*                                                                          */
1986 /* Returns:                                                                 */
1987 /*   Nothing.                                                               */
1988 /****************************************************************************/
1989 static void
1990 bce_miibus_statchg(device_t dev)
1991 {
1992 	struct bce_softc *sc;
1993 	struct mii_data *mii;
1994 	struct ifmediareq ifmr;
1995 	int media_active, media_status, val;
1996 
1997 	sc = device_get_softc(dev);
1998 
1999 	DBENTER(BCE_VERBOSE_PHY);
2000 
2001 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2002 		bzero(&ifmr, sizeof(ifmr));
2003 		bce_ifmedia_sts_rphy(sc, &ifmr);
2004 		media_active = ifmr.ifm_active;
2005 		media_status = ifmr.ifm_status;
2006 	} else {
2007 		mii = device_get_softc(sc->bce_miibus);
2008 		media_active = mii->mii_media_active;
2009 		media_status = mii->mii_media_status;
2010 	}
2011 
2012 	/* Ignore invalid media status. */
2013 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2014 	    (IFM_ACTIVE | IFM_AVALID))
2015 		goto bce_miibus_statchg_exit;
2016 
2017 	val = REG_RD(sc, BCE_EMAC_MODE);
2018 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2019 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2020 	    BCE_EMAC_MODE_25G);
2021 
2022 	/* Set MII or GMII interface based on the PHY speed. */
2023 	switch (IFM_SUBTYPE(media_active)) {
2024 	case IFM_10_T:
2025 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2026 			DBPRINT(sc, BCE_INFO_PHY,
2027 			    "Enabling 10Mb interface.\n");
2028 			val |= BCE_EMAC_MODE_PORT_MII_10;
2029 			break;
2030 		}
2031 		/* fall-through */
2032 	case IFM_100_TX:
2033 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2034 		val |= BCE_EMAC_MODE_PORT_MII;
2035 		break;
2036 	case IFM_2500_SX:
2037 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2038 		val |= BCE_EMAC_MODE_25G;
2039 		/* fall-through */
2040 	case IFM_1000_T:
2041 	case IFM_1000_SX:
2042 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2043 		val |= BCE_EMAC_MODE_PORT_GMII;
2044 		break;
2045 	default:
2046 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2047 		    "default GMII interface.\n");
2048 		val |= BCE_EMAC_MODE_PORT_GMII;
2049 	}
2050 
2051 	/* Set half or full duplex based on PHY settings. */
2052 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2053 		DBPRINT(sc, BCE_INFO_PHY,
2054 		    "Setting Half-Duplex interface.\n");
2055 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2056 	} else
2057 		DBPRINT(sc, BCE_INFO_PHY,
2058 		    "Setting Full-Duplex interface.\n");
2059 
2060 	REG_WR(sc, BCE_EMAC_MODE, val);
2061 
2062 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2063 		DBPRINT(sc, BCE_INFO_PHY,
2064 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2065 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2066 		sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2067 	} else {
2068 		DBPRINT(sc, BCE_INFO_PHY,
2069 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2070 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2071 		sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2072 	}
2073 
2074 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2075 		DBPRINT(sc, BCE_INFO_PHY,
2076 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2077 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2078 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2079 	} else {
2080 		DBPRINT(sc, BCE_INFO_PHY,
2081 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2082 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2083 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2084 	}
2085 
2086 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2087 
2088 bce_miibus_statchg_exit:
2089 	DBEXIT(BCE_VERBOSE_PHY);
2090 }
2091 
2092 /****************************************************************************/
2093 /* Acquire NVRAM lock.                                                      */
2094 /*                                                                          */
2095 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2096 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2097 /* for use by the driver.                                                   */
2098 /*                                                                          */
2099 /* Returns:                                                                 */
2100 /*   0 on success, positive value on failure.                               */
2101 /****************************************************************************/
2102 static int
2103 bce_acquire_nvram_lock(struct bce_softc *sc)
2104 {
2105 	u32 val;
2106 	int j, rc = 0;
2107 
2108 	DBENTER(BCE_VERBOSE_NVRAM);
2109 
2110 	/* Request access to the flash interface. */
2111 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2112 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2113 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2114 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2115 			break;
2116 
2117 		DELAY(5);
2118 	}
2119 
2120 	if (j >= NVRAM_TIMEOUT_COUNT) {
2121 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2122 		rc = EBUSY;
2123 	}
2124 
2125 	DBEXIT(BCE_VERBOSE_NVRAM);
2126 	return (rc);
2127 }
2128 
2129 /****************************************************************************/
2130 /* Release NVRAM lock.                                                      */
2131 /*                                                                          */
2132 /* When the caller is finished accessing NVRAM the lock must be released.   */
2133 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2134 /* for use by the driver.                                                   */
2135 /*                                                                          */
2136 /* Returns:                                                                 */
2137 /*   0 on success, positive value on failure.                               */
2138 /****************************************************************************/
2139 static int
2140 bce_release_nvram_lock(struct bce_softc *sc)
2141 {
2142 	u32 val;
2143 	int j, rc = 0;
2144 
2145 	DBENTER(BCE_VERBOSE_NVRAM);
2146 
2147 	/*
2148 	 * Relinquish nvram interface.
2149 	 */
2150 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2151 
2152 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2153 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2154 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2155 			break;
2156 
2157 		DELAY(5);
2158 	}
2159 
2160 	if (j >= NVRAM_TIMEOUT_COUNT) {
2161 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2162 		rc = EBUSY;
2163 	}
2164 
2165 	DBEXIT(BCE_VERBOSE_NVRAM);
2166 	return (rc);
2167 }
2168 
2169 #ifdef BCE_NVRAM_WRITE_SUPPORT
2170 /****************************************************************************/
2171 /* Enable NVRAM write access.                                               */
2172 /*                                                                          */
2173 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2174 /*                                                                          */
2175 /* Returns:                                                                 */
2176 /*   0 on success, positive value on failure.                               */
2177 /****************************************************************************/
2178 static int
2179 bce_enable_nvram_write(struct bce_softc *sc)
2180 {
2181 	u32 val;
2182 	int rc = 0;
2183 
2184 	DBENTER(BCE_VERBOSE_NVRAM);
2185 
2186 	val = REG_RD(sc, BCE_MISC_CFG);
2187 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2188 
2189 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2190 		int j;
2191 
2192 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2193 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2194 
2195 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2196 			DELAY(5);
2197 
2198 			val = REG_RD(sc, BCE_NVM_COMMAND);
2199 			if (val & BCE_NVM_COMMAND_DONE)
2200 				break;
2201 		}
2202 
2203 		if (j >= NVRAM_TIMEOUT_COUNT) {
2204 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2205 			rc = EBUSY;
2206 		}
2207 	}
2208 
2209 	DBENTER(BCE_VERBOSE_NVRAM);
2210 	return (rc);
2211 }
2212 
2213 /****************************************************************************/
2214 /* Disable NVRAM write access.                                              */
2215 /*                                                                          */
2216 /* When the caller is finished writing to NVRAM write access must be        */
2217 /* disabled.                                                                */
2218 /*                                                                          */
2219 /* Returns:                                                                 */
2220 /*   Nothing.                                                               */
2221 /****************************************************************************/
2222 static void
2223 bce_disable_nvram_write(struct bce_softc *sc)
2224 {
2225 	u32 val;
2226 
2227 	DBENTER(BCE_VERBOSE_NVRAM);
2228 
2229 	val = REG_RD(sc, BCE_MISC_CFG);
2230 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2231 
2232 	DBEXIT(BCE_VERBOSE_NVRAM);
2233 
2234 }
2235 #endif
2236 
2237 /****************************************************************************/
2238 /* Enable NVRAM access.                                                     */
2239 /*                                                                          */
2240 /* Before accessing NVRAM for read or write operations the caller must      */
2241 /* enabled NVRAM access.                                                    */
2242 /*                                                                          */
2243 /* Returns:                                                                 */
2244 /*   Nothing.                                                               */
2245 /****************************************************************************/
2246 static void
2247 bce_enable_nvram_access(struct bce_softc *sc)
2248 {
2249 	u32 val;
2250 
2251 	DBENTER(BCE_VERBOSE_NVRAM);
2252 
2253 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2254 	/* Enable both bits, even on read. */
2255 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2256 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2257 
2258 	DBEXIT(BCE_VERBOSE_NVRAM);
2259 }
2260 
2261 /****************************************************************************/
2262 /* Disable NVRAM access.                                                    */
2263 /*                                                                          */
2264 /* When the caller is finished accessing NVRAM access must be disabled.     */
2265 /*                                                                          */
2266 /* Returns:                                                                 */
2267 /*   Nothing.                                                               */
2268 /****************************************************************************/
2269 static void
2270 bce_disable_nvram_access(struct bce_softc *sc)
2271 {
2272 	u32 val;
2273 
2274 	DBENTER(BCE_VERBOSE_NVRAM);
2275 
2276 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2277 
2278 	/* Disable both bits, even after read. */
2279 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2280 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2281 
2282 	DBEXIT(BCE_VERBOSE_NVRAM);
2283 }
2284 
2285 #ifdef BCE_NVRAM_WRITE_SUPPORT
2286 /****************************************************************************/
2287 /* Erase NVRAM page before writing.                                         */
2288 /*                                                                          */
2289 /* Non-buffered flash parts require that a page be erased before it is      */
2290 /* written.                                                                 */
2291 /*                                                                          */
2292 /* Returns:                                                                 */
2293 /*   0 on success, positive value on failure.                               */
2294 /****************************************************************************/
2295 static int
2296 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2297 {
2298 	u32 cmd;
2299 	int j, rc = 0;
2300 
2301 	DBENTER(BCE_VERBOSE_NVRAM);
2302 
2303 	/* Buffered flash doesn't require an erase. */
2304 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2305 		goto bce_nvram_erase_page_exit;
2306 
2307 	/* Build an erase command. */
2308 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2309 	    BCE_NVM_COMMAND_DOIT;
2310 
2311 	/*
2312 	 * Clear the DONE bit separately, set the NVRAM address to erase,
2313 	 * and issue the erase command.
2314 	 */
2315 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2316 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2317 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2318 
2319 	/* Wait for completion. */
2320 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2321 		u32 val;
2322 
2323 		DELAY(5);
2324 
2325 		val = REG_RD(sc, BCE_NVM_COMMAND);
2326 		if (val & BCE_NVM_COMMAND_DONE)
2327 			break;
2328 	}
2329 
2330 	if (j >= NVRAM_TIMEOUT_COUNT) {
2331 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2332 		rc = EBUSY;
2333 	}
2334 
2335 bce_nvram_erase_page_exit:
2336 	DBEXIT(BCE_VERBOSE_NVRAM);
2337 	return (rc);
2338 }
2339 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2340 
2341 /****************************************************************************/
2342 /* Read a dword (32 bits) from NVRAM.                                       */
2343 /*                                                                          */
2344 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2345 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2346 /*                                                                          */
2347 /* Returns:                                                                 */
2348 /*   0 on success and the 32 bit value read, positive value on failure.     */
2349 /****************************************************************************/
2350 static int
2351 bce_nvram_read_dword(struct bce_softc *sc,
2352     u32 offset, u8 *ret_val, u32 cmd_flags)
2353 {
2354 	u32 cmd;
2355 	int i, rc = 0;
2356 
2357 	DBENTER(BCE_EXTREME_NVRAM);
2358 
2359 	/* Build the command word. */
2360 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2361 
2362 	/* Calculate the offset for buffered flash if translation is used. */
2363 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2364 		offset = ((offset / sc->bce_flash_info->page_size) <<
2365 		    sc->bce_flash_info->page_bits) +
2366 		    (offset % sc->bce_flash_info->page_size);
2367 	}
2368 
2369 	/*
2370 	 * Clear the DONE bit separately, set the address to read,
2371 	 * and issue the read.
2372 	 */
2373 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2374 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2375 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2376 
2377 	/* Wait for completion. */
2378 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2379 		u32 val;
2380 
2381 		DELAY(5);
2382 
2383 		val = REG_RD(sc, BCE_NVM_COMMAND);
2384 		if (val & BCE_NVM_COMMAND_DONE) {
2385 			val = REG_RD(sc, BCE_NVM_READ);
2386 
2387 			val = bce_be32toh(val);
2388 			memcpy(ret_val, &val, 4);
2389 			break;
2390 		}
2391 	}
2392 
2393 	/* Check for errors. */
2394 	if (i >= NVRAM_TIMEOUT_COUNT) {
2395 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2396 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2397 		rc = EBUSY;
2398 	}
2399 
2400 	DBEXIT(BCE_EXTREME_NVRAM);
2401 	return(rc);
2402 }
2403 
2404 #ifdef BCE_NVRAM_WRITE_SUPPORT
2405 /****************************************************************************/
2406 /* Write a dword (32 bits) to NVRAM.                                        */
2407 /*                                                                          */
2408 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2409 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2410 /* enabled NVRAM write access.                                              */
2411 /*                                                                          */
2412 /* Returns:                                                                 */
2413 /*   0 on success, positive value on failure.                               */
2414 /****************************************************************************/
2415 static int
2416 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2417 	u32 cmd_flags)
2418 {
2419 	u32 cmd, val32;
2420 	int j, rc = 0;
2421 
2422 	DBENTER(BCE_VERBOSE_NVRAM);
2423 
2424 	/* Build the command word. */
2425 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2426 
2427 	/* Calculate the offset for buffered flash if translation is used. */
2428 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2429 		offset = ((offset / sc->bce_flash_info->page_size) <<
2430 		    sc->bce_flash_info->page_bits) +
2431 		    (offset % sc->bce_flash_info->page_size);
2432 	}
2433 
2434 	/*
2435 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2436 	 * set the NVRAM address to write, and issue the write command
2437 	 */
2438 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2439 	memcpy(&val32, val, 4);
2440 	val32 = htobe32(val32);
2441 	REG_WR(sc, BCE_NVM_WRITE, val32);
2442 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2443 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2444 
2445 	/* Wait for completion. */
2446 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2447 		DELAY(5);
2448 
2449 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2450 			break;
2451 	}
2452 	if (j >= NVRAM_TIMEOUT_COUNT) {
2453 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2454 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2455 		rc = EBUSY;
2456 	}
2457 
2458 	DBEXIT(BCE_VERBOSE_NVRAM);
2459 	return (rc);
2460 }
2461 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2462 
2463 /****************************************************************************/
2464 /* Initialize NVRAM access.                                                 */
2465 /*                                                                          */
2466 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2467 /* access that device.                                                      */
2468 /*                                                                          */
2469 /* Returns:                                                                 */
2470 /*   0 on success, positive value on failure.                               */
2471 /****************************************************************************/
2472 static int
2473 bce_init_nvram(struct bce_softc *sc)
2474 {
2475 	u32 val;
2476 	int j, entry_count, rc = 0;
2477 	const struct flash_spec *flash;
2478 
2479 	DBENTER(BCE_VERBOSE_NVRAM);
2480 
2481 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2482 		sc->bce_flash_info = &flash_5709;
2483 		goto bce_init_nvram_get_flash_size;
2484 	}
2485 
2486 	/* Determine the selected interface. */
2487 	val = REG_RD(sc, BCE_NVM_CFG1);
2488 
2489 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2490 
2491 	/*
2492 	 * Flash reconfiguration is required to support additional
2493 	 * NVRAM devices not directly supported in hardware.
2494 	 * Check if the flash interface was reconfigured
2495 	 * by the bootcode.
2496 	 */
2497 
2498 	if (val & 0x40000000) {
2499 		/* Flash interface reconfigured by bootcode. */
2500 
2501 		DBPRINT(sc,BCE_INFO_LOAD,
2502 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2503 
2504 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2505 		     j++, flash++) {
2506 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2507 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2508 				sc->bce_flash_info = flash;
2509 				break;
2510 			}
2511 		}
2512 	} else {
2513 		/* Flash interface not yet reconfigured. */
2514 		u32 mask;
2515 
2516 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2517 			__FUNCTION__);
2518 
2519 		if (val & (1 << 23))
2520 			mask = FLASH_BACKUP_STRAP_MASK;
2521 		else
2522 			mask = FLASH_STRAP_MASK;
2523 
2524 		/* Look for the matching NVRAM device configuration data. */
2525 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2526 			/* Check if the device matches any of the known devices. */
2527 			if ((val & mask) == (flash->strapping & mask)) {
2528 				/* Found a device match. */
2529 				sc->bce_flash_info = flash;
2530 
2531 				/* Request access to the flash interface. */
2532 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2533 					return rc;
2534 
2535 				/* Reconfigure the flash interface. */
2536 				bce_enable_nvram_access(sc);
2537 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2538 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2539 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2540 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2541 				bce_disable_nvram_access(sc);
2542 				bce_release_nvram_lock(sc);
2543 
2544 				break;
2545 			}
2546 		}
2547 	}
2548 
2549 	/* Check if a matching device was found. */
2550 	if (j == entry_count) {
2551 		sc->bce_flash_info = NULL;
2552 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2553 		    __FILE__, __LINE__);
2554 		DBEXIT(BCE_VERBOSE_NVRAM);
2555 		return (ENODEV);
2556 	}
2557 
2558 bce_init_nvram_get_flash_size:
2559 	/* Write the flash config data to the shared memory interface. */
2560 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2561 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2562 	if (val)
2563 		sc->bce_flash_size = val;
2564 	else
2565 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2566 
2567 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2568 	    __FUNCTION__, sc->bce_flash_info->name,
2569 	    sc->bce_flash_info->total_size);
2570 
2571 	DBEXIT(BCE_VERBOSE_NVRAM);
2572 	return rc;
2573 }
2574 
2575 /****************************************************************************/
2576 /* Read an arbitrary range of data from NVRAM.                              */
2577 /*                                                                          */
2578 /* Prepares the NVRAM interface for access and reads the requested data     */
2579 /* into the supplied buffer.                                                */
2580 /*                                                                          */
2581 /* Returns:                                                                 */
2582 /*   0 on success and the data read, positive value on failure.             */
2583 /****************************************************************************/
2584 static int
2585 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2586 	int buf_size)
2587 {
2588 	int rc = 0;
2589 	u32 cmd_flags, offset32, len32, extra;
2590 
2591 	DBENTER(BCE_VERBOSE_NVRAM);
2592 
2593 	if (buf_size == 0)
2594 		goto bce_nvram_read_exit;
2595 
2596 	/* Request access to the flash interface. */
2597 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2598 		goto bce_nvram_read_exit;
2599 
2600 	/* Enable access to flash interface */
2601 	bce_enable_nvram_access(sc);
2602 
2603 	len32 = buf_size;
2604 	offset32 = offset;
2605 	extra = 0;
2606 
2607 	cmd_flags = 0;
2608 
2609 	if (offset32 & 3) {
2610 		u8 buf[4];
2611 		u32 pre_len;
2612 
2613 		offset32 &= ~3;
2614 		pre_len = 4 - (offset & 3);
2615 
2616 		if (pre_len >= len32) {
2617 			pre_len = len32;
2618 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2619 		}
2620 		else {
2621 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2622 		}
2623 
2624 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2625 
2626 		if (rc)
2627 			return rc;
2628 
2629 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2630 
2631 		offset32 += 4;
2632 		ret_buf += pre_len;
2633 		len32 -= pre_len;
2634 	}
2635 
2636 	if (len32 & 3) {
2637 		extra = 4 - (len32 & 3);
2638 		len32 = (len32 + 4) & ~3;
2639 	}
2640 
2641 	if (len32 == 4) {
2642 		u8 buf[4];
2643 
2644 		if (cmd_flags)
2645 			cmd_flags = BCE_NVM_COMMAND_LAST;
2646 		else
2647 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2648 				    BCE_NVM_COMMAND_LAST;
2649 
2650 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2651 
2652 		memcpy(ret_buf, buf, 4 - extra);
2653 	}
2654 	else if (len32 > 0) {
2655 		u8 buf[4];
2656 
2657 		/* Read the first word. */
2658 		if (cmd_flags)
2659 			cmd_flags = 0;
2660 		else
2661 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2662 
2663 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2664 
2665 		/* Advance to the next dword. */
2666 		offset32 += 4;
2667 		ret_buf += 4;
2668 		len32 -= 4;
2669 
2670 		while (len32 > 4 && rc == 0) {
2671 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2672 
2673 			/* Advance to the next dword. */
2674 			offset32 += 4;
2675 			ret_buf += 4;
2676 			len32 -= 4;
2677 		}
2678 
2679 		if (rc)
2680 			goto bce_nvram_read_locked_exit;
2681 
2682 		cmd_flags = BCE_NVM_COMMAND_LAST;
2683 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2684 
2685 		memcpy(ret_buf, buf, 4 - extra);
2686 	}
2687 
2688 bce_nvram_read_locked_exit:
2689 	/* Disable access to flash interface and release the lock. */
2690 	bce_disable_nvram_access(sc);
2691 	bce_release_nvram_lock(sc);
2692 
2693 bce_nvram_read_exit:
2694 	DBEXIT(BCE_VERBOSE_NVRAM);
2695 	return rc;
2696 }
2697 
2698 #ifdef BCE_NVRAM_WRITE_SUPPORT
2699 /****************************************************************************/
2700 /* Write an arbitrary range of data from NVRAM.                             */
2701 /*                                                                          */
2702 /* Prepares the NVRAM interface for write access and writes the requested   */
2703 /* data from the supplied buffer.  The caller is responsible for            */
2704 /* calculating any appropriate CRCs.                                        */
2705 /*                                                                          */
2706 /* Returns:                                                                 */
2707 /*   0 on success, positive value on failure.                               */
2708 /****************************************************************************/
2709 static int
2710 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2711 	int buf_size)
2712 {
2713 	u32 written, offset32, len32;
2714 	u8 *buf, start[4], end[4];
2715 	int rc = 0;
2716 	int align_start, align_end;
2717 
2718 	DBENTER(BCE_VERBOSE_NVRAM);
2719 
2720 	buf = data_buf;
2721 	offset32 = offset;
2722 	len32 = buf_size;
2723 	align_start = align_end = 0;
2724 
2725 	if ((align_start = (offset32 & 3))) {
2726 		offset32 &= ~3;
2727 		len32 += align_start;
2728 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2729 			goto bce_nvram_write_exit;
2730 	}
2731 
2732 	if (len32 & 3) {
2733 	       	if ((len32 > 4) || !align_start) {
2734 			align_end = 4 - (len32 & 3);
2735 			len32 += align_end;
2736 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2737 				end, 4))) {
2738 				goto bce_nvram_write_exit;
2739 			}
2740 		}
2741 	}
2742 
2743 	if (align_start || align_end) {
2744 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2745 		if (buf == NULL) {
2746 			rc = ENOMEM;
2747 			goto bce_nvram_write_exit;
2748 		}
2749 
2750 		if (align_start) {
2751 			memcpy(buf, start, 4);
2752 		}
2753 
2754 		if (align_end) {
2755 			memcpy(buf + len32 - 4, end, 4);
2756 		}
2757 		memcpy(buf + align_start, data_buf, buf_size);
2758 	}
2759 
2760 	written = 0;
2761 	while ((written < len32) && (rc == 0)) {
2762 		u32 page_start, page_end, data_start, data_end;
2763 		u32 addr, cmd_flags;
2764 		int i;
2765 		u8 flash_buffer[264];
2766 
2767 	    /* Find the page_start addr */
2768 		page_start = offset32 + written;
2769 		page_start -= (page_start % sc->bce_flash_info->page_size);
2770 		/* Find the page_end addr */
2771 		page_end = page_start + sc->bce_flash_info->page_size;
2772 		/* Find the data_start addr */
2773 		data_start = (written == 0) ? offset32 : page_start;
2774 		/* Find the data_end addr */
2775 		data_end = (page_end > offset32 + len32) ?
2776 			(offset32 + len32) : page_end;
2777 
2778 		/* Request access to the flash interface. */
2779 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2780 			goto bce_nvram_write_exit;
2781 
2782 		/* Enable access to flash interface */
2783 		bce_enable_nvram_access(sc);
2784 
2785 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2786 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2787 			int j;
2788 
2789 			/* Read the whole page into the buffer
2790 			 * (non-buffer flash only) */
2791 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2792 				if (j == (sc->bce_flash_info->page_size - 4)) {
2793 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2794 				}
2795 				rc = bce_nvram_read_dword(sc,
2796 					page_start + j,
2797 					&flash_buffer[j],
2798 					cmd_flags);
2799 
2800 				if (rc)
2801 					goto bce_nvram_write_locked_exit;
2802 
2803 				cmd_flags = 0;
2804 			}
2805 		}
2806 
2807 		/* Enable writes to flash interface (unlock write-protect) */
2808 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2809 			goto bce_nvram_write_locked_exit;
2810 
2811 		/* Erase the page */
2812 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2813 			goto bce_nvram_write_locked_exit;
2814 
2815 		/* Re-enable the write again for the actual write */
2816 		bce_enable_nvram_write(sc);
2817 
2818 		/* Loop to write back the buffer data from page_start to
2819 		 * data_start */
2820 		i = 0;
2821 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2822 			for (addr = page_start; addr < data_start;
2823 				addr += 4, i += 4) {
2824 				rc = bce_nvram_write_dword(sc, addr,
2825 					&flash_buffer[i], cmd_flags);
2826 
2827 				if (rc != 0)
2828 					goto bce_nvram_write_locked_exit;
2829 
2830 				cmd_flags = 0;
2831 			}
2832 		}
2833 
2834 		/* Loop to write the new data from data_start to data_end */
2835 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2836 			if ((addr == page_end - 4) ||
2837 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2838 				(addr == data_end - 4))) {
2839 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2840 			}
2841 			rc = bce_nvram_write_dword(sc, addr, buf,
2842 				cmd_flags);
2843 
2844 			if (rc != 0)
2845 				goto bce_nvram_write_locked_exit;
2846 
2847 			cmd_flags = 0;
2848 			buf += 4;
2849 		}
2850 
2851 		/* Loop to write back the buffer data from data_end
2852 		 * to page_end */
2853 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2854 			for (addr = data_end; addr < page_end;
2855 				addr += 4, i += 4) {
2856 				if (addr == page_end-4) {
2857 					cmd_flags = BCE_NVM_COMMAND_LAST;
2858                 		}
2859 				rc = bce_nvram_write_dword(sc, addr,
2860 					&flash_buffer[i], cmd_flags);
2861 
2862 				if (rc != 0)
2863 					goto bce_nvram_write_locked_exit;
2864 
2865 				cmd_flags = 0;
2866 			}
2867 		}
2868 
2869 		/* Disable writes to flash interface (lock write-protect) */
2870 		bce_disable_nvram_write(sc);
2871 
2872 		/* Disable access to flash interface */
2873 		bce_disable_nvram_access(sc);
2874 		bce_release_nvram_lock(sc);
2875 
2876 		/* Increment written */
2877 		written += data_end - data_start;
2878 	}
2879 
2880 	goto bce_nvram_write_exit;
2881 
2882 bce_nvram_write_locked_exit:
2883 	bce_disable_nvram_write(sc);
2884 	bce_disable_nvram_access(sc);
2885 	bce_release_nvram_lock(sc);
2886 
2887 bce_nvram_write_exit:
2888 	if (align_start || align_end)
2889 		free(buf, M_DEVBUF);
2890 
2891 	DBEXIT(BCE_VERBOSE_NVRAM);
2892 	return (rc);
2893 }
2894 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2895 
2896 /****************************************************************************/
2897 /* Verifies that NVRAM is accessible and contains valid data.               */
2898 /*                                                                          */
2899 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2900 /* correct.                                                                 */
2901 /*                                                                          */
2902 /* Returns:                                                                 */
2903 /*   0 on success, positive value on failure.                               */
2904 /****************************************************************************/
2905 static int
2906 bce_nvram_test(struct bce_softc *sc)
2907 {
2908 	u32 buf[BCE_NVRAM_SIZE / 4];
2909 	u8 *data = (u8 *) buf;
2910 	int rc = 0;
2911 	u32 magic, csum;
2912 
2913 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2914 
2915 	/*
2916 	 * Check that the device NVRAM is valid by reading
2917 	 * the magic value at offset 0.
2918 	 */
2919 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2920 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2921 		    __FILE__, __LINE__);
2922 		goto bce_nvram_test_exit;
2923 	}
2924 
2925 	/*
2926 	 * Verify that offset 0 of the NVRAM contains
2927 	 * a valid magic number.
2928 	 */
2929 	magic = bce_be32toh(buf[0]);
2930 	if (magic != BCE_NVRAM_MAGIC) {
2931 		rc = ENODEV;
2932 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2933 		    "Expected: 0x%08X, Found: 0x%08X\n",
2934 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2935 		goto bce_nvram_test_exit;
2936 	}
2937 
2938 	/*
2939 	 * Verify that the device NVRAM includes valid
2940 	 * configuration data.
2941 	 */
2942 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2943 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2944 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2945 		goto bce_nvram_test_exit;
2946 	}
2947 
2948 	csum = ether_crc32_le(data, 0x100);
2949 	if (csum != BCE_CRC32_RESIDUAL) {
2950 		rc = ENODEV;
2951 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2952 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2953 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2954 		goto bce_nvram_test_exit;
2955 	}
2956 
2957 	csum = ether_crc32_le(data + 0x100, 0x100);
2958 	if (csum != BCE_CRC32_RESIDUAL) {
2959 		rc = ENODEV;
2960 		BCE_PRINTF("%s(%d): Invalid feature configuration "
2961 		    "information NVRAM CRC! Expected: 0x%08X, "
2962 		    "Found: 08%08X\n", __FILE__, __LINE__,
2963 		    BCE_CRC32_RESIDUAL, csum);
2964 	}
2965 
2966 bce_nvram_test_exit:
2967 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2968 	return rc;
2969 }
2970 
2971 /****************************************************************************/
2972 /* Calculates the size of the buffers to allocate based on the MTU.         */
2973 /*                                                                          */
2974 /* Returns:                                                                 */
2975 /*   Nothing.                                                               */
2976 /****************************************************************************/
2977 static void
2978 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
2979 {
2980 	DBENTER(BCE_VERBOSE_LOAD);
2981 
2982 	/* Use a single allocation type when header splitting enabled. */
2983 	if (bce_hdr_split == TRUE) {
2984 		sc->rx_bd_mbuf_alloc_size = MHLEN;
2985 		/* Make sure offset is 16 byte aligned for hardware. */
2986 		sc->rx_bd_mbuf_align_pad =
2987 			roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN);
2988 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
2989 			sc->rx_bd_mbuf_align_pad;
2990 	} else {
2991 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2992 		    ETHER_CRC_LEN) > MCLBYTES) {
2993 			/* Setup for jumbo RX buffer allocations. */
2994 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
2995 			sc->rx_bd_mbuf_align_pad  =
2996 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
2997 			sc->rx_bd_mbuf_data_len =
2998 			    sc->rx_bd_mbuf_alloc_size -
2999 			    sc->rx_bd_mbuf_align_pad;
3000 		} else {
3001 			/* Setup for standard RX buffer allocations. */
3002 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3003 			sc->rx_bd_mbuf_align_pad  =
3004 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3005 			sc->rx_bd_mbuf_data_len =
3006 			    sc->rx_bd_mbuf_alloc_size -
3007 			    sc->rx_bd_mbuf_align_pad;
3008 		}
3009 	}
3010 
3011 //	DBPRINT(sc, BCE_INFO_LOAD,
3012 	DBPRINT(sc, BCE_WARN,
3013 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3014 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3015 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3016 	   sc->rx_bd_mbuf_align_pad);
3017 
3018 	DBEXIT(BCE_VERBOSE_LOAD);
3019 }
3020 
3021 /****************************************************************************/
3022 /* Identifies the current media type of the controller and sets the PHY     */
3023 /* address.                                                                 */
3024 /*                                                                          */
3025 /* Returns:                                                                 */
3026 /*   Nothing.                                                               */
3027 /****************************************************************************/
3028 static void
3029 bce_get_media(struct bce_softc *sc)
3030 {
3031 	u32 val;
3032 
3033 	DBENTER(BCE_VERBOSE_PHY);
3034 
3035 	/* Assume PHY address for copper controllers. */
3036 	sc->bce_phy_addr = 1;
3037 
3038 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3039  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3040 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3041 		u32 strap;
3042 
3043 		/*
3044 		 * The BCM5709S is software configurable
3045 		 * for Copper or SerDes operation.
3046 		 */
3047 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3048 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3049 			    "for copper.\n");
3050 			goto bce_get_media_exit;
3051 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3052 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3053 			    "for dual media.\n");
3054 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3055 			goto bce_get_media_exit;
3056 		}
3057 
3058 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3059 			strap = (val &
3060 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3061 		else
3062 			strap = (val &
3063 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3064 
3065 		if (pci_get_function(sc->bce_dev) == 0) {
3066 			switch (strap) {
3067 			case 0x4:
3068 			case 0x5:
3069 			case 0x6:
3070 				DBPRINT(sc, BCE_INFO_LOAD,
3071 				    "BCM5709 s/w configured for SerDes.\n");
3072 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3073 				break;
3074 			default:
3075 				DBPRINT(sc, BCE_INFO_LOAD,
3076 				    "BCM5709 s/w configured for Copper.\n");
3077 				break;
3078 			}
3079 		} else {
3080 			switch (strap) {
3081 			case 0x1:
3082 			case 0x2:
3083 			case 0x4:
3084 				DBPRINT(sc, BCE_INFO_LOAD,
3085 				    "BCM5709 s/w configured for SerDes.\n");
3086 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3087 				break;
3088 			default:
3089 				DBPRINT(sc, BCE_INFO_LOAD,
3090 				    "BCM5709 s/w configured for Copper.\n");
3091 				break;
3092 			}
3093 		}
3094 
3095 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3096 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3097 
3098 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3099 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3100 
3101 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3102 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3103 
3104 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3105 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3106 			sc->bce_phy_addr = 2;
3107 
3108 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3109 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3110 				sc->bce_phy_flags |=
3111 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3112 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3113 				    "capable adapter\n");
3114 			}
3115 		}
3116 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3117 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3118 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3119 
3120 bce_get_media_exit:
3121 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3122 		"Using PHY address %d.\n", sc->bce_phy_addr);
3123 
3124 	DBEXIT(BCE_VERBOSE_PHY);
3125 }
3126 
3127 /****************************************************************************/
3128 /* Performs PHY initialization required before MII drivers access the       */
3129 /* device.                                                                  */
3130 /*                                                                          */
3131 /* Returns:                                                                 */
3132 /*   Nothing.                                                               */
3133 /****************************************************************************/
3134 static void
3135 bce_init_media(struct bce_softc *sc)
3136 {
3137 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3138 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3139 		/*
3140 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3141 		 * Clause 22 method. Otherwise we have no way to attach
3142 		 * the PHY in mii(4) layer. PHY specific configuration
3143 		 * is done in mii layer.
3144 		 */
3145 
3146 		/* Select auto-negotiation MMD of the PHY. */
3147 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3148 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3149 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3150 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3151 
3152 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3153 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3154 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3155 	}
3156 }
3157 
3158 /****************************************************************************/
3159 /* Free any DMA memory owned by the driver.                                 */
3160 /*                                                                          */
3161 /* Scans through each data structure that requires DMA memory and frees     */
3162 /* the memory if allocated.                                                 */
3163 /*                                                                          */
3164 /* Returns:                                                                 */
3165 /*   Nothing.                                                               */
3166 /****************************************************************************/
3167 static void
3168 bce_dma_free(struct bce_softc *sc)
3169 {
3170 	int i;
3171 
3172 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3173 
3174 	/* Free, unmap, and destroy the status block. */
3175 	if (sc->status_block_paddr != 0) {
3176 		bus_dmamap_unload(
3177 		    sc->status_tag,
3178 		    sc->status_map);
3179 		sc->status_block_paddr = 0;
3180 	}
3181 
3182 	if (sc->status_block != NULL) {
3183 		bus_dmamem_free(
3184 		   sc->status_tag,
3185 		    sc->status_block,
3186 		    sc->status_map);
3187 		sc->status_block = NULL;
3188 	}
3189 
3190 	if (sc->status_tag != NULL) {
3191 		bus_dma_tag_destroy(sc->status_tag);
3192 		sc->status_tag = NULL;
3193 	}
3194 
3195 	/* Free, unmap, and destroy the statistics block. */
3196 	if (sc->stats_block_paddr != 0) {
3197 		bus_dmamap_unload(
3198 		    sc->stats_tag,
3199 		    sc->stats_map);
3200 		sc->stats_block_paddr = 0;
3201 	}
3202 
3203 	if (sc->stats_block != NULL) {
3204 		bus_dmamem_free(
3205 		    sc->stats_tag,
3206 		    sc->stats_block,
3207 		    sc->stats_map);
3208 		sc->stats_block = NULL;
3209 	}
3210 
3211 	if (sc->stats_tag != NULL) {
3212 		bus_dma_tag_destroy(sc->stats_tag);
3213 		sc->stats_tag = NULL;
3214 	}
3215 
3216 	/* Free, unmap and destroy all context memory pages. */
3217 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3218 		for (i = 0; i < sc->ctx_pages; i++ ) {
3219 			if (sc->ctx_paddr[i] != 0) {
3220 				bus_dmamap_unload(
3221 				    sc->ctx_tag,
3222 				    sc->ctx_map[i]);
3223 				sc->ctx_paddr[i] = 0;
3224 			}
3225 
3226 			if (sc->ctx_block[i] != NULL) {
3227 				bus_dmamem_free(
3228 				    sc->ctx_tag,
3229 				    sc->ctx_block[i],
3230 				    sc->ctx_map[i]);
3231 				sc->ctx_block[i] = NULL;
3232 			}
3233 		}
3234 
3235 		/* Destroy the context memory tag. */
3236 		if (sc->ctx_tag != NULL) {
3237 			bus_dma_tag_destroy(sc->ctx_tag);
3238 			sc->ctx_tag = NULL;
3239 		}
3240 	}
3241 
3242 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3243 	for (i = 0; i < sc->tx_pages; i++ ) {
3244 		if (sc->tx_bd_chain_paddr[i] != 0) {
3245 			bus_dmamap_unload(
3246 			    sc->tx_bd_chain_tag,
3247 			    sc->tx_bd_chain_map[i]);
3248 			sc->tx_bd_chain_paddr[i] = 0;
3249 		}
3250 
3251 		if (sc->tx_bd_chain[i] != NULL) {
3252 			bus_dmamem_free(
3253 			    sc->tx_bd_chain_tag,
3254 			    sc->tx_bd_chain[i],
3255 			    sc->tx_bd_chain_map[i]);
3256 			sc->tx_bd_chain[i] = NULL;
3257 		}
3258 	}
3259 
3260 	/* Destroy the TX buffer descriptor tag. */
3261 	if (sc->tx_bd_chain_tag != NULL) {
3262 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3263 		sc->tx_bd_chain_tag = NULL;
3264 	}
3265 
3266 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3267 	for (i = 0; i < sc->rx_pages; i++ ) {
3268 		if (sc->rx_bd_chain_paddr[i] != 0) {
3269 			bus_dmamap_unload(
3270 			    sc->rx_bd_chain_tag,
3271 			    sc->rx_bd_chain_map[i]);
3272 			sc->rx_bd_chain_paddr[i] = 0;
3273 		}
3274 
3275 		if (sc->rx_bd_chain[i] != NULL) {
3276 			bus_dmamem_free(
3277 			    sc->rx_bd_chain_tag,
3278 			    sc->rx_bd_chain[i],
3279 			    sc->rx_bd_chain_map[i]);
3280 			sc->rx_bd_chain[i] = NULL;
3281 		}
3282 	}
3283 
3284 	/* Destroy the RX buffer descriptor tag. */
3285 	if (sc->rx_bd_chain_tag != NULL) {
3286 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3287 		sc->rx_bd_chain_tag = NULL;
3288 	}
3289 
3290 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3291 	if (bce_hdr_split == TRUE) {
3292 		for (i = 0; i < sc->pg_pages; i++ ) {
3293 			if (sc->pg_bd_chain_paddr[i] != 0) {
3294 				bus_dmamap_unload(
3295 				    sc->pg_bd_chain_tag,
3296 				    sc->pg_bd_chain_map[i]);
3297 				sc->pg_bd_chain_paddr[i] = 0;
3298 			}
3299 
3300 			if (sc->pg_bd_chain[i] != NULL) {
3301 				bus_dmamem_free(
3302 				    sc->pg_bd_chain_tag,
3303 				    sc->pg_bd_chain[i],
3304 				    sc->pg_bd_chain_map[i]);
3305 				sc->pg_bd_chain[i] = NULL;
3306 			}
3307 		}
3308 
3309 		/* Destroy the page buffer descriptor tag. */
3310 		if (sc->pg_bd_chain_tag != NULL) {
3311 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3312 			sc->pg_bd_chain_tag = NULL;
3313 		}
3314 	}
3315 
3316 	/* Unload and destroy the TX mbuf maps. */
3317 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3318 		if (sc->tx_mbuf_map[i] != NULL) {
3319 			bus_dmamap_unload(sc->tx_mbuf_tag,
3320 			    sc->tx_mbuf_map[i]);
3321 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3322 	 		    sc->tx_mbuf_map[i]);
3323 			sc->tx_mbuf_map[i] = NULL;
3324 		}
3325 	}
3326 
3327 	/* Destroy the TX mbuf tag. */
3328 	if (sc->tx_mbuf_tag != NULL) {
3329 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3330 		sc->tx_mbuf_tag = NULL;
3331 	}
3332 
3333 	/* Unload and destroy the RX mbuf maps. */
3334 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3335 		if (sc->rx_mbuf_map[i] != NULL) {
3336 			bus_dmamap_unload(sc->rx_mbuf_tag,
3337 			    sc->rx_mbuf_map[i]);
3338 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3339 	 		    sc->rx_mbuf_map[i]);
3340 			sc->rx_mbuf_map[i] = NULL;
3341 		}
3342 	}
3343 
3344 	/* Destroy the RX mbuf tag. */
3345 	if (sc->rx_mbuf_tag != NULL) {
3346 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3347 		sc->rx_mbuf_tag = NULL;
3348 	}
3349 
3350 	/* Unload and destroy the page mbuf maps. */
3351 	if (bce_hdr_split == TRUE) {
3352 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3353 			if (sc->pg_mbuf_map[i] != NULL) {
3354 				bus_dmamap_unload(sc->pg_mbuf_tag,
3355 				    sc->pg_mbuf_map[i]);
3356 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3357 				    sc->pg_mbuf_map[i]);
3358 				sc->pg_mbuf_map[i] = NULL;
3359 			}
3360 		}
3361 
3362 		/* Destroy the page mbuf tag. */
3363 		if (sc->pg_mbuf_tag != NULL) {
3364 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3365 			sc->pg_mbuf_tag = NULL;
3366 		}
3367 	}
3368 
3369 	/* Destroy the parent tag */
3370 	if (sc->parent_tag != NULL) {
3371 		bus_dma_tag_destroy(sc->parent_tag);
3372 		sc->parent_tag = NULL;
3373 	}
3374 
3375 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3376 }
3377 
3378 /****************************************************************************/
3379 /* Get DMA memory from the OS.                                              */
3380 /*                                                                          */
3381 /* Validates that the OS has provided DMA buffers in response to a          */
3382 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3383 /* When the callback is used the OS will return 0 for the mapping function  */
3384 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3385 /* failures back to the caller.                                             */
3386 /*                                                                          */
3387 /* Returns:                                                                 */
3388 /*   Nothing.                                                               */
3389 /****************************************************************************/
3390 static void
3391 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3392 {
3393 	bus_addr_t *busaddr = arg;
3394 
3395 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3396 	    __FUNCTION__, nseg));
3397 	/* Simulate a mapping failure. */
3398 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3399 	    error = ENOMEM);
3400 
3401 	/* ToDo: How to increment debug sim_count variable here? */
3402 
3403 	/* Check for an error and signal the caller that an error occurred. */
3404 	if (error) {
3405 		*busaddr = 0;
3406 	} else {
3407 		*busaddr = segs->ds_addr;
3408 	}
3409 }
3410 
3411 /****************************************************************************/
3412 /* Allocate any DMA memory needed by the driver.                            */
3413 /*                                                                          */
3414 /* Allocates DMA memory needed for the various global structures needed by  */
3415 /* hardware.                                                                */
3416 /*                                                                          */
3417 /* Memory alignment requirements:                                           */
3418 /* +-----------------+----------+----------+----------+----------+          */
3419 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3420 /* +-----------------+----------+----------+----------+----------+          */
3421 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3422 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3423 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3424 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3425 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3426 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3427 /* |Context Memory   |          |          |          |          |          */
3428 /* +-----------------+----------+----------+----------+----------+          */
3429 /*                                                                          */
3430 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3431 /*                                                                          */
3432 /* Returns:                                                                 */
3433 /*   0 for success, positive value for failure.                             */
3434 /****************************************************************************/
3435 static int
3436 bce_dma_alloc(device_t dev)
3437 {
3438 	struct bce_softc *sc;
3439 	int i, error, rc = 0;
3440 	bus_size_t max_size, max_seg_size;
3441 	int max_segments;
3442 
3443 	sc = device_get_softc(dev);
3444 
3445 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3446 
3447 	/*
3448 	 * Allocate the parent bus DMA tag appropriate for PCI.
3449 	 */
3450 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3451 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3452 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3453 	    &sc->parent_tag)) {
3454 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3455 		    __FILE__, __LINE__);
3456 		rc = ENOMEM;
3457 		goto bce_dma_alloc_exit;
3458 	}
3459 
3460 	/*
3461 	 * Create a DMA tag for the status block, allocate and clear the
3462 	 * memory, map the memory into DMA space, and fetch the physical
3463 	 * address of the block.
3464 	 */
3465 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3466 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3467 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3468 	    0, NULL, NULL, &sc->status_tag)) {
3469 		BCE_PRINTF("%s(%d): Could not allocate status block "
3470 		    "DMA tag!\n", __FILE__, __LINE__);
3471 		rc = ENOMEM;
3472 		goto bce_dma_alloc_exit;
3473 	}
3474 
3475 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3476 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3477 	    &sc->status_map)) {
3478 		BCE_PRINTF("%s(%d): Could not allocate status block "
3479 		    "DMA memory!\n", __FILE__, __LINE__);
3480 		rc = ENOMEM;
3481 		goto bce_dma_alloc_exit;
3482 	}
3483 
3484 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3485 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3486 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3487 
3488 	if (error || sc->status_block_paddr == 0) {
3489 		BCE_PRINTF("%s(%d): Could not map status block "
3490 		    "DMA memory!\n", __FILE__, __LINE__);
3491 		rc = ENOMEM;
3492 		goto bce_dma_alloc_exit;
3493 	}
3494 
3495 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3496 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3497 
3498 	/*
3499 	 * Create a DMA tag for the statistics block, allocate and clear the
3500 	 * memory, map the memory into DMA space, and fetch the physical
3501 	 * address of the block.
3502 	 */
3503 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3504 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3505 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3506 	    0, NULL, NULL, &sc->stats_tag)) {
3507 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3508 		    "DMA tag!\n", __FILE__, __LINE__);
3509 		rc = ENOMEM;
3510 		goto bce_dma_alloc_exit;
3511 	}
3512 
3513 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3514 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3515 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3516 		    "DMA memory!\n", __FILE__, __LINE__);
3517 		rc = ENOMEM;
3518 		goto bce_dma_alloc_exit;
3519 	}
3520 
3521 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3522 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3523 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3524 
3525 	if (error || sc->stats_block_paddr == 0) {
3526 		BCE_PRINTF("%s(%d): Could not map statistics block "
3527 		    "DMA memory!\n", __FILE__, __LINE__);
3528 		rc = ENOMEM;
3529 		goto bce_dma_alloc_exit;
3530 	}
3531 
3532 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3533 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3534 
3535 	/* BCM5709 uses host memory as cache for context memory. */
3536 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3537 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3538 		if (sc->ctx_pages == 0)
3539 			sc->ctx_pages = 1;
3540 
3541 		DBRUNIF((sc->ctx_pages > 512),
3542 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3543 		    __FILE__, __LINE__, sc->ctx_pages));
3544 
3545 		/*
3546 		 * Create a DMA tag for the context pages,
3547 		 * allocate and clear the memory, map the
3548 		 * memory into DMA space, and fetch the
3549 		 * physical address of the block.
3550 		 */
3551 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3552 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3553 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3554 		    0, NULL, NULL, &sc->ctx_tag)) {
3555 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3556 			    "DMA tag!\n", __FILE__, __LINE__);
3557 			rc = ENOMEM;
3558 			goto bce_dma_alloc_exit;
3559 		}
3560 
3561 		for (i = 0; i < sc->ctx_pages; i++) {
3562 			if(bus_dmamem_alloc(sc->ctx_tag,
3563 			    (void **)&sc->ctx_block[i],
3564 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3565 			    &sc->ctx_map[i])) {
3566 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3567 				    "DMA memory!\n", __FILE__, __LINE__);
3568 				rc = ENOMEM;
3569 				goto bce_dma_alloc_exit;
3570 			}
3571 
3572 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3573 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3574 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3575 
3576 			if (error || sc->ctx_paddr[i] == 0) {
3577 				BCE_PRINTF("%s(%d): Could not map CTX "
3578 				    "DMA memory!\n", __FILE__, __LINE__);
3579 				rc = ENOMEM;
3580 				goto bce_dma_alloc_exit;
3581 			}
3582 
3583 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3584 			    "= 0x%jX\n", __FUNCTION__, i,
3585 			    (uintmax_t) sc->ctx_paddr[i]);
3586 		}
3587 	}
3588 
3589 	/*
3590 	 * Create a DMA tag for the TX buffer descriptor chain,
3591 	 * allocate and clear the  memory, and fetch the
3592 	 * physical address of the block.
3593 	 */
3594 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3595 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3596 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3597 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3598 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3599 		    "chain DMA tag!\n", __FILE__, __LINE__);
3600 		rc = ENOMEM;
3601 		goto bce_dma_alloc_exit;
3602 	}
3603 
3604 	for (i = 0; i < sc->tx_pages; i++) {
3605 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3606 		    (void **)&sc->tx_bd_chain[i],
3607 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3608 		    &sc->tx_bd_chain_map[i])) {
3609 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3610 			    "chain DMA memory!\n", __FILE__, __LINE__);
3611 			rc = ENOMEM;
3612 			goto bce_dma_alloc_exit;
3613 		}
3614 
3615 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3616 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3617 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3618 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3619 
3620 		if (error || sc->tx_bd_chain_paddr[i] == 0) {
3621 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3622 			    "chain DMA memory!\n", __FILE__, __LINE__);
3623 			rc = ENOMEM;
3624 			goto bce_dma_alloc_exit;
3625 		}
3626 
3627 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3628 		    "0x%jX\n", __FUNCTION__, i,
3629 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3630 	}
3631 
3632 	/* Check the required size before mapping to conserve resources. */
3633 	if (bce_tso_enable) {
3634 		max_size     = BCE_TSO_MAX_SIZE;
3635 		max_segments = BCE_MAX_SEGMENTS;
3636 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3637 	} else {
3638 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3639 		max_segments = BCE_MAX_SEGMENTS;
3640 		max_seg_size = MCLBYTES;
3641 	}
3642 
3643 	/* Create a DMA tag for TX mbufs. */
3644 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3645 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3646 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3647 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3648 		    __FILE__, __LINE__);
3649 		rc = ENOMEM;
3650 		goto bce_dma_alloc_exit;
3651 	}
3652 
3653 	/* Create DMA maps for the TX mbufs clusters. */
3654 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3655 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3656 			&sc->tx_mbuf_map[i])) {
3657 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3658 			    "map!\n", __FILE__, __LINE__);
3659 			rc = ENOMEM;
3660 			goto bce_dma_alloc_exit;
3661 		}
3662 	}
3663 
3664 	/*
3665 	 * Create a DMA tag for the RX buffer descriptor chain,
3666 	 * allocate and clear the memory, and fetch the physical
3667 	 * address of the blocks.
3668 	 */
3669 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3670 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3671 			sc->max_bus_addr, NULL, NULL,
3672 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3673 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3674 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3675 		    "DMA tag!\n", __FILE__, __LINE__);
3676 		rc = ENOMEM;
3677 		goto bce_dma_alloc_exit;
3678 	}
3679 
3680 	for (i = 0; i < sc->rx_pages; i++) {
3681 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3682 		    (void **)&sc->rx_bd_chain[i],
3683 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3684 		    &sc->rx_bd_chain_map[i])) {
3685 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3686 			    "chain DMA memory!\n", __FILE__, __LINE__);
3687 			rc = ENOMEM;
3688 			goto bce_dma_alloc_exit;
3689 		}
3690 
3691 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3692 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3693 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3694 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3695 
3696 		if (error || sc->rx_bd_chain_paddr[i] == 0) {
3697 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3698 			    "chain DMA memory!\n", __FILE__, __LINE__);
3699 			rc = ENOMEM;
3700 			goto bce_dma_alloc_exit;
3701 		}
3702 
3703 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3704 		    "0x%jX\n", __FUNCTION__, i,
3705 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3706 	}
3707 
3708 	/*
3709 	 * Create a DMA tag for RX mbufs.
3710 	 */
3711 	if (bce_hdr_split == TRUE)
3712 		max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3713 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3714 	else
3715 		max_size = MJUM9BYTES;
3716 
3717 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3718 	    "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3719 
3720 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3721 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3722 	    max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3723 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3724 		    __FILE__, __LINE__);
3725 		rc = ENOMEM;
3726 		goto bce_dma_alloc_exit;
3727 	}
3728 
3729 	/* Create DMA maps for the RX mbuf clusters. */
3730 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3731 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3732 		    &sc->rx_mbuf_map[i])) {
3733 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3734 			    "DMA map!\n", __FILE__, __LINE__);
3735 			rc = ENOMEM;
3736 			goto bce_dma_alloc_exit;
3737 		}
3738 	}
3739 
3740 	if (bce_hdr_split == TRUE) {
3741 		/*
3742 		 * Create a DMA tag for the page buffer descriptor chain,
3743 		 * allocate and clear the memory, and fetch the physical
3744 		 * address of the blocks.
3745 		 */
3746 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3747 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3748 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3749 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3750 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3751 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3752 			rc = ENOMEM;
3753 			goto bce_dma_alloc_exit;
3754 		}
3755 
3756 		for (i = 0; i < sc->pg_pages; i++) {
3757 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3758 			    (void **)&sc->pg_bd_chain[i],
3759 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3760 			    &sc->pg_bd_chain_map[i])) {
3761 				BCE_PRINTF("%s(%d): Could not allocate page "
3762 				    "descriptor chain DMA memory!\n",
3763 				    __FILE__, __LINE__);
3764 				rc = ENOMEM;
3765 				goto bce_dma_alloc_exit;
3766 			}
3767 
3768 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3769 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3770 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3771 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3772 
3773 			if (error || sc->pg_bd_chain_paddr[i] == 0) {
3774 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3775 					"chain DMA memory!\n", __FILE__, __LINE__);
3776 				rc = ENOMEM;
3777 				goto bce_dma_alloc_exit;
3778 			}
3779 
3780 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3781 				"0x%jX\n", __FUNCTION__, i,
3782 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3783 		}
3784 
3785 		/*
3786 		 * Create a DMA tag for page mbufs.
3787 		 */
3788 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3789 		    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3790 		    1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3791 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3792 				"DMA tag!\n", __FILE__, __LINE__);
3793 			rc = ENOMEM;
3794 			goto bce_dma_alloc_exit;
3795 		}
3796 
3797 		/* Create DMA maps for the page mbuf clusters. */
3798 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3799 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3800 				&sc->pg_mbuf_map[i])) {
3801 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3802 					"DMA map!\n", __FILE__, __LINE__);
3803 				rc = ENOMEM;
3804 				goto bce_dma_alloc_exit;
3805 			}
3806 		}
3807 	}
3808 
3809 bce_dma_alloc_exit:
3810 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3811 	return(rc);
3812 }
3813 
3814 /****************************************************************************/
3815 /* Release all resources used by the driver.                                */
3816 /*                                                                          */
3817 /* Releases all resources acquired by the driver including interrupts,      */
3818 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3819 /*                                                                          */
3820 /* Returns:                                                                 */
3821 /*   Nothing.                                                               */
3822 /****************************************************************************/
3823 static void
3824 bce_release_resources(struct bce_softc *sc)
3825 {
3826 	device_t dev;
3827 
3828 	DBENTER(BCE_VERBOSE_RESET);
3829 
3830 	dev = sc->bce_dev;
3831 
3832 	bce_dma_free(sc);
3833 
3834 	if (sc->bce_intrhand != NULL) {
3835 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3836 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3837 	}
3838 
3839 	if (sc->bce_res_irq != NULL) {
3840 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3841 		bus_release_resource(dev, SYS_RES_IRQ,
3842 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3843 	}
3844 
3845 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3846 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3847 		pci_release_msi(dev);
3848 	}
3849 
3850 	if (sc->bce_res_mem != NULL) {
3851 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3852 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3853 		    sc->bce_res_mem);
3854 	}
3855 
3856 	if (sc->bce_ifp != NULL) {
3857 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3858 		if_free(sc->bce_ifp);
3859 	}
3860 
3861 	if (mtx_initialized(&sc->bce_mtx))
3862 		BCE_LOCK_DESTROY(sc);
3863 
3864 	DBEXIT(BCE_VERBOSE_RESET);
3865 }
3866 
3867 /****************************************************************************/
3868 /* Firmware synchronization.                                                */
3869 /*                                                                          */
3870 /* Before performing certain events such as a chip reset, synchronize with  */
3871 /* the firmware first.                                                      */
3872 /*                                                                          */
3873 /* Returns:                                                                 */
3874 /*   0 for success, positive value for failure.                             */
3875 /****************************************************************************/
3876 static int
3877 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3878 {
3879 	int i, rc = 0;
3880 	u32 val;
3881 
3882 	DBENTER(BCE_VERBOSE_RESET);
3883 
3884 	/* Don't waste any time if we've timed out before. */
3885 	if (sc->bce_fw_timed_out == TRUE) {
3886 		rc = EBUSY;
3887 		goto bce_fw_sync_exit;
3888 	}
3889 
3890 	/* Increment the message sequence number. */
3891 	sc->bce_fw_wr_seq++;
3892 	msg_data |= sc->bce_fw_wr_seq;
3893 
3894  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3895 	    "0x%08X\n",	msg_data);
3896 
3897 	/* Send the message to the bootcode driver mailbox. */
3898 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3899 
3900 	/* Wait for the bootcode to acknowledge the message. */
3901 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3902 		/* Check for a response in the bootcode firmware mailbox. */
3903 		val = bce_shmem_rd(sc, BCE_FW_MB);
3904 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3905 			break;
3906 		DELAY(1000);
3907 	}
3908 
3909 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3910 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3911 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3912 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3913 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3914 
3915 		msg_data &= ~BCE_DRV_MSG_CODE;
3916 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3917 
3918 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3919 
3920 		sc->bce_fw_timed_out = TRUE;
3921 		rc = EBUSY;
3922 	}
3923 
3924 bce_fw_sync_exit:
3925 	DBEXIT(BCE_VERBOSE_RESET);
3926 	return (rc);
3927 }
3928 
3929 /****************************************************************************/
3930 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3931 /*                                                                          */
3932 /* Returns:                                                                 */
3933 /*   Nothing.                                                               */
3934 /****************************************************************************/
3935 static void
3936 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
3937 	u32 rv2p_code_len, u32 rv2p_proc)
3938 {
3939 	int i;
3940 	u32 val;
3941 
3942 	DBENTER(BCE_VERBOSE_RESET);
3943 
3944 	/* Set the page size used by RV2P. */
3945 	if (rv2p_proc == RV2P_PROC2) {
3946 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3947 	}
3948 
3949 	for (i = 0; i < rv2p_code_len; i += 8) {
3950 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3951 		rv2p_code++;
3952 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3953 		rv2p_code++;
3954 
3955 		if (rv2p_proc == RV2P_PROC1) {
3956 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3957 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3958 		}
3959 		else {
3960 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3961 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3962 		}
3963 	}
3964 
3965 	/* Reset the processor, un-stall is done later. */
3966 	if (rv2p_proc == RV2P_PROC1) {
3967 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3968 	}
3969 	else {
3970 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3971 	}
3972 
3973 	DBEXIT(BCE_VERBOSE_RESET);
3974 }
3975 
3976 /****************************************************************************/
3977 /* Load RISC processor firmware.                                            */
3978 /*                                                                          */
3979 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
3980 /* associated with a particular processor.                                  */
3981 /*                                                                          */
3982 /* Returns:                                                                 */
3983 /*   Nothing.                                                               */
3984 /****************************************************************************/
3985 static void
3986 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3987 	struct fw_info *fw)
3988 {
3989 	u32 offset;
3990 
3991 	DBENTER(BCE_VERBOSE_RESET);
3992 
3993     bce_halt_cpu(sc, cpu_reg);
3994 
3995 	/* Load the Text area. */
3996 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3997 	if (fw->text) {
3998 		int j;
3999 
4000 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4001 			REG_WR_IND(sc, offset, fw->text[j]);
4002 	        }
4003 	}
4004 
4005 	/* Load the Data area. */
4006 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4007 	if (fw->data) {
4008 		int j;
4009 
4010 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4011 			REG_WR_IND(sc, offset, fw->data[j]);
4012 		}
4013 	}
4014 
4015 	/* Load the SBSS area. */
4016 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4017 	if (fw->sbss) {
4018 		int j;
4019 
4020 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4021 			REG_WR_IND(sc, offset, fw->sbss[j]);
4022 		}
4023 	}
4024 
4025 	/* Load the BSS area. */
4026 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4027 	if (fw->bss) {
4028 		int j;
4029 
4030 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4031 			REG_WR_IND(sc, offset, fw->bss[j]);
4032 		}
4033 	}
4034 
4035 	/* Load the Read-Only area. */
4036 	offset = cpu_reg->spad_base +
4037 		(fw->rodata_addr - cpu_reg->mips_view_base);
4038 	if (fw->rodata) {
4039 		int j;
4040 
4041 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4042 			REG_WR_IND(sc, offset, fw->rodata[j]);
4043 		}
4044 	}
4045 
4046 	/* Clear the pre-fetch instruction and set the FW start address. */
4047 	REG_WR_IND(sc, cpu_reg->inst, 0);
4048 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4049 
4050 	DBEXIT(BCE_VERBOSE_RESET);
4051 }
4052 
4053 /****************************************************************************/
4054 /* Starts the RISC processor.                                               */
4055 /*                                                                          */
4056 /* Assumes the CPU starting address has already been set.                   */
4057 /*                                                                          */
4058 /* Returns:                                                                 */
4059 /*   Nothing.                                                               */
4060 /****************************************************************************/
4061 static void
4062 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4063 {
4064 	u32 val;
4065 
4066 	DBENTER(BCE_VERBOSE_RESET);
4067 
4068 	/* Start the CPU. */
4069 	val = REG_RD_IND(sc, cpu_reg->mode);
4070 	val &= ~cpu_reg->mode_value_halt;
4071 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4072 	REG_WR_IND(sc, cpu_reg->mode, val);
4073 
4074 	DBEXIT(BCE_VERBOSE_RESET);
4075 }
4076 
4077 /****************************************************************************/
4078 /* Halts the RISC processor.                                                */
4079 /*                                                                          */
4080 /* Returns:                                                                 */
4081 /*   Nothing.                                                               */
4082 /****************************************************************************/
4083 static void
4084 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4085 {
4086 	u32 val;
4087 
4088 	DBENTER(BCE_VERBOSE_RESET);
4089 
4090 	/* Halt the CPU. */
4091 	val = REG_RD_IND(sc, cpu_reg->mode);
4092 	val |= cpu_reg->mode_value_halt;
4093 	REG_WR_IND(sc, cpu_reg->mode, val);
4094 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4095 
4096 	DBEXIT(BCE_VERBOSE_RESET);
4097 }
4098 
4099 /****************************************************************************/
4100 /* Initialize the RX CPU.                                                   */
4101 /*                                                                          */
4102 /* Returns:                                                                 */
4103 /*   Nothing.                                                               */
4104 /****************************************************************************/
4105 static void
4106 bce_start_rxp_cpu(struct bce_softc *sc)
4107 {
4108 	struct cpu_reg cpu_reg;
4109 
4110 	DBENTER(BCE_VERBOSE_RESET);
4111 
4112 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4113 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4114 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4115 	cpu_reg.state = BCE_RXP_CPU_STATE;
4116 	cpu_reg.state_value_clear = 0xffffff;
4117 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4118 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4119 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4120 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4121 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4122 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4123 	cpu_reg.mips_view_base = 0x8000000;
4124 
4125 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4126 	bce_start_cpu(sc, &cpu_reg);
4127 
4128 	DBEXIT(BCE_VERBOSE_RESET);
4129 }
4130 
4131 /****************************************************************************/
4132 /* Initialize the RX CPU.                                                   */
4133 /*                                                                          */
4134 /* Returns:                                                                 */
4135 /*   Nothing.                                                               */
4136 /****************************************************************************/
4137 static void
4138 bce_init_rxp_cpu(struct bce_softc *sc)
4139 {
4140 	struct cpu_reg cpu_reg;
4141 	struct fw_info fw;
4142 
4143 	DBENTER(BCE_VERBOSE_RESET);
4144 
4145 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4146 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4147 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4148 	cpu_reg.state = BCE_RXP_CPU_STATE;
4149 	cpu_reg.state_value_clear = 0xffffff;
4150 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4151 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4152 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4153 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4154 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4155 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4156 	cpu_reg.mips_view_base = 0x8000000;
4157 
4158 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4159  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4160 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4161 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4162 		fw.start_addr = bce_RXP_b09FwStartAddr;
4163 
4164 		fw.text_addr = bce_RXP_b09FwTextAddr;
4165 		fw.text_len = bce_RXP_b09FwTextLen;
4166 		fw.text_index = 0;
4167 		fw.text = bce_RXP_b09FwText;
4168 
4169 		fw.data_addr = bce_RXP_b09FwDataAddr;
4170 		fw.data_len = bce_RXP_b09FwDataLen;
4171 		fw.data_index = 0;
4172 		fw.data = bce_RXP_b09FwData;
4173 
4174 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4175 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4176 		fw.sbss_index = 0;
4177 		fw.sbss = bce_RXP_b09FwSbss;
4178 
4179 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4180 		fw.bss_len = bce_RXP_b09FwBssLen;
4181 		fw.bss_index = 0;
4182 		fw.bss = bce_RXP_b09FwBss;
4183 
4184 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4185 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4186 		fw.rodata_index = 0;
4187 		fw.rodata = bce_RXP_b09FwRodata;
4188 	} else {
4189 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4190 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4191 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4192 		fw.start_addr = bce_RXP_b06FwStartAddr;
4193 
4194 		fw.text_addr = bce_RXP_b06FwTextAddr;
4195 		fw.text_len = bce_RXP_b06FwTextLen;
4196 		fw.text_index = 0;
4197 		fw.text = bce_RXP_b06FwText;
4198 
4199 		fw.data_addr = bce_RXP_b06FwDataAddr;
4200 		fw.data_len = bce_RXP_b06FwDataLen;
4201 		fw.data_index = 0;
4202 		fw.data = bce_RXP_b06FwData;
4203 
4204 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4205 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4206 		fw.sbss_index = 0;
4207 		fw.sbss = bce_RXP_b06FwSbss;
4208 
4209 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4210 		fw.bss_len = bce_RXP_b06FwBssLen;
4211 		fw.bss_index = 0;
4212 		fw.bss = bce_RXP_b06FwBss;
4213 
4214 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4215 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4216 		fw.rodata_index = 0;
4217 		fw.rodata = bce_RXP_b06FwRodata;
4218 	}
4219 
4220 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4221 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4222 
4223     /* Delay RXP start until initialization is complete. */
4224 
4225 	DBEXIT(BCE_VERBOSE_RESET);
4226 }
4227 
4228 /****************************************************************************/
4229 /* Initialize the TX CPU.                                                   */
4230 /*                                                                          */
4231 /* Returns:                                                                 */
4232 /*   Nothing.                                                               */
4233 /****************************************************************************/
4234 static void
4235 bce_init_txp_cpu(struct bce_softc *sc)
4236 {
4237 	struct cpu_reg cpu_reg;
4238 	struct fw_info fw;
4239 
4240 	DBENTER(BCE_VERBOSE_RESET);
4241 
4242 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4243 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4244 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4245 	cpu_reg.state = BCE_TXP_CPU_STATE;
4246 	cpu_reg.state_value_clear = 0xffffff;
4247 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4248 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4249 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4250 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4251 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4252 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4253 	cpu_reg.mips_view_base = 0x8000000;
4254 
4255 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4256 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4257 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4258 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4259 		fw.start_addr = bce_TXP_b09FwStartAddr;
4260 
4261 		fw.text_addr = bce_TXP_b09FwTextAddr;
4262 		fw.text_len = bce_TXP_b09FwTextLen;
4263 		fw.text_index = 0;
4264 		fw.text = bce_TXP_b09FwText;
4265 
4266 		fw.data_addr = bce_TXP_b09FwDataAddr;
4267 		fw.data_len = bce_TXP_b09FwDataLen;
4268 		fw.data_index = 0;
4269 		fw.data = bce_TXP_b09FwData;
4270 
4271 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4272 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4273 		fw.sbss_index = 0;
4274 		fw.sbss = bce_TXP_b09FwSbss;
4275 
4276 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4277 		fw.bss_len = bce_TXP_b09FwBssLen;
4278 		fw.bss_index = 0;
4279 		fw.bss = bce_TXP_b09FwBss;
4280 
4281 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4282 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4283 		fw.rodata_index = 0;
4284 		fw.rodata = bce_TXP_b09FwRodata;
4285 	} else {
4286 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4287 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4288 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4289 		fw.start_addr = bce_TXP_b06FwStartAddr;
4290 
4291 		fw.text_addr = bce_TXP_b06FwTextAddr;
4292 		fw.text_len = bce_TXP_b06FwTextLen;
4293 		fw.text_index = 0;
4294 		fw.text = bce_TXP_b06FwText;
4295 
4296 		fw.data_addr = bce_TXP_b06FwDataAddr;
4297 		fw.data_len = bce_TXP_b06FwDataLen;
4298 		fw.data_index = 0;
4299 		fw.data = bce_TXP_b06FwData;
4300 
4301 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4302 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4303 		fw.sbss_index = 0;
4304 		fw.sbss = bce_TXP_b06FwSbss;
4305 
4306 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4307 		fw.bss_len = bce_TXP_b06FwBssLen;
4308 		fw.bss_index = 0;
4309 		fw.bss = bce_TXP_b06FwBss;
4310 
4311 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4312 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4313 		fw.rodata_index = 0;
4314 		fw.rodata = bce_TXP_b06FwRodata;
4315 	}
4316 
4317 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4318 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4319     bce_start_cpu(sc, &cpu_reg);
4320 
4321 	DBEXIT(BCE_VERBOSE_RESET);
4322 }
4323 
4324 /****************************************************************************/
4325 /* Initialize the TPAT CPU.                                                 */
4326 /*                                                                          */
4327 /* Returns:                                                                 */
4328 /*   Nothing.                                                               */
4329 /****************************************************************************/
4330 static void
4331 bce_init_tpat_cpu(struct bce_softc *sc)
4332 {
4333 	struct cpu_reg cpu_reg;
4334 	struct fw_info fw;
4335 
4336 	DBENTER(BCE_VERBOSE_RESET);
4337 
4338 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4339 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4340 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4341 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4342 	cpu_reg.state_value_clear = 0xffffff;
4343 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4344 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4345 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4346 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4347 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4348 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4349 	cpu_reg.mips_view_base = 0x8000000;
4350 
4351 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4352 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4353 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4354 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4355 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4356 
4357 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4358 		fw.text_len = bce_TPAT_b09FwTextLen;
4359 		fw.text_index = 0;
4360 		fw.text = bce_TPAT_b09FwText;
4361 
4362 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4363 		fw.data_len = bce_TPAT_b09FwDataLen;
4364 		fw.data_index = 0;
4365 		fw.data = bce_TPAT_b09FwData;
4366 
4367 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4368 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4369 		fw.sbss_index = 0;
4370 		fw.sbss = bce_TPAT_b09FwSbss;
4371 
4372 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4373 		fw.bss_len = bce_TPAT_b09FwBssLen;
4374 		fw.bss_index = 0;
4375 		fw.bss = bce_TPAT_b09FwBss;
4376 
4377 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4378 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4379 		fw.rodata_index = 0;
4380 		fw.rodata = bce_TPAT_b09FwRodata;
4381 	} else {
4382 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4383 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4384 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4385 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4386 
4387 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4388 		fw.text_len = bce_TPAT_b06FwTextLen;
4389 		fw.text_index = 0;
4390 		fw.text = bce_TPAT_b06FwText;
4391 
4392 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4393 		fw.data_len = bce_TPAT_b06FwDataLen;
4394 		fw.data_index = 0;
4395 		fw.data = bce_TPAT_b06FwData;
4396 
4397 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4398 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4399 		fw.sbss_index = 0;
4400 		fw.sbss = bce_TPAT_b06FwSbss;
4401 
4402 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4403 		fw.bss_len = bce_TPAT_b06FwBssLen;
4404 		fw.bss_index = 0;
4405 		fw.bss = bce_TPAT_b06FwBss;
4406 
4407 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4408 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4409 		fw.rodata_index = 0;
4410 		fw.rodata = bce_TPAT_b06FwRodata;
4411 	}
4412 
4413 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4414 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4415 	bce_start_cpu(sc, &cpu_reg);
4416 
4417 	DBEXIT(BCE_VERBOSE_RESET);
4418 }
4419 
4420 /****************************************************************************/
4421 /* Initialize the CP CPU.                                                   */
4422 /*                                                                          */
4423 /* Returns:                                                                 */
4424 /*   Nothing.                                                               */
4425 /****************************************************************************/
4426 static void
4427 bce_init_cp_cpu(struct bce_softc *sc)
4428 {
4429 	struct cpu_reg cpu_reg;
4430 	struct fw_info fw;
4431 
4432 	DBENTER(BCE_VERBOSE_RESET);
4433 
4434 	cpu_reg.mode = BCE_CP_CPU_MODE;
4435 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4436 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4437 	cpu_reg.state = BCE_CP_CPU_STATE;
4438 	cpu_reg.state_value_clear = 0xffffff;
4439 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4440 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4441 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4442 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4443 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4444 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4445 	cpu_reg.mips_view_base = 0x8000000;
4446 
4447 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4448 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4449 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4450 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4451 		fw.start_addr = bce_CP_b09FwStartAddr;
4452 
4453 		fw.text_addr = bce_CP_b09FwTextAddr;
4454 		fw.text_len = bce_CP_b09FwTextLen;
4455 		fw.text_index = 0;
4456 		fw.text = bce_CP_b09FwText;
4457 
4458 		fw.data_addr = bce_CP_b09FwDataAddr;
4459 		fw.data_len = bce_CP_b09FwDataLen;
4460 		fw.data_index = 0;
4461 		fw.data = bce_CP_b09FwData;
4462 
4463 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4464 		fw.sbss_len = bce_CP_b09FwSbssLen;
4465 		fw.sbss_index = 0;
4466 		fw.sbss = bce_CP_b09FwSbss;
4467 
4468 		fw.bss_addr = bce_CP_b09FwBssAddr;
4469 		fw.bss_len = bce_CP_b09FwBssLen;
4470 		fw.bss_index = 0;
4471 		fw.bss = bce_CP_b09FwBss;
4472 
4473 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4474 		fw.rodata_len = bce_CP_b09FwRodataLen;
4475 		fw.rodata_index = 0;
4476 		fw.rodata = bce_CP_b09FwRodata;
4477 	} else {
4478 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4479 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4480 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4481 		fw.start_addr = bce_CP_b06FwStartAddr;
4482 
4483 		fw.text_addr = bce_CP_b06FwTextAddr;
4484 		fw.text_len = bce_CP_b06FwTextLen;
4485 		fw.text_index = 0;
4486 		fw.text = bce_CP_b06FwText;
4487 
4488 		fw.data_addr = bce_CP_b06FwDataAddr;
4489 		fw.data_len = bce_CP_b06FwDataLen;
4490 		fw.data_index = 0;
4491 		fw.data = bce_CP_b06FwData;
4492 
4493 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4494 		fw.sbss_len = bce_CP_b06FwSbssLen;
4495 		fw.sbss_index = 0;
4496 		fw.sbss = bce_CP_b06FwSbss;
4497 
4498 		fw.bss_addr = bce_CP_b06FwBssAddr;
4499 		fw.bss_len = bce_CP_b06FwBssLen;
4500 		fw.bss_index = 0;
4501 		fw.bss = bce_CP_b06FwBss;
4502 
4503 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4504 		fw.rodata_len = bce_CP_b06FwRodataLen;
4505 		fw.rodata_index = 0;
4506 		fw.rodata = bce_CP_b06FwRodata;
4507 	}
4508 
4509 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4510 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4511 	bce_start_cpu(sc, &cpu_reg);
4512 
4513 	DBEXIT(BCE_VERBOSE_RESET);
4514 }
4515 
4516 /****************************************************************************/
4517 /* Initialize the COM CPU.                                                 */
4518 /*                                                                          */
4519 /* Returns:                                                                 */
4520 /*   Nothing.                                                               */
4521 /****************************************************************************/
4522 static void
4523 bce_init_com_cpu(struct bce_softc *sc)
4524 {
4525 	struct cpu_reg cpu_reg;
4526 	struct fw_info fw;
4527 
4528 	DBENTER(BCE_VERBOSE_RESET);
4529 
4530 	cpu_reg.mode = BCE_COM_CPU_MODE;
4531 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4532 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4533 	cpu_reg.state = BCE_COM_CPU_STATE;
4534 	cpu_reg.state_value_clear = 0xffffff;
4535 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4536 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4537 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4538 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4539 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4540 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4541 	cpu_reg.mips_view_base = 0x8000000;
4542 
4543 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4544 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4545 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4546 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4547 		fw.start_addr = bce_COM_b09FwStartAddr;
4548 
4549 		fw.text_addr = bce_COM_b09FwTextAddr;
4550 		fw.text_len = bce_COM_b09FwTextLen;
4551 		fw.text_index = 0;
4552 		fw.text = bce_COM_b09FwText;
4553 
4554 		fw.data_addr = bce_COM_b09FwDataAddr;
4555 		fw.data_len = bce_COM_b09FwDataLen;
4556 		fw.data_index = 0;
4557 		fw.data = bce_COM_b09FwData;
4558 
4559 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4560 		fw.sbss_len = bce_COM_b09FwSbssLen;
4561 		fw.sbss_index = 0;
4562 		fw.sbss = bce_COM_b09FwSbss;
4563 
4564 		fw.bss_addr = bce_COM_b09FwBssAddr;
4565 		fw.bss_len = bce_COM_b09FwBssLen;
4566 		fw.bss_index = 0;
4567 		fw.bss = bce_COM_b09FwBss;
4568 
4569 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4570 		fw.rodata_len = bce_COM_b09FwRodataLen;
4571 		fw.rodata_index = 0;
4572 		fw.rodata = bce_COM_b09FwRodata;
4573 	} else {
4574 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4575 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4576 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4577 		fw.start_addr = bce_COM_b06FwStartAddr;
4578 
4579 		fw.text_addr = bce_COM_b06FwTextAddr;
4580 		fw.text_len = bce_COM_b06FwTextLen;
4581 		fw.text_index = 0;
4582 		fw.text = bce_COM_b06FwText;
4583 
4584 		fw.data_addr = bce_COM_b06FwDataAddr;
4585 		fw.data_len = bce_COM_b06FwDataLen;
4586 		fw.data_index = 0;
4587 		fw.data = bce_COM_b06FwData;
4588 
4589 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4590 		fw.sbss_len = bce_COM_b06FwSbssLen;
4591 		fw.sbss_index = 0;
4592 		fw.sbss = bce_COM_b06FwSbss;
4593 
4594 		fw.bss_addr = bce_COM_b06FwBssAddr;
4595 		fw.bss_len = bce_COM_b06FwBssLen;
4596 		fw.bss_index = 0;
4597 		fw.bss = bce_COM_b06FwBss;
4598 
4599 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4600 		fw.rodata_len = bce_COM_b06FwRodataLen;
4601 		fw.rodata_index = 0;
4602 		fw.rodata = bce_COM_b06FwRodata;
4603 	}
4604 
4605 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4606 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4607 	bce_start_cpu(sc, &cpu_reg);
4608 
4609 	DBEXIT(BCE_VERBOSE_RESET);
4610 }
4611 
4612 /****************************************************************************/
4613 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4614 /*                                                                          */
4615 /* Loads the firmware for each CPU and starts the CPU.                      */
4616 /*                                                                          */
4617 /* Returns:                                                                 */
4618 /*   Nothing.                                                               */
4619 /****************************************************************************/
4620 static void
4621 bce_init_cpus(struct bce_softc *sc)
4622 {
4623 	DBENTER(BCE_VERBOSE_RESET);
4624 
4625 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4626 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4627 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4628 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4629 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4630 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4631 		} else {
4632 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4633 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4634 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4635 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4636 		}
4637 
4638 	} else {
4639 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4640 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4641 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4642 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4643 	}
4644 
4645 	bce_init_rxp_cpu(sc);
4646 	bce_init_txp_cpu(sc);
4647 	bce_init_tpat_cpu(sc);
4648 	bce_init_com_cpu(sc);
4649 	bce_init_cp_cpu(sc);
4650 
4651 	DBEXIT(BCE_VERBOSE_RESET);
4652 }
4653 
4654 /****************************************************************************/
4655 /* Initialize context memory.                                               */
4656 /*                                                                          */
4657 /* Clears the memory associated with each Context ID (CID).                 */
4658 /*                                                                          */
4659 /* Returns:                                                                 */
4660 /*   Nothing.                                                               */
4661 /****************************************************************************/
4662 static int
4663 bce_init_ctx(struct bce_softc *sc)
4664 {
4665 	u32 offset, val, vcid_addr;
4666 	int i, j, rc, retry_cnt;
4667 
4668 	rc = 0;
4669 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4670 
4671 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4672 		retry_cnt = CTX_INIT_RETRY_COUNT;
4673 
4674 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4675 
4676 		/*
4677 		 * BCM5709 context memory may be cached
4678 		 * in host memory so prepare the host memory
4679 		 * for access.
4680 		 */
4681 		val = BCE_CTX_COMMAND_ENABLED |
4682 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4683 		val |= (BCM_PAGE_BITS - 8) << 16;
4684 		REG_WR(sc, BCE_CTX_COMMAND, val);
4685 
4686 		/* Wait for mem init command to complete. */
4687 		for (i = 0; i < retry_cnt; i++) {
4688 			val = REG_RD(sc, BCE_CTX_COMMAND);
4689 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4690 				break;
4691 			DELAY(2);
4692 		}
4693 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4694 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4695 			    __FUNCTION__);
4696 			rc = EBUSY;
4697 			goto init_ctx_fail;
4698 		}
4699 
4700 		for (i = 0; i < sc->ctx_pages; i++) {
4701 			/* Set the physical address of the context memory. */
4702 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4703 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4704 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4705 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4706 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4707 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4708 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4709 
4710 			/* Verify the context memory write was successful. */
4711 			for (j = 0; j < retry_cnt; j++) {
4712 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4713 				if ((val &
4714 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4715 					break;
4716 				DELAY(5);
4717 			}
4718 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4719 				BCE_PRINTF("%s(): Failed to initialize "
4720 				    "context page %d!\n", __FUNCTION__, i);
4721 				rc = EBUSY;
4722 				goto init_ctx_fail;
4723 			}
4724 		}
4725 	} else {
4726 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4727 
4728 		/*
4729 		 * For the 5706/5708, context memory is local to
4730 		 * the controller, so initialize the controller
4731 		 * context memory.
4732 		 */
4733 
4734 		vcid_addr = GET_CID_ADDR(96);
4735 		while (vcid_addr) {
4736 			vcid_addr -= PHY_CTX_SIZE;
4737 
4738 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4739 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4740 
4741 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4742 				CTX_WR(sc, 0x00, offset, 0);
4743 			}
4744 
4745 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4746 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4747 		}
4748 	}
4749 init_ctx_fail:
4750 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4751 	return (rc);
4752 }
4753 
4754 /****************************************************************************/
4755 /* Fetch the permanent MAC address of the controller.                       */
4756 /*                                                                          */
4757 /* Returns:                                                                 */
4758 /*   Nothing.                                                               */
4759 /****************************************************************************/
4760 static void
4761 bce_get_mac_addr(struct bce_softc *sc)
4762 {
4763 	u32 mac_lo = 0, mac_hi = 0;
4764 
4765 	DBENTER(BCE_VERBOSE_RESET);
4766 
4767 	/*
4768 	 * The NetXtreme II bootcode populates various NIC
4769 	 * power-on and runtime configuration items in a
4770 	 * shared memory area.  The factory configured MAC
4771 	 * address is available from both NVRAM and the
4772 	 * shared memory area so we'll read the value from
4773 	 * shared memory for speed.
4774 	 */
4775 
4776 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4777 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4778 
4779 	if ((mac_lo == 0) && (mac_hi == 0)) {
4780 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4781 		    __FILE__, __LINE__);
4782 	} else {
4783 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4784 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4785 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4786 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4787 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4788 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4789 	}
4790 
4791 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4792 	    "address = %6D\n", sc->eaddr, ":");
4793 	DBEXIT(BCE_VERBOSE_RESET);
4794 }
4795 
4796 /****************************************************************************/
4797 /* Program the MAC address.                                                 */
4798 /*                                                                          */
4799 /* Returns:                                                                 */
4800 /*   Nothing.                                                               */
4801 /****************************************************************************/
4802 static void
4803 bce_set_mac_addr(struct bce_softc *sc)
4804 {
4805 	u32 val;
4806 	u8 *mac_addr = sc->eaddr;
4807 
4808 	/* ToDo: Add support for setting multiple MAC addresses. */
4809 
4810 	DBENTER(BCE_VERBOSE_RESET);
4811 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4812 	    "%6D\n", sc->eaddr, ":");
4813 
4814 	val = (mac_addr[0] << 8) | mac_addr[1];
4815 
4816 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4817 
4818 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4819 	    (mac_addr[4] << 8) | mac_addr[5];
4820 
4821 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4822 
4823 	DBEXIT(BCE_VERBOSE_RESET);
4824 }
4825 
4826 /****************************************************************************/
4827 /* Stop the controller.                                                     */
4828 /*                                                                          */
4829 /* Returns:                                                                 */
4830 /*   Nothing.                                                               */
4831 /****************************************************************************/
4832 static void
4833 bce_stop(struct bce_softc *sc)
4834 {
4835 	if_t ifp;
4836 
4837 	DBENTER(BCE_VERBOSE_RESET);
4838 
4839 	BCE_LOCK_ASSERT(sc);
4840 
4841 	ifp = sc->bce_ifp;
4842 
4843 	callout_stop(&sc->bce_tick_callout);
4844 
4845 	/* Disable the transmit/receive blocks. */
4846 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4847 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4848 	DELAY(20);
4849 
4850 	bce_disable_intr(sc);
4851 
4852 	/* Free RX buffers. */
4853 	if (bce_hdr_split == TRUE) {
4854 		bce_free_pg_chain(sc);
4855 	}
4856 	bce_free_rx_chain(sc);
4857 
4858 	/* Free TX buffers. */
4859 	bce_free_tx_chain(sc);
4860 
4861 	sc->watchdog_timer = 0;
4862 
4863 	sc->bce_link_up = FALSE;
4864 
4865 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
4866 
4867 	DBEXIT(BCE_VERBOSE_RESET);
4868 }
4869 
4870 static int
4871 bce_reset(struct bce_softc *sc, u32 reset_code)
4872 {
4873 	u32 emac_mode_save, val;
4874 	int i, rc = 0;
4875 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4876 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4877 
4878 	DBENTER(BCE_VERBOSE_RESET);
4879 
4880 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4881 	    __FUNCTION__, reset_code);
4882 
4883 	/*
4884 	 * If ASF/IPMI is operational, then the EMAC Mode register already
4885 	 * contains appropriate values for the link settings that have
4886 	 * been auto-negotiated.  Resetting the chip will clobber those
4887 	 * values.  Save the important bits so we can restore them after
4888 	 * the reset.
4889 	 */
4890 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4891 
4892 	/* Wait for pending PCI transactions to complete. */
4893 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4894 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4895 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4896 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4897 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4898 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4899 	DELAY(5);
4900 
4901 	/* Disable DMA */
4902 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4903 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4904 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4905 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4906 	}
4907 
4908 	/* Assume bootcode is running. */
4909 	sc->bce_fw_timed_out = FALSE;
4910 	sc->bce_drv_cardiac_arrest = FALSE;
4911 
4912 	/* Give the firmware a chance to prepare for the reset. */
4913 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4914 	if (rc)
4915 		goto bce_reset_exit;
4916 
4917 	/* Set a firmware reminder that this is a soft reset. */
4918 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4919 
4920 	/* Dummy read to force the chip to complete all current transactions. */
4921 	val = REG_RD(sc, BCE_MISC_ID);
4922 
4923 	/* Chip reset. */
4924 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4925 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4926 		REG_RD(sc, BCE_MISC_COMMAND);
4927 		DELAY(5);
4928 
4929 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4930 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4931 
4932 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4933 	} else {
4934 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4935 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4936 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4937 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4938 
4939 		/* Allow up to 30us for reset to complete. */
4940 		for (i = 0; i < 10; i++) {
4941 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4942 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4943 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4944 				break;
4945 			}
4946 			DELAY(10);
4947 		}
4948 
4949 		/* Check that reset completed successfully. */
4950 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4951 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4952 			BCE_PRINTF("%s(%d): Reset failed!\n",
4953 			    __FILE__, __LINE__);
4954 			rc = EBUSY;
4955 			goto bce_reset_exit;
4956 		}
4957 	}
4958 
4959 	/* Make sure byte swapping is properly configured. */
4960 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4961 	if (val != 0x01020304) {
4962 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4963 		    __FILE__, __LINE__);
4964 		rc = ENODEV;
4965 		goto bce_reset_exit;
4966 	}
4967 
4968 	/* Just completed a reset, assume that firmware is running again. */
4969 	sc->bce_fw_timed_out = FALSE;
4970 	sc->bce_drv_cardiac_arrest = FALSE;
4971 
4972 	/* Wait for the firmware to finish its initialization. */
4973 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4974 	if (rc)
4975 		BCE_PRINTF("%s(%d): Firmware did not complete "
4976 		    "initialization!\n", __FILE__, __LINE__);
4977 	/* Get firmware capabilities. */
4978 	bce_fw_cap_init(sc);
4979 
4980 bce_reset_exit:
4981 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
4982 	if (reset_code == BCE_DRV_MSG_CODE_RESET) {
4983 		val = REG_RD(sc, BCE_EMAC_MODE);
4984 		val = (val & ~emac_mode_mask) | emac_mode_save;
4985 		REG_WR(sc, BCE_EMAC_MODE, val);
4986 	}
4987 
4988 	DBEXIT(BCE_VERBOSE_RESET);
4989 	return (rc);
4990 }
4991 
4992 static int
4993 bce_chipinit(struct bce_softc *sc)
4994 {
4995 	u32 val;
4996 	int rc = 0;
4997 
4998 	DBENTER(BCE_VERBOSE_RESET);
4999 
5000 	bce_disable_intr(sc);
5001 
5002 	/*
5003 	 * Initialize DMA byte/word swapping, configure the number of DMA
5004 	 * channels and PCI clock compensation delay.
5005 	 */
5006 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5007 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5008 #if BYTE_ORDER == BIG_ENDIAN
5009 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5010 #endif
5011 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5012 	    DMA_READ_CHANS << 12 |
5013 	    DMA_WRITE_CHANS << 16;
5014 
5015 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5016 
5017 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5018 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5019 
5020 	/*
5021 	 * This setting resolves a problem observed on certain Intel PCI
5022 	 * chipsets that cannot handle multiple outstanding DMA operations.
5023 	 * See errata E9_5706A1_65.
5024 	 */
5025 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5026 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5027 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5028 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5029 
5030 	REG_WR(sc, BCE_DMA_CONFIG, val);
5031 
5032 	/* Enable the RX_V2P and Context state machines before access. */
5033 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5034 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5035 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5036 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5037 
5038 	/* Initialize context mapping and zero out the quick contexts. */
5039 	if ((rc = bce_init_ctx(sc)) != 0)
5040 		goto bce_chipinit_exit;
5041 
5042 	/* Initialize the on-boards CPUs */
5043 	bce_init_cpus(sc);
5044 
5045 	/* Enable management frames (NC-SI) to flow to the MCP. */
5046 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5047 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5048 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5049 	}
5050 
5051 	/* Prepare NVRAM for access. */
5052 	if ((rc = bce_init_nvram(sc)) != 0)
5053 		goto bce_chipinit_exit;
5054 
5055 	/* Set the kernel bypass block size */
5056 	val = REG_RD(sc, BCE_MQ_CONFIG);
5057 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5058 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5059 
5060 	/* Enable bins used on the 5709. */
5061 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5062 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5063 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5064 			val |= BCE_MQ_CONFIG_HALT_DIS;
5065 	}
5066 
5067 	REG_WR(sc, BCE_MQ_CONFIG, val);
5068 
5069 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5070 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5071 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5072 
5073 	/* Set the page size and clear the RV2P processor stall bits. */
5074 	val = (BCM_PAGE_BITS - 8) << 24;
5075 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5076 
5077 	/* Configure page size. */
5078 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5079 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5080 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5081 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5082 
5083 	/* Set the perfect match control register to default. */
5084 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5085 
5086 bce_chipinit_exit:
5087 	DBEXIT(BCE_VERBOSE_RESET);
5088 
5089 	return(rc);
5090 }
5091 
5092 /****************************************************************************/
5093 /* Initialize the controller in preparation to send/receive traffic.        */
5094 /*                                                                          */
5095 /* Returns:                                                                 */
5096 /*   0 for success, positive value for failure.                             */
5097 /****************************************************************************/
5098 static int
5099 bce_blockinit(struct bce_softc *sc)
5100 {
5101 	u32 reg, val;
5102 	int rc = 0;
5103 
5104 	DBENTER(BCE_VERBOSE_RESET);
5105 
5106 	/* Load the hardware default MAC address. */
5107 	bce_set_mac_addr(sc);
5108 
5109 	/* Set the Ethernet backoff seed value */
5110 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5111 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5112 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5113 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5114 
5115 	sc->last_status_idx = 0;
5116 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5117 
5118 	/* Set up link change interrupt generation. */
5119 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5120 
5121 	/* Program the physical address of the status block. */
5122 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5123 	    BCE_ADDR_LO(sc->status_block_paddr));
5124 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5125 	    BCE_ADDR_HI(sc->status_block_paddr));
5126 
5127 	/* Program the physical address of the statistics block. */
5128 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5129 	    BCE_ADDR_LO(sc->stats_block_paddr));
5130 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5131 	    BCE_ADDR_HI(sc->stats_block_paddr));
5132 
5133 	/*
5134 	 * Program various host coalescing parameters.
5135 	 * Trip points control how many BDs should be ready before generating
5136 	 * an interrupt while ticks control how long a BD can sit in the chain
5137 	 * before generating an interrupt.
5138 	 */
5139 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5140 	    (sc->bce_tx_quick_cons_trip_int << 16) |
5141 	    sc->bce_tx_quick_cons_trip);
5142 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5143 	    (sc->bce_rx_quick_cons_trip_int << 16) |
5144 	    sc->bce_rx_quick_cons_trip);
5145 	REG_WR(sc, BCE_HC_TX_TICKS,
5146 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5147 	REG_WR(sc, BCE_HC_RX_TICKS,
5148 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5149 	REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5150 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5151 	/* Not used for L2. */
5152 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5153 	REG_WR(sc, BCE_HC_COM_TICKS, 0);
5154 	REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5155 
5156 	/* Configure the Host Coalescing block. */
5157 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5158 	    BCE_HC_CONFIG_COLLECT_STATS;
5159 
5160 #if 0
5161 	/* ToDo: Add MSI-X support. */
5162 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5163 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5164 		    BCE_HC_SB_CONFIG_1;
5165 
5166 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5167 
5168 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5169 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5170 
5171 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5172 		    (sc->tx_quick_cons_trip_int << 16) |
5173 		     sc->tx_quick_cons_trip);
5174 
5175 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5176 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5177 
5178 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5179 	}
5180 
5181 	/*
5182 	 * Tell the HC block to automatically set the
5183 	 * INT_MASK bit after an MSI/MSI-X interrupt
5184 	 * is generated so the driver doesn't have to.
5185 	 */
5186 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5187 		val |= BCE_HC_CONFIG_ONE_SHOT;
5188 
5189 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5190 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5191 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5192 #endif
5193 
5194 	REG_WR(sc, BCE_HC_CONFIG, val);
5195 
5196 	/* Clear the internal statistics counters. */
5197 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5198 
5199 	/* Verify that bootcode is running. */
5200 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5201 
5202 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5203 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5204 	    __FILE__, __LINE__);
5205 	    reg = 0);
5206 
5207 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5208 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5209 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5210 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5211 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5212 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5213 		rc = ENODEV;
5214 		goto bce_blockinit_exit;
5215 	}
5216 
5217 	/* Enable DMA */
5218 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5219 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5220 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5221 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5222 	}
5223 
5224 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5225 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5226 	    BCE_DRV_MSG_CODE_RESET);
5227 
5228 	/* Enable link state change interrupt generation. */
5229 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5230 
5231 	/* Enable the RXP. */
5232 	bce_start_rxp_cpu(sc);
5233 
5234 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5235 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5236 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5237 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5238 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5239 	}
5240 
5241 	/* Enable all remaining blocks in the MAC. */
5242 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5243 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5244 		    BCE_MISC_ENABLE_DEFAULT_XI);
5245 	else
5246 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5247 		    BCE_MISC_ENABLE_DEFAULT);
5248 
5249 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5250 	DELAY(20);
5251 
5252 	/* Save the current host coalescing block settings. */
5253 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5254 
5255 bce_blockinit_exit:
5256 	DBEXIT(BCE_VERBOSE_RESET);
5257 
5258 	return (rc);
5259 }
5260 
5261 /****************************************************************************/
5262 /* Encapsulate an mbuf into the rx_bd chain.                                */
5263 /*                                                                          */
5264 /* Returns:                                                                 */
5265 /*   0 for success, positive value for failure.                             */
5266 /****************************************************************************/
5267 static int
5268 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5269 {
5270 	bus_dma_segment_t segs[1];
5271 	struct mbuf *m_new = NULL;
5272 	struct rx_bd *rxbd;
5273 	int nsegs, error, rc = 0;
5274 #ifdef BCE_DEBUG
5275 	u16 debug_chain_prod = chain_prod;
5276 #endif
5277 
5278 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5279 
5280 	/* Make sure the inputs are valid. */
5281 	DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5282 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5283 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5284 	    chain_prod, (u16)MAX_RX_BD_ALLOC));
5285 
5286 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5287 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5288 	    prod, chain_prod, *prod_bseq);
5289 
5290 	/* Update some debug statistic counters */
5291 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5292 	    sc->rx_low_watermark = sc->free_rx_bd);
5293 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5294 	    sc->rx_empty_count++);
5295 
5296 	/* Simulate an mbuf allocation failure. */
5297 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5298 	    sc->mbuf_alloc_failed_count++;
5299 	    sc->mbuf_alloc_failed_sim_count++;
5300 	    rc = ENOBUFS;
5301 	    goto bce_get_rx_buf_exit);
5302 
5303 	/* This is a new mbuf allocation. */
5304 	if (bce_hdr_split == TRUE)
5305 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
5306 	else
5307 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5308 		    sc->rx_bd_mbuf_alloc_size);
5309 
5310 	if (m_new == NULL) {
5311 		sc->mbuf_alloc_failed_count++;
5312 		rc = ENOBUFS;
5313 		goto bce_get_rx_buf_exit;
5314 	}
5315 
5316 	DBRUN(sc->debug_rx_mbuf_alloc++);
5317 
5318 	/* Make sure we have a valid packet header. */
5319 	M_ASSERTPKTHDR(m_new);
5320 
5321 	/* Initialize the mbuf size and pad if necessary for alignment. */
5322 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5323 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5324 
5325 	/* ToDo: Consider calling m_fragment() to test error handling. */
5326 
5327 	/* Map the mbuf cluster into device memory. */
5328 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5329 	    sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5330 
5331 	/* Handle any mapping errors. */
5332 	if (error) {
5333 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5334 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5335 
5336 		sc->dma_map_addr_rx_failed_count++;
5337 		m_freem(m_new);
5338 
5339 		DBRUN(sc->debug_rx_mbuf_alloc--);
5340 
5341 		rc = ENOBUFS;
5342 		goto bce_get_rx_buf_exit;
5343 	}
5344 
5345 	/* All mbufs must map to a single segment. */
5346 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5347 	    __FUNCTION__, nsegs));
5348 
5349 	/* Setup the rx_bd for the segment. */
5350 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5351 
5352 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5353 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5354 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5355 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5356 	*prod_bseq += segs[0].ds_len;
5357 
5358 	/* Save the mbuf and update our counter. */
5359 	sc->rx_mbuf_ptr[chain_prod] = m_new;
5360 	sc->free_rx_bd -= nsegs;
5361 
5362 	DBRUNMSG(BCE_INSANE_RECV,
5363 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5364 
5365 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5366 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5367 	    chain_prod, *prod_bseq);
5368 
5369 bce_get_rx_buf_exit:
5370 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5371 
5372 	return(rc);
5373 }
5374 
5375 /****************************************************************************/
5376 /* Encapsulate an mbuf cluster into the page chain.                         */
5377 /*                                                                          */
5378 /* Returns:                                                                 */
5379 /*   0 for success, positive value for failure.                             */
5380 /****************************************************************************/
5381 static int
5382 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5383 {
5384 	bus_dma_segment_t segs[1];
5385 	struct mbuf *m_new = NULL;
5386 	struct rx_bd *pgbd;
5387 	int error, nsegs, rc = 0;
5388 #ifdef BCE_DEBUG
5389 	u16 debug_prod_idx = prod_idx;
5390 #endif
5391 
5392 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5393 
5394 	/* Make sure the inputs are valid. */
5395 	DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5396 	    BCE_PRINTF("%s(%d): page producer out of range: "
5397 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5398 	    prod_idx, (u16)MAX_PG_BD_ALLOC));
5399 
5400 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5401 	    "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5402 
5403 	/* Update counters if we've hit a new low or run out of pages. */
5404 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5405 	    sc->pg_low_watermark = sc->free_pg_bd);
5406 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5407 
5408 	/* Simulate an mbuf allocation failure. */
5409 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5410 	    sc->mbuf_alloc_failed_count++;
5411 	    sc->mbuf_alloc_failed_sim_count++;
5412 	    rc = ENOBUFS;
5413 	    goto bce_get_pg_buf_exit);
5414 
5415 	/* This is a new mbuf allocation. */
5416 	m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5417 	if (m_new == NULL) {
5418 		sc->mbuf_alloc_failed_count++;
5419 		rc = ENOBUFS;
5420 		goto bce_get_pg_buf_exit;
5421 	}
5422 
5423 	DBRUN(sc->debug_pg_mbuf_alloc++);
5424 
5425 	m_new->m_len = MCLBYTES;
5426 
5427 	/* ToDo: Consider calling m_fragment() to test error handling. */
5428 
5429 	/* Map the mbuf cluster into device memory. */
5430 	error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5431 	    sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5432 
5433 	/* Handle any mapping errors. */
5434 	if (error) {
5435 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5436 		    __FILE__, __LINE__);
5437 
5438 		m_freem(m_new);
5439 		DBRUN(sc->debug_pg_mbuf_alloc--);
5440 
5441 		rc = ENOBUFS;
5442 		goto bce_get_pg_buf_exit;
5443 	}
5444 
5445 	/* All mbufs must map to a single segment. */
5446 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5447 	    __FUNCTION__, nsegs));
5448 
5449 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5450 
5451 	/*
5452 	 * The page chain uses the same rx_bd data structure
5453 	 * as the receive chain but doesn't require a byte sequence (bseq).
5454 	 */
5455 	pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5456 
5457 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5458 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5459 	pgbd->rx_bd_len       = htole32(MCLBYTES);
5460 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5461 
5462 	/* Save the mbuf and update our counter. */
5463 	sc->pg_mbuf_ptr[prod_idx] = m_new;
5464 	sc->free_pg_bd--;
5465 
5466 	DBRUNMSG(BCE_INSANE_RECV,
5467 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5468 
5469 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5470 	    "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5471 
5472 bce_get_pg_buf_exit:
5473 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5474 
5475 	return(rc);
5476 }
5477 
5478 /****************************************************************************/
5479 /* Initialize the TX context memory.                                        */
5480 /*                                                                          */
5481 /* Returns:                                                                 */
5482 /*   Nothing                                                                */
5483 /****************************************************************************/
5484 static void
5485 bce_init_tx_context(struct bce_softc *sc)
5486 {
5487 	u32 val;
5488 
5489 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5490 
5491 	/* Initialize the context ID for an L2 TX chain. */
5492 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5493 		/* Set the CID type to support an L2 connection. */
5494 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5495 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5496 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5497 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5498 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5499 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5500 
5501 		/* Point the hardware to the first page in the chain. */
5502 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5503 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5504 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5505 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5506 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5507 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5508 	} else {
5509 		/* Set the CID type to support an L2 connection. */
5510 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5511 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5512 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5513 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5514 
5515 		/* Point the hardware to the first page in the chain. */
5516 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5517 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5518 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5519 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5520 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5521 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5522 	}
5523 
5524 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5525 }
5526 
5527 /****************************************************************************/
5528 /* Allocate memory and initialize the TX data structures.                   */
5529 /*                                                                          */
5530 /* Returns:                                                                 */
5531 /*   0 for success, positive value for failure.                             */
5532 /****************************************************************************/
5533 static int
5534 bce_init_tx_chain(struct bce_softc *sc)
5535 {
5536 	struct tx_bd *txbd;
5537 	int i, rc = 0;
5538 
5539 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5540 
5541 	/* Set the initial TX producer/consumer indices. */
5542 	sc->tx_prod        = 0;
5543 	sc->tx_cons        = 0;
5544 	sc->tx_prod_bseq   = 0;
5545 	sc->used_tx_bd     = 0;
5546 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5547 	DBRUN(sc->tx_hi_watermark = 0);
5548 	DBRUN(sc->tx_full_count = 0);
5549 
5550 	/*
5551 	 * The NetXtreme II supports a linked-list structure called
5552 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5553 	 * consists of a series of 1 or more chain pages, each of which
5554 	 * consists of a fixed number of BD entries.
5555 	 * The last BD entry on each page is a pointer to the next page
5556 	 * in the chain, and the last pointer in the BD chain
5557 	 * points back to the beginning of the chain.
5558 	 */
5559 
5560 	/* Set the TX next pointer chain entries. */
5561 	for (i = 0; i < sc->tx_pages; i++) {
5562 		int j;
5563 
5564 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5565 
5566 		/* Check if we've reached the last page. */
5567 		if (i == (sc->tx_pages - 1))
5568 			j = 0;
5569 		else
5570 			j = i + 1;
5571 
5572 		txbd->tx_bd_haddr_hi =
5573 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5574 		txbd->tx_bd_haddr_lo =
5575 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5576 	}
5577 
5578 	bce_init_tx_context(sc);
5579 
5580 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5581 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5582 
5583 	return(rc);
5584 }
5585 
5586 /****************************************************************************/
5587 /* Free memory and clear the TX data structures.                            */
5588 /*                                                                          */
5589 /* Returns:                                                                 */
5590 /*   Nothing.                                                               */
5591 /****************************************************************************/
5592 static void
5593 bce_free_tx_chain(struct bce_softc *sc)
5594 {
5595 	int i;
5596 
5597 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5598 
5599 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5600 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5601 		if (sc->tx_mbuf_ptr[i] != NULL) {
5602 			if (sc->tx_mbuf_map[i] != NULL)
5603 				bus_dmamap_sync(sc->tx_mbuf_tag,
5604 				    sc->tx_mbuf_map[i],
5605 				    BUS_DMASYNC_POSTWRITE);
5606 			m_freem(sc->tx_mbuf_ptr[i]);
5607 			sc->tx_mbuf_ptr[i] = NULL;
5608 			DBRUN(sc->debug_tx_mbuf_alloc--);
5609 		}
5610 	}
5611 
5612 	/* Clear each TX chain page. */
5613 	for (i = 0; i < sc->tx_pages; i++)
5614 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5615 
5616 	sc->used_tx_bd = 0;
5617 
5618 	/* Check if we lost any mbufs in the process. */
5619 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5620 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5621 	    "from tx chain!\n",	__FILE__, __LINE__,
5622 	    sc->debug_tx_mbuf_alloc));
5623 
5624 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5625 }
5626 
5627 /****************************************************************************/
5628 /* Initialize the RX context memory.                                        */
5629 /*                                                                          */
5630 /* Returns:                                                                 */
5631 /*   Nothing                                                                */
5632 /****************************************************************************/
5633 static void
5634 bce_init_rx_context(struct bce_softc *sc)
5635 {
5636 	u32 val;
5637 
5638 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5639 
5640 	/* Init the type, size, and BD cache levels for the RX context. */
5641 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5642 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5643 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5644 
5645 	/*
5646 	 * Set the level for generating pause frames
5647 	 * when the number of available rx_bd's gets
5648 	 * too low (the low watermark) and the level
5649 	 * when pause frames can be stopped (the high
5650 	 * watermark).
5651 	 */
5652 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5653 		u32 lo_water, hi_water;
5654 
5655 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5656 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5657 		} else {
5658 			lo_water = 0;
5659 		}
5660 
5661 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5662 			lo_water = 0;
5663 		}
5664 
5665 		hi_water = USABLE_RX_BD_ALLOC / 4;
5666 
5667 		if (hi_water <= lo_water) {
5668 			lo_water = 0;
5669 		}
5670 
5671 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5672 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5673 
5674 		if (hi_water > 0xf)
5675 			hi_water = 0xf;
5676 		else if (hi_water == 0)
5677 			lo_water = 0;
5678 
5679 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5680 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5681 	}
5682 
5683 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5684 
5685 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5686 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5687 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5688 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5689 	}
5690 
5691 	/* Point the hardware to the first page in the chain. */
5692 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5693 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5694 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5695 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5696 
5697 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5698 }
5699 
5700 /****************************************************************************/
5701 /* Allocate memory and initialize the RX data structures.                   */
5702 /*                                                                          */
5703 /* Returns:                                                                 */
5704 /*   0 for success, positive value for failure.                             */
5705 /****************************************************************************/
5706 static int
5707 bce_init_rx_chain(struct bce_softc *sc)
5708 {
5709 	struct rx_bd *rxbd;
5710 	int i, rc = 0;
5711 
5712 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5713 	    BCE_VERBOSE_CTX);
5714 
5715 	/* Initialize the RX producer and consumer indices. */
5716 	sc->rx_prod        = 0;
5717 	sc->rx_cons        = 0;
5718 	sc->rx_prod_bseq   = 0;
5719 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5720 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5721 
5722 	/* Initialize the RX next pointer chain entries. */
5723 	for (i = 0; i < sc->rx_pages; i++) {
5724 		int j;
5725 
5726 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5727 
5728 		/* Check if we've reached the last page. */
5729 		if (i == (sc->rx_pages - 1))
5730 			j = 0;
5731 		else
5732 			j = i + 1;
5733 
5734 		/* Setup the chain page pointers. */
5735 		rxbd->rx_bd_haddr_hi =
5736 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5737 		rxbd->rx_bd_haddr_lo =
5738 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5739 	}
5740 
5741 	/* Fill up the RX chain. */
5742 	bce_fill_rx_chain(sc);
5743 
5744 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5745 	DBRUN(sc->rx_empty_count = 0);
5746 	for (i = 0; i < sc->rx_pages; i++) {
5747 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5748 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5749 	}
5750 
5751 	bce_init_rx_context(sc);
5752 
5753 	DBRUNMSG(BCE_EXTREME_RECV,
5754 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5755 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5756 	    BCE_VERBOSE_CTX);
5757 
5758 	/* ToDo: Are there possible failure modes here? */
5759 
5760 	return(rc);
5761 }
5762 
5763 /****************************************************************************/
5764 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5765 /* occurs.                                                                  */
5766 /*                                                                          */
5767 /* Returns:                                                                 */
5768 /*   Nothing                                                                */
5769 /****************************************************************************/
5770 static void
5771 bce_fill_rx_chain(struct bce_softc *sc)
5772 {
5773 	u16 prod, prod_idx;
5774 	u32 prod_bseq;
5775 
5776 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5777 	    BCE_VERBOSE_CTX);
5778 
5779 	/* Get the RX chain producer indices. */
5780 	prod      = sc->rx_prod;
5781 	prod_bseq = sc->rx_prod_bseq;
5782 
5783 	/* Keep filling the RX chain until it's full. */
5784 	while (sc->free_rx_bd > 0) {
5785 		prod_idx = RX_CHAIN_IDX(prod);
5786 		if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5787 			/* Bail out if we can't add an mbuf to the chain. */
5788 			break;
5789 		}
5790 		prod = NEXT_RX_BD(prod);
5791 	}
5792 
5793 	/* Save the RX chain producer indices. */
5794 	sc->rx_prod      = prod;
5795 	sc->rx_prod_bseq = prod_bseq;
5796 
5797 	/* We should never end up pointing to a next page pointer. */
5798 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5799 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5800 	    __FUNCTION__, rx_prod));
5801 
5802 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5803 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5804 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5805 
5806 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5807 	    BCE_VERBOSE_CTX);
5808 }
5809 
5810 /****************************************************************************/
5811 /* Free memory and clear the RX data structures.                            */
5812 /*                                                                          */
5813 /* Returns:                                                                 */
5814 /*   Nothing.                                                               */
5815 /****************************************************************************/
5816 static void
5817 bce_free_rx_chain(struct bce_softc *sc)
5818 {
5819 	int i;
5820 
5821 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5822 
5823 	/* Free any mbufs still in the RX mbuf chain. */
5824 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5825 		if (sc->rx_mbuf_ptr[i] != NULL) {
5826 			if (sc->rx_mbuf_map[i] != NULL)
5827 				bus_dmamap_sync(sc->rx_mbuf_tag,
5828 				    sc->rx_mbuf_map[i],
5829 				    BUS_DMASYNC_POSTREAD);
5830 			m_freem(sc->rx_mbuf_ptr[i]);
5831 			sc->rx_mbuf_ptr[i] = NULL;
5832 			DBRUN(sc->debug_rx_mbuf_alloc--);
5833 		}
5834 	}
5835 
5836 	/* Clear each RX chain page. */
5837 	for (i = 0; i < sc->rx_pages; i++)
5838 		if (sc->rx_bd_chain[i] != NULL)
5839 			bzero((char *)sc->rx_bd_chain[i],
5840 			    BCE_RX_CHAIN_PAGE_SZ);
5841 
5842 	sc->free_rx_bd = sc->max_rx_bd;
5843 
5844 	/* Check if we lost any mbufs in the process. */
5845 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5846 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5847 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5848 
5849 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5850 }
5851 
5852 /****************************************************************************/
5853 /* Allocate memory and initialize the page data structures.                 */
5854 /* Assumes that bce_init_rx_chain() has not already been called.            */
5855 /*                                                                          */
5856 /* Returns:                                                                 */
5857 /*   0 for success, positive value for failure.                             */
5858 /****************************************************************************/
5859 static int
5860 bce_init_pg_chain(struct bce_softc *sc)
5861 {
5862 	struct rx_bd *pgbd;
5863 	int i, rc = 0;
5864 	u32 val;
5865 
5866 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5867 		BCE_VERBOSE_CTX);
5868 
5869 	/* Initialize the page producer and consumer indices. */
5870 	sc->pg_prod        = 0;
5871 	sc->pg_cons        = 0;
5872 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5873 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5874 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5875 	DBRUN(sc->pg_empty_count = 0);
5876 
5877 	/* Initialize the page next pointer chain entries. */
5878 	for (i = 0; i < sc->pg_pages; i++) {
5879 		int j;
5880 
5881 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5882 
5883 		/* Check if we've reached the last page. */
5884 		if (i == (sc->pg_pages - 1))
5885 			j = 0;
5886 		else
5887 			j = i + 1;
5888 
5889 		/* Setup the chain page pointers. */
5890 		pgbd->rx_bd_haddr_hi =
5891 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5892 		pgbd->rx_bd_haddr_lo =
5893 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5894 	}
5895 
5896 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5897 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5898 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5899 
5900 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5901 
5902 	/* Configure the rx_bd and page chain mbuf cluster size. */
5903 	val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
5904 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5905 
5906 	/* Configure the context reserved for jumbo support. */
5907 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5908 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5909 
5910 	/* Point the hardware to the first page in the page chain. */
5911 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5912 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5913 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5914 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5915 
5916 	/* Fill up the page chain. */
5917 	bce_fill_pg_chain(sc);
5918 
5919 	for (i = 0; i < sc->pg_pages; i++) {
5920 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5921 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5922 	}
5923 
5924 	DBRUNMSG(BCE_EXTREME_RECV,
5925 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
5926 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5927 		BCE_VERBOSE_CTX);
5928 	return(rc);
5929 }
5930 
5931 /****************************************************************************/
5932 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
5933 /* occurs.                                                                  */
5934 /*                                                                          */
5935 /* Returns:                                                                 */
5936 /*   Nothing                                                                */
5937 /****************************************************************************/
5938 static void
5939 bce_fill_pg_chain(struct bce_softc *sc)
5940 {
5941 	u16 prod, prod_idx;
5942 
5943 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5944 	    BCE_VERBOSE_CTX);
5945 
5946 	/* Get the page chain prodcuer index. */
5947 	prod = sc->pg_prod;
5948 
5949 	/* Keep filling the page chain until it's full. */
5950 	while (sc->free_pg_bd > 0) {
5951 		prod_idx = PG_CHAIN_IDX(prod);
5952 		if (bce_get_pg_buf(sc, prod, prod_idx)) {
5953 			/* Bail out if we can't add an mbuf to the chain. */
5954 			break;
5955 		}
5956 		prod = NEXT_PG_BD(prod);
5957 	}
5958 
5959 	/* Save the page chain producer index. */
5960 	sc->pg_prod = prod;
5961 
5962 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5963 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5964 	    __FUNCTION__, pg_prod));
5965 
5966 	/*
5967 	 * Write the mailbox and tell the chip about
5968 	 * the new rx_bd's in the page chain.
5969 	 */
5970 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
5971 	    prod);
5972 
5973 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5974 	    BCE_VERBOSE_CTX);
5975 }
5976 
5977 /****************************************************************************/
5978 /* Free memory and clear the RX data structures.                            */
5979 /*                                                                          */
5980 /* Returns:                                                                 */
5981 /*   Nothing.                                                               */
5982 /****************************************************************************/
5983 static void
5984 bce_free_pg_chain(struct bce_softc *sc)
5985 {
5986 	int i;
5987 
5988 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5989 
5990 	/* Free any mbufs still in the mbuf page chain. */
5991 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
5992 		if (sc->pg_mbuf_ptr[i] != NULL) {
5993 			if (sc->pg_mbuf_map[i] != NULL)
5994 				bus_dmamap_sync(sc->pg_mbuf_tag,
5995 				    sc->pg_mbuf_map[i],
5996 				    BUS_DMASYNC_POSTREAD);
5997 			m_freem(sc->pg_mbuf_ptr[i]);
5998 			sc->pg_mbuf_ptr[i] = NULL;
5999 			DBRUN(sc->debug_pg_mbuf_alloc--);
6000 		}
6001 	}
6002 
6003 	/* Clear each page chain pages. */
6004 	for (i = 0; i < sc->pg_pages; i++)
6005 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6006 
6007 	sc->free_pg_bd = sc->max_pg_bd;
6008 
6009 	/* Check if we lost any mbufs in the process. */
6010 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6011 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6012 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6013 
6014 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6015 }
6016 
6017 static u32
6018 bce_get_rphy_link(struct bce_softc *sc)
6019 {
6020 	u32 advertise, link;
6021 	int fdpx;
6022 
6023 	advertise = 0;
6024 	fdpx = 0;
6025 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6026 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6027 	else
6028 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6029 	if (link & BCE_NETLINK_ANEG_ENB)
6030 		advertise |= BCE_NETLINK_ANEG_ENB;
6031 	if (link & BCE_NETLINK_SPEED_10HALF)
6032 		advertise |= BCE_NETLINK_SPEED_10HALF;
6033 	if (link & BCE_NETLINK_SPEED_10FULL) {
6034 		advertise |= BCE_NETLINK_SPEED_10FULL;
6035 		fdpx++;
6036 	}
6037 	if (link & BCE_NETLINK_SPEED_100HALF)
6038 		advertise |= BCE_NETLINK_SPEED_100HALF;
6039 	if (link & BCE_NETLINK_SPEED_100FULL) {
6040 		advertise |= BCE_NETLINK_SPEED_100FULL;
6041 		fdpx++;
6042 	}
6043 	if (link & BCE_NETLINK_SPEED_1000HALF)
6044 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6045 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6046 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6047 		fdpx++;
6048 	}
6049 	if (link & BCE_NETLINK_SPEED_2500HALF)
6050 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6051 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6052 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6053 		fdpx++;
6054 	}
6055 	if (fdpx)
6056 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6057 		    BCE_NETLINK_FC_PAUSE_ASYM;
6058 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6059 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6060 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6061 
6062 	return (advertise);
6063 }
6064 
6065 /****************************************************************************/
6066 /* Set media options.                                                       */
6067 /*                                                                          */
6068 /* Returns:                                                                 */
6069 /*   0 for success, positive value for failure.                             */
6070 /****************************************************************************/
6071 static int
6072 bce_ifmedia_upd(if_t ifp)
6073 {
6074 	struct bce_softc *sc = if_getsoftc(ifp);
6075 	int error;
6076 
6077 	DBENTER(BCE_VERBOSE);
6078 
6079 	BCE_LOCK(sc);
6080 	error = bce_ifmedia_upd_locked(ifp);
6081 	BCE_UNLOCK(sc);
6082 
6083 	DBEXIT(BCE_VERBOSE);
6084 	return (error);
6085 }
6086 
6087 /****************************************************************************/
6088 /* Set media options.                                                       */
6089 /*                                                                          */
6090 /* Returns:                                                                 */
6091 /*   Nothing.                                                               */
6092 /****************************************************************************/
6093 static int
6094 bce_ifmedia_upd_locked(if_t ifp)
6095 {
6096 	struct bce_softc *sc = if_getsoftc(ifp);
6097 	struct mii_data *mii;
6098 	struct mii_softc *miisc;
6099 	struct ifmedia *ifm;
6100 	u32 link;
6101 	int error, fdx;
6102 
6103 	DBENTER(BCE_VERBOSE_PHY);
6104 
6105 	error = 0;
6106 	BCE_LOCK_ASSERT(sc);
6107 
6108 	sc->bce_link_up = FALSE;
6109 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6110 		ifm = &sc->bce_ifmedia;
6111 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6112 			return (EINVAL);
6113 		link = 0;
6114 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6115 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6116 		case IFM_AUTO:
6117 			/*
6118 			 * Check advertised link of remote PHY by reading
6119 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6120 			 * Always use the same link type of remote PHY.
6121 			 */
6122 			link = bce_get_rphy_link(sc);
6123 			break;
6124 		case IFM_2500_SX:
6125 			if ((sc->bce_phy_flags &
6126 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6127 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6128 				return (EINVAL);
6129 			/*
6130 			 * XXX
6131 			 * Have to enable forced 2.5Gbps configuration.
6132 			 */
6133 			if (fdx != 0)
6134 				link |= BCE_NETLINK_SPEED_2500FULL;
6135 			else
6136 				link |= BCE_NETLINK_SPEED_2500HALF;
6137 			break;
6138 		case IFM_1000_SX:
6139 			if ((sc->bce_phy_flags &
6140 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6141 				return (EINVAL);
6142 			/*
6143 			 * XXX
6144 			 * Have to disable 2.5Gbps configuration.
6145 			 */
6146 			if (fdx != 0)
6147 				link = BCE_NETLINK_SPEED_1000FULL;
6148 			else
6149 				link = BCE_NETLINK_SPEED_1000HALF;
6150 			break;
6151 		case IFM_1000_T:
6152 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6153 				return (EINVAL);
6154 			if (fdx != 0)
6155 				link = BCE_NETLINK_SPEED_1000FULL;
6156 			else
6157 				link = BCE_NETLINK_SPEED_1000HALF;
6158 			break;
6159 		case IFM_100_TX:
6160 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6161 				return (EINVAL);
6162 			if (fdx != 0)
6163 				link = BCE_NETLINK_SPEED_100FULL;
6164 			else
6165 				link = BCE_NETLINK_SPEED_100HALF;
6166 			break;
6167 		case IFM_10_T:
6168 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6169 				return (EINVAL);
6170 			if (fdx != 0)
6171 				link = BCE_NETLINK_SPEED_10FULL;
6172 			else
6173 				link = BCE_NETLINK_SPEED_10HALF;
6174 			break;
6175 		default:
6176 			return (EINVAL);
6177 		}
6178 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6179 			/*
6180 			 * XXX
6181 			 * Advertise pause capability for full-duplex media.
6182 			 */
6183 			if (fdx != 0)
6184 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6185 				    BCE_NETLINK_FC_PAUSE_ASYM;
6186 			if ((sc->bce_phy_flags &
6187 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6188 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6189 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6190 		}
6191 
6192 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6193 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6194 	} else {
6195 		mii = device_get_softc(sc->bce_miibus);
6196 
6197 		/* Make sure the MII bus has been enumerated. */
6198 		if (mii) {
6199 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6200 				PHY_RESET(miisc);
6201 			error = mii_mediachg(mii);
6202 		}
6203 	}
6204 
6205 	DBEXIT(BCE_VERBOSE_PHY);
6206 	return (error);
6207 }
6208 
6209 static void
6210 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6211 {
6212 	if_t ifp;
6213 	u32 link;
6214 
6215 	ifp = sc->bce_ifp;
6216 	BCE_LOCK_ASSERT(sc);
6217 
6218 	ifmr->ifm_status = IFM_AVALID;
6219 	ifmr->ifm_active = IFM_ETHER;
6220 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6221 	/* XXX Handle heart beat status? */
6222 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6223 		ifmr->ifm_status |= IFM_ACTIVE;
6224 	else {
6225 		ifmr->ifm_active |= IFM_NONE;
6226 		if_setbaudrate(ifp, 0);
6227 		return;
6228 	}
6229 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6230 	case BCE_LINK_STATUS_10HALF:
6231 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6232 		if_setbaudrate(ifp, IF_Mbps(10UL));
6233 		break;
6234 	case BCE_LINK_STATUS_10FULL:
6235 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6236 		if_setbaudrate(ifp, IF_Mbps(10UL));
6237 		break;
6238 	case BCE_LINK_STATUS_100HALF:
6239 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6240 		if_setbaudrate(ifp, IF_Mbps(100UL));
6241 		break;
6242 	case BCE_LINK_STATUS_100FULL:
6243 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6244 		if_setbaudrate(ifp, IF_Mbps(100UL));
6245 		break;
6246 	case BCE_LINK_STATUS_1000HALF:
6247 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6248 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6249 		else
6250 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6251 		if_setbaudrate(ifp, IF_Mbps(1000UL));
6252 		break;
6253 	case BCE_LINK_STATUS_1000FULL:
6254 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6255 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6256 		else
6257 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6258 		if_setbaudrate(ifp, IF_Mbps(1000UL));
6259 		break;
6260 	case BCE_LINK_STATUS_2500HALF:
6261 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6262 			ifmr->ifm_active |= IFM_NONE;
6263 			return;
6264 		} else
6265 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6266 		if_setbaudrate(ifp, IF_Mbps(2500UL));
6267 		break;
6268 	case BCE_LINK_STATUS_2500FULL:
6269 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6270 			ifmr->ifm_active |= IFM_NONE;
6271 			return;
6272 		} else
6273 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6274 		if_setbaudrate(ifp, IF_Mbps(2500UL));
6275 		break;
6276 	default:
6277 		ifmr->ifm_active |= IFM_NONE;
6278 		return;
6279 	}
6280 
6281 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6282 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6283 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6284 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6285 }
6286 
6287 /****************************************************************************/
6288 /* Reports current media status.                                            */
6289 /*                                                                          */
6290 /* Returns:                                                                 */
6291 /*   Nothing.                                                               */
6292 /****************************************************************************/
6293 static void
6294 bce_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
6295 {
6296 	struct bce_softc *sc = if_getsoftc(ifp);
6297 	struct mii_data *mii;
6298 
6299 	DBENTER(BCE_VERBOSE_PHY);
6300 
6301 	BCE_LOCK(sc);
6302 
6303 	if ((if_getflags(ifp) & IFF_UP) == 0) {
6304 		BCE_UNLOCK(sc);
6305 		return;
6306 	}
6307 
6308 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6309 		bce_ifmedia_sts_rphy(sc, ifmr);
6310 	else {
6311 		mii = device_get_softc(sc->bce_miibus);
6312 		mii_pollstat(mii);
6313 		ifmr->ifm_active = mii->mii_media_active;
6314 		ifmr->ifm_status = mii->mii_media_status;
6315 	}
6316 
6317 	BCE_UNLOCK(sc);
6318 
6319 	DBEXIT(BCE_VERBOSE_PHY);
6320 }
6321 
6322 /****************************************************************************/
6323 /* Handles PHY generated interrupt events.                                  */
6324 /*                                                                          */
6325 /* Returns:                                                                 */
6326 /*   Nothing.                                                               */
6327 /****************************************************************************/
6328 static void
6329 bce_phy_intr(struct bce_softc *sc)
6330 {
6331 	u32 new_link_state, old_link_state;
6332 
6333 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6334 
6335 	DBRUN(sc->phy_interrupts++);
6336 
6337 	new_link_state = sc->status_block->status_attn_bits &
6338 	    STATUS_ATTN_BITS_LINK_STATE;
6339 	old_link_state = sc->status_block->status_attn_bits_ack &
6340 	    STATUS_ATTN_BITS_LINK_STATE;
6341 
6342 	/* Handle any changes if the link state has changed. */
6343 	if (new_link_state != old_link_state) {
6344 		/* Update the status_attn_bits_ack field. */
6345 		if (new_link_state) {
6346 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6347 			    STATUS_ATTN_BITS_LINK_STATE);
6348 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6349 			    __FUNCTION__);
6350 		} else {
6351 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6352 			    STATUS_ATTN_BITS_LINK_STATE);
6353 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6354 			    __FUNCTION__);
6355 		}
6356 
6357 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6358 			if (new_link_state) {
6359 				if (bootverbose)
6360 					if_printf(sc->bce_ifp, "link UP\n");
6361 				if_link_state_change(sc->bce_ifp,
6362 				    LINK_STATE_UP);
6363 			} else {
6364 				if (bootverbose)
6365 					if_printf(sc->bce_ifp, "link DOWN\n");
6366 				if_link_state_change(sc->bce_ifp,
6367 				    LINK_STATE_DOWN);
6368 			}
6369 		}
6370 		/*
6371 		 * Assume link is down and allow
6372 		 * tick routine to update the state
6373 		 * based on the actual media state.
6374 		 */
6375 		sc->bce_link_up = FALSE;
6376 		callout_stop(&sc->bce_tick_callout);
6377 		bce_tick(sc);
6378 	}
6379 
6380 	/* Acknowledge the link change interrupt. */
6381 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6382 
6383 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6384 }
6385 
6386 /****************************************************************************/
6387 /* Reads the receive consumer value from the status block (skipping over    */
6388 /* chain page pointer if necessary).                                        */
6389 /*                                                                          */
6390 /* Returns:                                                                 */
6391 /*   hw_cons                                                                */
6392 /****************************************************************************/
6393 static inline u16
6394 bce_get_hw_rx_cons(struct bce_softc *sc)
6395 {
6396 	u16 hw_cons;
6397 
6398 	rmb();
6399 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6400 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6401 		hw_cons++;
6402 
6403 	return hw_cons;
6404 }
6405 
6406 /****************************************************************************/
6407 /* Handles received frame interrupt events.                                 */
6408 /*                                                                          */
6409 /* Returns:                                                                 */
6410 /*   Nothing.                                                               */
6411 /****************************************************************************/
6412 static void
6413 bce_rx_intr(struct bce_softc *sc)
6414 {
6415 	if_t ifp = sc->bce_ifp;
6416 	struct l2_fhdr *l2fhdr;
6417 	struct ether_vlan_header *vh;
6418 	unsigned int pkt_len;
6419 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6420 	u32 status;
6421 	unsigned int rem_len;
6422 	u16 sw_pg_cons, sw_pg_cons_idx;
6423 
6424 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6425 	DBRUN(sc->interrupts_rx++);
6426 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6427 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6428 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6429 
6430 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6431 	for (int i = 0; i < sc->rx_pages; i++)
6432 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6433 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6434 
6435 	/* Prepare the page chain pages to be accessed by the host CPU. */
6436 	if (bce_hdr_split == TRUE) {
6437 		for (int i = 0; i < sc->pg_pages; i++)
6438 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6439 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6440 	}
6441 
6442 	/* Get the hardware's view of the RX consumer index. */
6443 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6444 
6445 	/* Get working copies of the driver's view of the consumer indices. */
6446 	sw_rx_cons = sc->rx_cons;
6447 	sw_pg_cons = sc->pg_cons;
6448 
6449 	/* Update some debug statistics counters */
6450 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6451 	    sc->rx_low_watermark = sc->free_rx_bd);
6452 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6453 	    sc->rx_empty_count++);
6454 
6455 	/* Scan through the receive chain as long as there is work to do */
6456 	/* ToDo: Consider setting a limit on the number of packets processed. */
6457 	rmb();
6458 	while (sw_rx_cons != hw_rx_cons) {
6459 		struct mbuf *m0;
6460 
6461 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6462 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6463 
6464 		/* Unmap the mbuf from DMA space. */
6465 		bus_dmamap_sync(sc->rx_mbuf_tag,
6466 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6467 		    BUS_DMASYNC_POSTREAD);
6468 		bus_dmamap_unload(sc->rx_mbuf_tag,
6469 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6470 
6471 		/* Remove the mbuf from the RX chain. */
6472 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6473 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6474 		DBRUN(sc->debug_rx_mbuf_alloc--);
6475 		sc->free_rx_bd++;
6476 
6477 		/*
6478  		 * Frames received on the NetXteme II are prepended
6479  		 * with an l2_fhdr structure which provides status
6480  		 * information about the received frame (including
6481  		 * VLAN tags and checksum info).  The frames are
6482 		 * also automatically adjusted to word align the IP
6483  		 * header (i.e. two null bytes are inserted before
6484  		 * the Ethernet	header).  As a result the data
6485  		 * DMA'd by the controller into	the mbuf looks
6486 		 * like this:
6487 		 *
6488 		 * +---------+-----+---------------------+-----+
6489 		 * | l2_fhdr | pad | packet data         | FCS |
6490 		 * +---------+-----+---------------------+-----+
6491 		 *
6492  		 * The l2_fhdr needs to be checked and skipped and
6493  		 * the FCS needs to be stripped before sending the
6494 		 * packet up the stack.
6495 		 */
6496 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6497 
6498 		/* Get the packet data + FCS length and the status. */
6499 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6500 		status  = l2fhdr->l2_fhdr_status;
6501 
6502 		/*
6503 		 * Skip over the l2_fhdr and pad, resulting in the
6504 		 * following data in the mbuf:
6505 		 * +---------------------+-----+
6506 		 * | packet data         | FCS |
6507 		 * +---------------------+-----+
6508 		 */
6509 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6510 
6511 		/*
6512  		 * When split header mode is used, an ethernet frame
6513  		 * may be split across the receive chain and the
6514  		 * page chain. If that occurs an mbuf cluster must be
6515  		 * reassembled from the individual mbuf pieces.
6516 		 */
6517 		if (bce_hdr_split == TRUE) {
6518 			/*
6519 			 * Check whether the received frame fits in a single
6520 			 * mbuf or not (i.e. packet data + FCS <=
6521 			 * sc->rx_bd_mbuf_data_len bytes).
6522 			 */
6523 			if (pkt_len > m0->m_len) {
6524 				/*
6525 				 * The received frame is larger than a single mbuf.
6526 				 * If the frame was a TCP frame then only the TCP
6527 				 * header is placed in the mbuf, the remaining
6528 				 * payload (including FCS) is placed in the page
6529 				 * chain, the SPLIT flag is set, and the header
6530 				 * length is placed in the IP checksum field.
6531 				 * If the frame is not a TCP frame then the mbuf
6532 				 * is filled and the remaining bytes are placed
6533 				 * in the page chain.
6534 				 */
6535 
6536 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6537 					"packet.\n", __FUNCTION__);
6538 				DBRUN(sc->split_header_frames_rcvd++);
6539 
6540 				/*
6541 				 * When the page chain is enabled and the TCP
6542 				 * header has been split from the TCP payload,
6543 				 * the ip_xsum structure will reflect the length
6544 				 * of the TCP header, not the IP checksum.  Set
6545 				 * the packet length of the mbuf accordingly.
6546 				 */
6547 				if (status & L2_FHDR_STATUS_SPLIT) {
6548 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6549 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6550 				}
6551 
6552 				rem_len = pkt_len - m0->m_len;
6553 
6554 				/* Pull mbufs off the page chain for any remaining data. */
6555 				while (rem_len > 0) {
6556 					struct mbuf *m_pg;
6557 
6558 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6559 
6560 					/* Remove the mbuf from the page chain. */
6561 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6562 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6563 					DBRUN(sc->debug_pg_mbuf_alloc--);
6564 					sc->free_pg_bd++;
6565 
6566 					/* Unmap the page chain mbuf from DMA space. */
6567 					bus_dmamap_sync(sc->pg_mbuf_tag,
6568 						sc->pg_mbuf_map[sw_pg_cons_idx],
6569 						BUS_DMASYNC_POSTREAD);
6570 					bus_dmamap_unload(sc->pg_mbuf_tag,
6571 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6572 
6573 					/* Adjust the mbuf length. */
6574 					if (rem_len < m_pg->m_len) {
6575 						/* The mbuf chain is complete. */
6576 						m_pg->m_len = rem_len;
6577 						rem_len = 0;
6578 					} else {
6579 						/* More packet data is waiting. */
6580 						rem_len -= m_pg->m_len;
6581 					}
6582 
6583 					/* Concatenate the mbuf cluster to the mbuf. */
6584 					m_cat(m0, m_pg);
6585 
6586 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6587 				}
6588 
6589 				/* Set the total packet length. */
6590 				m0->m_pkthdr.len = pkt_len;
6591 
6592 			} else {
6593 				/*
6594 				 * The received packet is small and fits in a
6595 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6596 				 * FCS <= MHLEN).  In other words, the packet is
6597 				 * 154 bytes or less in size.
6598 				 */
6599 
6600 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6601 					"packet.\n", __FUNCTION__);
6602 
6603 				/* Set the total packet length. */
6604 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6605 			}
6606 		} else
6607 			/* Set the total packet length. */
6608 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6609 
6610 		/* Remove the trailing Ethernet FCS. */
6611 		m_adj(m0, -ETHER_CRC_LEN);
6612 
6613 		/* Check that the resulting mbuf chain is valid. */
6614 		DBRUN(m_sanity(m0, FALSE));
6615 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6616 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6617 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6618 		    m_print(m0, 128));
6619 
6620 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6621 		    sc->l2fhdr_error_sim_count++;
6622 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6623 
6624 		/* Check the received frame for errors. */
6625 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6626 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6627 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6628 			/* Log the error and release the mbuf. */
6629 			sc->l2fhdr_error_count++;
6630 			m_freem(m0);
6631 			m0 = NULL;
6632 			goto bce_rx_intr_next_rx;
6633 		}
6634 
6635 		/* Send the packet to the appropriate interface. */
6636 		m0->m_pkthdr.rcvif = ifp;
6637 
6638 		/* Assume no hardware checksum. */
6639 		m0->m_pkthdr.csum_flags = 0;
6640 
6641 		/* Validate the checksum if offload enabled. */
6642 		if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
6643 			/* Check for an IP datagram. */
6644 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6645 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6646 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6647 				DBRUN(sc->csum_offload_ip++);
6648 				/* Check if the IP checksum is valid. */
6649 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6650 					m0->m_pkthdr.csum_flags |=
6651 					    CSUM_IP_VALID;
6652 			}
6653 
6654 			/* Check for a valid TCP/UDP frame. */
6655 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6656 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6657 				/* Check for a good TCP/UDP checksum. */
6658 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6659 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6660 					DBRUN(sc->csum_offload_tcp_udp++);
6661 					m0->m_pkthdr.csum_data =
6662 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6663 					m0->m_pkthdr.csum_flags |=
6664 					    (CSUM_DATA_VALID
6665 					    | CSUM_PSEUDO_HDR);
6666 				}
6667 			}
6668 		}
6669 
6670 		/* Attach the VLAN tag.	*/
6671 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6672 		    !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6673 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6674 			if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
6675 				DBRUN(sc->vlan_tagged_frames_stripped++);
6676 				m0->m_pkthdr.ether_vtag =
6677 				    l2fhdr->l2_fhdr_vlan_tag;
6678 				m0->m_flags |= M_VLANTAG;
6679 			} else {
6680 				/*
6681 				 * bce(4) controllers can't disable VLAN
6682 				 * tag stripping if management firmware
6683 				 * (ASF/IPMI/UMP) is running. So we always
6684 				 * strip VLAN tag and manually reconstruct
6685 				 * the VLAN frame by appending stripped
6686 				 * VLAN tag in driver if VLAN tag stripping
6687 				 * was disabled.
6688 				 *
6689 				 * TODO: LLC SNAP handling.
6690 				 */
6691 				bcopy(mtod(m0, uint8_t *),
6692 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6693 				    ETHER_ADDR_LEN * 2);
6694 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6695 				vh = mtod(m0, struct ether_vlan_header *);
6696 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6697 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6698 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6699 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6700 			}
6701 		}
6702 
6703 		/* Increment received packet statistics. */
6704 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
6705 
6706 bce_rx_intr_next_rx:
6707 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6708 
6709 		/* If we have a packet, pass it up the stack */
6710 		if (m0) {
6711 			/* Make sure we don't lose our place when we release the lock. */
6712 			sc->rx_cons = sw_rx_cons;
6713 			sc->pg_cons = sw_pg_cons;
6714 
6715 			BCE_UNLOCK(sc);
6716 			if_input(ifp, m0);
6717 			BCE_LOCK(sc);
6718 
6719 			/* Recover our place. */
6720 			sw_rx_cons = sc->rx_cons;
6721 			sw_pg_cons = sc->pg_cons;
6722 		}
6723 
6724 		/* Refresh hw_cons to see if there's new work */
6725 		if (sw_rx_cons == hw_rx_cons)
6726 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6727 	}
6728 
6729 	/* No new packets.  Refill the page chain. */
6730 	if (bce_hdr_split == TRUE) {
6731 		sc->pg_cons = sw_pg_cons;
6732 		bce_fill_pg_chain(sc);
6733 	}
6734 
6735 	/* No new packets.  Refill the RX chain. */
6736 	sc->rx_cons = sw_rx_cons;
6737 	bce_fill_rx_chain(sc);
6738 
6739 	/* Prepare the page chain pages to be accessed by the NIC. */
6740 	for (int i = 0; i < sc->rx_pages; i++)
6741 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6742 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6743 
6744 	if (bce_hdr_split == TRUE) {
6745 		for (int i = 0; i < sc->pg_pages; i++)
6746 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6747 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6748 	}
6749 
6750 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6751 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6752 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6753 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6754 }
6755 
6756 /****************************************************************************/
6757 /* Reads the transmit consumer value from the status block (skipping over   */
6758 /* chain page pointer if necessary).                                        */
6759 /*                                                                          */
6760 /* Returns:                                                                 */
6761 /*   hw_cons                                                                */
6762 /****************************************************************************/
6763 static inline u16
6764 bce_get_hw_tx_cons(struct bce_softc *sc)
6765 {
6766 	u16 hw_cons;
6767 
6768 	mb();
6769 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6770 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6771 		hw_cons++;
6772 
6773 	return hw_cons;
6774 }
6775 
6776 /****************************************************************************/
6777 /* Handles transmit completion interrupt events.                            */
6778 /*                                                                          */
6779 /* Returns:                                                                 */
6780 /*   Nothing.                                                               */
6781 /****************************************************************************/
6782 static void
6783 bce_tx_intr(struct bce_softc *sc)
6784 {
6785 	if_t ifp = sc->bce_ifp;
6786 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6787 
6788 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6789 	DBRUN(sc->interrupts_tx++);
6790 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6791 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6792 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6793 
6794 	BCE_LOCK_ASSERT(sc);
6795 
6796 	/* Get the hardware's view of the TX consumer index. */
6797 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6798 	sw_tx_cons = sc->tx_cons;
6799 
6800 	/* Prevent speculative reads of the status block. */
6801 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6802 	    BUS_SPACE_BARRIER_READ);
6803 
6804 	/* Cycle through any completed TX chain page entries. */
6805 	while (sw_tx_cons != hw_tx_cons) {
6806 #ifdef BCE_DEBUG
6807 		struct tx_bd *txbd = NULL;
6808 #endif
6809 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6810 
6811 		DBPRINT(sc, BCE_INFO_SEND,
6812 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6813 		    "sw_tx_chain_cons = 0x%04X\n",
6814 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6815 
6816 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6817 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6818 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6819 		    (int) MAX_TX_BD_ALLOC);
6820 		    bce_breakpoint(sc));
6821 
6822 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6823 		    [TX_IDX(sw_tx_chain_cons)]);
6824 
6825 		DBRUNIF((txbd == NULL),
6826 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6827 		    __FILE__, __LINE__, sw_tx_chain_cons);
6828 		    bce_breakpoint(sc));
6829 
6830 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6831 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6832 
6833 		/*
6834 		 * Free the associated mbuf. Remember
6835 		 * that only the last tx_bd of a packet
6836 		 * has an mbuf pointer and DMA map.
6837 		 */
6838 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6839 			/* Validate that this is the last tx_bd. */
6840 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6841 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6842 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6843 			    bce_breakpoint(sc));
6844 
6845 			DBRUNMSG(BCE_INFO_SEND,
6846 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6847 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6848 			    sw_tx_chain_cons));
6849 
6850 			/* Unmap the mbuf. */
6851 			bus_dmamap_unload(sc->tx_mbuf_tag,
6852 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6853 
6854 			/* Free the mbuf. */
6855 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6856 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6857 			DBRUN(sc->debug_tx_mbuf_alloc--);
6858 
6859 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
6860 		}
6861 
6862 		sc->used_tx_bd--;
6863 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6864 
6865 		/* Refresh hw_cons to see if there's new work. */
6866 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6867 
6868 		/* Prevent speculative reads of the status block. */
6869 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6870 		    BUS_SPACE_BARRIER_READ);
6871 	}
6872 
6873 	/* Clear the TX timeout timer. */
6874 	sc->watchdog_timer = 0;
6875 
6876 	/* Clear the tx hardware queue full flag. */
6877 	if (sc->used_tx_bd < sc->max_tx_bd) {
6878 		DBRUNIF((if_getdrvflags(ifp) & IFF_DRV_OACTIVE),
6879 		    DBPRINT(sc, BCE_INFO_SEND,
6880 		    "%s(): Open TX chain! %d/%d (used/total)\n",
6881 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6882 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
6883 	}
6884 
6885 	sc->tx_cons = sw_tx_cons;
6886 
6887 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6888 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6889 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6890 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6891 }
6892 
6893 /****************************************************************************/
6894 /* Disables interrupt generation.                                           */
6895 /*                                                                          */
6896 /* Returns:                                                                 */
6897 /*   Nothing.                                                               */
6898 /****************************************************************************/
6899 static void
6900 bce_disable_intr(struct bce_softc *sc)
6901 {
6902 	DBENTER(BCE_VERBOSE_INTR);
6903 
6904 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6905 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6906 
6907 	DBEXIT(BCE_VERBOSE_INTR);
6908 }
6909 
6910 /****************************************************************************/
6911 /* Enables interrupt generation.                                            */
6912 /*                                                                          */
6913 /* Returns:                                                                 */
6914 /*   Nothing.                                                               */
6915 /****************************************************************************/
6916 static void
6917 bce_enable_intr(struct bce_softc *sc, int coal_now)
6918 {
6919 	DBENTER(BCE_VERBOSE_INTR);
6920 
6921 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6922 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6923 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6924 
6925 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6926 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6927 
6928 	/* Force an immediate interrupt (whether there is new data or not). */
6929 	if (coal_now)
6930 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6931 
6932 	DBEXIT(BCE_VERBOSE_INTR);
6933 }
6934 
6935 /****************************************************************************/
6936 /* Handles controller initialization.                                       */
6937 /*                                                                          */
6938 /* Returns:                                                                 */
6939 /*   Nothing.                                                               */
6940 /****************************************************************************/
6941 static void
6942 bce_init_locked(struct bce_softc *sc)
6943 {
6944 	if_t ifp;
6945 	u32 ether_mtu = 0;
6946 
6947 	DBENTER(BCE_VERBOSE_RESET);
6948 
6949 	BCE_LOCK_ASSERT(sc);
6950 
6951 	ifp = sc->bce_ifp;
6952 
6953 	/* Check if the driver is still running and bail out if it is. */
6954 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6955 		goto bce_init_locked_exit;
6956 
6957 	bce_stop(sc);
6958 
6959 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6960 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6961 		    __FILE__, __LINE__);
6962 		goto bce_init_locked_exit;
6963 	}
6964 
6965 	if (bce_chipinit(sc)) {
6966 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6967 		    __FILE__, __LINE__);
6968 		goto bce_init_locked_exit;
6969 	}
6970 
6971 	if (bce_blockinit(sc)) {
6972 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6973 		    __FILE__, __LINE__);
6974 		goto bce_init_locked_exit;
6975 	}
6976 
6977 	/* Load our MAC address. */
6978 	bcopy(if_getlladdr(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6979 	bce_set_mac_addr(sc);
6980 
6981 	if (bce_hdr_split == FALSE)
6982 		bce_get_rx_buffer_sizes(sc, if_getmtu(ifp));
6983 	/*
6984 	 * Calculate and program the hardware Ethernet MTU
6985  	 * size. Be generous on the receive if we have room
6986  	 * and allowed by the user.
6987 	 */
6988 	if (bce_strict_rx_mtu == TRUE)
6989 		ether_mtu = if_getmtu(ifp);
6990 	else {
6991 		if (bce_hdr_split == TRUE) {
6992 			if (if_getmtu(ifp) <= sc->rx_bd_mbuf_data_len + MCLBYTES)
6993 				ether_mtu = sc->rx_bd_mbuf_data_len +
6994 				    MCLBYTES;
6995 			else
6996 				ether_mtu = if_getmtu(ifp);
6997 		} else {
6998 			if (if_getmtu(ifp) <= sc->rx_bd_mbuf_data_len)
6999 				ether_mtu = sc->rx_bd_mbuf_data_len;
7000 			else
7001 				ether_mtu = if_getmtu(ifp);
7002 		}
7003 	}
7004 
7005 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7006 
7007 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7008 	    __FUNCTION__, ether_mtu);
7009 
7010 	/* Program the mtu, enabling jumbo frame support if necessary. */
7011 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7012 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7013 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7014 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7015 	else
7016 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7017 
7018 	/* Program appropriate promiscuous/multicast filtering. */
7019 	bce_set_rx_mode(sc);
7020 
7021 	if (bce_hdr_split == TRUE) {
7022 		/* Init page buffer descriptor chain. */
7023 		bce_init_pg_chain(sc);
7024 	}
7025 
7026 	/* Init RX buffer descriptor chain. */
7027 	bce_init_rx_chain(sc);
7028 
7029 	/* Init TX buffer descriptor chain. */
7030 	bce_init_tx_chain(sc);
7031 
7032 	/* Enable host interrupts. */
7033 	bce_enable_intr(sc, 1);
7034 
7035 	bce_ifmedia_upd_locked(ifp);
7036 
7037 	/* Let the OS know the driver is up and running. */
7038 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
7039 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
7040 
7041 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7042 
7043 bce_init_locked_exit:
7044 	DBEXIT(BCE_VERBOSE_RESET);
7045 }
7046 
7047 /****************************************************************************/
7048 /* Initialize the controller just enough so that any management firmware    */
7049 /* running on the device will continue to operate correctly.                */
7050 /*                                                                          */
7051 /* Returns:                                                                 */
7052 /*   Nothing.                                                               */
7053 /****************************************************************************/
7054 static void
7055 bce_mgmt_init_locked(struct bce_softc *sc)
7056 {
7057 	if_t ifp;
7058 
7059 	DBENTER(BCE_VERBOSE_RESET);
7060 
7061 	BCE_LOCK_ASSERT(sc);
7062 
7063 	/* Bail out if management firmware is not running. */
7064 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7065 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7066 		    "No management firmware running...\n");
7067 		goto bce_mgmt_init_locked_exit;
7068 	}
7069 
7070 	ifp = sc->bce_ifp;
7071 
7072 	/* Enable all critical blocks in the MAC. */
7073 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7074 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7075 	DELAY(20);
7076 
7077 	bce_ifmedia_upd_locked(ifp);
7078 
7079 bce_mgmt_init_locked_exit:
7080 	DBEXIT(BCE_VERBOSE_RESET);
7081 }
7082 
7083 /****************************************************************************/
7084 /* Handles controller initialization when called from an unlocked routine.  */
7085 /*                                                                          */
7086 /* Returns:                                                                 */
7087 /*   Nothing.                                                               */
7088 /****************************************************************************/
7089 static void
7090 bce_init(void *xsc)
7091 {
7092 	struct bce_softc *sc = xsc;
7093 
7094 	DBENTER(BCE_VERBOSE_RESET);
7095 
7096 	BCE_LOCK(sc);
7097 	bce_init_locked(sc);
7098 	BCE_UNLOCK(sc);
7099 
7100 	DBEXIT(BCE_VERBOSE_RESET);
7101 }
7102 
7103 /****************************************************************************/
7104 /* Modifies an mbuf for TSO on the hardware.                                */
7105 /*                                                                          */
7106 /* Returns:                                                                 */
7107 /*   Pointer to a modified mbuf.                                            */
7108 /****************************************************************************/
7109 static struct mbuf *
7110 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7111 {
7112 	struct mbuf *m;
7113 	struct ether_header *eh;
7114 	struct ip *ip;
7115 	struct tcphdr *th;
7116 	u16 etype;
7117 	int hdr_len __unused, ip_len __unused, ip_hlen = 0, tcp_hlen = 0;
7118 
7119 	DBRUN(sc->tso_frames_requested++);
7120 
7121 	ip_len = 0;
7122 	/* Controller may modify mbuf chains. */
7123 	if (M_WRITABLE(*m_head) == 0) {
7124 		m = m_dup(*m_head, M_NOWAIT);
7125 		m_freem(*m_head);
7126 		if (m == NULL) {
7127 			sc->mbuf_alloc_failed_count++;
7128 			*m_head = NULL;
7129 			return (NULL);
7130 		}
7131 		*m_head = m;
7132 	}
7133 
7134 	/*
7135 	 * For TSO the controller needs two pieces of info,
7136 	 * the MSS and the IP+TCP options length.
7137 	 */
7138 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7139 	if (m == NULL) {
7140 		*m_head = NULL;
7141 		return (NULL);
7142 	}
7143 	eh = mtod(m, struct ether_header *);
7144 	etype = ntohs(eh->ether_type);
7145 
7146 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7147 	switch (etype) {
7148 	case ETHERTYPE_IP:
7149 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7150 		/* TSO only supported for TCP protocol. */
7151 		if (ip->ip_p != IPPROTO_TCP) {
7152 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7153 			    __FILE__, __LINE__);
7154 			m_freem(*m_head);
7155 			*m_head = NULL;
7156 			return (NULL);
7157 		}
7158 
7159 		/* Get IP header length in bytes (min 20) */
7160 		ip_hlen = ip->ip_hl << 2;
7161 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7162 		    sizeof(struct tcphdr));
7163 		if (m == NULL) {
7164 			*m_head = NULL;
7165 			return (NULL);
7166 		}
7167 
7168 		/* Get the TCP header length in bytes (min 20) */
7169 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7170 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7171 		tcp_hlen = (th->th_off << 2);
7172 
7173 		/* Make sure all IP/TCP options live in the same buffer. */
7174 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7175 		    tcp_hlen);
7176 		if (m == NULL) {
7177 			*m_head = NULL;
7178 			return (NULL);
7179 		}
7180 
7181 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7182 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7183 		ip_len = ip->ip_len;
7184 		ip->ip_len = 0;
7185 		ip->ip_sum = 0;
7186 		break;
7187 	case ETHERTYPE_IPV6:
7188 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7189 		    __FILE__, __LINE__);
7190 		m_freem(*m_head);
7191 		*m_head = NULL;
7192 		return (NULL);
7193 		/* NOT REACHED */
7194 	default:
7195 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7196 		    __FILE__, __LINE__);
7197 		m_freem(*m_head);
7198 		*m_head = NULL;
7199 		return (NULL);
7200 	}
7201 
7202 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7203 
7204 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7205 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7206 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7207 	    tcp_hlen, ip_len);
7208 
7209 	/* Set the LSO flag in the TX BD */
7210 	*flags |= TX_BD_FLAGS_SW_LSO;
7211 
7212 	/* Set the length of IP + TCP options (in 32 bit words) */
7213 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7214 	    sizeof(struct tcphdr)) >> 2) << 8);
7215 
7216 	DBRUN(sc->tso_frames_completed++);
7217 	return (*m_head);
7218 }
7219 
7220 /****************************************************************************/
7221 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7222 /* memory visible to the controller.                                        */
7223 /*                                                                          */
7224 /* Returns:                                                                 */
7225 /*   0 for success, positive value for failure.                             */
7226 /* Modified:                                                                */
7227 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7228 /****************************************************************************/
7229 static int
7230 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7231 {
7232 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7233 	bus_dmamap_t map;
7234 	struct tx_bd *txbd = NULL;
7235 	struct mbuf *m0;
7236 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7237 	u32 prod_bseq;
7238 
7239 #ifdef BCE_DEBUG
7240 	u16 debug_prod;
7241 #endif
7242 
7243 	int i, error, nsegs, rc = 0;
7244 
7245 	DBENTER(BCE_VERBOSE_SEND);
7246 
7247 	/* Make sure we have room in the TX chain. */
7248 	if (sc->used_tx_bd >= sc->max_tx_bd)
7249 		goto bce_tx_encap_exit;
7250 
7251 	/* Transfer any checksum offload flags to the bd. */
7252 	m0 = *m_head;
7253 	if (m0->m_pkthdr.csum_flags) {
7254 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7255 			m0 = bce_tso_setup(sc, m_head, &flags);
7256 			if (m0 == NULL) {
7257 				DBRUN(sc->tso_frames_failed++);
7258 				goto bce_tx_encap_exit;
7259 			}
7260 			mss = htole16(m0->m_pkthdr.tso_segsz);
7261 		} else {
7262 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7263 				flags |= TX_BD_FLAGS_IP_CKSUM;
7264 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7265 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7266 		}
7267 	}
7268 
7269 	/* Transfer any VLAN tags to the bd. */
7270 	if (m0->m_flags & M_VLANTAG) {
7271 		flags |= TX_BD_FLAGS_VLAN_TAG;
7272 		vlan_tag = m0->m_pkthdr.ether_vtag;
7273 	}
7274 
7275 	/* Map the mbuf into DMAable memory. */
7276 	prod = sc->tx_prod;
7277 	chain_prod = TX_CHAIN_IDX(prod);
7278 	map = sc->tx_mbuf_map[chain_prod];
7279 
7280 	/* Map the mbuf into our DMA address space. */
7281 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7282 	    segs, &nsegs, BUS_DMA_NOWAIT);
7283 
7284 	/* Check if the DMA mapping was successful */
7285 	if (error == EFBIG) {
7286 		sc->mbuf_frag_count++;
7287 
7288 		/* Try to defrag the mbuf. */
7289 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7290 		if (m0 == NULL) {
7291 			/* Defrag was unsuccessful */
7292 			m_freem(*m_head);
7293 			*m_head = NULL;
7294 			sc->mbuf_alloc_failed_count++;
7295 			rc = ENOBUFS;
7296 			goto bce_tx_encap_exit;
7297 		}
7298 
7299 		/* Defrag was successful, try mapping again */
7300 		*m_head = m0;
7301 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7302 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7303 
7304 		/* Still getting an error after a defrag. */
7305 		if (error == ENOMEM) {
7306 			/* Insufficient DMA buffers available. */
7307 			sc->dma_map_addr_tx_failed_count++;
7308 			rc = error;
7309 			goto bce_tx_encap_exit;
7310 		} else if (error != 0) {
7311 			/* Release it and return an error. */
7312 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7313 			    "TX chain!\n", __FILE__, __LINE__);
7314 			m_freem(m0);
7315 			*m_head = NULL;
7316 			sc->dma_map_addr_tx_failed_count++;
7317 			rc = ENOBUFS;
7318 			goto bce_tx_encap_exit;
7319 		}
7320 	} else if (error == ENOMEM) {
7321 		/* Insufficient DMA buffers available. */
7322 		sc->dma_map_addr_tx_failed_count++;
7323 		rc = error;
7324 		goto bce_tx_encap_exit;
7325 	} else if (error != 0) {
7326 		m_freem(m0);
7327 		*m_head = NULL;
7328 		sc->dma_map_addr_tx_failed_count++;
7329 		rc = error;
7330 		goto bce_tx_encap_exit;
7331 	}
7332 
7333 	/* Make sure there's room in the chain */
7334 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7335 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7336 		rc = ENOBUFS;
7337 		goto bce_tx_encap_exit;
7338 	}
7339 
7340 	/* prod points to an empty tx_bd at this point. */
7341 	prod_bseq  = sc->tx_prod_bseq;
7342 
7343 #ifdef BCE_DEBUG
7344 	debug_prod = chain_prod;
7345 #endif
7346 
7347 	DBPRINT(sc, BCE_INFO_SEND,
7348 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7349 	    "prod_bseq = 0x%08X\n",
7350 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7351 
7352 	/*
7353 	 * Cycle through each mbuf segment that makes up
7354 	 * the outgoing frame, gathering the mapping info
7355 	 * for that segment and creating a tx_bd for
7356 	 * the mbuf.
7357 	 */
7358 	for (i = 0; i < nsegs ; i++) {
7359 		chain_prod = TX_CHAIN_IDX(prod);
7360 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7361 		    [TX_IDX(chain_prod)];
7362 
7363 		txbd->tx_bd_haddr_lo =
7364 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7365 		txbd->tx_bd_haddr_hi =
7366 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7367 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7368 		    htole16(segs[i].ds_len);
7369 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7370 		txbd->tx_bd_flags = htole16(flags);
7371 		prod_bseq += segs[i].ds_len;
7372 		if (i == 0)
7373 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7374 		prod = NEXT_TX_BD(prod);
7375 	}
7376 
7377 	/* Set the END flag on the last TX buffer descriptor. */
7378 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7379 
7380 	DBRUNMSG(BCE_EXTREME_SEND,
7381 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7382 
7383 	/*
7384 	 * Ensure that the mbuf pointer for this transmission
7385 	 * is placed at the array index of the last
7386 	 * descriptor in this chain.  This is done
7387 	 * because a single map is used for all
7388 	 * segments of the mbuf and we don't want to
7389 	 * unload the map before all of the segments
7390 	 * have been freed.
7391 	 */
7392 	sc->tx_mbuf_ptr[chain_prod] = m0;
7393 	sc->used_tx_bd += nsegs;
7394 
7395 	/* Update some debug statistic counters */
7396 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7397 	    sc->tx_hi_watermark = sc->used_tx_bd);
7398 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7399 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7400 
7401 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7402 
7403 	/* prod points to the next free tx_bd at this point. */
7404 	sc->tx_prod = prod;
7405 	sc->tx_prod_bseq = prod_bseq;
7406 
7407 	/* Tell the chip about the waiting TX frames. */
7408 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7409 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7410 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7411 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7412 
7413 bce_tx_encap_exit:
7414 	DBEXIT(BCE_VERBOSE_SEND);
7415 	return(rc);
7416 }
7417 
7418 /****************************************************************************/
7419 /* Main transmit routine when called from another routine with a lock.      */
7420 /*                                                                          */
7421 /* Returns:                                                                 */
7422 /*   Nothing.                                                               */
7423 /****************************************************************************/
7424 static void
7425 bce_start_locked(if_t ifp)
7426 {
7427 	struct bce_softc *sc = if_getsoftc(ifp);
7428 	struct mbuf *m_head = NULL;
7429 	int count = 0;
7430 	u16 tx_prod, tx_chain_prod __unused;
7431 
7432 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7433 
7434 	BCE_LOCK_ASSERT(sc);
7435 
7436 	/* prod points to the next free tx_bd. */
7437 	tx_prod = sc->tx_prod;
7438 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7439 
7440 	DBPRINT(sc, BCE_INFO_SEND,
7441 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7442 	    "tx_prod_bseq = 0x%08X\n",
7443 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7444 
7445 	/* If there's no link or the transmit queue is empty then just exit. */
7446 	if (sc->bce_link_up == FALSE) {
7447 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7448 		    __FUNCTION__);
7449 		goto bce_start_locked_exit;
7450 	}
7451 
7452 	if (if_sendq_empty(ifp)) {
7453 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7454 		    __FUNCTION__);
7455 		goto bce_start_locked_exit;
7456 	}
7457 
7458 	/*
7459 	 * Keep adding entries while there is space in the ring.
7460 	 */
7461 	while (sc->used_tx_bd < sc->max_tx_bd) {
7462 		/* Check for any frames to send. */
7463 		m_head = if_dequeue(ifp);
7464 
7465 		/* Stop when the transmit queue is empty. */
7466 		if (m_head == NULL)
7467 			break;
7468 
7469 		/*
7470 		 * Pack the data into the transmit ring. If we
7471 		 * don't have room, place the mbuf back at the
7472 		 * head of the queue and set the OACTIVE flag
7473 		 * to wait for the NIC to drain the chain.
7474 		 */
7475 		if (bce_tx_encap(sc, &m_head)) {
7476 			if (m_head != NULL)
7477 				if_sendq_prepend(ifp, m_head);
7478 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
7479 			DBPRINT(sc, BCE_INFO_SEND,
7480 			    "TX chain is closed for business! Total "
7481 			    "tx_bd used = %d\n", sc->used_tx_bd);
7482 			break;
7483 		}
7484 
7485 		count++;
7486 
7487 		/* Send a copy of the frame to any BPF listeners. */
7488 		ETHER_BPF_MTAP(ifp, m_head);
7489 	}
7490 
7491 	/* Exit if no packets were dequeued. */
7492 	if (count == 0) {
7493 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7494 		    "dequeued\n", __FUNCTION__);
7495 		goto bce_start_locked_exit;
7496 	}
7497 
7498 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7499 	    "send queue.\n", __FUNCTION__, count);
7500 
7501 	/* Set the tx timeout. */
7502 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7503 
7504 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7505 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7506 
7507 bce_start_locked_exit:
7508 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7509 }
7510 
7511 /****************************************************************************/
7512 /* Main transmit routine when called from another routine without a lock.   */
7513 /*                                                                          */
7514 /* Returns:                                                                 */
7515 /*   Nothing.                                                               */
7516 /****************************************************************************/
7517 static void
7518 bce_start(if_t ifp)
7519 {
7520 	struct bce_softc *sc = if_getsoftc(ifp);
7521 
7522 	DBENTER(BCE_VERBOSE_SEND);
7523 
7524 	BCE_LOCK(sc);
7525 	bce_start_locked(ifp);
7526 	BCE_UNLOCK(sc);
7527 
7528 	DBEXIT(BCE_VERBOSE_SEND);
7529 }
7530 
7531 /****************************************************************************/
7532 /* Handles any IOCTL calls from the operating system.                       */
7533 /*                                                                          */
7534 /* Returns:                                                                 */
7535 /*   0 for success, positive value for failure.                             */
7536 /****************************************************************************/
7537 static int
7538 bce_ioctl(if_t ifp, u_long command, caddr_t data)
7539 {
7540 	struct bce_softc *sc = if_getsoftc(ifp);
7541 	struct ifreq *ifr = (struct ifreq *) data;
7542 	struct mii_data *mii;
7543 	int mask, error = 0;
7544 
7545 	DBENTER(BCE_VERBOSE_MISC);
7546 
7547 	switch(command) {
7548 	/* Set the interface MTU. */
7549 	case SIOCSIFMTU:
7550 		/* Check that the MTU setting is supported. */
7551 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7552 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7553 			error = EINVAL;
7554 			break;
7555 		}
7556 
7557 		DBPRINT(sc, BCE_INFO_MISC,
7558 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7559 		    (int) if_getmtu(ifp), (int) ifr->ifr_mtu);
7560 
7561 		BCE_LOCK(sc);
7562 		if_setmtu(ifp, ifr->ifr_mtu);
7563 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
7564 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
7565 			bce_init_locked(sc);
7566 		}
7567 		BCE_UNLOCK(sc);
7568 		break;
7569 
7570 	/* Set interface flags. */
7571 	case SIOCSIFFLAGS:
7572 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7573 
7574 		BCE_LOCK(sc);
7575 
7576 		/* Check if the interface is up. */
7577 		if (if_getflags(ifp) & IFF_UP) {
7578 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
7579 				/* Change promiscuous/multicast flags as necessary. */
7580 				bce_set_rx_mode(sc);
7581 			} else {
7582 				/* Start the HW */
7583 				bce_init_locked(sc);
7584 			}
7585 		} else {
7586 			/* The interface is down, check if driver is running. */
7587 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
7588 				bce_stop(sc);
7589 
7590 				/* If MFW is running, restart the controller a bit. */
7591 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7592 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7593 					bce_chipinit(sc);
7594 					bce_mgmt_init_locked(sc);
7595 				}
7596 			}
7597 		}
7598 
7599 		BCE_UNLOCK(sc);
7600 		break;
7601 
7602 	/* Add/Delete multicast address */
7603 	case SIOCADDMULTI:
7604 	case SIOCDELMULTI:
7605 		DBPRINT(sc, BCE_VERBOSE_MISC,
7606 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7607 
7608 		BCE_LOCK(sc);
7609 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
7610 			bce_set_rx_mode(sc);
7611 		BCE_UNLOCK(sc);
7612 
7613 		break;
7614 
7615 	/* Set/Get Interface media */
7616 	case SIOCSIFMEDIA:
7617 	case SIOCGIFMEDIA:
7618 		DBPRINT(sc, BCE_VERBOSE_MISC,
7619 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7620 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7621 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7622 			    command);
7623 		else {
7624 			mii = device_get_softc(sc->bce_miibus);
7625 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7626 			    command);
7627 		}
7628 		break;
7629 
7630 	/* Set interface capability */
7631 	case SIOCSIFCAP:
7632 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
7633 		DBPRINT(sc, BCE_INFO_MISC,
7634 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7635 
7636 		/* Toggle the TX checksum capabilities enable flag. */
7637 		if (mask & IFCAP_TXCSUM &&
7638 		    if_getcapabilities(ifp) & IFCAP_TXCSUM) {
7639 			if_togglecapenable(ifp, IFCAP_TXCSUM);
7640 			if (IFCAP_TXCSUM & if_getcapenable(ifp))
7641 				if_sethwassistbits(ifp, BCE_IF_HWASSIST, 0);
7642 			else
7643 				if_sethwassistbits(ifp, 0, BCE_IF_HWASSIST);
7644 		}
7645 
7646 		/* Toggle the RX checksum capabilities enable flag. */
7647 		if (mask & IFCAP_RXCSUM &&
7648 		    if_getcapabilities(ifp) & IFCAP_RXCSUM)
7649 			if_togglecapenable(ifp, IFCAP_RXCSUM);
7650 
7651 		/* Toggle the TSO capabilities enable flag. */
7652 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7653 		    if_getcapabilities(ifp) & IFCAP_TSO4) {
7654 			if_togglecapenable(ifp, IFCAP_TSO4);
7655 			if (IFCAP_TSO4 & if_getcapenable(ifp))
7656 				if_sethwassistbits(ifp, CSUM_TSO, 0);
7657 			else
7658 				if_sethwassistbits(ifp, 0, CSUM_TSO);
7659 		}
7660 
7661 		if (mask & IFCAP_VLAN_HWCSUM &&
7662 		    if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM)
7663 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
7664 
7665 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7666 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
7667 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
7668 		/*
7669 		 * Don't actually disable VLAN tag stripping as
7670 		 * management firmware (ASF/IPMI/UMP) requires the
7671 		 * feature. If VLAN tag stripping is disabled driver
7672 		 * will manually reconstruct the VLAN frame by
7673 		 * appending stripped VLAN tag.
7674 		 */
7675 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7676 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING)) {
7677 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
7678 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
7679 			    == 0)
7680 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
7681 		}
7682 		VLAN_CAPABILITIES(ifp);
7683 		break;
7684 	default:
7685 		/* We don't know how to handle the IOCTL, pass it on. */
7686 		error = ether_ioctl(ifp, command, data);
7687 		break;
7688 	}
7689 
7690 	DBEXIT(BCE_VERBOSE_MISC);
7691 	return(error);
7692 }
7693 
7694 /****************************************************************************/
7695 /* Transmit timeout handler.                                                */
7696 /*                                                                          */
7697 /* Returns:                                                                 */
7698 /*   Nothing.                                                               */
7699 /****************************************************************************/
7700 static void
7701 bce_watchdog(struct bce_softc *sc)
7702 {
7703 	uint32_t status;
7704 
7705 	DBENTER(BCE_EXTREME_SEND);
7706 
7707 	BCE_LOCK_ASSERT(sc);
7708 
7709 	status = 0;
7710 	/* If the watchdog timer hasn't expired then just exit. */
7711 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7712 		goto bce_watchdog_exit;
7713 
7714 	status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7715 	/* If pause frames are active then don't reset the hardware. */
7716 	if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7717 		if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7718 			/*
7719 			 * If link partner has us in XOFF state then wait for
7720 			 * the condition to clear.
7721 			 */
7722 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7723 			goto bce_watchdog_exit;
7724 		} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7725 			(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7726 			/*
7727 			 * If we're not currently XOFF'ed but have recently
7728 			 * been XOFF'd/XON'd then assume that's delaying TX
7729 			 * this time around.
7730 			 */
7731 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7732 			goto bce_watchdog_exit;
7733 		}
7734 		/*
7735 		 * Any other condition is unexpected and the controller
7736 		 * should be reset.
7737 		 */
7738 	}
7739 
7740 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7741 	    __FILE__, __LINE__);
7742 
7743 	DBRUNMSG(BCE_INFO,
7744 	    bce_dump_driver_state(sc);
7745 	    bce_dump_status_block(sc);
7746 	    bce_dump_stats_block(sc);
7747 	    bce_dump_ftqs(sc);
7748 	    bce_dump_txp_state(sc, 0);
7749 	    bce_dump_rxp_state(sc, 0);
7750 	    bce_dump_tpat_state(sc, 0);
7751 	    bce_dump_cp_state(sc, 0);
7752 	    bce_dump_com_state(sc, 0));
7753 
7754 	DBRUN(bce_breakpoint(sc));
7755 
7756 	if_setdrvflagbits(sc->bce_ifp, 0, IFF_DRV_RUNNING);
7757 
7758 	bce_init_locked(sc);
7759 	sc->watchdog_timeouts++;
7760 
7761 bce_watchdog_exit:
7762 	REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7763 	DBEXIT(BCE_EXTREME_SEND);
7764 }
7765 
7766 /*
7767  * Interrupt handler.
7768  */
7769 /****************************************************************************/
7770 /* Main interrupt entry point.  Verifies that the controller generated the  */
7771 /* interrupt and then calls a separate routine for handle the various       */
7772 /* interrupt causes (PHY, TX, RX).                                          */
7773 /*                                                                          */
7774 /* Returns:                                                                 */
7775 /*   Nothing.                                                               */
7776 /****************************************************************************/
7777 static void
7778 bce_intr(void *xsc)
7779 {
7780 	struct bce_softc *sc;
7781 	if_t ifp;
7782 	u32 status_attn_bits;
7783 	u16 hw_rx_cons, hw_tx_cons;
7784 
7785 	sc = xsc;
7786 	ifp = sc->bce_ifp;
7787 
7788 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7789 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7790 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7791 
7792 	BCE_LOCK(sc);
7793 
7794 	DBRUN(sc->interrupts_generated++);
7795 
7796 	/* Synchnorize before we read from interface's status block */
7797 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7798 
7799 	/*
7800 	 * If the hardware status block index matches the last value read
7801 	 * by the driver and we haven't asserted our interrupt then there's
7802 	 * nothing to do.  This may only happen in case of INTx due to the
7803 	 * interrupt arriving at the CPU before the status block is updated.
7804 	 */
7805 	if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7806 	    sc->status_block->status_idx == sc->last_status_idx &&
7807 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7808 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7809 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7810 		    __FUNCTION__);
7811 		goto bce_intr_exit;
7812 	}
7813 
7814 	/* Ack the interrupt and stop others from occurring. */
7815 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7816 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7817 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7818 
7819 	/* Check if the hardware has finished any work. */
7820 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7821 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7822 
7823 	/* Keep processing data as long as there is work to do. */
7824 	for (;;) {
7825 		status_attn_bits = sc->status_block->status_attn_bits;
7826 
7827 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7828 		    BCE_PRINTF("Simulating unexpected status attention "
7829 		    "bit set.");
7830 		    sc->unexpected_attention_sim_count++;
7831 		    status_attn_bits = status_attn_bits |
7832 		    STATUS_ATTN_BITS_PARITY_ERROR);
7833 
7834 		/* Was it a link change interrupt? */
7835 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7836 		    (sc->status_block->status_attn_bits_ack &
7837 		     STATUS_ATTN_BITS_LINK_STATE)) {
7838 			bce_phy_intr(sc);
7839 
7840 			/* Clear transient updates during link state change. */
7841 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7842 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7843 			REG_RD(sc, BCE_HC_COMMAND);
7844 		}
7845 
7846 		/* If any other attention is asserted, the chip is toast. */
7847 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7848 		    (sc->status_block->status_attn_bits_ack &
7849 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7850 			sc->unexpected_attention_count++;
7851 
7852 			BCE_PRINTF("%s(%d): Fatal attention detected: "
7853 			    "0x%08X\n",	__FILE__, __LINE__,
7854 			    sc->status_block->status_attn_bits);
7855 
7856 			DBRUNMSG(BCE_FATAL,
7857 			    if (unexpected_attention_sim_control == 0)
7858 				bce_breakpoint(sc));
7859 
7860 			bce_init_locked(sc);
7861 			goto bce_intr_exit;
7862 		}
7863 
7864 		/* Check for any completed RX frames. */
7865 		if (hw_rx_cons != sc->hw_rx_cons)
7866 			bce_rx_intr(sc);
7867 
7868 		/* Check for any completed TX frames. */
7869 		if (hw_tx_cons != sc->hw_tx_cons)
7870 			bce_tx_intr(sc);
7871 
7872 		/* Save status block index value for the next interrupt. */
7873 		sc->last_status_idx = sc->status_block->status_idx;
7874 
7875  		/*
7876  		 * Prevent speculative reads from getting
7877  		 * ahead of the status block.
7878 		 */
7879 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7880 		    BUS_SPACE_BARRIER_READ);
7881 
7882  		/*
7883  		 * If there's no work left then exit the
7884  		 * interrupt service routine.
7885 		 */
7886 		hw_rx_cons = bce_get_hw_rx_cons(sc);
7887 		hw_tx_cons = bce_get_hw_tx_cons(sc);
7888 
7889 		if ((hw_rx_cons == sc->hw_rx_cons) &&
7890 		    (hw_tx_cons == sc->hw_tx_cons))
7891 			break;
7892 	}
7893 
7894 	bus_dmamap_sync(sc->status_tag,	sc->status_map, BUS_DMASYNC_PREREAD);
7895 
7896 	/* Re-enable interrupts. */
7897 	bce_enable_intr(sc, 0);
7898 
7899 	/* Handle any frames that arrived while handling the interrupt. */
7900 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
7901 	    !if_sendq_empty(ifp))
7902 		bce_start_locked(ifp);
7903 
7904 bce_intr_exit:
7905 	BCE_UNLOCK(sc);
7906 
7907 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7908 }
7909 
7910 /****************************************************************************/
7911 /* Programs the various packet receive modes (broadcast and multicast).     */
7912 /*                                                                          */
7913 /* Returns:                                                                 */
7914 /*   Nothing.                                                               */
7915 /****************************************************************************/
7916 static u_int
7917 bce_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
7918 {
7919 	u32 *hashes = arg;
7920 	int h;
7921 
7922 	h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0xFF;
7923 	hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7924 
7925 	return (1);
7926 }
7927 
7928 static void
7929 bce_set_rx_mode(struct bce_softc *sc)
7930 {
7931 	if_t ifp;
7932 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7933 	u32 rx_mode, sort_mode;
7934 	int i;
7935 
7936 	DBENTER(BCE_VERBOSE_MISC);
7937 
7938 	BCE_LOCK_ASSERT(sc);
7939 
7940 	ifp = sc->bce_ifp;
7941 
7942 	/* Initialize receive mode default settings. */
7943 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7944 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7945 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7946 
7947 	/*
7948 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7949 	 * be enbled.
7950 	 */
7951 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7952 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7953 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7954 
7955 	/*
7956 	 * Check for promiscuous, all multicast, or selected
7957 	 * multicast address filtering.
7958 	 */
7959 	if (if_getflags(ifp) & IFF_PROMISC) {
7960 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7961 
7962 		/* Enable promiscuous mode. */
7963 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7964 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7965 	} else if (if_getflags(ifp) & IFF_ALLMULTI) {
7966 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7967 
7968 		/* Enable all multicast addresses. */
7969 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7970 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
7971 			    0xffffffff);
7972 		}
7973 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7974 	} else {
7975 		/* Accept one or more multicast(s). */
7976 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7977 		if_foreach_llmaddr(ifp, bce_hash_maddr, hashes);
7978 
7979 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7980 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7981 
7982 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7983 	}
7984 
7985 	/* Only make changes if the recive mode has actually changed. */
7986 	if (rx_mode != sc->rx_mode) {
7987 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7988 		    "0x%08X\n", rx_mode);
7989 
7990 		sc->rx_mode = rx_mode;
7991 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7992 	}
7993 
7994 	/* Disable and clear the existing sort before enabling a new sort. */
7995 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7996 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7997 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7998 
7999 	DBEXIT(BCE_VERBOSE_MISC);
8000 }
8001 
8002 /****************************************************************************/
8003 /* Called periodically to updates statistics from the controllers           */
8004 /* statistics block.                                                        */
8005 /*                                                                          */
8006 /* Returns:                                                                 */
8007 /*   Nothing.                                                               */
8008 /****************************************************************************/
8009 static void
8010 bce_stats_update(struct bce_softc *sc)
8011 {
8012 	struct statistics_block *stats;
8013 
8014 	DBENTER(BCE_EXTREME_MISC);
8015 
8016 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8017 
8018 	stats = (struct statistics_block *) sc->stats_block;
8019 
8020 	/*
8021 	 * Update the sysctl statistics from the
8022 	 * hardware statistics.
8023 	 */
8024 	sc->stat_IfHCInOctets =
8025 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8026 	     (u64) stats->stat_IfHCInOctets_lo;
8027 
8028 	sc->stat_IfHCInBadOctets =
8029 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8030 	     (u64) stats->stat_IfHCInBadOctets_lo;
8031 
8032 	sc->stat_IfHCOutOctets =
8033 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8034 	     (u64) stats->stat_IfHCOutOctets_lo;
8035 
8036 	sc->stat_IfHCOutBadOctets =
8037 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8038 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8039 
8040 	sc->stat_IfHCInUcastPkts =
8041 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8042 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8043 
8044 	sc->stat_IfHCInMulticastPkts =
8045 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8046 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8047 
8048 	sc->stat_IfHCInBroadcastPkts =
8049 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8050 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8051 
8052 	sc->stat_IfHCOutUcastPkts =
8053 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8054 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8055 
8056 	sc->stat_IfHCOutMulticastPkts =
8057 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8058 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8059 
8060 	sc->stat_IfHCOutBroadcastPkts =
8061 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8062 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8063 
8064 	/* ToDo: Preserve counters beyond 32 bits? */
8065 	/* ToDo: Read the statistics from auto-clear regs? */
8066 
8067 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8068 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8069 
8070 	sc->stat_Dot3StatsCarrierSenseErrors =
8071 	    stats->stat_Dot3StatsCarrierSenseErrors;
8072 
8073 	sc->stat_Dot3StatsFCSErrors =
8074 	    stats->stat_Dot3StatsFCSErrors;
8075 
8076 	sc->stat_Dot3StatsAlignmentErrors =
8077 	    stats->stat_Dot3StatsAlignmentErrors;
8078 
8079 	sc->stat_Dot3StatsSingleCollisionFrames =
8080 	    stats->stat_Dot3StatsSingleCollisionFrames;
8081 
8082 	sc->stat_Dot3StatsMultipleCollisionFrames =
8083 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8084 
8085 	sc->stat_Dot3StatsDeferredTransmissions =
8086 	    stats->stat_Dot3StatsDeferredTransmissions;
8087 
8088 	sc->stat_Dot3StatsExcessiveCollisions =
8089 	    stats->stat_Dot3StatsExcessiveCollisions;
8090 
8091 	sc->stat_Dot3StatsLateCollisions =
8092 	    stats->stat_Dot3StatsLateCollisions;
8093 
8094 	sc->stat_EtherStatsCollisions =
8095 	    stats->stat_EtherStatsCollisions;
8096 
8097 	sc->stat_EtherStatsFragments =
8098 	    stats->stat_EtherStatsFragments;
8099 
8100 	sc->stat_EtherStatsJabbers =
8101 	    stats->stat_EtherStatsJabbers;
8102 
8103 	sc->stat_EtherStatsUndersizePkts =
8104 	    stats->stat_EtherStatsUndersizePkts;
8105 
8106 	sc->stat_EtherStatsOversizePkts =
8107 	     stats->stat_EtherStatsOversizePkts;
8108 
8109 	sc->stat_EtherStatsPktsRx64Octets =
8110 	    stats->stat_EtherStatsPktsRx64Octets;
8111 
8112 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8113 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8114 
8115 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8116 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8117 
8118 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8119 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8120 
8121 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8122 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8123 
8124 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8125 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8126 
8127 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8128 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8129 
8130 	sc->stat_EtherStatsPktsTx64Octets =
8131 	    stats->stat_EtherStatsPktsTx64Octets;
8132 
8133 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8134 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8135 
8136 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8137 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8138 
8139 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8140 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8141 
8142 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8143 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8144 
8145 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8146 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8147 
8148 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8149 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8150 
8151 	sc->stat_XonPauseFramesReceived =
8152 	    stats->stat_XonPauseFramesReceived;
8153 
8154 	sc->stat_XoffPauseFramesReceived =
8155 	    stats->stat_XoffPauseFramesReceived;
8156 
8157 	sc->stat_OutXonSent =
8158 	    stats->stat_OutXonSent;
8159 
8160 	sc->stat_OutXoffSent =
8161 	    stats->stat_OutXoffSent;
8162 
8163 	sc->stat_FlowControlDone =
8164 	    stats->stat_FlowControlDone;
8165 
8166 	sc->stat_MacControlFramesReceived =
8167 	    stats->stat_MacControlFramesReceived;
8168 
8169 	sc->stat_XoffStateEntered =
8170 	    stats->stat_XoffStateEntered;
8171 
8172 	sc->stat_IfInFramesL2FilterDiscards =
8173 	    stats->stat_IfInFramesL2FilterDiscards;
8174 
8175 	sc->stat_IfInRuleCheckerDiscards =
8176 	    stats->stat_IfInRuleCheckerDiscards;
8177 
8178 	sc->stat_IfInFTQDiscards =
8179 	    stats->stat_IfInFTQDiscards;
8180 
8181 	sc->stat_IfInMBUFDiscards =
8182 	    stats->stat_IfInMBUFDiscards;
8183 
8184 	sc->stat_IfInRuleCheckerP4Hit =
8185 	    stats->stat_IfInRuleCheckerP4Hit;
8186 
8187 	sc->stat_CatchupInRuleCheckerDiscards =
8188 	    stats->stat_CatchupInRuleCheckerDiscards;
8189 
8190 	sc->stat_CatchupInFTQDiscards =
8191 	    stats->stat_CatchupInFTQDiscards;
8192 
8193 	sc->stat_CatchupInMBUFDiscards =
8194 	    stats->stat_CatchupInMBUFDiscards;
8195 
8196 	sc->stat_CatchupInRuleCheckerP4Hit =
8197 	    stats->stat_CatchupInRuleCheckerP4Hit;
8198 
8199 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8200 
8201 	/* ToDo: Add additional statistics? */
8202 
8203 	DBEXIT(BCE_EXTREME_MISC);
8204 }
8205 
8206 static uint64_t
8207 bce_get_counter(if_t ifp, ift_counter cnt)
8208 {
8209 	struct bce_softc *sc;
8210 	uint64_t rv;
8211 
8212 	sc = if_getsoftc(ifp);
8213 
8214 	switch (cnt) {
8215 	case IFCOUNTER_COLLISIONS:
8216 		return (sc->stat_EtherStatsCollisions);
8217 	case IFCOUNTER_IERRORS:
8218 		return (sc->stat_EtherStatsUndersizePkts +
8219 		    sc->stat_EtherStatsOversizePkts +
8220 		    sc->stat_IfInMBUFDiscards +
8221 		    sc->stat_Dot3StatsAlignmentErrors +
8222 		    sc->stat_Dot3StatsFCSErrors +
8223 		    sc->stat_IfInRuleCheckerDiscards +
8224 		    sc->stat_IfInFTQDiscards +
8225 		    sc->l2fhdr_error_count +
8226 		    sc->com_no_buffers);
8227 	case IFCOUNTER_OERRORS:
8228 		rv = sc->stat_Dot3StatsExcessiveCollisions +
8229 		    sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8230 		    sc->stat_Dot3StatsLateCollisions +
8231 		    sc->watchdog_timeouts;
8232 		/*
8233 		 * Certain controllers don't report
8234 		 * carrier sense errors correctly.
8235 		 * See errata E11_5708CA0_1165.
8236 		 */
8237 		if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8238 		    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8239 			rv += sc->stat_Dot3StatsCarrierSenseErrors;
8240 		return (rv);
8241 	default:
8242 		return (if_get_counter_default(ifp, cnt));
8243 	}
8244 }
8245 
8246 /****************************************************************************/
8247 /* Periodic function to notify the bootcode that the driver is still        */
8248 /* present.                                                                 */
8249 /*                                                                          */
8250 /* Returns:                                                                 */
8251 /*   Nothing.                                                               */
8252 /****************************************************************************/
8253 static void
8254 bce_pulse(void *xsc)
8255 {
8256 	struct bce_softc *sc = xsc;
8257 	u32 msg;
8258 
8259 	DBENTER(BCE_EXTREME_MISC);
8260 
8261 	BCE_LOCK_ASSERT(sc);
8262 
8263 	/* Tell the firmware that the driver is still running. */
8264 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8265 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8266 
8267 	/* Update the bootcode condition. */
8268 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8269 
8270 	/* Report whether the bootcode still knows the driver is running. */
8271 	if (bce_verbose || bootverbose) {
8272 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8273 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8274 				sc->bce_drv_cardiac_arrest = TRUE;
8275 				BCE_PRINTF("%s(): Warning: bootcode "
8276 				    "thinks driver is absent! "
8277 				    "(bc_state = 0x%08X)\n",
8278 				    __FUNCTION__, sc->bc_state);
8279 			}
8280 		} else {
8281 			/*
8282 			 * Not supported by all bootcode versions.
8283 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8284 			 * will require the driver to reset the
8285 			 * controller to clear this condition.
8286 			 */
8287 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8288 				sc->bce_drv_cardiac_arrest = FALSE;
8289 				BCE_PRINTF("%s(): Bootcode found the "
8290 				    "driver pulse! (bc_state = 0x%08X)\n",
8291 				    __FUNCTION__, sc->bc_state);
8292 			}
8293 		}
8294 	}
8295 
8296 	/* Schedule the next pulse. */
8297 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8298 
8299 	DBEXIT(BCE_EXTREME_MISC);
8300 }
8301 
8302 /****************************************************************************/
8303 /* Periodic function to perform maintenance tasks.                          */
8304 /*                                                                          */
8305 /* Returns:                                                                 */
8306 /*   Nothing.                                                               */
8307 /****************************************************************************/
8308 static void
8309 bce_tick(void *xsc)
8310 {
8311 	struct bce_softc *sc = xsc;
8312 	struct mii_data *mii;
8313 	if_t ifp;
8314 	struct ifmediareq ifmr;
8315 
8316 	ifp = sc->bce_ifp;
8317 
8318 	DBENTER(BCE_EXTREME_MISC);
8319 
8320 	BCE_LOCK_ASSERT(sc);
8321 
8322 	/* Schedule the next tick. */
8323 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8324 
8325 	/* Update the statistics from the hardware statistics block. */
8326 	bce_stats_update(sc);
8327 
8328  	/* Ensure page and RX chains get refilled in low-memory situations. */
8329 	if (bce_hdr_split == TRUE)
8330 		bce_fill_pg_chain(sc);
8331 	bce_fill_rx_chain(sc);
8332 
8333 	/* Check that chip hasn't hung. */
8334 	bce_watchdog(sc);
8335 
8336 	/* If link is up already up then we're done. */
8337 	if (sc->bce_link_up == TRUE)
8338 		goto bce_tick_exit;
8339 
8340 	/* Link is down.  Check what the PHY's doing. */
8341 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8342 		bzero(&ifmr, sizeof(ifmr));
8343 		bce_ifmedia_sts_rphy(sc, &ifmr);
8344 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8345 		    (IFM_ACTIVE | IFM_AVALID)) {
8346 			sc->bce_link_up = TRUE;
8347 			bce_miibus_statchg(sc->bce_dev);
8348 		}
8349 	} else {
8350 		mii = device_get_softc(sc->bce_miibus);
8351 		mii_tick(mii);
8352 		/* Check if the link has come up. */
8353 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8354 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8355 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8356 			    __FUNCTION__);
8357 			sc->bce_link_up = TRUE;
8358 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8359 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8360 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8361 			    (bce_verbose || bootverbose))
8362 				BCE_PRINTF("Gigabit link up!\n");
8363 		}
8364 	}
8365 	if (sc->bce_link_up == TRUE) {
8366 		/* Now that link is up, handle any outstanding TX traffic. */
8367 		if (!if_sendq_empty(ifp)) {
8368 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8369 			    "pending TX traffic.\n", __FUNCTION__);
8370 			bce_start_locked(ifp);
8371 		}
8372 	}
8373 
8374 bce_tick_exit:
8375 	DBEXIT(BCE_EXTREME_MISC);
8376 }
8377 
8378 static void
8379 bce_fw_cap_init(struct bce_softc *sc)
8380 {
8381 	u32 ack, cap, link;
8382 
8383 	ack = 0;
8384 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8385 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8386 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8387 		return;
8388 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8389 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8390 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8391 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8392 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8393 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8394 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8395 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8396 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8397 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8398 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8399 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8400 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8401 	}
8402 
8403 	if (ack != 0)
8404 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8405 }
8406 
8407 #ifdef BCE_DEBUG
8408 /****************************************************************************/
8409 /* Allows the driver state to be dumped through the sysctl interface.       */
8410 /*                                                                          */
8411 /* Returns:                                                                 */
8412 /*   0 for success, positive value for failure.                             */
8413 /****************************************************************************/
8414 static int
8415 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8416 {
8417 	int error;
8418 	int result;
8419 	struct bce_softc *sc;
8420 
8421 	result = -1;
8422 	error = sysctl_handle_int(oidp, &result, 0, req);
8423 
8424 	if (error || !req->newptr)
8425 		return (error);
8426 
8427 	if (result == 1) {
8428 		sc = (struct bce_softc *)arg1;
8429 		bce_dump_driver_state(sc);
8430 	}
8431 
8432 	return error;
8433 }
8434 
8435 /****************************************************************************/
8436 /* Allows the hardware state to be dumped through the sysctl interface.     */
8437 /*                                                                          */
8438 /* Returns:                                                                 */
8439 /*   0 for success, positive value for failure.                             */
8440 /****************************************************************************/
8441 static int
8442 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8443 {
8444 	int error;
8445 	int result;
8446 	struct bce_softc *sc;
8447 
8448 	result = -1;
8449 	error = sysctl_handle_int(oidp, &result, 0, req);
8450 
8451 	if (error || !req->newptr)
8452 		return (error);
8453 
8454 	if (result == 1) {
8455 		sc = (struct bce_softc *)arg1;
8456 		bce_dump_hw_state(sc);
8457 	}
8458 
8459 	return error;
8460 }
8461 
8462 /****************************************************************************/
8463 /* Allows the status block to be dumped through the sysctl interface.       */
8464 /*                                                                          */
8465 /* Returns:                                                                 */
8466 /*   0 for success, positive value for failure.                             */
8467 /****************************************************************************/
8468 static int
8469 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8470 {
8471 	int error;
8472 	int result;
8473 	struct bce_softc *sc;
8474 
8475 	result = -1;
8476 	error = sysctl_handle_int(oidp, &result, 0, req);
8477 
8478 	if (error || !req->newptr)
8479 		return (error);
8480 
8481 	if (result == 1) {
8482 		sc = (struct bce_softc *)arg1;
8483 		bce_dump_status_block(sc);
8484 	}
8485 
8486 	return error;
8487 }
8488 
8489 /****************************************************************************/
8490 /* Allows the stats block to be dumped through the sysctl interface.        */
8491 /*                                                                          */
8492 /* Returns:                                                                 */
8493 /*   0 for success, positive value for failure.                             */
8494 /****************************************************************************/
8495 static int
8496 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8497 {
8498 	int error;
8499 	int result;
8500 	struct bce_softc *sc;
8501 
8502 	result = -1;
8503 	error = sysctl_handle_int(oidp, &result, 0, req);
8504 
8505 	if (error || !req->newptr)
8506 		return (error);
8507 
8508 	if (result == 1) {
8509 		sc = (struct bce_softc *)arg1;
8510 		bce_dump_stats_block(sc);
8511 	}
8512 
8513 	return error;
8514 }
8515 
8516 /****************************************************************************/
8517 /* Allows the stat counters to be cleared without unloading/reloading the   */
8518 /* driver.                                                                  */
8519 /*                                                                          */
8520 /* Returns:                                                                 */
8521 /*   0 for success, positive value for failure.                             */
8522 /****************************************************************************/
8523 static int
8524 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8525 {
8526 	int error;
8527 	int result;
8528 	struct bce_softc *sc;
8529 
8530 	result = -1;
8531 	error = sysctl_handle_int(oidp, &result, 0, req);
8532 
8533 	if (error || !req->newptr)
8534 		return (error);
8535 
8536 	if (result == 1) {
8537 		sc = (struct bce_softc *)arg1;
8538 		struct statistics_block *stats;
8539 
8540 		stats = (struct statistics_block *) sc->stats_block;
8541 		bzero(stats, sizeof(struct statistics_block));
8542 		bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8543 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8544 
8545 		/* Clear the internal H/W statistics counters. */
8546 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8547 
8548 		/* Reset the driver maintained statistics. */
8549 		sc->interrupts_rx =
8550 		    sc->interrupts_tx = 0;
8551 		sc->tso_frames_requested =
8552 		    sc->tso_frames_completed =
8553 		    sc->tso_frames_failed = 0;
8554 		sc->rx_empty_count =
8555 		    sc->tx_full_count = 0;
8556 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8557 		sc->tx_hi_watermark = 0;
8558 		sc->l2fhdr_error_count =
8559 		    sc->l2fhdr_error_sim_count = 0;
8560 		sc->mbuf_alloc_failed_count =
8561 		    sc->mbuf_alloc_failed_sim_count = 0;
8562 		sc->dma_map_addr_rx_failed_count =
8563 		    sc->dma_map_addr_tx_failed_count = 0;
8564 		sc->mbuf_frag_count = 0;
8565 		sc->csum_offload_tcp_udp =
8566 		    sc->csum_offload_ip = 0;
8567 		sc->vlan_tagged_frames_rcvd =
8568 		    sc->vlan_tagged_frames_stripped = 0;
8569 		sc->split_header_frames_rcvd =
8570 		    sc->split_header_tcp_frames_rcvd = 0;
8571 
8572 		/* Clear firmware maintained statistics. */
8573 		REG_WR_IND(sc, 0x120084, 0);
8574 	}
8575 
8576 	return error;
8577 }
8578 
8579 /****************************************************************************/
8580 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8581 /* interface.                                                               */
8582 /*                                                                          */
8583 /* Returns:                                                                 */
8584 /*   0 for success, positive value for failure.                             */
8585 /****************************************************************************/
8586 static int
8587 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8588 {
8589 	int error;
8590 	int result;
8591 	struct bce_softc *sc;
8592 
8593 	result = -1;
8594 	error = sysctl_handle_int(oidp, &result, 0, req);
8595 
8596 	if (error || !req->newptr)
8597 		return (error);
8598 
8599 	if (result == 1) {
8600 		sc = (struct bce_softc *)arg1;
8601 		bce_dump_shmem_state(sc);
8602 	}
8603 
8604 	return error;
8605 }
8606 
8607 /****************************************************************************/
8608 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8609 /*                                                                          */
8610 /* Returns:                                                                 */
8611 /*   0 for success, positive value for failure.                             */
8612 /****************************************************************************/
8613 static int
8614 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8615 {
8616 	int error;
8617 	int result;
8618 	struct bce_softc *sc;
8619 
8620 	result = -1;
8621 	error = sysctl_handle_int(oidp, &result, 0, req);
8622 
8623 	if (error || !req->newptr)
8624 		return (error);
8625 
8626 	if (result == 1) {
8627 		sc = (struct bce_softc *)arg1;
8628 		bce_dump_bc_state(sc);
8629 	}
8630 
8631 	return error;
8632 }
8633 
8634 /****************************************************************************/
8635 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8636 /*                                                                          */
8637 /* Returns:                                                                 */
8638 /*   0 for success, positive value for failure.                             */
8639 /****************************************************************************/
8640 static int
8641 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8642 {
8643 	int error;
8644 	int result;
8645 	struct bce_softc *sc;
8646 
8647 	result = -1;
8648 	error = sysctl_handle_int(oidp, &result, 0, req);
8649 
8650 	if (error || !req->newptr)
8651 		return (error);
8652 
8653 	if (result == 1) {
8654 		sc = (struct bce_softc *)arg1;
8655 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8656 	}
8657 
8658 	return error;
8659 }
8660 
8661 /****************************************************************************/
8662 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8663 /*                                                                          */
8664 /* Returns:                                                                 */
8665 /*   0 for success, positive value for failure.                             */
8666 /****************************************************************************/
8667 static int
8668 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8669 {
8670 	int error;
8671 	int result;
8672 	struct bce_softc *sc;
8673 
8674 	result = -1;
8675 	error = sysctl_handle_int(oidp, &result, 0, req);
8676 
8677 	if (error || !req->newptr)
8678 		return (error);
8679 
8680 	if (result == 1) {
8681 		sc = (struct bce_softc *)arg1;
8682 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8683 	}
8684 
8685 	return error;
8686 }
8687 
8688 /****************************************************************************/
8689 /* Provides a sysctl interface to allow dumping the TX chain.               */
8690 /*                                                                          */
8691 /* Returns:                                                                 */
8692 /*   0 for success, positive value for failure.                             */
8693 /****************************************************************************/
8694 static int
8695 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8696 {
8697 	int error;
8698 	int result;
8699 	struct bce_softc *sc;
8700 
8701 	result = -1;
8702 	error = sysctl_handle_int(oidp, &result, 0, req);
8703 
8704 	if (error || !req->newptr)
8705 		return (error);
8706 
8707 	if (result == 1) {
8708 		sc = (struct bce_softc *)arg1;
8709 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8710 	}
8711 
8712 	return error;
8713 }
8714 
8715 /****************************************************************************/
8716 /* Provides a sysctl interface to allow dumping the page chain.             */
8717 /*                                                                          */
8718 /* Returns:                                                                 */
8719 /*   0 for success, positive value for failure.                             */
8720 /****************************************************************************/
8721 static int
8722 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8723 {
8724 	int error;
8725 	int result;
8726 	struct bce_softc *sc;
8727 
8728 	result = -1;
8729 	error = sysctl_handle_int(oidp, &result, 0, req);
8730 
8731 	if (error || !req->newptr)
8732 		return (error);
8733 
8734 	if (result == 1) {
8735 		sc = (struct bce_softc *)arg1;
8736 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8737 	}
8738 
8739 	return error;
8740 }
8741 
8742 /****************************************************************************/
8743 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8744 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8745 /*                                                                          */
8746 /* Returns:                                                                 */
8747 /*   0 for success, positive value for failure.                             */
8748 /****************************************************************************/
8749 static int
8750 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8751 {
8752 	struct bce_softc *sc = (struct bce_softc *)arg1;
8753 	int error;
8754 	u32 result;
8755 	u32 val[1];
8756 	u8 *data = (u8 *) val;
8757 
8758 	result = -1;
8759 	error = sysctl_handle_int(oidp, &result, 0, req);
8760 	if (error || (req->newptr == NULL))
8761 		return (error);
8762 
8763 	error = bce_nvram_read(sc, result, data, 4);
8764 
8765 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8766 
8767 	return (error);
8768 }
8769 
8770 /****************************************************************************/
8771 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8772 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8773 /*                                                                          */
8774 /* Returns:                                                                 */
8775 /*   0 for success, positive value for failure.                             */
8776 /****************************************************************************/
8777 static int
8778 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8779 {
8780 	struct bce_softc *sc = (struct bce_softc *)arg1;
8781 	int error;
8782 	u32 val, result;
8783 
8784 	result = -1;
8785 	error = sysctl_handle_int(oidp, &result, 0, req);
8786 	if (error || (req->newptr == NULL))
8787 		return (error);
8788 
8789 	/* Make sure the register is accessible. */
8790 	if (result < 0x8000) {
8791 		val = REG_RD(sc, result);
8792 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8793 	} else if (result < 0x0280000) {
8794 		val = REG_RD_IND(sc, result);
8795 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8796 	}
8797 
8798 	return (error);
8799 }
8800 
8801 /****************************************************************************/
8802 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8803 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8804 /*                                                                          */
8805 /* Returns:                                                                 */
8806 /*   0 for success, positive value for failure.                             */
8807 /****************************************************************************/
8808 static int
8809 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8810 {
8811 	struct bce_softc *sc;
8812 	device_t dev;
8813 	int error, result;
8814 	u16 val;
8815 
8816 	result = -1;
8817 	error = sysctl_handle_int(oidp, &result, 0, req);
8818 	if (error || (req->newptr == NULL))
8819 		return (error);
8820 
8821 	/* Make sure the register is accessible. */
8822 	if (result < 0x20) {
8823 		sc = (struct bce_softc *)arg1;
8824 		dev = sc->bce_dev;
8825 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8826 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8827 	}
8828 	return (error);
8829 }
8830 
8831 /****************************************************************************/
8832 /* Provides a sysctl interface for dumping the nvram contents.              */
8833 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8834 /*									    */
8835 /* Returns:								    */
8836 /*   0 for success, positive errno for failure.				    */
8837 /****************************************************************************/
8838 static int
8839 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8840 {
8841 	struct bce_softc *sc = (struct bce_softc *)arg1;
8842 	int error, i;
8843 
8844 	if (sc->nvram_buf == NULL)
8845 		sc->nvram_buf = malloc(sc->bce_flash_size,
8846 				    M_TEMP, M_ZERO | M_WAITOK);
8847 
8848 	error = 0;
8849 	if (req->oldlen == sc->bce_flash_size) {
8850 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8851 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
8852 	}
8853 
8854 	if (error == 0)
8855 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
8856 
8857 	return error;
8858 }
8859 
8860 #ifdef BCE_NVRAM_WRITE_SUPPORT
8861 /****************************************************************************/
8862 /* Provides a sysctl interface for writing to nvram.                        */
8863 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8864 /*									    */
8865 /* Returns:								    */
8866 /*   0 for success, positive errno for failure.				    */
8867 /****************************************************************************/
8868 static int
8869 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
8870 {
8871 	struct bce_softc *sc = (struct bce_softc *)arg1;
8872 	int error;
8873 
8874 	if (sc->nvram_buf == NULL)
8875 		sc->nvram_buf = malloc(sc->bce_flash_size,
8876 				    M_TEMP, M_ZERO | M_WAITOK);
8877 	else
8878 		bzero(sc->nvram_buf, sc->bce_flash_size);
8879 
8880 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
8881 	if (error == 0)
8882 		return (error);
8883 
8884 	if (req->newlen == sc->bce_flash_size)
8885 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
8886 			    sc->bce_flash_size);
8887 
8888 	return error;
8889 }
8890 #endif
8891 
8892 /****************************************************************************/
8893 /* Provides a sysctl interface to allow reading a CID.                      */
8894 /*                                                                          */
8895 /* Returns:                                                                 */
8896 /*   0 for success, positive value for failure.                             */
8897 /****************************************************************************/
8898 static int
8899 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8900 {
8901 	struct bce_softc *sc;
8902 	int error, result;
8903 
8904 	result = -1;
8905 	error = sysctl_handle_int(oidp, &result, 0, req);
8906 	if (error || (req->newptr == NULL))
8907 		return (error);
8908 
8909 	/* Make sure the register is accessible. */
8910 	if (result <= TX_CID) {
8911 		sc = (struct bce_softc *)arg1;
8912 		bce_dump_ctx(sc, result);
8913 	}
8914 
8915 	return (error);
8916 }
8917 
8918 /****************************************************************************/
8919 /* Provides a sysctl interface to forcing the driver to dump state and      */
8920 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8921 /*                                                                          */
8922 /* Returns:                                                                 */
8923 /*   0 for success, positive value for failure.                             */
8924 /****************************************************************************/
8925 static int
8926 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8927 {
8928 	int error;
8929 	int result;
8930 	struct bce_softc *sc;
8931 
8932 	result = -1;
8933 	error = sysctl_handle_int(oidp, &result, 0, req);
8934 
8935 	if (error || !req->newptr)
8936 		return (error);
8937 
8938 	if (result == 1) {
8939 		sc = (struct bce_softc *)arg1;
8940 		bce_breakpoint(sc);
8941 	}
8942 
8943 	return error;
8944 }
8945 #endif
8946 
8947 /****************************************************************************/
8948 /* Adds any sysctl parameters for tuning or debugging purposes.             */
8949 /*                                                                          */
8950 /* Returns:                                                                 */
8951 /*   0 for success, positive value for failure.                             */
8952 /****************************************************************************/
8953 static void
8954 bce_add_sysctls(struct bce_softc *sc)
8955 {
8956 	struct sysctl_ctx_list *ctx;
8957 	struct sysctl_oid_list *children;
8958 
8959 	DBENTER(BCE_VERBOSE_MISC);
8960 
8961 	ctx = device_get_sysctl_ctx(sc->bce_dev);
8962 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8963 
8964 #ifdef BCE_DEBUG
8965 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8966 	    "l2fhdr_error_sim_control",
8967 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8968 	    0, "Debug control to force l2fhdr errors");
8969 
8970 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8971 	    "l2fhdr_error_sim_count",
8972 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8973 	    0, "Number of simulated l2_fhdr errors");
8974 #endif
8975 
8976 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8977 	    "l2fhdr_error_count",
8978 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8979 	    0, "Number of l2_fhdr errors");
8980 
8981 #ifdef BCE_DEBUG
8982 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8983 	    "mbuf_alloc_failed_sim_control",
8984 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8985 	    0, "Debug control to force mbuf allocation failures");
8986 
8987 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8988 	    "mbuf_alloc_failed_sim_count",
8989 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8990 	    0, "Number of simulated mbuf cluster allocation failures");
8991 #endif
8992 
8993 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8994 	    "mbuf_alloc_failed_count",
8995 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8996 	    0, "Number of mbuf allocation failures");
8997 
8998 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8999 	    "mbuf_frag_count",
9000 	    CTLFLAG_RD, &sc->mbuf_frag_count,
9001 	    0, "Number of fragmented mbufs");
9002 
9003 #ifdef BCE_DEBUG
9004 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9005 	    "dma_map_addr_failed_sim_control",
9006 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9007 	    0, "Debug control to force DMA mapping failures");
9008 
9009 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9010 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9011 	    "dma_map_addr_failed_sim_count",
9012 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9013 	    0, "Number of simulated DMA mapping failures");
9014 
9015 #endif
9016 
9017 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9018 	    "dma_map_addr_rx_failed_count",
9019 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9020 	    0, "Number of RX DMA mapping failures");
9021 
9022 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9023 	    "dma_map_addr_tx_failed_count",
9024 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9025 	    0, "Number of TX DMA mapping failures");
9026 
9027 #ifdef BCE_DEBUG
9028 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9029 	    "unexpected_attention_sim_control",
9030 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9031 	    0, "Debug control to simulate unexpected attentions");
9032 
9033 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9034 	    "unexpected_attention_sim_count",
9035 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9036 	    0, "Number of simulated unexpected attentions");
9037 #endif
9038 
9039 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9040 	    "unexpected_attention_count",
9041 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9042 	    0, "Number of unexpected attentions");
9043 
9044 #ifdef BCE_DEBUG
9045 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9046 	    "debug_bootcode_running_failure",
9047 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9048 	    0, "Debug control to force bootcode running failures");
9049 
9050 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9051 	    "rx_low_watermark",
9052 	    CTLFLAG_RD, &sc->rx_low_watermark,
9053 	    0, "Lowest level of free rx_bd's");
9054 
9055 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9056 	    "rx_empty_count",
9057 	    CTLFLAG_RD, &sc->rx_empty_count,
9058 	    "Number of times the RX chain was empty");
9059 
9060 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9061 	    "tx_hi_watermark",
9062 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9063 	    0, "Highest level of used tx_bd's");
9064 
9065 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9066 	    "tx_full_count",
9067 	    CTLFLAG_RD, &sc->tx_full_count,
9068 	    "Number of times the TX chain was full");
9069 
9070 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9071 	    "tso_frames_requested",
9072 	    CTLFLAG_RD, &sc->tso_frames_requested,
9073 	    "Number of TSO frames requested");
9074 
9075 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9076 	    "tso_frames_completed",
9077 	    CTLFLAG_RD, &sc->tso_frames_completed,
9078 	    "Number of TSO frames completed");
9079 
9080 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9081 	    "tso_frames_failed",
9082 	    CTLFLAG_RD, &sc->tso_frames_failed,
9083 	    "Number of TSO frames failed");
9084 
9085 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9086 	    "csum_offload_ip",
9087 	    CTLFLAG_RD, &sc->csum_offload_ip,
9088 	    "Number of IP checksum offload frames");
9089 
9090 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9091 	    "csum_offload_tcp_udp",
9092 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9093 	    "Number of TCP/UDP checksum offload frames");
9094 
9095 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9096 	    "vlan_tagged_frames_rcvd",
9097 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9098 	    "Number of VLAN tagged frames received");
9099 
9100 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9101 	    "vlan_tagged_frames_stripped",
9102 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9103 	    "Number of VLAN tagged frames stripped");
9104 
9105 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9106 	    "interrupts_rx",
9107 	    CTLFLAG_RD, &sc->interrupts_rx,
9108 	    "Number of RX interrupts");
9109 
9110 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9111 	    "interrupts_tx",
9112 	    CTLFLAG_RD, &sc->interrupts_tx,
9113 	    "Number of TX interrupts");
9114 
9115 	if (bce_hdr_split == TRUE) {
9116 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9117 		    "split_header_frames_rcvd",
9118 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9119 		    "Number of split header frames received");
9120 
9121 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9122 		    "split_header_tcp_frames_rcvd",
9123 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9124 		    "Number of split header TCP frames received");
9125 	}
9126 
9127 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9128 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
9129 	    (void *)sc, 0,
9130 	    bce_sysctl_nvram_dump, "S", "");
9131 
9132 #ifdef BCE_NVRAM_WRITE_SUPPORT
9133 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9134 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR | CTLFLAG_NEEDGIANT,
9135 	    (void *)sc, 0,
9136 	    bce_sysctl_nvram_write, "S", "");
9137 #endif
9138 #endif /* BCE_DEBUG */
9139 
9140 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9141 	    "stat_IfHcInOctets",
9142 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9143 	    "Bytes received");
9144 
9145 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9146 	    "stat_IfHCInBadOctets",
9147 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9148 	    "Bad bytes received");
9149 
9150 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9151 	    "stat_IfHCOutOctets",
9152 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9153 	    "Bytes sent");
9154 
9155 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9156 	    "stat_IfHCOutBadOctets",
9157 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9158 	    "Bad bytes sent");
9159 
9160 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9161 	    "stat_IfHCInUcastPkts",
9162 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9163 	    "Unicast packets received");
9164 
9165 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9166 	    "stat_IfHCInMulticastPkts",
9167 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9168 	    "Multicast packets received");
9169 
9170 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9171 	    "stat_IfHCInBroadcastPkts",
9172 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9173 	    "Broadcast packets received");
9174 
9175 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9176 	    "stat_IfHCOutUcastPkts",
9177 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9178 	    "Unicast packets sent");
9179 
9180 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9181 	    "stat_IfHCOutMulticastPkts",
9182 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9183 	    "Multicast packets sent");
9184 
9185 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9186 	    "stat_IfHCOutBroadcastPkts",
9187 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9188 	    "Broadcast packets sent");
9189 
9190 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9191 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9192 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9193 	    0, "Internal MAC transmit errors");
9194 
9195 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9196 	    "stat_Dot3StatsCarrierSenseErrors",
9197 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9198 	    0, "Carrier sense errors");
9199 
9200 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9201 	    "stat_Dot3StatsFCSErrors",
9202 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9203 	    0, "Frame check sequence errors");
9204 
9205 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9206 	    "stat_Dot3StatsAlignmentErrors",
9207 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9208 	    0, "Alignment errors");
9209 
9210 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9211 	    "stat_Dot3StatsSingleCollisionFrames",
9212 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9213 	    0, "Single Collision Frames");
9214 
9215 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9216 	    "stat_Dot3StatsMultipleCollisionFrames",
9217 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9218 	    0, "Multiple Collision Frames");
9219 
9220 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9221 	    "stat_Dot3StatsDeferredTransmissions",
9222 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9223 	    0, "Deferred Transmissions");
9224 
9225 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9226 	    "stat_Dot3StatsExcessiveCollisions",
9227 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9228 	    0, "Excessive Collisions");
9229 
9230 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9231 	    "stat_Dot3StatsLateCollisions",
9232 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9233 	    0, "Late Collisions");
9234 
9235 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9236 	    "stat_EtherStatsCollisions",
9237 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9238 	    0, "Collisions");
9239 
9240 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9241 	    "stat_EtherStatsFragments",
9242 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9243 	    0, "Fragments");
9244 
9245 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9246 	    "stat_EtherStatsJabbers",
9247 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9248 	    0, "Jabbers");
9249 
9250 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9251 	    "stat_EtherStatsUndersizePkts",
9252 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9253 	    0, "Undersize packets");
9254 
9255 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9256 	    "stat_EtherStatsOversizePkts",
9257 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9258 	    0, "stat_EtherStatsOversizePkts");
9259 
9260 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9261 	    "stat_EtherStatsPktsRx64Octets",
9262 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9263 	    0, "Bytes received in 64 byte packets");
9264 
9265 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9266 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9267 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9268 	    0, "Bytes received in 65 to 127 byte packets");
9269 
9270 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9271 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9272 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9273 	    0, "Bytes received in 128 to 255 byte packets");
9274 
9275 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9276 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9277 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9278 	    0, "Bytes received in 256 to 511 byte packets");
9279 
9280 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9281 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9282 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9283 	    0, "Bytes received in 512 to 1023 byte packets");
9284 
9285 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9286 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9287 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9288 	    0, "Bytes received in 1024 t0 1522 byte packets");
9289 
9290 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9291 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9292 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9293 	    0, "Bytes received in 1523 to 9022 byte packets");
9294 
9295 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9296 	    "stat_EtherStatsPktsTx64Octets",
9297 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9298 	    0, "Bytes sent in 64 byte packets");
9299 
9300 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9301 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9302 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9303 	    0, "Bytes sent in 65 to 127 byte packets");
9304 
9305 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9306 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9307 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9308 	    0, "Bytes sent in 128 to 255 byte packets");
9309 
9310 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9311 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9312 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9313 	    0, "Bytes sent in 256 to 511 byte packets");
9314 
9315 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9316 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9317 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9318 	    0, "Bytes sent in 512 to 1023 byte packets");
9319 
9320 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9321 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9322 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9323 	    0, "Bytes sent in 1024 to 1522 byte packets");
9324 
9325 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9326 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9327 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9328 	    0, "Bytes sent in 1523 to 9022 byte packets");
9329 
9330 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9331 	    "stat_XonPauseFramesReceived",
9332 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9333 	    0, "XON pause frames receved");
9334 
9335 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9336 	    "stat_XoffPauseFramesReceived",
9337 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9338 	    0, "XOFF pause frames received");
9339 
9340 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9341 	    "stat_OutXonSent",
9342 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9343 	    0, "XON pause frames sent");
9344 
9345 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9346 	    "stat_OutXoffSent",
9347 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9348 	    0, "XOFF pause frames sent");
9349 
9350 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9351 	    "stat_FlowControlDone",
9352 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9353 	    0, "Flow control done");
9354 
9355 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9356 	    "stat_MacControlFramesReceived",
9357 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9358 	    0, "MAC control frames received");
9359 
9360 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9361 	    "stat_XoffStateEntered",
9362 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9363 	    0, "XOFF state entered");
9364 
9365 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9366 	    "stat_IfInFramesL2FilterDiscards",
9367 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9368 	    0, "Received L2 packets discarded");
9369 
9370 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9371 	    "stat_IfInRuleCheckerDiscards",
9372 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9373 	    0, "Received packets discarded by rule");
9374 
9375 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9376 	    "stat_IfInFTQDiscards",
9377 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9378 	    0, "Received packet FTQ discards");
9379 
9380 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9381 	    "stat_IfInMBUFDiscards",
9382 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9383 	    0, "Received packets discarded due to lack "
9384 	    "of controller buffer memory");
9385 
9386 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9387 	    "stat_IfInRuleCheckerP4Hit",
9388 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9389 	    0, "Received packets rule checker hits");
9390 
9391 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9392 	    "stat_CatchupInRuleCheckerDiscards",
9393 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9394 	    0, "Received packets discarded in Catchup path");
9395 
9396 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9397 	    "stat_CatchupInFTQDiscards",
9398 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9399 	    0, "Received packets discarded in FTQ in Catchup path");
9400 
9401 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9402 	    "stat_CatchupInMBUFDiscards",
9403 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9404 	    0, "Received packets discarded in controller "
9405 	    "buffer memory in Catchup path");
9406 
9407 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9408 	    "stat_CatchupInRuleCheckerP4Hit",
9409 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9410 	    0, "Received packets rule checker hits in Catchup path");
9411 
9412 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9413 	    "com_no_buffers",
9414 	    CTLFLAG_RD, &sc->com_no_buffers,
9415 	    0, "Valid packets received but no RX buffers available");
9416 
9417 #ifdef BCE_DEBUG
9418 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9419 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9420 	    (void *)sc, 0,
9421 	    bce_sysctl_driver_state, "I", "Drive state information");
9422 
9423 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9424 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9425 	    (void *)sc, 0,
9426 	    bce_sysctl_hw_state, "I", "Hardware state information");
9427 
9428 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9429 	    "status_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9430 	    (void *)sc, 0,
9431 	    bce_sysctl_status_block, "I", "Dump status block");
9432 
9433 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9434 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9435 	    (void *)sc, 0,
9436 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9437 
9438 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9439 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9440 	    (void *)sc, 0,
9441 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9442 
9443 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9444 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9445 	    (void *)sc, 0,
9446 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9447 
9448 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9449 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9450 	    (void *)sc, 0,
9451 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9452 
9453 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9454 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9455 	    (void *)sc, 0,
9456 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9457 
9458 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9459 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9460 	    (void *)sc, 0,
9461 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9462 
9463 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9464 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9465 	    (void *)sc, 0,
9466 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9467 
9468 	if (bce_hdr_split == TRUE) {
9469 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9470 		    "dump_pg_chain",
9471 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9472 		    (void *)sc, 0,
9473 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9474 	}
9475 
9476 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9477 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9478 	    (void *)sc, 0,
9479 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9480 
9481 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9482 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9483 	    (void *)sc, 0,
9484 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9485 
9486 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9487 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW| CTLFLAG_NEEDGIANT,
9488 	    (void *)sc, 0,
9489 	    bce_sysctl_reg_read, "I", "Register read");
9490 
9491 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9492 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9493 	    (void *)sc, 0,
9494 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9495 
9496 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9497 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9498 	    (void *)sc, 0,
9499 	    bce_sysctl_phy_read, "I", "PHY register read");
9500 
9501 #endif
9502 
9503 	DBEXIT(BCE_VERBOSE_MISC);
9504 }
9505 
9506 /****************************************************************************/
9507 /* BCE Debug Routines                                                       */
9508 /****************************************************************************/
9509 #ifdef BCE_DEBUG
9510 
9511 /****************************************************************************/
9512 /* Freezes the controller to allow for a cohesive state dump.               */
9513 /*                                                                          */
9514 /* Returns:                                                                 */
9515 /*   Nothing.                                                               */
9516 /****************************************************************************/
9517 static __attribute__ ((noinline)) void
9518 bce_freeze_controller(struct bce_softc *sc)
9519 {
9520 	u32 val;
9521 	val = REG_RD(sc, BCE_MISC_COMMAND);
9522 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9523 	REG_WR(sc, BCE_MISC_COMMAND, val);
9524 }
9525 
9526 /****************************************************************************/
9527 /* Unfreezes the controller after a freeze operation.  This may not always  */
9528 /* work and the controller will require a reset!                            */
9529 /*                                                                          */
9530 /* Returns:                                                                 */
9531 /*   Nothing.                                                               */
9532 /****************************************************************************/
9533 static __attribute__ ((noinline)) void
9534 bce_unfreeze_controller(struct bce_softc *sc)
9535 {
9536 	u32 val;
9537 	val = REG_RD(sc, BCE_MISC_COMMAND);
9538 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9539 	REG_WR(sc, BCE_MISC_COMMAND, val);
9540 }
9541 
9542 /****************************************************************************/
9543 /* Prints out Ethernet frame information from an mbuf.                      */
9544 /*                                                                          */
9545 /* Partially decode an Ethernet frame to look at some important headers.    */
9546 /*                                                                          */
9547 /* Returns:                                                                 */
9548 /*   Nothing.                                                               */
9549 /****************************************************************************/
9550 static __attribute__ ((noinline)) void
9551 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9552 {
9553 	struct ether_vlan_header *eh;
9554 	u16 etype;
9555 	int ehlen;
9556 	struct ip *ip;
9557 	struct tcphdr *th;
9558 	struct udphdr *uh;
9559 	struct arphdr *ah;
9560 
9561 	BCE_PRINTF(
9562 	    "-----------------------------"
9563 	    " Frame Decode "
9564 	    "-----------------------------\n");
9565 
9566 	eh = mtod(m, struct ether_vlan_header *);
9567 
9568 	/* Handle VLAN encapsulation if present. */
9569 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9570 		etype = ntohs(eh->evl_proto);
9571 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9572 	} else {
9573 		etype = ntohs(eh->evl_encap_proto);
9574 		ehlen = ETHER_HDR_LEN;
9575 	}
9576 
9577 	/* ToDo: Add VLAN output. */
9578 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9579 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9580 
9581 	switch (etype) {
9582 	case ETHERTYPE_IP:
9583 		ip = (struct ip *)(m->m_data + ehlen);
9584 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9585 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9586 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9587 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9588 
9589 		switch (ip->ip_p) {
9590 		case IPPROTO_TCP:
9591 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9592 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9593 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9594 			    ntohs(th->th_dport), ntohs(th->th_sport),
9595 			    (th->th_off << 2), th->th_flags,
9596 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9597 			    "\02SYN\01FIN", ntohs(th->th_sum));
9598 			break;
9599 		case IPPROTO_UDP:
9600 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9601 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9602 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9603 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9604 			    ntohs(uh->uh_sum));
9605 			break;
9606 		case IPPROTO_ICMP:
9607 			BCE_PRINTF("icmp:\n");
9608 			break;
9609 		default:
9610 			BCE_PRINTF("----: Other IP protocol.\n");
9611 			}
9612 		break;
9613 	case ETHERTYPE_IPV6:
9614 		BCE_PRINTF("ipv6: No decode supported.\n");
9615 		break;
9616 	case ETHERTYPE_ARP:
9617 		BCE_PRINTF("-arp: ");
9618 		ah = (struct arphdr *) (m->m_data + ehlen);
9619 		switch (ntohs(ah->ar_op)) {
9620 		case ARPOP_REVREQUEST:
9621 			printf("reverse ARP request\n");
9622 			break;
9623 		case ARPOP_REVREPLY:
9624 			printf("reverse ARP reply\n");
9625 			break;
9626 		case ARPOP_REQUEST:
9627 			printf("ARP request\n");
9628 			break;
9629 		case ARPOP_REPLY:
9630 			printf("ARP reply\n");
9631 			break;
9632 		default:
9633 			printf("other ARP operation\n");
9634 		}
9635 		break;
9636 	default:
9637 		BCE_PRINTF("----: Other protocol.\n");
9638 	}
9639 
9640 	BCE_PRINTF(
9641 		"-----------------------------"
9642 		"--------------"
9643 		"-----------------------------\n");
9644 }
9645 
9646 /****************************************************************************/
9647 /* Prints out information about an mbuf.                                    */
9648 /*                                                                          */
9649 /* Returns:                                                                 */
9650 /*   Nothing.                                                               */
9651 /****************************************************************************/
9652 static __attribute__ ((noinline)) void
9653 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9654 {
9655 	struct mbuf *mp = m;
9656 
9657 	if (m == NULL) {
9658 		BCE_PRINTF("mbuf: null pointer\n");
9659 		return;
9660 	}
9661 
9662 	while (mp) {
9663 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9664 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9665 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9666 
9667 		if (mp->m_flags & M_PKTHDR) {
9668 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9669 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9670 			    mp->m_flags, M_FLAG_PRINTF,
9671 			    mp->m_pkthdr.csum_flags, CSUM_BITS);
9672 		}
9673 
9674 		if (mp->m_flags & M_EXT) {
9675 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9676 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9677 			switch (mp->m_ext.ext_type) {
9678 			case EXT_CLUSTER:
9679 				printf("EXT_CLUSTER\n"); break;
9680 			case EXT_SFBUF:
9681 				printf("EXT_SFBUF\n"); break;
9682 			case EXT_JUMBO9:
9683 				printf("EXT_JUMBO9\n"); break;
9684 			case EXT_JUMBO16:
9685 				printf("EXT_JUMBO16\n"); break;
9686 			case EXT_PACKET:
9687 				printf("EXT_PACKET\n"); break;
9688 			case EXT_MBUF:
9689 				printf("EXT_MBUF\n"); break;
9690 			case EXT_NET_DRV:
9691 				printf("EXT_NET_DRV\n"); break;
9692 			case EXT_MOD_TYPE:
9693 				printf("EXT_MDD_TYPE\n"); break;
9694 			case EXT_DISPOSABLE:
9695 				printf("EXT_DISPOSABLE\n"); break;
9696 			case EXT_EXTREF:
9697 				printf("EXT_EXTREF\n"); break;
9698 			default:
9699 				printf("UNKNOWN\n");
9700 			}
9701 		}
9702 
9703 		mp = mp->m_next;
9704 	}
9705 }
9706 
9707 /****************************************************************************/
9708 /* Prints out the mbufs in the TX mbuf chain.                               */
9709 /*                                                                          */
9710 /* Returns:                                                                 */
9711 /*   Nothing.                                                               */
9712 /****************************************************************************/
9713 static __attribute__ ((noinline)) void
9714 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9715 {
9716 	struct mbuf *m;
9717 
9718 	BCE_PRINTF(
9719 		"----------------------------"
9720 		"  tx mbuf data  "
9721 		"----------------------------\n");
9722 
9723 	for (int i = 0; i < count; i++) {
9724 	 	m = sc->tx_mbuf_ptr[chain_prod];
9725 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9726 		bce_dump_mbuf(sc, m);
9727 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9728 	}
9729 
9730 	BCE_PRINTF(
9731 		"----------------------------"
9732 		"----------------"
9733 		"----------------------------\n");
9734 }
9735 
9736 /****************************************************************************/
9737 /* Prints out the mbufs in the RX mbuf chain.                               */
9738 /*                                                                          */
9739 /* Returns:                                                                 */
9740 /*   Nothing.                                                               */
9741 /****************************************************************************/
9742 static __attribute__ ((noinline)) void
9743 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9744 {
9745 	struct mbuf *m;
9746 
9747 	BCE_PRINTF(
9748 		"----------------------------"
9749 		"  rx mbuf data  "
9750 		"----------------------------\n");
9751 
9752 	for (int i = 0; i < count; i++) {
9753 	 	m = sc->rx_mbuf_ptr[chain_prod];
9754 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9755 		bce_dump_mbuf(sc, m);
9756 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9757 	}
9758 
9759 	BCE_PRINTF(
9760 		"----------------------------"
9761 		"----------------"
9762 		"----------------------------\n");
9763 }
9764 
9765 /****************************************************************************/
9766 /* Prints out the mbufs in the mbuf page chain.                             */
9767 /*                                                                          */
9768 /* Returns:                                                                 */
9769 /*   Nothing.                                                               */
9770 /****************************************************************************/
9771 static __attribute__ ((noinline)) void
9772 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9773 {
9774 	struct mbuf *m;
9775 
9776 	BCE_PRINTF(
9777 		"----------------------------"
9778 		"  pg mbuf data  "
9779 		"----------------------------\n");
9780 
9781 	for (int i = 0; i < count; i++) {
9782 	 	m = sc->pg_mbuf_ptr[chain_prod];
9783 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9784 		bce_dump_mbuf(sc, m);
9785 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9786 	}
9787 
9788 	BCE_PRINTF(
9789 		"----------------------------"
9790 		"----------------"
9791 		"----------------------------\n");
9792 }
9793 
9794 /****************************************************************************/
9795 /* Prints out a tx_bd structure.                                            */
9796 /*                                                                          */
9797 /* Returns:                                                                 */
9798 /*   Nothing.                                                               */
9799 /****************************************************************************/
9800 static __attribute__ ((noinline)) void
9801 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9802 {
9803 	int i = 0;
9804 
9805 	if (idx > MAX_TX_BD_ALLOC)
9806 		/* Index out of range. */
9807 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9808 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9809 		/* TX Chain page pointer. */
9810 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9811 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9812 		    txbd->tx_bd_haddr_lo);
9813 	else {
9814 		/* Normal tx_bd entry. */
9815 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9816 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9817 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9818 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9819 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9820 
9821 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9822 			if (i>0)
9823 				printf("|");
9824 			printf("CONN_FAULT");
9825 			i++;
9826 		}
9827 
9828 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9829 			if (i>0)
9830 				printf("|");
9831 			printf("TCP_UDP_CKSUM");
9832 			i++;
9833 		}
9834 
9835 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9836 			if (i>0)
9837 				printf("|");
9838 			printf("IP_CKSUM");
9839 			i++;
9840 		}
9841 
9842 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9843 			if (i>0)
9844 				printf("|");
9845 			printf("VLAN");
9846 			i++;
9847 		}
9848 
9849 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9850 			if (i>0)
9851 				printf("|");
9852 			printf("COAL_NOW");
9853 			i++;
9854 		}
9855 
9856 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9857 			if (i>0)
9858 				printf("|");
9859 			printf("DONT_GEN_CRC");
9860 			i++;
9861 		}
9862 
9863 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9864 			if (i>0)
9865 				printf("|");
9866 			printf("START");
9867 			i++;
9868 		}
9869 
9870 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9871 			if (i>0)
9872 				printf("|");
9873 			printf("END");
9874 			i++;
9875 		}
9876 
9877 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9878 			if (i>0)
9879 				printf("|");
9880 			printf("LSO");
9881 			i++;
9882 		}
9883 
9884 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9885 			if (i>0)
9886 				printf("|");
9887 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9888 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9889 		}
9890 
9891 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9892 			if (i>0)
9893 				printf("|");
9894 			printf("SW_FLAGS");
9895 			i++;
9896 		}
9897 
9898 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9899 			if (i>0)
9900 				printf("|");
9901 			printf("SNAP)");
9902 		} else {
9903 			printf(")\n");
9904 		}
9905 	}
9906 }
9907 
9908 /****************************************************************************/
9909 /* Prints out a rx_bd structure.                                            */
9910 /*                                                                          */
9911 /* Returns:                                                                 */
9912 /*   Nothing.                                                               */
9913 /****************************************************************************/
9914 static __attribute__ ((noinline)) void
9915 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9916 {
9917 	if (idx > MAX_RX_BD_ALLOC)
9918 		/* Index out of range. */
9919 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9920 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9921 		/* RX Chain page pointer. */
9922 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9923 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9924 		    rxbd->rx_bd_haddr_lo);
9925 	else
9926 		/* Normal rx_bd entry. */
9927 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9928 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9929 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9930 		    rxbd->rx_bd_flags);
9931 }
9932 
9933 /****************************************************************************/
9934 /* Prints out a rx_bd structure in the page chain.                          */
9935 /*                                                                          */
9936 /* Returns:                                                                 */
9937 /*   Nothing.                                                               */
9938 /****************************************************************************/
9939 static __attribute__ ((noinline)) void
9940 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9941 {
9942 	if (idx > MAX_PG_BD_ALLOC)
9943 		/* Index out of range. */
9944 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9945 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9946 		/* Page Chain page pointer. */
9947 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9948 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9949 	else
9950 		/* Normal rx_bd entry. */
9951 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9952 			"flags = 0x%08X\n", idx,
9953 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9954 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9955 }
9956 
9957 /****************************************************************************/
9958 /* Prints out a l2_fhdr structure.                                          */
9959 /*                                                                          */
9960 /* Returns:                                                                 */
9961 /*   Nothing.                                                               */
9962 /****************************************************************************/
9963 static __attribute__ ((noinline)) void
9964 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9965 {
9966 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9967 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9968 		"tcp_udp_xsum = 0x%04X\n", idx,
9969 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9970 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9971 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9972 }
9973 
9974 /****************************************************************************/
9975 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9976 /*                                                                          */
9977 /* Returns:                                                                 */
9978 /*   Nothing.                                                               */
9979 /****************************************************************************/
9980 static __attribute__ ((noinline)) void
9981 bce_dump_ctx(struct bce_softc *sc, u16 cid)
9982 {
9983 	if (cid > TX_CID) {
9984 		BCE_PRINTF(" Unknown CID\n");
9985 		return;
9986 	}
9987 
9988 	BCE_PRINTF(
9989 	    "----------------------------"
9990 	    "    CTX Data    "
9991 	    "----------------------------\n");
9992 
9993 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9994 
9995 	if (cid == RX_CID) {
9996 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9997 		   "producer index\n",
9998 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9999 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10000 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10001 		    BCE_L2CTX_RX_HOST_BSEQ));
10002 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10003 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10004 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10005 		    "descriptor address\n",
10006  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10007 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10008 		    "descriptor address\n",
10009 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10010 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10011 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10012 		    BCE_L2CTX_RX_NX_BDIDX));
10013 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10014 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10015 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10016 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10017 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10018 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10019 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10020 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10021 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10022 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10023 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10024 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10025 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10026 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10027 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10028 	} else if (cid == TX_CID) {
10029 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10030 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10031 			    CTX_RD(sc, GET_CID_ADDR(cid),
10032 			    BCE_L2CTX_TX_TYPE_XI));
10033 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10034 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10035 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10036 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10037 			    "h/w buffer descriptor address\n",
10038 			    CTX_RD(sc, GET_CID_ADDR(cid),
10039 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10040 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10041 			    "h/w buffer	descriptor address\n",
10042 			    CTX_RD(sc, GET_CID_ADDR(cid),
10043 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10044 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10045 			    "host producer index\n",
10046 			    CTX_RD(sc, GET_CID_ADDR(cid),
10047 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10048 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10049 			    "host byte sequence\n",
10050 			    CTX_RD(sc, GET_CID_ADDR(cid),
10051 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10052 		} else {
10053 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10054 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10055 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10056 			    CTX_RD(sc, GET_CID_ADDR(cid),
10057 			    BCE_L2CTX_TX_CMD_TYPE));
10058 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10059 			    "h/w buffer	descriptor address\n",
10060 			    CTX_RD(sc, GET_CID_ADDR(cid),
10061 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10062 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10063 			    "h/w buffer	descriptor address\n",
10064 			    CTX_RD(sc, GET_CID_ADDR(cid),
10065 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10066 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10067 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10068 			    BCE_L2CTX_TX_HOST_BIDX));
10069 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10070 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10071 			    BCE_L2CTX_TX_HOST_BSEQ));
10072 		}
10073 	}
10074 
10075 	BCE_PRINTF(
10076 	   "----------------------------"
10077 	   "    Raw CTX     "
10078 	   "----------------------------\n");
10079 
10080 	for (int i = 0x0; i < 0x300; i += 0x10) {
10081 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10082 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10083 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10084 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10085 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10086 	}
10087 
10088 	BCE_PRINTF(
10089 	   "----------------------------"
10090 	   "----------------"
10091 	   "----------------------------\n");
10092 }
10093 
10094 /****************************************************************************/
10095 /* Prints out the FTQ data.                                                 */
10096 /*                                                                          */
10097 /* Returns:                                                                */
10098 /*   Nothing.                                                               */
10099 /****************************************************************************/
10100 static __attribute__ ((noinline)) void
10101 bce_dump_ftqs(struct bce_softc *sc)
10102 {
10103 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10104 
10105 	BCE_PRINTF(
10106 	    "----------------------------"
10107 	    "    FTQ Data    "
10108 	    "----------------------------\n");
10109 
10110 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10111 	    "Max_Depth  Valid_Cnt \n");
10112 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10113 	    "---------- ----------\n");
10114 
10115 	/* Setup the generic statistic counters for the FTQ valid count. */
10116 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10117 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10118 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10119 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10120 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10121 
10122 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10123 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10124 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10125 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10126 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10127 
10128 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10129 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10130 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10131 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10132 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10133 
10134 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10135 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10136 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10137 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10138 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10139 
10140 	/* Input queue to the Receive Lookup state machine */
10141 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10142 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10143 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10144 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10145 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10146 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10147 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10148 
10149 	/* Input queue to the Receive Processor */
10150 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10151 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10152 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10153 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10154 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10155 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10156 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10157 
10158 	/* Input queue to the Recevie Processor */
10159 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10160 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10161 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10162 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10163 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10164 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10165 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10166 
10167 	/* Input queue to the Receive Virtual to Physical state machine */
10168 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10169 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10170 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10171 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10172 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10173 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10174 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10175 
10176 	/* Input queue to the Recevie Virtual to Physical state machine */
10177 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10178 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10179 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10180 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10181 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10182 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10183 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10184 
10185 	/* Input queue to the Receive Virtual to Physical state machine */
10186 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10187 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10188 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10189 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10190 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10191 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10192 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10193 
10194 	/* Input queue to the Receive DMA state machine */
10195 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10196 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10197 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10198 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10199 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10200 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10201 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10202 
10203 	/* Input queue to the Transmit Scheduler state machine */
10204 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10205 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10206 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10207 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10208 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10209 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10210 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10211 
10212 	/* Input queue to the Transmit Buffer Descriptor state machine */
10213 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10214 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10215 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10216 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10217 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10218 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10219 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10220 
10221 	/* Input queue to the Transmit Processor */
10222 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10223 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10224 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10225 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10226 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10227 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10228 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10229 
10230 	/* Input queue to the Transmit DMA state machine */
10231 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10232 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10233 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10234 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10235 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10236 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10237 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10238 
10239 	/* Input queue to the Transmit Patch-Up Processor */
10240 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10241 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10242 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10243 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10244 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10245 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10246 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10247 
10248 	/* Input queue to the Transmit Assembler state machine */
10249 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10250 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10251 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10252 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10253 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10254 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10255 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10256 
10257 	/* Input queue to the Completion Processor */
10258 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10259 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10260 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10261 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10262 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10263 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10264 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10265 
10266 	/* Input queue to the Completion Processor */
10267 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10268 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10269 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10270 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10271 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10272 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10273 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10274 
10275 	/* Input queue to the Completion Processor */
10276 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10277 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10278 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10279 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10280 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10281 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10282 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10283 
10284 	/* Setup the generic statistic counters for the FTQ valid count. */
10285 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10286 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10287 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10288 
10289 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10290 		val = val |
10291 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10292 		     24);
10293 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10294 
10295 	/* Input queue to the Management Control Processor */
10296 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10297 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10298 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10299 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10300 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10301 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10302 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10303 
10304 	/* Input queue to the Command Processor */
10305 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10306 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10307 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10308 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10309 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10310 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10311 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10312 
10313 	/* Input queue to the Completion Scheduler state machine */
10314 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10315 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10316 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10317 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10318 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10319 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10320 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10321 
10322 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10323 		/* Input queue to the RV2P Command Scheduler */
10324 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10325 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10326 		cur_depth = (ctl & 0xFFC00000) >> 22;
10327 		max_depth = (ctl & 0x003FF000) >> 12;
10328 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10329 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10330 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10331 	}
10332 
10333 	BCE_PRINTF(
10334 	    "----------------------------"
10335 	    "----------------"
10336 	    "----------------------------\n");
10337 }
10338 
10339 /****************************************************************************/
10340 /* Prints out the TX chain.                                                 */
10341 /*                                                                          */
10342 /* Returns:                                                                 */
10343 /*   Nothing.                                                               */
10344 /****************************************************************************/
10345 static __attribute__ ((noinline)) void
10346 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10347 {
10348 	struct tx_bd *txbd;
10349 
10350 	/* First some info about the tx_bd chain structure. */
10351 	BCE_PRINTF(
10352 	    "----------------------------"
10353 	    "  tx_bd  chain  "
10354 	    "----------------------------\n");
10355 
10356 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10357 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10358 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10359 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10360 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10361 
10362 	BCE_PRINTF(
10363 	    "----------------------------"
10364 	    "   tx_bd data   "
10365 	    "----------------------------\n");
10366 
10367 	/* Now print out a decoded list of TX buffer descriptors. */
10368 	for (int i = 0; i < count; i++) {
10369 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10370 		bce_dump_txbd(sc, tx_prod, txbd);
10371 		tx_prod++;
10372 	}
10373 
10374 	BCE_PRINTF(
10375 	    "----------------------------"
10376 	    "----------------"
10377 	    "----------------------------\n");
10378 }
10379 
10380 /****************************************************************************/
10381 /* Prints out the RX chain.                                                 */
10382 /*                                                                          */
10383 /* Returns:                                                                 */
10384 /*   Nothing.                                                               */
10385 /****************************************************************************/
10386 static __attribute__ ((noinline)) void
10387 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10388 {
10389 	struct rx_bd *rxbd;
10390 
10391 	/* First some info about the rx_bd chain structure. */
10392 	BCE_PRINTF(
10393 	    "----------------------------"
10394 	    "  rx_bd  chain  "
10395 	    "----------------------------\n");
10396 
10397 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10398 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10399 
10400 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10401 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10402 
10403 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10404 
10405 	BCE_PRINTF(
10406 	    "----------------------------"
10407 	    "   rx_bd data   "
10408 	    "----------------------------\n");
10409 
10410 	/* Now print out the rx_bd's themselves. */
10411 	for (int i = 0; i < count; i++) {
10412 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10413 		bce_dump_rxbd(sc, rx_prod, rxbd);
10414 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10415 	}
10416 
10417 	BCE_PRINTF(
10418 	    "----------------------------"
10419 	    "----------------"
10420 	    "----------------------------\n");
10421 }
10422 
10423 /****************************************************************************/
10424 /* Prints out the page chain.                                               */
10425 /*                                                                          */
10426 /* Returns:                                                                 */
10427 /*   Nothing.                                                               */
10428 /****************************************************************************/
10429 static __attribute__ ((noinline)) void
10430 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10431 {
10432 	struct rx_bd *pgbd;
10433 
10434 	/* First some info about the page chain structure. */
10435 	BCE_PRINTF(
10436 	    "----------------------------"
10437 	    "   page chain   "
10438 	    "----------------------------\n");
10439 
10440 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10441 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10442 
10443 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10444 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10445 
10446 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10447 
10448 	BCE_PRINTF(
10449 	    "----------------------------"
10450 	    "   page data    "
10451 	    "----------------------------\n");
10452 
10453 	/* Now print out the rx_bd's themselves. */
10454 	for (int i = 0; i < count; i++) {
10455 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10456 		bce_dump_pgbd(sc, pg_prod, pgbd);
10457 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10458 	}
10459 
10460 	BCE_PRINTF(
10461 	    "----------------------------"
10462 	    "----------------"
10463 	    "----------------------------\n");
10464 }
10465 
10466 #define BCE_PRINT_RX_CONS(arg)						\
10467 if (sblk->status_rx_quick_consumer_index##arg)				\
10468 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10469 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10470 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10471 	    arg);
10472 
10473 #define BCE_PRINT_TX_CONS(arg)						\
10474 if (sblk->status_tx_quick_consumer_index##arg)				\
10475 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10476 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10477 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10478 	    arg);
10479 
10480 /****************************************************************************/
10481 /* Prints out the status block from host memory.                            */
10482 /*                                                                          */
10483 /* Returns:                                                                 */
10484 /*   Nothing.                                                               */
10485 /****************************************************************************/
10486 static __attribute__ ((noinline)) void
10487 bce_dump_status_block(struct bce_softc *sc)
10488 {
10489 	struct status_block *sblk;
10490 
10491 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10492 
10493 	sblk = sc->status_block;
10494 
10495 	BCE_PRINTF(
10496 	    "----------------------------"
10497 	    "  Status Block  "
10498 	    "----------------------------\n");
10499 
10500 	/* Theses indices are used for normal L2 drivers. */
10501 	BCE_PRINTF("    0x%08X - attn_bits\n",
10502 	    sblk->status_attn_bits);
10503 
10504 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10505 	    sblk->status_attn_bits_ack);
10506 
10507 	BCE_PRINT_RX_CONS(0);
10508 	BCE_PRINT_TX_CONS(0)
10509 
10510 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10511 
10512 	/* Theses indices are not used for normal L2 drivers. */
10513 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10514 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10515 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10516 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10517 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10518 
10519 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10520 
10521 	if (sblk->status_completion_producer_index ||
10522 	    sblk->status_cmd_consumer_index)
10523 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10524 		    sblk->status_completion_producer_index,
10525 		    sblk->status_cmd_consumer_index);
10526 
10527 	BCE_PRINTF(
10528 	    "----------------------------"
10529 	    "----------------"
10530 	    "----------------------------\n");
10531 }
10532 
10533 #define BCE_PRINT_64BIT_STAT(arg) 				\
10534 if (sblk->arg##_lo || sblk->arg##_hi)				\
10535 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10536 	    sblk->arg##_lo, #arg);
10537 
10538 #define BCE_PRINT_32BIT_STAT(arg)				\
10539 if (sblk->arg)							\
10540 	BCE_PRINTF("         0x%08X : %s\n", 			\
10541 	    sblk->arg, #arg);
10542 
10543 /****************************************************************************/
10544 /* Prints out the statistics block from host memory.                        */
10545 /*                                                                          */
10546 /* Returns:                                                                 */
10547 /*   Nothing.                                                               */
10548 /****************************************************************************/
10549 static __attribute__ ((noinline)) void
10550 bce_dump_stats_block(struct bce_softc *sc)
10551 {
10552 	struct statistics_block *sblk;
10553 
10554 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10555 
10556 	sblk = sc->stats_block;
10557 
10558 	BCE_PRINTF(
10559 	    "---------------"
10560 	    " Stats Block  (All Stats Not Shown Are 0) "
10561 	    "---------------\n");
10562 
10563 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10564 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10565 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10566 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10567 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10568 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10569 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10570 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10571 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10572 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10573 	BCE_PRINT_32BIT_STAT(
10574 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10575 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10576 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10577 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10578 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10579 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10580 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10581 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10582 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10583 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10584 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10585 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10586 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10587 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10588 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10589 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10590 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10591 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10592 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10593 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10594 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10595 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10596 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10597 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10598 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10599 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10600 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10601 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10602 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10603 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10604 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10605 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10606 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10607 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10608 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10609 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10610 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10611 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10612 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10613 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10614 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10615 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10616 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10617 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10618 
10619 	BCE_PRINTF(
10620 	    "----------------------------"
10621 	    "----------------"
10622 	    "----------------------------\n");
10623 }
10624 
10625 /****************************************************************************/
10626 /* Prints out a summary of the driver state.                                */
10627 /*                                                                          */
10628 /* Returns:                                                                 */
10629 /*   Nothing.                                                               */
10630 /****************************************************************************/
10631 static __attribute__ ((noinline)) void
10632 bce_dump_driver_state(struct bce_softc *sc)
10633 {
10634 	u32 val_hi, val_lo;
10635 
10636 	BCE_PRINTF(
10637 	    "-----------------------------"
10638 	    " Driver State "
10639 	    "-----------------------------\n");
10640 
10641 	val_hi = BCE_ADDR_HI(sc);
10642 	val_lo = BCE_ADDR_LO(sc);
10643 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10644 	    "address\n", val_hi, val_lo);
10645 
10646 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10647 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10648 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10649 	    "address\n", val_hi, val_lo);
10650 
10651 	val_hi = BCE_ADDR_HI(sc->status_block);
10652 	val_lo = BCE_ADDR_LO(sc->status_block);
10653 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10654 	    "virtual address\n",	val_hi, val_lo);
10655 
10656 	val_hi = BCE_ADDR_HI(sc->stats_block);
10657 	val_lo = BCE_ADDR_LO(sc->stats_block);
10658 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10659 	    "virtual address\n", val_hi, val_lo);
10660 
10661 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10662 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10663 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10664 	    "virtual adddress\n", val_hi, val_lo);
10665 
10666 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10667 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10668 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10669 	    "virtual address\n", val_hi, val_lo);
10670 
10671 	if (bce_hdr_split == TRUE) {
10672 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10673 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10674 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10675 		    "virtual address\n", val_hi, val_lo);
10676 	}
10677 
10678 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10679 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10680 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10681 	    "virtual address\n",	val_hi, val_lo);
10682 
10683 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10684 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10685 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10686 	    "virtual address\n", val_hi, val_lo);
10687 
10688 	if (bce_hdr_split == TRUE) {
10689 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10690 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10691 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10692 		    "virtual address\n", val_hi, val_lo);
10693 	}
10694 
10695 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10696 	    "h/w intrs\n",
10697 	    (long long unsigned int) sc->interrupts_generated);
10698 
10699 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10700 	    "rx interrupts handled\n",
10701 	    (long long unsigned int) sc->interrupts_rx);
10702 
10703 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10704 	    "tx interrupts handled\n",
10705 	    (long long unsigned int) sc->interrupts_tx);
10706 
10707 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10708 	    "phy interrupts handled\n",
10709 	    (long long unsigned int) sc->phy_interrupts);
10710 
10711 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10712 	    "status block index\n", sc->last_status_idx);
10713 
10714 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10715 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10716 
10717 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10718 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10719 
10720 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10721 	    "byte seq index\n",	sc->tx_prod_bseq);
10722 
10723 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10724 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10725 
10726 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10727 	    "tx_bd's\n", sc->used_tx_bd);
10728 
10729 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10730 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10731 
10732 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10733 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10734 
10735 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10736 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10737 
10738 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10739 	    "byte seq index\n",	sc->rx_prod_bseq);
10740 
10741 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10742 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10743 
10744 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10745 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10746 
10747 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10748 	    "rx_bd's\n", sc->free_rx_bd);
10749 
10750 	if (bce_hdr_split == TRUE) {
10751 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10752 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10753 
10754 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10755 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10756 
10757 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10758 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10759 	}
10760 
10761 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10762 	    "rx_bd's\n", sc->free_pg_bd);
10763 
10764 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10765 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10766 
10767 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10768 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10769 
10770 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10771 	    "bce mac flags\n", sc->bce_flags);
10772 
10773 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10774 	    "bce phy flags\n", sc->bce_phy_flags);
10775 
10776 	BCE_PRINTF(
10777 	    "----------------------------"
10778 	    "----------------"
10779 	    "----------------------------\n");
10780 }
10781 
10782 /****************************************************************************/
10783 /* Prints out the hardware state through a summary of important register,   */
10784 /* followed by a complete register dump.                                    */
10785 /*                                                                          */
10786 /* Returns:                                                                 */
10787 /*   Nothing.                                                               */
10788 /****************************************************************************/
10789 static __attribute__ ((noinline)) void
10790 bce_dump_hw_state(struct bce_softc *sc)
10791 {
10792 	u32 val;
10793 
10794 	BCE_PRINTF(
10795 	    "----------------------------"
10796 	    " Hardware State "
10797 	    "----------------------------\n");
10798 
10799 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10800 
10801 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10802 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10803 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10804 
10805 	val = REG_RD(sc, BCE_DMA_STATUS);
10806 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10807 	    val, BCE_DMA_STATUS);
10808 
10809 	val = REG_RD(sc, BCE_CTX_STATUS);
10810 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10811 	    val, BCE_CTX_STATUS);
10812 
10813 	val = REG_RD(sc, BCE_EMAC_STATUS);
10814 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10815 	    val, BCE_EMAC_STATUS);
10816 
10817 	val = REG_RD(sc, BCE_RPM_STATUS);
10818 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10819 	    val, BCE_RPM_STATUS);
10820 
10821 	/* ToDo: Create a #define for this constant. */
10822 	val = REG_RD(sc, 0x2004);
10823 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10824 	    val, 0x2004);
10825 
10826 	val = REG_RD(sc, BCE_RV2P_STATUS);
10827 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10828 	    val, BCE_RV2P_STATUS);
10829 
10830 	/* ToDo: Create a #define for this constant. */
10831 	val = REG_RD(sc, 0x2c04);
10832 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10833 	    val, 0x2c04);
10834 
10835 	val = REG_RD(sc, BCE_TBDR_STATUS);
10836 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10837 	    val, BCE_TBDR_STATUS);
10838 
10839 	val = REG_RD(sc, BCE_TDMA_STATUS);
10840 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10841 	    val, BCE_TDMA_STATUS);
10842 
10843 	val = REG_RD(sc, BCE_HC_STATUS);
10844 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10845 	    val, BCE_HC_STATUS);
10846 
10847 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10848 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10849 	    val, BCE_TXP_CPU_STATE);
10850 
10851 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10852 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10853 	    val, BCE_TPAT_CPU_STATE);
10854 
10855 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10856 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10857 	    val, BCE_RXP_CPU_STATE);
10858 
10859 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10860 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10861 	    val, BCE_COM_CPU_STATE);
10862 
10863 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10864 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10865 	    val, BCE_MCP_CPU_STATE);
10866 
10867 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10868 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10869 	    val, BCE_CP_CPU_STATE);
10870 
10871 	BCE_PRINTF(
10872 	    "----------------------------"
10873 	    "----------------"
10874 	    "----------------------------\n");
10875 
10876 	BCE_PRINTF(
10877 	    "----------------------------"
10878 	    " Register  Dump "
10879 	    "----------------------------\n");
10880 
10881 	for (int i = 0x400; i < 0x8000; i += 0x10) {
10882 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10883 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10884 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10885 	}
10886 
10887 	BCE_PRINTF(
10888 	    "----------------------------"
10889 	    "----------------"
10890 	    "----------------------------\n");
10891 }
10892 
10893 /****************************************************************************/
10894 /* Prints out the contentst of shared memory which is used for host driver  */
10895 /* to bootcode firmware communication.                                      */
10896 /*                                                                          */
10897 /* Returns:                                                                 */
10898 /*   Nothing.                                                               */
10899 /****************************************************************************/
10900 static __attribute__ ((noinline)) void
10901 bce_dump_shmem_state(struct bce_softc *sc)
10902 {
10903 	BCE_PRINTF(
10904 	    "----------------------------"
10905 	    " Hardware State "
10906 	    "----------------------------\n");
10907 
10908 	BCE_PRINTF("0x%08X - Shared memory base address\n",
10909 	    sc->bce_shmem_base);
10910 	BCE_PRINTF("%s - bootcode version\n",
10911 	    sc->bce_bc_ver);
10912 
10913 	BCE_PRINTF(
10914 	    "----------------------------"
10915 	    "   Shared Mem   "
10916 	    "----------------------------\n");
10917 
10918 	for (int i = 0x0; i < 0x200; i += 0x10) {
10919 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10920 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
10921 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
10922 	}
10923 
10924 	BCE_PRINTF(
10925 	    "----------------------------"
10926 	    "----------------"
10927 	    "----------------------------\n");
10928 }
10929 
10930 /****************************************************************************/
10931 /* Prints out the mailbox queue registers.                                  */
10932 /*                                                                          */
10933 /* Returns:                                                                 */
10934 /*   Nothing.                                                               */
10935 /****************************************************************************/
10936 static __attribute__ ((noinline)) void
10937 bce_dump_mq_regs(struct bce_softc *sc)
10938 {
10939 	BCE_PRINTF(
10940 	    "----------------------------"
10941 	    "    MQ Regs     "
10942 	    "----------------------------\n");
10943 
10944 	BCE_PRINTF(
10945 	    "----------------------------"
10946 	    "----------------"
10947 	    "----------------------------\n");
10948 
10949 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10950 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10951 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10952 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10953 	}
10954 
10955 	BCE_PRINTF(
10956 	    "----------------------------"
10957 	    "----------------"
10958 	    "----------------------------\n");
10959 }
10960 
10961 /****************************************************************************/
10962 /* Prints out the bootcode state.                                           */
10963 /*                                                                          */
10964 /* Returns:                                                                 */
10965 /*   Nothing.                                                               */
10966 /****************************************************************************/
10967 static __attribute__ ((noinline)) void
10968 bce_dump_bc_state(struct bce_softc *sc)
10969 {
10970 	u32 val;
10971 
10972 	BCE_PRINTF(
10973 	    "----------------------------"
10974 	    " Bootcode State "
10975 	    "----------------------------\n");
10976 
10977 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10978 
10979 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10980 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10981 	    val, BCE_BC_RESET_TYPE);
10982 
10983 	val = bce_shmem_rd(sc, BCE_BC_STATE);
10984 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10985 	    val, BCE_BC_STATE);
10986 
10987 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10988 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10989 	    val, BCE_BC_STATE_CONDITION);
10990 
10991 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10992 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10993 	    val, BCE_BC_STATE_DEBUG_CMD);
10994 
10995 	BCE_PRINTF(
10996 	    "----------------------------"
10997 	    "----------------"
10998 	    "----------------------------\n");
10999 }
11000 
11001 /****************************************************************************/
11002 /* Prints out the TXP processor state.                                      */
11003 /*                                                                          */
11004 /* Returns:                                                                 */
11005 /*   Nothing.                                                               */
11006 /****************************************************************************/
11007 static __attribute__ ((noinline)) void
11008 bce_dump_txp_state(struct bce_softc *sc, int regs)
11009 {
11010 	u32 val;
11011 	u32 fw_version[3];
11012 
11013 	BCE_PRINTF(
11014 	    "----------------------------"
11015 	    "   TXP  State   "
11016 	    "----------------------------\n");
11017 
11018 	for (int i = 0; i < 3; i++)
11019 		fw_version[i] = htonl(REG_RD_IND(sc,
11020 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11021 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11022 
11023 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11024 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11025 	    val, BCE_TXP_CPU_MODE);
11026 
11027 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11028 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11029 	    val, BCE_TXP_CPU_STATE);
11030 
11031 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11032 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11033 	    val, BCE_TXP_CPU_EVENT_MASK);
11034 
11035 	if (regs) {
11036 		BCE_PRINTF(
11037 		    "----------------------------"
11038 		    " Register  Dump "
11039 		    "----------------------------\n");
11040 
11041 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11042 			/* Skip the big blank spaces */
11043 			if (i < 0x454000 && i > 0x5ffff)
11044 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11045 				    "0x%08X 0x%08X\n", i,
11046 				    REG_RD_IND(sc, i),
11047 				    REG_RD_IND(sc, i + 0x4),
11048 				    REG_RD_IND(sc, i + 0x8),
11049 				    REG_RD_IND(sc, i + 0xC));
11050 		}
11051 	}
11052 
11053 	BCE_PRINTF(
11054 	    "----------------------------"
11055 	    "----------------"
11056 	    "----------------------------\n");
11057 }
11058 
11059 /****************************************************************************/
11060 /* Prints out the RXP processor state.                                      */
11061 /*                                                                          */
11062 /* Returns:                                                                 */
11063 /*   Nothing.                                                               */
11064 /****************************************************************************/
11065 static __attribute__ ((noinline)) void
11066 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11067 {
11068 	u32 val;
11069 	u32 fw_version[3];
11070 
11071 	BCE_PRINTF(
11072 	    "----------------------------"
11073 	    "   RXP  State   "
11074 	    "----------------------------\n");
11075 
11076 	for (int i = 0; i < 3; i++)
11077 		fw_version[i] = htonl(REG_RD_IND(sc,
11078 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11079 
11080 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11081 
11082 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11083 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11084 	    val, BCE_RXP_CPU_MODE);
11085 
11086 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11087 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11088 	    val, BCE_RXP_CPU_STATE);
11089 
11090 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11091 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11092 	    val, BCE_RXP_CPU_EVENT_MASK);
11093 
11094 	if (regs) {
11095 		BCE_PRINTF(
11096 		    "----------------------------"
11097 		    " Register  Dump "
11098 		    "----------------------------\n");
11099 
11100 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11101 			/* Skip the big blank sapces */
11102 			if (i < 0xc5400 && i > 0xdffff)
11103 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11104 				    "0x%08X 0x%08X\n", i,
11105 				    REG_RD_IND(sc, i),
11106 				    REG_RD_IND(sc, i + 0x4),
11107 				    REG_RD_IND(sc, i + 0x8),
11108 				    REG_RD_IND(sc, i + 0xC));
11109 		}
11110 	}
11111 
11112 	BCE_PRINTF(
11113 	    "----------------------------"
11114 	    "----------------"
11115 	    "----------------------------\n");
11116 }
11117 
11118 /****************************************************************************/
11119 /* Prints out the TPAT processor state.                                     */
11120 /*                                                                          */
11121 /* Returns:                                                                 */
11122 /*   Nothing.                                                               */
11123 /****************************************************************************/
11124 static __attribute__ ((noinline)) void
11125 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11126 {
11127 	u32 val;
11128 	u32 fw_version[3];
11129 
11130 	BCE_PRINTF(
11131 	    "----------------------------"
11132 	    "   TPAT State   "
11133 	    "----------------------------\n");
11134 
11135 	for (int i = 0; i < 3; i++)
11136 		fw_version[i] = htonl(REG_RD_IND(sc,
11137 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11138 
11139 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11140 
11141 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11142 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11143 	    val, BCE_TPAT_CPU_MODE);
11144 
11145 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11146 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11147 	    val, BCE_TPAT_CPU_STATE);
11148 
11149 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11150 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11151 	    val, BCE_TPAT_CPU_EVENT_MASK);
11152 
11153 	if (regs) {
11154 		BCE_PRINTF(
11155 		    "----------------------------"
11156 		    " Register  Dump "
11157 		    "----------------------------\n");
11158 
11159 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11160 			/* Skip the big blank spaces */
11161 			if (i < 0x854000 && i > 0x9ffff)
11162 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11163 				    "0x%08X 0x%08X\n", i,
11164 				    REG_RD_IND(sc, i),
11165 				    REG_RD_IND(sc, i + 0x4),
11166 				    REG_RD_IND(sc, i + 0x8),
11167 				    REG_RD_IND(sc, i + 0xC));
11168 		}
11169 	}
11170 
11171 	BCE_PRINTF(
11172 		"----------------------------"
11173 		"----------------"
11174 		"----------------------------\n");
11175 }
11176 
11177 /****************************************************************************/
11178 /* Prints out the Command Procesor (CP) state.                              */
11179 /*                                                                          */
11180 /* Returns:                                                                 */
11181 /*   Nothing.                                                               */
11182 /****************************************************************************/
11183 static __attribute__ ((noinline)) void
11184 bce_dump_cp_state(struct bce_softc *sc, int regs)
11185 {
11186 	u32 val;
11187 	u32 fw_version[3];
11188 
11189 	BCE_PRINTF(
11190 	    "----------------------------"
11191 	    "    CP State    "
11192 	    "----------------------------\n");
11193 
11194 	for (int i = 0; i < 3; i++)
11195 		fw_version[i] = htonl(REG_RD_IND(sc,
11196 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11197 
11198 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11199 
11200 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11201 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11202 	    val, BCE_CP_CPU_MODE);
11203 
11204 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11205 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11206 	    val, BCE_CP_CPU_STATE);
11207 
11208 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11209 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11210 	    BCE_CP_CPU_EVENT_MASK);
11211 
11212 	if (regs) {
11213 		BCE_PRINTF(
11214 		    "----------------------------"
11215 		    " Register  Dump "
11216 		    "----------------------------\n");
11217 
11218 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11219 			/* Skip the big blank spaces */
11220 			if (i < 0x185400 && i > 0x19ffff)
11221 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11222 				    "0x%08X 0x%08X\n", i,
11223 				    REG_RD_IND(sc, i),
11224 				    REG_RD_IND(sc, i + 0x4),
11225 				    REG_RD_IND(sc, i + 0x8),
11226 				    REG_RD_IND(sc, i + 0xC));
11227 		}
11228 	}
11229 
11230 	BCE_PRINTF(
11231 	    "----------------------------"
11232 	    "----------------"
11233 	    "----------------------------\n");
11234 }
11235 
11236 /****************************************************************************/
11237 /* Prints out the Completion Procesor (COM) state.                          */
11238 /*                                                                          */
11239 /* Returns:                                                                 */
11240 /*   Nothing.                                                               */
11241 /****************************************************************************/
11242 static __attribute__ ((noinline)) void
11243 bce_dump_com_state(struct bce_softc *sc, int regs)
11244 {
11245 	u32 val;
11246 	u32 fw_version[4];
11247 
11248 	BCE_PRINTF(
11249 	    "----------------------------"
11250 	    "   COM State    "
11251 	    "----------------------------\n");
11252 
11253 	for (int i = 0; i < 3; i++)
11254 		fw_version[i] = htonl(REG_RD_IND(sc,
11255 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11256 
11257 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11258 
11259 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11260 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11261 	    val, BCE_COM_CPU_MODE);
11262 
11263 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11264 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11265 	    val, BCE_COM_CPU_STATE);
11266 
11267 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11268 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11269 	    BCE_COM_CPU_EVENT_MASK);
11270 
11271 	if (regs) {
11272 		BCE_PRINTF(
11273 		    "----------------------------"
11274 		    " Register  Dump "
11275 		    "----------------------------\n");
11276 
11277 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11278 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11279 			    "0x%08X 0x%08X\n", i,
11280 			    REG_RD_IND(sc, i),
11281 			    REG_RD_IND(sc, i + 0x4),
11282 			    REG_RD_IND(sc, i + 0x8),
11283 			    REG_RD_IND(sc, i + 0xC));
11284 		}
11285 	}
11286 
11287 	BCE_PRINTF(
11288 		"----------------------------"
11289 		"----------------"
11290 		"----------------------------\n");
11291 }
11292 
11293 /****************************************************************************/
11294 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11295 /*                                                                          */
11296 /* Returns:                                                                 */
11297 /*   Nothing.                                                               */
11298 /****************************************************************************/
11299 static __attribute__ ((noinline)) void
11300 bce_dump_rv2p_state(struct bce_softc *sc)
11301 {
11302 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11303 
11304 	BCE_PRINTF(
11305 	    "----------------------------"
11306 	    "   RV2P State   "
11307 	    "----------------------------\n");
11308 
11309 	/* Stall the RV2P processors. */
11310 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11311 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11312 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11313 
11314 	/* Read the firmware version. */
11315 	val = 0x00000001;
11316 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11317 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11318 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11319 	    BCE_RV2P_INSTR_HIGH_HIGH;
11320 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11321 	    fw_ver_high, fw_ver_low);
11322 
11323 	val = 0x00000001;
11324 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11325 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11326 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11327 	    BCE_RV2P_INSTR_HIGH_HIGH;
11328 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11329 	    fw_ver_high, fw_ver_low);
11330 
11331 	/* Resume the RV2P processors. */
11332 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11333 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11334 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11335 
11336 	/* Fetch the program counter value. */
11337 	val = 0x68007800;
11338 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11339 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11340 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11341 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11342 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11343 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11344 
11345 	/* Fetch the program counter value again to see if it is advancing. */
11346 	val = 0x68007800;
11347 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11348 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11349 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11350 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11351 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11352 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11353 
11354 	BCE_PRINTF(
11355 	    "----------------------------"
11356 	    "----------------"
11357 	    "----------------------------\n");
11358 }
11359 
11360 /****************************************************************************/
11361 /* Prints out the driver state and then enters the debugger.                */
11362 /*                                                                          */
11363 /* Returns:                                                                 */
11364 /*   Nothing.                                                               */
11365 /****************************************************************************/
11366 static __attribute__ ((noinline)) void
11367 bce_breakpoint(struct bce_softc *sc)
11368 {
11369 
11370 	/*
11371 	 * Unreachable code to silence compiler warnings
11372 	 * about unused functions.
11373 	 */
11374 	if (0) {
11375 		bce_freeze_controller(sc);
11376 		bce_unfreeze_controller(sc);
11377 		bce_dump_enet(sc, NULL);
11378 		bce_dump_txbd(sc, 0, NULL);
11379 		bce_dump_rxbd(sc, 0, NULL);
11380 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11381 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11382 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11383 		bce_dump_l2fhdr(sc, 0, NULL);
11384 		bce_dump_ctx(sc, RX_CID);
11385 		bce_dump_ftqs(sc);
11386 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11387 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11388 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11389 		bce_dump_status_block(sc);
11390 		bce_dump_stats_block(sc);
11391 		bce_dump_driver_state(sc);
11392 		bce_dump_hw_state(sc);
11393 		bce_dump_bc_state(sc);
11394 		bce_dump_txp_state(sc, 0);
11395 		bce_dump_rxp_state(sc, 0);
11396 		bce_dump_tpat_state(sc, 0);
11397 		bce_dump_cp_state(sc, 0);
11398 		bce_dump_com_state(sc, 0);
11399 		bce_dump_rv2p_state(sc);
11400 		bce_dump_pgbd(sc, 0, NULL);
11401 	}
11402 
11403 	bce_dump_status_block(sc);
11404 	bce_dump_driver_state(sc);
11405 
11406 	/* Call the debugger. */
11407 	breakpoint();
11408 }
11409 #endif
11410