1 /* 2 * AMD 10Gb Ethernet driver 3 * 4 * Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc. 5 * 6 * This file is available to you under your choice of the following two 7 * licenses: 8 * 9 * License 1: GPLv2 10 * 11 * This file is free software; you may copy, redistribute and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation, either version 2 of the License, or (at 14 * your option) any later version. 15 * 16 * This file is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program. If not, see <http://www.gnu.org/licenses/>. 23 * 24 * This file incorporates work covered by the following copyright and 25 * permission notice: 26 * The Synopsys DWC ETHER XGMAC Software Driver and documentation 27 * (hereinafter "Software") is an unsupported proprietary work of Synopsys, 28 * Inc. unless otherwise expressly agreed to in writing between Synopsys 29 * and you. 30 * 31 * The Software IS NOT an item of Licensed Software or Licensed Product 32 * under any End User Software License Agreement or Agreement for Licensed 33 * Product with Synopsys or any supplement thereto. Permission is hereby 34 * granted, free of charge, to any person obtaining a copy of this software 35 * annotated with this license and the Software, to deal in the Software 36 * without restriction, including without limitation the rights to use, 37 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies 38 * of the Software, and to permit persons to whom the Software is furnished 39 * to do so, subject to the following conditions: 40 * 41 * The above copyright notice and this permission notice shall be included 42 * in all copies or substantial portions of the Software. 43 * 44 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" 45 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 46 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 47 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS 48 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 49 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 50 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 51 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 52 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 53 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 54 * THE POSSIBILITY OF SUCH DAMAGE. 55 * 56 * 57 * License 2: Modified BSD 58 * 59 * Redistribution and use in source and binary forms, with or without 60 * modification, are permitted provided that the following conditions are met: 61 * * Redistributions of source code must retain the above copyright 62 * notice, this list of conditions and the following disclaimer. 63 * * Redistributions in binary form must reproduce the above copyright 64 * notice, this list of conditions and the following disclaimer in the 65 * documentation and/or other materials provided with the distribution. 66 * * Neither the name of Advanced Micro Devices, Inc. nor the 67 * names of its contributors may be used to endorse or promote products 68 * derived from this software without specific prior written permission. 69 * 70 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 71 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 72 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 73 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY 74 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 75 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 76 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 77 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 78 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 79 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 80 * 81 * This file incorporates work covered by the following copyright and 82 * permission notice: 83 * The Synopsys DWC ETHER XGMAC Software Driver and documentation 84 * (hereinafter "Software") is an unsupported proprietary work of Synopsys, 85 * Inc. unless otherwise expressly agreed to in writing between Synopsys 86 * and you. 87 * 88 * The Software IS NOT an item of Licensed Software or Licensed Product 89 * under any End User Software License Agreement or Agreement for Licensed 90 * Product with Synopsys or any supplement thereto. Permission is hereby 91 * granted, free of charge, to any person obtaining a copy of this software 92 * annotated with this license and the Software, to deal in the Software 93 * without restriction, including without limitation the rights to use, 94 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies 95 * of the Software, and to permit persons to whom the Software is furnished 96 * to do so, subject to the following conditions: 97 * 98 * The above copyright notice and this permission notice shall be included 99 * in all copies or substantial portions of the Software. 100 * 101 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" 102 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 103 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 104 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS 105 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 106 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 107 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 108 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 109 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 110 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 111 * THE POSSIBILITY OF SUCH DAMAGE. 112 */ 113 114 #include <sys/cdefs.h> 115 #include "xgbe.h" 116 #include "xgbe-common.h" 117 118 #include <net/if_dl.h> 119 120 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata) 121 { 122 return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 123 } 124 125 static unsigned int 126 xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec) 127 { 128 unsigned long rate; 129 unsigned int ret; 130 131 rate = pdata->sysclk_rate; 132 133 /* 134 * Convert the input usec value to the watchdog timer value. Each 135 * watchdog timer value is equivalent to 256 clock cycles. 136 * Calculate the required value as: 137 * ( usec * ( system_clock_mhz / 10^6 ) / 256 138 */ 139 ret = (usec * (rate / 1000000)) / 256; 140 141 return (ret); 142 } 143 144 static unsigned int 145 xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt) 146 { 147 unsigned long rate; 148 unsigned int ret; 149 150 rate = pdata->sysclk_rate; 151 152 /* 153 * Convert the input watchdog timer value to the usec value. Each 154 * watchdog timer value is equivalent to 256 clock cycles. 155 * Calculate the required value as: 156 * ( riwt * 256 ) / ( system_clock_mhz / 10^6 ) 157 */ 158 ret = (riwt * 256) / (rate / 1000000); 159 160 return (ret); 161 } 162 163 static int 164 xgbe_config_pbl_val(struct xgbe_prv_data *pdata) 165 { 166 unsigned int pblx8, pbl; 167 unsigned int i; 168 169 pblx8 = DMA_PBL_X8_DISABLE; 170 pbl = pdata->pbl; 171 172 if (pdata->pbl > 32) { 173 pblx8 = DMA_PBL_X8_ENABLE; 174 pbl >>= 3; 175 } 176 177 for (i = 0; i < pdata->channel_count; i++) { 178 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8, 179 pblx8); 180 181 if (pdata->channel[i]->tx_ring) 182 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, 183 PBL, pbl); 184 185 if (pdata->channel[i]->rx_ring) 186 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, 187 PBL, pbl); 188 } 189 190 return (0); 191 } 192 193 static int 194 xgbe_config_osp_mode(struct xgbe_prv_data *pdata) 195 { 196 unsigned int i; 197 198 for (i = 0; i < pdata->channel_count; i++) { 199 if (!pdata->channel[i]->tx_ring) 200 break; 201 202 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP, 203 pdata->tx_osp_mode); 204 } 205 206 return (0); 207 } 208 209 static int 210 xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val) 211 { 212 unsigned int i; 213 214 for (i = 0; i < pdata->rx_q_count; i++) 215 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val); 216 217 return (0); 218 } 219 220 static int 221 xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val) 222 { 223 unsigned int i; 224 225 for (i = 0; i < pdata->tx_q_count; i++) 226 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val); 227 228 return (0); 229 } 230 231 static int 232 xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val) 233 { 234 unsigned int i; 235 236 for (i = 0; i < pdata->rx_q_count; i++) 237 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val); 238 239 return (0); 240 } 241 242 static int 243 xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val) 244 { 245 unsigned int i; 246 247 for (i = 0; i < pdata->tx_q_count; i++) 248 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val); 249 250 return (0); 251 } 252 253 static int 254 xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata) 255 { 256 unsigned int i; 257 258 for (i = 0; i < pdata->channel_count; i++) { 259 if (!pdata->channel[i]->rx_ring) 260 break; 261 262 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT, 263 pdata->rx_riwt); 264 } 265 266 return (0); 267 } 268 269 static int 270 xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata) 271 { 272 return (0); 273 } 274 275 static void 276 xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata) 277 { 278 unsigned int i; 279 280 for (i = 0; i < pdata->channel_count; i++) { 281 if (!pdata->channel[i]->rx_ring) 282 break; 283 284 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ, 285 pdata->rx_buf_size); 286 } 287 } 288 289 static void 290 xgbe_config_tso_mode(struct xgbe_prv_data *pdata) 291 { 292 unsigned int i; 293 294 int tso_enabled = (if_getcapenable(pdata->netdev) & IFCAP_TSO); 295 296 for (i = 0; i < pdata->channel_count; i++) { 297 if (!pdata->channel[i]->tx_ring) 298 break; 299 300 axgbe_printf(1, "TSO in channel %d %s\n", i, tso_enabled ? "enabled" : "disabled"); 301 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, tso_enabled ? 1 : 0); 302 } 303 } 304 305 static void 306 xgbe_config_sph_mode(struct xgbe_prv_data *pdata) 307 { 308 unsigned int i; 309 int sph_enable_flag = XGMAC_IOREAD_BITS(pdata, MAC_HWF1R, SPHEN); 310 311 axgbe_printf(1, "sph_enable %d sph feature enabled?: %d\n", 312 pdata->sph_enable, sph_enable_flag); 313 314 if (pdata->sph_enable && sph_enable_flag) 315 axgbe_printf(0, "SPH Enabled\n"); 316 317 for (i = 0; i < pdata->channel_count; i++) { 318 if (!pdata->channel[i]->rx_ring) 319 break; 320 if (pdata->sph_enable && sph_enable_flag) { 321 /* Enable split header feature */ 322 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1); 323 } else { 324 /* Disable split header feature */ 325 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 0); 326 } 327 328 /* per-channel confirmation of SPH being disabled/enabled */ 329 int val = XGMAC_DMA_IOREAD_BITS(pdata->channel[i], DMA_CH_CR, SPH); 330 axgbe_printf(0, "%s: SPH %s in channel %d\n", __func__, 331 (val ? "enabled" : "disabled"), i); 332 } 333 334 if (pdata->sph_enable && sph_enable_flag) 335 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE); 336 } 337 338 static int 339 xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type, 340 unsigned int index, unsigned int val) 341 { 342 unsigned int wait; 343 int ret = 0; 344 345 mtx_lock(&pdata->rss_mutex); 346 347 if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) { 348 ret = -EBUSY; 349 goto unlock; 350 } 351 352 XGMAC_IOWRITE(pdata, MAC_RSSDR, val); 353 354 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index); 355 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type); 356 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0); 357 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1); 358 359 wait = 1000; 360 while (wait--) { 361 if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) 362 goto unlock; 363 364 DELAY(1000); 365 } 366 367 ret = -EBUSY; 368 369 unlock: 370 mtx_unlock(&pdata->rss_mutex); 371 372 return (ret); 373 } 374 375 static int 376 xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata) 377 { 378 unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t); 379 unsigned int *key = (unsigned int *)&pdata->rss_key; 380 int ret; 381 382 while (key_regs--) { 383 ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE, 384 key_regs, *key++); 385 if (ret) 386 return (ret); 387 } 388 389 return (0); 390 } 391 392 static int 393 xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata) 394 { 395 unsigned int i; 396 int ret; 397 398 for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) { 399 ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i, 400 pdata->rss_table[i]); 401 if (ret) 402 return (ret); 403 } 404 405 return (0); 406 } 407 408 static int 409 xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key) 410 { 411 memcpy(pdata->rss_key, key, sizeof(pdata->rss_key)); 412 413 return (xgbe_write_rss_hash_key(pdata)); 414 } 415 416 static int 417 xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table) 418 { 419 unsigned int i; 420 421 for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) 422 XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]); 423 424 return (xgbe_write_rss_lookup_table(pdata)); 425 } 426 427 static int 428 xgbe_enable_rss(struct xgbe_prv_data *pdata) 429 { 430 int ret; 431 432 if (!pdata->hw_feat.rss) 433 return (-EOPNOTSUPP); 434 435 /* Program the hash key */ 436 ret = xgbe_write_rss_hash_key(pdata); 437 if (ret) 438 return (ret); 439 440 /* Program the lookup table */ 441 ret = xgbe_write_rss_lookup_table(pdata); 442 if (ret) 443 return (ret); 444 445 /* Set the RSS options */ 446 XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options); 447 448 /* Enable RSS */ 449 XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1); 450 451 axgbe_printf(0, "RSS Enabled\n"); 452 453 return (0); 454 } 455 456 static int 457 xgbe_disable_rss(struct xgbe_prv_data *pdata) 458 { 459 if (!pdata->hw_feat.rss) 460 return (-EOPNOTSUPP); 461 462 XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0); 463 464 axgbe_printf(0, "RSS Disabled\n"); 465 466 return (0); 467 } 468 469 static void 470 xgbe_config_rss(struct xgbe_prv_data *pdata) 471 { 472 int ret; 473 474 if (!pdata->hw_feat.rss) 475 return; 476 477 /* Check if the interface has RSS capability */ 478 if (pdata->enable_rss) 479 ret = xgbe_enable_rss(pdata); 480 else 481 ret = xgbe_disable_rss(pdata); 482 483 if (ret) 484 axgbe_error("error configuring RSS, RSS disabled\n"); 485 } 486 487 static int 488 xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata) 489 { 490 unsigned int max_q_count, q_count; 491 unsigned int reg, reg_val; 492 unsigned int i; 493 494 /* Clear MTL flow control */ 495 for (i = 0; i < pdata->rx_q_count; i++) 496 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0); 497 498 /* Clear MAC flow control */ 499 max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES; 500 q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count); 501 reg = MAC_Q0TFCR; 502 for (i = 0; i < q_count; i++) { 503 reg_val = XGMAC_IOREAD(pdata, reg); 504 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0); 505 XGMAC_IOWRITE(pdata, reg, reg_val); 506 507 reg += MAC_QTFCR_INC; 508 } 509 510 return (0); 511 } 512 513 static int 514 xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata) 515 { 516 unsigned int max_q_count, q_count; 517 unsigned int reg, reg_val; 518 unsigned int i; 519 520 /* Set MTL flow control */ 521 for (i = 0; i < pdata->rx_q_count; i++) { 522 unsigned int ehfc = 0; 523 524 if (pdata->rx_rfd[i]) { 525 /* Flow control thresholds are established */ 526 /* TODO - enable pfc/ets support */ 527 ehfc = 1; 528 } 529 530 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc); 531 532 axgbe_printf(1, "flow control %s for RXq%u\n", 533 ehfc ? "enabled" : "disabled", i); 534 } 535 536 /* Set MAC flow control */ 537 max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES; 538 q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count); 539 reg = MAC_Q0TFCR; 540 for (i = 0; i < q_count; i++) { 541 reg_val = XGMAC_IOREAD(pdata, reg); 542 543 /* Enable transmit flow control */ 544 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1); 545 546 /* Set pause time */ 547 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff); 548 549 XGMAC_IOWRITE(pdata, reg, reg_val); 550 551 reg += MAC_QTFCR_INC; 552 } 553 554 return (0); 555 } 556 557 static int 558 xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata) 559 { 560 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0); 561 562 return (0); 563 } 564 565 static int 566 xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata) 567 { 568 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1); 569 570 return (0); 571 } 572 573 static int 574 xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata) 575 { 576 if (pdata->tx_pause) 577 xgbe_enable_tx_flow_control(pdata); 578 else 579 xgbe_disable_tx_flow_control(pdata); 580 581 return (0); 582 } 583 584 static int 585 xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata) 586 { 587 if (pdata->rx_pause) 588 xgbe_enable_rx_flow_control(pdata); 589 else 590 xgbe_disable_rx_flow_control(pdata); 591 592 return (0); 593 } 594 595 static void 596 xgbe_config_flow_control(struct xgbe_prv_data *pdata) 597 { 598 xgbe_config_tx_flow_control(pdata); 599 xgbe_config_rx_flow_control(pdata); 600 601 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0); 602 } 603 604 static void 605 xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata) 606 { 607 struct xgbe_channel *channel; 608 unsigned int i, ver; 609 610 /* Set the interrupt mode if supported */ 611 if (pdata->channel_irq_mode) 612 XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM, 613 pdata->channel_irq_mode); 614 615 ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER); 616 617 for (i = 0; i < pdata->channel_count; i++) { 618 channel = pdata->channel[i]; 619 620 /* Clear all the interrupts which are set */ 621 XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, 622 XGMAC_DMA_IOREAD(channel, DMA_CH_SR)); 623 624 /* Clear all interrupt enable bits */ 625 channel->curr_ier = 0; 626 627 /* Enable following interrupts 628 * NIE - Normal Interrupt Summary Enable 629 * AIE - Abnormal Interrupt Summary Enable 630 * FBEE - Fatal Bus Error Enable 631 */ 632 if (ver < 0x21) { 633 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1); 634 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1); 635 } else { 636 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1); 637 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1); 638 } 639 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1); 640 641 if (channel->tx_ring) { 642 /* Enable the following Tx interrupts 643 * TIE - Transmit Interrupt Enable (unless using 644 * per channel interrupts in edge triggered 645 * mode) 646 */ 647 if (!pdata->per_channel_irq || pdata->channel_irq_mode) 648 XGMAC_SET_BITS(channel->curr_ier, 649 DMA_CH_IER, TIE, 1); 650 } 651 if (channel->rx_ring) { 652 /* Enable following Rx interrupts 653 * RBUE - Receive Buffer Unavailable Enable 654 * RIE - Receive Interrupt Enable (unless using 655 * per channel interrupts in edge triggered 656 * mode) 657 */ 658 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1); 659 if (!pdata->per_channel_irq || pdata->channel_irq_mode) 660 XGMAC_SET_BITS(channel->curr_ier, 661 DMA_CH_IER, RIE, 1); 662 } 663 664 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier); 665 } 666 } 667 668 static void 669 xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata) 670 { 671 unsigned int mtl_q_isr; 672 unsigned int q_count, i; 673 674 q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt); 675 for (i = 0; i < q_count; i++) { 676 /* Clear all the interrupts which are set */ 677 mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR); 678 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr); 679 680 /* No MTL interrupts to be enabled */ 681 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0); 682 } 683 } 684 685 static void 686 xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata) 687 { 688 unsigned int mac_ier = 0; 689 690 /* Enable Timestamp interrupt */ 691 XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1); 692 693 XGMAC_IOWRITE(pdata, MAC_IER, mac_ier); 694 695 /* Enable all counter interrupts */ 696 XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff); 697 XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff); 698 699 /* Enable MDIO single command completion interrupt */ 700 XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1); 701 } 702 703 static int 704 xgbe_set_speed(struct xgbe_prv_data *pdata, int speed) 705 { 706 unsigned int ss; 707 708 switch (speed) { 709 case SPEED_1000: 710 ss = 0x03; 711 break; 712 case SPEED_2500: 713 ss = 0x02; 714 break; 715 case SPEED_10000: 716 ss = 0x00; 717 break; 718 default: 719 return (-EINVAL); 720 } 721 722 if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss) 723 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss); 724 725 return (0); 726 } 727 728 static int 729 xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata) 730 { 731 /* Put the VLAN tag in the Rx descriptor */ 732 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1); 733 734 /* Don't check the VLAN type */ 735 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1); 736 737 /* Check only C-TAG (0x8100) packets */ 738 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0); 739 740 /* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */ 741 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0); 742 743 /* Enable VLAN tag stripping */ 744 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3); 745 746 axgbe_printf(0, "VLAN Stripping Enabled\n"); 747 748 return (0); 749 } 750 751 static int 752 xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata) 753 { 754 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0); 755 756 axgbe_printf(0, "VLAN Stripping Disabled\n"); 757 758 return (0); 759 } 760 761 static int 762 xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata) 763 { 764 /* Enable VLAN filtering */ 765 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1); 766 767 /* Enable VLAN Hash Table filtering */ 768 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1); 769 770 /* Disable VLAN tag inverse matching */ 771 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0); 772 773 /* Only filter on the lower 12-bits of the VLAN tag */ 774 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1); 775 776 /* In order for the VLAN Hash Table filtering to be effective, 777 * the VLAN tag identifier in the VLAN Tag Register must not 778 * be zero. Set the VLAN tag identifier to "1" to enable the 779 * VLAN Hash Table filtering. This implies that a VLAN tag of 780 * 1 will always pass filtering. 781 */ 782 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1); 783 784 axgbe_printf(0, "VLAN filtering Enabled\n"); 785 786 return (0); 787 } 788 789 static int 790 xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata) 791 { 792 /* Disable VLAN filtering */ 793 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0); 794 795 axgbe_printf(0, "VLAN filtering Disabled\n"); 796 797 return (0); 798 } 799 800 static uint32_t 801 xgbe_vid_crc32_le(__le16 vid_le) 802 { 803 uint32_t crc = ~0; 804 uint32_t temp = 0; 805 unsigned char *data = (unsigned char *)&vid_le; 806 unsigned char data_byte = 0; 807 int i, bits; 808 809 bits = get_bitmask_order(VLAN_VID_MASK); 810 for (i = 0; i < bits; i++) { 811 if ((i % 8) == 0) 812 data_byte = data[i / 8]; 813 814 temp = ((crc & 1) ^ data_byte) & 1; 815 crc >>= 1; 816 data_byte >>= 1; 817 818 if (temp) 819 crc ^= CRC32_POLY_LE; 820 } 821 822 return (crc); 823 } 824 825 static int 826 xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata) 827 { 828 uint32_t crc; 829 size_t vid; 830 uint16_t vlan_hash_table = 0; 831 __le16 vid_le = 0; 832 833 axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__, 834 XGMAC_IOREAD(pdata, MAC_VLANHTR)); 835 836 /* Generate the VLAN Hash Table value */ 837 bit_foreach(pdata->active_vlans, VLAN_NVID, vid) { 838 /* Get the CRC32 value of the VLAN ID */ 839 vid_le = cpu_to_le16(vid); 840 crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28; 841 842 vlan_hash_table |= (1 << crc); 843 axgbe_printf(1, "%s: vid 0x%lx vid_le 0x%x crc 0x%x " 844 "vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc, 845 vlan_hash_table); 846 } 847 848 /* Set the VLAN Hash Table filtering register */ 849 XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table); 850 851 axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__, 852 XGMAC_IOREAD(pdata, MAC_VLANHTR)); 853 854 return (0); 855 } 856 857 static int 858 xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable) 859 { 860 unsigned int val = enable ? 1 : 0; 861 862 if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val) 863 return (0); 864 865 axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving"); 866 867 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val); 868 869 /* Hardware will still perform VLAN filtering in promiscuous mode */ 870 if (enable) { 871 axgbe_printf(1, "Disabling rx vlan filtering\n"); 872 xgbe_disable_rx_vlan_filtering(pdata); 873 } else { 874 if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) { 875 axgbe_printf(1, "Enabling rx vlan filtering\n"); 876 xgbe_enable_rx_vlan_filtering(pdata); 877 } 878 } 879 880 return (0); 881 } 882 883 static int 884 xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable) 885 { 886 unsigned int val = enable ? 1 : 0; 887 888 if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val) 889 return (0); 890 891 axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving"); 892 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val); 893 894 return (0); 895 } 896 897 static void 898 xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg) 899 { 900 unsigned int mac_addr_hi, mac_addr_lo; 901 uint8_t *mac_addr; 902 903 mac_addr_lo = 0; 904 mac_addr_hi = 0; 905 906 if (addr) { 907 mac_addr = (uint8_t *)&mac_addr_lo; 908 mac_addr[0] = addr[0]; 909 mac_addr[1] = addr[1]; 910 mac_addr[2] = addr[2]; 911 mac_addr[3] = addr[3]; 912 mac_addr = (uint8_t *)&mac_addr_hi; 913 mac_addr[0] = addr[4]; 914 mac_addr[1] = addr[5]; 915 916 axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg); 917 918 XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1); 919 } 920 921 XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi); 922 *mac_reg += MAC_MACA_INC; 923 XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo); 924 *mac_reg += MAC_MACA_INC; 925 } 926 927 static void 928 xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata) 929 { 930 unsigned int mac_reg; 931 unsigned int addn_macs; 932 933 mac_reg = MAC_MACA1HR; 934 addn_macs = pdata->hw_feat.addn_mac; 935 936 xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg); 937 addn_macs--; 938 939 /* Clear remaining additional MAC address entries */ 940 while (addn_macs--) 941 xgbe_set_mac_reg(pdata, NULL, &mac_reg); 942 } 943 944 static int 945 xgbe_add_mac_addresses(struct xgbe_prv_data *pdata) 946 { 947 /* TODO - add support to set mac hash table */ 948 xgbe_set_mac_addn_addrs(pdata); 949 950 return (0); 951 } 952 953 static int 954 xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr) 955 { 956 unsigned int mac_addr_hi, mac_addr_lo; 957 958 mac_addr_hi = (addr[5] << 8) | (addr[4] << 0); 959 mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) | 960 (addr[1] << 8) | (addr[0] << 0); 961 962 XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi); 963 XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo); 964 965 return (0); 966 } 967 968 static int 969 xgbe_config_rx_mode(struct xgbe_prv_data *pdata) 970 { 971 unsigned int pr_mode, am_mode; 972 973 pr_mode = ((if_getflags(pdata->netdev) & IFF_PPROMISC) != 0); 974 am_mode = ((if_getflags(pdata->netdev) & IFF_ALLMULTI) != 0); 975 976 xgbe_set_promiscuous_mode(pdata, pr_mode); 977 xgbe_set_all_multicast_mode(pdata, am_mode); 978 979 xgbe_add_mac_addresses(pdata); 980 981 return (0); 982 } 983 984 static int 985 xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio) 986 { 987 unsigned int reg; 988 989 if (gpio > 15) 990 return (-EINVAL); 991 992 reg = XGMAC_IOREAD(pdata, MAC_GPIOSR); 993 994 reg &= ~(1 << (gpio + 16)); 995 XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg); 996 997 return (0); 998 } 999 1000 static int 1001 xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio) 1002 { 1003 unsigned int reg; 1004 1005 if (gpio > 15) 1006 return (-EINVAL); 1007 1008 reg = XGMAC_IOREAD(pdata, MAC_GPIOSR); 1009 1010 reg |= (1 << (gpio + 16)); 1011 XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg); 1012 1013 return (0); 1014 } 1015 1016 static int 1017 xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg) 1018 { 1019 unsigned long flags; 1020 unsigned int mmd_address, index, offset; 1021 int mmd_data; 1022 1023 if (mmd_reg & MII_ADDR_C45) 1024 mmd_address = mmd_reg & ~MII_ADDR_C45; 1025 else 1026 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); 1027 1028 /* The PCS registers are accessed using mmio. The underlying 1029 * management interface uses indirect addressing to access the MMD 1030 * register sets. This requires accessing of the PCS register in two 1031 * phases, an address phase and a data phase. 1032 * 1033 * The mmio interface is based on 16-bit offsets and values. All 1034 * register offsets must therefore be adjusted by left shifting the 1035 * offset 1 bit and reading 16 bits of data. 1036 */ 1037 mmd_address <<= 1; 1038 index = mmd_address & ~pdata->xpcs_window_mask; 1039 offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask); 1040 1041 spin_lock_irqsave(&pdata->xpcs_lock, flags); 1042 XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index); 1043 mmd_data = XPCS16_IOREAD(pdata, offset); 1044 spin_unlock_irqrestore(&pdata->xpcs_lock, flags); 1045 1046 return (mmd_data); 1047 } 1048 1049 static void 1050 xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg, 1051 int mmd_data) 1052 { 1053 unsigned long flags; 1054 unsigned int mmd_address, index, offset; 1055 1056 if (mmd_reg & MII_ADDR_C45) 1057 mmd_address = mmd_reg & ~MII_ADDR_C45; 1058 else 1059 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); 1060 1061 /* The PCS registers are accessed using mmio. The underlying 1062 * management interface uses indirect addressing to access the MMD 1063 * register sets. This requires accessing of the PCS register in two 1064 * phases, an address phase and a data phase. 1065 * 1066 * The mmio interface is based on 16-bit offsets and values. All 1067 * register offsets must therefore be adjusted by left shifting the 1068 * offset 1 bit and writing 16 bits of data. 1069 */ 1070 mmd_address <<= 1; 1071 index = mmd_address & ~pdata->xpcs_window_mask; 1072 offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask); 1073 1074 spin_lock_irqsave(&pdata->xpcs_lock, flags); 1075 XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index); 1076 XPCS16_IOWRITE(pdata, offset, mmd_data); 1077 spin_unlock_irqrestore(&pdata->xpcs_lock, flags); 1078 } 1079 1080 static int 1081 xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg) 1082 { 1083 unsigned long flags; 1084 unsigned int mmd_address; 1085 int mmd_data; 1086 1087 if (mmd_reg & MII_ADDR_C45) 1088 mmd_address = mmd_reg & ~MII_ADDR_C45; 1089 else 1090 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); 1091 1092 /* The PCS registers are accessed using mmio. The underlying APB3 1093 * management interface uses indirect addressing to access the MMD 1094 * register sets. This requires accessing of the PCS register in two 1095 * phases, an address phase and a data phase. 1096 * 1097 * The mmio interface is based on 32-bit offsets and values. All 1098 * register offsets must therefore be adjusted by left shifting the 1099 * offset 2 bits and reading 32 bits of data. 1100 */ 1101 spin_lock_irqsave(&pdata->xpcs_lock, flags); 1102 XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8); 1103 mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2); 1104 spin_unlock_irqrestore(&pdata->xpcs_lock, flags); 1105 1106 return (mmd_data); 1107 } 1108 1109 static void 1110 xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg, 1111 int mmd_data) 1112 { 1113 unsigned int mmd_address; 1114 unsigned long flags; 1115 1116 if (mmd_reg & MII_ADDR_C45) 1117 mmd_address = mmd_reg & ~MII_ADDR_C45; 1118 else 1119 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); 1120 1121 /* The PCS registers are accessed using mmio. The underlying APB3 1122 * management interface uses indirect addressing to access the MMD 1123 * register sets. This requires accessing of the PCS register in two 1124 * phases, an address phase and a data phase. 1125 * 1126 * The mmio interface is based on 32-bit offsets and values. All 1127 * register offsets must therefore be adjusted by left shifting the 1128 * offset 2 bits and writing 32 bits of data. 1129 */ 1130 spin_lock_irqsave(&pdata->xpcs_lock, flags); 1131 XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8); 1132 XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data); 1133 spin_unlock_irqrestore(&pdata->xpcs_lock, flags); 1134 } 1135 1136 static int 1137 xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg) 1138 { 1139 switch (pdata->vdata->xpcs_access) { 1140 case XGBE_XPCS_ACCESS_V1: 1141 return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg)); 1142 1143 case XGBE_XPCS_ACCESS_V2: 1144 default: 1145 return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg)); 1146 } 1147 } 1148 1149 static void 1150 xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg, 1151 int mmd_data) 1152 { 1153 switch (pdata->vdata->xpcs_access) { 1154 case XGBE_XPCS_ACCESS_V1: 1155 return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data)); 1156 1157 case XGBE_XPCS_ACCESS_V2: 1158 default: 1159 return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data)); 1160 } 1161 } 1162 1163 static unsigned int 1164 xgbe_create_mdio_sca(int port, int reg) 1165 { 1166 unsigned int mdio_sca, da; 1167 1168 da = (reg & MII_ADDR_C45) ? reg >> 16 : 0; 1169 1170 mdio_sca = 0; 1171 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg); 1172 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port); 1173 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da); 1174 1175 return (mdio_sca); 1176 } 1177 1178 static int 1179 xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg, 1180 uint16_t val) 1181 { 1182 unsigned int mdio_sca, mdio_sccd; 1183 1184 mtx_lock_spin(&pdata->mdio_mutex); 1185 1186 mdio_sca = xgbe_create_mdio_sca(addr, reg); 1187 XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca); 1188 1189 mdio_sccd = 0; 1190 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val); 1191 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1); 1192 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1); 1193 XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd); 1194 1195 if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) == 1196 EWOULDBLOCK) { 1197 axgbe_error("%s: MDIO write error\n", __func__); 1198 mtx_unlock_spin(&pdata->mdio_mutex); 1199 return (-ETIMEDOUT); 1200 } 1201 1202 mtx_unlock_spin(&pdata->mdio_mutex); 1203 return (0); 1204 } 1205 1206 static int 1207 xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg) 1208 { 1209 unsigned int mdio_sca, mdio_sccd; 1210 1211 mtx_lock_spin(&pdata->mdio_mutex); 1212 1213 mdio_sca = xgbe_create_mdio_sca(addr, reg); 1214 XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca); 1215 1216 mdio_sccd = 0; 1217 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3); 1218 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1); 1219 XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd); 1220 1221 if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) == 1222 EWOULDBLOCK) { 1223 axgbe_error("%s: MDIO read error\n", __func__); 1224 mtx_unlock_spin(&pdata->mdio_mutex); 1225 return (-ETIMEDOUT); 1226 } 1227 1228 mtx_unlock_spin(&pdata->mdio_mutex); 1229 1230 return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA)); 1231 } 1232 1233 static int 1234 xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port, 1235 enum xgbe_mdio_mode mode) 1236 { 1237 unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R); 1238 1239 switch (mode) { 1240 case XGBE_MDIO_MODE_CL22: 1241 if (port > XGMAC_MAX_C22_PORT) 1242 return (-EINVAL); 1243 reg_val |= (1 << port); 1244 break; 1245 case XGBE_MDIO_MODE_CL45: 1246 break; 1247 default: 1248 return (-EINVAL); 1249 } 1250 1251 XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val); 1252 1253 return (0); 1254 } 1255 1256 static int 1257 xgbe_tx_complete(struct xgbe_ring_desc *rdesc) 1258 { 1259 return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN)); 1260 } 1261 1262 static int 1263 xgbe_disable_rx_csum(struct xgbe_prv_data *pdata) 1264 { 1265 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0); 1266 1267 axgbe_printf(0, "Receive checksum offload Disabled\n"); 1268 return (0); 1269 } 1270 1271 static int 1272 xgbe_enable_rx_csum(struct xgbe_prv_data *pdata) 1273 { 1274 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1); 1275 1276 axgbe_printf(0, "Receive checksum offload Enabled\n"); 1277 return (0); 1278 } 1279 1280 static void 1281 xgbe_tx_desc_reset(struct xgbe_ring_data *rdata) 1282 { 1283 struct xgbe_ring_desc *rdesc = rdata->rdesc; 1284 1285 /* Reset the Tx descriptor 1286 * Set buffer 1 (lo) address to zero 1287 * Set buffer 1 (hi) address to zero 1288 * Reset all other control bits (IC, TTSE, B2L & B1L) 1289 * Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc) 1290 */ 1291 rdesc->desc0 = 0; 1292 rdesc->desc1 = 0; 1293 rdesc->desc2 = 0; 1294 rdesc->desc3 = 0; 1295 1296 wmb(); 1297 } 1298 1299 static void 1300 xgbe_tx_desc_init(struct xgbe_channel *channel) 1301 { 1302 struct xgbe_ring *ring = channel->tx_ring; 1303 struct xgbe_ring_data *rdata; 1304 int i; 1305 int start_index = ring->cur; 1306 1307 /* Initialze all descriptors */ 1308 for (i = 0; i < ring->rdesc_count; i++) { 1309 rdata = XGBE_GET_DESC_DATA(ring, i); 1310 1311 /* Initialize Tx descriptor */ 1312 xgbe_tx_desc_reset(rdata); 1313 } 1314 1315 /* Update the total number of Tx descriptors */ 1316 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1); 1317 1318 /* Update the starting address of descriptor ring */ 1319 rdata = XGBE_GET_DESC_DATA(ring, start_index); 1320 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI, 1321 upper_32_bits(rdata->rdata_paddr)); 1322 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO, 1323 lower_32_bits(rdata->rdata_paddr)); 1324 } 1325 1326 static void 1327 xgbe_rx_desc_init(struct xgbe_channel *channel) 1328 { 1329 struct xgbe_ring *ring = channel->rx_ring; 1330 struct xgbe_ring_data *rdata; 1331 unsigned int start_index = ring->cur; 1332 1333 /* 1334 * Just set desc_count and the starting address of the desc list 1335 * here. Rest will be done as part of the txrx path. 1336 */ 1337 1338 /* Update the total number of Rx descriptors */ 1339 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1); 1340 1341 /* Update the starting address of descriptor ring */ 1342 rdata = XGBE_GET_DESC_DATA(ring, start_index); 1343 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI, 1344 upper_32_bits(rdata->rdata_paddr)); 1345 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO, 1346 lower_32_bits(rdata->rdata_paddr)); 1347 } 1348 1349 static int 1350 xgbe_dev_read(struct xgbe_channel *channel) 1351 { 1352 struct xgbe_prv_data *pdata = channel->pdata; 1353 struct xgbe_ring *ring = channel->rx_ring; 1354 struct xgbe_ring_data *rdata; 1355 struct xgbe_ring_desc *rdesc; 1356 struct xgbe_packet_data *packet = &ring->packet_data; 1357 unsigned int err, etlt, l34t = 0; 1358 1359 axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur); 1360 1361 rdata = XGBE_GET_DESC_DATA(ring, ring->cur); 1362 rdesc = rdata->rdesc; 1363 1364 /* Check for data availability */ 1365 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN)) 1366 return (1); 1367 1368 rmb(); 1369 1370 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) { 1371 /* TODO - Timestamp Context Descriptor */ 1372 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1373 CONTEXT, 1); 1374 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1375 CONTEXT_NEXT, 0); 1376 return (0); 1377 } 1378 1379 /* Normal Descriptor, be sure Context Descriptor bit is off */ 1380 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0); 1381 1382 /* Indicate if a Context Descriptor is next */ 1383 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA)) 1384 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1385 CONTEXT_NEXT, 1); 1386 1387 /* Get the header length */ 1388 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) { 1389 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1390 FIRST, 1); 1391 rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2, 1392 RX_NORMAL_DESC2, HL); 1393 if (rdata->rx.hdr_len) 1394 pdata->ext_stats.rx_split_header_packets++; 1395 } else 1396 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1397 FIRST, 0); 1398 1399 /* Get the RSS hash */ 1400 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) { 1401 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1402 RSS_HASH, 1); 1403 1404 packet->rss_hash = le32_to_cpu(rdesc->desc1); 1405 1406 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T); 1407 switch (l34t) { 1408 case RX_DESC3_L34T_IPV4_TCP: 1409 packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4; 1410 break; 1411 case RX_DESC3_L34T_IPV4_UDP: 1412 packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4; 1413 break; 1414 case RX_DESC3_L34T_IPV6_TCP: 1415 packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6; 1416 break; 1417 case RX_DESC3_L34T_IPV6_UDP: 1418 packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6; 1419 break; 1420 default: 1421 packet->rss_hash_type = M_HASHTYPE_OPAQUE; 1422 break; 1423 } 1424 } 1425 1426 /* Not all the data has been transferred for this packet */ 1427 if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) { 1428 /* This is not the last of the data for this packet */ 1429 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1430 LAST, 0); 1431 return (0); 1432 } 1433 1434 /* This is the last of the data for this packet */ 1435 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1436 LAST, 1); 1437 1438 /* Get the packet length */ 1439 rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL); 1440 1441 /* Set checksum done indicator as appropriate */ 1442 /* TODO - add tunneling support */ 1443 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1444 CSUM_DONE, 1); 1445 1446 /* Check for errors (only valid in last descriptor) */ 1447 err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES); 1448 etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT); 1449 axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt); 1450 1451 if (!err || !etlt) { 1452 /* No error if err is 0 or etlt is 0 */ 1453 if (etlt == 0x09 && 1454 (if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) { 1455 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1456 VLAN_CTAG, 1); 1457 packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0, 1458 RX_NORMAL_DESC0, OVT); 1459 axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag); 1460 } 1461 } else { 1462 unsigned int tnp = XGMAC_GET_BITS(packet->attributes, 1463 RX_PACKET_ATTRIBUTES, TNP); 1464 1465 if ((etlt == 0x05) || (etlt == 0x06)) { 1466 axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n", 1467 __func__, l34t, err, etlt); 1468 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1469 CSUM_DONE, 0); 1470 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1471 TNPCSUM_DONE, 0); 1472 pdata->ext_stats.rx_csum_errors++; 1473 } else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) { 1474 axgbe_printf(1, "%s: err2 l34t %d err 0x%x etlt 0x%x\n", 1475 __func__, l34t, err, etlt); 1476 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1477 CSUM_DONE, 0); 1478 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, 1479 TNPCSUM_DONE, 0); 1480 pdata->ext_stats.rx_vxlan_csum_errors++; 1481 } else { 1482 axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n", 1483 __func__, tnp, l34t, err, etlt); 1484 axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n", 1485 __func__, channel->queue_index, 1486 XGMAC_DMA_IOREAD(channel, DMA_CH_SR), 1487 XGMAC_DMA_IOREAD(channel, DMA_CH_DSR)); 1488 axgbe_printf(1, "%s: ring cur %d dirty %d\n", 1489 __func__, ring->cur, ring->dirty); 1490 axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n", 1491 __func__, rdesc->desc0, rdesc->desc1, rdesc->desc2, 1492 rdesc->desc3); 1493 XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS, 1494 FRAME, 1); 1495 } 1496 } 1497 1498 axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", 1499 channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur); 1500 1501 return (0); 1502 } 1503 1504 static int 1505 xgbe_is_context_desc(struct xgbe_ring_desc *rdesc) 1506 { 1507 /* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */ 1508 return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT)); 1509 } 1510 1511 static int 1512 xgbe_is_last_desc(struct xgbe_ring_desc *rdesc) 1513 { 1514 /* Rx and Tx share LD bit, so check TDES3.LD bit */ 1515 return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD)); 1516 } 1517 1518 static int 1519 xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id) 1520 { 1521 struct xgbe_prv_data *pdata = channel->pdata; 1522 1523 axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n", 1524 channel->curr_ier); 1525 1526 switch (int_id) { 1527 case XGMAC_INT_DMA_CH_SR_TI: 1528 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1); 1529 break; 1530 case XGMAC_INT_DMA_CH_SR_TPS: 1531 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1); 1532 break; 1533 case XGMAC_INT_DMA_CH_SR_TBU: 1534 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1); 1535 break; 1536 case XGMAC_INT_DMA_CH_SR_RI: 1537 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1); 1538 break; 1539 case XGMAC_INT_DMA_CH_SR_RBU: 1540 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1); 1541 break; 1542 case XGMAC_INT_DMA_CH_SR_RPS: 1543 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1); 1544 break; 1545 case XGMAC_INT_DMA_CH_SR_TI_RI: 1546 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1); 1547 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1); 1548 break; 1549 case XGMAC_INT_DMA_CH_SR_FBE: 1550 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1); 1551 break; 1552 case XGMAC_INT_DMA_ALL: 1553 channel->curr_ier |= channel->saved_ier; 1554 break; 1555 default: 1556 return (-1); 1557 } 1558 1559 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier); 1560 1561 axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n", 1562 channel->curr_ier); 1563 1564 return (0); 1565 } 1566 1567 static int 1568 xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id) 1569 { 1570 struct xgbe_prv_data *pdata = channel->pdata; 1571 1572 axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n", 1573 channel->curr_ier); 1574 1575 switch (int_id) { 1576 case XGMAC_INT_DMA_CH_SR_TI: 1577 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0); 1578 break; 1579 case XGMAC_INT_DMA_CH_SR_TPS: 1580 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0); 1581 break; 1582 case XGMAC_INT_DMA_CH_SR_TBU: 1583 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0); 1584 break; 1585 case XGMAC_INT_DMA_CH_SR_RI: 1586 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0); 1587 break; 1588 case XGMAC_INT_DMA_CH_SR_RBU: 1589 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0); 1590 break; 1591 case XGMAC_INT_DMA_CH_SR_RPS: 1592 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0); 1593 break; 1594 case XGMAC_INT_DMA_CH_SR_TI_RI: 1595 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0); 1596 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0); 1597 break; 1598 case XGMAC_INT_DMA_CH_SR_FBE: 1599 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0); 1600 break; 1601 case XGMAC_INT_DMA_ALL: 1602 channel->saved_ier = channel->curr_ier; 1603 channel->curr_ier = 0; 1604 break; 1605 default: 1606 return (-1); 1607 } 1608 1609 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier); 1610 1611 axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n", 1612 channel->curr_ier); 1613 1614 return (0); 1615 } 1616 1617 static int 1618 __xgbe_exit(struct xgbe_prv_data *pdata) 1619 { 1620 unsigned int count = 2000; 1621 1622 /* Issue a software reset */ 1623 XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1); 1624 DELAY(10); 1625 1626 /* Poll Until Poll Condition */ 1627 while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR)) 1628 DELAY(500); 1629 1630 if (!count) 1631 return (-EBUSY); 1632 1633 return (0); 1634 } 1635 1636 static int 1637 xgbe_exit(struct xgbe_prv_data *pdata) 1638 { 1639 int ret; 1640 1641 /* To guard against possible incorrectly generated interrupts, 1642 * issue the software reset twice. 1643 */ 1644 ret = __xgbe_exit(pdata); 1645 if (ret) { 1646 axgbe_error("%s: exit error %d\n", __func__, ret); 1647 return (ret); 1648 } 1649 1650 return (__xgbe_exit(pdata)); 1651 } 1652 1653 static int 1654 xgbe_flush_tx_queues(struct xgbe_prv_data *pdata) 1655 { 1656 unsigned int i, count; 1657 1658 if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21) 1659 return (0); 1660 1661 for (i = 0; i < pdata->tx_q_count; i++) 1662 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1); 1663 1664 /* Poll Until Poll Condition */ 1665 for (i = 0; i < pdata->tx_q_count; i++) { 1666 count = 2000; 1667 while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i, 1668 MTL_Q_TQOMR, FTQ)) 1669 DELAY(500); 1670 1671 if (!count) 1672 return (-EBUSY); 1673 } 1674 1675 return (0); 1676 } 1677 1678 static void 1679 xgbe_config_dma_bus(struct xgbe_prv_data *pdata) 1680 { 1681 unsigned int sbmr; 1682 1683 sbmr = XGMAC_IOREAD(pdata, DMA_SBMR); 1684 1685 /* Set enhanced addressing mode */ 1686 XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1); 1687 1688 /* Set the System Bus mode */ 1689 XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1); 1690 XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2); 1691 XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal); 1692 XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1); 1693 XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1); 1694 1695 XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr); 1696 1697 /* Set descriptor fetching threshold */ 1698 if (pdata->vdata->tx_desc_prefetch) 1699 XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS, 1700 pdata->vdata->tx_desc_prefetch); 1701 1702 if (pdata->vdata->rx_desc_prefetch) 1703 XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS, 1704 pdata->vdata->rx_desc_prefetch); 1705 } 1706 1707 static void 1708 xgbe_config_dma_cache(struct xgbe_prv_data *pdata) 1709 { 1710 XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr); 1711 XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr); 1712 if (pdata->awarcr) 1713 XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr); 1714 } 1715 1716 static void 1717 xgbe_config_mtl_mode(struct xgbe_prv_data *pdata) 1718 { 1719 unsigned int i; 1720 1721 /* Set Tx to weighted round robin scheduling algorithm */ 1722 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR); 1723 1724 /* Set Tx traffic classes to use WRR algorithm with equal weights */ 1725 for (i = 0; i < pdata->hw_feat.tc_cnt; i++) { 1726 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, 1727 MTL_TSA_ETS); 1728 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1); 1729 } 1730 1731 /* Set Rx to strict priority algorithm */ 1732 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP); 1733 } 1734 1735 static void 1736 xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata, 1737 unsigned int queue, unsigned int q_fifo_size) 1738 { 1739 unsigned int frame_fifo_size; 1740 unsigned int rfa, rfd; 1741 1742 frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata)); 1743 axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n", 1744 __func__, queue, q_fifo_size, frame_fifo_size); 1745 1746 /* TODO - add pfc/ets related support */ 1747 1748 /* This path deals with just maximum frame sizes which are 1749 * limited to a jumbo frame of 9,000 (plus headers, etc.) 1750 * so we can never exceed the maximum allowable RFA/RFD 1751 * values. 1752 */ 1753 if (q_fifo_size <= 2048) { 1754 /* rx_rfd to zero to signal no flow control */ 1755 pdata->rx_rfa[queue] = 0; 1756 pdata->rx_rfd[queue] = 0; 1757 return; 1758 } 1759 1760 if (q_fifo_size <= 4096) { 1761 /* Between 2048 and 4096 */ 1762 pdata->rx_rfa[queue] = 0; /* Full - 1024 bytes */ 1763 pdata->rx_rfd[queue] = 1; /* Full - 1536 bytes */ 1764 return; 1765 } 1766 1767 if (q_fifo_size <= frame_fifo_size) { 1768 /* Between 4096 and max-frame */ 1769 pdata->rx_rfa[queue] = 2; /* Full - 2048 bytes */ 1770 pdata->rx_rfd[queue] = 5; /* Full - 3584 bytes */ 1771 return; 1772 } 1773 1774 if (q_fifo_size <= (frame_fifo_size * 3)) { 1775 /* Between max-frame and 3 max-frames, 1776 * trigger if we get just over a frame of data and 1777 * resume when we have just under half a frame left. 1778 */ 1779 rfa = q_fifo_size - frame_fifo_size; 1780 rfd = rfa + (frame_fifo_size / 2); 1781 } else { 1782 /* Above 3 max-frames - trigger when just over 1783 * 2 frames of space available 1784 */ 1785 rfa = frame_fifo_size * 2; 1786 rfa += XGMAC_FLOW_CONTROL_UNIT; 1787 rfd = rfa + frame_fifo_size; 1788 } 1789 1790 pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa); 1791 pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd); 1792 axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__, 1793 queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]); 1794 } 1795 1796 static void 1797 xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata, 1798 unsigned int *fifo) 1799 { 1800 unsigned int q_fifo_size; 1801 unsigned int i; 1802 1803 for (i = 0; i < pdata->rx_q_count; i++) { 1804 q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT; 1805 1806 axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n", 1807 __func__, i, fifo[i], q_fifo_size); 1808 xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size); 1809 } 1810 } 1811 1812 static void 1813 xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata) 1814 { 1815 unsigned int i; 1816 1817 for (i = 0; i < pdata->rx_q_count; i++) { 1818 axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i, 1819 pdata->rx_rfa[i], pdata->rx_rfd[i]); 1820 1821 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA, 1822 pdata->rx_rfa[i]); 1823 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD, 1824 pdata->rx_rfd[i]); 1825 1826 axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__, 1827 XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR)); 1828 } 1829 } 1830 1831 static unsigned int 1832 xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata) 1833 { 1834 /* The configured value may not be the actual amount of fifo RAM */ 1835 return (min_t(unsigned int, pdata->tx_max_fifo_size, 1836 pdata->hw_feat.tx_fifo_size)); 1837 } 1838 1839 static unsigned int 1840 xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata) 1841 { 1842 /* The configured value may not be the actual amount of fifo RAM */ 1843 return (min_t(unsigned int, pdata->rx_max_fifo_size, 1844 pdata->hw_feat.rx_fifo_size)); 1845 } 1846 1847 static void 1848 xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count, 1849 unsigned int *fifo) 1850 { 1851 unsigned int q_fifo_size; 1852 unsigned int p_fifo; 1853 unsigned int i; 1854 1855 q_fifo_size = fifo_size / queue_count; 1856 1857 /* Calculate the fifo setting by dividing the queue's fifo size 1858 * by the fifo allocation increment (with 0 representing the 1859 * base allocation increment so decrement the result by 1). 1860 */ 1861 p_fifo = q_fifo_size / XGMAC_FIFO_UNIT; 1862 if (p_fifo) 1863 p_fifo--; 1864 1865 /* Distribute the fifo equally amongst the queues */ 1866 for (i = 0; i < queue_count; i++) 1867 fifo[i] = p_fifo; 1868 } 1869 1870 static unsigned int 1871 xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count, 1872 unsigned int *fifo) 1873 { 1874 unsigned int i; 1875 1876 MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC)); 1877 1878 if (queue_count <= IEEE_8021QAZ_MAX_TCS) 1879 return (fifo_size); 1880 1881 /* Rx queues 9 and up are for specialized packets, 1882 * such as PTP or DCB control packets, etc. and 1883 * don't require a large fifo 1884 */ 1885 for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) { 1886 fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1; 1887 fifo_size -= XGMAC_FIFO_MIN_ALLOC; 1888 } 1889 1890 return (fifo_size); 1891 } 1892 1893 static void 1894 xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata) 1895 { 1896 unsigned int fifo_size; 1897 unsigned int fifo[XGBE_MAX_QUEUES]; 1898 unsigned int i; 1899 1900 fifo_size = xgbe_get_tx_fifo_size(pdata); 1901 axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size); 1902 1903 xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo); 1904 1905 for (i = 0; i < pdata->tx_q_count; i++) { 1906 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]); 1907 axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i, 1908 XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR)); 1909 } 1910 1911 axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n", 1912 pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT)); 1913 } 1914 1915 static void 1916 xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata) 1917 { 1918 unsigned int fifo_size; 1919 unsigned int fifo[XGBE_MAX_QUEUES]; 1920 unsigned int prio_queues; 1921 unsigned int i; 1922 1923 /* TODO - add pfc/ets related support */ 1924 1925 /* Clear any DCB related fifo/queue information */ 1926 fifo_size = xgbe_get_rx_fifo_size(pdata); 1927 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); 1928 axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__, 1929 fifo_size, pdata->rx_q_count, prio_queues); 1930 1931 /* Assign a minimum fifo to the non-VLAN priority queues */ 1932 fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo); 1933 1934 xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo); 1935 1936 for (i = 0; i < pdata->rx_q_count; i++) { 1937 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]); 1938 axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i, 1939 XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR)); 1940 } 1941 1942 xgbe_calculate_flow_control_threshold(pdata, fifo); 1943 xgbe_config_flow_control_threshold(pdata); 1944 1945 axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n", 1946 pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT)); 1947 } 1948 1949 static void 1950 xgbe_config_queue_mapping(struct xgbe_prv_data *pdata) 1951 { 1952 unsigned int qptc, qptc_extra, queue; 1953 unsigned int prio_queues; 1954 unsigned int ppq, ppq_extra, prio; 1955 unsigned int mask; 1956 unsigned int i, j, reg, reg_val; 1957 1958 /* Map the MTL Tx Queues to Traffic Classes 1959 * Note: Tx Queues >= Traffic Classes 1960 */ 1961 qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt; 1962 qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt; 1963 1964 for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) { 1965 for (j = 0; j < qptc; j++) { 1966 axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i); 1967 XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR, 1968 Q2TCMAP, i); 1969 pdata->q2tc_map[queue++] = i; 1970 } 1971 1972 if (i < qptc_extra) { 1973 axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i); 1974 XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR, 1975 Q2TCMAP, i); 1976 pdata->q2tc_map[queue++] = i; 1977 } 1978 } 1979 1980 /* Map the 8 VLAN priority values to available MTL Rx queues */ 1981 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); 1982 ppq = IEEE_8021QAZ_MAX_TCS / prio_queues; 1983 ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues; 1984 1985 reg = MAC_RQC2R; 1986 reg_val = 0; 1987 for (i = 0, prio = 0; i < prio_queues;) { 1988 mask = 0; 1989 for (j = 0; j < ppq; j++) { 1990 axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i); 1991 mask |= (1 << prio); 1992 pdata->prio2q_map[prio++] = i; 1993 } 1994 1995 if (i < ppq_extra) { 1996 axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i); 1997 mask |= (1 << prio); 1998 pdata->prio2q_map[prio++] = i; 1999 } 2000 2001 reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3)); 2002 2003 if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues)) 2004 continue; 2005 2006 XGMAC_IOWRITE(pdata, reg, reg_val); 2007 reg += MAC_RQC2_INC; 2008 reg_val = 0; 2009 } 2010 2011 /* Select dynamic mapping of MTL Rx queue to DMA Rx channel */ 2012 reg = MTL_RQDCM0R; 2013 reg_val = 0; 2014 for (i = 0; i < pdata->rx_q_count;) { 2015 reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3)); 2016 2017 if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count)) 2018 continue; 2019 2020 XGMAC_IOWRITE(pdata, reg, reg_val); 2021 2022 reg += MTL_RQDCM_INC; 2023 reg_val = 0; 2024 } 2025 } 2026 2027 static void 2028 xgbe_config_mac_address(struct xgbe_prv_data *pdata) 2029 { 2030 xgbe_set_mac_address(pdata, if_getlladdr(pdata->netdev)); 2031 2032 /* 2033 * Promisc mode does not work as intended. Multicast traffic 2034 * is triggering the filter, so enable Receive All. 2035 */ 2036 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, RA, 1); 2037 2038 /* Filtering is done using perfect filtering and hash filtering */ 2039 if (pdata->hw_feat.hash_table_size) { 2040 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1); 2041 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1); 2042 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1); 2043 } 2044 } 2045 2046 static void 2047 xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata) 2048 { 2049 unsigned int val; 2050 2051 val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0; 2052 2053 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val); 2054 } 2055 2056 static void 2057 xgbe_config_mac_speed(struct xgbe_prv_data *pdata) 2058 { 2059 xgbe_set_speed(pdata, pdata->phy_speed); 2060 } 2061 2062 static void 2063 xgbe_config_checksum_offload(struct xgbe_prv_data *pdata) 2064 { 2065 if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM)) 2066 xgbe_enable_rx_csum(pdata); 2067 else 2068 xgbe_disable_rx_csum(pdata); 2069 } 2070 2071 static void 2072 xgbe_config_vlan_support(struct xgbe_prv_data *pdata) 2073 { 2074 /* Indicate that VLAN Tx CTAGs come from context descriptors */ 2075 XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0); 2076 XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1); 2077 2078 /* Set the current VLAN Hash Table register value */ 2079 xgbe_update_vlan_hash_table(pdata); 2080 2081 if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) { 2082 axgbe_printf(1, "Enabling rx vlan filtering\n"); 2083 xgbe_enable_rx_vlan_filtering(pdata); 2084 } else { 2085 axgbe_printf(1, "Disabling rx vlan filtering\n"); 2086 xgbe_disable_rx_vlan_filtering(pdata); 2087 } 2088 2089 if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) { 2090 axgbe_printf(1, "Enabling rx vlan stripping\n"); 2091 xgbe_enable_rx_vlan_stripping(pdata); 2092 } else { 2093 axgbe_printf(1, "Disabling rx vlan stripping\n"); 2094 xgbe_disable_rx_vlan_stripping(pdata); 2095 } 2096 } 2097 2098 static uint64_t 2099 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo) 2100 { 2101 bool read_hi; 2102 uint64_t val; 2103 2104 if (pdata->vdata->mmc_64bit) { 2105 switch (reg_lo) { 2106 /* These registers are always 32 bit */ 2107 case MMC_RXRUNTERROR: 2108 case MMC_RXJABBERERROR: 2109 case MMC_RXUNDERSIZE_G: 2110 case MMC_RXOVERSIZE_G: 2111 case MMC_RXWATCHDOGERROR: 2112 read_hi = false; 2113 break; 2114 2115 default: 2116 read_hi = true; 2117 } 2118 } else { 2119 switch (reg_lo) { 2120 /* These registers are always 64 bit */ 2121 case MMC_TXOCTETCOUNT_GB_LO: 2122 case MMC_TXOCTETCOUNT_G_LO: 2123 case MMC_RXOCTETCOUNT_GB_LO: 2124 case MMC_RXOCTETCOUNT_G_LO: 2125 read_hi = true; 2126 break; 2127 2128 default: 2129 read_hi = false; 2130 } 2131 } 2132 2133 val = XGMAC_IOREAD(pdata, reg_lo); 2134 2135 if (read_hi) 2136 val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32); 2137 2138 return (val); 2139 } 2140 2141 static void 2142 xgbe_tx_mmc_int(struct xgbe_prv_data *pdata) 2143 { 2144 struct xgbe_mmc_stats *stats = &pdata->mmc_stats; 2145 unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR); 2146 2147 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB)) 2148 stats->txoctetcount_gb += 2149 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO); 2150 2151 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB)) 2152 stats->txframecount_gb += 2153 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO); 2154 2155 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G)) 2156 stats->txbroadcastframes_g += 2157 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO); 2158 2159 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G)) 2160 stats->txmulticastframes_g += 2161 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO); 2162 2163 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB)) 2164 stats->tx64octets_gb += 2165 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO); 2166 2167 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB)) 2168 stats->tx65to127octets_gb += 2169 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO); 2170 2171 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB)) 2172 stats->tx128to255octets_gb += 2173 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO); 2174 2175 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB)) 2176 stats->tx256to511octets_gb += 2177 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO); 2178 2179 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB)) 2180 stats->tx512to1023octets_gb += 2181 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO); 2182 2183 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB)) 2184 stats->tx1024tomaxoctets_gb += 2185 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO); 2186 2187 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB)) 2188 stats->txunicastframes_gb += 2189 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO); 2190 2191 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB)) 2192 stats->txmulticastframes_gb += 2193 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO); 2194 2195 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB)) 2196 stats->txbroadcastframes_g += 2197 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO); 2198 2199 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR)) 2200 stats->txunderflowerror += 2201 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO); 2202 2203 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G)) 2204 stats->txoctetcount_g += 2205 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO); 2206 2207 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G)) 2208 stats->txframecount_g += 2209 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO); 2210 2211 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES)) 2212 stats->txpauseframes += 2213 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO); 2214 2215 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G)) 2216 stats->txvlanframes_g += 2217 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO); 2218 } 2219 2220 static void 2221 xgbe_rx_mmc_int(struct xgbe_prv_data *pdata) 2222 { 2223 struct xgbe_mmc_stats *stats = &pdata->mmc_stats; 2224 unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR); 2225 2226 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB)) 2227 stats->rxframecount_gb += 2228 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO); 2229 2230 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB)) 2231 stats->rxoctetcount_gb += 2232 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO); 2233 2234 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G)) 2235 stats->rxoctetcount_g += 2236 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO); 2237 2238 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G)) 2239 stats->rxbroadcastframes_g += 2240 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO); 2241 2242 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G)) 2243 stats->rxmulticastframes_g += 2244 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO); 2245 2246 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR)) 2247 stats->rxcrcerror += 2248 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO); 2249 2250 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR)) 2251 stats->rxrunterror += 2252 xgbe_mmc_read(pdata, MMC_RXRUNTERROR); 2253 2254 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR)) 2255 stats->rxjabbererror += 2256 xgbe_mmc_read(pdata, MMC_RXJABBERERROR); 2257 2258 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G)) 2259 stats->rxundersize_g += 2260 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G); 2261 2262 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G)) 2263 stats->rxoversize_g += 2264 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G); 2265 2266 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB)) 2267 stats->rx64octets_gb += 2268 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO); 2269 2270 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB)) 2271 stats->rx65to127octets_gb += 2272 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO); 2273 2274 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB)) 2275 stats->rx128to255octets_gb += 2276 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO); 2277 2278 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB)) 2279 stats->rx256to511octets_gb += 2280 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO); 2281 2282 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB)) 2283 stats->rx512to1023octets_gb += 2284 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO); 2285 2286 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB)) 2287 stats->rx1024tomaxoctets_gb += 2288 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO); 2289 2290 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G)) 2291 stats->rxunicastframes_g += 2292 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO); 2293 2294 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR)) 2295 stats->rxlengtherror += 2296 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO); 2297 2298 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE)) 2299 stats->rxoutofrangetype += 2300 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO); 2301 2302 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES)) 2303 stats->rxpauseframes += 2304 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO); 2305 2306 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW)) 2307 stats->rxfifooverflow += 2308 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO); 2309 2310 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB)) 2311 stats->rxvlanframes_gb += 2312 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO); 2313 2314 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR)) 2315 stats->rxwatchdogerror += 2316 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR); 2317 } 2318 2319 static void 2320 xgbe_read_mmc_stats(struct xgbe_prv_data *pdata) 2321 { 2322 struct xgbe_mmc_stats *stats = &pdata->mmc_stats; 2323 2324 /* Freeze counters */ 2325 XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1); 2326 2327 stats->txoctetcount_gb += 2328 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO); 2329 2330 stats->txframecount_gb += 2331 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO); 2332 2333 stats->txbroadcastframes_g += 2334 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO); 2335 2336 stats->txmulticastframes_g += 2337 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO); 2338 2339 stats->tx64octets_gb += 2340 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO); 2341 2342 stats->tx65to127octets_gb += 2343 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO); 2344 2345 stats->tx128to255octets_gb += 2346 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO); 2347 2348 stats->tx256to511octets_gb += 2349 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO); 2350 2351 stats->tx512to1023octets_gb += 2352 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO); 2353 2354 stats->tx1024tomaxoctets_gb += 2355 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO); 2356 2357 stats->txunicastframes_gb += 2358 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO); 2359 2360 stats->txmulticastframes_gb += 2361 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO); 2362 2363 stats->txbroadcastframes_gb += 2364 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO); 2365 2366 stats->txunderflowerror += 2367 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO); 2368 2369 stats->txoctetcount_g += 2370 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO); 2371 2372 stats->txframecount_g += 2373 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO); 2374 2375 stats->txpauseframes += 2376 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO); 2377 2378 stats->txvlanframes_g += 2379 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO); 2380 2381 stats->rxframecount_gb += 2382 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO); 2383 2384 stats->rxoctetcount_gb += 2385 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO); 2386 2387 stats->rxoctetcount_g += 2388 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO); 2389 2390 stats->rxbroadcastframes_g += 2391 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO); 2392 2393 stats->rxmulticastframes_g += 2394 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO); 2395 2396 stats->rxcrcerror += 2397 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO); 2398 2399 stats->rxrunterror += 2400 xgbe_mmc_read(pdata, MMC_RXRUNTERROR); 2401 2402 stats->rxjabbererror += 2403 xgbe_mmc_read(pdata, MMC_RXJABBERERROR); 2404 2405 stats->rxundersize_g += 2406 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G); 2407 2408 stats->rxoversize_g += 2409 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G); 2410 2411 stats->rx64octets_gb += 2412 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO); 2413 2414 stats->rx65to127octets_gb += 2415 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO); 2416 2417 stats->rx128to255octets_gb += 2418 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO); 2419 2420 stats->rx256to511octets_gb += 2421 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO); 2422 2423 stats->rx512to1023octets_gb += 2424 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO); 2425 2426 stats->rx1024tomaxoctets_gb += 2427 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO); 2428 2429 stats->rxunicastframes_g += 2430 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO); 2431 2432 stats->rxlengtherror += 2433 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO); 2434 2435 stats->rxoutofrangetype += 2436 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO); 2437 2438 stats->rxpauseframes += 2439 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO); 2440 2441 stats->rxfifooverflow += 2442 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO); 2443 2444 stats->rxvlanframes_gb += 2445 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO); 2446 2447 stats->rxwatchdogerror += 2448 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR); 2449 2450 /* Un-freeze counters */ 2451 XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0); 2452 } 2453 2454 static void 2455 xgbe_config_mmc(struct xgbe_prv_data *pdata) 2456 { 2457 /* Set counters to reset on read */ 2458 XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1); 2459 2460 /* Reset the counters */ 2461 XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1); 2462 } 2463 2464 static void 2465 xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue) 2466 { 2467 unsigned int tx_status; 2468 unsigned long tx_timeout; 2469 2470 /* The Tx engine cannot be stopped if it is actively processing 2471 * packets. Wait for the Tx queue to empty the Tx fifo. Don't 2472 * wait forever though... 2473 */ 2474 tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz); 2475 while (ticks < tx_timeout) { 2476 tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR); 2477 if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) && 2478 (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0)) 2479 break; 2480 2481 DELAY(500); 2482 } 2483 2484 if (ticks >= tx_timeout) 2485 axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n", 2486 queue); 2487 } 2488 2489 static void 2490 xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue) 2491 { 2492 unsigned int tx_dsr, tx_pos, tx_qidx; 2493 unsigned int tx_status; 2494 unsigned long tx_timeout; 2495 2496 if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20) 2497 return (xgbe_txq_prepare_tx_stop(pdata, queue)); 2498 2499 /* Calculate the status register to read and the position within */ 2500 if (queue < DMA_DSRX_FIRST_QUEUE) { 2501 tx_dsr = DMA_DSR0; 2502 tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START; 2503 } else { 2504 tx_qidx = queue - DMA_DSRX_FIRST_QUEUE; 2505 2506 tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC); 2507 tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) + 2508 DMA_DSRX_TPS_START; 2509 } 2510 2511 /* The Tx engine cannot be stopped if it is actively processing 2512 * descriptors. Wait for the Tx engine to enter the stopped or 2513 * suspended state. Don't wait forever though... 2514 */ 2515 tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz); 2516 while (ticks < tx_timeout) { 2517 tx_status = XGMAC_IOREAD(pdata, tx_dsr); 2518 tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH); 2519 if ((tx_status == DMA_TPS_STOPPED) || 2520 (tx_status == DMA_TPS_SUSPENDED)) 2521 break; 2522 2523 DELAY(500); 2524 } 2525 2526 if (ticks >= tx_timeout) 2527 axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n", 2528 queue); 2529 } 2530 2531 static void 2532 xgbe_enable_tx(struct xgbe_prv_data *pdata) 2533 { 2534 unsigned int i; 2535 2536 /* Enable each Tx DMA channel */ 2537 for (i = 0; i < pdata->channel_count; i++) { 2538 if (!pdata->channel[i]->tx_ring) 2539 break; 2540 2541 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1); 2542 } 2543 2544 /* Enable each Tx queue */ 2545 for (i = 0; i < pdata->tx_q_count; i++) 2546 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 2547 MTL_Q_ENABLED); 2548 2549 /* Enable MAC Tx */ 2550 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1); 2551 } 2552 2553 static void 2554 xgbe_disable_tx(struct xgbe_prv_data *pdata) 2555 { 2556 unsigned int i; 2557 2558 /* Prepare for Tx DMA channel stop */ 2559 for (i = 0; i < pdata->tx_q_count; i++) 2560 xgbe_prepare_tx_stop(pdata, i); 2561 2562 /* Disable MAC Tx */ 2563 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0); 2564 2565 /* Disable each Tx queue */ 2566 for (i = 0; i < pdata->tx_q_count; i++) 2567 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0); 2568 2569 /* Disable each Tx DMA channel */ 2570 for (i = 0; i < pdata->channel_count; i++) { 2571 if (!pdata->channel[i]->tx_ring) 2572 break; 2573 2574 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0); 2575 } 2576 } 2577 2578 static void 2579 xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue) 2580 { 2581 unsigned int rx_status; 2582 unsigned long rx_timeout; 2583 2584 /* The Rx engine cannot be stopped if it is actively processing 2585 * packets. Wait for the Rx queue to empty the Rx fifo. Don't 2586 * wait forever though... 2587 */ 2588 rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz); 2589 while (ticks < rx_timeout) { 2590 rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR); 2591 if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) && 2592 (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0)) 2593 break; 2594 2595 DELAY(500); 2596 } 2597 2598 if (ticks >= rx_timeout) 2599 axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n", 2600 queue); 2601 } 2602 2603 static void 2604 xgbe_enable_rx(struct xgbe_prv_data *pdata) 2605 { 2606 unsigned int reg_val, i; 2607 2608 /* Enable each Rx DMA channel */ 2609 for (i = 0; i < pdata->channel_count; i++) { 2610 if (!pdata->channel[i]->rx_ring) 2611 break; 2612 2613 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1); 2614 } 2615 2616 /* Enable each Rx queue */ 2617 reg_val = 0; 2618 for (i = 0; i < pdata->rx_q_count; i++) 2619 reg_val |= (0x02 << (i << 1)); 2620 XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val); 2621 2622 /* Enable MAC Rx */ 2623 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1); 2624 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1); 2625 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1); 2626 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1); 2627 } 2628 2629 static void 2630 xgbe_disable_rx(struct xgbe_prv_data *pdata) 2631 { 2632 unsigned int i; 2633 2634 /* Disable MAC Rx */ 2635 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0); 2636 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0); 2637 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0); 2638 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0); 2639 2640 /* Prepare for Rx DMA channel stop */ 2641 for (i = 0; i < pdata->rx_q_count; i++) 2642 xgbe_prepare_rx_stop(pdata, i); 2643 2644 /* Disable each Rx queue */ 2645 XGMAC_IOWRITE(pdata, MAC_RQC0R, 0); 2646 2647 /* Disable each Rx DMA channel */ 2648 for (i = 0; i < pdata->channel_count; i++) { 2649 if (!pdata->channel[i]->rx_ring) 2650 break; 2651 2652 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0); 2653 } 2654 } 2655 2656 static void 2657 xgbe_powerup_tx(struct xgbe_prv_data *pdata) 2658 { 2659 unsigned int i; 2660 2661 /* Enable each Tx DMA channel */ 2662 for (i = 0; i < pdata->channel_count; i++) { 2663 if (!pdata->channel[i]->tx_ring) 2664 break; 2665 2666 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1); 2667 } 2668 2669 /* Enable MAC Tx */ 2670 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1); 2671 } 2672 2673 static void 2674 xgbe_powerdown_tx(struct xgbe_prv_data *pdata) 2675 { 2676 unsigned int i; 2677 2678 /* Prepare for Tx DMA channel stop */ 2679 for (i = 0; i < pdata->tx_q_count; i++) 2680 xgbe_prepare_tx_stop(pdata, i); 2681 2682 /* Disable MAC Tx */ 2683 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0); 2684 2685 /* Disable each Tx DMA channel */ 2686 for (i = 0; i < pdata->channel_count; i++) { 2687 if (!pdata->channel[i]->tx_ring) 2688 break; 2689 2690 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0); 2691 } 2692 } 2693 2694 static void 2695 xgbe_powerup_rx(struct xgbe_prv_data *pdata) 2696 { 2697 unsigned int i; 2698 2699 /* Enable each Rx DMA channel */ 2700 for (i = 0; i < pdata->channel_count; i++) { 2701 if (!pdata->channel[i]->rx_ring) 2702 break; 2703 2704 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1); 2705 } 2706 } 2707 2708 static void 2709 xgbe_powerdown_rx(struct xgbe_prv_data *pdata) 2710 { 2711 unsigned int i; 2712 2713 /* Disable each Rx DMA channel */ 2714 for (i = 0; i < pdata->channel_count; i++) { 2715 if (!pdata->channel[i]->rx_ring) 2716 break; 2717 2718 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0); 2719 } 2720 } 2721 2722 static int 2723 xgbe_init(struct xgbe_prv_data *pdata) 2724 { 2725 struct xgbe_desc_if *desc_if = &pdata->desc_if; 2726 int ret; 2727 2728 /* Flush Tx queues */ 2729 ret = xgbe_flush_tx_queues(pdata); 2730 if (ret) { 2731 axgbe_error("error flushing TX queues\n"); 2732 return (ret); 2733 } 2734 2735 /* 2736 * Initialize DMA related features 2737 */ 2738 xgbe_config_dma_bus(pdata); 2739 xgbe_config_dma_cache(pdata); 2740 xgbe_config_osp_mode(pdata); 2741 xgbe_config_pbl_val(pdata); 2742 xgbe_config_rx_coalesce(pdata); 2743 xgbe_config_tx_coalesce(pdata); 2744 xgbe_config_rx_buffer_size(pdata); 2745 xgbe_config_tso_mode(pdata); 2746 xgbe_config_sph_mode(pdata); 2747 xgbe_config_rss(pdata); 2748 desc_if->wrapper_tx_desc_init(pdata); 2749 desc_if->wrapper_rx_desc_init(pdata); 2750 xgbe_enable_dma_interrupts(pdata); 2751 2752 /* 2753 * Initialize MTL related features 2754 */ 2755 xgbe_config_mtl_mode(pdata); 2756 xgbe_config_queue_mapping(pdata); 2757 xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode); 2758 xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode); 2759 xgbe_config_tx_threshold(pdata, pdata->tx_threshold); 2760 xgbe_config_rx_threshold(pdata, pdata->rx_threshold); 2761 xgbe_config_tx_fifo_size(pdata); 2762 xgbe_config_rx_fifo_size(pdata); 2763 /*TODO: Error Packet and undersized good Packet forwarding enable 2764 (FEP and FUP) 2765 */ 2766 xgbe_enable_mtl_interrupts(pdata); 2767 2768 /* 2769 * Initialize MAC related features 2770 */ 2771 xgbe_config_mac_address(pdata); 2772 xgbe_config_rx_mode(pdata); 2773 xgbe_config_jumbo_enable(pdata); 2774 xgbe_config_flow_control(pdata); 2775 xgbe_config_mac_speed(pdata); 2776 xgbe_config_checksum_offload(pdata); 2777 xgbe_config_vlan_support(pdata); 2778 xgbe_config_mmc(pdata); 2779 xgbe_enable_mac_interrupts(pdata); 2780 2781 return (0); 2782 } 2783 2784 void 2785 xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if) 2786 { 2787 2788 hw_if->tx_complete = xgbe_tx_complete; 2789 2790 hw_if->set_mac_address = xgbe_set_mac_address; 2791 hw_if->config_rx_mode = xgbe_config_rx_mode; 2792 2793 hw_if->enable_rx_csum = xgbe_enable_rx_csum; 2794 hw_if->disable_rx_csum = xgbe_disable_rx_csum; 2795 2796 hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping; 2797 hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping; 2798 hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering; 2799 hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering; 2800 hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table; 2801 2802 hw_if->read_mmd_regs = xgbe_read_mmd_regs; 2803 hw_if->write_mmd_regs = xgbe_write_mmd_regs; 2804 2805 hw_if->set_speed = xgbe_set_speed; 2806 2807 hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode; 2808 hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs; 2809 hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs; 2810 2811 hw_if->set_gpio = xgbe_set_gpio; 2812 hw_if->clr_gpio = xgbe_clr_gpio; 2813 2814 hw_if->enable_tx = xgbe_enable_tx; 2815 hw_if->disable_tx = xgbe_disable_tx; 2816 hw_if->enable_rx = xgbe_enable_rx; 2817 hw_if->disable_rx = xgbe_disable_rx; 2818 2819 hw_if->powerup_tx = xgbe_powerup_tx; 2820 hw_if->powerdown_tx = xgbe_powerdown_tx; 2821 hw_if->powerup_rx = xgbe_powerup_rx; 2822 hw_if->powerdown_rx = xgbe_powerdown_rx; 2823 2824 hw_if->dev_read = xgbe_dev_read; 2825 hw_if->enable_int = xgbe_enable_int; 2826 hw_if->disable_int = xgbe_disable_int; 2827 hw_if->init = xgbe_init; 2828 hw_if->exit = xgbe_exit; 2829 2830 /* Descriptor related Sequences have to be initialized here */ 2831 hw_if->tx_desc_init = xgbe_tx_desc_init; 2832 hw_if->rx_desc_init = xgbe_rx_desc_init; 2833 hw_if->tx_desc_reset = xgbe_tx_desc_reset; 2834 hw_if->is_last_desc = xgbe_is_last_desc; 2835 hw_if->is_context_desc = xgbe_is_context_desc; 2836 2837 /* For FLOW ctrl */ 2838 hw_if->config_tx_flow_control = xgbe_config_tx_flow_control; 2839 hw_if->config_rx_flow_control = xgbe_config_rx_flow_control; 2840 2841 /* For RX coalescing */ 2842 hw_if->config_rx_coalesce = xgbe_config_rx_coalesce; 2843 hw_if->config_tx_coalesce = xgbe_config_tx_coalesce; 2844 hw_if->usec_to_riwt = xgbe_usec_to_riwt; 2845 hw_if->riwt_to_usec = xgbe_riwt_to_usec; 2846 2847 /* For RX and TX threshold config */ 2848 hw_if->config_rx_threshold = xgbe_config_rx_threshold; 2849 hw_if->config_tx_threshold = xgbe_config_tx_threshold; 2850 2851 /* For RX and TX Store and Forward Mode config */ 2852 hw_if->config_rsf_mode = xgbe_config_rsf_mode; 2853 hw_if->config_tsf_mode = xgbe_config_tsf_mode; 2854 2855 /* For TX DMA Operating on Second Frame config */ 2856 hw_if->config_osp_mode = xgbe_config_osp_mode; 2857 2858 /* For MMC statistics support */ 2859 hw_if->tx_mmc_int = xgbe_tx_mmc_int; 2860 hw_if->rx_mmc_int = xgbe_rx_mmc_int; 2861 hw_if->read_mmc_stats = xgbe_read_mmc_stats; 2862 2863 /* For Receive Side Scaling */ 2864 hw_if->enable_rss = xgbe_enable_rss; 2865 hw_if->disable_rss = xgbe_disable_rss; 2866 hw_if->set_rss_hash_key = xgbe_set_rss_hash_key; 2867 hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table; 2868 } 2869