1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * Driver for the Atheros Wireless LAN controller. 36 * 37 * This software is derived from work of Atsushi Onoe; his contribution 38 * is greatly appreciated. 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_ath.h" 43 #include "opt_wlan.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/mbuf.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/kernel.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/errno.h> 56 #include <sys/callout.h> 57 #include <sys/bus.h> 58 #include <sys/endian.h> 59 #include <sys/kthread.h> 60 #include <sys/taskqueue.h> 61 #include <sys/priv.h> 62 63 #include <machine/bus.h> 64 65 #include <net/if.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 #include <net80211/ieee80211_regdomain.h> 75 #ifdef IEEE80211_SUPPORT_SUPERG 76 #include <net80211/ieee80211_superg.h> 77 #endif 78 #ifdef IEEE80211_SUPPORT_TDMA 79 #include <net80211/ieee80211_tdma.h> 80 #endif 81 #include <net80211/ieee80211_ht.h> 82 83 #include <net/bpf.h> 84 85 #ifdef INET 86 #include <netinet/in.h> 87 #include <netinet/if_ether.h> 88 #endif 89 90 #include <dev/ath/if_athvar.h> 91 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 92 #include <dev/ath/ath_hal/ah_diagcodes.h> 93 94 #include <dev/ath/if_ath_debug.h> 95 96 #ifdef ATH_TX99_DIAG 97 #include <dev/ath/ath_tx99/ath_tx99.h> 98 #endif 99 100 #include <dev/ath/if_ath_misc.h> 101 #include <dev/ath/if_ath_tx.h> 102 #include <dev/ath/if_ath_tx_ht.h> 103 104 #ifdef ATH_DEBUG_ALQ 105 #include <dev/ath/if_ath_alq.h> 106 #endif 107 108 /* 109 * How many retries to perform in software 110 */ 111 #define SWMAX_RETRIES 10 112 113 /* 114 * What queue to throw the non-QoS TID traffic into 115 */ 116 #define ATH_NONQOS_TID_AC WME_AC_VO 117 118 #if 0 119 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an); 120 #endif 121 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, 122 int tid); 123 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, 124 int tid); 125 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, 126 struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0); 127 static int ath_tx_action_frame_override_queue(struct ath_softc *sc, 128 struct ieee80211_node *ni, struct mbuf *m0, int *tid); 129 static struct ath_buf * 130 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 131 struct ath_tid *tid, struct ath_buf *bf); 132 133 #ifdef ATH_DEBUG_ALQ 134 void 135 ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first) 136 { 137 struct ath_buf *bf; 138 int i, n; 139 const char *ds; 140 141 /* XXX we should skip out early if debugging isn't enabled! */ 142 bf = bf_first; 143 144 while (bf != NULL) { 145 /* XXX should ensure bf_nseg > 0! */ 146 if (bf->bf_nseg == 0) 147 break; 148 n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1; 149 for (i = 0, ds = (const char *) bf->bf_desc; 150 i < n; 151 i++, ds += sc->sc_tx_desclen) { 152 if_ath_alq_post(&sc->sc_alq, 153 ATH_ALQ_EDMA_TXDESC, 154 sc->sc_tx_desclen, 155 ds); 156 } 157 bf = bf->bf_next; 158 } 159 } 160 #endif /* ATH_DEBUG_ALQ */ 161 162 /* 163 * Whether to use the 11n rate scenario functions or not 164 */ 165 static inline int 166 ath_tx_is_11n(struct ath_softc *sc) 167 { 168 return ((sc->sc_ah->ah_magic == 0x20065416) || 169 (sc->sc_ah->ah_magic == 0x19741014)); 170 } 171 172 /* 173 * Obtain the current TID from the given frame. 174 * 175 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.) 176 * This has implications for which AC/priority the packet is placed 177 * in. 178 */ 179 static int 180 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0) 181 { 182 const struct ieee80211_frame *wh; 183 int pri = M_WME_GETAC(m0); 184 185 wh = mtod(m0, const struct ieee80211_frame *); 186 if (! IEEE80211_QOS_HAS_SEQ(wh)) 187 return IEEE80211_NONQOS_TID; 188 else 189 return WME_AC_TO_TID(pri); 190 } 191 192 static void 193 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) 194 { 195 struct ieee80211_frame *wh; 196 197 wh = mtod(bf->bf_m, struct ieee80211_frame *); 198 /* Only update/resync if needed */ 199 if (bf->bf_state.bfs_isretried == 0) { 200 wh->i_fc[1] |= IEEE80211_FC1_RETRY; 201 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 202 BUS_DMASYNC_PREWRITE); 203 } 204 bf->bf_state.bfs_isretried = 1; 205 bf->bf_state.bfs_retries ++; 206 } 207 208 /* 209 * Determine what the correct AC queue for the given frame 210 * should be. 211 * 212 * This code assumes that the TIDs map consistently to 213 * the underlying hardware (or software) ath_txq. 214 * Since the sender may try to set an AC which is 215 * arbitrary, non-QoS TIDs may end up being put on 216 * completely different ACs. There's no way to put a 217 * TID into multiple ath_txq's for scheduling, so 218 * for now we override the AC/TXQ selection and set 219 * non-QOS TID frames into the BE queue. 220 * 221 * This may be completely incorrect - specifically, 222 * some management frames may end up out of order 223 * compared to the QoS traffic they're controlling. 224 * I'll look into this later. 225 */ 226 static int 227 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0) 228 { 229 const struct ieee80211_frame *wh; 230 int pri = M_WME_GETAC(m0); 231 wh = mtod(m0, const struct ieee80211_frame *); 232 if (IEEE80211_QOS_HAS_SEQ(wh)) 233 return pri; 234 235 return ATH_NONQOS_TID_AC; 236 } 237 238 void 239 ath_txfrag_cleanup(struct ath_softc *sc, 240 ath_bufhead *frags, struct ieee80211_node *ni) 241 { 242 struct ath_buf *bf, *next; 243 244 ATH_TXBUF_LOCK_ASSERT(sc); 245 246 TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { 247 /* NB: bf assumed clean */ 248 TAILQ_REMOVE(frags, bf, bf_list); 249 ath_returnbuf_head(sc, bf); 250 ieee80211_node_decref(ni); 251 } 252 } 253 254 /* 255 * Setup xmit of a fragmented frame. Allocate a buffer 256 * for each frag and bump the node reference count to 257 * reflect the held reference to be setup by ath_tx_start. 258 */ 259 int 260 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 261 struct mbuf *m0, struct ieee80211_node *ni) 262 { 263 struct mbuf *m; 264 struct ath_buf *bf; 265 266 ATH_TXBUF_LOCK(sc); 267 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 268 /* XXX non-management? */ 269 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 270 if (bf == NULL) { /* out of buffers, cleanup */ 271 device_printf(sc->sc_dev, "%s: no buffer?\n", 272 __func__); 273 ath_txfrag_cleanup(sc, frags, ni); 274 break; 275 } 276 ieee80211_node_incref(ni); 277 TAILQ_INSERT_TAIL(frags, bf, bf_list); 278 } 279 ATH_TXBUF_UNLOCK(sc); 280 281 return !TAILQ_EMPTY(frags); 282 } 283 284 /* 285 * Reclaim mbuf resources. For fragmented frames we 286 * need to claim each frag chained with m_nextpkt. 287 */ 288 void 289 ath_freetx(struct mbuf *m) 290 { 291 struct mbuf *next; 292 293 do { 294 next = m->m_nextpkt; 295 m->m_nextpkt = NULL; 296 m_freem(m); 297 } while ((m = next) != NULL); 298 } 299 300 static int 301 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) 302 { 303 struct mbuf *m; 304 int error; 305 306 /* 307 * Load the DMA map so any coalescing is done. This 308 * also calculates the number of descriptors we need. 309 */ 310 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 311 bf->bf_segs, &bf->bf_nseg, 312 BUS_DMA_NOWAIT); 313 if (error == EFBIG) { 314 /* XXX packet requires too many descriptors */ 315 bf->bf_nseg = ATH_TXDESC+1; 316 } else if (error != 0) { 317 sc->sc_stats.ast_tx_busdma++; 318 ath_freetx(m0); 319 return error; 320 } 321 /* 322 * Discard null packets and check for packets that 323 * require too many TX descriptors. We try to convert 324 * the latter to a cluster. 325 */ 326 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 327 sc->sc_stats.ast_tx_linear++; 328 m = m_collapse(m0, M_NOWAIT, ATH_TXDESC); 329 if (m == NULL) { 330 ath_freetx(m0); 331 sc->sc_stats.ast_tx_nombuf++; 332 return ENOMEM; 333 } 334 m0 = m; 335 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 336 bf->bf_segs, &bf->bf_nseg, 337 BUS_DMA_NOWAIT); 338 if (error != 0) { 339 sc->sc_stats.ast_tx_busdma++; 340 ath_freetx(m0); 341 return error; 342 } 343 KASSERT(bf->bf_nseg <= ATH_TXDESC, 344 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 345 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 346 sc->sc_stats.ast_tx_nodata++; 347 ath_freetx(m0); 348 return EIO; 349 } 350 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", 351 __func__, m0, m0->m_pkthdr.len); 352 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 353 bf->bf_m = m0; 354 355 return 0; 356 } 357 358 /* 359 * Chain together segments+descriptors for a frame - 11n or otherwise. 360 * 361 * For aggregates, this is called on each frame in the aggregate. 362 */ 363 static void 364 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0, 365 struct ath_buf *bf, int is_aggr, int is_first_subframe, 366 int is_last_subframe) 367 { 368 struct ath_hal *ah = sc->sc_ah; 369 char *ds; 370 int i, bp, dsp; 371 HAL_DMA_ADDR bufAddrList[4]; 372 uint32_t segLenList[4]; 373 int numTxMaps = 1; 374 int isFirstDesc = 1; 375 376 /* 377 * XXX There's txdma and txdma_mgmt; the descriptor 378 * sizes must match. 379 */ 380 struct ath_descdma *dd = &sc->sc_txdma; 381 382 /* 383 * Fillin the remainder of the descriptor info. 384 */ 385 386 /* 387 * For now the HAL doesn't implement halNumTxMaps for non-EDMA 388 * (ie it's 0.) So just work around it. 389 * 390 * XXX TODO: populate halNumTxMaps for each HAL chip and 391 * then undo this hack. 392 */ 393 if (sc->sc_ah->ah_magic == 0x19741014) 394 numTxMaps = 4; 395 396 /* 397 * For EDMA and later chips ensure the TX map is fully populated 398 * before advancing to the next descriptor. 399 */ 400 ds = (char *) bf->bf_desc; 401 bp = dsp = 0; 402 bzero(bufAddrList, sizeof(bufAddrList)); 403 bzero(segLenList, sizeof(segLenList)); 404 for (i = 0; i < bf->bf_nseg; i++) { 405 bufAddrList[bp] = bf->bf_segs[i].ds_addr; 406 segLenList[bp] = bf->bf_segs[i].ds_len; 407 bp++; 408 409 /* 410 * Go to the next segment if this isn't the last segment 411 * and there's space in the current TX map. 412 */ 413 if ((i != bf->bf_nseg - 1) && (bp < numTxMaps)) 414 continue; 415 416 /* 417 * Last segment or we're out of buffer pointers. 418 */ 419 bp = 0; 420 421 if (i == bf->bf_nseg - 1) 422 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0); 423 else 424 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 425 bf->bf_daddr + dd->dd_descsize * (dsp + 1)); 426 427 /* 428 * XXX This assumes that bfs_txq is the actual destination 429 * hardware queue at this point. It may not have been 430 * assigned, it may actually be pointing to the multicast 431 * software TXQ id. These must be fixed! 432 */ 433 ath_hal_filltxdesc(ah, (struct ath_desc *) ds 434 , bufAddrList 435 , segLenList 436 , bf->bf_descid /* XXX desc id */ 437 , bf->bf_state.bfs_tx_queue 438 , isFirstDesc /* first segment */ 439 , i == bf->bf_nseg - 1 /* last segment */ 440 , (struct ath_desc *) ds0 /* first descriptor */ 441 ); 442 443 /* 444 * Make sure the 11n aggregate fields are cleared. 445 * 446 * XXX TODO: this doesn't need to be called for 447 * aggregate frames; as it'll be called on all 448 * sub-frames. Since the descriptors are in 449 * non-cacheable memory, this leads to some 450 * rather slow writes on MIPS/ARM platforms. 451 */ 452 if (ath_tx_is_11n(sc)) 453 ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds); 454 455 /* 456 * If 11n is enabled, set it up as if it's an aggregate 457 * frame. 458 */ 459 if (is_last_subframe) { 460 ath_hal_set11n_aggr_last(sc->sc_ah, 461 (struct ath_desc *) ds); 462 } else if (is_aggr) { 463 /* 464 * This clears the aggrlen field; so 465 * the caller needs to call set_aggr_first()! 466 * 467 * XXX TODO: don't call this for the first 468 * descriptor in the first frame in an 469 * aggregate! 470 */ 471 ath_hal_set11n_aggr_middle(sc->sc_ah, 472 (struct ath_desc *) ds, 473 bf->bf_state.bfs_ndelim); 474 } 475 isFirstDesc = 0; 476 #ifdef ATH_DEBUG 477 if (sc->sc_debug & ATH_DEBUG_XMIT) 478 ath_printtxbuf(sc, bf, bf->bf_state.bfs_tx_queue, 479 0, 0); 480 #endif 481 bf->bf_lastds = (struct ath_desc *) ds; 482 483 /* 484 * Don't forget to skip to the next descriptor. 485 */ 486 ds += sc->sc_tx_desclen; 487 dsp++; 488 489 /* 490 * .. and don't forget to blank these out! 491 */ 492 bzero(bufAddrList, sizeof(bufAddrList)); 493 bzero(segLenList, sizeof(segLenList)); 494 } 495 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 496 } 497 498 /* 499 * Set the rate control fields in the given descriptor based on 500 * the bf_state fields and node state. 501 * 502 * The bfs fields should already be set with the relevant rate 503 * control information, including whether MRR is to be enabled. 504 * 505 * Since the FreeBSD HAL currently sets up the first TX rate 506 * in ath_hal_setuptxdesc(), this will setup the MRR 507 * conditionally for the pre-11n chips, and call ath_buf_set_rate 508 * unconditionally for 11n chips. These require the 11n rate 509 * scenario to be set if MCS rates are enabled, so it's easier 510 * to just always call it. The caller can then only set rates 2, 3 511 * and 4 if multi-rate retry is needed. 512 */ 513 static void 514 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 515 struct ath_buf *bf) 516 { 517 struct ath_rc_series *rc = bf->bf_state.bfs_rc; 518 519 /* If mrr is disabled, blank tries 1, 2, 3 */ 520 if (! bf->bf_state.bfs_ismrr) 521 rc[1].tries = rc[2].tries = rc[3].tries = 0; 522 523 #if 0 524 /* 525 * If NOACK is set, just set ntries=1. 526 */ 527 else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) { 528 rc[1].tries = rc[2].tries = rc[3].tries = 0; 529 rc[0].tries = 1; 530 } 531 #endif 532 533 /* 534 * Always call - that way a retried descriptor will 535 * have the MRR fields overwritten. 536 * 537 * XXX TODO: see if this is really needed - setting up 538 * the first descriptor should set the MRR fields to 0 539 * for us anyway. 540 */ 541 if (ath_tx_is_11n(sc)) { 542 ath_buf_set_rate(sc, ni, bf); 543 } else { 544 ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc 545 , rc[1].ratecode, rc[1].tries 546 , rc[2].ratecode, rc[2].tries 547 , rc[3].ratecode, rc[3].tries 548 ); 549 } 550 } 551 552 /* 553 * Setup segments+descriptors for an 11n aggregate. 554 * bf_first is the first buffer in the aggregate. 555 * The descriptor list must already been linked together using 556 * bf->bf_next. 557 */ 558 static void 559 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first) 560 { 561 struct ath_buf *bf, *bf_prev = NULL; 562 struct ath_desc *ds0 = bf_first->bf_desc; 563 564 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n", 565 __func__, bf_first->bf_state.bfs_nframes, 566 bf_first->bf_state.bfs_al); 567 568 bf = bf_first; 569 570 if (bf->bf_state.bfs_txrate0 == 0) 571 device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n", 572 __func__, bf, 0); 573 if (bf->bf_state.bfs_rc[0].ratecode == 0) 574 device_printf(sc->sc_dev, "%s: bf=%p, rix0=%d\n", 575 __func__, bf, 0); 576 577 /* 578 * Setup all descriptors of all subframes - this will 579 * call ath_hal_set11naggrmiddle() on every frame. 580 */ 581 while (bf != NULL) { 582 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 583 "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n", 584 __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen, 585 SEQNO(bf->bf_state.bfs_seqno)); 586 587 /* 588 * Setup the initial fields for the first descriptor - all 589 * the non-11n specific stuff. 590 */ 591 ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc 592 , bf->bf_state.bfs_pktlen /* packet length */ 593 , bf->bf_state.bfs_hdrlen /* header length */ 594 , bf->bf_state.bfs_atype /* Atheros packet type */ 595 , bf->bf_state.bfs_txpower /* txpower */ 596 , bf->bf_state.bfs_txrate0 597 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 598 , bf->bf_state.bfs_keyix /* key cache index */ 599 , bf->bf_state.bfs_txantenna /* antenna mode */ 600 , bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ /* flags */ 601 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 602 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 603 ); 604 605 /* 606 * First descriptor? Setup the rate control and initial 607 * aggregate header information. 608 */ 609 if (bf == bf_first) { 610 /* 611 * setup first desc with rate and aggr info 612 */ 613 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 614 } 615 616 /* 617 * Setup the descriptors for a multi-descriptor frame. 618 * This is both aggregate and non-aggregate aware. 619 */ 620 ath_tx_chaindesclist(sc, ds0, bf, 621 1, /* is_aggr */ 622 !! (bf == bf_first), /* is_first_subframe */ 623 !! (bf->bf_next == NULL) /* is_last_subframe */ 624 ); 625 626 if (bf == bf_first) { 627 /* 628 * Initialise the first 11n aggregate with the 629 * aggregate length and aggregate enable bits. 630 */ 631 ath_hal_set11n_aggr_first(sc->sc_ah, 632 ds0, 633 bf->bf_state.bfs_al, 634 bf->bf_state.bfs_ndelim); 635 } 636 637 /* 638 * Link the last descriptor of the previous frame 639 * to the beginning descriptor of this frame. 640 */ 641 if (bf_prev != NULL) 642 ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds, 643 bf->bf_daddr); 644 645 /* Save a copy so we can link the next descriptor in */ 646 bf_prev = bf; 647 bf = bf->bf_next; 648 } 649 650 /* 651 * Set the first descriptor bf_lastds field to point to 652 * the last descriptor in the last subframe, that's where 653 * the status update will occur. 654 */ 655 bf_first->bf_lastds = bf_prev->bf_lastds; 656 657 /* 658 * And bf_last in the first descriptor points to the end of 659 * the aggregate list. 660 */ 661 bf_first->bf_last = bf_prev; 662 663 /* 664 * For non-AR9300 NICs, which require the rate control 665 * in the final descriptor - let's set that up now. 666 * 667 * This is because the filltxdesc() HAL call doesn't 668 * populate the last segment with rate control information 669 * if firstSeg is also true. For non-aggregate frames 670 * that is fine, as the first frame already has rate control 671 * info. But if the last frame in an aggregate has one 672 * descriptor, both firstseg and lastseg will be true and 673 * the rate info isn't copied. 674 * 675 * This is inefficient on MIPS/ARM platforms that have 676 * non-cachable memory for TX descriptors, but we'll just 677 * make do for now. 678 * 679 * As to why the rate table is stashed in the last descriptor 680 * rather than the first descriptor? Because proctxdesc() 681 * is called on the final descriptor in an MPDU or A-MPDU - 682 * ie, the one that gets updated by the hardware upon 683 * completion. That way proctxdesc() doesn't need to know 684 * about the first _and_ last TX descriptor. 685 */ 686 ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0); 687 688 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__); 689 } 690 691 /* 692 * Hand-off a frame to the multicast TX queue. 693 * 694 * This is a software TXQ which will be appended to the CAB queue 695 * during the beacon setup code. 696 * 697 * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID 698 * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated 699 * with the actual hardware txq, or all of this will fall apart. 700 * 701 * XXX It may not be a bad idea to just stuff the QCU ID into bf_state 702 * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated 703 * correctly. 704 */ 705 static void 706 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, 707 struct ath_buf *bf) 708 { 709 ATH_TX_LOCK_ASSERT(sc); 710 711 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 712 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 713 if (txq->axq_link != NULL) { 714 struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s); 715 struct ieee80211_frame *wh; 716 717 /* mark previous frame */ 718 wh = mtod(last->bf_m, struct ieee80211_frame *); 719 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 720 bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap, 721 BUS_DMASYNC_PREWRITE); 722 723 /* link descriptor */ 724 *txq->axq_link = bf->bf_daddr; 725 } 726 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 727 ath_hal_gettxdesclinkptr(sc->sc_ah, bf->bf_lastds, &txq->axq_link); 728 } 729 730 /* 731 * Hand-off packet to a hardware queue. 732 */ 733 static void 734 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, 735 struct ath_buf *bf) 736 { 737 struct ath_hal *ah = sc->sc_ah; 738 739 /* 740 * Insert the frame on the outbound list and pass it on 741 * to the hardware. Multicast frames buffered for power 742 * save stations and transmit from the CAB queue are stored 743 * on a s/w only queue and loaded on to the CAB queue in 744 * the SWBA handler since frames only go out on DTIM and 745 * to avoid possible races. 746 */ 747 ATH_TX_LOCK_ASSERT(sc); 748 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 749 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 750 KASSERT(txq->axq_qnum != ATH_TXQ_SWQ, 751 ("ath_tx_handoff_hw called for mcast queue")); 752 753 #if 0 754 /* 755 * This causes a LOR. Find out where the PCU lock is being 756 * held whilst the TXQ lock is grabbed - that shouldn't 757 * be occuring. 758 */ 759 ATH_PCU_LOCK(sc); 760 if (sc->sc_inreset_cnt) { 761 ATH_PCU_UNLOCK(sc); 762 DPRINTF(sc, ATH_DEBUG_RESET, 763 "%s: called with sc_in_reset != 0\n", 764 __func__); 765 DPRINTF(sc, ATH_DEBUG_XMIT, 766 "%s: queued: TXDP[%u] = %p (%p) depth %d\n", 767 __func__, txq->axq_qnum, 768 (caddr_t)bf->bf_daddr, bf->bf_desc, 769 txq->axq_depth); 770 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 771 if (bf->bf_state.bfs_aggr) 772 txq->axq_aggr_depth++; 773 /* 774 * There's no need to update axq_link; the hardware 775 * is in reset and once the reset is complete, any 776 * non-empty queues will simply have DMA restarted. 777 */ 778 return; 779 } 780 ATH_PCU_UNLOCK(sc); 781 #endif 782 783 /* For now, so not to generate whitespace diffs */ 784 if (1) { 785 #ifdef IEEE80211_SUPPORT_TDMA 786 int qbusy; 787 788 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 789 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum); 790 791 ATH_KTR(sc, ATH_KTR_TX, 4, 792 "ath_tx_handoff: txq=%u, add bf=%p, qbusy=%d, depth=%d", 793 txq->axq_qnum, bf, qbusy, txq->axq_depth); 794 if (txq->axq_link == NULL) { 795 /* 796 * Be careful writing the address to TXDP. If 797 * the tx q is enabled then this write will be 798 * ignored. Normally this is not an issue but 799 * when tdma is in use and the q is beacon gated 800 * this race can occur. If the q is busy then 801 * defer the work to later--either when another 802 * packet comes along or when we prepare a beacon 803 * frame at SWBA. 804 */ 805 if (!qbusy) { 806 ath_hal_puttxbuf(ah, txq->axq_qnum, 807 bf->bf_daddr); 808 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 809 DPRINTF(sc, ATH_DEBUG_XMIT, 810 "%s: TXDP[%u] = %p (%p) lastds=%p depth %d\n", 811 __func__, txq->axq_qnum, 812 (caddr_t)bf->bf_daddr, bf->bf_desc, 813 bf->bf_lastds, 814 txq->axq_depth); 815 ATH_KTR(sc, ATH_KTR_TX, 5, 816 "ath_tx_handoff: TXDP[%u] = %p (%p) " 817 "lastds=%p depth %d", 818 txq->axq_qnum, 819 (caddr_t)bf->bf_daddr, bf->bf_desc, 820 bf->bf_lastds, 821 txq->axq_depth); 822 } else { 823 txq->axq_flags |= ATH_TXQ_PUTPENDING; 824 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 825 "%s: Q%u busy, defer enable\n", __func__, 826 txq->axq_qnum); 827 ATH_KTR(sc, ATH_KTR_TX, 0, "defer enable"); 828 } 829 } else { 830 *txq->axq_link = bf->bf_daddr; 831 DPRINTF(sc, ATH_DEBUG_XMIT, 832 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 833 txq->axq_qnum, txq->axq_link, 834 (caddr_t)bf->bf_daddr, bf->bf_desc, 835 txq->axq_depth); 836 ATH_KTR(sc, ATH_KTR_TX, 5, 837 "ath_tx_handoff: link[%u](%p)=%p (%p) lastds=%p", 838 txq->axq_qnum, txq->axq_link, 839 (caddr_t)bf->bf_daddr, bf->bf_desc, 840 bf->bf_lastds); 841 842 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) { 843 /* 844 * The q was busy when we previously tried 845 * to write the address of the first buffer 846 * in the chain. Since it's not busy now 847 * handle this chore. We are certain the 848 * buffer at the front is the right one since 849 * axq_link is NULL only when the buffer list 850 * is/was empty. 851 */ 852 ath_hal_puttxbuf(ah, txq->axq_qnum, 853 TAILQ_FIRST(&txq->axq_q)->bf_daddr); 854 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 855 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 856 "%s: Q%u restarted\n", __func__, 857 txq->axq_qnum); 858 ATH_KTR(sc, ATH_KTR_TX, 4, 859 "ath_tx_handoff: txq[%d] restarted, bf=%p " 860 "daddr=%p ds=%p", 861 txq->axq_qnum, 862 bf, 863 (caddr_t)bf->bf_daddr, 864 bf->bf_desc); 865 } 866 } 867 #else 868 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 869 ATH_KTR(sc, ATH_KTR_TX, 3, 870 "ath_tx_handoff: non-tdma: txq=%u, add bf=%p " 871 "depth=%d", 872 txq->axq_qnum, 873 bf, 874 txq->axq_depth); 875 if (txq->axq_link == NULL) { 876 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 877 DPRINTF(sc, ATH_DEBUG_XMIT, 878 "%s: TXDP[%u] = %p (%p) depth %d\n", 879 __func__, txq->axq_qnum, 880 (caddr_t)bf->bf_daddr, bf->bf_desc, 881 txq->axq_depth); 882 ATH_KTR(sc, ATH_KTR_TX, 5, 883 "ath_tx_handoff: non-tdma: TXDP[%u] = %p (%p) " 884 "lastds=%p depth %d", 885 txq->axq_qnum, 886 (caddr_t)bf->bf_daddr, bf->bf_desc, 887 bf->bf_lastds, 888 txq->axq_depth); 889 890 } else { 891 *txq->axq_link = bf->bf_daddr; 892 DPRINTF(sc, ATH_DEBUG_XMIT, 893 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 894 txq->axq_qnum, txq->axq_link, 895 (caddr_t)bf->bf_daddr, bf->bf_desc, 896 txq->axq_depth); 897 ATH_KTR(sc, ATH_KTR_TX, 5, 898 "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) " 899 "lastds=%d", 900 txq->axq_qnum, txq->axq_link, 901 (caddr_t)bf->bf_daddr, bf->bf_desc, 902 bf->bf_lastds); 903 904 } 905 #endif /* IEEE80211_SUPPORT_TDMA */ 906 if (bf->bf_state.bfs_aggr) 907 txq->axq_aggr_depth++; 908 ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link); 909 ath_hal_txstart(ah, txq->axq_qnum); 910 ATH_KTR(sc, ATH_KTR_TX, 1, 911 "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum); 912 } 913 } 914 915 /* 916 * Restart TX DMA for the given TXQ. 917 * 918 * This must be called whether the queue is empty or not. 919 */ 920 static void 921 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq) 922 { 923 struct ath_hal *ah = sc->sc_ah; 924 struct ath_buf *bf, *bf_last; 925 926 ATH_TX_LOCK_ASSERT(sc); 927 928 /* This is always going to be cleared, empty or not */ 929 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 930 931 /* XXX make this ATH_TXQ_FIRST */ 932 bf = TAILQ_FIRST(&txq->axq_q); 933 bf_last = ATH_TXQ_LAST(txq, axq_q_s); 934 935 if (bf == NULL) 936 return; 937 938 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 939 ath_hal_gettxdesclinkptr(ah, bf_last->bf_lastds, &txq->axq_link); 940 ath_hal_txstart(ah, txq->axq_qnum); 941 } 942 943 /* 944 * Hand off a packet to the hardware (or mcast queue.) 945 * 946 * The relevant hardware txq should be locked. 947 */ 948 static void 949 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, 950 struct ath_buf *bf) 951 { 952 ATH_TX_LOCK_ASSERT(sc); 953 954 #ifdef ATH_DEBUG_ALQ 955 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC)) 956 ath_tx_alq_post(sc, bf); 957 #endif 958 959 if (txq->axq_qnum == ATH_TXQ_SWQ) 960 ath_tx_handoff_mcast(sc, txq, bf); 961 else 962 ath_tx_handoff_hw(sc, txq, bf); 963 } 964 965 static int 966 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni, 967 struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, 968 int *keyix) 969 { 970 DPRINTF(sc, ATH_DEBUG_XMIT, 971 "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n", 972 __func__, 973 *hdrlen, 974 *pktlen, 975 isfrag, 976 iswep, 977 m0); 978 979 if (iswep) { 980 const struct ieee80211_cipher *cip; 981 struct ieee80211_key *k; 982 983 /* 984 * Construct the 802.11 header+trailer for an encrypted 985 * frame. The only reason this can fail is because of an 986 * unknown or unsupported cipher/key type. 987 */ 988 k = ieee80211_crypto_encap(ni, m0); 989 if (k == NULL) { 990 /* 991 * This can happen when the key is yanked after the 992 * frame was queued. Just discard the frame; the 993 * 802.11 layer counts failures and provides 994 * debugging/diagnostics. 995 */ 996 return (0); 997 } 998 /* 999 * Adjust the packet + header lengths for the crypto 1000 * additions and calculate the h/w key index. When 1001 * a s/w mic is done the frame will have had any mic 1002 * added to it prior to entry so m0->m_pkthdr.len will 1003 * account for it. Otherwise we need to add it to the 1004 * packet length. 1005 */ 1006 cip = k->wk_cipher; 1007 (*hdrlen) += cip->ic_header; 1008 (*pktlen) += cip->ic_header + cip->ic_trailer; 1009 /* NB: frags always have any TKIP MIC done in s/w */ 1010 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 1011 (*pktlen) += cip->ic_miclen; 1012 (*keyix) = k->wk_keyix; 1013 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 1014 /* 1015 * Use station key cache slot, if assigned. 1016 */ 1017 (*keyix) = ni->ni_ucastkey.wk_keyix; 1018 if ((*keyix) == IEEE80211_KEYIX_NONE) 1019 (*keyix) = HAL_TXKEYIX_INVALID; 1020 } else 1021 (*keyix) = HAL_TXKEYIX_INVALID; 1022 1023 return (1); 1024 } 1025 1026 /* 1027 * Calculate whether interoperability protection is required for 1028 * this frame. 1029 * 1030 * This requires the rate control information be filled in, 1031 * as the protection requirement depends upon the current 1032 * operating mode / PHY. 1033 */ 1034 static void 1035 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf) 1036 { 1037 struct ieee80211_frame *wh; 1038 uint8_t rix; 1039 uint16_t flags; 1040 int shortPreamble; 1041 const HAL_RATE_TABLE *rt = sc->sc_currates; 1042 struct ifnet *ifp = sc->sc_ifp; 1043 struct ieee80211com *ic = ifp->if_l2com; 1044 1045 flags = bf->bf_state.bfs_txflags; 1046 rix = bf->bf_state.bfs_rc[0].rix; 1047 shortPreamble = bf->bf_state.bfs_shpream; 1048 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1049 1050 /* 1051 * If 802.11g protection is enabled, determine whether 1052 * to use RTS/CTS or just CTS. Note that this is only 1053 * done for OFDM unicast frames. 1054 */ 1055 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1056 rt->info[rix].phy == IEEE80211_T_OFDM && 1057 (flags & HAL_TXDESC_NOACK) == 0) { 1058 bf->bf_state.bfs_doprot = 1; 1059 /* XXX fragments must use CCK rates w/ protection */ 1060 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { 1061 flags |= HAL_TXDESC_RTSENA; 1062 } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { 1063 flags |= HAL_TXDESC_CTSENA; 1064 } 1065 /* 1066 * For frags it would be desirable to use the 1067 * highest CCK rate for RTS/CTS. But stations 1068 * farther away may detect it at a lower CCK rate 1069 * so use the configured protection rate instead 1070 * (for now). 1071 */ 1072 sc->sc_stats.ast_tx_protect++; 1073 } 1074 1075 /* 1076 * If 11n protection is enabled and it's a HT frame, 1077 * enable RTS. 1078 * 1079 * XXX ic_htprotmode or ic_curhtprotmode? 1080 * XXX should it_htprotmode only matter if ic_curhtprotmode 1081 * XXX indicates it's not a HT pure environment? 1082 */ 1083 if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) && 1084 rt->info[rix].phy == IEEE80211_T_HT && 1085 (flags & HAL_TXDESC_NOACK) == 0) { 1086 flags |= HAL_TXDESC_RTSENA; 1087 sc->sc_stats.ast_tx_htprotect++; 1088 } 1089 bf->bf_state.bfs_txflags = flags; 1090 } 1091 1092 /* 1093 * Update the frame duration given the currently selected rate. 1094 * 1095 * This also updates the frame duration value, so it will require 1096 * a DMA flush. 1097 */ 1098 static void 1099 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf) 1100 { 1101 struct ieee80211_frame *wh; 1102 uint8_t rix; 1103 uint16_t flags; 1104 int shortPreamble; 1105 struct ath_hal *ah = sc->sc_ah; 1106 const HAL_RATE_TABLE *rt = sc->sc_currates; 1107 int isfrag = bf->bf_m->m_flags & M_FRAG; 1108 1109 flags = bf->bf_state.bfs_txflags; 1110 rix = bf->bf_state.bfs_rc[0].rix; 1111 shortPreamble = bf->bf_state.bfs_shpream; 1112 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1113 1114 /* 1115 * Calculate duration. This logically belongs in the 802.11 1116 * layer but it lacks sufficient information to calculate it. 1117 */ 1118 if ((flags & HAL_TXDESC_NOACK) == 0 && 1119 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 1120 u_int16_t dur; 1121 if (shortPreamble) 1122 dur = rt->info[rix].spAckDuration; 1123 else 1124 dur = rt->info[rix].lpAckDuration; 1125 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 1126 dur += dur; /* additional SIFS+ACK */ 1127 if (bf->bf_state.bfs_nextpktlen == 0) { 1128 device_printf(sc->sc_dev, 1129 "%s: next txfrag len=0?\n", 1130 __func__); 1131 } 1132 /* 1133 * Include the size of next fragment so NAV is 1134 * updated properly. The last fragment uses only 1135 * the ACK duration 1136 * 1137 * XXX TODO: ensure that the rate lookup for each 1138 * fragment is the same as the rate used by the 1139 * first fragment! 1140 */ 1141 dur += ath_hal_computetxtime(ah, rt, 1142 bf->bf_state.bfs_nextpktlen, 1143 rix, shortPreamble); 1144 } 1145 if (isfrag) { 1146 /* 1147 * Force hardware to use computed duration for next 1148 * fragment by disabling multi-rate retry which updates 1149 * duration based on the multi-rate duration table. 1150 */ 1151 bf->bf_state.bfs_ismrr = 0; 1152 bf->bf_state.bfs_try0 = ATH_TXMGTTRY; 1153 /* XXX update bfs_rc[0].try? */ 1154 } 1155 1156 /* Update the duration field itself */ 1157 *(u_int16_t *)wh->i_dur = htole16(dur); 1158 } 1159 } 1160 1161 static uint8_t 1162 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt, 1163 int cix, int shortPreamble) 1164 { 1165 uint8_t ctsrate; 1166 1167 /* 1168 * CTS transmit rate is derived from the transmit rate 1169 * by looking in the h/w rate table. We must also factor 1170 * in whether or not a short preamble is to be used. 1171 */ 1172 /* NB: cix is set above where RTS/CTS is enabled */ 1173 KASSERT(cix != 0xff, ("cix not setup")); 1174 ctsrate = rt->info[cix].rateCode; 1175 1176 /* XXX this should only matter for legacy rates */ 1177 if (shortPreamble) 1178 ctsrate |= rt->info[cix].shortPreamble; 1179 1180 return (ctsrate); 1181 } 1182 1183 /* 1184 * Calculate the RTS/CTS duration for legacy frames. 1185 */ 1186 static int 1187 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix, 1188 int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt, 1189 int flags) 1190 { 1191 int ctsduration = 0; 1192 1193 /* This mustn't be called for HT modes */ 1194 if (rt->info[cix].phy == IEEE80211_T_HT) { 1195 printf("%s: HT rate where it shouldn't be (0x%x)\n", 1196 __func__, rt->info[cix].rateCode); 1197 return (-1); 1198 } 1199 1200 /* 1201 * Compute the transmit duration based on the frame 1202 * size and the size of an ACK frame. We call into the 1203 * HAL to do the computation since it depends on the 1204 * characteristics of the actual PHY being used. 1205 * 1206 * NB: CTS is assumed the same size as an ACK so we can 1207 * use the precalculated ACK durations. 1208 */ 1209 if (shortPreamble) { 1210 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1211 ctsduration += rt->info[cix].spAckDuration; 1212 ctsduration += ath_hal_computetxtime(ah, 1213 rt, pktlen, rix, AH_TRUE); 1214 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1215 ctsduration += rt->info[rix].spAckDuration; 1216 } else { 1217 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1218 ctsduration += rt->info[cix].lpAckDuration; 1219 ctsduration += ath_hal_computetxtime(ah, 1220 rt, pktlen, rix, AH_FALSE); 1221 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1222 ctsduration += rt->info[rix].lpAckDuration; 1223 } 1224 1225 return (ctsduration); 1226 } 1227 1228 /* 1229 * Update the given ath_buf with updated rts/cts setup and duration 1230 * values. 1231 * 1232 * To support rate lookups for each software retry, the rts/cts rate 1233 * and cts duration must be re-calculated. 1234 * 1235 * This function assumes the RTS/CTS flags have been set as needed; 1236 * mrr has been disabled; and the rate control lookup has been done. 1237 * 1238 * XXX TODO: MRR need only be disabled for the pre-11n NICs. 1239 * XXX The 11n NICs support per-rate RTS/CTS configuration. 1240 */ 1241 static void 1242 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf) 1243 { 1244 uint16_t ctsduration = 0; 1245 uint8_t ctsrate = 0; 1246 uint8_t rix = bf->bf_state.bfs_rc[0].rix; 1247 uint8_t cix = 0; 1248 const HAL_RATE_TABLE *rt = sc->sc_currates; 1249 1250 /* 1251 * No RTS/CTS enabled? Don't bother. 1252 */ 1253 if ((bf->bf_state.bfs_txflags & 1254 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) { 1255 /* XXX is this really needed? */ 1256 bf->bf_state.bfs_ctsrate = 0; 1257 bf->bf_state.bfs_ctsduration = 0; 1258 return; 1259 } 1260 1261 /* 1262 * If protection is enabled, use the protection rix control 1263 * rate. Otherwise use the rate0 control rate. 1264 */ 1265 if (bf->bf_state.bfs_doprot) 1266 rix = sc->sc_protrix; 1267 else 1268 rix = bf->bf_state.bfs_rc[0].rix; 1269 1270 /* 1271 * If the raw path has hard-coded ctsrate0 to something, 1272 * use it. 1273 */ 1274 if (bf->bf_state.bfs_ctsrate0 != 0) 1275 cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0); 1276 else 1277 /* Control rate from above */ 1278 cix = rt->info[rix].controlRate; 1279 1280 /* Calculate the rtscts rate for the given cix */ 1281 ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix, 1282 bf->bf_state.bfs_shpream); 1283 1284 /* The 11n chipsets do ctsduration calculations for you */ 1285 if (! ath_tx_is_11n(sc)) 1286 ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix, 1287 bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, 1288 rt, bf->bf_state.bfs_txflags); 1289 1290 /* Squirrel away in ath_buf */ 1291 bf->bf_state.bfs_ctsrate = ctsrate; 1292 bf->bf_state.bfs_ctsduration = ctsduration; 1293 1294 /* 1295 * Must disable multi-rate retry when using RTS/CTS. 1296 */ 1297 if (!sc->sc_mrrprot) { 1298 bf->bf_state.bfs_ismrr = 0; 1299 bf->bf_state.bfs_try0 = 1300 bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */ 1301 } 1302 } 1303 1304 /* 1305 * Setup the descriptor chain for a normal or fast-frame 1306 * frame. 1307 * 1308 * XXX TODO: extend to include the destination hardware QCU ID. 1309 * Make sure that is correct. Make sure that when being added 1310 * to the mcastq, the CABQ QCUID is set or things will get a bit 1311 * odd. 1312 */ 1313 static void 1314 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf) 1315 { 1316 struct ath_desc *ds = bf->bf_desc; 1317 struct ath_hal *ah = sc->sc_ah; 1318 1319 if (bf->bf_state.bfs_txrate0 == 0) 1320 device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n", 1321 __func__, bf, 0); 1322 1323 ath_hal_setuptxdesc(ah, ds 1324 , bf->bf_state.bfs_pktlen /* packet length */ 1325 , bf->bf_state.bfs_hdrlen /* header length */ 1326 , bf->bf_state.bfs_atype /* Atheros packet type */ 1327 , bf->bf_state.bfs_txpower /* txpower */ 1328 , bf->bf_state.bfs_txrate0 1329 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 1330 , bf->bf_state.bfs_keyix /* key cache index */ 1331 , bf->bf_state.bfs_txantenna /* antenna mode */ 1332 , bf->bf_state.bfs_txflags /* flags */ 1333 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 1334 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 1335 ); 1336 1337 /* 1338 * This will be overriden when the descriptor chain is written. 1339 */ 1340 bf->bf_lastds = ds; 1341 bf->bf_last = bf; 1342 1343 /* Set rate control and descriptor chain for this frame */ 1344 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 1345 ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0); 1346 } 1347 1348 /* 1349 * Do a rate lookup. 1350 * 1351 * This performs a rate lookup for the given ath_buf only if it's required. 1352 * Non-data frames and raw frames don't require it. 1353 * 1354 * This populates the primary and MRR entries; MRR values are 1355 * then disabled later on if something requires it (eg RTS/CTS on 1356 * pre-11n chipsets. 1357 * 1358 * This needs to be done before the RTS/CTS fields are calculated 1359 * as they may depend upon the rate chosen. 1360 */ 1361 static void 1362 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf) 1363 { 1364 uint8_t rate, rix; 1365 int try0; 1366 1367 if (! bf->bf_state.bfs_doratelookup) 1368 return; 1369 1370 /* Get rid of any previous state */ 1371 bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1372 1373 ATH_NODE_LOCK(ATH_NODE(bf->bf_node)); 1374 ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream, 1375 bf->bf_state.bfs_pktlen, &rix, &try0, &rate); 1376 1377 /* In case MRR is disabled, make sure rc[0] is setup correctly */ 1378 bf->bf_state.bfs_rc[0].rix = rix; 1379 bf->bf_state.bfs_rc[0].ratecode = rate; 1380 bf->bf_state.bfs_rc[0].tries = try0; 1381 1382 if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY) 1383 ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix, 1384 bf->bf_state.bfs_rc); 1385 ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node)); 1386 1387 sc->sc_txrix = rix; /* for LED blinking */ 1388 sc->sc_lastdatarix = rix; /* for fast frames */ 1389 bf->bf_state.bfs_try0 = try0; 1390 bf->bf_state.bfs_txrate0 = rate; 1391 } 1392 1393 /* 1394 * Update the CLRDMASK bit in the ath_buf if it needs to be set. 1395 */ 1396 static void 1397 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid, 1398 struct ath_buf *bf) 1399 { 1400 struct ath_node *an = ATH_NODE(bf->bf_node); 1401 1402 ATH_TX_LOCK_ASSERT(sc); 1403 1404 if (an->clrdmask == 1) { 1405 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1406 an->clrdmask = 0; 1407 } 1408 } 1409 1410 /* 1411 * Transmit the given frame to the hardware. 1412 * 1413 * The frame must already be setup; rate control must already have 1414 * been done. 1415 * 1416 * XXX since the TXQ lock is being held here (and I dislike holding 1417 * it for this long when not doing software aggregation), later on 1418 * break this function into "setup_normal" and "xmit_normal". The 1419 * lock only needs to be held for the ath_tx_handoff call. 1420 */ 1421 static void 1422 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq, 1423 struct ath_buf *bf) 1424 { 1425 struct ath_node *an = ATH_NODE(bf->bf_node); 1426 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 1427 1428 ATH_TX_LOCK_ASSERT(sc); 1429 1430 /* 1431 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does 1432 * set a completion handler however it doesn't (yet) properly 1433 * handle the strict ordering requirements needed for normal, 1434 * non-aggregate session frames. 1435 * 1436 * Once this is implemented, only set CLRDMASK like this for 1437 * frames that must go out - eg management/raw frames. 1438 */ 1439 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1440 1441 /* Setup the descriptor before handoff */ 1442 ath_tx_do_ratelookup(sc, bf); 1443 ath_tx_calc_duration(sc, bf); 1444 ath_tx_calc_protection(sc, bf); 1445 ath_tx_set_rtscts(sc, bf); 1446 ath_tx_rate_fill_rcflags(sc, bf); 1447 ath_tx_setds(sc, bf); 1448 1449 /* Track per-TID hardware queue depth correctly */ 1450 tid->hwq_depth++; 1451 1452 /* Assign the completion handler */ 1453 bf->bf_comp = ath_tx_normal_comp; 1454 1455 /* Hand off to hardware */ 1456 ath_tx_handoff(sc, txq, bf); 1457 } 1458 1459 /* 1460 * Do the basic frame setup stuff that's required before the frame 1461 * is added to a software queue. 1462 * 1463 * All frames get mostly the same treatment and it's done once. 1464 * Retransmits fiddle with things like the rate control setup, 1465 * setting the retransmit bit in the packet; doing relevant DMA/bus 1466 * syncing and relinking it (back) into the hardware TX queue. 1467 * 1468 * Note that this may cause the mbuf to be reallocated, so 1469 * m0 may not be valid. 1470 */ 1471 static int 1472 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni, 1473 struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq) 1474 { 1475 struct ieee80211vap *vap = ni->ni_vap; 1476 struct ath_hal *ah = sc->sc_ah; 1477 struct ifnet *ifp = sc->sc_ifp; 1478 struct ieee80211com *ic = ifp->if_l2com; 1479 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1480 int error, iswep, ismcast, isfrag, ismrr; 1481 int keyix, hdrlen, pktlen, try0 = 0; 1482 u_int8_t rix = 0, txrate = 0; 1483 struct ath_desc *ds; 1484 struct ieee80211_frame *wh; 1485 u_int subtype, flags; 1486 HAL_PKT_TYPE atype; 1487 const HAL_RATE_TABLE *rt; 1488 HAL_BOOL shortPreamble; 1489 struct ath_node *an; 1490 u_int pri; 1491 1492 /* 1493 * To ensure that both sequence numbers and the CCMP PN handling 1494 * is "correct", make sure that the relevant TID queue is locked. 1495 * Otherwise the CCMP PN and seqno may appear out of order, causing 1496 * re-ordered frames to have out of order CCMP PN's, resulting 1497 * in many, many frame drops. 1498 */ 1499 ATH_TX_LOCK_ASSERT(sc); 1500 1501 wh = mtod(m0, struct ieee80211_frame *); 1502 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 1503 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1504 isfrag = m0->m_flags & M_FRAG; 1505 hdrlen = ieee80211_anyhdrsize(wh); 1506 /* 1507 * Packet length must not include any 1508 * pad bytes; deduct them here. 1509 */ 1510 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 1511 1512 /* Handle encryption twiddling if needed */ 1513 if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen, 1514 &pktlen, &keyix)) { 1515 ath_freetx(m0); 1516 return EIO; 1517 } 1518 1519 /* packet header may have moved, reset our local pointer */ 1520 wh = mtod(m0, struct ieee80211_frame *); 1521 1522 pktlen += IEEE80211_CRC_LEN; 1523 1524 /* 1525 * Load the DMA map so any coalescing is done. This 1526 * also calculates the number of descriptors we need. 1527 */ 1528 error = ath_tx_dmasetup(sc, bf, m0); 1529 if (error != 0) 1530 return error; 1531 bf->bf_node = ni; /* NB: held reference */ 1532 m0 = bf->bf_m; /* NB: may have changed */ 1533 wh = mtod(m0, struct ieee80211_frame *); 1534 1535 /* setup descriptors */ 1536 ds = bf->bf_desc; 1537 rt = sc->sc_currates; 1538 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1539 1540 /* 1541 * NB: the 802.11 layer marks whether or not we should 1542 * use short preamble based on the current mode and 1543 * negotiated parameters. 1544 */ 1545 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1546 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 1547 shortPreamble = AH_TRUE; 1548 sc->sc_stats.ast_tx_shortpre++; 1549 } else { 1550 shortPreamble = AH_FALSE; 1551 } 1552 1553 an = ATH_NODE(ni); 1554 //flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 1555 flags = 0; 1556 ismrr = 0; /* default no multi-rate retry*/ 1557 pri = M_WME_GETAC(m0); /* honor classification */ 1558 /* XXX use txparams instead of fixed values */ 1559 /* 1560 * Calculate Atheros packet type from IEEE80211 packet header, 1561 * setup for rate calculations, and select h/w transmit queue. 1562 */ 1563 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1564 case IEEE80211_FC0_TYPE_MGT: 1565 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1566 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 1567 atype = HAL_PKT_TYPE_BEACON; 1568 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1569 atype = HAL_PKT_TYPE_PROBE_RESP; 1570 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 1571 atype = HAL_PKT_TYPE_ATIM; 1572 else 1573 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 1574 rix = an->an_mgmtrix; 1575 txrate = rt->info[rix].rateCode; 1576 if (shortPreamble) 1577 txrate |= rt->info[rix].shortPreamble; 1578 try0 = ATH_TXMGTTRY; 1579 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1580 break; 1581 case IEEE80211_FC0_TYPE_CTL: 1582 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 1583 rix = an->an_mgmtrix; 1584 txrate = rt->info[rix].rateCode; 1585 if (shortPreamble) 1586 txrate |= rt->info[rix].shortPreamble; 1587 try0 = ATH_TXMGTTRY; 1588 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1589 break; 1590 case IEEE80211_FC0_TYPE_DATA: 1591 atype = HAL_PKT_TYPE_NORMAL; /* default */ 1592 /* 1593 * Data frames: multicast frames go out at a fixed rate, 1594 * EAPOL frames use the mgmt frame rate; otherwise consult 1595 * the rate control module for the rate to use. 1596 */ 1597 if (ismcast) { 1598 rix = an->an_mcastrix; 1599 txrate = rt->info[rix].rateCode; 1600 if (shortPreamble) 1601 txrate |= rt->info[rix].shortPreamble; 1602 try0 = 1; 1603 } else if (m0->m_flags & M_EAPOL) { 1604 /* XXX? maybe always use long preamble? */ 1605 rix = an->an_mgmtrix; 1606 txrate = rt->info[rix].rateCode; 1607 if (shortPreamble) 1608 txrate |= rt->info[rix].shortPreamble; 1609 try0 = ATH_TXMAXTRY; /* XXX?too many? */ 1610 } else { 1611 /* 1612 * Do rate lookup on each TX, rather than using 1613 * the hard-coded TX information decided here. 1614 */ 1615 ismrr = 1; 1616 bf->bf_state.bfs_doratelookup = 1; 1617 } 1618 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 1619 flags |= HAL_TXDESC_NOACK; 1620 break; 1621 default: 1622 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 1623 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1624 /* XXX statistic */ 1625 ath_freetx(m0); 1626 return EIO; 1627 } 1628 1629 /* 1630 * There are two known scenarios where the frame AC doesn't match 1631 * what the destination TXQ is. 1632 * 1633 * + non-QoS frames (eg management?) that the net80211 stack has 1634 * assigned a higher AC to, but since it's a non-QoS TID, it's 1635 * being thrown into TID 16. TID 16 gets the AC_BE queue. 1636 * It's quite possible that management frames should just be 1637 * direct dispatched to hardware rather than go via the software 1638 * queue; that should be investigated in the future. There are 1639 * some specific scenarios where this doesn't make sense, mostly 1640 * surrounding ADDBA request/response - hence why that is special 1641 * cased. 1642 * 1643 * + Multicast frames going into the VAP mcast queue. That shows up 1644 * as "TXQ 11". 1645 * 1646 * This driver should eventually support separate TID and TXQ locking, 1647 * allowing for arbitrary AC frames to appear on arbitrary software 1648 * queues, being queued to the "correct" hardware queue when needed. 1649 */ 1650 #if 0 1651 if (txq != sc->sc_ac2q[pri]) { 1652 device_printf(sc->sc_dev, 1653 "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n", 1654 __func__, 1655 txq, 1656 txq->axq_qnum, 1657 pri, 1658 sc->sc_ac2q[pri], 1659 sc->sc_ac2q[pri]->axq_qnum); 1660 } 1661 #endif 1662 1663 /* 1664 * Calculate miscellaneous flags. 1665 */ 1666 if (ismcast) { 1667 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 1668 } else if (pktlen > vap->iv_rtsthreshold && 1669 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { 1670 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 1671 sc->sc_stats.ast_tx_rts++; 1672 } 1673 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 1674 sc->sc_stats.ast_tx_noack++; 1675 #ifdef IEEE80211_SUPPORT_TDMA 1676 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { 1677 DPRINTF(sc, ATH_DEBUG_TDMA, 1678 "%s: discard frame, ACK required w/ TDMA\n", __func__); 1679 sc->sc_stats.ast_tdma_ack++; 1680 ath_freetx(m0); 1681 return EIO; 1682 } 1683 #endif 1684 1685 /* 1686 * Determine if a tx interrupt should be generated for 1687 * this descriptor. We take a tx interrupt to reap 1688 * descriptors when the h/w hits an EOL condition or 1689 * when the descriptor is specifically marked to generate 1690 * an interrupt. We periodically mark descriptors in this 1691 * way to insure timely replenishing of the supply needed 1692 * for sending frames. Defering interrupts reduces system 1693 * load and potentially allows more concurrent work to be 1694 * done but if done to aggressively can cause senders to 1695 * backup. 1696 * 1697 * NB: use >= to deal with sc_txintrperiod changing 1698 * dynamically through sysctl. 1699 */ 1700 if (flags & HAL_TXDESC_INTREQ) { 1701 txq->axq_intrcnt = 0; 1702 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 1703 flags |= HAL_TXDESC_INTREQ; 1704 txq->axq_intrcnt = 0; 1705 } 1706 1707 /* This point forward is actual TX bits */ 1708 1709 /* 1710 * At this point we are committed to sending the frame 1711 * and we don't need to look at m_nextpkt; clear it in 1712 * case this frame is part of frag chain. 1713 */ 1714 m0->m_nextpkt = NULL; 1715 1716 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 1717 ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 1718 sc->sc_hwmap[rix].ieeerate, -1); 1719 1720 if (ieee80211_radiotap_active_vap(vap)) { 1721 u_int64_t tsf = ath_hal_gettsf64(ah); 1722 1723 sc->sc_tx_th.wt_tsf = htole64(tsf); 1724 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 1725 if (iswep) 1726 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1727 if (isfrag) 1728 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1729 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 1730 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 1731 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 1732 1733 ieee80211_radiotap_tx(vap, m0); 1734 } 1735 1736 /* Blank the legacy rate array */ 1737 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1738 1739 /* 1740 * ath_buf_set_rate needs at least one rate/try to setup 1741 * the rate scenario. 1742 */ 1743 bf->bf_state.bfs_rc[0].rix = rix; 1744 bf->bf_state.bfs_rc[0].tries = try0; 1745 bf->bf_state.bfs_rc[0].ratecode = txrate; 1746 1747 /* Store the decided rate index values away */ 1748 bf->bf_state.bfs_pktlen = pktlen; 1749 bf->bf_state.bfs_hdrlen = hdrlen; 1750 bf->bf_state.bfs_atype = atype; 1751 bf->bf_state.bfs_txpower = ni->ni_txpower; 1752 bf->bf_state.bfs_txrate0 = txrate; 1753 bf->bf_state.bfs_try0 = try0; 1754 bf->bf_state.bfs_keyix = keyix; 1755 bf->bf_state.bfs_txantenna = sc->sc_txantenna; 1756 bf->bf_state.bfs_txflags = flags; 1757 bf->bf_state.bfs_shpream = shortPreamble; 1758 1759 /* XXX this should be done in ath_tx_setrate() */ 1760 bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */ 1761 bf->bf_state.bfs_ctsrate = 0; /* calculated later */ 1762 bf->bf_state.bfs_ctsduration = 0; 1763 bf->bf_state.bfs_ismrr = ismrr; 1764 1765 return 0; 1766 } 1767 1768 /* 1769 * Queue a frame to the hardware or software queue. 1770 * 1771 * This can be called by the net80211 code. 1772 * 1773 * XXX what about locking? Or, push the seqno assign into the 1774 * XXX aggregate scheduler so its serialised? 1775 * 1776 * XXX When sending management frames via ath_raw_xmit(), 1777 * should CLRDMASK be set unconditionally? 1778 */ 1779 int 1780 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, 1781 struct ath_buf *bf, struct mbuf *m0) 1782 { 1783 struct ieee80211vap *vap = ni->ni_vap; 1784 struct ath_vap *avp = ATH_VAP(vap); 1785 int r = 0; 1786 u_int pri; 1787 int tid; 1788 struct ath_txq *txq; 1789 int ismcast; 1790 const struct ieee80211_frame *wh; 1791 int is_ampdu, is_ampdu_tx, is_ampdu_pending; 1792 ieee80211_seq seqno; 1793 uint8_t type, subtype; 1794 1795 ATH_TX_LOCK_ASSERT(sc); 1796 1797 /* 1798 * Determine the target hardware queue. 1799 * 1800 * For multicast frames, the txq gets overridden appropriately 1801 * depending upon the state of PS. 1802 * 1803 * For any other frame, we do a TID/QoS lookup inside the frame 1804 * to see what the TID should be. If it's a non-QoS frame, the 1805 * AC and TID are overridden. The TID/TXQ code assumes the 1806 * TID is on a predictable hardware TXQ, so we don't support 1807 * having a node TID queued to multiple hardware TXQs. 1808 * This may change in the future but would require some locking 1809 * fudgery. 1810 */ 1811 pri = ath_tx_getac(sc, m0); 1812 tid = ath_tx_gettid(sc, m0); 1813 1814 txq = sc->sc_ac2q[pri]; 1815 wh = mtod(m0, struct ieee80211_frame *); 1816 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1817 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1818 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1819 1820 /* 1821 * Enforce how deep the multicast queue can grow. 1822 * 1823 * XXX duplicated in ath_raw_xmit(). 1824 */ 1825 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1826 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { 1827 sc->sc_stats.ast_tx_mcastq_overflow++; 1828 r = ENOBUFS; 1829 } 1830 if (r != 0) { 1831 m_freem(m0); 1832 return r; 1833 } 1834 } 1835 1836 /* A-MPDU TX */ 1837 is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid); 1838 is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid); 1839 is_ampdu = is_ampdu_tx | is_ampdu_pending; 1840 1841 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n", 1842 __func__, tid, pri, is_ampdu); 1843 1844 /* Set local packet state, used to queue packets to hardware */ 1845 bf->bf_state.bfs_tid = tid; 1846 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 1847 bf->bf_state.bfs_pri = pri; 1848 1849 /* 1850 * When servicing one or more stations in power-save mode 1851 * (or) if there is some mcast data waiting on the mcast 1852 * queue (to prevent out of order delivery) multicast frames 1853 * must be bufferd until after the beacon. 1854 * 1855 * TODO: we should lock the mcastq before we check the length. 1856 */ 1857 if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) { 1858 txq = &avp->av_mcastq; 1859 /* 1860 * Mark the frame as eventually belonging on the CAB 1861 * queue, so the descriptor setup functions will 1862 * correctly initialise the descriptor 'qcuId' field. 1863 */ 1864 bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum; 1865 } 1866 1867 /* Do the generic frame setup */ 1868 /* XXX should just bzero the bf_state? */ 1869 bf->bf_state.bfs_dobaw = 0; 1870 1871 /* A-MPDU TX? Manually set sequence number */ 1872 /* 1873 * Don't do it whilst pending; the net80211 layer still 1874 * assigns them. 1875 */ 1876 if (is_ampdu_tx) { 1877 /* 1878 * Always call; this function will 1879 * handle making sure that null data frames 1880 * don't get a sequence number from the current 1881 * TID and thus mess with the BAW. 1882 */ 1883 seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0); 1884 1885 /* 1886 * Don't add QoS NULL frames to the BAW. 1887 */ 1888 if (IEEE80211_QOS_HAS_SEQ(wh) && 1889 subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) { 1890 bf->bf_state.bfs_dobaw = 1; 1891 } 1892 } 1893 1894 /* 1895 * If needed, the sequence number has been assigned. 1896 * Squirrel it away somewhere easy to get to. 1897 */ 1898 bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT; 1899 1900 /* Is ampdu pending? fetch the seqno and print it out */ 1901 if (is_ampdu_pending) 1902 DPRINTF(sc, ATH_DEBUG_SW_TX, 1903 "%s: tid %d: ampdu pending, seqno %d\n", 1904 __func__, tid, M_SEQNO_GET(m0)); 1905 1906 /* This also sets up the DMA map */ 1907 r = ath_tx_normal_setup(sc, ni, bf, m0, txq); 1908 1909 if (r != 0) 1910 goto done; 1911 1912 /* At this point m0 could have changed! */ 1913 m0 = bf->bf_m; 1914 1915 #if 1 1916 /* 1917 * If it's a multicast frame, do a direct-dispatch to the 1918 * destination hardware queue. Don't bother software 1919 * queuing it. 1920 */ 1921 /* 1922 * If it's a BAR frame, do a direct dispatch to the 1923 * destination hardware queue. Don't bother software 1924 * queuing it, as the TID will now be paused. 1925 * Sending a BAR frame can occur from the net80211 txa timer 1926 * (ie, retries) or from the ath txtask (completion call.) 1927 * It queues directly to hardware because the TID is paused 1928 * at this point (and won't be unpaused until the BAR has 1929 * either been TXed successfully or max retries has been 1930 * reached.) 1931 */ 1932 if (txq == &avp->av_mcastq) { 1933 DPRINTF(sc, ATH_DEBUG_SW_TX, 1934 "%s: bf=%p: mcastq: TX'ing\n", __func__, bf); 1935 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1936 ath_tx_xmit_normal(sc, txq, bf); 1937 } else if (type == IEEE80211_FC0_TYPE_CTL && 1938 subtype == IEEE80211_FC0_SUBTYPE_BAR) { 1939 DPRINTF(sc, ATH_DEBUG_SW_TX, 1940 "%s: BAR: TX'ing direct\n", __func__); 1941 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1942 ath_tx_xmit_normal(sc, txq, bf); 1943 } else { 1944 /* add to software queue */ 1945 DPRINTF(sc, ATH_DEBUG_SW_TX, 1946 "%s: bf=%p: swq: TX'ing\n", __func__, bf); 1947 ath_tx_swq(sc, ni, txq, bf); 1948 } 1949 #else 1950 /* 1951 * For now, since there's no software queue, 1952 * direct-dispatch to the hardware. 1953 */ 1954 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1955 ath_tx_xmit_normal(sc, txq, bf); 1956 #endif 1957 done: 1958 return 0; 1959 } 1960 1961 static int 1962 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, 1963 struct ath_buf *bf, struct mbuf *m0, 1964 const struct ieee80211_bpf_params *params) 1965 { 1966 struct ifnet *ifp = sc->sc_ifp; 1967 struct ieee80211com *ic = ifp->if_l2com; 1968 struct ath_hal *ah = sc->sc_ah; 1969 struct ieee80211vap *vap = ni->ni_vap; 1970 int error, ismcast, ismrr; 1971 int keyix, hdrlen, pktlen, try0, txantenna; 1972 u_int8_t rix, txrate; 1973 struct ieee80211_frame *wh; 1974 u_int flags; 1975 HAL_PKT_TYPE atype; 1976 const HAL_RATE_TABLE *rt; 1977 struct ath_desc *ds; 1978 u_int pri; 1979 int o_tid = -1; 1980 int do_override; 1981 1982 ATH_TX_LOCK_ASSERT(sc); 1983 1984 wh = mtod(m0, struct ieee80211_frame *); 1985 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1986 hdrlen = ieee80211_anyhdrsize(wh); 1987 /* 1988 * Packet length must not include any 1989 * pad bytes; deduct them here. 1990 */ 1991 /* XXX honor IEEE80211_BPF_DATAPAD */ 1992 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; 1993 1994 ATH_KTR(sc, ATH_KTR_TX, 2, 1995 "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf); 1996 1997 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n", 1998 __func__, ismcast); 1999 2000 pri = params->ibp_pri & 3; 2001 /* Override pri if the frame isn't a QoS one */ 2002 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2003 pri = ath_tx_getac(sc, m0); 2004 2005 /* XXX If it's an ADDBA, override the correct queue */ 2006 do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid); 2007 2008 /* Map ADDBA to the correct priority */ 2009 if (do_override) { 2010 #if 0 2011 device_printf(sc->sc_dev, 2012 "%s: overriding tid %d pri %d -> %d\n", 2013 __func__, o_tid, pri, TID_TO_WME_AC(o_tid)); 2014 #endif 2015 pri = TID_TO_WME_AC(o_tid); 2016 } 2017 2018 /* Handle encryption twiddling if needed */ 2019 if (! ath_tx_tag_crypto(sc, ni, 2020 m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0, 2021 &hdrlen, &pktlen, &keyix)) { 2022 ath_freetx(m0); 2023 return EIO; 2024 } 2025 /* packet header may have moved, reset our local pointer */ 2026 wh = mtod(m0, struct ieee80211_frame *); 2027 2028 /* Do the generic frame setup */ 2029 /* XXX should just bzero the bf_state? */ 2030 bf->bf_state.bfs_dobaw = 0; 2031 2032 error = ath_tx_dmasetup(sc, bf, m0); 2033 if (error != 0) 2034 return error; 2035 m0 = bf->bf_m; /* NB: may have changed */ 2036 wh = mtod(m0, struct ieee80211_frame *); 2037 bf->bf_node = ni; /* NB: held reference */ 2038 2039 /* Always enable CLRDMASK for raw frames for now.. */ 2040 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 2041 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 2042 if (params->ibp_flags & IEEE80211_BPF_RTS) 2043 flags |= HAL_TXDESC_RTSENA; 2044 else if (params->ibp_flags & IEEE80211_BPF_CTS) { 2045 /* XXX assume 11g/11n protection? */ 2046 bf->bf_state.bfs_doprot = 1; 2047 flags |= HAL_TXDESC_CTSENA; 2048 } 2049 /* XXX leave ismcast to injector? */ 2050 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) 2051 flags |= HAL_TXDESC_NOACK; 2052 2053 rt = sc->sc_currates; 2054 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 2055 rix = ath_tx_findrix(sc, params->ibp_rate0); 2056 txrate = rt->info[rix].rateCode; 2057 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 2058 txrate |= rt->info[rix].shortPreamble; 2059 sc->sc_txrix = rix; 2060 try0 = params->ibp_try0; 2061 ismrr = (params->ibp_try1 != 0); 2062 txantenna = params->ibp_pri >> 2; 2063 if (txantenna == 0) /* XXX? */ 2064 txantenna = sc->sc_txantenna; 2065 2066 /* 2067 * Since ctsrate is fixed, store it away for later 2068 * use when the descriptor fields are being set. 2069 */ 2070 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) 2071 bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate; 2072 2073 /* 2074 * NB: we mark all packets as type PSPOLL so the h/w won't 2075 * set the sequence number, duration, etc. 2076 */ 2077 atype = HAL_PKT_TYPE_PSPOLL; 2078 2079 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 2080 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 2081 sc->sc_hwmap[rix].ieeerate, -1); 2082 2083 if (ieee80211_radiotap_active_vap(vap)) { 2084 u_int64_t tsf = ath_hal_gettsf64(ah); 2085 2086 sc->sc_tx_th.wt_tsf = htole64(tsf); 2087 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 2088 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2089 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2090 if (m0->m_flags & M_FRAG) 2091 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2092 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 2093 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 2094 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 2095 2096 ieee80211_radiotap_tx(vap, m0); 2097 } 2098 2099 /* 2100 * Formulate first tx descriptor with tx controls. 2101 */ 2102 ds = bf->bf_desc; 2103 /* XXX check return value? */ 2104 2105 /* Store the decided rate index values away */ 2106 bf->bf_state.bfs_pktlen = pktlen; 2107 bf->bf_state.bfs_hdrlen = hdrlen; 2108 bf->bf_state.bfs_atype = atype; 2109 bf->bf_state.bfs_txpower = params->ibp_power; 2110 bf->bf_state.bfs_txrate0 = txrate; 2111 bf->bf_state.bfs_try0 = try0; 2112 bf->bf_state.bfs_keyix = keyix; 2113 bf->bf_state.bfs_txantenna = txantenna; 2114 bf->bf_state.bfs_txflags = flags; 2115 bf->bf_state.bfs_shpream = 2116 !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE); 2117 2118 /* Set local packet state, used to queue packets to hardware */ 2119 bf->bf_state.bfs_tid = WME_AC_TO_TID(pri); 2120 bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum; 2121 bf->bf_state.bfs_pri = pri; 2122 2123 /* XXX this should be done in ath_tx_setrate() */ 2124 bf->bf_state.bfs_ctsrate = 0; 2125 bf->bf_state.bfs_ctsduration = 0; 2126 bf->bf_state.bfs_ismrr = ismrr; 2127 2128 /* Blank the legacy rate array */ 2129 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 2130 2131 bf->bf_state.bfs_rc[0].rix = 2132 ath_tx_findrix(sc, params->ibp_rate0); 2133 bf->bf_state.bfs_rc[0].tries = try0; 2134 bf->bf_state.bfs_rc[0].ratecode = txrate; 2135 2136 if (ismrr) { 2137 int rix; 2138 2139 rix = ath_tx_findrix(sc, params->ibp_rate1); 2140 bf->bf_state.bfs_rc[1].rix = rix; 2141 bf->bf_state.bfs_rc[1].tries = params->ibp_try1; 2142 2143 rix = ath_tx_findrix(sc, params->ibp_rate2); 2144 bf->bf_state.bfs_rc[2].rix = rix; 2145 bf->bf_state.bfs_rc[2].tries = params->ibp_try2; 2146 2147 rix = ath_tx_findrix(sc, params->ibp_rate3); 2148 bf->bf_state.bfs_rc[3].rix = rix; 2149 bf->bf_state.bfs_rc[3].tries = params->ibp_try3; 2150 } 2151 /* 2152 * All the required rate control decisions have been made; 2153 * fill in the rc flags. 2154 */ 2155 ath_tx_rate_fill_rcflags(sc, bf); 2156 2157 /* NB: no buffered multicast in power save support */ 2158 2159 /* 2160 * If we're overiding the ADDBA destination, dump directly 2161 * into the hardware queue, right after any pending 2162 * frames to that node are. 2163 */ 2164 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n", 2165 __func__, do_override); 2166 2167 #if 1 2168 if (do_override) { 2169 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2170 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2171 } else { 2172 /* Queue to software queue */ 2173 ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf); 2174 } 2175 #else 2176 /* Direct-dispatch to the hardware */ 2177 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2178 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2179 #endif 2180 return 0; 2181 } 2182 2183 /* 2184 * Send a raw frame. 2185 * 2186 * This can be called by net80211. 2187 */ 2188 int 2189 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2190 const struct ieee80211_bpf_params *params) 2191 { 2192 struct ieee80211com *ic = ni->ni_ic; 2193 struct ifnet *ifp = ic->ic_ifp; 2194 struct ath_softc *sc = ifp->if_softc; 2195 struct ath_buf *bf; 2196 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 2197 int error = 0; 2198 2199 ATH_PCU_LOCK(sc); 2200 if (sc->sc_inreset_cnt > 0) { 2201 device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n", 2202 __func__); 2203 error = EIO; 2204 ATH_PCU_UNLOCK(sc); 2205 goto bad0; 2206 } 2207 sc->sc_txstart_cnt++; 2208 ATH_PCU_UNLOCK(sc); 2209 2210 ATH_TX_LOCK(sc); 2211 2212 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) { 2213 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__, 2214 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ? 2215 "!running" : "invalid"); 2216 m_freem(m); 2217 error = ENETDOWN; 2218 goto bad; 2219 } 2220 2221 /* 2222 * Enforce how deep the multicast queue can grow. 2223 * 2224 * XXX duplicated in ath_tx_start(). 2225 */ 2226 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2227 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { 2228 sc->sc_stats.ast_tx_mcastq_overflow++; 2229 error = ENOBUFS; 2230 } 2231 2232 if (error != 0) { 2233 m_freem(m); 2234 goto bad; 2235 } 2236 } 2237 2238 /* 2239 * Grab a TX buffer and associated resources. 2240 */ 2241 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 2242 if (bf == NULL) { 2243 sc->sc_stats.ast_tx_nobuf++; 2244 m_freem(m); 2245 error = ENOBUFS; 2246 goto bad; 2247 } 2248 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n", 2249 m, params, bf); 2250 2251 if (params == NULL) { 2252 /* 2253 * Legacy path; interpret frame contents to decide 2254 * precisely how to send the frame. 2255 */ 2256 if (ath_tx_start(sc, ni, bf, m)) { 2257 error = EIO; /* XXX */ 2258 goto bad2; 2259 } 2260 } else { 2261 /* 2262 * Caller supplied explicit parameters to use in 2263 * sending the frame. 2264 */ 2265 if (ath_tx_raw_start(sc, ni, bf, m, params)) { 2266 error = EIO; /* XXX */ 2267 goto bad2; 2268 } 2269 } 2270 sc->sc_wd_timer = 5; 2271 ifp->if_opackets++; 2272 sc->sc_stats.ast_tx_raw++; 2273 2274 /* 2275 * Update the TIM - if there's anything queued to the 2276 * software queue and power save is enabled, we should 2277 * set the TIM. 2278 */ 2279 ath_tx_update_tim(sc, ni, 1); 2280 2281 ATH_TX_UNLOCK(sc); 2282 2283 ATH_PCU_LOCK(sc); 2284 sc->sc_txstart_cnt--; 2285 ATH_PCU_UNLOCK(sc); 2286 2287 return 0; 2288 bad2: 2289 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, " 2290 "bf=%p", 2291 m, 2292 params, 2293 bf); 2294 ATH_TXBUF_LOCK(sc); 2295 ath_returnbuf_head(sc, bf); 2296 ATH_TXBUF_UNLOCK(sc); 2297 bad: 2298 2299 ATH_TX_UNLOCK(sc); 2300 2301 ATH_PCU_LOCK(sc); 2302 sc->sc_txstart_cnt--; 2303 ATH_PCU_UNLOCK(sc); 2304 bad0: 2305 ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p", 2306 m, params); 2307 ifp->if_oerrors++; 2308 sc->sc_stats.ast_tx_raw_fail++; 2309 ieee80211_free_node(ni); 2310 2311 return error; 2312 } 2313 2314 /* Some helper functions */ 2315 2316 /* 2317 * ADDBA (and potentially others) need to be placed in the same 2318 * hardware queue as the TID/node it's relating to. This is so 2319 * it goes out after any pending non-aggregate frames to the 2320 * same node/TID. 2321 * 2322 * If this isn't done, the ADDBA can go out before the frames 2323 * queued in hardware. Even though these frames have a sequence 2324 * number -earlier- than the ADDBA can be transmitted (but 2325 * no frames whose sequence numbers are after the ADDBA should 2326 * be!) they'll arrive after the ADDBA - and the receiving end 2327 * will simply drop them as being out of the BAW. 2328 * 2329 * The frames can't be appended to the TID software queue - it'll 2330 * never be sent out. So these frames have to be directly 2331 * dispatched to the hardware, rather than queued in software. 2332 * So if this function returns true, the TXQ has to be 2333 * overridden and it has to be directly dispatched. 2334 * 2335 * It's a dirty hack, but someone's gotta do it. 2336 */ 2337 2338 /* 2339 * XXX doesn't belong here! 2340 */ 2341 static int 2342 ieee80211_is_action(struct ieee80211_frame *wh) 2343 { 2344 /* Type: Management frame? */ 2345 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 2346 IEEE80211_FC0_TYPE_MGT) 2347 return 0; 2348 2349 /* Subtype: Action frame? */ 2350 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) != 2351 IEEE80211_FC0_SUBTYPE_ACTION) 2352 return 0; 2353 2354 return 1; 2355 } 2356 2357 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2358 /* 2359 * Return an alternate TID for ADDBA request frames. 2360 * 2361 * Yes, this likely should be done in the net80211 layer. 2362 */ 2363 static int 2364 ath_tx_action_frame_override_queue(struct ath_softc *sc, 2365 struct ieee80211_node *ni, 2366 struct mbuf *m0, int *tid) 2367 { 2368 struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); 2369 struct ieee80211_action_ba_addbarequest *ia; 2370 uint8_t *frm; 2371 uint16_t baparamset; 2372 2373 /* Not action frame? Bail */ 2374 if (! ieee80211_is_action(wh)) 2375 return 0; 2376 2377 /* XXX Not needed for frames we send? */ 2378 #if 0 2379 /* Correct length? */ 2380 if (! ieee80211_parse_action(ni, m)) 2381 return 0; 2382 #endif 2383 2384 /* Extract out action frame */ 2385 frm = (u_int8_t *)&wh[1]; 2386 ia = (struct ieee80211_action_ba_addbarequest *) frm; 2387 2388 /* Not ADDBA? Bail */ 2389 if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA) 2390 return 0; 2391 if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST) 2392 return 0; 2393 2394 /* Extract TID, return it */ 2395 baparamset = le16toh(ia->rq_baparamset); 2396 *tid = (int) MS(baparamset, IEEE80211_BAPS_TID); 2397 2398 return 1; 2399 } 2400 #undef MS 2401 2402 /* Per-node software queue operations */ 2403 2404 /* 2405 * Add the current packet to the given BAW. 2406 * It is assumed that the current packet 2407 * 2408 * + fits inside the BAW; 2409 * + already has had a sequence number allocated. 2410 * 2411 * Since the BAW status may be modified by both the ath task and 2412 * the net80211/ifnet contexts, the TID must be locked. 2413 */ 2414 void 2415 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an, 2416 struct ath_tid *tid, struct ath_buf *bf) 2417 { 2418 int index, cindex; 2419 struct ieee80211_tx_ampdu *tap; 2420 2421 ATH_TX_LOCK_ASSERT(sc); 2422 2423 if (bf->bf_state.bfs_isretried) 2424 return; 2425 2426 tap = ath_tx_get_tx_tid(an, tid->tid); 2427 2428 if (! bf->bf_state.bfs_dobaw) { 2429 device_printf(sc->sc_dev, 2430 "%s: dobaw=0, seqno=%d, window %d:%d\n", 2431 __func__, 2432 SEQNO(bf->bf_state.bfs_seqno), 2433 tap->txa_start, 2434 tap->txa_wnd); 2435 } 2436 2437 if (bf->bf_state.bfs_addedbaw) 2438 device_printf(sc->sc_dev, 2439 "%s: re-added? tid=%d, seqno %d; window %d:%d; " 2440 "baw head=%d tail=%d\n", 2441 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2442 tap->txa_start, tap->txa_wnd, tid->baw_head, 2443 tid->baw_tail); 2444 2445 /* 2446 * Verify that the given sequence number is not outside of the 2447 * BAW. Complain loudly if that's the case. 2448 */ 2449 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2450 SEQNO(bf->bf_state.bfs_seqno))) { 2451 device_printf(sc->sc_dev, 2452 "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; " 2453 "baw head=%d tail=%d\n", 2454 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2455 tap->txa_start, tap->txa_wnd, tid->baw_head, 2456 tid->baw_tail); 2457 } 2458 2459 /* 2460 * ni->ni_txseqs[] is the currently allocated seqno. 2461 * the txa state contains the current baw start. 2462 */ 2463 index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno)); 2464 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2465 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2466 "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d " 2467 "baw head=%d tail=%d\n", 2468 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2469 tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, 2470 tid->baw_tail); 2471 2472 2473 #if 0 2474 assert(tid->tx_buf[cindex] == NULL); 2475 #endif 2476 if (tid->tx_buf[cindex] != NULL) { 2477 device_printf(sc->sc_dev, 2478 "%s: ba packet dup (index=%d, cindex=%d, " 2479 "head=%d, tail=%d)\n", 2480 __func__, index, cindex, tid->baw_head, tid->baw_tail); 2481 device_printf(sc->sc_dev, 2482 "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n", 2483 __func__, 2484 tid->tx_buf[cindex], 2485 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno), 2486 bf, 2487 SEQNO(bf->bf_state.bfs_seqno) 2488 ); 2489 } 2490 tid->tx_buf[cindex] = bf; 2491 2492 if (index >= ((tid->baw_tail - tid->baw_head) & 2493 (ATH_TID_MAX_BUFS - 1))) { 2494 tid->baw_tail = cindex; 2495 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 2496 } 2497 } 2498 2499 /* 2500 * Flip the BAW buffer entry over from the existing one to the new one. 2501 * 2502 * When software retransmitting a (sub-)frame, it is entirely possible that 2503 * the frame ath_buf is marked as BUSY and can't be immediately reused. 2504 * In that instance the buffer is cloned and the new buffer is used for 2505 * retransmit. We thus need to update the ath_buf slot in the BAW buf 2506 * tracking array to maintain consistency. 2507 */ 2508 static void 2509 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an, 2510 struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf) 2511 { 2512 int index, cindex; 2513 struct ieee80211_tx_ampdu *tap; 2514 int seqno = SEQNO(old_bf->bf_state.bfs_seqno); 2515 2516 ATH_TX_LOCK_ASSERT(sc); 2517 2518 tap = ath_tx_get_tx_tid(an, tid->tid); 2519 index = ATH_BA_INDEX(tap->txa_start, seqno); 2520 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2521 2522 /* 2523 * Just warn for now; if it happens then we should find out 2524 * about it. It's highly likely the aggregation session will 2525 * soon hang. 2526 */ 2527 if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) { 2528 device_printf(sc->sc_dev, "%s: retransmitted buffer" 2529 " has mismatching seqno's, BA session may hang.\n", 2530 __func__); 2531 device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n", 2532 __func__, 2533 old_bf->bf_state.bfs_seqno, 2534 new_bf->bf_state.bfs_seqno); 2535 } 2536 2537 if (tid->tx_buf[cindex] != old_bf) { 2538 device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; " 2539 " has m BA session may hang.\n", 2540 __func__); 2541 device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n", 2542 __func__, 2543 old_bf, new_bf); 2544 } 2545 2546 tid->tx_buf[cindex] = new_bf; 2547 } 2548 2549 /* 2550 * seq_start - left edge of BAW 2551 * seq_next - current/next sequence number to allocate 2552 * 2553 * Since the BAW status may be modified by both the ath task and 2554 * the net80211/ifnet contexts, the TID must be locked. 2555 */ 2556 static void 2557 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an, 2558 struct ath_tid *tid, const struct ath_buf *bf) 2559 { 2560 int index, cindex; 2561 struct ieee80211_tx_ampdu *tap; 2562 int seqno = SEQNO(bf->bf_state.bfs_seqno); 2563 2564 ATH_TX_LOCK_ASSERT(sc); 2565 2566 tap = ath_tx_get_tx_tid(an, tid->tid); 2567 index = ATH_BA_INDEX(tap->txa_start, seqno); 2568 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2569 2570 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2571 "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, " 2572 "baw head=%d, tail=%d\n", 2573 __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index, 2574 cindex, tid->baw_head, tid->baw_tail); 2575 2576 /* 2577 * If this occurs then we have a big problem - something else 2578 * has slid tap->txa_start along without updating the BAW 2579 * tracking start/end pointers. Thus the TX BAW state is now 2580 * completely busted. 2581 * 2582 * But for now, since I haven't yet fixed TDMA and buffer cloning, 2583 * it's quite possible that a cloned buffer is making its way 2584 * here and causing it to fire off. Disable TDMA for now. 2585 */ 2586 if (tid->tx_buf[cindex] != bf) { 2587 device_printf(sc->sc_dev, 2588 "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n", 2589 __func__, 2590 bf, SEQNO(bf->bf_state.bfs_seqno), 2591 tid->tx_buf[cindex], 2592 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno)); 2593 } 2594 2595 tid->tx_buf[cindex] = NULL; 2596 2597 while (tid->baw_head != tid->baw_tail && 2598 !tid->tx_buf[tid->baw_head]) { 2599 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 2600 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 2601 } 2602 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2603 "%s: baw is now %d:%d, baw head=%d\n", 2604 __func__, tap->txa_start, tap->txa_wnd, tid->baw_head); 2605 } 2606 2607 /* 2608 * Mark the current node/TID as ready to TX. 2609 * 2610 * This is done to make it easy for the software scheduler to 2611 * find which nodes have data to send. 2612 * 2613 * The TXQ lock must be held. 2614 */ 2615 static void 2616 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid) 2617 { 2618 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2619 2620 ATH_TX_LOCK_ASSERT(sc); 2621 2622 if (tid->paused) 2623 return; /* paused, can't schedule yet */ 2624 2625 if (tid->sched) 2626 return; /* already scheduled */ 2627 2628 tid->sched = 1; 2629 2630 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); 2631 } 2632 2633 /* 2634 * Mark the current node as no longer needing to be polled for 2635 * TX packets. 2636 * 2637 * The TXQ lock must be held. 2638 */ 2639 static void 2640 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid) 2641 { 2642 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2643 2644 ATH_TX_LOCK_ASSERT(sc); 2645 2646 if (tid->sched == 0) 2647 return; 2648 2649 tid->sched = 0; 2650 TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem); 2651 } 2652 2653 /* 2654 * Assign a sequence number manually to the given frame. 2655 * 2656 * This should only be called for A-MPDU TX frames. 2657 */ 2658 static ieee80211_seq 2659 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, 2660 struct ath_buf *bf, struct mbuf *m0) 2661 { 2662 struct ieee80211_frame *wh; 2663 int tid, pri; 2664 ieee80211_seq seqno; 2665 uint8_t subtype; 2666 2667 /* TID lookup */ 2668 wh = mtod(m0, struct ieee80211_frame *); 2669 pri = M_WME_GETAC(m0); /* honor classification */ 2670 tid = WME_AC_TO_TID(pri); 2671 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n", 2672 __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2673 2674 /* XXX Is it a control frame? Ignore */ 2675 2676 /* Does the packet require a sequence number? */ 2677 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2678 return -1; 2679 2680 ATH_TX_LOCK_ASSERT(sc); 2681 2682 /* 2683 * Is it a QOS NULL Data frame? Give it a sequence number from 2684 * the default TID (IEEE80211_NONQOS_TID.) 2685 * 2686 * The RX path of everything I've looked at doesn't include the NULL 2687 * data frame sequence number in the aggregation state updates, so 2688 * assigning it a sequence number there will cause a BAW hole on the 2689 * RX side. 2690 */ 2691 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2692 if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) { 2693 /* XXX no locking for this TID? This is a bit of a problem. */ 2694 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; 2695 INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); 2696 } else { 2697 /* Manually assign sequence number */ 2698 seqno = ni->ni_txseqs[tid]; 2699 INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE); 2700 } 2701 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 2702 M_SEQNO_SET(m0, seqno); 2703 2704 /* Return so caller can do something with it if needed */ 2705 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno); 2706 return seqno; 2707 } 2708 2709 /* 2710 * Attempt to direct dispatch an aggregate frame to hardware. 2711 * If the frame is out of BAW, queue. 2712 * Otherwise, schedule it as a single frame. 2713 */ 2714 static void 2715 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, 2716 struct ath_txq *txq, struct ath_buf *bf) 2717 { 2718 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 2719 struct ieee80211_tx_ampdu *tap; 2720 2721 ATH_TX_LOCK_ASSERT(sc); 2722 2723 tap = ath_tx_get_tx_tid(an, tid->tid); 2724 2725 /* paused? queue */ 2726 if (tid->paused) { 2727 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2728 /* XXX don't sched - we're paused! */ 2729 return; 2730 } 2731 2732 /* outside baw? queue */ 2733 if (bf->bf_state.bfs_dobaw && 2734 (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2735 SEQNO(bf->bf_state.bfs_seqno)))) { 2736 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2737 ath_tx_tid_sched(sc, tid); 2738 return; 2739 } 2740 2741 /* 2742 * This is a temporary check and should be removed once 2743 * all the relevant code paths have been fixed. 2744 * 2745 * During aggregate retries, it's possible that the head 2746 * frame will fail (which has the bfs_aggr and bfs_nframes 2747 * fields set for said aggregate) and will be retried as 2748 * a single frame. In this instance, the values should 2749 * be reset or the completion code will get upset with you. 2750 */ 2751 if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) { 2752 device_printf(sc->sc_dev, "%s: bfs_aggr=%d, bfs_nframes=%d\n", 2753 __func__, 2754 bf->bf_state.bfs_aggr, 2755 bf->bf_state.bfs_nframes); 2756 bf->bf_state.bfs_aggr = 0; 2757 bf->bf_state.bfs_nframes = 1; 2758 } 2759 2760 /* Update CLRDMASK just before this frame is queued */ 2761 ath_tx_update_clrdmask(sc, tid, bf); 2762 2763 /* Direct dispatch to hardware */ 2764 ath_tx_do_ratelookup(sc, bf); 2765 ath_tx_calc_duration(sc, bf); 2766 ath_tx_calc_protection(sc, bf); 2767 ath_tx_set_rtscts(sc, bf); 2768 ath_tx_rate_fill_rcflags(sc, bf); 2769 ath_tx_setds(sc, bf); 2770 2771 /* Statistics */ 2772 sc->sc_aggr_stats.aggr_low_hwq_single_pkt++; 2773 2774 /* Track per-TID hardware queue depth correctly */ 2775 tid->hwq_depth++; 2776 2777 /* Add to BAW */ 2778 if (bf->bf_state.bfs_dobaw) { 2779 ath_tx_addto_baw(sc, an, tid, bf); 2780 bf->bf_state.bfs_addedbaw = 1; 2781 } 2782 2783 /* Set completion handler, multi-frame aggregate or not */ 2784 bf->bf_comp = ath_tx_aggr_comp; 2785 2786 /* Hand off to hardware */ 2787 ath_tx_handoff(sc, txq, bf); 2788 } 2789 2790 /* 2791 * Attempt to send the packet. 2792 * If the queue isn't busy, direct-dispatch. 2793 * If the queue is busy enough, queue the given packet on the 2794 * relevant software queue. 2795 */ 2796 void 2797 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq, 2798 struct ath_buf *bf) 2799 { 2800 struct ath_node *an = ATH_NODE(ni); 2801 struct ieee80211_frame *wh; 2802 struct ath_tid *atid; 2803 int pri, tid; 2804 struct mbuf *m0 = bf->bf_m; 2805 2806 ATH_TX_LOCK_ASSERT(sc); 2807 2808 /* Fetch the TID - non-QoS frames get assigned to TID 16 */ 2809 wh = mtod(m0, struct ieee80211_frame *); 2810 pri = ath_tx_getac(sc, m0); 2811 tid = ath_tx_gettid(sc, m0); 2812 atid = &an->an_tid[tid]; 2813 2814 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n", 2815 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2816 2817 /* Set local packet state, used to queue packets to hardware */ 2818 /* XXX potentially duplicate info, re-check */ 2819 bf->bf_state.bfs_tid = tid; 2820 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 2821 bf->bf_state.bfs_pri = pri; 2822 2823 /* 2824 * If the hardware queue isn't busy, queue it directly. 2825 * If the hardware queue is busy, queue it. 2826 * If the TID is paused or the traffic it outside BAW, software 2827 * queue it. 2828 */ 2829 if (atid->paused) { 2830 /* TID is paused, queue */ 2831 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__); 2832 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2833 } else if (ath_tx_ampdu_pending(sc, an, tid)) { 2834 /* AMPDU pending; queue */ 2835 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__); 2836 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2837 /* XXX sched? */ 2838 } else if (ath_tx_ampdu_running(sc, an, tid)) { 2839 /* AMPDU running, attempt direct dispatch if possible */ 2840 2841 /* 2842 * Always queue the frame to the tail of the list. 2843 */ 2844 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2845 2846 /* 2847 * If the hardware queue isn't busy, direct dispatch 2848 * the head frame in the list. Don't schedule the 2849 * TID - let it build some more frames first? 2850 * 2851 * Otherwise, schedule the TID. 2852 */ 2853 if (txq->axq_depth < sc->sc_hwq_limit) { 2854 bf = ATH_TID_FIRST(atid); 2855 ATH_TID_REMOVE(atid, bf, bf_list); 2856 2857 /* 2858 * Ensure it's definitely treated as a non-AMPDU 2859 * frame - this information may have been left 2860 * over from a previous attempt. 2861 */ 2862 bf->bf_state.bfs_aggr = 0; 2863 bf->bf_state.bfs_nframes = 1; 2864 2865 /* Queue to the hardware */ 2866 ath_tx_xmit_aggr(sc, an, txq, bf); 2867 DPRINTF(sc, ATH_DEBUG_SW_TX, 2868 "%s: xmit_aggr\n", 2869 __func__); 2870 } else { 2871 DPRINTF(sc, ATH_DEBUG_SW_TX, 2872 "%s: ampdu; swq'ing\n", 2873 __func__); 2874 2875 ath_tx_tid_sched(sc, atid); 2876 } 2877 } else if (txq->axq_depth < sc->sc_hwq_limit) { 2878 /* AMPDU not running, attempt direct dispatch */ 2879 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__); 2880 /* See if clrdmask needs to be set */ 2881 ath_tx_update_clrdmask(sc, atid, bf); 2882 ath_tx_xmit_normal(sc, txq, bf); 2883 } else { 2884 /* Busy; queue */ 2885 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__); 2886 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2887 ath_tx_tid_sched(sc, atid); 2888 } 2889 } 2890 2891 /* 2892 * Only set the clrdmask bit if none of the nodes are currently 2893 * filtered. 2894 * 2895 * XXX TODO: go through all the callers and check to see 2896 * which are being called in the context of looping over all 2897 * TIDs (eg, if all tids are being paused, resumed, etc.) 2898 * That'll avoid O(n^2) complexity here. 2899 */ 2900 static void 2901 ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an) 2902 { 2903 int i; 2904 2905 ATH_TX_LOCK_ASSERT(sc); 2906 2907 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2908 if (an->an_tid[i].isfiltered == 1) 2909 return; 2910 } 2911 an->clrdmask = 1; 2912 } 2913 2914 /* 2915 * Configure the per-TID node state. 2916 * 2917 * This likely belongs in if_ath_node.c but I can't think of anywhere 2918 * else to put it just yet. 2919 * 2920 * This sets up the SLISTs and the mutex as appropriate. 2921 */ 2922 void 2923 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an) 2924 { 2925 int i, j; 2926 struct ath_tid *atid; 2927 2928 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2929 atid = &an->an_tid[i]; 2930 2931 /* XXX now with this bzer(), is the field 0'ing needed? */ 2932 bzero(atid, sizeof(*atid)); 2933 2934 TAILQ_INIT(&atid->tid_q); 2935 TAILQ_INIT(&atid->filtq.tid_q); 2936 atid->tid = i; 2937 atid->an = an; 2938 for (j = 0; j < ATH_TID_MAX_BUFS; j++) 2939 atid->tx_buf[j] = NULL; 2940 atid->baw_head = atid->baw_tail = 0; 2941 atid->paused = 0; 2942 atid->sched = 0; 2943 atid->hwq_depth = 0; 2944 atid->cleanup_inprogress = 0; 2945 if (i == IEEE80211_NONQOS_TID) 2946 atid->ac = ATH_NONQOS_TID_AC; 2947 else 2948 atid->ac = TID_TO_WME_AC(i); 2949 } 2950 an->clrdmask = 1; /* Always start by setting this bit */ 2951 } 2952 2953 /* 2954 * Pause the current TID. This stops packets from being transmitted 2955 * on it. 2956 * 2957 * Since this is also called from upper layers as well as the driver, 2958 * it will get the TID lock. 2959 */ 2960 static void 2961 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid) 2962 { 2963 2964 ATH_TX_LOCK_ASSERT(sc); 2965 tid->paused++; 2966 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n", 2967 __func__, tid->paused); 2968 } 2969 2970 /* 2971 * Unpause the current TID, and schedule it if needed. 2972 */ 2973 static void 2974 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid) 2975 { 2976 ATH_TX_LOCK_ASSERT(sc); 2977 2978 tid->paused--; 2979 2980 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n", 2981 __func__, tid->paused); 2982 2983 if (tid->paused) 2984 return; 2985 2986 /* 2987 * Override the clrdmask configuration for the next frame 2988 * from this TID, just to get the ball rolling. 2989 */ 2990 ath_tx_set_clrdmask(sc, tid->an); 2991 2992 if (tid->axq_depth == 0) 2993 return; 2994 2995 /* XXX isfiltered shouldn't ever be 0 at this point */ 2996 if (tid->isfiltered == 1) { 2997 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 2998 return; 2999 } 3000 3001 ath_tx_tid_sched(sc, tid); 3002 3003 /* 3004 * Queue the software TX scheduler. 3005 */ 3006 ath_tx_swq_kick(sc); 3007 } 3008 3009 /* 3010 * Add the given ath_buf to the TID filtered frame list. 3011 * This requires the TID be filtered. 3012 */ 3013 static void 3014 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid, 3015 struct ath_buf *bf) 3016 { 3017 3018 ATH_TX_LOCK_ASSERT(sc); 3019 3020 if (! tid->isfiltered) 3021 device_printf(sc->sc_dev, "%s: not filtered?!\n", __func__); 3022 3023 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf); 3024 3025 /* Set the retry bit and bump the retry counter */ 3026 ath_tx_set_retry(sc, bf); 3027 sc->sc_stats.ast_tx_swfiltered++; 3028 3029 ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list); 3030 } 3031 3032 /* 3033 * Handle a completed filtered frame from the given TID. 3034 * This just enables/pauses the filtered frame state if required 3035 * and appends the filtered frame to the filtered queue. 3036 */ 3037 static void 3038 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid, 3039 struct ath_buf *bf) 3040 { 3041 3042 ATH_TX_LOCK_ASSERT(sc); 3043 3044 if (! tid->isfiltered) { 3045 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: filter transition\n", 3046 __func__); 3047 tid->isfiltered = 1; 3048 ath_tx_tid_pause(sc, tid); 3049 } 3050 3051 /* Add the frame to the filter queue */ 3052 ath_tx_tid_filt_addbuf(sc, tid, bf); 3053 } 3054 3055 /* 3056 * Complete the filtered frame TX completion. 3057 * 3058 * If there are no more frames in the hardware queue, unpause/unfilter 3059 * the TID if applicable. Otherwise we will wait for a node PS transition 3060 * to unfilter. 3061 */ 3062 static void 3063 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid) 3064 { 3065 struct ath_buf *bf; 3066 3067 ATH_TX_LOCK_ASSERT(sc); 3068 3069 if (tid->hwq_depth != 0) 3070 return; 3071 3072 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: hwq=0, transition back\n", 3073 __func__); 3074 tid->isfiltered = 0; 3075 /* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */ 3076 ath_tx_set_clrdmask(sc, tid->an); 3077 3078 /* XXX this is really quite inefficient */ 3079 while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) { 3080 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3081 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 3082 } 3083 3084 ath_tx_tid_resume(sc, tid); 3085 } 3086 3087 /* 3088 * Called when a single (aggregate or otherwise) frame is completed. 3089 * 3090 * Returns 1 if the buffer could be added to the filtered list 3091 * (cloned or otherwise), 0 if the buffer couldn't be added to the 3092 * filtered list (failed clone; expired retry) and the caller should 3093 * free it and handle it like a failure (eg by sending a BAR.) 3094 */ 3095 static int 3096 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid, 3097 struct ath_buf *bf) 3098 { 3099 struct ath_buf *nbf; 3100 int retval; 3101 3102 ATH_TX_LOCK_ASSERT(sc); 3103 3104 /* 3105 * Don't allow a filtered frame to live forever. 3106 */ 3107 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3108 sc->sc_stats.ast_tx_swretrymax++; 3109 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3110 "%s: bf=%p, seqno=%d, exceeded retries\n", 3111 __func__, 3112 bf, 3113 bf->bf_state.bfs_seqno); 3114 return (0); 3115 } 3116 3117 /* 3118 * A busy buffer can't be added to the retry list. 3119 * It needs to be cloned. 3120 */ 3121 if (bf->bf_flags & ATH_BUF_BUSY) { 3122 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3123 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3124 "%s: busy buffer clone: %p -> %p\n", 3125 __func__, bf, nbf); 3126 } else { 3127 nbf = bf; 3128 } 3129 3130 if (nbf == NULL) { 3131 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3132 "%s: busy buffer couldn't be cloned (%p)!\n", 3133 __func__, bf); 3134 retval = 1; 3135 } else { 3136 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3137 retval = 0; 3138 } 3139 ath_tx_tid_filt_comp_complete(sc, tid); 3140 3141 return (retval); 3142 } 3143 3144 static void 3145 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid, 3146 struct ath_buf *bf_first, ath_bufhead *bf_q) 3147 { 3148 struct ath_buf *bf, *bf_next, *nbf; 3149 3150 ATH_TX_LOCK_ASSERT(sc); 3151 3152 bf = bf_first; 3153 while (bf) { 3154 bf_next = bf->bf_next; 3155 bf->bf_next = NULL; /* Remove it from the aggr list */ 3156 3157 /* 3158 * Don't allow a filtered frame to live forever. 3159 */ 3160 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3161 sc->sc_stats.ast_tx_swretrymax++; 3162 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3163 "%s: bf=%p, seqno=%d, exceeded retries\n", 3164 __func__, 3165 bf, 3166 bf->bf_state.bfs_seqno); 3167 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3168 goto next; 3169 } 3170 3171 if (bf->bf_flags & ATH_BUF_BUSY) { 3172 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3173 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3174 "%s: busy buffer cloned: %p -> %p", 3175 __func__, bf, nbf); 3176 } else { 3177 nbf = bf; 3178 } 3179 3180 /* 3181 * If the buffer couldn't be cloned, add it to bf_q; 3182 * the caller will free the buffer(s) as required. 3183 */ 3184 if (nbf == NULL) { 3185 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3186 "%s: buffer couldn't be cloned! (%p)\n", 3187 __func__, bf); 3188 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3189 } else { 3190 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3191 } 3192 next: 3193 bf = bf_next; 3194 } 3195 3196 ath_tx_tid_filt_comp_complete(sc, tid); 3197 } 3198 3199 /* 3200 * Suspend the queue because we need to TX a BAR. 3201 */ 3202 static void 3203 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid) 3204 { 3205 3206 ATH_TX_LOCK_ASSERT(sc); 3207 3208 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3209 "%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n", 3210 __func__, 3211 tid, 3212 tid->bar_wait, 3213 tid->bar_tx); 3214 3215 /* We shouldn't be called when bar_tx is 1 */ 3216 if (tid->bar_tx) { 3217 device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n", 3218 __func__); 3219 } 3220 3221 /* If we've already been called, just be patient. */ 3222 if (tid->bar_wait) 3223 return; 3224 3225 /* Wait! */ 3226 tid->bar_wait = 1; 3227 3228 /* Only one pause, no matter how many frames fail */ 3229 ath_tx_tid_pause(sc, tid); 3230 } 3231 3232 /* 3233 * We've finished with BAR handling - either we succeeded or 3234 * failed. Either way, unsuspend TX. 3235 */ 3236 static void 3237 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid) 3238 { 3239 3240 ATH_TX_LOCK_ASSERT(sc); 3241 3242 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3243 "%s: tid=%p, called\n", 3244 __func__, 3245 tid); 3246 3247 if (tid->bar_tx == 0 || tid->bar_wait == 0) { 3248 device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n", 3249 __func__, tid->bar_tx, tid->bar_wait); 3250 } 3251 3252 tid->bar_tx = tid->bar_wait = 0; 3253 ath_tx_tid_resume(sc, tid); 3254 } 3255 3256 /* 3257 * Return whether we're ready to TX a BAR frame. 3258 * 3259 * Requires the TID lock be held. 3260 */ 3261 static int 3262 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid) 3263 { 3264 3265 ATH_TX_LOCK_ASSERT(sc); 3266 3267 if (tid->bar_wait == 0 || tid->hwq_depth > 0) 3268 return (0); 3269 3270 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n", 3271 __func__, tid, tid->tid); 3272 3273 return (1); 3274 } 3275 3276 /* 3277 * Check whether the current TID is ready to have a BAR 3278 * TXed and if so, do the TX. 3279 * 3280 * Since the TID/TXQ lock can't be held during a call to 3281 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it, 3282 * sending the BAR and locking it again. 3283 * 3284 * Eventually, the code to send the BAR should be broken out 3285 * from this routine so the lock doesn't have to be reacquired 3286 * just to be immediately dropped by the caller. 3287 */ 3288 static void 3289 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid) 3290 { 3291 struct ieee80211_tx_ampdu *tap; 3292 3293 ATH_TX_LOCK_ASSERT(sc); 3294 3295 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3296 "%s: tid=%p, called\n", 3297 __func__, 3298 tid); 3299 3300 tap = ath_tx_get_tx_tid(tid->an, tid->tid); 3301 3302 /* 3303 * This is an error condition! 3304 */ 3305 if (tid->bar_wait == 0 || tid->bar_tx == 1) { 3306 device_printf(sc->sc_dev, 3307 "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n", 3308 __func__, 3309 tid, 3310 tid->bar_tx, 3311 tid->bar_wait); 3312 return; 3313 } 3314 3315 /* Don't do anything if we still have pending frames */ 3316 if (tid->hwq_depth > 0) { 3317 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3318 "%s: tid=%p, hwq_depth=%d, waiting\n", 3319 __func__, 3320 tid, 3321 tid->hwq_depth); 3322 return; 3323 } 3324 3325 /* We're now about to TX */ 3326 tid->bar_tx = 1; 3327 3328 /* 3329 * Override the clrdmask configuration for the next frame, 3330 * just to get the ball rolling. 3331 */ 3332 ath_tx_set_clrdmask(sc, tid->an); 3333 3334 /* 3335 * Calculate new BAW left edge, now that all frames have either 3336 * succeeded or failed. 3337 * 3338 * XXX verify this is _actually_ the valid value to begin at! 3339 */ 3340 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3341 "%s: tid=%p, new BAW left edge=%d\n", 3342 __func__, 3343 tid, 3344 tap->txa_start); 3345 3346 /* Try sending the BAR frame */ 3347 /* We can't hold the lock here! */ 3348 3349 ATH_TX_UNLOCK(sc); 3350 if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) { 3351 /* Success? Now we wait for notification that it's done */ 3352 ATH_TX_LOCK(sc); 3353 return; 3354 } 3355 3356 /* Failure? For now, warn loudly and continue */ 3357 ATH_TX_LOCK(sc); 3358 device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n", 3359 __func__, tid); 3360 ath_tx_tid_bar_unsuspend(sc, tid); 3361 } 3362 3363 static void 3364 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an, 3365 struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf) 3366 { 3367 3368 ATH_TX_LOCK_ASSERT(sc); 3369 3370 /* 3371 * If the current TID is running AMPDU, update 3372 * the BAW. 3373 */ 3374 if (ath_tx_ampdu_running(sc, an, tid->tid) && 3375 bf->bf_state.bfs_dobaw) { 3376 /* 3377 * Only remove the frame from the BAW if it's 3378 * been transmitted at least once; this means 3379 * the frame was in the BAW to begin with. 3380 */ 3381 if (bf->bf_state.bfs_retries > 0) { 3382 ath_tx_update_baw(sc, an, tid, bf); 3383 bf->bf_state.bfs_dobaw = 0; 3384 } 3385 /* 3386 * This has become a non-fatal error now 3387 */ 3388 if (! bf->bf_state.bfs_addedbaw) 3389 device_printf(sc->sc_dev, 3390 "%s: wasn't added: seqno %d\n", 3391 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3392 } 3393 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); 3394 } 3395 3396 static void 3397 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an, 3398 const char *pfx, struct ath_tid *tid, struct ath_buf *bf) 3399 { 3400 struct ieee80211_node *ni = &an->an_node; 3401 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 3402 struct ieee80211_tx_ampdu *tap; 3403 3404 tap = ath_tx_get_tx_tid(an, tid->tid); 3405 3406 device_printf(sc->sc_dev, 3407 "%s: %s: node %p: bf=%p: addbaw=%d, dobaw=%d, " 3408 "seqno=%d, retry=%d\n", 3409 __func__, pfx, ni, bf, 3410 bf->bf_state.bfs_addedbaw, 3411 bf->bf_state.bfs_dobaw, 3412 SEQNO(bf->bf_state.bfs_seqno), 3413 bf->bf_state.bfs_retries); 3414 device_printf(sc->sc_dev, 3415 "%s: node %p: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n", 3416 __func__, ni, bf, 3417 txq->axq_qnum, 3418 txq->axq_depth, 3419 txq->axq_aggr_depth); 3420 3421 device_printf(sc->sc_dev, 3422 "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, isfiltered=%d\n", 3423 __func__, ni, bf, 3424 tid->axq_depth, 3425 tid->hwq_depth, 3426 tid->bar_wait, 3427 tid->isfiltered); 3428 device_printf(sc->sc_dev, 3429 "%s: node %p: tid %d: " 3430 "sched=%d, paused=%d, " 3431 "incomp=%d, baw_head=%d, " 3432 "baw_tail=%d txa_start=%d, ni_txseqs=%d\n", 3433 __func__, ni, tid->tid, 3434 tid->sched, tid->paused, 3435 tid->incomp, tid->baw_head, 3436 tid->baw_tail, tap == NULL ? -1 : tap->txa_start, 3437 ni->ni_txseqs[tid->tid]); 3438 3439 /* XXX Dump the frame, see what it is? */ 3440 ieee80211_dump_pkt(ni->ni_ic, 3441 mtod(bf->bf_m, const uint8_t *), 3442 bf->bf_m->m_len, 0, -1); 3443 } 3444 3445 /* 3446 * Free any packets currently pending in the software TX queue. 3447 * 3448 * This will be called when a node is being deleted. 3449 * 3450 * It can also be called on an active node during an interface 3451 * reset or state transition. 3452 * 3453 * (From Linux/reference): 3454 * 3455 * TODO: For frame(s) that are in the retry state, we will reuse the 3456 * sequence number(s) without setting the retry bit. The 3457 * alternative is to give up on these and BAR the receiver's window 3458 * forward. 3459 */ 3460 static void 3461 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, 3462 struct ath_tid *tid, ath_bufhead *bf_cq) 3463 { 3464 struct ath_buf *bf; 3465 struct ieee80211_tx_ampdu *tap; 3466 struct ieee80211_node *ni = &an->an_node; 3467 int t; 3468 3469 tap = ath_tx_get_tx_tid(an, tid->tid); 3470 3471 ATH_TX_LOCK_ASSERT(sc); 3472 3473 /* Walk the queue, free frames */ 3474 t = 0; 3475 for (;;) { 3476 bf = ATH_TID_FIRST(tid); 3477 if (bf == NULL) { 3478 break; 3479 } 3480 3481 if (t == 0) { 3482 ath_tx_tid_drain_print(sc, an, "norm", tid, bf); 3483 t = 1; 3484 } 3485 3486 ATH_TID_REMOVE(tid, bf, bf_list); 3487 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3488 } 3489 3490 /* And now, drain the filtered frame queue */ 3491 t = 0; 3492 for (;;) { 3493 bf = ATH_TID_FILT_FIRST(tid); 3494 if (bf == NULL) 3495 break; 3496 3497 if (t == 0) { 3498 ath_tx_tid_drain_print(sc, an, "filt", tid, bf); 3499 t = 1; 3500 } 3501 3502 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3503 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3504 } 3505 3506 /* 3507 * Override the clrdmask configuration for the next frame 3508 * in case there is some future transmission, just to get 3509 * the ball rolling. 3510 * 3511 * This won't hurt things if the TID is about to be freed. 3512 */ 3513 ath_tx_set_clrdmask(sc, tid->an); 3514 3515 /* 3516 * Now that it's completed, grab the TID lock and update 3517 * the sequence number and BAW window. 3518 * Because sequence numbers have been assigned to frames 3519 * that haven't been sent yet, it's entirely possible 3520 * we'll be called with some pending frames that have not 3521 * been transmitted. 3522 * 3523 * The cleaner solution is to do the sequence number allocation 3524 * when the packet is first transmitted - and thus the "retries" 3525 * check above would be enough to update the BAW/seqno. 3526 */ 3527 3528 /* But don't do it for non-QoS TIDs */ 3529 if (tap) { 3530 #if 0 3531 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3532 "%s: node %p: TID %d: sliding BAW left edge to %d\n", 3533 __func__, an, tid->tid, tap->txa_start); 3534 #endif 3535 ni->ni_txseqs[tid->tid] = tap->txa_start; 3536 tid->baw_tail = tid->baw_head; 3537 } 3538 } 3539 3540 /* 3541 * Flush all software queued packets for the given node. 3542 * 3543 * This occurs when a completion handler frees the last buffer 3544 * for a node, and the node is thus freed. This causes the node 3545 * to be cleaned up, which ends up calling ath_tx_node_flush. 3546 */ 3547 void 3548 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an) 3549 { 3550 int tid; 3551 ath_bufhead bf_cq; 3552 struct ath_buf *bf; 3553 3554 TAILQ_INIT(&bf_cq); 3555 3556 ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p", 3557 &an->an_node); 3558 3559 ATH_TX_LOCK(sc); 3560 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 3561 struct ath_tid *atid = &an->an_tid[tid]; 3562 3563 /* Free packets */ 3564 ath_tx_tid_drain(sc, an, atid, &bf_cq); 3565 /* Remove this tid from the list of active tids */ 3566 ath_tx_tid_unsched(sc, atid); 3567 } 3568 ATH_TX_UNLOCK(sc); 3569 3570 /* Handle completed frames */ 3571 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3572 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3573 ath_tx_default_comp(sc, bf, 0); 3574 } 3575 } 3576 3577 /* 3578 * Drain all the software TXQs currently with traffic queued. 3579 */ 3580 void 3581 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq) 3582 { 3583 struct ath_tid *tid; 3584 ath_bufhead bf_cq; 3585 struct ath_buf *bf; 3586 3587 TAILQ_INIT(&bf_cq); 3588 ATH_TX_LOCK(sc); 3589 3590 /* 3591 * Iterate over all active tids for the given txq, 3592 * flushing and unsched'ing them 3593 */ 3594 while (! TAILQ_EMPTY(&txq->axq_tidq)) { 3595 tid = TAILQ_FIRST(&txq->axq_tidq); 3596 ath_tx_tid_drain(sc, tid->an, tid, &bf_cq); 3597 ath_tx_tid_unsched(sc, tid); 3598 } 3599 3600 ATH_TX_UNLOCK(sc); 3601 3602 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3603 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3604 ath_tx_default_comp(sc, bf, 0); 3605 } 3606 } 3607 3608 /* 3609 * Handle completion of non-aggregate session frames. 3610 * 3611 * This (currently) doesn't implement software retransmission of 3612 * non-aggregate frames! 3613 * 3614 * Software retransmission of non-aggregate frames needs to obey 3615 * the strict sequence number ordering, and drop any frames that 3616 * will fail this. 3617 * 3618 * For now, filtered frames and frame transmission will cause 3619 * all kinds of issues. So we don't support them. 3620 * 3621 * So anyone queuing frames via ath_tx_normal_xmit() or 3622 * ath_tx_hw_queue_norm() must override and set CLRDMASK. 3623 */ 3624 void 3625 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3626 { 3627 struct ieee80211_node *ni = bf->bf_node; 3628 struct ath_node *an = ATH_NODE(ni); 3629 int tid = bf->bf_state.bfs_tid; 3630 struct ath_tid *atid = &an->an_tid[tid]; 3631 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3632 3633 /* The TID state is protected behind the TXQ lock */ 3634 ATH_TX_LOCK(sc); 3635 3636 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n", 3637 __func__, bf, fail, atid->hwq_depth - 1); 3638 3639 atid->hwq_depth--; 3640 3641 #if 0 3642 /* 3643 * If the frame was filtered, stick it on the filter frame 3644 * queue and complain about it. It shouldn't happen! 3645 */ 3646 if ((ts->ts_status & HAL_TXERR_FILT) || 3647 (ts->ts_status != 0 && atid->isfiltered)) { 3648 device_printf(sc->sc_dev, 3649 "%s: isfiltered=%d, ts_status=%d: huh?\n", 3650 __func__, 3651 atid->isfiltered, 3652 ts->ts_status); 3653 ath_tx_tid_filt_comp_buf(sc, atid, bf); 3654 } 3655 #endif 3656 if (atid->isfiltered) 3657 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 3658 if (atid->hwq_depth < 0) 3659 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 3660 __func__, atid->hwq_depth); 3661 3662 /* 3663 * If the queue is filtered, potentially mark it as complete 3664 * and reschedule it as needed. 3665 * 3666 * This is required as there may be a subsequent TX descriptor 3667 * for this end-node that has CLRDMASK set, so it's quite possible 3668 * that a filtered frame will be followed by a non-filtered 3669 * (complete or otherwise) frame. 3670 * 3671 * XXX should we do this before we complete the frame? 3672 */ 3673 if (atid->isfiltered) 3674 ath_tx_tid_filt_comp_complete(sc, atid); 3675 ATH_TX_UNLOCK(sc); 3676 3677 /* 3678 * punt to rate control if we're not being cleaned up 3679 * during a hw queue drain and the frame wanted an ACK. 3680 */ 3681 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 3682 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 3683 ts, bf->bf_state.bfs_pktlen, 3684 1, (ts->ts_status == 0) ? 0 : 1); 3685 3686 ath_tx_default_comp(sc, bf, fail); 3687 } 3688 3689 /* 3690 * Handle cleanup of aggregate session packets that aren't 3691 * an A-MPDU. 3692 * 3693 * There's no need to update the BAW here - the session is being 3694 * torn down. 3695 */ 3696 static void 3697 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3698 { 3699 struct ieee80211_node *ni = bf->bf_node; 3700 struct ath_node *an = ATH_NODE(ni); 3701 int tid = bf->bf_state.bfs_tid; 3702 struct ath_tid *atid = &an->an_tid[tid]; 3703 3704 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n", 3705 __func__, tid, atid->incomp); 3706 3707 ATH_TX_LOCK(sc); 3708 atid->incomp--; 3709 if (atid->incomp == 0) { 3710 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3711 "%s: TID %d: cleaned up! resume!\n", 3712 __func__, tid); 3713 atid->cleanup_inprogress = 0; 3714 ath_tx_tid_resume(sc, atid); 3715 } 3716 ATH_TX_UNLOCK(sc); 3717 3718 ath_tx_default_comp(sc, bf, 0); 3719 } 3720 3721 /* 3722 * Performs transmit side cleanup when TID changes from aggregated to 3723 * unaggregated. 3724 * 3725 * - Discard all retry frames from the s/w queue. 3726 * - Fix the tx completion function for all buffers in s/w queue. 3727 * - Count the number of unacked frames, and let transmit completion 3728 * handle it later. 3729 * 3730 * The caller is responsible for pausing the TID. 3731 */ 3732 static void 3733 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid) 3734 { 3735 struct ath_tid *atid = &an->an_tid[tid]; 3736 struct ieee80211_tx_ampdu *tap; 3737 struct ath_buf *bf, *bf_next; 3738 ath_bufhead bf_cq; 3739 3740 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 3741 "%s: TID %d: called\n", __func__, tid); 3742 3743 TAILQ_INIT(&bf_cq); 3744 ATH_TX_LOCK(sc); 3745 3746 /* 3747 * Move the filtered frames to the TX queue, before 3748 * we run off and discard/process things. 3749 */ 3750 /* XXX this is really quite inefficient */ 3751 while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) { 3752 ATH_TID_FILT_REMOVE(atid, bf, bf_list); 3753 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3754 } 3755 3756 /* 3757 * Update the frames in the software TX queue: 3758 * 3759 * + Discard retry frames in the queue 3760 * + Fix the completion function to be non-aggregate 3761 */ 3762 bf = ATH_TID_FIRST(atid); 3763 while (bf) { 3764 if (bf->bf_state.bfs_isretried) { 3765 bf_next = TAILQ_NEXT(bf, bf_list); 3766 ATH_TID_REMOVE(atid, bf, bf_list); 3767 atid->axq_depth--; 3768 if (bf->bf_state.bfs_dobaw) { 3769 ath_tx_update_baw(sc, an, atid, bf); 3770 if (! bf->bf_state.bfs_addedbaw) 3771 device_printf(sc->sc_dev, 3772 "%s: wasn't added: seqno %d\n", 3773 __func__, 3774 SEQNO(bf->bf_state.bfs_seqno)); 3775 } 3776 bf->bf_state.bfs_dobaw = 0; 3777 /* 3778 * Call the default completion handler with "fail" just 3779 * so upper levels are suitably notified about this. 3780 */ 3781 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 3782 bf = bf_next; 3783 continue; 3784 } 3785 /* Give these the default completion handler */ 3786 bf->bf_comp = ath_tx_normal_comp; 3787 bf = TAILQ_NEXT(bf, bf_list); 3788 } 3789 3790 /* The caller is required to pause the TID */ 3791 #if 0 3792 /* Pause the TID */ 3793 ath_tx_tid_pause(sc, atid); 3794 #endif 3795 3796 /* 3797 * Calculate what hardware-queued frames exist based 3798 * on the current BAW size. Ie, what frames have been 3799 * added to the TX hardware queue for this TID but 3800 * not yet ACKed. 3801 */ 3802 tap = ath_tx_get_tx_tid(an, tid); 3803 /* Need the lock - fiddling with BAW */ 3804 while (atid->baw_head != atid->baw_tail) { 3805 if (atid->tx_buf[atid->baw_head]) { 3806 atid->incomp++; 3807 atid->cleanup_inprogress = 1; 3808 atid->tx_buf[atid->baw_head] = NULL; 3809 } 3810 INCR(atid->baw_head, ATH_TID_MAX_BUFS); 3811 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 3812 } 3813 3814 /* 3815 * If cleanup is required, defer TID scheduling 3816 * until all the HW queued packets have been 3817 * sent. 3818 */ 3819 if (! atid->cleanup_inprogress) 3820 ath_tx_tid_resume(sc, atid); 3821 3822 if (atid->cleanup_inprogress) 3823 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3824 "%s: TID %d: cleanup needed: %d packets\n", 3825 __func__, tid, atid->incomp); 3826 ATH_TX_UNLOCK(sc); 3827 3828 /* Handle completing frames and fail them */ 3829 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3830 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3831 ath_tx_default_comp(sc, bf, 1); 3832 } 3833 } 3834 3835 static struct ath_buf * 3836 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 3837 struct ath_tid *tid, struct ath_buf *bf) 3838 { 3839 struct ath_buf *nbf; 3840 int error; 3841 3842 nbf = ath_buf_clone(sc, bf); 3843 3844 #if 0 3845 device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n", 3846 __func__); 3847 #endif 3848 3849 if (nbf == NULL) { 3850 /* Failed to clone */ 3851 device_printf(sc->sc_dev, 3852 "%s: failed to clone a busy buffer\n", 3853 __func__); 3854 return NULL; 3855 } 3856 3857 /* Setup the dma for the new buffer */ 3858 error = ath_tx_dmasetup(sc, nbf, nbf->bf_m); 3859 if (error != 0) { 3860 device_printf(sc->sc_dev, 3861 "%s: failed to setup dma for clone\n", 3862 __func__); 3863 /* 3864 * Put this at the head of the list, not tail; 3865 * that way it doesn't interfere with the 3866 * busy buffer logic (which uses the tail of 3867 * the list.) 3868 */ 3869 ATH_TXBUF_LOCK(sc); 3870 ath_returnbuf_head(sc, nbf); 3871 ATH_TXBUF_UNLOCK(sc); 3872 return NULL; 3873 } 3874 3875 /* Update BAW if required, before we free the original buf */ 3876 if (bf->bf_state.bfs_dobaw) 3877 ath_tx_switch_baw_buf(sc, an, tid, bf, nbf); 3878 3879 /* Free current buffer; return the older buffer */ 3880 bf->bf_m = NULL; 3881 bf->bf_node = NULL; 3882 ath_freebuf(sc, bf); 3883 3884 return nbf; 3885 } 3886 3887 /* 3888 * Handle retrying an unaggregate frame in an aggregate 3889 * session. 3890 * 3891 * If too many retries occur, pause the TID, wait for 3892 * any further retransmits (as there's no reason why 3893 * non-aggregate frames in an aggregate session are 3894 * transmitted in-order; they just have to be in-BAW) 3895 * and then queue a BAR. 3896 */ 3897 static void 3898 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3899 { 3900 struct ieee80211_node *ni = bf->bf_node; 3901 struct ath_node *an = ATH_NODE(ni); 3902 int tid = bf->bf_state.bfs_tid; 3903 struct ath_tid *atid = &an->an_tid[tid]; 3904 struct ieee80211_tx_ampdu *tap; 3905 3906 ATH_TX_LOCK(sc); 3907 3908 tap = ath_tx_get_tx_tid(an, tid); 3909 3910 /* 3911 * If the buffer is marked as busy, we can't directly 3912 * reuse it. Instead, try to clone the buffer. 3913 * If the clone is successful, recycle the old buffer. 3914 * If the clone is unsuccessful, set bfs_retries to max 3915 * to force the next bit of code to free the buffer 3916 * for us. 3917 */ 3918 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 3919 (bf->bf_flags & ATH_BUF_BUSY)) { 3920 struct ath_buf *nbf; 3921 nbf = ath_tx_retry_clone(sc, an, atid, bf); 3922 if (nbf) 3923 /* bf has been freed at this point */ 3924 bf = nbf; 3925 else 3926 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 3927 } 3928 3929 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 3930 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 3931 "%s: exceeded retries; seqno %d\n", 3932 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3933 sc->sc_stats.ast_tx_swretrymax++; 3934 3935 /* Update BAW anyway */ 3936 if (bf->bf_state.bfs_dobaw) { 3937 ath_tx_update_baw(sc, an, atid, bf); 3938 if (! bf->bf_state.bfs_addedbaw) 3939 device_printf(sc->sc_dev, 3940 "%s: wasn't added: seqno %d\n", 3941 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3942 } 3943 bf->bf_state.bfs_dobaw = 0; 3944 3945 /* Suspend the TX queue and get ready to send the BAR */ 3946 ath_tx_tid_bar_suspend(sc, atid); 3947 3948 /* Send the BAR if there are no other frames waiting */ 3949 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3950 ath_tx_tid_bar_tx(sc, atid); 3951 3952 ATH_TX_UNLOCK(sc); 3953 3954 /* Free buffer, bf is free after this call */ 3955 ath_tx_default_comp(sc, bf, 0); 3956 return; 3957 } 3958 3959 /* 3960 * This increments the retry counter as well as 3961 * sets the retry flag in the ath_buf and packet 3962 * body. 3963 */ 3964 ath_tx_set_retry(sc, bf); 3965 sc->sc_stats.ast_tx_swretries++; 3966 3967 /* 3968 * Insert this at the head of the queue, so it's 3969 * retried before any current/subsequent frames. 3970 */ 3971 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3972 ath_tx_tid_sched(sc, atid); 3973 /* Send the BAR if there are no other frames waiting */ 3974 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3975 ath_tx_tid_bar_tx(sc, atid); 3976 3977 ATH_TX_UNLOCK(sc); 3978 } 3979 3980 /* 3981 * Common code for aggregate excessive retry/subframe retry. 3982 * If retrying, queues buffers to bf_q. If not, frees the 3983 * buffers. 3984 * 3985 * XXX should unify this with ath_tx_aggr_retry_unaggr() 3986 */ 3987 static int 3988 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf, 3989 ath_bufhead *bf_q) 3990 { 3991 struct ieee80211_node *ni = bf->bf_node; 3992 struct ath_node *an = ATH_NODE(ni); 3993 int tid = bf->bf_state.bfs_tid; 3994 struct ath_tid *atid = &an->an_tid[tid]; 3995 3996 ATH_TX_LOCK_ASSERT(sc); 3997 3998 /* XXX clr11naggr should be done for all subframes */ 3999 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4000 ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0); 4001 4002 /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */ 4003 4004 /* 4005 * If the buffer is marked as busy, we can't directly 4006 * reuse it. Instead, try to clone the buffer. 4007 * If the clone is successful, recycle the old buffer. 4008 * If the clone is unsuccessful, set bfs_retries to max 4009 * to force the next bit of code to free the buffer 4010 * for us. 4011 */ 4012 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 4013 (bf->bf_flags & ATH_BUF_BUSY)) { 4014 struct ath_buf *nbf; 4015 nbf = ath_tx_retry_clone(sc, an, atid, bf); 4016 if (nbf) 4017 /* bf has been freed at this point */ 4018 bf = nbf; 4019 else 4020 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 4021 } 4022 4023 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 4024 sc->sc_stats.ast_tx_swretrymax++; 4025 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 4026 "%s: max retries: seqno %d\n", 4027 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4028 ath_tx_update_baw(sc, an, atid, bf); 4029 if (! bf->bf_state.bfs_addedbaw) 4030 device_printf(sc->sc_dev, 4031 "%s: wasn't added: seqno %d\n", 4032 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4033 bf->bf_state.bfs_dobaw = 0; 4034 return 1; 4035 } 4036 4037 ath_tx_set_retry(sc, bf); 4038 sc->sc_stats.ast_tx_swretries++; 4039 bf->bf_next = NULL; /* Just to make sure */ 4040 4041 /* Clear the aggregate state */ 4042 bf->bf_state.bfs_aggr = 0; 4043 bf->bf_state.bfs_ndelim = 0; /* ??? needed? */ 4044 bf->bf_state.bfs_nframes = 1; 4045 4046 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 4047 return 0; 4048 } 4049 4050 /* 4051 * error pkt completion for an aggregate destination 4052 */ 4053 static void 4054 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first, 4055 struct ath_tid *tid) 4056 { 4057 struct ieee80211_node *ni = bf_first->bf_node; 4058 struct ath_node *an = ATH_NODE(ni); 4059 struct ath_buf *bf_next, *bf; 4060 ath_bufhead bf_q; 4061 int drops = 0; 4062 struct ieee80211_tx_ampdu *tap; 4063 ath_bufhead bf_cq; 4064 4065 TAILQ_INIT(&bf_q); 4066 TAILQ_INIT(&bf_cq); 4067 4068 /* 4069 * Update rate control - all frames have failed. 4070 * 4071 * XXX use the length in the first frame in the series; 4072 * XXX just so things are consistent for now. 4073 */ 4074 ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc, 4075 &bf_first->bf_status.ds_txstat, 4076 bf_first->bf_state.bfs_pktlen, 4077 bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes); 4078 4079 ATH_TX_LOCK(sc); 4080 tap = ath_tx_get_tx_tid(an, tid->tid); 4081 sc->sc_stats.ast_tx_aggr_failall++; 4082 4083 /* Retry all subframes */ 4084 bf = bf_first; 4085 while (bf) { 4086 bf_next = bf->bf_next; 4087 bf->bf_next = NULL; /* Remove it from the aggr list */ 4088 sc->sc_stats.ast_tx_aggr_fail++; 4089 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4090 drops++; 4091 bf->bf_next = NULL; 4092 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4093 } 4094 bf = bf_next; 4095 } 4096 4097 /* Prepend all frames to the beginning of the queue */ 4098 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4099 TAILQ_REMOVE(&bf_q, bf, bf_list); 4100 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 4101 } 4102 4103 /* 4104 * Schedule the TID to be re-tried. 4105 */ 4106 ath_tx_tid_sched(sc, tid); 4107 4108 /* 4109 * send bar if we dropped any frames 4110 * 4111 * Keep the txq lock held for now, as we need to ensure 4112 * that ni_txseqs[] is consistent (as it's being updated 4113 * in the ifnet TX context or raw TX context.) 4114 */ 4115 if (drops) { 4116 /* Suspend the TX queue and get ready to send the BAR */ 4117 ath_tx_tid_bar_suspend(sc, tid); 4118 } 4119 4120 /* 4121 * Send BAR if required 4122 */ 4123 if (ath_tx_tid_bar_tx_ready(sc, tid)) 4124 ath_tx_tid_bar_tx(sc, tid); 4125 4126 ATH_TX_UNLOCK(sc); 4127 4128 /* Complete frames which errored out */ 4129 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4130 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4131 ath_tx_default_comp(sc, bf, 0); 4132 } 4133 } 4134 4135 /* 4136 * Handle clean-up of packets from an aggregate list. 4137 * 4138 * There's no need to update the BAW here - the session is being 4139 * torn down. 4140 */ 4141 static void 4142 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first) 4143 { 4144 struct ath_buf *bf, *bf_next; 4145 struct ieee80211_node *ni = bf_first->bf_node; 4146 struct ath_node *an = ATH_NODE(ni); 4147 int tid = bf_first->bf_state.bfs_tid; 4148 struct ath_tid *atid = &an->an_tid[tid]; 4149 4150 bf = bf_first; 4151 4152 ATH_TX_LOCK(sc); 4153 4154 /* update incomp */ 4155 while (bf) { 4156 atid->incomp--; 4157 bf = bf->bf_next; 4158 } 4159 4160 if (atid->incomp == 0) { 4161 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4162 "%s: TID %d: cleaned up! resume!\n", 4163 __func__, tid); 4164 atid->cleanup_inprogress = 0; 4165 ath_tx_tid_resume(sc, atid); 4166 } 4167 4168 /* Send BAR if required */ 4169 /* XXX why would we send a BAR when transitioning to non-aggregation? */ 4170 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4171 ath_tx_tid_bar_tx(sc, atid); 4172 4173 ATH_TX_UNLOCK(sc); 4174 4175 /* Handle frame completion */ 4176 while (bf) { 4177 bf_next = bf->bf_next; 4178 ath_tx_default_comp(sc, bf, 1); 4179 bf = bf_next; 4180 } 4181 } 4182 4183 /* 4184 * Handle completion of an set of aggregate frames. 4185 * 4186 * XXX for now, simply complete each sub-frame. 4187 * 4188 * Note: the completion handler is the last descriptor in the aggregate, 4189 * not the last descriptor in the first frame. 4190 */ 4191 static void 4192 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, 4193 int fail) 4194 { 4195 //struct ath_desc *ds = bf->bf_lastds; 4196 struct ieee80211_node *ni = bf_first->bf_node; 4197 struct ath_node *an = ATH_NODE(ni); 4198 int tid = bf_first->bf_state.bfs_tid; 4199 struct ath_tid *atid = &an->an_tid[tid]; 4200 struct ath_tx_status ts; 4201 struct ieee80211_tx_ampdu *tap; 4202 ath_bufhead bf_q; 4203 ath_bufhead bf_cq; 4204 int seq_st, tx_ok; 4205 int hasba, isaggr; 4206 uint32_t ba[2]; 4207 struct ath_buf *bf, *bf_next; 4208 int ba_index; 4209 int drops = 0; 4210 int nframes = 0, nbad = 0, nf; 4211 int pktlen; 4212 /* XXX there's too much on the stack? */ 4213 struct ath_rc_series rc[ATH_RC_NUM]; 4214 int txseq; 4215 4216 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n", 4217 __func__, atid->hwq_depth); 4218 4219 /* 4220 * Take a copy; this may be needed -after- bf_first 4221 * has been completed and freed. 4222 */ 4223 ts = bf_first->bf_status.ds_txstat; 4224 4225 TAILQ_INIT(&bf_q); 4226 TAILQ_INIT(&bf_cq); 4227 4228 /* The TID state is kept behind the TXQ lock */ 4229 ATH_TX_LOCK(sc); 4230 4231 atid->hwq_depth--; 4232 if (atid->hwq_depth < 0) 4233 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4234 __func__, atid->hwq_depth); 4235 4236 /* 4237 * If the TID is filtered, handle completing the filter 4238 * transition before potentially kicking it to the cleanup 4239 * function. 4240 * 4241 * XXX this is duplicate work, ew. 4242 */ 4243 if (atid->isfiltered) 4244 ath_tx_tid_filt_comp_complete(sc, atid); 4245 4246 /* 4247 * Punt cleanup to the relevant function, not our problem now 4248 */ 4249 if (atid->cleanup_inprogress) { 4250 if (atid->isfiltered) 4251 device_printf(sc->sc_dev, 4252 "%s: isfiltered=1, normal_comp?\n", 4253 __func__); 4254 ATH_TX_UNLOCK(sc); 4255 ath_tx_comp_cleanup_aggr(sc, bf_first); 4256 return; 4257 } 4258 4259 /* 4260 * If the frame is filtered, transition to filtered frame 4261 * mode and add this to the filtered frame list. 4262 * 4263 * XXX TODO: figure out how this interoperates with 4264 * BAR, pause and cleanup states. 4265 */ 4266 if ((ts.ts_status & HAL_TXERR_FILT) || 4267 (ts.ts_status != 0 && atid->isfiltered)) { 4268 if (fail != 0) 4269 device_printf(sc->sc_dev, 4270 "%s: isfiltered=1, fail=%d\n", __func__, fail); 4271 ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq); 4272 4273 /* Remove from BAW */ 4274 TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) { 4275 if (bf->bf_state.bfs_addedbaw) 4276 drops++; 4277 if (bf->bf_state.bfs_dobaw) { 4278 ath_tx_update_baw(sc, an, atid, bf); 4279 if (! bf->bf_state.bfs_addedbaw) 4280 device_printf(sc->sc_dev, 4281 "%s: wasn't added: seqno %d\n", 4282 __func__, 4283 SEQNO(bf->bf_state.bfs_seqno)); 4284 } 4285 bf->bf_state.bfs_dobaw = 0; 4286 } 4287 /* 4288 * If any intermediate frames in the BAW were dropped when 4289 * handling filtering things, send a BAR. 4290 */ 4291 if (drops) 4292 ath_tx_tid_bar_suspend(sc, atid); 4293 4294 /* 4295 * Finish up by sending a BAR if required and freeing 4296 * the frames outside of the TX lock. 4297 */ 4298 goto finish_send_bar; 4299 } 4300 4301 /* 4302 * XXX for now, use the first frame in the aggregate for 4303 * XXX rate control completion; it's at least consistent. 4304 */ 4305 pktlen = bf_first->bf_state.bfs_pktlen; 4306 4307 /* 4308 * Handle errors first! 4309 * 4310 * Here, handle _any_ error as a "exceeded retries" error. 4311 * Later on (when filtered frames are to be specially handled) 4312 * it'll have to be expanded. 4313 */ 4314 #if 0 4315 if (ts.ts_status & HAL_TXERR_XRETRY) { 4316 #endif 4317 if (ts.ts_status != 0) { 4318 ATH_TX_UNLOCK(sc); 4319 ath_tx_comp_aggr_error(sc, bf_first, atid); 4320 return; 4321 } 4322 4323 tap = ath_tx_get_tx_tid(an, tid); 4324 4325 /* 4326 * extract starting sequence and block-ack bitmap 4327 */ 4328 /* XXX endian-ness of seq_st, ba? */ 4329 seq_st = ts.ts_seqnum; 4330 hasba = !! (ts.ts_flags & HAL_TX_BA); 4331 tx_ok = (ts.ts_status == 0); 4332 isaggr = bf_first->bf_state.bfs_aggr; 4333 ba[0] = ts.ts_ba_low; 4334 ba[1] = ts.ts_ba_high; 4335 4336 /* 4337 * Copy the TX completion status and the rate control 4338 * series from the first descriptor, as it may be freed 4339 * before the rate control code can get its grubby fingers 4340 * into things. 4341 */ 4342 memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc)); 4343 4344 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4345 "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, " 4346 "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n", 4347 __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags, 4348 isaggr, seq_st, hasba, ba[0], ba[1]); 4349 4350 /* Occasionally, the MAC sends a tx status for the wrong TID. */ 4351 if (tid != ts.ts_tid) { 4352 device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n", 4353 __func__, tid, ts.ts_tid); 4354 tx_ok = 0; 4355 } 4356 4357 /* AR5416 BA bug; this requires an interface reset */ 4358 if (isaggr && tx_ok && (! hasba)) { 4359 device_printf(sc->sc_dev, 4360 "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, " 4361 "seq_st=%d\n", 4362 __func__, hasba, tx_ok, isaggr, seq_st); 4363 /* XXX TODO: schedule an interface reset */ 4364 #ifdef ATH_DEBUG 4365 ath_printtxbuf(sc, bf_first, 4366 sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0); 4367 #endif 4368 } 4369 4370 /* 4371 * Walk the list of frames, figure out which ones were correctly 4372 * sent and which weren't. 4373 */ 4374 bf = bf_first; 4375 nf = bf_first->bf_state.bfs_nframes; 4376 4377 /* bf_first is going to be invalid once this list is walked */ 4378 bf_first = NULL; 4379 4380 /* 4381 * Walk the list of completed frames and determine 4382 * which need to be completed and which need to be 4383 * retransmitted. 4384 * 4385 * For completed frames, the completion functions need 4386 * to be called at the end of this function as the last 4387 * node reference may free the node. 4388 * 4389 * Finally, since the TXQ lock can't be held during the 4390 * completion callback (to avoid lock recursion), 4391 * the completion calls have to be done outside of the 4392 * lock. 4393 */ 4394 while (bf) { 4395 nframes++; 4396 ba_index = ATH_BA_INDEX(seq_st, 4397 SEQNO(bf->bf_state.bfs_seqno)); 4398 bf_next = bf->bf_next; 4399 bf->bf_next = NULL; /* Remove it from the aggr list */ 4400 4401 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4402 "%s: checking bf=%p seqno=%d; ack=%d\n", 4403 __func__, bf, SEQNO(bf->bf_state.bfs_seqno), 4404 ATH_BA_ISSET(ba, ba_index)); 4405 4406 if (tx_ok && ATH_BA_ISSET(ba, ba_index)) { 4407 sc->sc_stats.ast_tx_aggr_ok++; 4408 ath_tx_update_baw(sc, an, atid, bf); 4409 bf->bf_state.bfs_dobaw = 0; 4410 if (! bf->bf_state.bfs_addedbaw) 4411 device_printf(sc->sc_dev, 4412 "%s: wasn't added: seqno %d\n", 4413 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4414 bf->bf_next = NULL; 4415 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4416 } else { 4417 sc->sc_stats.ast_tx_aggr_fail++; 4418 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4419 drops++; 4420 bf->bf_next = NULL; 4421 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4422 } 4423 nbad++; 4424 } 4425 bf = bf_next; 4426 } 4427 4428 /* 4429 * Now that the BAW updates have been done, unlock 4430 * 4431 * txseq is grabbed before the lock is released so we 4432 * have a consistent view of what -was- in the BAW. 4433 * Anything after this point will not yet have been 4434 * TXed. 4435 */ 4436 txseq = tap->txa_start; 4437 ATH_TX_UNLOCK(sc); 4438 4439 if (nframes != nf) 4440 device_printf(sc->sc_dev, 4441 "%s: num frames seen=%d; bf nframes=%d\n", 4442 __func__, nframes, nf); 4443 4444 /* 4445 * Now we know how many frames were bad, call the rate 4446 * control code. 4447 */ 4448 if (fail == 0) 4449 ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, 4450 nbad); 4451 4452 /* 4453 * send bar if we dropped any frames 4454 */ 4455 if (drops) { 4456 /* Suspend the TX queue and get ready to send the BAR */ 4457 ATH_TX_LOCK(sc); 4458 ath_tx_tid_bar_suspend(sc, atid); 4459 ATH_TX_UNLOCK(sc); 4460 } 4461 4462 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4463 "%s: txa_start now %d\n", __func__, tap->txa_start); 4464 4465 ATH_TX_LOCK(sc); 4466 4467 /* Prepend all frames to the beginning of the queue */ 4468 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4469 TAILQ_REMOVE(&bf_q, bf, bf_list); 4470 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 4471 } 4472 4473 /* 4474 * Reschedule to grab some further frames. 4475 */ 4476 ath_tx_tid_sched(sc, atid); 4477 4478 /* 4479 * If the queue is filtered, re-schedule as required. 4480 * 4481 * This is required as there may be a subsequent TX descriptor 4482 * for this end-node that has CLRDMASK set, so it's quite possible 4483 * that a filtered frame will be followed by a non-filtered 4484 * (complete or otherwise) frame. 4485 * 4486 * XXX should we do this before we complete the frame? 4487 */ 4488 if (atid->isfiltered) 4489 ath_tx_tid_filt_comp_complete(sc, atid); 4490 4491 finish_send_bar: 4492 4493 /* 4494 * Send BAR if required 4495 */ 4496 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4497 ath_tx_tid_bar_tx(sc, atid); 4498 4499 ATH_TX_UNLOCK(sc); 4500 4501 /* Do deferred completion */ 4502 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4503 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4504 ath_tx_default_comp(sc, bf, 0); 4505 } 4506 } 4507 4508 /* 4509 * Handle completion of unaggregated frames in an ADDBA 4510 * session. 4511 * 4512 * Fail is set to 1 if the entry is being freed via a call to 4513 * ath_tx_draintxq(). 4514 */ 4515 static void 4516 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail) 4517 { 4518 struct ieee80211_node *ni = bf->bf_node; 4519 struct ath_node *an = ATH_NODE(ni); 4520 int tid = bf->bf_state.bfs_tid; 4521 struct ath_tid *atid = &an->an_tid[tid]; 4522 struct ath_tx_status ts; 4523 int drops = 0; 4524 4525 /* 4526 * Take a copy of this; filtering/cloning the frame may free the 4527 * bf pointer. 4528 */ 4529 ts = bf->bf_status.ds_txstat; 4530 4531 /* 4532 * Update rate control status here, before we possibly 4533 * punt to retry or cleanup. 4534 * 4535 * Do it outside of the TXQ lock. 4536 */ 4537 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 4538 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 4539 &bf->bf_status.ds_txstat, 4540 bf->bf_state.bfs_pktlen, 4541 1, (ts.ts_status == 0) ? 0 : 1); 4542 4543 /* 4544 * This is called early so atid->hwq_depth can be tracked. 4545 * This unfortunately means that it's released and regrabbed 4546 * during retry and cleanup. That's rather inefficient. 4547 */ 4548 ATH_TX_LOCK(sc); 4549 4550 if (tid == IEEE80211_NONQOS_TID) 4551 device_printf(sc->sc_dev, "%s: TID=16!\n", __func__); 4552 4553 DPRINTF(sc, ATH_DEBUG_SW_TX, 4554 "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n", 4555 __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth, 4556 SEQNO(bf->bf_state.bfs_seqno)); 4557 4558 atid->hwq_depth--; 4559 if (atid->hwq_depth < 0) 4560 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4561 __func__, atid->hwq_depth); 4562 4563 /* 4564 * If the TID is filtered, handle completing the filter 4565 * transition before potentially kicking it to the cleanup 4566 * function. 4567 */ 4568 if (atid->isfiltered) 4569 ath_tx_tid_filt_comp_complete(sc, atid); 4570 4571 /* 4572 * If a cleanup is in progress, punt to comp_cleanup; 4573 * rather than handling it here. It's thus their 4574 * responsibility to clean up, call the completion 4575 * function in net80211, etc. 4576 */ 4577 if (atid->cleanup_inprogress) { 4578 if (atid->isfiltered) 4579 device_printf(sc->sc_dev, 4580 "%s: isfiltered=1, normal_comp?\n", 4581 __func__); 4582 ATH_TX_UNLOCK(sc); 4583 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n", 4584 __func__); 4585 ath_tx_comp_cleanup_unaggr(sc, bf); 4586 return; 4587 } 4588 4589 /* 4590 * XXX TODO: how does cleanup, BAR and filtered frame handling 4591 * overlap? 4592 * 4593 * If the frame is filtered OR if it's any failure but 4594 * the TID is filtered, the frame must be added to the 4595 * filtered frame list. 4596 * 4597 * However - a busy buffer can't be added to the filtered 4598 * list as it will end up being recycled without having 4599 * been made available for the hardware. 4600 */ 4601 if ((ts.ts_status & HAL_TXERR_FILT) || 4602 (ts.ts_status != 0 && atid->isfiltered)) { 4603 int freeframe; 4604 4605 if (fail != 0) 4606 device_printf(sc->sc_dev, 4607 "%s: isfiltered=1, fail=%d\n", 4608 __func__, 4609 fail); 4610 freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf); 4611 if (freeframe) { 4612 /* Remove from BAW */ 4613 if (bf->bf_state.bfs_addedbaw) 4614 drops++; 4615 if (bf->bf_state.bfs_dobaw) { 4616 ath_tx_update_baw(sc, an, atid, bf); 4617 if (! bf->bf_state.bfs_addedbaw) 4618 device_printf(sc->sc_dev, 4619 "%s: wasn't added: seqno %d\n", 4620 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4621 } 4622 bf->bf_state.bfs_dobaw = 0; 4623 } 4624 4625 /* 4626 * If the frame couldn't be filtered, treat it as a drop and 4627 * prepare to send a BAR. 4628 */ 4629 if (freeframe && drops) 4630 ath_tx_tid_bar_suspend(sc, atid); 4631 4632 /* 4633 * Send BAR if required 4634 */ 4635 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4636 ath_tx_tid_bar_tx(sc, atid); 4637 4638 ATH_TX_UNLOCK(sc); 4639 /* 4640 * If freeframe is set, then the frame couldn't be 4641 * cloned and bf is still valid. Just complete/free it. 4642 */ 4643 if (freeframe) 4644 ath_tx_default_comp(sc, bf, fail); 4645 4646 4647 return; 4648 } 4649 /* 4650 * Don't bother with the retry check if all frames 4651 * are being failed (eg during queue deletion.) 4652 */ 4653 #if 0 4654 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) { 4655 #endif 4656 if (fail == 0 && ts.ts_status != 0) { 4657 ATH_TX_UNLOCK(sc); 4658 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n", 4659 __func__); 4660 ath_tx_aggr_retry_unaggr(sc, bf); 4661 return; 4662 } 4663 4664 /* Success? Complete */ 4665 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n", 4666 __func__, tid, SEQNO(bf->bf_state.bfs_seqno)); 4667 if (bf->bf_state.bfs_dobaw) { 4668 ath_tx_update_baw(sc, an, atid, bf); 4669 bf->bf_state.bfs_dobaw = 0; 4670 if (! bf->bf_state.bfs_addedbaw) 4671 device_printf(sc->sc_dev, 4672 "%s: wasn't added: seqno %d\n", 4673 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4674 } 4675 4676 /* 4677 * If the queue is filtered, re-schedule as required. 4678 * 4679 * This is required as there may be a subsequent TX descriptor 4680 * for this end-node that has CLRDMASK set, so it's quite possible 4681 * that a filtered frame will be followed by a non-filtered 4682 * (complete or otherwise) frame. 4683 * 4684 * XXX should we do this before we complete the frame? 4685 */ 4686 if (atid->isfiltered) 4687 ath_tx_tid_filt_comp_complete(sc, atid); 4688 4689 /* 4690 * Send BAR if required 4691 */ 4692 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4693 ath_tx_tid_bar_tx(sc, atid); 4694 4695 ATH_TX_UNLOCK(sc); 4696 4697 ath_tx_default_comp(sc, bf, fail); 4698 /* bf is freed at this point */ 4699 } 4700 4701 void 4702 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4703 { 4704 if (bf->bf_state.bfs_aggr) 4705 ath_tx_aggr_comp_aggr(sc, bf, fail); 4706 else 4707 ath_tx_aggr_comp_unaggr(sc, bf, fail); 4708 } 4709 4710 /* 4711 * Schedule some packets from the given node/TID to the hardware. 4712 * 4713 * This is the aggregate version. 4714 */ 4715 void 4716 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an, 4717 struct ath_tid *tid) 4718 { 4719 struct ath_buf *bf; 4720 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4721 struct ieee80211_tx_ampdu *tap; 4722 ATH_AGGR_STATUS status; 4723 ath_bufhead bf_q; 4724 4725 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid); 4726 ATH_TX_LOCK_ASSERT(sc); 4727 4728 tap = ath_tx_get_tx_tid(an, tid->tid); 4729 4730 if (tid->tid == IEEE80211_NONQOS_TID) 4731 device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n", 4732 __func__); 4733 4734 for (;;) { 4735 status = ATH_AGGR_DONE; 4736 4737 /* 4738 * If the upper layer has paused the TID, don't 4739 * queue any further packets. 4740 * 4741 * This can also occur from the completion task because 4742 * of packet loss; but as its serialised with this code, 4743 * it won't "appear" half way through queuing packets. 4744 */ 4745 if (tid->paused) 4746 break; 4747 4748 bf = ATH_TID_FIRST(tid); 4749 if (bf == NULL) { 4750 break; 4751 } 4752 4753 /* 4754 * If the packet doesn't fall within the BAW (eg a NULL 4755 * data frame), schedule it directly; continue. 4756 */ 4757 if (! bf->bf_state.bfs_dobaw) { 4758 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4759 "%s: non-baw packet\n", 4760 __func__); 4761 ATH_TID_REMOVE(tid, bf, bf_list); 4762 4763 if (bf->bf_state.bfs_nframes > 1) 4764 device_printf(sc->sc_dev, 4765 "%s: aggr=%d, nframes=%d\n", 4766 __func__, 4767 bf->bf_state.bfs_aggr, 4768 bf->bf_state.bfs_nframes); 4769 4770 /* 4771 * This shouldn't happen - such frames shouldn't 4772 * ever have been queued as an aggregate in the 4773 * first place. However, make sure the fields 4774 * are correctly setup just to be totally sure. 4775 */ 4776 bf->bf_state.bfs_aggr = 0; 4777 bf->bf_state.bfs_nframes = 1; 4778 4779 /* Update CLRDMASK just before this frame is queued */ 4780 ath_tx_update_clrdmask(sc, tid, bf); 4781 4782 ath_tx_do_ratelookup(sc, bf); 4783 ath_tx_calc_duration(sc, bf); 4784 ath_tx_calc_protection(sc, bf); 4785 ath_tx_set_rtscts(sc, bf); 4786 ath_tx_rate_fill_rcflags(sc, bf); 4787 ath_tx_setds(sc, bf); 4788 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4789 4790 sc->sc_aggr_stats.aggr_nonbaw_pkt++; 4791 4792 /* Queue the packet; continue */ 4793 goto queuepkt; 4794 } 4795 4796 TAILQ_INIT(&bf_q); 4797 4798 /* 4799 * Do a rate control lookup on the first frame in the 4800 * list. The rate control code needs that to occur 4801 * before it can determine whether to TX. 4802 * It's inaccurate because the rate control code doesn't 4803 * really "do" aggregate lookups, so it only considers 4804 * the size of the first frame. 4805 */ 4806 ath_tx_do_ratelookup(sc, bf); 4807 bf->bf_state.bfs_rc[3].rix = 0; 4808 bf->bf_state.bfs_rc[3].tries = 0; 4809 4810 ath_tx_calc_duration(sc, bf); 4811 ath_tx_calc_protection(sc, bf); 4812 4813 ath_tx_set_rtscts(sc, bf); 4814 ath_tx_rate_fill_rcflags(sc, bf); 4815 4816 status = ath_tx_form_aggr(sc, an, tid, &bf_q); 4817 4818 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4819 "%s: ath_tx_form_aggr() status=%d\n", __func__, status); 4820 4821 /* 4822 * No frames to be picked up - out of BAW 4823 */ 4824 if (TAILQ_EMPTY(&bf_q)) 4825 break; 4826 4827 /* 4828 * This assumes that the descriptor list in the ath_bufhead 4829 * are already linked together via bf_next pointers. 4830 */ 4831 bf = TAILQ_FIRST(&bf_q); 4832 4833 if (status == ATH_AGGR_8K_LIMITED) 4834 sc->sc_aggr_stats.aggr_rts_aggr_limited++; 4835 4836 /* 4837 * If it's the only frame send as non-aggregate 4838 * assume that ath_tx_form_aggr() has checked 4839 * whether it's in the BAW and added it appropriately. 4840 */ 4841 if (bf->bf_state.bfs_nframes == 1) { 4842 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4843 "%s: single-frame aggregate\n", __func__); 4844 4845 /* Update CLRDMASK just before this frame is queued */ 4846 ath_tx_update_clrdmask(sc, tid, bf); 4847 4848 bf->bf_state.bfs_aggr = 0; 4849 bf->bf_state.bfs_ndelim = 0; 4850 ath_tx_setds(sc, bf); 4851 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4852 if (status == ATH_AGGR_BAW_CLOSED) 4853 sc->sc_aggr_stats.aggr_baw_closed_single_pkt++; 4854 else 4855 sc->sc_aggr_stats.aggr_single_pkt++; 4856 } else { 4857 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4858 "%s: multi-frame aggregate: %d frames, " 4859 "length %d\n", 4860 __func__, bf->bf_state.bfs_nframes, 4861 bf->bf_state.bfs_al); 4862 bf->bf_state.bfs_aggr = 1; 4863 sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++; 4864 sc->sc_aggr_stats.aggr_aggr_pkt++; 4865 4866 /* Update CLRDMASK just before this frame is queued */ 4867 ath_tx_update_clrdmask(sc, tid, bf); 4868 4869 /* 4870 * Calculate the duration/protection as required. 4871 */ 4872 ath_tx_calc_duration(sc, bf); 4873 ath_tx_calc_protection(sc, bf); 4874 4875 /* 4876 * Update the rate and rtscts information based on the 4877 * rate decision made by the rate control code; 4878 * the first frame in the aggregate needs it. 4879 */ 4880 ath_tx_set_rtscts(sc, bf); 4881 4882 /* 4883 * Setup the relevant descriptor fields 4884 * for aggregation. The first descriptor 4885 * already points to the rest in the chain. 4886 */ 4887 ath_tx_setds_11n(sc, bf); 4888 4889 } 4890 queuepkt: 4891 /* Set completion handler, multi-frame aggregate or not */ 4892 bf->bf_comp = ath_tx_aggr_comp; 4893 4894 if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID) 4895 device_printf(sc->sc_dev, "%s: TID=16?\n", __func__); 4896 4897 /* Punt to txq */ 4898 ath_tx_handoff(sc, txq, bf); 4899 4900 /* Track outstanding buffer count to hardware */ 4901 /* aggregates are "one" buffer */ 4902 tid->hwq_depth++; 4903 4904 /* 4905 * Break out if ath_tx_form_aggr() indicated 4906 * there can't be any further progress (eg BAW is full.) 4907 * Checking for an empty txq is done above. 4908 * 4909 * XXX locking on txq here? 4910 */ 4911 if (txq->axq_aggr_depth >= sc->sc_hwq_limit || 4912 status == ATH_AGGR_BAW_CLOSED) 4913 break; 4914 } 4915 } 4916 4917 /* 4918 * Schedule some packets from the given node/TID to the hardware. 4919 */ 4920 void 4921 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an, 4922 struct ath_tid *tid) 4923 { 4924 struct ath_buf *bf; 4925 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4926 4927 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n", 4928 __func__, an, tid->tid); 4929 4930 ATH_TX_LOCK_ASSERT(sc); 4931 4932 /* Check - is AMPDU pending or running? then print out something */ 4933 if (ath_tx_ampdu_pending(sc, an, tid->tid)) 4934 device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n", 4935 __func__, tid->tid); 4936 if (ath_tx_ampdu_running(sc, an, tid->tid)) 4937 device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n", 4938 __func__, tid->tid); 4939 4940 for (;;) { 4941 4942 /* 4943 * If the upper layers have paused the TID, don't 4944 * queue any further packets. 4945 */ 4946 if (tid->paused) 4947 break; 4948 4949 bf = ATH_TID_FIRST(tid); 4950 if (bf == NULL) { 4951 break; 4952 } 4953 4954 ATH_TID_REMOVE(tid, bf, bf_list); 4955 4956 /* Sanity check! */ 4957 if (tid->tid != bf->bf_state.bfs_tid) { 4958 device_printf(sc->sc_dev, "%s: bfs_tid %d !=" 4959 " tid %d\n", 4960 __func__, bf->bf_state.bfs_tid, tid->tid); 4961 } 4962 /* Normal completion handler */ 4963 bf->bf_comp = ath_tx_normal_comp; 4964 4965 /* 4966 * Override this for now, until the non-aggregate 4967 * completion handler correctly handles software retransmits. 4968 */ 4969 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 4970 4971 /* Update CLRDMASK just before this frame is queued */ 4972 ath_tx_update_clrdmask(sc, tid, bf); 4973 4974 /* Program descriptors + rate control */ 4975 ath_tx_do_ratelookup(sc, bf); 4976 ath_tx_calc_duration(sc, bf); 4977 ath_tx_calc_protection(sc, bf); 4978 ath_tx_set_rtscts(sc, bf); 4979 ath_tx_rate_fill_rcflags(sc, bf); 4980 ath_tx_setds(sc, bf); 4981 4982 /* Track outstanding buffer count to hardware */ 4983 /* aggregates are "one" buffer */ 4984 tid->hwq_depth++; 4985 4986 /* Punt to hardware or software txq */ 4987 ath_tx_handoff(sc, txq, bf); 4988 } 4989 } 4990 4991 /* 4992 * Schedule some packets to the given hardware queue. 4993 * 4994 * This function walks the list of TIDs (ie, ath_node TIDs 4995 * with queued traffic) and attempts to schedule traffic 4996 * from them. 4997 * 4998 * TID scheduling is implemented as a FIFO, with TIDs being 4999 * added to the end of the queue after some frames have been 5000 * scheduled. 5001 */ 5002 void 5003 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq) 5004 { 5005 struct ath_tid *tid, *next, *last; 5006 5007 ATH_TX_LOCK_ASSERT(sc); 5008 5009 /* 5010 * Don't schedule if the hardware queue is busy. 5011 * This (hopefully) gives some more time to aggregate 5012 * some packets in the aggregation queue. 5013 */ 5014 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 5015 sc->sc_aggr_stats.aggr_sched_nopkt++; 5016 return; 5017 } 5018 5019 last = TAILQ_LAST(&txq->axq_tidq, axq_t_s); 5020 5021 TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) { 5022 /* 5023 * Suspend paused queues here; they'll be resumed 5024 * once the addba completes or times out. 5025 */ 5026 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n", 5027 __func__, tid->tid, tid->paused); 5028 ath_tx_tid_unsched(sc, tid); 5029 if (tid->paused) { 5030 continue; 5031 } 5032 if (ath_tx_ampdu_running(sc, tid->an, tid->tid)) 5033 ath_tx_tid_hw_queue_aggr(sc, tid->an, tid); 5034 else 5035 ath_tx_tid_hw_queue_norm(sc, tid->an, tid); 5036 5037 /* Not empty? Re-schedule */ 5038 if (tid->axq_depth != 0) 5039 ath_tx_tid_sched(sc, tid); 5040 5041 /* Give the software queue time to aggregate more packets */ 5042 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 5043 break; 5044 } 5045 5046 /* 5047 * If this was the last entry on the original list, stop. 5048 * Otherwise nodes that have been rescheduled onto the end 5049 * of the TID FIFO list will just keep being rescheduled. 5050 */ 5051 if (tid == last) 5052 break; 5053 } 5054 } 5055 5056 /* 5057 * TX addba handling 5058 */ 5059 5060 /* 5061 * Return net80211 TID struct pointer, or NULL for none 5062 */ 5063 struct ieee80211_tx_ampdu * 5064 ath_tx_get_tx_tid(struct ath_node *an, int tid) 5065 { 5066 struct ieee80211_node *ni = &an->an_node; 5067 struct ieee80211_tx_ampdu *tap; 5068 5069 if (tid == IEEE80211_NONQOS_TID) 5070 return NULL; 5071 5072 tap = &ni->ni_tx_ampdu[tid]; 5073 return tap; 5074 } 5075 5076 /* 5077 * Is AMPDU-TX running? 5078 */ 5079 static int 5080 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid) 5081 { 5082 struct ieee80211_tx_ampdu *tap; 5083 5084 if (tid == IEEE80211_NONQOS_TID) 5085 return 0; 5086 5087 tap = ath_tx_get_tx_tid(an, tid); 5088 if (tap == NULL) 5089 return 0; /* Not valid; default to not running */ 5090 5091 return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING); 5092 } 5093 5094 /* 5095 * Is AMPDU-TX negotiation pending? 5096 */ 5097 static int 5098 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid) 5099 { 5100 struct ieee80211_tx_ampdu *tap; 5101 5102 if (tid == IEEE80211_NONQOS_TID) 5103 return 0; 5104 5105 tap = ath_tx_get_tx_tid(an, tid); 5106 if (tap == NULL) 5107 return 0; /* Not valid; default to not pending */ 5108 5109 return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND); 5110 } 5111 5112 /* 5113 * Is AMPDU-TX pending for the given TID? 5114 */ 5115 5116 5117 /* 5118 * Method to handle sending an ADDBA request. 5119 * 5120 * We tap this so the relevant flags can be set to pause the TID 5121 * whilst waiting for the response. 5122 * 5123 * XXX there's no timeout handler we can override? 5124 */ 5125 int 5126 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5127 int dialogtoken, int baparamset, int batimeout) 5128 { 5129 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5130 int tid = tap->txa_tid; 5131 struct ath_node *an = ATH_NODE(ni); 5132 struct ath_tid *atid = &an->an_tid[tid]; 5133 5134 /* 5135 * XXX danger Will Robinson! 5136 * 5137 * Although the taskqueue may be running and scheduling some more 5138 * packets, these should all be _before_ the addba sequence number. 5139 * However, net80211 will keep self-assigning sequence numbers 5140 * until addba has been negotiated. 5141 * 5142 * In the past, these packets would be "paused" (which still works 5143 * fine, as they're being scheduled to the driver in the same 5144 * serialised method which is calling the addba request routine) 5145 * and when the aggregation session begins, they'll be dequeued 5146 * as aggregate packets and added to the BAW. However, now there's 5147 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these 5148 * packets. Thus they never get included in the BAW tracking and 5149 * this can cause the initial burst of packets after the addba 5150 * negotiation to "hang", as they quickly fall outside the BAW. 5151 * 5152 * The "eventual" solution should be to tag these packets with 5153 * dobaw. Although net80211 has given us a sequence number, 5154 * it'll be "after" the left edge of the BAW and thus it'll 5155 * fall within it. 5156 */ 5157 ATH_TX_LOCK(sc); 5158 /* 5159 * This is a bit annoying. Until net80211 HT code inherits some 5160 * (any) locking, we may have this called in parallel BUT only 5161 * one response/timeout will be called. Grr. 5162 */ 5163 if (atid->addba_tx_pending == 0) { 5164 ath_tx_tid_pause(sc, atid); 5165 atid->addba_tx_pending = 1; 5166 } 5167 ATH_TX_UNLOCK(sc); 5168 5169 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5170 "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n", 5171 __func__, dialogtoken, baparamset, batimeout); 5172 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5173 "%s: txa_start=%d, ni_txseqs=%d\n", 5174 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5175 5176 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 5177 batimeout); 5178 } 5179 5180 /* 5181 * Handle an ADDBA response. 5182 * 5183 * We unpause the queue so TX'ing can resume. 5184 * 5185 * Any packets TX'ed from this point should be "aggregate" (whether 5186 * aggregate or not) so the BAW is updated. 5187 * 5188 * Note! net80211 keeps self-assigning sequence numbers until 5189 * ampdu is negotiated. This means the initially-negotiated BAW left 5190 * edge won't match the ni->ni_txseq. 5191 * 5192 * So, being very dirty, the BAW left edge is "slid" here to match 5193 * ni->ni_txseq. 5194 * 5195 * What likely SHOULD happen is that all packets subsequent to the 5196 * addba request should be tagged as aggregate and queued as non-aggregate 5197 * frames; thus updating the BAW. For now though, I'll just slide the 5198 * window. 5199 */ 5200 int 5201 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5202 int status, int code, int batimeout) 5203 { 5204 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5205 int tid = tap->txa_tid; 5206 struct ath_node *an = ATH_NODE(ni); 5207 struct ath_tid *atid = &an->an_tid[tid]; 5208 int r; 5209 5210 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5211 "%s: called; status=%d, code=%d, batimeout=%d\n", __func__, 5212 status, code, batimeout); 5213 5214 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5215 "%s: txa_start=%d, ni_txseqs=%d\n", 5216 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5217 5218 /* 5219 * Call this first, so the interface flags get updated 5220 * before the TID is unpaused. Otherwise a race condition 5221 * exists where the unpaused TID still doesn't yet have 5222 * IEEE80211_AGGR_RUNNING set. 5223 */ 5224 r = sc->sc_addba_response(ni, tap, status, code, batimeout); 5225 5226 ATH_TX_LOCK(sc); 5227 atid->addba_tx_pending = 0; 5228 /* 5229 * XXX dirty! 5230 * Slide the BAW left edge to wherever net80211 left it for us. 5231 * Read above for more information. 5232 */ 5233 tap->txa_start = ni->ni_txseqs[tid]; 5234 ath_tx_tid_resume(sc, atid); 5235 ATH_TX_UNLOCK(sc); 5236 return r; 5237 } 5238 5239 5240 /* 5241 * Stop ADDBA on a queue. 5242 * 5243 * This can be called whilst BAR TX is currently active on the queue, 5244 * so make sure this is unblocked before continuing. 5245 */ 5246 void 5247 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 5248 { 5249 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5250 int tid = tap->txa_tid; 5251 struct ath_node *an = ATH_NODE(ni); 5252 struct ath_tid *atid = &an->an_tid[tid]; 5253 5254 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__); 5255 5256 /* 5257 * Pause TID traffic early, so there aren't any races 5258 * Unblock the pending BAR held traffic, if it's currently paused. 5259 */ 5260 ATH_TX_LOCK(sc); 5261 ath_tx_tid_pause(sc, atid); 5262 if (atid->bar_wait) { 5263 /* 5264 * bar_unsuspend() expects bar_tx == 1, as it should be 5265 * called from the TX completion path. This quietens 5266 * the warning. It's cleared for us anyway. 5267 */ 5268 atid->bar_tx = 1; 5269 ath_tx_tid_bar_unsuspend(sc, atid); 5270 } 5271 ATH_TX_UNLOCK(sc); 5272 5273 /* There's no need to hold the TXQ lock here */ 5274 sc->sc_addba_stop(ni, tap); 5275 5276 /* 5277 * ath_tx_tid_cleanup will resume the TID if possible, otherwise 5278 * it'll set the cleanup flag, and it'll be unpaused once 5279 * things have been cleaned up. 5280 */ 5281 ath_tx_tid_cleanup(sc, an, tid); 5282 } 5283 5284 /* 5285 * Note: net80211 bar_timeout() doesn't call this function on BAR failure; 5286 * it simply tears down the aggregation session. Ew. 5287 * 5288 * It however will call ieee80211_ampdu_stop() which will call 5289 * ic->ic_addba_stop(). 5290 * 5291 * XXX This uses a hard-coded max BAR count value; the whole 5292 * XXX BAR TX success or failure should be better handled! 5293 */ 5294 void 5295 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5296 int status) 5297 { 5298 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5299 int tid = tap->txa_tid; 5300 struct ath_node *an = ATH_NODE(ni); 5301 struct ath_tid *atid = &an->an_tid[tid]; 5302 int attempts = tap->txa_attempts; 5303 5304 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 5305 "%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n", 5306 __func__, 5307 tap, 5308 atid, 5309 tap->txa_tid, 5310 atid->tid, 5311 status, 5312 attempts); 5313 5314 /* Note: This may update the BAW details */ 5315 sc->sc_bar_response(ni, tap, status); 5316 5317 /* Unpause the TID */ 5318 /* 5319 * XXX if this is attempt=50, the TID will be downgraded 5320 * XXX to a non-aggregate session. So we must unpause the 5321 * XXX TID here or it'll never be done. 5322 * 5323 * Also, don't call it if bar_tx/bar_wait are 0; something 5324 * has beaten us to the punch? (XXX figure out what?) 5325 */ 5326 if (status == 0 || attempts == 50) { 5327 ATH_TX_LOCK(sc); 5328 if (atid->bar_tx == 0 || atid->bar_wait == 0) 5329 device_printf(sc->sc_dev, 5330 "%s: huh? bar_tx=%d, bar_wait=%d\n", 5331 __func__, 5332 atid->bar_tx, atid->bar_wait); 5333 else 5334 ath_tx_tid_bar_unsuspend(sc, atid); 5335 ATH_TX_UNLOCK(sc); 5336 } 5337 } 5338 5339 /* 5340 * This is called whenever the pending ADDBA request times out. 5341 * Unpause and reschedule the TID. 5342 */ 5343 void 5344 ath_addba_response_timeout(struct ieee80211_node *ni, 5345 struct ieee80211_tx_ampdu *tap) 5346 { 5347 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5348 int tid = tap->txa_tid; 5349 struct ath_node *an = ATH_NODE(ni); 5350 struct ath_tid *atid = &an->an_tid[tid]; 5351 5352 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5353 "%s: called; resuming\n", __func__); 5354 5355 ATH_TX_LOCK(sc); 5356 atid->addba_tx_pending = 0; 5357 ATH_TX_UNLOCK(sc); 5358 5359 /* Note: This updates the aggregate state to (again) pending */ 5360 sc->sc_addba_response_timeout(ni, tap); 5361 5362 /* Unpause the TID; which reschedules it */ 5363 ATH_TX_LOCK(sc); 5364 ath_tx_tid_resume(sc, atid); 5365 ATH_TX_UNLOCK(sc); 5366 } 5367 5368 /* 5369 * Check if a node is asleep or not. 5370 */ 5371 int 5372 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an) 5373 { 5374 5375 ATH_NODE_LOCK_ASSERT(an); 5376 5377 return (an->an_is_powersave); 5378 } 5379 5380 /* 5381 * Mark a node as currently "in powersaving." 5382 * This suspends all traffic on the node. 5383 * 5384 * This must be called with the node/tx locks free. 5385 * 5386 * XXX TODO: the locking silliness below is due to how the node 5387 * locking currently works. Right now, the node lock is grabbed 5388 * to do rate control lookups and these are done with the TX 5389 * queue lock held. This means the node lock can't be grabbed 5390 * first here or a LOR will occur. 5391 * 5392 * Eventually (hopefully!) the TX path code will only grab 5393 * the TXQ lock when transmitting and the ath_node lock when 5394 * doing node/TID operations. There are other complications - 5395 * the sched/unsched operations involve walking the per-txq 5396 * 'active tid' list and this requires both locks to be held. 5397 */ 5398 void 5399 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an) 5400 { 5401 struct ath_tid *atid; 5402 struct ath_txq *txq; 5403 int tid; 5404 5405 ATH_NODE_UNLOCK_ASSERT(an); 5406 5407 /* 5408 * It's possible that a parallel call to ath_tx_node_wakeup() 5409 * will unpause these queues. 5410 * 5411 * The node lock can't just be grabbed here, as there's places 5412 * in the driver where the node lock is grabbed _within_ a 5413 * TXQ lock. 5414 * So, we do this delicately and unwind state if needed. 5415 * 5416 * + Pause all the queues 5417 * + Grab the node lock 5418 * + If the queue is already asleep, unpause and quit 5419 * + else just mark as asleep. 5420 * 5421 * A parallel sleep() call will just pause and then 5422 * find they're already paused, so undo it. 5423 * 5424 * A parallel wakeup() call will check if asleep is 1 5425 * and if it's not (ie, it's 0), it'll treat it as already 5426 * being awake. If it's 1, it'll mark it as 0 and then 5427 * unpause everything. 5428 * 5429 * (Talk about a delicate hack.) 5430 */ 5431 5432 /* Suspend all traffic on the node */ 5433 ATH_TX_LOCK(sc); 5434 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5435 atid = &an->an_tid[tid]; 5436 txq = sc->sc_ac2q[atid->ac]; 5437 5438 ath_tx_tid_pause(sc, atid); 5439 } 5440 ATH_TX_UNLOCK(sc); 5441 5442 ATH_NODE_LOCK(an); 5443 5444 /* In case of concurrency races from net80211.. */ 5445 if (an->an_is_powersave == 1) { 5446 ATH_NODE_UNLOCK(an); 5447 device_printf(sc->sc_dev, 5448 "%s: an=%p: node was already asleep\n", 5449 __func__, an); 5450 ATH_TX_LOCK(sc); 5451 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5452 atid = &an->an_tid[tid]; 5453 txq = sc->sc_ac2q[atid->ac]; 5454 5455 ath_tx_tid_resume(sc, atid); 5456 } 5457 ATH_TX_UNLOCK(sc); 5458 return; 5459 } 5460 5461 /* Mark node as in powersaving */ 5462 an->an_is_powersave = 1; 5463 5464 ATH_NODE_UNLOCK(an); 5465 } 5466 5467 /* 5468 * Mark a node as currently "awake." 5469 * This resumes all traffic to the node. 5470 */ 5471 void 5472 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an) 5473 { 5474 struct ath_tid *atid; 5475 struct ath_txq *txq; 5476 int tid; 5477 5478 ATH_NODE_UNLOCK_ASSERT(an); 5479 ATH_NODE_LOCK(an); 5480 5481 /* In case of concurrency races from net80211.. */ 5482 if (an->an_is_powersave == 0) { 5483 ATH_NODE_UNLOCK(an); 5484 device_printf(sc->sc_dev, 5485 "%s: an=%p: node was already awake\n", 5486 __func__, an); 5487 return; 5488 } 5489 5490 /* Mark node as awake */ 5491 an->an_is_powersave = 0; 5492 5493 ATH_NODE_UNLOCK(an); 5494 5495 ATH_TX_LOCK(sc); 5496 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5497 atid = &an->an_tid[tid]; 5498 txq = sc->sc_ac2q[atid->ac]; 5499 5500 ath_tx_tid_resume(sc, atid); 5501 } 5502 ATH_TX_UNLOCK(sc); 5503 } 5504 5505 static int 5506 ath_legacy_dma_txsetup(struct ath_softc *sc) 5507 { 5508 5509 /* nothing new needed */ 5510 return (0); 5511 } 5512 5513 static int 5514 ath_legacy_dma_txteardown(struct ath_softc *sc) 5515 { 5516 5517 /* nothing new needed */ 5518 return (0); 5519 } 5520 5521 void 5522 ath_xmit_setup_legacy(struct ath_softc *sc) 5523 { 5524 /* 5525 * For now, just set the descriptor length to sizeof(ath_desc); 5526 * worry about extracting the real length out of the HAL later. 5527 */ 5528 sc->sc_tx_desclen = sizeof(struct ath_desc); 5529 sc->sc_tx_statuslen = sizeof(struct ath_desc); 5530 sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */ 5531 5532 sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup; 5533 sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown; 5534 sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func; 5535 5536 sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart; 5537 sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff; 5538 5539 sc->sc_tx.xmit_drain = ath_legacy_tx_drain; 5540 } 5541