xref: /freebsd/sys/dev/axgbe/xgbe-dev.c (revision 894cb08f0d3656fdb81f4d89085bedc4235f3cb6)
1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc.
5  *
6  * This file is available to you under your choice of the following two
7  * licenses:
8  *
9  * License 1: GPLv2
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Redistribution and use in source and binary forms, with or without
60  * modification, are permitted provided that the following conditions are met:
61  *     * Redistributions of source code must retain the above copyright
62  *       notice, this list of conditions and the following disclaimer.
63  *     * Redistributions in binary form must reproduce the above copyright
64  *       notice, this list of conditions and the following disclaimer in the
65  *       documentation and/or other materials provided with the distribution.
66  *     * Neither the name of Advanced Micro Devices, Inc. nor the
67  *       names of its contributors may be used to endorse or promote products
68  *       derived from this software without specific prior written permission.
69  *
70  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
71  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
72  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
73  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
74  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
75  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
76  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
77  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
78  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
79  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
80  *
81  * This file incorporates work covered by the following copyright and
82  * permission notice:
83  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
84  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
85  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
86  *     and you.
87  *
88  *     The Software IS NOT an item of Licensed Software or Licensed Product
89  *     under any End User Software License Agreement or Agreement for Licensed
90  *     Product with Synopsys or any supplement thereto.  Permission is hereby
91  *     granted, free of charge, to any person obtaining a copy of this software
92  *     annotated with this license and the Software, to deal in the Software
93  *     without restriction, including without limitation the rights to use,
94  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
95  *     of the Software, and to permit persons to whom the Software is furnished
96  *     to do so, subject to the following conditions:
97  *
98  *     The above copyright notice and this permission notice shall be included
99  *     in all copies or substantial portions of the Software.
100  *
101  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
102  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
103  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
104  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
105  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
106  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
107  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
108  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
109  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
110  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
111  *     THE POSSIBILITY OF SUCH DAMAGE.
112  */
113 
114 #include <sys/cdefs.h>
115 #include "xgbe.h"
116 #include "xgbe-common.h"
117 
118 #include <net/if_dl.h>
119 
120 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
121 {
122 	return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
123 }
124 
125 static unsigned int
126 xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec)
127 {
128 	unsigned long rate;
129 	unsigned int ret;
130 
131 	rate = pdata->sysclk_rate;
132 
133 	/*
134 	 * Convert the input usec value to the watchdog timer value. Each
135 	 * watchdog timer value is equivalent to 256 clock cycles.
136 	 * Calculate the required value as:
137 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
138 	 */
139 	ret = (usec * (rate / 1000000)) / 256;
140 
141 	return (ret);
142 }
143 
144 static unsigned int
145 xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt)
146 {
147 	unsigned long rate;
148 	unsigned int ret;
149 
150 	rate = pdata->sysclk_rate;
151 
152 	/*
153 	 * Convert the input watchdog timer value to the usec value. Each
154 	 * watchdog timer value is equivalent to 256 clock cycles.
155 	 * Calculate the required value as:
156 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
157 	 */
158 	ret = (riwt * 256) / (rate / 1000000);
159 
160 	return (ret);
161 }
162 
163 static int
164 xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
165 {
166 	unsigned int pblx8, pbl;
167 	unsigned int i;
168 
169 	pblx8 = DMA_PBL_X8_DISABLE;
170 	pbl = pdata->pbl;
171 
172 	if (pdata->pbl > 32) {
173 		pblx8 = DMA_PBL_X8_ENABLE;
174 		pbl >>= 3;
175 	}
176 
177 	for (i = 0; i < pdata->channel_count; i++) {
178 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
179 		    pblx8);
180 
181 		if (pdata->channel[i]->tx_ring)
182 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
183 			    PBL, pbl);
184 
185 		if (pdata->channel[i]->rx_ring)
186 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
187 			    PBL, pbl);
188 	}
189 
190 	return (0);
191 }
192 
193 static int
194 xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
195 {
196 	unsigned int i;
197 
198 	for (i = 0; i < pdata->channel_count; i++) {
199 		if (!pdata->channel[i]->tx_ring)
200 			break;
201 
202 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
203 		    pdata->tx_osp_mode);
204 	}
205 
206 	return (0);
207 }
208 
209 static int
210 xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
211 {
212 	unsigned int i;
213 
214 	for (i = 0; i < pdata->rx_q_count; i++)
215 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
216 
217 	return (0);
218 }
219 
220 static int
221 xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
222 {
223 	unsigned int i;
224 
225 	for (i = 0; i < pdata->tx_q_count; i++)
226 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
227 
228 	return (0);
229 }
230 
231 static int
232 xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
233 {
234 	unsigned int i;
235 
236 	for (i = 0; i < pdata->rx_q_count; i++)
237 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
238 
239 	return (0);
240 }
241 
242 static int
243 xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
244 {
245 	unsigned int i;
246 
247 	for (i = 0; i < pdata->tx_q_count; i++)
248 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
249 
250 	return (0);
251 }
252 
253 static int
254 xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
255 {
256 	unsigned int i;
257 
258 	for (i = 0; i < pdata->channel_count; i++) {
259 		if (!pdata->channel[i]->rx_ring)
260 			break;
261 
262 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
263 		    pdata->rx_riwt);
264 	}
265 
266 	return (0);
267 }
268 
269 static int
270 xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
271 {
272 	return (0);
273 }
274 
275 static void
276 xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
277 {
278 	unsigned int i;
279 
280 	for (i = 0; i < pdata->channel_count; i++) {
281 		if (!pdata->channel[i]->rx_ring)
282 			break;
283 
284 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
285 		    pdata->rx_buf_size);
286 	}
287 }
288 
289 static void
290 xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
291 {
292 	unsigned int i;
293 
294 	int tso_enabled = (if_getcapenable(pdata->netdev) & IFCAP_TSO);
295 
296 	for (i = 0; i < pdata->channel_count; i++) {
297 		if (!pdata->channel[i]->tx_ring)
298 			break;
299 
300 		axgbe_printf(1, "TSO in channel %d %s\n", i, tso_enabled ? "enabled" : "disabled");
301 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, tso_enabled ? 1 : 0);
302 	}
303 }
304 
305 static void
306 xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
307 {
308 	unsigned int i;
309 	int sph_enable_flag = XGMAC_IOREAD_BITS(pdata, MAC_HWF1R, SPHEN);
310 
311 	axgbe_printf(1, "sph_enable %d sph feature enabled?: %d\n",
312 	    pdata->sph_enable, sph_enable_flag);
313 
314 	if (pdata->sph_enable && sph_enable_flag)
315 		axgbe_printf(0, "SPH Enabled\n");
316 
317 	for (i = 0; i < pdata->channel_count; i++) {
318 		if (!pdata->channel[i]->rx_ring)
319 			break;
320 		if (pdata->sph_enable && sph_enable_flag) {
321 			/* Enable split header feature */
322 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
323 		} else {
324 			/* Disable split header feature */
325 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 0);
326 		}
327 
328 		/* per-channel confirmation of SPH being disabled/enabled */
329 		int val = XGMAC_DMA_IOREAD_BITS(pdata->channel[i], DMA_CH_CR, SPH);
330 		axgbe_printf(0, "%s: SPH %s in channel %d\n", __func__,
331 		    (val ? "enabled" : "disabled"), i);
332 	}
333 
334 	if (pdata->sph_enable && sph_enable_flag)
335 		XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
336 }
337 
338 static int
339 xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
340     unsigned int index, unsigned int val)
341 {
342 	unsigned int wait;
343 	int ret = 0;
344 
345 	mtx_lock(&pdata->rss_mutex);
346 
347 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
348 		ret = -EBUSY;
349 		goto unlock;
350 	}
351 
352 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
353 
354 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
355 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
356 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
357 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
358 
359 	wait = 1000;
360 	while (wait--) {
361 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
362 			goto unlock;
363 
364 		DELAY(1000);
365 	}
366 
367 	ret = -EBUSY;
368 
369 unlock:
370 	mtx_unlock(&pdata->rss_mutex);
371 
372 	return (ret);
373 }
374 
375 static int
376 xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
377 {
378 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t);
379 	unsigned int *key = (unsigned int *)&pdata->rss_key;
380 	int ret;
381 
382 	while (key_regs--) {
383 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
384 		    key_regs, *key++);
385 		if (ret)
386 			return (ret);
387 	}
388 
389 	return (0);
390 }
391 
392 static int
393 xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
394 {
395 	unsigned int i;
396 	int ret;
397 
398 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
399 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i,
400 		    pdata->rss_table[i]);
401 		if (ret)
402 			return (ret);
403 	}
404 
405 	return (0);
406 }
407 
408 static int
409 xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key)
410 {
411 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
412 
413 	return (xgbe_write_rss_hash_key(pdata));
414 }
415 
416 static int
417 xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table)
418 {
419 	unsigned int i;
420 
421 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
422 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
423 
424 	return (xgbe_write_rss_lookup_table(pdata));
425 }
426 
427 static int
428 xgbe_enable_rss(struct xgbe_prv_data *pdata)
429 {
430 	int ret;
431 
432 	if (!pdata->hw_feat.rss)
433 		return (-EOPNOTSUPP);
434 
435 	/* Program the hash key */
436 	ret = xgbe_write_rss_hash_key(pdata);
437 	if (ret)
438 		return (ret);
439 
440 	/* Program the lookup table */
441 	ret = xgbe_write_rss_lookup_table(pdata);
442 	if (ret)
443 		return (ret);
444 
445 	/* Set the RSS options */
446 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
447 
448 	/* Enable RSS */
449 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
450 
451 	axgbe_printf(0, "RSS Enabled\n");
452 
453 	return (0);
454 }
455 
456 static int
457 xgbe_disable_rss(struct xgbe_prv_data *pdata)
458 {
459 	if (!pdata->hw_feat.rss)
460 		return (-EOPNOTSUPP);
461 
462 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
463 
464 	axgbe_printf(0, "RSS Disabled\n");
465 
466 	return (0);
467 }
468 
469 static void
470 xgbe_config_rss(struct xgbe_prv_data *pdata)
471 {
472 	int ret;
473 
474 	if (!pdata->hw_feat.rss)
475 		return;
476 
477 	/* Check if the interface has RSS capability */
478 	if (pdata->enable_rss)
479 		ret = xgbe_enable_rss(pdata);
480 	else
481 		ret = xgbe_disable_rss(pdata);
482 
483 	if (ret)
484 		axgbe_error("error configuring RSS, RSS disabled\n");
485 }
486 
487 static int
488 xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
489 {
490 	unsigned int max_q_count, q_count;
491 	unsigned int reg, reg_val;
492 	unsigned int i;
493 
494 	/* Clear MTL flow control */
495 	for (i = 0; i < pdata->rx_q_count; i++)
496 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
497 
498 	/* Clear MAC flow control */
499 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
500 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
501 	reg = MAC_Q0TFCR;
502 	for (i = 0; i < q_count; i++) {
503 		reg_val = XGMAC_IOREAD(pdata, reg);
504 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
505 		XGMAC_IOWRITE(pdata, reg, reg_val);
506 
507 		reg += MAC_QTFCR_INC;
508 	}
509 
510 	return (0);
511 }
512 
513 static int
514 xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
515 {
516 	unsigned int max_q_count, q_count;
517 	unsigned int reg, reg_val;
518 	unsigned int i;
519 
520 	/* Set MTL flow control */
521 	for (i = 0; i < pdata->rx_q_count; i++) {
522 		unsigned int ehfc = 0;
523 
524 		if (pdata->rx_rfd[i]) {
525 			/* Flow control thresholds are established */
526 			/* TODO - enable pfc/ets support */
527 			ehfc = 1;
528 		}
529 
530 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
531 
532 		axgbe_printf(1, "flow control %s for RXq%u\n",
533 		    ehfc ? "enabled" : "disabled", i);
534 	}
535 
536 	/* Set MAC flow control */
537 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
538 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
539 	reg = MAC_Q0TFCR;
540 	for (i = 0; i < q_count; i++) {
541 		reg_val = XGMAC_IOREAD(pdata, reg);
542 
543 		/* Enable transmit flow control */
544 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
545 
546 		/* Set pause time */
547 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
548 
549 		XGMAC_IOWRITE(pdata, reg, reg_val);
550 
551 		reg += MAC_QTFCR_INC;
552 	}
553 
554 	return (0);
555 }
556 
557 static int
558 xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
559 {
560 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
561 
562 	return (0);
563 }
564 
565 static int
566 xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
567 {
568 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
569 
570 	return (0);
571 }
572 
573 static int
574 xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
575 {
576 	if (pdata->tx_pause)
577 		xgbe_enable_tx_flow_control(pdata);
578 	else
579 		xgbe_disable_tx_flow_control(pdata);
580 
581 	return (0);
582 }
583 
584 static int
585 xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
586 {
587 	if (pdata->rx_pause)
588 		xgbe_enable_rx_flow_control(pdata);
589 	else
590 		xgbe_disable_rx_flow_control(pdata);
591 
592 	return (0);
593 }
594 
595 static void
596 xgbe_config_flow_control(struct xgbe_prv_data *pdata)
597 {
598 	xgbe_config_tx_flow_control(pdata);
599 	xgbe_config_rx_flow_control(pdata);
600 
601 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0);
602 }
603 
604 static void
605 xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
606 {
607 	struct xgbe_channel *channel;
608 	unsigned int i, ver;
609 
610 	/* Set the interrupt mode if supported */
611 	if (pdata->channel_irq_mode)
612 		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
613 		    pdata->channel_irq_mode);
614 
615 	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
616 
617 	for (i = 0; i < pdata->channel_count; i++) {
618 		channel = pdata->channel[i];
619 
620 		/* Clear all the interrupts which are set */
621 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
622 				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
623 
624 		/* Clear all interrupt enable bits */
625 		channel->curr_ier = 0;
626 
627 		/* Enable following interrupts
628 		 *   NIE  - Normal Interrupt Summary Enable
629 		 *   AIE  - Abnormal Interrupt Summary Enable
630 		 *   FBEE - Fatal Bus Error Enable
631 		 */
632 		if (ver < 0x21) {
633 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
634 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
635 		} else {
636 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
637 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
638 		}
639 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
640 
641 		if (channel->tx_ring) {
642 			/* Enable the following Tx interrupts
643 			 *   TIE  - Transmit Interrupt Enable (unless using
644 			 *	  per channel interrupts in edge triggered
645 			 *	  mode)
646 			 */
647 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
648 				XGMAC_SET_BITS(channel->curr_ier,
649 					       DMA_CH_IER, TIE, 1);
650 		}
651 		if (channel->rx_ring) {
652 			/* Enable following Rx interrupts
653 			 *   RBUE - Receive Buffer Unavailable Enable
654 			 *   RIE  - Receive Interrupt Enable (unless using
655 			 *	  per channel interrupts in edge triggered
656 			 *	  mode)
657 			 */
658 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
659 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
660 				XGMAC_SET_BITS(channel->curr_ier,
661 					       DMA_CH_IER, RIE, 1);
662 		}
663 
664 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
665 	}
666 }
667 
668 static void
669 xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
670 {
671 	unsigned int mtl_q_isr;
672 	unsigned int q_count, i;
673 
674 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
675 	for (i = 0; i < q_count; i++) {
676 		/* Clear all the interrupts which are set */
677 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
678 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
679 
680 		/* No MTL interrupts to be enabled */
681 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
682 	}
683 }
684 
685 static void
686 xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
687 {
688 	unsigned int mac_ier = 0;
689 
690 	/* Enable Timestamp interrupt */
691 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
692 
693 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
694 
695 	/* Enable all counter interrupts */
696 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
697 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
698 
699 	/* Enable MDIO single command completion interrupt */
700 	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
701 }
702 
703 static int
704 xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
705 {
706 	unsigned int ss;
707 
708 	switch (speed) {
709 	case SPEED_1000:
710 		ss = 0x03;
711 		break;
712 	case SPEED_2500:
713 		ss = 0x02;
714 		break;
715 	case SPEED_10000:
716 		ss = 0x00;
717 		break;
718 	default:
719 		return (-EINVAL);
720 	}
721 
722 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
723 		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
724 
725 	return (0);
726 }
727 
728 static int
729 xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
730 {
731 	/* Put the VLAN tag in the Rx descriptor */
732 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
733 
734 	/* Don't check the VLAN type */
735 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
736 
737 	/* Check only C-TAG (0x8100) packets */
738 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
739 
740 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
741 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
742 
743 	/* Enable VLAN tag stripping */
744 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
745 
746 	axgbe_printf(0, "VLAN Stripping Enabled\n");
747 
748 	return (0);
749 }
750 
751 static int
752 xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
753 {
754 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
755 
756 	axgbe_printf(0, "VLAN Stripping Disabled\n");
757 
758 	return (0);
759 }
760 
761 static int
762 xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
763 {
764 	/* Enable VLAN filtering */
765 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
766 
767 	/* Enable VLAN Hash Table filtering */
768 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
769 
770 	/* Disable VLAN tag inverse matching */
771 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
772 
773 	/* Only filter on the lower 12-bits of the VLAN tag */
774 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
775 
776 	/* In order for the VLAN Hash Table filtering to be effective,
777 	 * the VLAN tag identifier in the VLAN Tag Register must not
778 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
779 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
780 	 * 1 will always pass filtering.
781 	 */
782 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
783 
784 	axgbe_printf(0, "VLAN filtering Enabled\n");
785 
786 	return (0);
787 }
788 
789 static int
790 xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
791 {
792 	/* Disable VLAN filtering */
793 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
794 
795 	axgbe_printf(0, "VLAN filtering Disabled\n");
796 
797 	return (0);
798 }
799 
800 static uint32_t
801 xgbe_vid_crc32_le(__le16 vid_le)
802 {
803 	uint32_t crc = ~0;
804 	uint32_t temp = 0;
805 	unsigned char *data = (unsigned char *)&vid_le;
806 	unsigned char data_byte = 0;
807 	int i, bits;
808 
809 	bits = get_bitmask_order(VLAN_VID_MASK);
810 	for (i = 0; i < bits; i++) {
811 		if ((i % 8) == 0)
812 			data_byte = data[i / 8];
813 
814 		temp = ((crc & 1) ^ data_byte) & 1;
815 		crc >>= 1;
816 		data_byte >>= 1;
817 
818 		if (temp)
819 			crc ^= CRC32_POLY_LE;
820 	}
821 
822 	return (crc);
823 }
824 
825 static int
826 xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
827 {
828 	uint32_t crc;
829 	uint16_t vid;
830 	uint16_t vlan_hash_table = 0;
831 	__le16 vid_le = 0;
832 
833 	axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__,
834 	    XGMAC_IOREAD(pdata, MAC_VLANHTR));
835 
836 	/* Generate the VLAN Hash Table value */
837 	for_each_set_bit(vid, pdata->active_vlans, VLAN_NVID) {
838 
839 		/* Get the CRC32 value of the VLAN ID */
840 		vid_le = cpu_to_le16(vid);
841 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
842 
843 		vlan_hash_table |= (1 << crc);
844 		axgbe_printf(1, "%s: vid 0x%x vid_le 0x%x crc 0x%x "
845 		    "vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc,
846 		    vlan_hash_table);
847 	}
848 
849 	/* Set the VLAN Hash Table filtering register */
850 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
851 
852 	axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__,
853 		XGMAC_IOREAD(pdata, MAC_VLANHTR));
854 
855 	return (0);
856 }
857 
858 static int
859 xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable)
860 {
861 	unsigned int val = enable ? 1 : 0;
862 
863 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
864 		return (0);
865 
866 	axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving");
867 
868 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
869 
870 	/* Hardware will still perform VLAN filtering in promiscuous mode */
871 	if (enable) {
872 		axgbe_printf(1, "Disabling rx vlan filtering\n");
873 		xgbe_disable_rx_vlan_filtering(pdata);
874 	} else {
875 		if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
876 			axgbe_printf(1, "Enabling rx vlan filtering\n");
877 			xgbe_enable_rx_vlan_filtering(pdata);
878 		}
879 	}
880 
881 	return (0);
882 }
883 
884 static int
885 xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable)
886 {
887 	unsigned int val = enable ? 1 : 0;
888 
889 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
890 		return (0);
891 
892 	axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving");
893 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
894 
895 	return (0);
896 }
897 
898 static void
899 xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg)
900 {
901 	unsigned int mac_addr_hi, mac_addr_lo;
902 	uint8_t *mac_addr;
903 
904 	mac_addr_lo = 0;
905 	mac_addr_hi = 0;
906 
907 	if (addr) {
908 		mac_addr = (uint8_t *)&mac_addr_lo;
909 		mac_addr[0] = addr[0];
910 		mac_addr[1] = addr[1];
911 		mac_addr[2] = addr[2];
912 		mac_addr[3] = addr[3];
913 		mac_addr = (uint8_t *)&mac_addr_hi;
914 		mac_addr[0] = addr[4];
915 		mac_addr[1] = addr[5];
916 
917 		axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg);
918 
919 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
920 	}
921 
922 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
923 	*mac_reg += MAC_MACA_INC;
924 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
925 	*mac_reg += MAC_MACA_INC;
926 }
927 
928 static void
929 xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
930 {
931 	unsigned int mac_reg;
932 	unsigned int addn_macs;
933 
934 	mac_reg = MAC_MACA1HR;
935 	addn_macs = pdata->hw_feat.addn_mac;
936 
937 	xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg);
938 	addn_macs--;
939 
940 	/* Clear remaining additional MAC address entries */
941 	while (addn_macs--)
942 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
943 }
944 
945 static int
946 xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
947 {
948 	/* TODO - add support to set mac hash table */
949 	xgbe_set_mac_addn_addrs(pdata);
950 
951 	return (0);
952 }
953 
954 static int
955 xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr)
956 {
957 	unsigned int mac_addr_hi, mac_addr_lo;
958 
959 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
960 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
961 		      (addr[1] <<  8) | (addr[0] <<  0);
962 
963 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
964 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
965 
966 	return (0);
967 }
968 
969 static int
970 xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
971 {
972 	unsigned int pr_mode, am_mode;
973 
974 	pr_mode = ((if_getflags(pdata->netdev) & IFF_PPROMISC) != 0);
975 	am_mode = ((if_getflags(pdata->netdev) & IFF_ALLMULTI) != 0);
976 
977 	xgbe_set_promiscuous_mode(pdata, pr_mode);
978 	xgbe_set_all_multicast_mode(pdata, am_mode);
979 
980 	xgbe_add_mac_addresses(pdata);
981 
982 	return (0);
983 }
984 
985 static int
986 xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
987 {
988 	unsigned int reg;
989 
990 	if (gpio > 15)
991 		return (-EINVAL);
992 
993 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
994 
995 	reg &= ~(1 << (gpio + 16));
996 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
997 
998 	return (0);
999 }
1000 
1001 static int
1002 xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1003 {
1004 	unsigned int reg;
1005 
1006 	if (gpio > 15)
1007 		return (-EINVAL);
1008 
1009 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1010 
1011 	reg |= (1 << (gpio + 16));
1012 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1013 
1014 	return (0);
1015 }
1016 
1017 static int
1018 xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1019 {
1020 	unsigned long flags;
1021 	unsigned int mmd_address, index, offset;
1022 	int mmd_data;
1023 
1024 	if (mmd_reg & MII_ADDR_C45)
1025 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1026 	else
1027 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1028 
1029 	/* The PCS registers are accessed using mmio. The underlying
1030 	 * management interface uses indirect addressing to access the MMD
1031 	 * register sets. This requires accessing of the PCS register in two
1032 	 * phases, an address phase and a data phase.
1033 	 *
1034 	 * The mmio interface is based on 16-bit offsets and values. All
1035 	 * register offsets must therefore be adjusted by left shifting the
1036 	 * offset 1 bit and reading 16 bits of data.
1037 	 */
1038 	mmd_address <<= 1;
1039 	index = mmd_address & ~pdata->xpcs_window_mask;
1040 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1041 
1042 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1043 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1044 	mmd_data = XPCS16_IOREAD(pdata, offset);
1045 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1046 
1047 	return (mmd_data);
1048 }
1049 
1050 static void
1051 xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1052     int mmd_data)
1053 {
1054 	unsigned long flags;
1055 	unsigned int mmd_address, index, offset;
1056 
1057 	if (mmd_reg & MII_ADDR_C45)
1058 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1059 	else
1060 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1061 
1062 	/* The PCS registers are accessed using mmio. The underlying
1063 	 * management interface uses indirect addressing to access the MMD
1064 	 * register sets. This requires accessing of the PCS register in two
1065 	 * phases, an address phase and a data phase.
1066 	 *
1067 	 * The mmio interface is based on 16-bit offsets and values. All
1068 	 * register offsets must therefore be adjusted by left shifting the
1069 	 * offset 1 bit and writing 16 bits of data.
1070 	 */
1071 	mmd_address <<= 1;
1072 	index = mmd_address & ~pdata->xpcs_window_mask;
1073 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1074 
1075 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1076 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1077 	XPCS16_IOWRITE(pdata, offset, mmd_data);
1078 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1079 }
1080 
1081 static int
1082 xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1083 {
1084 	unsigned long flags;
1085 	unsigned int mmd_address;
1086 	int mmd_data;
1087 
1088 	if (mmd_reg & MII_ADDR_C45)
1089 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1090 	else
1091 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1092 
1093 	/* The PCS registers are accessed using mmio. The underlying APB3
1094 	 * management interface uses indirect addressing to access the MMD
1095 	 * register sets. This requires accessing of the PCS register in two
1096 	 * phases, an address phase and a data phase.
1097 	 *
1098 	 * The mmio interface is based on 32-bit offsets and values. All
1099 	 * register offsets must therefore be adjusted by left shifting the
1100 	 * offset 2 bits and reading 32 bits of data.
1101 	 */
1102 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1103 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1104 	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1105 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1106 
1107 	return (mmd_data);
1108 }
1109 
1110 static void
1111 xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1112     int mmd_data)
1113 {
1114 	unsigned int mmd_address;
1115 	unsigned long flags;
1116 
1117 	if (mmd_reg & MII_ADDR_C45)
1118 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1119 	else
1120 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1121 
1122 	/* The PCS registers are accessed using mmio. The underlying APB3
1123 	 * management interface uses indirect addressing to access the MMD
1124 	 * register sets. This requires accessing of the PCS register in two
1125 	 * phases, an address phase and a data phase.
1126 	 *
1127 	 * The mmio interface is based on 32-bit offsets and values. All
1128 	 * register offsets must therefore be adjusted by left shifting the
1129 	 * offset 2 bits and writing 32 bits of data.
1130 	 */
1131 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1132 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1133 	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1134 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1135 }
1136 
1137 static int
1138 xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1139 {
1140 	switch (pdata->vdata->xpcs_access) {
1141 	case XGBE_XPCS_ACCESS_V1:
1142 		return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg));
1143 
1144 	case XGBE_XPCS_ACCESS_V2:
1145 	default:
1146 		return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg));
1147 	}
1148 }
1149 
1150 static void
1151 xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1152     int mmd_data)
1153 {
1154 	switch (pdata->vdata->xpcs_access) {
1155 	case XGBE_XPCS_ACCESS_V1:
1156 		return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data));
1157 
1158 	case XGBE_XPCS_ACCESS_V2:
1159 	default:
1160 		return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data));
1161 	}
1162 }
1163 
1164 static unsigned int
1165 xgbe_create_mdio_sca(int port, int reg)
1166 {
1167 	unsigned int mdio_sca, da;
1168 
1169 	da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1170 
1171 	mdio_sca = 0;
1172 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1173 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1174 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1175 
1176 	return (mdio_sca);
1177 }
1178 
1179 static int
1180 xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg,
1181     uint16_t val)
1182 {
1183 	unsigned int mdio_sca, mdio_sccd;
1184 
1185 	mtx_lock_spin(&pdata->mdio_mutex);
1186 
1187 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1188 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1189 
1190 	mdio_sccd = 0;
1191 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1192 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1193 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1194 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1195 
1196 	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1197 	    EWOULDBLOCK) {
1198 		axgbe_error("%s: MDIO write error\n", __func__);
1199 		mtx_unlock_spin(&pdata->mdio_mutex);
1200 		return (-ETIMEDOUT);
1201 	}
1202 
1203 	mtx_unlock_spin(&pdata->mdio_mutex);
1204 	return (0);
1205 }
1206 
1207 static int
1208 xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg)
1209 {
1210 	unsigned int mdio_sca, mdio_sccd;
1211 
1212 	mtx_lock_spin(&pdata->mdio_mutex);
1213 
1214 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1215 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1216 
1217 	mdio_sccd = 0;
1218 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1219 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1220 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1221 
1222 	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1223 	    EWOULDBLOCK) {
1224 		axgbe_error("%s: MDIO read error\n", __func__);
1225 		mtx_unlock_spin(&pdata->mdio_mutex);
1226 		return (-ETIMEDOUT);
1227 	}
1228 
1229 	mtx_unlock_spin(&pdata->mdio_mutex);
1230 
1231 	return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA));
1232 }
1233 
1234 static int
1235 xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1236     enum xgbe_mdio_mode mode)
1237 {
1238 	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1239 
1240 	switch (mode) {
1241 	case XGBE_MDIO_MODE_CL22:
1242 		if (port > XGMAC_MAX_C22_PORT)
1243 			return (-EINVAL);
1244 		reg_val |= (1 << port);
1245 		break;
1246 	case XGBE_MDIO_MODE_CL45:
1247 		break;
1248 	default:
1249 		return (-EINVAL);
1250 	}
1251 
1252 	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1253 
1254 	return (0);
1255 }
1256 
1257 static int
1258 xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1259 {
1260 	return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN));
1261 }
1262 
1263 static int
1264 xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1265 {
1266 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1267 
1268 	axgbe_printf(0, "Receive checksum offload Disabled\n");
1269 	return (0);
1270 }
1271 
1272 static int
1273 xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1274 {
1275 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1276 
1277 	axgbe_printf(0, "Receive checksum offload Enabled\n");
1278 	return (0);
1279 }
1280 
1281 static void
1282 xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1283 {
1284 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1285 
1286 	/* Reset the Tx descriptor
1287 	 *   Set buffer 1 (lo) address to zero
1288 	 *   Set buffer 1 (hi) address to zero
1289 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1290 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1291 	 */
1292 	rdesc->desc0 = 0;
1293 	rdesc->desc1 = 0;
1294 	rdesc->desc2 = 0;
1295 	rdesc->desc3 = 0;
1296 
1297 	wmb();
1298 }
1299 
1300 static void
1301 xgbe_tx_desc_init(struct xgbe_channel *channel)
1302 {
1303 	struct xgbe_ring *ring = channel->tx_ring;
1304 	struct xgbe_ring_data *rdata;
1305 	int i;
1306 	int start_index = ring->cur;
1307 
1308 	/* Initialze all descriptors */
1309 	for (i = 0; i < ring->rdesc_count; i++) {
1310 		rdata = XGBE_GET_DESC_DATA(ring, i);
1311 
1312 		/* Initialize Tx descriptor */
1313 		xgbe_tx_desc_reset(rdata);
1314 	}
1315 
1316 	/* Update the total number of Tx descriptors */
1317 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1318 
1319 	/* Update the starting address of descriptor ring */
1320 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1321 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1322 	    upper_32_bits(rdata->rdata_paddr));
1323 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1324 	    lower_32_bits(rdata->rdata_paddr));
1325 }
1326 
1327 static void
1328 xgbe_rx_desc_init(struct xgbe_channel *channel)
1329 {
1330 	struct xgbe_ring *ring = channel->rx_ring;
1331 	struct xgbe_ring_data *rdata;
1332 	unsigned int start_index = ring->cur;
1333 
1334 	/*
1335 	 * Just set desc_count and the starting address of the desc list
1336 	 * here. Rest will be done as part of the txrx path.
1337 	 */
1338 
1339 	/* Update the total number of Rx descriptors */
1340 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1341 
1342 	/* Update the starting address of descriptor ring */
1343 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1344 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1345 	    upper_32_bits(rdata->rdata_paddr));
1346 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1347 	    lower_32_bits(rdata->rdata_paddr));
1348 }
1349 
1350 static int
1351 xgbe_dev_read(struct xgbe_channel *channel)
1352 {
1353 	struct xgbe_prv_data *pdata = channel->pdata;
1354 	struct xgbe_ring *ring = channel->rx_ring;
1355 	struct xgbe_ring_data *rdata;
1356 	struct xgbe_ring_desc *rdesc;
1357 	struct xgbe_packet_data *packet = &ring->packet_data;
1358 	unsigned int err, etlt, l34t = 0;
1359 
1360 	axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur);
1361 
1362 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1363 	rdesc = rdata->rdesc;
1364 
1365 	/* Check for data availability */
1366 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1367 		return (1);
1368 
1369 	rmb();
1370 
1371 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1372 		/* TODO - Timestamp Context Descriptor */
1373 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1374 		    CONTEXT, 1);
1375 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1376 		    CONTEXT_NEXT, 0);
1377 		return (0);
1378 	}
1379 
1380 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1381 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1382 
1383 	/* Indicate if a Context Descriptor is next */
1384 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1385 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1386 		    CONTEXT_NEXT, 1);
1387 
1388 	/* Get the header length */
1389 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1390 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1391 		    FIRST, 1);
1392 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1393 		    RX_NORMAL_DESC2, HL);
1394 		if (rdata->rx.hdr_len)
1395 			pdata->ext_stats.rx_split_header_packets++;
1396 	} else
1397 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1398 		    FIRST, 0);
1399 
1400 	/* Get the RSS hash */
1401 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1402 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1403 		    RSS_HASH, 1);
1404 
1405 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1406 
1407 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1408 		switch (l34t) {
1409 		case RX_DESC3_L34T_IPV4_TCP:
1410 			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4;
1411 			break;
1412 		case RX_DESC3_L34T_IPV4_UDP:
1413 			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4;
1414 			break;
1415 		case RX_DESC3_L34T_IPV6_TCP:
1416 			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6;
1417 			break;
1418 		case RX_DESC3_L34T_IPV6_UDP:
1419 			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6;
1420 			break;
1421 		default:
1422 			packet->rss_hash_type = M_HASHTYPE_OPAQUE;
1423 			break;
1424 		}
1425 	}
1426 
1427 	/* Not all the data has been transferred for this packet */
1428 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1429 		/* This is not the last of the data for this packet */
1430 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1431 		    LAST, 0);
1432 		return (0);
1433 	}
1434 
1435 	/* This is the last of the data for this packet */
1436 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1437 	    LAST, 1);
1438 
1439 	/* Get the packet length */
1440 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1441 
1442 	/* Set checksum done indicator as appropriate */
1443 	/* TODO - add tunneling support */
1444 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1445 	    CSUM_DONE, 1);
1446 
1447 	/* Check for errors (only valid in last descriptor) */
1448 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1449 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1450 	axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt);
1451 
1452 	if (!err || !etlt) {
1453 		/* No error if err is 0 or etlt is 0 */
1454 		if (etlt == 0x09 &&
1455 		    (if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
1456 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1457 			    VLAN_CTAG, 1);
1458 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1459 			    RX_NORMAL_DESC0, OVT);
1460 			axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag);
1461 		}
1462 	} else {
1463 		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
1464 		    RX_PACKET_ATTRIBUTES, TNP);
1465 
1466 		if ((etlt == 0x05) || (etlt == 0x06)) {
1467 			axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n",
1468 			    __func__, l34t, err, etlt);
1469 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1470 			    CSUM_DONE, 0);
1471 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1472 			    TNPCSUM_DONE, 0);
1473 			pdata->ext_stats.rx_csum_errors++;
1474 		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
1475 			axgbe_printf(1, "%s: err2  l34t %d err 0x%x etlt 0x%x\n",
1476 			    __func__, l34t, err, etlt);
1477 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1478 			    CSUM_DONE, 0);
1479 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1480 			    TNPCSUM_DONE, 0);
1481 			pdata->ext_stats.rx_vxlan_csum_errors++;
1482 		} else {
1483 			axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n",
1484 			    __func__, tnp, l34t, err, etlt);
1485 			axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n",
1486 			    __func__, channel->queue_index,
1487 			    XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
1488 		 	    XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
1489 			axgbe_printf(1, "%s: ring cur %d dirty %d\n",
1490 			    __func__, ring->cur, ring->dirty);
1491 			axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n",
1492 			    __func__, rdesc->desc0, rdesc->desc1, rdesc->desc2,
1493 			    rdesc->desc3);
1494 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1495 			    FRAME, 1);
1496 		}
1497 	}
1498 
1499 	axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n",
1500 	    channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur);
1501 
1502 	return (0);
1503 }
1504 
1505 static int
1506 xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1507 {
1508 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1509 	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT));
1510 }
1511 
1512 static int
1513 xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1514 {
1515 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1516 	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD));
1517 }
1518 
1519 static int
1520 xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1521 {
1522 	struct xgbe_prv_data *pdata = channel->pdata;
1523 
1524 	axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n",
1525 	    channel->curr_ier);
1526 
1527 	switch (int_id) {
1528 	case XGMAC_INT_DMA_CH_SR_TI:
1529 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1530 		break;
1531 	case XGMAC_INT_DMA_CH_SR_TPS:
1532 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
1533 		break;
1534 	case XGMAC_INT_DMA_CH_SR_TBU:
1535 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
1536 		break;
1537 	case XGMAC_INT_DMA_CH_SR_RI:
1538 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1539 		break;
1540 	case XGMAC_INT_DMA_CH_SR_RBU:
1541 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
1542 		break;
1543 	case XGMAC_INT_DMA_CH_SR_RPS:
1544 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
1545 		break;
1546 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1547 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1548 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1549 		break;
1550 	case XGMAC_INT_DMA_CH_SR_FBE:
1551 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
1552 		break;
1553 	case XGMAC_INT_DMA_ALL:
1554 		channel->curr_ier |= channel->saved_ier;
1555 		break;
1556 	default:
1557 		return (-1);
1558 	}
1559 
1560 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1561 
1562 	axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n",
1563 	    channel->curr_ier);
1564 
1565 	return (0);
1566 }
1567 
1568 static int
1569 xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1570 {
1571 	struct xgbe_prv_data *pdata = channel->pdata;
1572 
1573 	axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n",
1574 	    channel->curr_ier);
1575 
1576 	switch (int_id) {
1577 	case XGMAC_INT_DMA_CH_SR_TI:
1578 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1579 		break;
1580 	case XGMAC_INT_DMA_CH_SR_TPS:
1581 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
1582 		break;
1583 	case XGMAC_INT_DMA_CH_SR_TBU:
1584 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
1585 		break;
1586 	case XGMAC_INT_DMA_CH_SR_RI:
1587 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1588 		break;
1589 	case XGMAC_INT_DMA_CH_SR_RBU:
1590 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
1591 		break;
1592 	case XGMAC_INT_DMA_CH_SR_RPS:
1593 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
1594 		break;
1595 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1596 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1597 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1598 		break;
1599 	case XGMAC_INT_DMA_CH_SR_FBE:
1600 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
1601 		break;
1602 	case XGMAC_INT_DMA_ALL:
1603 		channel->saved_ier = channel->curr_ier;
1604 		channel->curr_ier = 0;
1605 		break;
1606 	default:
1607 		return (-1);
1608 	}
1609 
1610 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1611 
1612 	axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n",
1613 	    channel->curr_ier);
1614 
1615 	return (0);
1616 }
1617 
1618 static int
1619 __xgbe_exit(struct xgbe_prv_data *pdata)
1620 {
1621 	unsigned int count = 2000;
1622 
1623 	/* Issue a software reset */
1624 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1625 	DELAY(10);
1626 
1627 	/* Poll Until Poll Condition */
1628 	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1629 		DELAY(500);
1630 
1631 	if (!count)
1632 		return (-EBUSY);
1633 
1634 	return (0);
1635 }
1636 
1637 static int
1638 xgbe_exit(struct xgbe_prv_data *pdata)
1639 {
1640 	int ret;
1641 
1642 	/* To guard against possible incorrectly generated interrupts,
1643 	 * issue the software reset twice.
1644 	 */
1645 	ret = __xgbe_exit(pdata);
1646 	if (ret) {
1647 		axgbe_error("%s: exit error %d\n", __func__, ret);
1648 		return (ret);
1649 	}
1650 
1651 	return (__xgbe_exit(pdata));
1652 }
1653 
1654 static int
1655 xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1656 {
1657 	unsigned int i, count;
1658 
1659 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1660 		return (0);
1661 
1662 	for (i = 0; i < pdata->tx_q_count; i++)
1663 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1664 
1665 	/* Poll Until Poll Condition */
1666 	for (i = 0; i < pdata->tx_q_count; i++) {
1667 		count = 2000;
1668 		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
1669 							MTL_Q_TQOMR, FTQ))
1670 			DELAY(500);
1671 
1672 		if (!count)
1673 			return (-EBUSY);
1674 	}
1675 
1676 	return (0);
1677 }
1678 
1679 static void
1680 xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1681 {
1682 	unsigned int sbmr;
1683 
1684 	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
1685 
1686 	/* Set enhanced addressing mode */
1687 	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
1688 
1689 	/* Set the System Bus mode */
1690 	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
1691 	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
1692 	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
1693 	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
1694 	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
1695 
1696 	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
1697 
1698 	/* Set descriptor fetching threshold */
1699 	if (pdata->vdata->tx_desc_prefetch)
1700 		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
1701 		    pdata->vdata->tx_desc_prefetch);
1702 
1703 	if (pdata->vdata->rx_desc_prefetch)
1704 		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
1705 		    pdata->vdata->rx_desc_prefetch);
1706 }
1707 
1708 static void
1709 xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1710 {
1711 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
1712 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
1713 	if (pdata->awarcr)
1714 		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
1715 }
1716 
1717 static void
1718 xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1719 {
1720 	unsigned int i;
1721 
1722 	/* Set Tx to weighted round robin scheduling algorithm */
1723 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1724 
1725 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
1726 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1727 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1728 		    MTL_TSA_ETS);
1729 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1730 	}
1731 
1732 	/* Set Rx to strict priority algorithm */
1733 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
1734 }
1735 
1736 static void
1737 xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
1738     unsigned int queue, unsigned int q_fifo_size)
1739 {
1740 	unsigned int frame_fifo_size;
1741 	unsigned int rfa, rfd;
1742 
1743 	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
1744 	axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n",
1745 	    __func__, queue, q_fifo_size, frame_fifo_size);
1746 
1747 	/* TODO - add pfc/ets related support */
1748 
1749 	/* This path deals with just maximum frame sizes which are
1750 	 * limited to a jumbo frame of 9,000 (plus headers, etc.)
1751 	 * so we can never exceed the maximum allowable RFA/RFD
1752 	 * values.
1753 	 */
1754 	if (q_fifo_size <= 2048) {
1755 		/* rx_rfd to zero to signal no flow control */
1756 		pdata->rx_rfa[queue] = 0;
1757 		pdata->rx_rfd[queue] = 0;
1758 		return;
1759 	}
1760 
1761 	if (q_fifo_size <= 4096) {
1762 		/* Between 2048 and 4096 */
1763 		pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
1764 		pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
1765 		return;
1766 	}
1767 
1768 	if (q_fifo_size <= frame_fifo_size) {
1769 		/* Between 4096 and max-frame */
1770 		pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
1771 		pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
1772 		return;
1773 	}
1774 
1775 	if (q_fifo_size <= (frame_fifo_size * 3)) {
1776 		/* Between max-frame and 3 max-frames,
1777 		 * trigger if we get just over a frame of data and
1778 		 * resume when we have just under half a frame left.
1779 		 */
1780 		rfa = q_fifo_size - frame_fifo_size;
1781 		rfd = rfa + (frame_fifo_size / 2);
1782 	} else {
1783 		/* Above 3 max-frames - trigger when just over
1784 		 * 2 frames of space available
1785 		 */
1786 		rfa = frame_fifo_size * 2;
1787 		rfa += XGMAC_FLOW_CONTROL_UNIT;
1788 		rfd = rfa + frame_fifo_size;
1789 	}
1790 
1791 	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
1792 	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
1793 	axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__,
1794 	    queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]);
1795 }
1796 
1797 static void
1798 xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
1799     unsigned int *fifo)
1800 {
1801 	unsigned int q_fifo_size;
1802 	unsigned int i;
1803 
1804 	for (i = 0; i < pdata->rx_q_count; i++) {
1805 		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
1806 
1807 		axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n",
1808 		    __func__, i, fifo[i], q_fifo_size);
1809 		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
1810 	}
1811 }
1812 
1813 static void
1814 xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
1815 {
1816 	unsigned int i;
1817 
1818 	for (i = 0; i < pdata->rx_q_count; i++) {
1819 		axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i,
1820 		    pdata->rx_rfa[i], pdata->rx_rfd[i]);
1821 
1822 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
1823 				       pdata->rx_rfa[i]);
1824 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
1825 				       pdata->rx_rfd[i]);
1826 
1827 		axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__,
1828 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
1829 	}
1830 }
1831 
1832 static unsigned int
1833 xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
1834 {
1835 	/* The configured value may not be the actual amount of fifo RAM */
1836 	return (min_t(unsigned int, pdata->tx_max_fifo_size,
1837 	    pdata->hw_feat.tx_fifo_size));
1838 }
1839 
1840 static unsigned int
1841 xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
1842 {
1843 	/* The configured value may not be the actual amount of fifo RAM */
1844 	return (min_t(unsigned int, pdata->rx_max_fifo_size,
1845 	    pdata->hw_feat.rx_fifo_size));
1846 }
1847 
1848 static void
1849 xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count,
1850     unsigned int *fifo)
1851 {
1852 	unsigned int q_fifo_size;
1853 	unsigned int p_fifo;
1854 	unsigned int i;
1855 
1856 	q_fifo_size = fifo_size / queue_count;
1857 
1858 	/* Calculate the fifo setting by dividing the queue's fifo size
1859 	 * by the fifo allocation increment (with 0 representing the
1860 	 * base allocation increment so decrement the result by 1).
1861 	 */
1862 	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
1863 	if (p_fifo)
1864 		p_fifo--;
1865 
1866 	/* Distribute the fifo equally amongst the queues */
1867 	for (i = 0; i < queue_count; i++)
1868 		fifo[i] = p_fifo;
1869 }
1870 
1871 static unsigned int
1872 xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count,
1873     unsigned int *fifo)
1874 {
1875 	unsigned int i;
1876 
1877 	MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC));
1878 
1879 	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
1880 		return (fifo_size);
1881 
1882 	/* Rx queues 9 and up are for specialized packets,
1883 	 * such as PTP or DCB control packets, etc. and
1884 	 * don't require a large fifo
1885 	 */
1886 	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
1887 		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
1888 		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
1889 	}
1890 
1891 	return (fifo_size);
1892 }
1893 
1894 static void
1895 xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
1896 {
1897 	unsigned int fifo_size;
1898 	unsigned int fifo[XGBE_MAX_QUEUES];
1899 	unsigned int i;
1900 
1901 	fifo_size = xgbe_get_tx_fifo_size(pdata);
1902 	axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size);
1903 
1904 	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
1905 
1906 	for (i = 0; i < pdata->tx_q_count; i++) {
1907 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
1908 		axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i,
1909 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
1910 	}
1911 
1912 	axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n",
1913 	    pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1914 }
1915 
1916 static void
1917 xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
1918 {
1919 	unsigned int fifo_size;
1920 	unsigned int fifo[XGBE_MAX_QUEUES];
1921 	unsigned int prio_queues;
1922 	unsigned int i;
1923 
1924 	/* TODO - add pfc/ets related support */
1925 
1926 	/* Clear any DCB related fifo/queue information */
1927 	fifo_size = xgbe_get_rx_fifo_size(pdata);
1928 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1929 	axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__,
1930 	    fifo_size, pdata->rx_q_count, prio_queues);
1931 
1932 	/* Assign a minimum fifo to the non-VLAN priority queues */
1933 	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
1934 
1935 	xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
1936 
1937 	for (i = 0; i < pdata->rx_q_count; i++) {
1938 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
1939 		axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i,
1940 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
1941 	}
1942 
1943 	xgbe_calculate_flow_control_threshold(pdata, fifo);
1944 	xgbe_config_flow_control_threshold(pdata);
1945 
1946 	axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n",
1947 	    pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1948 }
1949 
1950 static void
1951 xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
1952 {
1953 	unsigned int qptc, qptc_extra, queue;
1954 	unsigned int prio_queues;
1955 	unsigned int ppq, ppq_extra, prio;
1956 	unsigned int mask;
1957 	unsigned int i, j, reg, reg_val;
1958 
1959 	/* Map the MTL Tx Queues to Traffic Classes
1960 	 *   Note: Tx Queues >= Traffic Classes
1961 	 */
1962 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
1963 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
1964 
1965 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
1966 		for (j = 0; j < qptc; j++) {
1967 			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1968 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1969 			    Q2TCMAP, i);
1970 			pdata->q2tc_map[queue++] = i;
1971 		}
1972 
1973 		if (i < qptc_extra) {
1974 			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1975 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1976 			    Q2TCMAP, i);
1977 			pdata->q2tc_map[queue++] = i;
1978 		}
1979 	}
1980 
1981 	/* Map the 8 VLAN priority values to available MTL Rx queues */
1982 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1983 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
1984 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
1985 
1986 	reg = MAC_RQC2R;
1987 	reg_val = 0;
1988 	for (i = 0, prio = 0; i < prio_queues;) {
1989 		mask = 0;
1990 		for (j = 0; j < ppq; j++) {
1991 			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1992 			mask |= (1 << prio);
1993 			pdata->prio2q_map[prio++] = i;
1994 		}
1995 
1996 		if (i < ppq_extra) {
1997 			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1998 			mask |= (1 << prio);
1999 			pdata->prio2q_map[prio++] = i;
2000 		}
2001 
2002 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2003 
2004 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2005 			continue;
2006 
2007 		XGMAC_IOWRITE(pdata, reg, reg_val);
2008 		reg += MAC_RQC2_INC;
2009 		reg_val = 0;
2010 	}
2011 
2012 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2013 	reg = MTL_RQDCM0R;
2014 	reg_val = 0;
2015 	for (i = 0; i < pdata->rx_q_count;) {
2016 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2017 
2018 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2019 			continue;
2020 
2021 		XGMAC_IOWRITE(pdata, reg, reg_val);
2022 
2023 		reg += MTL_RQDCM_INC;
2024 		reg_val = 0;
2025 	}
2026 }
2027 
2028 static void
2029 xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2030 {
2031 	xgbe_set_mac_address(pdata, if_getlladdr(pdata->netdev));
2032 
2033 	/*
2034 	 * Promisc mode does not work as intended. Multicast traffic
2035 	 * is triggering the filter, so enable Receive All.
2036 	 */
2037 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, RA, 1);
2038 
2039 	/* Filtering is done using perfect filtering and hash filtering */
2040 	if (pdata->hw_feat.hash_table_size) {
2041 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2042 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2043 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2044 	}
2045 }
2046 
2047 static void
2048 xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2049 {
2050 	unsigned int val;
2051 
2052 	val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2053 
2054 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2055 }
2056 
2057 static void
2058 xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2059 {
2060 	xgbe_set_speed(pdata, pdata->phy_speed);
2061 }
2062 
2063 static void
2064 xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2065 {
2066 	if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM))
2067 		xgbe_enable_rx_csum(pdata);
2068 	else
2069 		xgbe_disable_rx_csum(pdata);
2070 }
2071 
2072 static void
2073 xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2074 {
2075 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2076 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2077 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2078 
2079 	/* Set the current VLAN Hash Table register value */
2080 	xgbe_update_vlan_hash_table(pdata);
2081 
2082 	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
2083 		axgbe_printf(1, "Enabling rx vlan filtering\n");
2084 		xgbe_enable_rx_vlan_filtering(pdata);
2085 	} else {
2086 		axgbe_printf(1, "Disabling rx vlan filtering\n");
2087 		xgbe_disable_rx_vlan_filtering(pdata);
2088 	}
2089 
2090 	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
2091 		axgbe_printf(1, "Enabling rx vlan stripping\n");
2092 		xgbe_enable_rx_vlan_stripping(pdata);
2093 	} else {
2094 		axgbe_printf(1, "Disabling rx vlan stripping\n");
2095 		xgbe_disable_rx_vlan_stripping(pdata);
2096 	}
2097 }
2098 
2099 static uint64_t
2100 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2101 {
2102 	bool read_hi;
2103 	uint64_t val;
2104 
2105 	if (pdata->vdata->mmc_64bit) {
2106 		switch (reg_lo) {
2107 		/* These registers are always 32 bit */
2108 		case MMC_RXRUNTERROR:
2109 		case MMC_RXJABBERERROR:
2110 		case MMC_RXUNDERSIZE_G:
2111 		case MMC_RXOVERSIZE_G:
2112 		case MMC_RXWATCHDOGERROR:
2113 			read_hi = false;
2114 			break;
2115 
2116 		default:
2117 			read_hi = true;
2118 		}
2119 	} else {
2120 		switch (reg_lo) {
2121 		/* These registers are always 64 bit */
2122 		case MMC_TXOCTETCOUNT_GB_LO:
2123 		case MMC_TXOCTETCOUNT_G_LO:
2124 		case MMC_RXOCTETCOUNT_GB_LO:
2125 		case MMC_RXOCTETCOUNT_G_LO:
2126 			read_hi = true;
2127 			break;
2128 
2129 		default:
2130 			read_hi = false;
2131 		}
2132 	}
2133 
2134 	val = XGMAC_IOREAD(pdata, reg_lo);
2135 
2136 	if (read_hi)
2137 		val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2138 
2139 	return (val);
2140 }
2141 
2142 static void
2143 xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2144 {
2145 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2146 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2147 
2148 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2149 		stats->txoctetcount_gb +=
2150 		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2151 
2152 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2153 		stats->txframecount_gb +=
2154 		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2155 
2156 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2157 		stats->txbroadcastframes_g +=
2158 		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2159 
2160 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2161 		stats->txmulticastframes_g +=
2162 		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2163 
2164 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2165 		stats->tx64octets_gb +=
2166 		    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2167 
2168 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2169 		stats->tx65to127octets_gb +=
2170 		    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2171 
2172 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2173 		stats->tx128to255octets_gb +=
2174 		    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2175 
2176 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2177 		stats->tx256to511octets_gb +=
2178 		    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2179 
2180 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2181 		stats->tx512to1023octets_gb +=
2182 		    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2183 
2184 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2185 		stats->tx1024tomaxoctets_gb +=
2186 		    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2187 
2188 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2189 		stats->txunicastframes_gb +=
2190 		    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2191 
2192 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2193 		stats->txmulticastframes_gb +=
2194 		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2195 
2196 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2197 		stats->txbroadcastframes_g +=
2198 		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2199 
2200 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2201 		stats->txunderflowerror +=
2202 		    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2203 
2204 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2205 		stats->txoctetcount_g +=
2206 		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2207 
2208 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2209 		stats->txframecount_g +=
2210 		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2211 
2212 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2213 		stats->txpauseframes +=
2214 		    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2215 
2216 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2217 		stats->txvlanframes_g +=
2218 		    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2219 }
2220 
2221 static void
2222 xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2223 {
2224 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2225 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2226 
2227 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2228 		stats->rxframecount_gb +=
2229 		    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2230 
2231 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2232 		stats->rxoctetcount_gb +=
2233 		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2234 
2235 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2236 		stats->rxoctetcount_g +=
2237 		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2238 
2239 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2240 		stats->rxbroadcastframes_g +=
2241 		    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2242 
2243 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2244 		stats->rxmulticastframes_g +=
2245 		    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2246 
2247 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2248 		stats->rxcrcerror +=
2249 		    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2250 
2251 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2252 		stats->rxrunterror +=
2253 		    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2254 
2255 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2256 		stats->rxjabbererror +=
2257 		    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2258 
2259 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2260 		stats->rxundersize_g +=
2261 		    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2262 
2263 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2264 		stats->rxoversize_g +=
2265 		    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2266 
2267 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2268 		stats->rx64octets_gb +=
2269 		    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2270 
2271 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2272 		stats->rx65to127octets_gb +=
2273 		    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2274 
2275 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2276 		stats->rx128to255octets_gb +=
2277 		    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2278 
2279 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2280 		stats->rx256to511octets_gb +=
2281 		    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2282 
2283 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2284 		stats->rx512to1023octets_gb +=
2285 		    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2286 
2287 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2288 		stats->rx1024tomaxoctets_gb +=
2289 		    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2290 
2291 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2292 		stats->rxunicastframes_g +=
2293 		    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2294 
2295 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2296 		stats->rxlengtherror +=
2297 		    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2298 
2299 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2300 		stats->rxoutofrangetype +=
2301 		    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2302 
2303 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2304 		stats->rxpauseframes +=
2305 		    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2306 
2307 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2308 		stats->rxfifooverflow +=
2309 		    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2310 
2311 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2312 		stats->rxvlanframes_gb +=
2313 		    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2314 
2315 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2316 		stats->rxwatchdogerror +=
2317 		    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2318 }
2319 
2320 static void
2321 xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2322 {
2323 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2324 
2325 	/* Freeze counters */
2326 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2327 
2328 	stats->txoctetcount_gb +=
2329 	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2330 
2331 	stats->txframecount_gb +=
2332 	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2333 
2334 	stats->txbroadcastframes_g +=
2335 	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2336 
2337 	stats->txmulticastframes_g +=
2338 	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2339 
2340 	stats->tx64octets_gb +=
2341 	    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2342 
2343 	stats->tx65to127octets_gb +=
2344 	    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2345 
2346 	stats->tx128to255octets_gb +=
2347 	    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2348 
2349 	stats->tx256to511octets_gb +=
2350 	    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2351 
2352 	stats->tx512to1023octets_gb +=
2353 	    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2354 
2355 	stats->tx1024tomaxoctets_gb +=
2356 	    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2357 
2358 	stats->txunicastframes_gb +=
2359 	    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2360 
2361 	stats->txmulticastframes_gb +=
2362 	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2363 
2364 	stats->txbroadcastframes_gb +=
2365 	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2366 
2367 	stats->txunderflowerror +=
2368 	    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2369 
2370 	stats->txoctetcount_g +=
2371 	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2372 
2373 	stats->txframecount_g +=
2374 	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2375 
2376 	stats->txpauseframes +=
2377 	    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2378 
2379 	stats->txvlanframes_g +=
2380 	    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2381 
2382 	stats->rxframecount_gb +=
2383 	    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2384 
2385 	stats->rxoctetcount_gb +=
2386 	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2387 
2388 	stats->rxoctetcount_g +=
2389 	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2390 
2391 	stats->rxbroadcastframes_g +=
2392 	    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2393 
2394 	stats->rxmulticastframes_g +=
2395 	    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2396 
2397 	stats->rxcrcerror +=
2398 	    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2399 
2400 	stats->rxrunterror +=
2401 	    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2402 
2403 	stats->rxjabbererror +=
2404 	    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2405 
2406 	stats->rxundersize_g +=
2407 	    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2408 
2409 	stats->rxoversize_g +=
2410 	    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2411 
2412 	stats->rx64octets_gb +=
2413 	    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2414 
2415 	stats->rx65to127octets_gb +=
2416 	    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2417 
2418 	stats->rx128to255octets_gb +=
2419 	    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2420 
2421 	stats->rx256to511octets_gb +=
2422 	    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2423 
2424 	stats->rx512to1023octets_gb +=
2425 	    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2426 
2427 	stats->rx1024tomaxoctets_gb +=
2428 	    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2429 
2430 	stats->rxunicastframes_g +=
2431 	    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2432 
2433 	stats->rxlengtherror +=
2434 	    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2435 
2436 	stats->rxoutofrangetype +=
2437 	    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2438 
2439 	stats->rxpauseframes +=
2440 	    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2441 
2442 	stats->rxfifooverflow +=
2443 	    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2444 
2445 	stats->rxvlanframes_gb +=
2446 	    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2447 
2448 	stats->rxwatchdogerror +=
2449 	    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2450 
2451 	/* Un-freeze counters */
2452 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2453 }
2454 
2455 static void
2456 xgbe_config_mmc(struct xgbe_prv_data *pdata)
2457 {
2458 	/* Set counters to reset on read */
2459 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2460 
2461 	/* Reset the counters */
2462 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2463 }
2464 
2465 static void
2466 xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2467 {
2468 	unsigned int tx_status;
2469 	unsigned long tx_timeout;
2470 
2471 	/* The Tx engine cannot be stopped if it is actively processing
2472 	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
2473 	 * wait forever though...
2474 	 */
2475 	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2476 	while (ticks < tx_timeout) {
2477 		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
2478 		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
2479 		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
2480 			break;
2481 
2482 		DELAY(500);
2483 	}
2484 
2485 	if (ticks >= tx_timeout)
2486 		axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n",
2487 		    queue);
2488 }
2489 
2490 static void
2491 xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2492 {
2493 	unsigned int tx_dsr, tx_pos, tx_qidx;
2494 	unsigned int tx_status;
2495 	unsigned long tx_timeout;
2496 
2497 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
2498 		return (xgbe_txq_prepare_tx_stop(pdata, queue));
2499 
2500 	/* Calculate the status register to read and the position within */
2501 	if (queue < DMA_DSRX_FIRST_QUEUE) {
2502 		tx_dsr = DMA_DSR0;
2503 		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
2504 	} else {
2505 		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
2506 
2507 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2508 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2509 			 DMA_DSRX_TPS_START;
2510 	}
2511 
2512 	/* The Tx engine cannot be stopped if it is actively processing
2513 	 * descriptors. Wait for the Tx engine to enter the stopped or
2514 	 * suspended state.  Don't wait forever though...
2515 	 */
2516 	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2517 	while (ticks < tx_timeout) {
2518 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2519 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2520 		if ((tx_status == DMA_TPS_STOPPED) ||
2521 		    (tx_status == DMA_TPS_SUSPENDED))
2522 			break;
2523 
2524 		DELAY(500);
2525 	}
2526 
2527 	if (ticks >= tx_timeout)
2528 		axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n",
2529 		    queue);
2530 }
2531 
2532 static void
2533 xgbe_enable_tx(struct xgbe_prv_data *pdata)
2534 {
2535 	unsigned int i;
2536 
2537 	/* Enable each Tx DMA channel */
2538 	for (i = 0; i < pdata->channel_count; i++) {
2539 		if (!pdata->channel[i]->tx_ring)
2540 			break;
2541 
2542 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2543 	}
2544 
2545 	/* Enable each Tx queue */
2546 	for (i = 0; i < pdata->tx_q_count; i++)
2547 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2548 		    MTL_Q_ENABLED);
2549 
2550 	/* Enable MAC Tx */
2551 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2552 }
2553 
2554 static void
2555 xgbe_disable_tx(struct xgbe_prv_data *pdata)
2556 {
2557 	unsigned int i;
2558 
2559 	/* Prepare for Tx DMA channel stop */
2560 	for (i = 0; i < pdata->tx_q_count; i++)
2561 		xgbe_prepare_tx_stop(pdata, i);
2562 
2563 	/* Disable MAC Tx */
2564 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2565 
2566 	/* Disable each Tx queue */
2567 	for (i = 0; i < pdata->tx_q_count; i++)
2568 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2569 
2570 	/* Disable each Tx DMA channel */
2571 	for (i = 0; i < pdata->channel_count; i++) {
2572 		if (!pdata->channel[i]->tx_ring)
2573 			break;
2574 
2575 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2576 	}
2577 }
2578 
2579 static void
2580 xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2581 {
2582 	unsigned int rx_status;
2583 	unsigned long rx_timeout;
2584 
2585 	/* The Rx engine cannot be stopped if it is actively processing
2586 	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
2587 	 * wait forever though...
2588 	 */
2589 	rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2590 	while (ticks < rx_timeout) {
2591 		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
2592 		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
2593 		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
2594 			break;
2595 
2596 		DELAY(500);
2597 	}
2598 
2599 	if (ticks >= rx_timeout)
2600 		axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n",
2601 		    queue);
2602 }
2603 
2604 static void
2605 xgbe_enable_rx(struct xgbe_prv_data *pdata)
2606 {
2607 	unsigned int reg_val, i;
2608 
2609 	/* Enable each Rx DMA channel */
2610 	for (i = 0; i < pdata->channel_count; i++) {
2611 		if (!pdata->channel[i]->rx_ring)
2612 			break;
2613 
2614 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2615 	}
2616 
2617 	/* Enable each Rx queue */
2618 	reg_val = 0;
2619 	for (i = 0; i < pdata->rx_q_count; i++)
2620 		reg_val |= (0x02 << (i << 1));
2621 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2622 
2623 	/* Enable MAC Rx */
2624 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2625 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2626 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2627 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2628 }
2629 
2630 static void
2631 xgbe_disable_rx(struct xgbe_prv_data *pdata)
2632 {
2633 	unsigned int i;
2634 
2635 	/* Disable MAC Rx */
2636 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2637 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2638 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2639 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2640 
2641 	/* Prepare for Rx DMA channel stop */
2642 	for (i = 0; i < pdata->rx_q_count; i++)
2643 		xgbe_prepare_rx_stop(pdata, i);
2644 
2645 	/* Disable each Rx queue */
2646 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2647 
2648 	/* Disable each Rx DMA channel */
2649 	for (i = 0; i < pdata->channel_count; i++) {
2650 		if (!pdata->channel[i]->rx_ring)
2651 			break;
2652 
2653 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2654 	}
2655 }
2656 
2657 static void
2658 xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2659 {
2660 	unsigned int i;
2661 
2662 	/* Enable each Tx DMA channel */
2663 	for (i = 0; i < pdata->channel_count; i++) {
2664 		if (!pdata->channel[i]->tx_ring)
2665 			break;
2666 
2667 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2668 	}
2669 
2670 	/* Enable MAC Tx */
2671 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2672 }
2673 
2674 static void
2675 xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2676 {
2677 	unsigned int i;
2678 
2679 	/* Prepare for Tx DMA channel stop */
2680 	for (i = 0; i < pdata->tx_q_count; i++)
2681 		xgbe_prepare_tx_stop(pdata, i);
2682 
2683 	/* Disable MAC Tx */
2684 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2685 
2686 	/* Disable each Tx DMA channel */
2687 	for (i = 0; i < pdata->channel_count; i++) {
2688 		if (!pdata->channel[i]->tx_ring)
2689 			break;
2690 
2691 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2692 	}
2693 }
2694 
2695 static void
2696 xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2697 {
2698 	unsigned int i;
2699 
2700 	/* Enable each Rx DMA channel */
2701 	for (i = 0; i < pdata->channel_count; i++) {
2702 		if (!pdata->channel[i]->rx_ring)
2703 			break;
2704 
2705 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2706 	}
2707 }
2708 
2709 static void
2710 xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2711 {
2712 	unsigned int i;
2713 
2714 	/* Disable each Rx DMA channel */
2715 	for (i = 0; i < pdata->channel_count; i++) {
2716 		if (!pdata->channel[i]->rx_ring)
2717 			break;
2718 
2719 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2720 	}
2721 }
2722 
2723 static int
2724 xgbe_init(struct xgbe_prv_data *pdata)
2725 {
2726 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
2727 	int ret;
2728 
2729 	/* Flush Tx queues */
2730 	ret = xgbe_flush_tx_queues(pdata);
2731 	if (ret) {
2732 		axgbe_error("error flushing TX queues\n");
2733 		return (ret);
2734 	}
2735 
2736 	/*
2737 	 * Initialize DMA related features
2738 	 */
2739 	xgbe_config_dma_bus(pdata);
2740 	xgbe_config_dma_cache(pdata);
2741 	xgbe_config_osp_mode(pdata);
2742 	xgbe_config_pbl_val(pdata);
2743 	xgbe_config_rx_coalesce(pdata);
2744 	xgbe_config_tx_coalesce(pdata);
2745 	xgbe_config_rx_buffer_size(pdata);
2746 	xgbe_config_tso_mode(pdata);
2747 	xgbe_config_sph_mode(pdata);
2748 	xgbe_config_rss(pdata);
2749 	desc_if->wrapper_tx_desc_init(pdata);
2750 	desc_if->wrapper_rx_desc_init(pdata);
2751 	xgbe_enable_dma_interrupts(pdata);
2752 
2753 	/*
2754 	 * Initialize MTL related features
2755 	 */
2756 	xgbe_config_mtl_mode(pdata);
2757 	xgbe_config_queue_mapping(pdata);
2758 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2759 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2760 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2761 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2762 	xgbe_config_tx_fifo_size(pdata);
2763 	xgbe_config_rx_fifo_size(pdata);
2764 	/*TODO: Error Packet and undersized good Packet forwarding enable
2765 		(FEP and FUP)
2766 	 */
2767 	xgbe_enable_mtl_interrupts(pdata);
2768 
2769 	/*
2770 	 * Initialize MAC related features
2771 	 */
2772 	xgbe_config_mac_address(pdata);
2773 	xgbe_config_rx_mode(pdata);
2774 	xgbe_config_jumbo_enable(pdata);
2775 	xgbe_config_flow_control(pdata);
2776 	xgbe_config_mac_speed(pdata);
2777 	xgbe_config_checksum_offload(pdata);
2778 	xgbe_config_vlan_support(pdata);
2779 	xgbe_config_mmc(pdata);
2780 	xgbe_enable_mac_interrupts(pdata);
2781 
2782 	return (0);
2783 }
2784 
2785 void
2786 xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2787 {
2788 
2789 	hw_if->tx_complete = xgbe_tx_complete;
2790 
2791 	hw_if->set_mac_address = xgbe_set_mac_address;
2792 	hw_if->config_rx_mode = xgbe_config_rx_mode;
2793 
2794 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2795 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2796 
2797 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2798 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2799 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2800 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2801 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2802 
2803 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2804 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2805 
2806 	hw_if->set_speed = xgbe_set_speed;
2807 
2808 	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
2809 	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
2810 	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
2811 
2812 	hw_if->set_gpio = xgbe_set_gpio;
2813 	hw_if->clr_gpio = xgbe_clr_gpio;
2814 
2815 	hw_if->enable_tx = xgbe_enable_tx;
2816 	hw_if->disable_tx = xgbe_disable_tx;
2817 	hw_if->enable_rx = xgbe_enable_rx;
2818 	hw_if->disable_rx = xgbe_disable_rx;
2819 
2820 	hw_if->powerup_tx = xgbe_powerup_tx;
2821 	hw_if->powerdown_tx = xgbe_powerdown_tx;
2822 	hw_if->powerup_rx = xgbe_powerup_rx;
2823 	hw_if->powerdown_rx = xgbe_powerdown_rx;
2824 
2825 	hw_if->dev_read = xgbe_dev_read;
2826 	hw_if->enable_int = xgbe_enable_int;
2827 	hw_if->disable_int = xgbe_disable_int;
2828 	hw_if->init = xgbe_init;
2829 	hw_if->exit = xgbe_exit;
2830 
2831 	/* Descriptor related Sequences have to be initialized here */
2832 	hw_if->tx_desc_init = xgbe_tx_desc_init;
2833 	hw_if->rx_desc_init = xgbe_rx_desc_init;
2834 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2835 	hw_if->is_last_desc = xgbe_is_last_desc;
2836 	hw_if->is_context_desc = xgbe_is_context_desc;
2837 
2838 	/* For FLOW ctrl */
2839 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2840 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2841 
2842 	/* For RX coalescing */
2843 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2844 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2845 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2846 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2847 
2848 	/* For RX and TX threshold config */
2849 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2850 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2851 
2852 	/* For RX and TX Store and Forward Mode config */
2853 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2854 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2855 
2856 	/* For TX DMA Operating on Second Frame config */
2857 	hw_if->config_osp_mode = xgbe_config_osp_mode;
2858 
2859 	/* For MMC statistics support */
2860 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2861 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2862 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2863 
2864 	/* For Receive Side Scaling */
2865 	hw_if->enable_rss = xgbe_enable_rss;
2866 	hw_if->disable_rss = xgbe_disable_rss;
2867 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2868 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2869 }
2870