xref: /freebsd/sys/dev/bce/if_bce.c (revision 09d325677d53a12c79a43664ff29871e92247629)
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53 
54 #include "opt_bce.h"
55 
56 #include <sys/param.h>
57 #include <sys/endian.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/lock.h>
61 #include <sys/mbuf.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/kernel.h>
65 #include <sys/module.h>
66 #include <sys/socket.h>
67 #include <sys/sysctl.h>
68 #include <sys/queue.h>
69 
70 #include <net/bpf.h>
71 #include <net/ethernet.h>
72 #include <net/if.h>
73 #include <net/if_var.h>
74 #include <net/if_arp.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 
78 #include <net/if_types.h>
79 #include <net/if_vlan_var.h>
80 
81 #include <netinet/in_systm.h>
82 #include <netinet/in.h>
83 #include <netinet/if_ether.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip6.h>
86 #include <netinet/tcp.h>
87 #include <netinet/udp.h>
88 
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <sys/bus.h>
92 #include <sys/rman.h>
93 
94 #include <dev/mii/mii.h>
95 #include <dev/mii/miivar.h>
96 #include "miidevs.h"
97 #include <dev/mii/brgphyreg.h>
98 
99 #include <dev/pci/pcireg.h>
100 #include <dev/pci/pcivar.h>
101 
102 #include "miibus_if.h"
103 
104 #include <dev/bce/if_bcereg.h>
105 #include <dev/bce/if_bcefw.h>
106 
107 /****************************************************************************/
108 /* BCE Debug Options                                                        */
109 /****************************************************************************/
110 #ifdef BCE_DEBUG
111 	u32 bce_debug = BCE_WARN;
112 
113 	/*          0 = Never              */
114 	/*          1 = 1 in 2,147,483,648 */
115 	/*        256 = 1 in     8,388,608 */
116 	/*       2048 = 1 in     1,048,576 */
117 	/*      65536 = 1 in        32,768 */
118 	/*    1048576 = 1 in         2,048 */
119 	/*  268435456 =	1 in             8 */
120 	/*  536870912 = 1 in             4 */
121 	/* 1073741824 = 1 in             2 */
122 
123 	/* Controls how often the l2_fhdr frame error check will fail. */
124 	int l2fhdr_error_sim_control = 0;
125 
126 	/* Controls how often the unexpected attention check will fail. */
127 	int unexpected_attention_sim_control = 0;
128 
129 	/* Controls how often to simulate an mbuf allocation failure. */
130 	int mbuf_alloc_failed_sim_control = 0;
131 
132 	/* Controls how often to simulate a DMA mapping failure. */
133 	int dma_map_addr_failed_sim_control = 0;
134 
135 	/* Controls how often to simulate a bootcode failure. */
136 	int bootcode_running_failure_sim_control = 0;
137 #endif
138 
139 /****************************************************************************/
140 /* PCI Device ID Table                                                      */
141 /*                                                                          */
142 /* Used by bce_probe() to identify the devices supported by this driver.    */
143 /****************************************************************************/
144 #define BCE_DEVDESC_MAX		64
145 
146 static const struct bce_type bce_devs[] = {
147 	/* BCM5706C Controllers and OEM boards. */
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
149 		"HP NC370T Multifunction Gigabit Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
151 		"HP NC370i Multifunction Gigabit Server Adapter" },
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
153 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
155 		"HP NC371i Multifunction Gigabit Server Adapter" },
156 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
157 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
158 
159 	/* BCM5706S controllers and OEM boards. */
160 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
161 		"HP NC370F Multifunction Gigabit Server Adapter" },
162 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
163 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
164 
165 	/* BCM5708C controllers and OEM boards. */
166 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
167 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
168 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
169 		"HP NC373i Multifunction Gigabit Server Adapter" },
170 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
171 		"HP NC374m PCIe Multifunction Adapter" },
172 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
173 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
174 
175 	/* BCM5708S controllers and OEM boards. */
176 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
177 		"HP NC373m Multifunction Gigabit Server Adapter" },
178 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
179 		"HP NC373i Multifunction Gigabit Server Adapter" },
180 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
181 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
182 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
183 		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
184 
185 	/* BCM5709C controllers and OEM boards. */
186 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
187 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
188 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
189 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
190 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
191 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
192 
193 	/* BCM5709S controllers and OEM boards. */
194 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
195 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
196 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
197 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
198 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
199 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
200 
201 	/* BCM5716 controllers and OEM boards. */
202 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
203 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
204 
205 	{ 0, 0, 0, 0, NULL }
206 };
207 
208 
209 /****************************************************************************/
210 /* Supported Flash NVRAM device data.                                       */
211 /****************************************************************************/
212 static const struct flash_spec flash_table[] =
213 {
214 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
215 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
216 
217 	/* Slow EEPROM */
218 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
219 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
220 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
221 	 "EEPROM - slow"},
222 	/* Expansion entry 0001 */
223 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 	 "Entry 0001"},
227 	/* Saifun SA25F010 (non-buffered flash) */
228 	/* strap, cfg1, & write1 need updates */
229 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
230 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
232 	 "Non-buffered flash (128kB)"},
233 	/* Saifun SA25F020 (non-buffered flash) */
234 	/* strap, cfg1, & write1 need updates */
235 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
238 	 "Non-buffered flash (256kB)"},
239 	/* Expansion entry 0100 */
240 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 	 "Entry 0100"},
244 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
245 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
246 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
247 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
248 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
249 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
250 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
251 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
252 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
253 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
254 	/* Saifun SA25F005 (non-buffered flash) */
255 	/* strap, cfg1, & write1 need updates */
256 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
257 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
259 	 "Non-buffered flash (64kB)"},
260 	/* Fast EEPROM */
261 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
262 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
263 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
264 	 "EEPROM - fast"},
265 	/* Expansion entry 1001 */
266 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
267 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
268 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
269 	 "Entry 1001"},
270 	/* Expansion entry 1010 */
271 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
272 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
273 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
274 	 "Entry 1010"},
275 	/* ATMEL AT45DB011B (buffered flash) */
276 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
277 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
278 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
279 	 "Buffered flash (128kB)"},
280 	/* Expansion entry 1100 */
281 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
282 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
283 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
284 	 "Entry 1100"},
285 	/* Expansion entry 1101 */
286 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
287 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
288 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
289 	 "Entry 1101"},
290 	/* Ateml Expansion entry 1110 */
291 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
292 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
293 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
294 	 "Entry 1110 (Atmel)"},
295 	/* ATMEL AT45DB021B (buffered flash) */
296 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
297 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
298 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
299 	 "Buffered flash (256kB)"},
300 };
301 
302 /*
303  * The BCM5709 controllers transparently handle the
304  * differences between Atmel 264 byte pages and all
305  * flash devices which use 256 byte pages, so no
306  * logical-to-physical mapping is required in the
307  * driver.
308  */
309 static const struct flash_spec flash_5709 = {
310 	.flags		= BCE_NV_BUFFERED,
311 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
312 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
313 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
314 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
315 	.name		= "5709/5716 buffered flash (256kB)",
316 };
317 
318 
319 /****************************************************************************/
320 /* FreeBSD device entry points.                                             */
321 /****************************************************************************/
322 static int  bce_probe			(device_t);
323 static int  bce_attach			(device_t);
324 static int  bce_detach			(device_t);
325 static int  bce_shutdown		(device_t);
326 
327 
328 /****************************************************************************/
329 /* BCE Debug Data Structure Dump Routines                                   */
330 /****************************************************************************/
331 #ifdef BCE_DEBUG
332 static u32  bce_reg_rd				(struct bce_softc *, u32);
333 static void bce_reg_wr				(struct bce_softc *, u32, u32);
334 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
335 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
336 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
337 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
338 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
339 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
340 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
341 static void bce_dump_txbd			(struct bce_softc *,
342     int, struct tx_bd *);
343 static void bce_dump_rxbd			(struct bce_softc *,
344     int, struct rx_bd *);
345 static void bce_dump_pgbd			(struct bce_softc *,
346     int, struct rx_bd *);
347 static void bce_dump_l2fhdr		(struct bce_softc *,
348     int, struct l2_fhdr *);
349 static void bce_dump_ctx			(struct bce_softc *, u16);
350 static void bce_dump_ftqs			(struct bce_softc *);
351 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
352 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
353 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
354 static void bce_dump_status_block	(struct bce_softc *);
355 static void bce_dump_stats_block	(struct bce_softc *);
356 static void bce_dump_driver_state	(struct bce_softc *);
357 static void bce_dump_hw_state		(struct bce_softc *);
358 static void bce_dump_shmem_state	(struct bce_softc *);
359 static void bce_dump_mq_regs		(struct bce_softc *);
360 static void bce_dump_bc_state		(struct bce_softc *);
361 static void bce_dump_txp_state		(struct bce_softc *, int);
362 static void bce_dump_rxp_state		(struct bce_softc *, int);
363 static void bce_dump_tpat_state	(struct bce_softc *, int);
364 static void bce_dump_cp_state		(struct bce_softc *, int);
365 static void bce_dump_com_state		(struct bce_softc *, int);
366 static void bce_dump_rv2p_state	(struct bce_softc *);
367 static void bce_breakpoint			(struct bce_softc *);
368 #endif /*BCE_DEBUG */
369 
370 
371 /****************************************************************************/
372 /* BCE Register/Memory Access Routines                                      */
373 /****************************************************************************/
374 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
375 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
376 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
377 static u32  bce_shmem_rd		(struct bce_softc *, u32);
378 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
379 static int  bce_miibus_read_reg		(device_t, int, int);
380 static int  bce_miibus_write_reg	(device_t, int, int, int);
381 static void bce_miibus_statchg		(device_t);
382 
383 #ifdef BCE_DEBUG
384 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
385 #ifdef BCE_NVRAM_WRITE_SUPPORT
386 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
387 #endif
388 #endif
389 
390 /****************************************************************************/
391 /* BCE NVRAM Access Routines                                                */
392 /****************************************************************************/
393 static int  bce_acquire_nvram_lock	(struct bce_softc *);
394 static int  bce_release_nvram_lock	(struct bce_softc *);
395 static void bce_enable_nvram_access(struct bce_softc *);
396 static void bce_disable_nvram_access(struct bce_softc *);
397 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
398 static int  bce_init_nvram			(struct bce_softc *);
399 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
400 static int  bce_nvram_test			(struct bce_softc *);
401 #ifdef BCE_NVRAM_WRITE_SUPPORT
402 static int  bce_enable_nvram_write	(struct bce_softc *);
403 static void bce_disable_nvram_write(struct bce_softc *);
404 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
405 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
406 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
407 #endif
408 
409 /****************************************************************************/
410 /*                                                                          */
411 /****************************************************************************/
412 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
413 static void bce_get_media			(struct bce_softc *);
414 static void bce_init_media			(struct bce_softc *);
415 static u32 bce_get_rphy_link		(struct bce_softc *);
416 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
417 static int  bce_dma_alloc			(device_t);
418 static void bce_dma_free			(struct bce_softc *);
419 static void bce_release_resources	(struct bce_softc *);
420 
421 /****************************************************************************/
422 /* BCE Firmware Synchronization and Load                                    */
423 /****************************************************************************/
424 static void bce_fw_cap_init			(struct bce_softc *);
425 static int  bce_fw_sync			(struct bce_softc *, u32);
426 static void bce_load_rv2p_fw		(struct bce_softc *, const u32 *, u32,
427     u32);
428 static void bce_load_cpu_fw		(struct bce_softc *,
429     struct cpu_reg *, struct fw_info *);
430 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
431 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
432 static void bce_start_rxp_cpu		(struct bce_softc *);
433 static void bce_init_rxp_cpu		(struct bce_softc *);
434 static void bce_init_txp_cpu 		(struct bce_softc *);
435 static void bce_init_tpat_cpu		(struct bce_softc *);
436 static void bce_init_cp_cpu	  	(struct bce_softc *);
437 static void bce_init_com_cpu	  	(struct bce_softc *);
438 static void bce_init_cpus			(struct bce_softc *);
439 
440 static void bce_print_adapter_info	(struct bce_softc *);
441 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
442 static void bce_stop				(struct bce_softc *);
443 static int  bce_reset				(struct bce_softc *, u32);
444 static int  bce_chipinit 			(struct bce_softc *);
445 static int  bce_blockinit 			(struct bce_softc *);
446 
447 static int  bce_init_tx_chain		(struct bce_softc *);
448 static void bce_free_tx_chain		(struct bce_softc *);
449 
450 static int  bce_get_rx_buf		(struct bce_softc *, u16, u16, u32 *);
451 static int  bce_init_rx_chain		(struct bce_softc *);
452 static void bce_fill_rx_chain		(struct bce_softc *);
453 static void bce_free_rx_chain		(struct bce_softc *);
454 
455 static int  bce_get_pg_buf		(struct bce_softc *, u16, u16);
456 static int  bce_init_pg_chain		(struct bce_softc *);
457 static void bce_fill_pg_chain		(struct bce_softc *);
458 static void bce_free_pg_chain		(struct bce_softc *);
459 
460 static struct mbuf *bce_tso_setup	(struct bce_softc *,
461     struct mbuf **, u16 *);
462 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
463 static void bce_start_locked		(struct ifnet *);
464 static void bce_start				(struct ifnet *);
465 static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
466 static void bce_watchdog			(struct bce_softc *);
467 static int  bce_ifmedia_upd		(struct ifnet *);
468 static int  bce_ifmedia_upd_locked	(struct ifnet *);
469 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
470 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
471 static void bce_init_locked		(struct bce_softc *);
472 static void bce_init				(void *);
473 static void bce_mgmt_init_locked	(struct bce_softc *sc);
474 
475 static int  bce_init_ctx			(struct bce_softc *);
476 static void bce_get_mac_addr		(struct bce_softc *);
477 static void bce_set_mac_addr		(struct bce_softc *);
478 static void bce_phy_intr			(struct bce_softc *);
479 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
480 static void bce_rx_intr			(struct bce_softc *);
481 static void bce_tx_intr			(struct bce_softc *);
482 static void bce_disable_intr		(struct bce_softc *);
483 static void bce_enable_intr		(struct bce_softc *, int);
484 
485 static void bce_intr				(void *);
486 static void bce_set_rx_mode		(struct bce_softc *);
487 static void bce_stats_update		(struct bce_softc *);
488 static void bce_tick				(void *);
489 static void bce_pulse				(void *);
490 static void bce_add_sysctls		(struct bce_softc *);
491 
492 
493 /****************************************************************************/
494 /* FreeBSD device dispatch table.                                           */
495 /****************************************************************************/
496 static device_method_t bce_methods[] = {
497 	/* Device interface (device_if.h) */
498 	DEVMETHOD(device_probe,		bce_probe),
499 	DEVMETHOD(device_attach,	bce_attach),
500 	DEVMETHOD(device_detach,	bce_detach),
501 	DEVMETHOD(device_shutdown,	bce_shutdown),
502 /* Supported by device interface but not used here. */
503 /*	DEVMETHOD(device_identify,	bce_identify),      */
504 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
505 /*	DEVMETHOD(device_resume,	bce_resume),        */
506 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
507 
508 	/* MII interface (miibus_if.h) */
509 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
510 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
511 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
512 /* Supported by MII interface but not used here.       */
513 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
514 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
515 
516 	DEVMETHOD_END
517 };
518 
519 static driver_t bce_driver = {
520 	"bce",
521 	bce_methods,
522 	sizeof(struct bce_softc)
523 };
524 
525 static devclass_t bce_devclass;
526 
527 MODULE_DEPEND(bce, pci, 1, 1, 1);
528 MODULE_DEPEND(bce, ether, 1, 1, 1);
529 MODULE_DEPEND(bce, miibus, 1, 1, 1);
530 
531 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
532 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
533 
534 
535 /****************************************************************************/
536 /* Tunable device values                                                    */
537 /****************************************************************************/
538 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
539 
540 /* Allowable values are TRUE or FALSE */
541 static int bce_verbose = TRUE;
542 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
543 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
544     "Verbose output enable/disable");
545 
546 /* Allowable values are TRUE or FALSE */
547 static int bce_tso_enable = TRUE;
548 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
549 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
550     "TSO Enable/Disable");
551 
552 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
553 /* ToDo: Add MSI-X support. */
554 static int bce_msi_enable = 1;
555 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
556 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
557     "MSI-X|MSI|INTx selector");
558 
559 /* Allowable values are 1, 2, 4, 8. */
560 static int bce_rx_pages = DEFAULT_RX_PAGES;
561 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
562 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
563     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
564 
565 /* Allowable values are 1, 2, 4, 8. */
566 static int bce_tx_pages = DEFAULT_TX_PAGES;
567 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
568 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
569     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
570 
571 /* Allowable values are TRUE or FALSE. */
572 static int bce_hdr_split = TRUE;
573 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
574 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
575     "Frame header/payload splitting Enable/Disable");
576 
577 /* Allowable values are TRUE or FALSE. */
578 static int bce_strict_rx_mtu = FALSE;
579 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
580 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
581     &bce_strict_rx_mtu, 0,
582     "Enable/Disable strict RX frame size checking");
583 
584 /* Allowable values are 0 ... 100 */
585 #ifdef BCE_DEBUG
586 /* Generate 1 interrupt for every transmit completion. */
587 static int bce_tx_quick_cons_trip_int = 1;
588 #else
589 /* Generate 1 interrupt for every 20 transmit completions. */
590 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
591 #endif
592 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
593 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
594     &bce_tx_quick_cons_trip_int, 0,
595     "Transmit BD trip point during interrupts");
596 
597 /* Allowable values are 0 ... 100 */
598 /* Generate 1 interrupt for every transmit completion. */
599 #ifdef BCE_DEBUG
600 static int bce_tx_quick_cons_trip = 1;
601 #else
602 /* Generate 1 interrupt for every 20 transmit completions. */
603 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
604 #endif
605 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
606 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
607     &bce_tx_quick_cons_trip, 0,
608     "Transmit BD trip point");
609 
610 /* Allowable values are 0 ... 100 */
611 #ifdef BCE_DEBUG
612 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
613 static int bce_tx_ticks_int = 0;
614 #else
615 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
616 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
617 #endif
618 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
619 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
620     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
621 
622 /* Allowable values are 0 ... 100 */
623 #ifdef BCE_DEBUG
624 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
625 static int bce_tx_ticks = 0;
626 #else
627 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
628 static int bce_tx_ticks = DEFAULT_TX_TICKS;
629 #endif
630 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
631 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
632     &bce_tx_ticks, 0, "Transmit ticks count");
633 
634 /* Allowable values are 1 ... 100 */
635 #ifdef BCE_DEBUG
636 /* Generate 1 interrupt for every received frame. */
637 static int bce_rx_quick_cons_trip_int = 1;
638 #else
639 /* Generate 1 interrupt for every 6 received frames. */
640 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
641 #endif
642 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
643 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
644     &bce_rx_quick_cons_trip_int, 0,
645     "Receive BD trip point duirng interrupts");
646 
647 /* Allowable values are 1 ... 100 */
648 #ifdef BCE_DEBUG
649 /* Generate 1 interrupt for every received frame. */
650 static int bce_rx_quick_cons_trip = 1;
651 #else
652 /* Generate 1 interrupt for every 6 received frames. */
653 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
654 #endif
655 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
656 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
657     &bce_rx_quick_cons_trip, 0,
658     "Receive BD trip point");
659 
660 /* Allowable values are 0 ... 100 */
661 #ifdef BCE_DEBUG
662 /* Generate an int. if 0us have elapsed since the last received frame. */
663 static int bce_rx_ticks_int = 0;
664 #else
665 /* Generate an int. if 18us have elapsed since the last received frame. */
666 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
667 #endif
668 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
669 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
670     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
671 
672 /* Allowable values are 0 ... 100 */
673 #ifdef BCE_DEBUG
674 /* Generate an int. if 0us have elapsed since the last received frame. */
675 static int bce_rx_ticks = 0;
676 #else
677 /* Generate an int. if 18us have elapsed since the last received frame. */
678 static int bce_rx_ticks = DEFAULT_RX_TICKS;
679 #endif
680 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
681 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
682     &bce_rx_ticks, 0, "Receive ticks count");
683 
684 
685 /****************************************************************************/
686 /* Device probe function.                                                   */
687 /*                                                                          */
688 /* Compares the device to the driver's list of supported devices and        */
689 /* reports back to the OS whether this is the right driver for the device.  */
690 /*                                                                          */
691 /* Returns:                                                                 */
692 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
693 /****************************************************************************/
694 static int
695 bce_probe(device_t dev)
696 {
697 	const struct bce_type *t;
698 	struct bce_softc *sc;
699 	char *descbuf;
700 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
701 
702 	t = bce_devs;
703 
704 	sc = device_get_softc(dev);
705 	sc->bce_unit = device_get_unit(dev);
706 	sc->bce_dev = dev;
707 
708 	/* Get the data for the device to be probed. */
709 	vid  = pci_get_vendor(dev);
710 	did  = pci_get_device(dev);
711 	svid = pci_get_subvendor(dev);
712 	sdid = pci_get_subdevice(dev);
713 
714 	DBPRINT(sc, BCE_EXTREME_LOAD,
715 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
716 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
717 
718 	/* Look through the list of known devices for a match. */
719 	while(t->bce_name != NULL) {
720 
721 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
722 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
723 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
724 
725 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
726 
727 			if (descbuf == NULL)
728 				return(ENOMEM);
729 
730 			/* Print out the device identity. */
731 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
732 			    t->bce_name, (((pci_read_config(dev,
733 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
734 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
735 
736 			device_set_desc_copy(dev, descbuf);
737 			free(descbuf, M_TEMP);
738 			return(BUS_PROBE_DEFAULT);
739 		}
740 		t++;
741 	}
742 
743 	return(ENXIO);
744 }
745 
746 
747 /****************************************************************************/
748 /* PCI Capabilities Probe Function.                                         */
749 /*                                                                          */
750 /* Walks the PCI capabiites list for the device to find what features are   */
751 /* supported.                                                               */
752 /*                                                                          */
753 /* Returns:                                                                 */
754 /*   None.                                                                  */
755 /****************************************************************************/
756 static void
757 bce_print_adapter_info(struct bce_softc *sc)
758 {
759 	int i = 0;
760 
761 	DBENTER(BCE_VERBOSE_LOAD);
762 
763 	if (bce_verbose || bootverbose) {
764 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
765 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
766 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
767 
768 
769 		/* Bus info. */
770 		if (sc->bce_flags & BCE_PCIE_FLAG) {
771 			printf("Bus (PCIe x%d, ", sc->link_width);
772 			switch (sc->link_speed) {
773 			case 1: printf("2.5Gbps); "); break;
774 			case 2:	printf("5Gbps); "); break;
775 			default: printf("Unknown link speed); ");
776 			}
777 		} else {
778 			printf("Bus (PCI%s, %s, %dMHz); ",
779 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
780 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
781 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
782 		}
783 
784 		/* Firmware version and device features. */
785 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
786 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
787 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
788 
789 		if (bce_hdr_split == TRUE) {
790 			printf("SPLT");
791 			i++;
792 		}
793 
794 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
795 			if (i > 0) printf("|");
796 			printf("MSI"); i++;
797 		}
798 
799 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
800 			if (i > 0) printf("|");
801 			printf("MSI-X"); i++;
802 		}
803 
804 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
805 			if (i > 0) printf("|");
806 			printf("2.5G"); i++;
807 		}
808 
809 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
810 			if (i > 0) printf("|");
811 			printf("Remote PHY(%s)",
812 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
813 			    "FIBER" : "TP"); i++;
814 		}
815 
816 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
817 			if (i > 0) printf("|");
818 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
819 		} else {
820 			printf(")\n");
821 		}
822 
823 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
824 		    sc->bce_rx_quick_cons_trip_int,
825 		    sc->bce_rx_quick_cons_trip,
826 		    sc->bce_rx_ticks_int,
827 		    sc->bce_rx_ticks,
828 		    sc->bce_tx_quick_cons_trip_int,
829 		    sc->bce_tx_quick_cons_trip,
830 		    sc->bce_tx_ticks_int,
831 		    sc->bce_tx_ticks);
832 
833 	}
834 
835 	DBEXIT(BCE_VERBOSE_LOAD);
836 }
837 
838 
839 /****************************************************************************/
840 /* PCI Capabilities Probe Function.                                         */
841 /*                                                                          */
842 /* Walks the PCI capabiites list for the device to find what features are   */
843 /* supported.                                                               */
844 /*                                                                          */
845 /* Returns:                                                                 */
846 /*   None.                                                                  */
847 /****************************************************************************/
848 static void
849 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
850 {
851 	u32 reg;
852 
853 	DBENTER(BCE_VERBOSE_LOAD);
854 
855 	/* Check if PCI-X capability is enabled. */
856 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
857 		if (reg != 0)
858 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
859 	}
860 
861 	/* Check if PCIe capability is enabled. */
862 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
863 		if (reg != 0) {
864 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
865 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
866 			    "0x%08X\n",	link_status);
867 			sc->link_speed = link_status & 0xf;
868 			sc->link_width = (link_status >> 4) & 0x3f;
869 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
870 			sc->bce_flags |= BCE_PCIE_FLAG;
871 		}
872 	}
873 
874 	/* Check if MSI capability is enabled. */
875 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
876 		if (reg != 0)
877 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
878 	}
879 
880 	/* Check if MSI-X capability is enabled. */
881 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
882 		if (reg != 0)
883 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
884 	}
885 
886 	DBEXIT(BCE_VERBOSE_LOAD);
887 }
888 
889 
890 /****************************************************************************/
891 /* Load and validate user tunable settings.                                 */
892 /*                                                                          */
893 /* Returns:                                                                 */
894 /*   Nothing.                                                               */
895 /****************************************************************************/
896 static void
897 bce_set_tunables(struct bce_softc *sc)
898 {
899 	/* Set sysctl values for RX page count. */
900 	switch (bce_rx_pages) {
901 	case 1:
902 		/* fall-through */
903 	case 2:
904 		/* fall-through */
905 	case 4:
906 		/* fall-through */
907 	case 8:
908 		sc->rx_pages = bce_rx_pages;
909 		break;
910 	default:
911 		sc->rx_pages = DEFAULT_RX_PAGES;
912 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
913 		    "hw.bce.rx_pages!  Setting default of %d.\n",
914 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
915 	}
916 
917 	/* ToDo: Consider allowing user setting for pg_pages. */
918 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
919 
920 	/* Set sysctl values for TX page count. */
921 	switch (bce_tx_pages) {
922 	case 1:
923 		/* fall-through */
924 	case 2:
925 		/* fall-through */
926 	case 4:
927 		/* fall-through */
928 	case 8:
929 		sc->tx_pages = bce_tx_pages;
930 		break;
931 	default:
932 		sc->tx_pages = DEFAULT_TX_PAGES;
933 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
934 		    "hw.bce.tx_pages!  Setting default of %d.\n",
935 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
936 	}
937 
938 	/*
939 	 * Validate the TX trip point (i.e. the number of
940 	 * TX completions before a status block update is
941 	 * generated and an interrupt is asserted.
942 	 */
943 	if (bce_tx_quick_cons_trip_int <= 100) {
944 		sc->bce_tx_quick_cons_trip_int =
945 		    bce_tx_quick_cons_trip_int;
946 	} else {
947 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
948 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
949 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
950 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
951 		sc->bce_tx_quick_cons_trip_int =
952 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
953 	}
954 
955 	if (bce_tx_quick_cons_trip <= 100) {
956 		sc->bce_tx_quick_cons_trip =
957 		    bce_tx_quick_cons_trip;
958 	} else {
959 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
960 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
961 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
962 		    DEFAULT_TX_QUICK_CONS_TRIP);
963 		sc->bce_tx_quick_cons_trip =
964 		    DEFAULT_TX_QUICK_CONS_TRIP;
965 	}
966 
967 	/*
968 	 * Validate the TX ticks count (i.e. the maximum amount
969 	 * of time to wait after the last TX completion has
970 	 * occurred before a status block update is generated
971 	 * and an interrupt is asserted.
972 	 */
973 	if (bce_tx_ticks_int <= 100) {
974 		sc->bce_tx_ticks_int =
975 		    bce_tx_ticks_int;
976 	} else {
977 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
978 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
979 		    __FILE__, __LINE__, bce_tx_ticks_int,
980 		    DEFAULT_TX_TICKS_INT);
981 		sc->bce_tx_ticks_int =
982 		    DEFAULT_TX_TICKS_INT;
983 	   }
984 
985 	if (bce_tx_ticks <= 100) {
986 		sc->bce_tx_ticks =
987 		    bce_tx_ticks;
988 	} else {
989 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
990 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
991 		    __FILE__, __LINE__, bce_tx_ticks,
992 		    DEFAULT_TX_TICKS);
993 		sc->bce_tx_ticks =
994 		    DEFAULT_TX_TICKS;
995 	}
996 
997 	/*
998 	 * Validate the RX trip point (i.e. the number of
999 	 * RX frames received before a status block update is
1000 	 * generated and an interrupt is asserted.
1001 	 */
1002 	if (bce_rx_quick_cons_trip_int <= 100) {
1003 		sc->bce_rx_quick_cons_trip_int =
1004 		    bce_rx_quick_cons_trip_int;
1005 	} else {
1006 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1007 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
1008 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
1009 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
1010 		sc->bce_rx_quick_cons_trip_int =
1011 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
1012 	}
1013 
1014 	if (bce_rx_quick_cons_trip <= 100) {
1015 		sc->bce_rx_quick_cons_trip =
1016 		    bce_rx_quick_cons_trip;
1017 	} else {
1018 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1019 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
1020 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
1021 		    DEFAULT_RX_QUICK_CONS_TRIP);
1022 		sc->bce_rx_quick_cons_trip =
1023 		    DEFAULT_RX_QUICK_CONS_TRIP;
1024 	}
1025 
1026 	/*
1027 	 * Validate the RX ticks count (i.e. the maximum amount
1028 	 * of time to wait after the last RX frame has been
1029 	 * received before a status block update is generated
1030 	 * and an interrupt is asserted.
1031 	 */
1032 	if (bce_rx_ticks_int <= 100) {
1033 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
1034 	} else {
1035 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1036 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
1037 		    __FILE__, __LINE__, bce_rx_ticks_int,
1038 		    DEFAULT_RX_TICKS_INT);
1039 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1040 	}
1041 
1042 	if (bce_rx_ticks <= 100) {
1043 		sc->bce_rx_ticks = bce_rx_ticks;
1044 	} else {
1045 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1046 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1047 		    __FILE__, __LINE__, bce_rx_ticks,
1048 		    DEFAULT_RX_TICKS);
1049 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1050 	}
1051 
1052 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1053 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1054 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1055 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1056 		   __FILE__, __LINE__);
1057 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1058 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1059 	}
1060 
1061 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1062 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1063 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1064 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1065 		   __FILE__, __LINE__);
1066 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1067 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1068 	}
1069 }
1070 
1071 
1072 /****************************************************************************/
1073 /* Device attach function.                                                  */
1074 /*                                                                          */
1075 /* Allocates device resources, performs secondary chip identification,      */
1076 /* resets and initializes the hardware, and initializes driver instance     */
1077 /* variables.                                                               */
1078 /*                                                                          */
1079 /* Returns:                                                                 */
1080 /*   0 on success, positive value on failure.                               */
1081 /****************************************************************************/
1082 static int
1083 bce_attach(device_t dev)
1084 {
1085 	struct bce_softc *sc;
1086 	struct ifnet *ifp;
1087 	u32 val;
1088 	int count, error, rc = 0, rid;
1089 
1090 	sc = device_get_softc(dev);
1091 	sc->bce_dev = dev;
1092 
1093 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1094 
1095 	sc->bce_unit = device_get_unit(dev);
1096 
1097 	/* Set initial device and PHY flags */
1098 	sc->bce_flags = 0;
1099 	sc->bce_phy_flags = 0;
1100 
1101 	bce_set_tunables(sc);
1102 
1103 	pci_enable_busmaster(dev);
1104 
1105 	/* Allocate PCI memory resources. */
1106 	rid = PCIR_BAR(0);
1107 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1108 		&rid, RF_ACTIVE);
1109 
1110 	if (sc->bce_res_mem == NULL) {
1111 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1112 		    __FILE__, __LINE__);
1113 		rc = ENXIO;
1114 		goto bce_attach_fail;
1115 	}
1116 
1117 	/* Get various resource handles. */
1118 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1119 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1120 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1121 
1122 	bce_probe_pci_caps(dev, sc);
1123 
1124 	rid = 1;
1125 	count = 0;
1126 #if 0
1127 	/* Try allocating MSI-X interrupts. */
1128 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1129 		(bce_msi_enable >= 2) &&
1130 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1131 		&rid, RF_ACTIVE)) != NULL)) {
1132 
1133 		msi_needed = count = 1;
1134 
1135 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1136 			(count != msi_needed)) {
1137 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1138 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1139 				msi_needed, count, error);
1140 			count = 0;
1141 			pci_release_msi(dev);
1142 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1143 				sc->bce_res_irq);
1144 			sc->bce_res_irq = NULL;
1145 		} else {
1146 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1147 				__FUNCTION__);
1148 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1149 		}
1150 	}
1151 #endif
1152 
1153 	/* Try allocating a MSI interrupt. */
1154 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1155 		(bce_msi_enable >= 1) && (count == 0)) {
1156 		count = 1;
1157 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1158 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1159 			    "error = %d\n", __FILE__, __LINE__, error);
1160 			count = 0;
1161 			pci_release_msi(dev);
1162 		} else {
1163 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1164 			    "interrupt.\n", __FUNCTION__);
1165 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1166 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1167 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1168 			rid = 1;
1169 		}
1170 	}
1171 
1172 	/* Try allocating a legacy interrupt. */
1173 	if (count == 0) {
1174 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1175 			__FUNCTION__);
1176 		rid = 0;
1177 	}
1178 
1179 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1180 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1181 
1182 	/* Report any IRQ allocation errors. */
1183 	if (sc->bce_res_irq == NULL) {
1184 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1185 		    __FILE__, __LINE__);
1186 		rc = ENXIO;
1187 		goto bce_attach_fail;
1188 	}
1189 
1190 	/* Initialize mutex for the current device instance. */
1191 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1192 
1193 	/*
1194 	 * Configure byte swap and enable indirect register access.
1195 	 * Rely on CPU to do target byte swapping on big endian systems.
1196 	 * Access to registers outside of PCI configurtion space are not
1197 	 * valid until this is done.
1198 	 */
1199 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1200 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1201 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1202 
1203 	/* Save ASIC revsion info. */
1204 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1205 
1206 	/* Weed out any non-production controller revisions. */
1207 	switch(BCE_CHIP_ID(sc)) {
1208 	case BCE_CHIP_ID_5706_A0:
1209 	case BCE_CHIP_ID_5706_A1:
1210 	case BCE_CHIP_ID_5708_A0:
1211 	case BCE_CHIP_ID_5708_B0:
1212 	case BCE_CHIP_ID_5709_A0:
1213 	case BCE_CHIP_ID_5709_B0:
1214 	case BCE_CHIP_ID_5709_B1:
1215 	case BCE_CHIP_ID_5709_B2:
1216 		BCE_PRINTF("%s(%d): Unsupported controller "
1217 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1218 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1219 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1220 		    PCIR_REVID, 4) & 0xf));
1221 		rc = ENODEV;
1222 		goto bce_attach_fail;
1223 	}
1224 
1225 	/*
1226 	 * The embedded PCIe to PCI-X bridge (EPB)
1227 	 * in the 5708 cannot address memory above
1228 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1229 	 */
1230 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1231 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1232 	else
1233 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1234 
1235 	/*
1236 	 * Find the base address for shared memory access.
1237 	 * Newer versions of bootcode use a signature and offset
1238 	 * while older versions use a fixed address.
1239 	 */
1240 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1241 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1242 		/* Multi-port devices use different offsets in shared memory. */
1243 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1244 		    (pci_get_function(sc->bce_dev) << 2));
1245 	else
1246 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1247 
1248 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1249 	    __FUNCTION__, sc->bce_shmem_base);
1250 
1251 	/* Fetch the bootcode revision. */
1252 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1253 	for (int i = 0, j = 0; i < 3; i++) {
1254 		u8 num;
1255 
1256 		num = (u8) (val >> (24 - (i * 8)));
1257 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1258 			if (num >= k || !skip0 || k == 1) {
1259 				sc->bce_bc_ver[j++] = (num / k) + '0';
1260 				skip0 = 0;
1261 			}
1262 		}
1263 
1264 		if (i != 2)
1265 			sc->bce_bc_ver[j++] = '.';
1266 	}
1267 
1268 	/* Check if any management firwmare is enabled. */
1269 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1270 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1271 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1272 
1273 		/* Allow time for firmware to enter the running state. */
1274 		for (int i = 0; i < 30; i++) {
1275 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1276 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1277 				break;
1278 			DELAY(10000);
1279 		}
1280 
1281 		/* Check if management firmware is running. */
1282 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1283 		val &= BCE_CONDITION_MFW_RUN_MASK;
1284 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1285 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1286 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1287 			int i = 0;
1288 
1289 			/* Read the management firmware version string. */
1290 			for (int j = 0; j < 3; j++) {
1291 				val = bce_reg_rd_ind(sc, addr + j * 4);
1292 				val = bswap32(val);
1293 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1294 				i += 4;
1295 			}
1296 		} else {
1297 			/* May cause firmware synchronization timeouts. */
1298 			BCE_PRINTF("%s(%d): Management firmware enabled "
1299 			    "but not running!\n", __FILE__, __LINE__);
1300 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1301 
1302 			/* ToDo: Any action the driver should take? */
1303 		}
1304 	}
1305 
1306 	/* Get PCI bus information (speed and type). */
1307 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1308 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1309 		u32 clkreg;
1310 
1311 		sc->bce_flags |= BCE_PCIX_FLAG;
1312 
1313 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1314 
1315 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1316 		switch (clkreg) {
1317 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1318 			sc->bus_speed_mhz = 133;
1319 			break;
1320 
1321 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1322 			sc->bus_speed_mhz = 100;
1323 			break;
1324 
1325 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1326 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1327 			sc->bus_speed_mhz = 66;
1328 			break;
1329 
1330 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1331 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1332 			sc->bus_speed_mhz = 50;
1333 			break;
1334 
1335 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1336 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1337 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1338 			sc->bus_speed_mhz = 33;
1339 			break;
1340 		}
1341 	} else {
1342 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1343 			sc->bus_speed_mhz = 66;
1344 		else
1345 			sc->bus_speed_mhz = 33;
1346 	}
1347 
1348 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1349 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1350 
1351 	/* Find the media type for the adapter. */
1352 	bce_get_media(sc);
1353 
1354 	/* Reset controller and announce to bootcode that driver is present. */
1355 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1356 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1357 		    __FILE__, __LINE__);
1358 		rc = ENXIO;
1359 		goto bce_attach_fail;
1360 	}
1361 
1362 	/* Initialize the controller. */
1363 	if (bce_chipinit(sc)) {
1364 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1365 		    __FILE__, __LINE__);
1366 		rc = ENXIO;
1367 		goto bce_attach_fail;
1368 	}
1369 
1370 	/* Perform NVRAM test. */
1371 	if (bce_nvram_test(sc)) {
1372 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1373 		    __FILE__, __LINE__);
1374 		rc = ENXIO;
1375 		goto bce_attach_fail;
1376 	}
1377 
1378 	/* Fetch the permanent Ethernet MAC address. */
1379 	bce_get_mac_addr(sc);
1380 
1381 	/* Update statistics once every second. */
1382 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1383 
1384 	/* Store data needed by PHY driver for backplane applications */
1385 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1386 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1387 
1388 	/* Allocate DMA memory resources. */
1389 	if (bce_dma_alloc(dev)) {
1390 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1391 		    __FILE__, __LINE__);
1392 		rc = ENXIO;
1393 		goto bce_attach_fail;
1394 	}
1395 
1396 	/* Allocate an ifnet structure. */
1397 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1398 	if (ifp == NULL) {
1399 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1400 		    __FILE__, __LINE__);
1401 		rc = ENXIO;
1402 		goto bce_attach_fail;
1403 	}
1404 
1405 	/* Initialize the ifnet interface. */
1406 	ifp->if_softc	= sc;
1407 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1408 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1409 	ifp->if_ioctl	= bce_ioctl;
1410 	ifp->if_start	= bce_start;
1411 	ifp->if_init	= bce_init;
1412 	ifp->if_mtu	= ETHERMTU;
1413 
1414 	if (bce_tso_enable) {
1415 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1416 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1417 		    IFCAP_VLAN_HWTSO;
1418 	} else {
1419 		ifp->if_hwassist = BCE_IF_HWASSIST;
1420 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1421 	}
1422 
1423 #if __FreeBSD_version >= 800505
1424 	/*
1425 	 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1426 	 * so it's approximate value.
1427 	 */
1428 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1429 		ifp->if_capabilities |= IFCAP_LINKSTATE;
1430 #endif
1431 
1432 	ifp->if_capenable = ifp->if_capabilities;
1433 
1434 	/*
1435 	 * Assume standard mbuf sizes for buffer allocation.
1436 	 * This may change later if the MTU size is set to
1437 	 * something other than 1500.
1438 	 */
1439 	bce_get_rx_buffer_sizes(sc,
1440 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1441 
1442 	/* Recalculate our buffer allocation sizes. */
1443 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1444 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1445 	IFQ_SET_READY(&ifp->if_snd);
1446 
1447 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1448 		ifp->if_baudrate = IF_Mbps(2500ULL);
1449 	else
1450 		ifp->if_baudrate = IF_Mbps(1000);
1451 
1452 	/* Handle any special PHY initialization for SerDes PHYs. */
1453 	bce_init_media(sc);
1454 
1455 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1456 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1457 		    bce_ifmedia_sts);
1458 		/*
1459 		 * We can't manually override remote PHY's link and assume
1460 		 * PHY port configuration(Fiber or TP) is not changed after
1461 		 * device attach.  This may not be correct though.
1462 		 */
1463 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1464 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1465 				ifmedia_add(&sc->bce_ifmedia,
1466 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1467 				ifmedia_add(&sc->bce_ifmedia,
1468 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1469 			}
1470 			ifmedia_add(&sc->bce_ifmedia,
1471 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1472 			ifmedia_add(&sc->bce_ifmedia,
1473 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1474 		} else {
1475 			ifmedia_add(&sc->bce_ifmedia,
1476 			    IFM_ETHER | IFM_10_T, 0, NULL);
1477 			ifmedia_add(&sc->bce_ifmedia,
1478 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1479 			ifmedia_add(&sc->bce_ifmedia,
1480 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1481 			ifmedia_add(&sc->bce_ifmedia,
1482 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1483 			ifmedia_add(&sc->bce_ifmedia,
1484 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1485 			ifmedia_add(&sc->bce_ifmedia,
1486 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1487 		}
1488 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1489 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1490 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1491 	} else {
1492 		/* MII child bus by attaching the PHY. */
1493 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1494 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1495 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1496 		if (rc != 0) {
1497 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1498 			    __LINE__);
1499 			goto bce_attach_fail;
1500 		}
1501 	}
1502 
1503 	/* Attach to the Ethernet interface list. */
1504 	ether_ifattach(ifp, sc->eaddr);
1505 
1506 #if __FreeBSD_version < 500000
1507 	callout_init(&sc->bce_tick_callout);
1508 	callout_init(&sc->bce_pulse_callout);
1509 #else
1510 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1511 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1512 #endif
1513 
1514 	/* Hookup IRQ last. */
1515 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1516 		NULL, bce_intr, sc, &sc->bce_intrhand);
1517 
1518 	if (rc) {
1519 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1520 		    __FILE__, __LINE__);
1521 		bce_detach(dev);
1522 		goto bce_attach_exit;
1523 	}
1524 
1525 	/*
1526 	 * At this point we've acquired all the resources
1527 	 * we need to run so there's no turning back, we're
1528 	 * cleared for launch.
1529 	 */
1530 
1531 	/* Print some important debugging info. */
1532 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1533 
1534 	/* Add the supported sysctls to the kernel. */
1535 	bce_add_sysctls(sc);
1536 
1537 	BCE_LOCK(sc);
1538 
1539 	/*
1540 	 * The chip reset earlier notified the bootcode that
1541 	 * a driver is present.  We now need to start our pulse
1542 	 * routine so that the bootcode is reminded that we're
1543 	 * still running.
1544 	 */
1545 	bce_pulse(sc);
1546 
1547 	bce_mgmt_init_locked(sc);
1548 	BCE_UNLOCK(sc);
1549 
1550 	/* Finally, print some useful adapter info */
1551 	bce_print_adapter_info(sc);
1552 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1553 		__FUNCTION__, sc);
1554 
1555 	goto bce_attach_exit;
1556 
1557 bce_attach_fail:
1558 	bce_release_resources(sc);
1559 
1560 bce_attach_exit:
1561 
1562 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1563 
1564 	return(rc);
1565 }
1566 
1567 
1568 /****************************************************************************/
1569 /* Device detach function.                                                  */
1570 /*                                                                          */
1571 /* Stops the controller, resets the controller, and releases resources.     */
1572 /*                                                                          */
1573 /* Returns:                                                                 */
1574 /*   0 on success, positive value on failure.                               */
1575 /****************************************************************************/
1576 static int
1577 bce_detach(device_t dev)
1578 {
1579 	struct bce_softc *sc = device_get_softc(dev);
1580 	struct ifnet *ifp;
1581 	u32 msg;
1582 
1583 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1584 
1585 	ifp = sc->bce_ifp;
1586 
1587 	/* Stop and reset the controller. */
1588 	BCE_LOCK(sc);
1589 
1590 	/* Stop the pulse so the bootcode can go to driver absent state. */
1591 	callout_stop(&sc->bce_pulse_callout);
1592 
1593 	bce_stop(sc);
1594 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1595 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1596 	else
1597 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1598 	bce_reset(sc, msg);
1599 
1600 	BCE_UNLOCK(sc);
1601 
1602 	ether_ifdetach(ifp);
1603 
1604 	/* If we have a child device on the MII bus remove it too. */
1605 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1606 		ifmedia_removeall(&sc->bce_ifmedia);
1607 	else {
1608 		bus_generic_detach(dev);
1609 		device_delete_child(dev, sc->bce_miibus);
1610 	}
1611 
1612 	/* Release all remaining resources. */
1613 	bce_release_resources(sc);
1614 
1615 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1616 
1617 	return(0);
1618 }
1619 
1620 
1621 /****************************************************************************/
1622 /* Device shutdown function.                                                */
1623 /*                                                                          */
1624 /* Stops and resets the controller.                                         */
1625 /*                                                                          */
1626 /* Returns:                                                                 */
1627 /*   0 on success, positive value on failure.                               */
1628 /****************************************************************************/
1629 static int
1630 bce_shutdown(device_t dev)
1631 {
1632 	struct bce_softc *sc = device_get_softc(dev);
1633 	u32 msg;
1634 
1635 	DBENTER(BCE_VERBOSE);
1636 
1637 	BCE_LOCK(sc);
1638 	bce_stop(sc);
1639 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1640 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1641 	else
1642 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1643 	bce_reset(sc, msg);
1644 	BCE_UNLOCK(sc);
1645 
1646 	DBEXIT(BCE_VERBOSE);
1647 
1648 	return (0);
1649 }
1650 
1651 
1652 #ifdef BCE_DEBUG
1653 /****************************************************************************/
1654 /* Register read.                                                           */
1655 /*                                                                          */
1656 /* Returns:                                                                 */
1657 /*   The value of the register.                                             */
1658 /****************************************************************************/
1659 static u32
1660 bce_reg_rd(struct bce_softc *sc, u32 offset)
1661 {
1662 	u32 val = REG_RD(sc, offset);
1663 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1664 		__FUNCTION__, offset, val);
1665 	return val;
1666 }
1667 
1668 
1669 /****************************************************************************/
1670 /* Register write (16 bit).                                                 */
1671 /*                                                                          */
1672 /* Returns:                                                                 */
1673 /*   Nothing.                                                               */
1674 /****************************************************************************/
1675 static void
1676 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1677 {
1678 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1679 		__FUNCTION__, offset, val);
1680 	REG_WR16(sc, offset, val);
1681 }
1682 
1683 
1684 /****************************************************************************/
1685 /* Register write.                                                          */
1686 /*                                                                          */
1687 /* Returns:                                                                 */
1688 /*   Nothing.                                                               */
1689 /****************************************************************************/
1690 static void
1691 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1692 {
1693 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1694 		__FUNCTION__, offset, val);
1695 	REG_WR(sc, offset, val);
1696 }
1697 #endif
1698 
1699 /****************************************************************************/
1700 /* Indirect register read.                                                  */
1701 /*                                                                          */
1702 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1703 /* configuration space.  Using this mechanism avoids issues with posted     */
1704 /* reads but is much slower than memory-mapped I/O.                         */
1705 /*                                                                          */
1706 /* Returns:                                                                 */
1707 /*   The value of the register.                                             */
1708 /****************************************************************************/
1709 static u32
1710 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1711 {
1712 	device_t dev;
1713 	dev = sc->bce_dev;
1714 
1715 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1716 #ifdef BCE_DEBUG
1717 	{
1718 		u32 val;
1719 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1720 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1721 			__FUNCTION__, offset, val);
1722 		return val;
1723 	}
1724 #else
1725 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1726 #endif
1727 }
1728 
1729 
1730 /****************************************************************************/
1731 /* Indirect register write.                                                 */
1732 /*                                                                          */
1733 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1734 /* configuration space.  Using this mechanism avoids issues with posted     */
1735 /* writes but is muchh slower than memory-mapped I/O.                       */
1736 /*                                                                          */
1737 /* Returns:                                                                 */
1738 /*   Nothing.                                                               */
1739 /****************************************************************************/
1740 static void
1741 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1742 {
1743 	device_t dev;
1744 	dev = sc->bce_dev;
1745 
1746 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1747 		__FUNCTION__, offset, val);
1748 
1749 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1750 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1751 }
1752 
1753 
1754 /****************************************************************************/
1755 /* Shared memory write.                                                     */
1756 /*                                                                          */
1757 /* Writes NetXtreme II shared memory region.                                */
1758 /*                                                                          */
1759 /* Returns:                                                                 */
1760 /*   Nothing.                                                               */
1761 /****************************************************************************/
1762 static void
1763 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1764 {
1765 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1766 	    "0x%08X\n",	__FUNCTION__, val, offset);
1767 
1768 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1769 }
1770 
1771 
1772 /****************************************************************************/
1773 /* Shared memory read.                                                      */
1774 /*                                                                          */
1775 /* Reads NetXtreme II shared memory region.                                 */
1776 /*                                                                          */
1777 /* Returns:                                                                 */
1778 /*   The 32 bit value read.                                                 */
1779 /****************************************************************************/
1780 static u32
1781 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1782 {
1783 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1784 
1785 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1786 	    "0x%08X\n",	__FUNCTION__, val, offset);
1787 
1788 	return val;
1789 }
1790 
1791 
1792 #ifdef BCE_DEBUG
1793 /****************************************************************************/
1794 /* Context memory read.                                                     */
1795 /*                                                                          */
1796 /* The NetXtreme II controller uses context memory to track connection      */
1797 /* information for L2 and higher network protocols.                         */
1798 /*                                                                          */
1799 /* Returns:                                                                 */
1800 /*   The requested 32 bit value of context memory.                          */
1801 /****************************************************************************/
1802 static u32
1803 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1804 {
1805 	u32 idx, offset, retry_cnt = 5, val;
1806 
1807 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1808 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1809 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1810 
1811 	offset = ctx_offset + cid_addr;
1812 
1813 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1814 
1815 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1816 
1817 		for (idx = 0; idx < retry_cnt; idx++) {
1818 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1819 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1820 				break;
1821 			DELAY(5);
1822 		}
1823 
1824 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1825 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1826 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1827 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1828 
1829 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1830 	} else {
1831 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1832 		val = REG_RD(sc, BCE_CTX_DATA);
1833 	}
1834 
1835 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1836 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1837 
1838 	return(val);
1839 }
1840 #endif
1841 
1842 
1843 /****************************************************************************/
1844 /* Context memory write.                                                    */
1845 /*                                                                          */
1846 /* The NetXtreme II controller uses context memory to track connection      */
1847 /* information for L2 and higher network protocols.                         */
1848 /*                                                                          */
1849 /* Returns:                                                                 */
1850 /*   Nothing.                                                               */
1851 /****************************************************************************/
1852 static void
1853 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1854 {
1855 	u32 idx, offset = ctx_offset + cid_addr;
1856 	u32 val, retry_cnt = 5;
1857 
1858 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1859 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1860 
1861 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1862 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1863 		    __FUNCTION__, cid_addr));
1864 
1865 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1866 
1867 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1868 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1869 
1870 		for (idx = 0; idx < retry_cnt; idx++) {
1871 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1872 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1873 				break;
1874 			DELAY(5);
1875 		}
1876 
1877 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1878 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1879 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1880 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1881 
1882 	} else {
1883 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1884 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1885 	}
1886 }
1887 
1888 
1889 /****************************************************************************/
1890 /* PHY register read.                                                       */
1891 /*                                                                          */
1892 /* Implements register reads on the MII bus.                                */
1893 /*                                                                          */
1894 /* Returns:                                                                 */
1895 /*   The value of the register.                                             */
1896 /****************************************************************************/
1897 static int
1898 bce_miibus_read_reg(device_t dev, int phy, int reg)
1899 {
1900 	struct bce_softc *sc;
1901 	u32 val;
1902 	int i;
1903 
1904 	sc = device_get_softc(dev);
1905 
1906     /*
1907      * The 5709S PHY is an IEEE Clause 45 PHY
1908      * with special mappings to work with IEEE
1909      * Clause 22 register accesses.
1910      */
1911 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1912 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1913 			reg += 0x10;
1914 	}
1915 
1916     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1917 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1918 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1919 
1920 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1921 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1922 
1923 		DELAY(40);
1924 	}
1925 
1926 
1927 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1928 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1929 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1930 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1931 
1932 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1933 		DELAY(10);
1934 
1935 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1936 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1937 			DELAY(5);
1938 
1939 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1940 			val &= BCE_EMAC_MDIO_COMM_DATA;
1941 
1942 			break;
1943 		}
1944 	}
1945 
1946 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1947 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1948 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1949 		val = 0x0;
1950 	} else {
1951 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1952 	}
1953 
1954 
1955 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1956 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1957 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1958 
1959 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1960 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1961 
1962 		DELAY(40);
1963 	}
1964 
1965 	DB_PRINT_PHY_REG(reg, val);
1966 	return (val & 0xffff);
1967 }
1968 
1969 
1970 /****************************************************************************/
1971 /* PHY register write.                                                      */
1972 /*                                                                          */
1973 /* Implements register writes on the MII bus.                               */
1974 /*                                                                          */
1975 /* Returns:                                                                 */
1976 /*   The value of the register.                                             */
1977 /****************************************************************************/
1978 static int
1979 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1980 {
1981 	struct bce_softc *sc;
1982 	u32 val1;
1983 	int i;
1984 
1985 	sc = device_get_softc(dev);
1986 
1987 	DB_PRINT_PHY_REG(reg, val);
1988 
1989 	/*
1990 	 * The 5709S PHY is an IEEE Clause 45 PHY
1991 	 * with special mappings to work with IEEE
1992 	 * Clause 22 register accesses.
1993 	 */
1994 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1995 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1996 			reg += 0x10;
1997 	}
1998 
1999 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2000 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2001 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
2002 
2003 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2004 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
2005 
2006 		DELAY(40);
2007 	}
2008 
2009 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
2010 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
2011 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
2012 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
2013 
2014 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
2015 		DELAY(10);
2016 
2017 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
2018 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
2019 			DELAY(5);
2020 			break;
2021 		}
2022 	}
2023 
2024 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
2025 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
2026 		    __FILE__, __LINE__);
2027 
2028 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2029 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2030 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
2031 
2032 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2033 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
2034 
2035 		DELAY(40);
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 
2042 /****************************************************************************/
2043 /* MII bus status change.                                                   */
2044 /*                                                                          */
2045 /* Called by the MII bus driver when the PHY establishes link to set the    */
2046 /* MAC interface registers.                                                 */
2047 /*                                                                          */
2048 /* Returns:                                                                 */
2049 /*   Nothing.                                                               */
2050 /****************************************************************************/
2051 static void
2052 bce_miibus_statchg(device_t dev)
2053 {
2054 	struct bce_softc *sc;
2055 	struct mii_data *mii;
2056 	struct ifmediareq ifmr;
2057 	int media_active, media_status, val;
2058 
2059 	sc = device_get_softc(dev);
2060 
2061 	DBENTER(BCE_VERBOSE_PHY);
2062 
2063 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2064 		bzero(&ifmr, sizeof(ifmr));
2065 		bce_ifmedia_sts_rphy(sc, &ifmr);
2066 		media_active = ifmr.ifm_active;
2067 		media_status = ifmr.ifm_status;
2068 	} else {
2069 		mii = device_get_softc(sc->bce_miibus);
2070 		media_active = mii->mii_media_active;
2071 		media_status = mii->mii_media_status;
2072 	}
2073 
2074 	/* Ignore invalid media status. */
2075 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2076 	    (IFM_ACTIVE | IFM_AVALID))
2077 		goto bce_miibus_statchg_exit;
2078 
2079 	val = REG_RD(sc, BCE_EMAC_MODE);
2080 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2081 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2082 	    BCE_EMAC_MODE_25G);
2083 
2084 	/* Set MII or GMII interface based on the PHY speed. */
2085 	switch (IFM_SUBTYPE(media_active)) {
2086 	case IFM_10_T:
2087 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2088 			DBPRINT(sc, BCE_INFO_PHY,
2089 			    "Enabling 10Mb interface.\n");
2090 			val |= BCE_EMAC_MODE_PORT_MII_10;
2091 			break;
2092 		}
2093 		/* fall-through */
2094 	case IFM_100_TX:
2095 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2096 		val |= BCE_EMAC_MODE_PORT_MII;
2097 		break;
2098 	case IFM_2500_SX:
2099 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2100 		val |= BCE_EMAC_MODE_25G;
2101 		/* fall-through */
2102 	case IFM_1000_T:
2103 	case IFM_1000_SX:
2104 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2105 		val |= BCE_EMAC_MODE_PORT_GMII;
2106 		break;
2107 	default:
2108 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2109 		    "default GMII interface.\n");
2110 		val |= BCE_EMAC_MODE_PORT_GMII;
2111 	}
2112 
2113 	/* Set half or full duplex based on PHY settings. */
2114 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2115 		DBPRINT(sc, BCE_INFO_PHY,
2116 		    "Setting Half-Duplex interface.\n");
2117 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2118 	} else
2119 		DBPRINT(sc, BCE_INFO_PHY,
2120 		    "Setting Full-Duplex interface.\n");
2121 
2122 	REG_WR(sc, BCE_EMAC_MODE, val);
2123 
2124 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2125 		DBPRINT(sc, BCE_INFO_PHY,
2126 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2127 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2128 		sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2129 	} else {
2130 		DBPRINT(sc, BCE_INFO_PHY,
2131 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2132 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2133 		sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2134 	}
2135 
2136 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2137 		DBPRINT(sc, BCE_INFO_PHY,
2138 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2139 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2140 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2141 	} else {
2142 		DBPRINT(sc, BCE_INFO_PHY,
2143 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2144 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2145 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2146 	}
2147 
2148 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2149 
2150 bce_miibus_statchg_exit:
2151 	DBEXIT(BCE_VERBOSE_PHY);
2152 }
2153 
2154 
2155 /****************************************************************************/
2156 /* Acquire NVRAM lock.                                                      */
2157 /*                                                                          */
2158 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2159 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2160 /* for use by the driver.                                                   */
2161 /*                                                                          */
2162 /* Returns:                                                                 */
2163 /*   0 on success, positive value on failure.                               */
2164 /****************************************************************************/
2165 static int
2166 bce_acquire_nvram_lock(struct bce_softc *sc)
2167 {
2168 	u32 val;
2169 	int j, rc = 0;
2170 
2171 	DBENTER(BCE_VERBOSE_NVRAM);
2172 
2173 	/* Request access to the flash interface. */
2174 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2175 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2176 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2177 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2178 			break;
2179 
2180 		DELAY(5);
2181 	}
2182 
2183 	if (j >= NVRAM_TIMEOUT_COUNT) {
2184 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2185 		rc = EBUSY;
2186 	}
2187 
2188 	DBEXIT(BCE_VERBOSE_NVRAM);
2189 	return (rc);
2190 }
2191 
2192 
2193 /****************************************************************************/
2194 /* Release NVRAM lock.                                                      */
2195 /*                                                                          */
2196 /* When the caller is finished accessing NVRAM the lock must be released.   */
2197 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2198 /* for use by the driver.                                                   */
2199 /*                                                                          */
2200 /* Returns:                                                                 */
2201 /*   0 on success, positive value on failure.                               */
2202 /****************************************************************************/
2203 static int
2204 bce_release_nvram_lock(struct bce_softc *sc)
2205 {
2206 	u32 val;
2207 	int j, rc = 0;
2208 
2209 	DBENTER(BCE_VERBOSE_NVRAM);
2210 
2211 	/*
2212 	 * Relinquish nvram interface.
2213 	 */
2214 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2215 
2216 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2217 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2218 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2219 			break;
2220 
2221 		DELAY(5);
2222 	}
2223 
2224 	if (j >= NVRAM_TIMEOUT_COUNT) {
2225 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2226 		rc = EBUSY;
2227 	}
2228 
2229 	DBEXIT(BCE_VERBOSE_NVRAM);
2230 	return (rc);
2231 }
2232 
2233 
2234 #ifdef BCE_NVRAM_WRITE_SUPPORT
2235 /****************************************************************************/
2236 /* Enable NVRAM write access.                                               */
2237 /*                                                                          */
2238 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2239 /*                                                                          */
2240 /* Returns:                                                                 */
2241 /*   0 on success, positive value on failure.                               */
2242 /****************************************************************************/
2243 static int
2244 bce_enable_nvram_write(struct bce_softc *sc)
2245 {
2246 	u32 val;
2247 	int rc = 0;
2248 
2249 	DBENTER(BCE_VERBOSE_NVRAM);
2250 
2251 	val = REG_RD(sc, BCE_MISC_CFG);
2252 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2253 
2254 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2255 		int j;
2256 
2257 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2258 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2259 
2260 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2261 			DELAY(5);
2262 
2263 			val = REG_RD(sc, BCE_NVM_COMMAND);
2264 			if (val & BCE_NVM_COMMAND_DONE)
2265 				break;
2266 		}
2267 
2268 		if (j >= NVRAM_TIMEOUT_COUNT) {
2269 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2270 			rc = EBUSY;
2271 		}
2272 	}
2273 
2274 	DBENTER(BCE_VERBOSE_NVRAM);
2275 	return (rc);
2276 }
2277 
2278 
2279 /****************************************************************************/
2280 /* Disable NVRAM write access.                                              */
2281 /*                                                                          */
2282 /* When the caller is finished writing to NVRAM write access must be        */
2283 /* disabled.                                                                */
2284 /*                                                                          */
2285 /* Returns:                                                                 */
2286 /*   Nothing.                                                               */
2287 /****************************************************************************/
2288 static void
2289 bce_disable_nvram_write(struct bce_softc *sc)
2290 {
2291 	u32 val;
2292 
2293 	DBENTER(BCE_VERBOSE_NVRAM);
2294 
2295 	val = REG_RD(sc, BCE_MISC_CFG);
2296 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2297 
2298 	DBEXIT(BCE_VERBOSE_NVRAM);
2299 
2300 }
2301 #endif
2302 
2303 
2304 /****************************************************************************/
2305 /* Enable NVRAM access.                                                     */
2306 /*                                                                          */
2307 /* Before accessing NVRAM for read or write operations the caller must      */
2308 /* enabled NVRAM access.                                                    */
2309 /*                                                                          */
2310 /* Returns:                                                                 */
2311 /*   Nothing.                                                               */
2312 /****************************************************************************/
2313 static void
2314 bce_enable_nvram_access(struct bce_softc *sc)
2315 {
2316 	u32 val;
2317 
2318 	DBENTER(BCE_VERBOSE_NVRAM);
2319 
2320 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2321 	/* Enable both bits, even on read. */
2322 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2323 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2324 
2325 	DBEXIT(BCE_VERBOSE_NVRAM);
2326 }
2327 
2328 
2329 /****************************************************************************/
2330 /* Disable NVRAM access.                                                    */
2331 /*                                                                          */
2332 /* When the caller is finished accessing NVRAM access must be disabled.     */
2333 /*                                                                          */
2334 /* Returns:                                                                 */
2335 /*   Nothing.                                                               */
2336 /****************************************************************************/
2337 static void
2338 bce_disable_nvram_access(struct bce_softc *sc)
2339 {
2340 	u32 val;
2341 
2342 	DBENTER(BCE_VERBOSE_NVRAM);
2343 
2344 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2345 
2346 	/* Disable both bits, even after read. */
2347 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2348 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2349 
2350 	DBEXIT(BCE_VERBOSE_NVRAM);
2351 }
2352 
2353 
2354 #ifdef BCE_NVRAM_WRITE_SUPPORT
2355 /****************************************************************************/
2356 /* Erase NVRAM page before writing.                                         */
2357 /*                                                                          */
2358 /* Non-buffered flash parts require that a page be erased before it is      */
2359 /* written.                                                                 */
2360 /*                                                                          */
2361 /* Returns:                                                                 */
2362 /*   0 on success, positive value on failure.                               */
2363 /****************************************************************************/
2364 static int
2365 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2366 {
2367 	u32 cmd;
2368 	int j, rc = 0;
2369 
2370 	DBENTER(BCE_VERBOSE_NVRAM);
2371 
2372 	/* Buffered flash doesn't require an erase. */
2373 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2374 		goto bce_nvram_erase_page_exit;
2375 
2376 	/* Build an erase command. */
2377 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2378 	    BCE_NVM_COMMAND_DOIT;
2379 
2380 	/*
2381 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2382 	 * and issue the erase command.
2383 	 */
2384 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2385 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2386 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2387 
2388 	/* Wait for completion. */
2389 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2390 		u32 val;
2391 
2392 		DELAY(5);
2393 
2394 		val = REG_RD(sc, BCE_NVM_COMMAND);
2395 		if (val & BCE_NVM_COMMAND_DONE)
2396 			break;
2397 	}
2398 
2399 	if (j >= NVRAM_TIMEOUT_COUNT) {
2400 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2401 		rc = EBUSY;
2402 	}
2403 
2404 bce_nvram_erase_page_exit:
2405 	DBEXIT(BCE_VERBOSE_NVRAM);
2406 	return (rc);
2407 }
2408 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2409 
2410 
2411 /****************************************************************************/
2412 /* Read a dword (32 bits) from NVRAM.                                       */
2413 /*                                                                          */
2414 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2415 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2416 /*                                                                          */
2417 /* Returns:                                                                 */
2418 /*   0 on success and the 32 bit value read, positive value on failure.     */
2419 /****************************************************************************/
2420 static int
2421 bce_nvram_read_dword(struct bce_softc *sc,
2422     u32 offset, u8 *ret_val, u32 cmd_flags)
2423 {
2424 	u32 cmd;
2425 	int i, rc = 0;
2426 
2427 	DBENTER(BCE_EXTREME_NVRAM);
2428 
2429 	/* Build the command word. */
2430 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2431 
2432 	/* Calculate the offset for buffered flash if translation is used. */
2433 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2434 		offset = ((offset / sc->bce_flash_info->page_size) <<
2435 		    sc->bce_flash_info->page_bits) +
2436 		    (offset % sc->bce_flash_info->page_size);
2437 	}
2438 
2439 	/*
2440 	 * Clear the DONE bit separately, set the address to read,
2441 	 * and issue the read.
2442 	 */
2443 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2444 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2445 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2446 
2447 	/* Wait for completion. */
2448 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2449 		u32 val;
2450 
2451 		DELAY(5);
2452 
2453 		val = REG_RD(sc, BCE_NVM_COMMAND);
2454 		if (val & BCE_NVM_COMMAND_DONE) {
2455 			val = REG_RD(sc, BCE_NVM_READ);
2456 
2457 			val = bce_be32toh(val);
2458 			memcpy(ret_val, &val, 4);
2459 			break;
2460 		}
2461 	}
2462 
2463 	/* Check for errors. */
2464 	if (i >= NVRAM_TIMEOUT_COUNT) {
2465 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2466 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2467 		rc = EBUSY;
2468 	}
2469 
2470 	DBEXIT(BCE_EXTREME_NVRAM);
2471 	return(rc);
2472 }
2473 
2474 
2475 #ifdef BCE_NVRAM_WRITE_SUPPORT
2476 /****************************************************************************/
2477 /* Write a dword (32 bits) to NVRAM.                                        */
2478 /*                                                                          */
2479 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2480 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2481 /* enabled NVRAM write access.                                              */
2482 /*                                                                          */
2483 /* Returns:                                                                 */
2484 /*   0 on success, positive value on failure.                               */
2485 /****************************************************************************/
2486 static int
2487 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2488 	u32 cmd_flags)
2489 {
2490 	u32 cmd, val32;
2491 	int j, rc = 0;
2492 
2493 	DBENTER(BCE_VERBOSE_NVRAM);
2494 
2495 	/* Build the command word. */
2496 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2497 
2498 	/* Calculate the offset for buffered flash if translation is used. */
2499 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2500 		offset = ((offset / sc->bce_flash_info->page_size) <<
2501 		    sc->bce_flash_info->page_bits) +
2502 		    (offset % sc->bce_flash_info->page_size);
2503 	}
2504 
2505 	/*
2506 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2507 	 * set the NVRAM address to write, and issue the write command
2508 	 */
2509 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2510 	memcpy(&val32, val, 4);
2511 	val32 = htobe32(val32);
2512 	REG_WR(sc, BCE_NVM_WRITE, val32);
2513 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2514 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2515 
2516 	/* Wait for completion. */
2517 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2518 		DELAY(5);
2519 
2520 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2521 			break;
2522 	}
2523 	if (j >= NVRAM_TIMEOUT_COUNT) {
2524 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2525 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2526 		rc = EBUSY;
2527 	}
2528 
2529 	DBEXIT(BCE_VERBOSE_NVRAM);
2530 	return (rc);
2531 }
2532 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2533 
2534 
2535 /****************************************************************************/
2536 /* Initialize NVRAM access.                                                 */
2537 /*                                                                          */
2538 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2539 /* access that device.                                                      */
2540 /*                                                                          */
2541 /* Returns:                                                                 */
2542 /*   0 on success, positive value on failure.                               */
2543 /****************************************************************************/
2544 static int
2545 bce_init_nvram(struct bce_softc *sc)
2546 {
2547 	u32 val;
2548 	int j, entry_count, rc = 0;
2549 	const struct flash_spec *flash;
2550 
2551 	DBENTER(BCE_VERBOSE_NVRAM);
2552 
2553 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2554 		sc->bce_flash_info = &flash_5709;
2555 		goto bce_init_nvram_get_flash_size;
2556 	}
2557 
2558 	/* Determine the selected interface. */
2559 	val = REG_RD(sc, BCE_NVM_CFG1);
2560 
2561 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2562 
2563 	/*
2564 	 * Flash reconfiguration is required to support additional
2565 	 * NVRAM devices not directly supported in hardware.
2566 	 * Check if the flash interface was reconfigured
2567 	 * by the bootcode.
2568 	 */
2569 
2570 	if (val & 0x40000000) {
2571 		/* Flash interface reconfigured by bootcode. */
2572 
2573 		DBPRINT(sc,BCE_INFO_LOAD,
2574 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2575 
2576 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2577 		     j++, flash++) {
2578 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2579 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2580 				sc->bce_flash_info = flash;
2581 				break;
2582 			}
2583 		}
2584 	} else {
2585 		/* Flash interface not yet reconfigured. */
2586 		u32 mask;
2587 
2588 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2589 			__FUNCTION__);
2590 
2591 		if (val & (1 << 23))
2592 			mask = FLASH_BACKUP_STRAP_MASK;
2593 		else
2594 			mask = FLASH_STRAP_MASK;
2595 
2596 		/* Look for the matching NVRAM device configuration data. */
2597 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2598 
2599 			/* Check if the device matches any of the known devices. */
2600 			if ((val & mask) == (flash->strapping & mask)) {
2601 				/* Found a device match. */
2602 				sc->bce_flash_info = flash;
2603 
2604 				/* Request access to the flash interface. */
2605 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2606 					return rc;
2607 
2608 				/* Reconfigure the flash interface. */
2609 				bce_enable_nvram_access(sc);
2610 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2611 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2612 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2613 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2614 				bce_disable_nvram_access(sc);
2615 				bce_release_nvram_lock(sc);
2616 
2617 				break;
2618 			}
2619 		}
2620 	}
2621 
2622 	/* Check if a matching device was found. */
2623 	if (j == entry_count) {
2624 		sc->bce_flash_info = NULL;
2625 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2626 		    __FILE__, __LINE__);
2627 		DBEXIT(BCE_VERBOSE_NVRAM);
2628 		return (ENODEV);
2629 	}
2630 
2631 bce_init_nvram_get_flash_size:
2632 	/* Write the flash config data to the shared memory interface. */
2633 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2634 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2635 	if (val)
2636 		sc->bce_flash_size = val;
2637 	else
2638 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2639 
2640 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2641 	    __FUNCTION__, sc->bce_flash_info->name,
2642 	    sc->bce_flash_info->total_size);
2643 
2644 	DBEXIT(BCE_VERBOSE_NVRAM);
2645 	return rc;
2646 }
2647 
2648 
2649 /****************************************************************************/
2650 /* Read an arbitrary range of data from NVRAM.                              */
2651 /*                                                                          */
2652 /* Prepares the NVRAM interface for access and reads the requested data     */
2653 /* into the supplied buffer.                                                */
2654 /*                                                                          */
2655 /* Returns:                                                                 */
2656 /*   0 on success and the data read, positive value on failure.             */
2657 /****************************************************************************/
2658 static int
2659 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2660 	int buf_size)
2661 {
2662 	int rc = 0;
2663 	u32 cmd_flags, offset32, len32, extra;
2664 
2665 	DBENTER(BCE_VERBOSE_NVRAM);
2666 
2667 	if (buf_size == 0)
2668 		goto bce_nvram_read_exit;
2669 
2670 	/* Request access to the flash interface. */
2671 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2672 		goto bce_nvram_read_exit;
2673 
2674 	/* Enable access to flash interface */
2675 	bce_enable_nvram_access(sc);
2676 
2677 	len32 = buf_size;
2678 	offset32 = offset;
2679 	extra = 0;
2680 
2681 	cmd_flags = 0;
2682 
2683 	if (offset32 & 3) {
2684 		u8 buf[4];
2685 		u32 pre_len;
2686 
2687 		offset32 &= ~3;
2688 		pre_len = 4 - (offset & 3);
2689 
2690 		if (pre_len >= len32) {
2691 			pre_len = len32;
2692 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2693 		}
2694 		else {
2695 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2696 		}
2697 
2698 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2699 
2700 		if (rc)
2701 			return rc;
2702 
2703 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2704 
2705 		offset32 += 4;
2706 		ret_buf += pre_len;
2707 		len32 -= pre_len;
2708 	}
2709 
2710 	if (len32 & 3) {
2711 		extra = 4 - (len32 & 3);
2712 		len32 = (len32 + 4) & ~3;
2713 	}
2714 
2715 	if (len32 == 4) {
2716 		u8 buf[4];
2717 
2718 		if (cmd_flags)
2719 			cmd_flags = BCE_NVM_COMMAND_LAST;
2720 		else
2721 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2722 				    BCE_NVM_COMMAND_LAST;
2723 
2724 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2725 
2726 		memcpy(ret_buf, buf, 4 - extra);
2727 	}
2728 	else if (len32 > 0) {
2729 		u8 buf[4];
2730 
2731 		/* Read the first word. */
2732 		if (cmd_flags)
2733 			cmd_flags = 0;
2734 		else
2735 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2736 
2737 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2738 
2739 		/* Advance to the next dword. */
2740 		offset32 += 4;
2741 		ret_buf += 4;
2742 		len32 -= 4;
2743 
2744 		while (len32 > 4 && rc == 0) {
2745 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2746 
2747 			/* Advance to the next dword. */
2748 			offset32 += 4;
2749 			ret_buf += 4;
2750 			len32 -= 4;
2751 		}
2752 
2753 		if (rc)
2754 			goto bce_nvram_read_locked_exit;
2755 
2756 		cmd_flags = BCE_NVM_COMMAND_LAST;
2757 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2758 
2759 		memcpy(ret_buf, buf, 4 - extra);
2760 	}
2761 
2762 bce_nvram_read_locked_exit:
2763 	/* Disable access to flash interface and release the lock. */
2764 	bce_disable_nvram_access(sc);
2765 	bce_release_nvram_lock(sc);
2766 
2767 bce_nvram_read_exit:
2768 	DBEXIT(BCE_VERBOSE_NVRAM);
2769 	return rc;
2770 }
2771 
2772 
2773 #ifdef BCE_NVRAM_WRITE_SUPPORT
2774 /****************************************************************************/
2775 /* Write an arbitrary range of data from NVRAM.                             */
2776 /*                                                                          */
2777 /* Prepares the NVRAM interface for write access and writes the requested   */
2778 /* data from the supplied buffer.  The caller is responsible for            */
2779 /* calculating any appropriate CRCs.                                        */
2780 /*                                                                          */
2781 /* Returns:                                                                 */
2782 /*   0 on success, positive value on failure.                               */
2783 /****************************************************************************/
2784 static int
2785 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2786 	int buf_size)
2787 {
2788 	u32 written, offset32, len32;
2789 	u8 *buf, start[4], end[4];
2790 	int rc = 0;
2791 	int align_start, align_end;
2792 
2793 	DBENTER(BCE_VERBOSE_NVRAM);
2794 
2795 	buf = data_buf;
2796 	offset32 = offset;
2797 	len32 = buf_size;
2798 	align_start = align_end = 0;
2799 
2800 	if ((align_start = (offset32 & 3))) {
2801 		offset32 &= ~3;
2802 		len32 += align_start;
2803 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2804 			goto bce_nvram_write_exit;
2805 	}
2806 
2807 	if (len32 & 3) {
2808 	       	if ((len32 > 4) || !align_start) {
2809 			align_end = 4 - (len32 & 3);
2810 			len32 += align_end;
2811 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2812 				end, 4))) {
2813 				goto bce_nvram_write_exit;
2814 			}
2815 		}
2816 	}
2817 
2818 	if (align_start || align_end) {
2819 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2820 		if (buf == 0) {
2821 			rc = ENOMEM;
2822 			goto bce_nvram_write_exit;
2823 		}
2824 
2825 		if (align_start) {
2826 			memcpy(buf, start, 4);
2827 		}
2828 
2829 		if (align_end) {
2830 			memcpy(buf + len32 - 4, end, 4);
2831 		}
2832 		memcpy(buf + align_start, data_buf, buf_size);
2833 	}
2834 
2835 	written = 0;
2836 	while ((written < len32) && (rc == 0)) {
2837 		u32 page_start, page_end, data_start, data_end;
2838 		u32 addr, cmd_flags;
2839 		int i;
2840 		u8 flash_buffer[264];
2841 
2842 	    /* Find the page_start addr */
2843 		page_start = offset32 + written;
2844 		page_start -= (page_start % sc->bce_flash_info->page_size);
2845 		/* Find the page_end addr */
2846 		page_end = page_start + sc->bce_flash_info->page_size;
2847 		/* Find the data_start addr */
2848 		data_start = (written == 0) ? offset32 : page_start;
2849 		/* Find the data_end addr */
2850 		data_end = (page_end > offset32 + len32) ?
2851 			(offset32 + len32) : page_end;
2852 
2853 		/* Request access to the flash interface. */
2854 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2855 			goto bce_nvram_write_exit;
2856 
2857 		/* Enable access to flash interface */
2858 		bce_enable_nvram_access(sc);
2859 
2860 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2861 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2862 			int j;
2863 
2864 			/* Read the whole page into the buffer
2865 			 * (non-buffer flash only) */
2866 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2867 				if (j == (sc->bce_flash_info->page_size - 4)) {
2868 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2869 				}
2870 				rc = bce_nvram_read_dword(sc,
2871 					page_start + j,
2872 					&flash_buffer[j],
2873 					cmd_flags);
2874 
2875 				if (rc)
2876 					goto bce_nvram_write_locked_exit;
2877 
2878 				cmd_flags = 0;
2879 			}
2880 		}
2881 
2882 		/* Enable writes to flash interface (unlock write-protect) */
2883 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2884 			goto bce_nvram_write_locked_exit;
2885 
2886 		/* Erase the page */
2887 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2888 			goto bce_nvram_write_locked_exit;
2889 
2890 		/* Re-enable the write again for the actual write */
2891 		bce_enable_nvram_write(sc);
2892 
2893 		/* Loop to write back the buffer data from page_start to
2894 		 * data_start */
2895 		i = 0;
2896 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2897 			for (addr = page_start; addr < data_start;
2898 				addr += 4, i += 4) {
2899 
2900 				rc = bce_nvram_write_dword(sc, addr,
2901 					&flash_buffer[i], cmd_flags);
2902 
2903 				if (rc != 0)
2904 					goto bce_nvram_write_locked_exit;
2905 
2906 				cmd_flags = 0;
2907 			}
2908 		}
2909 
2910 		/* Loop to write the new data from data_start to data_end */
2911 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2912 			if ((addr == page_end - 4) ||
2913 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2914 				(addr == data_end - 4))) {
2915 
2916 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2917 			}
2918 			rc = bce_nvram_write_dword(sc, addr, buf,
2919 				cmd_flags);
2920 
2921 			if (rc != 0)
2922 				goto bce_nvram_write_locked_exit;
2923 
2924 			cmd_flags = 0;
2925 			buf += 4;
2926 		}
2927 
2928 		/* Loop to write back the buffer data from data_end
2929 		 * to page_end */
2930 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2931 			for (addr = data_end; addr < page_end;
2932 				addr += 4, i += 4) {
2933 
2934 				if (addr == page_end-4) {
2935 					cmd_flags = BCE_NVM_COMMAND_LAST;
2936                 		}
2937 				rc = bce_nvram_write_dword(sc, addr,
2938 					&flash_buffer[i], cmd_flags);
2939 
2940 				if (rc != 0)
2941 					goto bce_nvram_write_locked_exit;
2942 
2943 				cmd_flags = 0;
2944 			}
2945 		}
2946 
2947 		/* Disable writes to flash interface (lock write-protect) */
2948 		bce_disable_nvram_write(sc);
2949 
2950 		/* Disable access to flash interface */
2951 		bce_disable_nvram_access(sc);
2952 		bce_release_nvram_lock(sc);
2953 
2954 		/* Increment written */
2955 		written += data_end - data_start;
2956 	}
2957 
2958 	goto bce_nvram_write_exit;
2959 
2960 bce_nvram_write_locked_exit:
2961 	bce_disable_nvram_write(sc);
2962 	bce_disable_nvram_access(sc);
2963 	bce_release_nvram_lock(sc);
2964 
2965 bce_nvram_write_exit:
2966 	if (align_start || align_end)
2967 		free(buf, M_DEVBUF);
2968 
2969 	DBEXIT(BCE_VERBOSE_NVRAM);
2970 	return (rc);
2971 }
2972 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2973 
2974 
2975 /****************************************************************************/
2976 /* Verifies that NVRAM is accessible and contains valid data.               */
2977 /*                                                                          */
2978 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2979 /* correct.                                                                 */
2980 /*                                                                          */
2981 /* Returns:                                                                 */
2982 /*   0 on success, positive value on failure.                               */
2983 /****************************************************************************/
2984 static int
2985 bce_nvram_test(struct bce_softc *sc)
2986 {
2987 	u32 buf[BCE_NVRAM_SIZE / 4];
2988 	u8 *data = (u8 *) buf;
2989 	int rc = 0;
2990 	u32 magic, csum;
2991 
2992 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2993 
2994 	/*
2995 	 * Check that the device NVRAM is valid by reading
2996 	 * the magic value at offset 0.
2997 	 */
2998 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2999 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
3000 		    __FILE__, __LINE__);
3001 		goto bce_nvram_test_exit;
3002 	}
3003 
3004 	/*
3005 	 * Verify that offset 0 of the NVRAM contains
3006 	 * a valid magic number.
3007 	 */
3008 	magic = bce_be32toh(buf[0]);
3009 	if (magic != BCE_NVRAM_MAGIC) {
3010 		rc = ENODEV;
3011 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
3012 		    "Expected: 0x%08X, Found: 0x%08X\n",
3013 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
3014 		goto bce_nvram_test_exit;
3015 	}
3016 
3017 	/*
3018 	 * Verify that the device NVRAM includes valid
3019 	 * configuration data.
3020 	 */
3021 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
3022 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
3023 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
3024 		goto bce_nvram_test_exit;
3025 	}
3026 
3027 	csum = ether_crc32_le(data, 0x100);
3028 	if (csum != BCE_CRC32_RESIDUAL) {
3029 		rc = ENODEV;
3030 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
3031 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
3032 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
3033 		goto bce_nvram_test_exit;
3034 	}
3035 
3036 	csum = ether_crc32_le(data + 0x100, 0x100);
3037 	if (csum != BCE_CRC32_RESIDUAL) {
3038 		rc = ENODEV;
3039 		BCE_PRINTF("%s(%d): Invalid feature configuration "
3040 		    "information NVRAM CRC! Expected: 0x%08X, "
3041 		    "Found: 08%08X\n", __FILE__, __LINE__,
3042 		    BCE_CRC32_RESIDUAL, csum);
3043 	}
3044 
3045 bce_nvram_test_exit:
3046 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
3047 	return rc;
3048 }
3049 
3050 
3051 /****************************************************************************/
3052 /* Calculates the size of the buffers to allocate based on the MTU.         */
3053 /*                                                                          */
3054 /* Returns:                                                                 */
3055 /*   Nothing.                                                               */
3056 /****************************************************************************/
3057 static void
3058 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3059 {
3060 	DBENTER(BCE_VERBOSE_LOAD);
3061 
3062 	/* Use a single allocation type when header splitting enabled. */
3063 	if (bce_hdr_split == TRUE) {
3064 		sc->rx_bd_mbuf_alloc_size = MHLEN;
3065 		/* Make sure offset is 16 byte aligned for hardware. */
3066 		sc->rx_bd_mbuf_align_pad =
3067 			roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
3068 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3069 			sc->rx_bd_mbuf_align_pad;
3070 	} else {
3071 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3072 		    ETHER_CRC_LEN) > MCLBYTES) {
3073 			/* Setup for jumbo RX buffer allocations. */
3074 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3075 			sc->rx_bd_mbuf_align_pad  =
3076 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3077 			sc->rx_bd_mbuf_data_len =
3078 			    sc->rx_bd_mbuf_alloc_size -
3079 			    sc->rx_bd_mbuf_align_pad;
3080 		} else {
3081 			/* Setup for standard RX buffer allocations. */
3082 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3083 			sc->rx_bd_mbuf_align_pad  =
3084 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3085 			sc->rx_bd_mbuf_data_len =
3086 			    sc->rx_bd_mbuf_alloc_size -
3087 			    sc->rx_bd_mbuf_align_pad;
3088 		}
3089 	}
3090 
3091 //	DBPRINT(sc, BCE_INFO_LOAD,
3092 	DBPRINT(sc, BCE_WARN,
3093 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3094 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3095 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3096 	   sc->rx_bd_mbuf_align_pad);
3097 
3098 	DBEXIT(BCE_VERBOSE_LOAD);
3099 }
3100 
3101 /****************************************************************************/
3102 /* Identifies the current media type of the controller and sets the PHY     */
3103 /* address.                                                                 */
3104 /*                                                                          */
3105 /* Returns:                                                                 */
3106 /*   Nothing.                                                               */
3107 /****************************************************************************/
3108 static void
3109 bce_get_media(struct bce_softc *sc)
3110 {
3111 	u32 val;
3112 
3113 	DBENTER(BCE_VERBOSE_PHY);
3114 
3115 	/* Assume PHY address for copper controllers. */
3116 	sc->bce_phy_addr = 1;
3117 
3118 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3119  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3120 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3121 		u32 strap;
3122 
3123 		/*
3124 		 * The BCM5709S is software configurable
3125 		 * for Copper or SerDes operation.
3126 		 */
3127 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3128 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3129 			    "for copper.\n");
3130 			goto bce_get_media_exit;
3131 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3132 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3133 			    "for dual media.\n");
3134 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3135 			goto bce_get_media_exit;
3136 		}
3137 
3138 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3139 			strap = (val &
3140 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3141 		else
3142 			strap = (val &
3143 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3144 
3145 		if (pci_get_function(sc->bce_dev) == 0) {
3146 			switch (strap) {
3147 			case 0x4:
3148 			case 0x5:
3149 			case 0x6:
3150 				DBPRINT(sc, BCE_INFO_LOAD,
3151 				    "BCM5709 s/w configured for SerDes.\n");
3152 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3153 				break;
3154 			default:
3155 				DBPRINT(sc, BCE_INFO_LOAD,
3156 				    "BCM5709 s/w configured for Copper.\n");
3157 				break;
3158 			}
3159 		} else {
3160 			switch (strap) {
3161 			case 0x1:
3162 			case 0x2:
3163 			case 0x4:
3164 				DBPRINT(sc, BCE_INFO_LOAD,
3165 				    "BCM5709 s/w configured for SerDes.\n");
3166 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3167 				break;
3168 			default:
3169 				DBPRINT(sc, BCE_INFO_LOAD,
3170 				    "BCM5709 s/w configured for Copper.\n");
3171 				break;
3172 			}
3173 		}
3174 
3175 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3176 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3177 
3178 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3179 
3180 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3181 
3182 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3183 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3184 
3185 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3186 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3187 			sc->bce_phy_addr = 2;
3188 
3189 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3190 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3191 				sc->bce_phy_flags |=
3192 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3193 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3194 				    "capable adapter\n");
3195 			}
3196 		}
3197 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3198 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3199 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3200 
3201 bce_get_media_exit:
3202 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3203 		"Using PHY address %d.\n", sc->bce_phy_addr);
3204 
3205 	DBEXIT(BCE_VERBOSE_PHY);
3206 }
3207 
3208 
3209 /****************************************************************************/
3210 /* Performs PHY initialization required before MII drivers access the       */
3211 /* device.                                                                  */
3212 /*                                                                          */
3213 /* Returns:                                                                 */
3214 /*   Nothing.                                                               */
3215 /****************************************************************************/
3216 static void
3217 bce_init_media(struct bce_softc *sc)
3218 {
3219 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3220 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3221 		/*
3222 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3223 		 * Clause 22 method. Otherwise we have no way to attach
3224 		 * the PHY in mii(4) layer. PHY specific configuration
3225 		 * is done in mii layer.
3226 		 */
3227 
3228 		/* Select auto-negotiation MMD of the PHY. */
3229 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3230 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3231 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3232 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3233 
3234 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3235 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3236 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3237 	}
3238 }
3239 
3240 
3241 /****************************************************************************/
3242 /* Free any DMA memory owned by the driver.                                 */
3243 /*                                                                          */
3244 /* Scans through each data structre that requires DMA memory and frees      */
3245 /* the memory if allocated.                                                 */
3246 /*                                                                          */
3247 /* Returns:                                                                 */
3248 /*   Nothing.                                                               */
3249 /****************************************************************************/
3250 static void
3251 bce_dma_free(struct bce_softc *sc)
3252 {
3253 	int i;
3254 
3255 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3256 
3257 	/* Free, unmap, and destroy the status block. */
3258 	if (sc->status_block != NULL) {
3259 		bus_dmamem_free(
3260 		   sc->status_tag,
3261 		    sc->status_block,
3262 		    sc->status_map);
3263 		sc->status_block = NULL;
3264 	}
3265 
3266 	if (sc->status_map != NULL) {
3267 		bus_dmamap_unload(
3268 		    sc->status_tag,
3269 		    sc->status_map);
3270 		bus_dmamap_destroy(sc->status_tag,
3271 		    sc->status_map);
3272 		sc->status_map = NULL;
3273 	}
3274 
3275 	if (sc->status_tag != NULL) {
3276 		bus_dma_tag_destroy(sc->status_tag);
3277 		sc->status_tag = NULL;
3278 	}
3279 
3280 
3281 	/* Free, unmap, and destroy the statistics block. */
3282 	if (sc->stats_block != NULL) {
3283 		bus_dmamem_free(
3284 		    sc->stats_tag,
3285 		    sc->stats_block,
3286 		    sc->stats_map);
3287 		sc->stats_block = NULL;
3288 	}
3289 
3290 	if (sc->stats_map != NULL) {
3291 		bus_dmamap_unload(
3292 		    sc->stats_tag,
3293 		    sc->stats_map);
3294 		bus_dmamap_destroy(sc->stats_tag,
3295 		    sc->stats_map);
3296 		sc->stats_map = NULL;
3297 	}
3298 
3299 	if (sc->stats_tag != NULL) {
3300 		bus_dma_tag_destroy(sc->stats_tag);
3301 		sc->stats_tag = NULL;
3302 	}
3303 
3304 
3305 	/* Free, unmap and destroy all context memory pages. */
3306 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3307 		for (i = 0; i < sc->ctx_pages; i++ ) {
3308 			if (sc->ctx_block[i] != NULL) {
3309 				bus_dmamem_free(
3310 				    sc->ctx_tag,
3311 				    sc->ctx_block[i],
3312 				    sc->ctx_map[i]);
3313 				sc->ctx_block[i] = NULL;
3314 			}
3315 
3316 			if (sc->ctx_map[i] != NULL) {
3317 				bus_dmamap_unload(
3318 				    sc->ctx_tag,
3319 				    sc->ctx_map[i]);
3320 				bus_dmamap_destroy(
3321 				    sc->ctx_tag,
3322 				    sc->ctx_map[i]);
3323 				sc->ctx_map[i] = NULL;
3324 			}
3325 		}
3326 
3327 		/* Destroy the context memory tag. */
3328 		if (sc->ctx_tag != NULL) {
3329 			bus_dma_tag_destroy(sc->ctx_tag);
3330 			sc->ctx_tag = NULL;
3331 		}
3332 	}
3333 
3334 
3335 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3336 	for (i = 0; i < sc->tx_pages; i++ ) {
3337 		if (sc->tx_bd_chain[i] != NULL) {
3338 			bus_dmamem_free(
3339 			    sc->tx_bd_chain_tag,
3340 			    sc->tx_bd_chain[i],
3341 			    sc->tx_bd_chain_map[i]);
3342 			sc->tx_bd_chain[i] = NULL;
3343 		}
3344 
3345 		if (sc->tx_bd_chain_map[i] != NULL) {
3346 			bus_dmamap_unload(
3347 			    sc->tx_bd_chain_tag,
3348 			    sc->tx_bd_chain_map[i]);
3349 			bus_dmamap_destroy(
3350 			    sc->tx_bd_chain_tag,
3351 			    sc->tx_bd_chain_map[i]);
3352 			sc->tx_bd_chain_map[i] = NULL;
3353 		}
3354 	}
3355 
3356 	/* Destroy the TX buffer descriptor tag. */
3357 	if (sc->tx_bd_chain_tag != NULL) {
3358 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3359 		sc->tx_bd_chain_tag = NULL;
3360 	}
3361 
3362 
3363 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3364 	for (i = 0; i < sc->rx_pages; i++ ) {
3365 		if (sc->rx_bd_chain[i] != NULL) {
3366 			bus_dmamem_free(
3367 			    sc->rx_bd_chain_tag,
3368 			    sc->rx_bd_chain[i],
3369 			    sc->rx_bd_chain_map[i]);
3370 			sc->rx_bd_chain[i] = NULL;
3371 		}
3372 
3373 		if (sc->rx_bd_chain_map[i] != NULL) {
3374 			bus_dmamap_unload(
3375 			    sc->rx_bd_chain_tag,
3376 			    sc->rx_bd_chain_map[i]);
3377 			bus_dmamap_destroy(
3378 			    sc->rx_bd_chain_tag,
3379 			    sc->rx_bd_chain_map[i]);
3380 			sc->rx_bd_chain_map[i] = NULL;
3381 		}
3382 	}
3383 
3384 	/* Destroy the RX buffer descriptor tag. */
3385 	if (sc->rx_bd_chain_tag != NULL) {
3386 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3387 		sc->rx_bd_chain_tag = NULL;
3388 	}
3389 
3390 
3391 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3392 	if (bce_hdr_split == TRUE) {
3393 		for (i = 0; i < sc->pg_pages; i++ ) {
3394 			if (sc->pg_bd_chain[i] != NULL) {
3395 				bus_dmamem_free(
3396 				    sc->pg_bd_chain_tag,
3397 				    sc->pg_bd_chain[i],
3398 				    sc->pg_bd_chain_map[i]);
3399 				sc->pg_bd_chain[i] = NULL;
3400 			}
3401 
3402 			if (sc->pg_bd_chain_map[i] != NULL) {
3403 				bus_dmamap_unload(
3404 				    sc->pg_bd_chain_tag,
3405 				    sc->pg_bd_chain_map[i]);
3406 				bus_dmamap_destroy(
3407 				    sc->pg_bd_chain_tag,
3408 				    sc->pg_bd_chain_map[i]);
3409 				sc->pg_bd_chain_map[i] = NULL;
3410 			}
3411 		}
3412 
3413 		/* Destroy the page buffer descriptor tag. */
3414 		if (sc->pg_bd_chain_tag != NULL) {
3415 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3416 			sc->pg_bd_chain_tag = NULL;
3417 		}
3418 	}
3419 
3420 
3421 	/* Unload and destroy the TX mbuf maps. */
3422 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3423 		if (sc->tx_mbuf_map[i] != NULL) {
3424 			bus_dmamap_unload(sc->tx_mbuf_tag,
3425 			    sc->tx_mbuf_map[i]);
3426 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3427 	 		    sc->tx_mbuf_map[i]);
3428 			sc->tx_mbuf_map[i] = NULL;
3429 		}
3430 	}
3431 
3432 	/* Destroy the TX mbuf tag. */
3433 	if (sc->tx_mbuf_tag != NULL) {
3434 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3435 		sc->tx_mbuf_tag = NULL;
3436 	}
3437 
3438 	/* Unload and destroy the RX mbuf maps. */
3439 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3440 		if (sc->rx_mbuf_map[i] != NULL) {
3441 			bus_dmamap_unload(sc->rx_mbuf_tag,
3442 			    sc->rx_mbuf_map[i]);
3443 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3444 	 		    sc->rx_mbuf_map[i]);
3445 			sc->rx_mbuf_map[i] = NULL;
3446 		}
3447 	}
3448 
3449 	/* Destroy the RX mbuf tag. */
3450 	if (sc->rx_mbuf_tag != NULL) {
3451 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3452 		sc->rx_mbuf_tag = NULL;
3453 	}
3454 
3455 	/* Unload and destroy the page mbuf maps. */
3456 	if (bce_hdr_split == TRUE) {
3457 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3458 			if (sc->pg_mbuf_map[i] != NULL) {
3459 				bus_dmamap_unload(sc->pg_mbuf_tag,
3460 				    sc->pg_mbuf_map[i]);
3461 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3462 				    sc->pg_mbuf_map[i]);
3463 				sc->pg_mbuf_map[i] = NULL;
3464 			}
3465 		}
3466 
3467 		/* Destroy the page mbuf tag. */
3468 		if (sc->pg_mbuf_tag != NULL) {
3469 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3470 			sc->pg_mbuf_tag = NULL;
3471 		}
3472 	}
3473 
3474 	/* Destroy the parent tag */
3475 	if (sc->parent_tag != NULL) {
3476 		bus_dma_tag_destroy(sc->parent_tag);
3477 		sc->parent_tag = NULL;
3478 	}
3479 
3480 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3481 }
3482 
3483 
3484 /****************************************************************************/
3485 /* Get DMA memory from the OS.                                              */
3486 /*                                                                          */
3487 /* Validates that the OS has provided DMA buffers in response to a          */
3488 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3489 /* When the callback is used the OS will return 0 for the mapping function  */
3490 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3491 /* failures back to the caller.                                             */
3492 /*                                                                          */
3493 /* Returns:                                                                 */
3494 /*   Nothing.                                                               */
3495 /****************************************************************************/
3496 static void
3497 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3498 {
3499 	bus_addr_t *busaddr = arg;
3500 
3501 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3502 	    __FUNCTION__, nseg));
3503 	/* Simulate a mapping failure. */
3504 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3505 	    error = ENOMEM);
3506 
3507 	/* ToDo: How to increment debug sim_count variable here? */
3508 
3509 	/* Check for an error and signal the caller that an error occurred. */
3510 	if (error) {
3511 		*busaddr = 0;
3512 	} else {
3513 		*busaddr = segs->ds_addr;
3514 	}
3515 }
3516 
3517 
3518 /****************************************************************************/
3519 /* Allocate any DMA memory needed by the driver.                            */
3520 /*                                                                          */
3521 /* Allocates DMA memory needed for the various global structures needed by  */
3522 /* hardware.                                                                */
3523 /*                                                                          */
3524 /* Memory alignment requirements:                                           */
3525 /* +-----------------+----------+----------+----------+----------+          */
3526 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3527 /* +-----------------+----------+----------+----------+----------+          */
3528 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3529 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3530 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3531 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3532 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3533 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3534 /* |Context Memory   |          |          |          |          |          */
3535 /* +-----------------+----------+----------+----------+----------+          */
3536 /*                                                                          */
3537 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3538 /*                                                                          */
3539 /* Returns:                                                                 */
3540 /*   0 for success, positive value for failure.                             */
3541 /****************************************************************************/
3542 static int
3543 bce_dma_alloc(device_t dev)
3544 {
3545 	struct bce_softc *sc;
3546 	int i, error, rc = 0;
3547 	bus_size_t max_size, max_seg_size;
3548 	int max_segments;
3549 
3550 	sc = device_get_softc(dev);
3551 
3552 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3553 
3554 	/*
3555 	 * Allocate the parent bus DMA tag appropriate for PCI.
3556 	 */
3557 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3558 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3559 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3560 	    &sc->parent_tag)) {
3561 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3562 		    __FILE__, __LINE__);
3563 		rc = ENOMEM;
3564 		goto bce_dma_alloc_exit;
3565 	}
3566 
3567 	/*
3568 	 * Create a DMA tag for the status block, allocate and clear the
3569 	 * memory, map the memory into DMA space, and fetch the physical
3570 	 * address of the block.
3571 	 */
3572 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3573 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3574 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3575 	    0, NULL, NULL, &sc->status_tag)) {
3576 		BCE_PRINTF("%s(%d): Could not allocate status block "
3577 		    "DMA tag!\n", __FILE__, __LINE__);
3578 		rc = ENOMEM;
3579 		goto bce_dma_alloc_exit;
3580 	}
3581 
3582 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3583 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3584 	    &sc->status_map)) {
3585 		BCE_PRINTF("%s(%d): Could not allocate status block "
3586 		    "DMA memory!\n", __FILE__, __LINE__);
3587 		rc = ENOMEM;
3588 		goto bce_dma_alloc_exit;
3589 	}
3590 
3591 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3592 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3593 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3594 
3595 	if (error || sc->status_block_paddr == 0) {
3596 		BCE_PRINTF("%s(%d): Could not map status block "
3597 		    "DMA memory!\n", __FILE__, __LINE__);
3598 		rc = ENOMEM;
3599 		goto bce_dma_alloc_exit;
3600 	}
3601 
3602 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3603 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3604 
3605 	/*
3606 	 * Create a DMA tag for the statistics block, allocate and clear the
3607 	 * memory, map the memory into DMA space, and fetch the physical
3608 	 * address of the block.
3609 	 */
3610 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3611 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3612 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3613 	    0, NULL, NULL, &sc->stats_tag)) {
3614 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3615 		    "DMA tag!\n", __FILE__, __LINE__);
3616 		rc = ENOMEM;
3617 		goto bce_dma_alloc_exit;
3618 	}
3619 
3620 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3621 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3622 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3623 		    "DMA memory!\n", __FILE__, __LINE__);
3624 		rc = ENOMEM;
3625 		goto bce_dma_alloc_exit;
3626 	}
3627 
3628 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3629 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3630 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3631 
3632 	if (error || sc->stats_block_paddr == 0) {
3633 		BCE_PRINTF("%s(%d): Could not map statistics block "
3634 		    "DMA memory!\n", __FILE__, __LINE__);
3635 		rc = ENOMEM;
3636 		goto bce_dma_alloc_exit;
3637 	}
3638 
3639 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3640 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3641 
3642 	/* BCM5709 uses host memory as cache for context memory. */
3643 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3644 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3645 		if (sc->ctx_pages == 0)
3646 			sc->ctx_pages = 1;
3647 
3648 		DBRUNIF((sc->ctx_pages > 512),
3649 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3650 		    __FILE__, __LINE__, sc->ctx_pages));
3651 
3652 		/*
3653 		 * Create a DMA tag for the context pages,
3654 		 * allocate and clear the memory, map the
3655 		 * memory into DMA space, and fetch the
3656 		 * physical address of the block.
3657 		 */
3658 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3659 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3660 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3661 		    0, NULL, NULL, &sc->ctx_tag)) {
3662 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3663 			    "DMA tag!\n", __FILE__, __LINE__);
3664 			rc = ENOMEM;
3665 			goto bce_dma_alloc_exit;
3666 		}
3667 
3668 		for (i = 0; i < sc->ctx_pages; i++) {
3669 
3670 			if(bus_dmamem_alloc(sc->ctx_tag,
3671 			    (void **)&sc->ctx_block[i],
3672 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3673 			    &sc->ctx_map[i])) {
3674 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3675 				    "DMA memory!\n", __FILE__, __LINE__);
3676 				rc = ENOMEM;
3677 				goto bce_dma_alloc_exit;
3678 			}
3679 
3680 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3681 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3682 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3683 
3684 			if (error || sc->ctx_paddr[i] == 0) {
3685 				BCE_PRINTF("%s(%d): Could not map CTX "
3686 				    "DMA memory!\n", __FILE__, __LINE__);
3687 				rc = ENOMEM;
3688 				goto bce_dma_alloc_exit;
3689 			}
3690 
3691 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3692 			    "= 0x%jX\n", __FUNCTION__, i,
3693 			    (uintmax_t) sc->ctx_paddr[i]);
3694 		}
3695 	}
3696 
3697 	/*
3698 	 * Create a DMA tag for the TX buffer descriptor chain,
3699 	 * allocate and clear the  memory, and fetch the
3700 	 * physical address of the block.
3701 	 */
3702 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3703 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3704 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3705 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3706 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3707 		    "chain DMA tag!\n", __FILE__, __LINE__);
3708 		rc = ENOMEM;
3709 		goto bce_dma_alloc_exit;
3710 	}
3711 
3712 	for (i = 0; i < sc->tx_pages; i++) {
3713 
3714 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3715 		    (void **)&sc->tx_bd_chain[i],
3716 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3717 		    &sc->tx_bd_chain_map[i])) {
3718 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3719 			    "chain DMA memory!\n", __FILE__, __LINE__);
3720 			rc = ENOMEM;
3721 			goto bce_dma_alloc_exit;
3722 		}
3723 
3724 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3725 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3726 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3727 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3728 
3729 		if (error || sc->tx_bd_chain_paddr[i] == 0) {
3730 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3731 			    "chain DMA memory!\n", __FILE__, __LINE__);
3732 			rc = ENOMEM;
3733 			goto bce_dma_alloc_exit;
3734 		}
3735 
3736 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3737 		    "0x%jX\n", __FUNCTION__, i,
3738 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3739 	}
3740 
3741 	/* Check the required size before mapping to conserve resources. */
3742 	if (bce_tso_enable) {
3743 		max_size     = BCE_TSO_MAX_SIZE;
3744 		max_segments = BCE_MAX_SEGMENTS;
3745 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3746 	} else {
3747 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3748 		max_segments = BCE_MAX_SEGMENTS;
3749 		max_seg_size = MCLBYTES;
3750 	}
3751 
3752 	/* Create a DMA tag for TX mbufs. */
3753 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3754 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3755 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3756 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3757 		    __FILE__, __LINE__);
3758 		rc = ENOMEM;
3759 		goto bce_dma_alloc_exit;
3760 	}
3761 
3762 	/* Create DMA maps for the TX mbufs clusters. */
3763 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3764 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3765 			&sc->tx_mbuf_map[i])) {
3766 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3767 			    "map!\n", __FILE__, __LINE__);
3768 			rc = ENOMEM;
3769 			goto bce_dma_alloc_exit;
3770 		}
3771 	}
3772 
3773 	/*
3774 	 * Create a DMA tag for the RX buffer descriptor chain,
3775 	 * allocate and clear the memory, and fetch the physical
3776 	 * address of the blocks.
3777 	 */
3778 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3779 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3780 			sc->max_bus_addr, NULL, NULL,
3781 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3782 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3783 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3784 		    "DMA tag!\n", __FILE__, __LINE__);
3785 		rc = ENOMEM;
3786 		goto bce_dma_alloc_exit;
3787 	}
3788 
3789 	for (i = 0; i < sc->rx_pages; i++) {
3790 
3791 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3792 		    (void **)&sc->rx_bd_chain[i],
3793 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3794 		    &sc->rx_bd_chain_map[i])) {
3795 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3796 			    "chain DMA memory!\n", __FILE__, __LINE__);
3797 			rc = ENOMEM;
3798 			goto bce_dma_alloc_exit;
3799 		}
3800 
3801 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3802 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3803 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3804 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3805 
3806 		if (error || sc->rx_bd_chain_paddr[i] == 0) {
3807 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3808 			    "chain DMA memory!\n", __FILE__, __LINE__);
3809 			rc = ENOMEM;
3810 			goto bce_dma_alloc_exit;
3811 		}
3812 
3813 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3814 		    "0x%jX\n", __FUNCTION__, i,
3815 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3816 	}
3817 
3818 	/*
3819 	 * Create a DMA tag for RX mbufs.
3820 	 */
3821 	if (bce_hdr_split == TRUE)
3822 		max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3823 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3824 	else
3825 		max_size = MJUM9BYTES;
3826 
3827 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3828 	    "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3829 
3830 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3831 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3832 	    max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3833 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3834 		    __FILE__, __LINE__);
3835 		rc = ENOMEM;
3836 		goto bce_dma_alloc_exit;
3837 	}
3838 
3839 	/* Create DMA maps for the RX mbuf clusters. */
3840 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3841 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3842 		    &sc->rx_mbuf_map[i])) {
3843 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3844 			    "DMA map!\n", __FILE__, __LINE__);
3845 			rc = ENOMEM;
3846 			goto bce_dma_alloc_exit;
3847 		}
3848 	}
3849 
3850 	if (bce_hdr_split == TRUE) {
3851 		/*
3852 		 * Create a DMA tag for the page buffer descriptor chain,
3853 		 * allocate and clear the memory, and fetch the physical
3854 		 * address of the blocks.
3855 		 */
3856 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3857 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3858 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3859 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3860 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3861 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3862 			rc = ENOMEM;
3863 			goto bce_dma_alloc_exit;
3864 		}
3865 
3866 		for (i = 0; i < sc->pg_pages; i++) {
3867 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3868 			    (void **)&sc->pg_bd_chain[i],
3869 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3870 			    &sc->pg_bd_chain_map[i])) {
3871 				BCE_PRINTF("%s(%d): Could not allocate page "
3872 				    "descriptor chain DMA memory!\n",
3873 				    __FILE__, __LINE__);
3874 				rc = ENOMEM;
3875 				goto bce_dma_alloc_exit;
3876 			}
3877 
3878 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3879 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3880 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3881 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3882 
3883 			if (error || sc->pg_bd_chain_paddr[i] == 0) {
3884 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3885 					"chain DMA memory!\n", __FILE__, __LINE__);
3886 				rc = ENOMEM;
3887 				goto bce_dma_alloc_exit;
3888 			}
3889 
3890 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3891 				"0x%jX\n", __FUNCTION__, i,
3892 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3893 		}
3894 
3895 		/*
3896 		 * Create a DMA tag for page mbufs.
3897 		 */
3898 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3899 		    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3900 		    1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3901 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3902 				"DMA tag!\n", __FILE__, __LINE__);
3903 			rc = ENOMEM;
3904 			goto bce_dma_alloc_exit;
3905 		}
3906 
3907 		/* Create DMA maps for the page mbuf clusters. */
3908 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3909 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3910 				&sc->pg_mbuf_map[i])) {
3911 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3912 					"DMA map!\n", __FILE__, __LINE__);
3913 				rc = ENOMEM;
3914 				goto bce_dma_alloc_exit;
3915 			}
3916 		}
3917 	}
3918 
3919 bce_dma_alloc_exit:
3920 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3921 	return(rc);
3922 }
3923 
3924 
3925 /****************************************************************************/
3926 /* Release all resources used by the driver.                                */
3927 /*                                                                          */
3928 /* Releases all resources acquired by the driver including interrupts,      */
3929 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3930 /*                                                                          */
3931 /* Returns:                                                                 */
3932 /*   Nothing.                                                               */
3933 /****************************************************************************/
3934 static void
3935 bce_release_resources(struct bce_softc *sc)
3936 {
3937 	device_t dev;
3938 
3939 	DBENTER(BCE_VERBOSE_RESET);
3940 
3941 	dev = sc->bce_dev;
3942 
3943 	bce_dma_free(sc);
3944 
3945 	if (sc->bce_intrhand != NULL) {
3946 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3947 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3948 	}
3949 
3950 	if (sc->bce_res_irq != NULL) {
3951 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3952 		bus_release_resource(dev, SYS_RES_IRQ,
3953 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3954 	}
3955 
3956 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3957 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3958 		pci_release_msi(dev);
3959 	}
3960 
3961 	if (sc->bce_res_mem != NULL) {
3962 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3963 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3964 		    sc->bce_res_mem);
3965 	}
3966 
3967 	if (sc->bce_ifp != NULL) {
3968 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3969 		if_free(sc->bce_ifp);
3970 	}
3971 
3972 	if (mtx_initialized(&sc->bce_mtx))
3973 		BCE_LOCK_DESTROY(sc);
3974 
3975 	DBEXIT(BCE_VERBOSE_RESET);
3976 }
3977 
3978 
3979 /****************************************************************************/
3980 /* Firmware synchronization.                                                */
3981 /*                                                                          */
3982 /* Before performing certain events such as a chip reset, synchronize with  */
3983 /* the firmware first.                                                      */
3984 /*                                                                          */
3985 /* Returns:                                                                 */
3986 /*   0 for success, positive value for failure.                             */
3987 /****************************************************************************/
3988 static int
3989 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3990 {
3991 	int i, rc = 0;
3992 	u32 val;
3993 
3994 	DBENTER(BCE_VERBOSE_RESET);
3995 
3996 	/* Don't waste any time if we've timed out before. */
3997 	if (sc->bce_fw_timed_out == TRUE) {
3998 		rc = EBUSY;
3999 		goto bce_fw_sync_exit;
4000 	}
4001 
4002 	/* Increment the message sequence number. */
4003 	sc->bce_fw_wr_seq++;
4004 	msg_data |= sc->bce_fw_wr_seq;
4005 
4006  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
4007 	    "0x%08X\n",	msg_data);
4008 
4009 	/* Send the message to the bootcode driver mailbox. */
4010 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
4011 
4012 	/* Wait for the bootcode to acknowledge the message. */
4013 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
4014 		/* Check for a response in the bootcode firmware mailbox. */
4015 		val = bce_shmem_rd(sc, BCE_FW_MB);
4016 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
4017 			break;
4018 		DELAY(1000);
4019 	}
4020 
4021 	/* If we've timed out, tell bootcode that we've stopped waiting. */
4022 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
4023 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
4024 
4025 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
4026 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
4027 
4028 		msg_data &= ~BCE_DRV_MSG_CODE;
4029 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
4030 
4031 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
4032 
4033 		sc->bce_fw_timed_out = TRUE;
4034 		rc = EBUSY;
4035 	}
4036 
4037 bce_fw_sync_exit:
4038 	DBEXIT(BCE_VERBOSE_RESET);
4039 	return (rc);
4040 }
4041 
4042 
4043 /****************************************************************************/
4044 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
4045 /*                                                                          */
4046 /* Returns:                                                                 */
4047 /*   Nothing.                                                               */
4048 /****************************************************************************/
4049 static void
4050 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
4051 	u32 rv2p_code_len, u32 rv2p_proc)
4052 {
4053 	int i;
4054 	u32 val;
4055 
4056 	DBENTER(BCE_VERBOSE_RESET);
4057 
4058 	/* Set the page size used by RV2P. */
4059 	if (rv2p_proc == RV2P_PROC2) {
4060 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4061 	}
4062 
4063 	for (i = 0; i < rv2p_code_len; i += 8) {
4064 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4065 		rv2p_code++;
4066 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4067 		rv2p_code++;
4068 
4069 		if (rv2p_proc == RV2P_PROC1) {
4070 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4071 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4072 		}
4073 		else {
4074 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4075 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4076 		}
4077 	}
4078 
4079 	/* Reset the processor, un-stall is done later. */
4080 	if (rv2p_proc == RV2P_PROC1) {
4081 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4082 	}
4083 	else {
4084 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4085 	}
4086 
4087 	DBEXIT(BCE_VERBOSE_RESET);
4088 }
4089 
4090 
4091 /****************************************************************************/
4092 /* Load RISC processor firmware.                                            */
4093 /*                                                                          */
4094 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4095 /* associated with a particular processor.                                  */
4096 /*                                                                          */
4097 /* Returns:                                                                 */
4098 /*   Nothing.                                                               */
4099 /****************************************************************************/
4100 static void
4101 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4102 	struct fw_info *fw)
4103 {
4104 	u32 offset;
4105 
4106 	DBENTER(BCE_VERBOSE_RESET);
4107 
4108     bce_halt_cpu(sc, cpu_reg);
4109 
4110 	/* Load the Text area. */
4111 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4112 	if (fw->text) {
4113 		int j;
4114 
4115 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4116 			REG_WR_IND(sc, offset, fw->text[j]);
4117 	        }
4118 	}
4119 
4120 	/* Load the Data area. */
4121 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4122 	if (fw->data) {
4123 		int j;
4124 
4125 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4126 			REG_WR_IND(sc, offset, fw->data[j]);
4127 		}
4128 	}
4129 
4130 	/* Load the SBSS area. */
4131 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4132 	if (fw->sbss) {
4133 		int j;
4134 
4135 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4136 			REG_WR_IND(sc, offset, fw->sbss[j]);
4137 		}
4138 	}
4139 
4140 	/* Load the BSS area. */
4141 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4142 	if (fw->bss) {
4143 		int j;
4144 
4145 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4146 			REG_WR_IND(sc, offset, fw->bss[j]);
4147 		}
4148 	}
4149 
4150 	/* Load the Read-Only area. */
4151 	offset = cpu_reg->spad_base +
4152 		(fw->rodata_addr - cpu_reg->mips_view_base);
4153 	if (fw->rodata) {
4154 		int j;
4155 
4156 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4157 			REG_WR_IND(sc, offset, fw->rodata[j]);
4158 		}
4159 	}
4160 
4161 	/* Clear the pre-fetch instruction and set the FW start address. */
4162 	REG_WR_IND(sc, cpu_reg->inst, 0);
4163 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4164 
4165 	DBEXIT(BCE_VERBOSE_RESET);
4166 }
4167 
4168 
4169 /****************************************************************************/
4170 /* Starts the RISC processor.                                               */
4171 /*                                                                          */
4172 /* Assumes the CPU starting address has already been set.                   */
4173 /*                                                                          */
4174 /* Returns:                                                                 */
4175 /*   Nothing.                                                               */
4176 /****************************************************************************/
4177 static void
4178 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4179 {
4180 	u32 val;
4181 
4182 	DBENTER(BCE_VERBOSE_RESET);
4183 
4184 	/* Start the CPU. */
4185 	val = REG_RD_IND(sc, cpu_reg->mode);
4186 	val &= ~cpu_reg->mode_value_halt;
4187 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4188 	REG_WR_IND(sc, cpu_reg->mode, val);
4189 
4190 	DBEXIT(BCE_VERBOSE_RESET);
4191 }
4192 
4193 
4194 /****************************************************************************/
4195 /* Halts the RISC processor.                                                */
4196 /*                                                                          */
4197 /* Returns:                                                                 */
4198 /*   Nothing.                                                               */
4199 /****************************************************************************/
4200 static void
4201 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4202 {
4203 	u32 val;
4204 
4205 	DBENTER(BCE_VERBOSE_RESET);
4206 
4207 	/* Halt the CPU. */
4208 	val = REG_RD_IND(sc, cpu_reg->mode);
4209 	val |= cpu_reg->mode_value_halt;
4210 	REG_WR_IND(sc, cpu_reg->mode, val);
4211 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4212 
4213 	DBEXIT(BCE_VERBOSE_RESET);
4214 }
4215 
4216 
4217 /****************************************************************************/
4218 /* Initialize the RX CPU.                                                   */
4219 /*                                                                          */
4220 /* Returns:                                                                 */
4221 /*   Nothing.                                                               */
4222 /****************************************************************************/
4223 static void
4224 bce_start_rxp_cpu(struct bce_softc *sc)
4225 {
4226 	struct cpu_reg cpu_reg;
4227 
4228 	DBENTER(BCE_VERBOSE_RESET);
4229 
4230 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4231 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4232 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4233 	cpu_reg.state = BCE_RXP_CPU_STATE;
4234 	cpu_reg.state_value_clear = 0xffffff;
4235 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4236 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4237 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4238 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4239 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4240 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4241 	cpu_reg.mips_view_base = 0x8000000;
4242 
4243 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4244 	bce_start_cpu(sc, &cpu_reg);
4245 
4246 	DBEXIT(BCE_VERBOSE_RESET);
4247 }
4248 
4249 
4250 /****************************************************************************/
4251 /* Initialize the RX CPU.                                                   */
4252 /*                                                                          */
4253 /* Returns:                                                                 */
4254 /*   Nothing.                                                               */
4255 /****************************************************************************/
4256 static void
4257 bce_init_rxp_cpu(struct bce_softc *sc)
4258 {
4259 	struct cpu_reg cpu_reg;
4260 	struct fw_info fw;
4261 
4262 	DBENTER(BCE_VERBOSE_RESET);
4263 
4264 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4265 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4266 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4267 	cpu_reg.state = BCE_RXP_CPU_STATE;
4268 	cpu_reg.state_value_clear = 0xffffff;
4269 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4270 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4271 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4272 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4273 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4274 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4275 	cpu_reg.mips_view_base = 0x8000000;
4276 
4277 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4278  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4279 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4280 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4281 		fw.start_addr = bce_RXP_b09FwStartAddr;
4282 
4283 		fw.text_addr = bce_RXP_b09FwTextAddr;
4284 		fw.text_len = bce_RXP_b09FwTextLen;
4285 		fw.text_index = 0;
4286 		fw.text = bce_RXP_b09FwText;
4287 
4288 		fw.data_addr = bce_RXP_b09FwDataAddr;
4289 		fw.data_len = bce_RXP_b09FwDataLen;
4290 		fw.data_index = 0;
4291 		fw.data = bce_RXP_b09FwData;
4292 
4293 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4294 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4295 		fw.sbss_index = 0;
4296 		fw.sbss = bce_RXP_b09FwSbss;
4297 
4298 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4299 		fw.bss_len = bce_RXP_b09FwBssLen;
4300 		fw.bss_index = 0;
4301 		fw.bss = bce_RXP_b09FwBss;
4302 
4303 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4304 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4305 		fw.rodata_index = 0;
4306 		fw.rodata = bce_RXP_b09FwRodata;
4307 	} else {
4308 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4309 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4310 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4311 		fw.start_addr = bce_RXP_b06FwStartAddr;
4312 
4313 		fw.text_addr = bce_RXP_b06FwTextAddr;
4314 		fw.text_len = bce_RXP_b06FwTextLen;
4315 		fw.text_index = 0;
4316 		fw.text = bce_RXP_b06FwText;
4317 
4318 		fw.data_addr = bce_RXP_b06FwDataAddr;
4319 		fw.data_len = bce_RXP_b06FwDataLen;
4320 		fw.data_index = 0;
4321 		fw.data = bce_RXP_b06FwData;
4322 
4323 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4324 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4325 		fw.sbss_index = 0;
4326 		fw.sbss = bce_RXP_b06FwSbss;
4327 
4328 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4329 		fw.bss_len = bce_RXP_b06FwBssLen;
4330 		fw.bss_index = 0;
4331 		fw.bss = bce_RXP_b06FwBss;
4332 
4333 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4334 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4335 		fw.rodata_index = 0;
4336 		fw.rodata = bce_RXP_b06FwRodata;
4337 	}
4338 
4339 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4340 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4341 
4342     /* Delay RXP start until initialization is complete. */
4343 
4344 	DBEXIT(BCE_VERBOSE_RESET);
4345 }
4346 
4347 
4348 /****************************************************************************/
4349 /* Initialize the TX CPU.                                                   */
4350 /*                                                                          */
4351 /* Returns:                                                                 */
4352 /*   Nothing.                                                               */
4353 /****************************************************************************/
4354 static void
4355 bce_init_txp_cpu(struct bce_softc *sc)
4356 {
4357 	struct cpu_reg cpu_reg;
4358 	struct fw_info fw;
4359 
4360 	DBENTER(BCE_VERBOSE_RESET);
4361 
4362 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4363 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4364 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4365 	cpu_reg.state = BCE_TXP_CPU_STATE;
4366 	cpu_reg.state_value_clear = 0xffffff;
4367 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4368 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4369 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4370 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4371 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4372 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4373 	cpu_reg.mips_view_base = 0x8000000;
4374 
4375 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4376 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4377 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4378 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4379 		fw.start_addr = bce_TXP_b09FwStartAddr;
4380 
4381 		fw.text_addr = bce_TXP_b09FwTextAddr;
4382 		fw.text_len = bce_TXP_b09FwTextLen;
4383 		fw.text_index = 0;
4384 		fw.text = bce_TXP_b09FwText;
4385 
4386 		fw.data_addr = bce_TXP_b09FwDataAddr;
4387 		fw.data_len = bce_TXP_b09FwDataLen;
4388 		fw.data_index = 0;
4389 		fw.data = bce_TXP_b09FwData;
4390 
4391 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4392 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4393 		fw.sbss_index = 0;
4394 		fw.sbss = bce_TXP_b09FwSbss;
4395 
4396 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4397 		fw.bss_len = bce_TXP_b09FwBssLen;
4398 		fw.bss_index = 0;
4399 		fw.bss = bce_TXP_b09FwBss;
4400 
4401 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4402 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4403 		fw.rodata_index = 0;
4404 		fw.rodata = bce_TXP_b09FwRodata;
4405 	} else {
4406 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4407 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4408 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4409 		fw.start_addr = bce_TXP_b06FwStartAddr;
4410 
4411 		fw.text_addr = bce_TXP_b06FwTextAddr;
4412 		fw.text_len = bce_TXP_b06FwTextLen;
4413 		fw.text_index = 0;
4414 		fw.text = bce_TXP_b06FwText;
4415 
4416 		fw.data_addr = bce_TXP_b06FwDataAddr;
4417 		fw.data_len = bce_TXP_b06FwDataLen;
4418 		fw.data_index = 0;
4419 		fw.data = bce_TXP_b06FwData;
4420 
4421 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4422 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4423 		fw.sbss_index = 0;
4424 		fw.sbss = bce_TXP_b06FwSbss;
4425 
4426 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4427 		fw.bss_len = bce_TXP_b06FwBssLen;
4428 		fw.bss_index = 0;
4429 		fw.bss = bce_TXP_b06FwBss;
4430 
4431 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4432 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4433 		fw.rodata_index = 0;
4434 		fw.rodata = bce_TXP_b06FwRodata;
4435 	}
4436 
4437 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4438 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4439     bce_start_cpu(sc, &cpu_reg);
4440 
4441 	DBEXIT(BCE_VERBOSE_RESET);
4442 }
4443 
4444 
4445 /****************************************************************************/
4446 /* Initialize the TPAT CPU.                                                 */
4447 /*                                                                          */
4448 /* Returns:                                                                 */
4449 /*   Nothing.                                                               */
4450 /****************************************************************************/
4451 static void
4452 bce_init_tpat_cpu(struct bce_softc *sc)
4453 {
4454 	struct cpu_reg cpu_reg;
4455 	struct fw_info fw;
4456 
4457 	DBENTER(BCE_VERBOSE_RESET);
4458 
4459 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4460 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4461 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4462 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4463 	cpu_reg.state_value_clear = 0xffffff;
4464 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4465 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4466 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4467 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4468 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4469 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4470 	cpu_reg.mips_view_base = 0x8000000;
4471 
4472 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4473 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4474 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4475 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4476 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4477 
4478 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4479 		fw.text_len = bce_TPAT_b09FwTextLen;
4480 		fw.text_index = 0;
4481 		fw.text = bce_TPAT_b09FwText;
4482 
4483 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4484 		fw.data_len = bce_TPAT_b09FwDataLen;
4485 		fw.data_index = 0;
4486 		fw.data = bce_TPAT_b09FwData;
4487 
4488 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4489 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4490 		fw.sbss_index = 0;
4491 		fw.sbss = bce_TPAT_b09FwSbss;
4492 
4493 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4494 		fw.bss_len = bce_TPAT_b09FwBssLen;
4495 		fw.bss_index = 0;
4496 		fw.bss = bce_TPAT_b09FwBss;
4497 
4498 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4499 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4500 		fw.rodata_index = 0;
4501 		fw.rodata = bce_TPAT_b09FwRodata;
4502 	} else {
4503 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4504 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4505 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4506 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4507 
4508 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4509 		fw.text_len = bce_TPAT_b06FwTextLen;
4510 		fw.text_index = 0;
4511 		fw.text = bce_TPAT_b06FwText;
4512 
4513 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4514 		fw.data_len = bce_TPAT_b06FwDataLen;
4515 		fw.data_index = 0;
4516 		fw.data = bce_TPAT_b06FwData;
4517 
4518 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4519 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4520 		fw.sbss_index = 0;
4521 		fw.sbss = bce_TPAT_b06FwSbss;
4522 
4523 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4524 		fw.bss_len = bce_TPAT_b06FwBssLen;
4525 		fw.bss_index = 0;
4526 		fw.bss = bce_TPAT_b06FwBss;
4527 
4528 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4529 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4530 		fw.rodata_index = 0;
4531 		fw.rodata = bce_TPAT_b06FwRodata;
4532 	}
4533 
4534 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4535 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4536 	bce_start_cpu(sc, &cpu_reg);
4537 
4538 	DBEXIT(BCE_VERBOSE_RESET);
4539 }
4540 
4541 
4542 /****************************************************************************/
4543 /* Initialize the CP CPU.                                                   */
4544 /*                                                                          */
4545 /* Returns:                                                                 */
4546 /*   Nothing.                                                               */
4547 /****************************************************************************/
4548 static void
4549 bce_init_cp_cpu(struct bce_softc *sc)
4550 {
4551 	struct cpu_reg cpu_reg;
4552 	struct fw_info fw;
4553 
4554 	DBENTER(BCE_VERBOSE_RESET);
4555 
4556 	cpu_reg.mode = BCE_CP_CPU_MODE;
4557 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4558 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4559 	cpu_reg.state = BCE_CP_CPU_STATE;
4560 	cpu_reg.state_value_clear = 0xffffff;
4561 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4562 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4563 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4564 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4565 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4566 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4567 	cpu_reg.mips_view_base = 0x8000000;
4568 
4569 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4570 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4571 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4572 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4573 		fw.start_addr = bce_CP_b09FwStartAddr;
4574 
4575 		fw.text_addr = bce_CP_b09FwTextAddr;
4576 		fw.text_len = bce_CP_b09FwTextLen;
4577 		fw.text_index = 0;
4578 		fw.text = bce_CP_b09FwText;
4579 
4580 		fw.data_addr = bce_CP_b09FwDataAddr;
4581 		fw.data_len = bce_CP_b09FwDataLen;
4582 		fw.data_index = 0;
4583 		fw.data = bce_CP_b09FwData;
4584 
4585 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4586 		fw.sbss_len = bce_CP_b09FwSbssLen;
4587 		fw.sbss_index = 0;
4588 		fw.sbss = bce_CP_b09FwSbss;
4589 
4590 		fw.bss_addr = bce_CP_b09FwBssAddr;
4591 		fw.bss_len = bce_CP_b09FwBssLen;
4592 		fw.bss_index = 0;
4593 		fw.bss = bce_CP_b09FwBss;
4594 
4595 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4596 		fw.rodata_len = bce_CP_b09FwRodataLen;
4597 		fw.rodata_index = 0;
4598 		fw.rodata = bce_CP_b09FwRodata;
4599 	} else {
4600 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4601 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4602 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4603 		fw.start_addr = bce_CP_b06FwStartAddr;
4604 
4605 		fw.text_addr = bce_CP_b06FwTextAddr;
4606 		fw.text_len = bce_CP_b06FwTextLen;
4607 		fw.text_index = 0;
4608 		fw.text = bce_CP_b06FwText;
4609 
4610 		fw.data_addr = bce_CP_b06FwDataAddr;
4611 		fw.data_len = bce_CP_b06FwDataLen;
4612 		fw.data_index = 0;
4613 		fw.data = bce_CP_b06FwData;
4614 
4615 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4616 		fw.sbss_len = bce_CP_b06FwSbssLen;
4617 		fw.sbss_index = 0;
4618 		fw.sbss = bce_CP_b06FwSbss;
4619 
4620 		fw.bss_addr = bce_CP_b06FwBssAddr;
4621 		fw.bss_len = bce_CP_b06FwBssLen;
4622 		fw.bss_index = 0;
4623 		fw.bss = bce_CP_b06FwBss;
4624 
4625 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4626 		fw.rodata_len = bce_CP_b06FwRodataLen;
4627 		fw.rodata_index = 0;
4628 		fw.rodata = bce_CP_b06FwRodata;
4629 	}
4630 
4631 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4632 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4633 	bce_start_cpu(sc, &cpu_reg);
4634 
4635 	DBEXIT(BCE_VERBOSE_RESET);
4636 }
4637 
4638 
4639 /****************************************************************************/
4640 /* Initialize the COM CPU.                                                 */
4641 /*                                                                          */
4642 /* Returns:                                                                 */
4643 /*   Nothing.                                                               */
4644 /****************************************************************************/
4645 static void
4646 bce_init_com_cpu(struct bce_softc *sc)
4647 {
4648 	struct cpu_reg cpu_reg;
4649 	struct fw_info fw;
4650 
4651 	DBENTER(BCE_VERBOSE_RESET);
4652 
4653 	cpu_reg.mode = BCE_COM_CPU_MODE;
4654 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4655 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4656 	cpu_reg.state = BCE_COM_CPU_STATE;
4657 	cpu_reg.state_value_clear = 0xffffff;
4658 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4659 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4660 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4661 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4662 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4663 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4664 	cpu_reg.mips_view_base = 0x8000000;
4665 
4666 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4667 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4668 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4669 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4670 		fw.start_addr = bce_COM_b09FwStartAddr;
4671 
4672 		fw.text_addr = bce_COM_b09FwTextAddr;
4673 		fw.text_len = bce_COM_b09FwTextLen;
4674 		fw.text_index = 0;
4675 		fw.text = bce_COM_b09FwText;
4676 
4677 		fw.data_addr = bce_COM_b09FwDataAddr;
4678 		fw.data_len = bce_COM_b09FwDataLen;
4679 		fw.data_index = 0;
4680 		fw.data = bce_COM_b09FwData;
4681 
4682 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4683 		fw.sbss_len = bce_COM_b09FwSbssLen;
4684 		fw.sbss_index = 0;
4685 		fw.sbss = bce_COM_b09FwSbss;
4686 
4687 		fw.bss_addr = bce_COM_b09FwBssAddr;
4688 		fw.bss_len = bce_COM_b09FwBssLen;
4689 		fw.bss_index = 0;
4690 		fw.bss = bce_COM_b09FwBss;
4691 
4692 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4693 		fw.rodata_len = bce_COM_b09FwRodataLen;
4694 		fw.rodata_index = 0;
4695 		fw.rodata = bce_COM_b09FwRodata;
4696 	} else {
4697 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4698 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4699 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4700 		fw.start_addr = bce_COM_b06FwStartAddr;
4701 
4702 		fw.text_addr = bce_COM_b06FwTextAddr;
4703 		fw.text_len = bce_COM_b06FwTextLen;
4704 		fw.text_index = 0;
4705 		fw.text = bce_COM_b06FwText;
4706 
4707 		fw.data_addr = bce_COM_b06FwDataAddr;
4708 		fw.data_len = bce_COM_b06FwDataLen;
4709 		fw.data_index = 0;
4710 		fw.data = bce_COM_b06FwData;
4711 
4712 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4713 		fw.sbss_len = bce_COM_b06FwSbssLen;
4714 		fw.sbss_index = 0;
4715 		fw.sbss = bce_COM_b06FwSbss;
4716 
4717 		fw.bss_addr = bce_COM_b06FwBssAddr;
4718 		fw.bss_len = bce_COM_b06FwBssLen;
4719 		fw.bss_index = 0;
4720 		fw.bss = bce_COM_b06FwBss;
4721 
4722 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4723 		fw.rodata_len = bce_COM_b06FwRodataLen;
4724 		fw.rodata_index = 0;
4725 		fw.rodata = bce_COM_b06FwRodata;
4726 	}
4727 
4728 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4729 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4730 	bce_start_cpu(sc, &cpu_reg);
4731 
4732 	DBEXIT(BCE_VERBOSE_RESET);
4733 }
4734 
4735 
4736 /****************************************************************************/
4737 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4738 /*                                                                          */
4739 /* Loads the firmware for each CPU and starts the CPU.                      */
4740 /*                                                                          */
4741 /* Returns:                                                                 */
4742 /*   Nothing.                                                               */
4743 /****************************************************************************/
4744 static void
4745 bce_init_cpus(struct bce_softc *sc)
4746 {
4747 	DBENTER(BCE_VERBOSE_RESET);
4748 
4749 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4750 
4751 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4752 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4753 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4754 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4755 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4756 		} else {
4757 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4758 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4759 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4760 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4761 		}
4762 
4763 	} else {
4764 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4765 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4766 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4767 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4768 	}
4769 
4770 	bce_init_rxp_cpu(sc);
4771 	bce_init_txp_cpu(sc);
4772 	bce_init_tpat_cpu(sc);
4773 	bce_init_com_cpu(sc);
4774 	bce_init_cp_cpu(sc);
4775 
4776 	DBEXIT(BCE_VERBOSE_RESET);
4777 }
4778 
4779 
4780 /****************************************************************************/
4781 /* Initialize context memory.                                               */
4782 /*                                                                          */
4783 /* Clears the memory associated with each Context ID (CID).                 */
4784 /*                                                                          */
4785 /* Returns:                                                                 */
4786 /*   Nothing.                                                               */
4787 /****************************************************************************/
4788 static int
4789 bce_init_ctx(struct bce_softc *sc)
4790 {
4791 	u32 offset, val, vcid_addr;
4792 	int i, j, rc, retry_cnt;
4793 
4794 	rc = 0;
4795 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4796 
4797 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4798 		retry_cnt = CTX_INIT_RETRY_COUNT;
4799 
4800 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4801 
4802 		/*
4803 		 * BCM5709 context memory may be cached
4804 		 * in host memory so prepare the host memory
4805 		 * for access.
4806 		 */
4807 		val = BCE_CTX_COMMAND_ENABLED |
4808 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4809 		val |= (BCM_PAGE_BITS - 8) << 16;
4810 		REG_WR(sc, BCE_CTX_COMMAND, val);
4811 
4812 		/* Wait for mem init command to complete. */
4813 		for (i = 0; i < retry_cnt; i++) {
4814 			val = REG_RD(sc, BCE_CTX_COMMAND);
4815 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4816 				break;
4817 			DELAY(2);
4818 		}
4819 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4820 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4821 			    __FUNCTION__);
4822 			rc = EBUSY;
4823 			goto init_ctx_fail;
4824 		}
4825 
4826 		for (i = 0; i < sc->ctx_pages; i++) {
4827 			/* Set the physical address of the context memory. */
4828 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4829 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4830 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4831 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4832 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4833 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4834 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4835 
4836 			/* Verify the context memory write was successful. */
4837 			for (j = 0; j < retry_cnt; j++) {
4838 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4839 				if ((val &
4840 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4841 					break;
4842 				DELAY(5);
4843 			}
4844 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4845 				BCE_PRINTF("%s(): Failed to initialize "
4846 				    "context page %d!\n", __FUNCTION__, i);
4847 				rc = EBUSY;
4848 				goto init_ctx_fail;
4849 			}
4850 		}
4851 	} else {
4852 
4853 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4854 
4855 		/*
4856 		 * For the 5706/5708, context memory is local to
4857 		 * the controller, so initialize the controller
4858 		 * context memory.
4859 		 */
4860 
4861 		vcid_addr = GET_CID_ADDR(96);
4862 		while (vcid_addr) {
4863 
4864 			vcid_addr -= PHY_CTX_SIZE;
4865 
4866 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4867 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4868 
4869 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4870 				CTX_WR(sc, 0x00, offset, 0);
4871 			}
4872 
4873 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4874 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4875 		}
4876 
4877 	}
4878 init_ctx_fail:
4879 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4880 	return (rc);
4881 }
4882 
4883 
4884 /****************************************************************************/
4885 /* Fetch the permanent MAC address of the controller.                       */
4886 /*                                                                          */
4887 /* Returns:                                                                 */
4888 /*   Nothing.                                                               */
4889 /****************************************************************************/
4890 static void
4891 bce_get_mac_addr(struct bce_softc *sc)
4892 {
4893 	u32 mac_lo = 0, mac_hi = 0;
4894 
4895 	DBENTER(BCE_VERBOSE_RESET);
4896 
4897 	/*
4898 	 * The NetXtreme II bootcode populates various NIC
4899 	 * power-on and runtime configuration items in a
4900 	 * shared memory area.  The factory configured MAC
4901 	 * address is available from both NVRAM and the
4902 	 * shared memory area so we'll read the value from
4903 	 * shared memory for speed.
4904 	 */
4905 
4906 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4907 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4908 
4909 	if ((mac_lo == 0) && (mac_hi == 0)) {
4910 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4911 		    __FILE__, __LINE__);
4912 	} else {
4913 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4914 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4915 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4916 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4917 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4918 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4919 	}
4920 
4921 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4922 	    "address = %6D\n", sc->eaddr, ":");
4923 	DBEXIT(BCE_VERBOSE_RESET);
4924 }
4925 
4926 
4927 /****************************************************************************/
4928 /* Program the MAC address.                                                 */
4929 /*                                                                          */
4930 /* Returns:                                                                 */
4931 /*   Nothing.                                                               */
4932 /****************************************************************************/
4933 static void
4934 bce_set_mac_addr(struct bce_softc *sc)
4935 {
4936 	u32 val;
4937 	u8 *mac_addr = sc->eaddr;
4938 
4939 	/* ToDo: Add support for setting multiple MAC addresses. */
4940 
4941 	DBENTER(BCE_VERBOSE_RESET);
4942 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4943 	    "%6D\n", sc->eaddr, ":");
4944 
4945 	val = (mac_addr[0] << 8) | mac_addr[1];
4946 
4947 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4948 
4949 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4950 	    (mac_addr[4] << 8) | mac_addr[5];
4951 
4952 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4953 
4954 	DBEXIT(BCE_VERBOSE_RESET);
4955 }
4956 
4957 
4958 /****************************************************************************/
4959 /* Stop the controller.                                                     */
4960 /*                                                                          */
4961 /* Returns:                                                                 */
4962 /*   Nothing.                                                               */
4963 /****************************************************************************/
4964 static void
4965 bce_stop(struct bce_softc *sc)
4966 {
4967 	struct ifnet *ifp;
4968 
4969 	DBENTER(BCE_VERBOSE_RESET);
4970 
4971 	BCE_LOCK_ASSERT(sc);
4972 
4973 	ifp = sc->bce_ifp;
4974 
4975 	callout_stop(&sc->bce_tick_callout);
4976 
4977 	/* Disable the transmit/receive blocks. */
4978 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4979 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4980 	DELAY(20);
4981 
4982 	bce_disable_intr(sc);
4983 
4984 	/* Free RX buffers. */
4985 	if (bce_hdr_split == TRUE) {
4986 		bce_free_pg_chain(sc);
4987 	}
4988 	bce_free_rx_chain(sc);
4989 
4990 	/* Free TX buffers. */
4991 	bce_free_tx_chain(sc);
4992 
4993 	sc->watchdog_timer = 0;
4994 
4995 	sc->bce_link_up = FALSE;
4996 
4997 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4998 
4999 	DBEXIT(BCE_VERBOSE_RESET);
5000 }
5001 
5002 
5003 static int
5004 bce_reset(struct bce_softc *sc, u32 reset_code)
5005 {
5006 	u32 emac_mode_save, val;
5007 	int i, rc = 0;
5008 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
5009 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
5010 
5011 	DBENTER(BCE_VERBOSE_RESET);
5012 
5013 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
5014 	    __FUNCTION__, reset_code);
5015 
5016 	/*
5017 	 * If ASF/IPMI is operational, then the EMAC Mode register already
5018 	 * contains appropriate values for the link settings that have
5019 	 * been auto-negotiated.  Resetting the chip will clobber those
5020 	 * values.  Save the important bits so we can restore them after
5021 	 * the reset.
5022 	 */
5023 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
5024 
5025 	/* Wait for pending PCI transactions to complete. */
5026 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
5027 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
5028 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
5029 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
5030 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
5031 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
5032 	DELAY(5);
5033 
5034 	/* Disable DMA */
5035 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5036 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5037 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5038 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5039 	}
5040 
5041 	/* Assume bootcode is running. */
5042 	sc->bce_fw_timed_out = FALSE;
5043 	sc->bce_drv_cardiac_arrest = FALSE;
5044 
5045 	/* Give the firmware a chance to prepare for the reset. */
5046 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
5047 	if (rc)
5048 		goto bce_reset_exit;
5049 
5050 	/* Set a firmware reminder that this is a soft reset. */
5051 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5052 
5053 	/* Dummy read to force the chip to complete all current transactions. */
5054 	val = REG_RD(sc, BCE_MISC_ID);
5055 
5056 	/* Chip reset. */
5057 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5058 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5059 		REG_RD(sc, BCE_MISC_COMMAND);
5060 		DELAY(5);
5061 
5062 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5063 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5064 
5065 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5066 	} else {
5067 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5068 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5069 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5070 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5071 
5072 		/* Allow up to 30us for reset to complete. */
5073 		for (i = 0; i < 10; i++) {
5074 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5075 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5076 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5077 				break;
5078 			}
5079 			DELAY(10);
5080 		}
5081 
5082 		/* Check that reset completed successfully. */
5083 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5084 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5085 			BCE_PRINTF("%s(%d): Reset failed!\n",
5086 			    __FILE__, __LINE__);
5087 			rc = EBUSY;
5088 			goto bce_reset_exit;
5089 		}
5090 	}
5091 
5092 	/* Make sure byte swapping is properly configured. */
5093 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5094 	if (val != 0x01020304) {
5095 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5096 		    __FILE__, __LINE__);
5097 		rc = ENODEV;
5098 		goto bce_reset_exit;
5099 	}
5100 
5101 	/* Just completed a reset, assume that firmware is running again. */
5102 	sc->bce_fw_timed_out = FALSE;
5103 	sc->bce_drv_cardiac_arrest = FALSE;
5104 
5105 	/* Wait for the firmware to finish its initialization. */
5106 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5107 	if (rc)
5108 		BCE_PRINTF("%s(%d): Firmware did not complete "
5109 		    "initialization!\n", __FILE__, __LINE__);
5110 	/* Get firmware capabilities. */
5111 	bce_fw_cap_init(sc);
5112 
5113 bce_reset_exit:
5114 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5115 	if (reset_code == BCE_DRV_MSG_CODE_RESET) {
5116 		val = REG_RD(sc, BCE_EMAC_MODE);
5117 		val = (val & ~emac_mode_mask) | emac_mode_save;
5118 		REG_WR(sc, BCE_EMAC_MODE, val);
5119 	}
5120 
5121 	DBEXIT(BCE_VERBOSE_RESET);
5122 	return (rc);
5123 }
5124 
5125 
5126 static int
5127 bce_chipinit(struct bce_softc *sc)
5128 {
5129 	u32 val;
5130 	int rc = 0;
5131 
5132 	DBENTER(BCE_VERBOSE_RESET);
5133 
5134 	bce_disable_intr(sc);
5135 
5136 	/*
5137 	 * Initialize DMA byte/word swapping, configure the number of DMA
5138 	 * channels and PCI clock compensation delay.
5139 	 */
5140 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5141 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5142 #if BYTE_ORDER == BIG_ENDIAN
5143 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5144 #endif
5145 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5146 	    DMA_READ_CHANS << 12 |
5147 	    DMA_WRITE_CHANS << 16;
5148 
5149 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5150 
5151 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5152 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5153 
5154 	/*
5155 	 * This setting resolves a problem observed on certain Intel PCI
5156 	 * chipsets that cannot handle multiple outstanding DMA operations.
5157 	 * See errata E9_5706A1_65.
5158 	 */
5159 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5160 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5161 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5162 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5163 
5164 	REG_WR(sc, BCE_DMA_CONFIG, val);
5165 
5166 	/* Enable the RX_V2P and Context state machines before access. */
5167 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5168 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5169 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5170 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5171 
5172 	/* Initialize context mapping and zero out the quick contexts. */
5173 	if ((rc = bce_init_ctx(sc)) != 0)
5174 		goto bce_chipinit_exit;
5175 
5176 	/* Initialize the on-boards CPUs */
5177 	bce_init_cpus(sc);
5178 
5179 	/* Enable management frames (NC-SI) to flow to the MCP. */
5180 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5181 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5182 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5183 	}
5184 
5185 	/* Prepare NVRAM for access. */
5186 	if ((rc = bce_init_nvram(sc)) != 0)
5187 		goto bce_chipinit_exit;
5188 
5189 	/* Set the kernel bypass block size */
5190 	val = REG_RD(sc, BCE_MQ_CONFIG);
5191 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5192 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5193 
5194 	/* Enable bins used on the 5709. */
5195 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5196 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5197 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5198 			val |= BCE_MQ_CONFIG_HALT_DIS;
5199 	}
5200 
5201 	REG_WR(sc, BCE_MQ_CONFIG, val);
5202 
5203 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5204 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5205 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5206 
5207 	/* Set the page size and clear the RV2P processor stall bits. */
5208 	val = (BCM_PAGE_BITS - 8) << 24;
5209 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5210 
5211 	/* Configure page size. */
5212 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5213 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5214 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5215 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5216 
5217 	/* Set the perfect match control register to default. */
5218 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5219 
5220 bce_chipinit_exit:
5221 	DBEXIT(BCE_VERBOSE_RESET);
5222 
5223 	return(rc);
5224 }
5225 
5226 
5227 /****************************************************************************/
5228 /* Initialize the controller in preparation to send/receive traffic.        */
5229 /*                                                                          */
5230 /* Returns:                                                                 */
5231 /*   0 for success, positive value for failure.                             */
5232 /****************************************************************************/
5233 static int
5234 bce_blockinit(struct bce_softc *sc)
5235 {
5236 	u32 reg, val;
5237 	int rc = 0;
5238 
5239 	DBENTER(BCE_VERBOSE_RESET);
5240 
5241 	/* Load the hardware default MAC address. */
5242 	bce_set_mac_addr(sc);
5243 
5244 	/* Set the Ethernet backoff seed value */
5245 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5246 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5247 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5248 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5249 
5250 	sc->last_status_idx = 0;
5251 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5252 
5253 	/* Set up link change interrupt generation. */
5254 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5255 
5256 	/* Program the physical address of the status block. */
5257 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5258 	    BCE_ADDR_LO(sc->status_block_paddr));
5259 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5260 	    BCE_ADDR_HI(sc->status_block_paddr));
5261 
5262 	/* Program the physical address of the statistics block. */
5263 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5264 	    BCE_ADDR_LO(sc->stats_block_paddr));
5265 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5266 	    BCE_ADDR_HI(sc->stats_block_paddr));
5267 
5268 	/*
5269 	 * Program various host coalescing parameters.
5270 	 * Trip points control how many BDs should be ready before generating
5271 	 * an interrupt while ticks control how long a BD can sit in the chain
5272 	 * before generating an interrupt.
5273 	 */
5274 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5275 	    (sc->bce_tx_quick_cons_trip_int << 16) |
5276 	    sc->bce_tx_quick_cons_trip);
5277 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5278 	    (sc->bce_rx_quick_cons_trip_int << 16) |
5279 	    sc->bce_rx_quick_cons_trip);
5280 	REG_WR(sc, BCE_HC_TX_TICKS,
5281 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5282 	REG_WR(sc, BCE_HC_RX_TICKS,
5283 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5284 	REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5285 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5286 	/* Not used for L2. */
5287 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5288 	REG_WR(sc, BCE_HC_COM_TICKS, 0);
5289 	REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5290 
5291 	/* Configure the Host Coalescing block. */
5292 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5293 	    BCE_HC_CONFIG_COLLECT_STATS;
5294 
5295 #if 0
5296 	/* ToDo: Add MSI-X support. */
5297 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5298 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5299 		    BCE_HC_SB_CONFIG_1;
5300 
5301 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5302 
5303 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5304 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5305 
5306 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5307 		    (sc->tx_quick_cons_trip_int << 16) |
5308 		     sc->tx_quick_cons_trip);
5309 
5310 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5311 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5312 
5313 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5314 	}
5315 
5316 	/*
5317 	 * Tell the HC block to automatically set the
5318 	 * INT_MASK bit after an MSI/MSI-X interrupt
5319 	 * is generated so the driver doesn't have to.
5320 	 */
5321 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5322 		val |= BCE_HC_CONFIG_ONE_SHOT;
5323 
5324 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5325 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5326 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5327 #endif
5328 
5329 	REG_WR(sc, BCE_HC_CONFIG, val);
5330 
5331 	/* Clear the internal statistics counters. */
5332 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5333 
5334 	/* Verify that bootcode is running. */
5335 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5336 
5337 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5338 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5339 	    __FILE__, __LINE__);
5340 	    reg = 0);
5341 
5342 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5343 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5344 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5345 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5346 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5347 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5348 		rc = ENODEV;
5349 		goto bce_blockinit_exit;
5350 	}
5351 
5352 	/* Enable DMA */
5353 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5354 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5355 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5356 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5357 	}
5358 
5359 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5360 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5361 	    BCE_DRV_MSG_CODE_RESET);
5362 
5363 	/* Enable link state change interrupt generation. */
5364 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5365 
5366 	/* Enable the RXP. */
5367 	bce_start_rxp_cpu(sc);
5368 
5369 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5370 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5371 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5372 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5373 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5374 	}
5375 
5376 	/* Enable all remaining blocks in the MAC. */
5377 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5378 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5379 		    BCE_MISC_ENABLE_DEFAULT_XI);
5380 	else
5381 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5382 		    BCE_MISC_ENABLE_DEFAULT);
5383 
5384 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5385 	DELAY(20);
5386 
5387 	/* Save the current host coalescing block settings. */
5388 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5389 
5390 bce_blockinit_exit:
5391 	DBEXIT(BCE_VERBOSE_RESET);
5392 
5393 	return (rc);
5394 }
5395 
5396 
5397 /****************************************************************************/
5398 /* Encapsulate an mbuf into the rx_bd chain.                                */
5399 /*                                                                          */
5400 /* Returns:                                                                 */
5401 /*   0 for success, positive value for failure.                             */
5402 /****************************************************************************/
5403 static int
5404 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5405 {
5406 	bus_dma_segment_t segs[1];
5407 	struct mbuf *m_new = NULL;
5408 	struct rx_bd *rxbd;
5409 	int nsegs, error, rc = 0;
5410 #ifdef BCE_DEBUG
5411 	u16 debug_chain_prod = chain_prod;
5412 #endif
5413 
5414 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5415 
5416 	/* Make sure the inputs are valid. */
5417 	DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5418 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5419 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5420 	    chain_prod, (u16)MAX_RX_BD_ALLOC));
5421 
5422 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5423 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5424 	    prod, chain_prod, *prod_bseq);
5425 
5426 	/* Update some debug statistic counters */
5427 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5428 	    sc->rx_low_watermark = sc->free_rx_bd);
5429 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5430 	    sc->rx_empty_count++);
5431 
5432 	/* Simulate an mbuf allocation failure. */
5433 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5434 	    sc->mbuf_alloc_failed_count++;
5435 	    sc->mbuf_alloc_failed_sim_count++;
5436 	    rc = ENOBUFS;
5437 	    goto bce_get_rx_buf_exit);
5438 
5439 	/* This is a new mbuf allocation. */
5440 	if (bce_hdr_split == TRUE)
5441 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
5442 	else
5443 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5444 		    sc->rx_bd_mbuf_alloc_size);
5445 
5446 	if (m_new == NULL) {
5447 		sc->mbuf_alloc_failed_count++;
5448 		rc = ENOBUFS;
5449 		goto bce_get_rx_buf_exit;
5450 	}
5451 
5452 	DBRUN(sc->debug_rx_mbuf_alloc++);
5453 
5454 	/* Make sure we have a valid packet header. */
5455 	M_ASSERTPKTHDR(m_new);
5456 
5457 	/* Initialize the mbuf size and pad if necessary for alignment. */
5458 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5459 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5460 
5461 	/* ToDo: Consider calling m_fragment() to test error handling. */
5462 
5463 	/* Map the mbuf cluster into device memory. */
5464 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5465 	    sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5466 
5467 	/* Handle any mapping errors. */
5468 	if (error) {
5469 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5470 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5471 
5472 		sc->dma_map_addr_rx_failed_count++;
5473 		m_freem(m_new);
5474 
5475 		DBRUN(sc->debug_rx_mbuf_alloc--);
5476 
5477 		rc = ENOBUFS;
5478 		goto bce_get_rx_buf_exit;
5479 	}
5480 
5481 	/* All mbufs must map to a single segment. */
5482 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5483 	    __FUNCTION__, nsegs));
5484 
5485 	/* Setup the rx_bd for the segment. */
5486 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5487 
5488 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5489 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5490 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5491 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5492 	*prod_bseq += segs[0].ds_len;
5493 
5494 	/* Save the mbuf and update our counter. */
5495 	sc->rx_mbuf_ptr[chain_prod] = m_new;
5496 	sc->free_rx_bd -= nsegs;
5497 
5498 	DBRUNMSG(BCE_INSANE_RECV,
5499 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5500 
5501 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5502 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5503 	    chain_prod, *prod_bseq);
5504 
5505 bce_get_rx_buf_exit:
5506 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5507 
5508 	return(rc);
5509 }
5510 
5511 
5512 /****************************************************************************/
5513 /* Encapsulate an mbuf cluster into the page chain.                         */
5514 /*                                                                          */
5515 /* Returns:                                                                 */
5516 /*   0 for success, positive value for failure.                             */
5517 /****************************************************************************/
5518 static int
5519 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5520 {
5521 	bus_dma_segment_t segs[1];
5522 	struct mbuf *m_new = NULL;
5523 	struct rx_bd *pgbd;
5524 	int error, nsegs, rc = 0;
5525 #ifdef BCE_DEBUG
5526 	u16 debug_prod_idx = prod_idx;
5527 #endif
5528 
5529 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5530 
5531 	/* Make sure the inputs are valid. */
5532 	DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5533 	    BCE_PRINTF("%s(%d): page producer out of range: "
5534 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5535 	    prod_idx, (u16)MAX_PG_BD_ALLOC));
5536 
5537 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5538 	    "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5539 
5540 	/* Update counters if we've hit a new low or run out of pages. */
5541 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5542 	    sc->pg_low_watermark = sc->free_pg_bd);
5543 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5544 
5545 	/* Simulate an mbuf allocation failure. */
5546 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5547 	    sc->mbuf_alloc_failed_count++;
5548 	    sc->mbuf_alloc_failed_sim_count++;
5549 	    rc = ENOBUFS;
5550 	    goto bce_get_pg_buf_exit);
5551 
5552 	/* This is a new mbuf allocation. */
5553 	m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5554 	if (m_new == NULL) {
5555 		sc->mbuf_alloc_failed_count++;
5556 		rc = ENOBUFS;
5557 		goto bce_get_pg_buf_exit;
5558 	}
5559 
5560 	DBRUN(sc->debug_pg_mbuf_alloc++);
5561 
5562 	m_new->m_len = MCLBYTES;
5563 
5564 	/* ToDo: Consider calling m_fragment() to test error handling. */
5565 
5566 	/* Map the mbuf cluster into device memory. */
5567 	error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5568 	    sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5569 
5570 	/* Handle any mapping errors. */
5571 	if (error) {
5572 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5573 		    __FILE__, __LINE__);
5574 
5575 		m_freem(m_new);
5576 		DBRUN(sc->debug_pg_mbuf_alloc--);
5577 
5578 		rc = ENOBUFS;
5579 		goto bce_get_pg_buf_exit;
5580 	}
5581 
5582 	/* All mbufs must map to a single segment. */
5583 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5584 	    __FUNCTION__, nsegs));
5585 
5586 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5587 
5588 	/*
5589 	 * The page chain uses the same rx_bd data structure
5590 	 * as the receive chain but doesn't require a byte sequence (bseq).
5591 	 */
5592 	pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5593 
5594 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5595 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5596 	pgbd->rx_bd_len       = htole32(MCLBYTES);
5597 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5598 
5599 	/* Save the mbuf and update our counter. */
5600 	sc->pg_mbuf_ptr[prod_idx] = m_new;
5601 	sc->free_pg_bd--;
5602 
5603 	DBRUNMSG(BCE_INSANE_RECV,
5604 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5605 
5606 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5607 	    "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5608 
5609 bce_get_pg_buf_exit:
5610 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5611 
5612 	return(rc);
5613 }
5614 
5615 
5616 /****************************************************************************/
5617 /* Initialize the TX context memory.                                        */
5618 /*                                                                          */
5619 /* Returns:                                                                 */
5620 /*   Nothing                                                                */
5621 /****************************************************************************/
5622 static void
5623 bce_init_tx_context(struct bce_softc *sc)
5624 {
5625 	u32 val;
5626 
5627 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5628 
5629 	/* Initialize the context ID for an L2 TX chain. */
5630 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5631 		/* Set the CID type to support an L2 connection. */
5632 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5633 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5634 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5635 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5636 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5637 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5638 
5639 		/* Point the hardware to the first page in the chain. */
5640 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5641 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5642 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5643 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5644 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5645 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5646 	} else {
5647 		/* Set the CID type to support an L2 connection. */
5648 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5649 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5650 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5651 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5652 
5653 		/* Point the hardware to the first page in the chain. */
5654 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5655 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5656 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5657 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5658 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5659 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5660 	}
5661 
5662 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5663 }
5664 
5665 
5666 /****************************************************************************/
5667 /* Allocate memory and initialize the TX data structures.                   */
5668 /*                                                                          */
5669 /* Returns:                                                                 */
5670 /*   0 for success, positive value for failure.                             */
5671 /****************************************************************************/
5672 static int
5673 bce_init_tx_chain(struct bce_softc *sc)
5674 {
5675 	struct tx_bd *txbd;
5676 	int i, rc = 0;
5677 
5678 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5679 
5680 	/* Set the initial TX producer/consumer indices. */
5681 	sc->tx_prod        = 0;
5682 	sc->tx_cons        = 0;
5683 	sc->tx_prod_bseq   = 0;
5684 	sc->used_tx_bd     = 0;
5685 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5686 	DBRUN(sc->tx_hi_watermark = 0);
5687 	DBRUN(sc->tx_full_count = 0);
5688 
5689 	/*
5690 	 * The NetXtreme II supports a linked-list structre called
5691 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5692 	 * consists of a series of 1 or more chain pages, each of which
5693 	 * consists of a fixed number of BD entries.
5694 	 * The last BD entry on each page is a pointer to the next page
5695 	 * in the chain, and the last pointer in the BD chain
5696 	 * points back to the beginning of the chain.
5697 	 */
5698 
5699 	/* Set the TX next pointer chain entries. */
5700 	for (i = 0; i < sc->tx_pages; i++) {
5701 		int j;
5702 
5703 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5704 
5705 		/* Check if we've reached the last page. */
5706 		if (i == (sc->tx_pages - 1))
5707 			j = 0;
5708 		else
5709 			j = i + 1;
5710 
5711 		txbd->tx_bd_haddr_hi =
5712 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5713 		txbd->tx_bd_haddr_lo =
5714 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5715 	}
5716 
5717 	bce_init_tx_context(sc);
5718 
5719 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5720 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5721 
5722 	return(rc);
5723 }
5724 
5725 
5726 /****************************************************************************/
5727 /* Free memory and clear the TX data structures.                            */
5728 /*                                                                          */
5729 /* Returns:                                                                 */
5730 /*   Nothing.                                                               */
5731 /****************************************************************************/
5732 static void
5733 bce_free_tx_chain(struct bce_softc *sc)
5734 {
5735 	int i;
5736 
5737 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5738 
5739 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5740 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5741 		if (sc->tx_mbuf_ptr[i] != NULL) {
5742 			if (sc->tx_mbuf_map[i] != NULL)
5743 				bus_dmamap_sync(sc->tx_mbuf_tag,
5744 				    sc->tx_mbuf_map[i],
5745 				    BUS_DMASYNC_POSTWRITE);
5746 			m_freem(sc->tx_mbuf_ptr[i]);
5747 			sc->tx_mbuf_ptr[i] = NULL;
5748 			DBRUN(sc->debug_tx_mbuf_alloc--);
5749 		}
5750 	}
5751 
5752 	/* Clear each TX chain page. */
5753 	for (i = 0; i < sc->tx_pages; i++)
5754 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5755 
5756 	sc->used_tx_bd = 0;
5757 
5758 	/* Check if we lost any mbufs in the process. */
5759 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5760 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5761 	    "from tx chain!\n",	__FILE__, __LINE__,
5762 	    sc->debug_tx_mbuf_alloc));
5763 
5764 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5765 }
5766 
5767 
5768 /****************************************************************************/
5769 /* Initialize the RX context memory.                                        */
5770 /*                                                                          */
5771 /* Returns:                                                                 */
5772 /*   Nothing                                                                */
5773 /****************************************************************************/
5774 static void
5775 bce_init_rx_context(struct bce_softc *sc)
5776 {
5777 	u32 val;
5778 
5779 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5780 
5781 	/* Init the type, size, and BD cache levels for the RX context. */
5782 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5783 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5784 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5785 
5786 	/*
5787 	 * Set the level for generating pause frames
5788 	 * when the number of available rx_bd's gets
5789 	 * too low (the low watermark) and the level
5790 	 * when pause frames can be stopped (the high
5791 	 * watermark).
5792 	 */
5793 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5794 		u32 lo_water, hi_water;
5795 
5796 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5797 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5798 		} else {
5799 			lo_water = 0;
5800 		}
5801 
5802 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5803 			lo_water = 0;
5804 		}
5805 
5806 		hi_water = USABLE_RX_BD_ALLOC / 4;
5807 
5808 		if (hi_water <= lo_water) {
5809 			lo_water = 0;
5810 		}
5811 
5812 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5813 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5814 
5815 		if (hi_water > 0xf)
5816 			hi_water = 0xf;
5817 		else if (hi_water == 0)
5818 			lo_water = 0;
5819 
5820 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5821 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5822 	}
5823 
5824 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5825 
5826 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5827 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5828 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5829 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5830 	}
5831 
5832 	/* Point the hardware to the first page in the chain. */
5833 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5834 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5835 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5836 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5837 
5838 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5839 }
5840 
5841 
5842 /****************************************************************************/
5843 /* Allocate memory and initialize the RX data structures.                   */
5844 /*                                                                          */
5845 /* Returns:                                                                 */
5846 /*   0 for success, positive value for failure.                             */
5847 /****************************************************************************/
5848 static int
5849 bce_init_rx_chain(struct bce_softc *sc)
5850 {
5851 	struct rx_bd *rxbd;
5852 	int i, rc = 0;
5853 
5854 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5855 	    BCE_VERBOSE_CTX);
5856 
5857 	/* Initialize the RX producer and consumer indices. */
5858 	sc->rx_prod        = 0;
5859 	sc->rx_cons        = 0;
5860 	sc->rx_prod_bseq   = 0;
5861 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5862 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5863 
5864 	/* Initialize the RX next pointer chain entries. */
5865 	for (i = 0; i < sc->rx_pages; i++) {
5866 		int j;
5867 
5868 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5869 
5870 		/* Check if we've reached the last page. */
5871 		if (i == (sc->rx_pages - 1))
5872 			j = 0;
5873 		else
5874 			j = i + 1;
5875 
5876 		/* Setup the chain page pointers. */
5877 		rxbd->rx_bd_haddr_hi =
5878 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5879 		rxbd->rx_bd_haddr_lo =
5880 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5881 	}
5882 
5883 	/* Fill up the RX chain. */
5884 	bce_fill_rx_chain(sc);
5885 
5886 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5887 	DBRUN(sc->rx_empty_count = 0);
5888 	for (i = 0; i < sc->rx_pages; i++) {
5889 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5890 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5891 	}
5892 
5893 	bce_init_rx_context(sc);
5894 
5895 	DBRUNMSG(BCE_EXTREME_RECV,
5896 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5897 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5898 	    BCE_VERBOSE_CTX);
5899 
5900 	/* ToDo: Are there possible failure modes here? */
5901 
5902 	return(rc);
5903 }
5904 
5905 
5906 /****************************************************************************/
5907 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5908 /* occurs.                                                                  */
5909 /*                                                                          */
5910 /* Returns:                                                                 */
5911 /*   Nothing                                                                */
5912 /****************************************************************************/
5913 static void
5914 bce_fill_rx_chain(struct bce_softc *sc)
5915 {
5916 	u16 prod, prod_idx;
5917 	u32 prod_bseq;
5918 
5919 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5920 	    BCE_VERBOSE_CTX);
5921 
5922 	/* Get the RX chain producer indices. */
5923 	prod      = sc->rx_prod;
5924 	prod_bseq = sc->rx_prod_bseq;
5925 
5926 	/* Keep filling the RX chain until it's full. */
5927 	while (sc->free_rx_bd > 0) {
5928 		prod_idx = RX_CHAIN_IDX(prod);
5929 		if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5930 			/* Bail out if we can't add an mbuf to the chain. */
5931 			break;
5932 		}
5933 		prod = NEXT_RX_BD(prod);
5934 	}
5935 
5936 	/* Save the RX chain producer indices. */
5937 	sc->rx_prod      = prod;
5938 	sc->rx_prod_bseq = prod_bseq;
5939 
5940 	/* We should never end up pointing to a next page pointer. */
5941 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5942 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5943 	    __FUNCTION__, rx_prod));
5944 
5945 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5946 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5947 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5948 
5949 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5950 	    BCE_VERBOSE_CTX);
5951 }
5952 
5953 
5954 /****************************************************************************/
5955 /* Free memory and clear the RX data structures.                            */
5956 /*                                                                          */
5957 /* Returns:                                                                 */
5958 /*   Nothing.                                                               */
5959 /****************************************************************************/
5960 static void
5961 bce_free_rx_chain(struct bce_softc *sc)
5962 {
5963 	int i;
5964 
5965 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5966 
5967 	/* Free any mbufs still in the RX mbuf chain. */
5968 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5969 		if (sc->rx_mbuf_ptr[i] != NULL) {
5970 			if (sc->rx_mbuf_map[i] != NULL)
5971 				bus_dmamap_sync(sc->rx_mbuf_tag,
5972 				    sc->rx_mbuf_map[i],
5973 				    BUS_DMASYNC_POSTREAD);
5974 			m_freem(sc->rx_mbuf_ptr[i]);
5975 			sc->rx_mbuf_ptr[i] = NULL;
5976 			DBRUN(sc->debug_rx_mbuf_alloc--);
5977 		}
5978 	}
5979 
5980 	/* Clear each RX chain page. */
5981 	for (i = 0; i < sc->rx_pages; i++)
5982 		if (sc->rx_bd_chain[i] != NULL)
5983 			bzero((char *)sc->rx_bd_chain[i],
5984 			    BCE_RX_CHAIN_PAGE_SZ);
5985 
5986 	sc->free_rx_bd = sc->max_rx_bd;
5987 
5988 	/* Check if we lost any mbufs in the process. */
5989 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5990 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5991 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5992 
5993 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5994 }
5995 
5996 
5997 /****************************************************************************/
5998 /* Allocate memory and initialize the page data structures.                 */
5999 /* Assumes that bce_init_rx_chain() has not already been called.            */
6000 /*                                                                          */
6001 /* Returns:                                                                 */
6002 /*   0 for success, positive value for failure.                             */
6003 /****************************************************************************/
6004 static int
6005 bce_init_pg_chain(struct bce_softc *sc)
6006 {
6007 	struct rx_bd *pgbd;
6008 	int i, rc = 0;
6009 	u32 val;
6010 
6011 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6012 		BCE_VERBOSE_CTX);
6013 
6014 	/* Initialize the page producer and consumer indices. */
6015 	sc->pg_prod        = 0;
6016 	sc->pg_cons        = 0;
6017 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
6018 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
6019 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
6020 	DBRUN(sc->pg_empty_count = 0);
6021 
6022 	/* Initialize the page next pointer chain entries. */
6023 	for (i = 0; i < sc->pg_pages; i++) {
6024 		int j;
6025 
6026 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
6027 
6028 		/* Check if we've reached the last page. */
6029 		if (i == (sc->pg_pages - 1))
6030 			j = 0;
6031 		else
6032 			j = i + 1;
6033 
6034 		/* Setup the chain page pointers. */
6035 		pgbd->rx_bd_haddr_hi =
6036 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
6037 		pgbd->rx_bd_haddr_lo =
6038 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
6039 	}
6040 
6041 	/* Setup the MQ BIN mapping for host_pg_bidx. */
6042 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
6043 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
6044 
6045 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
6046 
6047 	/* Configure the rx_bd and page chain mbuf cluster size. */
6048 	val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
6049 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6050 
6051 	/* Configure the context reserved for jumbo support. */
6052 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6053 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6054 
6055 	/* Point the hardware to the first page in the page chain. */
6056 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6057 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6058 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6059 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6060 
6061 	/* Fill up the page chain. */
6062 	bce_fill_pg_chain(sc);
6063 
6064 	for (i = 0; i < sc->pg_pages; i++) {
6065 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6066 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6067 	}
6068 
6069 	DBRUNMSG(BCE_EXTREME_RECV,
6070 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6071 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6072 		BCE_VERBOSE_CTX);
6073 	return(rc);
6074 }
6075 
6076 
6077 /****************************************************************************/
6078 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6079 /* occurs.                                                                  */
6080 /*                                                                          */
6081 /* Returns:                                                                 */
6082 /*   Nothing                                                                */
6083 /****************************************************************************/
6084 static void
6085 bce_fill_pg_chain(struct bce_softc *sc)
6086 {
6087 	u16 prod, prod_idx;
6088 
6089 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6090 	    BCE_VERBOSE_CTX);
6091 
6092 	/* Get the page chain prodcuer index. */
6093 	prod = sc->pg_prod;
6094 
6095 	/* Keep filling the page chain until it's full. */
6096 	while (sc->free_pg_bd > 0) {
6097 		prod_idx = PG_CHAIN_IDX(prod);
6098 		if (bce_get_pg_buf(sc, prod, prod_idx)) {
6099 			/* Bail out if we can't add an mbuf to the chain. */
6100 			break;
6101 		}
6102 		prod = NEXT_PG_BD(prod);
6103 	}
6104 
6105 	/* Save the page chain producer index. */
6106 	sc->pg_prod = prod;
6107 
6108 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6109 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6110 	    __FUNCTION__, pg_prod));
6111 
6112 	/*
6113 	 * Write the mailbox and tell the chip about
6114 	 * the new rx_bd's in the page chain.
6115 	 */
6116 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6117 	    prod);
6118 
6119 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6120 	    BCE_VERBOSE_CTX);
6121 }
6122 
6123 
6124 /****************************************************************************/
6125 /* Free memory and clear the RX data structures.                            */
6126 /*                                                                          */
6127 /* Returns:                                                                 */
6128 /*   Nothing.                                                               */
6129 /****************************************************************************/
6130 static void
6131 bce_free_pg_chain(struct bce_softc *sc)
6132 {
6133 	int i;
6134 
6135 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6136 
6137 	/* Free any mbufs still in the mbuf page chain. */
6138 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6139 		if (sc->pg_mbuf_ptr[i] != NULL) {
6140 			if (sc->pg_mbuf_map[i] != NULL)
6141 				bus_dmamap_sync(sc->pg_mbuf_tag,
6142 				    sc->pg_mbuf_map[i],
6143 				    BUS_DMASYNC_POSTREAD);
6144 			m_freem(sc->pg_mbuf_ptr[i]);
6145 			sc->pg_mbuf_ptr[i] = NULL;
6146 			DBRUN(sc->debug_pg_mbuf_alloc--);
6147 		}
6148 	}
6149 
6150 	/* Clear each page chain pages. */
6151 	for (i = 0; i < sc->pg_pages; i++)
6152 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6153 
6154 	sc->free_pg_bd = sc->max_pg_bd;
6155 
6156 	/* Check if we lost any mbufs in the process. */
6157 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6158 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6159 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6160 
6161 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6162 }
6163 
6164 
6165 static u32
6166 bce_get_rphy_link(struct bce_softc *sc)
6167 {
6168 	u32 advertise, link;
6169 	int fdpx;
6170 
6171 	advertise = 0;
6172 	fdpx = 0;
6173 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6174 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6175 	else
6176 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6177 	if (link & BCE_NETLINK_ANEG_ENB)
6178 		advertise |= BCE_NETLINK_ANEG_ENB;
6179 	if (link & BCE_NETLINK_SPEED_10HALF)
6180 		advertise |= BCE_NETLINK_SPEED_10HALF;
6181 	if (link & BCE_NETLINK_SPEED_10FULL) {
6182 		advertise |= BCE_NETLINK_SPEED_10FULL;
6183 		fdpx++;
6184 	}
6185 	if (link & BCE_NETLINK_SPEED_100HALF)
6186 		advertise |= BCE_NETLINK_SPEED_100HALF;
6187 	if (link & BCE_NETLINK_SPEED_100FULL) {
6188 		advertise |= BCE_NETLINK_SPEED_100FULL;
6189 		fdpx++;
6190 	}
6191 	if (link & BCE_NETLINK_SPEED_1000HALF)
6192 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6193 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6194 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6195 		fdpx++;
6196 	}
6197 	if (link & BCE_NETLINK_SPEED_2500HALF)
6198 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6199 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6200 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6201 		fdpx++;
6202 	}
6203 	if (fdpx)
6204 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6205 		    BCE_NETLINK_FC_PAUSE_ASYM;
6206 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6207 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6208 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6209 
6210 	return (advertise);
6211 }
6212 
6213 
6214 /****************************************************************************/
6215 /* Set media options.                                                       */
6216 /*                                                                          */
6217 /* Returns:                                                                 */
6218 /*   0 for success, positive value for failure.                             */
6219 /****************************************************************************/
6220 static int
6221 bce_ifmedia_upd(struct ifnet *ifp)
6222 {
6223 	struct bce_softc *sc = ifp->if_softc;
6224 	int error;
6225 
6226 	DBENTER(BCE_VERBOSE);
6227 
6228 	BCE_LOCK(sc);
6229 	error = bce_ifmedia_upd_locked(ifp);
6230 	BCE_UNLOCK(sc);
6231 
6232 	DBEXIT(BCE_VERBOSE);
6233 	return (error);
6234 }
6235 
6236 
6237 /****************************************************************************/
6238 /* Set media options.                                                       */
6239 /*                                                                          */
6240 /* Returns:                                                                 */
6241 /*   Nothing.                                                               */
6242 /****************************************************************************/
6243 static int
6244 bce_ifmedia_upd_locked(struct ifnet *ifp)
6245 {
6246 	struct bce_softc *sc = ifp->if_softc;
6247 	struct mii_data *mii;
6248 	struct mii_softc *miisc;
6249 	struct ifmedia *ifm;
6250 	u32 link;
6251 	int error, fdx;
6252 
6253 	DBENTER(BCE_VERBOSE_PHY);
6254 
6255 	error = 0;
6256 	BCE_LOCK_ASSERT(sc);
6257 
6258 	sc->bce_link_up = FALSE;
6259 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6260 		ifm = &sc->bce_ifmedia;
6261 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6262 			return (EINVAL);
6263 		link = 0;
6264 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6265 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6266 		case IFM_AUTO:
6267 			/*
6268 			 * Check advertised link of remote PHY by reading
6269 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6270 			 * Always use the same link type of remote PHY.
6271 			 */
6272 			link = bce_get_rphy_link(sc);
6273 			break;
6274 		case IFM_2500_SX:
6275 			if ((sc->bce_phy_flags &
6276 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6277 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6278 				return (EINVAL);
6279 			/*
6280 			 * XXX
6281 			 * Have to enable forced 2.5Gbps configuration.
6282 			 */
6283 			if (fdx != 0)
6284 				link |= BCE_NETLINK_SPEED_2500FULL;
6285 			else
6286 				link |= BCE_NETLINK_SPEED_2500HALF;
6287 			break;
6288 		case IFM_1000_SX:
6289 			if ((sc->bce_phy_flags &
6290 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6291 				return (EINVAL);
6292 			/*
6293 			 * XXX
6294 			 * Have to disable 2.5Gbps configuration.
6295 			 */
6296 			if (fdx != 0)
6297 				link = BCE_NETLINK_SPEED_1000FULL;
6298 			else
6299 				link = BCE_NETLINK_SPEED_1000HALF;
6300 			break;
6301 		case IFM_1000_T:
6302 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6303 				return (EINVAL);
6304 			if (fdx != 0)
6305 				link = BCE_NETLINK_SPEED_1000FULL;
6306 			else
6307 				link = BCE_NETLINK_SPEED_1000HALF;
6308 			break;
6309 		case IFM_100_TX:
6310 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6311 				return (EINVAL);
6312 			if (fdx != 0)
6313 				link = BCE_NETLINK_SPEED_100FULL;
6314 			else
6315 				link = BCE_NETLINK_SPEED_100HALF;
6316 			break;
6317 		case IFM_10_T:
6318 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6319 				return (EINVAL);
6320 			if (fdx != 0)
6321 				link = BCE_NETLINK_SPEED_10FULL;
6322 			else
6323 				link = BCE_NETLINK_SPEED_10HALF;
6324 			break;
6325 		default:
6326 			return (EINVAL);
6327 		}
6328 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6329 			/*
6330 			 * XXX
6331 			 * Advertise pause capability for full-duplex media.
6332 			 */
6333 			if (fdx != 0)
6334 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6335 				    BCE_NETLINK_FC_PAUSE_ASYM;
6336 			if ((sc->bce_phy_flags &
6337 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6338 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6339 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6340 		}
6341 
6342 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6343 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6344 	} else {
6345 		mii = device_get_softc(sc->bce_miibus);
6346 
6347 		/* Make sure the MII bus has been enumerated. */
6348 		if (mii) {
6349 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6350 				PHY_RESET(miisc);
6351 			error = mii_mediachg(mii);
6352 		}
6353 	}
6354 
6355 	DBEXIT(BCE_VERBOSE_PHY);
6356 	return (error);
6357 }
6358 
6359 
6360 static void
6361 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6362 {
6363 	struct ifnet *ifp;
6364 	u32 link;
6365 
6366 	ifp = sc->bce_ifp;
6367 	BCE_LOCK_ASSERT(sc);
6368 
6369 	ifmr->ifm_status = IFM_AVALID;
6370 	ifmr->ifm_active = IFM_ETHER;
6371 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6372 	/* XXX Handle heart beat status? */
6373 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6374 		ifmr->ifm_status |= IFM_ACTIVE;
6375 	else {
6376 		ifmr->ifm_active |= IFM_NONE;
6377 		ifp->if_baudrate = 0;
6378 		return;
6379 	}
6380 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6381 	case BCE_LINK_STATUS_10HALF:
6382 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6383 		ifp->if_baudrate = IF_Mbps(10UL);
6384 		break;
6385 	case BCE_LINK_STATUS_10FULL:
6386 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6387 		ifp->if_baudrate = IF_Mbps(10UL);
6388 		break;
6389 	case BCE_LINK_STATUS_100HALF:
6390 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6391 		ifp->if_baudrate = IF_Mbps(100UL);
6392 		break;
6393 	case BCE_LINK_STATUS_100FULL:
6394 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6395 		ifp->if_baudrate = IF_Mbps(100UL);
6396 		break;
6397 	case BCE_LINK_STATUS_1000HALF:
6398 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6399 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6400 		else
6401 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6402 		ifp->if_baudrate = IF_Mbps(1000UL);
6403 		break;
6404 	case BCE_LINK_STATUS_1000FULL:
6405 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6406 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6407 		else
6408 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6409 		ifp->if_baudrate = IF_Mbps(1000UL);
6410 		break;
6411 	case BCE_LINK_STATUS_2500HALF:
6412 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6413 			ifmr->ifm_active |= IFM_NONE;
6414 			return;
6415 		} else
6416 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6417 		ifp->if_baudrate = IF_Mbps(2500UL);
6418 		break;
6419 	case BCE_LINK_STATUS_2500FULL:
6420 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6421 			ifmr->ifm_active |= IFM_NONE;
6422 			return;
6423 		} else
6424 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6425 		ifp->if_baudrate = IF_Mbps(2500UL);
6426 		break;
6427 	default:
6428 		ifmr->ifm_active |= IFM_NONE;
6429 		return;
6430 	}
6431 
6432 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6433 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6434 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6435 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6436 }
6437 
6438 
6439 /****************************************************************************/
6440 /* Reports current media status.                                            */
6441 /*                                                                          */
6442 /* Returns:                                                                 */
6443 /*   Nothing.                                                               */
6444 /****************************************************************************/
6445 static void
6446 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6447 {
6448 	struct bce_softc *sc = ifp->if_softc;
6449 	struct mii_data *mii;
6450 
6451 	DBENTER(BCE_VERBOSE_PHY);
6452 
6453 	BCE_LOCK(sc);
6454 
6455 	if ((ifp->if_flags & IFF_UP) == 0) {
6456 		BCE_UNLOCK(sc);
6457 		return;
6458 	}
6459 
6460 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6461 		bce_ifmedia_sts_rphy(sc, ifmr);
6462 	else {
6463 		mii = device_get_softc(sc->bce_miibus);
6464 		mii_pollstat(mii);
6465 		ifmr->ifm_active = mii->mii_media_active;
6466 		ifmr->ifm_status = mii->mii_media_status;
6467 	}
6468 
6469 	BCE_UNLOCK(sc);
6470 
6471 	DBEXIT(BCE_VERBOSE_PHY);
6472 }
6473 
6474 
6475 /****************************************************************************/
6476 /* Handles PHY generated interrupt events.                                  */
6477 /*                                                                          */
6478 /* Returns:                                                                 */
6479 /*   Nothing.                                                               */
6480 /****************************************************************************/
6481 static void
6482 bce_phy_intr(struct bce_softc *sc)
6483 {
6484 	u32 new_link_state, old_link_state;
6485 
6486 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6487 
6488 	DBRUN(sc->phy_interrupts++);
6489 
6490 	new_link_state = sc->status_block->status_attn_bits &
6491 	    STATUS_ATTN_BITS_LINK_STATE;
6492 	old_link_state = sc->status_block->status_attn_bits_ack &
6493 	    STATUS_ATTN_BITS_LINK_STATE;
6494 
6495 	/* Handle any changes if the link state has changed. */
6496 	if (new_link_state != old_link_state) {
6497 
6498 		/* Update the status_attn_bits_ack field. */
6499 		if (new_link_state) {
6500 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6501 			    STATUS_ATTN_BITS_LINK_STATE);
6502 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6503 			    __FUNCTION__);
6504 		} else {
6505 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6506 			    STATUS_ATTN_BITS_LINK_STATE);
6507 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6508 			    __FUNCTION__);
6509 		}
6510 
6511 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6512 			if (new_link_state) {
6513 				if (bootverbose)
6514 					if_printf(sc->bce_ifp, "link UP\n");
6515 				if_link_state_change(sc->bce_ifp,
6516 				    LINK_STATE_UP);
6517 			} else {
6518 				if (bootverbose)
6519 					if_printf(sc->bce_ifp, "link DOWN\n");
6520 				if_link_state_change(sc->bce_ifp,
6521 				    LINK_STATE_DOWN);
6522 			}
6523 		}
6524 		/*
6525 		 * Assume link is down and allow
6526 		 * tick routine to update the state
6527 		 * based on the actual media state.
6528 		 */
6529 		sc->bce_link_up = FALSE;
6530 		callout_stop(&sc->bce_tick_callout);
6531 		bce_tick(sc);
6532 	}
6533 
6534 	/* Acknowledge the link change interrupt. */
6535 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6536 
6537 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6538 }
6539 
6540 
6541 /****************************************************************************/
6542 /* Reads the receive consumer value from the status block (skipping over    */
6543 /* chain page pointer if necessary).                                        */
6544 /*                                                                          */
6545 /* Returns:                                                                 */
6546 /*   hw_cons                                                                */
6547 /****************************************************************************/
6548 static inline u16
6549 bce_get_hw_rx_cons(struct bce_softc *sc)
6550 {
6551 	u16 hw_cons;
6552 
6553 	rmb();
6554 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6555 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6556 		hw_cons++;
6557 
6558 	return hw_cons;
6559 }
6560 
6561 /****************************************************************************/
6562 /* Handles received frame interrupt events.                                 */
6563 /*                                                                          */
6564 /* Returns:                                                                 */
6565 /*   Nothing.                                                               */
6566 /****************************************************************************/
6567 static void
6568 bce_rx_intr(struct bce_softc *sc)
6569 {
6570 	struct ifnet *ifp = sc->bce_ifp;
6571 	struct l2_fhdr *l2fhdr;
6572 	struct ether_vlan_header *vh;
6573 	unsigned int pkt_len;
6574 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6575 	u32 status;
6576 	unsigned int rem_len;
6577 	u16 sw_pg_cons, sw_pg_cons_idx;
6578 
6579 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6580 	DBRUN(sc->interrupts_rx++);
6581 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6582 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6583 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6584 
6585 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6586 	for (int i = 0; i < sc->rx_pages; i++)
6587 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6588 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6589 
6590 	/* Prepare the page chain pages to be accessed by the host CPU. */
6591 	if (bce_hdr_split == TRUE) {
6592 		for (int i = 0; i < sc->pg_pages; i++)
6593 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6594 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6595 	}
6596 
6597 	/* Get the hardware's view of the RX consumer index. */
6598 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6599 
6600 	/* Get working copies of the driver's view of the consumer indices. */
6601 	sw_rx_cons = sc->rx_cons;
6602 	sw_pg_cons = sc->pg_cons;
6603 
6604 	/* Update some debug statistics counters */
6605 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6606 	    sc->rx_low_watermark = sc->free_rx_bd);
6607 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6608 	    sc->rx_empty_count++);
6609 
6610 	/* Scan through the receive chain as long as there is work to do */
6611 	/* ToDo: Consider setting a limit on the number of packets processed. */
6612 	rmb();
6613 	while (sw_rx_cons != hw_rx_cons) {
6614 		struct mbuf *m0;
6615 
6616 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6617 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6618 
6619 		/* Unmap the mbuf from DMA space. */
6620 		bus_dmamap_sync(sc->rx_mbuf_tag,
6621 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6622 		    BUS_DMASYNC_POSTREAD);
6623 		bus_dmamap_unload(sc->rx_mbuf_tag,
6624 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6625 
6626 		/* Remove the mbuf from the RX chain. */
6627 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6628 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6629 		DBRUN(sc->debug_rx_mbuf_alloc--);
6630 		sc->free_rx_bd++;
6631 
6632 		/*
6633  		 * Frames received on the NetXteme II are prepended
6634  		 * with an l2_fhdr structure which provides status
6635  		 * information about the received frame (including
6636  		 * VLAN tags and checksum info).  The frames are
6637 		 * also automatically adjusted to word align the IP
6638  		 * header (i.e. two null bytes are inserted before
6639  		 * the Ethernet	header).  As a result the data
6640  		 * DMA'd by the controller into	the mbuf looks
6641 		 * like this:
6642 		 *
6643 		 * +---------+-----+---------------------+-----+
6644 		 * | l2_fhdr | pad | packet data         | FCS |
6645 		 * +---------+-----+---------------------+-----+
6646 		 *
6647  		 * The l2_fhdr needs to be checked and skipped and
6648  		 * the FCS needs to be stripped before sending the
6649 		 * packet up the stack.
6650 		 */
6651 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6652 
6653 		/* Get the packet data + FCS length and the status. */
6654 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6655 		status  = l2fhdr->l2_fhdr_status;
6656 
6657 		/*
6658 		 * Skip over the l2_fhdr and pad, resulting in the
6659 		 * following data in the mbuf:
6660 		 * +---------------------+-----+
6661 		 * | packet data         | FCS |
6662 		 * +---------------------+-----+
6663 		 */
6664 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6665 
6666 		/*
6667  		 * When split header mode is used, an ethernet frame
6668  		 * may be split across the receive chain and the
6669  		 * page chain. If that occurs an mbuf cluster must be
6670  		 * reassembled from the individual mbuf pieces.
6671 		 */
6672 		if (bce_hdr_split == TRUE) {
6673 			/*
6674 			 * Check whether the received frame fits in a single
6675 			 * mbuf or not (i.e. packet data + FCS <=
6676 			 * sc->rx_bd_mbuf_data_len bytes).
6677 			 */
6678 			if (pkt_len > m0->m_len) {
6679 				/*
6680 				 * The received frame is larger than a single mbuf.
6681 				 * If the frame was a TCP frame then only the TCP
6682 				 * header is placed in the mbuf, the remaining
6683 				 * payload (including FCS) is placed in the page
6684 				 * chain, the SPLIT flag is set, and the header
6685 				 * length is placed in the IP checksum field.
6686 				 * If the frame is not a TCP frame then the mbuf
6687 				 * is filled and the remaining bytes are placed
6688 				 * in the page chain.
6689 				 */
6690 
6691 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6692 					"packet.\n", __FUNCTION__);
6693 				DBRUN(sc->split_header_frames_rcvd++);
6694 
6695 				/*
6696 				 * When the page chain is enabled and the TCP
6697 				 * header has been split from the TCP payload,
6698 				 * the ip_xsum structure will reflect the length
6699 				 * of the TCP header, not the IP checksum.  Set
6700 				 * the packet length of the mbuf accordingly.
6701 				 */
6702 				if (status & L2_FHDR_STATUS_SPLIT) {
6703 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6704 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6705 				}
6706 
6707 				rem_len = pkt_len - m0->m_len;
6708 
6709 				/* Pull mbufs off the page chain for any remaining data. */
6710 				while (rem_len > 0) {
6711 					struct mbuf *m_pg;
6712 
6713 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6714 
6715 					/* Remove the mbuf from the page chain. */
6716 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6717 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6718 					DBRUN(sc->debug_pg_mbuf_alloc--);
6719 					sc->free_pg_bd++;
6720 
6721 					/* Unmap the page chain mbuf from DMA space. */
6722 					bus_dmamap_sync(sc->pg_mbuf_tag,
6723 						sc->pg_mbuf_map[sw_pg_cons_idx],
6724 						BUS_DMASYNC_POSTREAD);
6725 					bus_dmamap_unload(sc->pg_mbuf_tag,
6726 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6727 
6728 					/* Adjust the mbuf length. */
6729 					if (rem_len < m_pg->m_len) {
6730 						/* The mbuf chain is complete. */
6731 						m_pg->m_len = rem_len;
6732 						rem_len = 0;
6733 					} else {
6734 						/* More packet data is waiting. */
6735 						rem_len -= m_pg->m_len;
6736 					}
6737 
6738 					/* Concatenate the mbuf cluster to the mbuf. */
6739 					m_cat(m0, m_pg);
6740 
6741 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6742 				}
6743 
6744 				/* Set the total packet length. */
6745 				m0->m_pkthdr.len = pkt_len;
6746 
6747 			} else {
6748 				/*
6749 				 * The received packet is small and fits in a
6750 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6751 				 * FCS <= MHLEN).  In other words, the packet is
6752 				 * 154 bytes or less in size.
6753 				 */
6754 
6755 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6756 					"packet.\n", __FUNCTION__);
6757 
6758 				/* Set the total packet length. */
6759 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6760 			}
6761 		} else
6762 			/* Set the total packet length. */
6763 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6764 
6765 		/* Remove the trailing Ethernet FCS. */
6766 		m_adj(m0, -ETHER_CRC_LEN);
6767 
6768 		/* Check that the resulting mbuf chain is valid. */
6769 		DBRUN(m_sanity(m0, FALSE));
6770 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6771 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6772 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6773 		    m_print(m0, 128));
6774 
6775 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6776 		    sc->l2fhdr_error_sim_count++;
6777 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6778 
6779 		/* Check the received frame for errors. */
6780 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6781 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6782 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6783 
6784 			/* Log the error and release the mbuf. */
6785 			ifp->if_ierrors++;
6786 			sc->l2fhdr_error_count++;
6787 
6788 			m_freem(m0);
6789 			m0 = NULL;
6790 			goto bce_rx_intr_next_rx;
6791 		}
6792 
6793 		/* Send the packet to the appropriate interface. */
6794 		m0->m_pkthdr.rcvif = ifp;
6795 
6796 		/* Assume no hardware checksum. */
6797 		m0->m_pkthdr.csum_flags = 0;
6798 
6799 		/* Validate the checksum if offload enabled. */
6800 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6801 			/* Check for an IP datagram. */
6802 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6803 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6804 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6805 				DBRUN(sc->csum_offload_ip++);
6806 				/* Check if the IP checksum is valid. */
6807 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6808 					m0->m_pkthdr.csum_flags |=
6809 					    CSUM_IP_VALID;
6810 			}
6811 
6812 			/* Check for a valid TCP/UDP frame. */
6813 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6814 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6815 
6816 				/* Check for a good TCP/UDP checksum. */
6817 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6818 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6819 					DBRUN(sc->csum_offload_tcp_udp++);
6820 					m0->m_pkthdr.csum_data =
6821 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6822 					m0->m_pkthdr.csum_flags |=
6823 					    (CSUM_DATA_VALID
6824 					    | CSUM_PSEUDO_HDR);
6825 				}
6826 			}
6827 		}
6828 
6829 		/* Attach the VLAN tag.	*/
6830 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6831 		    !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6832 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6833 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6834 				DBRUN(sc->vlan_tagged_frames_stripped++);
6835 #if __FreeBSD_version < 700000
6836 				VLAN_INPUT_TAG(ifp, m0,
6837 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6838 #else
6839 				m0->m_pkthdr.ether_vtag =
6840 				    l2fhdr->l2_fhdr_vlan_tag;
6841 				m0->m_flags |= M_VLANTAG;
6842 #endif
6843 			} else {
6844 				/*
6845 				 * bce(4) controllers can't disable VLAN
6846 				 * tag stripping if management firmware
6847 				 * (ASF/IPMI/UMP) is running. So we always
6848 				 * strip VLAN tag and manually reconstruct
6849 				 * the VLAN frame by appending stripped
6850 				 * VLAN tag in driver if VLAN tag stripping
6851 				 * was disabled.
6852 				 *
6853 				 * TODO: LLC SNAP handling.
6854 				 */
6855 				bcopy(mtod(m0, uint8_t *),
6856 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6857 				    ETHER_ADDR_LEN * 2);
6858 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6859 				vh = mtod(m0, struct ether_vlan_header *);
6860 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6861 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6862 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6863 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6864 			}
6865 		}
6866 
6867 		/* Increment received packet statistics. */
6868 		ifp->if_ipackets++;
6869 
6870 bce_rx_intr_next_rx:
6871 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6872 
6873 		/* If we have a packet, pass it up the stack */
6874 		if (m0) {
6875 			/* Make sure we don't lose our place when we release the lock. */
6876 			sc->rx_cons = sw_rx_cons;
6877 			sc->pg_cons = sw_pg_cons;
6878 
6879 			BCE_UNLOCK(sc);
6880 			(*ifp->if_input)(ifp, m0);
6881 			BCE_LOCK(sc);
6882 
6883 			/* Recover our place. */
6884 			sw_rx_cons = sc->rx_cons;
6885 			sw_pg_cons = sc->pg_cons;
6886 		}
6887 
6888 		/* Refresh hw_cons to see if there's new work */
6889 		if (sw_rx_cons == hw_rx_cons)
6890 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6891 	}
6892 
6893 	/* No new packets.  Refill the page chain. */
6894 	if (bce_hdr_split == TRUE) {
6895 		sc->pg_cons = sw_pg_cons;
6896 		bce_fill_pg_chain(sc);
6897 	}
6898 
6899 	/* No new packets.  Refill the RX chain. */
6900 	sc->rx_cons = sw_rx_cons;
6901 	bce_fill_rx_chain(sc);
6902 
6903 	/* Prepare the page chain pages to be accessed by the NIC. */
6904 	for (int i = 0; i < sc->rx_pages; i++)
6905 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6906 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6907 
6908 	if (bce_hdr_split == TRUE) {
6909 		for (int i = 0; i < sc->pg_pages; i++)
6910 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6911 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6912 	}
6913 
6914 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6915 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6916 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6917 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6918 }
6919 
6920 
6921 /****************************************************************************/
6922 /* Reads the transmit consumer value from the status block (skipping over   */
6923 /* chain page pointer if necessary).                                        */
6924 /*                                                                          */
6925 /* Returns:                                                                 */
6926 /*   hw_cons                                                                */
6927 /****************************************************************************/
6928 static inline u16
6929 bce_get_hw_tx_cons(struct bce_softc *sc)
6930 {
6931 	u16 hw_cons;
6932 
6933 	mb();
6934 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6935 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6936 		hw_cons++;
6937 
6938 	return hw_cons;
6939 }
6940 
6941 
6942 /****************************************************************************/
6943 /* Handles transmit completion interrupt events.                            */
6944 /*                                                                          */
6945 /* Returns:                                                                 */
6946 /*   Nothing.                                                               */
6947 /****************************************************************************/
6948 static void
6949 bce_tx_intr(struct bce_softc *sc)
6950 {
6951 	struct ifnet *ifp = sc->bce_ifp;
6952 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6953 
6954 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6955 	DBRUN(sc->interrupts_tx++);
6956 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6957 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6958 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6959 
6960 	BCE_LOCK_ASSERT(sc);
6961 
6962 	/* Get the hardware's view of the TX consumer index. */
6963 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6964 	sw_tx_cons = sc->tx_cons;
6965 
6966 	/* Prevent speculative reads of the status block. */
6967 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6968 	    BUS_SPACE_BARRIER_READ);
6969 
6970 	/* Cycle through any completed TX chain page entries. */
6971 	while (sw_tx_cons != hw_tx_cons) {
6972 #ifdef BCE_DEBUG
6973 		struct tx_bd *txbd = NULL;
6974 #endif
6975 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6976 
6977 		DBPRINT(sc, BCE_INFO_SEND,
6978 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6979 		    "sw_tx_chain_cons = 0x%04X\n",
6980 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6981 
6982 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6983 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6984 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6985 		    (int) MAX_TX_BD_ALLOC);
6986 		    bce_breakpoint(sc));
6987 
6988 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6989 		    [TX_IDX(sw_tx_chain_cons)]);
6990 
6991 		DBRUNIF((txbd == NULL),
6992 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6993 		    __FILE__, __LINE__, sw_tx_chain_cons);
6994 		    bce_breakpoint(sc));
6995 
6996 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6997 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6998 
6999 		/*
7000 		 * Free the associated mbuf. Remember
7001 		 * that only the last tx_bd of a packet
7002 		 * has an mbuf pointer and DMA map.
7003 		 */
7004 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
7005 
7006 			/* Validate that this is the last tx_bd. */
7007 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
7008 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
7009 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
7010 			    bce_breakpoint(sc));
7011 
7012 			DBRUNMSG(BCE_INFO_SEND,
7013 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
7014 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
7015 			    sw_tx_chain_cons));
7016 
7017 			/* Unmap the mbuf. */
7018 			bus_dmamap_unload(sc->tx_mbuf_tag,
7019 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
7020 
7021 			/* Free the mbuf. */
7022 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
7023 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
7024 			DBRUN(sc->debug_tx_mbuf_alloc--);
7025 
7026 			ifp->if_opackets++;
7027 		}
7028 
7029 		sc->used_tx_bd--;
7030 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
7031 
7032 		/* Refresh hw_cons to see if there's new work. */
7033 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
7034 
7035 		/* Prevent speculative reads of the status block. */
7036 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7037 		    BUS_SPACE_BARRIER_READ);
7038 	}
7039 
7040 	/* Clear the TX timeout timer. */
7041 	sc->watchdog_timer = 0;
7042 
7043 	/* Clear the tx hardware queue full flag. */
7044 	if (sc->used_tx_bd < sc->max_tx_bd) {
7045 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
7046 		    DBPRINT(sc, BCE_INFO_SEND,
7047 		    "%s(): Open TX chain! %d/%d (used/total)\n",
7048 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
7049 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7050 	}
7051 
7052 	sc->tx_cons = sw_tx_cons;
7053 
7054 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7055 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7056 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7057 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7058 }
7059 
7060 
7061 /****************************************************************************/
7062 /* Disables interrupt generation.                                           */
7063 /*                                                                          */
7064 /* Returns:                                                                 */
7065 /*   Nothing.                                                               */
7066 /****************************************************************************/
7067 static void
7068 bce_disable_intr(struct bce_softc *sc)
7069 {
7070 	DBENTER(BCE_VERBOSE_INTR);
7071 
7072 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7073 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7074 
7075 	DBEXIT(BCE_VERBOSE_INTR);
7076 }
7077 
7078 
7079 /****************************************************************************/
7080 /* Enables interrupt generation.                                            */
7081 /*                                                                          */
7082 /* Returns:                                                                 */
7083 /*   Nothing.                                                               */
7084 /****************************************************************************/
7085 static void
7086 bce_enable_intr(struct bce_softc *sc, int coal_now)
7087 {
7088 	DBENTER(BCE_VERBOSE_INTR);
7089 
7090 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7091 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7092 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7093 
7094 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7095 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7096 
7097 	/* Force an immediate interrupt (whether there is new data or not). */
7098 	if (coal_now)
7099 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7100 
7101 	DBEXIT(BCE_VERBOSE_INTR);
7102 }
7103 
7104 
7105 /****************************************************************************/
7106 /* Handles controller initialization.                                       */
7107 /*                                                                          */
7108 /* Returns:                                                                 */
7109 /*   Nothing.                                                               */
7110 /****************************************************************************/
7111 static void
7112 bce_init_locked(struct bce_softc *sc)
7113 {
7114 	struct ifnet *ifp;
7115 	u32 ether_mtu = 0;
7116 
7117 	DBENTER(BCE_VERBOSE_RESET);
7118 
7119 	BCE_LOCK_ASSERT(sc);
7120 
7121 	ifp = sc->bce_ifp;
7122 
7123 	/* Check if the driver is still running and bail out if it is. */
7124 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7125 		goto bce_init_locked_exit;
7126 
7127 	bce_stop(sc);
7128 
7129 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7130 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
7131 		    __FILE__, __LINE__);
7132 		goto bce_init_locked_exit;
7133 	}
7134 
7135 	if (bce_chipinit(sc)) {
7136 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7137 		    __FILE__, __LINE__);
7138 		goto bce_init_locked_exit;
7139 	}
7140 
7141 	if (bce_blockinit(sc)) {
7142 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
7143 		    __FILE__, __LINE__);
7144 		goto bce_init_locked_exit;
7145 	}
7146 
7147 	/* Load our MAC address. */
7148 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7149 	bce_set_mac_addr(sc);
7150 
7151 	if (bce_hdr_split == FALSE)
7152 		bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7153 	/*
7154 	 * Calculate and program the hardware Ethernet MTU
7155  	 * size. Be generous on the receive if we have room
7156  	 * and allowed by the user.
7157 	 */
7158 	if (bce_strict_rx_mtu == TRUE)
7159 		ether_mtu = ifp->if_mtu;
7160 	else {
7161 		if (bce_hdr_split == TRUE) {
7162 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7163 				ether_mtu = sc->rx_bd_mbuf_data_len +
7164 				    MCLBYTES;
7165 			else
7166 				ether_mtu = ifp->if_mtu;
7167 		} else {
7168 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7169 				ether_mtu = sc->rx_bd_mbuf_data_len;
7170 			else
7171 				ether_mtu = ifp->if_mtu;
7172 		}
7173 	}
7174 
7175 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7176 
7177 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7178 	    __FUNCTION__, ether_mtu);
7179 
7180 	/* Program the mtu, enabling jumbo frame support if necessary. */
7181 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7182 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7183 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7184 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7185 	else
7186 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7187 
7188 	/* Program appropriate promiscuous/multicast filtering. */
7189 	bce_set_rx_mode(sc);
7190 
7191 	if (bce_hdr_split == TRUE) {
7192 		/* Init page buffer descriptor chain. */
7193 		bce_init_pg_chain(sc);
7194 	}
7195 
7196 	/* Init RX buffer descriptor chain. */
7197 	bce_init_rx_chain(sc);
7198 
7199 	/* Init TX buffer descriptor chain. */
7200 	bce_init_tx_chain(sc);
7201 
7202 	/* Enable host interrupts. */
7203 	bce_enable_intr(sc, 1);
7204 
7205 	bce_ifmedia_upd_locked(ifp);
7206 
7207 	/* Let the OS know the driver is up and running. */
7208 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7209 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7210 
7211 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7212 
7213 bce_init_locked_exit:
7214 	DBEXIT(BCE_VERBOSE_RESET);
7215 }
7216 
7217 
7218 /****************************************************************************/
7219 /* Initialize the controller just enough so that any management firmware    */
7220 /* running on the device will continue to operate correctly.                */
7221 /*                                                                          */
7222 /* Returns:                                                                 */
7223 /*   Nothing.                                                               */
7224 /****************************************************************************/
7225 static void
7226 bce_mgmt_init_locked(struct bce_softc *sc)
7227 {
7228 	struct ifnet *ifp;
7229 
7230 	DBENTER(BCE_VERBOSE_RESET);
7231 
7232 	BCE_LOCK_ASSERT(sc);
7233 
7234 	/* Bail out if management firmware is not running. */
7235 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7236 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7237 		    "No management firmware running...\n");
7238 		goto bce_mgmt_init_locked_exit;
7239 	}
7240 
7241 	ifp = sc->bce_ifp;
7242 
7243 	/* Enable all critical blocks in the MAC. */
7244 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7245 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7246 	DELAY(20);
7247 
7248 	bce_ifmedia_upd_locked(ifp);
7249 
7250 bce_mgmt_init_locked_exit:
7251 	DBEXIT(BCE_VERBOSE_RESET);
7252 }
7253 
7254 
7255 /****************************************************************************/
7256 /* Handles controller initialization when called from an unlocked routine.  */
7257 /*                                                                          */
7258 /* Returns:                                                                 */
7259 /*   Nothing.                                                               */
7260 /****************************************************************************/
7261 static void
7262 bce_init(void *xsc)
7263 {
7264 	struct bce_softc *sc = xsc;
7265 
7266 	DBENTER(BCE_VERBOSE_RESET);
7267 
7268 	BCE_LOCK(sc);
7269 	bce_init_locked(sc);
7270 	BCE_UNLOCK(sc);
7271 
7272 	DBEXIT(BCE_VERBOSE_RESET);
7273 }
7274 
7275 
7276 /****************************************************************************/
7277 /* Modifies an mbuf for TSO on the hardware.                                */
7278 /*                                                                          */
7279 /* Returns:                                                                 */
7280 /*   Pointer to a modified mbuf.                                            */
7281 /****************************************************************************/
7282 static struct mbuf *
7283 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7284 {
7285 	struct mbuf *m;
7286 	struct ether_header *eh;
7287 	struct ip *ip;
7288 	struct tcphdr *th;
7289 	u16 etype;
7290 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7291 
7292 	DBRUN(sc->tso_frames_requested++);
7293 
7294 	/* Controller may modify mbuf chains. */
7295 	if (M_WRITABLE(*m_head) == 0) {
7296 		m = m_dup(*m_head, M_NOWAIT);
7297 		m_freem(*m_head);
7298 		if (m == NULL) {
7299 			sc->mbuf_alloc_failed_count++;
7300 			*m_head = NULL;
7301 			return (NULL);
7302 		}
7303 		*m_head = m;
7304 	}
7305 
7306 	/*
7307 	 * For TSO the controller needs two pieces of info,
7308 	 * the MSS and the IP+TCP options length.
7309 	 */
7310 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7311 	if (m == NULL) {
7312 		*m_head = NULL;
7313 		return (NULL);
7314 	}
7315 	eh = mtod(m, struct ether_header *);
7316 	etype = ntohs(eh->ether_type);
7317 
7318 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7319 	switch (etype) {
7320 	case ETHERTYPE_IP:
7321 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7322 		/* TSO only supported for TCP protocol. */
7323 		if (ip->ip_p != IPPROTO_TCP) {
7324 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7325 			    __FILE__, __LINE__);
7326 			m_freem(*m_head);
7327 			*m_head = NULL;
7328 			return (NULL);
7329 		}
7330 
7331 		/* Get IP header length in bytes (min 20) */
7332 		ip_hlen = ip->ip_hl << 2;
7333 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7334 		    sizeof(struct tcphdr));
7335 		if (m == NULL) {
7336 			*m_head = NULL;
7337 			return (NULL);
7338 		}
7339 
7340 		/* Get the TCP header length in bytes (min 20) */
7341 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7342 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7343 		tcp_hlen = (th->th_off << 2);
7344 
7345 		/* Make sure all IP/TCP options live in the same buffer. */
7346 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7347 		    tcp_hlen);
7348 		if (m == NULL) {
7349 			*m_head = NULL;
7350 			return (NULL);
7351 		}
7352 
7353 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7354 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7355 		ip_len = ip->ip_len;
7356 		ip->ip_len = 0;
7357 		ip->ip_sum = 0;
7358 		break;
7359 	case ETHERTYPE_IPV6:
7360 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7361 		    __FILE__, __LINE__);
7362 		m_freem(*m_head);
7363 		*m_head = NULL;
7364 		return (NULL);
7365 		/* NOT REACHED */
7366 	default:
7367 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7368 		    __FILE__, __LINE__);
7369 		m_freem(*m_head);
7370 		*m_head = NULL;
7371 		return (NULL);
7372 	}
7373 
7374 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7375 
7376 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7377 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7378 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7379 	    tcp_hlen, ip_len);
7380 
7381 	/* Set the LSO flag in the TX BD */
7382 	*flags |= TX_BD_FLAGS_SW_LSO;
7383 
7384 	/* Set the length of IP + TCP options (in 32 bit words) */
7385 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7386 	    sizeof(struct tcphdr)) >> 2) << 8);
7387 
7388 	DBRUN(sc->tso_frames_completed++);
7389 	return (*m_head);
7390 }
7391 
7392 
7393 /****************************************************************************/
7394 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7395 /* memory visible to the controller.                                        */
7396 /*                                                                          */
7397 /* Returns:                                                                 */
7398 /*   0 for success, positive value for failure.                             */
7399 /* Modified:                                                                */
7400 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7401 /****************************************************************************/
7402 static int
7403 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7404 {
7405 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7406 	bus_dmamap_t map;
7407 	struct tx_bd *txbd = NULL;
7408 	struct mbuf *m0;
7409 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7410 	u32 prod_bseq;
7411 
7412 #ifdef BCE_DEBUG
7413 	u16 debug_prod;
7414 #endif
7415 
7416 	int i, error, nsegs, rc = 0;
7417 
7418 	DBENTER(BCE_VERBOSE_SEND);
7419 
7420 	/* Make sure we have room in the TX chain. */
7421 	if (sc->used_tx_bd >= sc->max_tx_bd)
7422 		goto bce_tx_encap_exit;
7423 
7424 	/* Transfer any checksum offload flags to the bd. */
7425 	m0 = *m_head;
7426 	if (m0->m_pkthdr.csum_flags) {
7427 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7428 			m0 = bce_tso_setup(sc, m_head, &flags);
7429 			if (m0 == NULL) {
7430 				DBRUN(sc->tso_frames_failed++);
7431 				goto bce_tx_encap_exit;
7432 			}
7433 			mss = htole16(m0->m_pkthdr.tso_segsz);
7434 		} else {
7435 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7436 				flags |= TX_BD_FLAGS_IP_CKSUM;
7437 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7438 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7439 		}
7440 	}
7441 
7442 	/* Transfer any VLAN tags to the bd. */
7443 	if (m0->m_flags & M_VLANTAG) {
7444 		flags |= TX_BD_FLAGS_VLAN_TAG;
7445 		vlan_tag = m0->m_pkthdr.ether_vtag;
7446 	}
7447 
7448 	/* Map the mbuf into DMAable memory. */
7449 	prod = sc->tx_prod;
7450 	chain_prod = TX_CHAIN_IDX(prod);
7451 	map = sc->tx_mbuf_map[chain_prod];
7452 
7453 	/* Map the mbuf into our DMA address space. */
7454 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7455 	    segs, &nsegs, BUS_DMA_NOWAIT);
7456 
7457 	/* Check if the DMA mapping was successful */
7458 	if (error == EFBIG) {
7459 		sc->mbuf_frag_count++;
7460 
7461 		/* Try to defrag the mbuf. */
7462 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7463 		if (m0 == NULL) {
7464 			/* Defrag was unsuccessful */
7465 			m_freem(*m_head);
7466 			*m_head = NULL;
7467 			sc->mbuf_alloc_failed_count++;
7468 			rc = ENOBUFS;
7469 			goto bce_tx_encap_exit;
7470 		}
7471 
7472 		/* Defrag was successful, try mapping again */
7473 		*m_head = m0;
7474 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7475 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7476 
7477 		/* Still getting an error after a defrag. */
7478 		if (error == ENOMEM) {
7479 			/* Insufficient DMA buffers available. */
7480 			sc->dma_map_addr_tx_failed_count++;
7481 			rc = error;
7482 			goto bce_tx_encap_exit;
7483 		} else if (error != 0) {
7484 			/* Release it and return an error. */
7485 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7486 			    "TX chain!\n", __FILE__, __LINE__);
7487 			m_freem(m0);
7488 			*m_head = NULL;
7489 			sc->dma_map_addr_tx_failed_count++;
7490 			rc = ENOBUFS;
7491 			goto bce_tx_encap_exit;
7492 		}
7493 	} else if (error == ENOMEM) {
7494 		/* Insufficient DMA buffers available. */
7495 		sc->dma_map_addr_tx_failed_count++;
7496 		rc = error;
7497 		goto bce_tx_encap_exit;
7498 	} else if (error != 0) {
7499 		m_freem(m0);
7500 		*m_head = NULL;
7501 		sc->dma_map_addr_tx_failed_count++;
7502 		rc = error;
7503 		goto bce_tx_encap_exit;
7504 	}
7505 
7506 	/* Make sure there's room in the chain */
7507 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7508 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7509 		rc = ENOBUFS;
7510 		goto bce_tx_encap_exit;
7511 	}
7512 
7513 	/* prod points to an empty tx_bd at this point. */
7514 	prod_bseq  = sc->tx_prod_bseq;
7515 
7516 #ifdef BCE_DEBUG
7517 	debug_prod = chain_prod;
7518 #endif
7519 
7520 	DBPRINT(sc, BCE_INFO_SEND,
7521 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7522 	    "prod_bseq = 0x%08X\n",
7523 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7524 
7525 	/*
7526 	 * Cycle through each mbuf segment that makes up
7527 	 * the outgoing frame, gathering the mapping info
7528 	 * for that segment and creating a tx_bd for
7529 	 * the mbuf.
7530 	 */
7531 	for (i = 0; i < nsegs ; i++) {
7532 
7533 		chain_prod = TX_CHAIN_IDX(prod);
7534 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7535 		    [TX_IDX(chain_prod)];
7536 
7537 		txbd->tx_bd_haddr_lo =
7538 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7539 		txbd->tx_bd_haddr_hi =
7540 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7541 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7542 		    htole16(segs[i].ds_len);
7543 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7544 		txbd->tx_bd_flags = htole16(flags);
7545 		prod_bseq += segs[i].ds_len;
7546 		if (i == 0)
7547 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7548 		prod = NEXT_TX_BD(prod);
7549 	}
7550 
7551 	/* Set the END flag on the last TX buffer descriptor. */
7552 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7553 
7554 	DBRUNMSG(BCE_EXTREME_SEND,
7555 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7556 
7557 	/*
7558 	 * Ensure that the mbuf pointer for this transmission
7559 	 * is placed at the array index of the last
7560 	 * descriptor in this chain.  This is done
7561 	 * because a single map is used for all
7562 	 * segments of the mbuf and we don't want to
7563 	 * unload the map before all of the segments
7564 	 * have been freed.
7565 	 */
7566 	sc->tx_mbuf_ptr[chain_prod] = m0;
7567 	sc->used_tx_bd += nsegs;
7568 
7569 	/* Update some debug statistic counters */
7570 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7571 	    sc->tx_hi_watermark = sc->used_tx_bd);
7572 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7573 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7574 
7575 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7576 
7577 	/* prod points to the next free tx_bd at this point. */
7578 	sc->tx_prod = prod;
7579 	sc->tx_prod_bseq = prod_bseq;
7580 
7581 	/* Tell the chip about the waiting TX frames. */
7582 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7583 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7584 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7585 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7586 
7587 bce_tx_encap_exit:
7588 	DBEXIT(BCE_VERBOSE_SEND);
7589 	return(rc);
7590 }
7591 
7592 
7593 /****************************************************************************/
7594 /* Main transmit routine when called from another routine with a lock.      */
7595 /*                                                                          */
7596 /* Returns:                                                                 */
7597 /*   Nothing.                                                               */
7598 /****************************************************************************/
7599 static void
7600 bce_start_locked(struct ifnet *ifp)
7601 {
7602 	struct bce_softc *sc = ifp->if_softc;
7603 	struct mbuf *m_head = NULL;
7604 	int count = 0;
7605 	u16 tx_prod, tx_chain_prod;
7606 
7607 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7608 
7609 	BCE_LOCK_ASSERT(sc);
7610 
7611 	/* prod points to the next free tx_bd. */
7612 	tx_prod = sc->tx_prod;
7613 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7614 
7615 	DBPRINT(sc, BCE_INFO_SEND,
7616 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7617 	    "tx_prod_bseq = 0x%08X\n",
7618 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7619 
7620 	/* If there's no link or the transmit queue is empty then just exit. */
7621 	if (sc->bce_link_up == FALSE) {
7622 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7623 		    __FUNCTION__);
7624 		goto bce_start_locked_exit;
7625 	}
7626 
7627 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7628 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7629 		    __FUNCTION__);
7630 		goto bce_start_locked_exit;
7631 	}
7632 
7633 	/*
7634 	 * Keep adding entries while there is space in the ring.
7635 	 */
7636 	while (sc->used_tx_bd < sc->max_tx_bd) {
7637 
7638 		/* Check for any frames to send. */
7639 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7640 
7641 		/* Stop when the transmit queue is empty. */
7642 		if (m_head == NULL)
7643 			break;
7644 
7645 		/*
7646 		 * Pack the data into the transmit ring. If we
7647 		 * don't have room, place the mbuf back at the
7648 		 * head of the queue and set the OACTIVE flag
7649 		 * to wait for the NIC to drain the chain.
7650 		 */
7651 		if (bce_tx_encap(sc, &m_head)) {
7652 			if (m_head != NULL)
7653 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7654 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7655 			DBPRINT(sc, BCE_INFO_SEND,
7656 			    "TX chain is closed for business! Total "
7657 			    "tx_bd used = %d\n", sc->used_tx_bd);
7658 			break;
7659 		}
7660 
7661 		count++;
7662 
7663 		/* Send a copy of the frame to any BPF listeners. */
7664 		ETHER_BPF_MTAP(ifp, m_head);
7665 	}
7666 
7667 	/* Exit if no packets were dequeued. */
7668 	if (count == 0) {
7669 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7670 		    "dequeued\n", __FUNCTION__);
7671 		goto bce_start_locked_exit;
7672 	}
7673 
7674 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7675 	    "send queue.\n", __FUNCTION__, count);
7676 
7677 	/* Set the tx timeout. */
7678 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7679 
7680 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7681 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7682 
7683 bce_start_locked_exit:
7684 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7685 }
7686 
7687 
7688 /****************************************************************************/
7689 /* Main transmit routine when called from another routine without a lock.   */
7690 /*                                                                          */
7691 /* Returns:                                                                 */
7692 /*   Nothing.                                                               */
7693 /****************************************************************************/
7694 static void
7695 bce_start(struct ifnet *ifp)
7696 {
7697 	struct bce_softc *sc = ifp->if_softc;
7698 
7699 	DBENTER(BCE_VERBOSE_SEND);
7700 
7701 	BCE_LOCK(sc);
7702 	bce_start_locked(ifp);
7703 	BCE_UNLOCK(sc);
7704 
7705 	DBEXIT(BCE_VERBOSE_SEND);
7706 }
7707 
7708 
7709 /****************************************************************************/
7710 /* Handles any IOCTL calls from the operating system.                       */
7711 /*                                                                          */
7712 /* Returns:                                                                 */
7713 /*   0 for success, positive value for failure.                             */
7714 /****************************************************************************/
7715 static int
7716 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7717 {
7718 	struct bce_softc *sc = ifp->if_softc;
7719 	struct ifreq *ifr = (struct ifreq *) data;
7720 	struct mii_data *mii;
7721 	int mask, error = 0;
7722 
7723 	DBENTER(BCE_VERBOSE_MISC);
7724 
7725 	switch(command) {
7726 
7727 	/* Set the interface MTU. */
7728 	case SIOCSIFMTU:
7729 		/* Check that the MTU setting is supported. */
7730 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7731 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7732 			error = EINVAL;
7733 			break;
7734 		}
7735 
7736 		DBPRINT(sc, BCE_INFO_MISC,
7737 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7738 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7739 
7740 		BCE_LOCK(sc);
7741 		ifp->if_mtu = ifr->ifr_mtu;
7742 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7743 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7744 			bce_init_locked(sc);
7745 		}
7746 		BCE_UNLOCK(sc);
7747 		break;
7748 
7749 	/* Set interface flags. */
7750 	case SIOCSIFFLAGS:
7751 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7752 
7753 		BCE_LOCK(sc);
7754 
7755 		/* Check if the interface is up. */
7756 		if (ifp->if_flags & IFF_UP) {
7757 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7758 				/* Change promiscuous/multicast flags as necessary. */
7759 				bce_set_rx_mode(sc);
7760 			} else {
7761 				/* Start the HW */
7762 				bce_init_locked(sc);
7763 			}
7764 		} else {
7765 			/* The interface is down, check if driver is running. */
7766 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7767 				bce_stop(sc);
7768 
7769 				/* If MFW is running, restart the controller a bit. */
7770 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7771 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7772 					bce_chipinit(sc);
7773 					bce_mgmt_init_locked(sc);
7774 				}
7775 			}
7776 		}
7777 
7778 		BCE_UNLOCK(sc);
7779 		break;
7780 
7781 	/* Add/Delete multicast address */
7782 	case SIOCADDMULTI:
7783 	case SIOCDELMULTI:
7784 		DBPRINT(sc, BCE_VERBOSE_MISC,
7785 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7786 
7787 		BCE_LOCK(sc);
7788 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7789 			bce_set_rx_mode(sc);
7790 		BCE_UNLOCK(sc);
7791 
7792 		break;
7793 
7794 	/* Set/Get Interface media */
7795 	case SIOCSIFMEDIA:
7796 	case SIOCGIFMEDIA:
7797 		DBPRINT(sc, BCE_VERBOSE_MISC,
7798 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7799 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7800 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7801 			    command);
7802 		else {
7803 			mii = device_get_softc(sc->bce_miibus);
7804 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7805 			    command);
7806 		}
7807 		break;
7808 
7809 	/* Set interface capability */
7810 	case SIOCSIFCAP:
7811 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7812 		DBPRINT(sc, BCE_INFO_MISC,
7813 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7814 
7815 		/* Toggle the TX checksum capabilities enable flag. */
7816 		if (mask & IFCAP_TXCSUM &&
7817 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7818 			ifp->if_capenable ^= IFCAP_TXCSUM;
7819 			if (IFCAP_TXCSUM & ifp->if_capenable)
7820 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7821 			else
7822 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7823 		}
7824 
7825 		/* Toggle the RX checksum capabilities enable flag. */
7826 		if (mask & IFCAP_RXCSUM &&
7827 		    ifp->if_capabilities & IFCAP_RXCSUM)
7828 			ifp->if_capenable ^= IFCAP_RXCSUM;
7829 
7830 		/* Toggle the TSO capabilities enable flag. */
7831 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7832 		    ifp->if_capabilities & IFCAP_TSO4) {
7833 			ifp->if_capenable ^= IFCAP_TSO4;
7834 			if (IFCAP_TSO4 & ifp->if_capenable)
7835 				ifp->if_hwassist |= CSUM_TSO;
7836 			else
7837 				ifp->if_hwassist &= ~CSUM_TSO;
7838 		}
7839 
7840 		if (mask & IFCAP_VLAN_HWCSUM &&
7841 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7842 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7843 
7844 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7845 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7846 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7847 		/*
7848 		 * Don't actually disable VLAN tag stripping as
7849 		 * management firmware (ASF/IPMI/UMP) requires the
7850 		 * feature. If VLAN tag stripping is disabled driver
7851 		 * will manually reconstruct the VLAN frame by
7852 		 * appending stripped VLAN tag.
7853 		 */
7854 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7855 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7856 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7857 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7858 			    == 0)
7859 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7860 		}
7861 		VLAN_CAPABILITIES(ifp);
7862 		break;
7863 	default:
7864 		/* We don't know how to handle the IOCTL, pass it on. */
7865 		error = ether_ioctl(ifp, command, data);
7866 		break;
7867 	}
7868 
7869 	DBEXIT(BCE_VERBOSE_MISC);
7870 	return(error);
7871 }
7872 
7873 
7874 /****************************************************************************/
7875 /* Transmit timeout handler.                                                */
7876 /*                                                                          */
7877 /* Returns:                                                                 */
7878 /*   Nothing.                                                               */
7879 /****************************************************************************/
7880 static void
7881 bce_watchdog(struct bce_softc *sc)
7882 {
7883 	uint32_t status;
7884 
7885 	DBENTER(BCE_EXTREME_SEND);
7886 
7887 	BCE_LOCK_ASSERT(sc);
7888 
7889 	status = 0;
7890 	/* If the watchdog timer hasn't expired then just exit. */
7891 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7892 		goto bce_watchdog_exit;
7893 
7894 	status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7895 	/* If pause frames are active then don't reset the hardware. */
7896 	if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7897 		if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7898 			/*
7899 			 * If link partner has us in XOFF state then wait for
7900 			 * the condition to clear.
7901 			 */
7902 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7903 			goto bce_watchdog_exit;
7904 		} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7905 			(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7906 			/*
7907 			 * If we're not currently XOFF'ed but have recently
7908 			 * been XOFF'd/XON'd then assume that's delaying TX
7909 			 * this time around.
7910 			 */
7911 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7912 			goto bce_watchdog_exit;
7913 		}
7914 		/*
7915 		 * Any other condition is unexpected and the controller
7916 		 * should be reset.
7917 		 */
7918 	}
7919 
7920 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7921 	    __FILE__, __LINE__);
7922 
7923 	DBRUNMSG(BCE_INFO,
7924 	    bce_dump_driver_state(sc);
7925 	    bce_dump_status_block(sc);
7926 	    bce_dump_stats_block(sc);
7927 	    bce_dump_ftqs(sc);
7928 	    bce_dump_txp_state(sc, 0);
7929 	    bce_dump_rxp_state(sc, 0);
7930 	    bce_dump_tpat_state(sc, 0);
7931 	    bce_dump_cp_state(sc, 0);
7932 	    bce_dump_com_state(sc, 0));
7933 
7934 	DBRUN(bce_breakpoint(sc));
7935 
7936 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7937 
7938 	bce_init_locked(sc);
7939 	sc->bce_ifp->if_oerrors++;
7940 
7941 bce_watchdog_exit:
7942 	REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7943 	DBEXIT(BCE_EXTREME_SEND);
7944 }
7945 
7946 
7947 /*
7948  * Interrupt handler.
7949  */
7950 /****************************************************************************/
7951 /* Main interrupt entry point.  Verifies that the controller generated the  */
7952 /* interrupt and then calls a separate routine for handle the various       */
7953 /* interrupt causes (PHY, TX, RX).                                          */
7954 /*                                                                          */
7955 /* Returns:                                                                 */
7956 /*   Nothing.                                                               */
7957 /****************************************************************************/
7958 static void
7959 bce_intr(void *xsc)
7960 {
7961 	struct bce_softc *sc;
7962 	struct ifnet *ifp;
7963 	u32 status_attn_bits;
7964 	u16 hw_rx_cons, hw_tx_cons;
7965 
7966 	sc = xsc;
7967 	ifp = sc->bce_ifp;
7968 
7969 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7970 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7971 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7972 
7973 	BCE_LOCK(sc);
7974 
7975 	DBRUN(sc->interrupts_generated++);
7976 
7977 	/* Synchnorize before we read from interface's status block */
7978 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7979 
7980 	/*
7981 	 * If the hardware status block index matches the last value read
7982 	 * by the driver and we haven't asserted our interrupt then there's
7983 	 * nothing to do.  This may only happen in case of INTx due to the
7984 	 * interrupt arriving at the CPU before the status block is updated.
7985 	 */
7986 	if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7987 	    sc->status_block->status_idx == sc->last_status_idx &&
7988 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7989 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7990 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7991 		    __FUNCTION__);
7992 		goto bce_intr_exit;
7993 	}
7994 
7995 	/* Ack the interrupt and stop others from occuring. */
7996 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7997 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7998 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7999 
8000 	/* Check if the hardware has finished any work. */
8001 	hw_rx_cons = bce_get_hw_rx_cons(sc);
8002 	hw_tx_cons = bce_get_hw_tx_cons(sc);
8003 
8004 	/* Keep processing data as long as there is work to do. */
8005 	for (;;) {
8006 
8007 		status_attn_bits = sc->status_block->status_attn_bits;
8008 
8009 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
8010 		    BCE_PRINTF("Simulating unexpected status attention "
8011 		    "bit set.");
8012 		    sc->unexpected_attention_sim_count++;
8013 		    status_attn_bits = status_attn_bits |
8014 		    STATUS_ATTN_BITS_PARITY_ERROR);
8015 
8016 		/* Was it a link change interrupt? */
8017 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
8018 		    (sc->status_block->status_attn_bits_ack &
8019 		     STATUS_ATTN_BITS_LINK_STATE)) {
8020 			bce_phy_intr(sc);
8021 
8022 			/* Clear transient updates during link state change. */
8023 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
8024 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
8025 			REG_RD(sc, BCE_HC_COMMAND);
8026 		}
8027 
8028 		/* If any other attention is asserted, the chip is toast. */
8029 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
8030 		    (sc->status_block->status_attn_bits_ack &
8031 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
8032 
8033 			sc->unexpected_attention_count++;
8034 
8035 			BCE_PRINTF("%s(%d): Fatal attention detected: "
8036 			    "0x%08X\n",	__FILE__, __LINE__,
8037 			    sc->status_block->status_attn_bits);
8038 
8039 			DBRUNMSG(BCE_FATAL,
8040 			    if (unexpected_attention_sim_control == 0)
8041 				bce_breakpoint(sc));
8042 
8043 			bce_init_locked(sc);
8044 			goto bce_intr_exit;
8045 		}
8046 
8047 		/* Check for any completed RX frames. */
8048 		if (hw_rx_cons != sc->hw_rx_cons)
8049 			bce_rx_intr(sc);
8050 
8051 		/* Check for any completed TX frames. */
8052 		if (hw_tx_cons != sc->hw_tx_cons)
8053 			bce_tx_intr(sc);
8054 
8055 		/* Save status block index value for the next interrupt. */
8056 		sc->last_status_idx = sc->status_block->status_idx;
8057 
8058  		/*
8059  		 * Prevent speculative reads from getting
8060  		 * ahead of the status block.
8061 		 */
8062 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8063 		    BUS_SPACE_BARRIER_READ);
8064 
8065  		/*
8066  		 * If there's no work left then exit the
8067  		 * interrupt service routine.
8068 		 */
8069 		hw_rx_cons = bce_get_hw_rx_cons(sc);
8070 		hw_tx_cons = bce_get_hw_tx_cons(sc);
8071 
8072 		if ((hw_rx_cons == sc->hw_rx_cons) &&
8073 		    (hw_tx_cons == sc->hw_tx_cons))
8074 			break;
8075 	}
8076 
8077 	bus_dmamap_sync(sc->status_tag,	sc->status_map, BUS_DMASYNC_PREREAD);
8078 
8079 	/* Re-enable interrupts. */
8080 	bce_enable_intr(sc, 0);
8081 
8082 	/* Handle any frames that arrived while handling the interrupt. */
8083 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8084 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8085 		bce_start_locked(ifp);
8086 
8087 bce_intr_exit:
8088 	BCE_UNLOCK(sc);
8089 
8090 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8091 }
8092 
8093 
8094 /****************************************************************************/
8095 /* Programs the various packet receive modes (broadcast and multicast).     */
8096 /*                                                                          */
8097 /* Returns:                                                                 */
8098 /*   Nothing.                                                               */
8099 /****************************************************************************/
8100 static void
8101 bce_set_rx_mode(struct bce_softc *sc)
8102 {
8103 	struct ifnet *ifp;
8104 	struct ifmultiaddr *ifma;
8105 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8106 	u32 rx_mode, sort_mode;
8107 	int h, i;
8108 
8109 	DBENTER(BCE_VERBOSE_MISC);
8110 
8111 	BCE_LOCK_ASSERT(sc);
8112 
8113 	ifp = sc->bce_ifp;
8114 
8115 	/* Initialize receive mode default settings. */
8116 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8117 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8118 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8119 
8120 	/*
8121 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8122 	 * be enbled.
8123 	 */
8124 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8125 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8126 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8127 
8128 	/*
8129 	 * Check for promiscuous, all multicast, or selected
8130 	 * multicast address filtering.
8131 	 */
8132 	if (ifp->if_flags & IFF_PROMISC) {
8133 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8134 
8135 		/* Enable promiscuous mode. */
8136 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8137 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8138 	} else if (ifp->if_flags & IFF_ALLMULTI) {
8139 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8140 
8141 		/* Enable all multicast addresses. */
8142 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8143 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8144 			    0xffffffff);
8145 		}
8146 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8147 	} else {
8148 		/* Accept one or more multicast(s). */
8149 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8150 
8151 		if_maddr_rlock(ifp);
8152 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8153 			if (ifma->ifma_addr->sa_family != AF_LINK)
8154 				continue;
8155 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8156 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8157 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8158 		}
8159 		if_maddr_runlock(ifp);
8160 
8161 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8162 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8163 
8164 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8165 	}
8166 
8167 	/* Only make changes if the recive mode has actually changed. */
8168 	if (rx_mode != sc->rx_mode) {
8169 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8170 		    "0x%08X\n", rx_mode);
8171 
8172 		sc->rx_mode = rx_mode;
8173 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8174 	}
8175 
8176 	/* Disable and clear the exisitng sort before enabling a new sort. */
8177 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8178 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8179 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8180 
8181 	DBEXIT(BCE_VERBOSE_MISC);
8182 }
8183 
8184 
8185 /****************************************************************************/
8186 /* Called periodically to updates statistics from the controllers           */
8187 /* statistics block.                                                        */
8188 /*                                                                          */
8189 /* Returns:                                                                 */
8190 /*   Nothing.                                                               */
8191 /****************************************************************************/
8192 static void
8193 bce_stats_update(struct bce_softc *sc)
8194 {
8195 	struct ifnet *ifp;
8196 	struct statistics_block *stats;
8197 
8198 	DBENTER(BCE_EXTREME_MISC);
8199 
8200 	ifp = sc->bce_ifp;
8201 
8202 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8203 
8204 	stats = (struct statistics_block *) sc->stats_block;
8205 
8206 	/*
8207 	 * Certain controllers don't report
8208 	 * carrier sense errors correctly.
8209 	 * See errata E11_5708CA0_1165.
8210 	 */
8211 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8212 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8213 		ifp->if_oerrors +=
8214 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
8215 
8216 	/*
8217 	 * Update the sysctl statistics from the
8218 	 * hardware statistics.
8219 	 */
8220 	sc->stat_IfHCInOctets =
8221 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8222 	     (u64) stats->stat_IfHCInOctets_lo;
8223 
8224 	sc->stat_IfHCInBadOctets =
8225 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8226 	     (u64) stats->stat_IfHCInBadOctets_lo;
8227 
8228 	sc->stat_IfHCOutOctets =
8229 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8230 	     (u64) stats->stat_IfHCOutOctets_lo;
8231 
8232 	sc->stat_IfHCOutBadOctets =
8233 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8234 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8235 
8236 	sc->stat_IfHCInUcastPkts =
8237 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8238 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8239 
8240 	sc->stat_IfHCInMulticastPkts =
8241 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8242 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8243 
8244 	sc->stat_IfHCInBroadcastPkts =
8245 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8246 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8247 
8248 	sc->stat_IfHCOutUcastPkts =
8249 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8250 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8251 
8252 	sc->stat_IfHCOutMulticastPkts =
8253 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8254 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8255 
8256 	sc->stat_IfHCOutBroadcastPkts =
8257 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8258 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8259 
8260 	/* ToDo: Preserve counters beyond 32 bits? */
8261 	/* ToDo: Read the statistics from auto-clear regs? */
8262 
8263 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8264 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8265 
8266 	sc->stat_Dot3StatsCarrierSenseErrors =
8267 	    stats->stat_Dot3StatsCarrierSenseErrors;
8268 
8269 	sc->stat_Dot3StatsFCSErrors =
8270 	    stats->stat_Dot3StatsFCSErrors;
8271 
8272 	sc->stat_Dot3StatsAlignmentErrors =
8273 	    stats->stat_Dot3StatsAlignmentErrors;
8274 
8275 	sc->stat_Dot3StatsSingleCollisionFrames =
8276 	    stats->stat_Dot3StatsSingleCollisionFrames;
8277 
8278 	sc->stat_Dot3StatsMultipleCollisionFrames =
8279 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8280 
8281 	sc->stat_Dot3StatsDeferredTransmissions =
8282 	    stats->stat_Dot3StatsDeferredTransmissions;
8283 
8284 	sc->stat_Dot3StatsExcessiveCollisions =
8285 	    stats->stat_Dot3StatsExcessiveCollisions;
8286 
8287 	sc->stat_Dot3StatsLateCollisions =
8288 	    stats->stat_Dot3StatsLateCollisions;
8289 
8290 	sc->stat_EtherStatsCollisions =
8291 	    stats->stat_EtherStatsCollisions;
8292 
8293 	sc->stat_EtherStatsFragments =
8294 	    stats->stat_EtherStatsFragments;
8295 
8296 	sc->stat_EtherStatsJabbers =
8297 	    stats->stat_EtherStatsJabbers;
8298 
8299 	sc->stat_EtherStatsUndersizePkts =
8300 	    stats->stat_EtherStatsUndersizePkts;
8301 
8302 	sc->stat_EtherStatsOversizePkts =
8303 	     stats->stat_EtherStatsOversizePkts;
8304 
8305 	sc->stat_EtherStatsPktsRx64Octets =
8306 	    stats->stat_EtherStatsPktsRx64Octets;
8307 
8308 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8309 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8310 
8311 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8312 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8313 
8314 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8315 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8316 
8317 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8318 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8319 
8320 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8321 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8322 
8323 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8324 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8325 
8326 	sc->stat_EtherStatsPktsTx64Octets =
8327 	    stats->stat_EtherStatsPktsTx64Octets;
8328 
8329 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8330 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8331 
8332 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8333 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8334 
8335 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8336 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8337 
8338 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8339 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8340 
8341 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8342 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8343 
8344 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8345 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8346 
8347 	sc->stat_XonPauseFramesReceived =
8348 	    stats->stat_XonPauseFramesReceived;
8349 
8350 	sc->stat_XoffPauseFramesReceived =
8351 	    stats->stat_XoffPauseFramesReceived;
8352 
8353 	sc->stat_OutXonSent =
8354 	    stats->stat_OutXonSent;
8355 
8356 	sc->stat_OutXoffSent =
8357 	    stats->stat_OutXoffSent;
8358 
8359 	sc->stat_FlowControlDone =
8360 	    stats->stat_FlowControlDone;
8361 
8362 	sc->stat_MacControlFramesReceived =
8363 	    stats->stat_MacControlFramesReceived;
8364 
8365 	sc->stat_XoffStateEntered =
8366 	    stats->stat_XoffStateEntered;
8367 
8368 	sc->stat_IfInFramesL2FilterDiscards =
8369 	    stats->stat_IfInFramesL2FilterDiscards;
8370 
8371 	sc->stat_IfInRuleCheckerDiscards =
8372 	    stats->stat_IfInRuleCheckerDiscards;
8373 
8374 	sc->stat_IfInFTQDiscards =
8375 	    stats->stat_IfInFTQDiscards;
8376 
8377 	sc->stat_IfInMBUFDiscards =
8378 	    stats->stat_IfInMBUFDiscards;
8379 
8380 	sc->stat_IfInRuleCheckerP4Hit =
8381 	    stats->stat_IfInRuleCheckerP4Hit;
8382 
8383 	sc->stat_CatchupInRuleCheckerDiscards =
8384 	    stats->stat_CatchupInRuleCheckerDiscards;
8385 
8386 	sc->stat_CatchupInFTQDiscards =
8387 	    stats->stat_CatchupInFTQDiscards;
8388 
8389 	sc->stat_CatchupInMBUFDiscards =
8390 	    stats->stat_CatchupInMBUFDiscards;
8391 
8392 	sc->stat_CatchupInRuleCheckerP4Hit =
8393 	    stats->stat_CatchupInRuleCheckerP4Hit;
8394 
8395 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8396 
8397 	/*
8398 	 * Update the interface statistics from the
8399 	 * hardware statistics.
8400 	 */
8401 	ifp->if_collisions =
8402 	    (u_long) sc->stat_EtherStatsCollisions;
8403 
8404 	/* ToDo: This method loses soft errors. */
8405 	ifp->if_ierrors =
8406 	    (u_long) sc->stat_EtherStatsUndersizePkts +
8407 	    (u_long) sc->stat_EtherStatsOversizePkts +
8408 	    (u_long) sc->stat_IfInMBUFDiscards +
8409 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
8410 	    (u_long) sc->stat_Dot3StatsFCSErrors +
8411 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
8412 	    (u_long) sc->stat_IfInFTQDiscards +
8413 	    (u_long) sc->com_no_buffers;
8414 
8415 	/* ToDo: This method loses soft errors. */
8416 	ifp->if_oerrors =
8417 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8418 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8419 	    (u_long) sc->stat_Dot3StatsLateCollisions;
8420 
8421 	/* ToDo: Add additional statistics? */
8422 
8423 	DBEXIT(BCE_EXTREME_MISC);
8424 }
8425 
8426 
8427 /****************************************************************************/
8428 /* Periodic function to notify the bootcode that the driver is still        */
8429 /* present.                                                                 */
8430 /*                                                                          */
8431 /* Returns:                                                                 */
8432 /*   Nothing.                                                               */
8433 /****************************************************************************/
8434 static void
8435 bce_pulse(void *xsc)
8436 {
8437 	struct bce_softc *sc = xsc;
8438 	u32 msg;
8439 
8440 	DBENTER(BCE_EXTREME_MISC);
8441 
8442 	BCE_LOCK_ASSERT(sc);
8443 
8444 	/* Tell the firmware that the driver is still running. */
8445 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8446 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8447 
8448 	/* Update the bootcode condition. */
8449 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8450 
8451 	/* Report whether the bootcode still knows the driver is running. */
8452 	if (bce_verbose || bootverbose) {
8453 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8454 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8455 				sc->bce_drv_cardiac_arrest = TRUE;
8456 				BCE_PRINTF("%s(): Warning: bootcode "
8457 				    "thinks driver is absent! "
8458 				    "(bc_state = 0x%08X)\n",
8459 				    __FUNCTION__, sc->bc_state);
8460 			}
8461 		} else {
8462 			/*
8463 			 * Not supported by all bootcode versions.
8464 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8465 			 * will require the driver to reset the
8466 			 * controller to clear this condition.
8467 			 */
8468 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8469 				sc->bce_drv_cardiac_arrest = FALSE;
8470 				BCE_PRINTF("%s(): Bootcode found the "
8471 				    "driver pulse! (bc_state = 0x%08X)\n",
8472 				    __FUNCTION__, sc->bc_state);
8473 			}
8474 		}
8475 	}
8476 
8477 
8478 	/* Schedule the next pulse. */
8479 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8480 
8481 	DBEXIT(BCE_EXTREME_MISC);
8482 }
8483 
8484 
8485 /****************************************************************************/
8486 /* Periodic function to perform maintenance tasks.                          */
8487 /*                                                                          */
8488 /* Returns:                                                                 */
8489 /*   Nothing.                                                               */
8490 /****************************************************************************/
8491 static void
8492 bce_tick(void *xsc)
8493 {
8494 	struct bce_softc *sc = xsc;
8495 	struct mii_data *mii;
8496 	struct ifnet *ifp;
8497 	struct ifmediareq ifmr;
8498 
8499 	ifp = sc->bce_ifp;
8500 
8501 	DBENTER(BCE_EXTREME_MISC);
8502 
8503 	BCE_LOCK_ASSERT(sc);
8504 
8505 	/* Schedule the next tick. */
8506 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8507 
8508 	/* Update the statistics from the hardware statistics block. */
8509 	bce_stats_update(sc);
8510 
8511  	/* Ensure page and RX chains get refilled in low-memory situations. */
8512 	if (bce_hdr_split == TRUE)
8513 		bce_fill_pg_chain(sc);
8514 	bce_fill_rx_chain(sc);
8515 
8516 	/* Check that chip hasn't hung. */
8517 	bce_watchdog(sc);
8518 
8519 	/* If link is up already up then we're done. */
8520 	if (sc->bce_link_up == TRUE)
8521 		goto bce_tick_exit;
8522 
8523 	/* Link is down.  Check what the PHY's doing. */
8524 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8525 		bzero(&ifmr, sizeof(ifmr));
8526 		bce_ifmedia_sts_rphy(sc, &ifmr);
8527 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8528 		    (IFM_ACTIVE | IFM_AVALID)) {
8529 			sc->bce_link_up = TRUE;
8530 			bce_miibus_statchg(sc->bce_dev);
8531 		}
8532 	} else {
8533 		mii = device_get_softc(sc->bce_miibus);
8534 		mii_tick(mii);
8535 		/* Check if the link has come up. */
8536 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8537 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8538 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8539 			    __FUNCTION__);
8540 			sc->bce_link_up = TRUE;
8541 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8542 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8543 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8544 			    (bce_verbose || bootverbose))
8545 				BCE_PRINTF("Gigabit link up!\n");
8546 		}
8547 
8548 	}
8549 	if (sc->bce_link_up == TRUE) {
8550 		/* Now that link is up, handle any outstanding TX traffic. */
8551 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8552 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8553 			    "pending TX traffic.\n", __FUNCTION__);
8554 			bce_start_locked(ifp);
8555 		}
8556 	}
8557 
8558 bce_tick_exit:
8559 	DBEXIT(BCE_EXTREME_MISC);
8560 }
8561 
8562 static void
8563 bce_fw_cap_init(struct bce_softc *sc)
8564 {
8565 	u32 ack, cap, link;
8566 
8567 	ack = 0;
8568 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8569 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8570 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8571 		return;
8572 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8573 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8574 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8575 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8576 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8577 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8578 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8579 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8580 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8581 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8582 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8583 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8584 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8585 	}
8586 
8587 	if (ack != 0)
8588 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8589 }
8590 
8591 
8592 #ifdef BCE_DEBUG
8593 /****************************************************************************/
8594 /* Allows the driver state to be dumped through the sysctl interface.       */
8595 /*                                                                          */
8596 /* Returns:                                                                 */
8597 /*   0 for success, positive value for failure.                             */
8598 /****************************************************************************/
8599 static int
8600 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8601 {
8602 	int error;
8603 	int result;
8604 	struct bce_softc *sc;
8605 
8606 	result = -1;
8607 	error = sysctl_handle_int(oidp, &result, 0, req);
8608 
8609 	if (error || !req->newptr)
8610 		return (error);
8611 
8612 	if (result == 1) {
8613 		sc = (struct bce_softc *)arg1;
8614 		bce_dump_driver_state(sc);
8615 	}
8616 
8617 	return error;
8618 }
8619 
8620 
8621 /****************************************************************************/
8622 /* Allows the hardware state to be dumped through the sysctl interface.     */
8623 /*                                                                          */
8624 /* Returns:                                                                 */
8625 /*   0 for success, positive value for failure.                             */
8626 /****************************************************************************/
8627 static int
8628 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8629 {
8630 	int error;
8631 	int result;
8632 	struct bce_softc *sc;
8633 
8634 	result = -1;
8635 	error = sysctl_handle_int(oidp, &result, 0, req);
8636 
8637 	if (error || !req->newptr)
8638 		return (error);
8639 
8640 	if (result == 1) {
8641 		sc = (struct bce_softc *)arg1;
8642 		bce_dump_hw_state(sc);
8643 	}
8644 
8645 	return error;
8646 }
8647 
8648 
8649 /****************************************************************************/
8650 /* Allows the status block to be dumped through the sysctl interface.       */
8651 /*                                                                          */
8652 /* Returns:                                                                 */
8653 /*   0 for success, positive value for failure.                             */
8654 /****************************************************************************/
8655 static int
8656 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8657 {
8658 	int error;
8659 	int result;
8660 	struct bce_softc *sc;
8661 
8662 	result = -1;
8663 	error = sysctl_handle_int(oidp, &result, 0, req);
8664 
8665 	if (error || !req->newptr)
8666 		return (error);
8667 
8668 	if (result == 1) {
8669 		sc = (struct bce_softc *)arg1;
8670 		bce_dump_status_block(sc);
8671 	}
8672 
8673 	return error;
8674 }
8675 
8676 
8677 /****************************************************************************/
8678 /* Allows the stats block to be dumped through the sysctl interface.        */
8679 /*                                                                          */
8680 /* Returns:                                                                 */
8681 /*   0 for success, positive value for failure.                             */
8682 /****************************************************************************/
8683 static int
8684 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8685 {
8686 	int error;
8687 	int result;
8688 	struct bce_softc *sc;
8689 
8690 	result = -1;
8691 	error = sysctl_handle_int(oidp, &result, 0, req);
8692 
8693 	if (error || !req->newptr)
8694 		return (error);
8695 
8696 	if (result == 1) {
8697 		sc = (struct bce_softc *)arg1;
8698 		bce_dump_stats_block(sc);
8699 	}
8700 
8701 	return error;
8702 }
8703 
8704 
8705 /****************************************************************************/
8706 /* Allows the stat counters to be cleared without unloading/reloading the   */
8707 /* driver.                                                                  */
8708 /*                                                                          */
8709 /* Returns:                                                                 */
8710 /*   0 for success, positive value for failure.                             */
8711 /****************************************************************************/
8712 static int
8713 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8714 {
8715 	int error;
8716 	int result;
8717 	struct bce_softc *sc;
8718 
8719 	result = -1;
8720 	error = sysctl_handle_int(oidp, &result, 0, req);
8721 
8722 	if (error || !req->newptr)
8723 		return (error);
8724 
8725 	if (result == 1) {
8726 		sc = (struct bce_softc *)arg1;
8727 		struct statistics_block *stats;
8728 
8729 		stats = (struct statistics_block *) sc->stats_block;
8730 		bzero(stats, sizeof(struct statistics_block));
8731 		bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8732 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8733 
8734 		/* Clear the internal H/W statistics counters. */
8735 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8736 
8737 		/* Reset the driver maintained statistics. */
8738 		sc->interrupts_rx =
8739 		    sc->interrupts_tx = 0;
8740 		sc->tso_frames_requested =
8741 		    sc->tso_frames_completed =
8742 		    sc->tso_frames_failed = 0;
8743 		sc->rx_empty_count =
8744 		    sc->tx_full_count = 0;
8745 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8746 		sc->tx_hi_watermark = 0;
8747 		sc->l2fhdr_error_count =
8748 		    sc->l2fhdr_error_sim_count = 0;
8749 		sc->mbuf_alloc_failed_count =
8750 		    sc->mbuf_alloc_failed_sim_count = 0;
8751 		sc->dma_map_addr_rx_failed_count =
8752 		    sc->dma_map_addr_tx_failed_count = 0;
8753 		sc->mbuf_frag_count = 0;
8754 		sc->csum_offload_tcp_udp =
8755 		    sc->csum_offload_ip = 0;
8756 		sc->vlan_tagged_frames_rcvd =
8757 		    sc->vlan_tagged_frames_stripped = 0;
8758 		sc->split_header_frames_rcvd =
8759 		    sc->split_header_tcp_frames_rcvd = 0;
8760 
8761 		/* Clear firmware maintained statistics. */
8762 		REG_WR_IND(sc, 0x120084, 0);
8763 	}
8764 
8765 	return error;
8766 }
8767 
8768 
8769 /****************************************************************************/
8770 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8771 /* interface.                                                               */
8772 /*                                                                          */
8773 /* Returns:                                                                 */
8774 /*   0 for success, positive value for failure.                             */
8775 /****************************************************************************/
8776 static int
8777 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8778 {
8779 	int error;
8780 	int result;
8781 	struct bce_softc *sc;
8782 
8783 	result = -1;
8784 	error = sysctl_handle_int(oidp, &result, 0, req);
8785 
8786 	if (error || !req->newptr)
8787 		return (error);
8788 
8789 	if (result == 1) {
8790 		sc = (struct bce_softc *)arg1;
8791 		bce_dump_shmem_state(sc);
8792 	}
8793 
8794 	return error;
8795 }
8796 
8797 
8798 /****************************************************************************/
8799 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8800 /*                                                                          */
8801 /* Returns:                                                                 */
8802 /*   0 for success, positive value for failure.                             */
8803 /****************************************************************************/
8804 static int
8805 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8806 {
8807 	int error;
8808 	int result;
8809 	struct bce_softc *sc;
8810 
8811 	result = -1;
8812 	error = sysctl_handle_int(oidp, &result, 0, req);
8813 
8814 	if (error || !req->newptr)
8815 		return (error);
8816 
8817 	if (result == 1) {
8818 		sc = (struct bce_softc *)arg1;
8819 		bce_dump_bc_state(sc);
8820 	}
8821 
8822 	return error;
8823 }
8824 
8825 
8826 /****************************************************************************/
8827 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8828 /*                                                                          */
8829 /* Returns:                                                                 */
8830 /*   0 for success, positive value for failure.                             */
8831 /****************************************************************************/
8832 static int
8833 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8834 {
8835 	int error;
8836 	int result;
8837 	struct bce_softc *sc;
8838 
8839 	result = -1;
8840 	error = sysctl_handle_int(oidp, &result, 0, req);
8841 
8842 	if (error || !req->newptr)
8843 		return (error);
8844 
8845 	if (result == 1) {
8846 		sc = (struct bce_softc *)arg1;
8847 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8848 	}
8849 
8850 	return error;
8851 }
8852 
8853 
8854 /****************************************************************************/
8855 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8856 /*                                                                          */
8857 /* Returns:                                                                 */
8858 /*   0 for success, positive value for failure.                             */
8859 /****************************************************************************/
8860 static int
8861 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8862 {
8863 	int error;
8864 	int result;
8865 	struct bce_softc *sc;
8866 
8867 	result = -1;
8868 	error = sysctl_handle_int(oidp, &result, 0, req);
8869 
8870 	if (error || !req->newptr)
8871 		return (error);
8872 
8873 	if (result == 1) {
8874 		sc = (struct bce_softc *)arg1;
8875 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8876 	}
8877 
8878 	return error;
8879 }
8880 
8881 
8882 /****************************************************************************/
8883 /* Provides a sysctl interface to allow dumping the TX chain.               */
8884 /*                                                                          */
8885 /* Returns:                                                                 */
8886 /*   0 for success, positive value for failure.                             */
8887 /****************************************************************************/
8888 static int
8889 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8890 {
8891 	int error;
8892 	int result;
8893 	struct bce_softc *sc;
8894 
8895 	result = -1;
8896 	error = sysctl_handle_int(oidp, &result, 0, req);
8897 
8898 	if (error || !req->newptr)
8899 		return (error);
8900 
8901 	if (result == 1) {
8902 		sc = (struct bce_softc *)arg1;
8903 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8904 	}
8905 
8906 	return error;
8907 }
8908 
8909 
8910 /****************************************************************************/
8911 /* Provides a sysctl interface to allow dumping the page chain.             */
8912 /*                                                                          */
8913 /* Returns:                                                                 */
8914 /*   0 for success, positive value for failure.                             */
8915 /****************************************************************************/
8916 static int
8917 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8918 {
8919 	int error;
8920 	int result;
8921 	struct bce_softc *sc;
8922 
8923 	result = -1;
8924 	error = sysctl_handle_int(oidp, &result, 0, req);
8925 
8926 	if (error || !req->newptr)
8927 		return (error);
8928 
8929 	if (result == 1) {
8930 		sc = (struct bce_softc *)arg1;
8931 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8932 	}
8933 
8934 	return error;
8935 }
8936 
8937 /****************************************************************************/
8938 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8939 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8940 /*                                                                          */
8941 /* Returns:                                                                 */
8942 /*   0 for success, positive value for failure.                             */
8943 /****************************************************************************/
8944 static int
8945 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8946 {
8947 	struct bce_softc *sc = (struct bce_softc *)arg1;
8948 	int error;
8949 	u32 result;
8950 	u32 val[1];
8951 	u8 *data = (u8 *) val;
8952 
8953 	result = -1;
8954 	error = sysctl_handle_int(oidp, &result, 0, req);
8955 	if (error || (req->newptr == NULL))
8956 		return (error);
8957 
8958 	error = bce_nvram_read(sc, result, data, 4);
8959 
8960 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8961 
8962 	return (error);
8963 }
8964 
8965 
8966 /****************************************************************************/
8967 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8968 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8969 /*                                                                          */
8970 /* Returns:                                                                 */
8971 /*   0 for success, positive value for failure.                             */
8972 /****************************************************************************/
8973 static int
8974 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8975 {
8976 	struct bce_softc *sc = (struct bce_softc *)arg1;
8977 	int error;
8978 	u32 val, result;
8979 
8980 	result = -1;
8981 	error = sysctl_handle_int(oidp, &result, 0, req);
8982 	if (error || (req->newptr == NULL))
8983 		return (error);
8984 
8985 	/* Make sure the register is accessible. */
8986 	if (result < 0x8000) {
8987 		val = REG_RD(sc, result);
8988 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8989 	} else if (result < 0x0280000) {
8990 		val = REG_RD_IND(sc, result);
8991 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8992 	}
8993 
8994 	return (error);
8995 }
8996 
8997 
8998 /****************************************************************************/
8999 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
9000 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
9001 /*                                                                          */
9002 /* Returns:                                                                 */
9003 /*   0 for success, positive value for failure.                             */
9004 /****************************************************************************/
9005 static int
9006 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
9007 {
9008 	struct bce_softc *sc;
9009 	device_t dev;
9010 	int error, result;
9011 	u16 val;
9012 
9013 	result = -1;
9014 	error = sysctl_handle_int(oidp, &result, 0, req);
9015 	if (error || (req->newptr == NULL))
9016 		return (error);
9017 
9018 	/* Make sure the register is accessible. */
9019 	if (result < 0x20) {
9020 		sc = (struct bce_softc *)arg1;
9021 		dev = sc->bce_dev;
9022 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
9023 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
9024 	}
9025 	return (error);
9026 }
9027 
9028 
9029 /****************************************************************************/
9030 /* Provides a sysctl interface for dumping the nvram contents.              */
9031 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9032 /*									    */
9033 /* Returns:								    */
9034 /*   0 for success, positive errno for failure.				    */
9035 /****************************************************************************/
9036 static int
9037 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
9038 {
9039 	struct bce_softc *sc = (struct bce_softc *)arg1;
9040 	int error, i;
9041 
9042 	if (sc->nvram_buf == NULL)
9043 		sc->nvram_buf = malloc(sc->bce_flash_size,
9044 				    M_TEMP, M_ZERO | M_WAITOK);
9045 
9046 	error = 0;
9047 	if (req->oldlen == sc->bce_flash_size) {
9048 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
9049 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9050 	}
9051 
9052 	if (error == 0)
9053 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9054 
9055 	return error;
9056 }
9057 
9058 #ifdef BCE_NVRAM_WRITE_SUPPORT
9059 /****************************************************************************/
9060 /* Provides a sysctl interface for writing to nvram.                        */
9061 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9062 /*									    */
9063 /* Returns:								    */
9064 /*   0 for success, positive errno for failure.				    */
9065 /****************************************************************************/
9066 static int
9067 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9068 {
9069 	struct bce_softc *sc = (struct bce_softc *)arg1;
9070 	int error;
9071 
9072 	if (sc->nvram_buf == NULL)
9073 		sc->nvram_buf = malloc(sc->bce_flash_size,
9074 				    M_TEMP, M_ZERO | M_WAITOK);
9075 	else
9076 		bzero(sc->nvram_buf, sc->bce_flash_size);
9077 
9078 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9079 	if (error == 0)
9080 		return (error);
9081 
9082 	if (req->newlen == sc->bce_flash_size)
9083 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
9084 			    sc->bce_flash_size);
9085 
9086 
9087 	return error;
9088 }
9089 #endif
9090 
9091 
9092 /****************************************************************************/
9093 /* Provides a sysctl interface to allow reading a CID.                      */
9094 /*                                                                          */
9095 /* Returns:                                                                 */
9096 /*   0 for success, positive value for failure.                             */
9097 /****************************************************************************/
9098 static int
9099 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9100 {
9101 	struct bce_softc *sc;
9102 	int error, result;
9103 
9104 	result = -1;
9105 	error = sysctl_handle_int(oidp, &result, 0, req);
9106 	if (error || (req->newptr == NULL))
9107 		return (error);
9108 
9109 	/* Make sure the register is accessible. */
9110 	if (result <= TX_CID) {
9111 		sc = (struct bce_softc *)arg1;
9112 		bce_dump_ctx(sc, result);
9113 	}
9114 
9115 	return (error);
9116 }
9117 
9118 
9119 /****************************************************************************/
9120 /* Provides a sysctl interface to forcing the driver to dump state and      */
9121 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9122 /*                                                                          */
9123 /* Returns:                                                                 */
9124 /*   0 for success, positive value for failure.                             */
9125 /****************************************************************************/
9126 static int
9127 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9128 {
9129 	int error;
9130 	int result;
9131 	struct bce_softc *sc;
9132 
9133 	result = -1;
9134 	error = sysctl_handle_int(oidp, &result, 0, req);
9135 
9136 	if (error || !req->newptr)
9137 		return (error);
9138 
9139 	if (result == 1) {
9140 		sc = (struct bce_softc *)arg1;
9141 		bce_breakpoint(sc);
9142 	}
9143 
9144 	return error;
9145 }
9146 #endif
9147 
9148 /****************************************************************************/
9149 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9150 /*                                                                          */
9151 /* Returns:                                                                 */
9152 /*   0 for success, positive value for failure.                             */
9153 /****************************************************************************/
9154 static void
9155 bce_add_sysctls(struct bce_softc *sc)
9156 {
9157 	struct sysctl_ctx_list *ctx;
9158 	struct sysctl_oid_list *children;
9159 
9160 	DBENTER(BCE_VERBOSE_MISC);
9161 
9162 	ctx = device_get_sysctl_ctx(sc->bce_dev);
9163 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9164 
9165 #ifdef BCE_DEBUG
9166 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9167 	    "l2fhdr_error_sim_control",
9168 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
9169 	    0, "Debug control to force l2fhdr errors");
9170 
9171 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9172 	    "l2fhdr_error_sim_count",
9173 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9174 	    0, "Number of simulated l2_fhdr errors");
9175 #endif
9176 
9177 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9178 	    "l2fhdr_error_count",
9179 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
9180 	    0, "Number of l2_fhdr errors");
9181 
9182 #ifdef BCE_DEBUG
9183 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9184 	    "mbuf_alloc_failed_sim_control",
9185 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9186 	    0, "Debug control to force mbuf allocation failures");
9187 
9188 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9189 	    "mbuf_alloc_failed_sim_count",
9190 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9191 	    0, "Number of simulated mbuf cluster allocation failures");
9192 #endif
9193 
9194 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9195 	    "mbuf_alloc_failed_count",
9196 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9197 	    0, "Number of mbuf allocation failures");
9198 
9199 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9200 	    "mbuf_frag_count",
9201 	    CTLFLAG_RD, &sc->mbuf_frag_count,
9202 	    0, "Number of fragmented mbufs");
9203 
9204 #ifdef BCE_DEBUG
9205 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9206 	    "dma_map_addr_failed_sim_control",
9207 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9208 	    0, "Debug control to force DMA mapping failures");
9209 
9210 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9211 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9212 	    "dma_map_addr_failed_sim_count",
9213 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9214 	    0, "Number of simulated DMA mapping failures");
9215 
9216 #endif
9217 
9218 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9219 	    "dma_map_addr_rx_failed_count",
9220 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9221 	    0, "Number of RX DMA mapping failures");
9222 
9223 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9224 	    "dma_map_addr_tx_failed_count",
9225 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9226 	    0, "Number of TX DMA mapping failures");
9227 
9228 #ifdef BCE_DEBUG
9229 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9230 	    "unexpected_attention_sim_control",
9231 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9232 	    0, "Debug control to simulate unexpected attentions");
9233 
9234 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9235 	    "unexpected_attention_sim_count",
9236 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9237 	    0, "Number of simulated unexpected attentions");
9238 #endif
9239 
9240 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9241 	    "unexpected_attention_count",
9242 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9243 	    0, "Number of unexpected attentions");
9244 
9245 #ifdef BCE_DEBUG
9246 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9247 	    "debug_bootcode_running_failure",
9248 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9249 	    0, "Debug control to force bootcode running failures");
9250 
9251 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9252 	    "rx_low_watermark",
9253 	    CTLFLAG_RD, &sc->rx_low_watermark,
9254 	    0, "Lowest level of free rx_bd's");
9255 
9256 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9257 	    "rx_empty_count",
9258 	    CTLFLAG_RD, &sc->rx_empty_count,
9259 	    "Number of times the RX chain was empty");
9260 
9261 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9262 	    "tx_hi_watermark",
9263 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9264 	    0, "Highest level of used tx_bd's");
9265 
9266 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9267 	    "tx_full_count",
9268 	    CTLFLAG_RD, &sc->tx_full_count,
9269 	    "Number of times the TX chain was full");
9270 
9271 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9272 	    "tso_frames_requested",
9273 	    CTLFLAG_RD, &sc->tso_frames_requested,
9274 	    "Number of TSO frames requested");
9275 
9276 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9277 	    "tso_frames_completed",
9278 	    CTLFLAG_RD, &sc->tso_frames_completed,
9279 	    "Number of TSO frames completed");
9280 
9281 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9282 	    "tso_frames_failed",
9283 	    CTLFLAG_RD, &sc->tso_frames_failed,
9284 	    "Number of TSO frames failed");
9285 
9286 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9287 	    "csum_offload_ip",
9288 	    CTLFLAG_RD, &sc->csum_offload_ip,
9289 	    "Number of IP checksum offload frames");
9290 
9291 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9292 	    "csum_offload_tcp_udp",
9293 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9294 	    "Number of TCP/UDP checksum offload frames");
9295 
9296 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9297 	    "vlan_tagged_frames_rcvd",
9298 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9299 	    "Number of VLAN tagged frames received");
9300 
9301 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9302 	    "vlan_tagged_frames_stripped",
9303 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9304 	    "Number of VLAN tagged frames stripped");
9305 
9306 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9307 	    "interrupts_rx",
9308 	    CTLFLAG_RD, &sc->interrupts_rx,
9309 	    "Number of RX interrupts");
9310 
9311 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9312 	    "interrupts_tx",
9313 	    CTLFLAG_RD, &sc->interrupts_tx,
9314 	    "Number of TX interrupts");
9315 
9316 	if (bce_hdr_split == TRUE) {
9317 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9318 		    "split_header_frames_rcvd",
9319 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9320 		    "Number of split header frames received");
9321 
9322 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9323 		    "split_header_tcp_frames_rcvd",
9324 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9325 		    "Number of split header TCP frames received");
9326 	}
9327 
9328 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9329 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9330 	    (void *)sc, 0,
9331 	    bce_sysctl_nvram_dump, "S", "");
9332 
9333 #ifdef BCE_NVRAM_WRITE_SUPPORT
9334 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9335 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9336 	    (void *)sc, 0,
9337 	    bce_sysctl_nvram_write, "S", "");
9338 #endif
9339 #endif /* BCE_DEBUG */
9340 
9341 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9342 	    "stat_IfHcInOctets",
9343 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9344 	    "Bytes received");
9345 
9346 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9347 	    "stat_IfHCInBadOctets",
9348 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9349 	    "Bad bytes received");
9350 
9351 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9352 	    "stat_IfHCOutOctets",
9353 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9354 	    "Bytes sent");
9355 
9356 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9357 	    "stat_IfHCOutBadOctets",
9358 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9359 	    "Bad bytes sent");
9360 
9361 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9362 	    "stat_IfHCInUcastPkts",
9363 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9364 	    "Unicast packets received");
9365 
9366 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9367 	    "stat_IfHCInMulticastPkts",
9368 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9369 	    "Multicast packets received");
9370 
9371 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9372 	    "stat_IfHCInBroadcastPkts",
9373 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9374 	    "Broadcast packets received");
9375 
9376 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9377 	    "stat_IfHCOutUcastPkts",
9378 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9379 	    "Unicast packets sent");
9380 
9381 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9382 	    "stat_IfHCOutMulticastPkts",
9383 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9384 	    "Multicast packets sent");
9385 
9386 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9387 	    "stat_IfHCOutBroadcastPkts",
9388 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9389 	    "Broadcast packets sent");
9390 
9391 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9392 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9393 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9394 	    0, "Internal MAC transmit errors");
9395 
9396 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9397 	    "stat_Dot3StatsCarrierSenseErrors",
9398 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9399 	    0, "Carrier sense errors");
9400 
9401 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9402 	    "stat_Dot3StatsFCSErrors",
9403 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9404 	    0, "Frame check sequence errors");
9405 
9406 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9407 	    "stat_Dot3StatsAlignmentErrors",
9408 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9409 	    0, "Alignment errors");
9410 
9411 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9412 	    "stat_Dot3StatsSingleCollisionFrames",
9413 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9414 	    0, "Single Collision Frames");
9415 
9416 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9417 	    "stat_Dot3StatsMultipleCollisionFrames",
9418 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9419 	    0, "Multiple Collision Frames");
9420 
9421 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9422 	    "stat_Dot3StatsDeferredTransmissions",
9423 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9424 	    0, "Deferred Transmissions");
9425 
9426 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9427 	    "stat_Dot3StatsExcessiveCollisions",
9428 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9429 	    0, "Excessive Collisions");
9430 
9431 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9432 	    "stat_Dot3StatsLateCollisions",
9433 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9434 	    0, "Late Collisions");
9435 
9436 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9437 	    "stat_EtherStatsCollisions",
9438 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9439 	    0, "Collisions");
9440 
9441 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9442 	    "stat_EtherStatsFragments",
9443 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9444 	    0, "Fragments");
9445 
9446 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9447 	    "stat_EtherStatsJabbers",
9448 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9449 	    0, "Jabbers");
9450 
9451 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9452 	    "stat_EtherStatsUndersizePkts",
9453 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9454 	    0, "Undersize packets");
9455 
9456 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9457 	    "stat_EtherStatsOversizePkts",
9458 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9459 	    0, "stat_EtherStatsOversizePkts");
9460 
9461 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9462 	    "stat_EtherStatsPktsRx64Octets",
9463 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9464 	    0, "Bytes received in 64 byte packets");
9465 
9466 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9467 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9468 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9469 	    0, "Bytes received in 65 to 127 byte packets");
9470 
9471 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9472 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9473 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9474 	    0, "Bytes received in 128 to 255 byte packets");
9475 
9476 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9477 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9478 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9479 	    0, "Bytes received in 256 to 511 byte packets");
9480 
9481 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9482 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9483 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9484 	    0, "Bytes received in 512 to 1023 byte packets");
9485 
9486 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9487 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9488 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9489 	    0, "Bytes received in 1024 t0 1522 byte packets");
9490 
9491 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9492 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9493 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9494 	    0, "Bytes received in 1523 to 9022 byte packets");
9495 
9496 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9497 	    "stat_EtherStatsPktsTx64Octets",
9498 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9499 	    0, "Bytes sent in 64 byte packets");
9500 
9501 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9502 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9503 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9504 	    0, "Bytes sent in 65 to 127 byte packets");
9505 
9506 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9507 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9508 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9509 	    0, "Bytes sent in 128 to 255 byte packets");
9510 
9511 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9512 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9513 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9514 	    0, "Bytes sent in 256 to 511 byte packets");
9515 
9516 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9517 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9518 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9519 	    0, "Bytes sent in 512 to 1023 byte packets");
9520 
9521 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9522 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9523 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9524 	    0, "Bytes sent in 1024 to 1522 byte packets");
9525 
9526 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9527 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9528 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9529 	    0, "Bytes sent in 1523 to 9022 byte packets");
9530 
9531 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9532 	    "stat_XonPauseFramesReceived",
9533 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9534 	    0, "XON pause frames receved");
9535 
9536 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9537 	    "stat_XoffPauseFramesReceived",
9538 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9539 	    0, "XOFF pause frames received");
9540 
9541 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9542 	    "stat_OutXonSent",
9543 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9544 	    0, "XON pause frames sent");
9545 
9546 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9547 	    "stat_OutXoffSent",
9548 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9549 	    0, "XOFF pause frames sent");
9550 
9551 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9552 	    "stat_FlowControlDone",
9553 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9554 	    0, "Flow control done");
9555 
9556 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9557 	    "stat_MacControlFramesReceived",
9558 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9559 	    0, "MAC control frames received");
9560 
9561 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9562 	    "stat_XoffStateEntered",
9563 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9564 	    0, "XOFF state entered");
9565 
9566 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9567 	    "stat_IfInFramesL2FilterDiscards",
9568 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9569 	    0, "Received L2 packets discarded");
9570 
9571 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9572 	    "stat_IfInRuleCheckerDiscards",
9573 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9574 	    0, "Received packets discarded by rule");
9575 
9576 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9577 	    "stat_IfInFTQDiscards",
9578 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9579 	    0, "Received packet FTQ discards");
9580 
9581 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9582 	    "stat_IfInMBUFDiscards",
9583 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9584 	    0, "Received packets discarded due to lack "
9585 	    "of controller buffer memory");
9586 
9587 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9588 	    "stat_IfInRuleCheckerP4Hit",
9589 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9590 	    0, "Received packets rule checker hits");
9591 
9592 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9593 	    "stat_CatchupInRuleCheckerDiscards",
9594 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9595 	    0, "Received packets discarded in Catchup path");
9596 
9597 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9598 	    "stat_CatchupInFTQDiscards",
9599 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9600 	    0, "Received packets discarded in FTQ in Catchup path");
9601 
9602 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9603 	    "stat_CatchupInMBUFDiscards",
9604 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9605 	    0, "Received packets discarded in controller "
9606 	    "buffer memory in Catchup path");
9607 
9608 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9609 	    "stat_CatchupInRuleCheckerP4Hit",
9610 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9611 	    0, "Received packets rule checker hits in Catchup path");
9612 
9613 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9614 	    "com_no_buffers",
9615 	    CTLFLAG_RD, &sc->com_no_buffers,
9616 	    0, "Valid packets received but no RX buffers available");
9617 
9618 #ifdef BCE_DEBUG
9619 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9620 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9621 	    (void *)sc, 0,
9622 	    bce_sysctl_driver_state, "I", "Drive state information");
9623 
9624 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9625 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9626 	    (void *)sc, 0,
9627 	    bce_sysctl_hw_state, "I", "Hardware state information");
9628 
9629 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9630 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9631 	    (void *)sc, 0,
9632 	    bce_sysctl_status_block, "I", "Dump status block");
9633 
9634 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9635 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9636 	    (void *)sc, 0,
9637 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9638 
9639 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9640 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9641 	    (void *)sc, 0,
9642 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9643 
9644 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9645 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9646 	    (void *)sc, 0,
9647 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9648 
9649 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9650 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9651 	    (void *)sc, 0,
9652 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9653 
9654 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9655 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9656 	    (void *)sc, 0,
9657 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9658 
9659 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9660 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9661 	    (void *)sc, 0,
9662 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9663 
9664 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9665 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9666 	    (void *)sc, 0,
9667 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9668 
9669 	if (bce_hdr_split == TRUE) {
9670 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9671 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9672 		    (void *)sc, 0,
9673 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9674 	}
9675 
9676 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9677 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9678 	    (void *)sc, 0,
9679 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9680 
9681 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9682 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9683 	    (void *)sc, 0,
9684 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9685 
9686 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9687 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9688 	    (void *)sc, 0,
9689 	    bce_sysctl_reg_read, "I", "Register read");
9690 
9691 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9692 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9693 	    (void *)sc, 0,
9694 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9695 
9696 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9697 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9698 	    (void *)sc, 0,
9699 	    bce_sysctl_phy_read, "I", "PHY register read");
9700 
9701 #endif
9702 
9703 	DBEXIT(BCE_VERBOSE_MISC);
9704 }
9705 
9706 
9707 /****************************************************************************/
9708 /* BCE Debug Routines                                                       */
9709 /****************************************************************************/
9710 #ifdef BCE_DEBUG
9711 
9712 /****************************************************************************/
9713 /* Freezes the controller to allow for a cohesive state dump.               */
9714 /*                                                                          */
9715 /* Returns:                                                                 */
9716 /*   Nothing.                                                               */
9717 /****************************************************************************/
9718 static __attribute__ ((noinline)) void
9719 bce_freeze_controller(struct bce_softc *sc)
9720 {
9721 	u32 val;
9722 	val = REG_RD(sc, BCE_MISC_COMMAND);
9723 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9724 	REG_WR(sc, BCE_MISC_COMMAND, val);
9725 }
9726 
9727 
9728 /****************************************************************************/
9729 /* Unfreezes the controller after a freeze operation.  This may not always  */
9730 /* work and the controller will require a reset!                            */
9731 /*                                                                          */
9732 /* Returns:                                                                 */
9733 /*   Nothing.                                                               */
9734 /****************************************************************************/
9735 static __attribute__ ((noinline)) void
9736 bce_unfreeze_controller(struct bce_softc *sc)
9737 {
9738 	u32 val;
9739 	val = REG_RD(sc, BCE_MISC_COMMAND);
9740 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9741 	REG_WR(sc, BCE_MISC_COMMAND, val);
9742 }
9743 
9744 
9745 /****************************************************************************/
9746 /* Prints out Ethernet frame information from an mbuf.                      */
9747 /*                                                                          */
9748 /* Partially decode an Ethernet frame to look at some important headers.    */
9749 /*                                                                          */
9750 /* Returns:                                                                 */
9751 /*   Nothing.                                                               */
9752 /****************************************************************************/
9753 static __attribute__ ((noinline)) void
9754 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9755 {
9756 	struct ether_vlan_header *eh;
9757 	u16 etype;
9758 	int ehlen;
9759 	struct ip *ip;
9760 	struct tcphdr *th;
9761 	struct udphdr *uh;
9762 	struct arphdr *ah;
9763 
9764 	BCE_PRINTF(
9765 	    "-----------------------------"
9766 	    " Frame Decode "
9767 	    "-----------------------------\n");
9768 
9769 	eh = mtod(m, struct ether_vlan_header *);
9770 
9771 	/* Handle VLAN encapsulation if present. */
9772 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9773 		etype = ntohs(eh->evl_proto);
9774 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9775 	} else {
9776 		etype = ntohs(eh->evl_encap_proto);
9777 		ehlen = ETHER_HDR_LEN;
9778 	}
9779 
9780 	/* ToDo: Add VLAN output. */
9781 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9782 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9783 
9784 	switch (etype) {
9785 	case ETHERTYPE_IP:
9786 		ip = (struct ip *)(m->m_data + ehlen);
9787 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9788 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9789 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9790 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9791 
9792 		switch (ip->ip_p) {
9793 		case IPPROTO_TCP:
9794 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9795 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9796 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9797 			    ntohs(th->th_dport), ntohs(th->th_sport),
9798 			    (th->th_off << 2), th->th_flags,
9799 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9800 			    "\02SYN\01FIN", ntohs(th->th_sum));
9801 			break;
9802 		case IPPROTO_UDP:
9803 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9804 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9805 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9806 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9807 			    ntohs(uh->uh_sum));
9808 			break;
9809 		case IPPROTO_ICMP:
9810 			BCE_PRINTF("icmp:\n");
9811 			break;
9812 		default:
9813 			BCE_PRINTF("----: Other IP protocol.\n");
9814 			}
9815 		break;
9816 	case ETHERTYPE_IPV6:
9817 		BCE_PRINTF("ipv6: No decode supported.\n");
9818 		break;
9819 	case ETHERTYPE_ARP:
9820 		BCE_PRINTF("-arp: ");
9821 		ah = (struct arphdr *) (m->m_data + ehlen);
9822 		switch (ntohs(ah->ar_op)) {
9823 		case ARPOP_REVREQUEST:
9824 			printf("reverse ARP request\n");
9825 			break;
9826 		case ARPOP_REVREPLY:
9827 			printf("reverse ARP reply\n");
9828 			break;
9829 		case ARPOP_REQUEST:
9830 			printf("ARP request\n");
9831 			break;
9832 		case ARPOP_REPLY:
9833 			printf("ARP reply\n");
9834 			break;
9835 		default:
9836 			printf("other ARP operation\n");
9837 		}
9838 		break;
9839 	default:
9840 		BCE_PRINTF("----: Other protocol.\n");
9841 	}
9842 
9843 	BCE_PRINTF(
9844 		"-----------------------------"
9845 		"--------------"
9846 		"-----------------------------\n");
9847 }
9848 
9849 
9850 /****************************************************************************/
9851 /* Prints out information about an mbuf.                                    */
9852 /*                                                                          */
9853 /* Returns:                                                                 */
9854 /*   Nothing.                                                               */
9855 /****************************************************************************/
9856 static __attribute__ ((noinline)) void
9857 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9858 {
9859 	struct mbuf *mp = m;
9860 
9861 	if (m == NULL) {
9862 		BCE_PRINTF("mbuf: null pointer\n");
9863 		return;
9864 	}
9865 
9866 	while (mp) {
9867 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9868 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9869 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9870 
9871 		if (mp->m_flags & M_PKTHDR) {
9872 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9873 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9874 			    mp->m_flags, M_FLAG_PRINTF,
9875 			    mp->m_pkthdr.csum_flags,
9876 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP"
9877 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9878 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9879 			    "\14CSUM_PSEUDO_HDR");
9880 		}
9881 
9882 		if (mp->m_flags & M_EXT) {
9883 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9884 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9885 			switch (mp->m_ext.ext_type) {
9886 			case EXT_CLUSTER:
9887 				printf("EXT_CLUSTER\n"); break;
9888 			case EXT_SFBUF:
9889 				printf("EXT_SFBUF\n"); break;
9890 			case EXT_JUMBO9:
9891 				printf("EXT_JUMBO9\n"); break;
9892 			case EXT_JUMBO16:
9893 				printf("EXT_JUMBO16\n"); break;
9894 			case EXT_PACKET:
9895 				printf("EXT_PACKET\n"); break;
9896 			case EXT_MBUF:
9897 				printf("EXT_MBUF\n"); break;
9898 			case EXT_NET_DRV:
9899 				printf("EXT_NET_DRV\n"); break;
9900 			case EXT_MOD_TYPE:
9901 				printf("EXT_MDD_TYPE\n"); break;
9902 			case EXT_DISPOSABLE:
9903 				printf("EXT_DISPOSABLE\n"); break;
9904 			case EXT_EXTREF:
9905 				printf("EXT_EXTREF\n"); break;
9906 			default:
9907 				printf("UNKNOWN\n");
9908 			}
9909 		}
9910 
9911 		mp = mp->m_next;
9912 	}
9913 }
9914 
9915 
9916 /****************************************************************************/
9917 /* Prints out the mbufs in the TX mbuf chain.                               */
9918 /*                                                                          */
9919 /* Returns:                                                                 */
9920 /*   Nothing.                                                               */
9921 /****************************************************************************/
9922 static __attribute__ ((noinline)) void
9923 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9924 {
9925 	struct mbuf *m;
9926 
9927 	BCE_PRINTF(
9928 		"----------------------------"
9929 		"  tx mbuf data  "
9930 		"----------------------------\n");
9931 
9932 	for (int i = 0; i < count; i++) {
9933 	 	m = sc->tx_mbuf_ptr[chain_prod];
9934 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9935 		bce_dump_mbuf(sc, m);
9936 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9937 	}
9938 
9939 	BCE_PRINTF(
9940 		"----------------------------"
9941 		"----------------"
9942 		"----------------------------\n");
9943 }
9944 
9945 
9946 /****************************************************************************/
9947 /* Prints out the mbufs in the RX mbuf chain.                               */
9948 /*                                                                          */
9949 /* Returns:                                                                 */
9950 /*   Nothing.                                                               */
9951 /****************************************************************************/
9952 static __attribute__ ((noinline)) void
9953 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9954 {
9955 	struct mbuf *m;
9956 
9957 	BCE_PRINTF(
9958 		"----------------------------"
9959 		"  rx mbuf data  "
9960 		"----------------------------\n");
9961 
9962 	for (int i = 0; i < count; i++) {
9963 	 	m = sc->rx_mbuf_ptr[chain_prod];
9964 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9965 		bce_dump_mbuf(sc, m);
9966 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9967 	}
9968 
9969 
9970 	BCE_PRINTF(
9971 		"----------------------------"
9972 		"----------------"
9973 		"----------------------------\n");
9974 }
9975 
9976 
9977 /****************************************************************************/
9978 /* Prints out the mbufs in the mbuf page chain.                             */
9979 /*                                                                          */
9980 /* Returns:                                                                 */
9981 /*   Nothing.                                                               */
9982 /****************************************************************************/
9983 static __attribute__ ((noinline)) void
9984 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9985 {
9986 	struct mbuf *m;
9987 
9988 	BCE_PRINTF(
9989 		"----------------------------"
9990 		"  pg mbuf data  "
9991 		"----------------------------\n");
9992 
9993 	for (int i = 0; i < count; i++) {
9994 	 	m = sc->pg_mbuf_ptr[chain_prod];
9995 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9996 		bce_dump_mbuf(sc, m);
9997 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9998 	}
9999 
10000 
10001 	BCE_PRINTF(
10002 		"----------------------------"
10003 		"----------------"
10004 		"----------------------------\n");
10005 }
10006 
10007 
10008 /****************************************************************************/
10009 /* Prints out a tx_bd structure.                                            */
10010 /*                                                                          */
10011 /* Returns:                                                                 */
10012 /*   Nothing.                                                               */
10013 /****************************************************************************/
10014 static __attribute__ ((noinline)) void
10015 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
10016 {
10017 	int i = 0;
10018 
10019 	if (idx > MAX_TX_BD_ALLOC)
10020 		/* Index out of range. */
10021 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
10022 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
10023 		/* TX Chain page pointer. */
10024 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10025 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
10026 		    txbd->tx_bd_haddr_lo);
10027 	else {
10028 		/* Normal tx_bd entry. */
10029 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
10030 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
10031 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
10032 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
10033 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
10034 
10035 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
10036 			if (i>0)
10037 				printf("|");
10038 			printf("CONN_FAULT");
10039 			i++;
10040 		}
10041 
10042 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
10043 			if (i>0)
10044 				printf("|");
10045 			printf("TCP_UDP_CKSUM");
10046 			i++;
10047 		}
10048 
10049 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10050 			if (i>0)
10051 				printf("|");
10052 			printf("IP_CKSUM");
10053 			i++;
10054 		}
10055 
10056 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10057 			if (i>0)
10058 				printf("|");
10059 			printf("VLAN");
10060 			i++;
10061 		}
10062 
10063 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10064 			if (i>0)
10065 				printf("|");
10066 			printf("COAL_NOW");
10067 			i++;
10068 		}
10069 
10070 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10071 			if (i>0)
10072 				printf("|");
10073 			printf("DONT_GEN_CRC");
10074 			i++;
10075 		}
10076 
10077 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10078 			if (i>0)
10079 				printf("|");
10080 			printf("START");
10081 			i++;
10082 		}
10083 
10084 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10085 			if (i>0)
10086 				printf("|");
10087 			printf("END");
10088 			i++;
10089 		}
10090 
10091 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10092 			if (i>0)
10093 				printf("|");
10094 			printf("LSO");
10095 			i++;
10096 		}
10097 
10098 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10099 			if (i>0)
10100 				printf("|");
10101 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10102 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10103 		}
10104 
10105 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10106 			if (i>0)
10107 				printf("|");
10108 			printf("SW_FLAGS");
10109 			i++;
10110 		}
10111 
10112 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10113 			if (i>0)
10114 				printf("|");
10115 			printf("SNAP)");
10116 		} else {
10117 			printf(")\n");
10118 		}
10119 	}
10120 }
10121 
10122 
10123 /****************************************************************************/
10124 /* Prints out a rx_bd structure.                                            */
10125 /*                                                                          */
10126 /* Returns:                                                                 */
10127 /*   Nothing.                                                               */
10128 /****************************************************************************/
10129 static __attribute__ ((noinline)) void
10130 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10131 {
10132 	if (idx > MAX_RX_BD_ALLOC)
10133 		/* Index out of range. */
10134 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10135 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10136 		/* RX Chain page pointer. */
10137 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10138 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10139 		    rxbd->rx_bd_haddr_lo);
10140 	else
10141 		/* Normal rx_bd entry. */
10142 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10143 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10144 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10145 		    rxbd->rx_bd_flags);
10146 }
10147 
10148 
10149 /****************************************************************************/
10150 /* Prints out a rx_bd structure in the page chain.                          */
10151 /*                                                                          */
10152 /* Returns:                                                                 */
10153 /*   Nothing.                                                               */
10154 /****************************************************************************/
10155 static __attribute__ ((noinline)) void
10156 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10157 {
10158 	if (idx > MAX_PG_BD_ALLOC)
10159 		/* Index out of range. */
10160 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10161 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10162 		/* Page Chain page pointer. */
10163 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10164 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10165 	else
10166 		/* Normal rx_bd entry. */
10167 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10168 			"flags = 0x%08X\n", idx,
10169 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10170 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
10171 }
10172 
10173 
10174 /****************************************************************************/
10175 /* Prints out a l2_fhdr structure.                                          */
10176 /*                                                                          */
10177 /* Returns:                                                                 */
10178 /*   Nothing.                                                               */
10179 /****************************************************************************/
10180 static __attribute__ ((noinline)) void
10181 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10182 {
10183 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10184 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10185 		"tcp_udp_xsum = 0x%04X\n", idx,
10186 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10187 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10188 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10189 }
10190 
10191 
10192 /****************************************************************************/
10193 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10194 /*                                                                          */
10195 /* Returns:                                                                 */
10196 /*   Nothing.                                                               */
10197 /****************************************************************************/
10198 static __attribute__ ((noinline)) void
10199 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10200 {
10201 	if (cid > TX_CID) {
10202 		BCE_PRINTF(" Unknown CID\n");
10203 		return;
10204 	}
10205 
10206 	BCE_PRINTF(
10207 	    "----------------------------"
10208 	    "    CTX Data    "
10209 	    "----------------------------\n");
10210 
10211 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10212 
10213 	if (cid == RX_CID) {
10214 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10215 		   "producer index\n",
10216 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10217 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10218 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10219 		    BCE_L2CTX_RX_HOST_BSEQ));
10220 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10221 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10222 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10223 		    "descriptor address\n",
10224  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10225 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10226 		    "descriptor address\n",
10227 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10228 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10229 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10230 		    BCE_L2CTX_RX_NX_BDIDX));
10231 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10232 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10233 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10234 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10235 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10236 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10237 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10238 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10239 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10240 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10241 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10242 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10243 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10244 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10245 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10246 	} else if (cid == TX_CID) {
10247 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10248 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10249 			    CTX_RD(sc, GET_CID_ADDR(cid),
10250 			    BCE_L2CTX_TX_TYPE_XI));
10251 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10252 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10253 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10254 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10255 			    "h/w buffer descriptor address\n",
10256 			    CTX_RD(sc, GET_CID_ADDR(cid),
10257 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10258 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10259 			    "h/w buffer	descriptor address\n",
10260 			    CTX_RD(sc, GET_CID_ADDR(cid),
10261 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10262 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10263 			    "host producer index\n",
10264 			    CTX_RD(sc, GET_CID_ADDR(cid),
10265 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10266 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10267 			    "host byte sequence\n",
10268 			    CTX_RD(sc, GET_CID_ADDR(cid),
10269 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10270 		} else {
10271 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10272 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10273 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10274 			    CTX_RD(sc, GET_CID_ADDR(cid),
10275 			    BCE_L2CTX_TX_CMD_TYPE));
10276 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10277 			    "h/w buffer	descriptor address\n",
10278 			    CTX_RD(sc, GET_CID_ADDR(cid),
10279 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10280 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10281 			    "h/w buffer	descriptor address\n",
10282 			    CTX_RD(sc, GET_CID_ADDR(cid),
10283 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10284 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10285 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10286 			    BCE_L2CTX_TX_HOST_BIDX));
10287 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10288 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10289 			    BCE_L2CTX_TX_HOST_BSEQ));
10290 		}
10291 	}
10292 
10293 	BCE_PRINTF(
10294 	   "----------------------------"
10295 	   "    Raw CTX     "
10296 	   "----------------------------\n");
10297 
10298 	for (int i = 0x0; i < 0x300; i += 0x10) {
10299 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10300 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10301 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10302 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10303 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10304 	}
10305 
10306 
10307 	BCE_PRINTF(
10308 	   "----------------------------"
10309 	   "----------------"
10310 	   "----------------------------\n");
10311 }
10312 
10313 
10314 /****************************************************************************/
10315 /* Prints out the FTQ data.                                                 */
10316 /*                                                                          */
10317 /* Returns:                                                                */
10318 /*   Nothing.                                                               */
10319 /****************************************************************************/
10320 static __attribute__ ((noinline)) void
10321 bce_dump_ftqs(struct bce_softc *sc)
10322 {
10323 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10324 
10325 	BCE_PRINTF(
10326 	    "----------------------------"
10327 	    "    FTQ Data    "
10328 	    "----------------------------\n");
10329 
10330 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10331 	    "Max_Depth  Valid_Cnt \n");
10332 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10333 	    "---------- ----------\n");
10334 
10335 	/* Setup the generic statistic counters for the FTQ valid count. */
10336 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10337 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10338 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10339 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10340 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10341 
10342 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10343 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10344 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10345 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10346 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10347 
10348 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10349 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10350 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10351 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10352 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10353 
10354 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10355 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10356 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10357 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10358 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10359 
10360 	/* Input queue to the Receive Lookup state machine */
10361 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10362 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10363 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10364 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10365 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10366 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10367 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10368 
10369 	/* Input queue to the Receive Processor */
10370 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10371 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10372 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10373 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10374 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10375 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10376 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10377 
10378 	/* Input queue to the Recevie Processor */
10379 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10380 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10381 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10382 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10383 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10384 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10385 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10386 
10387 	/* Input queue to the Receive Virtual to Physical state machine */
10388 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10389 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10390 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10391 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10392 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10393 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10394 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10395 
10396 	/* Input queue to the Recevie Virtual to Physical state machine */
10397 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10398 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10399 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10400 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10401 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10402 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10403 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10404 
10405 	/* Input queue to the Receive Virtual to Physical state machine */
10406 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10407 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10408 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10409 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10410 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10411 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10412 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10413 
10414 	/* Input queue to the Receive DMA state machine */
10415 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10416 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10417 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10418 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10419 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10420 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10421 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10422 
10423 	/* Input queue to the Transmit Scheduler state machine */
10424 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10425 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10426 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10427 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10428 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10429 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10430 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10431 
10432 	/* Input queue to the Transmit Buffer Descriptor state machine */
10433 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10434 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10435 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10436 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10437 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10438 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10439 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10440 
10441 	/* Input queue to the Transmit Processor */
10442 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10443 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10444 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10445 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10446 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10447 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10448 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10449 
10450 	/* Input queue to the Transmit DMA state machine */
10451 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10452 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10453 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10454 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10455 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10456 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10457 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10458 
10459 	/* Input queue to the Transmit Patch-Up Processor */
10460 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10461 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10462 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10463 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10464 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10465 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10466 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10467 
10468 	/* Input queue to the Transmit Assembler state machine */
10469 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10470 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10471 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10472 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10473 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10474 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10475 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10476 
10477 	/* Input queue to the Completion Processor */
10478 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10479 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10480 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10481 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10482 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10483 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10484 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10485 
10486 	/* Input queue to the Completion Processor */
10487 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10488 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10489 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10490 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10491 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10492 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10493 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10494 
10495 	/* Input queue to the Completion Processor */
10496 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10497 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10498 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10499 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10500 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10501 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10502 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10503 
10504 	/* Setup the generic statistic counters for the FTQ valid count. */
10505 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10506 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10507 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10508 
10509 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10510 		val = val |
10511 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10512 		     24);
10513 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10514 
10515 	/* Input queue to the Management Control Processor */
10516 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10517 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10518 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10519 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10520 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10521 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10522 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10523 
10524 	/* Input queue to the Command Processor */
10525 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10526 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10527 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10528 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10529 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10530 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10531 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10532 
10533 	/* Input queue to the Completion Scheduler state machine */
10534 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10535 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10536 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10537 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10538 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10539 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10540 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10541 
10542 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10543 		/* Input queue to the RV2P Command Scheduler */
10544 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10545 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10546 		cur_depth = (ctl & 0xFFC00000) >> 22;
10547 		max_depth = (ctl & 0x003FF000) >> 12;
10548 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10549 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10550 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10551 	}
10552 
10553 	BCE_PRINTF(
10554 	    "----------------------------"
10555 	    "----------------"
10556 	    "----------------------------\n");
10557 }
10558 
10559 
10560 /****************************************************************************/
10561 /* Prints out the TX chain.                                                 */
10562 /*                                                                          */
10563 /* Returns:                                                                 */
10564 /*   Nothing.                                                               */
10565 /****************************************************************************/
10566 static __attribute__ ((noinline)) void
10567 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10568 {
10569 	struct tx_bd *txbd;
10570 
10571 	/* First some info about the tx_bd chain structure. */
10572 	BCE_PRINTF(
10573 	    "----------------------------"
10574 	    "  tx_bd  chain  "
10575 	    "----------------------------\n");
10576 
10577 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10578 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10579 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10580 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10581 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10582 
10583 	BCE_PRINTF(
10584 	    "----------------------------"
10585 	    "   tx_bd data   "
10586 	    "----------------------------\n");
10587 
10588 	/* Now print out a decoded list of TX buffer descriptors. */
10589 	for (int i = 0; i < count; i++) {
10590 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10591 		bce_dump_txbd(sc, tx_prod, txbd);
10592 		tx_prod++;
10593 	}
10594 
10595 	BCE_PRINTF(
10596 	    "----------------------------"
10597 	    "----------------"
10598 	    "----------------------------\n");
10599 }
10600 
10601 
10602 /****************************************************************************/
10603 /* Prints out the RX chain.                                                 */
10604 /*                                                                          */
10605 /* Returns:                                                                 */
10606 /*   Nothing.                                                               */
10607 /****************************************************************************/
10608 static __attribute__ ((noinline)) void
10609 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10610 {
10611 	struct rx_bd *rxbd;
10612 
10613 	/* First some info about the rx_bd chain structure. */
10614 	BCE_PRINTF(
10615 	    "----------------------------"
10616 	    "  rx_bd  chain  "
10617 	    "----------------------------\n");
10618 
10619 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10620 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10621 
10622 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10623 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10624 
10625 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10626 
10627 	BCE_PRINTF(
10628 	    "----------------------------"
10629 	    "   rx_bd data   "
10630 	    "----------------------------\n");
10631 
10632 	/* Now print out the rx_bd's themselves. */
10633 	for (int i = 0; i < count; i++) {
10634 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10635 		bce_dump_rxbd(sc, rx_prod, rxbd);
10636 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10637 	}
10638 
10639 	BCE_PRINTF(
10640 	    "----------------------------"
10641 	    "----------------"
10642 	    "----------------------------\n");
10643 }
10644 
10645 
10646 /****************************************************************************/
10647 /* Prints out the page chain.                                               */
10648 /*                                                                          */
10649 /* Returns:                                                                 */
10650 /*   Nothing.                                                               */
10651 /****************************************************************************/
10652 static __attribute__ ((noinline)) void
10653 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10654 {
10655 	struct rx_bd *pgbd;
10656 
10657 	/* First some info about the page chain structure. */
10658 	BCE_PRINTF(
10659 	    "----------------------------"
10660 	    "   page chain   "
10661 	    "----------------------------\n");
10662 
10663 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10664 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10665 
10666 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10667 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10668 
10669 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10670 
10671 	BCE_PRINTF(
10672 	    "----------------------------"
10673 	    "   page data    "
10674 	    "----------------------------\n");
10675 
10676 	/* Now print out the rx_bd's themselves. */
10677 	for (int i = 0; i < count; i++) {
10678 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10679 		bce_dump_pgbd(sc, pg_prod, pgbd);
10680 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10681 	}
10682 
10683 	BCE_PRINTF(
10684 	    "----------------------------"
10685 	    "----------------"
10686 	    "----------------------------\n");
10687 }
10688 
10689 
10690 #define BCE_PRINT_RX_CONS(arg)						\
10691 if (sblk->status_rx_quick_consumer_index##arg)				\
10692 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10693 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10694 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10695 	    arg);
10696 
10697 
10698 #define BCE_PRINT_TX_CONS(arg)						\
10699 if (sblk->status_tx_quick_consumer_index##arg)				\
10700 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10701 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10702 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10703 	    arg);
10704 
10705 /****************************************************************************/
10706 /* Prints out the status block from host memory.                            */
10707 /*                                                                          */
10708 /* Returns:                                                                 */
10709 /*   Nothing.                                                               */
10710 /****************************************************************************/
10711 static __attribute__ ((noinline)) void
10712 bce_dump_status_block(struct bce_softc *sc)
10713 {
10714 	struct status_block *sblk;
10715 
10716 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10717 
10718 	sblk = sc->status_block;
10719 
10720 	BCE_PRINTF(
10721 	    "----------------------------"
10722 	    "  Status Block  "
10723 	    "----------------------------\n");
10724 
10725 	/* Theses indices are used for normal L2 drivers. */
10726 	BCE_PRINTF("    0x%08X - attn_bits\n",
10727 	    sblk->status_attn_bits);
10728 
10729 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10730 	    sblk->status_attn_bits_ack);
10731 
10732 	BCE_PRINT_RX_CONS(0);
10733 	BCE_PRINT_TX_CONS(0)
10734 
10735 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10736 
10737 	/* Theses indices are not used for normal L2 drivers. */
10738 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10739 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10740 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10741 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10742 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10743 
10744 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10745 
10746 	if (sblk->status_completion_producer_index ||
10747 	    sblk->status_cmd_consumer_index)
10748 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10749 		    sblk->status_completion_producer_index,
10750 		    sblk->status_cmd_consumer_index);
10751 
10752 	BCE_PRINTF(
10753 	    "----------------------------"
10754 	    "----------------"
10755 	    "----------------------------\n");
10756 }
10757 
10758 
10759 #define BCE_PRINT_64BIT_STAT(arg) 				\
10760 if (sblk->arg##_lo || sblk->arg##_hi)				\
10761 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10762 	    sblk->arg##_lo, #arg);
10763 
10764 #define BCE_PRINT_32BIT_STAT(arg)				\
10765 if (sblk->arg)							\
10766 	BCE_PRINTF("         0x%08X : %s\n", 			\
10767 	    sblk->arg, #arg);
10768 
10769 /****************************************************************************/
10770 /* Prints out the statistics block from host memory.                        */
10771 /*                                                                          */
10772 /* Returns:                                                                 */
10773 /*   Nothing.                                                               */
10774 /****************************************************************************/
10775 static __attribute__ ((noinline)) void
10776 bce_dump_stats_block(struct bce_softc *sc)
10777 {
10778 	struct statistics_block *sblk;
10779 
10780 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10781 
10782 	sblk = sc->stats_block;
10783 
10784 	BCE_PRINTF(
10785 	    "---------------"
10786 	    " Stats Block  (All Stats Not Shown Are 0) "
10787 	    "---------------\n");
10788 
10789 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10790 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10791 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10792 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10793 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10794 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10795 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10796 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10797 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10798 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10799 	BCE_PRINT_32BIT_STAT(
10800 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10801 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10802 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10803 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10804 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10805 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10806 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10807 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10808 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10809 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10810 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10811 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10812 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10813 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10814 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10815 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10816 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10817 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10818 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10819 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10820 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10821 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10822 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10823 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10824 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10825 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10826 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10827 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10828 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10829 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10830 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10831 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10832 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10833 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10834 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10835 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10836 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10837 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10838 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10839 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10840 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10841 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10842 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10843 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10844 
10845 	BCE_PRINTF(
10846 	    "----------------------------"
10847 	    "----------------"
10848 	    "----------------------------\n");
10849 }
10850 
10851 
10852 /****************************************************************************/
10853 /* Prints out a summary of the driver state.                                */
10854 /*                                                                          */
10855 /* Returns:                                                                 */
10856 /*   Nothing.                                                               */
10857 /****************************************************************************/
10858 static __attribute__ ((noinline)) void
10859 bce_dump_driver_state(struct bce_softc *sc)
10860 {
10861 	u32 val_hi, val_lo;
10862 
10863 	BCE_PRINTF(
10864 	    "-----------------------------"
10865 	    " Driver State "
10866 	    "-----------------------------\n");
10867 
10868 	val_hi = BCE_ADDR_HI(sc);
10869 	val_lo = BCE_ADDR_LO(sc);
10870 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10871 	    "address\n", val_hi, val_lo);
10872 
10873 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10874 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10875 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10876 	    "address\n", val_hi, val_lo);
10877 
10878 	val_hi = BCE_ADDR_HI(sc->status_block);
10879 	val_lo = BCE_ADDR_LO(sc->status_block);
10880 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10881 	    "virtual address\n",	val_hi, val_lo);
10882 
10883 	val_hi = BCE_ADDR_HI(sc->stats_block);
10884 	val_lo = BCE_ADDR_LO(sc->stats_block);
10885 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10886 	    "virtual address\n", val_hi, val_lo);
10887 
10888 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10889 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10890 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10891 	    "virtual adddress\n", val_hi, val_lo);
10892 
10893 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10894 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10895 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10896 	    "virtual address\n", val_hi, val_lo);
10897 
10898 	if (bce_hdr_split == TRUE) {
10899 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10900 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10901 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10902 		    "virtual address\n", val_hi, val_lo);
10903 	}
10904 
10905 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10906 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10907 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10908 	    "virtual address\n",	val_hi, val_lo);
10909 
10910 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10911 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10912 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10913 	    "virtual address\n", val_hi, val_lo);
10914 
10915 	if (bce_hdr_split == TRUE) {
10916 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10917 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10918 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10919 		    "virtual address\n", val_hi, val_lo);
10920 	}
10921 
10922 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10923 	    "h/w intrs\n",
10924 	    (long long unsigned int) sc->interrupts_generated);
10925 
10926 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10927 	    "rx interrupts handled\n",
10928 	    (long long unsigned int) sc->interrupts_rx);
10929 
10930 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10931 	    "tx interrupts handled\n",
10932 	    (long long unsigned int) sc->interrupts_tx);
10933 
10934 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10935 	    "phy interrupts handled\n",
10936 	    (long long unsigned int) sc->phy_interrupts);
10937 
10938 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10939 	    "status block index\n", sc->last_status_idx);
10940 
10941 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10942 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10943 
10944 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10945 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10946 
10947 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10948 	    "byte seq index\n",	sc->tx_prod_bseq);
10949 
10950 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10951 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10952 
10953 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10954 	    "tx_bd's\n", sc->used_tx_bd);
10955 
10956 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10957 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10958 
10959 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10960 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10961 
10962 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10963 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10964 
10965 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10966 	    "byte seq index\n",	sc->rx_prod_bseq);
10967 
10968 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10969 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10970 
10971 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10972 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10973 
10974 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10975 	    "rx_bd's\n", sc->free_rx_bd);
10976 
10977 	if (bce_hdr_split == TRUE) {
10978 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10979 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10980 
10981 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10982 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10983 
10984 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10985 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10986 	}
10987 
10988 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10989 	    "rx_bd's\n", sc->free_pg_bd);
10990 
10991 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10992 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10993 
10994 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10995 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10996 
10997 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10998 	    "bce mac flags\n", sc->bce_flags);
10999 
11000 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
11001 	    "bce phy flags\n", sc->bce_phy_flags);
11002 
11003 	BCE_PRINTF(
11004 	    "----------------------------"
11005 	    "----------------"
11006 	    "----------------------------\n");
11007 }
11008 
11009 
11010 /****************************************************************************/
11011 /* Prints out the hardware state through a summary of important register,   */
11012 /* followed by a complete register dump.                                    */
11013 /*                                                                          */
11014 /* Returns:                                                                 */
11015 /*   Nothing.                                                               */
11016 /****************************************************************************/
11017 static __attribute__ ((noinline)) void
11018 bce_dump_hw_state(struct bce_softc *sc)
11019 {
11020 	u32 val;
11021 
11022 	BCE_PRINTF(
11023 	    "----------------------------"
11024 	    " Hardware State "
11025 	    "----------------------------\n");
11026 
11027 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11028 
11029 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
11030 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
11031 	    val, BCE_MISC_ENABLE_STATUS_BITS);
11032 
11033 	val = REG_RD(sc, BCE_DMA_STATUS);
11034 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
11035 	    val, BCE_DMA_STATUS);
11036 
11037 	val = REG_RD(sc, BCE_CTX_STATUS);
11038 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
11039 	    val, BCE_CTX_STATUS);
11040 
11041 	val = REG_RD(sc, BCE_EMAC_STATUS);
11042 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
11043 	    val, BCE_EMAC_STATUS);
11044 
11045 	val = REG_RD(sc, BCE_RPM_STATUS);
11046 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
11047 	    val, BCE_RPM_STATUS);
11048 
11049 	/* ToDo: Create a #define for this constant. */
11050 	val = REG_RD(sc, 0x2004);
11051 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11052 	    val, 0x2004);
11053 
11054 	val = REG_RD(sc, BCE_RV2P_STATUS);
11055 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11056 	    val, BCE_RV2P_STATUS);
11057 
11058 	/* ToDo: Create a #define for this constant. */
11059 	val = REG_RD(sc, 0x2c04);
11060 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11061 	    val, 0x2c04);
11062 
11063 	val = REG_RD(sc, BCE_TBDR_STATUS);
11064 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11065 	    val, BCE_TBDR_STATUS);
11066 
11067 	val = REG_RD(sc, BCE_TDMA_STATUS);
11068 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11069 	    val, BCE_TDMA_STATUS);
11070 
11071 	val = REG_RD(sc, BCE_HC_STATUS);
11072 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11073 	    val, BCE_HC_STATUS);
11074 
11075 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11076 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11077 	    val, BCE_TXP_CPU_STATE);
11078 
11079 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11080 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11081 	    val, BCE_TPAT_CPU_STATE);
11082 
11083 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11084 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11085 	    val, BCE_RXP_CPU_STATE);
11086 
11087 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11088 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11089 	    val, BCE_COM_CPU_STATE);
11090 
11091 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11092 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11093 	    val, BCE_MCP_CPU_STATE);
11094 
11095 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11096 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11097 	    val, BCE_CP_CPU_STATE);
11098 
11099 	BCE_PRINTF(
11100 	    "----------------------------"
11101 	    "----------------"
11102 	    "----------------------------\n");
11103 
11104 	BCE_PRINTF(
11105 	    "----------------------------"
11106 	    " Register  Dump "
11107 	    "----------------------------\n");
11108 
11109 	for (int i = 0x400; i < 0x8000; i += 0x10) {
11110 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11111 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11112 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11113 	}
11114 
11115 	BCE_PRINTF(
11116 	    "----------------------------"
11117 	    "----------------"
11118 	    "----------------------------\n");
11119 }
11120 
11121 
11122 /****************************************************************************/
11123 /* Prints out the contentst of shared memory which is used for host driver  */
11124 /* to bootcode firmware communication.                                      */
11125 /*                                                                          */
11126 /* Returns:                                                                 */
11127 /*   Nothing.                                                               */
11128 /****************************************************************************/
11129 static __attribute__ ((noinline)) void
11130 bce_dump_shmem_state(struct bce_softc *sc)
11131 {
11132 	BCE_PRINTF(
11133 	    "----------------------------"
11134 	    " Hardware State "
11135 	    "----------------------------\n");
11136 
11137 	BCE_PRINTF("0x%08X - Shared memory base address\n",
11138 	    sc->bce_shmem_base);
11139 	BCE_PRINTF("%s - bootcode version\n",
11140 	    sc->bce_bc_ver);
11141 
11142 	BCE_PRINTF(
11143 	    "----------------------------"
11144 	    "   Shared Mem   "
11145 	    "----------------------------\n");
11146 
11147 	for (int i = 0x0; i < 0x200; i += 0x10) {
11148 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11149 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11150 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11151 	}
11152 
11153 	BCE_PRINTF(
11154 	    "----------------------------"
11155 	    "----------------"
11156 	    "----------------------------\n");
11157 }
11158 
11159 
11160 /****************************************************************************/
11161 /* Prints out the mailbox queue registers.                                  */
11162 /*                                                                          */
11163 /* Returns:                                                                 */
11164 /*   Nothing.                                                               */
11165 /****************************************************************************/
11166 static __attribute__ ((noinline)) void
11167 bce_dump_mq_regs(struct bce_softc *sc)
11168 {
11169 	BCE_PRINTF(
11170 	    "----------------------------"
11171 	    "    MQ Regs     "
11172 	    "----------------------------\n");
11173 
11174 	BCE_PRINTF(
11175 	    "----------------------------"
11176 	    "----------------"
11177 	    "----------------------------\n");
11178 
11179 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11180 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11181 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11182 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11183 	}
11184 
11185 	BCE_PRINTF(
11186 	    "----------------------------"
11187 	    "----------------"
11188 	    "----------------------------\n");
11189 }
11190 
11191 
11192 /****************************************************************************/
11193 /* Prints out the bootcode state.                                           */
11194 /*                                                                          */
11195 /* Returns:                                                                 */
11196 /*   Nothing.                                                               */
11197 /****************************************************************************/
11198 static __attribute__ ((noinline)) void
11199 bce_dump_bc_state(struct bce_softc *sc)
11200 {
11201 	u32 val;
11202 
11203 	BCE_PRINTF(
11204 	    "----------------------------"
11205 	    " Bootcode State "
11206 	    "----------------------------\n");
11207 
11208 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11209 
11210 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11211 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11212 	    val, BCE_BC_RESET_TYPE);
11213 
11214 	val = bce_shmem_rd(sc, BCE_BC_STATE);
11215 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
11216 	    val, BCE_BC_STATE);
11217 
11218 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11219 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11220 	    val, BCE_BC_STATE_CONDITION);
11221 
11222 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11223 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11224 	    val, BCE_BC_STATE_DEBUG_CMD);
11225 
11226 	BCE_PRINTF(
11227 	    "----------------------------"
11228 	    "----------------"
11229 	    "----------------------------\n");
11230 }
11231 
11232 
11233 /****************************************************************************/
11234 /* Prints out the TXP processor state.                                      */
11235 /*                                                                          */
11236 /* Returns:                                                                 */
11237 /*   Nothing.                                                               */
11238 /****************************************************************************/
11239 static __attribute__ ((noinline)) void
11240 bce_dump_txp_state(struct bce_softc *sc, int regs)
11241 {
11242 	u32 val;
11243 	u32 fw_version[3];
11244 
11245 	BCE_PRINTF(
11246 	    "----------------------------"
11247 	    "   TXP  State   "
11248 	    "----------------------------\n");
11249 
11250 	for (int i = 0; i < 3; i++)
11251 		fw_version[i] = htonl(REG_RD_IND(sc,
11252 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11253 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11254 
11255 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11256 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11257 	    val, BCE_TXP_CPU_MODE);
11258 
11259 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11260 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11261 	    val, BCE_TXP_CPU_STATE);
11262 
11263 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11264 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11265 	    val, BCE_TXP_CPU_EVENT_MASK);
11266 
11267 	if (regs) {
11268 		BCE_PRINTF(
11269 		    "----------------------------"
11270 		    " Register  Dump "
11271 		    "----------------------------\n");
11272 
11273 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11274 			/* Skip the big blank spaces */
11275 			if (i < 0x454000 && i > 0x5ffff)
11276 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11277 				    "0x%08X 0x%08X\n", i,
11278 				    REG_RD_IND(sc, i),
11279 				    REG_RD_IND(sc, i + 0x4),
11280 				    REG_RD_IND(sc, i + 0x8),
11281 				    REG_RD_IND(sc, i + 0xC));
11282 		}
11283 	}
11284 
11285 	BCE_PRINTF(
11286 	    "----------------------------"
11287 	    "----------------"
11288 	    "----------------------------\n");
11289 }
11290 
11291 
11292 /****************************************************************************/
11293 /* Prints out the RXP processor state.                                      */
11294 /*                                                                          */
11295 /* Returns:                                                                 */
11296 /*   Nothing.                                                               */
11297 /****************************************************************************/
11298 static __attribute__ ((noinline)) void
11299 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11300 {
11301 	u32 val;
11302 	u32 fw_version[3];
11303 
11304 	BCE_PRINTF(
11305 	    "----------------------------"
11306 	    "   RXP  State   "
11307 	    "----------------------------\n");
11308 
11309 	for (int i = 0; i < 3; i++)
11310 		fw_version[i] = htonl(REG_RD_IND(sc,
11311 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11312 
11313 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11314 
11315 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11316 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11317 	    val, BCE_RXP_CPU_MODE);
11318 
11319 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11320 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11321 	    val, BCE_RXP_CPU_STATE);
11322 
11323 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11324 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11325 	    val, BCE_RXP_CPU_EVENT_MASK);
11326 
11327 	if (regs) {
11328 		BCE_PRINTF(
11329 		    "----------------------------"
11330 		    " Register  Dump "
11331 		    "----------------------------\n");
11332 
11333 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11334 			/* Skip the big blank sapces */
11335 			if (i < 0xc5400 && i > 0xdffff)
11336 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11337 				    "0x%08X 0x%08X\n", i,
11338 				    REG_RD_IND(sc, i),
11339 				    REG_RD_IND(sc, i + 0x4),
11340 				    REG_RD_IND(sc, i + 0x8),
11341 				    REG_RD_IND(sc, i + 0xC));
11342 		}
11343 	}
11344 
11345 	BCE_PRINTF(
11346 	    "----------------------------"
11347 	    "----------------"
11348 	    "----------------------------\n");
11349 }
11350 
11351 
11352 /****************************************************************************/
11353 /* Prints out the TPAT processor state.                                     */
11354 /*                                                                          */
11355 /* Returns:                                                                 */
11356 /*   Nothing.                                                               */
11357 /****************************************************************************/
11358 static __attribute__ ((noinline)) void
11359 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11360 {
11361 	u32 val;
11362 	u32 fw_version[3];
11363 
11364 	BCE_PRINTF(
11365 	    "----------------------------"
11366 	    "   TPAT State   "
11367 	    "----------------------------\n");
11368 
11369 	for (int i = 0; i < 3; i++)
11370 		fw_version[i] = htonl(REG_RD_IND(sc,
11371 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11372 
11373 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11374 
11375 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11376 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11377 	    val, BCE_TPAT_CPU_MODE);
11378 
11379 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11380 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11381 	    val, BCE_TPAT_CPU_STATE);
11382 
11383 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11384 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11385 	    val, BCE_TPAT_CPU_EVENT_MASK);
11386 
11387 	if (regs) {
11388 		BCE_PRINTF(
11389 		    "----------------------------"
11390 		    " Register  Dump "
11391 		    "----------------------------\n");
11392 
11393 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11394 			/* Skip the big blank spaces */
11395 			if (i < 0x854000 && i > 0x9ffff)
11396 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11397 				    "0x%08X 0x%08X\n", i,
11398 				    REG_RD_IND(sc, i),
11399 				    REG_RD_IND(sc, i + 0x4),
11400 				    REG_RD_IND(sc, i + 0x8),
11401 				    REG_RD_IND(sc, i + 0xC));
11402 		}
11403 	}
11404 
11405 	BCE_PRINTF(
11406 		"----------------------------"
11407 		"----------------"
11408 		"----------------------------\n");
11409 }
11410 
11411 
11412 /****************************************************************************/
11413 /* Prints out the Command Procesor (CP) state.                              */
11414 /*                                                                          */
11415 /* Returns:                                                                 */
11416 /*   Nothing.                                                               */
11417 /****************************************************************************/
11418 static __attribute__ ((noinline)) void
11419 bce_dump_cp_state(struct bce_softc *sc, int regs)
11420 {
11421 	u32 val;
11422 	u32 fw_version[3];
11423 
11424 	BCE_PRINTF(
11425 	    "----------------------------"
11426 	    "    CP State    "
11427 	    "----------------------------\n");
11428 
11429 	for (int i = 0; i < 3; i++)
11430 		fw_version[i] = htonl(REG_RD_IND(sc,
11431 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11432 
11433 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11434 
11435 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11436 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11437 	    val, BCE_CP_CPU_MODE);
11438 
11439 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11440 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11441 	    val, BCE_CP_CPU_STATE);
11442 
11443 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11444 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11445 	    BCE_CP_CPU_EVENT_MASK);
11446 
11447 	if (regs) {
11448 		BCE_PRINTF(
11449 		    "----------------------------"
11450 		    " Register  Dump "
11451 		    "----------------------------\n");
11452 
11453 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11454 			/* Skip the big blank spaces */
11455 			if (i < 0x185400 && i > 0x19ffff)
11456 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11457 				    "0x%08X 0x%08X\n", i,
11458 				    REG_RD_IND(sc, i),
11459 				    REG_RD_IND(sc, i + 0x4),
11460 				    REG_RD_IND(sc, i + 0x8),
11461 				    REG_RD_IND(sc, i + 0xC));
11462 		}
11463 	}
11464 
11465 	BCE_PRINTF(
11466 	    "----------------------------"
11467 	    "----------------"
11468 	    "----------------------------\n");
11469 }
11470 
11471 
11472 /****************************************************************************/
11473 /* Prints out the Completion Procesor (COM) state.                          */
11474 /*                                                                          */
11475 /* Returns:                                                                 */
11476 /*   Nothing.                                                               */
11477 /****************************************************************************/
11478 static __attribute__ ((noinline)) void
11479 bce_dump_com_state(struct bce_softc *sc, int regs)
11480 {
11481 	u32 val;
11482 	u32 fw_version[4];
11483 
11484 	BCE_PRINTF(
11485 	    "----------------------------"
11486 	    "   COM State    "
11487 	    "----------------------------\n");
11488 
11489 	for (int i = 0; i < 3; i++)
11490 		fw_version[i] = htonl(REG_RD_IND(sc,
11491 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11492 
11493 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11494 
11495 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11496 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11497 	    val, BCE_COM_CPU_MODE);
11498 
11499 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11500 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11501 	    val, BCE_COM_CPU_STATE);
11502 
11503 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11504 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11505 	    BCE_COM_CPU_EVENT_MASK);
11506 
11507 	if (regs) {
11508 		BCE_PRINTF(
11509 		    "----------------------------"
11510 		    " Register  Dump "
11511 		    "----------------------------\n");
11512 
11513 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11514 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11515 			    "0x%08X 0x%08X\n", i,
11516 			    REG_RD_IND(sc, i),
11517 			    REG_RD_IND(sc, i + 0x4),
11518 			    REG_RD_IND(sc, i + 0x8),
11519 			    REG_RD_IND(sc, i + 0xC));
11520 		}
11521 	}
11522 
11523 	BCE_PRINTF(
11524 		"----------------------------"
11525 		"----------------"
11526 		"----------------------------\n");
11527 }
11528 
11529 
11530 /****************************************************************************/
11531 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11532 /*                                                                          */
11533 /* Returns:                                                                 */
11534 /*   Nothing.                                                               */
11535 /****************************************************************************/
11536 static __attribute__ ((noinline)) void
11537 bce_dump_rv2p_state(struct bce_softc *sc)
11538 {
11539 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11540 
11541 	BCE_PRINTF(
11542 	    "----------------------------"
11543 	    "   RV2P State   "
11544 	    "----------------------------\n");
11545 
11546 	/* Stall the RV2P processors. */
11547 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11548 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11549 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11550 
11551 	/* Read the firmware version. */
11552 	val = 0x00000001;
11553 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11554 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11555 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11556 	    BCE_RV2P_INSTR_HIGH_HIGH;
11557 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11558 	    fw_ver_high, fw_ver_low);
11559 
11560 	val = 0x00000001;
11561 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11562 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11563 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11564 	    BCE_RV2P_INSTR_HIGH_HIGH;
11565 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11566 	    fw_ver_high, fw_ver_low);
11567 
11568 	/* Resume the RV2P processors. */
11569 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11570 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11571 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11572 
11573 	/* Fetch the program counter value. */
11574 	val = 0x68007800;
11575 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11576 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11577 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11578 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11579 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11580 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11581 
11582 	/* Fetch the program counter value again to see if it is advancing. */
11583 	val = 0x68007800;
11584 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11585 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11586 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11587 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11588 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11589 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11590 
11591 	BCE_PRINTF(
11592 	    "----------------------------"
11593 	    "----------------"
11594 	    "----------------------------\n");
11595 }
11596 
11597 
11598 /****************************************************************************/
11599 /* Prints out the driver state and then enters the debugger.                */
11600 /*                                                                          */
11601 /* Returns:                                                                 */
11602 /*   Nothing.                                                               */
11603 /****************************************************************************/
11604 static __attribute__ ((noinline)) void
11605 bce_breakpoint(struct bce_softc *sc)
11606 {
11607 
11608 	/*
11609 	 * Unreachable code to silence compiler warnings
11610 	 * about unused functions.
11611 	 */
11612 	if (0) {
11613 		bce_freeze_controller(sc);
11614 		bce_unfreeze_controller(sc);
11615 		bce_dump_enet(sc, NULL);
11616 		bce_dump_txbd(sc, 0, NULL);
11617 		bce_dump_rxbd(sc, 0, NULL);
11618 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11619 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11620 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11621 		bce_dump_l2fhdr(sc, 0, NULL);
11622 		bce_dump_ctx(sc, RX_CID);
11623 		bce_dump_ftqs(sc);
11624 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11625 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11626 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11627 		bce_dump_status_block(sc);
11628 		bce_dump_stats_block(sc);
11629 		bce_dump_driver_state(sc);
11630 		bce_dump_hw_state(sc);
11631 		bce_dump_bc_state(sc);
11632 		bce_dump_txp_state(sc, 0);
11633 		bce_dump_rxp_state(sc, 0);
11634 		bce_dump_tpat_state(sc, 0);
11635 		bce_dump_cp_state(sc, 0);
11636 		bce_dump_com_state(sc, 0);
11637 		bce_dump_rv2p_state(sc);
11638 		bce_dump_pgbd(sc, 0, NULL);
11639 	}
11640 
11641 	bce_dump_status_block(sc);
11642 	bce_dump_driver_state(sc);
11643 
11644 	/* Call the debugger. */
11645 	breakpoint();
11646 }
11647 #endif
11648