xref: /freebsd/sys/dev/axgbe/xgbe-dev.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc.
5  *
6  * This file is available to you under your choice of the following two
7  * licenses:
8  *
9  * License 1: GPLv2
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Redistribution and use in source and binary forms, with or without
60  * modification, are permitted provided that the following conditions are met:
61  *     * Redistributions of source code must retain the above copyright
62  *       notice, this list of conditions and the following disclaimer.
63  *     * Redistributions in binary form must reproduce the above copyright
64  *       notice, this list of conditions and the following disclaimer in the
65  *       documentation and/or other materials provided with the distribution.
66  *     * Neither the name of Advanced Micro Devices, Inc. nor the
67  *       names of its contributors may be used to endorse or promote products
68  *       derived from this software without specific prior written permission.
69  *
70  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
71  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
72  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
73  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
74  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
75  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
76  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
77  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
78  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
79  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
80  *
81  * This file incorporates work covered by the following copyright and
82  * permission notice:
83  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
84  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
85  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
86  *     and you.
87  *
88  *     The Software IS NOT an item of Licensed Software or Licensed Product
89  *     under any End User Software License Agreement or Agreement for Licensed
90  *     Product with Synopsys or any supplement thereto.  Permission is hereby
91  *     granted, free of charge, to any person obtaining a copy of this software
92  *     annotated with this license and the Software, to deal in the Software
93  *     without restriction, including without limitation the rights to use,
94  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
95  *     of the Software, and to permit persons to whom the Software is furnished
96  *     to do so, subject to the following conditions:
97  *
98  *     The above copyright notice and this permission notice shall be included
99  *     in all copies or substantial portions of the Software.
100  *
101  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
102  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
103  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
104  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
105  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
106  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
107  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
108  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
109  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
110  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
111  *     THE POSSIBILITY OF SUCH DAMAGE.
112  */
113 
114 #include <sys/cdefs.h>
115 __FBSDID("$FreeBSD$");
116 
117 #include "xgbe.h"
118 #include "xgbe-common.h"
119 
120 #include <net/if_dl.h>
121 
122 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
123 {
124 	return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
125 }
126 
127 static unsigned int
128 xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec)
129 {
130 	unsigned long rate;
131 	unsigned int ret;
132 
133 	rate = pdata->sysclk_rate;
134 
135 	/*
136 	 * Convert the input usec value to the watchdog timer value. Each
137 	 * watchdog timer value is equivalent to 256 clock cycles.
138 	 * Calculate the required value as:
139 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
140 	 */
141 	ret = (usec * (rate / 1000000)) / 256;
142 
143 	return (ret);
144 }
145 
146 static unsigned int
147 xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt)
148 {
149 	unsigned long rate;
150 	unsigned int ret;
151 
152 	rate = pdata->sysclk_rate;
153 
154 	/*
155 	 * Convert the input watchdog timer value to the usec value. Each
156 	 * watchdog timer value is equivalent to 256 clock cycles.
157 	 * Calculate the required value as:
158 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
159 	 */
160 	ret = (riwt * 256) / (rate / 1000000);
161 
162 	return (ret);
163 }
164 
165 static int
166 xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
167 {
168 	unsigned int pblx8, pbl;
169 	unsigned int i;
170 
171 	pblx8 = DMA_PBL_X8_DISABLE;
172 	pbl = pdata->pbl;
173 
174 	if (pdata->pbl > 32) {
175 		pblx8 = DMA_PBL_X8_ENABLE;
176 		pbl >>= 3;
177 	}
178 
179 	for (i = 0; i < pdata->channel_count; i++) {
180 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
181 		    pblx8);
182 
183 		if (pdata->channel[i]->tx_ring)
184 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
185 			    PBL, pbl);
186 
187 		if (pdata->channel[i]->rx_ring)
188 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
189 			    PBL, pbl);
190 	}
191 
192 	return (0);
193 }
194 
195 static int
196 xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
197 {
198 	unsigned int i;
199 
200 	for (i = 0; i < pdata->channel_count; i++) {
201 		if (!pdata->channel[i]->tx_ring)
202 			break;
203 
204 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
205 		    pdata->tx_osp_mode);
206 	}
207 
208 	return (0);
209 }
210 
211 static int
212 xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
213 {
214 	unsigned int i;
215 
216 	for (i = 0; i < pdata->rx_q_count; i++)
217 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
218 
219 	return (0);
220 }
221 
222 static int
223 xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
224 {
225 	unsigned int i;
226 
227 	for (i = 0; i < pdata->tx_q_count; i++)
228 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
229 
230 	return (0);
231 }
232 
233 static int
234 xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
235 {
236 	unsigned int i;
237 
238 	for (i = 0; i < pdata->rx_q_count; i++)
239 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
240 
241 	return (0);
242 }
243 
244 static int
245 xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
246 {
247 	unsigned int i;
248 
249 	for (i = 0; i < pdata->tx_q_count; i++)
250 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
251 
252 	return (0);
253 }
254 
255 static int
256 xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
257 {
258 	unsigned int i;
259 
260 	for (i = 0; i < pdata->channel_count; i++) {
261 		if (!pdata->channel[i]->rx_ring)
262 			break;
263 
264 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
265 		    pdata->rx_riwt);
266 	}
267 
268 	return (0);
269 }
270 
271 static int
272 xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
273 {
274 	return (0);
275 }
276 
277 static void
278 xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
279 {
280 	unsigned int i;
281 
282 	for (i = 0; i < pdata->channel_count; i++) {
283 		if (!pdata->channel[i]->rx_ring)
284 			break;
285 
286 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
287 		    pdata->rx_buf_size);
288 	}
289 }
290 
291 static void
292 xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
293 {
294 	unsigned int i;
295 
296 	int tso_enabled = (if_getcapenable(pdata->netdev) & IFCAP_TSO);
297 
298 	for (i = 0; i < pdata->channel_count; i++) {
299 		if (!pdata->channel[i]->tx_ring)
300 			break;
301 
302 		axgbe_printf(1, "TSO in channel %d %s\n", i, tso_enabled ? "enabled" : "disabled");
303 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, tso_enabled ? 1 : 0);
304 	}
305 }
306 
307 static void
308 xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
309 {
310 	unsigned int i;
311 	int sph_enable_flag = XGMAC_IOREAD_BITS(pdata, MAC_HWF1R, SPHEN);
312 
313 	axgbe_printf(1, "sph_enable %d sph feature enabled?: %d\n",
314 	    pdata->sph_enable, sph_enable_flag);
315 
316 	if (pdata->sph_enable && sph_enable_flag)
317 		axgbe_printf(0, "SPH Enabled\n");
318 
319 	for (i = 0; i < pdata->channel_count; i++) {
320 		if (!pdata->channel[i]->rx_ring)
321 			break;
322 		if (pdata->sph_enable && sph_enable_flag) {
323 			/* Enable split header feature */
324 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
325 		} else {
326 			/* Disable split header feature */
327 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 0);
328 		}
329 
330 		/* per-channel confirmation of SPH being disabled/enabled */
331 		int val = XGMAC_DMA_IOREAD_BITS(pdata->channel[i], DMA_CH_CR, SPH);
332 		axgbe_printf(0, "%s: SPH %s in channel %d\n", __func__,
333 		    (val ? "enabled" : "disabled"), i);
334 	}
335 
336 	if (pdata->sph_enable && sph_enable_flag)
337 		XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
338 }
339 
340 static int
341 xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
342     unsigned int index, unsigned int val)
343 {
344 	unsigned int wait;
345 	int ret = 0;
346 
347 	mtx_lock(&pdata->rss_mutex);
348 
349 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
350 		ret = -EBUSY;
351 		goto unlock;
352 	}
353 
354 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
355 
356 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
357 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
358 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
359 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
360 
361 	wait = 1000;
362 	while (wait--) {
363 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
364 			goto unlock;
365 
366 		DELAY(1000);
367 	}
368 
369 	ret = -EBUSY;
370 
371 unlock:
372 	mtx_unlock(&pdata->rss_mutex);
373 
374 	return (ret);
375 }
376 
377 static int
378 xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
379 {
380 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t);
381 	unsigned int *key = (unsigned int *)&pdata->rss_key;
382 	int ret;
383 
384 	while (key_regs--) {
385 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
386 		    key_regs, *key++);
387 		if (ret)
388 			return (ret);
389 	}
390 
391 	return (0);
392 }
393 
394 static int
395 xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
396 {
397 	unsigned int i;
398 	int ret;
399 
400 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
401 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i,
402 		    pdata->rss_table[i]);
403 		if (ret)
404 			return (ret);
405 	}
406 
407 	return (0);
408 }
409 
410 static int
411 xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key)
412 {
413 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
414 
415 	return (xgbe_write_rss_hash_key(pdata));
416 }
417 
418 static int
419 xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table)
420 {
421 	unsigned int i;
422 
423 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
424 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
425 
426 	return (xgbe_write_rss_lookup_table(pdata));
427 }
428 
429 static int
430 xgbe_enable_rss(struct xgbe_prv_data *pdata)
431 {
432 	int ret;
433 
434 	if (!pdata->hw_feat.rss)
435 		return (-EOPNOTSUPP);
436 
437 	/* Program the hash key */
438 	ret = xgbe_write_rss_hash_key(pdata);
439 	if (ret)
440 		return (ret);
441 
442 	/* Program the lookup table */
443 	ret = xgbe_write_rss_lookup_table(pdata);
444 	if (ret)
445 		return (ret);
446 
447 	/* Set the RSS options */
448 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
449 
450 	/* Enable RSS */
451 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
452 
453 	axgbe_printf(0, "RSS Enabled\n");
454 
455 	return (0);
456 }
457 
458 static int
459 xgbe_disable_rss(struct xgbe_prv_data *pdata)
460 {
461 	if (!pdata->hw_feat.rss)
462 		return (-EOPNOTSUPP);
463 
464 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
465 
466 	axgbe_printf(0, "RSS Disabled\n");
467 
468 	return (0);
469 }
470 
471 static void
472 xgbe_config_rss(struct xgbe_prv_data *pdata)
473 {
474 	int ret;
475 
476 	if (!pdata->hw_feat.rss)
477 		return;
478 
479 	/* Check if the interface has RSS capability */
480 	if (pdata->enable_rss)
481 		ret = xgbe_enable_rss(pdata);
482 	else
483 		ret = xgbe_disable_rss(pdata);
484 
485 	if (ret)
486 		axgbe_error("error configuring RSS, RSS disabled\n");
487 }
488 
489 static int
490 xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
491 {
492 	unsigned int max_q_count, q_count;
493 	unsigned int reg, reg_val;
494 	unsigned int i;
495 
496 	/* Clear MTL flow control */
497 	for (i = 0; i < pdata->rx_q_count; i++)
498 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
499 
500 	/* Clear MAC flow control */
501 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
502 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
503 	reg = MAC_Q0TFCR;
504 	for (i = 0; i < q_count; i++) {
505 		reg_val = XGMAC_IOREAD(pdata, reg);
506 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
507 		XGMAC_IOWRITE(pdata, reg, reg_val);
508 
509 		reg += MAC_QTFCR_INC;
510 	}
511 
512 	return (0);
513 }
514 
515 static int
516 xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
517 {
518 	unsigned int max_q_count, q_count;
519 	unsigned int reg, reg_val;
520 	unsigned int i;
521 
522 	/* Set MTL flow control */
523 	for (i = 0; i < pdata->rx_q_count; i++) {
524 		unsigned int ehfc = 0;
525 
526 		if (pdata->rx_rfd[i]) {
527 			/* Flow control thresholds are established */
528 			/* TODO - enable pfc/ets support */
529 			ehfc = 1;
530 		}
531 
532 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
533 
534 		axgbe_printf(1, "flow control %s for RXq%u\n",
535 		    ehfc ? "enabled" : "disabled", i);
536 	}
537 
538 	/* Set MAC flow control */
539 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
540 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
541 	reg = MAC_Q0TFCR;
542 	for (i = 0; i < q_count; i++) {
543 		reg_val = XGMAC_IOREAD(pdata, reg);
544 
545 		/* Enable transmit flow control */
546 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
547 
548 		/* Set pause time */
549 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
550 
551 		XGMAC_IOWRITE(pdata, reg, reg_val);
552 
553 		reg += MAC_QTFCR_INC;
554 	}
555 
556 	return (0);
557 }
558 
559 static int
560 xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
561 {
562 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
563 
564 	return (0);
565 }
566 
567 static int
568 xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
569 {
570 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
571 
572 	return (0);
573 }
574 
575 static int
576 xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
577 {
578 	if (pdata->tx_pause)
579 		xgbe_enable_tx_flow_control(pdata);
580 	else
581 		xgbe_disable_tx_flow_control(pdata);
582 
583 	return (0);
584 }
585 
586 static int
587 xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
588 {
589 	if (pdata->rx_pause)
590 		xgbe_enable_rx_flow_control(pdata);
591 	else
592 		xgbe_disable_rx_flow_control(pdata);
593 
594 	return (0);
595 }
596 
597 static void
598 xgbe_config_flow_control(struct xgbe_prv_data *pdata)
599 {
600 	xgbe_config_tx_flow_control(pdata);
601 	xgbe_config_rx_flow_control(pdata);
602 
603 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0);
604 }
605 
606 static void
607 xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
608 {
609 	struct xgbe_channel *channel;
610 	unsigned int i, ver;
611 
612 	/* Set the interrupt mode if supported */
613 	if (pdata->channel_irq_mode)
614 		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
615 		    pdata->channel_irq_mode);
616 
617 	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
618 
619 	for (i = 0; i < pdata->channel_count; i++) {
620 		channel = pdata->channel[i];
621 
622 		/* Clear all the interrupts which are set */
623 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
624 				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
625 
626 		/* Clear all interrupt enable bits */
627 		channel->curr_ier = 0;
628 
629 		/* Enable following interrupts
630 		 *   NIE  - Normal Interrupt Summary Enable
631 		 *   AIE  - Abnormal Interrupt Summary Enable
632 		 *   FBEE - Fatal Bus Error Enable
633 		 */
634 		if (ver < 0x21) {
635 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
636 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
637 		} else {
638 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
639 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
640 		}
641 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
642 
643 		if (channel->tx_ring) {
644 			/* Enable the following Tx interrupts
645 			 *   TIE  - Transmit Interrupt Enable (unless using
646 			 *	  per channel interrupts in edge triggered
647 			 *	  mode)
648 			 */
649 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
650 				XGMAC_SET_BITS(channel->curr_ier,
651 					       DMA_CH_IER, TIE, 1);
652 		}
653 		if (channel->rx_ring) {
654 			/* Enable following Rx interrupts
655 			 *   RBUE - Receive Buffer Unavailable Enable
656 			 *   RIE  - Receive Interrupt Enable (unless using
657 			 *	  per channel interrupts in edge triggered
658 			 *	  mode)
659 			 */
660 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
661 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
662 				XGMAC_SET_BITS(channel->curr_ier,
663 					       DMA_CH_IER, RIE, 1);
664 		}
665 
666 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
667 	}
668 }
669 
670 static void
671 xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
672 {
673 	unsigned int mtl_q_isr;
674 	unsigned int q_count, i;
675 
676 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
677 	for (i = 0; i < q_count; i++) {
678 		/* Clear all the interrupts which are set */
679 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
680 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
681 
682 		/* No MTL interrupts to be enabled */
683 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
684 	}
685 }
686 
687 static void
688 xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
689 {
690 	unsigned int mac_ier = 0;
691 
692 	/* Enable Timestamp interrupt */
693 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
694 
695 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
696 
697 	/* Enable all counter interrupts */
698 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
699 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
700 
701 	/* Enable MDIO single command completion interrupt */
702 	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
703 }
704 
705 static int
706 xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
707 {
708 	unsigned int ss;
709 
710 	switch (speed) {
711 	case SPEED_1000:
712 		ss = 0x03;
713 		break;
714 	case SPEED_2500:
715 		ss = 0x02;
716 		break;
717 	case SPEED_10000:
718 		ss = 0x00;
719 		break;
720 	default:
721 		return (-EINVAL);
722 	}
723 
724 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
725 		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
726 
727 	return (0);
728 }
729 
730 static int
731 xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
732 {
733 	/* Put the VLAN tag in the Rx descriptor */
734 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
735 
736 	/* Don't check the VLAN type */
737 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
738 
739 	/* Check only C-TAG (0x8100) packets */
740 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
741 
742 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
743 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
744 
745 	/* Enable VLAN tag stripping */
746 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
747 
748 	axgbe_printf(0, "VLAN Stripping Enabled\n");
749 
750 	return (0);
751 }
752 
753 static int
754 xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
755 {
756 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
757 
758 	axgbe_printf(0, "VLAN Stripping Disabled\n");
759 
760 	return (0);
761 }
762 
763 static int
764 xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
765 {
766 	/* Enable VLAN filtering */
767 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
768 
769 	/* Enable VLAN Hash Table filtering */
770 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
771 
772 	/* Disable VLAN tag inverse matching */
773 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
774 
775 	/* Only filter on the lower 12-bits of the VLAN tag */
776 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
777 
778 	/* In order for the VLAN Hash Table filtering to be effective,
779 	 * the VLAN tag identifier in the VLAN Tag Register must not
780 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
781 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
782 	 * 1 will always pass filtering.
783 	 */
784 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
785 
786 	axgbe_printf(0, "VLAN filtering Enabled\n");
787 
788 	return (0);
789 }
790 
791 static int
792 xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
793 {
794 	/* Disable VLAN filtering */
795 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
796 
797 	axgbe_printf(0, "VLAN filtering Disabled\n");
798 
799 	return (0);
800 }
801 
802 static uint32_t
803 xgbe_vid_crc32_le(__le16 vid_le)
804 {
805 	uint32_t crc = ~0;
806 	uint32_t temp = 0;
807 	unsigned char *data = (unsigned char *)&vid_le;
808 	unsigned char data_byte = 0;
809 	int i, bits;
810 
811 	bits = get_bitmask_order(VLAN_VID_MASK);
812 	for (i = 0; i < bits; i++) {
813 		if ((i % 8) == 0)
814 			data_byte = data[i / 8];
815 
816 		temp = ((crc & 1) ^ data_byte) & 1;
817 		crc >>= 1;
818 		data_byte >>= 1;
819 
820 		if (temp)
821 			crc ^= CRC32_POLY_LE;
822 	}
823 
824 	return (crc);
825 }
826 
827 static int
828 xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
829 {
830 	uint32_t crc;
831 	uint16_t vid;
832 	uint16_t vlan_hash_table = 0;
833 	__le16 vid_le = 0;
834 
835 	axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__,
836 	    XGMAC_IOREAD(pdata, MAC_VLANHTR));
837 
838 	/* Generate the VLAN Hash Table value */
839 	for_each_set_bit(vid, pdata->active_vlans, VLAN_NVID) {
840 
841 		/* Get the CRC32 value of the VLAN ID */
842 		vid_le = cpu_to_le16(vid);
843 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
844 
845 		vlan_hash_table |= (1 << crc);
846 		axgbe_printf(1, "%s: vid 0x%x vid_le 0x%x crc 0x%x "
847 		    "vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc,
848 		    vlan_hash_table);
849 	}
850 
851 	/* Set the VLAN Hash Table filtering register */
852 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
853 
854 	axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__,
855 		XGMAC_IOREAD(pdata, MAC_VLANHTR));
856 
857 	return (0);
858 }
859 
860 static int
861 xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable)
862 {
863 	unsigned int val = enable ? 1 : 0;
864 
865 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
866 		return (0);
867 
868 	axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving");
869 
870 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
871 
872 	/* Hardware will still perform VLAN filtering in promiscuous mode */
873 	if (enable) {
874 		axgbe_printf(1, "Disabling rx vlan filtering\n");
875 		xgbe_disable_rx_vlan_filtering(pdata);
876 	} else {
877 		if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
878 			axgbe_printf(1, "Enabling rx vlan filtering\n");
879 			xgbe_enable_rx_vlan_filtering(pdata);
880 		}
881 	}
882 
883 	return (0);
884 }
885 
886 static int
887 xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable)
888 {
889 	unsigned int val = enable ? 1 : 0;
890 
891 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
892 		return (0);
893 
894 	axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving");
895 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
896 
897 	return (0);
898 }
899 
900 static void
901 xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg)
902 {
903 	unsigned int mac_addr_hi, mac_addr_lo;
904 	uint8_t *mac_addr;
905 
906 	mac_addr_lo = 0;
907 	mac_addr_hi = 0;
908 
909 	if (addr) {
910 		mac_addr = (uint8_t *)&mac_addr_lo;
911 		mac_addr[0] = addr[0];
912 		mac_addr[1] = addr[1];
913 		mac_addr[2] = addr[2];
914 		mac_addr[3] = addr[3];
915 		mac_addr = (uint8_t *)&mac_addr_hi;
916 		mac_addr[0] = addr[4];
917 		mac_addr[1] = addr[5];
918 
919 		axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg);
920 
921 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
922 	}
923 
924 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
925 	*mac_reg += MAC_MACA_INC;
926 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
927 	*mac_reg += MAC_MACA_INC;
928 }
929 
930 static void
931 xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
932 {
933 	unsigned int mac_reg;
934 	unsigned int addn_macs;
935 
936 	mac_reg = MAC_MACA1HR;
937 	addn_macs = pdata->hw_feat.addn_mac;
938 
939 	xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg);
940 	addn_macs--;
941 
942 	/* Clear remaining additional MAC address entries */
943 	while (addn_macs--)
944 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
945 }
946 
947 static int
948 xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
949 {
950 	/* TODO - add support to set mac hash table */
951 	xgbe_set_mac_addn_addrs(pdata);
952 
953 	return (0);
954 }
955 
956 static int
957 xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr)
958 {
959 	unsigned int mac_addr_hi, mac_addr_lo;
960 
961 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
962 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
963 		      (addr[1] <<  8) | (addr[0] <<  0);
964 
965 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
966 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
967 
968 	return (0);
969 }
970 
971 static int
972 xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
973 {
974 	unsigned int pr_mode, am_mode;
975 
976 	pr_mode = ((if_getflags(pdata->netdev) & IFF_PPROMISC) != 0);
977 	am_mode = ((if_getflags(pdata->netdev) & IFF_ALLMULTI) != 0);
978 
979 	xgbe_set_promiscuous_mode(pdata, pr_mode);
980 	xgbe_set_all_multicast_mode(pdata, am_mode);
981 
982 	xgbe_add_mac_addresses(pdata);
983 
984 	return (0);
985 }
986 
987 static int
988 xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
989 {
990 	unsigned int reg;
991 
992 	if (gpio > 15)
993 		return (-EINVAL);
994 
995 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
996 
997 	reg &= ~(1 << (gpio + 16));
998 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
999 
1000 	return (0);
1001 }
1002 
1003 static int
1004 xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1005 {
1006 	unsigned int reg;
1007 
1008 	if (gpio > 15)
1009 		return (-EINVAL);
1010 
1011 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1012 
1013 	reg |= (1 << (gpio + 16));
1014 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1015 
1016 	return (0);
1017 }
1018 
1019 static int
1020 xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1021 {
1022 	unsigned long flags;
1023 	unsigned int mmd_address, index, offset;
1024 	int mmd_data;
1025 
1026 	if (mmd_reg & MII_ADDR_C45)
1027 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1028 	else
1029 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1030 
1031 	/* The PCS registers are accessed using mmio. The underlying
1032 	 * management interface uses indirect addressing to access the MMD
1033 	 * register sets. This requires accessing of the PCS register in two
1034 	 * phases, an address phase and a data phase.
1035 	 *
1036 	 * The mmio interface is based on 16-bit offsets and values. All
1037 	 * register offsets must therefore be adjusted by left shifting the
1038 	 * offset 1 bit and reading 16 bits of data.
1039 	 */
1040 	mmd_address <<= 1;
1041 	index = mmd_address & ~pdata->xpcs_window_mask;
1042 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1043 
1044 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1045 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1046 	mmd_data = XPCS16_IOREAD(pdata, offset);
1047 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1048 
1049 	return (mmd_data);
1050 }
1051 
1052 static void
1053 xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1054     int mmd_data)
1055 {
1056 	unsigned long flags;
1057 	unsigned int mmd_address, index, offset;
1058 
1059 	if (mmd_reg & MII_ADDR_C45)
1060 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1061 	else
1062 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1063 
1064 	/* The PCS registers are accessed using mmio. The underlying
1065 	 * management interface uses indirect addressing to access the MMD
1066 	 * register sets. This requires accessing of the PCS register in two
1067 	 * phases, an address phase and a data phase.
1068 	 *
1069 	 * The mmio interface is based on 16-bit offsets and values. All
1070 	 * register offsets must therefore be adjusted by left shifting the
1071 	 * offset 1 bit and writing 16 bits of data.
1072 	 */
1073 	mmd_address <<= 1;
1074 	index = mmd_address & ~pdata->xpcs_window_mask;
1075 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1076 
1077 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1078 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1079 	XPCS16_IOWRITE(pdata, offset, mmd_data);
1080 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1081 }
1082 
1083 static int
1084 xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1085 {
1086 	unsigned long flags;
1087 	unsigned int mmd_address;
1088 	int mmd_data;
1089 
1090 	if (mmd_reg & MII_ADDR_C45)
1091 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1092 	else
1093 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1094 
1095 	/* The PCS registers are accessed using mmio. The underlying APB3
1096 	 * management interface uses indirect addressing to access the MMD
1097 	 * register sets. This requires accessing of the PCS register in two
1098 	 * phases, an address phase and a data phase.
1099 	 *
1100 	 * The mmio interface is based on 32-bit offsets and values. All
1101 	 * register offsets must therefore be adjusted by left shifting the
1102 	 * offset 2 bits and reading 32 bits of data.
1103 	 */
1104 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1105 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1106 	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1107 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1108 
1109 	return (mmd_data);
1110 }
1111 
1112 static void
1113 xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1114     int mmd_data)
1115 {
1116 	unsigned int mmd_address;
1117 	unsigned long flags;
1118 
1119 	if (mmd_reg & MII_ADDR_C45)
1120 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1121 	else
1122 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1123 
1124 	/* The PCS registers are accessed using mmio. The underlying APB3
1125 	 * management interface uses indirect addressing to access the MMD
1126 	 * register sets. This requires accessing of the PCS register in two
1127 	 * phases, an address phase and a data phase.
1128 	 *
1129 	 * The mmio interface is based on 32-bit offsets and values. All
1130 	 * register offsets must therefore be adjusted by left shifting the
1131 	 * offset 2 bits and writing 32 bits of data.
1132 	 */
1133 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1134 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1135 	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1136 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1137 }
1138 
1139 static int
1140 xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1141 {
1142 	switch (pdata->vdata->xpcs_access) {
1143 	case XGBE_XPCS_ACCESS_V1:
1144 		return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg));
1145 
1146 	case XGBE_XPCS_ACCESS_V2:
1147 	default:
1148 		return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg));
1149 	}
1150 }
1151 
1152 static void
1153 xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1154     int mmd_data)
1155 {
1156 	switch (pdata->vdata->xpcs_access) {
1157 	case XGBE_XPCS_ACCESS_V1:
1158 		return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data));
1159 
1160 	case XGBE_XPCS_ACCESS_V2:
1161 	default:
1162 		return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data));
1163 	}
1164 }
1165 
1166 static unsigned int
1167 xgbe_create_mdio_sca(int port, int reg)
1168 {
1169 	unsigned int mdio_sca, da;
1170 
1171 	da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1172 
1173 	mdio_sca = 0;
1174 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1175 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1176 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1177 
1178 	return (mdio_sca);
1179 }
1180 
1181 static int
1182 xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg,
1183     uint16_t val)
1184 {
1185 	unsigned int mdio_sca, mdio_sccd;
1186 
1187 	mtx_lock_spin(&pdata->mdio_mutex);
1188 
1189 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1190 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1191 
1192 	mdio_sccd = 0;
1193 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1194 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1195 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1196 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1197 
1198 	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1199 	    EWOULDBLOCK) {
1200 		axgbe_error("%s: MDIO write error\n", __func__);
1201 		mtx_unlock_spin(&pdata->mdio_mutex);
1202 		return (-ETIMEDOUT);
1203 	}
1204 
1205 	mtx_unlock_spin(&pdata->mdio_mutex);
1206 	return (0);
1207 }
1208 
1209 static int
1210 xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg)
1211 {
1212 	unsigned int mdio_sca, mdio_sccd;
1213 
1214 	mtx_lock_spin(&pdata->mdio_mutex);
1215 
1216 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1217 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1218 
1219 	mdio_sccd = 0;
1220 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1221 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1222 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1223 
1224 	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1225 	    EWOULDBLOCK) {
1226 		axgbe_error("%s: MDIO read error\n", __func__);
1227 		mtx_unlock_spin(&pdata->mdio_mutex);
1228 		return (-ETIMEDOUT);
1229 	}
1230 
1231 	mtx_unlock_spin(&pdata->mdio_mutex);
1232 
1233 	return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA));
1234 }
1235 
1236 static int
1237 xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1238     enum xgbe_mdio_mode mode)
1239 {
1240 	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1241 
1242 	switch (mode) {
1243 	case XGBE_MDIO_MODE_CL22:
1244 		if (port > XGMAC_MAX_C22_PORT)
1245 			return (-EINVAL);
1246 		reg_val |= (1 << port);
1247 		break;
1248 	case XGBE_MDIO_MODE_CL45:
1249 		break;
1250 	default:
1251 		return (-EINVAL);
1252 	}
1253 
1254 	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1255 
1256 	return (0);
1257 }
1258 
1259 static int
1260 xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1261 {
1262 	return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN));
1263 }
1264 
1265 static int
1266 xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1267 {
1268 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1269 
1270 	axgbe_printf(0, "Receive checksum offload Disabled\n");
1271 	return (0);
1272 }
1273 
1274 static int
1275 xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1276 {
1277 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1278 
1279 	axgbe_printf(0, "Receive checksum offload Enabled\n");
1280 	return (0);
1281 }
1282 
1283 static void
1284 xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1285 {
1286 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1287 
1288 	/* Reset the Tx descriptor
1289 	 *   Set buffer 1 (lo) address to zero
1290 	 *   Set buffer 1 (hi) address to zero
1291 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1292 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1293 	 */
1294 	rdesc->desc0 = 0;
1295 	rdesc->desc1 = 0;
1296 	rdesc->desc2 = 0;
1297 	rdesc->desc3 = 0;
1298 
1299 	wmb();
1300 }
1301 
1302 static void
1303 xgbe_tx_desc_init(struct xgbe_channel *channel)
1304 {
1305 	struct xgbe_ring *ring = channel->tx_ring;
1306 	struct xgbe_ring_data *rdata;
1307 	int i;
1308 	int start_index = ring->cur;
1309 
1310 	/* Initialze all descriptors */
1311 	for (i = 0; i < ring->rdesc_count; i++) {
1312 		rdata = XGBE_GET_DESC_DATA(ring, i);
1313 
1314 		/* Initialize Tx descriptor */
1315 		xgbe_tx_desc_reset(rdata);
1316 	}
1317 
1318 	/* Update the total number of Tx descriptors */
1319 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1320 
1321 	/* Update the starting address of descriptor ring */
1322 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1323 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1324 	    upper_32_bits(rdata->rdata_paddr));
1325 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1326 	    lower_32_bits(rdata->rdata_paddr));
1327 }
1328 
1329 static void
1330 xgbe_rx_desc_init(struct xgbe_channel *channel)
1331 {
1332 	struct xgbe_ring *ring = channel->rx_ring;
1333 	struct xgbe_ring_data *rdata;
1334 	unsigned int start_index = ring->cur;
1335 
1336 	/*
1337 	 * Just set desc_count and the starting address of the desc list
1338 	 * here. Rest will be done as part of the txrx path.
1339 	 */
1340 
1341 	/* Update the total number of Rx descriptors */
1342 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1343 
1344 	/* Update the starting address of descriptor ring */
1345 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1346 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1347 	    upper_32_bits(rdata->rdata_paddr));
1348 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1349 	    lower_32_bits(rdata->rdata_paddr));
1350 }
1351 
1352 static int
1353 xgbe_dev_read(struct xgbe_channel *channel)
1354 {
1355 	struct xgbe_prv_data *pdata = channel->pdata;
1356 	struct xgbe_ring *ring = channel->rx_ring;
1357 	struct xgbe_ring_data *rdata;
1358 	struct xgbe_ring_desc *rdesc;
1359 	struct xgbe_packet_data *packet = &ring->packet_data;
1360 	unsigned int err, etlt, l34t = 0;
1361 
1362 	axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur);
1363 
1364 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1365 	rdesc = rdata->rdesc;
1366 
1367 	/* Check for data availability */
1368 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1369 		return (1);
1370 
1371 	rmb();
1372 
1373 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1374 		/* TODO - Timestamp Context Descriptor */
1375 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1376 		    CONTEXT, 1);
1377 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1378 		    CONTEXT_NEXT, 0);
1379 		return (0);
1380 	}
1381 
1382 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1383 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1384 
1385 	/* Indicate if a Context Descriptor is next */
1386 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1387 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1388 		    CONTEXT_NEXT, 1);
1389 
1390 	/* Get the header length */
1391 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1392 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1393 		    FIRST, 1);
1394 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1395 		    RX_NORMAL_DESC2, HL);
1396 		if (rdata->rx.hdr_len)
1397 			pdata->ext_stats.rx_split_header_packets++;
1398 	} else
1399 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1400 		    FIRST, 0);
1401 
1402 	/* Get the RSS hash */
1403 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1404 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1405 		    RSS_HASH, 1);
1406 
1407 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1408 
1409 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1410 		switch (l34t) {
1411 		case RX_DESC3_L34T_IPV4_TCP:
1412 			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4;
1413 			break;
1414 		case RX_DESC3_L34T_IPV4_UDP:
1415 			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4;
1416 			break;
1417 		case RX_DESC3_L34T_IPV6_TCP:
1418 			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6;
1419 			break;
1420 		case RX_DESC3_L34T_IPV6_UDP:
1421 			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6;
1422 			break;
1423 		default:
1424 			packet->rss_hash_type = M_HASHTYPE_OPAQUE;
1425 			break;
1426 		}
1427 	}
1428 
1429 	/* Not all the data has been transferred for this packet */
1430 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1431 		/* This is not the last of the data for this packet */
1432 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1433 		    LAST, 0);
1434 		return (0);
1435 	}
1436 
1437 	/* This is the last of the data for this packet */
1438 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1439 	    LAST, 1);
1440 
1441 	/* Get the packet length */
1442 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1443 
1444 	/* Set checksum done indicator as appropriate */
1445 	/* TODO - add tunneling support */
1446 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1447 	    CSUM_DONE, 1);
1448 
1449 	/* Check for errors (only valid in last descriptor) */
1450 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1451 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1452 	axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt);
1453 
1454 	if (!err || !etlt) {
1455 		/* No error if err is 0 or etlt is 0 */
1456 		if (etlt == 0x09) {
1457 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1458 			    VLAN_CTAG, 1);
1459 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1460 			    RX_NORMAL_DESC0, OVT);
1461 			axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag);
1462 		}
1463 	} else {
1464 		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
1465 		    RX_PACKET_ATTRIBUTES, TNP);
1466 
1467 		if ((etlt == 0x05) || (etlt == 0x06)) {
1468 			axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n",
1469 			    __func__, l34t, err, etlt);
1470 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1471 			    CSUM_DONE, 0);
1472 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1473 			    TNPCSUM_DONE, 0);
1474 			pdata->ext_stats.rx_csum_errors++;
1475 		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
1476 			axgbe_printf(1, "%s: err2  l34t %d err 0x%x etlt 0x%x\n",
1477 			    __func__, l34t, err, etlt);
1478 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1479 			    CSUM_DONE, 0);
1480 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1481 			    TNPCSUM_DONE, 0);
1482 			pdata->ext_stats.rx_vxlan_csum_errors++;
1483 		} else {
1484 			axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n",
1485 			    __func__, tnp, l34t, err, etlt);
1486 			axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n",
1487 			    __func__, channel->queue_index,
1488 			    XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
1489 		 	    XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
1490 			axgbe_printf(1, "%s: ring cur %d dirty %d\n",
1491 			    __func__, ring->cur, ring->dirty);
1492 			axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n",
1493 			    __func__, rdesc->desc0, rdesc->desc1, rdesc->desc2,
1494 			    rdesc->desc3);
1495 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1496 			    FRAME, 1);
1497 		}
1498 	}
1499 
1500 	axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n",
1501 	    channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur);
1502 
1503 	return (0);
1504 }
1505 
1506 static int
1507 xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1508 {
1509 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1510 	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT));
1511 }
1512 
1513 static int
1514 xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1515 {
1516 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1517 	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD));
1518 }
1519 
1520 static int
1521 xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1522 {
1523 	struct xgbe_prv_data *pdata = channel->pdata;
1524 
1525 	axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n",
1526 	    channel->curr_ier);
1527 
1528 	switch (int_id) {
1529 	case XGMAC_INT_DMA_CH_SR_TI:
1530 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1531 		break;
1532 	case XGMAC_INT_DMA_CH_SR_TPS:
1533 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
1534 		break;
1535 	case XGMAC_INT_DMA_CH_SR_TBU:
1536 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
1537 		break;
1538 	case XGMAC_INT_DMA_CH_SR_RI:
1539 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1540 		break;
1541 	case XGMAC_INT_DMA_CH_SR_RBU:
1542 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
1543 		break;
1544 	case XGMAC_INT_DMA_CH_SR_RPS:
1545 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
1546 		break;
1547 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1548 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1549 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1550 		break;
1551 	case XGMAC_INT_DMA_CH_SR_FBE:
1552 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
1553 		break;
1554 	case XGMAC_INT_DMA_ALL:
1555 		channel->curr_ier |= channel->saved_ier;
1556 		break;
1557 	default:
1558 		return (-1);
1559 	}
1560 
1561 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1562 
1563 	axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n",
1564 	    channel->curr_ier);
1565 
1566 	return (0);
1567 }
1568 
1569 static int
1570 xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1571 {
1572 	struct xgbe_prv_data *pdata = channel->pdata;
1573 
1574 	axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n",
1575 	    channel->curr_ier);
1576 
1577 	switch (int_id) {
1578 	case XGMAC_INT_DMA_CH_SR_TI:
1579 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1580 		break;
1581 	case XGMAC_INT_DMA_CH_SR_TPS:
1582 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
1583 		break;
1584 	case XGMAC_INT_DMA_CH_SR_TBU:
1585 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
1586 		break;
1587 	case XGMAC_INT_DMA_CH_SR_RI:
1588 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1589 		break;
1590 	case XGMAC_INT_DMA_CH_SR_RBU:
1591 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
1592 		break;
1593 	case XGMAC_INT_DMA_CH_SR_RPS:
1594 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
1595 		break;
1596 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1597 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1598 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1599 		break;
1600 	case XGMAC_INT_DMA_CH_SR_FBE:
1601 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
1602 		break;
1603 	case XGMAC_INT_DMA_ALL:
1604 		channel->saved_ier = channel->curr_ier;
1605 		channel->curr_ier = 0;
1606 		break;
1607 	default:
1608 		return (-1);
1609 	}
1610 
1611 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1612 
1613 	axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n",
1614 	    channel->curr_ier);
1615 
1616 	return (0);
1617 }
1618 
1619 static int
1620 __xgbe_exit(struct xgbe_prv_data *pdata)
1621 {
1622 	unsigned int count = 2000;
1623 
1624 	/* Issue a software reset */
1625 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1626 	DELAY(10);
1627 
1628 	/* Poll Until Poll Condition */
1629 	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1630 		DELAY(500);
1631 
1632 	if (!count)
1633 		return (-EBUSY);
1634 
1635 	return (0);
1636 }
1637 
1638 static int
1639 xgbe_exit(struct xgbe_prv_data *pdata)
1640 {
1641 	int ret;
1642 
1643 	/* To guard against possible incorrectly generated interrupts,
1644 	 * issue the software reset twice.
1645 	 */
1646 	ret = __xgbe_exit(pdata);
1647 	if (ret) {
1648 		axgbe_error("%s: exit error %d\n", __func__, ret);
1649 		return (ret);
1650 	}
1651 
1652 	return (__xgbe_exit(pdata));
1653 }
1654 
1655 static int
1656 xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1657 {
1658 	unsigned int i, count;
1659 
1660 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1661 		return (0);
1662 
1663 	for (i = 0; i < pdata->tx_q_count; i++)
1664 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1665 
1666 	/* Poll Until Poll Condition */
1667 	for (i = 0; i < pdata->tx_q_count; i++) {
1668 		count = 2000;
1669 		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
1670 							MTL_Q_TQOMR, FTQ))
1671 			DELAY(500);
1672 
1673 		if (!count)
1674 			return (-EBUSY);
1675 	}
1676 
1677 	return (0);
1678 }
1679 
1680 static void
1681 xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1682 {
1683 	unsigned int sbmr;
1684 
1685 	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
1686 
1687 	/* Set enhanced addressing mode */
1688 	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
1689 
1690 	/* Set the System Bus mode */
1691 	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
1692 	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
1693 	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
1694 	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
1695 	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
1696 
1697 	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
1698 
1699 	/* Set descriptor fetching threshold */
1700 	if (pdata->vdata->tx_desc_prefetch)
1701 		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
1702 		    pdata->vdata->tx_desc_prefetch);
1703 
1704 	if (pdata->vdata->rx_desc_prefetch)
1705 		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
1706 		    pdata->vdata->rx_desc_prefetch);
1707 }
1708 
1709 static void
1710 xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1711 {
1712 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
1713 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
1714 	if (pdata->awarcr)
1715 		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
1716 }
1717 
1718 static void
1719 xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1720 {
1721 	unsigned int i;
1722 
1723 	/* Set Tx to weighted round robin scheduling algorithm */
1724 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1725 
1726 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
1727 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1728 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1729 		    MTL_TSA_ETS);
1730 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1731 	}
1732 
1733 	/* Set Rx to strict priority algorithm */
1734 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
1735 }
1736 
1737 static void
1738 xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
1739     unsigned int queue, unsigned int q_fifo_size)
1740 {
1741 	unsigned int frame_fifo_size;
1742 	unsigned int rfa, rfd;
1743 
1744 	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
1745 	axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n",
1746 	    __func__, queue, q_fifo_size, frame_fifo_size);
1747 
1748 	/* TODO - add pfc/ets related support */
1749 
1750 	/* This path deals with just maximum frame sizes which are
1751 	 * limited to a jumbo frame of 9,000 (plus headers, etc.)
1752 	 * so we can never exceed the maximum allowable RFA/RFD
1753 	 * values.
1754 	 */
1755 	if (q_fifo_size <= 2048) {
1756 		/* rx_rfd to zero to signal no flow control */
1757 		pdata->rx_rfa[queue] = 0;
1758 		pdata->rx_rfd[queue] = 0;
1759 		return;
1760 	}
1761 
1762 	if (q_fifo_size <= 4096) {
1763 		/* Between 2048 and 4096 */
1764 		pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
1765 		pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
1766 		return;
1767 	}
1768 
1769 	if (q_fifo_size <= frame_fifo_size) {
1770 		/* Between 4096 and max-frame */
1771 		pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
1772 		pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
1773 		return;
1774 	}
1775 
1776 	if (q_fifo_size <= (frame_fifo_size * 3)) {
1777 		/* Between max-frame and 3 max-frames,
1778 		 * trigger if we get just over a frame of data and
1779 		 * resume when we have just under half a frame left.
1780 		 */
1781 		rfa = q_fifo_size - frame_fifo_size;
1782 		rfd = rfa + (frame_fifo_size / 2);
1783 	} else {
1784 		/* Above 3 max-frames - trigger when just over
1785 		 * 2 frames of space available
1786 		 */
1787 		rfa = frame_fifo_size * 2;
1788 		rfa += XGMAC_FLOW_CONTROL_UNIT;
1789 		rfd = rfa + frame_fifo_size;
1790 	}
1791 
1792 	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
1793 	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
1794 	axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__,
1795 	    queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]);
1796 }
1797 
1798 static void
1799 xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
1800     unsigned int *fifo)
1801 {
1802 	unsigned int q_fifo_size;
1803 	unsigned int i;
1804 
1805 	for (i = 0; i < pdata->rx_q_count; i++) {
1806 		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
1807 
1808 		axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n",
1809 		    __func__, i, fifo[i], q_fifo_size);
1810 		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
1811 	}
1812 }
1813 
1814 static void
1815 xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
1816 {
1817 	unsigned int i;
1818 
1819 	for (i = 0; i < pdata->rx_q_count; i++) {
1820 		axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i,
1821 		    pdata->rx_rfa[i], pdata->rx_rfd[i]);
1822 
1823 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
1824 				       pdata->rx_rfa[i]);
1825 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
1826 				       pdata->rx_rfd[i]);
1827 
1828 		axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__,
1829 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
1830 	}
1831 }
1832 
1833 static unsigned int
1834 xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
1835 {
1836 	/* The configured value may not be the actual amount of fifo RAM */
1837 	return (min_t(unsigned int, pdata->tx_max_fifo_size,
1838 	    pdata->hw_feat.tx_fifo_size));
1839 }
1840 
1841 static unsigned int
1842 xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
1843 {
1844 	/* The configured value may not be the actual amount of fifo RAM */
1845 	return (min_t(unsigned int, pdata->rx_max_fifo_size,
1846 	    pdata->hw_feat.rx_fifo_size));
1847 }
1848 
1849 static void
1850 xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count,
1851     unsigned int *fifo)
1852 {
1853 	unsigned int q_fifo_size;
1854 	unsigned int p_fifo;
1855 	unsigned int i;
1856 
1857 	q_fifo_size = fifo_size / queue_count;
1858 
1859 	/* Calculate the fifo setting by dividing the queue's fifo size
1860 	 * by the fifo allocation increment (with 0 representing the
1861 	 * base allocation increment so decrement the result by 1).
1862 	 */
1863 	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
1864 	if (p_fifo)
1865 		p_fifo--;
1866 
1867 	/* Distribute the fifo equally amongst the queues */
1868 	for (i = 0; i < queue_count; i++)
1869 		fifo[i] = p_fifo;
1870 }
1871 
1872 static unsigned int
1873 xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count,
1874     unsigned int *fifo)
1875 {
1876 	unsigned int i;
1877 
1878 	MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC));
1879 
1880 	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
1881 		return (fifo_size);
1882 
1883 	/* Rx queues 9 and up are for specialized packets,
1884 	 * such as PTP or DCB control packets, etc. and
1885 	 * don't require a large fifo
1886 	 */
1887 	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
1888 		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
1889 		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
1890 	}
1891 
1892 	return (fifo_size);
1893 }
1894 
1895 static void
1896 xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
1897 {
1898 	unsigned int fifo_size;
1899 	unsigned int fifo[XGBE_MAX_QUEUES];
1900 	unsigned int i;
1901 
1902 	fifo_size = xgbe_get_tx_fifo_size(pdata);
1903 	axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size);
1904 
1905 	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
1906 
1907 	for (i = 0; i < pdata->tx_q_count; i++) {
1908 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
1909 		axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i,
1910 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
1911 	}
1912 
1913 	axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n",
1914 	    pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1915 }
1916 
1917 static void
1918 xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
1919 {
1920 	unsigned int fifo_size;
1921 	unsigned int fifo[XGBE_MAX_QUEUES];
1922 	unsigned int prio_queues;
1923 	unsigned int i;
1924 
1925 	/* TODO - add pfc/ets related support */
1926 
1927 	/* Clear any DCB related fifo/queue information */
1928 	fifo_size = xgbe_get_rx_fifo_size(pdata);
1929 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1930 	axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__,
1931 	    fifo_size, pdata->rx_q_count, prio_queues);
1932 
1933 	/* Assign a minimum fifo to the non-VLAN priority queues */
1934 	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
1935 
1936 	xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
1937 
1938 	for (i = 0; i < pdata->rx_q_count; i++) {
1939 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
1940 		axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i,
1941 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
1942 	}
1943 
1944 	xgbe_calculate_flow_control_threshold(pdata, fifo);
1945 	xgbe_config_flow_control_threshold(pdata);
1946 
1947 	axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n",
1948 	    pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1949 }
1950 
1951 static void
1952 xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
1953 {
1954 	unsigned int qptc, qptc_extra, queue;
1955 	unsigned int prio_queues;
1956 	unsigned int ppq, ppq_extra, prio;
1957 	unsigned int mask;
1958 	unsigned int i, j, reg, reg_val;
1959 
1960 	/* Map the MTL Tx Queues to Traffic Classes
1961 	 *   Note: Tx Queues >= Traffic Classes
1962 	 */
1963 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
1964 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
1965 
1966 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
1967 		for (j = 0; j < qptc; j++) {
1968 			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1969 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1970 			    Q2TCMAP, i);
1971 			pdata->q2tc_map[queue++] = i;
1972 		}
1973 
1974 		if (i < qptc_extra) {
1975 			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1976 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1977 			    Q2TCMAP, i);
1978 			pdata->q2tc_map[queue++] = i;
1979 		}
1980 	}
1981 
1982 	/* Map the 8 VLAN priority values to available MTL Rx queues */
1983 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1984 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
1985 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
1986 
1987 	reg = MAC_RQC2R;
1988 	reg_val = 0;
1989 	for (i = 0, prio = 0; i < prio_queues;) {
1990 		mask = 0;
1991 		for (j = 0; j < ppq; j++) {
1992 			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1993 			mask |= (1 << prio);
1994 			pdata->prio2q_map[prio++] = i;
1995 		}
1996 
1997 		if (i < ppq_extra) {
1998 			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1999 			mask |= (1 << prio);
2000 			pdata->prio2q_map[prio++] = i;
2001 		}
2002 
2003 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2004 
2005 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2006 			continue;
2007 
2008 		XGMAC_IOWRITE(pdata, reg, reg_val);
2009 		reg += MAC_RQC2_INC;
2010 		reg_val = 0;
2011 	}
2012 
2013 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2014 	reg = MTL_RQDCM0R;
2015 	reg_val = 0;
2016 	for (i = 0; i < pdata->rx_q_count;) {
2017 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2018 
2019 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2020 			continue;
2021 
2022 		XGMAC_IOWRITE(pdata, reg, reg_val);
2023 
2024 		reg += MTL_RQDCM_INC;
2025 		reg_val = 0;
2026 	}
2027 }
2028 
2029 static void
2030 xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2031 {
2032 	xgbe_set_mac_address(pdata, if_getlladdr(pdata->netdev));
2033 
2034 	/* Filtering is done using perfect filtering and hash filtering */
2035 	if (pdata->hw_feat.hash_table_size) {
2036 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2037 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2038 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2039 	}
2040 }
2041 
2042 static void
2043 xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2044 {
2045 	unsigned int val;
2046 
2047 	val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2048 
2049 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2050 }
2051 
2052 static void
2053 xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2054 {
2055 	xgbe_set_speed(pdata, pdata->phy_speed);
2056 }
2057 
2058 static void
2059 xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2060 {
2061 	if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM))
2062 		xgbe_enable_rx_csum(pdata);
2063 	else
2064 		xgbe_disable_rx_csum(pdata);
2065 }
2066 
2067 static void
2068 xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2069 {
2070 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2071 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2072 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2073 
2074 	/* Set the current VLAN Hash Table register value */
2075 	xgbe_update_vlan_hash_table(pdata);
2076 
2077 	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
2078 		axgbe_printf(1, "Enabling rx vlan filtering\n");
2079 		xgbe_enable_rx_vlan_filtering(pdata);
2080 	} else {
2081 		axgbe_printf(1, "Disabling rx vlan filtering\n");
2082 		xgbe_disable_rx_vlan_filtering(pdata);
2083 	}
2084 
2085 	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
2086 		axgbe_printf(1, "Enabling rx vlan stripping\n");
2087 		xgbe_enable_rx_vlan_stripping(pdata);
2088 	} else {
2089 		axgbe_printf(1, "Disabling rx vlan stripping\n");
2090 		xgbe_disable_rx_vlan_stripping(pdata);
2091 	}
2092 }
2093 
2094 static uint64_t
2095 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2096 {
2097 	bool read_hi;
2098 	uint64_t val;
2099 
2100 	if (pdata->vdata->mmc_64bit) {
2101 		switch (reg_lo) {
2102 		/* These registers are always 32 bit */
2103 		case MMC_RXRUNTERROR:
2104 		case MMC_RXJABBERERROR:
2105 		case MMC_RXUNDERSIZE_G:
2106 		case MMC_RXOVERSIZE_G:
2107 		case MMC_RXWATCHDOGERROR:
2108 			read_hi = false;
2109 			break;
2110 
2111 		default:
2112 			read_hi = true;
2113 		}
2114 	} else {
2115 		switch (reg_lo) {
2116 		/* These registers are always 64 bit */
2117 		case MMC_TXOCTETCOUNT_GB_LO:
2118 		case MMC_TXOCTETCOUNT_G_LO:
2119 		case MMC_RXOCTETCOUNT_GB_LO:
2120 		case MMC_RXOCTETCOUNT_G_LO:
2121 			read_hi = true;
2122 			break;
2123 
2124 		default:
2125 			read_hi = false;
2126 		}
2127 	}
2128 
2129 	val = XGMAC_IOREAD(pdata, reg_lo);
2130 
2131 	if (read_hi)
2132 		val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2133 
2134 	return (val);
2135 }
2136 
2137 static void
2138 xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2139 {
2140 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2141 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2142 
2143 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2144 		stats->txoctetcount_gb +=
2145 		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2146 
2147 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2148 		stats->txframecount_gb +=
2149 		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2150 
2151 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2152 		stats->txbroadcastframes_g +=
2153 		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2154 
2155 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2156 		stats->txmulticastframes_g +=
2157 		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2158 
2159 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2160 		stats->tx64octets_gb +=
2161 		    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2162 
2163 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2164 		stats->tx65to127octets_gb +=
2165 		    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2166 
2167 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2168 		stats->tx128to255octets_gb +=
2169 		    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2170 
2171 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2172 		stats->tx256to511octets_gb +=
2173 		    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2174 
2175 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2176 		stats->tx512to1023octets_gb +=
2177 		    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2178 
2179 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2180 		stats->tx1024tomaxoctets_gb +=
2181 		    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2182 
2183 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2184 		stats->txunicastframes_gb +=
2185 		    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2186 
2187 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2188 		stats->txmulticastframes_gb +=
2189 		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2190 
2191 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2192 		stats->txbroadcastframes_g +=
2193 		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2194 
2195 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2196 		stats->txunderflowerror +=
2197 		    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2198 
2199 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2200 		stats->txoctetcount_g +=
2201 		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2202 
2203 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2204 		stats->txframecount_g +=
2205 		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2206 
2207 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2208 		stats->txpauseframes +=
2209 		    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2210 
2211 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2212 		stats->txvlanframes_g +=
2213 		    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2214 }
2215 
2216 static void
2217 xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2218 {
2219 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2220 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2221 
2222 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2223 		stats->rxframecount_gb +=
2224 		    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2225 
2226 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2227 		stats->rxoctetcount_gb +=
2228 		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2229 
2230 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2231 		stats->rxoctetcount_g +=
2232 		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2233 
2234 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2235 		stats->rxbroadcastframes_g +=
2236 		    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2237 
2238 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2239 		stats->rxmulticastframes_g +=
2240 		    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2241 
2242 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2243 		stats->rxcrcerror +=
2244 		    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2245 
2246 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2247 		stats->rxrunterror +=
2248 		    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2249 
2250 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2251 		stats->rxjabbererror +=
2252 		    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2253 
2254 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2255 		stats->rxundersize_g +=
2256 		    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2257 
2258 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2259 		stats->rxoversize_g +=
2260 		    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2261 
2262 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2263 		stats->rx64octets_gb +=
2264 		    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2265 
2266 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2267 		stats->rx65to127octets_gb +=
2268 		    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2269 
2270 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2271 		stats->rx128to255octets_gb +=
2272 		    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2273 
2274 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2275 		stats->rx256to511octets_gb +=
2276 		    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2277 
2278 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2279 		stats->rx512to1023octets_gb +=
2280 		    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2281 
2282 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2283 		stats->rx1024tomaxoctets_gb +=
2284 		    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2285 
2286 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2287 		stats->rxunicastframes_g +=
2288 		    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2289 
2290 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2291 		stats->rxlengtherror +=
2292 		    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2293 
2294 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2295 		stats->rxoutofrangetype +=
2296 		    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2297 
2298 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2299 		stats->rxpauseframes +=
2300 		    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2301 
2302 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2303 		stats->rxfifooverflow +=
2304 		    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2305 
2306 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2307 		stats->rxvlanframes_gb +=
2308 		    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2309 
2310 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2311 		stats->rxwatchdogerror +=
2312 		    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2313 }
2314 
2315 static void
2316 xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2317 {
2318 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2319 
2320 	/* Freeze counters */
2321 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2322 
2323 	stats->txoctetcount_gb +=
2324 	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2325 
2326 	stats->txframecount_gb +=
2327 	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2328 
2329 	stats->txbroadcastframes_g +=
2330 	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2331 
2332 	stats->txmulticastframes_g +=
2333 	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2334 
2335 	stats->tx64octets_gb +=
2336 	    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2337 
2338 	stats->tx65to127octets_gb +=
2339 	    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2340 
2341 	stats->tx128to255octets_gb +=
2342 	    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2343 
2344 	stats->tx256to511octets_gb +=
2345 	    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2346 
2347 	stats->tx512to1023octets_gb +=
2348 	    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2349 
2350 	stats->tx1024tomaxoctets_gb +=
2351 	    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2352 
2353 	stats->txunicastframes_gb +=
2354 	    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2355 
2356 	stats->txmulticastframes_gb +=
2357 	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2358 
2359 	stats->txbroadcastframes_gb +=
2360 	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2361 
2362 	stats->txunderflowerror +=
2363 	    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2364 
2365 	stats->txoctetcount_g +=
2366 	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2367 
2368 	stats->txframecount_g +=
2369 	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2370 
2371 	stats->txpauseframes +=
2372 	    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2373 
2374 	stats->txvlanframes_g +=
2375 	    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2376 
2377 	stats->rxframecount_gb +=
2378 	    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2379 
2380 	stats->rxoctetcount_gb +=
2381 	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2382 
2383 	stats->rxoctetcount_g +=
2384 	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2385 
2386 	stats->rxbroadcastframes_g +=
2387 	    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2388 
2389 	stats->rxmulticastframes_g +=
2390 	    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2391 
2392 	stats->rxcrcerror +=
2393 	    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2394 
2395 	stats->rxrunterror +=
2396 	    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2397 
2398 	stats->rxjabbererror +=
2399 	    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2400 
2401 	stats->rxundersize_g +=
2402 	    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2403 
2404 	stats->rxoversize_g +=
2405 	    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2406 
2407 	stats->rx64octets_gb +=
2408 	    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2409 
2410 	stats->rx65to127octets_gb +=
2411 	    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2412 
2413 	stats->rx128to255octets_gb +=
2414 	    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2415 
2416 	stats->rx256to511octets_gb +=
2417 	    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2418 
2419 	stats->rx512to1023octets_gb +=
2420 	    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2421 
2422 	stats->rx1024tomaxoctets_gb +=
2423 	    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2424 
2425 	stats->rxunicastframes_g +=
2426 	    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2427 
2428 	stats->rxlengtherror +=
2429 	    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2430 
2431 	stats->rxoutofrangetype +=
2432 	    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2433 
2434 	stats->rxpauseframes +=
2435 	    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2436 
2437 	stats->rxfifooverflow +=
2438 	    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2439 
2440 	stats->rxvlanframes_gb +=
2441 	    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2442 
2443 	stats->rxwatchdogerror +=
2444 	    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2445 
2446 	/* Un-freeze counters */
2447 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2448 }
2449 
2450 static void
2451 xgbe_config_mmc(struct xgbe_prv_data *pdata)
2452 {
2453 	/* Set counters to reset on read */
2454 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2455 
2456 	/* Reset the counters */
2457 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2458 }
2459 
2460 static void
2461 xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2462 {
2463 	unsigned int tx_status;
2464 	unsigned long tx_timeout;
2465 
2466 	/* The Tx engine cannot be stopped if it is actively processing
2467 	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
2468 	 * wait forever though...
2469 	 */
2470 	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2471 	while (ticks < tx_timeout) {
2472 		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
2473 		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
2474 		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
2475 			break;
2476 
2477 		DELAY(500);
2478 	}
2479 
2480 	if (ticks >= tx_timeout)
2481 		axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n",
2482 		    queue);
2483 }
2484 
2485 static void
2486 xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2487 {
2488 	unsigned int tx_dsr, tx_pos, tx_qidx;
2489 	unsigned int tx_status;
2490 	unsigned long tx_timeout;
2491 
2492 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
2493 		return (xgbe_txq_prepare_tx_stop(pdata, queue));
2494 
2495 	/* Calculate the status register to read and the position within */
2496 	if (queue < DMA_DSRX_FIRST_QUEUE) {
2497 		tx_dsr = DMA_DSR0;
2498 		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
2499 	} else {
2500 		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
2501 
2502 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2503 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2504 			 DMA_DSRX_TPS_START;
2505 	}
2506 
2507 	/* The Tx engine cannot be stopped if it is actively processing
2508 	 * descriptors. Wait for the Tx engine to enter the stopped or
2509 	 * suspended state.  Don't wait forever though...
2510 	 */
2511 	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2512 	while (ticks < tx_timeout) {
2513 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2514 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2515 		if ((tx_status == DMA_TPS_STOPPED) ||
2516 		    (tx_status == DMA_TPS_SUSPENDED))
2517 			break;
2518 
2519 		DELAY(500);
2520 	}
2521 
2522 	if (ticks >= tx_timeout)
2523 		axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n",
2524 		    queue);
2525 }
2526 
2527 static void
2528 xgbe_enable_tx(struct xgbe_prv_data *pdata)
2529 {
2530 	unsigned int i;
2531 
2532 	/* Enable each Tx DMA channel */
2533 	for (i = 0; i < pdata->channel_count; i++) {
2534 		if (!pdata->channel[i]->tx_ring)
2535 			break;
2536 
2537 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2538 	}
2539 
2540 	/* Enable each Tx queue */
2541 	for (i = 0; i < pdata->tx_q_count; i++)
2542 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2543 		    MTL_Q_ENABLED);
2544 
2545 	/* Enable MAC Tx */
2546 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2547 }
2548 
2549 static void
2550 xgbe_disable_tx(struct xgbe_prv_data *pdata)
2551 {
2552 	unsigned int i;
2553 
2554 	/* Prepare for Tx DMA channel stop */
2555 	for (i = 0; i < pdata->tx_q_count; i++)
2556 		xgbe_prepare_tx_stop(pdata, i);
2557 
2558 	/* Disable MAC Tx */
2559 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2560 
2561 	/* Disable each Tx queue */
2562 	for (i = 0; i < pdata->tx_q_count; i++)
2563 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2564 
2565 	/* Disable each Tx DMA channel */
2566 	for (i = 0; i < pdata->channel_count; i++) {
2567 		if (!pdata->channel[i]->tx_ring)
2568 			break;
2569 
2570 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2571 	}
2572 }
2573 
2574 static void
2575 xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2576 {
2577 	unsigned int rx_status;
2578 	unsigned long rx_timeout;
2579 
2580 	/* The Rx engine cannot be stopped if it is actively processing
2581 	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
2582 	 * wait forever though...
2583 	 */
2584 	rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2585 	while (ticks < rx_timeout) {
2586 		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
2587 		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
2588 		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
2589 			break;
2590 
2591 		DELAY(500);
2592 	}
2593 
2594 	if (ticks >= rx_timeout)
2595 		axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n",
2596 		    queue);
2597 }
2598 
2599 static void
2600 xgbe_enable_rx(struct xgbe_prv_data *pdata)
2601 {
2602 	unsigned int reg_val, i;
2603 
2604 	/* Enable each Rx DMA channel */
2605 	for (i = 0; i < pdata->channel_count; i++) {
2606 		if (!pdata->channel[i]->rx_ring)
2607 			break;
2608 
2609 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2610 	}
2611 
2612 	/* Enable each Rx queue */
2613 	reg_val = 0;
2614 	for (i = 0; i < pdata->rx_q_count; i++)
2615 		reg_val |= (0x02 << (i << 1));
2616 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2617 
2618 	/* Enable MAC Rx */
2619 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2620 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2621 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2622 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2623 }
2624 
2625 static void
2626 xgbe_disable_rx(struct xgbe_prv_data *pdata)
2627 {
2628 	unsigned int i;
2629 
2630 	/* Disable MAC Rx */
2631 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2632 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2633 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2634 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2635 
2636 	/* Prepare for Rx DMA channel stop */
2637 	for (i = 0; i < pdata->rx_q_count; i++)
2638 		xgbe_prepare_rx_stop(pdata, i);
2639 
2640 	/* Disable each Rx queue */
2641 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2642 
2643 	/* Disable each Rx DMA channel */
2644 	for (i = 0; i < pdata->channel_count; i++) {
2645 		if (!pdata->channel[i]->rx_ring)
2646 			break;
2647 
2648 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2649 	}
2650 }
2651 
2652 static void
2653 xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2654 {
2655 	unsigned int i;
2656 
2657 	/* Enable each Tx DMA channel */
2658 	for (i = 0; i < pdata->channel_count; i++) {
2659 		if (!pdata->channel[i]->tx_ring)
2660 			break;
2661 
2662 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2663 	}
2664 
2665 	/* Enable MAC Tx */
2666 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2667 }
2668 
2669 static void
2670 xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2671 {
2672 	unsigned int i;
2673 
2674 	/* Prepare for Tx DMA channel stop */
2675 	for (i = 0; i < pdata->tx_q_count; i++)
2676 		xgbe_prepare_tx_stop(pdata, i);
2677 
2678 	/* Disable MAC Tx */
2679 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2680 
2681 	/* Disable each Tx DMA channel */
2682 	for (i = 0; i < pdata->channel_count; i++) {
2683 		if (!pdata->channel[i]->tx_ring)
2684 			break;
2685 
2686 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2687 	}
2688 }
2689 
2690 static void
2691 xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2692 {
2693 	unsigned int i;
2694 
2695 	/* Enable each Rx DMA channel */
2696 	for (i = 0; i < pdata->channel_count; i++) {
2697 		if (!pdata->channel[i]->rx_ring)
2698 			break;
2699 
2700 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2701 	}
2702 }
2703 
2704 static void
2705 xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2706 {
2707 	unsigned int i;
2708 
2709 	/* Disable each Rx DMA channel */
2710 	for (i = 0; i < pdata->channel_count; i++) {
2711 		if (!pdata->channel[i]->rx_ring)
2712 			break;
2713 
2714 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2715 	}
2716 }
2717 
2718 static int
2719 xgbe_init(struct xgbe_prv_data *pdata)
2720 {
2721 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
2722 	int ret;
2723 
2724 	/* Flush Tx queues */
2725 	ret = xgbe_flush_tx_queues(pdata);
2726 	if (ret) {
2727 		axgbe_error("error flushing TX queues\n");
2728 		return (ret);
2729 	}
2730 
2731 	/*
2732 	 * Initialize DMA related features
2733 	 */
2734 	xgbe_config_dma_bus(pdata);
2735 	xgbe_config_dma_cache(pdata);
2736 	xgbe_config_osp_mode(pdata);
2737 	xgbe_config_pbl_val(pdata);
2738 	xgbe_config_rx_coalesce(pdata);
2739 	xgbe_config_tx_coalesce(pdata);
2740 	xgbe_config_rx_buffer_size(pdata);
2741 	xgbe_config_tso_mode(pdata);
2742 	xgbe_config_sph_mode(pdata);
2743 	xgbe_config_rss(pdata);
2744 	desc_if->wrapper_tx_desc_init(pdata);
2745 	desc_if->wrapper_rx_desc_init(pdata);
2746 	xgbe_enable_dma_interrupts(pdata);
2747 
2748 	/*
2749 	 * Initialize MTL related features
2750 	 */
2751 	xgbe_config_mtl_mode(pdata);
2752 	xgbe_config_queue_mapping(pdata);
2753 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2754 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2755 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2756 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2757 	xgbe_config_tx_fifo_size(pdata);
2758 	xgbe_config_rx_fifo_size(pdata);
2759 	/*TODO: Error Packet and undersized good Packet forwarding enable
2760 		(FEP and FUP)
2761 	 */
2762 	xgbe_enable_mtl_interrupts(pdata);
2763 
2764 	/*
2765 	 * Initialize MAC related features
2766 	 */
2767 	xgbe_config_mac_address(pdata);
2768 	xgbe_config_rx_mode(pdata);
2769 	xgbe_config_jumbo_enable(pdata);
2770 	xgbe_config_flow_control(pdata);
2771 	xgbe_config_mac_speed(pdata);
2772 	xgbe_config_checksum_offload(pdata);
2773 	xgbe_config_vlan_support(pdata);
2774 	xgbe_config_mmc(pdata);
2775 	xgbe_enable_mac_interrupts(pdata);
2776 
2777 	return (0);
2778 }
2779 
2780 void
2781 xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2782 {
2783 
2784 	hw_if->tx_complete = xgbe_tx_complete;
2785 
2786 	hw_if->set_mac_address = xgbe_set_mac_address;
2787 	hw_if->config_rx_mode = xgbe_config_rx_mode;
2788 
2789 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2790 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2791 
2792 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2793 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2794 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2795 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2796 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2797 
2798 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2799 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2800 
2801 	hw_if->set_speed = xgbe_set_speed;
2802 
2803 	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
2804 	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
2805 	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
2806 
2807 	hw_if->set_gpio = xgbe_set_gpio;
2808 	hw_if->clr_gpio = xgbe_clr_gpio;
2809 
2810 	hw_if->enable_tx = xgbe_enable_tx;
2811 	hw_if->disable_tx = xgbe_disable_tx;
2812 	hw_if->enable_rx = xgbe_enable_rx;
2813 	hw_if->disable_rx = xgbe_disable_rx;
2814 
2815 	hw_if->powerup_tx = xgbe_powerup_tx;
2816 	hw_if->powerdown_tx = xgbe_powerdown_tx;
2817 	hw_if->powerup_rx = xgbe_powerup_rx;
2818 	hw_if->powerdown_rx = xgbe_powerdown_rx;
2819 
2820 	hw_if->dev_read = xgbe_dev_read;
2821 	hw_if->enable_int = xgbe_enable_int;
2822 	hw_if->disable_int = xgbe_disable_int;
2823 	hw_if->init = xgbe_init;
2824 	hw_if->exit = xgbe_exit;
2825 
2826 	/* Descriptor related Sequences have to be initialized here */
2827 	hw_if->tx_desc_init = xgbe_tx_desc_init;
2828 	hw_if->rx_desc_init = xgbe_rx_desc_init;
2829 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2830 	hw_if->is_last_desc = xgbe_is_last_desc;
2831 	hw_if->is_context_desc = xgbe_is_context_desc;
2832 
2833 	/* For FLOW ctrl */
2834 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2835 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2836 
2837 	/* For RX coalescing */
2838 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2839 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2840 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2841 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2842 
2843 	/* For RX and TX threshold config */
2844 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2845 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2846 
2847 	/* For RX and TX Store and Forward Mode config */
2848 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2849 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2850 
2851 	/* For TX DMA Operating on Second Frame config */
2852 	hw_if->config_osp_mode = xgbe_config_osp_mode;
2853 
2854 	/* For MMC statistics support */
2855 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2856 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2857 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2858 
2859 	/* For Receive Side Scaling */
2860 	hw_if->enable_rss = xgbe_enable_rss;
2861 	hw_if->disable_rss = xgbe_disable_rss;
2862 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2863 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2864 }
2865