xref: /freebsd/sys/dev/axgbe/xgbe-dev.c (revision 2fec3ae8964c8864a9e75d6a2f0ed137ede489a7)
1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc.
5  *
6  * This file is available to you under your choice of the following two
7  * licenses:
8  *
9  * License 1: GPLv2
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Redistribution and use in source and binary forms, with or without
60  * modification, are permitted provided that the following conditions are met:
61  *     * Redistributions of source code must retain the above copyright
62  *       notice, this list of conditions and the following disclaimer.
63  *     * Redistributions in binary form must reproduce the above copyright
64  *       notice, this list of conditions and the following disclaimer in the
65  *       documentation and/or other materials provided with the distribution.
66  *     * Neither the name of Advanced Micro Devices, Inc. nor the
67  *       names of its contributors may be used to endorse or promote products
68  *       derived from this software without specific prior written permission.
69  *
70  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
71  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
72  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
73  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
74  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
75  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
76  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
77  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
78  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
79  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
80  *
81  * This file incorporates work covered by the following copyright and
82  * permission notice:
83  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
84  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
85  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
86  *     and you.
87  *
88  *     The Software IS NOT an item of Licensed Software or Licensed Product
89  *     under any End User Software License Agreement or Agreement for Licensed
90  *     Product with Synopsys or any supplement thereto.  Permission is hereby
91  *     granted, free of charge, to any person obtaining a copy of this software
92  *     annotated with this license and the Software, to deal in the Software
93  *     without restriction, including without limitation the rights to use,
94  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
95  *     of the Software, and to permit persons to whom the Software is furnished
96  *     to do so, subject to the following conditions:
97  *
98  *     The above copyright notice and this permission notice shall be included
99  *     in all copies or substantial portions of the Software.
100  *
101  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
102  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
103  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
104  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
105  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
106  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
107  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
108  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
109  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
110  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
111  *     THE POSSIBILITY OF SUCH DAMAGE.
112  */
113 
114 #include <sys/cdefs.h>
115 __FBSDID("$FreeBSD$");
116 
117 #include "xgbe.h"
118 #include "xgbe-common.h"
119 
120 #include <net/if_dl.h>
121 
122 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
123 {
124 	return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
125 }
126 
127 static unsigned int
128 xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec)
129 {
130 	unsigned long rate;
131 	unsigned int ret;
132 
133 	rate = pdata->sysclk_rate;
134 
135 	/*
136 	 * Convert the input usec value to the watchdog timer value. Each
137 	 * watchdog timer value is equivalent to 256 clock cycles.
138 	 * Calculate the required value as:
139 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
140 	 */
141 	ret = (usec * (rate / 1000000)) / 256;
142 
143 	return (ret);
144 }
145 
146 static unsigned int
147 xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt)
148 {
149 	unsigned long rate;
150 	unsigned int ret;
151 
152 	rate = pdata->sysclk_rate;
153 
154 	/*
155 	 * Convert the input watchdog timer value to the usec value. Each
156 	 * watchdog timer value is equivalent to 256 clock cycles.
157 	 * Calculate the required value as:
158 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
159 	 */
160 	ret = (riwt * 256) / (rate / 1000000);
161 
162 	return (ret);
163 }
164 
165 static int
166 xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
167 {
168 	unsigned int pblx8, pbl;
169 	unsigned int i;
170 
171 	pblx8 = DMA_PBL_X8_DISABLE;
172 	pbl = pdata->pbl;
173 
174 	if (pdata->pbl > 32) {
175 		pblx8 = DMA_PBL_X8_ENABLE;
176 		pbl >>= 3;
177 	}
178 
179 	for (i = 0; i < pdata->channel_count; i++) {
180 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
181 		    pblx8);
182 
183 		if (pdata->channel[i]->tx_ring)
184 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
185 			    PBL, pbl);
186 
187 		if (pdata->channel[i]->rx_ring)
188 			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
189 			    PBL, pbl);
190 	}
191 
192 	return (0);
193 }
194 
195 static int
196 xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
197 {
198 	unsigned int i;
199 
200 	for (i = 0; i < pdata->channel_count; i++) {
201 		if (!pdata->channel[i]->tx_ring)
202 			break;
203 
204 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
205 		    pdata->tx_osp_mode);
206 	}
207 
208 	return (0);
209 }
210 
211 static int
212 xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
213 {
214 	unsigned int i;
215 
216 	for (i = 0; i < pdata->rx_q_count; i++)
217 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
218 
219 	return (0);
220 }
221 
222 static int
223 xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
224 {
225 	unsigned int i;
226 
227 	for (i = 0; i < pdata->tx_q_count; i++)
228 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
229 
230 	return (0);
231 }
232 
233 static int
234 xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
235 {
236 	unsigned int i;
237 
238 	for (i = 0; i < pdata->rx_q_count; i++)
239 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
240 
241 	return (0);
242 }
243 
244 static int
245 xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
246 {
247 	unsigned int i;
248 
249 	for (i = 0; i < pdata->tx_q_count; i++)
250 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
251 
252 	return (0);
253 }
254 
255 static int
256 xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
257 {
258 	unsigned int i;
259 
260 	for (i = 0; i < pdata->channel_count; i++) {
261 		if (!pdata->channel[i]->rx_ring)
262 			break;
263 
264 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
265 		    pdata->rx_riwt);
266 	}
267 
268 	return (0);
269 }
270 
271 static int
272 xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
273 {
274 	return (0);
275 }
276 
277 static void
278 xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
279 {
280 	unsigned int i;
281 
282 	for (i = 0; i < pdata->channel_count; i++) {
283 		if (!pdata->channel[i]->rx_ring)
284 			break;
285 
286 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
287 		    pdata->rx_buf_size);
288 	}
289 }
290 
291 static void
292 xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
293 {
294 	unsigned int i;
295 
296 	for (i = 0; i < pdata->channel_count; i++) {
297 		if (!pdata->channel[i]->tx_ring)
298 			break;
299 
300 		axgbe_printf(0, "Enabling TSO in channel %d\n", i);
301 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
302 	}
303 }
304 
305 static void
306 xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
307 {
308 	unsigned int i;
309 
310 	for (i = 0; i < pdata->channel_count; i++) {
311 		if (!pdata->channel[i]->rx_ring)
312 			break;
313 
314 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
315 	}
316 
317 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
318 }
319 
320 static int
321 xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
322     unsigned int index, unsigned int val)
323 {
324 	unsigned int wait;
325 	int ret = 0;
326 
327 	mtx_lock(&pdata->rss_mutex);
328 
329 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
330 		ret = -EBUSY;
331 		goto unlock;
332 	}
333 
334 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
335 
336 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
337 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
338 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
339 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
340 
341 	wait = 1000;
342 	while (wait--) {
343 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
344 			goto unlock;
345 
346 		DELAY(1000);
347 	}
348 
349 	ret = -EBUSY;
350 
351 unlock:
352 	mtx_unlock(&pdata->rss_mutex);
353 
354 	return (ret);
355 }
356 
357 static int
358 xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
359 {
360 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t);
361 	unsigned int *key = (unsigned int *)&pdata->rss_key;
362 	int ret;
363 
364 	while (key_regs--) {
365 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
366 		    key_regs, *key++);
367 		if (ret)
368 			return (ret);
369 	}
370 
371 	return (0);
372 }
373 
374 static int
375 xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
376 {
377 	unsigned int i;
378 	int ret;
379 
380 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
381 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i,
382 		    pdata->rss_table[i]);
383 		if (ret)
384 			return (ret);
385 	}
386 
387 	return (0);
388 }
389 
390 static int
391 xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key)
392 {
393 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
394 
395 	return (xgbe_write_rss_hash_key(pdata));
396 }
397 
398 static int
399 xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table)
400 {
401 	unsigned int i;
402 
403 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
404 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
405 
406 	return (xgbe_write_rss_lookup_table(pdata));
407 }
408 
409 static int
410 xgbe_enable_rss(struct xgbe_prv_data *pdata)
411 {
412 	int ret;
413 
414 	if (!pdata->hw_feat.rss)
415 		return (-EOPNOTSUPP);
416 
417 	/* Program the hash key */
418 	ret = xgbe_write_rss_hash_key(pdata);
419 	if (ret)
420 		return (ret);
421 
422 	/* Program the lookup table */
423 	ret = xgbe_write_rss_lookup_table(pdata);
424 	if (ret)
425 		return (ret);
426 
427 	/* Set the RSS options */
428 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
429 
430 	/* Enable RSS */
431 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
432 
433 	axgbe_printf(0, "RSS Enabled\n");
434 
435 	return (0);
436 }
437 
438 static int
439 xgbe_disable_rss(struct xgbe_prv_data *pdata)
440 {
441 	if (!pdata->hw_feat.rss)
442 		return (-EOPNOTSUPP);
443 
444 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
445 
446 	axgbe_printf(0, "RSS Disabled\n");
447 
448 	return (0);
449 }
450 
451 static void
452 xgbe_config_rss(struct xgbe_prv_data *pdata)
453 {
454 	int ret;
455 
456 	if (!pdata->hw_feat.rss)
457 		return;
458 
459 	/* Check if the interface has RSS capability */
460 	if (pdata->enable_rss)
461 		ret = xgbe_enable_rss(pdata);
462 	else
463 		ret = xgbe_disable_rss(pdata);
464 
465 	if (ret)
466 		axgbe_error("error configuring RSS, RSS disabled\n");
467 }
468 
469 static int
470 xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
471 {
472 	unsigned int max_q_count, q_count;
473 	unsigned int reg, reg_val;
474 	unsigned int i;
475 
476 	/* Clear MTL flow control */
477 	for (i = 0; i < pdata->rx_q_count; i++)
478 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
479 
480 	/* Clear MAC flow control */
481 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
482 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
483 	reg = MAC_Q0TFCR;
484 	for (i = 0; i < q_count; i++) {
485 		reg_val = XGMAC_IOREAD(pdata, reg);
486 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
487 		XGMAC_IOWRITE(pdata, reg, reg_val);
488 
489 		reg += MAC_QTFCR_INC;
490 	}
491 
492 	return (0);
493 }
494 
495 static int
496 xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
497 {
498 	unsigned int max_q_count, q_count;
499 	unsigned int reg, reg_val;
500 	unsigned int i;
501 
502 	/* Set MTL flow control */
503 	for (i = 0; i < pdata->rx_q_count; i++) {
504 		unsigned int ehfc = 0;
505 
506 		if (pdata->rx_rfd[i]) {
507 			/* Flow control thresholds are established */
508 			/* TODO - enable pfc/ets support */
509 			ehfc = 1;
510 		}
511 
512 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
513 
514 		axgbe_printf(1, "flow control %s for RXq%u\n",
515 		    ehfc ? "enabled" : "disabled", i);
516 	}
517 
518 	/* Set MAC flow control */
519 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
520 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
521 	reg = MAC_Q0TFCR;
522 	for (i = 0; i < q_count; i++) {
523 		reg_val = XGMAC_IOREAD(pdata, reg);
524 
525 		/* Enable transmit flow control */
526 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
527 
528 		/* Set pause time */
529 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
530 
531 		XGMAC_IOWRITE(pdata, reg, reg_val);
532 
533 		reg += MAC_QTFCR_INC;
534 	}
535 
536 	return (0);
537 }
538 
539 static int
540 xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
541 {
542 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
543 
544 	return (0);
545 }
546 
547 static int
548 xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
549 {
550 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
551 
552 	return (0);
553 }
554 
555 static int
556 xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
557 {
558 	if (pdata->tx_pause)
559 		xgbe_enable_tx_flow_control(pdata);
560 	else
561 		xgbe_disable_tx_flow_control(pdata);
562 
563 	return (0);
564 }
565 
566 static int
567 xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
568 {
569 	if (pdata->rx_pause)
570 		xgbe_enable_rx_flow_control(pdata);
571 	else
572 		xgbe_disable_rx_flow_control(pdata);
573 
574 	return (0);
575 }
576 
577 static void
578 xgbe_config_flow_control(struct xgbe_prv_data *pdata)
579 {
580 	xgbe_config_tx_flow_control(pdata);
581 	xgbe_config_rx_flow_control(pdata);
582 
583 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0);
584 }
585 
586 static void
587 xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
588 {
589 	struct xgbe_channel *channel;
590 	unsigned int i, ver;
591 
592 	/* Set the interrupt mode if supported */
593 	if (pdata->channel_irq_mode)
594 		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
595 		    pdata->channel_irq_mode);
596 
597 	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
598 
599 	for (i = 0; i < pdata->channel_count; i++) {
600 		channel = pdata->channel[i];
601 
602 		/* Clear all the interrupts which are set */
603 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
604 				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
605 
606 		/* Clear all interrupt enable bits */
607 		channel->curr_ier = 0;
608 
609 		/* Enable following interrupts
610 		 *   NIE  - Normal Interrupt Summary Enable
611 		 *   AIE  - Abnormal Interrupt Summary Enable
612 		 *   FBEE - Fatal Bus Error Enable
613 		 */
614 		if (ver < 0x21) {
615 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
616 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
617 		} else {
618 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
619 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
620 		}
621 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
622 
623 		if (channel->tx_ring) {
624 			/* Enable the following Tx interrupts
625 			 *   TIE  - Transmit Interrupt Enable (unless using
626 			 *	  per channel interrupts in edge triggered
627 			 *	  mode)
628 			 */
629 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
630 				XGMAC_SET_BITS(channel->curr_ier,
631 					       DMA_CH_IER, TIE, 1);
632 		}
633 		if (channel->rx_ring) {
634 			/* Enable following Rx interrupts
635 			 *   RBUE - Receive Buffer Unavailable Enable
636 			 *   RIE  - Receive Interrupt Enable (unless using
637 			 *	  per channel interrupts in edge triggered
638 			 *	  mode)
639 			 */
640 			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
641 			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
642 				XGMAC_SET_BITS(channel->curr_ier,
643 					       DMA_CH_IER, RIE, 1);
644 		}
645 
646 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
647 	}
648 }
649 
650 static void
651 xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
652 {
653 	unsigned int mtl_q_isr;
654 	unsigned int q_count, i;
655 
656 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
657 	for (i = 0; i < q_count; i++) {
658 		/* Clear all the interrupts which are set */
659 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
660 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
661 
662 		/* No MTL interrupts to be enabled */
663 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
664 	}
665 }
666 
667 static void
668 xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
669 {
670 	unsigned int mac_ier = 0;
671 
672 	/* Enable Timestamp interrupt */
673 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
674 
675 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
676 
677 	/* Enable all counter interrupts */
678 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
679 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
680 
681 	/* Enable MDIO single command completion interrupt */
682 	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
683 }
684 
685 static int
686 xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
687 {
688 	unsigned int ss;
689 
690 	switch (speed) {
691 	case SPEED_1000:
692 		ss = 0x03;
693 		break;
694 	case SPEED_2500:
695 		ss = 0x02;
696 		break;
697 	case SPEED_10000:
698 		ss = 0x00;
699 		break;
700 	default:
701 		return (-EINVAL);
702 	}
703 
704 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
705 		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
706 
707 	return (0);
708 }
709 
710 static int
711 xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
712 {
713 	/* Put the VLAN tag in the Rx descriptor */
714 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
715 
716 	/* Don't check the VLAN type */
717 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
718 
719 	/* Check only C-TAG (0x8100) packets */
720 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
721 
722 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
723 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
724 
725 	/* Enable VLAN tag stripping */
726 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
727 
728 	axgbe_printf(0, "VLAN Stripping Enabled\n");
729 
730 	return (0);
731 }
732 
733 static int
734 xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
735 {
736 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
737 
738 	axgbe_printf(0, "VLAN Stripping Disabled\n");
739 
740 	return (0);
741 }
742 
743 static int
744 xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
745 {
746 	/* Enable VLAN filtering */
747 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
748 
749 	/* Enable VLAN Hash Table filtering */
750 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
751 
752 	/* Disable VLAN tag inverse matching */
753 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
754 
755 	/* Only filter on the lower 12-bits of the VLAN tag */
756 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
757 
758 	/* In order for the VLAN Hash Table filtering to be effective,
759 	 * the VLAN tag identifier in the VLAN Tag Register must not
760 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
761 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
762 	 * 1 will always pass filtering.
763 	 */
764 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
765 
766 	axgbe_printf(0, "VLAN filtering Enabled\n");
767 
768 	return (0);
769 }
770 
771 static int
772 xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
773 {
774 	/* Disable VLAN filtering */
775 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
776 
777 	axgbe_printf(0, "VLAN filtering Disabled\n");
778 
779 	return (0);
780 }
781 
782 static uint32_t
783 xgbe_vid_crc32_le(__le16 vid_le)
784 {
785 	uint32_t crc = ~0;
786 	uint32_t temp = 0;
787 	unsigned char *data = (unsigned char *)&vid_le;
788 	unsigned char data_byte = 0;
789 	int i, bits;
790 
791 	bits = get_bitmask_order(VLAN_VID_MASK);
792 	for (i = 0; i < bits; i++) {
793 		if ((i % 8) == 0)
794 			data_byte = data[i / 8];
795 
796 		temp = ((crc & 1) ^ data_byte) & 1;
797 		crc >>= 1;
798 		data_byte >>= 1;
799 
800 		if (temp)
801 			crc ^= CRC32_POLY_LE;
802 	}
803 
804 	return (crc);
805 }
806 
807 static int
808 xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
809 {
810 	uint32_t crc;
811 	uint16_t vid;
812 	uint16_t vlan_hash_table = 0;
813 	__le16 vid_le = 0;
814 
815 	axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__,
816 	    XGMAC_IOREAD(pdata, MAC_VLANHTR));
817 
818 	/* Generate the VLAN Hash Table value */
819 	for_each_set_bit(vid, pdata->active_vlans, VLAN_NVID) {
820 
821 		/* Get the CRC32 value of the VLAN ID */
822 		vid_le = cpu_to_le16(vid);
823 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
824 
825 		vlan_hash_table |= (1 << crc);
826 		axgbe_printf(1, "%s: vid 0x%x vid_le 0x%x crc 0x%x "
827 		    "vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc,
828 		    vlan_hash_table);
829 	}
830 
831 	/* Set the VLAN Hash Table filtering register */
832 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
833 
834 	axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__,
835 		XGMAC_IOREAD(pdata, MAC_VLANHTR));
836 
837 	return (0);
838 }
839 
840 static int
841 xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable)
842 {
843 	unsigned int val = enable ? 1 : 0;
844 
845 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
846 		return (0);
847 
848 	axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving");
849 
850 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
851 
852 	/* Hardware will still perform VLAN filtering in promiscuous mode */
853 	if (enable) {
854 		axgbe_printf(1, "Disabling rx vlan filtering\n");
855 		xgbe_disable_rx_vlan_filtering(pdata);
856 	} else {
857 		if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
858 			axgbe_printf(1, "Enabling rx vlan filtering\n");
859 			xgbe_enable_rx_vlan_filtering(pdata);
860 		}
861 	}
862 
863 	return (0);
864 }
865 
866 static int
867 xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable)
868 {
869 	unsigned int val = enable ? 1 : 0;
870 
871 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
872 		return (0);
873 
874 	axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving");
875 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
876 
877 	return (0);
878 }
879 
880 static void
881 xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg)
882 {
883 	unsigned int mac_addr_hi, mac_addr_lo;
884 	uint8_t *mac_addr;
885 
886 	mac_addr_lo = 0;
887 	mac_addr_hi = 0;
888 
889 	if (addr) {
890 		mac_addr = (uint8_t *)&mac_addr_lo;
891 		mac_addr[0] = addr[0];
892 		mac_addr[1] = addr[1];
893 		mac_addr[2] = addr[2];
894 		mac_addr[3] = addr[3];
895 		mac_addr = (uint8_t *)&mac_addr_hi;
896 		mac_addr[0] = addr[4];
897 		mac_addr[1] = addr[5];
898 
899 		axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg);
900 
901 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
902 	}
903 
904 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
905 	*mac_reg += MAC_MACA_INC;
906 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
907 	*mac_reg += MAC_MACA_INC;
908 }
909 
910 static void
911 xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
912 {
913 	unsigned int mac_reg;
914 	unsigned int addn_macs;
915 
916 	mac_reg = MAC_MACA1HR;
917 	addn_macs = pdata->hw_feat.addn_mac;
918 
919 	xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg);
920 	addn_macs--;
921 
922 	/* Clear remaining additional MAC address entries */
923 	while (addn_macs--)
924 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
925 }
926 
927 static int
928 xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
929 {
930 	/* TODO - add support to set mac hash table */
931 	xgbe_set_mac_addn_addrs(pdata);
932 
933 	return (0);
934 }
935 
936 static int
937 xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr)
938 {
939 	unsigned int mac_addr_hi, mac_addr_lo;
940 
941 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
942 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
943 		      (addr[1] <<  8) | (addr[0] <<  0);
944 
945 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
946 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
947 
948 	return (0);
949 }
950 
951 static int
952 xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
953 {
954 	unsigned int pr_mode, am_mode;
955 
956 	pr_mode = ((pdata->netdev->if_drv_flags & IFF_PPROMISC) != 0);
957 	am_mode = ((pdata->netdev->if_drv_flags & IFF_ALLMULTI) != 0);
958 
959 	xgbe_set_promiscuous_mode(pdata, pr_mode);
960 	xgbe_set_all_multicast_mode(pdata, am_mode);
961 
962 	xgbe_add_mac_addresses(pdata);
963 
964 	return (0);
965 }
966 
967 static int
968 xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
969 {
970 	unsigned int reg;
971 
972 	if (gpio > 15)
973 		return (-EINVAL);
974 
975 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
976 
977 	reg &= ~(1 << (gpio + 16));
978 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
979 
980 	return (0);
981 }
982 
983 static int
984 xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
985 {
986 	unsigned int reg;
987 
988 	if (gpio > 15)
989 		return (-EINVAL);
990 
991 	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
992 
993 	reg |= (1 << (gpio + 16));
994 	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
995 
996 	return (0);
997 }
998 
999 static int
1000 xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1001 {
1002 	unsigned long flags;
1003 	unsigned int mmd_address, index, offset;
1004 	int mmd_data;
1005 
1006 	if (mmd_reg & MII_ADDR_C45)
1007 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1008 	else
1009 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1010 
1011 	/* The PCS registers are accessed using mmio. The underlying
1012 	 * management interface uses indirect addressing to access the MMD
1013 	 * register sets. This requires accessing of the PCS register in two
1014 	 * phases, an address phase and a data phase.
1015 	 *
1016 	 * The mmio interface is based on 16-bit offsets and values. All
1017 	 * register offsets must therefore be adjusted by left shifting the
1018 	 * offset 1 bit and reading 16 bits of data.
1019 	 */
1020 	mmd_address <<= 1;
1021 	index = mmd_address & ~pdata->xpcs_window_mask;
1022 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1023 
1024 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1025 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1026 	mmd_data = XPCS16_IOREAD(pdata, offset);
1027 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1028 
1029 	return (mmd_data);
1030 }
1031 
1032 static void
1033 xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1034     int mmd_data)
1035 {
1036 	unsigned long flags;
1037 	unsigned int mmd_address, index, offset;
1038 
1039 	if (mmd_reg & MII_ADDR_C45)
1040 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1041 	else
1042 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1043 
1044 	/* The PCS registers are accessed using mmio. The underlying
1045 	 * management interface uses indirect addressing to access the MMD
1046 	 * register sets. This requires accessing of the PCS register in two
1047 	 * phases, an address phase and a data phase.
1048 	 *
1049 	 * The mmio interface is based on 16-bit offsets and values. All
1050 	 * register offsets must therefore be adjusted by left shifting the
1051 	 * offset 1 bit and writing 16 bits of data.
1052 	 */
1053 	mmd_address <<= 1;
1054 	index = mmd_address & ~pdata->xpcs_window_mask;
1055 	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1056 
1057 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1058 	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1059 	XPCS16_IOWRITE(pdata, offset, mmd_data);
1060 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1061 }
1062 
1063 static int
1064 xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1065 {
1066 	unsigned long flags;
1067 	unsigned int mmd_address;
1068 	int mmd_data;
1069 
1070 	if (mmd_reg & MII_ADDR_C45)
1071 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1072 	else
1073 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1074 
1075 	/* The PCS registers are accessed using mmio. The underlying APB3
1076 	 * management interface uses indirect addressing to access the MMD
1077 	 * register sets. This requires accessing of the PCS register in two
1078 	 * phases, an address phase and a data phase.
1079 	 *
1080 	 * The mmio interface is based on 32-bit offsets and values. All
1081 	 * register offsets must therefore be adjusted by left shifting the
1082 	 * offset 2 bits and reading 32 bits of data.
1083 	 */
1084 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1085 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1086 	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1087 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1088 
1089 	return (mmd_data);
1090 }
1091 
1092 static void
1093 xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1094     int mmd_data)
1095 {
1096 	unsigned int mmd_address;
1097 	unsigned long flags;
1098 
1099 	if (mmd_reg & MII_ADDR_C45)
1100 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1101 	else
1102 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1103 
1104 	/* The PCS registers are accessed using mmio. The underlying APB3
1105 	 * management interface uses indirect addressing to access the MMD
1106 	 * register sets. This requires accessing of the PCS register in two
1107 	 * phases, an address phase and a data phase.
1108 	 *
1109 	 * The mmio interface is based on 32-bit offsets and values. All
1110 	 * register offsets must therefore be adjusted by left shifting the
1111 	 * offset 2 bits and writing 32 bits of data.
1112 	 */
1113 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1114 	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1115 	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1116 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1117 }
1118 
1119 static int
1120 xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1121 {
1122 	switch (pdata->vdata->xpcs_access) {
1123 	case XGBE_XPCS_ACCESS_V1:
1124 		return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg));
1125 
1126 	case XGBE_XPCS_ACCESS_V2:
1127 	default:
1128 		return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg));
1129 	}
1130 }
1131 
1132 static void
1133 xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1134     int mmd_data)
1135 {
1136 	switch (pdata->vdata->xpcs_access) {
1137 	case XGBE_XPCS_ACCESS_V1:
1138 		return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data));
1139 
1140 	case XGBE_XPCS_ACCESS_V2:
1141 	default:
1142 		return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data));
1143 	}
1144 }
1145 
1146 static unsigned int
1147 xgbe_create_mdio_sca(int port, int reg)
1148 {
1149 	unsigned int mdio_sca, da;
1150 
1151 	da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1152 
1153 	mdio_sca = 0;
1154 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1155 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1156 	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1157 
1158 	return (mdio_sca);
1159 }
1160 
1161 static int
1162 xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg,
1163     uint16_t val)
1164 {
1165 	unsigned int mdio_sca, mdio_sccd;
1166 
1167 	mtx_lock_spin(&pdata->mdio_mutex);
1168 
1169 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1170 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1171 
1172 	mdio_sccd = 0;
1173 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1174 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1175 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1176 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1177 
1178 	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1179 	    EWOULDBLOCK) {
1180 		axgbe_error("%s: MDIO write error\n", __func__);
1181 		mtx_unlock_spin(&pdata->mdio_mutex);
1182 		return (-ETIMEDOUT);
1183 	}
1184 
1185 	mtx_unlock_spin(&pdata->mdio_mutex);
1186 	return (0);
1187 }
1188 
1189 static int
1190 xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg)
1191 {
1192 	unsigned int mdio_sca, mdio_sccd;
1193 
1194 	mtx_lock_spin(&pdata->mdio_mutex);
1195 
1196 	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1197 	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1198 
1199 	mdio_sccd = 0;
1200 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1201 	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1202 	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1203 
1204 	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1205 	    EWOULDBLOCK) {
1206 		axgbe_error("%s: MDIO read error\n", __func__);
1207 		mtx_unlock_spin(&pdata->mdio_mutex);
1208 		return (-ETIMEDOUT);
1209 	}
1210 
1211 	mtx_unlock_spin(&pdata->mdio_mutex);
1212 
1213 	return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA));
1214 }
1215 
1216 static int
1217 xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1218     enum xgbe_mdio_mode mode)
1219 {
1220 	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1221 
1222 	switch (mode) {
1223 	case XGBE_MDIO_MODE_CL22:
1224 		if (port > XGMAC_MAX_C22_PORT)
1225 			return (-EINVAL);
1226 		reg_val |= (1 << port);
1227 		break;
1228 	case XGBE_MDIO_MODE_CL45:
1229 		break;
1230 	default:
1231 		return (-EINVAL);
1232 	}
1233 
1234 	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1235 
1236 	return (0);
1237 }
1238 
1239 static int
1240 xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1241 {
1242 	return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN));
1243 }
1244 
1245 static int
1246 xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1247 {
1248 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1249 
1250 	axgbe_printf(0, "Receive checksum offload Disabled\n");
1251 	return (0);
1252 }
1253 
1254 static int
1255 xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1256 {
1257 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1258 
1259 	axgbe_printf(0, "Receive checksum offload Enabled\n");
1260 	return (0);
1261 }
1262 
1263 static void
1264 xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1265 {
1266 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1267 
1268 	/* Reset the Tx descriptor
1269 	 *   Set buffer 1 (lo) address to zero
1270 	 *   Set buffer 1 (hi) address to zero
1271 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1272 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1273 	 */
1274 	rdesc->desc0 = 0;
1275 	rdesc->desc1 = 0;
1276 	rdesc->desc2 = 0;
1277 	rdesc->desc3 = 0;
1278 
1279 	wmb();
1280 }
1281 
1282 static void
1283 xgbe_tx_desc_init(struct xgbe_channel *channel)
1284 {
1285 	struct xgbe_ring *ring = channel->tx_ring;
1286 	struct xgbe_ring_data *rdata;
1287 	int i;
1288 	int start_index = ring->cur;
1289 
1290 	/* Initialze all descriptors */
1291 	for (i = 0; i < ring->rdesc_count; i++) {
1292 		rdata = XGBE_GET_DESC_DATA(ring, i);
1293 
1294 		/* Initialize Tx descriptor */
1295 		xgbe_tx_desc_reset(rdata);
1296 	}
1297 
1298 	/* Update the total number of Tx descriptors */
1299 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1300 
1301 	/* Update the starting address of descriptor ring */
1302 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1303 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1304 	    upper_32_bits(rdata->rdata_paddr));
1305 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1306 	    lower_32_bits(rdata->rdata_paddr));
1307 }
1308 
1309 static void
1310 xgbe_rx_desc_init(struct xgbe_channel *channel)
1311 {
1312 	struct xgbe_ring *ring = channel->rx_ring;
1313 	struct xgbe_ring_data *rdata;
1314 	unsigned int start_index = ring->cur;
1315 
1316 	/*
1317 	 * Just set desc_count and the starting address of the desc list
1318 	 * here. Rest will be done as part of the txrx path.
1319 	 */
1320 
1321 	/* Update the total number of Rx descriptors */
1322 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1323 
1324 	/* Update the starting address of descriptor ring */
1325 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1326 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1327 	    upper_32_bits(rdata->rdata_paddr));
1328 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1329 	    lower_32_bits(rdata->rdata_paddr));
1330 }
1331 
1332 static int
1333 xgbe_dev_read(struct xgbe_channel *channel)
1334 {
1335 	struct xgbe_prv_data *pdata = channel->pdata;
1336 	struct xgbe_ring *ring = channel->rx_ring;
1337 	struct xgbe_ring_data *rdata;
1338 	struct xgbe_ring_desc *rdesc;
1339 	struct xgbe_packet_data *packet = &ring->packet_data;
1340 	unsigned int err, etlt, l34t;
1341 
1342 	axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur);
1343 
1344 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1345 	rdesc = rdata->rdesc;
1346 
1347 	/* Check for data availability */
1348 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1349 		return (1);
1350 
1351 	rmb();
1352 
1353 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1354 		/* TODO - Timestamp Context Descriptor */
1355 
1356 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1357 		    CONTEXT, 1);
1358 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1359 		    CONTEXT_NEXT, 0);
1360 		return (0);
1361 	}
1362 
1363 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1364 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1365 
1366 	/* Indicate if a Context Descriptor is next */
1367 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1368 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1369 		    CONTEXT_NEXT, 1);
1370 
1371 	/* Get the header length */
1372 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1373 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1374 		    FIRST, 1);
1375 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1376 		    RX_NORMAL_DESC2, HL);
1377 		if (rdata->rx.hdr_len)
1378 			pdata->ext_stats.rx_split_header_packets++;
1379 	} else
1380 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1381 		    FIRST, 0);
1382 
1383 	/* Get the RSS hash */
1384 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1385 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1386 		    RSS_HASH, 1);
1387 
1388 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1389 
1390 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1391 		switch (l34t) {
1392 		case RX_DESC3_L34T_IPV4_TCP:
1393 			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4;
1394 			break;
1395 		case RX_DESC3_L34T_IPV4_UDP:
1396 			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4;
1397 			break;
1398 		case RX_DESC3_L34T_IPV6_TCP:
1399 			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6;
1400 			break;
1401 		case RX_DESC3_L34T_IPV6_UDP:
1402 			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6;
1403 			break;
1404 		default:
1405 			packet->rss_hash_type = M_HASHTYPE_OPAQUE;
1406 			break;
1407 		}
1408 	}
1409 
1410 	/* Not all the data has been transferred for this packet */
1411 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1412 		/* This is not the last of the data for this packet */
1413 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1414 		    LAST, 0);
1415 		return (0);
1416 	}
1417 
1418 	/* This is the last of the data for this packet */
1419 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1420 	    LAST, 1);
1421 
1422 	/* Get the packet length */
1423 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1424 
1425 	/* Set checksum done indicator as appropriate */
1426 	/* TODO - add tunneling support */
1427 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1428 	    CSUM_DONE, 1);
1429 
1430 	/* Check for errors (only valid in last descriptor) */
1431 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1432 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1433 	axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt);
1434 
1435 	if (!err || !etlt) {
1436 		/* No error if err is 0 or etlt is 0 */
1437 		if (etlt == 0x09) {
1438 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1439 			    VLAN_CTAG, 1);
1440 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1441 			    RX_NORMAL_DESC0, OVT);
1442 			axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag);
1443 		}
1444 	} else {
1445 		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
1446 		    RX_PACKET_ATTRIBUTES, TNP);
1447 
1448 		if ((etlt == 0x05) || (etlt == 0x06)) {
1449 			axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n",
1450 			    __func__, l34t, err, etlt);
1451 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1452 			    CSUM_DONE, 0);
1453 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1454 			    TNPCSUM_DONE, 0);
1455 			pdata->ext_stats.rx_csum_errors++;
1456 		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
1457 			axgbe_printf(1, "%s: err2  l34t %d err 0x%x etlt 0x%x\n",
1458 			    __func__, l34t, err, etlt);
1459 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1460 			    CSUM_DONE, 0);
1461 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1462 			    TNPCSUM_DONE, 0);
1463 			pdata->ext_stats.rx_vxlan_csum_errors++;
1464 		} else {
1465 			axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n",
1466 			    __func__, tnp, l34t, err, etlt);
1467 			axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n",
1468 			    __func__, channel->queue_index,
1469 			    XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
1470 		 	    XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
1471 			axgbe_printf(1, "%s: ring cur %d dirty %d\n",
1472 			    __func__, ring->cur, ring->dirty);
1473 			axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n",
1474 			    __func__, rdesc->desc0, rdesc->desc1, rdesc->desc2,
1475 			    rdesc->desc3);
1476 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1477 			    FRAME, 1);
1478 		}
1479 	}
1480 
1481 	axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n",
1482 	    channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur);
1483 
1484 	return (0);
1485 }
1486 
1487 static int
1488 xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1489 {
1490 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1491 	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT));
1492 }
1493 
1494 static int
1495 xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1496 {
1497 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1498 	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD));
1499 }
1500 
1501 static int
1502 xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1503 {
1504 	struct xgbe_prv_data *pdata = channel->pdata;
1505 
1506 	axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n",
1507 	    channel->curr_ier);
1508 
1509 	switch (int_id) {
1510 	case XGMAC_INT_DMA_CH_SR_TI:
1511 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1512 		break;
1513 	case XGMAC_INT_DMA_CH_SR_TPS:
1514 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
1515 		break;
1516 	case XGMAC_INT_DMA_CH_SR_TBU:
1517 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
1518 		break;
1519 	case XGMAC_INT_DMA_CH_SR_RI:
1520 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1521 		break;
1522 	case XGMAC_INT_DMA_CH_SR_RBU:
1523 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
1524 		break;
1525 	case XGMAC_INT_DMA_CH_SR_RPS:
1526 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
1527 		break;
1528 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1529 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1530 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1531 		break;
1532 	case XGMAC_INT_DMA_CH_SR_FBE:
1533 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
1534 		break;
1535 	case XGMAC_INT_DMA_ALL:
1536 		channel->curr_ier |= channel->saved_ier;
1537 		break;
1538 	default:
1539 		return (-1);
1540 	}
1541 
1542 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1543 
1544 	axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n",
1545 	    channel->curr_ier);
1546 
1547 	return (0);
1548 }
1549 
1550 static int
1551 xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1552 {
1553 	struct xgbe_prv_data *pdata = channel->pdata;
1554 
1555 	axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n",
1556 	    channel->curr_ier);
1557 
1558 	switch (int_id) {
1559 	case XGMAC_INT_DMA_CH_SR_TI:
1560 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1561 		break;
1562 	case XGMAC_INT_DMA_CH_SR_TPS:
1563 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
1564 		break;
1565 	case XGMAC_INT_DMA_CH_SR_TBU:
1566 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
1567 		break;
1568 	case XGMAC_INT_DMA_CH_SR_RI:
1569 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1570 		break;
1571 	case XGMAC_INT_DMA_CH_SR_RBU:
1572 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
1573 		break;
1574 	case XGMAC_INT_DMA_CH_SR_RPS:
1575 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
1576 		break;
1577 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1578 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1579 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1580 		break;
1581 	case XGMAC_INT_DMA_CH_SR_FBE:
1582 		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
1583 		break;
1584 	case XGMAC_INT_DMA_ALL:
1585 		channel->saved_ier = channel->curr_ier;
1586 		channel->curr_ier = 0;
1587 		break;
1588 	default:
1589 		return (-1);
1590 	}
1591 
1592 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1593 
1594 	axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n",
1595 	    channel->curr_ier);
1596 
1597 	return (0);
1598 }
1599 
1600 static int
1601 __xgbe_exit(struct xgbe_prv_data *pdata)
1602 {
1603 	unsigned int count = 2000;
1604 
1605 	/* Issue a software reset */
1606 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1607 	DELAY(10);
1608 
1609 	/* Poll Until Poll Condition */
1610 	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1611 		DELAY(500);
1612 
1613 	if (!count)
1614 		return (-EBUSY);
1615 
1616 	return (0);
1617 }
1618 
1619 static int
1620 xgbe_exit(struct xgbe_prv_data *pdata)
1621 {
1622 	int ret;
1623 
1624 	/* To guard against possible incorrectly generated interrupts,
1625 	 * issue the software reset twice.
1626 	 */
1627 	ret = __xgbe_exit(pdata);
1628 	if (ret) {
1629 		axgbe_error("%s: exit error %d\n", __func__, ret);
1630 		return (ret);
1631 	}
1632 
1633 	return (__xgbe_exit(pdata));
1634 }
1635 
1636 static int
1637 xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1638 {
1639 	unsigned int i, count;
1640 
1641 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1642 		return (0);
1643 
1644 	for (i = 0; i < pdata->tx_q_count; i++)
1645 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1646 
1647 	/* Poll Until Poll Condition */
1648 	for (i = 0; i < pdata->tx_q_count; i++) {
1649 		count = 2000;
1650 		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
1651 							MTL_Q_TQOMR, FTQ))
1652 			DELAY(500);
1653 
1654 		if (!count)
1655 			return (-EBUSY);
1656 	}
1657 
1658 	return (0);
1659 }
1660 
1661 static void
1662 xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1663 {
1664 	unsigned int sbmr;
1665 
1666 	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
1667 
1668 	/* Set enhanced addressing mode */
1669 	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
1670 
1671 	/* Set the System Bus mode */
1672 	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
1673 	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
1674 	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
1675 	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
1676 	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
1677 
1678 	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
1679 
1680 	/* Set descriptor fetching threshold */
1681 	if (pdata->vdata->tx_desc_prefetch)
1682 		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
1683 		    pdata->vdata->tx_desc_prefetch);
1684 
1685 	if (pdata->vdata->rx_desc_prefetch)
1686 		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
1687 		    pdata->vdata->rx_desc_prefetch);
1688 }
1689 
1690 static void
1691 xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1692 {
1693 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
1694 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
1695 	if (pdata->awarcr)
1696 		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
1697 }
1698 
1699 static void
1700 xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1701 {
1702 	unsigned int i;
1703 
1704 	/* Set Tx to weighted round robin scheduling algorithm */
1705 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1706 
1707 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
1708 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1709 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1710 		    MTL_TSA_ETS);
1711 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1712 	}
1713 
1714 	/* Set Rx to strict priority algorithm */
1715 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
1716 }
1717 
1718 static void
1719 xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
1720     unsigned int queue, unsigned int q_fifo_size)
1721 {
1722 	unsigned int frame_fifo_size;
1723 	unsigned int rfa, rfd;
1724 
1725 	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
1726 	axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n",
1727 	    __func__, queue, q_fifo_size, frame_fifo_size);
1728 
1729 	/* TODO - add pfc/ets related support */
1730 
1731 	/* This path deals with just maximum frame sizes which are
1732 	 * limited to a jumbo frame of 9,000 (plus headers, etc.)
1733 	 * so we can never exceed the maximum allowable RFA/RFD
1734 	 * values.
1735 	 */
1736 	if (q_fifo_size <= 2048) {
1737 		/* rx_rfd to zero to signal no flow control */
1738 		pdata->rx_rfa[queue] = 0;
1739 		pdata->rx_rfd[queue] = 0;
1740 		return;
1741 	}
1742 
1743 	if (q_fifo_size <= 4096) {
1744 		/* Between 2048 and 4096 */
1745 		pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
1746 		pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
1747 		return;
1748 	}
1749 
1750 	if (q_fifo_size <= frame_fifo_size) {
1751 		/* Between 4096 and max-frame */
1752 		pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
1753 		pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
1754 		return;
1755 	}
1756 
1757 	if (q_fifo_size <= (frame_fifo_size * 3)) {
1758 		/* Between max-frame and 3 max-frames,
1759 		 * trigger if we get just over a frame of data and
1760 		 * resume when we have just under half a frame left.
1761 		 */
1762 		rfa = q_fifo_size - frame_fifo_size;
1763 		rfd = rfa + (frame_fifo_size / 2);
1764 	} else {
1765 		/* Above 3 max-frames - trigger when just over
1766 		 * 2 frames of space available
1767 		 */
1768 		rfa = frame_fifo_size * 2;
1769 		rfa += XGMAC_FLOW_CONTROL_UNIT;
1770 		rfd = rfa + frame_fifo_size;
1771 	}
1772 
1773 	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
1774 	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
1775 	axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__,
1776 	    queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]);
1777 }
1778 
1779 static void
1780 xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
1781     unsigned int *fifo)
1782 {
1783 	unsigned int q_fifo_size;
1784 	unsigned int i;
1785 
1786 	for (i = 0; i < pdata->rx_q_count; i++) {
1787 		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
1788 
1789 		axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n",
1790 		    __func__, i, fifo[i], q_fifo_size);
1791 		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
1792 	}
1793 }
1794 
1795 static void
1796 xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
1797 {
1798 	unsigned int i;
1799 
1800 	for (i = 0; i < pdata->rx_q_count; i++) {
1801 		axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i,
1802 		    pdata->rx_rfa[i], pdata->rx_rfd[i]);
1803 
1804 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
1805 				       pdata->rx_rfa[i]);
1806 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
1807 				       pdata->rx_rfd[i]);
1808 
1809 		axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__,
1810 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
1811 	}
1812 }
1813 
1814 static unsigned int
1815 xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
1816 {
1817 	/* The configured value may not be the actual amount of fifo RAM */
1818 	return (min_t(unsigned int, pdata->tx_max_fifo_size,
1819 	    pdata->hw_feat.tx_fifo_size));
1820 }
1821 
1822 static unsigned int
1823 xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
1824 {
1825 	/* The configured value may not be the actual amount of fifo RAM */
1826 	return (min_t(unsigned int, pdata->rx_max_fifo_size,
1827 	    pdata->hw_feat.rx_fifo_size));
1828 }
1829 
1830 static void
1831 xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count,
1832     unsigned int *fifo)
1833 {
1834 	unsigned int q_fifo_size;
1835 	unsigned int p_fifo;
1836 	unsigned int i;
1837 
1838 	q_fifo_size = fifo_size / queue_count;
1839 
1840 	/* Calculate the fifo setting by dividing the queue's fifo size
1841 	 * by the fifo allocation increment (with 0 representing the
1842 	 * base allocation increment so decrement the result by 1).
1843 	 */
1844 	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
1845 	if (p_fifo)
1846 		p_fifo--;
1847 
1848 	/* Distribute the fifo equally amongst the queues */
1849 	for (i = 0; i < queue_count; i++)
1850 		fifo[i] = p_fifo;
1851 }
1852 
1853 static unsigned int
1854 xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count,
1855     unsigned int *fifo)
1856 {
1857 	unsigned int i;
1858 
1859 	MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC));
1860 
1861 	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
1862 		return (fifo_size);
1863 
1864 	/* Rx queues 9 and up are for specialized packets,
1865 	 * such as PTP or DCB control packets, etc. and
1866 	 * don't require a large fifo
1867 	 */
1868 	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
1869 		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
1870 		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
1871 	}
1872 
1873 	return (fifo_size);
1874 }
1875 
1876 static void
1877 xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
1878 {
1879 	unsigned int fifo_size;
1880 	unsigned int fifo[XGBE_MAX_QUEUES];
1881 	unsigned int i;
1882 
1883 	fifo_size = xgbe_get_tx_fifo_size(pdata);
1884 	axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size);
1885 
1886 	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
1887 
1888 	for (i = 0; i < pdata->tx_q_count; i++) {
1889 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
1890 		axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i,
1891 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
1892 	}
1893 
1894 	axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n",
1895 	    pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1896 }
1897 
1898 static void
1899 xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
1900 {
1901 	unsigned int fifo_size;
1902 	unsigned int fifo[XGBE_MAX_QUEUES];
1903 	unsigned int prio_queues;
1904 	unsigned int i;
1905 
1906 	/* TODO - add pfc/ets related support */
1907 
1908 	/* Clear any DCB related fifo/queue information */
1909 	fifo_size = xgbe_get_rx_fifo_size(pdata);
1910 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1911 	axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__,
1912 	    fifo_size, pdata->rx_q_count, prio_queues);
1913 
1914 	/* Assign a minimum fifo to the non-VLAN priority queues */
1915 	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
1916 
1917 	xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
1918 
1919 	for (i = 0; i < pdata->rx_q_count; i++) {
1920 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
1921 		axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i,
1922 		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
1923 	}
1924 
1925 	xgbe_calculate_flow_control_threshold(pdata, fifo);
1926 	xgbe_config_flow_control_threshold(pdata);
1927 
1928 	axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n",
1929 	    pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1930 }
1931 
1932 static void
1933 xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
1934 {
1935 	unsigned int qptc, qptc_extra, queue;
1936 	unsigned int prio_queues;
1937 	unsigned int ppq, ppq_extra, prio;
1938 	unsigned int mask;
1939 	unsigned int i, j, reg, reg_val;
1940 
1941 	/* Map the MTL Tx Queues to Traffic Classes
1942 	 *   Note: Tx Queues >= Traffic Classes
1943 	 */
1944 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
1945 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
1946 
1947 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
1948 		for (j = 0; j < qptc; j++) {
1949 			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1950 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1951 			    Q2TCMAP, i);
1952 			pdata->q2tc_map[queue++] = i;
1953 		}
1954 
1955 		if (i < qptc_extra) {
1956 			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1957 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1958 			    Q2TCMAP, i);
1959 			pdata->q2tc_map[queue++] = i;
1960 		}
1961 	}
1962 
1963 	/* Map the 8 VLAN priority values to available MTL Rx queues */
1964 	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1965 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
1966 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
1967 
1968 	reg = MAC_RQC2R;
1969 	reg_val = 0;
1970 	for (i = 0, prio = 0; i < prio_queues;) {
1971 		mask = 0;
1972 		for (j = 0; j < ppq; j++) {
1973 			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1974 			mask |= (1 << prio);
1975 			pdata->prio2q_map[prio++] = i;
1976 		}
1977 
1978 		if (i < ppq_extra) {
1979 			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1980 			mask |= (1 << prio);
1981 			pdata->prio2q_map[prio++] = i;
1982 		}
1983 
1984 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
1985 
1986 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
1987 			continue;
1988 
1989 		XGMAC_IOWRITE(pdata, reg, reg_val);
1990 		reg += MAC_RQC2_INC;
1991 		reg_val = 0;
1992 	}
1993 
1994 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
1995 	reg = MTL_RQDCM0R;
1996 	reg_val = 0;
1997 	for (i = 0; i < pdata->rx_q_count;) {
1998 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
1999 
2000 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2001 			continue;
2002 
2003 		XGMAC_IOWRITE(pdata, reg, reg_val);
2004 
2005 		reg += MTL_RQDCM_INC;
2006 		reg_val = 0;
2007 	}
2008 }
2009 
2010 static void
2011 xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2012 {
2013 	xgbe_set_mac_address(pdata, IF_LLADDR(pdata->netdev));
2014 
2015 	/* Filtering is done using perfect filtering and hash filtering */
2016 	if (pdata->hw_feat.hash_table_size) {
2017 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2018 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2019 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2020 	}
2021 }
2022 
2023 static void
2024 xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2025 {
2026 	unsigned int val;
2027 
2028 	val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2029 
2030 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2031 }
2032 
2033 static void
2034 xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2035 {
2036 	xgbe_set_speed(pdata, pdata->phy_speed);
2037 }
2038 
2039 static void
2040 xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2041 {
2042 	if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM))
2043 		xgbe_enable_rx_csum(pdata);
2044 	else
2045 		xgbe_disable_rx_csum(pdata);
2046 }
2047 
2048 static void
2049 xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2050 {
2051 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2052 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2053 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2054 
2055 	/* Set the current VLAN Hash Table register value */
2056 	xgbe_update_vlan_hash_table(pdata);
2057 
2058 	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
2059 		axgbe_printf(1, "Enabling rx vlan filtering\n");
2060 		xgbe_enable_rx_vlan_filtering(pdata);
2061 	} else {
2062 		axgbe_printf(1, "Disabling rx vlan filtering\n");
2063 		xgbe_disable_rx_vlan_filtering(pdata);
2064 	}
2065 
2066 	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
2067 		axgbe_printf(1, "Enabling rx vlan stripping\n");
2068 		xgbe_enable_rx_vlan_stripping(pdata);
2069 	} else {
2070 		axgbe_printf(1, "Disabling rx vlan stripping\n");
2071 		xgbe_disable_rx_vlan_stripping(pdata);
2072 	}
2073 }
2074 
2075 static uint64_t
2076 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2077 {
2078 	bool read_hi;
2079 	uint64_t val;
2080 
2081 	if (pdata->vdata->mmc_64bit) {
2082 		switch (reg_lo) {
2083 		/* These registers are always 32 bit */
2084 		case MMC_RXRUNTERROR:
2085 		case MMC_RXJABBERERROR:
2086 		case MMC_RXUNDERSIZE_G:
2087 		case MMC_RXOVERSIZE_G:
2088 		case MMC_RXWATCHDOGERROR:
2089 			read_hi = false;
2090 			break;
2091 
2092 		default:
2093 			read_hi = true;
2094 		}
2095 	} else {
2096 		switch (reg_lo) {
2097 		/* These registers are always 64 bit */
2098 		case MMC_TXOCTETCOUNT_GB_LO:
2099 		case MMC_TXOCTETCOUNT_G_LO:
2100 		case MMC_RXOCTETCOUNT_GB_LO:
2101 		case MMC_RXOCTETCOUNT_G_LO:
2102 			read_hi = true;
2103 			break;
2104 
2105 		default:
2106 			read_hi = false;
2107 		}
2108 	}
2109 
2110 	val = XGMAC_IOREAD(pdata, reg_lo);
2111 
2112 	if (read_hi)
2113 		val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2114 
2115 	return (val);
2116 }
2117 
2118 static void
2119 xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2120 {
2121 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2122 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2123 
2124 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2125 		stats->txoctetcount_gb +=
2126 		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2127 
2128 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2129 		stats->txframecount_gb +=
2130 		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2131 
2132 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2133 		stats->txbroadcastframes_g +=
2134 		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2135 
2136 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2137 		stats->txmulticastframes_g +=
2138 		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2139 
2140 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2141 		stats->tx64octets_gb +=
2142 		    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2143 
2144 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2145 		stats->tx65to127octets_gb +=
2146 		    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2147 
2148 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2149 		stats->tx128to255octets_gb +=
2150 		    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2151 
2152 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2153 		stats->tx256to511octets_gb +=
2154 		    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2155 
2156 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2157 		stats->tx512to1023octets_gb +=
2158 		    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2159 
2160 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2161 		stats->tx1024tomaxoctets_gb +=
2162 		    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2163 
2164 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2165 		stats->txunicastframes_gb +=
2166 		    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2167 
2168 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2169 		stats->txmulticastframes_gb +=
2170 		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2171 
2172 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2173 		stats->txbroadcastframes_g +=
2174 		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2175 
2176 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2177 		stats->txunderflowerror +=
2178 		    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2179 
2180 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2181 		stats->txoctetcount_g +=
2182 		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2183 
2184 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2185 		stats->txframecount_g +=
2186 		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2187 
2188 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2189 		stats->txpauseframes +=
2190 		    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2191 
2192 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2193 		stats->txvlanframes_g +=
2194 		    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2195 }
2196 
2197 static void
2198 xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2199 {
2200 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2201 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2202 
2203 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2204 		stats->rxframecount_gb +=
2205 		    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2206 
2207 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2208 		stats->rxoctetcount_gb +=
2209 		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2210 
2211 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2212 		stats->rxoctetcount_g +=
2213 		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2214 
2215 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2216 		stats->rxbroadcastframes_g +=
2217 		    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2218 
2219 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2220 		stats->rxmulticastframes_g +=
2221 		    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2222 
2223 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2224 		stats->rxcrcerror +=
2225 		    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2226 
2227 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2228 		stats->rxrunterror +=
2229 		    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2230 
2231 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2232 		stats->rxjabbererror +=
2233 		    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2234 
2235 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2236 		stats->rxundersize_g +=
2237 		    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2238 
2239 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2240 		stats->rxoversize_g +=
2241 		    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2242 
2243 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2244 		stats->rx64octets_gb +=
2245 		    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2246 
2247 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2248 		stats->rx65to127octets_gb +=
2249 		    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2250 
2251 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2252 		stats->rx128to255octets_gb +=
2253 		    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2254 
2255 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2256 		stats->rx256to511octets_gb +=
2257 		    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2258 
2259 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2260 		stats->rx512to1023octets_gb +=
2261 		    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2262 
2263 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2264 		stats->rx1024tomaxoctets_gb +=
2265 		    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2266 
2267 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2268 		stats->rxunicastframes_g +=
2269 		    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2270 
2271 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2272 		stats->rxlengtherror +=
2273 		    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2274 
2275 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2276 		stats->rxoutofrangetype +=
2277 		    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2278 
2279 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2280 		stats->rxpauseframes +=
2281 		    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2282 
2283 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2284 		stats->rxfifooverflow +=
2285 		    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2286 
2287 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2288 		stats->rxvlanframes_gb +=
2289 		    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2290 
2291 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2292 		stats->rxwatchdogerror +=
2293 		    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2294 }
2295 
2296 static void
2297 xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2298 {
2299 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2300 
2301 	/* Freeze counters */
2302 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2303 
2304 	stats->txoctetcount_gb +=
2305 	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2306 
2307 	stats->txframecount_gb +=
2308 	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2309 
2310 	stats->txbroadcastframes_g +=
2311 	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2312 
2313 	stats->txmulticastframes_g +=
2314 	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2315 
2316 	stats->tx64octets_gb +=
2317 	    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2318 
2319 	stats->tx65to127octets_gb +=
2320 	    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2321 
2322 	stats->tx128to255octets_gb +=
2323 	    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2324 
2325 	stats->tx256to511octets_gb +=
2326 	    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2327 
2328 	stats->tx512to1023octets_gb +=
2329 	    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2330 
2331 	stats->tx1024tomaxoctets_gb +=
2332 	    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2333 
2334 	stats->txunicastframes_gb +=
2335 	    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2336 
2337 	stats->txmulticastframes_gb +=
2338 	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2339 
2340 	stats->txbroadcastframes_gb +=
2341 	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2342 
2343 	stats->txunderflowerror +=
2344 	    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2345 
2346 	stats->txoctetcount_g +=
2347 	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2348 
2349 	stats->txframecount_g +=
2350 	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2351 
2352 	stats->txpauseframes +=
2353 	    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2354 
2355 	stats->txvlanframes_g +=
2356 	    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2357 
2358 	stats->rxframecount_gb +=
2359 	    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2360 
2361 	stats->rxoctetcount_gb +=
2362 	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2363 
2364 	stats->rxoctetcount_g +=
2365 	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2366 
2367 	stats->rxbroadcastframes_g +=
2368 	    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2369 
2370 	stats->rxmulticastframes_g +=
2371 	    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2372 
2373 	stats->rxcrcerror +=
2374 	    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2375 
2376 	stats->rxrunterror +=
2377 	    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2378 
2379 	stats->rxjabbererror +=
2380 	    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2381 
2382 	stats->rxundersize_g +=
2383 	    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2384 
2385 	stats->rxoversize_g +=
2386 	    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2387 
2388 	stats->rx64octets_gb +=
2389 	    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2390 
2391 	stats->rx65to127octets_gb +=
2392 	    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2393 
2394 	stats->rx128to255octets_gb +=
2395 	    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2396 
2397 	stats->rx256to511octets_gb +=
2398 	    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2399 
2400 	stats->rx512to1023octets_gb +=
2401 	    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2402 
2403 	stats->rx1024tomaxoctets_gb +=
2404 	    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2405 
2406 	stats->rxunicastframes_g +=
2407 	    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2408 
2409 	stats->rxlengtherror +=
2410 	    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2411 
2412 	stats->rxoutofrangetype +=
2413 	    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2414 
2415 	stats->rxpauseframes +=
2416 	    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2417 
2418 	stats->rxfifooverflow +=
2419 	    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2420 
2421 	stats->rxvlanframes_gb +=
2422 	    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2423 
2424 	stats->rxwatchdogerror +=
2425 	    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2426 
2427 	/* Un-freeze counters */
2428 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2429 }
2430 
2431 static void
2432 xgbe_config_mmc(struct xgbe_prv_data *pdata)
2433 {
2434 	/* Set counters to reset on read */
2435 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2436 
2437 	/* Reset the counters */
2438 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2439 }
2440 
2441 static void
2442 xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2443 {
2444 	unsigned int tx_status;
2445 	unsigned long tx_timeout;
2446 
2447 	/* The Tx engine cannot be stopped if it is actively processing
2448 	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
2449 	 * wait forever though...
2450 	 */
2451 	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2452 	while (ticks < tx_timeout) {
2453 		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
2454 		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
2455 		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
2456 			break;
2457 
2458 		DELAY(500);
2459 	}
2460 
2461 	if (ticks >= tx_timeout)
2462 		axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n",
2463 		    queue);
2464 }
2465 
2466 static void
2467 xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2468 {
2469 	unsigned int tx_dsr, tx_pos, tx_qidx;
2470 	unsigned int tx_status;
2471 	unsigned long tx_timeout;
2472 
2473 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
2474 		return (xgbe_txq_prepare_tx_stop(pdata, queue));
2475 
2476 	/* Calculate the status register to read and the position within */
2477 	if (queue < DMA_DSRX_FIRST_QUEUE) {
2478 		tx_dsr = DMA_DSR0;
2479 		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
2480 	} else {
2481 		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
2482 
2483 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2484 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2485 			 DMA_DSRX_TPS_START;
2486 	}
2487 
2488 	/* The Tx engine cannot be stopped if it is actively processing
2489 	 * descriptors. Wait for the Tx engine to enter the stopped or
2490 	 * suspended state.  Don't wait forever though...
2491 	 */
2492 	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2493 	while (ticks < tx_timeout) {
2494 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2495 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2496 		if ((tx_status == DMA_TPS_STOPPED) ||
2497 		    (tx_status == DMA_TPS_SUSPENDED))
2498 			break;
2499 
2500 		DELAY(500);
2501 	}
2502 
2503 	if (ticks >= tx_timeout)
2504 		axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n",
2505 		    queue);
2506 }
2507 
2508 static void
2509 xgbe_enable_tx(struct xgbe_prv_data *pdata)
2510 {
2511 	unsigned int i;
2512 
2513 	/* Enable each Tx DMA channel */
2514 	for (i = 0; i < pdata->channel_count; i++) {
2515 		if (!pdata->channel[i]->tx_ring)
2516 			break;
2517 
2518 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2519 	}
2520 
2521 	/* Enable each Tx queue */
2522 	for (i = 0; i < pdata->tx_q_count; i++)
2523 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2524 		    MTL_Q_ENABLED);
2525 
2526 	/* Enable MAC Tx */
2527 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2528 }
2529 
2530 static void
2531 xgbe_disable_tx(struct xgbe_prv_data *pdata)
2532 {
2533 	unsigned int i;
2534 
2535 	/* Prepare for Tx DMA channel stop */
2536 	for (i = 0; i < pdata->tx_q_count; i++)
2537 		xgbe_prepare_tx_stop(pdata, i);
2538 
2539 	/* Disable MAC Tx */
2540 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2541 
2542 	/* Disable each Tx queue */
2543 	for (i = 0; i < pdata->tx_q_count; i++)
2544 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2545 
2546 	/* Disable each Tx DMA channel */
2547 	for (i = 0; i < pdata->channel_count; i++) {
2548 		if (!pdata->channel[i]->tx_ring)
2549 			break;
2550 
2551 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2552 	}
2553 }
2554 
2555 static void
2556 xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2557 {
2558 	unsigned int rx_status;
2559 	unsigned long rx_timeout;
2560 
2561 	/* The Rx engine cannot be stopped if it is actively processing
2562 	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
2563 	 * wait forever though...
2564 	 */
2565 	rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2566 	while (ticks < rx_timeout) {
2567 		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
2568 		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
2569 		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
2570 			break;
2571 
2572 		DELAY(500);
2573 	}
2574 
2575 	if (ticks >= rx_timeout)
2576 		axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n",
2577 		    queue);
2578 }
2579 
2580 static void
2581 xgbe_enable_rx(struct xgbe_prv_data *pdata)
2582 {
2583 	unsigned int reg_val, i;
2584 
2585 	/* Enable each Rx DMA channel */
2586 	for (i = 0; i < pdata->channel_count; i++) {
2587 		if (!pdata->channel[i]->rx_ring)
2588 			break;
2589 
2590 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2591 	}
2592 
2593 	/* Enable each Rx queue */
2594 	reg_val = 0;
2595 	for (i = 0; i < pdata->rx_q_count; i++)
2596 		reg_val |= (0x02 << (i << 1));
2597 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2598 
2599 	/* Enable MAC Rx */
2600 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2601 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2602 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2603 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2604 }
2605 
2606 static void
2607 xgbe_disable_rx(struct xgbe_prv_data *pdata)
2608 {
2609 	unsigned int i;
2610 
2611 	/* Disable MAC Rx */
2612 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2613 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2614 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2615 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2616 
2617 	/* Prepare for Rx DMA channel stop */
2618 	for (i = 0; i < pdata->rx_q_count; i++)
2619 		xgbe_prepare_rx_stop(pdata, i);
2620 
2621 	/* Disable each Rx queue */
2622 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2623 
2624 	/* Disable each Rx DMA channel */
2625 	for (i = 0; i < pdata->channel_count; i++) {
2626 		if (!pdata->channel[i]->rx_ring)
2627 			break;
2628 
2629 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2630 	}
2631 }
2632 
2633 static void
2634 xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2635 {
2636 	unsigned int i;
2637 
2638 	/* Enable each Tx DMA channel */
2639 	for (i = 0; i < pdata->channel_count; i++) {
2640 		if (!pdata->channel[i]->tx_ring)
2641 			break;
2642 
2643 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2644 	}
2645 
2646 	/* Enable MAC Tx */
2647 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2648 }
2649 
2650 static void
2651 xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2652 {
2653 	unsigned int i;
2654 
2655 	/* Prepare for Tx DMA channel stop */
2656 	for (i = 0; i < pdata->tx_q_count; i++)
2657 		xgbe_prepare_tx_stop(pdata, i);
2658 
2659 	/* Disable MAC Tx */
2660 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2661 
2662 	/* Disable each Tx DMA channel */
2663 	for (i = 0; i < pdata->channel_count; i++) {
2664 		if (!pdata->channel[i]->tx_ring)
2665 			break;
2666 
2667 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2668 	}
2669 }
2670 
2671 static void
2672 xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2673 {
2674 	unsigned int i;
2675 
2676 	/* Enable each Rx DMA channel */
2677 	for (i = 0; i < pdata->channel_count; i++) {
2678 		if (!pdata->channel[i]->rx_ring)
2679 			break;
2680 
2681 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2682 	}
2683 }
2684 
2685 static void
2686 xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2687 {
2688 	unsigned int i;
2689 
2690 	/* Disable each Rx DMA channel */
2691 	for (i = 0; i < pdata->channel_count; i++) {
2692 		if (!pdata->channel[i]->rx_ring)
2693 			break;
2694 
2695 		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2696 	}
2697 }
2698 
2699 static int
2700 xgbe_init(struct xgbe_prv_data *pdata)
2701 {
2702 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
2703 	int ret;
2704 
2705 	/* Flush Tx queues */
2706 	ret = xgbe_flush_tx_queues(pdata);
2707 	if (ret) {
2708 		axgbe_error("error flushing TX queues\n");
2709 		return (ret);
2710 	}
2711 
2712 	/*
2713 	 * Initialize DMA related features
2714 	 */
2715 	xgbe_config_dma_bus(pdata);
2716 	xgbe_config_dma_cache(pdata);
2717 	xgbe_config_osp_mode(pdata);
2718 	xgbe_config_pbl_val(pdata);
2719 	xgbe_config_rx_coalesce(pdata);
2720 	xgbe_config_tx_coalesce(pdata);
2721 	xgbe_config_rx_buffer_size(pdata);
2722 	xgbe_config_tso_mode(pdata);
2723 	xgbe_config_sph_mode(pdata);
2724 	xgbe_config_rss(pdata);
2725 	desc_if->wrapper_tx_desc_init(pdata);
2726 	desc_if->wrapper_rx_desc_init(pdata);
2727 	xgbe_enable_dma_interrupts(pdata);
2728 
2729 	/*
2730 	 * Initialize MTL related features
2731 	 */
2732 	xgbe_config_mtl_mode(pdata);
2733 	xgbe_config_queue_mapping(pdata);
2734 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2735 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2736 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2737 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2738 	xgbe_config_tx_fifo_size(pdata);
2739 	xgbe_config_rx_fifo_size(pdata);
2740 	/*TODO: Error Packet and undersized good Packet forwarding enable
2741 		(FEP and FUP)
2742 	 */
2743 	xgbe_enable_mtl_interrupts(pdata);
2744 
2745 	/*
2746 	 * Initialize MAC related features
2747 	 */
2748 	xgbe_config_mac_address(pdata);
2749 	xgbe_config_rx_mode(pdata);
2750 	xgbe_config_jumbo_enable(pdata);
2751 	xgbe_config_flow_control(pdata);
2752 	xgbe_config_mac_speed(pdata);
2753 	xgbe_config_checksum_offload(pdata);
2754 	xgbe_config_vlan_support(pdata);
2755 	xgbe_config_mmc(pdata);
2756 	xgbe_enable_mac_interrupts(pdata);
2757 
2758 	return (0);
2759 }
2760 
2761 void
2762 xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2763 {
2764 
2765 	hw_if->tx_complete = xgbe_tx_complete;
2766 
2767 	hw_if->set_mac_address = xgbe_set_mac_address;
2768 	hw_if->config_rx_mode = xgbe_config_rx_mode;
2769 
2770 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2771 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2772 
2773 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2774 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2775 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2776 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2777 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2778 
2779 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2780 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2781 
2782 	hw_if->set_speed = xgbe_set_speed;
2783 
2784 	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
2785 	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
2786 	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
2787 
2788 	hw_if->set_gpio = xgbe_set_gpio;
2789 	hw_if->clr_gpio = xgbe_clr_gpio;
2790 
2791 	hw_if->enable_tx = xgbe_enable_tx;
2792 	hw_if->disable_tx = xgbe_disable_tx;
2793 	hw_if->enable_rx = xgbe_enable_rx;
2794 	hw_if->disable_rx = xgbe_disable_rx;
2795 
2796 	hw_if->powerup_tx = xgbe_powerup_tx;
2797 	hw_if->powerdown_tx = xgbe_powerdown_tx;
2798 	hw_if->powerup_rx = xgbe_powerup_rx;
2799 	hw_if->powerdown_rx = xgbe_powerdown_rx;
2800 
2801 	hw_if->dev_read = xgbe_dev_read;
2802 	hw_if->enable_int = xgbe_enable_int;
2803 	hw_if->disable_int = xgbe_disable_int;
2804 	hw_if->init = xgbe_init;
2805 	hw_if->exit = xgbe_exit;
2806 
2807 	/* Descriptor related Sequences have to be initialized here */
2808 	hw_if->tx_desc_init = xgbe_tx_desc_init;
2809 	hw_if->rx_desc_init = xgbe_rx_desc_init;
2810 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2811 	hw_if->is_last_desc = xgbe_is_last_desc;
2812 	hw_if->is_context_desc = xgbe_is_context_desc;
2813 
2814 	/* For FLOW ctrl */
2815 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2816 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2817 
2818 	/* For RX coalescing */
2819 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2820 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2821 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2822 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2823 
2824 	/* For RX and TX threshold config */
2825 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2826 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2827 
2828 	/* For RX and TX Store and Forward Mode config */
2829 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2830 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2831 
2832 	/* For TX DMA Operating on Second Frame config */
2833 	hw_if->config_osp_mode = xgbe_config_osp_mode;
2834 
2835 	/* For MMC statistics support */
2836 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2837 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2838 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2839 
2840 	/* For Receive Side Scaling */
2841 	hw_if->enable_rss = xgbe_enable_rss;
2842 	hw_if->disable_rss = xgbe_disable_rss;
2843 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2844 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2845 }
2846