1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * Driver for the Atheros Wireless LAN controller. 36 * 37 * This software is derived from work of Atsushi Onoe; his contribution 38 * is greatly appreciated. 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_ath.h" 43 #include "opt_wlan.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/mbuf.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/kernel.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/errno.h> 56 #include <sys/callout.h> 57 #include <sys/bus.h> 58 #include <sys/endian.h> 59 #include <sys/kthread.h> 60 #include <sys/taskqueue.h> 61 #include <sys/priv.h> 62 63 #include <machine/bus.h> 64 65 #include <net/if.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 #include <net80211/ieee80211_regdomain.h> 75 #ifdef IEEE80211_SUPPORT_SUPERG 76 #include <net80211/ieee80211_superg.h> 77 #endif 78 #ifdef IEEE80211_SUPPORT_TDMA 79 #include <net80211/ieee80211_tdma.h> 80 #endif 81 #include <net80211/ieee80211_ht.h> 82 83 #include <net/bpf.h> 84 85 #ifdef INET 86 #include <netinet/in.h> 87 #include <netinet/if_ether.h> 88 #endif 89 90 #include <dev/ath/if_athvar.h> 91 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 92 #include <dev/ath/ath_hal/ah_diagcodes.h> 93 94 #include <dev/ath/if_ath_debug.h> 95 96 #ifdef ATH_TX99_DIAG 97 #include <dev/ath/ath_tx99/ath_tx99.h> 98 #endif 99 100 #include <dev/ath/if_ath_misc.h> 101 #include <dev/ath/if_ath_tx.h> 102 #include <dev/ath/if_ath_tx_ht.h> 103 104 #ifdef ATH_DEBUG_ALQ 105 #include <dev/ath/if_ath_alq.h> 106 #endif 107 108 /* 109 * How many retries to perform in software 110 */ 111 #define SWMAX_RETRIES 10 112 113 /* 114 * What queue to throw the non-QoS TID traffic into 115 */ 116 #define ATH_NONQOS_TID_AC WME_AC_VO 117 118 #if 0 119 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an); 120 #endif 121 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, 122 int tid); 123 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, 124 int tid); 125 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, 126 struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0); 127 static int ath_tx_action_frame_override_queue(struct ath_softc *sc, 128 struct ieee80211_node *ni, struct mbuf *m0, int *tid); 129 static struct ath_buf * 130 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 131 struct ath_tid *tid, struct ath_buf *bf); 132 133 #ifdef ATH_DEBUG_ALQ 134 void 135 ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first) 136 { 137 struct ath_buf *bf; 138 int i, n; 139 const char *ds; 140 141 /* XXX we should skip out early if debugging isn't enabled! */ 142 bf = bf_first; 143 144 while (bf != NULL) { 145 /* XXX should ensure bf_nseg > 0! */ 146 if (bf->bf_nseg == 0) 147 break; 148 n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1; 149 for (i = 0, ds = (const char *) bf->bf_desc; 150 i < n; 151 i++, ds += sc->sc_tx_desclen) { 152 if_ath_alq_post(&sc->sc_alq, 153 ATH_ALQ_EDMA_TXDESC, 154 sc->sc_tx_desclen, 155 ds); 156 } 157 bf = bf->bf_next; 158 } 159 } 160 #endif /* ATH_DEBUG_ALQ */ 161 162 /* 163 * Whether to use the 11n rate scenario functions or not 164 */ 165 static inline int 166 ath_tx_is_11n(struct ath_softc *sc) 167 { 168 return ((sc->sc_ah->ah_magic == 0x20065416) || 169 (sc->sc_ah->ah_magic == 0x19741014)); 170 } 171 172 /* 173 * Obtain the current TID from the given frame. 174 * 175 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.) 176 * This has implications for which AC/priority the packet is placed 177 * in. 178 */ 179 static int 180 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0) 181 { 182 const struct ieee80211_frame *wh; 183 int pri = M_WME_GETAC(m0); 184 185 wh = mtod(m0, const struct ieee80211_frame *); 186 if (! IEEE80211_QOS_HAS_SEQ(wh)) 187 return IEEE80211_NONQOS_TID; 188 else 189 return WME_AC_TO_TID(pri); 190 } 191 192 static void 193 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) 194 { 195 struct ieee80211_frame *wh; 196 197 wh = mtod(bf->bf_m, struct ieee80211_frame *); 198 /* Only update/resync if needed */ 199 if (bf->bf_state.bfs_isretried == 0) { 200 wh->i_fc[1] |= IEEE80211_FC1_RETRY; 201 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 202 BUS_DMASYNC_PREWRITE); 203 } 204 bf->bf_state.bfs_isretried = 1; 205 bf->bf_state.bfs_retries ++; 206 } 207 208 /* 209 * Determine what the correct AC queue for the given frame 210 * should be. 211 * 212 * This code assumes that the TIDs map consistently to 213 * the underlying hardware (or software) ath_txq. 214 * Since the sender may try to set an AC which is 215 * arbitrary, non-QoS TIDs may end up being put on 216 * completely different ACs. There's no way to put a 217 * TID into multiple ath_txq's for scheduling, so 218 * for now we override the AC/TXQ selection and set 219 * non-QOS TID frames into the BE queue. 220 * 221 * This may be completely incorrect - specifically, 222 * some management frames may end up out of order 223 * compared to the QoS traffic they're controlling. 224 * I'll look into this later. 225 */ 226 static int 227 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0) 228 { 229 const struct ieee80211_frame *wh; 230 int pri = M_WME_GETAC(m0); 231 wh = mtod(m0, const struct ieee80211_frame *); 232 if (IEEE80211_QOS_HAS_SEQ(wh)) 233 return pri; 234 235 return ATH_NONQOS_TID_AC; 236 } 237 238 void 239 ath_txfrag_cleanup(struct ath_softc *sc, 240 ath_bufhead *frags, struct ieee80211_node *ni) 241 { 242 struct ath_buf *bf, *next; 243 244 ATH_TXBUF_LOCK_ASSERT(sc); 245 246 TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { 247 /* NB: bf assumed clean */ 248 TAILQ_REMOVE(frags, bf, bf_list); 249 ath_returnbuf_head(sc, bf); 250 ieee80211_node_decref(ni); 251 } 252 } 253 254 /* 255 * Setup xmit of a fragmented frame. Allocate a buffer 256 * for each frag and bump the node reference count to 257 * reflect the held reference to be setup by ath_tx_start. 258 */ 259 int 260 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 261 struct mbuf *m0, struct ieee80211_node *ni) 262 { 263 struct mbuf *m; 264 struct ath_buf *bf; 265 266 ATH_TXBUF_LOCK(sc); 267 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 268 /* XXX non-management? */ 269 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 270 if (bf == NULL) { /* out of buffers, cleanup */ 271 device_printf(sc->sc_dev, "%s: no buffer?\n", 272 __func__); 273 ath_txfrag_cleanup(sc, frags, ni); 274 break; 275 } 276 ieee80211_node_incref(ni); 277 TAILQ_INSERT_TAIL(frags, bf, bf_list); 278 } 279 ATH_TXBUF_UNLOCK(sc); 280 281 return !TAILQ_EMPTY(frags); 282 } 283 284 /* 285 * Reclaim mbuf resources. For fragmented frames we 286 * need to claim each frag chained with m_nextpkt. 287 */ 288 void 289 ath_freetx(struct mbuf *m) 290 { 291 struct mbuf *next; 292 293 do { 294 next = m->m_nextpkt; 295 m->m_nextpkt = NULL; 296 m_freem(m); 297 } while ((m = next) != NULL); 298 } 299 300 static int 301 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) 302 { 303 struct mbuf *m; 304 int error; 305 306 /* 307 * Load the DMA map so any coalescing is done. This 308 * also calculates the number of descriptors we need. 309 */ 310 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 311 bf->bf_segs, &bf->bf_nseg, 312 BUS_DMA_NOWAIT); 313 if (error == EFBIG) { 314 /* XXX packet requires too many descriptors */ 315 bf->bf_nseg = ATH_MAX_SCATTER + 1; 316 } else if (error != 0) { 317 sc->sc_stats.ast_tx_busdma++; 318 ath_freetx(m0); 319 return error; 320 } 321 /* 322 * Discard null packets and check for packets that 323 * require too many TX descriptors. We try to convert 324 * the latter to a cluster. 325 */ 326 if (bf->bf_nseg > ATH_MAX_SCATTER) { /* too many desc's, linearize */ 327 sc->sc_stats.ast_tx_linear++; 328 m = m_collapse(m0, M_NOWAIT, ATH_MAX_SCATTER); 329 if (m == NULL) { 330 ath_freetx(m0); 331 sc->sc_stats.ast_tx_nombuf++; 332 return ENOMEM; 333 } 334 m0 = m; 335 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 336 bf->bf_segs, &bf->bf_nseg, 337 BUS_DMA_NOWAIT); 338 if (error != 0) { 339 sc->sc_stats.ast_tx_busdma++; 340 ath_freetx(m0); 341 return error; 342 } 343 KASSERT(bf->bf_nseg <= ATH_MAX_SCATTER, 344 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 345 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 346 sc->sc_stats.ast_tx_nodata++; 347 ath_freetx(m0); 348 return EIO; 349 } 350 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", 351 __func__, m0, m0->m_pkthdr.len); 352 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 353 bf->bf_m = m0; 354 355 return 0; 356 } 357 358 /* 359 * Chain together segments+descriptors for a frame - 11n or otherwise. 360 * 361 * For aggregates, this is called on each frame in the aggregate. 362 */ 363 static void 364 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0, 365 struct ath_buf *bf, int is_aggr, int is_first_subframe, 366 int is_last_subframe) 367 { 368 struct ath_hal *ah = sc->sc_ah; 369 char *ds; 370 int i, bp, dsp; 371 HAL_DMA_ADDR bufAddrList[4]; 372 uint32_t segLenList[4]; 373 int numTxMaps = 1; 374 int isFirstDesc = 1; 375 376 /* 377 * XXX There's txdma and txdma_mgmt; the descriptor 378 * sizes must match. 379 */ 380 struct ath_descdma *dd = &sc->sc_txdma; 381 382 /* 383 * Fillin the remainder of the descriptor info. 384 */ 385 386 /* 387 * We need the number of TX data pointers in each descriptor. 388 * EDMA and later chips support 4 TX buffers per descriptor; 389 * previous chips just support one. 390 */ 391 numTxMaps = sc->sc_tx_nmaps; 392 393 /* 394 * For EDMA and later chips ensure the TX map is fully populated 395 * before advancing to the next descriptor. 396 */ 397 ds = (char *) bf->bf_desc; 398 bp = dsp = 0; 399 bzero(bufAddrList, sizeof(bufAddrList)); 400 bzero(segLenList, sizeof(segLenList)); 401 for (i = 0; i < bf->bf_nseg; i++) { 402 bufAddrList[bp] = bf->bf_segs[i].ds_addr; 403 segLenList[bp] = bf->bf_segs[i].ds_len; 404 bp++; 405 406 /* 407 * Go to the next segment if this isn't the last segment 408 * and there's space in the current TX map. 409 */ 410 if ((i != bf->bf_nseg - 1) && (bp < numTxMaps)) 411 continue; 412 413 /* 414 * Last segment or we're out of buffer pointers. 415 */ 416 bp = 0; 417 418 if (i == bf->bf_nseg - 1) 419 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0); 420 else 421 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 422 bf->bf_daddr + dd->dd_descsize * (dsp + 1)); 423 424 /* 425 * XXX This assumes that bfs_txq is the actual destination 426 * hardware queue at this point. It may not have been 427 * assigned, it may actually be pointing to the multicast 428 * software TXQ id. These must be fixed! 429 */ 430 ath_hal_filltxdesc(ah, (struct ath_desc *) ds 431 , bufAddrList 432 , segLenList 433 , bf->bf_descid /* XXX desc id */ 434 , bf->bf_state.bfs_tx_queue 435 , isFirstDesc /* first segment */ 436 , i == bf->bf_nseg - 1 /* last segment */ 437 , (struct ath_desc *) ds0 /* first descriptor */ 438 ); 439 440 /* 441 * Make sure the 11n aggregate fields are cleared. 442 * 443 * XXX TODO: this doesn't need to be called for 444 * aggregate frames; as it'll be called on all 445 * sub-frames. Since the descriptors are in 446 * non-cacheable memory, this leads to some 447 * rather slow writes on MIPS/ARM platforms. 448 */ 449 if (ath_tx_is_11n(sc)) 450 ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds); 451 452 /* 453 * If 11n is enabled, set it up as if it's an aggregate 454 * frame. 455 */ 456 if (is_last_subframe) { 457 ath_hal_set11n_aggr_last(sc->sc_ah, 458 (struct ath_desc *) ds); 459 } else if (is_aggr) { 460 /* 461 * This clears the aggrlen field; so 462 * the caller needs to call set_aggr_first()! 463 * 464 * XXX TODO: don't call this for the first 465 * descriptor in the first frame in an 466 * aggregate! 467 */ 468 ath_hal_set11n_aggr_middle(sc->sc_ah, 469 (struct ath_desc *) ds, 470 bf->bf_state.bfs_ndelim); 471 } 472 isFirstDesc = 0; 473 bf->bf_lastds = (struct ath_desc *) ds; 474 475 /* 476 * Don't forget to skip to the next descriptor. 477 */ 478 ds += sc->sc_tx_desclen; 479 dsp++; 480 481 /* 482 * .. and don't forget to blank these out! 483 */ 484 bzero(bufAddrList, sizeof(bufAddrList)); 485 bzero(segLenList, sizeof(segLenList)); 486 } 487 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 488 } 489 490 /* 491 * Set the rate control fields in the given descriptor based on 492 * the bf_state fields and node state. 493 * 494 * The bfs fields should already be set with the relevant rate 495 * control information, including whether MRR is to be enabled. 496 * 497 * Since the FreeBSD HAL currently sets up the first TX rate 498 * in ath_hal_setuptxdesc(), this will setup the MRR 499 * conditionally for the pre-11n chips, and call ath_buf_set_rate 500 * unconditionally for 11n chips. These require the 11n rate 501 * scenario to be set if MCS rates are enabled, so it's easier 502 * to just always call it. The caller can then only set rates 2, 3 503 * and 4 if multi-rate retry is needed. 504 */ 505 static void 506 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 507 struct ath_buf *bf) 508 { 509 struct ath_rc_series *rc = bf->bf_state.bfs_rc; 510 511 /* If mrr is disabled, blank tries 1, 2, 3 */ 512 if (! bf->bf_state.bfs_ismrr) 513 rc[1].tries = rc[2].tries = rc[3].tries = 0; 514 515 #if 0 516 /* 517 * If NOACK is set, just set ntries=1. 518 */ 519 else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) { 520 rc[1].tries = rc[2].tries = rc[3].tries = 0; 521 rc[0].tries = 1; 522 } 523 #endif 524 525 /* 526 * Always call - that way a retried descriptor will 527 * have the MRR fields overwritten. 528 * 529 * XXX TODO: see if this is really needed - setting up 530 * the first descriptor should set the MRR fields to 0 531 * for us anyway. 532 */ 533 if (ath_tx_is_11n(sc)) { 534 ath_buf_set_rate(sc, ni, bf); 535 } else { 536 ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc 537 , rc[1].ratecode, rc[1].tries 538 , rc[2].ratecode, rc[2].tries 539 , rc[3].ratecode, rc[3].tries 540 ); 541 } 542 } 543 544 /* 545 * Setup segments+descriptors for an 11n aggregate. 546 * bf_first is the first buffer in the aggregate. 547 * The descriptor list must already been linked together using 548 * bf->bf_next. 549 */ 550 static void 551 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first) 552 { 553 struct ath_buf *bf, *bf_prev = NULL; 554 struct ath_desc *ds0 = bf_first->bf_desc; 555 556 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n", 557 __func__, bf_first->bf_state.bfs_nframes, 558 bf_first->bf_state.bfs_al); 559 560 bf = bf_first; 561 562 if (bf->bf_state.bfs_txrate0 == 0) 563 device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n", 564 __func__, bf, 0); 565 if (bf->bf_state.bfs_rc[0].ratecode == 0) 566 device_printf(sc->sc_dev, "%s: bf=%p, rix0=%d\n", 567 __func__, bf, 0); 568 569 /* 570 * Setup all descriptors of all subframes - this will 571 * call ath_hal_set11naggrmiddle() on every frame. 572 */ 573 while (bf != NULL) { 574 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 575 "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n", 576 __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen, 577 SEQNO(bf->bf_state.bfs_seqno)); 578 579 /* 580 * Setup the initial fields for the first descriptor - all 581 * the non-11n specific stuff. 582 */ 583 ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc 584 , bf->bf_state.bfs_pktlen /* packet length */ 585 , bf->bf_state.bfs_hdrlen /* header length */ 586 , bf->bf_state.bfs_atype /* Atheros packet type */ 587 , bf->bf_state.bfs_txpower /* txpower */ 588 , bf->bf_state.bfs_txrate0 589 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 590 , bf->bf_state.bfs_keyix /* key cache index */ 591 , bf->bf_state.bfs_txantenna /* antenna mode */ 592 , bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ /* flags */ 593 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 594 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 595 ); 596 597 /* 598 * First descriptor? Setup the rate control and initial 599 * aggregate header information. 600 */ 601 if (bf == bf_first) { 602 /* 603 * setup first desc with rate and aggr info 604 */ 605 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 606 } 607 608 /* 609 * Setup the descriptors for a multi-descriptor frame. 610 * This is both aggregate and non-aggregate aware. 611 */ 612 ath_tx_chaindesclist(sc, ds0, bf, 613 1, /* is_aggr */ 614 !! (bf == bf_first), /* is_first_subframe */ 615 !! (bf->bf_next == NULL) /* is_last_subframe */ 616 ); 617 618 if (bf == bf_first) { 619 /* 620 * Initialise the first 11n aggregate with the 621 * aggregate length and aggregate enable bits. 622 */ 623 ath_hal_set11n_aggr_first(sc->sc_ah, 624 ds0, 625 bf->bf_state.bfs_al, 626 bf->bf_state.bfs_ndelim); 627 } 628 629 /* 630 * Link the last descriptor of the previous frame 631 * to the beginning descriptor of this frame. 632 */ 633 if (bf_prev != NULL) 634 ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds, 635 bf->bf_daddr); 636 637 /* Save a copy so we can link the next descriptor in */ 638 bf_prev = bf; 639 bf = bf->bf_next; 640 } 641 642 /* 643 * Set the first descriptor bf_lastds field to point to 644 * the last descriptor in the last subframe, that's where 645 * the status update will occur. 646 */ 647 bf_first->bf_lastds = bf_prev->bf_lastds; 648 649 /* 650 * And bf_last in the first descriptor points to the end of 651 * the aggregate list. 652 */ 653 bf_first->bf_last = bf_prev; 654 655 /* 656 * For non-AR9300 NICs, which require the rate control 657 * in the final descriptor - let's set that up now. 658 * 659 * This is because the filltxdesc() HAL call doesn't 660 * populate the last segment with rate control information 661 * if firstSeg is also true. For non-aggregate frames 662 * that is fine, as the first frame already has rate control 663 * info. But if the last frame in an aggregate has one 664 * descriptor, both firstseg and lastseg will be true and 665 * the rate info isn't copied. 666 * 667 * This is inefficient on MIPS/ARM platforms that have 668 * non-cachable memory for TX descriptors, but we'll just 669 * make do for now. 670 * 671 * As to why the rate table is stashed in the last descriptor 672 * rather than the first descriptor? Because proctxdesc() 673 * is called on the final descriptor in an MPDU or A-MPDU - 674 * ie, the one that gets updated by the hardware upon 675 * completion. That way proctxdesc() doesn't need to know 676 * about the first _and_ last TX descriptor. 677 */ 678 ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0); 679 680 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__); 681 } 682 683 /* 684 * Hand-off a frame to the multicast TX queue. 685 * 686 * This is a software TXQ which will be appended to the CAB queue 687 * during the beacon setup code. 688 * 689 * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID 690 * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated 691 * with the actual hardware txq, or all of this will fall apart. 692 * 693 * XXX It may not be a bad idea to just stuff the QCU ID into bf_state 694 * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated 695 * correctly. 696 */ 697 static void 698 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, 699 struct ath_buf *bf) 700 { 701 ATH_TX_LOCK_ASSERT(sc); 702 703 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 704 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 705 706 ATH_TXQ_LOCK(txq); 707 if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) { 708 struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s); 709 struct ieee80211_frame *wh; 710 711 /* mark previous frame */ 712 wh = mtod(bf_last->bf_m, struct ieee80211_frame *); 713 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 714 bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap, 715 BUS_DMASYNC_PREWRITE); 716 717 /* link descriptor */ 718 ath_hal_settxdesclink(sc->sc_ah, 719 bf_last->bf_lastds, 720 bf->bf_daddr); 721 } 722 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 723 ATH_TXQ_UNLOCK(txq); 724 } 725 726 /* 727 * Hand-off packet to a hardware queue. 728 */ 729 static void 730 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, 731 struct ath_buf *bf) 732 { 733 struct ath_hal *ah = sc->sc_ah; 734 735 /* 736 * Insert the frame on the outbound list and pass it on 737 * to the hardware. Multicast frames buffered for power 738 * save stations and transmit from the CAB queue are stored 739 * on a s/w only queue and loaded on to the CAB queue in 740 * the SWBA handler since frames only go out on DTIM and 741 * to avoid possible races. 742 */ 743 ATH_TX_LOCK_ASSERT(sc); 744 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 745 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 746 KASSERT(txq->axq_qnum != ATH_TXQ_SWQ, 747 ("ath_tx_handoff_hw called for mcast queue")); 748 749 #if 0 750 /* 751 * This causes a LOR. Find out where the PCU lock is being 752 * held whilst the TXQ lock is grabbed - that shouldn't 753 * be occuring. 754 */ 755 ATH_PCU_LOCK(sc); 756 if (sc->sc_inreset_cnt) { 757 ATH_PCU_UNLOCK(sc); 758 DPRINTF(sc, ATH_DEBUG_RESET, 759 "%s: called with sc_in_reset != 0\n", 760 __func__); 761 DPRINTF(sc, ATH_DEBUG_XMIT, 762 "%s: queued: TXDP[%u] = %p (%p) depth %d\n", 763 __func__, txq->axq_qnum, 764 (caddr_t)bf->bf_daddr, bf->bf_desc, 765 txq->axq_depth); 766 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 767 if (bf->bf_state.bfs_aggr) 768 txq->axq_aggr_depth++; 769 /* 770 * There's no need to update axq_link; the hardware 771 * is in reset and once the reset is complete, any 772 * non-empty queues will simply have DMA restarted. 773 */ 774 return; 775 } 776 ATH_PCU_UNLOCK(sc); 777 #endif 778 779 /* For now, so not to generate whitespace diffs */ 780 if (1) { 781 ATH_TXQ_LOCK(txq); 782 #ifdef IEEE80211_SUPPORT_TDMA 783 int qbusy; 784 785 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 786 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum); 787 788 ATH_KTR(sc, ATH_KTR_TX, 4, 789 "ath_tx_handoff: txq=%u, add bf=%p, qbusy=%d, depth=%d", 790 txq->axq_qnum, bf, qbusy, txq->axq_depth); 791 if (txq->axq_link == NULL) { 792 /* 793 * Be careful writing the address to TXDP. If 794 * the tx q is enabled then this write will be 795 * ignored. Normally this is not an issue but 796 * when tdma is in use and the q is beacon gated 797 * this race can occur. If the q is busy then 798 * defer the work to later--either when another 799 * packet comes along or when we prepare a beacon 800 * frame at SWBA. 801 */ 802 if (!qbusy) { 803 ath_hal_puttxbuf(ah, txq->axq_qnum, 804 bf->bf_daddr); 805 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 806 DPRINTF(sc, ATH_DEBUG_XMIT, 807 "%s: TXDP[%u] = %p (%p) lastds=%p depth %d\n", 808 __func__, txq->axq_qnum, 809 (caddr_t)bf->bf_daddr, bf->bf_desc, 810 bf->bf_lastds, 811 txq->axq_depth); 812 ATH_KTR(sc, ATH_KTR_TX, 5, 813 "ath_tx_handoff: TXDP[%u] = %p (%p) " 814 "lastds=%p depth %d", 815 txq->axq_qnum, 816 (caddr_t)bf->bf_daddr, bf->bf_desc, 817 bf->bf_lastds, 818 txq->axq_depth); 819 } else { 820 txq->axq_flags |= ATH_TXQ_PUTPENDING; 821 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 822 "%s: Q%u busy, defer enable\n", __func__, 823 txq->axq_qnum); 824 ATH_KTR(sc, ATH_KTR_TX, 0, "defer enable"); 825 } 826 } else { 827 *txq->axq_link = bf->bf_daddr; 828 DPRINTF(sc, ATH_DEBUG_XMIT, 829 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 830 txq->axq_qnum, txq->axq_link, 831 (caddr_t)bf->bf_daddr, bf->bf_desc, 832 txq->axq_depth); 833 ATH_KTR(sc, ATH_KTR_TX, 5, 834 "ath_tx_handoff: link[%u](%p)=%p (%p) lastds=%p", 835 txq->axq_qnum, txq->axq_link, 836 (caddr_t)bf->bf_daddr, bf->bf_desc, 837 bf->bf_lastds); 838 839 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) { 840 /* 841 * The q was busy when we previously tried 842 * to write the address of the first buffer 843 * in the chain. Since it's not busy now 844 * handle this chore. We are certain the 845 * buffer at the front is the right one since 846 * axq_link is NULL only when the buffer list 847 * is/was empty. 848 */ 849 ath_hal_puttxbuf(ah, txq->axq_qnum, 850 TAILQ_FIRST(&txq->axq_q)->bf_daddr); 851 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 852 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 853 "%s: Q%u restarted\n", __func__, 854 txq->axq_qnum); 855 ATH_KTR(sc, ATH_KTR_TX, 4, 856 "ath_tx_handoff: txq[%d] restarted, bf=%p " 857 "daddr=%p ds=%p", 858 txq->axq_qnum, 859 bf, 860 (caddr_t)bf->bf_daddr, 861 bf->bf_desc); 862 } 863 } 864 #else 865 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 866 ATH_KTR(sc, ATH_KTR_TX, 3, 867 "ath_tx_handoff: non-tdma: txq=%u, add bf=%p " 868 "depth=%d", 869 txq->axq_qnum, 870 bf, 871 txq->axq_depth); 872 if (txq->axq_link == NULL) { 873 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 874 DPRINTF(sc, ATH_DEBUG_XMIT, 875 "%s: TXDP[%u] = %p (%p) depth %d\n", 876 __func__, txq->axq_qnum, 877 (caddr_t)bf->bf_daddr, bf->bf_desc, 878 txq->axq_depth); 879 ATH_KTR(sc, ATH_KTR_TX, 5, 880 "ath_tx_handoff: non-tdma: TXDP[%u] = %p (%p) " 881 "lastds=%p depth %d", 882 txq->axq_qnum, 883 (caddr_t)bf->bf_daddr, bf->bf_desc, 884 bf->bf_lastds, 885 txq->axq_depth); 886 887 } else { 888 *txq->axq_link = bf->bf_daddr; 889 DPRINTF(sc, ATH_DEBUG_XMIT, 890 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 891 txq->axq_qnum, txq->axq_link, 892 (caddr_t)bf->bf_daddr, bf->bf_desc, 893 txq->axq_depth); 894 ATH_KTR(sc, ATH_KTR_TX, 5, 895 "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) " 896 "lastds=%d", 897 txq->axq_qnum, txq->axq_link, 898 (caddr_t)bf->bf_daddr, bf->bf_desc, 899 bf->bf_lastds); 900 901 } 902 #endif /* IEEE80211_SUPPORT_TDMA */ 903 if (bf->bf_state.bfs_aggr) 904 txq->axq_aggr_depth++; 905 ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link); 906 ath_hal_txstart(ah, txq->axq_qnum); 907 ATH_TXQ_UNLOCK(txq); 908 ATH_KTR(sc, ATH_KTR_TX, 1, 909 "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum); 910 } 911 } 912 913 /* 914 * Restart TX DMA for the given TXQ. 915 * 916 * This must be called whether the queue is empty or not. 917 */ 918 static void 919 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq) 920 { 921 struct ath_hal *ah = sc->sc_ah; 922 struct ath_buf *bf, *bf_last; 923 924 ATH_TXQ_LOCK_ASSERT(txq); 925 /* This is always going to be cleared, empty or not */ 926 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 927 928 /* XXX make this ATH_TXQ_FIRST */ 929 bf = TAILQ_FIRST(&txq->axq_q); 930 bf_last = ATH_TXQ_LAST(txq, axq_q_s); 931 932 if (bf == NULL) 933 return; 934 935 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 936 ath_hal_gettxdesclinkptr(ah, bf_last->bf_lastds, &txq->axq_link); 937 ath_hal_txstart(ah, txq->axq_qnum); 938 } 939 940 /* 941 * Hand off a packet to the hardware (or mcast queue.) 942 * 943 * The relevant hardware txq should be locked. 944 */ 945 static void 946 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, 947 struct ath_buf *bf) 948 { 949 ATH_TX_LOCK_ASSERT(sc); 950 951 #ifdef ATH_DEBUG_ALQ 952 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC)) 953 ath_tx_alq_post(sc, bf); 954 #endif 955 956 if (txq->axq_qnum == ATH_TXQ_SWQ) 957 ath_tx_handoff_mcast(sc, txq, bf); 958 else 959 ath_tx_handoff_hw(sc, txq, bf); 960 } 961 962 static int 963 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni, 964 struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, 965 int *keyix) 966 { 967 DPRINTF(sc, ATH_DEBUG_XMIT, 968 "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n", 969 __func__, 970 *hdrlen, 971 *pktlen, 972 isfrag, 973 iswep, 974 m0); 975 976 if (iswep) { 977 const struct ieee80211_cipher *cip; 978 struct ieee80211_key *k; 979 980 /* 981 * Construct the 802.11 header+trailer for an encrypted 982 * frame. The only reason this can fail is because of an 983 * unknown or unsupported cipher/key type. 984 */ 985 k = ieee80211_crypto_encap(ni, m0); 986 if (k == NULL) { 987 /* 988 * This can happen when the key is yanked after the 989 * frame was queued. Just discard the frame; the 990 * 802.11 layer counts failures and provides 991 * debugging/diagnostics. 992 */ 993 return (0); 994 } 995 /* 996 * Adjust the packet + header lengths for the crypto 997 * additions and calculate the h/w key index. When 998 * a s/w mic is done the frame will have had any mic 999 * added to it prior to entry so m0->m_pkthdr.len will 1000 * account for it. Otherwise we need to add it to the 1001 * packet length. 1002 */ 1003 cip = k->wk_cipher; 1004 (*hdrlen) += cip->ic_header; 1005 (*pktlen) += cip->ic_header + cip->ic_trailer; 1006 /* NB: frags always have any TKIP MIC done in s/w */ 1007 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 1008 (*pktlen) += cip->ic_miclen; 1009 (*keyix) = k->wk_keyix; 1010 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 1011 /* 1012 * Use station key cache slot, if assigned. 1013 */ 1014 (*keyix) = ni->ni_ucastkey.wk_keyix; 1015 if ((*keyix) == IEEE80211_KEYIX_NONE) 1016 (*keyix) = HAL_TXKEYIX_INVALID; 1017 } else 1018 (*keyix) = HAL_TXKEYIX_INVALID; 1019 1020 return (1); 1021 } 1022 1023 /* 1024 * Calculate whether interoperability protection is required for 1025 * this frame. 1026 * 1027 * This requires the rate control information be filled in, 1028 * as the protection requirement depends upon the current 1029 * operating mode / PHY. 1030 */ 1031 static void 1032 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf) 1033 { 1034 struct ieee80211_frame *wh; 1035 uint8_t rix; 1036 uint16_t flags; 1037 int shortPreamble; 1038 const HAL_RATE_TABLE *rt = sc->sc_currates; 1039 struct ifnet *ifp = sc->sc_ifp; 1040 struct ieee80211com *ic = ifp->if_l2com; 1041 1042 flags = bf->bf_state.bfs_txflags; 1043 rix = bf->bf_state.bfs_rc[0].rix; 1044 shortPreamble = bf->bf_state.bfs_shpream; 1045 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1046 1047 /* 1048 * If 802.11g protection is enabled, determine whether 1049 * to use RTS/CTS or just CTS. Note that this is only 1050 * done for OFDM unicast frames. 1051 */ 1052 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1053 rt->info[rix].phy == IEEE80211_T_OFDM && 1054 (flags & HAL_TXDESC_NOACK) == 0) { 1055 bf->bf_state.bfs_doprot = 1; 1056 /* XXX fragments must use CCK rates w/ protection */ 1057 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { 1058 flags |= HAL_TXDESC_RTSENA; 1059 } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { 1060 flags |= HAL_TXDESC_CTSENA; 1061 } 1062 /* 1063 * For frags it would be desirable to use the 1064 * highest CCK rate for RTS/CTS. But stations 1065 * farther away may detect it at a lower CCK rate 1066 * so use the configured protection rate instead 1067 * (for now). 1068 */ 1069 sc->sc_stats.ast_tx_protect++; 1070 } 1071 1072 /* 1073 * If 11n protection is enabled and it's a HT frame, 1074 * enable RTS. 1075 * 1076 * XXX ic_htprotmode or ic_curhtprotmode? 1077 * XXX should it_htprotmode only matter if ic_curhtprotmode 1078 * XXX indicates it's not a HT pure environment? 1079 */ 1080 if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) && 1081 rt->info[rix].phy == IEEE80211_T_HT && 1082 (flags & HAL_TXDESC_NOACK) == 0) { 1083 flags |= HAL_TXDESC_RTSENA; 1084 sc->sc_stats.ast_tx_htprotect++; 1085 } 1086 bf->bf_state.bfs_txflags = flags; 1087 } 1088 1089 /* 1090 * Update the frame duration given the currently selected rate. 1091 * 1092 * This also updates the frame duration value, so it will require 1093 * a DMA flush. 1094 */ 1095 static void 1096 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf) 1097 { 1098 struct ieee80211_frame *wh; 1099 uint8_t rix; 1100 uint16_t flags; 1101 int shortPreamble; 1102 struct ath_hal *ah = sc->sc_ah; 1103 const HAL_RATE_TABLE *rt = sc->sc_currates; 1104 int isfrag = bf->bf_m->m_flags & M_FRAG; 1105 1106 flags = bf->bf_state.bfs_txflags; 1107 rix = bf->bf_state.bfs_rc[0].rix; 1108 shortPreamble = bf->bf_state.bfs_shpream; 1109 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1110 1111 /* 1112 * Calculate duration. This logically belongs in the 802.11 1113 * layer but it lacks sufficient information to calculate it. 1114 */ 1115 if ((flags & HAL_TXDESC_NOACK) == 0 && 1116 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 1117 u_int16_t dur; 1118 if (shortPreamble) 1119 dur = rt->info[rix].spAckDuration; 1120 else 1121 dur = rt->info[rix].lpAckDuration; 1122 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 1123 dur += dur; /* additional SIFS+ACK */ 1124 KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment")); 1125 /* 1126 * Include the size of next fragment so NAV is 1127 * updated properly. The last fragment uses only 1128 * the ACK duration 1129 * 1130 * XXX TODO: ensure that the rate lookup for each 1131 * fragment is the same as the rate used by the 1132 * first fragment! 1133 */ 1134 dur += ath_hal_computetxtime(ah, rt, 1135 bf->bf_m->m_nextpkt->m_pkthdr.len, 1136 rix, shortPreamble); 1137 } 1138 if (isfrag) { 1139 /* 1140 * Force hardware to use computed duration for next 1141 * fragment by disabling multi-rate retry which updates 1142 * duration based on the multi-rate duration table. 1143 */ 1144 bf->bf_state.bfs_ismrr = 0; 1145 bf->bf_state.bfs_try0 = ATH_TXMGTTRY; 1146 /* XXX update bfs_rc[0].try? */ 1147 } 1148 1149 /* Update the duration field itself */ 1150 *(u_int16_t *)wh->i_dur = htole16(dur); 1151 } 1152 } 1153 1154 static uint8_t 1155 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt, 1156 int cix, int shortPreamble) 1157 { 1158 uint8_t ctsrate; 1159 1160 /* 1161 * CTS transmit rate is derived from the transmit rate 1162 * by looking in the h/w rate table. We must also factor 1163 * in whether or not a short preamble is to be used. 1164 */ 1165 /* NB: cix is set above where RTS/CTS is enabled */ 1166 KASSERT(cix != 0xff, ("cix not setup")); 1167 ctsrate = rt->info[cix].rateCode; 1168 1169 /* XXX this should only matter for legacy rates */ 1170 if (shortPreamble) 1171 ctsrate |= rt->info[cix].shortPreamble; 1172 1173 return (ctsrate); 1174 } 1175 1176 /* 1177 * Calculate the RTS/CTS duration for legacy frames. 1178 */ 1179 static int 1180 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix, 1181 int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt, 1182 int flags) 1183 { 1184 int ctsduration = 0; 1185 1186 /* This mustn't be called for HT modes */ 1187 if (rt->info[cix].phy == IEEE80211_T_HT) { 1188 printf("%s: HT rate where it shouldn't be (0x%x)\n", 1189 __func__, rt->info[cix].rateCode); 1190 return (-1); 1191 } 1192 1193 /* 1194 * Compute the transmit duration based on the frame 1195 * size and the size of an ACK frame. We call into the 1196 * HAL to do the computation since it depends on the 1197 * characteristics of the actual PHY being used. 1198 * 1199 * NB: CTS is assumed the same size as an ACK so we can 1200 * use the precalculated ACK durations. 1201 */ 1202 if (shortPreamble) { 1203 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1204 ctsduration += rt->info[cix].spAckDuration; 1205 ctsduration += ath_hal_computetxtime(ah, 1206 rt, pktlen, rix, AH_TRUE); 1207 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1208 ctsduration += rt->info[rix].spAckDuration; 1209 } else { 1210 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1211 ctsduration += rt->info[cix].lpAckDuration; 1212 ctsduration += ath_hal_computetxtime(ah, 1213 rt, pktlen, rix, AH_FALSE); 1214 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1215 ctsduration += rt->info[rix].lpAckDuration; 1216 } 1217 1218 return (ctsduration); 1219 } 1220 1221 /* 1222 * Update the given ath_buf with updated rts/cts setup and duration 1223 * values. 1224 * 1225 * To support rate lookups for each software retry, the rts/cts rate 1226 * and cts duration must be re-calculated. 1227 * 1228 * This function assumes the RTS/CTS flags have been set as needed; 1229 * mrr has been disabled; and the rate control lookup has been done. 1230 * 1231 * XXX TODO: MRR need only be disabled for the pre-11n NICs. 1232 * XXX The 11n NICs support per-rate RTS/CTS configuration. 1233 */ 1234 static void 1235 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf) 1236 { 1237 uint16_t ctsduration = 0; 1238 uint8_t ctsrate = 0; 1239 uint8_t rix = bf->bf_state.bfs_rc[0].rix; 1240 uint8_t cix = 0; 1241 const HAL_RATE_TABLE *rt = sc->sc_currates; 1242 1243 /* 1244 * No RTS/CTS enabled? Don't bother. 1245 */ 1246 if ((bf->bf_state.bfs_txflags & 1247 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) { 1248 /* XXX is this really needed? */ 1249 bf->bf_state.bfs_ctsrate = 0; 1250 bf->bf_state.bfs_ctsduration = 0; 1251 return; 1252 } 1253 1254 /* 1255 * If protection is enabled, use the protection rix control 1256 * rate. Otherwise use the rate0 control rate. 1257 */ 1258 if (bf->bf_state.bfs_doprot) 1259 rix = sc->sc_protrix; 1260 else 1261 rix = bf->bf_state.bfs_rc[0].rix; 1262 1263 /* 1264 * If the raw path has hard-coded ctsrate0 to something, 1265 * use it. 1266 */ 1267 if (bf->bf_state.bfs_ctsrate0 != 0) 1268 cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0); 1269 else 1270 /* Control rate from above */ 1271 cix = rt->info[rix].controlRate; 1272 1273 /* Calculate the rtscts rate for the given cix */ 1274 ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix, 1275 bf->bf_state.bfs_shpream); 1276 1277 /* The 11n chipsets do ctsduration calculations for you */ 1278 if (! ath_tx_is_11n(sc)) 1279 ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix, 1280 bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, 1281 rt, bf->bf_state.bfs_txflags); 1282 1283 /* Squirrel away in ath_buf */ 1284 bf->bf_state.bfs_ctsrate = ctsrate; 1285 bf->bf_state.bfs_ctsduration = ctsduration; 1286 1287 /* 1288 * Must disable multi-rate retry when using RTS/CTS. 1289 */ 1290 if (!sc->sc_mrrprot) { 1291 bf->bf_state.bfs_ismrr = 0; 1292 bf->bf_state.bfs_try0 = 1293 bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */ 1294 } 1295 } 1296 1297 /* 1298 * Setup the descriptor chain for a normal or fast-frame 1299 * frame. 1300 * 1301 * XXX TODO: extend to include the destination hardware QCU ID. 1302 * Make sure that is correct. Make sure that when being added 1303 * to the mcastq, the CABQ QCUID is set or things will get a bit 1304 * odd. 1305 */ 1306 static void 1307 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf) 1308 { 1309 struct ath_desc *ds = bf->bf_desc; 1310 struct ath_hal *ah = sc->sc_ah; 1311 1312 if (bf->bf_state.bfs_txrate0 == 0) 1313 device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n", 1314 __func__, bf, 0); 1315 1316 ath_hal_setuptxdesc(ah, ds 1317 , bf->bf_state.bfs_pktlen /* packet length */ 1318 , bf->bf_state.bfs_hdrlen /* header length */ 1319 , bf->bf_state.bfs_atype /* Atheros packet type */ 1320 , bf->bf_state.bfs_txpower /* txpower */ 1321 , bf->bf_state.bfs_txrate0 1322 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 1323 , bf->bf_state.bfs_keyix /* key cache index */ 1324 , bf->bf_state.bfs_txantenna /* antenna mode */ 1325 , bf->bf_state.bfs_txflags /* flags */ 1326 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 1327 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 1328 ); 1329 1330 /* 1331 * This will be overriden when the descriptor chain is written. 1332 */ 1333 bf->bf_lastds = ds; 1334 bf->bf_last = bf; 1335 1336 /* Set rate control and descriptor chain for this frame */ 1337 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 1338 ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0); 1339 } 1340 1341 /* 1342 * Do a rate lookup. 1343 * 1344 * This performs a rate lookup for the given ath_buf only if it's required. 1345 * Non-data frames and raw frames don't require it. 1346 * 1347 * This populates the primary and MRR entries; MRR values are 1348 * then disabled later on if something requires it (eg RTS/CTS on 1349 * pre-11n chipsets. 1350 * 1351 * This needs to be done before the RTS/CTS fields are calculated 1352 * as they may depend upon the rate chosen. 1353 */ 1354 static void 1355 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf) 1356 { 1357 uint8_t rate, rix; 1358 int try0; 1359 1360 if (! bf->bf_state.bfs_doratelookup) 1361 return; 1362 1363 /* Get rid of any previous state */ 1364 bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1365 1366 ATH_NODE_LOCK(ATH_NODE(bf->bf_node)); 1367 ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream, 1368 bf->bf_state.bfs_pktlen, &rix, &try0, &rate); 1369 1370 /* In case MRR is disabled, make sure rc[0] is setup correctly */ 1371 bf->bf_state.bfs_rc[0].rix = rix; 1372 bf->bf_state.bfs_rc[0].ratecode = rate; 1373 bf->bf_state.bfs_rc[0].tries = try0; 1374 1375 if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY) 1376 ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix, 1377 bf->bf_state.bfs_rc); 1378 ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node)); 1379 1380 sc->sc_txrix = rix; /* for LED blinking */ 1381 sc->sc_lastdatarix = rix; /* for fast frames */ 1382 bf->bf_state.bfs_try0 = try0; 1383 bf->bf_state.bfs_txrate0 = rate; 1384 } 1385 1386 /* 1387 * Update the CLRDMASK bit in the ath_buf if it needs to be set. 1388 */ 1389 static void 1390 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid, 1391 struct ath_buf *bf) 1392 { 1393 struct ath_node *an = ATH_NODE(bf->bf_node); 1394 1395 ATH_TX_LOCK_ASSERT(sc); 1396 1397 if (an->clrdmask == 1) { 1398 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1399 an->clrdmask = 0; 1400 } 1401 } 1402 1403 /* 1404 * Transmit the given frame to the hardware. 1405 * 1406 * The frame must already be setup; rate control must already have 1407 * been done. 1408 * 1409 * XXX since the TXQ lock is being held here (and I dislike holding 1410 * it for this long when not doing software aggregation), later on 1411 * break this function into "setup_normal" and "xmit_normal". The 1412 * lock only needs to be held for the ath_tx_handoff call. 1413 */ 1414 static void 1415 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq, 1416 struct ath_buf *bf) 1417 { 1418 struct ath_node *an = ATH_NODE(bf->bf_node); 1419 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 1420 1421 ATH_TX_LOCK_ASSERT(sc); 1422 1423 /* 1424 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does 1425 * set a completion handler however it doesn't (yet) properly 1426 * handle the strict ordering requirements needed for normal, 1427 * non-aggregate session frames. 1428 * 1429 * Once this is implemented, only set CLRDMASK like this for 1430 * frames that must go out - eg management/raw frames. 1431 */ 1432 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1433 1434 /* Setup the descriptor before handoff */ 1435 ath_tx_do_ratelookup(sc, bf); 1436 ath_tx_calc_duration(sc, bf); 1437 ath_tx_calc_protection(sc, bf); 1438 ath_tx_set_rtscts(sc, bf); 1439 ath_tx_rate_fill_rcflags(sc, bf); 1440 ath_tx_setds(sc, bf); 1441 1442 /* Track per-TID hardware queue depth correctly */ 1443 tid->hwq_depth++; 1444 1445 /* Assign the completion handler */ 1446 bf->bf_comp = ath_tx_normal_comp; 1447 1448 /* Hand off to hardware */ 1449 ath_tx_handoff(sc, txq, bf); 1450 } 1451 1452 /* 1453 * Do the basic frame setup stuff that's required before the frame 1454 * is added to a software queue. 1455 * 1456 * All frames get mostly the same treatment and it's done once. 1457 * Retransmits fiddle with things like the rate control setup, 1458 * setting the retransmit bit in the packet; doing relevant DMA/bus 1459 * syncing and relinking it (back) into the hardware TX queue. 1460 * 1461 * Note that this may cause the mbuf to be reallocated, so 1462 * m0 may not be valid. 1463 */ 1464 static int 1465 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni, 1466 struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq) 1467 { 1468 struct ieee80211vap *vap = ni->ni_vap; 1469 struct ath_hal *ah = sc->sc_ah; 1470 struct ifnet *ifp = sc->sc_ifp; 1471 struct ieee80211com *ic = ifp->if_l2com; 1472 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1473 int error, iswep, ismcast, isfrag, ismrr; 1474 int keyix, hdrlen, pktlen, try0 = 0; 1475 u_int8_t rix = 0, txrate = 0; 1476 struct ath_desc *ds; 1477 struct ieee80211_frame *wh; 1478 u_int subtype, flags; 1479 HAL_PKT_TYPE atype; 1480 const HAL_RATE_TABLE *rt; 1481 HAL_BOOL shortPreamble; 1482 struct ath_node *an; 1483 u_int pri; 1484 1485 /* 1486 * To ensure that both sequence numbers and the CCMP PN handling 1487 * is "correct", make sure that the relevant TID queue is locked. 1488 * Otherwise the CCMP PN and seqno may appear out of order, causing 1489 * re-ordered frames to have out of order CCMP PN's, resulting 1490 * in many, many frame drops. 1491 */ 1492 ATH_TX_LOCK_ASSERT(sc); 1493 1494 wh = mtod(m0, struct ieee80211_frame *); 1495 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 1496 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1497 isfrag = m0->m_flags & M_FRAG; 1498 hdrlen = ieee80211_anyhdrsize(wh); 1499 /* 1500 * Packet length must not include any 1501 * pad bytes; deduct them here. 1502 */ 1503 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 1504 1505 /* Handle encryption twiddling if needed */ 1506 if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen, 1507 &pktlen, &keyix)) { 1508 ath_freetx(m0); 1509 return EIO; 1510 } 1511 1512 /* packet header may have moved, reset our local pointer */ 1513 wh = mtod(m0, struct ieee80211_frame *); 1514 1515 pktlen += IEEE80211_CRC_LEN; 1516 1517 /* 1518 * Load the DMA map so any coalescing is done. This 1519 * also calculates the number of descriptors we need. 1520 */ 1521 error = ath_tx_dmasetup(sc, bf, m0); 1522 if (error != 0) 1523 return error; 1524 bf->bf_node = ni; /* NB: held reference */ 1525 m0 = bf->bf_m; /* NB: may have changed */ 1526 wh = mtod(m0, struct ieee80211_frame *); 1527 1528 /* setup descriptors */ 1529 ds = bf->bf_desc; 1530 rt = sc->sc_currates; 1531 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1532 1533 /* 1534 * NB: the 802.11 layer marks whether or not we should 1535 * use short preamble based on the current mode and 1536 * negotiated parameters. 1537 */ 1538 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1539 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 1540 shortPreamble = AH_TRUE; 1541 sc->sc_stats.ast_tx_shortpre++; 1542 } else { 1543 shortPreamble = AH_FALSE; 1544 } 1545 1546 an = ATH_NODE(ni); 1547 //flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 1548 flags = 0; 1549 ismrr = 0; /* default no multi-rate retry*/ 1550 pri = M_WME_GETAC(m0); /* honor classification */ 1551 /* XXX use txparams instead of fixed values */ 1552 /* 1553 * Calculate Atheros packet type from IEEE80211 packet header, 1554 * setup for rate calculations, and select h/w transmit queue. 1555 */ 1556 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1557 case IEEE80211_FC0_TYPE_MGT: 1558 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1559 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 1560 atype = HAL_PKT_TYPE_BEACON; 1561 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1562 atype = HAL_PKT_TYPE_PROBE_RESP; 1563 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 1564 atype = HAL_PKT_TYPE_ATIM; 1565 else 1566 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 1567 rix = an->an_mgmtrix; 1568 txrate = rt->info[rix].rateCode; 1569 if (shortPreamble) 1570 txrate |= rt->info[rix].shortPreamble; 1571 try0 = ATH_TXMGTTRY; 1572 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1573 break; 1574 case IEEE80211_FC0_TYPE_CTL: 1575 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 1576 rix = an->an_mgmtrix; 1577 txrate = rt->info[rix].rateCode; 1578 if (shortPreamble) 1579 txrate |= rt->info[rix].shortPreamble; 1580 try0 = ATH_TXMGTTRY; 1581 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1582 break; 1583 case IEEE80211_FC0_TYPE_DATA: 1584 atype = HAL_PKT_TYPE_NORMAL; /* default */ 1585 /* 1586 * Data frames: multicast frames go out at a fixed rate, 1587 * EAPOL frames use the mgmt frame rate; otherwise consult 1588 * the rate control module for the rate to use. 1589 */ 1590 if (ismcast) { 1591 rix = an->an_mcastrix; 1592 txrate = rt->info[rix].rateCode; 1593 if (shortPreamble) 1594 txrate |= rt->info[rix].shortPreamble; 1595 try0 = 1; 1596 } else if (m0->m_flags & M_EAPOL) { 1597 /* XXX? maybe always use long preamble? */ 1598 rix = an->an_mgmtrix; 1599 txrate = rt->info[rix].rateCode; 1600 if (shortPreamble) 1601 txrate |= rt->info[rix].shortPreamble; 1602 try0 = ATH_TXMAXTRY; /* XXX?too many? */ 1603 } else { 1604 /* 1605 * Do rate lookup on each TX, rather than using 1606 * the hard-coded TX information decided here. 1607 */ 1608 ismrr = 1; 1609 bf->bf_state.bfs_doratelookup = 1; 1610 } 1611 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 1612 flags |= HAL_TXDESC_NOACK; 1613 break; 1614 default: 1615 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 1616 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1617 /* XXX statistic */ 1618 /* XXX free tx dmamap */ 1619 ath_freetx(m0); 1620 return EIO; 1621 } 1622 1623 /* 1624 * There are two known scenarios where the frame AC doesn't match 1625 * what the destination TXQ is. 1626 * 1627 * + non-QoS frames (eg management?) that the net80211 stack has 1628 * assigned a higher AC to, but since it's a non-QoS TID, it's 1629 * being thrown into TID 16. TID 16 gets the AC_BE queue. 1630 * It's quite possible that management frames should just be 1631 * direct dispatched to hardware rather than go via the software 1632 * queue; that should be investigated in the future. There are 1633 * some specific scenarios where this doesn't make sense, mostly 1634 * surrounding ADDBA request/response - hence why that is special 1635 * cased. 1636 * 1637 * + Multicast frames going into the VAP mcast queue. That shows up 1638 * as "TXQ 11". 1639 * 1640 * This driver should eventually support separate TID and TXQ locking, 1641 * allowing for arbitrary AC frames to appear on arbitrary software 1642 * queues, being queued to the "correct" hardware queue when needed. 1643 */ 1644 #if 0 1645 if (txq != sc->sc_ac2q[pri]) { 1646 device_printf(sc->sc_dev, 1647 "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n", 1648 __func__, 1649 txq, 1650 txq->axq_qnum, 1651 pri, 1652 sc->sc_ac2q[pri], 1653 sc->sc_ac2q[pri]->axq_qnum); 1654 } 1655 #endif 1656 1657 /* 1658 * Calculate miscellaneous flags. 1659 */ 1660 if (ismcast) { 1661 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 1662 } else if (pktlen > vap->iv_rtsthreshold && 1663 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { 1664 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 1665 sc->sc_stats.ast_tx_rts++; 1666 } 1667 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 1668 sc->sc_stats.ast_tx_noack++; 1669 #ifdef IEEE80211_SUPPORT_TDMA 1670 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { 1671 DPRINTF(sc, ATH_DEBUG_TDMA, 1672 "%s: discard frame, ACK required w/ TDMA\n", __func__); 1673 sc->sc_stats.ast_tdma_ack++; 1674 /* XXX free tx dmamap */ 1675 ath_freetx(m0); 1676 return EIO; 1677 } 1678 #endif 1679 1680 /* 1681 * Determine if a tx interrupt should be generated for 1682 * this descriptor. We take a tx interrupt to reap 1683 * descriptors when the h/w hits an EOL condition or 1684 * when the descriptor is specifically marked to generate 1685 * an interrupt. We periodically mark descriptors in this 1686 * way to insure timely replenishing of the supply needed 1687 * for sending frames. Defering interrupts reduces system 1688 * load and potentially allows more concurrent work to be 1689 * done but if done to aggressively can cause senders to 1690 * backup. 1691 * 1692 * NB: use >= to deal with sc_txintrperiod changing 1693 * dynamically through sysctl. 1694 */ 1695 if (flags & HAL_TXDESC_INTREQ) { 1696 txq->axq_intrcnt = 0; 1697 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 1698 flags |= HAL_TXDESC_INTREQ; 1699 txq->axq_intrcnt = 0; 1700 } 1701 1702 /* This point forward is actual TX bits */ 1703 1704 /* 1705 * At this point we are committed to sending the frame 1706 * and we don't need to look at m_nextpkt; clear it in 1707 * case this frame is part of frag chain. 1708 */ 1709 m0->m_nextpkt = NULL; 1710 1711 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 1712 ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 1713 sc->sc_hwmap[rix].ieeerate, -1); 1714 1715 if (ieee80211_radiotap_active_vap(vap)) { 1716 u_int64_t tsf = ath_hal_gettsf64(ah); 1717 1718 sc->sc_tx_th.wt_tsf = htole64(tsf); 1719 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 1720 if (iswep) 1721 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1722 if (isfrag) 1723 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1724 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 1725 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 1726 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 1727 1728 ieee80211_radiotap_tx(vap, m0); 1729 } 1730 1731 /* Blank the legacy rate array */ 1732 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1733 1734 /* 1735 * ath_buf_set_rate needs at least one rate/try to setup 1736 * the rate scenario. 1737 */ 1738 bf->bf_state.bfs_rc[0].rix = rix; 1739 bf->bf_state.bfs_rc[0].tries = try0; 1740 bf->bf_state.bfs_rc[0].ratecode = txrate; 1741 1742 /* Store the decided rate index values away */ 1743 bf->bf_state.bfs_pktlen = pktlen; 1744 bf->bf_state.bfs_hdrlen = hdrlen; 1745 bf->bf_state.bfs_atype = atype; 1746 bf->bf_state.bfs_txpower = ni->ni_txpower; 1747 bf->bf_state.bfs_txrate0 = txrate; 1748 bf->bf_state.bfs_try0 = try0; 1749 bf->bf_state.bfs_keyix = keyix; 1750 bf->bf_state.bfs_txantenna = sc->sc_txantenna; 1751 bf->bf_state.bfs_txflags = flags; 1752 bf->bf_state.bfs_shpream = shortPreamble; 1753 1754 /* XXX this should be done in ath_tx_setrate() */ 1755 bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */ 1756 bf->bf_state.bfs_ctsrate = 0; /* calculated later */ 1757 bf->bf_state.bfs_ctsduration = 0; 1758 bf->bf_state.bfs_ismrr = ismrr; 1759 1760 return 0; 1761 } 1762 1763 /* 1764 * Queue a frame to the hardware or software queue. 1765 * 1766 * This can be called by the net80211 code. 1767 * 1768 * XXX what about locking? Or, push the seqno assign into the 1769 * XXX aggregate scheduler so its serialised? 1770 * 1771 * XXX When sending management frames via ath_raw_xmit(), 1772 * should CLRDMASK be set unconditionally? 1773 */ 1774 int 1775 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, 1776 struct ath_buf *bf, struct mbuf *m0) 1777 { 1778 struct ieee80211vap *vap = ni->ni_vap; 1779 struct ath_vap *avp = ATH_VAP(vap); 1780 int r = 0; 1781 u_int pri; 1782 int tid; 1783 struct ath_txq *txq; 1784 int ismcast; 1785 const struct ieee80211_frame *wh; 1786 int is_ampdu, is_ampdu_tx, is_ampdu_pending; 1787 ieee80211_seq seqno; 1788 uint8_t type, subtype; 1789 1790 ATH_TX_LOCK_ASSERT(sc); 1791 1792 /* 1793 * Determine the target hardware queue. 1794 * 1795 * For multicast frames, the txq gets overridden appropriately 1796 * depending upon the state of PS. 1797 * 1798 * For any other frame, we do a TID/QoS lookup inside the frame 1799 * to see what the TID should be. If it's a non-QoS frame, the 1800 * AC and TID are overridden. The TID/TXQ code assumes the 1801 * TID is on a predictable hardware TXQ, so we don't support 1802 * having a node TID queued to multiple hardware TXQs. 1803 * This may change in the future but would require some locking 1804 * fudgery. 1805 */ 1806 pri = ath_tx_getac(sc, m0); 1807 tid = ath_tx_gettid(sc, m0); 1808 1809 txq = sc->sc_ac2q[pri]; 1810 wh = mtod(m0, struct ieee80211_frame *); 1811 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1812 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1813 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1814 1815 /* 1816 * Enforce how deep the multicast queue can grow. 1817 * 1818 * XXX duplicated in ath_raw_xmit(). 1819 */ 1820 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1821 if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth 1822 > sc->sc_txq_mcastq_maxdepth) { 1823 sc->sc_stats.ast_tx_mcastq_overflow++; 1824 r = ENOBUFS; 1825 } 1826 if (r != 0) { 1827 m_freem(m0); 1828 return r; 1829 } 1830 } 1831 1832 /* A-MPDU TX */ 1833 is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid); 1834 is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid); 1835 is_ampdu = is_ampdu_tx | is_ampdu_pending; 1836 1837 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n", 1838 __func__, tid, pri, is_ampdu); 1839 1840 /* Set local packet state, used to queue packets to hardware */ 1841 bf->bf_state.bfs_tid = tid; 1842 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 1843 bf->bf_state.bfs_pri = pri; 1844 1845 #if 1 1846 /* 1847 * When servicing one or more stations in power-save mode 1848 * (or) if there is some mcast data waiting on the mcast 1849 * queue (to prevent out of order delivery) multicast frames 1850 * must be bufferd until after the beacon. 1851 * 1852 * TODO: we should lock the mcastq before we check the length. 1853 */ 1854 if (sc->sc_cabq_enable && ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) { 1855 txq = &avp->av_mcastq; 1856 /* 1857 * Mark the frame as eventually belonging on the CAB 1858 * queue, so the descriptor setup functions will 1859 * correctly initialise the descriptor 'qcuId' field. 1860 */ 1861 bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum; 1862 } 1863 #endif 1864 1865 /* Do the generic frame setup */ 1866 /* XXX should just bzero the bf_state? */ 1867 bf->bf_state.bfs_dobaw = 0; 1868 1869 /* A-MPDU TX? Manually set sequence number */ 1870 /* 1871 * Don't do it whilst pending; the net80211 layer still 1872 * assigns them. 1873 */ 1874 if (is_ampdu_tx) { 1875 /* 1876 * Always call; this function will 1877 * handle making sure that null data frames 1878 * don't get a sequence number from the current 1879 * TID and thus mess with the BAW. 1880 */ 1881 seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0); 1882 1883 /* 1884 * Don't add QoS NULL frames to the BAW. 1885 */ 1886 if (IEEE80211_QOS_HAS_SEQ(wh) && 1887 subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) { 1888 bf->bf_state.bfs_dobaw = 1; 1889 } 1890 } 1891 1892 /* 1893 * If needed, the sequence number has been assigned. 1894 * Squirrel it away somewhere easy to get to. 1895 */ 1896 bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT; 1897 1898 /* Is ampdu pending? fetch the seqno and print it out */ 1899 if (is_ampdu_pending) 1900 DPRINTF(sc, ATH_DEBUG_SW_TX, 1901 "%s: tid %d: ampdu pending, seqno %d\n", 1902 __func__, tid, M_SEQNO_GET(m0)); 1903 1904 /* This also sets up the DMA map */ 1905 r = ath_tx_normal_setup(sc, ni, bf, m0, txq); 1906 1907 if (r != 0) 1908 goto done; 1909 1910 /* At this point m0 could have changed! */ 1911 m0 = bf->bf_m; 1912 1913 #if 1 1914 /* 1915 * If it's a multicast frame, do a direct-dispatch to the 1916 * destination hardware queue. Don't bother software 1917 * queuing it. 1918 */ 1919 /* 1920 * If it's a BAR frame, do a direct dispatch to the 1921 * destination hardware queue. Don't bother software 1922 * queuing it, as the TID will now be paused. 1923 * Sending a BAR frame can occur from the net80211 txa timer 1924 * (ie, retries) or from the ath txtask (completion call.) 1925 * It queues directly to hardware because the TID is paused 1926 * at this point (and won't be unpaused until the BAR has 1927 * either been TXed successfully or max retries has been 1928 * reached.) 1929 */ 1930 if (txq == &avp->av_mcastq) { 1931 DPRINTF(sc, ATH_DEBUG_SW_TX, 1932 "%s: bf=%p: mcastq: TX'ing\n", __func__, bf); 1933 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1934 ath_tx_xmit_normal(sc, txq, bf); 1935 } else if (type == IEEE80211_FC0_TYPE_CTL && 1936 subtype == IEEE80211_FC0_SUBTYPE_BAR) { 1937 DPRINTF(sc, ATH_DEBUG_SW_TX, 1938 "%s: BAR: TX'ing direct\n", __func__); 1939 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1940 ath_tx_xmit_normal(sc, txq, bf); 1941 } else { 1942 /* add to software queue */ 1943 DPRINTF(sc, ATH_DEBUG_SW_TX, 1944 "%s: bf=%p: swq: TX'ing\n", __func__, bf); 1945 ath_tx_swq(sc, ni, txq, bf); 1946 } 1947 #else 1948 /* 1949 * For now, since there's no software queue, 1950 * direct-dispatch to the hardware. 1951 */ 1952 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1953 ath_tx_xmit_normal(sc, txq, bf); 1954 #endif 1955 done: 1956 return 0; 1957 } 1958 1959 static int 1960 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, 1961 struct ath_buf *bf, struct mbuf *m0, 1962 const struct ieee80211_bpf_params *params) 1963 { 1964 struct ifnet *ifp = sc->sc_ifp; 1965 struct ieee80211com *ic = ifp->if_l2com; 1966 struct ath_hal *ah = sc->sc_ah; 1967 struct ieee80211vap *vap = ni->ni_vap; 1968 int error, ismcast, ismrr; 1969 int keyix, hdrlen, pktlen, try0, txantenna; 1970 u_int8_t rix, txrate; 1971 struct ieee80211_frame *wh; 1972 u_int flags; 1973 HAL_PKT_TYPE atype; 1974 const HAL_RATE_TABLE *rt; 1975 struct ath_desc *ds; 1976 u_int pri; 1977 int o_tid = -1; 1978 int do_override; 1979 1980 ATH_TX_LOCK_ASSERT(sc); 1981 1982 wh = mtod(m0, struct ieee80211_frame *); 1983 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1984 hdrlen = ieee80211_anyhdrsize(wh); 1985 /* 1986 * Packet length must not include any 1987 * pad bytes; deduct them here. 1988 */ 1989 /* XXX honor IEEE80211_BPF_DATAPAD */ 1990 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; 1991 1992 ATH_KTR(sc, ATH_KTR_TX, 2, 1993 "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf); 1994 1995 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n", 1996 __func__, ismcast); 1997 1998 pri = params->ibp_pri & 3; 1999 /* Override pri if the frame isn't a QoS one */ 2000 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2001 pri = ath_tx_getac(sc, m0); 2002 2003 /* XXX If it's an ADDBA, override the correct queue */ 2004 do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid); 2005 2006 /* Map ADDBA to the correct priority */ 2007 if (do_override) { 2008 #if 0 2009 device_printf(sc->sc_dev, 2010 "%s: overriding tid %d pri %d -> %d\n", 2011 __func__, o_tid, pri, TID_TO_WME_AC(o_tid)); 2012 #endif 2013 pri = TID_TO_WME_AC(o_tid); 2014 } 2015 2016 /* Handle encryption twiddling if needed */ 2017 if (! ath_tx_tag_crypto(sc, ni, 2018 m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0, 2019 &hdrlen, &pktlen, &keyix)) { 2020 ath_freetx(m0); 2021 return EIO; 2022 } 2023 /* packet header may have moved, reset our local pointer */ 2024 wh = mtod(m0, struct ieee80211_frame *); 2025 2026 /* Do the generic frame setup */ 2027 /* XXX should just bzero the bf_state? */ 2028 bf->bf_state.bfs_dobaw = 0; 2029 2030 error = ath_tx_dmasetup(sc, bf, m0); 2031 if (error != 0) 2032 return error; 2033 m0 = bf->bf_m; /* NB: may have changed */ 2034 wh = mtod(m0, struct ieee80211_frame *); 2035 bf->bf_node = ni; /* NB: held reference */ 2036 2037 /* Always enable CLRDMASK for raw frames for now.. */ 2038 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 2039 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 2040 if (params->ibp_flags & IEEE80211_BPF_RTS) 2041 flags |= HAL_TXDESC_RTSENA; 2042 else if (params->ibp_flags & IEEE80211_BPF_CTS) { 2043 /* XXX assume 11g/11n protection? */ 2044 bf->bf_state.bfs_doprot = 1; 2045 flags |= HAL_TXDESC_CTSENA; 2046 } 2047 /* XXX leave ismcast to injector? */ 2048 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) 2049 flags |= HAL_TXDESC_NOACK; 2050 2051 rt = sc->sc_currates; 2052 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 2053 rix = ath_tx_findrix(sc, params->ibp_rate0); 2054 txrate = rt->info[rix].rateCode; 2055 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 2056 txrate |= rt->info[rix].shortPreamble; 2057 sc->sc_txrix = rix; 2058 try0 = params->ibp_try0; 2059 ismrr = (params->ibp_try1 != 0); 2060 txantenna = params->ibp_pri >> 2; 2061 if (txantenna == 0) /* XXX? */ 2062 txantenna = sc->sc_txantenna; 2063 2064 /* 2065 * Since ctsrate is fixed, store it away for later 2066 * use when the descriptor fields are being set. 2067 */ 2068 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) 2069 bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate; 2070 2071 /* 2072 * NB: we mark all packets as type PSPOLL so the h/w won't 2073 * set the sequence number, duration, etc. 2074 */ 2075 atype = HAL_PKT_TYPE_PSPOLL; 2076 2077 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 2078 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 2079 sc->sc_hwmap[rix].ieeerate, -1); 2080 2081 if (ieee80211_radiotap_active_vap(vap)) { 2082 u_int64_t tsf = ath_hal_gettsf64(ah); 2083 2084 sc->sc_tx_th.wt_tsf = htole64(tsf); 2085 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 2086 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2087 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2088 if (m0->m_flags & M_FRAG) 2089 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2090 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 2091 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 2092 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 2093 2094 ieee80211_radiotap_tx(vap, m0); 2095 } 2096 2097 /* 2098 * Formulate first tx descriptor with tx controls. 2099 */ 2100 ds = bf->bf_desc; 2101 /* XXX check return value? */ 2102 2103 /* Store the decided rate index values away */ 2104 bf->bf_state.bfs_pktlen = pktlen; 2105 bf->bf_state.bfs_hdrlen = hdrlen; 2106 bf->bf_state.bfs_atype = atype; 2107 bf->bf_state.bfs_txpower = params->ibp_power; 2108 bf->bf_state.bfs_txrate0 = txrate; 2109 bf->bf_state.bfs_try0 = try0; 2110 bf->bf_state.bfs_keyix = keyix; 2111 bf->bf_state.bfs_txantenna = txantenna; 2112 bf->bf_state.bfs_txflags = flags; 2113 bf->bf_state.bfs_shpream = 2114 !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE); 2115 2116 /* Set local packet state, used to queue packets to hardware */ 2117 bf->bf_state.bfs_tid = WME_AC_TO_TID(pri); 2118 bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum; 2119 bf->bf_state.bfs_pri = pri; 2120 2121 /* XXX this should be done in ath_tx_setrate() */ 2122 bf->bf_state.bfs_ctsrate = 0; 2123 bf->bf_state.bfs_ctsduration = 0; 2124 bf->bf_state.bfs_ismrr = ismrr; 2125 2126 /* Blank the legacy rate array */ 2127 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 2128 2129 bf->bf_state.bfs_rc[0].rix = 2130 ath_tx_findrix(sc, params->ibp_rate0); 2131 bf->bf_state.bfs_rc[0].tries = try0; 2132 bf->bf_state.bfs_rc[0].ratecode = txrate; 2133 2134 if (ismrr) { 2135 int rix; 2136 2137 rix = ath_tx_findrix(sc, params->ibp_rate1); 2138 bf->bf_state.bfs_rc[1].rix = rix; 2139 bf->bf_state.bfs_rc[1].tries = params->ibp_try1; 2140 2141 rix = ath_tx_findrix(sc, params->ibp_rate2); 2142 bf->bf_state.bfs_rc[2].rix = rix; 2143 bf->bf_state.bfs_rc[2].tries = params->ibp_try2; 2144 2145 rix = ath_tx_findrix(sc, params->ibp_rate3); 2146 bf->bf_state.bfs_rc[3].rix = rix; 2147 bf->bf_state.bfs_rc[3].tries = params->ibp_try3; 2148 } 2149 /* 2150 * All the required rate control decisions have been made; 2151 * fill in the rc flags. 2152 */ 2153 ath_tx_rate_fill_rcflags(sc, bf); 2154 2155 /* NB: no buffered multicast in power save support */ 2156 2157 /* 2158 * If we're overiding the ADDBA destination, dump directly 2159 * into the hardware queue, right after any pending 2160 * frames to that node are. 2161 */ 2162 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n", 2163 __func__, do_override); 2164 2165 #if 1 2166 if (do_override) { 2167 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2168 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2169 } else { 2170 /* Queue to software queue */ 2171 ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf); 2172 } 2173 #else 2174 /* Direct-dispatch to the hardware */ 2175 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2176 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2177 #endif 2178 return 0; 2179 } 2180 2181 /* 2182 * Send a raw frame. 2183 * 2184 * This can be called by net80211. 2185 */ 2186 int 2187 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2188 const struct ieee80211_bpf_params *params) 2189 { 2190 struct ieee80211com *ic = ni->ni_ic; 2191 struct ifnet *ifp = ic->ic_ifp; 2192 struct ath_softc *sc = ifp->if_softc; 2193 struct ath_buf *bf; 2194 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 2195 int error = 0; 2196 2197 ATH_PCU_LOCK(sc); 2198 if (sc->sc_inreset_cnt > 0) { 2199 device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n", 2200 __func__); 2201 error = EIO; 2202 ATH_PCU_UNLOCK(sc); 2203 goto bad0; 2204 } 2205 sc->sc_txstart_cnt++; 2206 ATH_PCU_UNLOCK(sc); 2207 2208 ATH_TX_LOCK(sc); 2209 2210 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) { 2211 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__, 2212 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ? 2213 "!running" : "invalid"); 2214 m_freem(m); 2215 error = ENETDOWN; 2216 goto bad; 2217 } 2218 2219 /* 2220 * Enforce how deep the multicast queue can grow. 2221 * 2222 * XXX duplicated in ath_tx_start(). 2223 */ 2224 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2225 if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth 2226 > sc->sc_txq_mcastq_maxdepth) { 2227 sc->sc_stats.ast_tx_mcastq_overflow++; 2228 error = ENOBUFS; 2229 } 2230 2231 if (error != 0) { 2232 m_freem(m); 2233 goto bad; 2234 } 2235 } 2236 2237 /* 2238 * Grab a TX buffer and associated resources. 2239 */ 2240 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 2241 if (bf == NULL) { 2242 sc->sc_stats.ast_tx_nobuf++; 2243 m_freem(m); 2244 error = ENOBUFS; 2245 goto bad; 2246 } 2247 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n", 2248 m, params, bf); 2249 2250 if (params == NULL) { 2251 /* 2252 * Legacy path; interpret frame contents to decide 2253 * precisely how to send the frame. 2254 */ 2255 if (ath_tx_start(sc, ni, bf, m)) { 2256 error = EIO; /* XXX */ 2257 goto bad2; 2258 } 2259 } else { 2260 /* 2261 * Caller supplied explicit parameters to use in 2262 * sending the frame. 2263 */ 2264 if (ath_tx_raw_start(sc, ni, bf, m, params)) { 2265 error = EIO; /* XXX */ 2266 goto bad2; 2267 } 2268 } 2269 sc->sc_wd_timer = 5; 2270 ifp->if_opackets++; 2271 sc->sc_stats.ast_tx_raw++; 2272 2273 /* 2274 * Update the TIM - if there's anything queued to the 2275 * software queue and power save is enabled, we should 2276 * set the TIM. 2277 */ 2278 ath_tx_update_tim(sc, ni, 1); 2279 2280 ATH_TX_UNLOCK(sc); 2281 2282 ATH_PCU_LOCK(sc); 2283 sc->sc_txstart_cnt--; 2284 ATH_PCU_UNLOCK(sc); 2285 2286 return 0; 2287 bad2: 2288 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, " 2289 "bf=%p", 2290 m, 2291 params, 2292 bf); 2293 ATH_TXBUF_LOCK(sc); 2294 ath_returnbuf_head(sc, bf); 2295 ATH_TXBUF_UNLOCK(sc); 2296 bad: 2297 2298 ATH_TX_UNLOCK(sc); 2299 2300 ATH_PCU_LOCK(sc); 2301 sc->sc_txstart_cnt--; 2302 ATH_PCU_UNLOCK(sc); 2303 bad0: 2304 ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p", 2305 m, params); 2306 ifp->if_oerrors++; 2307 sc->sc_stats.ast_tx_raw_fail++; 2308 ieee80211_free_node(ni); 2309 2310 return error; 2311 } 2312 2313 /* Some helper functions */ 2314 2315 /* 2316 * ADDBA (and potentially others) need to be placed in the same 2317 * hardware queue as the TID/node it's relating to. This is so 2318 * it goes out after any pending non-aggregate frames to the 2319 * same node/TID. 2320 * 2321 * If this isn't done, the ADDBA can go out before the frames 2322 * queued in hardware. Even though these frames have a sequence 2323 * number -earlier- than the ADDBA can be transmitted (but 2324 * no frames whose sequence numbers are after the ADDBA should 2325 * be!) they'll arrive after the ADDBA - and the receiving end 2326 * will simply drop them as being out of the BAW. 2327 * 2328 * The frames can't be appended to the TID software queue - it'll 2329 * never be sent out. So these frames have to be directly 2330 * dispatched to the hardware, rather than queued in software. 2331 * So if this function returns true, the TXQ has to be 2332 * overridden and it has to be directly dispatched. 2333 * 2334 * It's a dirty hack, but someone's gotta do it. 2335 */ 2336 2337 /* 2338 * XXX doesn't belong here! 2339 */ 2340 static int 2341 ieee80211_is_action(struct ieee80211_frame *wh) 2342 { 2343 /* Type: Management frame? */ 2344 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 2345 IEEE80211_FC0_TYPE_MGT) 2346 return 0; 2347 2348 /* Subtype: Action frame? */ 2349 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) != 2350 IEEE80211_FC0_SUBTYPE_ACTION) 2351 return 0; 2352 2353 return 1; 2354 } 2355 2356 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2357 /* 2358 * Return an alternate TID for ADDBA request frames. 2359 * 2360 * Yes, this likely should be done in the net80211 layer. 2361 */ 2362 static int 2363 ath_tx_action_frame_override_queue(struct ath_softc *sc, 2364 struct ieee80211_node *ni, 2365 struct mbuf *m0, int *tid) 2366 { 2367 struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); 2368 struct ieee80211_action_ba_addbarequest *ia; 2369 uint8_t *frm; 2370 uint16_t baparamset; 2371 2372 /* Not action frame? Bail */ 2373 if (! ieee80211_is_action(wh)) 2374 return 0; 2375 2376 /* XXX Not needed for frames we send? */ 2377 #if 0 2378 /* Correct length? */ 2379 if (! ieee80211_parse_action(ni, m)) 2380 return 0; 2381 #endif 2382 2383 /* Extract out action frame */ 2384 frm = (u_int8_t *)&wh[1]; 2385 ia = (struct ieee80211_action_ba_addbarequest *) frm; 2386 2387 /* Not ADDBA? Bail */ 2388 if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA) 2389 return 0; 2390 if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST) 2391 return 0; 2392 2393 /* Extract TID, return it */ 2394 baparamset = le16toh(ia->rq_baparamset); 2395 *tid = (int) MS(baparamset, IEEE80211_BAPS_TID); 2396 2397 return 1; 2398 } 2399 #undef MS 2400 2401 /* Per-node software queue operations */ 2402 2403 /* 2404 * Add the current packet to the given BAW. 2405 * It is assumed that the current packet 2406 * 2407 * + fits inside the BAW; 2408 * + already has had a sequence number allocated. 2409 * 2410 * Since the BAW status may be modified by both the ath task and 2411 * the net80211/ifnet contexts, the TID must be locked. 2412 */ 2413 void 2414 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an, 2415 struct ath_tid *tid, struct ath_buf *bf) 2416 { 2417 int index, cindex; 2418 struct ieee80211_tx_ampdu *tap; 2419 2420 ATH_TX_LOCK_ASSERT(sc); 2421 2422 if (bf->bf_state.bfs_isretried) 2423 return; 2424 2425 tap = ath_tx_get_tx_tid(an, tid->tid); 2426 2427 if (! bf->bf_state.bfs_dobaw) { 2428 device_printf(sc->sc_dev, 2429 "%s: dobaw=0, seqno=%d, window %d:%d\n", 2430 __func__, 2431 SEQNO(bf->bf_state.bfs_seqno), 2432 tap->txa_start, 2433 tap->txa_wnd); 2434 } 2435 2436 if (bf->bf_state.bfs_addedbaw) 2437 device_printf(sc->sc_dev, 2438 "%s: re-added? tid=%d, seqno %d; window %d:%d; " 2439 "baw head=%d tail=%d\n", 2440 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2441 tap->txa_start, tap->txa_wnd, tid->baw_head, 2442 tid->baw_tail); 2443 2444 /* 2445 * Verify that the given sequence number is not outside of the 2446 * BAW. Complain loudly if that's the case. 2447 */ 2448 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2449 SEQNO(bf->bf_state.bfs_seqno))) { 2450 device_printf(sc->sc_dev, 2451 "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; " 2452 "baw head=%d tail=%d\n", 2453 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2454 tap->txa_start, tap->txa_wnd, tid->baw_head, 2455 tid->baw_tail); 2456 } 2457 2458 /* 2459 * ni->ni_txseqs[] is the currently allocated seqno. 2460 * the txa state contains the current baw start. 2461 */ 2462 index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno)); 2463 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2464 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2465 "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d " 2466 "baw head=%d tail=%d\n", 2467 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2468 tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, 2469 tid->baw_tail); 2470 2471 2472 #if 0 2473 assert(tid->tx_buf[cindex] == NULL); 2474 #endif 2475 if (tid->tx_buf[cindex] != NULL) { 2476 device_printf(sc->sc_dev, 2477 "%s: ba packet dup (index=%d, cindex=%d, " 2478 "head=%d, tail=%d)\n", 2479 __func__, index, cindex, tid->baw_head, tid->baw_tail); 2480 device_printf(sc->sc_dev, 2481 "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n", 2482 __func__, 2483 tid->tx_buf[cindex], 2484 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno), 2485 bf, 2486 SEQNO(bf->bf_state.bfs_seqno) 2487 ); 2488 } 2489 tid->tx_buf[cindex] = bf; 2490 2491 if (index >= ((tid->baw_tail - tid->baw_head) & 2492 (ATH_TID_MAX_BUFS - 1))) { 2493 tid->baw_tail = cindex; 2494 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 2495 } 2496 } 2497 2498 /* 2499 * Flip the BAW buffer entry over from the existing one to the new one. 2500 * 2501 * When software retransmitting a (sub-)frame, it is entirely possible that 2502 * the frame ath_buf is marked as BUSY and can't be immediately reused. 2503 * In that instance the buffer is cloned and the new buffer is used for 2504 * retransmit. We thus need to update the ath_buf slot in the BAW buf 2505 * tracking array to maintain consistency. 2506 */ 2507 static void 2508 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an, 2509 struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf) 2510 { 2511 int index, cindex; 2512 struct ieee80211_tx_ampdu *tap; 2513 int seqno = SEQNO(old_bf->bf_state.bfs_seqno); 2514 2515 ATH_TX_LOCK_ASSERT(sc); 2516 2517 tap = ath_tx_get_tx_tid(an, tid->tid); 2518 index = ATH_BA_INDEX(tap->txa_start, seqno); 2519 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2520 2521 /* 2522 * Just warn for now; if it happens then we should find out 2523 * about it. It's highly likely the aggregation session will 2524 * soon hang. 2525 */ 2526 if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) { 2527 device_printf(sc->sc_dev, "%s: retransmitted buffer" 2528 " has mismatching seqno's, BA session may hang.\n", 2529 __func__); 2530 device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n", 2531 __func__, 2532 old_bf->bf_state.bfs_seqno, 2533 new_bf->bf_state.bfs_seqno); 2534 } 2535 2536 if (tid->tx_buf[cindex] != old_bf) { 2537 device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; " 2538 " has m BA session may hang.\n", 2539 __func__); 2540 device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n", 2541 __func__, 2542 old_bf, new_bf); 2543 } 2544 2545 tid->tx_buf[cindex] = new_bf; 2546 } 2547 2548 /* 2549 * seq_start - left edge of BAW 2550 * seq_next - current/next sequence number to allocate 2551 * 2552 * Since the BAW status may be modified by both the ath task and 2553 * the net80211/ifnet contexts, the TID must be locked. 2554 */ 2555 static void 2556 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an, 2557 struct ath_tid *tid, const struct ath_buf *bf) 2558 { 2559 int index, cindex; 2560 struct ieee80211_tx_ampdu *tap; 2561 int seqno = SEQNO(bf->bf_state.bfs_seqno); 2562 2563 ATH_TX_LOCK_ASSERT(sc); 2564 2565 tap = ath_tx_get_tx_tid(an, tid->tid); 2566 index = ATH_BA_INDEX(tap->txa_start, seqno); 2567 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2568 2569 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2570 "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, " 2571 "baw head=%d, tail=%d\n", 2572 __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index, 2573 cindex, tid->baw_head, tid->baw_tail); 2574 2575 /* 2576 * If this occurs then we have a big problem - something else 2577 * has slid tap->txa_start along without updating the BAW 2578 * tracking start/end pointers. Thus the TX BAW state is now 2579 * completely busted. 2580 * 2581 * But for now, since I haven't yet fixed TDMA and buffer cloning, 2582 * it's quite possible that a cloned buffer is making its way 2583 * here and causing it to fire off. Disable TDMA for now. 2584 */ 2585 if (tid->tx_buf[cindex] != bf) { 2586 device_printf(sc->sc_dev, 2587 "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n", 2588 __func__, 2589 bf, SEQNO(bf->bf_state.bfs_seqno), 2590 tid->tx_buf[cindex], 2591 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno)); 2592 } 2593 2594 tid->tx_buf[cindex] = NULL; 2595 2596 while (tid->baw_head != tid->baw_tail && 2597 !tid->tx_buf[tid->baw_head]) { 2598 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 2599 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 2600 } 2601 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2602 "%s: baw is now %d:%d, baw head=%d\n", 2603 __func__, tap->txa_start, tap->txa_wnd, tid->baw_head); 2604 } 2605 2606 /* 2607 * Mark the current node/TID as ready to TX. 2608 * 2609 * This is done to make it easy for the software scheduler to 2610 * find which nodes have data to send. 2611 * 2612 * The TXQ lock must be held. 2613 */ 2614 static void 2615 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid) 2616 { 2617 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2618 2619 ATH_TX_LOCK_ASSERT(sc); 2620 2621 if (tid->paused) 2622 return; /* paused, can't schedule yet */ 2623 2624 if (tid->sched) 2625 return; /* already scheduled */ 2626 2627 tid->sched = 1; 2628 2629 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); 2630 } 2631 2632 /* 2633 * Mark the current node as no longer needing to be polled for 2634 * TX packets. 2635 * 2636 * The TXQ lock must be held. 2637 */ 2638 static void 2639 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid) 2640 { 2641 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2642 2643 ATH_TX_LOCK_ASSERT(sc); 2644 2645 if (tid->sched == 0) 2646 return; 2647 2648 tid->sched = 0; 2649 TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem); 2650 } 2651 2652 /* 2653 * Assign a sequence number manually to the given frame. 2654 * 2655 * This should only be called for A-MPDU TX frames. 2656 */ 2657 static ieee80211_seq 2658 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, 2659 struct ath_buf *bf, struct mbuf *m0) 2660 { 2661 struct ieee80211_frame *wh; 2662 int tid, pri; 2663 ieee80211_seq seqno; 2664 uint8_t subtype; 2665 2666 /* TID lookup */ 2667 wh = mtod(m0, struct ieee80211_frame *); 2668 pri = M_WME_GETAC(m0); /* honor classification */ 2669 tid = WME_AC_TO_TID(pri); 2670 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n", 2671 __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2672 2673 /* XXX Is it a control frame? Ignore */ 2674 2675 /* Does the packet require a sequence number? */ 2676 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2677 return -1; 2678 2679 ATH_TX_LOCK_ASSERT(sc); 2680 2681 /* 2682 * Is it a QOS NULL Data frame? Give it a sequence number from 2683 * the default TID (IEEE80211_NONQOS_TID.) 2684 * 2685 * The RX path of everything I've looked at doesn't include the NULL 2686 * data frame sequence number in the aggregation state updates, so 2687 * assigning it a sequence number there will cause a BAW hole on the 2688 * RX side. 2689 */ 2690 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2691 if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) { 2692 /* XXX no locking for this TID? This is a bit of a problem. */ 2693 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; 2694 INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); 2695 } else { 2696 /* Manually assign sequence number */ 2697 seqno = ni->ni_txseqs[tid]; 2698 INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE); 2699 } 2700 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 2701 M_SEQNO_SET(m0, seqno); 2702 2703 /* Return so caller can do something with it if needed */ 2704 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno); 2705 return seqno; 2706 } 2707 2708 /* 2709 * Attempt to direct dispatch an aggregate frame to hardware. 2710 * If the frame is out of BAW, queue. 2711 * Otherwise, schedule it as a single frame. 2712 */ 2713 static void 2714 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, 2715 struct ath_txq *txq, struct ath_buf *bf) 2716 { 2717 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 2718 struct ieee80211_tx_ampdu *tap; 2719 2720 ATH_TX_LOCK_ASSERT(sc); 2721 2722 tap = ath_tx_get_tx_tid(an, tid->tid); 2723 2724 /* paused? queue */ 2725 if (tid->paused) { 2726 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2727 /* XXX don't sched - we're paused! */ 2728 return; 2729 } 2730 2731 /* outside baw? queue */ 2732 if (bf->bf_state.bfs_dobaw && 2733 (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2734 SEQNO(bf->bf_state.bfs_seqno)))) { 2735 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2736 ath_tx_tid_sched(sc, tid); 2737 return; 2738 } 2739 2740 /* 2741 * This is a temporary check and should be removed once 2742 * all the relevant code paths have been fixed. 2743 * 2744 * During aggregate retries, it's possible that the head 2745 * frame will fail (which has the bfs_aggr and bfs_nframes 2746 * fields set for said aggregate) and will be retried as 2747 * a single frame. In this instance, the values should 2748 * be reset or the completion code will get upset with you. 2749 */ 2750 if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) { 2751 device_printf(sc->sc_dev, "%s: bfs_aggr=%d, bfs_nframes=%d\n", 2752 __func__, 2753 bf->bf_state.bfs_aggr, 2754 bf->bf_state.bfs_nframes); 2755 bf->bf_state.bfs_aggr = 0; 2756 bf->bf_state.bfs_nframes = 1; 2757 } 2758 2759 /* Update CLRDMASK just before this frame is queued */ 2760 ath_tx_update_clrdmask(sc, tid, bf); 2761 2762 /* Direct dispatch to hardware */ 2763 ath_tx_do_ratelookup(sc, bf); 2764 ath_tx_calc_duration(sc, bf); 2765 ath_tx_calc_protection(sc, bf); 2766 ath_tx_set_rtscts(sc, bf); 2767 ath_tx_rate_fill_rcflags(sc, bf); 2768 ath_tx_setds(sc, bf); 2769 2770 /* Statistics */ 2771 sc->sc_aggr_stats.aggr_low_hwq_single_pkt++; 2772 2773 /* Track per-TID hardware queue depth correctly */ 2774 tid->hwq_depth++; 2775 2776 /* Add to BAW */ 2777 if (bf->bf_state.bfs_dobaw) { 2778 ath_tx_addto_baw(sc, an, tid, bf); 2779 bf->bf_state.bfs_addedbaw = 1; 2780 } 2781 2782 /* Set completion handler, multi-frame aggregate or not */ 2783 bf->bf_comp = ath_tx_aggr_comp; 2784 2785 /* Hand off to hardware */ 2786 ath_tx_handoff(sc, txq, bf); 2787 } 2788 2789 /* 2790 * Attempt to send the packet. 2791 * If the queue isn't busy, direct-dispatch. 2792 * If the queue is busy enough, queue the given packet on the 2793 * relevant software queue. 2794 */ 2795 void 2796 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq, 2797 struct ath_buf *bf) 2798 { 2799 struct ath_node *an = ATH_NODE(ni); 2800 struct ieee80211_frame *wh; 2801 struct ath_tid *atid; 2802 int pri, tid; 2803 struct mbuf *m0 = bf->bf_m; 2804 2805 ATH_TX_LOCK_ASSERT(sc); 2806 2807 /* Fetch the TID - non-QoS frames get assigned to TID 16 */ 2808 wh = mtod(m0, struct ieee80211_frame *); 2809 pri = ath_tx_getac(sc, m0); 2810 tid = ath_tx_gettid(sc, m0); 2811 atid = &an->an_tid[tid]; 2812 2813 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n", 2814 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2815 2816 /* Set local packet state, used to queue packets to hardware */ 2817 /* XXX potentially duplicate info, re-check */ 2818 bf->bf_state.bfs_tid = tid; 2819 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 2820 bf->bf_state.bfs_pri = pri; 2821 2822 /* 2823 * If the hardware queue isn't busy, queue it directly. 2824 * If the hardware queue is busy, queue it. 2825 * If the TID is paused or the traffic it outside BAW, software 2826 * queue it. 2827 */ 2828 if (atid->paused) { 2829 /* TID is paused, queue */ 2830 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__); 2831 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2832 } else if (ath_tx_ampdu_pending(sc, an, tid)) { 2833 /* AMPDU pending; queue */ 2834 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__); 2835 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2836 /* XXX sched? */ 2837 } else if (ath_tx_ampdu_running(sc, an, tid)) { 2838 /* AMPDU running, attempt direct dispatch if possible */ 2839 2840 /* 2841 * Always queue the frame to the tail of the list. 2842 */ 2843 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2844 2845 /* 2846 * If the hardware queue isn't busy, direct dispatch 2847 * the head frame in the list. Don't schedule the 2848 * TID - let it build some more frames first? 2849 * 2850 * Otherwise, schedule the TID. 2851 */ 2852 if (txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit) { 2853 bf = ATH_TID_FIRST(atid); 2854 ATH_TID_REMOVE(atid, bf, bf_list); 2855 2856 /* 2857 * Ensure it's definitely treated as a non-AMPDU 2858 * frame - this information may have been left 2859 * over from a previous attempt. 2860 */ 2861 bf->bf_state.bfs_aggr = 0; 2862 bf->bf_state.bfs_nframes = 1; 2863 2864 /* Queue to the hardware */ 2865 ath_tx_xmit_aggr(sc, an, txq, bf); 2866 DPRINTF(sc, ATH_DEBUG_SW_TX, 2867 "%s: xmit_aggr\n", 2868 __func__); 2869 } else { 2870 DPRINTF(sc, ATH_DEBUG_SW_TX, 2871 "%s: ampdu; swq'ing\n", 2872 __func__); 2873 2874 ath_tx_tid_sched(sc, atid); 2875 } 2876 } else if (txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit) { 2877 /* AMPDU not running, attempt direct dispatch */ 2878 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__); 2879 /* See if clrdmask needs to be set */ 2880 ath_tx_update_clrdmask(sc, atid, bf); 2881 ath_tx_xmit_normal(sc, txq, bf); 2882 } else { 2883 /* Busy; queue */ 2884 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__); 2885 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2886 ath_tx_tid_sched(sc, atid); 2887 } 2888 } 2889 2890 /* 2891 * Only set the clrdmask bit if none of the nodes are currently 2892 * filtered. 2893 * 2894 * XXX TODO: go through all the callers and check to see 2895 * which are being called in the context of looping over all 2896 * TIDs (eg, if all tids are being paused, resumed, etc.) 2897 * That'll avoid O(n^2) complexity here. 2898 */ 2899 static void 2900 ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an) 2901 { 2902 int i; 2903 2904 ATH_TX_LOCK_ASSERT(sc); 2905 2906 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2907 if (an->an_tid[i].isfiltered == 1) 2908 return; 2909 } 2910 an->clrdmask = 1; 2911 } 2912 2913 /* 2914 * Configure the per-TID node state. 2915 * 2916 * This likely belongs in if_ath_node.c but I can't think of anywhere 2917 * else to put it just yet. 2918 * 2919 * This sets up the SLISTs and the mutex as appropriate. 2920 */ 2921 void 2922 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an) 2923 { 2924 int i, j; 2925 struct ath_tid *atid; 2926 2927 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2928 atid = &an->an_tid[i]; 2929 2930 /* XXX now with this bzer(), is the field 0'ing needed? */ 2931 bzero(atid, sizeof(*atid)); 2932 2933 TAILQ_INIT(&atid->tid_q); 2934 TAILQ_INIT(&atid->filtq.tid_q); 2935 atid->tid = i; 2936 atid->an = an; 2937 for (j = 0; j < ATH_TID_MAX_BUFS; j++) 2938 atid->tx_buf[j] = NULL; 2939 atid->baw_head = atid->baw_tail = 0; 2940 atid->paused = 0; 2941 atid->sched = 0; 2942 atid->hwq_depth = 0; 2943 atid->cleanup_inprogress = 0; 2944 if (i == IEEE80211_NONQOS_TID) 2945 atid->ac = ATH_NONQOS_TID_AC; 2946 else 2947 atid->ac = TID_TO_WME_AC(i); 2948 } 2949 an->clrdmask = 1; /* Always start by setting this bit */ 2950 } 2951 2952 /* 2953 * Pause the current TID. This stops packets from being transmitted 2954 * on it. 2955 * 2956 * Since this is also called from upper layers as well as the driver, 2957 * it will get the TID lock. 2958 */ 2959 static void 2960 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid) 2961 { 2962 2963 ATH_TX_LOCK_ASSERT(sc); 2964 tid->paused++; 2965 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n", 2966 __func__, tid->paused); 2967 } 2968 2969 /* 2970 * Unpause the current TID, and schedule it if needed. 2971 */ 2972 static void 2973 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid) 2974 { 2975 ATH_TX_LOCK_ASSERT(sc); 2976 2977 tid->paused--; 2978 2979 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n", 2980 __func__, tid->paused); 2981 2982 if (tid->paused) 2983 return; 2984 2985 /* 2986 * Override the clrdmask configuration for the next frame 2987 * from this TID, just to get the ball rolling. 2988 */ 2989 ath_tx_set_clrdmask(sc, tid->an); 2990 2991 if (tid->axq_depth == 0) 2992 return; 2993 2994 /* XXX isfiltered shouldn't ever be 0 at this point */ 2995 if (tid->isfiltered == 1) { 2996 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 2997 return; 2998 } 2999 3000 ath_tx_tid_sched(sc, tid); 3001 3002 /* 3003 * Queue the software TX scheduler. 3004 */ 3005 ath_tx_swq_kick(sc); 3006 } 3007 3008 /* 3009 * Add the given ath_buf to the TID filtered frame list. 3010 * This requires the TID be filtered. 3011 */ 3012 static void 3013 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid, 3014 struct ath_buf *bf) 3015 { 3016 3017 ATH_TX_LOCK_ASSERT(sc); 3018 3019 if (! tid->isfiltered) 3020 device_printf(sc->sc_dev, "%s: not filtered?!\n", __func__); 3021 3022 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf); 3023 3024 /* Set the retry bit and bump the retry counter */ 3025 ath_tx_set_retry(sc, bf); 3026 sc->sc_stats.ast_tx_swfiltered++; 3027 3028 ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list); 3029 } 3030 3031 /* 3032 * Handle a completed filtered frame from the given TID. 3033 * This just enables/pauses the filtered frame state if required 3034 * and appends the filtered frame to the filtered queue. 3035 */ 3036 static void 3037 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid, 3038 struct ath_buf *bf) 3039 { 3040 3041 ATH_TX_LOCK_ASSERT(sc); 3042 3043 if (! tid->isfiltered) { 3044 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: filter transition\n", 3045 __func__); 3046 tid->isfiltered = 1; 3047 ath_tx_tid_pause(sc, tid); 3048 } 3049 3050 /* Add the frame to the filter queue */ 3051 ath_tx_tid_filt_addbuf(sc, tid, bf); 3052 } 3053 3054 /* 3055 * Complete the filtered frame TX completion. 3056 * 3057 * If there are no more frames in the hardware queue, unpause/unfilter 3058 * the TID if applicable. Otherwise we will wait for a node PS transition 3059 * to unfilter. 3060 */ 3061 static void 3062 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid) 3063 { 3064 struct ath_buf *bf; 3065 3066 ATH_TX_LOCK_ASSERT(sc); 3067 3068 if (tid->hwq_depth != 0) 3069 return; 3070 3071 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: hwq=0, transition back\n", 3072 __func__); 3073 tid->isfiltered = 0; 3074 /* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */ 3075 ath_tx_set_clrdmask(sc, tid->an); 3076 3077 /* XXX this is really quite inefficient */ 3078 while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) { 3079 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3080 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 3081 } 3082 3083 ath_tx_tid_resume(sc, tid); 3084 } 3085 3086 /* 3087 * Called when a single (aggregate or otherwise) frame is completed. 3088 * 3089 * Returns 1 if the buffer could be added to the filtered list 3090 * (cloned or otherwise), 0 if the buffer couldn't be added to the 3091 * filtered list (failed clone; expired retry) and the caller should 3092 * free it and handle it like a failure (eg by sending a BAR.) 3093 */ 3094 static int 3095 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid, 3096 struct ath_buf *bf) 3097 { 3098 struct ath_buf *nbf; 3099 int retval; 3100 3101 ATH_TX_LOCK_ASSERT(sc); 3102 3103 /* 3104 * Don't allow a filtered frame to live forever. 3105 */ 3106 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3107 sc->sc_stats.ast_tx_swretrymax++; 3108 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3109 "%s: bf=%p, seqno=%d, exceeded retries\n", 3110 __func__, 3111 bf, 3112 bf->bf_state.bfs_seqno); 3113 return (0); 3114 } 3115 3116 /* 3117 * A busy buffer can't be added to the retry list. 3118 * It needs to be cloned. 3119 */ 3120 if (bf->bf_flags & ATH_BUF_BUSY) { 3121 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3122 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3123 "%s: busy buffer clone: %p -> %p\n", 3124 __func__, bf, nbf); 3125 } else { 3126 nbf = bf; 3127 } 3128 3129 if (nbf == NULL) { 3130 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3131 "%s: busy buffer couldn't be cloned (%p)!\n", 3132 __func__, bf); 3133 retval = 1; 3134 } else { 3135 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3136 retval = 0; 3137 } 3138 ath_tx_tid_filt_comp_complete(sc, tid); 3139 3140 return (retval); 3141 } 3142 3143 static void 3144 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid, 3145 struct ath_buf *bf_first, ath_bufhead *bf_q) 3146 { 3147 struct ath_buf *bf, *bf_next, *nbf; 3148 3149 ATH_TX_LOCK_ASSERT(sc); 3150 3151 bf = bf_first; 3152 while (bf) { 3153 bf_next = bf->bf_next; 3154 bf->bf_next = NULL; /* Remove it from the aggr list */ 3155 3156 /* 3157 * Don't allow a filtered frame to live forever. 3158 */ 3159 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3160 sc->sc_stats.ast_tx_swretrymax++; 3161 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3162 "%s: bf=%p, seqno=%d, exceeded retries\n", 3163 __func__, 3164 bf, 3165 bf->bf_state.bfs_seqno); 3166 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3167 goto next; 3168 } 3169 3170 if (bf->bf_flags & ATH_BUF_BUSY) { 3171 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3172 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3173 "%s: busy buffer cloned: %p -> %p", 3174 __func__, bf, nbf); 3175 } else { 3176 nbf = bf; 3177 } 3178 3179 /* 3180 * If the buffer couldn't be cloned, add it to bf_q; 3181 * the caller will free the buffer(s) as required. 3182 */ 3183 if (nbf == NULL) { 3184 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3185 "%s: buffer couldn't be cloned! (%p)\n", 3186 __func__, bf); 3187 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3188 } else { 3189 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3190 } 3191 next: 3192 bf = bf_next; 3193 } 3194 3195 ath_tx_tid_filt_comp_complete(sc, tid); 3196 } 3197 3198 /* 3199 * Suspend the queue because we need to TX a BAR. 3200 */ 3201 static void 3202 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid) 3203 { 3204 3205 ATH_TX_LOCK_ASSERT(sc); 3206 3207 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3208 "%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n", 3209 __func__, 3210 tid, 3211 tid->bar_wait, 3212 tid->bar_tx); 3213 3214 /* We shouldn't be called when bar_tx is 1 */ 3215 if (tid->bar_tx) { 3216 device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n", 3217 __func__); 3218 } 3219 3220 /* If we've already been called, just be patient. */ 3221 if (tid->bar_wait) 3222 return; 3223 3224 /* Wait! */ 3225 tid->bar_wait = 1; 3226 3227 /* Only one pause, no matter how many frames fail */ 3228 ath_tx_tid_pause(sc, tid); 3229 } 3230 3231 /* 3232 * We've finished with BAR handling - either we succeeded or 3233 * failed. Either way, unsuspend TX. 3234 */ 3235 static void 3236 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid) 3237 { 3238 3239 ATH_TX_LOCK_ASSERT(sc); 3240 3241 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3242 "%s: tid=%p, called\n", 3243 __func__, 3244 tid); 3245 3246 if (tid->bar_tx == 0 || tid->bar_wait == 0) { 3247 device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n", 3248 __func__, tid->bar_tx, tid->bar_wait); 3249 } 3250 3251 tid->bar_tx = tid->bar_wait = 0; 3252 ath_tx_tid_resume(sc, tid); 3253 } 3254 3255 /* 3256 * Return whether we're ready to TX a BAR frame. 3257 * 3258 * Requires the TID lock be held. 3259 */ 3260 static int 3261 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid) 3262 { 3263 3264 ATH_TX_LOCK_ASSERT(sc); 3265 3266 if (tid->bar_wait == 0 || tid->hwq_depth > 0) 3267 return (0); 3268 3269 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n", 3270 __func__, tid, tid->tid); 3271 3272 return (1); 3273 } 3274 3275 /* 3276 * Check whether the current TID is ready to have a BAR 3277 * TXed and if so, do the TX. 3278 * 3279 * Since the TID/TXQ lock can't be held during a call to 3280 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it, 3281 * sending the BAR and locking it again. 3282 * 3283 * Eventually, the code to send the BAR should be broken out 3284 * from this routine so the lock doesn't have to be reacquired 3285 * just to be immediately dropped by the caller. 3286 */ 3287 static void 3288 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid) 3289 { 3290 struct ieee80211_tx_ampdu *tap; 3291 3292 ATH_TX_LOCK_ASSERT(sc); 3293 3294 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3295 "%s: tid=%p, called\n", 3296 __func__, 3297 tid); 3298 3299 tap = ath_tx_get_tx_tid(tid->an, tid->tid); 3300 3301 /* 3302 * This is an error condition! 3303 */ 3304 if (tid->bar_wait == 0 || tid->bar_tx == 1) { 3305 device_printf(sc->sc_dev, 3306 "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n", 3307 __func__, 3308 tid, 3309 tid->bar_tx, 3310 tid->bar_wait); 3311 return; 3312 } 3313 3314 /* Don't do anything if we still have pending frames */ 3315 if (tid->hwq_depth > 0) { 3316 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3317 "%s: tid=%p, hwq_depth=%d, waiting\n", 3318 __func__, 3319 tid, 3320 tid->hwq_depth); 3321 return; 3322 } 3323 3324 /* We're now about to TX */ 3325 tid->bar_tx = 1; 3326 3327 /* 3328 * Override the clrdmask configuration for the next frame, 3329 * just to get the ball rolling. 3330 */ 3331 ath_tx_set_clrdmask(sc, tid->an); 3332 3333 /* 3334 * Calculate new BAW left edge, now that all frames have either 3335 * succeeded or failed. 3336 * 3337 * XXX verify this is _actually_ the valid value to begin at! 3338 */ 3339 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3340 "%s: tid=%p, new BAW left edge=%d\n", 3341 __func__, 3342 tid, 3343 tap->txa_start); 3344 3345 /* Try sending the BAR frame */ 3346 /* We can't hold the lock here! */ 3347 3348 ATH_TX_UNLOCK(sc); 3349 if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) { 3350 /* Success? Now we wait for notification that it's done */ 3351 ATH_TX_LOCK(sc); 3352 return; 3353 } 3354 3355 /* Failure? For now, warn loudly and continue */ 3356 ATH_TX_LOCK(sc); 3357 device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n", 3358 __func__, tid); 3359 ath_tx_tid_bar_unsuspend(sc, tid); 3360 } 3361 3362 static void 3363 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an, 3364 struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf) 3365 { 3366 3367 ATH_TX_LOCK_ASSERT(sc); 3368 3369 /* 3370 * If the current TID is running AMPDU, update 3371 * the BAW. 3372 */ 3373 if (ath_tx_ampdu_running(sc, an, tid->tid) && 3374 bf->bf_state.bfs_dobaw) { 3375 /* 3376 * Only remove the frame from the BAW if it's 3377 * been transmitted at least once; this means 3378 * the frame was in the BAW to begin with. 3379 */ 3380 if (bf->bf_state.bfs_retries > 0) { 3381 ath_tx_update_baw(sc, an, tid, bf); 3382 bf->bf_state.bfs_dobaw = 0; 3383 } 3384 #if 0 3385 /* 3386 * This has become a non-fatal error now 3387 */ 3388 if (! bf->bf_state.bfs_addedbaw) 3389 device_printf(sc->sc_dev, 3390 "%s: wasn't added: seqno %d\n", 3391 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3392 #endif 3393 } 3394 3395 /* Strip it out of an aggregate list if it was in one */ 3396 bf->bf_next = NULL; 3397 3398 /* Insert on the free queue to be freed by the caller */ 3399 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); 3400 } 3401 3402 static void 3403 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an, 3404 const char *pfx, struct ath_tid *tid, struct ath_buf *bf) 3405 { 3406 struct ieee80211_node *ni = &an->an_node; 3407 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 3408 struct ieee80211_tx_ampdu *tap; 3409 3410 tap = ath_tx_get_tx_tid(an, tid->tid); 3411 3412 device_printf(sc->sc_dev, 3413 "%s: %s: node %p: bf=%p: addbaw=%d, dobaw=%d, " 3414 "seqno=%d, retry=%d\n", 3415 __func__, pfx, ni, bf, 3416 bf->bf_state.bfs_addedbaw, 3417 bf->bf_state.bfs_dobaw, 3418 SEQNO(bf->bf_state.bfs_seqno), 3419 bf->bf_state.bfs_retries); 3420 device_printf(sc->sc_dev, 3421 "%s: node %p: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n", 3422 __func__, ni, bf, 3423 txq->axq_qnum, 3424 txq->axq_depth, 3425 txq->axq_aggr_depth); 3426 3427 device_printf(sc->sc_dev, 3428 "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, isfiltered=%d\n", 3429 __func__, ni, bf, 3430 tid->axq_depth, 3431 tid->hwq_depth, 3432 tid->bar_wait, 3433 tid->isfiltered); 3434 device_printf(sc->sc_dev, 3435 "%s: node %p: tid %d: " 3436 "sched=%d, paused=%d, " 3437 "incomp=%d, baw_head=%d, " 3438 "baw_tail=%d txa_start=%d, ni_txseqs=%d\n", 3439 __func__, ni, tid->tid, 3440 tid->sched, tid->paused, 3441 tid->incomp, tid->baw_head, 3442 tid->baw_tail, tap == NULL ? -1 : tap->txa_start, 3443 ni->ni_txseqs[tid->tid]); 3444 3445 /* XXX Dump the frame, see what it is? */ 3446 ieee80211_dump_pkt(ni->ni_ic, 3447 mtod(bf->bf_m, const uint8_t *), 3448 bf->bf_m->m_len, 0, -1); 3449 } 3450 3451 /* 3452 * Free any packets currently pending in the software TX queue. 3453 * 3454 * This will be called when a node is being deleted. 3455 * 3456 * It can also be called on an active node during an interface 3457 * reset or state transition. 3458 * 3459 * (From Linux/reference): 3460 * 3461 * TODO: For frame(s) that are in the retry state, we will reuse the 3462 * sequence number(s) without setting the retry bit. The 3463 * alternative is to give up on these and BAR the receiver's window 3464 * forward. 3465 */ 3466 static void 3467 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, 3468 struct ath_tid *tid, ath_bufhead *bf_cq) 3469 { 3470 struct ath_buf *bf; 3471 struct ieee80211_tx_ampdu *tap; 3472 struct ieee80211_node *ni = &an->an_node; 3473 int t; 3474 3475 tap = ath_tx_get_tx_tid(an, tid->tid); 3476 3477 ATH_TX_LOCK_ASSERT(sc); 3478 3479 /* Walk the queue, free frames */ 3480 t = 0; 3481 for (;;) { 3482 bf = ATH_TID_FIRST(tid); 3483 if (bf == NULL) { 3484 break; 3485 } 3486 3487 if (t == 0) { 3488 ath_tx_tid_drain_print(sc, an, "norm", tid, bf); 3489 t = 1; 3490 } 3491 3492 ATH_TID_REMOVE(tid, bf, bf_list); 3493 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3494 } 3495 3496 /* And now, drain the filtered frame queue */ 3497 t = 0; 3498 for (;;) { 3499 bf = ATH_TID_FILT_FIRST(tid); 3500 if (bf == NULL) 3501 break; 3502 3503 if (t == 0) { 3504 ath_tx_tid_drain_print(sc, an, "filt", tid, bf); 3505 t = 1; 3506 } 3507 3508 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3509 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3510 } 3511 3512 /* 3513 * Override the clrdmask configuration for the next frame 3514 * in case there is some future transmission, just to get 3515 * the ball rolling. 3516 * 3517 * This won't hurt things if the TID is about to be freed. 3518 */ 3519 ath_tx_set_clrdmask(sc, tid->an); 3520 3521 /* 3522 * Now that it's completed, grab the TID lock and update 3523 * the sequence number and BAW window. 3524 * Because sequence numbers have been assigned to frames 3525 * that haven't been sent yet, it's entirely possible 3526 * we'll be called with some pending frames that have not 3527 * been transmitted. 3528 * 3529 * The cleaner solution is to do the sequence number allocation 3530 * when the packet is first transmitted - and thus the "retries" 3531 * check above would be enough to update the BAW/seqno. 3532 */ 3533 3534 /* But don't do it for non-QoS TIDs */ 3535 if (tap) { 3536 #if 0 3537 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3538 "%s: node %p: TID %d: sliding BAW left edge to %d\n", 3539 __func__, an, tid->tid, tap->txa_start); 3540 #endif 3541 ni->ni_txseqs[tid->tid] = tap->txa_start; 3542 tid->baw_tail = tid->baw_head; 3543 } 3544 } 3545 3546 /* 3547 * Flush all software queued packets for the given node. 3548 * 3549 * This occurs when a completion handler frees the last buffer 3550 * for a node, and the node is thus freed. This causes the node 3551 * to be cleaned up, which ends up calling ath_tx_node_flush. 3552 */ 3553 void 3554 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an) 3555 { 3556 int tid; 3557 ath_bufhead bf_cq; 3558 struct ath_buf *bf; 3559 3560 TAILQ_INIT(&bf_cq); 3561 3562 ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p", 3563 &an->an_node); 3564 3565 ATH_TX_LOCK(sc); 3566 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 3567 struct ath_tid *atid = &an->an_tid[tid]; 3568 3569 /* Free packets */ 3570 ath_tx_tid_drain(sc, an, atid, &bf_cq); 3571 /* Remove this tid from the list of active tids */ 3572 ath_tx_tid_unsched(sc, atid); 3573 } 3574 ATH_TX_UNLOCK(sc); 3575 3576 /* Handle completed frames */ 3577 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3578 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3579 ath_tx_default_comp(sc, bf, 0); 3580 } 3581 } 3582 3583 /* 3584 * Drain all the software TXQs currently with traffic queued. 3585 */ 3586 void 3587 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq) 3588 { 3589 struct ath_tid *tid; 3590 ath_bufhead bf_cq; 3591 struct ath_buf *bf; 3592 3593 TAILQ_INIT(&bf_cq); 3594 ATH_TX_LOCK(sc); 3595 3596 /* 3597 * Iterate over all active tids for the given txq, 3598 * flushing and unsched'ing them 3599 */ 3600 while (! TAILQ_EMPTY(&txq->axq_tidq)) { 3601 tid = TAILQ_FIRST(&txq->axq_tidq); 3602 ath_tx_tid_drain(sc, tid->an, tid, &bf_cq); 3603 ath_tx_tid_unsched(sc, tid); 3604 } 3605 3606 ATH_TX_UNLOCK(sc); 3607 3608 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3609 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3610 ath_tx_default_comp(sc, bf, 0); 3611 } 3612 } 3613 3614 /* 3615 * Handle completion of non-aggregate session frames. 3616 * 3617 * This (currently) doesn't implement software retransmission of 3618 * non-aggregate frames! 3619 * 3620 * Software retransmission of non-aggregate frames needs to obey 3621 * the strict sequence number ordering, and drop any frames that 3622 * will fail this. 3623 * 3624 * For now, filtered frames and frame transmission will cause 3625 * all kinds of issues. So we don't support them. 3626 * 3627 * So anyone queuing frames via ath_tx_normal_xmit() or 3628 * ath_tx_hw_queue_norm() must override and set CLRDMASK. 3629 */ 3630 void 3631 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3632 { 3633 struct ieee80211_node *ni = bf->bf_node; 3634 struct ath_node *an = ATH_NODE(ni); 3635 int tid = bf->bf_state.bfs_tid; 3636 struct ath_tid *atid = &an->an_tid[tid]; 3637 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3638 3639 /* The TID state is protected behind the TXQ lock */ 3640 ATH_TX_LOCK(sc); 3641 3642 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n", 3643 __func__, bf, fail, atid->hwq_depth - 1); 3644 3645 atid->hwq_depth--; 3646 3647 #if 0 3648 /* 3649 * If the frame was filtered, stick it on the filter frame 3650 * queue and complain about it. It shouldn't happen! 3651 */ 3652 if ((ts->ts_status & HAL_TXERR_FILT) || 3653 (ts->ts_status != 0 && atid->isfiltered)) { 3654 device_printf(sc->sc_dev, 3655 "%s: isfiltered=%d, ts_status=%d: huh?\n", 3656 __func__, 3657 atid->isfiltered, 3658 ts->ts_status); 3659 ath_tx_tid_filt_comp_buf(sc, atid, bf); 3660 } 3661 #endif 3662 if (atid->isfiltered) 3663 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 3664 if (atid->hwq_depth < 0) 3665 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 3666 __func__, atid->hwq_depth); 3667 3668 /* 3669 * If the queue is filtered, potentially mark it as complete 3670 * and reschedule it as needed. 3671 * 3672 * This is required as there may be a subsequent TX descriptor 3673 * for this end-node that has CLRDMASK set, so it's quite possible 3674 * that a filtered frame will be followed by a non-filtered 3675 * (complete or otherwise) frame. 3676 * 3677 * XXX should we do this before we complete the frame? 3678 */ 3679 if (atid->isfiltered) 3680 ath_tx_tid_filt_comp_complete(sc, atid); 3681 ATH_TX_UNLOCK(sc); 3682 3683 /* 3684 * punt to rate control if we're not being cleaned up 3685 * during a hw queue drain and the frame wanted an ACK. 3686 */ 3687 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 3688 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 3689 ts, bf->bf_state.bfs_pktlen, 3690 1, (ts->ts_status == 0) ? 0 : 1); 3691 3692 ath_tx_default_comp(sc, bf, fail); 3693 } 3694 3695 /* 3696 * Handle cleanup of aggregate session packets that aren't 3697 * an A-MPDU. 3698 * 3699 * There's no need to update the BAW here - the session is being 3700 * torn down. 3701 */ 3702 static void 3703 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3704 { 3705 struct ieee80211_node *ni = bf->bf_node; 3706 struct ath_node *an = ATH_NODE(ni); 3707 int tid = bf->bf_state.bfs_tid; 3708 struct ath_tid *atid = &an->an_tid[tid]; 3709 3710 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n", 3711 __func__, tid, atid->incomp); 3712 3713 ATH_TX_LOCK(sc); 3714 atid->incomp--; 3715 if (atid->incomp == 0) { 3716 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3717 "%s: TID %d: cleaned up! resume!\n", 3718 __func__, tid); 3719 atid->cleanup_inprogress = 0; 3720 ath_tx_tid_resume(sc, atid); 3721 } 3722 ATH_TX_UNLOCK(sc); 3723 3724 ath_tx_default_comp(sc, bf, 0); 3725 } 3726 3727 /* 3728 * Performs transmit side cleanup when TID changes from aggregated to 3729 * unaggregated. 3730 * 3731 * - Discard all retry frames from the s/w queue. 3732 * - Fix the tx completion function for all buffers in s/w queue. 3733 * - Count the number of unacked frames, and let transmit completion 3734 * handle it later. 3735 * 3736 * The caller is responsible for pausing the TID. 3737 */ 3738 static void 3739 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid) 3740 { 3741 struct ath_tid *atid = &an->an_tid[tid]; 3742 struct ieee80211_tx_ampdu *tap; 3743 struct ath_buf *bf, *bf_next; 3744 ath_bufhead bf_cq; 3745 3746 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 3747 "%s: TID %d: called\n", __func__, tid); 3748 3749 TAILQ_INIT(&bf_cq); 3750 ATH_TX_LOCK(sc); 3751 3752 /* 3753 * Move the filtered frames to the TX queue, before 3754 * we run off and discard/process things. 3755 */ 3756 /* XXX this is really quite inefficient */ 3757 while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) { 3758 ATH_TID_FILT_REMOVE(atid, bf, bf_list); 3759 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3760 } 3761 3762 /* 3763 * Update the frames in the software TX queue: 3764 * 3765 * + Discard retry frames in the queue 3766 * + Fix the completion function to be non-aggregate 3767 */ 3768 bf = ATH_TID_FIRST(atid); 3769 while (bf) { 3770 if (bf->bf_state.bfs_isretried) { 3771 bf_next = TAILQ_NEXT(bf, bf_list); 3772 ATH_TID_REMOVE(atid, bf, bf_list); 3773 if (bf->bf_state.bfs_dobaw) { 3774 ath_tx_update_baw(sc, an, atid, bf); 3775 if (! bf->bf_state.bfs_addedbaw) 3776 device_printf(sc->sc_dev, 3777 "%s: wasn't added: seqno %d\n", 3778 __func__, 3779 SEQNO(bf->bf_state.bfs_seqno)); 3780 } 3781 bf->bf_state.bfs_dobaw = 0; 3782 /* 3783 * Call the default completion handler with "fail" just 3784 * so upper levels are suitably notified about this. 3785 */ 3786 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 3787 bf = bf_next; 3788 continue; 3789 } 3790 /* Give these the default completion handler */ 3791 bf->bf_comp = ath_tx_normal_comp; 3792 bf = TAILQ_NEXT(bf, bf_list); 3793 } 3794 3795 /* The caller is required to pause the TID */ 3796 #if 0 3797 /* Pause the TID */ 3798 ath_tx_tid_pause(sc, atid); 3799 #endif 3800 3801 /* 3802 * Calculate what hardware-queued frames exist based 3803 * on the current BAW size. Ie, what frames have been 3804 * added to the TX hardware queue for this TID but 3805 * not yet ACKed. 3806 */ 3807 tap = ath_tx_get_tx_tid(an, tid); 3808 /* Need the lock - fiddling with BAW */ 3809 while (atid->baw_head != atid->baw_tail) { 3810 if (atid->tx_buf[atid->baw_head]) { 3811 atid->incomp++; 3812 atid->cleanup_inprogress = 1; 3813 atid->tx_buf[atid->baw_head] = NULL; 3814 } 3815 INCR(atid->baw_head, ATH_TID_MAX_BUFS); 3816 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 3817 } 3818 3819 /* 3820 * If cleanup is required, defer TID scheduling 3821 * until all the HW queued packets have been 3822 * sent. 3823 */ 3824 if (! atid->cleanup_inprogress) 3825 ath_tx_tid_resume(sc, atid); 3826 3827 if (atid->cleanup_inprogress) 3828 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3829 "%s: TID %d: cleanup needed: %d packets\n", 3830 __func__, tid, atid->incomp); 3831 ATH_TX_UNLOCK(sc); 3832 3833 /* Handle completing frames and fail them */ 3834 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3835 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3836 ath_tx_default_comp(sc, bf, 1); 3837 } 3838 } 3839 3840 static struct ath_buf * 3841 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 3842 struct ath_tid *tid, struct ath_buf *bf) 3843 { 3844 struct ath_buf *nbf; 3845 int error; 3846 3847 /* 3848 * Clone the buffer. This will handle the dma unmap and 3849 * copy the node reference to the new buffer. If this 3850 * works out, 'bf' will have no DMA mapping, no mbuf 3851 * pointer and no node reference. 3852 */ 3853 nbf = ath_buf_clone(sc, bf); 3854 3855 #if 0 3856 device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n", 3857 __func__); 3858 #endif 3859 3860 if (nbf == NULL) { 3861 /* Failed to clone */ 3862 device_printf(sc->sc_dev, 3863 "%s: failed to clone a busy buffer\n", 3864 __func__); 3865 return NULL; 3866 } 3867 3868 /* Setup the dma for the new buffer */ 3869 error = ath_tx_dmasetup(sc, nbf, nbf->bf_m); 3870 if (error != 0) { 3871 device_printf(sc->sc_dev, 3872 "%s: failed to setup dma for clone\n", 3873 __func__); 3874 /* 3875 * Put this at the head of the list, not tail; 3876 * that way it doesn't interfere with the 3877 * busy buffer logic (which uses the tail of 3878 * the list.) 3879 */ 3880 ATH_TXBUF_LOCK(sc); 3881 ath_returnbuf_head(sc, nbf); 3882 ATH_TXBUF_UNLOCK(sc); 3883 return NULL; 3884 } 3885 3886 /* Update BAW if required, before we free the original buf */ 3887 if (bf->bf_state.bfs_dobaw) 3888 ath_tx_switch_baw_buf(sc, an, tid, bf, nbf); 3889 3890 /* Free original buffer; return new buffer */ 3891 ath_freebuf(sc, bf); 3892 3893 return nbf; 3894 } 3895 3896 /* 3897 * Handle retrying an unaggregate frame in an aggregate 3898 * session. 3899 * 3900 * If too many retries occur, pause the TID, wait for 3901 * any further retransmits (as there's no reason why 3902 * non-aggregate frames in an aggregate session are 3903 * transmitted in-order; they just have to be in-BAW) 3904 * and then queue a BAR. 3905 */ 3906 static void 3907 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3908 { 3909 struct ieee80211_node *ni = bf->bf_node; 3910 struct ath_node *an = ATH_NODE(ni); 3911 int tid = bf->bf_state.bfs_tid; 3912 struct ath_tid *atid = &an->an_tid[tid]; 3913 struct ieee80211_tx_ampdu *tap; 3914 3915 ATH_TX_LOCK(sc); 3916 3917 tap = ath_tx_get_tx_tid(an, tid); 3918 3919 /* 3920 * If the buffer is marked as busy, we can't directly 3921 * reuse it. Instead, try to clone the buffer. 3922 * If the clone is successful, recycle the old buffer. 3923 * If the clone is unsuccessful, set bfs_retries to max 3924 * to force the next bit of code to free the buffer 3925 * for us. 3926 */ 3927 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 3928 (bf->bf_flags & ATH_BUF_BUSY)) { 3929 struct ath_buf *nbf; 3930 nbf = ath_tx_retry_clone(sc, an, atid, bf); 3931 if (nbf) 3932 /* bf has been freed at this point */ 3933 bf = nbf; 3934 else 3935 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 3936 } 3937 3938 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 3939 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 3940 "%s: exceeded retries; seqno %d\n", 3941 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3942 sc->sc_stats.ast_tx_swretrymax++; 3943 3944 /* Update BAW anyway */ 3945 if (bf->bf_state.bfs_dobaw) { 3946 ath_tx_update_baw(sc, an, atid, bf); 3947 if (! bf->bf_state.bfs_addedbaw) 3948 device_printf(sc->sc_dev, 3949 "%s: wasn't added: seqno %d\n", 3950 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3951 } 3952 bf->bf_state.bfs_dobaw = 0; 3953 3954 /* Suspend the TX queue and get ready to send the BAR */ 3955 ath_tx_tid_bar_suspend(sc, atid); 3956 3957 /* Send the BAR if there are no other frames waiting */ 3958 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3959 ath_tx_tid_bar_tx(sc, atid); 3960 3961 ATH_TX_UNLOCK(sc); 3962 3963 /* Free buffer, bf is free after this call */ 3964 ath_tx_default_comp(sc, bf, 0); 3965 return; 3966 } 3967 3968 /* 3969 * This increments the retry counter as well as 3970 * sets the retry flag in the ath_buf and packet 3971 * body. 3972 */ 3973 ath_tx_set_retry(sc, bf); 3974 sc->sc_stats.ast_tx_swretries++; 3975 3976 /* 3977 * Insert this at the head of the queue, so it's 3978 * retried before any current/subsequent frames. 3979 */ 3980 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3981 ath_tx_tid_sched(sc, atid); 3982 /* Send the BAR if there are no other frames waiting */ 3983 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3984 ath_tx_tid_bar_tx(sc, atid); 3985 3986 ATH_TX_UNLOCK(sc); 3987 } 3988 3989 /* 3990 * Common code for aggregate excessive retry/subframe retry. 3991 * If retrying, queues buffers to bf_q. If not, frees the 3992 * buffers. 3993 * 3994 * XXX should unify this with ath_tx_aggr_retry_unaggr() 3995 */ 3996 static int 3997 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf, 3998 ath_bufhead *bf_q) 3999 { 4000 struct ieee80211_node *ni = bf->bf_node; 4001 struct ath_node *an = ATH_NODE(ni); 4002 int tid = bf->bf_state.bfs_tid; 4003 struct ath_tid *atid = &an->an_tid[tid]; 4004 4005 ATH_TX_LOCK_ASSERT(sc); 4006 4007 /* XXX clr11naggr should be done for all subframes */ 4008 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4009 ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0); 4010 4011 /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */ 4012 4013 /* 4014 * If the buffer is marked as busy, we can't directly 4015 * reuse it. Instead, try to clone the buffer. 4016 * If the clone is successful, recycle the old buffer. 4017 * If the clone is unsuccessful, set bfs_retries to max 4018 * to force the next bit of code to free the buffer 4019 * for us. 4020 */ 4021 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 4022 (bf->bf_flags & ATH_BUF_BUSY)) { 4023 struct ath_buf *nbf; 4024 nbf = ath_tx_retry_clone(sc, an, atid, bf); 4025 if (nbf) 4026 /* bf has been freed at this point */ 4027 bf = nbf; 4028 else 4029 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 4030 } 4031 4032 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 4033 sc->sc_stats.ast_tx_swretrymax++; 4034 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 4035 "%s: max retries: seqno %d\n", 4036 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4037 ath_tx_update_baw(sc, an, atid, bf); 4038 if (! bf->bf_state.bfs_addedbaw) 4039 device_printf(sc->sc_dev, 4040 "%s: wasn't added: seqno %d\n", 4041 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4042 bf->bf_state.bfs_dobaw = 0; 4043 return 1; 4044 } 4045 4046 ath_tx_set_retry(sc, bf); 4047 sc->sc_stats.ast_tx_swretries++; 4048 bf->bf_next = NULL; /* Just to make sure */ 4049 4050 /* Clear the aggregate state */ 4051 bf->bf_state.bfs_aggr = 0; 4052 bf->bf_state.bfs_ndelim = 0; /* ??? needed? */ 4053 bf->bf_state.bfs_nframes = 1; 4054 4055 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 4056 return 0; 4057 } 4058 4059 /* 4060 * error pkt completion for an aggregate destination 4061 */ 4062 static void 4063 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first, 4064 struct ath_tid *tid) 4065 { 4066 struct ieee80211_node *ni = bf_first->bf_node; 4067 struct ath_node *an = ATH_NODE(ni); 4068 struct ath_buf *bf_next, *bf; 4069 ath_bufhead bf_q; 4070 int drops = 0; 4071 struct ieee80211_tx_ampdu *tap; 4072 ath_bufhead bf_cq; 4073 4074 TAILQ_INIT(&bf_q); 4075 TAILQ_INIT(&bf_cq); 4076 4077 /* 4078 * Update rate control - all frames have failed. 4079 * 4080 * XXX use the length in the first frame in the series; 4081 * XXX just so things are consistent for now. 4082 */ 4083 ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc, 4084 &bf_first->bf_status.ds_txstat, 4085 bf_first->bf_state.bfs_pktlen, 4086 bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes); 4087 4088 ATH_TX_LOCK(sc); 4089 tap = ath_tx_get_tx_tid(an, tid->tid); 4090 sc->sc_stats.ast_tx_aggr_failall++; 4091 4092 /* Retry all subframes */ 4093 bf = bf_first; 4094 while (bf) { 4095 bf_next = bf->bf_next; 4096 bf->bf_next = NULL; /* Remove it from the aggr list */ 4097 sc->sc_stats.ast_tx_aggr_fail++; 4098 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4099 drops++; 4100 bf->bf_next = NULL; 4101 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4102 } 4103 bf = bf_next; 4104 } 4105 4106 /* Prepend all frames to the beginning of the queue */ 4107 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4108 TAILQ_REMOVE(&bf_q, bf, bf_list); 4109 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 4110 } 4111 4112 /* 4113 * Schedule the TID to be re-tried. 4114 */ 4115 ath_tx_tid_sched(sc, tid); 4116 4117 /* 4118 * send bar if we dropped any frames 4119 * 4120 * Keep the txq lock held for now, as we need to ensure 4121 * that ni_txseqs[] is consistent (as it's being updated 4122 * in the ifnet TX context or raw TX context.) 4123 */ 4124 if (drops) { 4125 /* Suspend the TX queue and get ready to send the BAR */ 4126 ath_tx_tid_bar_suspend(sc, tid); 4127 } 4128 4129 /* 4130 * Send BAR if required 4131 */ 4132 if (ath_tx_tid_bar_tx_ready(sc, tid)) 4133 ath_tx_tid_bar_tx(sc, tid); 4134 4135 ATH_TX_UNLOCK(sc); 4136 4137 /* Complete frames which errored out */ 4138 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4139 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4140 ath_tx_default_comp(sc, bf, 0); 4141 } 4142 } 4143 4144 /* 4145 * Handle clean-up of packets from an aggregate list. 4146 * 4147 * There's no need to update the BAW here - the session is being 4148 * torn down. 4149 */ 4150 static void 4151 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first) 4152 { 4153 struct ath_buf *bf, *bf_next; 4154 struct ieee80211_node *ni = bf_first->bf_node; 4155 struct ath_node *an = ATH_NODE(ni); 4156 int tid = bf_first->bf_state.bfs_tid; 4157 struct ath_tid *atid = &an->an_tid[tid]; 4158 4159 ATH_TX_LOCK(sc); 4160 4161 /* update incomp */ 4162 bf = bf_first; 4163 while (bf) { 4164 atid->incomp--; 4165 bf = bf->bf_next; 4166 } 4167 4168 if (atid->incomp == 0) { 4169 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4170 "%s: TID %d: cleaned up! resume!\n", 4171 __func__, tid); 4172 atid->cleanup_inprogress = 0; 4173 ath_tx_tid_resume(sc, atid); 4174 } 4175 4176 /* Send BAR if required */ 4177 /* XXX why would we send a BAR when transitioning to non-aggregation? */ 4178 /* 4179 * XXX TODO: we should likely just tear down the BAR state here, 4180 * rather than sending a BAR. 4181 */ 4182 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4183 ath_tx_tid_bar_tx(sc, atid); 4184 4185 ATH_TX_UNLOCK(sc); 4186 4187 /* Handle frame completion */ 4188 bf = bf_first; 4189 while (bf) { 4190 bf_next = bf->bf_next; 4191 ath_tx_default_comp(sc, bf, 1); 4192 bf = bf_next; 4193 } 4194 } 4195 4196 /* 4197 * Handle completion of an set of aggregate frames. 4198 * 4199 * Note: the completion handler is the last descriptor in the aggregate, 4200 * not the last descriptor in the first frame. 4201 */ 4202 static void 4203 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, 4204 int fail) 4205 { 4206 //struct ath_desc *ds = bf->bf_lastds; 4207 struct ieee80211_node *ni = bf_first->bf_node; 4208 struct ath_node *an = ATH_NODE(ni); 4209 int tid = bf_first->bf_state.bfs_tid; 4210 struct ath_tid *atid = &an->an_tid[tid]; 4211 struct ath_tx_status ts; 4212 struct ieee80211_tx_ampdu *tap; 4213 ath_bufhead bf_q; 4214 ath_bufhead bf_cq; 4215 int seq_st, tx_ok; 4216 int hasba, isaggr; 4217 uint32_t ba[2]; 4218 struct ath_buf *bf, *bf_next; 4219 int ba_index; 4220 int drops = 0; 4221 int nframes = 0, nbad = 0, nf; 4222 int pktlen; 4223 /* XXX there's too much on the stack? */ 4224 struct ath_rc_series rc[ATH_RC_NUM]; 4225 int txseq; 4226 4227 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n", 4228 __func__, atid->hwq_depth); 4229 4230 /* 4231 * Take a copy; this may be needed -after- bf_first 4232 * has been completed and freed. 4233 */ 4234 ts = bf_first->bf_status.ds_txstat; 4235 4236 TAILQ_INIT(&bf_q); 4237 TAILQ_INIT(&bf_cq); 4238 4239 /* The TID state is kept behind the TXQ lock */ 4240 ATH_TX_LOCK(sc); 4241 4242 atid->hwq_depth--; 4243 if (atid->hwq_depth < 0) 4244 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4245 __func__, atid->hwq_depth); 4246 4247 /* 4248 * If the TID is filtered, handle completing the filter 4249 * transition before potentially kicking it to the cleanup 4250 * function. 4251 * 4252 * XXX this is duplicate work, ew. 4253 */ 4254 if (atid->isfiltered) 4255 ath_tx_tid_filt_comp_complete(sc, atid); 4256 4257 /* 4258 * Punt cleanup to the relevant function, not our problem now 4259 */ 4260 if (atid->cleanup_inprogress) { 4261 if (atid->isfiltered) 4262 device_printf(sc->sc_dev, 4263 "%s: isfiltered=1, normal_comp?\n", 4264 __func__); 4265 ATH_TX_UNLOCK(sc); 4266 ath_tx_comp_cleanup_aggr(sc, bf_first); 4267 return; 4268 } 4269 4270 /* 4271 * If the frame is filtered, transition to filtered frame 4272 * mode and add this to the filtered frame list. 4273 * 4274 * XXX TODO: figure out how this interoperates with 4275 * BAR, pause and cleanup states. 4276 */ 4277 if ((ts.ts_status & HAL_TXERR_FILT) || 4278 (ts.ts_status != 0 && atid->isfiltered)) { 4279 if (fail != 0) 4280 device_printf(sc->sc_dev, 4281 "%s: isfiltered=1, fail=%d\n", __func__, fail); 4282 ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq); 4283 4284 /* Remove from BAW */ 4285 TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) { 4286 if (bf->bf_state.bfs_addedbaw) 4287 drops++; 4288 if (bf->bf_state.bfs_dobaw) { 4289 ath_tx_update_baw(sc, an, atid, bf); 4290 if (! bf->bf_state.bfs_addedbaw) 4291 device_printf(sc->sc_dev, 4292 "%s: wasn't added: seqno %d\n", 4293 __func__, 4294 SEQNO(bf->bf_state.bfs_seqno)); 4295 } 4296 bf->bf_state.bfs_dobaw = 0; 4297 } 4298 /* 4299 * If any intermediate frames in the BAW were dropped when 4300 * handling filtering things, send a BAR. 4301 */ 4302 if (drops) 4303 ath_tx_tid_bar_suspend(sc, atid); 4304 4305 /* 4306 * Finish up by sending a BAR if required and freeing 4307 * the frames outside of the TX lock. 4308 */ 4309 goto finish_send_bar; 4310 } 4311 4312 /* 4313 * XXX for now, use the first frame in the aggregate for 4314 * XXX rate control completion; it's at least consistent. 4315 */ 4316 pktlen = bf_first->bf_state.bfs_pktlen; 4317 4318 /* 4319 * Handle errors first! 4320 * 4321 * Here, handle _any_ error as a "exceeded retries" error. 4322 * Later on (when filtered frames are to be specially handled) 4323 * it'll have to be expanded. 4324 */ 4325 #if 0 4326 if (ts.ts_status & HAL_TXERR_XRETRY) { 4327 #endif 4328 if (ts.ts_status != 0) { 4329 ATH_TX_UNLOCK(sc); 4330 ath_tx_comp_aggr_error(sc, bf_first, atid); 4331 return; 4332 } 4333 4334 tap = ath_tx_get_tx_tid(an, tid); 4335 4336 /* 4337 * extract starting sequence and block-ack bitmap 4338 */ 4339 /* XXX endian-ness of seq_st, ba? */ 4340 seq_st = ts.ts_seqnum; 4341 hasba = !! (ts.ts_flags & HAL_TX_BA); 4342 tx_ok = (ts.ts_status == 0); 4343 isaggr = bf_first->bf_state.bfs_aggr; 4344 ba[0] = ts.ts_ba_low; 4345 ba[1] = ts.ts_ba_high; 4346 4347 /* 4348 * Copy the TX completion status and the rate control 4349 * series from the first descriptor, as it may be freed 4350 * before the rate control code can get its grubby fingers 4351 * into things. 4352 */ 4353 memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc)); 4354 4355 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4356 "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, " 4357 "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n", 4358 __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags, 4359 isaggr, seq_st, hasba, ba[0], ba[1]); 4360 4361 /* 4362 * The reference driver doesn't do this; it simply ignores 4363 * this check in its entirety. 4364 * 4365 * I've seen this occur when using iperf to send traffic 4366 * out tid 1 - the aggregate frames are all marked as TID 1, 4367 * but the TXSTATUS has TID=0. So, let's just ignore this 4368 * check. 4369 */ 4370 #if 0 4371 /* Occasionally, the MAC sends a tx status for the wrong TID. */ 4372 if (tid != ts.ts_tid) { 4373 device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n", 4374 __func__, tid, ts.ts_tid); 4375 tx_ok = 0; 4376 } 4377 #endif 4378 4379 /* AR5416 BA bug; this requires an interface reset */ 4380 if (isaggr && tx_ok && (! hasba)) { 4381 device_printf(sc->sc_dev, 4382 "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, " 4383 "seq_st=%d\n", 4384 __func__, hasba, tx_ok, isaggr, seq_st); 4385 /* XXX TODO: schedule an interface reset */ 4386 #ifdef ATH_DEBUG 4387 ath_printtxbuf(sc, bf_first, 4388 sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0); 4389 #endif 4390 } 4391 4392 /* 4393 * Walk the list of frames, figure out which ones were correctly 4394 * sent and which weren't. 4395 */ 4396 bf = bf_first; 4397 nf = bf_first->bf_state.bfs_nframes; 4398 4399 /* bf_first is going to be invalid once this list is walked */ 4400 bf_first = NULL; 4401 4402 /* 4403 * Walk the list of completed frames and determine 4404 * which need to be completed and which need to be 4405 * retransmitted. 4406 * 4407 * For completed frames, the completion functions need 4408 * to be called at the end of this function as the last 4409 * node reference may free the node. 4410 * 4411 * Finally, since the TXQ lock can't be held during the 4412 * completion callback (to avoid lock recursion), 4413 * the completion calls have to be done outside of the 4414 * lock. 4415 */ 4416 while (bf) { 4417 nframes++; 4418 ba_index = ATH_BA_INDEX(seq_st, 4419 SEQNO(bf->bf_state.bfs_seqno)); 4420 bf_next = bf->bf_next; 4421 bf->bf_next = NULL; /* Remove it from the aggr list */ 4422 4423 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4424 "%s: checking bf=%p seqno=%d; ack=%d\n", 4425 __func__, bf, SEQNO(bf->bf_state.bfs_seqno), 4426 ATH_BA_ISSET(ba, ba_index)); 4427 4428 if (tx_ok && ATH_BA_ISSET(ba, ba_index)) { 4429 sc->sc_stats.ast_tx_aggr_ok++; 4430 ath_tx_update_baw(sc, an, atid, bf); 4431 bf->bf_state.bfs_dobaw = 0; 4432 if (! bf->bf_state.bfs_addedbaw) 4433 device_printf(sc->sc_dev, 4434 "%s: wasn't added: seqno %d\n", 4435 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4436 bf->bf_next = NULL; 4437 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4438 } else { 4439 sc->sc_stats.ast_tx_aggr_fail++; 4440 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4441 drops++; 4442 bf->bf_next = NULL; 4443 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4444 } 4445 nbad++; 4446 } 4447 bf = bf_next; 4448 } 4449 4450 /* 4451 * Now that the BAW updates have been done, unlock 4452 * 4453 * txseq is grabbed before the lock is released so we 4454 * have a consistent view of what -was- in the BAW. 4455 * Anything after this point will not yet have been 4456 * TXed. 4457 */ 4458 txseq = tap->txa_start; 4459 ATH_TX_UNLOCK(sc); 4460 4461 if (nframes != nf) 4462 device_printf(sc->sc_dev, 4463 "%s: num frames seen=%d; bf nframes=%d\n", 4464 __func__, nframes, nf); 4465 4466 /* 4467 * Now we know how many frames were bad, call the rate 4468 * control code. 4469 */ 4470 if (fail == 0) 4471 ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, 4472 nbad); 4473 4474 /* 4475 * send bar if we dropped any frames 4476 */ 4477 if (drops) { 4478 /* Suspend the TX queue and get ready to send the BAR */ 4479 ATH_TX_LOCK(sc); 4480 ath_tx_tid_bar_suspend(sc, atid); 4481 ATH_TX_UNLOCK(sc); 4482 } 4483 4484 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4485 "%s: txa_start now %d\n", __func__, tap->txa_start); 4486 4487 ATH_TX_LOCK(sc); 4488 4489 /* Prepend all frames to the beginning of the queue */ 4490 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4491 TAILQ_REMOVE(&bf_q, bf, bf_list); 4492 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 4493 } 4494 4495 /* 4496 * Reschedule to grab some further frames. 4497 */ 4498 ath_tx_tid_sched(sc, atid); 4499 4500 /* 4501 * If the queue is filtered, re-schedule as required. 4502 * 4503 * This is required as there may be a subsequent TX descriptor 4504 * for this end-node that has CLRDMASK set, so it's quite possible 4505 * that a filtered frame will be followed by a non-filtered 4506 * (complete or otherwise) frame. 4507 * 4508 * XXX should we do this before we complete the frame? 4509 */ 4510 if (atid->isfiltered) 4511 ath_tx_tid_filt_comp_complete(sc, atid); 4512 4513 finish_send_bar: 4514 4515 /* 4516 * Send BAR if required 4517 */ 4518 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4519 ath_tx_tid_bar_tx(sc, atid); 4520 4521 ATH_TX_UNLOCK(sc); 4522 4523 /* Do deferred completion */ 4524 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4525 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4526 ath_tx_default_comp(sc, bf, 0); 4527 } 4528 } 4529 4530 /* 4531 * Handle completion of unaggregated frames in an ADDBA 4532 * session. 4533 * 4534 * Fail is set to 1 if the entry is being freed via a call to 4535 * ath_tx_draintxq(). 4536 */ 4537 static void 4538 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail) 4539 { 4540 struct ieee80211_node *ni = bf->bf_node; 4541 struct ath_node *an = ATH_NODE(ni); 4542 int tid = bf->bf_state.bfs_tid; 4543 struct ath_tid *atid = &an->an_tid[tid]; 4544 struct ath_tx_status ts; 4545 int drops = 0; 4546 4547 /* 4548 * Take a copy of this; filtering/cloning the frame may free the 4549 * bf pointer. 4550 */ 4551 ts = bf->bf_status.ds_txstat; 4552 4553 /* 4554 * Update rate control status here, before we possibly 4555 * punt to retry or cleanup. 4556 * 4557 * Do it outside of the TXQ lock. 4558 */ 4559 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 4560 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 4561 &bf->bf_status.ds_txstat, 4562 bf->bf_state.bfs_pktlen, 4563 1, (ts.ts_status == 0) ? 0 : 1); 4564 4565 /* 4566 * This is called early so atid->hwq_depth can be tracked. 4567 * This unfortunately means that it's released and regrabbed 4568 * during retry and cleanup. That's rather inefficient. 4569 */ 4570 ATH_TX_LOCK(sc); 4571 4572 if (tid == IEEE80211_NONQOS_TID) 4573 device_printf(sc->sc_dev, "%s: TID=16!\n", __func__); 4574 4575 DPRINTF(sc, ATH_DEBUG_SW_TX, 4576 "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n", 4577 __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth, 4578 SEQNO(bf->bf_state.bfs_seqno)); 4579 4580 atid->hwq_depth--; 4581 if (atid->hwq_depth < 0) 4582 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4583 __func__, atid->hwq_depth); 4584 4585 /* 4586 * If the TID is filtered, handle completing the filter 4587 * transition before potentially kicking it to the cleanup 4588 * function. 4589 */ 4590 if (atid->isfiltered) 4591 ath_tx_tid_filt_comp_complete(sc, atid); 4592 4593 /* 4594 * If a cleanup is in progress, punt to comp_cleanup; 4595 * rather than handling it here. It's thus their 4596 * responsibility to clean up, call the completion 4597 * function in net80211, etc. 4598 */ 4599 if (atid->cleanup_inprogress) { 4600 if (atid->isfiltered) 4601 device_printf(sc->sc_dev, 4602 "%s: isfiltered=1, normal_comp?\n", 4603 __func__); 4604 ATH_TX_UNLOCK(sc); 4605 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n", 4606 __func__); 4607 ath_tx_comp_cleanup_unaggr(sc, bf); 4608 return; 4609 } 4610 4611 /* 4612 * XXX TODO: how does cleanup, BAR and filtered frame handling 4613 * overlap? 4614 * 4615 * If the frame is filtered OR if it's any failure but 4616 * the TID is filtered, the frame must be added to the 4617 * filtered frame list. 4618 * 4619 * However - a busy buffer can't be added to the filtered 4620 * list as it will end up being recycled without having 4621 * been made available for the hardware. 4622 */ 4623 if ((ts.ts_status & HAL_TXERR_FILT) || 4624 (ts.ts_status != 0 && atid->isfiltered)) { 4625 int freeframe; 4626 4627 if (fail != 0) 4628 device_printf(sc->sc_dev, 4629 "%s: isfiltered=1, fail=%d\n", 4630 __func__, 4631 fail); 4632 freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf); 4633 if (freeframe) { 4634 /* Remove from BAW */ 4635 if (bf->bf_state.bfs_addedbaw) 4636 drops++; 4637 if (bf->bf_state.bfs_dobaw) { 4638 ath_tx_update_baw(sc, an, atid, bf); 4639 if (! bf->bf_state.bfs_addedbaw) 4640 device_printf(sc->sc_dev, 4641 "%s: wasn't added: seqno %d\n", 4642 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4643 } 4644 bf->bf_state.bfs_dobaw = 0; 4645 } 4646 4647 /* 4648 * If the frame couldn't be filtered, treat it as a drop and 4649 * prepare to send a BAR. 4650 */ 4651 if (freeframe && drops) 4652 ath_tx_tid_bar_suspend(sc, atid); 4653 4654 /* 4655 * Send BAR if required 4656 */ 4657 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4658 ath_tx_tid_bar_tx(sc, atid); 4659 4660 ATH_TX_UNLOCK(sc); 4661 /* 4662 * If freeframe is set, then the frame couldn't be 4663 * cloned and bf is still valid. Just complete/free it. 4664 */ 4665 if (freeframe) 4666 ath_tx_default_comp(sc, bf, fail); 4667 4668 4669 return; 4670 } 4671 /* 4672 * Don't bother with the retry check if all frames 4673 * are being failed (eg during queue deletion.) 4674 */ 4675 #if 0 4676 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) { 4677 #endif 4678 if (fail == 0 && ts.ts_status != 0) { 4679 ATH_TX_UNLOCK(sc); 4680 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n", 4681 __func__); 4682 ath_tx_aggr_retry_unaggr(sc, bf); 4683 return; 4684 } 4685 4686 /* Success? Complete */ 4687 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n", 4688 __func__, tid, SEQNO(bf->bf_state.bfs_seqno)); 4689 if (bf->bf_state.bfs_dobaw) { 4690 ath_tx_update_baw(sc, an, atid, bf); 4691 bf->bf_state.bfs_dobaw = 0; 4692 if (! bf->bf_state.bfs_addedbaw) 4693 device_printf(sc->sc_dev, 4694 "%s: wasn't added: seqno %d\n", 4695 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4696 } 4697 4698 /* 4699 * If the queue is filtered, re-schedule as required. 4700 * 4701 * This is required as there may be a subsequent TX descriptor 4702 * for this end-node that has CLRDMASK set, so it's quite possible 4703 * that a filtered frame will be followed by a non-filtered 4704 * (complete or otherwise) frame. 4705 * 4706 * XXX should we do this before we complete the frame? 4707 */ 4708 if (atid->isfiltered) 4709 ath_tx_tid_filt_comp_complete(sc, atid); 4710 4711 /* 4712 * Send BAR if required 4713 */ 4714 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4715 ath_tx_tid_bar_tx(sc, atid); 4716 4717 ATH_TX_UNLOCK(sc); 4718 4719 ath_tx_default_comp(sc, bf, fail); 4720 /* bf is freed at this point */ 4721 } 4722 4723 void 4724 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4725 { 4726 if (bf->bf_state.bfs_aggr) 4727 ath_tx_aggr_comp_aggr(sc, bf, fail); 4728 else 4729 ath_tx_aggr_comp_unaggr(sc, bf, fail); 4730 } 4731 4732 /* 4733 * Schedule some packets from the given node/TID to the hardware. 4734 * 4735 * This is the aggregate version. 4736 */ 4737 void 4738 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an, 4739 struct ath_tid *tid) 4740 { 4741 struct ath_buf *bf; 4742 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4743 struct ieee80211_tx_ampdu *tap; 4744 ATH_AGGR_STATUS status; 4745 ath_bufhead bf_q; 4746 4747 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid); 4748 ATH_TX_LOCK_ASSERT(sc); 4749 4750 tap = ath_tx_get_tx_tid(an, tid->tid); 4751 4752 if (tid->tid == IEEE80211_NONQOS_TID) 4753 device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n", 4754 __func__); 4755 4756 for (;;) { 4757 status = ATH_AGGR_DONE; 4758 4759 /* 4760 * If the upper layer has paused the TID, don't 4761 * queue any further packets. 4762 * 4763 * This can also occur from the completion task because 4764 * of packet loss; but as its serialised with this code, 4765 * it won't "appear" half way through queuing packets. 4766 */ 4767 if (tid->paused) 4768 break; 4769 4770 bf = ATH_TID_FIRST(tid); 4771 if (bf == NULL) { 4772 break; 4773 } 4774 4775 /* 4776 * If the packet doesn't fall within the BAW (eg a NULL 4777 * data frame), schedule it directly; continue. 4778 */ 4779 if (! bf->bf_state.bfs_dobaw) { 4780 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4781 "%s: non-baw packet\n", 4782 __func__); 4783 ATH_TID_REMOVE(tid, bf, bf_list); 4784 4785 if (bf->bf_state.bfs_nframes > 1) 4786 device_printf(sc->sc_dev, 4787 "%s: aggr=%d, nframes=%d\n", 4788 __func__, 4789 bf->bf_state.bfs_aggr, 4790 bf->bf_state.bfs_nframes); 4791 4792 /* 4793 * This shouldn't happen - such frames shouldn't 4794 * ever have been queued as an aggregate in the 4795 * first place. However, make sure the fields 4796 * are correctly setup just to be totally sure. 4797 */ 4798 bf->bf_state.bfs_aggr = 0; 4799 bf->bf_state.bfs_nframes = 1; 4800 4801 /* Update CLRDMASK just before this frame is queued */ 4802 ath_tx_update_clrdmask(sc, tid, bf); 4803 4804 ath_tx_do_ratelookup(sc, bf); 4805 ath_tx_calc_duration(sc, bf); 4806 ath_tx_calc_protection(sc, bf); 4807 ath_tx_set_rtscts(sc, bf); 4808 ath_tx_rate_fill_rcflags(sc, bf); 4809 ath_tx_setds(sc, bf); 4810 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4811 4812 sc->sc_aggr_stats.aggr_nonbaw_pkt++; 4813 4814 /* Queue the packet; continue */ 4815 goto queuepkt; 4816 } 4817 4818 TAILQ_INIT(&bf_q); 4819 4820 /* 4821 * Do a rate control lookup on the first frame in the 4822 * list. The rate control code needs that to occur 4823 * before it can determine whether to TX. 4824 * It's inaccurate because the rate control code doesn't 4825 * really "do" aggregate lookups, so it only considers 4826 * the size of the first frame. 4827 */ 4828 ath_tx_do_ratelookup(sc, bf); 4829 bf->bf_state.bfs_rc[3].rix = 0; 4830 bf->bf_state.bfs_rc[3].tries = 0; 4831 4832 ath_tx_calc_duration(sc, bf); 4833 ath_tx_calc_protection(sc, bf); 4834 4835 ath_tx_set_rtscts(sc, bf); 4836 ath_tx_rate_fill_rcflags(sc, bf); 4837 4838 status = ath_tx_form_aggr(sc, an, tid, &bf_q); 4839 4840 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4841 "%s: ath_tx_form_aggr() status=%d\n", __func__, status); 4842 4843 /* 4844 * No frames to be picked up - out of BAW 4845 */ 4846 if (TAILQ_EMPTY(&bf_q)) 4847 break; 4848 4849 /* 4850 * This assumes that the descriptor list in the ath_bufhead 4851 * are already linked together via bf_next pointers. 4852 */ 4853 bf = TAILQ_FIRST(&bf_q); 4854 4855 if (status == ATH_AGGR_8K_LIMITED) 4856 sc->sc_aggr_stats.aggr_rts_aggr_limited++; 4857 4858 /* 4859 * If it's the only frame send as non-aggregate 4860 * assume that ath_tx_form_aggr() has checked 4861 * whether it's in the BAW and added it appropriately. 4862 */ 4863 if (bf->bf_state.bfs_nframes == 1) { 4864 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4865 "%s: single-frame aggregate\n", __func__); 4866 4867 /* Update CLRDMASK just before this frame is queued */ 4868 ath_tx_update_clrdmask(sc, tid, bf); 4869 4870 bf->bf_state.bfs_aggr = 0; 4871 bf->bf_state.bfs_ndelim = 0; 4872 ath_tx_setds(sc, bf); 4873 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4874 if (status == ATH_AGGR_BAW_CLOSED) 4875 sc->sc_aggr_stats.aggr_baw_closed_single_pkt++; 4876 else 4877 sc->sc_aggr_stats.aggr_single_pkt++; 4878 } else { 4879 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4880 "%s: multi-frame aggregate: %d frames, " 4881 "length %d\n", 4882 __func__, bf->bf_state.bfs_nframes, 4883 bf->bf_state.bfs_al); 4884 bf->bf_state.bfs_aggr = 1; 4885 sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++; 4886 sc->sc_aggr_stats.aggr_aggr_pkt++; 4887 4888 /* Update CLRDMASK just before this frame is queued */ 4889 ath_tx_update_clrdmask(sc, tid, bf); 4890 4891 /* 4892 * Calculate the duration/protection as required. 4893 */ 4894 ath_tx_calc_duration(sc, bf); 4895 ath_tx_calc_protection(sc, bf); 4896 4897 /* 4898 * Update the rate and rtscts information based on the 4899 * rate decision made by the rate control code; 4900 * the first frame in the aggregate needs it. 4901 */ 4902 ath_tx_set_rtscts(sc, bf); 4903 4904 /* 4905 * Setup the relevant descriptor fields 4906 * for aggregation. The first descriptor 4907 * already points to the rest in the chain. 4908 */ 4909 ath_tx_setds_11n(sc, bf); 4910 4911 } 4912 queuepkt: 4913 /* Set completion handler, multi-frame aggregate or not */ 4914 bf->bf_comp = ath_tx_aggr_comp; 4915 4916 if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID) 4917 device_printf(sc->sc_dev, "%s: TID=16?\n", __func__); 4918 4919 /* Punt to txq */ 4920 ath_tx_handoff(sc, txq, bf); 4921 4922 /* Track outstanding buffer count to hardware */ 4923 /* aggregates are "one" buffer */ 4924 tid->hwq_depth++; 4925 4926 /* 4927 * Break out if ath_tx_form_aggr() indicated 4928 * there can't be any further progress (eg BAW is full.) 4929 * Checking for an empty txq is done above. 4930 * 4931 * XXX locking on txq here? 4932 */ 4933 if (txq->axq_aggr_depth >= sc->sc_hwq_limit || 4934 status == ATH_AGGR_BAW_CLOSED) 4935 break; 4936 } 4937 } 4938 4939 /* 4940 * Schedule some packets from the given node/TID to the hardware. 4941 */ 4942 void 4943 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an, 4944 struct ath_tid *tid) 4945 { 4946 struct ath_buf *bf; 4947 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4948 4949 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n", 4950 __func__, an, tid->tid); 4951 4952 ATH_TX_LOCK_ASSERT(sc); 4953 4954 /* Check - is AMPDU pending or running? then print out something */ 4955 if (ath_tx_ampdu_pending(sc, an, tid->tid)) 4956 device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n", 4957 __func__, tid->tid); 4958 if (ath_tx_ampdu_running(sc, an, tid->tid)) 4959 device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n", 4960 __func__, tid->tid); 4961 4962 for (;;) { 4963 4964 /* 4965 * If the upper layers have paused the TID, don't 4966 * queue any further packets. 4967 */ 4968 if (tid->paused) 4969 break; 4970 4971 bf = ATH_TID_FIRST(tid); 4972 if (bf == NULL) { 4973 break; 4974 } 4975 4976 ATH_TID_REMOVE(tid, bf, bf_list); 4977 4978 /* Sanity check! */ 4979 if (tid->tid != bf->bf_state.bfs_tid) { 4980 device_printf(sc->sc_dev, "%s: bfs_tid %d !=" 4981 " tid %d\n", 4982 __func__, bf->bf_state.bfs_tid, tid->tid); 4983 } 4984 /* Normal completion handler */ 4985 bf->bf_comp = ath_tx_normal_comp; 4986 4987 /* 4988 * Override this for now, until the non-aggregate 4989 * completion handler correctly handles software retransmits. 4990 */ 4991 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 4992 4993 /* Update CLRDMASK just before this frame is queued */ 4994 ath_tx_update_clrdmask(sc, tid, bf); 4995 4996 /* Program descriptors + rate control */ 4997 ath_tx_do_ratelookup(sc, bf); 4998 ath_tx_calc_duration(sc, bf); 4999 ath_tx_calc_protection(sc, bf); 5000 ath_tx_set_rtscts(sc, bf); 5001 ath_tx_rate_fill_rcflags(sc, bf); 5002 ath_tx_setds(sc, bf); 5003 5004 /* Track outstanding buffer count to hardware */ 5005 /* aggregates are "one" buffer */ 5006 tid->hwq_depth++; 5007 5008 /* Punt to hardware or software txq */ 5009 ath_tx_handoff(sc, txq, bf); 5010 } 5011 } 5012 5013 /* 5014 * Schedule some packets to the given hardware queue. 5015 * 5016 * This function walks the list of TIDs (ie, ath_node TIDs 5017 * with queued traffic) and attempts to schedule traffic 5018 * from them. 5019 * 5020 * TID scheduling is implemented as a FIFO, with TIDs being 5021 * added to the end of the queue after some frames have been 5022 * scheduled. 5023 */ 5024 void 5025 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq) 5026 { 5027 struct ath_tid *tid, *next, *last; 5028 5029 ATH_TX_LOCK_ASSERT(sc); 5030 5031 /* 5032 * Don't schedule if the hardware queue is busy. 5033 * This (hopefully) gives some more time to aggregate 5034 * some packets in the aggregation queue. 5035 */ 5036 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 5037 sc->sc_aggr_stats.aggr_sched_nopkt++; 5038 return; 5039 } 5040 5041 last = TAILQ_LAST(&txq->axq_tidq, axq_t_s); 5042 5043 TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) { 5044 /* 5045 * Suspend paused queues here; they'll be resumed 5046 * once the addba completes or times out. 5047 */ 5048 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n", 5049 __func__, tid->tid, tid->paused); 5050 ath_tx_tid_unsched(sc, tid); 5051 if (tid->paused) { 5052 continue; 5053 } 5054 if (ath_tx_ampdu_running(sc, tid->an, tid->tid)) 5055 ath_tx_tid_hw_queue_aggr(sc, tid->an, tid); 5056 else 5057 ath_tx_tid_hw_queue_norm(sc, tid->an, tid); 5058 5059 /* Not empty? Re-schedule */ 5060 if (tid->axq_depth != 0) 5061 ath_tx_tid_sched(sc, tid); 5062 5063 /* Give the software queue time to aggregate more packets */ 5064 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 5065 break; 5066 } 5067 5068 /* 5069 * If this was the last entry on the original list, stop. 5070 * Otherwise nodes that have been rescheduled onto the end 5071 * of the TID FIFO list will just keep being rescheduled. 5072 */ 5073 if (tid == last) 5074 break; 5075 } 5076 } 5077 5078 /* 5079 * TX addba handling 5080 */ 5081 5082 /* 5083 * Return net80211 TID struct pointer, or NULL for none 5084 */ 5085 struct ieee80211_tx_ampdu * 5086 ath_tx_get_tx_tid(struct ath_node *an, int tid) 5087 { 5088 struct ieee80211_node *ni = &an->an_node; 5089 struct ieee80211_tx_ampdu *tap; 5090 5091 if (tid == IEEE80211_NONQOS_TID) 5092 return NULL; 5093 5094 tap = &ni->ni_tx_ampdu[tid]; 5095 return tap; 5096 } 5097 5098 /* 5099 * Is AMPDU-TX running? 5100 */ 5101 static int 5102 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid) 5103 { 5104 struct ieee80211_tx_ampdu *tap; 5105 5106 if (tid == IEEE80211_NONQOS_TID) 5107 return 0; 5108 5109 tap = ath_tx_get_tx_tid(an, tid); 5110 if (tap == NULL) 5111 return 0; /* Not valid; default to not running */ 5112 5113 return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING); 5114 } 5115 5116 /* 5117 * Is AMPDU-TX negotiation pending? 5118 */ 5119 static int 5120 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid) 5121 { 5122 struct ieee80211_tx_ampdu *tap; 5123 5124 if (tid == IEEE80211_NONQOS_TID) 5125 return 0; 5126 5127 tap = ath_tx_get_tx_tid(an, tid); 5128 if (tap == NULL) 5129 return 0; /* Not valid; default to not pending */ 5130 5131 return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND); 5132 } 5133 5134 /* 5135 * Is AMPDU-TX pending for the given TID? 5136 */ 5137 5138 5139 /* 5140 * Method to handle sending an ADDBA request. 5141 * 5142 * We tap this so the relevant flags can be set to pause the TID 5143 * whilst waiting for the response. 5144 * 5145 * XXX there's no timeout handler we can override? 5146 */ 5147 int 5148 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5149 int dialogtoken, int baparamset, int batimeout) 5150 { 5151 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5152 int tid = tap->txa_tid; 5153 struct ath_node *an = ATH_NODE(ni); 5154 struct ath_tid *atid = &an->an_tid[tid]; 5155 5156 /* 5157 * XXX danger Will Robinson! 5158 * 5159 * Although the taskqueue may be running and scheduling some more 5160 * packets, these should all be _before_ the addba sequence number. 5161 * However, net80211 will keep self-assigning sequence numbers 5162 * until addba has been negotiated. 5163 * 5164 * In the past, these packets would be "paused" (which still works 5165 * fine, as they're being scheduled to the driver in the same 5166 * serialised method which is calling the addba request routine) 5167 * and when the aggregation session begins, they'll be dequeued 5168 * as aggregate packets and added to the BAW. However, now there's 5169 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these 5170 * packets. Thus they never get included in the BAW tracking and 5171 * this can cause the initial burst of packets after the addba 5172 * negotiation to "hang", as they quickly fall outside the BAW. 5173 * 5174 * The "eventual" solution should be to tag these packets with 5175 * dobaw. Although net80211 has given us a sequence number, 5176 * it'll be "after" the left edge of the BAW and thus it'll 5177 * fall within it. 5178 */ 5179 ATH_TX_LOCK(sc); 5180 /* 5181 * This is a bit annoying. Until net80211 HT code inherits some 5182 * (any) locking, we may have this called in parallel BUT only 5183 * one response/timeout will be called. Grr. 5184 */ 5185 if (atid->addba_tx_pending == 0) { 5186 ath_tx_tid_pause(sc, atid); 5187 atid->addba_tx_pending = 1; 5188 } 5189 ATH_TX_UNLOCK(sc); 5190 5191 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5192 "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n", 5193 __func__, dialogtoken, baparamset, batimeout); 5194 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5195 "%s: txa_start=%d, ni_txseqs=%d\n", 5196 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5197 5198 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 5199 batimeout); 5200 } 5201 5202 /* 5203 * Handle an ADDBA response. 5204 * 5205 * We unpause the queue so TX'ing can resume. 5206 * 5207 * Any packets TX'ed from this point should be "aggregate" (whether 5208 * aggregate or not) so the BAW is updated. 5209 * 5210 * Note! net80211 keeps self-assigning sequence numbers until 5211 * ampdu is negotiated. This means the initially-negotiated BAW left 5212 * edge won't match the ni->ni_txseq. 5213 * 5214 * So, being very dirty, the BAW left edge is "slid" here to match 5215 * ni->ni_txseq. 5216 * 5217 * What likely SHOULD happen is that all packets subsequent to the 5218 * addba request should be tagged as aggregate and queued as non-aggregate 5219 * frames; thus updating the BAW. For now though, I'll just slide the 5220 * window. 5221 */ 5222 int 5223 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5224 int status, int code, int batimeout) 5225 { 5226 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5227 int tid = tap->txa_tid; 5228 struct ath_node *an = ATH_NODE(ni); 5229 struct ath_tid *atid = &an->an_tid[tid]; 5230 int r; 5231 5232 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5233 "%s: called; status=%d, code=%d, batimeout=%d\n", __func__, 5234 status, code, batimeout); 5235 5236 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5237 "%s: txa_start=%d, ni_txseqs=%d\n", 5238 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5239 5240 /* 5241 * Call this first, so the interface flags get updated 5242 * before the TID is unpaused. Otherwise a race condition 5243 * exists where the unpaused TID still doesn't yet have 5244 * IEEE80211_AGGR_RUNNING set. 5245 */ 5246 r = sc->sc_addba_response(ni, tap, status, code, batimeout); 5247 5248 ATH_TX_LOCK(sc); 5249 atid->addba_tx_pending = 0; 5250 /* 5251 * XXX dirty! 5252 * Slide the BAW left edge to wherever net80211 left it for us. 5253 * Read above for more information. 5254 */ 5255 tap->txa_start = ni->ni_txseqs[tid]; 5256 ath_tx_tid_resume(sc, atid); 5257 ATH_TX_UNLOCK(sc); 5258 return r; 5259 } 5260 5261 5262 /* 5263 * Stop ADDBA on a queue. 5264 * 5265 * This can be called whilst BAR TX is currently active on the queue, 5266 * so make sure this is unblocked before continuing. 5267 */ 5268 void 5269 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 5270 { 5271 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5272 int tid = tap->txa_tid; 5273 struct ath_node *an = ATH_NODE(ni); 5274 struct ath_tid *atid = &an->an_tid[tid]; 5275 5276 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__); 5277 5278 /* 5279 * Pause TID traffic early, so there aren't any races 5280 * Unblock the pending BAR held traffic, if it's currently paused. 5281 */ 5282 ATH_TX_LOCK(sc); 5283 ath_tx_tid_pause(sc, atid); 5284 if (atid->bar_wait) { 5285 /* 5286 * bar_unsuspend() expects bar_tx == 1, as it should be 5287 * called from the TX completion path. This quietens 5288 * the warning. It's cleared for us anyway. 5289 */ 5290 atid->bar_tx = 1; 5291 ath_tx_tid_bar_unsuspend(sc, atid); 5292 } 5293 ATH_TX_UNLOCK(sc); 5294 5295 /* There's no need to hold the TXQ lock here */ 5296 sc->sc_addba_stop(ni, tap); 5297 5298 /* 5299 * ath_tx_tid_cleanup will resume the TID if possible, otherwise 5300 * it'll set the cleanup flag, and it'll be unpaused once 5301 * things have been cleaned up. 5302 */ 5303 ath_tx_tid_cleanup(sc, an, tid); 5304 } 5305 5306 /* 5307 * Note: net80211 bar_timeout() doesn't call this function on BAR failure; 5308 * it simply tears down the aggregation session. Ew. 5309 * 5310 * It however will call ieee80211_ampdu_stop() which will call 5311 * ic->ic_addba_stop(). 5312 * 5313 * XXX This uses a hard-coded max BAR count value; the whole 5314 * XXX BAR TX success or failure should be better handled! 5315 */ 5316 void 5317 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5318 int status) 5319 { 5320 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5321 int tid = tap->txa_tid; 5322 struct ath_node *an = ATH_NODE(ni); 5323 struct ath_tid *atid = &an->an_tid[tid]; 5324 int attempts = tap->txa_attempts; 5325 5326 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 5327 "%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n", 5328 __func__, 5329 tap, 5330 atid, 5331 tap->txa_tid, 5332 atid->tid, 5333 status, 5334 attempts); 5335 5336 /* Note: This may update the BAW details */ 5337 sc->sc_bar_response(ni, tap, status); 5338 5339 /* Unpause the TID */ 5340 /* 5341 * XXX if this is attempt=50, the TID will be downgraded 5342 * XXX to a non-aggregate session. So we must unpause the 5343 * XXX TID here or it'll never be done. 5344 * 5345 * Also, don't call it if bar_tx/bar_wait are 0; something 5346 * has beaten us to the punch? (XXX figure out what?) 5347 */ 5348 if (status == 0 || attempts == 50) { 5349 ATH_TX_LOCK(sc); 5350 if (atid->bar_tx == 0 || atid->bar_wait == 0) 5351 device_printf(sc->sc_dev, 5352 "%s: huh? bar_tx=%d, bar_wait=%d\n", 5353 __func__, 5354 atid->bar_tx, atid->bar_wait); 5355 else 5356 ath_tx_tid_bar_unsuspend(sc, atid); 5357 ATH_TX_UNLOCK(sc); 5358 } 5359 } 5360 5361 /* 5362 * This is called whenever the pending ADDBA request times out. 5363 * Unpause and reschedule the TID. 5364 */ 5365 void 5366 ath_addba_response_timeout(struct ieee80211_node *ni, 5367 struct ieee80211_tx_ampdu *tap) 5368 { 5369 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5370 int tid = tap->txa_tid; 5371 struct ath_node *an = ATH_NODE(ni); 5372 struct ath_tid *atid = &an->an_tid[tid]; 5373 5374 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5375 "%s: called; resuming\n", __func__); 5376 5377 ATH_TX_LOCK(sc); 5378 atid->addba_tx_pending = 0; 5379 ATH_TX_UNLOCK(sc); 5380 5381 /* Note: This updates the aggregate state to (again) pending */ 5382 sc->sc_addba_response_timeout(ni, tap); 5383 5384 /* Unpause the TID; which reschedules it */ 5385 ATH_TX_LOCK(sc); 5386 ath_tx_tid_resume(sc, atid); 5387 ATH_TX_UNLOCK(sc); 5388 } 5389 5390 /* 5391 * Check if a node is asleep or not. 5392 */ 5393 int 5394 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an) 5395 { 5396 5397 ATH_NODE_LOCK_ASSERT(an); 5398 5399 return (an->an_is_powersave); 5400 } 5401 5402 /* 5403 * Mark a node as currently "in powersaving." 5404 * This suspends all traffic on the node. 5405 * 5406 * This must be called with the node/tx locks free. 5407 * 5408 * XXX TODO: the locking silliness below is due to how the node 5409 * locking currently works. Right now, the node lock is grabbed 5410 * to do rate control lookups and these are done with the TX 5411 * queue lock held. This means the node lock can't be grabbed 5412 * first here or a LOR will occur. 5413 * 5414 * Eventually (hopefully!) the TX path code will only grab 5415 * the TXQ lock when transmitting and the ath_node lock when 5416 * doing node/TID operations. There are other complications - 5417 * the sched/unsched operations involve walking the per-txq 5418 * 'active tid' list and this requires both locks to be held. 5419 */ 5420 void 5421 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an) 5422 { 5423 struct ath_tid *atid; 5424 struct ath_txq *txq; 5425 int tid; 5426 5427 ATH_NODE_UNLOCK_ASSERT(an); 5428 5429 /* 5430 * It's possible that a parallel call to ath_tx_node_wakeup() 5431 * will unpause these queues. 5432 * 5433 * The node lock can't just be grabbed here, as there's places 5434 * in the driver where the node lock is grabbed _within_ a 5435 * TXQ lock. 5436 * So, we do this delicately and unwind state if needed. 5437 * 5438 * + Pause all the queues 5439 * + Grab the node lock 5440 * + If the queue is already asleep, unpause and quit 5441 * + else just mark as asleep. 5442 * 5443 * A parallel sleep() call will just pause and then 5444 * find they're already paused, so undo it. 5445 * 5446 * A parallel wakeup() call will check if asleep is 1 5447 * and if it's not (ie, it's 0), it'll treat it as already 5448 * being awake. If it's 1, it'll mark it as 0 and then 5449 * unpause everything. 5450 * 5451 * (Talk about a delicate hack.) 5452 */ 5453 5454 /* Suspend all traffic on the node */ 5455 ATH_TX_LOCK(sc); 5456 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5457 atid = &an->an_tid[tid]; 5458 txq = sc->sc_ac2q[atid->ac]; 5459 5460 ath_tx_tid_pause(sc, atid); 5461 } 5462 ATH_TX_UNLOCK(sc); 5463 5464 ATH_NODE_LOCK(an); 5465 5466 /* In case of concurrency races from net80211.. */ 5467 if (an->an_is_powersave == 1) { 5468 ATH_NODE_UNLOCK(an); 5469 device_printf(sc->sc_dev, 5470 "%s: an=%p: node was already asleep\n", 5471 __func__, an); 5472 ATH_TX_LOCK(sc); 5473 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5474 atid = &an->an_tid[tid]; 5475 txq = sc->sc_ac2q[atid->ac]; 5476 5477 ath_tx_tid_resume(sc, atid); 5478 } 5479 ATH_TX_UNLOCK(sc); 5480 return; 5481 } 5482 5483 /* Mark node as in powersaving */ 5484 an->an_is_powersave = 1; 5485 5486 ATH_NODE_UNLOCK(an); 5487 } 5488 5489 /* 5490 * Mark a node as currently "awake." 5491 * This resumes all traffic to the node. 5492 */ 5493 void 5494 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an) 5495 { 5496 struct ath_tid *atid; 5497 struct ath_txq *txq; 5498 int tid; 5499 5500 ATH_NODE_UNLOCK_ASSERT(an); 5501 ATH_NODE_LOCK(an); 5502 5503 /* In case of concurrency races from net80211.. */ 5504 if (an->an_is_powersave == 0) { 5505 ATH_NODE_UNLOCK(an); 5506 device_printf(sc->sc_dev, 5507 "%s: an=%p: node was already awake\n", 5508 __func__, an); 5509 return; 5510 } 5511 5512 /* Mark node as awake */ 5513 an->an_is_powersave = 0; 5514 5515 ATH_NODE_UNLOCK(an); 5516 5517 ATH_TX_LOCK(sc); 5518 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5519 atid = &an->an_tid[tid]; 5520 txq = sc->sc_ac2q[atid->ac]; 5521 5522 ath_tx_tid_resume(sc, atid); 5523 } 5524 ATH_TX_UNLOCK(sc); 5525 } 5526 5527 static int 5528 ath_legacy_dma_txsetup(struct ath_softc *sc) 5529 { 5530 5531 /* nothing new needed */ 5532 return (0); 5533 } 5534 5535 static int 5536 ath_legacy_dma_txteardown(struct ath_softc *sc) 5537 { 5538 5539 /* nothing new needed */ 5540 return (0); 5541 } 5542 5543 void 5544 ath_xmit_setup_legacy(struct ath_softc *sc) 5545 { 5546 /* 5547 * For now, just set the descriptor length to sizeof(ath_desc); 5548 * worry about extracting the real length out of the HAL later. 5549 */ 5550 sc->sc_tx_desclen = sizeof(struct ath_desc); 5551 sc->sc_tx_statuslen = sizeof(struct ath_desc); 5552 sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */ 5553 5554 sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup; 5555 sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown; 5556 sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func; 5557 5558 sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart; 5559 sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff; 5560 5561 sc->sc_tx.xmit_drain = ath_legacy_tx_drain; 5562 } 5563