xref: /freebsd/sys/dev/axgbe/xgbe-dev.c (revision b458ddf27fd87afa57575cdad68f6b4183916666)
1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc.
5  *
6  * This file is available to you under your choice of the following two
7  * licenses:
8  *
9  * License 1: GPLv2
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Redistribution and use in source and binary forms, with or without
60  * modification, are permitted provided that the following conditions are met:
61  *     * Redistributions of source code must retain the above copyright
62  *       notice, this list of conditions and the following disclaimer.
63  *     * Redistributions in binary form must reproduce the above copyright
64  *       notice, this list of conditions and the following disclaimer in the
65  *       documentation and/or other materials provided with the distribution.
66  *     * Neither the name of Advanced Micro Devices, Inc. nor the
67  *       names of its contributors may be used to endorse or promote products
68  *       derived from this software without specific prior written permission.
69  *
70  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
71  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
72  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
73  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
74  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
75  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
76  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
77  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
78  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
79  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
80  *
81  * This file incorporates work covered by the following copyright and
82  * permission notice:
83  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
84  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
85  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
86  *     and you.
87  *
88  *     The Software IS NOT an item of Licensed Software or Licensed Product
89  *     under any End User Software License Agreement or Agreement for Licensed
90  *     Product with Synopsys or any supplement thereto.  Permission is hereby
91  *     granted, free of charge, to any person obtaining a copy of this software
92  *     annotated with this license and the Software, to deal in the Software
93  *     without restriction, including without limitation the rights to use,
94  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
95  *     of the Software, and to permit persons to whom the Software is furnished
96  *     to do so, subject to the following conditions:
97  *
98  *     The above copyright notice and this permission notice shall be included
99  *     in all copies or substantial portions of the Software.
100  *
101  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
102  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
103  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
104  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
105  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
106  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
107  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
108  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
109  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
110  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
111  *     THE POSSIBILITY OF SUCH DAMAGE.
112  */
113 
114 #include <sys/cdefs.h>
115 #include "xgbe.h"
116 #include "xgbe-common.h"
117 
118 #include <net/if_dl.h>
119 
120 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
121 {
122 	return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
123 }
124 
125 static unsigned int
126 xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec)
127 {
128 	unsigned long rate;
129 	unsigned int ret;
130 
131 	rate = pdata->sysclk_rate;
132 
133 	/*
134 	 * Convert the input usec value to the watchdog timer value. Each
135 	 * watchdog timer value is equivalent to 256 clock cycles.
136 	 * Calculate the required value as:
137 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
138 	 */
139 	ret = (usec * (rate / 1000000)) / 256;
140 
141 	return (ret);
142 }
143 
144 static unsigned int
145 xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt)
146 {
147 	unsigned long rate;
148 	unsigned int ret;
149 
150 	rate = pdata->sysclk_rate;
151 
152 	/*
153 	 * Convert the input watchdog timer value to the usec value. Each
154 	 * watchdog timer value is equivalent to 256 clock cycles.
155 	 * Calculate the required value as:
156 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
157 	 */
158 	ret = (riwt * 256) / (rate / 1000000);
159 
160 	return (ret);
161 }
162 
163 static int
164 xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
165 {
166 	unsigned int pblx8, pbl;
167 	unsigned int i;
168 
169 	pblx8 = DMA_PBL_X8_DISABLE;
170 	pbl = pdata->pbl;
171 
172 	if (pdata->pbl > 32) {
173 		pblx8 = DMA_PBL_X8_ENABLE;
174 		pbl >>= 3;
175 	}
176 
177 	for (i = 0; i < pdata->channel_count; i++) {
178 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
179 		    pblx8);
180 
181 		if (pdata->channel[i]->tx_ring)
182 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
183 			    PBL, pbl);
184 
185 		if (pdata->channel[i]->rx_ring)
186 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
187 			    PBL, pbl);
188 	}
189 
190 	return (0);
191 }
192 
193 static int
194 xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
195 {
196 	unsigned int i;
197 
198 	for (i = 0; i < pdata->channel_count; i++) {
199 		if (!pdata->channel[i]->tx_ring)
200 			break;
201 
202 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
203 		    pdata->tx_osp_mode);
204 	}
205 
206 	return (0);
207 }
208 
209 static int
210 xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
211 {
212 	unsigned int i;
213 
214 	for (i = 0; i < pdata->rx_q_count; i++)
215 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
216 
217 	return (0);
218 }
219 
220 static int
221 xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
222 {
223 	unsigned int i;
224 
225 	for (i = 0; i < pdata->tx_q_count; i++)
226 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
227 
228 	return (0);
229 }
230 
231 static int
232 xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
233 {
234 	unsigned int i;
235 
236 	for (i = 0; i < pdata->rx_q_count; i++)
237 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
238 
239 	return (0);
240 }
241 
242 static int
243 xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
244 {
245 	unsigned int i;
246 
247 	for (i = 0; i < pdata->tx_q_count; i++)
248 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
249 
250 	return (0);
251 }
252 
253 static int
254 xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
255 {
256 	unsigned int i;
257 
258 	for (i = 0; i < pdata->channel_count; i++) {
259 		if (!pdata->channel[i]->rx_ring)
260 			break;
261 
262 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
263 		    pdata->rx_riwt);
264 	}
265 
266 	return (0);
267 }
268 
269 static int
270 xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
271 {
272 	return (0);
273 }
274 
275 static void
276 xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
277 {
278 	unsigned int i;
279 
280 	for (i = 0; i < pdata->channel_count; i++) {
281 		if (!pdata->channel[i]->rx_ring)
282 			break;
283 
284 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
285 		    pdata->rx_buf_size);
286 	}
287 }
288 
289 static void
290 xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
291 {
292 	unsigned int i;
293 
294 	int tso_enabled = (if_getcapenable(pdata->netdev) & IFCAP_TSO);
295 
296 	for (i = 0; i < pdata->channel_count; i++) {
297 		if (!pdata->channel[i]->tx_ring)
298 			break;
299 
300 		axgbe_printf(1, "TSO in channel %d %s\n", i, tso_enabled ? "enabled" : "disabled");
301 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, tso_enabled ? 1 : 0);
302 	}
303 }
304 
305 static void
306 xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
307 {
308 	unsigned int i;
309 	int sph_enable_flag = XGMAC_IOREAD_BITS(pdata, MAC_HWF1R, SPHEN);
310 
311 	axgbe_printf(1, "sph_enable %d sph feature enabled?: %d\n",
312 	    pdata->sph_enable, sph_enable_flag);
313 
314 	if (pdata->sph_enable && sph_enable_flag)
315 		axgbe_printf(0, "SPH Enabled\n");
316 
317 	for (i = 0; i < pdata->channel_count; i++) {
318 		if (!pdata->channel[i]->rx_ring)
319 			break;
320 		if (pdata->sph_enable && sph_enable_flag) {
321 			/* Enable split header feature */
322 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
323 		} else {
324 			/* Disable split header feature */
325 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 0);
326 		}
327 
328 		/* per-channel confirmation of SPH being disabled/enabled */
329 		int val = XGMAC_DMA_IOREAD_BITS(pdata->channel[i], DMA_CH_CR, SPH);
330 		axgbe_printf(0, "%s: SPH %s in channel %d\n", __func__,
331 		    (val ? "enabled" : "disabled"), i);
332 	}
333 
334 	if (pdata->sph_enable && sph_enable_flag)
335 		XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
336 }
337 
338 static int
339 xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
340     unsigned int index, unsigned int val)
341 {
342 	unsigned int wait;
343 	int ret = 0;
344 
345 	mtx_lock(&pdata->rss_mutex);
346 
347 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
348 		ret = -EBUSY;
349 		goto unlock;
350 	}
351 
352 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
353 
354 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
355 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
356 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
357 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
358 
359 	wait = 1000;
360 	while (wait--) {
361 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
362 			goto unlock;
363 
364 		DELAY(1000);
365 	}
366 
367 	ret = -EBUSY;
368 
369 unlock:
370 	mtx_unlock(&pdata->rss_mutex);
371 
372 	return (ret);
373 }
374 
375 static int
376 xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
377 {
378 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t);
379 	unsigned int *key = (unsigned int *)&pdata->rss_key;
380 	int ret;
381 
382 	while (key_regs--) {
383 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
384 		    key_regs, *key++);
385 		if (ret)
386 			return (ret);
387 	}
388 
389 	return (0);
390 }
391 
392 static int
393 xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
394 {
395 	unsigned int i;
396 	int ret;
397 
398 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
399 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i,
400 		    pdata->rss_table[i]);
401 		if (ret)
402 			return (ret);
403 	}
404 
405 	return (0);
406 }
407 
408 static int
409 xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key)
410 {
411 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
412 
413 	return (xgbe_write_rss_hash_key(pdata));
414 }
415 
416 static int
417 xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table)
418 {
419 	unsigned int i;
420 
421 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
422 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
423 
424 	return (xgbe_write_rss_lookup_table(pdata));
425 }
426 
427 static int
428 xgbe_enable_rss(struct xgbe_prv_data *pdata)
429 {
430 	int ret;
431 
432 	if (!pdata->hw_feat.rss)
433 		return (-EOPNOTSUPP);
434 
435 	/* Program the hash key */
436 	ret = xgbe_write_rss_hash_key(pdata);
437 	if (ret)
438 		return (ret);
439 
440 	/* Program the lookup table */
441 	ret = xgbe_write_rss_lookup_table(pdata);
442 	if (ret)
443 		return (ret);
444 
445 	/* Set the RSS options */
446 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
447 
448 	/* Enable RSS */
449 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
450 
451 	axgbe_printf(0, "RSS Enabled\n");
452 
453 	return (0);
454 }
455 
456 static int
457 xgbe_disable_rss(struct xgbe_prv_data *pdata)
458 {
459 	if (!pdata->hw_feat.rss)
460 		return (-EOPNOTSUPP);
461 
462 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
463 
464 	axgbe_printf(0, "RSS Disabled\n");
465 
466 	return (0);
467 }
468 
469 static void
470 xgbe_config_rss(struct xgbe_prv_data *pdata)
471 {
472 	int ret;
473 
474 	if (!pdata->hw_feat.rss)
475 		return;
476 
477 	/* Check if the interface has RSS capability */
478 	if (pdata->enable_rss)
479 		ret = xgbe_enable_rss(pdata);
480 	else
481 		ret = xgbe_disable_rss(pdata);
482 
483 	if (ret)
484 		axgbe_error("error configuring RSS, RSS disabled\n");
485 }
486 
487 static int
488 xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
489 {
490 	unsigned int max_q_count, q_count;
491 	unsigned int reg, reg_val;
492 	unsigned int i;
493 
494 	/* Clear MTL flow control */
495 	for (i = 0; i < pdata->rx_q_count; i++)
496 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
497 
498 	/* Clear MAC flow control */
499 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
500 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
501 	reg = MAC_Q0TFCR;
502 	for (i = 0; i < q_count; i++) {
503 		reg_val = XGMAC_IOREAD(pdata, reg);
504 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
505 		XGMAC_IOWRITE(pdata, reg, reg_val);
506 
507 		reg += MAC_QTFCR_INC;
508 	}
509 
510 	return (0);
511 }
512 
513 static int
514 xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
515 {
516 	unsigned int max_q_count, q_count;
517 	unsigned int reg, reg_val;
518 	unsigned int i;
519 
520 	/* Set MTL flow control */
521 	for (i = 0; i < pdata->rx_q_count; i++) {
522 		unsigned int ehfc = 0;
523 
524 		if (pdata->rx_rfd[i]) {
525 			/* Flow control thresholds are established */
526 			/* TODO - enable pfc/ets support */
527 			ehfc = 1;
528 		}
529 
530 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
531 
532 		axgbe_printf(1, "flow control %s for RXq%u\n",
533 		    ehfc ? "enabled" : "disabled", i);
534 	}
535 
536 	/* Set MAC flow control */
537 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
538 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
539 	reg = MAC_Q0TFCR;
540 	for (i = 0; i < q_count; i++) {
541 		reg_val = XGMAC_IOREAD(pdata, reg);
542 
543 		/* Enable transmit flow control */
544 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
545 
546 		/* Set pause time */
547 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
548 
549 		XGMAC_IOWRITE(pdata, reg, reg_val);
550 
551 		reg += MAC_QTFCR_INC;
552 	}
553 
554 	return (0);
555 }
556 
557 static int
558 xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
559 {
560 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
561 
562 	return (0);
563 }
564 
565 static int
566 xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
567 {
568 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
569 
570 	return (0);
571 }
572 
573 static int
574 xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
575 {
576 	if (pdata->tx_pause)
577 		xgbe_enable_tx_flow_control(pdata);
578 	else
579 		xgbe_disable_tx_flow_control(pdata);
580 
581 	return (0);
582 }
583 
584 static int
585 xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
586 {
587 	if (pdata->rx_pause)
588 		xgbe_enable_rx_flow_control(pdata);
589 	else
590 		xgbe_disable_rx_flow_control(pdata);
591 
592 	return (0);
593 }
594 
595 static void
596 xgbe_config_flow_control(struct xgbe_prv_data *pdata)
597 {
598 	xgbe_config_tx_flow_control(pdata);
599 	xgbe_config_rx_flow_control(pdata);
600 
601 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0);
602 }
603 
604 static void
605 xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
606 {
607 	struct xgbe_channel *channel;
608 	unsigned int i, ver;
609 
610 	/* Set the interrupt mode if supported */
611 	if (pdata->channel_irq_mode)
612 		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
613 		    pdata->channel_irq_mode);
614 
615 	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
616 
617 	for (i = 0; i < pdata->channel_count; i++) {
618 		channel = pdata->channel[i];
619 
620 		/* Clear all the interrupts which are set */
621 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
622 				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
623 
624 		/* Clear all interrupt enable bits */
625 		channel->curr_ier = 0;
626 
627 		/* Enable following interrupts
628 		 *   NIE  - Normal Interrupt Summary Enable
629 		 *   AIE  - Abnormal Interrupt Summary Enable
630 		 *   FBEE - Fatal Bus Error Enable
631 		 */
632 		if (ver < 0x21) {
633 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
634 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
635 		} else {
636 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
637 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
638 		}
639 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
640 
641 		if (channel->tx_ring) {
642 			/* Enable the following Tx interrupts
643 			 *   TIE  - Transmit Interrupt Enable (unless using
644 			 *	  per channel interrupts in edge triggered
645 			 *	  mode)
646 			 */
647 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
648 				XGMAC_SET_BITS(channel->curr_ier,
649 					       DMA_CH_IER, TIE, 1);
650 		}
651 		if (channel->rx_ring) {
652 			/* Enable following Rx interrupts
653 			 *   RBUE - Receive Buffer Unavailable Enable
654 			 *   RIE  - Receive Interrupt Enable (unless using
655 			 *	  per channel interrupts in edge triggered
656 			 *	  mode)
657 			 */
658 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
659 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
660 				XGMAC_SET_BITS(channel->curr_ier,
661 					       DMA_CH_IER, RIE, 1);
662 		}
663 
664 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
665 	}
666 }
667 
668 static void
669 xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
670 {
671 	unsigned int mtl_q_isr;
672 	unsigned int q_count, i;
673 
674 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
675 	for (i = 0; i < q_count; i++) {
676 		/* Clear all the interrupts which are set */
677 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
678 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
679 
680 		/* No MTL interrupts to be enabled */
681 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
682 	}
683 }
684 
685 static void
686 xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
687 {
688 	unsigned int mac_ier = 0;
689 
690 	/* Enable Timestamp interrupt */
691 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
692 
693 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
694 
695 	/* Enable all counter interrupts */
696 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
697 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
698 
699 	/* Enable MDIO single command completion interrupt */
700 	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
701 }
702 
703 static int
704 xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
705 {
706 	unsigned int ss;
707 
708 	switch (speed) {
709 	case SPEED_1000:
710 		ss = 0x03;
711 		break;
712 	case SPEED_2500:
713 		ss = 0x02;
714 		break;
715 	case SPEED_10000:
716 		ss = 0x00;
717 		break;
718 	default:
719 		return (-EINVAL);
720 	}
721 
722 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
723 		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
724 
725 	return (0);
726 }
727 
728 static int
729 xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
730 {
731 	/* Put the VLAN tag in the Rx descriptor */
732 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
733 
734 	/* Don't check the VLAN type */
735 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
736 
737 	/* Check only C-TAG (0x8100) packets */
738 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
739 
740 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
741 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
742 
743 	/* Enable VLAN tag stripping */
744 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
745 
746 	axgbe_printf(0, "VLAN Stripping Enabled\n");
747 
748 	return (0);
749 }
750 
751 static int
752 xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
753 {
754 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
755 
756 	axgbe_printf(0, "VLAN Stripping Disabled\n");
757 
758 	return (0);
759 }
760 
761 static int
762 xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
763 {
764 	/* Enable VLAN filtering */
765 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
766 
767 	/* Enable VLAN Hash Table filtering */
768 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
769 
770 	/* Disable VLAN tag inverse matching */
771 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
772 
773 	/* Only filter on the lower 12-bits of the VLAN tag */
774 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
775 
776 	/* In order for the VLAN Hash Table filtering to be effective,
777 	 * the VLAN tag identifier in the VLAN Tag Register must not
778 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
779 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
780 	 * 1 will always pass filtering.
781 	 */
782 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
783 
784 	axgbe_printf(0, "VLAN filtering Enabled\n");
785 
786 	return (0);
787 }
788 
789 static int
790 xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
791 {
792 	/* Disable VLAN filtering */
793 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
794 
795 	axgbe_printf(0, "VLAN filtering Disabled\n");
796 
797 	return (0);
798 }
799 
800 static uint32_t
801 xgbe_vid_crc32_le(__le16 vid_le)
802 {
803 	uint32_t crc = ~0;
804 	uint32_t temp = 0;
805 	unsigned char *data = (unsigned char *)&vid_le;
806 	unsigned char data_byte = 0;
807 	int i, bits;
808 
809 	bits = get_bitmask_order(VLAN_VID_MASK);
810 	for (i = 0; i < bits; i++) {
811 		if ((i % 8) == 0)
812 			data_byte = data[i / 8];
813 
814 		temp = ((crc & 1) ^ data_byte) & 1;
815 		crc >>= 1;
816 		data_byte >>= 1;
817 
818 		if (temp)
819 			crc ^= CRC32_POLY_LE;
820 	}
821 
822 	return (crc);
823 }
824 
825 static int
826 xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
827 {
828 	uint32_t crc;
829 	size_t vid;
830 	uint16_t vlan_hash_table = 0;
831 	__le16 vid_le = 0;
832 
833 	axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__,
834 	    XGMAC_IOREAD(pdata, MAC_VLANHTR));
835 
836 	/* Generate the VLAN Hash Table value */
837 	bit_foreach(pdata->active_vlans, VLAN_NVID, vid) {
838 		/* Get the CRC32 value of the VLAN ID */
839 		vid_le = cpu_to_le16(vid);
840 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
841 
842 		vlan_hash_table |= (1 << crc);
843 		axgbe_printf(1, "%s: vid 0x%lx vid_le 0x%x crc 0x%x "
844 		    "vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc,
845 		    vlan_hash_table);
846 	}
847 
848 	/* Set the VLAN Hash Table filtering register */
849 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
850 
851 	axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__,
852 		XGMAC_IOREAD(pdata, MAC_VLANHTR));
853 
854 	return (0);
855 }
856 
857 static int
858 xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable)
859 {
860 	unsigned int val = enable ? 1 : 0;
861 
862 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
863 		return (0);
864 
865 	axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving");
866 
867 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
868 
869 	/* Hardware will still perform VLAN filtering in promiscuous mode */
870 	if (enable) {
871 		axgbe_printf(1, "Disabling rx vlan filtering\n");
872 		xgbe_disable_rx_vlan_filtering(pdata);
873 	} else {
874 		if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
875 			axgbe_printf(1, "Enabling rx vlan filtering\n");
876 			xgbe_enable_rx_vlan_filtering(pdata);
877 		}
878 	}
879 
880 	return (0);
881 }
882 
883 static int
884 xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable)
885 {
886 	unsigned int val = enable ? 1 : 0;
887 
888 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
889 		return (0);
890 
891 	axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving");
892 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
893 
894 	return (0);
895 }
896 
897 static void
898 xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg)
899 {
900 	unsigned int mac_addr_hi, mac_addr_lo;
901 	uint8_t *mac_addr;
902 
903 	mac_addr_lo = 0;
904 	mac_addr_hi = 0;
905 
906 	if (addr) {
907 		mac_addr = (uint8_t *)&mac_addr_lo;
908 		mac_addr[0] = addr[0];
909 		mac_addr[1] = addr[1];
910 		mac_addr[2] = addr[2];
911 		mac_addr[3] = addr[3];
912 		mac_addr = (uint8_t *)&mac_addr_hi;
913 		mac_addr[0] = addr[4];
914 		mac_addr[1] = addr[5];
915 
916 		axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg);
917 
918 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
919 	}
920 
921 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
922 	*mac_reg += MAC_MACA_INC;
923 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
924 	*mac_reg += MAC_MACA_INC;
925 }
926 
927 static void
928 xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
929 {
930 	unsigned int mac_reg;
931 	unsigned int addn_macs;
932 
933 	mac_reg = MAC_MACA1HR;
934 	addn_macs = pdata->hw_feat.addn_mac;
935 
936 	xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg);
937 	addn_macs--;
938 
939 	/* Clear remaining additional MAC address entries */
940 	while (addn_macs--)
941 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
942 }
943 
944 static int
945 xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
946 {
947 	/* TODO - add support to set mac hash table */
948 	xgbe_set_mac_addn_addrs(pdata);
949 
950 	return (0);
951 }
952 
953 static int
954 xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr)
955 {
956 	unsigned int mac_addr_hi, mac_addr_lo;
957 
958 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
959 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
960 		      (addr[1] <<  8) | (addr[0] <<  0);
961 
962 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
963 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
964 
965 	return (0);
966 }
967 
968 static int
969 xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
970 {
971 	unsigned int pr_mode, am_mode;
972 
973 	pr_mode = ((if_getflags(pdata->netdev) & IFF_PPROMISC) != 0);
974 	am_mode = ((if_getflags(pdata->netdev) & IFF_ALLMULTI) != 0);
975 
976 	xgbe_set_promiscuous_mode(pdata, pr_mode);
977 	xgbe_set_all_multicast_mode(pdata, am_mode);
978 
979 	xgbe_add_mac_addresses(pdata);
980 
981 	return (0);
982 }
983 
984 static int
985 xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
986 {
987 	unsigned int reg;
988 
989 	if (gpio > 15)
990 		return (-EINVAL);
991 
992 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
993 
994 	reg &= ~(1 << (gpio + 16));
995 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
996 
997 	return (0);
998 }
999 
1000 static int
1001 xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1002 {
1003 	unsigned int reg;
1004 
1005 	if (gpio > 15)
1006 		return (-EINVAL);
1007 
1008 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1009 
1010 	reg |= (1 << (gpio + 16));
1011 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1012 
1013 	return (0);
1014 }
1015 
1016 static int
1017 xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1018 {
1019 	unsigned long flags;
1020 	unsigned int mmd_address, index, offset;
1021 	int mmd_data;
1022 
1023 	if (mmd_reg & MII_ADDR_C45)
1024 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1025 	else
1026 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1027 
1028 	/* The PCS registers are accessed using mmio. The underlying
1029 	 * management interface uses indirect addressing to access the MMD
1030 	 * register sets. This requires accessing of the PCS register in two
1031 	 * phases, an address phase and a data phase.
1032 	 *
1033 	 * The mmio interface is based on 16-bit offsets and values. All
1034 	 * register offsets must therefore be adjusted by left shifting the
1035 	 * offset 1 bit and reading 16 bits of data.
1036 	 */
1037 	mmd_address <<= 1;
1038 	index = mmd_address & ~pdata->xpcs_window_mask;
1039 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1040 
1041 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1042 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1043 	mmd_data = XPCS16_IOREAD(pdata, offset);
1044 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1045 
1046 	return (mmd_data);
1047 }
1048 
1049 static void
1050 xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1051     int mmd_data)
1052 {
1053 	unsigned long flags;
1054 	unsigned int mmd_address, index, offset;
1055 
1056 	if (mmd_reg & MII_ADDR_C45)
1057 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1058 	else
1059 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1060 
1061 	/* The PCS registers are accessed using mmio. The underlying
1062 	 * management interface uses indirect addressing to access the MMD
1063 	 * register sets. This requires accessing of the PCS register in two
1064 	 * phases, an address phase and a data phase.
1065 	 *
1066 	 * The mmio interface is based on 16-bit offsets and values. All
1067 	 * register offsets must therefore be adjusted by left shifting the
1068 	 * offset 1 bit and writing 16 bits of data.
1069 	 */
1070 	mmd_address <<= 1;
1071 	index = mmd_address & ~pdata->xpcs_window_mask;
1072 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1073 
1074 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1075 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1076 	XPCS16_IOWRITE(pdata, offset, mmd_data);
1077 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1078 }
1079 
1080 static int
1081 xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1082 {
1083 	unsigned long flags;
1084 	unsigned int mmd_address;
1085 	int mmd_data;
1086 
1087 	if (mmd_reg & MII_ADDR_C45)
1088 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1089 	else
1090 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1091 
1092 	/* The PCS registers are accessed using mmio. The underlying APB3
1093 	 * management interface uses indirect addressing to access the MMD
1094 	 * register sets. This requires accessing of the PCS register in two
1095 	 * phases, an address phase and a data phase.
1096 	 *
1097 	 * The mmio interface is based on 32-bit offsets and values. All
1098 	 * register offsets must therefore be adjusted by left shifting the
1099 	 * offset 2 bits and reading 32 bits of data.
1100 	 */
1101 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1102 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1103 	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1104 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1105 
1106 	return (mmd_data);
1107 }
1108 
1109 static void
1110 xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1111     int mmd_data)
1112 {
1113 	unsigned int mmd_address;
1114 	unsigned long flags;
1115 
1116 	if (mmd_reg & MII_ADDR_C45)
1117 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1118 	else
1119 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1120 
1121 	/* The PCS registers are accessed using mmio. The underlying APB3
1122 	 * management interface uses indirect addressing to access the MMD
1123 	 * register sets. This requires accessing of the PCS register in two
1124 	 * phases, an address phase and a data phase.
1125 	 *
1126 	 * The mmio interface is based on 32-bit offsets and values. All
1127 	 * register offsets must therefore be adjusted by left shifting the
1128 	 * offset 2 bits and writing 32 bits of data.
1129 	 */
1130 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1131 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1132 	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1133 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1134 }
1135 
1136 static int
1137 xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1138 {
1139 	switch (pdata->vdata->xpcs_access) {
1140 	case XGBE_XPCS_ACCESS_V1:
1141 		return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg));
1142 
1143 	case XGBE_XPCS_ACCESS_V2:
1144 	default:
1145 		return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg));
1146 	}
1147 }
1148 
1149 static void
1150 xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1151     int mmd_data)
1152 {
1153 	switch (pdata->vdata->xpcs_access) {
1154 	case XGBE_XPCS_ACCESS_V1:
1155 		return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data));
1156 
1157 	case XGBE_XPCS_ACCESS_V2:
1158 	default:
1159 		return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data));
1160 	}
1161 }
1162 
1163 static unsigned int
1164 xgbe_create_mdio_sca(int port, int reg)
1165 {
1166 	unsigned int mdio_sca, da;
1167 
1168 	da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1169 
1170 	mdio_sca = 0;
1171 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1172 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1173 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1174 
1175 	return (mdio_sca);
1176 }
1177 
1178 static int
1179 xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg,
1180     uint16_t val)
1181 {
1182 	unsigned int mdio_sca, mdio_sccd;
1183 
1184 	mtx_lock_spin(&pdata->mdio_mutex);
1185 
1186 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1187 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1188 
1189 	mdio_sccd = 0;
1190 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1191 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1192 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1193 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1194 
1195 	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1196 	    EWOULDBLOCK) {
1197 		axgbe_error("%s: MDIO write error\n", __func__);
1198 		mtx_unlock_spin(&pdata->mdio_mutex);
1199 		return (-ETIMEDOUT);
1200 	}
1201 
1202 	mtx_unlock_spin(&pdata->mdio_mutex);
1203 	return (0);
1204 }
1205 
1206 static int
1207 xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg)
1208 {
1209 	unsigned int mdio_sca, mdio_sccd;
1210 
1211 	mtx_lock_spin(&pdata->mdio_mutex);
1212 
1213 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1214 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1215 
1216 	mdio_sccd = 0;
1217 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1218 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1219 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1220 
1221 	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1222 	    EWOULDBLOCK) {
1223 		axgbe_error("%s: MDIO read error\n", __func__);
1224 		mtx_unlock_spin(&pdata->mdio_mutex);
1225 		return (-ETIMEDOUT);
1226 	}
1227 
1228 	mtx_unlock_spin(&pdata->mdio_mutex);
1229 
1230 	return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA));
1231 }
1232 
1233 static int
1234 xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1235     enum xgbe_mdio_mode mode)
1236 {
1237 	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1238 
1239 	switch (mode) {
1240 	case XGBE_MDIO_MODE_CL22:
1241 		if (port > XGMAC_MAX_C22_PORT)
1242 			return (-EINVAL);
1243 		reg_val |= (1 << port);
1244 		break;
1245 	case XGBE_MDIO_MODE_CL45:
1246 		break;
1247 	default:
1248 		return (-EINVAL);
1249 	}
1250 
1251 	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1252 
1253 	return (0);
1254 }
1255 
1256 static int
1257 xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1258 {
1259 	return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN));
1260 }
1261 
1262 static int
1263 xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1264 {
1265 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1266 
1267 	axgbe_printf(0, "Receive checksum offload Disabled\n");
1268 	return (0);
1269 }
1270 
1271 static int
1272 xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1273 {
1274 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1275 
1276 	axgbe_printf(0, "Receive checksum offload Enabled\n");
1277 	return (0);
1278 }
1279 
1280 static void
1281 xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1282 {
1283 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1284 
1285 	/* Reset the Tx descriptor
1286 	 *   Set buffer 1 (lo) address to zero
1287 	 *   Set buffer 1 (hi) address to zero
1288 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1289 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1290 	 */
1291 	rdesc->desc0 = 0;
1292 	rdesc->desc1 = 0;
1293 	rdesc->desc2 = 0;
1294 	rdesc->desc3 = 0;
1295 
1296 	wmb();
1297 }
1298 
1299 static void
1300 xgbe_tx_desc_init(struct xgbe_channel *channel)
1301 {
1302 	struct xgbe_ring *ring = channel->tx_ring;
1303 	struct xgbe_ring_data *rdata;
1304 	int i;
1305 	int start_index = ring->cur;
1306 
1307 	/* Initialze all descriptors */
1308 	for (i = 0; i < ring->rdesc_count; i++) {
1309 		rdata = XGBE_GET_DESC_DATA(ring, i);
1310 
1311 		/* Initialize Tx descriptor */
1312 		xgbe_tx_desc_reset(rdata);
1313 	}
1314 
1315 	/* Update the total number of Tx descriptors */
1316 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1317 
1318 	/* Update the starting address of descriptor ring */
1319 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1320 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1321 	    upper_32_bits(rdata->rdata_paddr));
1322 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1323 	    lower_32_bits(rdata->rdata_paddr));
1324 }
1325 
1326 static void
1327 xgbe_rx_desc_init(struct xgbe_channel *channel)
1328 {
1329 	struct xgbe_ring *ring = channel->rx_ring;
1330 	struct xgbe_ring_data *rdata;
1331 	unsigned int start_index = ring->cur;
1332 
1333 	/*
1334 	 * Just set desc_count and the starting address of the desc list
1335 	 * here. Rest will be done as part of the txrx path.
1336 	 */
1337 
1338 	/* Update the total number of Rx descriptors */
1339 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1340 
1341 	/* Update the starting address of descriptor ring */
1342 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1343 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1344 	    upper_32_bits(rdata->rdata_paddr));
1345 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1346 	    lower_32_bits(rdata->rdata_paddr));
1347 }
1348 
1349 static int
1350 xgbe_dev_read(struct xgbe_channel *channel)
1351 {
1352 	struct xgbe_prv_data *pdata = channel->pdata;
1353 	struct xgbe_ring *ring = channel->rx_ring;
1354 	struct xgbe_ring_data *rdata;
1355 	struct xgbe_ring_desc *rdesc;
1356 	struct xgbe_packet_data *packet = &ring->packet_data;
1357 	unsigned int err, etlt, l34t = 0;
1358 
1359 	axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur);
1360 
1361 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1362 	rdesc = rdata->rdesc;
1363 
1364 	/* Check for data availability */
1365 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1366 		return (1);
1367 
1368 	rmb();
1369 
1370 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1371 		/* TODO - Timestamp Context Descriptor */
1372 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1373 		    CONTEXT, 1);
1374 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1375 		    CONTEXT_NEXT, 0);
1376 		return (0);
1377 	}
1378 
1379 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1380 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1381 
1382 	/* Indicate if a Context Descriptor is next */
1383 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1384 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1385 		    CONTEXT_NEXT, 1);
1386 
1387 	/* Get the header length */
1388 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1389 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1390 		    FIRST, 1);
1391 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1392 		    RX_NORMAL_DESC2, HL);
1393 		if (rdata->rx.hdr_len)
1394 			pdata->ext_stats.rx_split_header_packets++;
1395 	} else
1396 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1397 		    FIRST, 0);
1398 
1399 	/* Get the RSS hash */
1400 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1401 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1402 		    RSS_HASH, 1);
1403 
1404 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1405 
1406 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1407 		switch (l34t) {
1408 		case RX_DESC3_L34T_IPV4_TCP:
1409 			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4;
1410 			break;
1411 		case RX_DESC3_L34T_IPV4_UDP:
1412 			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4;
1413 			break;
1414 		case RX_DESC3_L34T_IPV6_TCP:
1415 			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6;
1416 			break;
1417 		case RX_DESC3_L34T_IPV6_UDP:
1418 			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6;
1419 			break;
1420 		default:
1421 			packet->rss_hash_type = M_HASHTYPE_OPAQUE;
1422 			break;
1423 		}
1424 	}
1425 
1426 	/* Not all the data has been transferred for this packet */
1427 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1428 		/* This is not the last of the data for this packet */
1429 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1430 		    LAST, 0);
1431 		return (0);
1432 	}
1433 
1434 	/* This is the last of the data for this packet */
1435 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1436 	    LAST, 1);
1437 
1438 	/* Get the packet length */
1439 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1440 
1441 	/* Set checksum done indicator as appropriate */
1442 	/* TODO - add tunneling support */
1443 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1444 	    CSUM_DONE, 1);
1445 
1446 	/* Check for errors (only valid in last descriptor) */
1447 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1448 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1449 	axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt);
1450 
1451 	if (!err || !etlt) {
1452 		/* No error if err is 0 or etlt is 0 */
1453 		if (etlt == 0x09 &&
1454 		    (if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
1455 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1456 			    VLAN_CTAG, 1);
1457 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1458 			    RX_NORMAL_DESC0, OVT);
1459 			axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag);
1460 		}
1461 	} else {
1462 		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
1463 		    RX_PACKET_ATTRIBUTES, TNP);
1464 
1465 		if ((etlt == 0x05) || (etlt == 0x06)) {
1466 			axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n",
1467 			    __func__, l34t, err, etlt);
1468 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1469 			    CSUM_DONE, 0);
1470 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1471 			    TNPCSUM_DONE, 0);
1472 			pdata->ext_stats.rx_csum_errors++;
1473 		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
1474 			axgbe_printf(1, "%s: err2  l34t %d err 0x%x etlt 0x%x\n",
1475 			    __func__, l34t, err, etlt);
1476 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1477 			    CSUM_DONE, 0);
1478 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1479 			    TNPCSUM_DONE, 0);
1480 			pdata->ext_stats.rx_vxlan_csum_errors++;
1481 		} else {
1482 			axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n",
1483 			    __func__, tnp, l34t, err, etlt);
1484 			axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n",
1485 			    __func__, channel->queue_index,
1486 			    XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
1487 		 	    XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
1488 			axgbe_printf(1, "%s: ring cur %d dirty %d\n",
1489 			    __func__, ring->cur, ring->dirty);
1490 			axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n",
1491 			    __func__, rdesc->desc0, rdesc->desc1, rdesc->desc2,
1492 			    rdesc->desc3);
1493 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1494 			    FRAME, 1);
1495 		}
1496 	}
1497 
1498 	axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n",
1499 	    channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur);
1500 
1501 	return (0);
1502 }
1503 
1504 static int
1505 xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1506 {
1507 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1508 	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT));
1509 }
1510 
1511 static int
1512 xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1513 {
1514 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1515 	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD));
1516 }
1517 
1518 static int
1519 xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1520 {
1521 	struct xgbe_prv_data *pdata = channel->pdata;
1522 
1523 	axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n",
1524 	    channel->curr_ier);
1525 
1526 	switch (int_id) {
1527 	case XGMAC_INT_DMA_CH_SR_TI:
1528 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1529 		break;
1530 	case XGMAC_INT_DMA_CH_SR_TPS:
1531 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
1532 		break;
1533 	case XGMAC_INT_DMA_CH_SR_TBU:
1534 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
1535 		break;
1536 	case XGMAC_INT_DMA_CH_SR_RI:
1537 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1538 		break;
1539 	case XGMAC_INT_DMA_CH_SR_RBU:
1540 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
1541 		break;
1542 	case XGMAC_INT_DMA_CH_SR_RPS:
1543 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
1544 		break;
1545 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1546 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1547 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1548 		break;
1549 	case XGMAC_INT_DMA_CH_SR_FBE:
1550 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
1551 		break;
1552 	case XGMAC_INT_DMA_ALL:
1553 		channel->curr_ier |= channel->saved_ier;
1554 		break;
1555 	default:
1556 		return (-1);
1557 	}
1558 
1559 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1560 
1561 	axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n",
1562 	    channel->curr_ier);
1563 
1564 	return (0);
1565 }
1566 
1567 static int
1568 xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1569 {
1570 	struct xgbe_prv_data *pdata = channel->pdata;
1571 
1572 	axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n",
1573 	    channel->curr_ier);
1574 
1575 	switch (int_id) {
1576 	case XGMAC_INT_DMA_CH_SR_TI:
1577 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1578 		break;
1579 	case XGMAC_INT_DMA_CH_SR_TPS:
1580 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
1581 		break;
1582 	case XGMAC_INT_DMA_CH_SR_TBU:
1583 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
1584 		break;
1585 	case XGMAC_INT_DMA_CH_SR_RI:
1586 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1587 		break;
1588 	case XGMAC_INT_DMA_CH_SR_RBU:
1589 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
1590 		break;
1591 	case XGMAC_INT_DMA_CH_SR_RPS:
1592 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
1593 		break;
1594 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1595 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1596 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1597 		break;
1598 	case XGMAC_INT_DMA_CH_SR_FBE:
1599 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
1600 		break;
1601 	case XGMAC_INT_DMA_ALL:
1602 		channel->saved_ier = channel->curr_ier;
1603 		channel->curr_ier = 0;
1604 		break;
1605 	default:
1606 		return (-1);
1607 	}
1608 
1609 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1610 
1611 	axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n",
1612 	    channel->curr_ier);
1613 
1614 	return (0);
1615 }
1616 
1617 static int
1618 __xgbe_exit(struct xgbe_prv_data *pdata)
1619 {
1620 	unsigned int count = 2000;
1621 
1622 	/* Issue a software reset */
1623 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1624 	DELAY(10);
1625 
1626 	/* Poll Until Poll Condition */
1627 	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1628 		DELAY(500);
1629 
1630 	if (!count)
1631 		return (-EBUSY);
1632 
1633 	return (0);
1634 }
1635 
1636 static int
1637 xgbe_exit(struct xgbe_prv_data *pdata)
1638 {
1639 	int ret;
1640 
1641 	/* To guard against possible incorrectly generated interrupts,
1642 	 * issue the software reset twice.
1643 	 */
1644 	ret = __xgbe_exit(pdata);
1645 	if (ret) {
1646 		axgbe_error("%s: exit error %d\n", __func__, ret);
1647 		return (ret);
1648 	}
1649 
1650 	return (__xgbe_exit(pdata));
1651 }
1652 
1653 static int
1654 xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1655 {
1656 	unsigned int i, count;
1657 
1658 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1659 		return (0);
1660 
1661 	for (i = 0; i < pdata->tx_q_count; i++)
1662 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1663 
1664 	/* Poll Until Poll Condition */
1665 	for (i = 0; i < pdata->tx_q_count; i++) {
1666 		count = 2000;
1667 		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
1668 							MTL_Q_TQOMR, FTQ))
1669 			DELAY(500);
1670 
1671 		if (!count)
1672 			return (-EBUSY);
1673 	}
1674 
1675 	return (0);
1676 }
1677 
1678 static void
1679 xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1680 {
1681 	unsigned int sbmr;
1682 
1683 	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
1684 
1685 	/* Set enhanced addressing mode */
1686 	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
1687 
1688 	/* Set the System Bus mode */
1689 	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
1690 	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
1691 	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
1692 	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
1693 	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
1694 
1695 	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
1696 
1697 	/* Set descriptor fetching threshold */
1698 	if (pdata->vdata->tx_desc_prefetch)
1699 		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
1700 		    pdata->vdata->tx_desc_prefetch);
1701 
1702 	if (pdata->vdata->rx_desc_prefetch)
1703 		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
1704 		    pdata->vdata->rx_desc_prefetch);
1705 }
1706 
1707 static void
1708 xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1709 {
1710 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
1711 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
1712 	if (pdata->awarcr)
1713 		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
1714 }
1715 
1716 static void
1717 xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1718 {
1719 	unsigned int i;
1720 
1721 	/* Set Tx to weighted round robin scheduling algorithm */
1722 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1723 
1724 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
1725 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1726 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1727 		    MTL_TSA_ETS);
1728 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1729 	}
1730 
1731 	/* Set Rx to strict priority algorithm */
1732 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
1733 }
1734 
1735 static void
1736 xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
1737     unsigned int queue, unsigned int q_fifo_size)
1738 {
1739 	unsigned int frame_fifo_size;
1740 	unsigned int rfa, rfd;
1741 
1742 	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
1743 	axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n",
1744 	    __func__, queue, q_fifo_size, frame_fifo_size);
1745 
1746 	/* TODO - add pfc/ets related support */
1747 
1748 	/* This path deals with just maximum frame sizes which are
1749 	 * limited to a jumbo frame of 9,000 (plus headers, etc.)
1750 	 * so we can never exceed the maximum allowable RFA/RFD
1751 	 * values.
1752 	 */
1753 	if (q_fifo_size <= 2048) {
1754 		/* rx_rfd to zero to signal no flow control */
1755 		pdata->rx_rfa[queue] = 0;
1756 		pdata->rx_rfd[queue] = 0;
1757 		return;
1758 	}
1759 
1760 	if (q_fifo_size <= 4096) {
1761 		/* Between 2048 and 4096 */
1762 		pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
1763 		pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
1764 		return;
1765 	}
1766 
1767 	if (q_fifo_size <= frame_fifo_size) {
1768 		/* Between 4096 and max-frame */
1769 		pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
1770 		pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
1771 		return;
1772 	}
1773 
1774 	if (q_fifo_size <= (frame_fifo_size * 3)) {
1775 		/* Between max-frame and 3 max-frames,
1776 		 * trigger if we get just over a frame of data and
1777 		 * resume when we have just under half a frame left.
1778 		 */
1779 		rfa = q_fifo_size - frame_fifo_size;
1780 		rfd = rfa + (frame_fifo_size / 2);
1781 	} else {
1782 		/* Above 3 max-frames - trigger when just over
1783 		 * 2 frames of space available
1784 		 */
1785 		rfa = frame_fifo_size * 2;
1786 		rfa += XGMAC_FLOW_CONTROL_UNIT;
1787 		rfd = rfa + frame_fifo_size;
1788 	}
1789 
1790 	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
1791 	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
1792 	axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__,
1793 	    queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]);
1794 }
1795 
1796 static void
1797 xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
1798     unsigned int *fifo)
1799 {
1800 	unsigned int q_fifo_size;
1801 	unsigned int i;
1802 
1803 	for (i = 0; i < pdata->rx_q_count; i++) {
1804 		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
1805 
1806 		axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n",
1807 		    __func__, i, fifo[i], q_fifo_size);
1808 		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
1809 	}
1810 }
1811 
1812 static void
1813 xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
1814 {
1815 	unsigned int i;
1816 
1817 	for (i = 0; i < pdata->rx_q_count; i++) {
1818 		axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i,
1819 		    pdata->rx_rfa[i], pdata->rx_rfd[i]);
1820 
1821 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
1822 				       pdata->rx_rfa[i]);
1823 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
1824 				       pdata->rx_rfd[i]);
1825 
1826 		axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__,
1827 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
1828 	}
1829 }
1830 
1831 static unsigned int
1832 xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
1833 {
1834 	/* The configured value may not be the actual amount of fifo RAM */
1835 	return (min_t(unsigned int, pdata->tx_max_fifo_size,
1836 	    pdata->hw_feat.tx_fifo_size));
1837 }
1838 
1839 static unsigned int
1840 xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
1841 {
1842 	/* The configured value may not be the actual amount of fifo RAM */
1843 	return (min_t(unsigned int, pdata->rx_max_fifo_size,
1844 	    pdata->hw_feat.rx_fifo_size));
1845 }
1846 
1847 static void
1848 xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count,
1849     unsigned int *fifo)
1850 {
1851 	unsigned int q_fifo_size;
1852 	unsigned int p_fifo;
1853 	unsigned int i;
1854 
1855 	q_fifo_size = fifo_size / queue_count;
1856 
1857 	/* Calculate the fifo setting by dividing the queue's fifo size
1858 	 * by the fifo allocation increment (with 0 representing the
1859 	 * base allocation increment so decrement the result by 1).
1860 	 */
1861 	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
1862 	if (p_fifo)
1863 		p_fifo--;
1864 
1865 	/* Distribute the fifo equally amongst the queues */
1866 	for (i = 0; i < queue_count; i++)
1867 		fifo[i] = p_fifo;
1868 }
1869 
1870 static unsigned int
1871 xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count,
1872     unsigned int *fifo)
1873 {
1874 	unsigned int i;
1875 
1876 	MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC));
1877 
1878 	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
1879 		return (fifo_size);
1880 
1881 	/* Rx queues 9 and up are for specialized packets,
1882 	 * such as PTP or DCB control packets, etc. and
1883 	 * don't require a large fifo
1884 	 */
1885 	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
1886 		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
1887 		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
1888 	}
1889 
1890 	return (fifo_size);
1891 }
1892 
1893 static void
1894 xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
1895 {
1896 	unsigned int fifo_size;
1897 	unsigned int fifo[XGBE_MAX_QUEUES];
1898 	unsigned int i;
1899 
1900 	fifo_size = xgbe_get_tx_fifo_size(pdata);
1901 	axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size);
1902 
1903 	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
1904 
1905 	for (i = 0; i < pdata->tx_q_count; i++) {
1906 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
1907 		axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i,
1908 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
1909 	}
1910 
1911 	axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n",
1912 	    pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1913 }
1914 
1915 static void
1916 xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
1917 {
1918 	unsigned int fifo_size;
1919 	unsigned int fifo[XGBE_MAX_QUEUES];
1920 	unsigned int prio_queues;
1921 	unsigned int i;
1922 
1923 	/* TODO - add pfc/ets related support */
1924 
1925 	/* Clear any DCB related fifo/queue information */
1926 	fifo_size = xgbe_get_rx_fifo_size(pdata);
1927 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1928 	axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__,
1929 	    fifo_size, pdata->rx_q_count, prio_queues);
1930 
1931 	/* Assign a minimum fifo to the non-VLAN priority queues */
1932 	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
1933 
1934 	xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
1935 
1936 	for (i = 0; i < pdata->rx_q_count; i++) {
1937 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
1938 		axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i,
1939 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
1940 	}
1941 
1942 	xgbe_calculate_flow_control_threshold(pdata, fifo);
1943 	xgbe_config_flow_control_threshold(pdata);
1944 
1945 	axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n",
1946 	    pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1947 }
1948 
1949 static void
1950 xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
1951 {
1952 	unsigned int qptc, qptc_extra, queue;
1953 	unsigned int prio_queues;
1954 	unsigned int ppq, ppq_extra, prio;
1955 	unsigned int mask;
1956 	unsigned int i, j, reg, reg_val;
1957 
1958 	/* Map the MTL Tx Queues to Traffic Classes
1959 	 *   Note: Tx Queues >= Traffic Classes
1960 	 */
1961 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
1962 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
1963 
1964 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
1965 		for (j = 0; j < qptc; j++) {
1966 			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1967 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1968 			    Q2TCMAP, i);
1969 			pdata->q2tc_map[queue++] = i;
1970 		}
1971 
1972 		if (i < qptc_extra) {
1973 			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1974 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1975 			    Q2TCMAP, i);
1976 			pdata->q2tc_map[queue++] = i;
1977 		}
1978 	}
1979 
1980 	/* Map the 8 VLAN priority values to available MTL Rx queues */
1981 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1982 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
1983 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
1984 
1985 	reg = MAC_RQC2R;
1986 	reg_val = 0;
1987 	for (i = 0, prio = 0; i < prio_queues;) {
1988 		mask = 0;
1989 		for (j = 0; j < ppq; j++) {
1990 			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1991 			mask |= (1 << prio);
1992 			pdata->prio2q_map[prio++] = i;
1993 		}
1994 
1995 		if (i < ppq_extra) {
1996 			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1997 			mask |= (1 << prio);
1998 			pdata->prio2q_map[prio++] = i;
1999 		}
2000 
2001 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2002 
2003 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2004 			continue;
2005 
2006 		XGMAC_IOWRITE(pdata, reg, reg_val);
2007 		reg += MAC_RQC2_INC;
2008 		reg_val = 0;
2009 	}
2010 
2011 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2012 	reg = MTL_RQDCM0R;
2013 	reg_val = 0;
2014 	for (i = 0; i < pdata->rx_q_count;) {
2015 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2016 
2017 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2018 			continue;
2019 
2020 		XGMAC_IOWRITE(pdata, reg, reg_val);
2021 
2022 		reg += MTL_RQDCM_INC;
2023 		reg_val = 0;
2024 	}
2025 }
2026 
2027 static void
2028 xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2029 {
2030 	xgbe_set_mac_address(pdata, if_getlladdr(pdata->netdev));
2031 
2032 	/*
2033 	 * Promisc mode does not work as intended. Multicast traffic
2034 	 * is triggering the filter, so enable Receive All.
2035 	 */
2036 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, RA, 1);
2037 
2038 	/* Filtering is done using perfect filtering and hash filtering */
2039 	if (pdata->hw_feat.hash_table_size) {
2040 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2041 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2042 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2043 	}
2044 }
2045 
2046 static void
2047 xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2048 {
2049 	unsigned int val;
2050 
2051 	val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2052 
2053 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2054 }
2055 
2056 static void
2057 xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2058 {
2059 	xgbe_set_speed(pdata, pdata->phy_speed);
2060 }
2061 
2062 static void
2063 xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2064 {
2065 	if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM))
2066 		xgbe_enable_rx_csum(pdata);
2067 	else
2068 		xgbe_disable_rx_csum(pdata);
2069 }
2070 
2071 static void
2072 xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2073 {
2074 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2075 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2076 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2077 
2078 	/* Set the current VLAN Hash Table register value */
2079 	xgbe_update_vlan_hash_table(pdata);
2080 
2081 	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
2082 		axgbe_printf(1, "Enabling rx vlan filtering\n");
2083 		xgbe_enable_rx_vlan_filtering(pdata);
2084 	} else {
2085 		axgbe_printf(1, "Disabling rx vlan filtering\n");
2086 		xgbe_disable_rx_vlan_filtering(pdata);
2087 	}
2088 
2089 	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
2090 		axgbe_printf(1, "Enabling rx vlan stripping\n");
2091 		xgbe_enable_rx_vlan_stripping(pdata);
2092 	} else {
2093 		axgbe_printf(1, "Disabling rx vlan stripping\n");
2094 		xgbe_disable_rx_vlan_stripping(pdata);
2095 	}
2096 }
2097 
2098 static uint64_t
2099 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2100 {
2101 	bool read_hi;
2102 	uint64_t val;
2103 
2104 	if (pdata->vdata->mmc_64bit) {
2105 		switch (reg_lo) {
2106 		/* These registers are always 32 bit */
2107 		case MMC_RXRUNTERROR:
2108 		case MMC_RXJABBERERROR:
2109 		case MMC_RXUNDERSIZE_G:
2110 		case MMC_RXOVERSIZE_G:
2111 		case MMC_RXWATCHDOGERROR:
2112 			read_hi = false;
2113 			break;
2114 
2115 		default:
2116 			read_hi = true;
2117 		}
2118 	} else {
2119 		switch (reg_lo) {
2120 		/* These registers are always 64 bit */
2121 		case MMC_TXOCTETCOUNT_GB_LO:
2122 		case MMC_TXOCTETCOUNT_G_LO:
2123 		case MMC_RXOCTETCOUNT_GB_LO:
2124 		case MMC_RXOCTETCOUNT_G_LO:
2125 			read_hi = true;
2126 			break;
2127 
2128 		default:
2129 			read_hi = false;
2130 		}
2131 	}
2132 
2133 	val = XGMAC_IOREAD(pdata, reg_lo);
2134 
2135 	if (read_hi)
2136 		val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2137 
2138 	return (val);
2139 }
2140 
2141 static void
2142 xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2143 {
2144 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2145 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2146 
2147 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2148 		stats->txoctetcount_gb +=
2149 		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2150 
2151 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2152 		stats->txframecount_gb +=
2153 		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2154 
2155 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2156 		stats->txbroadcastframes_g +=
2157 		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2158 
2159 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2160 		stats->txmulticastframes_g +=
2161 		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2162 
2163 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2164 		stats->tx64octets_gb +=
2165 		    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2166 
2167 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2168 		stats->tx65to127octets_gb +=
2169 		    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2170 
2171 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2172 		stats->tx128to255octets_gb +=
2173 		    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2174 
2175 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2176 		stats->tx256to511octets_gb +=
2177 		    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2178 
2179 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2180 		stats->tx512to1023octets_gb +=
2181 		    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2182 
2183 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2184 		stats->tx1024tomaxoctets_gb +=
2185 		    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2186 
2187 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2188 		stats->txunicastframes_gb +=
2189 		    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2190 
2191 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2192 		stats->txmulticastframes_gb +=
2193 		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2194 
2195 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2196 		stats->txbroadcastframes_g +=
2197 		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2198 
2199 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2200 		stats->txunderflowerror +=
2201 		    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2202 
2203 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2204 		stats->txoctetcount_g +=
2205 		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2206 
2207 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2208 		stats->txframecount_g +=
2209 		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2210 
2211 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2212 		stats->txpauseframes +=
2213 		    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2214 
2215 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2216 		stats->txvlanframes_g +=
2217 		    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2218 }
2219 
2220 static void
2221 xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2222 {
2223 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2224 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2225 
2226 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2227 		stats->rxframecount_gb +=
2228 		    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2229 
2230 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2231 		stats->rxoctetcount_gb +=
2232 		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2233 
2234 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2235 		stats->rxoctetcount_g +=
2236 		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2237 
2238 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2239 		stats->rxbroadcastframes_g +=
2240 		    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2241 
2242 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2243 		stats->rxmulticastframes_g +=
2244 		    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2245 
2246 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2247 		stats->rxcrcerror +=
2248 		    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2249 
2250 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2251 		stats->rxrunterror +=
2252 		    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2253 
2254 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2255 		stats->rxjabbererror +=
2256 		    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2257 
2258 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2259 		stats->rxundersize_g +=
2260 		    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2261 
2262 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2263 		stats->rxoversize_g +=
2264 		    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2265 
2266 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2267 		stats->rx64octets_gb +=
2268 		    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2269 
2270 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2271 		stats->rx65to127octets_gb +=
2272 		    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2273 
2274 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2275 		stats->rx128to255octets_gb +=
2276 		    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2277 
2278 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2279 		stats->rx256to511octets_gb +=
2280 		    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2281 
2282 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2283 		stats->rx512to1023octets_gb +=
2284 		    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2285 
2286 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2287 		stats->rx1024tomaxoctets_gb +=
2288 		    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2289 
2290 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2291 		stats->rxunicastframes_g +=
2292 		    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2293 
2294 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2295 		stats->rxlengtherror +=
2296 		    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2297 
2298 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2299 		stats->rxoutofrangetype +=
2300 		    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2301 
2302 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2303 		stats->rxpauseframes +=
2304 		    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2305 
2306 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2307 		stats->rxfifooverflow +=
2308 		    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2309 
2310 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2311 		stats->rxvlanframes_gb +=
2312 		    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2313 
2314 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2315 		stats->rxwatchdogerror +=
2316 		    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2317 }
2318 
2319 static void
2320 xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2321 {
2322 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2323 
2324 	/* Freeze counters */
2325 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2326 
2327 	stats->txoctetcount_gb +=
2328 	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2329 
2330 	stats->txframecount_gb +=
2331 	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2332 
2333 	stats->txbroadcastframes_g +=
2334 	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2335 
2336 	stats->txmulticastframes_g +=
2337 	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2338 
2339 	stats->tx64octets_gb +=
2340 	    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2341 
2342 	stats->tx65to127octets_gb +=
2343 	    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2344 
2345 	stats->tx128to255octets_gb +=
2346 	    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2347 
2348 	stats->tx256to511octets_gb +=
2349 	    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2350 
2351 	stats->tx512to1023octets_gb +=
2352 	    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2353 
2354 	stats->tx1024tomaxoctets_gb +=
2355 	    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2356 
2357 	stats->txunicastframes_gb +=
2358 	    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2359 
2360 	stats->txmulticastframes_gb +=
2361 	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2362 
2363 	stats->txbroadcastframes_gb +=
2364 	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2365 
2366 	stats->txunderflowerror +=
2367 	    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2368 
2369 	stats->txoctetcount_g +=
2370 	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2371 
2372 	stats->txframecount_g +=
2373 	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2374 
2375 	stats->txpauseframes +=
2376 	    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2377 
2378 	stats->txvlanframes_g +=
2379 	    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2380 
2381 	stats->rxframecount_gb +=
2382 	    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2383 
2384 	stats->rxoctetcount_gb +=
2385 	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2386 
2387 	stats->rxoctetcount_g +=
2388 	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2389 
2390 	stats->rxbroadcastframes_g +=
2391 	    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2392 
2393 	stats->rxmulticastframes_g +=
2394 	    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2395 
2396 	stats->rxcrcerror +=
2397 	    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2398 
2399 	stats->rxrunterror +=
2400 	    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2401 
2402 	stats->rxjabbererror +=
2403 	    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2404 
2405 	stats->rxundersize_g +=
2406 	    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2407 
2408 	stats->rxoversize_g +=
2409 	    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2410 
2411 	stats->rx64octets_gb +=
2412 	    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2413 
2414 	stats->rx65to127octets_gb +=
2415 	    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2416 
2417 	stats->rx128to255octets_gb +=
2418 	    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2419 
2420 	stats->rx256to511octets_gb +=
2421 	    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2422 
2423 	stats->rx512to1023octets_gb +=
2424 	    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2425 
2426 	stats->rx1024tomaxoctets_gb +=
2427 	    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2428 
2429 	stats->rxunicastframes_g +=
2430 	    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2431 
2432 	stats->rxlengtherror +=
2433 	    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2434 
2435 	stats->rxoutofrangetype +=
2436 	    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2437 
2438 	stats->rxpauseframes +=
2439 	    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2440 
2441 	stats->rxfifooverflow +=
2442 	    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2443 
2444 	stats->rxvlanframes_gb +=
2445 	    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2446 
2447 	stats->rxwatchdogerror +=
2448 	    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2449 
2450 	/* Un-freeze counters */
2451 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2452 }
2453 
2454 static void
2455 xgbe_config_mmc(struct xgbe_prv_data *pdata)
2456 {
2457 	/* Set counters to reset on read */
2458 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2459 
2460 	/* Reset the counters */
2461 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2462 }
2463 
2464 static void
2465 xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2466 {
2467 	unsigned int tx_status;
2468 	unsigned long tx_timeout;
2469 
2470 	/* The Tx engine cannot be stopped if it is actively processing
2471 	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
2472 	 * wait forever though...
2473 	 */
2474 	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2475 	while (ticks < tx_timeout) {
2476 		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
2477 		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
2478 		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
2479 			break;
2480 
2481 		DELAY(500);
2482 	}
2483 
2484 	if (ticks >= tx_timeout)
2485 		axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n",
2486 		    queue);
2487 }
2488 
2489 static void
2490 xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2491 {
2492 	unsigned int tx_dsr, tx_pos, tx_qidx;
2493 	unsigned int tx_status;
2494 	unsigned long tx_timeout;
2495 
2496 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
2497 		return (xgbe_txq_prepare_tx_stop(pdata, queue));
2498 
2499 	/* Calculate the status register to read and the position within */
2500 	if (queue < DMA_DSRX_FIRST_QUEUE) {
2501 		tx_dsr = DMA_DSR0;
2502 		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
2503 	} else {
2504 		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
2505 
2506 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2507 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2508 			 DMA_DSRX_TPS_START;
2509 	}
2510 
2511 	/* The Tx engine cannot be stopped if it is actively processing
2512 	 * descriptors. Wait for the Tx engine to enter the stopped or
2513 	 * suspended state.  Don't wait forever though...
2514 	 */
2515 	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2516 	while (ticks < tx_timeout) {
2517 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2518 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2519 		if ((tx_status == DMA_TPS_STOPPED) ||
2520 		    (tx_status == DMA_TPS_SUSPENDED))
2521 			break;
2522 
2523 		DELAY(500);
2524 	}
2525 
2526 	if (ticks >= tx_timeout)
2527 		axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n",
2528 		    queue);
2529 }
2530 
2531 static void
2532 xgbe_enable_tx(struct xgbe_prv_data *pdata)
2533 {
2534 	unsigned int i;
2535 
2536 	/* Enable each Tx DMA channel */
2537 	for (i = 0; i < pdata->channel_count; i++) {
2538 		if (!pdata->channel[i]->tx_ring)
2539 			break;
2540 
2541 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2542 	}
2543 
2544 	/* Enable each Tx queue */
2545 	for (i = 0; i < pdata->tx_q_count; i++)
2546 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2547 		    MTL_Q_ENABLED);
2548 
2549 	/* Enable MAC Tx */
2550 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2551 }
2552 
2553 static void
2554 xgbe_disable_tx(struct xgbe_prv_data *pdata)
2555 {
2556 	unsigned int i;
2557 
2558 	/* Prepare for Tx DMA channel stop */
2559 	for (i = 0; i < pdata->tx_q_count; i++)
2560 		xgbe_prepare_tx_stop(pdata, i);
2561 
2562 	/* Disable MAC Tx */
2563 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2564 
2565 	/* Disable each Tx queue */
2566 	for (i = 0; i < pdata->tx_q_count; i++)
2567 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2568 
2569 	/* Disable each Tx DMA channel */
2570 	for (i = 0; i < pdata->channel_count; i++) {
2571 		if (!pdata->channel[i]->tx_ring)
2572 			break;
2573 
2574 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2575 	}
2576 }
2577 
2578 static void
2579 xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2580 {
2581 	unsigned int rx_status;
2582 	unsigned long rx_timeout;
2583 
2584 	/* The Rx engine cannot be stopped if it is actively processing
2585 	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
2586 	 * wait forever though...
2587 	 */
2588 	rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2589 	while (ticks < rx_timeout) {
2590 		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
2591 		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
2592 		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
2593 			break;
2594 
2595 		DELAY(500);
2596 	}
2597 
2598 	if (ticks >= rx_timeout)
2599 		axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n",
2600 		    queue);
2601 }
2602 
2603 static void
2604 xgbe_enable_rx(struct xgbe_prv_data *pdata)
2605 {
2606 	unsigned int reg_val, i;
2607 
2608 	/* Enable each Rx DMA channel */
2609 	for (i = 0; i < pdata->channel_count; i++) {
2610 		if (!pdata->channel[i]->rx_ring)
2611 			break;
2612 
2613 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2614 	}
2615 
2616 	/* Enable each Rx queue */
2617 	reg_val = 0;
2618 	for (i = 0; i < pdata->rx_q_count; i++)
2619 		reg_val |= (0x02 << (i << 1));
2620 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2621 
2622 	/* Enable MAC Rx */
2623 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2624 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2625 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2626 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2627 }
2628 
2629 static void
2630 xgbe_disable_rx(struct xgbe_prv_data *pdata)
2631 {
2632 	unsigned int i;
2633 
2634 	/* Disable MAC Rx */
2635 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2636 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2637 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2638 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2639 
2640 	/* Prepare for Rx DMA channel stop */
2641 	for (i = 0; i < pdata->rx_q_count; i++)
2642 		xgbe_prepare_rx_stop(pdata, i);
2643 
2644 	/* Disable each Rx queue */
2645 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2646 
2647 	/* Disable each Rx DMA channel */
2648 	for (i = 0; i < pdata->channel_count; i++) {
2649 		if (!pdata->channel[i]->rx_ring)
2650 			break;
2651 
2652 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2653 	}
2654 }
2655 
2656 static void
2657 xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2658 {
2659 	unsigned int i;
2660 
2661 	/* Enable each Tx DMA channel */
2662 	for (i = 0; i < pdata->channel_count; i++) {
2663 		if (!pdata->channel[i]->tx_ring)
2664 			break;
2665 
2666 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2667 	}
2668 
2669 	/* Enable MAC Tx */
2670 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2671 }
2672 
2673 static void
2674 xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2675 {
2676 	unsigned int i;
2677 
2678 	/* Prepare for Tx DMA channel stop */
2679 	for (i = 0; i < pdata->tx_q_count; i++)
2680 		xgbe_prepare_tx_stop(pdata, i);
2681 
2682 	/* Disable MAC Tx */
2683 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2684 
2685 	/* Disable each Tx DMA channel */
2686 	for (i = 0; i < pdata->channel_count; i++) {
2687 		if (!pdata->channel[i]->tx_ring)
2688 			break;
2689 
2690 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2691 	}
2692 }
2693 
2694 static void
2695 xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2696 {
2697 	unsigned int i;
2698 
2699 	/* Enable each Rx DMA channel */
2700 	for (i = 0; i < pdata->channel_count; i++) {
2701 		if (!pdata->channel[i]->rx_ring)
2702 			break;
2703 
2704 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2705 	}
2706 }
2707 
2708 static void
2709 xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2710 {
2711 	unsigned int i;
2712 
2713 	/* Disable each Rx DMA channel */
2714 	for (i = 0; i < pdata->channel_count; i++) {
2715 		if (!pdata->channel[i]->rx_ring)
2716 			break;
2717 
2718 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2719 	}
2720 }
2721 
2722 static int
2723 xgbe_init(struct xgbe_prv_data *pdata)
2724 {
2725 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
2726 	int ret;
2727 
2728 	/* Flush Tx queues */
2729 	ret = xgbe_flush_tx_queues(pdata);
2730 	if (ret) {
2731 		axgbe_error("error flushing TX queues\n");
2732 		return (ret);
2733 	}
2734 
2735 	/*
2736 	 * Initialize DMA related features
2737 	 */
2738 	xgbe_config_dma_bus(pdata);
2739 	xgbe_config_dma_cache(pdata);
2740 	xgbe_config_osp_mode(pdata);
2741 	xgbe_config_pbl_val(pdata);
2742 	xgbe_config_rx_coalesce(pdata);
2743 	xgbe_config_tx_coalesce(pdata);
2744 	xgbe_config_rx_buffer_size(pdata);
2745 	xgbe_config_tso_mode(pdata);
2746 	xgbe_config_sph_mode(pdata);
2747 	xgbe_config_rss(pdata);
2748 	desc_if->wrapper_tx_desc_init(pdata);
2749 	desc_if->wrapper_rx_desc_init(pdata);
2750 	xgbe_enable_dma_interrupts(pdata);
2751 
2752 	/*
2753 	 * Initialize MTL related features
2754 	 */
2755 	xgbe_config_mtl_mode(pdata);
2756 	xgbe_config_queue_mapping(pdata);
2757 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2758 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2759 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2760 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2761 	xgbe_config_tx_fifo_size(pdata);
2762 	xgbe_config_rx_fifo_size(pdata);
2763 	/*TODO: Error Packet and undersized good Packet forwarding enable
2764 		(FEP and FUP)
2765 	 */
2766 	xgbe_enable_mtl_interrupts(pdata);
2767 
2768 	/*
2769 	 * Initialize MAC related features
2770 	 */
2771 	xgbe_config_mac_address(pdata);
2772 	xgbe_config_rx_mode(pdata);
2773 	xgbe_config_jumbo_enable(pdata);
2774 	xgbe_config_flow_control(pdata);
2775 	xgbe_config_mac_speed(pdata);
2776 	xgbe_config_checksum_offload(pdata);
2777 	xgbe_config_vlan_support(pdata);
2778 	xgbe_config_mmc(pdata);
2779 	xgbe_enable_mac_interrupts(pdata);
2780 
2781 	return (0);
2782 }
2783 
2784 void
2785 xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2786 {
2787 
2788 	hw_if->tx_complete = xgbe_tx_complete;
2789 
2790 	hw_if->set_mac_address = xgbe_set_mac_address;
2791 	hw_if->config_rx_mode = xgbe_config_rx_mode;
2792 
2793 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2794 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2795 
2796 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2797 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2798 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2799 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2800 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2801 
2802 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2803 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2804 
2805 	hw_if->set_speed = xgbe_set_speed;
2806 
2807 	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
2808 	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
2809 	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
2810 
2811 	hw_if->set_gpio = xgbe_set_gpio;
2812 	hw_if->clr_gpio = xgbe_clr_gpio;
2813 
2814 	hw_if->enable_tx = xgbe_enable_tx;
2815 	hw_if->disable_tx = xgbe_disable_tx;
2816 	hw_if->enable_rx = xgbe_enable_rx;
2817 	hw_if->disable_rx = xgbe_disable_rx;
2818 
2819 	hw_if->powerup_tx = xgbe_powerup_tx;
2820 	hw_if->powerdown_tx = xgbe_powerdown_tx;
2821 	hw_if->powerup_rx = xgbe_powerup_rx;
2822 	hw_if->powerdown_rx = xgbe_powerdown_rx;
2823 
2824 	hw_if->dev_read = xgbe_dev_read;
2825 	hw_if->enable_int = xgbe_enable_int;
2826 	hw_if->disable_int = xgbe_disable_int;
2827 	hw_if->init = xgbe_init;
2828 	hw_if->exit = xgbe_exit;
2829 
2830 	/* Descriptor related Sequences have to be initialized here */
2831 	hw_if->tx_desc_init = xgbe_tx_desc_init;
2832 	hw_if->rx_desc_init = xgbe_rx_desc_init;
2833 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2834 	hw_if->is_last_desc = xgbe_is_last_desc;
2835 	hw_if->is_context_desc = xgbe_is_context_desc;
2836 
2837 	/* For FLOW ctrl */
2838 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2839 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2840 
2841 	/* For RX coalescing */
2842 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2843 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2844 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2845 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2846 
2847 	/* For RX and TX threshold config */
2848 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2849 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2850 
2851 	/* For RX and TX Store and Forward Mode config */
2852 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2853 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2854 
2855 	/* For TX DMA Operating on Second Frame config */
2856 	hw_if->config_osp_mode = xgbe_config_osp_mode;
2857 
2858 	/* For MMC statistics support */
2859 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2860 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2861 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2862 
2863 	/* For Receive Side Scaling */
2864 	hw_if->enable_rss = xgbe_enable_rss;
2865 	hw_if->disable_rss = xgbe_disable_rss;
2866 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2867 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2868 }
2869