1 /*- 2 * Copyright (c) 2012 Adrian Chadd <adrian@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_beacon.h> 113 #include <dev/ath/if_athdfs.h> 114 #include <dev/ath/if_ath_descdma.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 #include <dev/ath/if_ath_tx_edma.h> 121 122 #ifdef ATH_DEBUG_ALQ 123 #include <dev/ath/if_ath_alq.h> 124 #endif 125 126 /* 127 * some general macros 128 */ 129 #define INCR(_l, _sz) (_l) ++; (_l) &= ((_sz) - 1) 130 #define DECR(_l, _sz) (_l) --; (_l) &= ((_sz) - 1) 131 132 /* 133 * XXX doesn't belong here, and should be tunable 134 */ 135 #define ATH_TXSTATUS_RING_SIZE 512 136 137 MALLOC_DECLARE(M_ATHDEV); 138 139 static void ath_edma_tx_processq(struct ath_softc *sc, int dosched); 140 141 #ifdef ATH_DEBUG_ALQ 142 static void 143 ath_tx_alq_edma_push(struct ath_softc *sc, int txq, int nframes, 144 int fifo_depth, int frame_cnt) 145 { 146 struct if_ath_alq_tx_fifo_push aq; 147 148 aq.txq = htobe32(txq); 149 aq.nframes = htobe32(nframes); 150 aq.fifo_depth = htobe32(fifo_depth); 151 aq.frame_cnt = htobe32(frame_cnt); 152 153 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TX_FIFO_PUSH, 154 sizeof(aq), 155 (const char *) &aq); 156 } 157 #endif /* ATH_DEBUG_ALQ */ 158 159 /* 160 * XXX TODO: push an aggregate as a single FIFO slot, even though 161 * it may not meet the TXOP for say, DBA-gated traffic in TDMA mode. 162 * 163 * The TX completion code handles a TX FIFO slot having multiple frames, 164 * aggregate or otherwise, but it may just make things easier to deal 165 * with. 166 * 167 * XXX TODO: track the number of aggregate subframes and put that in the 168 * push alq message. 169 */ 170 static void 171 ath_tx_edma_push_staging_list(struct ath_softc *sc, struct ath_txq *txq, 172 int limit) 173 { 174 struct ath_buf *bf, *bf_last; 175 struct ath_buf *bfi, *bfp; 176 int i, sqdepth; 177 TAILQ_HEAD(axq_q_f_s, ath_buf) sq; 178 179 ATH_TXQ_LOCK_ASSERT(txq); 180 181 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_TX_PROC, 182 "%s: called; TXQ=%d, fifo.depth=%d, axq_q empty=%d\n", 183 __func__, 184 txq->axq_qnum, 185 txq->axq_fifo_depth, 186 !! (TAILQ_EMPTY(&txq->axq_q))); 187 188 /* 189 * Don't bother doing any work if it's full. 190 */ 191 if (txq->axq_fifo_depth >= HAL_TXFIFO_DEPTH) 192 return; 193 194 if (TAILQ_EMPTY(&txq->axq_q)) 195 return; 196 197 TAILQ_INIT(&sq); 198 199 /* 200 * First pass - walk sq, queue up to 'limit' entries, 201 * subtract them from the staging queue. 202 */ 203 sqdepth = 0; 204 for (i = 0; i < limit; i++) { 205 /* Grab the head entry */ 206 bf = ATH_TXQ_FIRST(txq); 207 if (bf == NULL) 208 break; 209 ATH_TXQ_REMOVE(txq, bf, bf_list); 210 211 /* Queue it into our staging list */ 212 TAILQ_INSERT_TAIL(&sq, bf, bf_list); 213 214 /* Ensure the flags are cleared */ 215 bf->bf_flags &= ~(ATH_BUF_FIFOPTR | ATH_BUF_FIFOEND); 216 sqdepth++; 217 } 218 219 /* 220 * Ok, so now we have a staging list of up to 'limit' 221 * frames from the txq. Now let's wrap that up 222 * into its own list and pass that to the hardware 223 * as one FIFO entry. 224 */ 225 226 bf = TAILQ_FIRST(&sq); 227 bf_last = TAILQ_LAST(&sq, axq_q_s); 228 229 /* 230 * Ok, so here's the gymnastics reqiured to make this 231 * all sensible. 232 */ 233 234 /* 235 * Tag the first/last buffer appropriately. 236 */ 237 bf->bf_flags |= ATH_BUF_FIFOPTR; 238 bf_last->bf_flags |= ATH_BUF_FIFOEND; 239 240 /* 241 * Walk the descriptor list and link them appropriately. 242 */ 243 bfp = NULL; 244 TAILQ_FOREACH(bfi, &sq, bf_list) { 245 if (bfp != NULL) { 246 ath_hal_settxdesclink(sc->sc_ah, bfp->bf_lastds, 247 bfi->bf_daddr); 248 } 249 bfp = bfi; 250 } 251 252 i = 0; 253 TAILQ_FOREACH(bfi, &sq, bf_list) { 254 #ifdef ATH_DEBUG 255 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 256 ath_printtxbuf(sc, bfi, txq->axq_qnum, i, 0); 257 #endif/* ATH_DEBUG */ 258 #ifdef ATH_DEBUG_ALQ 259 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC)) 260 ath_tx_alq_post(sc, bfi); 261 #endif /* ATH_DEBUG_ALQ */ 262 i++; 263 } 264 265 /* 266 * We now need to push this set of frames onto the tail 267 * of the FIFO queue. We don't adjust the aggregate 268 * count, only the queue depth counter(s). 269 * We also need to blank the link pointer now. 270 */ 271 272 TAILQ_CONCAT(&txq->fifo.axq_q, &sq, bf_list); 273 /* Bump total queue tracking in FIFO queue */ 274 txq->fifo.axq_depth += sqdepth; 275 276 /* Bump FIFO queue */ 277 txq->axq_fifo_depth++; 278 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_TX_PROC, 279 "%s: queued %d packets; depth=%d, fifo depth=%d\n", 280 __func__, sqdepth, txq->fifo.axq_depth, txq->axq_fifo_depth); 281 282 /* Push the first entry into the hardware */ 283 ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr); 284 285 /* Push start on the DMA if it's not already started */ 286 ath_hal_txstart(sc->sc_ah, txq->axq_qnum); 287 288 #ifdef ATH_DEBUG_ALQ 289 ath_tx_alq_edma_push(sc, txq->axq_qnum, sqdepth, 290 txq->axq_fifo_depth, 291 txq->fifo.axq_depth); 292 #endif /* ATH_DEBUG_ALQ */ 293 } 294 295 #define TX_BATCH_SIZE 32 296 297 /* 298 * Push some frames into the TX FIFO if we have space. 299 */ 300 static void 301 ath_edma_tx_fifo_fill(struct ath_softc *sc, struct ath_txq *txq) 302 { 303 304 ATH_TXQ_LOCK_ASSERT(txq); 305 306 DPRINTF(sc, ATH_DEBUG_TX_PROC, 307 "%s: Q%d: called; fifo.depth=%d, fifo depth=%d, depth=%d, aggr_depth=%d\n", 308 __func__, 309 txq->axq_qnum, 310 txq->fifo.axq_depth, 311 txq->axq_fifo_depth, 312 txq->axq_depth, 313 txq->axq_aggr_depth); 314 315 /* 316 * For now, push up to 32 frames per TX FIFO slot. 317 * If more are in the hardware queue then they'll 318 * get populated when we try to send another frame 319 * or complete a frame - so at most there'll be 320 * 32 non-AMPDU frames per node/TID anyway. 321 * 322 * Note that the hardware staging queue will limit 323 * how many frames in total we will have pushed into 324 * here. 325 * 326 * Later on, we'll want to push less frames into 327 * the TX FIFO since we don't want to necessarily 328 * fill tens or hundreds of milliseconds of potential 329 * frames. 330 * 331 * However, we need more frames right now because of 332 * how the MAC implements the frame scheduling policy. 333 * It only ungates a single FIFO entry at a time, 334 * and will run that until CHNTIME expires or the 335 * end of that FIFO entry descriptor list is reached. 336 * So for TDMA we suffer a big performance penalty - 337 * single TX FIFO entries mean the MAC only sends out 338 * one frame per DBA event, which turned out on average 339 * 6ms per TX frame. 340 * 341 * So, for aggregates it's okay - it'll push two at a 342 * time and this will just do them more efficiently. 343 * For non-aggregates it'll do 4 at a time, up to the 344 * non-aggr limit (non_aggr, which is 32.) They should 345 * be time based rather than a hard count, but I also 346 * do need sleep. 347 */ 348 349 /* 350 * Do some basic, basic batching to the hardware 351 * queue. 352 * 353 * If we have TX_BATCH_SIZE entries in the staging 354 * queue, then let's try to send them all in one hit. 355 * 356 * Ensure we don't push more than TX_BATCH_SIZE worth 357 * in, otherwise we end up draining 8 slots worth of 358 * 32 frames into the hardware queue and then we don't 359 * attempt to push more frames in until we empty the 360 * FIFO. 361 */ 362 if (txq->axq_depth >= TX_BATCH_SIZE / 2 && 363 txq->fifo.axq_depth <= TX_BATCH_SIZE) { 364 ath_tx_edma_push_staging_list(sc, txq, TX_BATCH_SIZE); 365 } 366 367 /* 368 * Aggregate check: if we have less than two FIFO slots 369 * busy and we have some aggregate frames, queue it. 370 * 371 * Now, ideally we'd just check to see if the scheduler 372 * has given us aggregate frames and push them into the FIFO 373 * as individual slots, as honestly we should just be pushing 374 * a single aggregate in as one FIFO slot. 375 * 376 * Let's do that next once I know this works. 377 */ 378 else if (txq->axq_aggr_depth > 0 && txq->axq_fifo_depth < 2) 379 ath_tx_edma_push_staging_list(sc, txq, TX_BATCH_SIZE); 380 381 /* 382 * 383 * If we have less, and the TXFIFO isn't empty, let's 384 * wait until we've finished sending the FIFO. 385 * 386 * If we have less, and the TXFIFO is empty, then 387 * send them. 388 */ 389 else if (txq->axq_fifo_depth == 0) { 390 ath_tx_edma_push_staging_list(sc, txq, TX_BATCH_SIZE); 391 } 392 } 393 394 /* 395 * Re-initialise the DMA FIFO with the current contents of 396 * said TXQ. 397 * 398 * This should only be called as part of the chip reset path, as it 399 * assumes the FIFO is currently empty. 400 */ 401 static void 402 ath_edma_dma_restart(struct ath_softc *sc, struct ath_txq *txq) 403 { 404 struct ath_buf *bf; 405 int i = 0; 406 int fifostart = 1; 407 int old_fifo_depth; 408 409 DPRINTF(sc, ATH_DEBUG_RESET, "%s: Q%d: called\n", 410 __func__, 411 txq->axq_qnum); 412 413 ATH_TXQ_LOCK_ASSERT(txq); 414 415 /* 416 * Let's log if the tracked FIFO depth doesn't match 417 * what we actually push in. 418 */ 419 old_fifo_depth = txq->axq_fifo_depth; 420 txq->axq_fifo_depth = 0; 421 422 /* 423 * Walk the FIFO staging list, looking for "head" entries. 424 * Since we may have a partially completed list of frames, 425 * we push the first frame we see into the FIFO and re-mark 426 * it as the head entry. We then skip entries until we see 427 * FIFO end, at which point we get ready to push another 428 * entry into the FIFO. 429 */ 430 TAILQ_FOREACH(bf, &txq->fifo.axq_q, bf_list) { 431 /* 432 * If we're looking for FIFOEND and we haven't found 433 * it, skip. 434 * 435 * If we're looking for FIFOEND and we've found it, 436 * reset for another descriptor. 437 */ 438 #ifdef ATH_DEBUG 439 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 440 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 0); 441 #endif/* ATH_DEBUG */ 442 #ifdef ATH_DEBUG_ALQ 443 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC)) 444 ath_tx_alq_post(sc, bf); 445 #endif /* ATH_DEBUG_ALQ */ 446 447 if (fifostart == 0) { 448 if (bf->bf_flags & ATH_BUF_FIFOEND) 449 fifostart = 1; 450 continue; 451 } 452 453 /* Make sure we're not overflowing the FIFO! */ 454 if (txq->axq_fifo_depth >= HAL_TXFIFO_DEPTH) { 455 device_printf(sc->sc_dev, 456 "%s: Q%d: more frames in the queue; FIFO depth=%d?!\n", 457 __func__, 458 txq->axq_qnum, 459 txq->axq_fifo_depth); 460 } 461 462 #if 0 463 DPRINTF(sc, ATH_DEBUG_RESET, 464 "%s: Q%d: depth=%d: pushing bf=%p; start=%d, end=%d\n", 465 __func__, 466 txq->axq_qnum, 467 txq->axq_fifo_depth, 468 bf, 469 !! (bf->bf_flags & ATH_BUF_FIFOPTR), 470 !! (bf->bf_flags & ATH_BUF_FIFOEND)); 471 #endif 472 473 /* 474 * Set this to be the first buffer in the FIFO 475 * list - even if it's also the last buffer in 476 * a FIFO list! 477 */ 478 bf->bf_flags |= ATH_BUF_FIFOPTR; 479 480 /* Push it into the FIFO and bump the FIFO count */ 481 ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr); 482 txq->axq_fifo_depth++; 483 484 /* 485 * If this isn't the last entry either, let's 486 * clear fifostart so we continue looking for 487 * said last entry. 488 */ 489 if (! (bf->bf_flags & ATH_BUF_FIFOEND)) 490 fifostart = 0; 491 i++; 492 } 493 494 /* Only bother starting the queue if there's something in it */ 495 if (i > 0) 496 ath_hal_txstart(sc->sc_ah, txq->axq_qnum); 497 498 DPRINTF(sc, ATH_DEBUG_RESET, "%s: Q%d: FIFO depth was %d, is %d\n", 499 __func__, 500 txq->axq_qnum, 501 old_fifo_depth, 502 txq->axq_fifo_depth); 503 504 /* And now, let's check! */ 505 if (txq->axq_fifo_depth != old_fifo_depth) { 506 device_printf(sc->sc_dev, 507 "%s: Q%d: FIFO depth should be %d, is %d\n", 508 __func__, 509 txq->axq_qnum, 510 old_fifo_depth, 511 txq->axq_fifo_depth); 512 } 513 } 514 515 /* 516 * Hand off this frame to a hardware queue. 517 * 518 * Things are a bit hairy in the EDMA world. The TX FIFO is only 519 * 8 entries deep, so we need to keep track of exactly what we've 520 * pushed into the FIFO and what's just sitting in the TX queue, 521 * waiting to go out. 522 * 523 * So this is split into two halves - frames get appended to the 524 * TXQ; then a scheduler is called to push some frames into the 525 * actual TX FIFO. 526 */ 527 static void 528 ath_edma_xmit_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, 529 struct ath_buf *bf) 530 { 531 532 ATH_TXQ_LOCK(txq); 533 534 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 535 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 536 537 /* 538 * XXX TODO: write a hard-coded check to ensure that 539 * the queue id in the TX descriptor matches txq->axq_qnum. 540 */ 541 542 /* Update aggr stats */ 543 if (bf->bf_state.bfs_aggr) 544 txq->axq_aggr_depth++; 545 546 /* Push and update frame stats */ 547 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 548 549 /* 550 * Finally, call the FIFO schedule routine to schedule some 551 * frames to the FIFO. 552 */ 553 ath_edma_tx_fifo_fill(sc, txq); 554 ATH_TXQ_UNLOCK(txq); 555 } 556 557 /* 558 * Hand off this frame to a multicast software queue. 559 * 560 * The EDMA TX CABQ will get a list of chained frames, chained 561 * together using the next pointer. The single head of that 562 * particular queue is pushed to the hardware CABQ. 563 */ 564 static void 565 ath_edma_xmit_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, 566 struct ath_buf *bf) 567 { 568 569 ATH_TX_LOCK_ASSERT(sc); 570 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 571 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 572 573 ATH_TXQ_LOCK(txq); 574 /* 575 * XXX this is mostly duplicated in ath_tx_handoff_mcast(). 576 */ 577 if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) { 578 struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s); 579 struct ieee80211_frame *wh; 580 581 /* mark previous frame */ 582 wh = mtod(bf_last->bf_m, struct ieee80211_frame *); 583 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 584 585 /* re-sync buffer to memory */ 586 bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap, 587 BUS_DMASYNC_PREWRITE); 588 589 /* link descriptor */ 590 ath_hal_settxdesclink(sc->sc_ah, 591 bf_last->bf_lastds, 592 bf->bf_daddr); 593 } 594 #ifdef ATH_DEBUG_ALQ 595 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC)) 596 ath_tx_alq_post(sc, bf); 597 #endif /* ATH_DEBUG_ALQ */ 598 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 599 ATH_TXQ_UNLOCK(txq); 600 } 601 602 /* 603 * Handoff this frame to the hardware. 604 * 605 * For the multicast queue, this will treat it as a software queue 606 * and append it to the list, after updating the MORE_DATA flag 607 * in the previous frame. The cabq processing code will ensure 608 * that the queue contents gets transferred over. 609 * 610 * For the hardware queues, this will queue a frame to the queue 611 * like before, then populate the FIFO from that. Since the 612 * EDMA hardware has 8 FIFO slots per TXQ, this ensures that 613 * frames such as management frames don't get prematurely dropped. 614 * 615 * This does imply that a similar flush-hwq-to-fifoq method will 616 * need to be called from the processq function, before the 617 * per-node software scheduler is called. 618 */ 619 static void 620 ath_edma_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, 621 struct ath_buf *bf) 622 { 623 624 DPRINTF(sc, ATH_DEBUG_XMIT_DESC, 625 "%s: called; bf=%p, txq=%p, qnum=%d\n", 626 __func__, 627 bf, 628 txq, 629 txq->axq_qnum); 630 631 if (txq->axq_qnum == ATH_TXQ_SWQ) 632 ath_edma_xmit_handoff_mcast(sc, txq, bf); 633 else 634 ath_edma_xmit_handoff_hw(sc, txq, bf); 635 } 636 637 static int 638 ath_edma_setup_txfifo(struct ath_softc *sc, int qnum) 639 { 640 struct ath_tx_edma_fifo *te = &sc->sc_txedma[qnum]; 641 642 te->m_fifo = malloc(sizeof(struct ath_buf *) * HAL_TXFIFO_DEPTH, 643 M_ATHDEV, 644 M_NOWAIT | M_ZERO); 645 if (te->m_fifo == NULL) { 646 device_printf(sc->sc_dev, "%s: malloc failed\n", 647 __func__); 648 return (-ENOMEM); 649 } 650 651 /* 652 * Set initial "empty" state. 653 */ 654 te->m_fifo_head = te->m_fifo_tail = te->m_fifo_depth = 0; 655 656 return (0); 657 } 658 659 static int 660 ath_edma_free_txfifo(struct ath_softc *sc, int qnum) 661 { 662 struct ath_tx_edma_fifo *te = &sc->sc_txedma[qnum]; 663 664 /* XXX TODO: actually deref the ath_buf entries? */ 665 free(te->m_fifo, M_ATHDEV); 666 return (0); 667 } 668 669 static int 670 ath_edma_dma_txsetup(struct ath_softc *sc) 671 { 672 int error; 673 int i; 674 675 error = ath_descdma_alloc_desc(sc, &sc->sc_txsdma, 676 NULL, "txcomp", sc->sc_tx_statuslen, ATH_TXSTATUS_RING_SIZE); 677 if (error != 0) 678 return (error); 679 680 ath_hal_setuptxstatusring(sc->sc_ah, 681 (void *) sc->sc_txsdma.dd_desc, 682 sc->sc_txsdma.dd_desc_paddr, 683 ATH_TXSTATUS_RING_SIZE); 684 685 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 686 ath_edma_setup_txfifo(sc, i); 687 } 688 689 return (0); 690 } 691 692 static int 693 ath_edma_dma_txteardown(struct ath_softc *sc) 694 { 695 int i; 696 697 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 698 ath_edma_free_txfifo(sc, i); 699 } 700 701 ath_descdma_cleanup(sc, &sc->sc_txsdma, NULL); 702 return (0); 703 } 704 705 /* 706 * Drain all TXQs, potentially after completing the existing completed 707 * frames. 708 */ 709 static void 710 ath_edma_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 711 { 712 int i; 713 714 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 715 716 (void) ath_stoptxdma(sc); 717 718 /* 719 * If reset type is noloss, the TX FIFO needs to be serviced 720 * and those frames need to be handled. 721 * 722 * Otherwise, just toss everything in each TX queue. 723 */ 724 if (reset_type == ATH_RESET_NOLOSS) { 725 ath_edma_tx_processq(sc, 0); 726 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 727 if (ATH_TXQ_SETUP(sc, i)) { 728 ATH_TXQ_LOCK(&sc->sc_txq[i]); 729 /* 730 * Free the holding buffer; DMA is now 731 * stopped. 732 */ 733 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 734 /* 735 * Reset the link pointer to NULL; there's 736 * no frames to chain DMA to. 737 */ 738 sc->sc_txq[i].axq_link = NULL; 739 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 740 } 741 } 742 } else { 743 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 744 if (ATH_TXQ_SETUP(sc, i)) 745 ath_tx_draintxq(sc, &sc->sc_txq[i]); 746 } 747 } 748 749 /* XXX dump out the TX completion FIFO contents */ 750 751 /* XXX dump out the frames */ 752 753 sc->sc_wd_timer = 0; 754 } 755 756 /* 757 * TX completion tasklet. 758 */ 759 760 static void 761 ath_edma_tx_proc(void *arg, int npending) 762 { 763 struct ath_softc *sc = (struct ath_softc *) arg; 764 765 ATH_PCU_LOCK(sc); 766 sc->sc_txproc_cnt++; 767 ATH_PCU_UNLOCK(sc); 768 769 ATH_LOCK(sc); 770 ath_power_set_power_state(sc, HAL_PM_AWAKE); 771 ATH_UNLOCK(sc); 772 773 #if 0 774 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: called, npending=%d\n", 775 __func__, npending); 776 #endif 777 ath_edma_tx_processq(sc, 1); 778 779 780 ATH_PCU_LOCK(sc); 781 sc->sc_txproc_cnt--; 782 ATH_PCU_UNLOCK(sc); 783 784 ATH_LOCK(sc); 785 ath_power_restore_power_state(sc); 786 ATH_UNLOCK(sc); 787 788 ath_tx_kick(sc); 789 } 790 791 /* 792 * Process the TX status queue. 793 */ 794 static void 795 ath_edma_tx_processq(struct ath_softc *sc, int dosched) 796 { 797 struct ath_hal *ah = sc->sc_ah; 798 HAL_STATUS status; 799 struct ath_tx_status ts; 800 struct ath_txq *txq; 801 struct ath_buf *bf; 802 struct ieee80211_node *ni; 803 int nacked = 0; 804 int idx; 805 int i; 806 807 #ifdef ATH_DEBUG 808 /* XXX */ 809 uint32_t txstatus[32]; 810 #endif 811 812 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: called\n", __func__); 813 814 for (idx = 0; ; idx++) { 815 bzero(&ts, sizeof(ts)); 816 817 ATH_TXSTATUS_LOCK(sc); 818 #ifdef ATH_DEBUG 819 ath_hal_gettxrawtxdesc(ah, txstatus); 820 #endif 821 status = ath_hal_txprocdesc(ah, NULL, (void *) &ts); 822 ATH_TXSTATUS_UNLOCK(sc); 823 824 if (status == HAL_EINPROGRESS) { 825 DPRINTF(sc, ATH_DEBUG_TX_PROC, 826 "%s: (%d): EINPROGRESS\n", 827 __func__, idx); 828 break; 829 } 830 831 #ifdef ATH_DEBUG 832 if (sc->sc_debug & ATH_DEBUG_TX_PROC) 833 if (ts.ts_queue_id != sc->sc_bhalq) 834 ath_printtxstatbuf(sc, NULL, txstatus, ts.ts_queue_id, 835 idx, (status == HAL_OK)); 836 #endif 837 838 /* 839 * If there is an error with this descriptor, continue 840 * processing. 841 * 842 * XXX TBD: log some statistics? 843 */ 844 if (status == HAL_EIO) { 845 device_printf(sc->sc_dev, "%s: invalid TX status?\n", 846 __func__); 847 break; 848 } 849 850 #if defined(ATH_DEBUG_ALQ) && defined(ATH_DEBUG) 851 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS)) { 852 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 853 sc->sc_tx_statuslen, 854 (char *) txstatus); 855 } 856 #endif /* ATH_DEBUG_ALQ */ 857 858 /* 859 * At this point we have a valid status descriptor. 860 * The QID and descriptor ID (which currently isn't set) 861 * is part of the status. 862 * 863 * We then assume that the descriptor in question is the 864 * -head- of the given QID. Eventually we should verify 865 * this by using the descriptor ID. 866 */ 867 868 /* 869 * The beacon queue is not currently a "real" queue. 870 * Frames aren't pushed onto it and the lock isn't setup. 871 * So skip it for now; the beacon handling code will 872 * free and alloc more beacon buffers as appropriate. 873 */ 874 if (ts.ts_queue_id == sc->sc_bhalq) 875 continue; 876 877 txq = &sc->sc_txq[ts.ts_queue_id]; 878 879 ATH_TXQ_LOCK(txq); 880 bf = ATH_TXQ_FIRST(&txq->fifo); 881 882 /* 883 * Work around the situation where I'm seeing notifications 884 * for Q1 when no frames are available. That needs to be 885 * debugged but not by crashing _here_. 886 */ 887 if (bf == NULL) { 888 device_printf(sc->sc_dev, "%s: Q%d: empty?\n", 889 __func__, 890 ts.ts_queue_id); 891 ATH_TXQ_UNLOCK(txq); 892 continue; 893 } 894 895 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: Q%d, bf=%p, start=%d, end=%d\n", 896 __func__, 897 ts.ts_queue_id, bf, 898 !! (bf->bf_flags & ATH_BUF_FIFOPTR), 899 !! (bf->bf_flags & ATH_BUF_FIFOEND)); 900 901 /* XXX TODO: actually output debugging info about this */ 902 903 #if 0 904 /* XXX assert the buffer/descriptor matches the status descid */ 905 if (ts.ts_desc_id != bf->bf_descid) { 906 device_printf(sc->sc_dev, 907 "%s: mismatched descid (qid=%d, tsdescid=%d, " 908 "bfdescid=%d\n", 909 __func__, 910 ts.ts_queue_id, 911 ts.ts_desc_id, 912 bf->bf_descid); 913 } 914 #endif 915 916 /* This removes the buffer and decrements the queue depth */ 917 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 918 if (bf->bf_state.bfs_aggr) 919 txq->axq_aggr_depth--; 920 921 /* 922 * If this was the end of a FIFO set, decrement FIFO depth 923 */ 924 if (bf->bf_flags & ATH_BUF_FIFOEND) 925 txq->axq_fifo_depth--; 926 927 /* 928 * If this isn't the final buffer in a FIFO set, mark 929 * the buffer as busy so it goes onto the holding queue. 930 */ 931 if (! (bf->bf_flags & ATH_BUF_FIFOEND)) 932 bf->bf_flags |= ATH_BUF_BUSY; 933 934 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: Q%d: FIFO depth is now %d (%d)\n", 935 __func__, 936 txq->axq_qnum, 937 txq->axq_fifo_depth, 938 txq->fifo.axq_depth); 939 940 /* XXX assert FIFO depth >= 0 */ 941 ATH_TXQ_UNLOCK(txq); 942 943 /* 944 * Outside of the TX lock - if the buffer is end 945 * end buffer in this FIFO, we don't need a holding 946 * buffer any longer. 947 */ 948 if (bf->bf_flags & ATH_BUF_FIFOEND) { 949 ATH_TXQ_LOCK(txq); 950 ath_txq_freeholdingbuf(sc, txq); 951 ATH_TXQ_UNLOCK(txq); 952 } 953 954 /* 955 * First we need to make sure ts_rate is valid. 956 * 957 * Pre-EDMA chips pass the whole TX descriptor to 958 * the proctxdesc function which will then fill out 959 * ts_rate based on the ts_finaltsi (final TX index) 960 * in the TX descriptor. However the TX completion 961 * FIFO doesn't have this information. So here we 962 * do a separate HAL call to populate that information. 963 * 964 * The same problem exists with ts_longretry. 965 * The FreeBSD HAL corrects ts_longretry in the HAL layer; 966 * the AR9380 HAL currently doesn't. So until the HAL 967 * is imported and this can be added, we correct for it 968 * here. 969 */ 970 /* XXX TODO */ 971 /* XXX faked for now. Ew. */ 972 if (ts.ts_finaltsi < 4) { 973 ts.ts_rate = 974 bf->bf_state.bfs_rc[ts.ts_finaltsi].ratecode; 975 switch (ts.ts_finaltsi) { 976 case 3: ts.ts_longretry += 977 bf->bf_state.bfs_rc[2].tries; 978 case 2: ts.ts_longretry += 979 bf->bf_state.bfs_rc[1].tries; 980 case 1: ts.ts_longretry += 981 bf->bf_state.bfs_rc[0].tries; 982 } 983 } else { 984 device_printf(sc->sc_dev, "%s: finaltsi=%d\n", 985 __func__, 986 ts.ts_finaltsi); 987 ts.ts_rate = bf->bf_state.bfs_rc[0].ratecode; 988 } 989 990 /* 991 * XXX This is terrible. 992 * 993 * Right now, some code uses the TX status that is 994 * passed in here, but the completion handlers in the 995 * software TX path also use bf_status.ds_txstat. 996 * Ew. That should all go away. 997 * 998 * XXX It's also possible the rate control completion 999 * routine is called twice. 1000 */ 1001 memcpy(&bf->bf_status, &ts, sizeof(ts)); 1002 1003 ni = bf->bf_node; 1004 1005 /* Update RSSI */ 1006 /* XXX duplicate from ath_tx_processq */ 1007 if (ni != NULL && ts.ts_status == 0 && 1008 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 1009 nacked++; 1010 sc->sc_stats.ast_tx_rssi = ts.ts_rssi; 1011 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 1012 ts.ts_rssi); 1013 } 1014 1015 /* Handle frame completion and rate control update */ 1016 ath_tx_process_buf_completion(sc, txq, &ts, bf); 1017 1018 /* NB: bf is invalid at this point */ 1019 } 1020 1021 sc->sc_wd_timer = 0; 1022 1023 /* 1024 * XXX It's inefficient to do this if the FIFO queue is full, 1025 * but there's no easy way right now to only populate 1026 * the txq task for _one_ TXQ. This should be fixed. 1027 */ 1028 if (dosched) { 1029 /* Attempt to schedule more hardware frames to the TX FIFO */ 1030 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 1031 if (ATH_TXQ_SETUP(sc, i)) { 1032 ATH_TX_LOCK(sc); 1033 ath_txq_sched(sc, &sc->sc_txq[i]); 1034 ATH_TX_UNLOCK(sc); 1035 1036 ATH_TXQ_LOCK(&sc->sc_txq[i]); 1037 ath_edma_tx_fifo_fill(sc, &sc->sc_txq[i]); 1038 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 1039 } 1040 } 1041 /* Kick software scheduler */ 1042 ath_tx_swq_kick(sc); 1043 } 1044 1045 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: end\n", __func__); 1046 } 1047 1048 static void 1049 ath_edma_attach_comp_func(struct ath_softc *sc) 1050 { 1051 1052 TASK_INIT(&sc->sc_txtask, 0, ath_edma_tx_proc, sc); 1053 } 1054 1055 void 1056 ath_xmit_setup_edma(struct ath_softc *sc) 1057 { 1058 1059 /* Fetch EDMA field and buffer sizes */ 1060 (void) ath_hal_gettxdesclen(sc->sc_ah, &sc->sc_tx_desclen); 1061 (void) ath_hal_gettxstatuslen(sc->sc_ah, &sc->sc_tx_statuslen); 1062 (void) ath_hal_getntxmaps(sc->sc_ah, &sc->sc_tx_nmaps); 1063 1064 if (bootverbose) { 1065 device_printf(sc->sc_dev, "TX descriptor length: %d\n", 1066 sc->sc_tx_desclen); 1067 device_printf(sc->sc_dev, "TX status length: %d\n", 1068 sc->sc_tx_statuslen); 1069 device_printf(sc->sc_dev, "TX buffers per descriptor: %d\n", 1070 sc->sc_tx_nmaps); 1071 } 1072 1073 sc->sc_tx.xmit_setup = ath_edma_dma_txsetup; 1074 sc->sc_tx.xmit_teardown = ath_edma_dma_txteardown; 1075 sc->sc_tx.xmit_attach_comp_func = ath_edma_attach_comp_func; 1076 1077 sc->sc_tx.xmit_dma_restart = ath_edma_dma_restart; 1078 sc->sc_tx.xmit_handoff = ath_edma_xmit_handoff; 1079 sc->sc_tx.xmit_drain = ath_edma_tx_drain; 1080 } 1081