xref: /freebsd/sys/dev/ath/if_ath_tx.c (revision dabf006a638fdc44cdcf69731de8ac83959db731)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
16  *    redistribution must be conditioned upon including a substantially
17  *    similar Disclaimer requirement for further binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
23  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
24  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
25  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
28  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGES.
31  */
32 
33 #include <sys/cdefs.h>
34 /*
35  * Driver for the Atheros Wireless LAN controller.
36  *
37  * This software is derived from work of Atsushi Onoe; his contribution
38  * is greatly appreciated.
39  */
40 
41 #include "opt_inet.h"
42 #include "opt_ath.h"
43 #include "opt_wlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/mbuf.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/kernel.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/errno.h>
56 #include <sys/callout.h>
57 #include <sys/bus.h>
58 #include <sys/endian.h>
59 #include <sys/kthread.h>
60 #include <sys/taskqueue.h>
61 #include <sys/priv.h>
62 #include <sys/ktr.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_types.h>
71 #include <net/if_arp.h>
72 #include <net/ethernet.h>
73 #include <net/if_llc.h>
74 
75 #include <net80211/ieee80211_var.h>
76 #include <net80211/ieee80211_regdomain.h>
77 #ifdef IEEE80211_SUPPORT_SUPERG
78 #include <net80211/ieee80211_superg.h>
79 #endif
80 #ifdef IEEE80211_SUPPORT_TDMA
81 #include <net80211/ieee80211_tdma.h>
82 #endif
83 #include <net80211/ieee80211_ht.h>
84 
85 #include <net/bpf.h>
86 
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/if_ether.h>
90 #endif
91 
92 #include <dev/ath/if_athvar.h>
93 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
94 #include <dev/ath/ath_hal/ah_diagcodes.h>
95 
96 #include <dev/ath/if_ath_debug.h>
97 
98 #ifdef ATH_TX99_DIAG
99 #include <dev/ath/ath_tx99/ath_tx99.h>
100 #endif
101 
102 #include <dev/ath/if_ath_misc.h>
103 #include <dev/ath/if_ath_tx.h>
104 #include <dev/ath/if_ath_tx_ht.h>
105 
106 #ifdef	ATH_DEBUG_ALQ
107 #include <dev/ath/if_ath_alq.h>
108 #endif
109 
110 /*
111  * How many retries to perform in software
112  */
113 #define	SWMAX_RETRIES		10
114 
115 /*
116  * What queue to throw the non-QoS TID traffic into
117  */
118 #define	ATH_NONQOS_TID_AC	WME_AC_VO
119 
120 #if 0
121 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an);
122 #endif
123 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
124     int tid);
125 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
126     int tid);
127 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
128     struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
129 static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
130     struct ieee80211_node *ni, struct mbuf *m0, int *tid);
131 static struct ath_buf *
132 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
133     struct ath_tid *tid, struct ath_buf *bf);
134 
135 #ifdef	ATH_DEBUG_ALQ
136 void
137 ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first)
138 {
139 	struct ath_buf *bf;
140 	int i, n;
141 	const char *ds;
142 
143 	/* XXX we should skip out early if debugging isn't enabled! */
144 	bf = bf_first;
145 
146 	while (bf != NULL) {
147 		/* XXX should ensure bf_nseg > 0! */
148 		if (bf->bf_nseg == 0)
149 			break;
150 		n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1;
151 		for (i = 0, ds = (const char *) bf->bf_desc;
152 		    i < n;
153 		    i++, ds += sc->sc_tx_desclen) {
154 			if_ath_alq_post(&sc->sc_alq,
155 			    ATH_ALQ_EDMA_TXDESC,
156 			    sc->sc_tx_desclen,
157 			    ds);
158 		}
159 		bf = bf->bf_next;
160 	}
161 }
162 #endif /* ATH_DEBUG_ALQ */
163 
164 /*
165  * Whether to use the 11n rate scenario functions or not
166  */
167 static inline int
168 ath_tx_is_11n(struct ath_softc *sc)
169 {
170 	return ((sc->sc_ah->ah_magic == 0x20065416) ||
171 		    (sc->sc_ah->ah_magic == 0x19741014));
172 }
173 
174 /*
175  * Obtain the current TID from the given frame.
176  *
177  * Non-QoS frames get mapped to a TID so frames consistently
178  * go on a sensible queue.
179  */
180 static int
181 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
182 {
183 	const struct ieee80211_frame *wh;
184 
185 	wh = mtod(m0, const struct ieee80211_frame *);
186 
187 	/* Non-QoS: map frame to a TID queue for software queueing */
188 	if (! IEEE80211_QOS_HAS_SEQ(wh))
189 		return (WME_AC_TO_TID(M_WME_GETAC(m0)));
190 
191 	/* QoS - fetch the TID from the header, ignore mbuf WME */
192 	return (ieee80211_gettid(wh));
193 }
194 
195 static void
196 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
197 {
198 	struct ieee80211_frame *wh;
199 
200 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
201 	/* Only update/resync if needed */
202 	if (bf->bf_state.bfs_isretried == 0) {
203 		wh->i_fc[1] |= IEEE80211_FC1_RETRY;
204 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
205 		    BUS_DMASYNC_PREWRITE);
206 	}
207 	bf->bf_state.bfs_isretried = 1;
208 	bf->bf_state.bfs_retries ++;
209 }
210 
211 /*
212  * Determine what the correct AC queue for the given frame
213  * should be.
214  *
215  * For QoS frames, obey the TID.  That way things like
216  * management frames that are related to a given TID
217  * are thus serialised with the rest of the TID traffic,
218  * regardless of net80211 overriding priority.
219  *
220  * For non-QoS frames, return the mbuf WMI priority.
221  *
222  * This has implications that higher priority non-QoS traffic
223  * may end up being scheduled before other non-QoS traffic,
224  * leading to out-of-sequence packets being emitted.
225  *
226  * (It'd be nice to log/count this so we can see if it
227  * really is a problem.)
228  *
229  * TODO: maybe we should throw multicast traffic, QoS or
230  * otherwise, into a separate TX queue?
231  */
232 static int
233 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
234 {
235 	const struct ieee80211_frame *wh;
236 
237 	wh = mtod(m0, const struct ieee80211_frame *);
238 
239 	/*
240 	 * QoS data frame (sequence number or otherwise) -
241 	 * return hardware queue mapping for the underlying
242 	 * TID.
243 	 */
244 	if (IEEE80211_QOS_HAS_SEQ(wh))
245 		return TID_TO_WME_AC(ieee80211_gettid(wh));
246 
247 	/*
248 	 * Otherwise - return mbuf QoS pri.
249 	 */
250 	return (M_WME_GETAC(m0));
251 }
252 
253 void
254 ath_txfrag_cleanup(struct ath_softc *sc,
255 	ath_bufhead *frags, struct ieee80211_node *ni)
256 {
257 	struct ath_buf *bf, *next;
258 
259 	ATH_TXBUF_LOCK_ASSERT(sc);
260 
261 	TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
262 		/* NB: bf assumed clean */
263 		TAILQ_REMOVE(frags, bf, bf_list);
264 		ath_returnbuf_head(sc, bf);
265 		ieee80211_node_decref(ni);
266 	}
267 }
268 
269 /*
270  * Setup xmit of a fragmented frame.  Allocate a buffer
271  * for each frag and bump the node reference count to
272  * reflect the held reference to be setup by ath_tx_start.
273  */
274 int
275 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
276 	struct mbuf *m0, struct ieee80211_node *ni)
277 {
278 	struct mbuf *m;
279 	struct ath_buf *bf;
280 
281 	ATH_TXBUF_LOCK(sc);
282 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
283 		/* XXX non-management? */
284 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
285 		if (bf == NULL) {	/* out of buffers, cleanup */
286 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: no buffer?\n",
287 			    __func__);
288 			ath_txfrag_cleanup(sc, frags, ni);
289 			break;
290 		}
291 		(void) ieee80211_ref_node(ni);
292 		TAILQ_INSERT_TAIL(frags, bf, bf_list);
293 	}
294 	ATH_TXBUF_UNLOCK(sc);
295 
296 	return !TAILQ_EMPTY(frags);
297 }
298 
299 static int
300 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
301 {
302 	struct mbuf *m;
303 	int error;
304 
305 	/*
306 	 * Load the DMA map so any coalescing is done.  This
307 	 * also calculates the number of descriptors we need.
308 	 */
309 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
310 				     bf->bf_segs, &bf->bf_nseg,
311 				     BUS_DMA_NOWAIT);
312 	if (error == EFBIG) {
313 		/* XXX packet requires too many descriptors */
314 		bf->bf_nseg = ATH_MAX_SCATTER + 1;
315 	} else if (error != 0) {
316 		sc->sc_stats.ast_tx_busdma++;
317 		ieee80211_free_mbuf(m0);
318 		return error;
319 	}
320 	/*
321 	 * Discard null packets and check for packets that
322 	 * require too many TX descriptors.  We try to convert
323 	 * the latter to a cluster.
324 	 */
325 	if (bf->bf_nseg > ATH_MAX_SCATTER) {		/* too many desc's, linearize */
326 		sc->sc_stats.ast_tx_linear++;
327 		m = m_collapse(m0, M_NOWAIT, ATH_MAX_SCATTER);
328 		if (m == NULL) {
329 			ieee80211_free_mbuf(m0);
330 			sc->sc_stats.ast_tx_nombuf++;
331 			return ENOMEM;
332 		}
333 		m0 = m;
334 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
335 					     bf->bf_segs, &bf->bf_nseg,
336 					     BUS_DMA_NOWAIT);
337 		if (error != 0) {
338 			sc->sc_stats.ast_tx_busdma++;
339 			ieee80211_free_mbuf(m0);
340 			return error;
341 		}
342 		KASSERT(bf->bf_nseg <= ATH_MAX_SCATTER,
343 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
344 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
345 		sc->sc_stats.ast_tx_nodata++;
346 		ieee80211_free_mbuf(m0);
347 		return EIO;
348 	}
349 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
350 		__func__, m0, m0->m_pkthdr.len);
351 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
352 	bf->bf_m = m0;
353 
354 	return 0;
355 }
356 
357 /*
358  * Chain together segments+descriptors for a frame - 11n or otherwise.
359  *
360  * For aggregates, this is called on each frame in the aggregate.
361  */
362 static void
363 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0,
364     struct ath_buf *bf, bool is_aggr, int is_first_subframe,
365     int is_last_subframe)
366 {
367 	struct ath_hal *ah = sc->sc_ah;
368 	char *ds;
369 	int i, bp, dsp;
370 	HAL_DMA_ADDR bufAddrList[4];
371 	uint32_t segLenList[4];
372 	int numTxMaps = 1;
373 	int isFirstDesc = 1;
374 
375 	/*
376 	 * XXX There's txdma and txdma_mgmt; the descriptor
377 	 * sizes must match.
378 	 */
379 	struct ath_descdma *dd = &sc->sc_txdma;
380 
381 	/*
382 	 * Fillin the remainder of the descriptor info.
383 	 */
384 
385 	/*
386 	 * We need the number of TX data pointers in each descriptor.
387 	 * EDMA and later chips support 4 TX buffers per descriptor;
388 	 * previous chips just support one.
389 	 */
390 	numTxMaps = sc->sc_tx_nmaps;
391 
392 	/*
393 	 * For EDMA and later chips ensure the TX map is fully populated
394 	 * before advancing to the next descriptor.
395 	 */
396 	ds = (char *) bf->bf_desc;
397 	bp = dsp = 0;
398 	bzero(bufAddrList, sizeof(bufAddrList));
399 	bzero(segLenList, sizeof(segLenList));
400 	for (i = 0; i < bf->bf_nseg; i++) {
401 		bufAddrList[bp] = bf->bf_segs[i].ds_addr;
402 		segLenList[bp] = bf->bf_segs[i].ds_len;
403 		bp++;
404 
405 		/*
406 		 * Go to the next segment if this isn't the last segment
407 		 * and there's space in the current TX map.
408 		 */
409 		if ((i != bf->bf_nseg - 1) && (bp < numTxMaps))
410 			continue;
411 
412 		/*
413 		 * Last segment or we're out of buffer pointers.
414 		 */
415 		bp = 0;
416 
417 		if (i == bf->bf_nseg - 1)
418 			ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0);
419 		else
420 			ath_hal_settxdesclink(ah, (struct ath_desc *) ds,
421 			    bf->bf_daddr + dd->dd_descsize * (dsp + 1));
422 
423 		/*
424 		 * XXX This assumes that bfs_txq is the actual destination
425 		 * hardware queue at this point.  It may not have been
426 		 * assigned, it may actually be pointing to the multicast
427 		 * software TXQ id.  These must be fixed!
428 		 */
429 		ath_hal_filltxdesc(ah, (struct ath_desc *) ds
430 			, bufAddrList
431 			, segLenList
432 			, bf->bf_descid		/* XXX desc id */
433 			, bf->bf_state.bfs_tx_queue
434 			, isFirstDesc		/* first segment */
435 			, i == bf->bf_nseg - 1	/* last segment */
436 			, (struct ath_desc *) ds0	/* first descriptor */
437 		);
438 
439 		/*
440 		 * Make sure the 11n aggregate fields are cleared.
441 		 *
442 		 * XXX TODO: this doesn't need to be called for
443 		 * aggregate frames; as it'll be called on all
444 		 * sub-frames.  Since the descriptors are in
445 		 * non-cacheable memory, this leads to some
446 		 * rather slow writes on MIPS/ARM platforms.
447 		 */
448 		if (ath_tx_is_11n(sc))
449 			ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds);
450 
451 		/*
452 		 * If 11n is enabled, set it up as if it's an aggregate
453 		 * frame.
454 		 */
455 		if (is_last_subframe) {
456 			ath_hal_set11n_aggr_last(sc->sc_ah,
457 			    (struct ath_desc *) ds);
458 		} else if (is_aggr) {
459 			/*
460 			 * This clears the aggrlen field; so
461 			 * the caller needs to call set_aggr_first()!
462 			 *
463 			 * XXX TODO: don't call this for the first
464 			 * descriptor in the first frame in an
465 			 * aggregate!
466 			 */
467 			ath_hal_set11n_aggr_middle(sc->sc_ah,
468 			    (struct ath_desc *) ds,
469 			    bf->bf_state.bfs_ndelim);
470 		}
471 		isFirstDesc = 0;
472 		bf->bf_lastds = (struct ath_desc *) ds;
473 
474 		/*
475 		 * Don't forget to skip to the next descriptor.
476 		 */
477 		ds += sc->sc_tx_desclen;
478 		dsp++;
479 
480 		/*
481 		 * .. and don't forget to blank these out!
482 		 */
483 		bzero(bufAddrList, sizeof(bufAddrList));
484 		bzero(segLenList, sizeof(segLenList));
485 	}
486 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
487 }
488 
489 /*
490  * Set the rate control fields in the given descriptor based on
491  * the bf_state fields and node state.
492  *
493  * The bfs fields should already be set with the relevant rate
494  * control information, including whether MRR is to be enabled.
495  *
496  * Since the FreeBSD HAL currently sets up the first TX rate
497  * in ath_hal_setuptxdesc(), this will setup the MRR
498  * conditionally for the pre-11n chips, and call ath_buf_set_rate
499  * unconditionally for 11n chips. These require the 11n rate
500  * scenario to be set if MCS rates are enabled, so it's easier
501  * to just always call it. The caller can then only set rates 2, 3
502  * and 4 if multi-rate retry is needed.
503  */
504 static void
505 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
506     struct ath_buf *bf)
507 {
508 	struct ath_rc_series *rc = bf->bf_state.bfs_rc;
509 
510 	/* If mrr is disabled, blank tries 1, 2, 3 */
511 	if (! bf->bf_state.bfs_ismrr)
512 		rc[1].tries = rc[2].tries = rc[3].tries = 0;
513 
514 #if 0
515 	/*
516 	 * If NOACK is set, just set ntries=1.
517 	 */
518 	else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) {
519 		rc[1].tries = rc[2].tries = rc[3].tries = 0;
520 		rc[0].tries = 1;
521 	}
522 #endif
523 
524 	/*
525 	 * Always call - that way a retried descriptor will
526 	 * have the MRR fields overwritten.
527 	 *
528 	 * XXX TODO: see if this is really needed - setting up
529 	 * the first descriptor should set the MRR fields to 0
530 	 * for us anyway.
531 	 */
532 	if (ath_tx_is_11n(sc)) {
533 		ath_buf_set_rate(sc, ni, bf);
534 	} else {
535 		ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
536 			, rc[1].ratecode, rc[1].tries
537 			, rc[2].ratecode, rc[2].tries
538 			, rc[3].ratecode, rc[3].tries
539 		);
540 	}
541 }
542 
543 /*
544  * Setup segments+descriptors for an 11n aggregate.
545  * bf_first is the first buffer in the aggregate.
546  * The descriptor list must already been linked together using
547  * bf->bf_next.
548  */
549 static void
550 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
551 {
552 	struct ath_buf *bf, *bf_prev = NULL;
553 	struct ath_desc *ds0 = bf_first->bf_desc;
554 
555 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
556 	    __func__, bf_first->bf_state.bfs_nframes,
557 	    bf_first->bf_state.bfs_al);
558 
559 	bf = bf_first;
560 
561 	if (bf->bf_state.bfs_txrate0 == 0)
562 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, txrate0=%d\n",
563 		    __func__, bf, 0);
564 	if (bf->bf_state.bfs_rc[0].ratecode == 0)
565 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, rix0=%d\n",
566 		    __func__, bf, 0);
567 
568 	/*
569 	 * Setup all descriptors of all subframes - this will
570 	 * call ath_hal_set11naggrmiddle() on every frame.
571 	 */
572 	while (bf != NULL) {
573 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
574 		    "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
575 		    __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
576 		    SEQNO(bf->bf_state.bfs_seqno));
577 
578 		/*
579 		 * Setup the initial fields for the first descriptor - all
580 		 * the non-11n specific stuff.
581 		 */
582 		ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc
583 			, bf->bf_state.bfs_pktlen	/* packet length */
584 			, bf->bf_state.bfs_hdrlen	/* header length */
585 			, bf->bf_state.bfs_atype	/* Atheros packet type */
586 			, bf->bf_state.bfs_txpower	/* txpower */
587 			, bf->bf_state.bfs_txrate0
588 			, bf->bf_state.bfs_try0		/* series 0 rate/tries */
589 			, bf->bf_state.bfs_keyix	/* key cache index */
590 			, bf->bf_state.bfs_txantenna	/* antenna mode */
591 			, bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ	/* flags */
592 			, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
593 			, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
594 		);
595 
596 		/*
597 		 * First descriptor? Setup the rate control and initial
598 		 * aggregate header information.
599 		 */
600 		if (bf == bf_first) {
601 			/*
602 			 * setup first desc with rate and aggr info
603 			 */
604 			ath_tx_set_ratectrl(sc, bf->bf_node, bf);
605 		}
606 
607 		/*
608 		 * Setup the descriptors for a multi-descriptor frame.
609 		 * This is both aggregate and non-aggregate aware.
610 		 */
611 		ath_tx_chaindesclist(sc, ds0, bf,
612 		    1, /* is_aggr */
613 		    !! (bf == bf_first), /* is_first_subframe */
614 		    !! (bf->bf_next == NULL) /* is_last_subframe */
615 		    );
616 
617 		if (bf == bf_first) {
618 			/*
619 			 * Initialise the first 11n aggregate with the
620 			 * aggregate length and aggregate enable bits.
621 			 */
622 			ath_hal_set11n_aggr_first(sc->sc_ah,
623 			    ds0,
624 			    bf->bf_state.bfs_al,
625 			    bf->bf_state.bfs_ndelim);
626 		}
627 
628 		/*
629 		 * Link the last descriptor of the previous frame
630 		 * to the beginning descriptor of this frame.
631 		 */
632 		if (bf_prev != NULL)
633 			ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds,
634 			    bf->bf_daddr);
635 
636 		/* Save a copy so we can link the next descriptor in */
637 		bf_prev = bf;
638 		bf = bf->bf_next;
639 	}
640 
641 	/*
642 	 * Set the first descriptor bf_lastds field to point to
643 	 * the last descriptor in the last subframe, that's where
644 	 * the status update will occur.
645 	 */
646 	bf_first->bf_lastds = bf_prev->bf_lastds;
647 
648 	/*
649 	 * And bf_last in the first descriptor points to the end of
650 	 * the aggregate list.
651 	 */
652 	bf_first->bf_last = bf_prev;
653 
654 	/*
655 	 * For non-AR9300 NICs, which require the rate control
656 	 * in the final descriptor - let's set that up now.
657 	 *
658 	 * This is because the filltxdesc() HAL call doesn't
659 	 * populate the last segment with rate control information
660 	 * if firstSeg is also true.  For non-aggregate frames
661 	 * that is fine, as the first frame already has rate control
662 	 * info.  But if the last frame in an aggregate has one
663 	 * descriptor, both firstseg and lastseg will be true and
664 	 * the rate info isn't copied.
665 	 *
666 	 * This is inefficient on MIPS/ARM platforms that have
667 	 * non-cachable memory for TX descriptors, but we'll just
668 	 * make do for now.
669 	 *
670 	 * As to why the rate table is stashed in the last descriptor
671 	 * rather than the first descriptor?  Because proctxdesc()
672 	 * is called on the final descriptor in an MPDU or A-MPDU -
673 	 * ie, the one that gets updated by the hardware upon
674 	 * completion.  That way proctxdesc() doesn't need to know
675 	 * about the first _and_ last TX descriptor.
676 	 */
677 	ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0);
678 
679 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
680 }
681 
682 /*
683  * Hand-off a frame to the multicast TX queue.
684  *
685  * This is a software TXQ which will be appended to the CAB queue
686  * during the beacon setup code.
687  *
688  * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID
689  * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated
690  * with the actual hardware txq, or all of this will fall apart.
691  *
692  * XXX It may not be a bad idea to just stuff the QCU ID into bf_state
693  * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated
694  * correctly.
695  */
696 static void
697 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
698     struct ath_buf *bf)
699 {
700 	ATH_TX_LOCK_ASSERT(sc);
701 
702 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
703 	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
704 
705 	/*
706 	 * Ensure that the tx queue is the cabq, so things get
707 	 * mapped correctly.
708 	 */
709 	if (bf->bf_state.bfs_tx_queue != sc->sc_cabq->axq_qnum) {
710 		DPRINTF(sc, ATH_DEBUG_XMIT,
711 		    "%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n",
712 		    __func__, bf, bf->bf_state.bfs_tx_queue,
713 		    txq->axq_qnum);
714 	}
715 
716 	ATH_TXQ_LOCK(txq);
717 	if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) {
718 		struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s);
719 		struct ieee80211_frame *wh;
720 
721 		/* mark previous frame */
722 		wh = mtod(bf_last->bf_m, struct ieee80211_frame *);
723 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
724 		bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap,
725 		    BUS_DMASYNC_PREWRITE);
726 
727 		/* link descriptor */
728 		ath_hal_settxdesclink(sc->sc_ah,
729 		    bf_last->bf_lastds,
730 		    bf->bf_daddr);
731 	}
732 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
733 	ATH_TXQ_UNLOCK(txq);
734 }
735 
736 /*
737  * Hand-off packet to a hardware queue.
738  */
739 static void
740 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
741     struct ath_buf *bf)
742 {
743 	struct ath_hal *ah = sc->sc_ah;
744 	struct ath_buf *bf_first;
745 
746 	/*
747 	 * Insert the frame on the outbound list and pass it on
748 	 * to the hardware.  Multicast frames buffered for power
749 	 * save stations and transmit from the CAB queue are stored
750 	 * on a s/w only queue and loaded on to the CAB queue in
751 	 * the SWBA handler since frames only go out on DTIM and
752 	 * to avoid possible races.
753 	 */
754 	ATH_TX_LOCK_ASSERT(sc);
755 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
756 	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
757 	KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
758 	     ("ath_tx_handoff_hw called for mcast queue"));
759 
760 	/*
761 	 * XXX We should instead just verify that sc_txstart_cnt
762 	 * or ath_txproc_cnt > 0.  That would mean that
763 	 * the reset is going to be waiting for us to complete.
764 	 */
765 	if (sc->sc_txproc_cnt == 0 && sc->sc_txstart_cnt == 0) {
766 		device_printf(sc->sc_dev,
767 		    "%s: TX dispatch without holding txcount/txstart refcnt!\n",
768 		    __func__);
769 	}
770 
771 	/*
772 	 * XXX .. this is going to cause the hardware to get upset;
773 	 * so we really should find some way to drop or queue
774 	 * things.
775 	 */
776 
777 	ATH_TXQ_LOCK(txq);
778 
779 	/*
780 	 * XXX TODO: if there's a holdingbf, then
781 	 * ATH_TXQ_PUTRUNNING should be clear.
782 	 *
783 	 * If there is a holdingbf and the list is empty,
784 	 * then axq_link should be pointing to the holdingbf.
785 	 *
786 	 * Otherwise it should point to the last descriptor
787 	 * in the last ath_buf.
788 	 *
789 	 * In any case, we should really ensure that we
790 	 * update the previous descriptor link pointer to
791 	 * this descriptor, regardless of all of the above state.
792 	 *
793 	 * For now this is captured by having axq_link point
794 	 * to either the holdingbf (if the TXQ list is empty)
795 	 * or the end of the list (if the TXQ list isn't empty.)
796 	 * I'd rather just kill axq_link here and do it as above.
797 	 */
798 
799 	/*
800 	 * Append the frame to the TX queue.
801 	 */
802 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
803 	ATH_KTR(sc, ATH_KTR_TX, 3,
804 	    "ath_tx_handoff: non-tdma: txq=%u, add bf=%p "
805 	    "depth=%d",
806 	    txq->axq_qnum,
807 	    bf,
808 	    txq->axq_depth);
809 
810 	/*
811 	 * If there's a link pointer, update it.
812 	 *
813 	 * XXX we should replace this with the above logic, just
814 	 * to kill axq_link with fire.
815 	 */
816 	if (txq->axq_link != NULL) {
817 		*txq->axq_link = bf->bf_daddr;
818 		DPRINTF(sc, ATH_DEBUG_XMIT,
819 		    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
820 		    txq->axq_qnum, txq->axq_link,
821 		    (caddr_t)bf->bf_daddr, bf->bf_desc,
822 		    txq->axq_depth);
823 		ATH_KTR(sc, ATH_KTR_TX, 5,
824 		    "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) "
825 		    "lastds=%d",
826 		    txq->axq_qnum, txq->axq_link,
827 		    (caddr_t)bf->bf_daddr, bf->bf_desc,
828 		    bf->bf_lastds);
829 	}
830 
831 	/*
832 	 * If we've not pushed anything into the hardware yet,
833 	 * push the head of the queue into the TxDP.
834 	 *
835 	 * Once we've started DMA, there's no guarantee that
836 	 * updating the TxDP with a new value will actually work.
837 	 * So we just don't do that - if we hit the end of the list,
838 	 * we keep that buffer around (the "holding buffer") and
839 	 * re-start DMA by updating the link pointer of _that_
840 	 * descriptor and then restart DMA.
841 	 */
842 	if (! (txq->axq_flags & ATH_TXQ_PUTRUNNING)) {
843 		bf_first = TAILQ_FIRST(&txq->axq_q);
844 		txq->axq_flags |= ATH_TXQ_PUTRUNNING;
845 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf_first->bf_daddr);
846 		DPRINTF(sc, ATH_DEBUG_XMIT,
847 		    "%s: TXDP[%u] = %p (%p) depth %d\n",
848 		    __func__, txq->axq_qnum,
849 		    (caddr_t)bf_first->bf_daddr, bf_first->bf_desc,
850 		    txq->axq_depth);
851 		ATH_KTR(sc, ATH_KTR_TX, 5,
852 		    "ath_tx_handoff: TXDP[%u] = %p (%p) "
853 		    "lastds=%p depth %d",
854 		    txq->axq_qnum,
855 		    (caddr_t)bf_first->bf_daddr, bf_first->bf_desc,
856 		    bf_first->bf_lastds,
857 		    txq->axq_depth);
858 	}
859 
860 	/*
861 	 * Ensure that the bf TXQ matches this TXQ, so later
862 	 * checking and holding buffer manipulation is sane.
863 	 */
864 	if (bf->bf_state.bfs_tx_queue != txq->axq_qnum) {
865 		DPRINTF(sc, ATH_DEBUG_XMIT,
866 		    "%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n",
867 		    __func__, bf, bf->bf_state.bfs_tx_queue,
868 		    txq->axq_qnum);
869 	}
870 
871 	/*
872 	 * Track aggregate queue depth.
873 	 */
874 	if (bf->bf_state.bfs_aggr)
875 		txq->axq_aggr_depth++;
876 
877 	/*
878 	 * Update the link pointer.
879 	 */
880 	ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link);
881 
882 	/*
883 	 * Start DMA.
884 	 *
885 	 * If we wrote a TxDP above, DMA will start from here.
886 	 *
887 	 * If DMA is running, it'll do nothing.
888 	 *
889 	 * If the DMA engine hit the end of the QCU list (ie LINK=NULL,
890 	 * or VEOL) then it stops at the last transmitted write.
891 	 * We then append a new frame by updating the link pointer
892 	 * in that descriptor and then kick TxE here; it will re-read
893 	 * that last descriptor and find the new descriptor to transmit.
894 	 *
895 	 * This is why we keep the holding descriptor around.
896 	 */
897 	ath_hal_txstart(ah, txq->axq_qnum);
898 	ATH_TXQ_UNLOCK(txq);
899 	ATH_KTR(sc, ATH_KTR_TX, 1,
900 	    "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum);
901 }
902 
903 /*
904  * Restart TX DMA for the given TXQ.
905  *
906  * This must be called whether the queue is empty or not.
907  */
908 static void
909 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq)
910 {
911 	struct ath_buf *bf, *bf_last;
912 
913 	ATH_TXQ_LOCK_ASSERT(txq);
914 
915 	/* XXX make this ATH_TXQ_FIRST */
916 	bf = TAILQ_FIRST(&txq->axq_q);
917 	bf_last = ATH_TXQ_LAST(txq, axq_q_s);
918 
919 	if (bf == NULL)
920 		return;
921 
922 	DPRINTF(sc, ATH_DEBUG_RESET,
923 	    "%s: Q%d: bf=%p, bf_last=%p, daddr=0x%08x\n",
924 	    __func__,
925 	    txq->axq_qnum,
926 	    bf,
927 	    bf_last,
928 	    (uint32_t) bf->bf_daddr);
929 
930 #ifdef	ATH_DEBUG
931 	if (sc->sc_debug & ATH_DEBUG_RESET)
932 		ath_tx_dump(sc, txq);
933 #endif
934 
935 	/*
936 	 * This is called from a restart, so DMA is known to be
937 	 * completely stopped.
938 	 */
939 	KASSERT((!(txq->axq_flags & ATH_TXQ_PUTRUNNING)),
940 	    ("%s: Q%d: called with PUTRUNNING=1\n",
941 	    __func__,
942 	    txq->axq_qnum));
943 
944 	ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
945 	txq->axq_flags |= ATH_TXQ_PUTRUNNING;
946 
947 	ath_hal_gettxdesclinkptr(sc->sc_ah, bf_last->bf_lastds,
948 	    &txq->axq_link);
949 	ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
950 }
951 
952 /*
953  * Hand off a packet to the hardware (or mcast queue.)
954  *
955  * The relevant hardware txq should be locked.
956  */
957 static void
958 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq,
959     struct ath_buf *bf)
960 {
961 	ATH_TX_LOCK_ASSERT(sc);
962 
963 #ifdef	ATH_DEBUG_ALQ
964 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
965 		ath_tx_alq_post(sc, bf);
966 #endif
967 
968 	if (txq->axq_qnum == ATH_TXQ_SWQ)
969 		ath_tx_handoff_mcast(sc, txq, bf);
970 	else
971 		ath_tx_handoff_hw(sc, txq, bf);
972 }
973 
974 static int
975 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
976     struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen,
977     int *keyix)
978 {
979 	DPRINTF(sc, ATH_DEBUG_XMIT,
980 	    "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n",
981 	    __func__,
982 	    *hdrlen,
983 	    *pktlen,
984 	    isfrag,
985 	    iswep,
986 	    m0);
987 
988 	if (iswep) {
989 		const struct ieee80211_cipher *cip;
990 		struct ieee80211_key *k;
991 
992 		/*
993 		 * Construct the 802.11 header+trailer for an encrypted
994 		 * frame. The only reason this can fail is because of an
995 		 * unknown or unsupported cipher/key type.
996 		 */
997 		k = ieee80211_crypto_encap(ni, m0);
998 		if (k == NULL) {
999 			/*
1000 			 * This can happen when the key is yanked after the
1001 			 * frame was queued.  Just discard the frame; the
1002 			 * 802.11 layer counts failures and provides
1003 			 * debugging/diagnostics.
1004 			 */
1005 			return (0);
1006 		}
1007 		/*
1008 		 * Adjust the packet + header lengths for the crypto
1009 		 * additions and calculate the h/w key index.  When
1010 		 * a s/w mic is done the frame will have had any mic
1011 		 * added to it prior to entry so m0->m_pkthdr.len will
1012 		 * account for it. Otherwise we need to add it to the
1013 		 * packet length.
1014 		 */
1015 		cip = k->wk_cipher;
1016 		(*hdrlen) += cip->ic_header;
1017 		(*pktlen) += cip->ic_header + cip->ic_trailer;
1018 		/* NB: frags always have any TKIP MIC done in s/w */
1019 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
1020 			(*pktlen) += cip->ic_miclen;
1021 		(*keyix) = k->wk_keyix;
1022 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
1023 		/*
1024 		 * Use station key cache slot, if assigned.
1025 		 */
1026 		(*keyix) = ni->ni_ucastkey.wk_keyix;
1027 		if ((*keyix) == IEEE80211_KEYIX_NONE)
1028 			(*keyix) = HAL_TXKEYIX_INVALID;
1029 	} else
1030 		(*keyix) = HAL_TXKEYIX_INVALID;
1031 
1032 	return (1);
1033 }
1034 
1035 /*
1036  * Calculate whether interoperability protection is required for
1037  * this frame.
1038  *
1039  * This requires the rate control information be filled in,
1040  * as the protection requirement depends upon the current
1041  * operating mode / PHY.
1042  */
1043 static void
1044 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf)
1045 {
1046 	struct ieee80211_frame *wh;
1047 	uint8_t rix;
1048 	uint16_t flags;
1049 	int shortPreamble;
1050 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1051 	struct ieee80211com *ic = &sc->sc_ic;
1052 
1053 	flags = bf->bf_state.bfs_txflags;
1054 	rix = bf->bf_state.bfs_rc[0].rix;
1055 	shortPreamble = bf->bf_state.bfs_shpream;
1056 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
1057 
1058 	/* Disable frame protection for TOA probe frames */
1059 	if (bf->bf_flags & ATH_BUF_TOA_PROBE) {
1060 		/* XXX count */
1061 		flags &= ~(HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA);
1062 		bf->bf_state.bfs_doprot = 0;
1063 		goto finish;
1064 	}
1065 
1066 	/*
1067 	 * If 802.11g protection is enabled, determine whether
1068 	 * to use RTS/CTS or just CTS.  Note that this is only
1069 	 * done for OFDM unicast frames.
1070 	 */
1071 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1072 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
1073 	    (flags & HAL_TXDESC_NOACK) == 0) {
1074 		bf->bf_state.bfs_doprot = 1;
1075 		/* XXX fragments must use CCK rates w/ protection */
1076 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
1077 			flags |= HAL_TXDESC_RTSENA;
1078 		} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
1079 			flags |= HAL_TXDESC_CTSENA;
1080 		}
1081 		/*
1082 		 * For frags it would be desirable to use the
1083 		 * highest CCK rate for RTS/CTS.  But stations
1084 		 * farther away may detect it at a lower CCK rate
1085 		 * so use the configured protection rate instead
1086 		 * (for now).
1087 		 */
1088 		sc->sc_stats.ast_tx_protect++;
1089 	}
1090 
1091 	/*
1092 	 * If 11n protection is enabled and it's a HT frame,
1093 	 * enable RTS.
1094 	 *
1095 	 * XXX ic_htprotmode or ic_curhtprotmode?
1096 	 * XXX should it_htprotmode only matter if ic_curhtprotmode
1097 	 * XXX indicates it's not a HT pure environment?
1098 	 */
1099 	if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
1100 	    rt->info[rix].phy == IEEE80211_T_HT &&
1101 	    (flags & HAL_TXDESC_NOACK) == 0) {
1102 		flags |= HAL_TXDESC_RTSENA;
1103 		sc->sc_stats.ast_tx_htprotect++;
1104 	}
1105 
1106 finish:
1107 	bf->bf_state.bfs_txflags = flags;
1108 }
1109 
1110 /*
1111  * Update the frame duration given the currently selected rate.
1112  *
1113  * This also updates the frame duration value, so it will require
1114  * a DMA flush.
1115  */
1116 static void
1117 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf)
1118 {
1119 	struct ieee80211_frame *wh;
1120 	uint8_t rix;
1121 	uint16_t flags;
1122 	int shortPreamble;
1123 	struct ath_hal *ah = sc->sc_ah;
1124 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1125 	int isfrag = bf->bf_m->m_flags & M_FRAG;
1126 
1127 	flags = bf->bf_state.bfs_txflags;
1128 	rix = bf->bf_state.bfs_rc[0].rix;
1129 	shortPreamble = bf->bf_state.bfs_shpream;
1130 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
1131 
1132 	/*
1133 	 * Calculate duration.  This logically belongs in the 802.11
1134 	 * layer but it lacks sufficient information to calculate it.
1135 	 */
1136 	if ((flags & HAL_TXDESC_NOACK) == 0 && !IEEE80211_IS_CTL(wh)) {
1137 		u_int16_t dur;
1138 		if (shortPreamble)
1139 			dur = rt->info[rix].spAckDuration;
1140 		else
1141 			dur = rt->info[rix].lpAckDuration;
1142 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
1143 			dur += dur;		/* additional SIFS+ACK */
1144 			/*
1145 			 * Include the size of next fragment so NAV is
1146 			 * updated properly.  The last fragment uses only
1147 			 * the ACK duration
1148 			 *
1149 			 * XXX TODO: ensure that the rate lookup for each
1150 			 * fragment is the same as the rate used by the
1151 			 * first fragment!
1152 			 */
1153 			dur += ath_hal_computetxtime(ah,
1154 			    rt,
1155 			    bf->bf_nextfraglen,
1156 			    rix, shortPreamble,
1157 			    AH_TRUE);
1158 		}
1159 		if (isfrag) {
1160 			/*
1161 			 * Force hardware to use computed duration for next
1162 			 * fragment by disabling multi-rate retry which updates
1163 			 * duration based on the multi-rate duration table.
1164 			 */
1165 			bf->bf_state.bfs_ismrr = 0;
1166 			bf->bf_state.bfs_try0 = ATH_TXMGTTRY;
1167 			/* XXX update bfs_rc[0].try? */
1168 		}
1169 
1170 		/* Update the duration field itself */
1171 		*(u_int16_t *)wh->i_dur = htole16(dur);
1172 	}
1173 }
1174 
1175 static uint8_t
1176 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
1177     int cix, int shortPreamble)
1178 {
1179 	uint8_t ctsrate;
1180 
1181 	/*
1182 	 * CTS transmit rate is derived from the transmit rate
1183 	 * by looking in the h/w rate table.  We must also factor
1184 	 * in whether or not a short preamble is to be used.
1185 	 */
1186 	/* NB: cix is set above where RTS/CTS is enabled */
1187 	KASSERT(cix != 0xff, ("cix not setup"));
1188 	ctsrate = rt->info[cix].rateCode;
1189 
1190 	/* XXX this should only matter for legacy rates */
1191 	if (shortPreamble)
1192 		ctsrate |= rt->info[cix].shortPreamble;
1193 
1194 	return (ctsrate);
1195 }
1196 
1197 /*
1198  * Calculate the RTS/CTS duration for legacy frames.
1199  */
1200 static int
1201 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
1202     int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
1203     int flags)
1204 {
1205 	int ctsduration = 0;
1206 
1207 	/* This mustn't be called for HT modes */
1208 	if (rt->info[cix].phy == IEEE80211_T_HT) {
1209 		printf("%s: HT rate where it shouldn't be (0x%x)\n",
1210 		    __func__, rt->info[cix].rateCode);
1211 		return (-1);
1212 	}
1213 
1214 	/*
1215 	 * Compute the transmit duration based on the frame
1216 	 * size and the size of an ACK frame.  We call into the
1217 	 * HAL to do the computation since it depends on the
1218 	 * characteristics of the actual PHY being used.
1219 	 *
1220 	 * NB: CTS is assumed the same size as an ACK so we can
1221 	 *     use the precalculated ACK durations.
1222 	 */
1223 	if (shortPreamble) {
1224 		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
1225 			ctsduration += rt->info[cix].spAckDuration;
1226 		ctsduration += ath_hal_computetxtime(ah,
1227 			rt, pktlen, rix, AH_TRUE, AH_TRUE);
1228 		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
1229 			ctsduration += rt->info[rix].spAckDuration;
1230 	} else {
1231 		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
1232 			ctsduration += rt->info[cix].lpAckDuration;
1233 		ctsduration += ath_hal_computetxtime(ah,
1234 			rt, pktlen, rix, AH_FALSE, AH_TRUE);
1235 		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
1236 			ctsduration += rt->info[rix].lpAckDuration;
1237 	}
1238 
1239 	return (ctsduration);
1240 }
1241 
1242 /*
1243  * Update the given ath_buf with updated rts/cts setup and duration
1244  * values.
1245  *
1246  * To support rate lookups for each software retry, the rts/cts rate
1247  * and cts duration must be re-calculated.
1248  *
1249  * This function assumes the RTS/CTS flags have been set as needed;
1250  * mrr has been disabled; and the rate control lookup has been done.
1251  *
1252  * XXX TODO: MRR need only be disabled for the pre-11n NICs.
1253  * XXX The 11n NICs support per-rate RTS/CTS configuration.
1254  */
1255 static void
1256 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
1257 {
1258 	uint16_t ctsduration = 0;
1259 	uint8_t ctsrate = 0;
1260 	uint8_t rix = bf->bf_state.bfs_rc[0].rix;
1261 	uint8_t cix = 0;
1262 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1263 
1264 	/*
1265 	 * No RTS/CTS enabled? Don't bother.
1266 	 */
1267 	if ((bf->bf_state.bfs_txflags &
1268 	    (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
1269 		/* XXX is this really needed? */
1270 		bf->bf_state.bfs_ctsrate = 0;
1271 		bf->bf_state.bfs_ctsduration = 0;
1272 		return;
1273 	}
1274 
1275 	/*
1276 	 * If protection is enabled, use the protection rix control
1277 	 * rate. Otherwise use the rate0 control rate.
1278 	 */
1279 	if (bf->bf_state.bfs_doprot)
1280 		rix = sc->sc_protrix;
1281 	else
1282 		rix = bf->bf_state.bfs_rc[0].rix;
1283 
1284 	/*
1285 	 * If the raw path has hard-coded ctsrate0 to something,
1286 	 * use it.
1287 	 */
1288 	if (bf->bf_state.bfs_ctsrate0 != 0)
1289 		cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
1290 	else
1291 		/* Control rate from above */
1292 		cix = rt->info[rix].controlRate;
1293 
1294 	/* Calculate the rtscts rate for the given cix */
1295 	ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
1296 	    bf->bf_state.bfs_shpream);
1297 
1298 	/* The 11n chipsets do ctsduration calculations for you */
1299 	if (! ath_tx_is_11n(sc))
1300 		ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
1301 		    bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
1302 		    rt, bf->bf_state.bfs_txflags);
1303 
1304 	/* Squirrel away in ath_buf */
1305 	bf->bf_state.bfs_ctsrate = ctsrate;
1306 	bf->bf_state.bfs_ctsduration = ctsduration;
1307 
1308 	/*
1309 	 * Must disable multi-rate retry when using RTS/CTS.
1310 	 */
1311 	if (!sc->sc_mrrprot) {
1312 		bf->bf_state.bfs_ismrr = 0;
1313 		bf->bf_state.bfs_try0 =
1314 		    bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */
1315 	}
1316 }
1317 
1318 /*
1319  * Setup the descriptor chain for a normal or fast-frame
1320  * frame.
1321  *
1322  * XXX TODO: extend to include the destination hardware QCU ID.
1323  * Make sure that is correct.  Make sure that when being added
1324  * to the mcastq, the CABQ QCUID is set or things will get a bit
1325  * odd.
1326  */
1327 static void
1328 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
1329 {
1330 	struct ath_desc *ds = bf->bf_desc;
1331 	struct ath_hal *ah = sc->sc_ah;
1332 
1333 	if (bf->bf_state.bfs_txrate0 == 0)
1334 		DPRINTF(sc, ATH_DEBUG_XMIT,
1335 		    "%s: bf=%p, txrate0=%d\n", __func__, bf, 0);
1336 
1337 	ath_hal_setuptxdesc(ah, ds
1338 		, bf->bf_state.bfs_pktlen	/* packet length */
1339 		, bf->bf_state.bfs_hdrlen	/* header length */
1340 		, bf->bf_state.bfs_atype	/* Atheros packet type */
1341 		, bf->bf_state.bfs_txpower	/* txpower */
1342 		, bf->bf_state.bfs_txrate0
1343 		, bf->bf_state.bfs_try0		/* series 0 rate/tries */
1344 		, bf->bf_state.bfs_keyix	/* key cache index */
1345 		, bf->bf_state.bfs_txantenna	/* antenna mode */
1346 		, bf->bf_state.bfs_txflags	/* flags */
1347 		, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
1348 		, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
1349 	);
1350 
1351 	/*
1352 	 * This will be overridden when the descriptor chain is written.
1353 	 */
1354 	bf->bf_lastds = ds;
1355 	bf->bf_last = bf;
1356 
1357 	/* Set rate control and descriptor chain for this frame */
1358 	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
1359 	ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0);
1360 }
1361 
1362 /*
1363  * Do a rate lookup.
1364  *
1365  * This performs a rate lookup for the given ath_buf only if it's required.
1366  * Non-data frames and raw frames don't require it.
1367  *
1368  * This populates the primary and MRR entries; MRR values are
1369  * then disabled later on if something requires it (eg RTS/CTS on
1370  * pre-11n chipsets.
1371  *
1372  * This needs to be done before the RTS/CTS fields are calculated
1373  * as they may depend upon the rate chosen.
1374  */
1375 static void
1376 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf, int tid,
1377     int pktlen, int is_aggr)
1378 {
1379 	uint8_t rate, rix;
1380 	int try0;
1381 	int maxdur; // Note: Unused for now
1382 	int maxpktlen;
1383 
1384 	if (! bf->bf_state.bfs_doratelookup)
1385 		return;
1386 
1387 	/* Get rid of any previous state */
1388 	bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1389 
1390 	ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
1391 	ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
1392 	    pktlen, tid, is_aggr, &rix, &try0, &rate, &maxdur, &maxpktlen);
1393 
1394 	/* In case MRR is disabled, make sure rc[0] is setup correctly */
1395 	bf->bf_state.bfs_rc[0].rix = rix;
1396 	bf->bf_state.bfs_rc[0].ratecode = rate;
1397 	bf->bf_state.bfs_rc[0].tries = try0;
1398 
1399 	if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
1400 		ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
1401 		    is_aggr, bf->bf_state.bfs_rc);
1402 	ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
1403 
1404 	sc->sc_txrix = rix;	/* for LED blinking */
1405 	sc->sc_lastdatarix = rix;	/* for fast frames */
1406 	bf->bf_state.bfs_try0 = try0;
1407 	bf->bf_state.bfs_txrate0 = rate;
1408 	bf->bf_state.bfs_rc_maxpktlen = maxpktlen;
1409 }
1410 
1411 /*
1412  * Update the CLRDMASK bit in the ath_buf if it needs to be set.
1413  */
1414 static void
1415 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid,
1416     struct ath_buf *bf)
1417 {
1418 	struct ath_node *an = ATH_NODE(bf->bf_node);
1419 
1420 	ATH_TX_LOCK_ASSERT(sc);
1421 
1422 	if (an->clrdmask == 1) {
1423 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1424 		an->clrdmask = 0;
1425 	}
1426 }
1427 
1428 /*
1429  * Return whether this frame should be software queued or
1430  * direct dispatched.
1431  *
1432  * When doing powersave, BAR frames should be queued but other management
1433  * frames should be directly sent.
1434  *
1435  * When not doing powersave, stick BAR frames into the hardware queue
1436  * so it goes out even though the queue is paused.
1437  *
1438  * For now, management frames are also software queued by default.
1439  */
1440 static int
1441 ath_tx_should_swq_frame(struct ath_softc *sc, struct ath_node *an,
1442     struct mbuf *m0, int *queue_to_head)
1443 {
1444 	struct ieee80211_node *ni = &an->an_node;
1445 	struct ieee80211_frame *wh;
1446 	uint8_t type, subtype;
1447 
1448 	wh = mtod(m0, struct ieee80211_frame *);
1449 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1450 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1451 
1452 	(*queue_to_head) = 0;
1453 
1454 	/* If it's not in powersave - direct-dispatch BAR */
1455 	if ((ATH_NODE(ni)->an_is_powersave == 0)
1456 	    && type == IEEE80211_FC0_TYPE_CTL &&
1457 	    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1458 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1459 		    "%s: BAR: TX'ing direct\n", __func__);
1460 		return (0);
1461 	} else if ((ATH_NODE(ni)->an_is_powersave == 1)
1462 	    && type == IEEE80211_FC0_TYPE_CTL &&
1463 	    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1464 		/* BAR TX whilst asleep; queue */
1465 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1466 		    "%s: swq: TX'ing\n", __func__);
1467 		(*queue_to_head) = 1;
1468 		return (1);
1469 	} else if ((ATH_NODE(ni)->an_is_powersave == 1)
1470 	    && (type == IEEE80211_FC0_TYPE_MGT ||
1471 	        type == IEEE80211_FC0_TYPE_CTL)) {
1472 		/*
1473 		 * Other control/mgmt frame; bypass software queuing
1474 		 * for now!
1475 		 */
1476 		DPRINTF(sc, ATH_DEBUG_XMIT,
1477 		    "%s: %6D: Node is asleep; sending mgmt "
1478 		    "(type=%d, subtype=%d)\n",
1479 		    __func__, ni->ni_macaddr, ":", type, subtype);
1480 		return (0);
1481 	} else {
1482 		return (1);
1483 	}
1484 }
1485 
1486 /*
1487  * Transmit the given frame to the hardware.
1488  *
1489  * The frame must already be setup; rate control must already have
1490  * been done.
1491  *
1492  * XXX since the TXQ lock is being held here (and I dislike holding
1493  * it for this long when not doing software aggregation), later on
1494  * break this function into "setup_normal" and "xmit_normal". The
1495  * lock only needs to be held for the ath_tx_handoff call.
1496  *
1497  * XXX we don't update the leak count here - if we're doing
1498  * direct frame dispatch, we need to be able to do it without
1499  * decrementing the leak count (eg multicast queue frames.)
1500  */
1501 static void
1502 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
1503     struct ath_buf *bf)
1504 {
1505 	struct ath_node *an = ATH_NODE(bf->bf_node);
1506 	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
1507 
1508 	ATH_TX_LOCK_ASSERT(sc);
1509 
1510 	/*
1511 	 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does
1512 	 * set a completion handler however it doesn't (yet) properly
1513 	 * handle the strict ordering requirements needed for normal,
1514 	 * non-aggregate session frames.
1515 	 *
1516 	 * Once this is implemented, only set CLRDMASK like this for
1517 	 * frames that must go out - eg management/raw frames.
1518 	 */
1519 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1520 
1521 	/* Setup the descriptor before handoff */
1522 	ath_tx_do_ratelookup(sc, bf, tid->tid, bf->bf_state.bfs_pktlen, false);
1523 	ath_tx_calc_duration(sc, bf);
1524 	ath_tx_calc_protection(sc, bf);
1525 	ath_tx_set_rtscts(sc, bf);
1526 	ath_tx_rate_fill_rcflags(sc, bf);
1527 	ath_tx_setds(sc, bf);
1528 
1529 	/* Track per-TID hardware queue depth correctly */
1530 	tid->hwq_depth++;
1531 
1532 	/* Assign the completion handler */
1533 	bf->bf_comp = ath_tx_normal_comp;
1534 
1535 	/* Hand off to hardware */
1536 	ath_tx_handoff(sc, txq, bf);
1537 }
1538 
1539 /*
1540  * Do the basic frame setup stuff that's required before the frame
1541  * is added to a software queue.
1542  *
1543  * All frames get mostly the same treatment and it's done once.
1544  * Retransmits fiddle with things like the rate control setup,
1545  * setting the retransmit bit in the packet; doing relevant DMA/bus
1546  * syncing and relinking it (back) into the hardware TX queue.
1547  *
1548  * Note that this may cause the mbuf to be reallocated, so
1549  * m0 may not be valid.
1550  */
1551 static int
1552 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
1553     struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq)
1554 {
1555 	struct ieee80211vap *vap = ni->ni_vap;
1556 	struct ieee80211com *ic = &sc->sc_ic;
1557 	int error, iswep, ismcast, isfrag, ismrr;
1558 	int keyix, hdrlen, pktlen, try0 = 0;
1559 	u_int8_t rix = 0, txrate = 0;
1560 	struct ath_desc *ds;
1561 	struct ieee80211_frame *wh;
1562 	u_int subtype, flags;
1563 	HAL_PKT_TYPE atype;
1564 	const HAL_RATE_TABLE *rt;
1565 	HAL_BOOL shortPreamble;
1566 	struct ath_node *an;
1567 
1568 	/* XXX TODO: this pri is only used for non-QoS check, right? */
1569 	u_int pri;
1570 
1571 	/*
1572 	 * To ensure that both sequence numbers and the CCMP PN handling
1573 	 * is "correct", make sure that the relevant TID queue is locked.
1574 	 * Otherwise the CCMP PN and seqno may appear out of order, causing
1575 	 * re-ordered frames to have out of order CCMP PN's, resulting
1576 	 * in many, many frame drops.
1577 	 */
1578 	ATH_TX_LOCK_ASSERT(sc);
1579 
1580 	wh = mtod(m0, struct ieee80211_frame *);
1581 	iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
1582 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1583 	isfrag = m0->m_flags & M_FRAG;
1584 	hdrlen = ieee80211_anyhdrsize(wh);
1585 	/*
1586 	 * Packet length must not include any
1587 	 * pad bytes; deduct them here.
1588 	 */
1589 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
1590 
1591 	/* Handle encryption twiddling if needed */
1592 	if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
1593 	    &pktlen, &keyix)) {
1594 		ieee80211_free_mbuf(m0);
1595 		return EIO;
1596 	}
1597 
1598 	/* packet header may have moved, reset our local pointer */
1599 	wh = mtod(m0, struct ieee80211_frame *);
1600 
1601 	pktlen += IEEE80211_CRC_LEN;
1602 
1603 	/*
1604 	 * Load the DMA map so any coalescing is done.  This
1605 	 * also calculates the number of descriptors we need.
1606 	 */
1607 	error = ath_tx_dmasetup(sc, bf, m0);
1608 	if (error != 0)
1609 		return error;
1610 	KASSERT((ni != NULL), ("%s: ni=NULL!", __func__));
1611 	bf->bf_node = ni;			/* NB: held reference */
1612 	m0 = bf->bf_m;				/* NB: may have changed */
1613 	wh = mtod(m0, struct ieee80211_frame *);
1614 
1615 	/* setup descriptors */
1616 	ds = bf->bf_desc;
1617 	rt = sc->sc_currates;
1618 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1619 
1620 	/*
1621 	 * NB: the 802.11 layer marks whether or not we should
1622 	 * use short preamble based on the current mode and
1623 	 * negotiated parameters.
1624 	 */
1625 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1626 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1627 		shortPreamble = AH_TRUE;
1628 		sc->sc_stats.ast_tx_shortpre++;
1629 	} else {
1630 		shortPreamble = AH_FALSE;
1631 	}
1632 
1633 	an = ATH_NODE(ni);
1634 	//flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1635 	flags = 0;
1636 	ismrr = 0;				/* default no multi-rate retry*/
1637 
1638 	pri = ath_tx_getac(sc, m0);			/* honor classification */
1639 	/* XXX use txparams instead of fixed values */
1640 	/*
1641 	 * Calculate Atheros packet type from IEEE80211 packet header,
1642 	 * setup for rate calculations, and select h/w transmit queue.
1643 	 */
1644 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1645 	case IEEE80211_FC0_TYPE_MGT:
1646 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1647 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1648 			atype = HAL_PKT_TYPE_BEACON;
1649 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1650 			atype = HAL_PKT_TYPE_PROBE_RESP;
1651 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1652 			atype = HAL_PKT_TYPE_ATIM;
1653 		else
1654 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
1655 		rix = an->an_mgmtrix;
1656 		txrate = rt->info[rix].rateCode;
1657 		if (shortPreamble)
1658 			txrate |= rt->info[rix].shortPreamble;
1659 		try0 = ATH_TXMGTTRY;
1660 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1661 		break;
1662 	case IEEE80211_FC0_TYPE_CTL:
1663 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
1664 		rix = an->an_mgmtrix;
1665 		txrate = rt->info[rix].rateCode;
1666 		if (shortPreamble)
1667 			txrate |= rt->info[rix].shortPreamble;
1668 		try0 = ATH_TXMGTTRY;
1669 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1670 		break;
1671 	case IEEE80211_FC0_TYPE_DATA:
1672 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
1673 		/*
1674 		 * Data frames: multicast frames go out at a fixed rate,
1675 		 * EAPOL frames use the mgmt frame rate; otherwise consult
1676 		 * the rate control module for the rate to use.
1677 		 */
1678 		if (ismcast) {
1679 			rix = an->an_mcastrix;
1680 			txrate = rt->info[rix].rateCode;
1681 			if (shortPreamble)
1682 				txrate |= rt->info[rix].shortPreamble;
1683 			try0 = 1;
1684 		} else if (m0->m_flags & M_EAPOL) {
1685 			/* XXX? maybe always use long preamble? */
1686 			rix = an->an_mgmtrix;
1687 			txrate = rt->info[rix].rateCode;
1688 			if (shortPreamble)
1689 				txrate |= rt->info[rix].shortPreamble;
1690 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
1691 		} else {
1692 			/*
1693 			 * Do rate lookup on each TX, rather than using
1694 			 * the hard-coded TX information decided here.
1695 			 */
1696 			ismrr = 1;
1697 			bf->bf_state.bfs_doratelookup = 1;
1698 		}
1699 
1700 		/*
1701 		 * Check whether to set NOACK for this WME category or not.
1702 		 */
1703 		if (ieee80211_wme_vap_ac_is_noack(vap, pri))
1704 			flags |= HAL_TXDESC_NOACK;
1705 		break;
1706 	default:
1707 		device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n",
1708 		    wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1709 		/* XXX statistic */
1710 		/* XXX free tx dmamap */
1711 		ieee80211_free_mbuf(m0);
1712 		return EIO;
1713 	}
1714 
1715 	/*
1716 	 * There are two known scenarios where the frame AC doesn't match
1717 	 * what the destination TXQ is.
1718 	 *
1719 	 * + non-QoS frames (eg management?) that the net80211 stack has
1720 	 *   assigned a higher AC to, but since it's a non-QoS TID, it's
1721 	 *   being thrown into TID 16.  TID 16 gets the AC_BE queue.
1722 	 *   It's quite possible that management frames should just be
1723 	 *   direct dispatched to hardware rather than go via the software
1724 	 *   queue; that should be investigated in the future.  There are
1725 	 *   some specific scenarios where this doesn't make sense, mostly
1726 	 *   surrounding ADDBA request/response - hence why that is special
1727 	 *   cased.
1728 	 *
1729 	 * + Multicast frames going into the VAP mcast queue.  That shows up
1730 	 *   as "TXQ 11".
1731 	 *
1732 	 * This driver should eventually support separate TID and TXQ locking,
1733 	 * allowing for arbitrary AC frames to appear on arbitrary software
1734 	 * queues, being queued to the "correct" hardware queue when needed.
1735 	 */
1736 #if 0
1737 	if (txq != sc->sc_ac2q[pri]) {
1738 		DPRINTF(sc, ATH_DEBUG_XMIT,
1739 		    "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n",
1740 		    __func__,
1741 		    txq,
1742 		    txq->axq_qnum,
1743 		    pri,
1744 		    sc->sc_ac2q[pri],
1745 		    sc->sc_ac2q[pri]->axq_qnum);
1746 	}
1747 #endif
1748 
1749 	/*
1750 	 * Calculate miscellaneous flags.
1751 	 */
1752 	if (ismcast) {
1753 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
1754 	} else if (pktlen > vap->iv_rtsthreshold &&
1755 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
1756 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
1757 		sc->sc_stats.ast_tx_rts++;
1758 	}
1759 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
1760 		sc->sc_stats.ast_tx_noack++;
1761 #ifdef IEEE80211_SUPPORT_TDMA
1762 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
1763 		DPRINTF(sc, ATH_DEBUG_TDMA,
1764 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
1765 		sc->sc_stats.ast_tdma_ack++;
1766 		/* XXX free tx dmamap */
1767 		ieee80211_free_mbuf(m0);
1768 		return EIO;
1769 	}
1770 #endif
1771 
1772 	/*
1773 	 * If it's a frame to do location reporting on,
1774 	 * communicate it to the HAL.
1775 	 */
1776 	if (ieee80211_get_toa_params(m0, NULL)) {
1777 		device_printf(sc->sc_dev,
1778 		    "%s: setting TX positioning bit\n", __func__);
1779 		flags |= HAL_TXDESC_POS;
1780 
1781 		/*
1782 		 * Note: The hardware reports timestamps for
1783 		 * each of the RX'ed packets as part of the packet
1784 		 * exchange.  So this means things like RTS/CTS
1785 		 * exchanges, as well as the final ACK.
1786 		 *
1787 		 * So, if you send a RTS-protected NULL data frame,
1788 		 * you'll get an RX report for the RTS response, then
1789 		 * an RX report for the NULL frame, and then the TX
1790 		 * completion at the end.
1791 		 *
1792 		 * NOTE: it doesn't work right for CCK frames;
1793 		 * there's no channel info data provided unless
1794 		 * it's OFDM or HT.  Will have to dig into it.
1795 		 */
1796 		flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
1797 		bf->bf_flags |= ATH_BUF_TOA_PROBE;
1798 	}
1799 
1800 #if 0
1801 	/*
1802 	 * Placeholder: if you want to transmit with the azimuth
1803 	 * timestamp in the end of the payload, here's where you
1804 	 * should set the TXDESC field.
1805 	 */
1806 	flags |= HAL_TXDESC_HWTS;
1807 #endif
1808 
1809 	/*
1810 	 * Determine if a tx interrupt should be generated for
1811 	 * this descriptor.  We take a tx interrupt to reap
1812 	 * descriptors when the h/w hits an EOL condition or
1813 	 * when the descriptor is specifically marked to generate
1814 	 * an interrupt.  We periodically mark descriptors in this
1815 	 * way to insure timely replenishing of the supply needed
1816 	 * for sending frames.  Defering interrupts reduces system
1817 	 * load and potentially allows more concurrent work to be
1818 	 * done but if done to aggressively can cause senders to
1819 	 * backup.
1820 	 *
1821 	 * NB: use >= to deal with sc_txintrperiod changing
1822 	 *     dynamically through sysctl.
1823 	 */
1824 	if (flags & HAL_TXDESC_INTREQ) {
1825 		txq->axq_intrcnt = 0;
1826 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
1827 		flags |= HAL_TXDESC_INTREQ;
1828 		txq->axq_intrcnt = 0;
1829 	}
1830 
1831 	/* This point forward is actual TX bits */
1832 
1833 	/*
1834 	 * At this point we are committed to sending the frame
1835 	 * and we don't need to look at m_nextpkt; clear it in
1836 	 * case this frame is part of frag chain.
1837 	 */
1838 	m0->m_nextpkt = NULL;
1839 
1840 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1841 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
1842 		    sc->sc_hwmap[rix].ieeerate, -1);
1843 
1844 	if (ieee80211_radiotap_active_vap(vap)) {
1845 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1846 		if (iswep)
1847 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1848 		if (isfrag)
1849 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1850 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1851 		sc->sc_tx_th.wt_txpower = ieee80211_get_node_txpower(ni);
1852 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1853 
1854 		ieee80211_radiotap_tx(vap, m0);
1855 	}
1856 
1857 	/* Blank the legacy rate array */
1858 	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1859 
1860 	/*
1861 	 * ath_buf_set_rate needs at least one rate/try to setup
1862 	 * the rate scenario.
1863 	 */
1864 	bf->bf_state.bfs_rc[0].rix = rix;
1865 	bf->bf_state.bfs_rc[0].tries = try0;
1866 	bf->bf_state.bfs_rc[0].ratecode = txrate;
1867 
1868 	/* Store the decided rate index values away */
1869 	bf->bf_state.bfs_pktlen = pktlen;
1870 	bf->bf_state.bfs_hdrlen = hdrlen;
1871 	bf->bf_state.bfs_atype = atype;
1872 	bf->bf_state.bfs_txpower = ieee80211_get_node_txpower(ni);
1873 	bf->bf_state.bfs_txrate0 = txrate;
1874 	bf->bf_state.bfs_try0 = try0;
1875 	bf->bf_state.bfs_keyix = keyix;
1876 	bf->bf_state.bfs_txantenna = sc->sc_txantenna;
1877 	bf->bf_state.bfs_txflags = flags;
1878 	bf->bf_state.bfs_shpream = shortPreamble;
1879 
1880 	/* XXX this should be done in ath_tx_setrate() */
1881 	bf->bf_state.bfs_ctsrate0 = 0;	/* ie, no hard-coded ctsrate */
1882 	bf->bf_state.bfs_ctsrate = 0;	/* calculated later */
1883 	bf->bf_state.bfs_ctsduration = 0;
1884 	bf->bf_state.bfs_ismrr = ismrr;
1885 
1886 	return 0;
1887 }
1888 
1889 /*
1890  * Queue a frame to the hardware or software queue.
1891  *
1892  * This can be called by the net80211 code.
1893  *
1894  * XXX what about locking? Or, push the seqno assign into the
1895  * XXX aggregate scheduler so its serialised?
1896  *
1897  * XXX When sending management frames via ath_raw_xmit(),
1898  *     should CLRDMASK be set unconditionally?
1899  */
1900 int
1901 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
1902     struct ath_buf *bf, struct mbuf *m0)
1903 {
1904 	struct ieee80211vap *vap = ni->ni_vap;
1905 	struct ath_vap *avp = ATH_VAP(vap);
1906 	int r = 0;
1907 	u_int pri;
1908 	int tid;
1909 	struct ath_txq *txq;
1910 	int ismcast;
1911 	const struct ieee80211_frame *wh;
1912 	int is_ampdu, is_ampdu_tx, is_ampdu_pending;
1913 	ieee80211_seq seqno;
1914 	uint8_t type, subtype;
1915 	int queue_to_head;
1916 
1917 	ATH_TX_LOCK_ASSERT(sc);
1918 
1919 	/*
1920 	 * Determine the target hardware queue.
1921 	 *
1922 	 * For multicast frames, the txq gets overridden appropriately
1923 	 * depending upon the state of PS.  If powersave is enabled
1924 	 * then they get added to the cabq for later transmit.
1925 	 *
1926 	 * The "fun" issue here is that group addressed frames should
1927 	 * have the sequence number from a different pool, rather than
1928 	 * the per-TID pool.  That means that even QoS group addressed
1929 	 * frames will have a sequence number from that global value,
1930 	 * which means if we transmit different group addressed frames
1931 	 * at different traffic priorities, the sequence numbers will
1932 	 * all be out of whack.  So - chances are, the right thing
1933 	 * to do here is to always put group addressed frames into the BE
1934 	 * queue, and ignore the TID for queue selection.
1935 	 *
1936 	 * For any other frame, we do a TID/QoS lookup inside the frame
1937 	 * to see what the TID should be. If it's a non-QoS frame, the
1938 	 * AC and TID are overridden. The TID/TXQ code assumes the
1939 	 * TID is on a predictable hardware TXQ, so we don't support
1940 	 * having a node TID queued to multiple hardware TXQs.
1941 	 * This may change in the future but would require some locking
1942 	 * fudgery.
1943 	 */
1944 	pri = ath_tx_getac(sc, m0);
1945 	tid = ath_tx_gettid(sc, m0);
1946 
1947 	txq = sc->sc_ac2q[pri];
1948 	wh = mtod(m0, struct ieee80211_frame *);
1949 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1950 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1951 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1952 
1953 	/*
1954 	 * Enforce how deep the multicast queue can grow.
1955 	 *
1956 	 * XXX duplicated in ath_raw_xmit().
1957 	 */
1958 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1959 		if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
1960 		    > sc->sc_txq_mcastq_maxdepth) {
1961 			sc->sc_stats.ast_tx_mcastq_overflow++;
1962 			m_freem(m0);
1963 			return (ENOBUFS);
1964 		}
1965 	}
1966 
1967 	/*
1968 	 * Enforce how deep the unicast queue can grow.
1969 	 *
1970 	 * If the node is in power save then we don't want
1971 	 * the software queue to grow too deep, or a node may
1972 	 * end up consuming all of the ath_buf entries.
1973 	 *
1974 	 * For now, only do this for DATA frames.
1975 	 *
1976 	 * We will want to cap how many management/control
1977 	 * frames get punted to the software queue so it doesn't
1978 	 * fill up.  But the correct solution isn't yet obvious.
1979 	 * In any case, this check should at least let frames pass
1980 	 * that we are direct-dispatching.
1981 	 *
1982 	 * XXX TODO: duplicate this to the raw xmit path!
1983 	 */
1984 	if (type == IEEE80211_FC0_TYPE_DATA &&
1985 	    ATH_NODE(ni)->an_is_powersave &&
1986 	    ATH_NODE(ni)->an_swq_depth >
1987 	     sc->sc_txq_node_psq_maxdepth) {
1988 		sc->sc_stats.ast_tx_node_psq_overflow++;
1989 		m_freem(m0);
1990 		return (ENOBUFS);
1991 	}
1992 
1993 	/* A-MPDU TX */
1994 	is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
1995 	is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
1996 	is_ampdu = is_ampdu_tx | is_ampdu_pending;
1997 
1998 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
1999 	    __func__, tid, pri, is_ampdu);
2000 
2001 	/* Set local packet state, used to queue packets to hardware */
2002 	bf->bf_state.bfs_tid = tid;
2003 	bf->bf_state.bfs_tx_queue = txq->axq_qnum;
2004 	bf->bf_state.bfs_pri = pri;
2005 
2006 #if 1
2007 	/*
2008 	 * When servicing one or more stations in power-save mode
2009 	 * (or) if there is some mcast data waiting on the mcast
2010 	 * queue (to prevent out of order delivery) multicast frames
2011 	 * must be bufferd until after the beacon.
2012 	 *
2013 	 * TODO: we should lock the mcastq before we check the length.
2014 	 */
2015 	if (sc->sc_cabq_enable && ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) {
2016 		txq = &avp->av_mcastq;
2017 		/*
2018 		 * Mark the frame as eventually belonging on the CAB
2019 		 * queue, so the descriptor setup functions will
2020 		 * correctly initialise the descriptor 'qcuId' field.
2021 		 */
2022 		bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum;
2023 	}
2024 #endif
2025 
2026 	/* Do the generic frame setup */
2027 	/* XXX should just bzero the bf_state? */
2028 	bf->bf_state.bfs_dobaw = 0;
2029 
2030 	/* A-MPDU TX? Manually set sequence number */
2031 	/*
2032 	 * Don't do it whilst pending; the net80211 layer still
2033 	 * assigns them.
2034 	 *
2035 	 * Don't assign A-MPDU sequence numbers to group address
2036 	 * frames; they come from a different sequence number space.
2037 	 */
2038 	if (is_ampdu_tx && (! IEEE80211_IS_MULTICAST(wh->i_addr1))) {
2039 		/*
2040 		 * Always call; this function will
2041 		 * handle making sure that null data frames
2042 		 * and group-addressed frames don't get a sequence number
2043 		 * from the current TID and thus mess with the BAW.
2044 		 */
2045 		seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
2046 
2047 		/*
2048 		 * Don't add QoS NULL frames and group-addressed frames
2049 		 * to the BAW.
2050 		 */
2051 		if (IEEE80211_QOS_HAS_SEQ(wh) &&
2052 		    (! IEEE80211_IS_MULTICAST(wh->i_addr1)) &&
2053 		    (! IEEE80211_IS_QOS_NULL(wh))) {
2054 			bf->bf_state.bfs_dobaw = 1;
2055 		}
2056 	}
2057 
2058 	/*
2059 	 * If needed, the sequence number has been assigned.
2060 	 * Squirrel it away somewhere easy to get to.
2061 	 */
2062 	bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
2063 
2064 	/* Is ampdu pending? fetch the seqno and print it out */
2065 	if (is_ampdu_pending)
2066 		DPRINTF(sc, ATH_DEBUG_SW_TX,
2067 		    "%s: tid %d: ampdu pending, seqno %d\n",
2068 		    __func__, tid, M_SEQNO_GET(m0));
2069 
2070 	/* This also sets up the DMA map; crypto; frame parameters, etc */
2071 	r = ath_tx_normal_setup(sc, ni, bf, m0, txq);
2072 
2073 	if (r != 0)
2074 		goto done;
2075 
2076 	/* At this point m0 could have changed! */
2077 	m0 = bf->bf_m;
2078 
2079 #if 1
2080 	/*
2081 	 * If it's a multicast frame, do a direct-dispatch to the
2082 	 * destination hardware queue. Don't bother software
2083 	 * queuing it.
2084 	 */
2085 	/*
2086 	 * If it's a BAR frame, do a direct dispatch to the
2087 	 * destination hardware queue. Don't bother software
2088 	 * queuing it, as the TID will now be paused.
2089 	 * Sending a BAR frame can occur from the net80211 txa timer
2090 	 * (ie, retries) or from the ath txtask (completion call.)
2091 	 * It queues directly to hardware because the TID is paused
2092 	 * at this point (and won't be unpaused until the BAR has
2093 	 * either been TXed successfully or max retries has been
2094 	 * reached.)
2095 	 */
2096 	/*
2097 	 * Until things are better debugged - if this node is asleep
2098 	 * and we're sending it a non-BAR frame, direct dispatch it.
2099 	 * Why? Because we need to figure out what's actually being
2100 	 * sent - eg, during reassociation/reauthentication after
2101 	 * the node (last) disappeared whilst asleep, the driver should
2102 	 * have unpaused/unsleep'ed the node.  So until that is
2103 	 * sorted out, use this workaround.
2104 	 */
2105 	if (txq == &avp->av_mcastq) {
2106 		DPRINTF(sc, ATH_DEBUG_SW_TX,
2107 		    "%s: bf=%p: mcastq: TX'ing\n", __func__, bf);
2108 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2109 		ath_tx_xmit_normal(sc, txq, bf);
2110 	} else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0,
2111 	    &queue_to_head)) {
2112 		ath_tx_swq(sc, ni, txq, queue_to_head, bf);
2113 	} else {
2114 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2115 		ath_tx_xmit_normal(sc, txq, bf);
2116 	}
2117 #else
2118 	/*
2119 	 * For now, since there's no software queue,
2120 	 * direct-dispatch to the hardware.
2121 	 */
2122 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2123 	/*
2124 	 * Update the current leak count if
2125 	 * we're leaking frames; and set the
2126 	 * MORE flag as appropriate.
2127 	 */
2128 	ath_tx_leak_count_update(sc, tid, bf);
2129 	ath_tx_xmit_normal(sc, txq, bf);
2130 #endif
2131 done:
2132 	return 0;
2133 }
2134 
2135 static int
2136 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
2137 	struct ath_buf *bf, struct mbuf *m0,
2138 	const struct ieee80211_bpf_params *params)
2139 {
2140 	struct ieee80211com *ic = &sc->sc_ic;
2141 	struct ieee80211vap *vap = ni->ni_vap;
2142 	int error, ismcast, ismrr;
2143 	int keyix, hdrlen, pktlen, try0, txantenna;
2144 	u_int8_t rix, txrate;
2145 	struct ieee80211_frame *wh;
2146 	u_int flags;
2147 	HAL_PKT_TYPE atype;
2148 	const HAL_RATE_TABLE *rt;
2149 	struct ath_desc *ds;
2150 	u_int pri;
2151 	int o_tid = -1;
2152 	int do_override;
2153 	uint8_t type, subtype;
2154 	int queue_to_head;
2155 	struct ath_node *an = ATH_NODE(ni);
2156 
2157 	ATH_TX_LOCK_ASSERT(sc);
2158 
2159 	wh = mtod(m0, struct ieee80211_frame *);
2160 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2161 	hdrlen = ieee80211_anyhdrsize(wh);
2162 	/*
2163 	 * Packet length must not include any
2164 	 * pad bytes; deduct them here.
2165 	 */
2166 	/* XXX honor IEEE80211_BPF_DATAPAD */
2167 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
2168 
2169 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2170 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2171 
2172 	ATH_KTR(sc, ATH_KTR_TX, 2,
2173 	     "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf);
2174 
2175 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
2176 	    __func__, ismcast);
2177 
2178 	pri = params->ibp_pri & 3;
2179 	/* Override pri if the frame isn't a QoS one */
2180 	if (! IEEE80211_QOS_HAS_SEQ(wh))
2181 		pri = ath_tx_getac(sc, m0);
2182 
2183 	/* XXX If it's an ADDBA, override the correct queue */
2184 	do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
2185 
2186 	/* Map ADDBA to the correct priority */
2187 	if (do_override) {
2188 #if 1
2189 		DPRINTF(sc, ATH_DEBUG_XMIT,
2190 		    "%s: overriding tid %d pri %d -> %d\n",
2191 		    __func__, o_tid, pri, TID_TO_WME_AC(o_tid));
2192 #endif
2193 		pri = TID_TO_WME_AC(o_tid);
2194 	}
2195 
2196 	/*
2197 	 * "pri" is the hardware queue to transmit on.
2198 	 *
2199 	 * Look at the description in ath_tx_start() to understand
2200 	 * what needs to be "fixed" here so we just use the TID
2201 	 * for QoS frames.
2202 	 */
2203 
2204 	/* Handle encryption twiddling if needed */
2205 	if (! ath_tx_tag_crypto(sc, ni,
2206 	    m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
2207 	    &hdrlen, &pktlen, &keyix)) {
2208 		ieee80211_free_mbuf(m0);
2209 		return EIO;
2210 	}
2211 	/* packet header may have moved, reset our local pointer */
2212 	wh = mtod(m0, struct ieee80211_frame *);
2213 
2214 	/* Do the generic frame setup */
2215 	/* XXX should just bzero the bf_state? */
2216 	bf->bf_state.bfs_dobaw = 0;
2217 
2218 	error = ath_tx_dmasetup(sc, bf, m0);
2219 	if (error != 0)
2220 		return error;
2221 	m0 = bf->bf_m;				/* NB: may have changed */
2222 	wh = mtod(m0, struct ieee80211_frame *);
2223 	KASSERT((ni != NULL), ("%s: ni=NULL!", __func__));
2224 	bf->bf_node = ni;			/* NB: held reference */
2225 
2226 	/* Always enable CLRDMASK for raw frames for now.. */
2227 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
2228 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
2229 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2230 		flags |= HAL_TXDESC_RTSENA;
2231 	else if (params->ibp_flags & IEEE80211_BPF_CTS) {
2232 		/* XXX assume 11g/11n protection? */
2233 		bf->bf_state.bfs_doprot = 1;
2234 		flags |= HAL_TXDESC_CTSENA;
2235 	}
2236 	/* XXX leave ismcast to injector? */
2237 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
2238 		flags |= HAL_TXDESC_NOACK;
2239 
2240 	rt = sc->sc_currates;
2241 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2242 
2243 	/* Fetch first rate information */
2244 	rix = ath_tx_findrix(sc, params->ibp_rate0);
2245 	try0 = params->ibp_try0;
2246 
2247 	/*
2248 	 * Override EAPOL rate as appropriate.
2249 	 */
2250 	if (m0->m_flags & M_EAPOL) {
2251 		/* XXX? maybe always use long preamble? */
2252 		rix = an->an_mgmtrix;
2253 		try0 = ATH_TXMAXTRY;	/* XXX?too many? */
2254 	}
2255 
2256 	/*
2257 	 * If it's a frame to do location reporting on,
2258 	 * communicate it to the HAL.
2259 	 */
2260 	if (ieee80211_get_toa_params(m0, NULL)) {
2261 		device_printf(sc->sc_dev,
2262 		    "%s: setting TX positioning bit\n", __func__);
2263 		flags |= HAL_TXDESC_POS;
2264 		flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
2265 		bf->bf_flags |= ATH_BUF_TOA_PROBE;
2266 	}
2267 
2268 	txrate = rt->info[rix].rateCode;
2269 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
2270 		txrate |= rt->info[rix].shortPreamble;
2271 	sc->sc_txrix = rix;
2272 	ismrr = (params->ibp_try1 != 0);
2273 	txantenna = params->ibp_pri >> 2;
2274 	if (txantenna == 0)			/* XXX? */
2275 		txantenna = sc->sc_txantenna;
2276 
2277 	/*
2278 	 * Since ctsrate is fixed, store it away for later
2279 	 * use when the descriptor fields are being set.
2280 	 */
2281 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
2282 		bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
2283 
2284 	/*
2285 	 * NB: we mark all packets as type PSPOLL so the h/w won't
2286 	 * set the sequence number, duration, etc.
2287 	 */
2288 	atype = HAL_PKT_TYPE_PSPOLL;
2289 
2290 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
2291 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
2292 		    sc->sc_hwmap[rix].ieeerate, -1);
2293 
2294 	if (ieee80211_radiotap_active_vap(vap)) {
2295 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
2296 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2297 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2298 		if (m0->m_flags & M_FRAG)
2299 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2300 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
2301 		sc->sc_tx_th.wt_txpower = MIN(params->ibp_power,
2302 		    ieee80211_get_node_txpower(ni));
2303 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
2304 
2305 		ieee80211_radiotap_tx(vap, m0);
2306 	}
2307 
2308 	/*
2309 	 * Formulate first tx descriptor with tx controls.
2310 	 */
2311 	ds = bf->bf_desc;
2312 	/* XXX check return value? */
2313 
2314 	/* Store the decided rate index values away */
2315 	bf->bf_state.bfs_pktlen = pktlen;
2316 	bf->bf_state.bfs_hdrlen = hdrlen;
2317 	bf->bf_state.bfs_atype = atype;
2318 	bf->bf_state.bfs_txpower = MIN(params->ibp_power,
2319 	    ieee80211_get_node_txpower(ni));
2320 	bf->bf_state.bfs_txrate0 = txrate;
2321 	bf->bf_state.bfs_try0 = try0;
2322 	bf->bf_state.bfs_keyix = keyix;
2323 	bf->bf_state.bfs_txantenna = txantenna;
2324 	bf->bf_state.bfs_txflags = flags;
2325 	bf->bf_state.bfs_shpream =
2326 	    !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
2327 
2328 	/* Set local packet state, used to queue packets to hardware */
2329 	bf->bf_state.bfs_tid = WME_AC_TO_TID(pri);
2330 	bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum;
2331 	bf->bf_state.bfs_pri = pri;
2332 
2333 	/* XXX this should be done in ath_tx_setrate() */
2334 	bf->bf_state.bfs_ctsrate = 0;
2335 	bf->bf_state.bfs_ctsduration = 0;
2336 	bf->bf_state.bfs_ismrr = ismrr;
2337 
2338 	/* Blank the legacy rate array */
2339 	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
2340 
2341 	bf->bf_state.bfs_rc[0].rix = rix;
2342 	bf->bf_state.bfs_rc[0].tries = try0;
2343 	bf->bf_state.bfs_rc[0].ratecode = txrate;
2344 
2345 	if (ismrr) {
2346 		int rix;
2347 
2348 		rix = ath_tx_findrix(sc, params->ibp_rate1);
2349 		bf->bf_state.bfs_rc[1].rix = rix;
2350 		bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
2351 
2352 		rix = ath_tx_findrix(sc, params->ibp_rate2);
2353 		bf->bf_state.bfs_rc[2].rix = rix;
2354 		bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
2355 
2356 		rix = ath_tx_findrix(sc, params->ibp_rate3);
2357 		bf->bf_state.bfs_rc[3].rix = rix;
2358 		bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
2359 	}
2360 	/*
2361 	 * All the required rate control decisions have been made;
2362 	 * fill in the rc flags.
2363 	 */
2364 	ath_tx_rate_fill_rcflags(sc, bf);
2365 
2366 	/* NB: no buffered multicast in power save support */
2367 
2368 	/*
2369 	 * If we're overiding the ADDBA destination, dump directly
2370 	 * into the hardware queue, right after any pending
2371 	 * frames to that node are.
2372 	 */
2373 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
2374 	    __func__, do_override);
2375 
2376 #if 1
2377 	/*
2378 	 * Put addba frames in the right place in the right TID/HWQ.
2379 	 */
2380 	if (do_override) {
2381 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2382 		/*
2383 		 * XXX if it's addba frames, should we be leaking
2384 		 * them out via the frame leak method?
2385 		 * XXX for now let's not risk it; but we may wish
2386 		 * to investigate this later.
2387 		 */
2388 		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2389 	} else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0,
2390 	    &queue_to_head)) {
2391 		/* Queue to software queue */
2392 		ath_tx_swq(sc, ni, sc->sc_ac2q[pri], queue_to_head, bf);
2393 	} else {
2394 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2395 		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2396 	}
2397 #else
2398 	/* Direct-dispatch to the hardware */
2399 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2400 	/*
2401 	 * Update the current leak count if
2402 	 * we're leaking frames; and set the
2403 	 * MORE flag as appropriate.
2404 	 */
2405 	ath_tx_leak_count_update(sc, tid, bf);
2406 	ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2407 #endif
2408 	return 0;
2409 }
2410 
2411 /*
2412  * Send a raw frame.
2413  *
2414  * This can be called by net80211.
2415  */
2416 int
2417 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2418 	const struct ieee80211_bpf_params *params)
2419 {
2420 	struct ieee80211com *ic = ni->ni_ic;
2421 	struct ath_softc *sc = ic->ic_softc;
2422 	struct ath_buf *bf;
2423 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
2424 	int error = 0;
2425 
2426 	ATH_PCU_LOCK(sc);
2427 	if (sc->sc_inreset_cnt > 0) {
2428 		DPRINTF(sc, ATH_DEBUG_XMIT,
2429 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2430 		error = EIO;
2431 		ATH_PCU_UNLOCK(sc);
2432 		goto badbad;
2433 	}
2434 	sc->sc_txstart_cnt++;
2435 	ATH_PCU_UNLOCK(sc);
2436 
2437 	/* Wake the hardware up already */
2438 	ATH_LOCK(sc);
2439 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2440 	ATH_UNLOCK(sc);
2441 
2442 	ATH_TX_LOCK(sc);
2443 
2444 	if (!sc->sc_running || sc->sc_invalid) {
2445 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, r/i: %d/%d",
2446 		    __func__, sc->sc_running, sc->sc_invalid);
2447 		m_freem(m);
2448 		error = ENETDOWN;
2449 		goto bad;
2450 	}
2451 
2452 	/*
2453 	 * Enforce how deep the multicast queue can grow.
2454 	 *
2455 	 * XXX duplicated in ath_tx_start().
2456 	 */
2457 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2458 		if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
2459 		    > sc->sc_txq_mcastq_maxdepth) {
2460 			sc->sc_stats.ast_tx_mcastq_overflow++;
2461 			error = ENOBUFS;
2462 		}
2463 
2464 		if (error != 0) {
2465 			m_freem(m);
2466 			goto bad;
2467 		}
2468 	}
2469 
2470 	/*
2471 	 * Grab a TX buffer and associated resources.
2472 	 */
2473 	bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
2474 	if (bf == NULL) {
2475 		sc->sc_stats.ast_tx_nobuf++;
2476 		m_freem(m);
2477 		error = ENOBUFS;
2478 		goto bad;
2479 	}
2480 	ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n",
2481 	    m, params,  bf);
2482 
2483 	if (params == NULL) {
2484 		/*
2485 		 * Legacy path; interpret frame contents to decide
2486 		 * precisely how to send the frame.
2487 		 */
2488 		if (ath_tx_start(sc, ni, bf, m)) {
2489 			error = EIO;		/* XXX */
2490 			goto bad2;
2491 		}
2492 	} else {
2493 		/*
2494 		 * Caller supplied explicit parameters to use in
2495 		 * sending the frame.
2496 		 */
2497 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
2498 			error = EIO;		/* XXX */
2499 			goto bad2;
2500 		}
2501 	}
2502 	sc->sc_wd_timer = 5;
2503 	sc->sc_stats.ast_tx_raw++;
2504 
2505 	/*
2506 	 * Update the TIM - if there's anything queued to the
2507 	 * software queue and power save is enabled, we should
2508 	 * set the TIM.
2509 	 */
2510 	ath_tx_update_tim(sc, ni, 1);
2511 
2512 	ATH_TX_UNLOCK(sc);
2513 
2514 	ATH_PCU_LOCK(sc);
2515 	sc->sc_txstart_cnt--;
2516 	ATH_PCU_UNLOCK(sc);
2517 
2518 	/* Put the hardware back to sleep if required */
2519 	ATH_LOCK(sc);
2520 	ath_power_restore_power_state(sc);
2521 	ATH_UNLOCK(sc);
2522 
2523 	return 0;
2524 
2525 bad2:
2526 	ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, "
2527 	    "bf=%p",
2528 	    m,
2529 	    params,
2530 	    bf);
2531 	ATH_TXBUF_LOCK(sc);
2532 	ath_returnbuf_head(sc, bf);
2533 	ATH_TXBUF_UNLOCK(sc);
2534 
2535 bad:
2536 	ATH_TX_UNLOCK(sc);
2537 
2538 	ATH_PCU_LOCK(sc);
2539 	sc->sc_txstart_cnt--;
2540 	ATH_PCU_UNLOCK(sc);
2541 
2542 	/* Put the hardware back to sleep if required */
2543 	ATH_LOCK(sc);
2544 	ath_power_restore_power_state(sc);
2545 	ATH_UNLOCK(sc);
2546 
2547 badbad:
2548 	ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p",
2549 	    m, params);
2550 	sc->sc_stats.ast_tx_raw_fail++;
2551 
2552 	return error;
2553 }
2554 
2555 /* Some helper functions */
2556 
2557 /*
2558  * ADDBA (and potentially others) need to be placed in the same
2559  * hardware queue as the TID/node it's relating to. This is so
2560  * it goes out after any pending non-aggregate frames to the
2561  * same node/TID.
2562  *
2563  * If this isn't done, the ADDBA can go out before the frames
2564  * queued in hardware. Even though these frames have a sequence
2565  * number -earlier- than the ADDBA can be transmitted (but
2566  * no frames whose sequence numbers are after the ADDBA should
2567  * be!) they'll arrive after the ADDBA - and the receiving end
2568  * will simply drop them as being out of the BAW.
2569  *
2570  * The frames can't be appended to the TID software queue - it'll
2571  * never be sent out. So these frames have to be directly
2572  * dispatched to the hardware, rather than queued in software.
2573  * So if this function returns true, the TXQ has to be
2574  * overridden and it has to be directly dispatched.
2575  *
2576  * It's a dirty hack, but someone's gotta do it.
2577  */
2578 
2579 /*
2580  * Return an alternate TID for ADDBA request frames.
2581  *
2582  * Yes, this likely should be done in the net80211 layer.
2583  */
2584 static int
2585 ath_tx_action_frame_override_queue(struct ath_softc *sc,
2586     struct ieee80211_node *ni,
2587     struct mbuf *m0, int *tid)
2588 {
2589 	struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
2590 	struct ieee80211_action_ba_addbarequest *ia;
2591 	uint8_t *frm;
2592 	uint16_t baparamset;
2593 
2594 	/* Not action frame? Bail */
2595 	if (! IEEE80211_IS_MGMT_ACTION(wh))
2596 		return 0;
2597 
2598 	/* XXX Not needed for frames we send? */
2599 #if 0
2600 	/* Correct length? */
2601 	if (! ieee80211_parse_action(ni, m))
2602 		return 0;
2603 #endif
2604 
2605 	/* Extract out action frame */
2606 	frm = (u_int8_t *)&wh[1];
2607 	ia = (struct ieee80211_action_ba_addbarequest *) frm;
2608 
2609 	/* Not ADDBA? Bail */
2610 	if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
2611 		return 0;
2612 	if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
2613 		return 0;
2614 
2615 	/* Extract TID, return it */
2616 	baparamset = le16toh(ia->rq_baparamset);
2617 	*tid = (int) _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2618 
2619 	return 1;
2620 }
2621 
2622 /* Per-node software queue operations */
2623 
2624 /*
2625  * Add the current packet to the given BAW.
2626  * It is assumed that the current packet
2627  *
2628  * + fits inside the BAW;
2629  * + already has had a sequence number allocated.
2630  *
2631  * Since the BAW status may be modified by both the ath task and
2632  * the net80211/ifnet contexts, the TID must be locked.
2633  */
2634 void
2635 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
2636     struct ath_tid *tid, struct ath_buf *bf)
2637 {
2638 	int index, cindex;
2639 	struct ieee80211_tx_ampdu *tap;
2640 
2641 	ATH_TX_LOCK_ASSERT(sc);
2642 
2643 	if (bf->bf_state.bfs_isretried)
2644 		return;
2645 
2646 	tap = ath_tx_get_tx_tid(an, tid->tid);
2647 
2648 	if (! bf->bf_state.bfs_dobaw) {
2649 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2650 		    "%s: dobaw=0, seqno=%d, window %d:%d\n",
2651 		    __func__, SEQNO(bf->bf_state.bfs_seqno),
2652 		    tap->txa_start, tap->txa_wnd);
2653 	}
2654 
2655 	if (bf->bf_state.bfs_addedbaw)
2656 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2657 		    "%s: re-added? tid=%d, seqno %d; window %d:%d; "
2658 		    "baw head=%d tail=%d\n",
2659 		    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2660 		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2661 		    tid->baw_tail);
2662 
2663 	/*
2664 	 * Verify that the given sequence number is not outside of the
2665 	 * BAW.  Complain loudly if that's the case.
2666 	 */
2667 	if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2668 	    SEQNO(bf->bf_state.bfs_seqno))) {
2669 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2670 		    "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; "
2671 		    "baw head=%d tail=%d\n",
2672 		    __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2673 		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2674 		    tid->baw_tail);
2675 	}
2676 
2677 	/*
2678 	 * ni->ni_txseqs[] is the currently allocated seqno.
2679 	 * the txa state contains the current baw start.
2680 	 */
2681 	index  = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
2682 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2683 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2684 	    "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d "
2685 	    "baw head=%d tail=%d\n",
2686 	    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2687 	    tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head,
2688 	    tid->baw_tail);
2689 
2690 #if 0
2691 	assert(tid->tx_buf[cindex] == NULL);
2692 #endif
2693 	if (tid->tx_buf[cindex] != NULL) {
2694 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2695 		    "%s: ba packet dup (index=%d, cindex=%d, "
2696 		    "head=%d, tail=%d)\n",
2697 		    __func__, index, cindex, tid->baw_head, tid->baw_tail);
2698 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2699 		    "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
2700 		    __func__,
2701 		    tid->tx_buf[cindex],
2702 		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
2703 		    bf,
2704 		    SEQNO(bf->bf_state.bfs_seqno)
2705 		);
2706 	}
2707 	tid->tx_buf[cindex] = bf;
2708 
2709 	if (index >= ((tid->baw_tail - tid->baw_head) &
2710 	    (ATH_TID_MAX_BUFS - 1))) {
2711 		tid->baw_tail = cindex;
2712 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
2713 	}
2714 }
2715 
2716 /*
2717  * Flip the BAW buffer entry over from the existing one to the new one.
2718  *
2719  * When software retransmitting a (sub-)frame, it is entirely possible that
2720  * the frame ath_buf is marked as BUSY and can't be immediately reused.
2721  * In that instance the buffer is cloned and the new buffer is used for
2722  * retransmit. We thus need to update the ath_buf slot in the BAW buf
2723  * tracking array to maintain consistency.
2724  */
2725 static void
2726 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
2727     struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
2728 {
2729 	int index, cindex;
2730 	struct ieee80211_tx_ampdu *tap;
2731 	int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
2732 
2733 	ATH_TX_LOCK_ASSERT(sc);
2734 
2735 	tap = ath_tx_get_tx_tid(an, tid->tid);
2736 	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2737 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2738 
2739 	/*
2740 	 * Just warn for now; if it happens then we should find out
2741 	 * about it. It's highly likely the aggregation session will
2742 	 * soon hang.
2743 	 */
2744 	if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
2745 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2746 		    "%s: retransmitted buffer"
2747 		    " has mismatching seqno's, BA session may hang.\n",
2748 		    __func__);
2749 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2750 		    "%s: old seqno=%d, new_seqno=%d\n", __func__,
2751 		    old_bf->bf_state.bfs_seqno, new_bf->bf_state.bfs_seqno);
2752 	}
2753 
2754 	if (tid->tx_buf[cindex] != old_bf) {
2755 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2756 		    "%s: ath_buf pointer incorrect; "
2757 		    " has m BA session may hang.\n", __func__);
2758 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2759 		    "%s: old bf=%p, new bf=%p\n", __func__, old_bf, new_bf);
2760 	}
2761 
2762 	tid->tx_buf[cindex] = new_bf;
2763 }
2764 
2765 /*
2766  * seq_start - left edge of BAW
2767  * seq_next - current/next sequence number to allocate
2768  *
2769  * Since the BAW status may be modified by both the ath task and
2770  * the net80211/ifnet contexts, the TID must be locked.
2771  */
2772 static void
2773 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
2774     struct ath_tid *tid, const struct ath_buf *bf)
2775 {
2776 	int index, cindex;
2777 	struct ieee80211_tx_ampdu *tap;
2778 	int seqno = SEQNO(bf->bf_state.bfs_seqno);
2779 
2780 	ATH_TX_LOCK_ASSERT(sc);
2781 
2782 	tap = ath_tx_get_tx_tid(an, tid->tid);
2783 	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2784 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2785 
2786 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2787 	    "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, "
2788 	    "baw head=%d, tail=%d\n",
2789 	    __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
2790 	    cindex, tid->baw_head, tid->baw_tail);
2791 
2792 	/*
2793 	 * If this occurs then we have a big problem - something else
2794 	 * has slid tap->txa_start along without updating the BAW
2795 	 * tracking start/end pointers. Thus the TX BAW state is now
2796 	 * completely busted.
2797 	 *
2798 	 * But for now, since I haven't yet fixed TDMA and buffer cloning,
2799 	 * it's quite possible that a cloned buffer is making its way
2800 	 * here and causing it to fire off. Disable TDMA for now.
2801 	 */
2802 	if (tid->tx_buf[cindex] != bf) {
2803 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2804 		    "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
2805 		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
2806 		    tid->tx_buf[cindex],
2807 		    (tid->tx_buf[cindex] != NULL) ?
2808 		      SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno) : -1);
2809 	}
2810 
2811 	tid->tx_buf[cindex] = NULL;
2812 
2813 	while (tid->baw_head != tid->baw_tail &&
2814 	    !tid->tx_buf[tid->baw_head]) {
2815 		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2816 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
2817 	}
2818 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2819 	    "%s: tid=%d: baw is now %d:%d, baw head=%d\n",
2820 	    __func__, tid->tid, tap->txa_start, tap->txa_wnd, tid->baw_head);
2821 }
2822 
2823 static void
2824 ath_tx_leak_count_update(struct ath_softc *sc, struct ath_tid *tid,
2825     struct ath_buf *bf)
2826 {
2827 	struct ieee80211_frame *wh;
2828 
2829 	ATH_TX_LOCK_ASSERT(sc);
2830 
2831 	if (tid->an->an_leak_count > 0) {
2832 		wh = mtod(bf->bf_m, struct ieee80211_frame *);
2833 
2834 		/*
2835 		 * Update MORE based on the software/net80211 queue states.
2836 		 */
2837 		if ((tid->an->an_stack_psq > 0)
2838 		    || (tid->an->an_swq_depth > 0))
2839 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
2840 		else
2841 			wh->i_fc[1] &= ~IEEE80211_FC1_MORE_DATA;
2842 
2843 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
2844 		    "%s: %6D: leak count = %d, psq=%d, swq=%d, MORE=%d\n",
2845 		    __func__,
2846 		    tid->an->an_node.ni_macaddr,
2847 		    ":",
2848 		    tid->an->an_leak_count,
2849 		    tid->an->an_stack_psq,
2850 		    tid->an->an_swq_depth,
2851 		    !! (wh->i_fc[1] & IEEE80211_FC1_MORE_DATA));
2852 
2853 		/*
2854 		 * Re-sync the underlying buffer.
2855 		 */
2856 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2857 		    BUS_DMASYNC_PREWRITE);
2858 
2859 		tid->an->an_leak_count --;
2860 	}
2861 }
2862 
2863 static int
2864 ath_tx_tid_can_tx_or_sched(struct ath_softc *sc, struct ath_tid *tid)
2865 {
2866 
2867 	ATH_TX_LOCK_ASSERT(sc);
2868 
2869 	if (tid->an->an_leak_count > 0) {
2870 		return (1);
2871 	}
2872 	if (tid->paused)
2873 		return (0);
2874 	return (1);
2875 }
2876 
2877 /*
2878  * Mark the current node/TID as ready to TX.
2879  *
2880  * This is done to make it easy for the software scheduler to
2881  * find which nodes have data to send.
2882  *
2883  * The TXQ lock must be held.
2884  */
2885 void
2886 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
2887 {
2888 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2889 
2890 	ATH_TX_LOCK_ASSERT(sc);
2891 
2892 	/*
2893 	 * If we are leaking out a frame to this destination
2894 	 * for PS-POLL, ensure that we allow scheduling to
2895 	 * occur.
2896 	 */
2897 	if (! ath_tx_tid_can_tx_or_sched(sc, tid))
2898 		return;		/* paused, can't schedule yet */
2899 
2900 	if (tid->sched)
2901 		return;		/* already scheduled */
2902 
2903 	tid->sched = 1;
2904 
2905 #if 0
2906 	/*
2907 	 * If this is a sleeping node we're leaking to, given
2908 	 * it a higher priority.  This is so bad for QoS it hurts.
2909 	 */
2910 	if (tid->an->an_leak_count) {
2911 		TAILQ_INSERT_HEAD(&txq->axq_tidq, tid, axq_qelem);
2912 	} else {
2913 		TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2914 	}
2915 #endif
2916 
2917 	/*
2918 	 * We can't do the above - it'll confuse the TXQ software
2919 	 * scheduler which will keep checking the _head_ TID
2920 	 * in the list to see if it has traffic.  If we queue
2921 	 * a TID to the head of the list and it doesn't transmit,
2922 	 * we'll check it again.
2923 	 *
2924 	 * So, get the rest of this leaking frames support working
2925 	 * and reliable first and _then_ optimise it so they're
2926 	 * pushed out in front of any other pending software
2927 	 * queued nodes.
2928 	 */
2929 	TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2930 }
2931 
2932 /*
2933  * Mark the current node as no longer needing to be polled for
2934  * TX packets.
2935  *
2936  * The TXQ lock must be held.
2937  */
2938 static void
2939 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
2940 {
2941 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2942 
2943 	ATH_TX_LOCK_ASSERT(sc);
2944 
2945 	if (tid->sched == 0)
2946 		return;
2947 
2948 	tid->sched = 0;
2949 	TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
2950 }
2951 
2952 /*
2953  * Assign a sequence number manually to the given frame.
2954  *
2955  * This should only be called for A-MPDU TX frames.
2956  *
2957  * Note: for group addressed frames, the sequence number
2958  * should be from NONQOS_TID, and net80211 should have
2959  * already assigned it for us.
2960  */
2961 static ieee80211_seq
2962 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
2963     struct ath_buf *bf, struct mbuf *m0)
2964 {
2965 	struct ieee80211_frame *wh;
2966 	int tid;
2967 	ieee80211_seq seqno;
2968 	uint8_t subtype;
2969 
2970 	wh = mtod(m0, struct ieee80211_frame *);
2971 	tid = ieee80211_gettid(wh);
2972 
2973 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, qos has seq=%d\n",
2974 	    __func__, tid, IEEE80211_QOS_HAS_SEQ(wh));
2975 
2976 	/* XXX Is it a control frame? Ignore */
2977 
2978 	/* Does the packet require a sequence number? */
2979 	if (! IEEE80211_QOS_HAS_SEQ(wh))
2980 		return -1;
2981 
2982 	ATH_TX_LOCK_ASSERT(sc);
2983 
2984 	/*
2985 	 * Is it a QOS NULL Data frame? Give it a sequence number from
2986 	 * the default TID (IEEE80211_NONQOS_TID.)
2987 	 *
2988 	 * The RX path of everything I've looked at doesn't include the NULL
2989 	 * data frame sequence number in the aggregation state updates, so
2990 	 * assigning it a sequence number there will cause a BAW hole on the
2991 	 * RX side.
2992 	 */
2993 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2994 	if (IEEE80211_IS_QOS_NULL(wh)) {
2995 		/* XXX no locking for this TID? This is a bit of a problem. */
2996 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
2997 		INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
2998 	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2999 		/*
3000 		 * group addressed frames get a sequence number from
3001 		 * a different sequence number space.
3002 		 */
3003 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
3004 		INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
3005 	} else {
3006 		/* Manually assign sequence number */
3007 		seqno = ni->ni_txseqs[tid];
3008 		INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
3009 	}
3010 	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3011 	M_SEQNO_SET(m0, seqno);
3012 
3013 	/* Return so caller can do something with it if needed */
3014 	DPRINTF(sc, ATH_DEBUG_SW_TX,
3015 	    "%s:  -> subtype=0x%x, tid=%d, seqno=%d\n",
3016 	    __func__, subtype, tid, seqno);
3017 	return seqno;
3018 }
3019 
3020 /*
3021  * Attempt to direct dispatch an aggregate frame to hardware.
3022  * If the frame is out of BAW, queue.
3023  * Otherwise, schedule it as a single frame.
3024  */
3025 static void
3026 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an,
3027     struct ath_txq *txq, struct ath_buf *bf)
3028 {
3029 	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
3030 	struct ieee80211_tx_ampdu *tap;
3031 
3032 	ATH_TX_LOCK_ASSERT(sc);
3033 
3034 	tap = ath_tx_get_tx_tid(an, tid->tid);
3035 
3036 	/* paused? queue */
3037 	if (! ath_tx_tid_can_tx_or_sched(sc, tid)) {
3038 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
3039 		/* XXX don't sched - we're paused! */
3040 		return;
3041 	}
3042 
3043 	/* outside baw? queue */
3044 	if (bf->bf_state.bfs_dobaw &&
3045 	    (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
3046 	    SEQNO(bf->bf_state.bfs_seqno)))) {
3047 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
3048 		ath_tx_tid_sched(sc, tid);
3049 		return;
3050 	}
3051 
3052 	/*
3053 	 * This is a temporary check and should be removed once
3054 	 * all the relevant code paths have been fixed.
3055 	 *
3056 	 * During aggregate retries, it's possible that the head
3057 	 * frame will fail (which has the bfs_aggr and bfs_nframes
3058 	 * fields set for said aggregate) and will be retried as
3059 	 * a single frame.  In this instance, the values should
3060 	 * be reset or the completion code will get upset with you.
3061 	 */
3062 	if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) {
3063 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3064 		    "%s: bfs_aggr=%d, bfs_nframes=%d\n", __func__,
3065 		    bf->bf_state.bfs_aggr, bf->bf_state.bfs_nframes);
3066 		bf->bf_state.bfs_aggr = 0;
3067 		bf->bf_state.bfs_nframes = 1;
3068 	}
3069 
3070 	/* Update CLRDMASK just before this frame is queued */
3071 	ath_tx_update_clrdmask(sc, tid, bf);
3072 
3073 	/* Direct dispatch to hardware */
3074 	ath_tx_do_ratelookup(sc, bf, tid->tid, bf->bf_state.bfs_pktlen,
3075 	    false);
3076 	ath_tx_calc_duration(sc, bf);
3077 	ath_tx_calc_protection(sc, bf);
3078 	ath_tx_set_rtscts(sc, bf);
3079 	ath_tx_rate_fill_rcflags(sc, bf);
3080 	ath_tx_setds(sc, bf);
3081 
3082 	/* Statistics */
3083 	sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
3084 
3085 	/* Track per-TID hardware queue depth correctly */
3086 	tid->hwq_depth++;
3087 
3088 	/* Add to BAW */
3089 	if (bf->bf_state.bfs_dobaw) {
3090 		ath_tx_addto_baw(sc, an, tid, bf);
3091 		bf->bf_state.bfs_addedbaw = 1;
3092 	}
3093 
3094 	/* Set completion handler, multi-frame aggregate or not */
3095 	bf->bf_comp = ath_tx_aggr_comp;
3096 
3097 	/*
3098 	 * Update the current leak count if
3099 	 * we're leaking frames; and set the
3100 	 * MORE flag as appropriate.
3101 	 */
3102 	ath_tx_leak_count_update(sc, tid, bf);
3103 
3104 	/* Hand off to hardware */
3105 	ath_tx_handoff(sc, txq, bf);
3106 }
3107 
3108 /*
3109  * Attempt to send the packet.
3110  * If the queue isn't busy, direct-dispatch.
3111  * If the queue is busy enough, queue the given packet on the
3112  *  relevant software queue.
3113  */
3114 void
3115 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni,
3116     struct ath_txq *txq, int queue_to_head, struct ath_buf *bf)
3117 {
3118 	struct ath_node *an = ATH_NODE(ni);
3119 	struct ieee80211_frame *wh;
3120 	struct ath_tid *atid;
3121 	int pri, tid;
3122 	struct mbuf *m0 = bf->bf_m;
3123 
3124 	ATH_TX_LOCK_ASSERT(sc);
3125 
3126 	/* Fetch the TID - non-QoS frames get assigned to TID 16 */
3127 	wh = mtod(m0, struct ieee80211_frame *);
3128 	pri = ath_tx_getac(sc, m0);
3129 	tid = ath_tx_gettid(sc, m0);
3130 	atid = &an->an_tid[tid];
3131 
3132 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
3133 	    __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
3134 
3135 	/* Set local packet state, used to queue packets to hardware */
3136 	/* XXX potentially duplicate info, re-check */
3137 	bf->bf_state.bfs_tid = tid;
3138 	bf->bf_state.bfs_tx_queue = txq->axq_qnum;
3139 	bf->bf_state.bfs_pri = pri;
3140 
3141 	/*
3142 	 * If the hardware queue isn't busy, queue it directly.
3143 	 * If the hardware queue is busy, queue it.
3144 	 * If the TID is paused or the traffic it outside BAW, software
3145 	 * queue it.
3146 	 *
3147 	 * If the node is in power-save and we're leaking a frame,
3148 	 * leak a single frame.
3149 	 */
3150 	if (! ath_tx_tid_can_tx_or_sched(sc, atid)) {
3151 		/* TID is paused, queue */
3152 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__);
3153 		/*
3154 		 * If the caller requested that it be sent at a high
3155 		 * priority, queue it at the head of the list.
3156 		 */
3157 		if (queue_to_head)
3158 			ATH_TID_INSERT_HEAD(atid, bf, bf_list);
3159 		else
3160 			ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3161 	} else if (ath_tx_ampdu_pending(sc, an, tid)) {
3162 		/* AMPDU pending; queue */
3163 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__);
3164 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3165 		/* XXX sched? */
3166 	} else if (ath_tx_ampdu_running(sc, an, tid)) {
3167 		/*
3168 		 * AMPDU running, queue single-frame if the hardware queue
3169 		 * isn't busy.
3170 		 *
3171 		 * If the hardware queue is busy, sending an aggregate frame
3172 		 * then just hold off so we can queue more aggregate frames.
3173 		 *
3174 		 * Otherwise we may end up with single frames leaking through
3175 		 * because we are dispatching them too quickly.
3176 		 *
3177 		 * TODO: maybe we should treat this as two policies - minimise
3178 		 * latency, or maximise throughput.  Then for BE/BK we can
3179 		 * maximise throughput, and VO/VI (if AMPDU is enabled!)
3180 		 * minimise latency.
3181 		 */
3182 
3183 		/*
3184 		 * Always queue the frame to the tail of the list.
3185 		 */
3186 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3187 
3188 		/*
3189 		 * If the hardware queue isn't busy, direct dispatch
3190 		 * the head frame in the list.
3191 		 *
3192 		 * Note: if we're say, configured to do ADDBA but not A-MPDU
3193 		 * then maybe we want to still queue two non-aggregate frames
3194 		 * to the hardware.  Again with the per-TID policy
3195 		 * configuration..)
3196 		 *
3197 		 * Otherwise, schedule the TID.
3198 		 */
3199 		/* XXX TXQ locking */
3200 		if (txq->axq_depth + txq->fifo.axq_depth == 0) {
3201 			bf = ATH_TID_FIRST(atid);
3202 			ATH_TID_REMOVE(atid, bf, bf_list);
3203 
3204 			/*
3205 			 * Ensure it's definitely treated as a non-AMPDU
3206 			 * frame - this information may have been left
3207 			 * over from a previous attempt.
3208 			 */
3209 			bf->bf_state.bfs_aggr = 0;
3210 			bf->bf_state.bfs_nframes = 1;
3211 
3212 			/* Queue to the hardware */
3213 			ath_tx_xmit_aggr(sc, an, txq, bf);
3214 			DPRINTF(sc, ATH_DEBUG_SW_TX,
3215 			    "%s: xmit_aggr\n",
3216 			    __func__);
3217 		} else {
3218 			DPRINTF(sc, ATH_DEBUG_SW_TX,
3219 			    "%s: ampdu; swq'ing\n",
3220 			    __func__);
3221 
3222 			ath_tx_tid_sched(sc, atid);
3223 		}
3224 	/*
3225 	 * If we're not doing A-MPDU, be prepared to direct dispatch
3226 	 * up to both limits if possible.  This particular corner
3227 	 * case may end up with packet starvation between aggregate
3228 	 * traffic and non-aggregate traffic: we want to ensure
3229 	 * that non-aggregate stations get a few frames queued to the
3230 	 * hardware before the aggregate station(s) get their chance.
3231 	 *
3232 	 * So if you only ever see a couple of frames direct dispatched
3233 	 * to the hardware from a non-AMPDU client, check both here
3234 	 * and in the software queue dispatcher to ensure that those
3235 	 * non-AMPDU stations get a fair chance to transmit.
3236 	 */
3237 	/* XXX TXQ locking */
3238 	} else if ((txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit_nonaggr) &&
3239 		    (txq->axq_aggr_depth < sc->sc_hwq_limit_aggr)) {
3240 		/* AMPDU not running, attempt direct dispatch */
3241 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__);
3242 		/* See if clrdmask needs to be set */
3243 		ath_tx_update_clrdmask(sc, atid, bf);
3244 
3245 		/*
3246 		 * Update the current leak count if
3247 		 * we're leaking frames; and set the
3248 		 * MORE flag as appropriate.
3249 		 */
3250 		ath_tx_leak_count_update(sc, atid, bf);
3251 
3252 		/*
3253 		 * Dispatch the frame.
3254 		 */
3255 		ath_tx_xmit_normal(sc, txq, bf);
3256 	} else {
3257 		/* Busy; queue */
3258 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__);
3259 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3260 		ath_tx_tid_sched(sc, atid);
3261 	}
3262 }
3263 
3264 /*
3265  * Only set the clrdmask bit if none of the nodes are currently
3266  * filtered.
3267  *
3268  * XXX TODO: go through all the callers and check to see
3269  * which are being called in the context of looping over all
3270  * TIDs (eg, if all tids are being paused, resumed, etc.)
3271  * That'll avoid O(n^2) complexity here.
3272  */
3273 static void
3274 ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an)
3275 {
3276 	int i;
3277 
3278 	ATH_TX_LOCK_ASSERT(sc);
3279 
3280 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
3281 		if (an->an_tid[i].isfiltered == 1)
3282 			return;
3283 	}
3284 	an->clrdmask = 1;
3285 }
3286 
3287 /*
3288  * Configure the per-TID node state.
3289  *
3290  * This likely belongs in if_ath_node.c but I can't think of anywhere
3291  * else to put it just yet.
3292  *
3293  * This sets up the SLISTs and the mutex as appropriate.
3294  */
3295 void
3296 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
3297 {
3298 	int i, j;
3299 	struct ath_tid *atid;
3300 
3301 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
3302 		atid = &an->an_tid[i];
3303 
3304 		/* XXX now with this bzer(), is the field 0'ing needed? */
3305 		bzero(atid, sizeof(*atid));
3306 
3307 		TAILQ_INIT(&atid->tid_q);
3308 		TAILQ_INIT(&atid->filtq.tid_q);
3309 		atid->tid = i;
3310 		atid->an = an;
3311 		for (j = 0; j < ATH_TID_MAX_BUFS; j++)
3312 			atid->tx_buf[j] = NULL;
3313 		atid->baw_head = atid->baw_tail = 0;
3314 		atid->paused = 0;
3315 		atid->sched = 0;
3316 		atid->hwq_depth = 0;
3317 		atid->cleanup_inprogress = 0;
3318 		if (i == IEEE80211_NONQOS_TID)
3319 			atid->ac = ATH_NONQOS_TID_AC;
3320 		else
3321 			atid->ac = TID_TO_WME_AC(i);
3322 	}
3323 	an->clrdmask = 1;	/* Always start by setting this bit */
3324 }
3325 
3326 /*
3327  * Pause the current TID. This stops packets from being transmitted
3328  * on it.
3329  *
3330  * Since this is also called from upper layers as well as the driver,
3331  * it will get the TID lock.
3332  */
3333 static void
3334 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
3335 {
3336 
3337 	ATH_TX_LOCK_ASSERT(sc);
3338 	tid->paused++;
3339 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: [%6D]: tid=%d, paused = %d\n",
3340 	    __func__,
3341 	    tid->an->an_node.ni_macaddr, ":",
3342 	    tid->tid,
3343 	    tid->paused);
3344 }
3345 
3346 /*
3347  * Unpause the current TID, and schedule it if needed.
3348  */
3349 static void
3350 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
3351 {
3352 	ATH_TX_LOCK_ASSERT(sc);
3353 
3354 	/*
3355 	 * There's some odd places where ath_tx_tid_resume() is called
3356 	 * when it shouldn't be; this works around that particular issue
3357 	 * until it's actually resolved.
3358 	 */
3359 	if (tid->paused == 0) {
3360 		device_printf(sc->sc_dev,
3361 		    "%s: [%6D]: tid=%d, paused=0?\n",
3362 		    __func__,
3363 		    tid->an->an_node.ni_macaddr, ":",
3364 		    tid->tid);
3365 	} else {
3366 		tid->paused--;
3367 	}
3368 
3369 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3370 	    "%s: [%6D]: tid=%d, unpaused = %d\n",
3371 	    __func__,
3372 	    tid->an->an_node.ni_macaddr, ":",
3373 	    tid->tid,
3374 	    tid->paused);
3375 
3376 	if (tid->paused)
3377 		return;
3378 
3379 	/*
3380 	 * Override the clrdmask configuration for the next frame
3381 	 * from this TID, just to get the ball rolling.
3382 	 */
3383 	ath_tx_set_clrdmask(sc, tid->an);
3384 
3385 	if (tid->axq_depth == 0)
3386 		return;
3387 
3388 	/* XXX isfiltered shouldn't ever be 0 at this point */
3389 	if (tid->isfiltered == 1) {
3390 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: filtered?!\n",
3391 		    __func__);
3392 		return;
3393 	}
3394 
3395 	ath_tx_tid_sched(sc, tid);
3396 
3397 	/*
3398 	 * Queue the software TX scheduler.
3399 	 */
3400 	ath_tx_swq_kick(sc);
3401 }
3402 
3403 /*
3404  * Add the given ath_buf to the TID filtered frame list.
3405  * This requires the TID be filtered.
3406  */
3407 static void
3408 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid,
3409     struct ath_buf *bf)
3410 {
3411 
3412 	ATH_TX_LOCK_ASSERT(sc);
3413 
3414 	if (!tid->isfiltered)
3415 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: not filtered?!\n",
3416 		    __func__);
3417 
3418 	DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf);
3419 
3420 	/* Set the retry bit and bump the retry counter */
3421 	ath_tx_set_retry(sc, bf);
3422 	sc->sc_stats.ast_tx_swfiltered++;
3423 
3424 	ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list);
3425 }
3426 
3427 /*
3428  * Handle a completed filtered frame from the given TID.
3429  * This just enables/pauses the filtered frame state if required
3430  * and appends the filtered frame to the filtered queue.
3431  */
3432 static void
3433 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid,
3434     struct ath_buf *bf)
3435 {
3436 
3437 	ATH_TX_LOCK_ASSERT(sc);
3438 
3439 	if (! tid->isfiltered) {
3440 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d; filter transition\n",
3441 		    __func__, tid->tid);
3442 		tid->isfiltered = 1;
3443 		ath_tx_tid_pause(sc, tid);
3444 	}
3445 
3446 	/* Add the frame to the filter queue */
3447 	ath_tx_tid_filt_addbuf(sc, tid, bf);
3448 }
3449 
3450 /*
3451  * Complete the filtered frame TX completion.
3452  *
3453  * If there are no more frames in the hardware queue, unpause/unfilter
3454  * the TID if applicable.  Otherwise we will wait for a node PS transition
3455  * to unfilter.
3456  */
3457 static void
3458 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid)
3459 {
3460 	struct ath_buf *bf;
3461 	int do_resume = 0;
3462 
3463 	ATH_TX_LOCK_ASSERT(sc);
3464 
3465 	if (tid->hwq_depth != 0)
3466 		return;
3467 
3468 	DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d, hwq=0, transition back\n",
3469 	    __func__, tid->tid);
3470 	if (tid->isfiltered == 1) {
3471 		tid->isfiltered = 0;
3472 		do_resume = 1;
3473 	}
3474 
3475 	/* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */
3476 	ath_tx_set_clrdmask(sc, tid->an);
3477 
3478 	/* XXX this is really quite inefficient */
3479 	while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) {
3480 		ATH_TID_FILT_REMOVE(tid, bf, bf_list);
3481 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
3482 	}
3483 
3484 	/* And only resume if we had paused before */
3485 	if (do_resume)
3486 		ath_tx_tid_resume(sc, tid);
3487 }
3488 
3489 /*
3490  * Called when a single (aggregate or otherwise) frame is completed.
3491  *
3492  * Returns 0 if the buffer could be added to the filtered list
3493  * (cloned or otherwise), 1 if the buffer couldn't be added to the
3494  * filtered list (failed clone; expired retry) and the caller should
3495  * free it and handle it like a failure (eg by sending a BAR.)
3496  *
3497  * since the buffer may be cloned, bf must be not touched after this
3498  * if the return value is 0.
3499  */
3500 static int
3501 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid,
3502     struct ath_buf *bf)
3503 {
3504 	struct ath_buf *nbf;
3505 	int retval;
3506 
3507 	ATH_TX_LOCK_ASSERT(sc);
3508 
3509 	/*
3510 	 * Don't allow a filtered frame to live forever.
3511 	 */
3512 	if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
3513 		sc->sc_stats.ast_tx_swretrymax++;
3514 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3515 		    "%s: bf=%p, seqno=%d, exceeded retries\n",
3516 		    __func__,
3517 		    bf,
3518 		    SEQNO(bf->bf_state.bfs_seqno));
3519 		retval = 1; /* error */
3520 		goto finish;
3521 	}
3522 
3523 	/*
3524 	 * A busy buffer can't be added to the retry list.
3525 	 * It needs to be cloned.
3526 	 */
3527 	if (bf->bf_flags & ATH_BUF_BUSY) {
3528 		nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
3529 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3530 		    "%s: busy buffer clone: %p -> %p\n",
3531 		    __func__, bf, nbf);
3532 	} else {
3533 		nbf = bf;
3534 	}
3535 
3536 	if (nbf == NULL) {
3537 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3538 		    "%s: busy buffer couldn't be cloned (%p)!\n",
3539 		    __func__, bf);
3540 		retval = 1; /* error */
3541 	} else {
3542 		ath_tx_tid_filt_comp_buf(sc, tid, nbf);
3543 		retval = 0; /* ok */
3544 	}
3545 finish:
3546 	ath_tx_tid_filt_comp_complete(sc, tid);
3547 
3548 	return (retval);
3549 }
3550 
3551 static void
3552 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid,
3553     struct ath_buf *bf_first, ath_bufhead *bf_q)
3554 {
3555 	struct ath_buf *bf, *bf_next, *nbf;
3556 
3557 	ATH_TX_LOCK_ASSERT(sc);
3558 
3559 	bf = bf_first;
3560 	while (bf) {
3561 		bf_next = bf->bf_next;
3562 		bf->bf_next = NULL;	/* Remove it from the aggr list */
3563 
3564 		/*
3565 		 * Don't allow a filtered frame to live forever.
3566 		 */
3567 		if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
3568 			sc->sc_stats.ast_tx_swretrymax++;
3569 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3570 			    "%s: tid=%d, bf=%p, seqno=%d, exceeded retries\n",
3571 			    __func__,
3572 			    tid->tid,
3573 			    bf,
3574 			    SEQNO(bf->bf_state.bfs_seqno));
3575 			TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3576 			goto next;
3577 		}
3578 
3579 		if (bf->bf_flags & ATH_BUF_BUSY) {
3580 			nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
3581 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3582 			    "%s: tid=%d, busy buffer cloned: %p -> %p, seqno=%d\n",
3583 			    __func__, tid->tid, bf, nbf, SEQNO(bf->bf_state.bfs_seqno));
3584 		} else {
3585 			nbf = bf;
3586 		}
3587 
3588 		/*
3589 		 * If the buffer couldn't be cloned, add it to bf_q;
3590 		 * the caller will free the buffer(s) as required.
3591 		 */
3592 		if (nbf == NULL) {
3593 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3594 			    "%s: tid=%d, buffer couldn't be cloned! (%p) seqno=%d\n",
3595 			    __func__, tid->tid, bf, SEQNO(bf->bf_state.bfs_seqno));
3596 			TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3597 		} else {
3598 			ath_tx_tid_filt_comp_buf(sc, tid, nbf);
3599 		}
3600 next:
3601 		bf = bf_next;
3602 	}
3603 
3604 	ath_tx_tid_filt_comp_complete(sc, tid);
3605 }
3606 
3607 /*
3608  * Suspend the queue because we need to TX a BAR.
3609  */
3610 static void
3611 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid)
3612 {
3613 
3614 	ATH_TX_LOCK_ASSERT(sc);
3615 
3616 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3617 	    "%s: tid=%d, bar_wait=%d, bar_tx=%d, called\n",
3618 	    __func__,
3619 	    tid->tid,
3620 	    tid->bar_wait,
3621 	    tid->bar_tx);
3622 
3623 	/* We shouldn't be called when bar_tx is 1 */
3624 	if (tid->bar_tx) {
3625 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3626 		    "%s: bar_tx is 1?!\n", __func__);
3627 	}
3628 
3629 	/* If we've already been called, just be patient. */
3630 	if (tid->bar_wait)
3631 		return;
3632 
3633 	/* Wait! */
3634 	tid->bar_wait = 1;
3635 
3636 	/* Only one pause, no matter how many frames fail */
3637 	ath_tx_tid_pause(sc, tid);
3638 }
3639 
3640 /*
3641  * We've finished with BAR handling - either we succeeded or
3642  * failed. Either way, unsuspend TX.
3643  */
3644 static void
3645 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid)
3646 {
3647 
3648 	ATH_TX_LOCK_ASSERT(sc);
3649 
3650 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3651 	    "%s: %6D: TID=%d, called\n",
3652 	    __func__,
3653 	    tid->an->an_node.ni_macaddr,
3654 	    ":",
3655 	    tid->tid);
3656 
3657 	if (tid->bar_tx == 0 || tid->bar_wait == 0) {
3658 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3659 		    "%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n",
3660 		    __func__, tid->an->an_node.ni_macaddr, ":",
3661 		    tid->tid, tid->bar_tx, tid->bar_wait);
3662 	}
3663 
3664 	tid->bar_tx = tid->bar_wait = 0;
3665 	ath_tx_tid_resume(sc, tid);
3666 }
3667 
3668 /*
3669  * Return whether we're ready to TX a BAR frame.
3670  *
3671  * Requires the TID lock be held.
3672  */
3673 static int
3674 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid)
3675 {
3676 
3677 	ATH_TX_LOCK_ASSERT(sc);
3678 
3679 	if (tid->bar_wait == 0 || tid->hwq_depth > 0)
3680 		return (0);
3681 
3682 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3683 	    "%s: %6D: TID=%d, bar ready\n",
3684 	    __func__,
3685 	    tid->an->an_node.ni_macaddr,
3686 	    ":",
3687 	    tid->tid);
3688 
3689 	return (1);
3690 }
3691 
3692 /*
3693  * Check whether the current TID is ready to have a BAR
3694  * TXed and if so, do the TX.
3695  *
3696  * Since the TID/TXQ lock can't be held during a call to
3697  * ieee80211_send_bar(), we have to do the dirty thing of unlocking it,
3698  * sending the BAR and locking it again.
3699  *
3700  * Eventually, the code to send the BAR should be broken out
3701  * from this routine so the lock doesn't have to be reacquired
3702  * just to be immediately dropped by the caller.
3703  */
3704 static void
3705 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid)
3706 {
3707 	struct ieee80211_tx_ampdu *tap;
3708 
3709 	ATH_TX_LOCK_ASSERT(sc);
3710 
3711 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3712 	    "%s: %6D: TID=%d, called\n",
3713 	    __func__,
3714 	    tid->an->an_node.ni_macaddr,
3715 	    ":",
3716 	    tid->tid);
3717 
3718 	tap = ath_tx_get_tx_tid(tid->an, tid->tid);
3719 
3720 	/*
3721 	 * This is an error condition!
3722 	 */
3723 	if (tid->bar_wait == 0 || tid->bar_tx == 1) {
3724 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3725 		    "%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n",
3726 		    __func__, tid->an->an_node.ni_macaddr, ":",
3727 		    tid->tid, tid->bar_tx, tid->bar_wait);
3728 		return;
3729 	}
3730 
3731 	/* Don't do anything if we still have pending frames */
3732 	if (tid->hwq_depth > 0) {
3733 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3734 		    "%s: %6D: TID=%d, hwq_depth=%d, waiting\n",
3735 		    __func__,
3736 		    tid->an->an_node.ni_macaddr,
3737 		    ":",
3738 		    tid->tid,
3739 		    tid->hwq_depth);
3740 		return;
3741 	}
3742 
3743 	/* We're now about to TX */
3744 	tid->bar_tx = 1;
3745 
3746 	/*
3747 	 * Override the clrdmask configuration for the next frame,
3748 	 * just to get the ball rolling.
3749 	 */
3750 	ath_tx_set_clrdmask(sc, tid->an);
3751 
3752 	/*
3753 	 * Calculate new BAW left edge, now that all frames have either
3754 	 * succeeded or failed.
3755 	 *
3756 	 * XXX verify this is _actually_ the valid value to begin at!
3757 	 */
3758 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3759 	    "%s: %6D: TID=%d, new BAW left edge=%d\n",
3760 	    __func__,
3761 	    tid->an->an_node.ni_macaddr,
3762 	    ":",
3763 	    tid->tid,
3764 	    tap->txa_start);
3765 
3766 	/* Try sending the BAR frame */
3767 	/* We can't hold the lock here! */
3768 
3769 	ATH_TX_UNLOCK(sc);
3770 	if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) {
3771 		/* Success? Now we wait for notification that it's done */
3772 		ATH_TX_LOCK(sc);
3773 		return;
3774 	}
3775 
3776 	/* Failure? For now, warn loudly and continue */
3777 	ATH_TX_LOCK(sc);
3778 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3779 	    "%s: %6D: TID=%d, failed to TX BAR, continue!\n",
3780 	    __func__, tid->an->an_node.ni_macaddr, ":",
3781 	    tid->tid);
3782 	ath_tx_tid_bar_unsuspend(sc, tid);
3783 }
3784 
3785 static void
3786 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an,
3787     struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf)
3788 {
3789 
3790 	ATH_TX_LOCK_ASSERT(sc);
3791 
3792 	/*
3793 	 * If the current TID is running AMPDU, update
3794 	 * the BAW.
3795 	 */
3796 	if (ath_tx_ampdu_running(sc, an, tid->tid) &&
3797 	    bf->bf_state.bfs_dobaw) {
3798 		/*
3799 		 * Only remove the frame from the BAW if it's
3800 		 * been transmitted at least once; this means
3801 		 * the frame was in the BAW to begin with.
3802 		 */
3803 		if (bf->bf_state.bfs_retries > 0) {
3804 			ath_tx_update_baw(sc, an, tid, bf);
3805 			bf->bf_state.bfs_dobaw = 0;
3806 		}
3807 #if 0
3808 		/*
3809 		 * This has become a non-fatal error now
3810 		 */
3811 		if (! bf->bf_state.bfs_addedbaw)
3812 			DPRINTF(sc, ATH_DEBUG_SW_TX_BAW
3813 			    "%s: wasn't added: seqno %d\n",
3814 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
3815 #endif
3816 	}
3817 
3818 	/* Strip it out of an aggregate list if it was in one */
3819 	bf->bf_next = NULL;
3820 
3821 	/* Insert on the free queue to be freed by the caller */
3822 	TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
3823 }
3824 
3825 static void
3826 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an,
3827     const char *pfx, struct ath_tid *tid, struct ath_buf *bf)
3828 {
3829 	struct ieee80211_node *ni = &an->an_node;
3830 	struct ath_txq *txq;
3831 	struct ieee80211_tx_ampdu *tap;
3832 
3833 	txq = sc->sc_ac2q[tid->ac];
3834 	tap = ath_tx_get_tx_tid(an, tid->tid);
3835 
3836 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3837 	    "%s: %s: %6D: bf=%p: addbaw=%d, dobaw=%d, "
3838 	    "seqno=%d, retry=%d\n",
3839 	    __func__,
3840 	    pfx,
3841 	    ni->ni_macaddr,
3842 	    ":",
3843 	    bf,
3844 	    bf->bf_state.bfs_addedbaw,
3845 	    bf->bf_state.bfs_dobaw,
3846 	    SEQNO(bf->bf_state.bfs_seqno),
3847 	    bf->bf_state.bfs_retries);
3848 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3849 	    "%s: %s: %6D: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n",
3850 	    __func__,
3851 	    pfx,
3852 	    ni->ni_macaddr,
3853 	    ":",
3854 	    bf,
3855 	    txq->axq_qnum,
3856 	    txq->axq_depth,
3857 	    txq->axq_aggr_depth);
3858 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3859 	    "%s: %s: %6D: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, "
3860 	      "isfiltered=%d\n",
3861 	    __func__,
3862 	    pfx,
3863 	    ni->ni_macaddr,
3864 	    ":",
3865 	    bf,
3866 	    tid->axq_depth,
3867 	    tid->hwq_depth,
3868 	    tid->bar_wait,
3869 	    tid->isfiltered);
3870 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3871 	    "%s: %s: %6D: tid %d: "
3872 	    "sched=%d, paused=%d, "
3873 	    "incomp=%d, baw_head=%d, "
3874 	    "baw_tail=%d txa_start=%d, ni_txseqs=%d\n",
3875 	     __func__,
3876 	     pfx,
3877 	     ni->ni_macaddr,
3878 	     ":",
3879 	     tid->tid,
3880 	     tid->sched, tid->paused,
3881 	     tid->incomp, tid->baw_head,
3882 	     tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
3883 	     ni->ni_txseqs[tid->tid]);
3884 
3885 	/* XXX Dump the frame, see what it is? */
3886 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3887 		ieee80211_dump_pkt(ni->ni_ic,
3888 		    mtod(bf->bf_m, const uint8_t *),
3889 		    bf->bf_m->m_len, 0, -1);
3890 }
3891 
3892 /*
3893  * Free any packets currently pending in the software TX queue.
3894  *
3895  * This will be called when a node is being deleted.
3896  *
3897  * It can also be called on an active node during an interface
3898  * reset or state transition.
3899  *
3900  * (From Linux/reference):
3901  *
3902  * TODO: For frame(s) that are in the retry state, we will reuse the
3903  * sequence number(s) without setting the retry bit. The
3904  * alternative is to give up on these and BAR the receiver's window
3905  * forward.
3906  */
3907 static void
3908 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an,
3909     struct ath_tid *tid, ath_bufhead *bf_cq)
3910 {
3911 	struct ath_buf *bf;
3912 	struct ieee80211_tx_ampdu *tap;
3913 	struct ieee80211_node *ni = &an->an_node;
3914 	int t;
3915 
3916 	tap = ath_tx_get_tx_tid(an, tid->tid);
3917 
3918 	ATH_TX_LOCK_ASSERT(sc);
3919 
3920 	/* Walk the queue, free frames */
3921 	t = 0;
3922 	for (;;) {
3923 		bf = ATH_TID_FIRST(tid);
3924 		if (bf == NULL) {
3925 			break;
3926 		}
3927 
3928 		if (t == 0) {
3929 			ath_tx_tid_drain_print(sc, an, "norm", tid, bf);
3930 //			t = 1;
3931 		}
3932 
3933 		ATH_TID_REMOVE(tid, bf, bf_list);
3934 		ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
3935 	}
3936 
3937 	/* And now, drain the filtered frame queue */
3938 	t = 0;
3939 	for (;;) {
3940 		bf = ATH_TID_FILT_FIRST(tid);
3941 		if (bf == NULL)
3942 			break;
3943 
3944 		if (t == 0) {
3945 			ath_tx_tid_drain_print(sc, an, "filt", tid, bf);
3946 //			t = 1;
3947 		}
3948 
3949 		ATH_TID_FILT_REMOVE(tid, bf, bf_list);
3950 		ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
3951 	}
3952 
3953 	/*
3954 	 * Override the clrdmask configuration for the next frame
3955 	 * in case there is some future transmission, just to get
3956 	 * the ball rolling.
3957 	 *
3958 	 * This won't hurt things if the TID is about to be freed.
3959 	 */
3960 	ath_tx_set_clrdmask(sc, tid->an);
3961 
3962 	/*
3963 	 * Now that it's completed, grab the TID lock and update
3964 	 * the sequence number and BAW window.
3965 	 * Because sequence numbers have been assigned to frames
3966 	 * that haven't been sent yet, it's entirely possible
3967 	 * we'll be called with some pending frames that have not
3968 	 * been transmitted.
3969 	 *
3970 	 * The cleaner solution is to do the sequence number allocation
3971 	 * when the packet is first transmitted - and thus the "retries"
3972 	 * check above would be enough to update the BAW/seqno.
3973 	 */
3974 
3975 	/* But don't do it for non-QoS TIDs */
3976 	if (tap) {
3977 #if 1
3978 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3979 		    "%s: %6D: node %p: TID %d: sliding BAW left edge to %d\n",
3980 		    __func__,
3981 		    ni->ni_macaddr,
3982 		    ":",
3983 		    an,
3984 		    tid->tid,
3985 		    tap->txa_start);
3986 #endif
3987 		ni->ni_txseqs[tid->tid] = tap->txa_start;
3988 		tid->baw_tail = tid->baw_head;
3989 	}
3990 }
3991 
3992 /*
3993  * Reset the TID state.  This must be only called once the node has
3994  * had its frames flushed from this TID, to ensure that no other
3995  * pause / unpause logic can kick in.
3996  */
3997 static void
3998 ath_tx_tid_reset(struct ath_softc *sc, struct ath_tid *tid)
3999 {
4000 
4001 #if 0
4002 	tid->bar_wait = tid->bar_tx = tid->isfiltered = 0;
4003 	tid->paused = tid->sched = tid->addba_tx_pending = 0;
4004 	tid->incomp = tid->cleanup_inprogress = 0;
4005 #endif
4006 
4007 	/*
4008 	 * If we have a bar_wait set, we need to unpause the TID
4009 	 * here.  Otherwise once cleanup has finished, the TID won't
4010 	 * have the right paused counter.
4011 	 *
4012 	 * XXX I'm not going through resume here - I don't want the
4013 	 * node to be rescheuled just yet.  This however should be
4014 	 * methodized!
4015 	 */
4016 	if (tid->bar_wait) {
4017 		if (tid->paused > 0) {
4018 			tid->paused --;
4019 		}
4020 	}
4021 
4022 	/*
4023 	 * XXX same with a currently filtered TID.
4024 	 *
4025 	 * Since this is being called during a flush, we assume that
4026 	 * the filtered frame list is actually empty.
4027 	 *
4028 	 * XXX TODO: add in a check to ensure that the filtered queue
4029 	 * depth is actually 0!
4030 	 */
4031 	if (tid->isfiltered) {
4032 		if (tid->paused > 0) {
4033 			tid->paused --;
4034 		}
4035 	}
4036 
4037 	/*
4038 	 * Clear BAR, filtered frames, scheduled and ADDBA pending.
4039 	 * The TID may be going through cleanup from the last association
4040 	 * where things in the BAW are still in the hardware queue.
4041 	 */
4042 	tid->bar_wait = 0;
4043 	tid->bar_tx = 0;
4044 	tid->isfiltered = 0;
4045 	tid->sched = 0;
4046 	tid->addba_tx_pending = 0;
4047 
4048 	/*
4049 	 * XXX TODO: it may just be enough to walk the HWQs and mark
4050 	 * frames for that node as non-aggregate; or mark the ath_node
4051 	 * with something that indicates that aggregation is no longer
4052 	 * occurring.  Then we can just toss the BAW complaints and
4053 	 * do a complete hard reset of state here - no pause, no
4054 	 * complete counter, etc.
4055 	 */
4056 
4057 }
4058 
4059 /*
4060  * Flush all software queued packets for the given node.
4061  *
4062  * This occurs when a completion handler frees the last buffer
4063  * for a node, and the node is thus freed. This causes the node
4064  * to be cleaned up, which ends up calling ath_tx_node_flush.
4065  */
4066 void
4067 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
4068 {
4069 	int tid;
4070 	ath_bufhead bf_cq;
4071 	struct ath_buf *bf;
4072 
4073 	TAILQ_INIT(&bf_cq);
4074 
4075 	ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p",
4076 	    &an->an_node);
4077 
4078 	ATH_TX_LOCK(sc);
4079 	DPRINTF(sc, ATH_DEBUG_NODE,
4080 	    "%s: %6D: flush; is_powersave=%d, stack_psq=%d, tim=%d, "
4081 	    "swq_depth=%d, clrdmask=%d, leak_count=%d\n",
4082 	    __func__,
4083 	    an->an_node.ni_macaddr,
4084 	    ":",
4085 	    an->an_is_powersave,
4086 	    an->an_stack_psq,
4087 	    an->an_tim_set,
4088 	    an->an_swq_depth,
4089 	    an->clrdmask,
4090 	    an->an_leak_count);
4091 
4092 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
4093 		struct ath_tid *atid = &an->an_tid[tid];
4094 
4095 		/* Free packets */
4096 		ath_tx_tid_drain(sc, an, atid, &bf_cq);
4097 
4098 		/* Remove this tid from the list of active tids */
4099 		ath_tx_tid_unsched(sc, atid);
4100 
4101 		/* Reset the per-TID pause, BAR, etc state */
4102 		ath_tx_tid_reset(sc, atid);
4103 	}
4104 
4105 	/*
4106 	 * Clear global leak count
4107 	 */
4108 	an->an_leak_count = 0;
4109 	ATH_TX_UNLOCK(sc);
4110 
4111 	/* Handle completed frames */
4112 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4113 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4114 		ath_tx_default_comp(sc, bf, 0);
4115 	}
4116 }
4117 
4118 /*
4119  * Drain all the software TXQs currently with traffic queued.
4120  */
4121 void
4122 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
4123 {
4124 	struct ath_tid *tid;
4125 	ath_bufhead bf_cq;
4126 	struct ath_buf *bf;
4127 
4128 	TAILQ_INIT(&bf_cq);
4129 	ATH_TX_LOCK(sc);
4130 
4131 	/*
4132 	 * Iterate over all active tids for the given txq,
4133 	 * flushing and unsched'ing them
4134 	 */
4135 	while (! TAILQ_EMPTY(&txq->axq_tidq)) {
4136 		tid = TAILQ_FIRST(&txq->axq_tidq);
4137 		ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
4138 		ath_tx_tid_unsched(sc, tid);
4139 	}
4140 
4141 	ATH_TX_UNLOCK(sc);
4142 
4143 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4144 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4145 		ath_tx_default_comp(sc, bf, 0);
4146 	}
4147 }
4148 
4149 /*
4150  * Handle completion of non-aggregate session frames.
4151  *
4152  * This (currently) doesn't implement software retransmission of
4153  * non-aggregate frames!
4154  *
4155  * Software retransmission of non-aggregate frames needs to obey
4156  * the strict sequence number ordering, and drop any frames that
4157  * will fail this.
4158  *
4159  * For now, filtered frames and frame transmission will cause
4160  * all kinds of issues.  So we don't support them.
4161  *
4162  * So anyone queuing frames via ath_tx_normal_xmit() or
4163  * ath_tx_hw_queue_norm() must override and set CLRDMASK.
4164  */
4165 void
4166 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4167 {
4168 	struct ieee80211_node *ni = bf->bf_node;
4169 	struct ath_node *an = ATH_NODE(ni);
4170 	int tid = bf->bf_state.bfs_tid;
4171 	struct ath_tid *atid = &an->an_tid[tid];
4172 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4173 
4174 	/* The TID state is protected behind the TXQ lock */
4175 	ATH_TX_LOCK(sc);
4176 
4177 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
4178 	    __func__, bf, fail, atid->hwq_depth - 1);
4179 
4180 	atid->hwq_depth--;
4181 
4182 #if 0
4183 	/*
4184 	 * If the frame was filtered, stick it on the filter frame
4185 	 * queue and complain about it.  It shouldn't happen!
4186 	 */
4187 	if ((ts->ts_status & HAL_TXERR_FILT) ||
4188 	    (ts->ts_status != 0 && atid->isfiltered)) {
4189 		DPRINTF(sc, ATH_DEBUG_SW_TX,
4190 		    "%s: isfiltered=%d, ts_status=%d: huh?\n",
4191 		    __func__,
4192 		    atid->isfiltered,
4193 		    ts->ts_status);
4194 		ath_tx_tid_filt_comp_buf(sc, atid, bf);
4195 	}
4196 #endif
4197 	if (atid->isfiltered)
4198 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: filtered?!\n", __func__);
4199 	if (atid->hwq_depth < 0)
4200 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n",
4201 		    __func__, atid->hwq_depth);
4202 
4203 	/* If the TID is being cleaned up, track things */
4204 	/* XXX refactor! */
4205 	if (atid->cleanup_inprogress) {
4206 		atid->incomp--;
4207 		if (atid->incomp == 0) {
4208 			DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4209 			    "%s: TID %d: cleaned up! resume!\n",
4210 			    __func__, tid);
4211 			atid->cleanup_inprogress = 0;
4212 			ath_tx_tid_resume(sc, atid);
4213 		}
4214 	}
4215 
4216 	/*
4217 	 * If the queue is filtered, potentially mark it as complete
4218 	 * and reschedule it as needed.
4219 	 *
4220 	 * This is required as there may be a subsequent TX descriptor
4221 	 * for this end-node that has CLRDMASK set, so it's quite possible
4222 	 * that a filtered frame will be followed by a non-filtered
4223 	 * (complete or otherwise) frame.
4224 	 *
4225 	 * XXX should we do this before we complete the frame?
4226 	 */
4227 	if (atid->isfiltered)
4228 		ath_tx_tid_filt_comp_complete(sc, atid);
4229 	ATH_TX_UNLOCK(sc);
4230 
4231 	/*
4232 	 * punt to rate control if we're not being cleaned up
4233 	 * during a hw queue drain and the frame wanted an ACK.
4234 	 */
4235 	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
4236 		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
4237 		    ts,
4238 		    bf->bf_state.bfs_pktlen,
4239 		    bf->bf_state.bfs_pktlen,
4240 		    1, (ts->ts_status == 0) ? 0 : 1);
4241 
4242 	ath_tx_default_comp(sc, bf, fail);
4243 }
4244 
4245 /*
4246  * Handle cleanup of aggregate session packets that aren't
4247  * an A-MPDU.
4248  *
4249  * There's no need to update the BAW here - the session is being
4250  * torn down.
4251  */
4252 static void
4253 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
4254 {
4255 	struct ieee80211_node *ni = bf->bf_node;
4256 	struct ath_node *an = ATH_NODE(ni);
4257 	int tid = bf->bf_state.bfs_tid;
4258 	struct ath_tid *atid = &an->an_tid[tid];
4259 
4260 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
4261 	    __func__, tid, atid->incomp);
4262 
4263 	ATH_TX_LOCK(sc);
4264 	atid->incomp--;
4265 
4266 	/* XXX refactor! */
4267 	if (bf->bf_state.bfs_dobaw) {
4268 		ath_tx_update_baw(sc, an, atid, bf);
4269 		if (!bf->bf_state.bfs_addedbaw)
4270 			DPRINTF(sc, ATH_DEBUG_SW_TX,
4271 			    "%s: wasn't added: seqno %d\n",
4272 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
4273 	}
4274 
4275 	if (atid->incomp == 0) {
4276 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4277 		    "%s: TID %d: cleaned up! resume!\n",
4278 		    __func__, tid);
4279 		atid->cleanup_inprogress = 0;
4280 		ath_tx_tid_resume(sc, atid);
4281 	}
4282 	ATH_TX_UNLOCK(sc);
4283 
4284 	ath_tx_default_comp(sc, bf, 0);
4285 }
4286 
4287 /*
4288  * This as it currently stands is a bit dumb.  Ideally we'd just
4289  * fail the frame the normal way and have it permanently fail
4290  * via the normal aggregate completion path.
4291  */
4292 static void
4293 ath_tx_tid_cleanup_frame(struct ath_softc *sc, struct ath_node *an,
4294     int tid, struct ath_buf *bf_head, ath_bufhead *bf_cq)
4295 {
4296 	struct ath_tid *atid = &an->an_tid[tid];
4297 	struct ath_buf *bf, *bf_next;
4298 
4299 	ATH_TX_LOCK_ASSERT(sc);
4300 
4301 	/*
4302 	 * Remove this frame from the queue.
4303 	 */
4304 	ATH_TID_REMOVE(atid, bf_head, bf_list);
4305 
4306 	/*
4307 	 * Loop over all the frames in the aggregate.
4308 	 */
4309 	bf = bf_head;
4310 	while (bf != NULL) {
4311 		bf_next = bf->bf_next;	/* next aggregate frame, or NULL */
4312 
4313 		/*
4314 		 * If it's been added to the BAW we need to kick
4315 		 * it out of the BAW before we continue.
4316 		 *
4317 		 * XXX if it's an aggregate, assert that it's in the
4318 		 * BAW - we shouldn't have it be in an aggregate
4319 		 * otherwise!
4320 		 */
4321 		if (bf->bf_state.bfs_addedbaw) {
4322 			ath_tx_update_baw(sc, an, atid, bf);
4323 			bf->bf_state.bfs_dobaw = 0;
4324 		}
4325 
4326 		/*
4327 		 * Give it the default completion handler.
4328 		 */
4329 		bf->bf_comp = ath_tx_normal_comp;
4330 		bf->bf_next = NULL;
4331 
4332 		/*
4333 		 * Add it to the list to free.
4334 		 */
4335 		TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
4336 
4337 		/*
4338 		 * Now advance to the next frame in the aggregate.
4339 		 */
4340 		bf = bf_next;
4341 	}
4342 }
4343 
4344 /*
4345  * Performs transmit side cleanup when TID changes from aggregated to
4346  * unaggregated and during reassociation.
4347  *
4348  * For now, this just tosses everything from the TID software queue
4349  * whether or not it has been retried and marks the TID as
4350  * pending completion if there's anything for this TID queued to
4351  * the hardware.
4352  *
4353  * The caller is responsible for pausing the TID and unpausing the
4354  * TID if no cleanup was required. Otherwise the cleanup path will
4355  * unpause the TID once the last hardware queued frame is completed.
4356  */
4357 static void
4358 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid,
4359     ath_bufhead *bf_cq)
4360 {
4361 	struct ath_tid *atid = &an->an_tid[tid];
4362 	struct ath_buf *bf, *bf_next;
4363 
4364 	ATH_TX_LOCK_ASSERT(sc);
4365 
4366 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
4367 	    "%s: TID %d: called; inprogress=%d\n", __func__, tid,
4368 	    atid->cleanup_inprogress);
4369 
4370 	/*
4371 	 * Move the filtered frames to the TX queue, before
4372 	 * we run off and discard/process things.
4373 	 */
4374 
4375 	/* XXX this is really quite inefficient */
4376 	while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) {
4377 		ATH_TID_FILT_REMOVE(atid, bf, bf_list);
4378 		ATH_TID_INSERT_HEAD(atid, bf, bf_list);
4379 	}
4380 
4381 	/*
4382 	 * Update the frames in the software TX queue:
4383 	 *
4384 	 * + Discard retry frames in the queue
4385 	 * + Fix the completion function to be non-aggregate
4386 	 */
4387 	bf = ATH_TID_FIRST(atid);
4388 	while (bf) {
4389 		/*
4390 		 * Grab the next frame in the list, we may
4391 		 * be fiddling with the list.
4392 		 */
4393 		bf_next = TAILQ_NEXT(bf, bf_list);
4394 
4395 		/*
4396 		 * Free the frame and all subframes.
4397 		 */
4398 		ath_tx_tid_cleanup_frame(sc, an, tid, bf, bf_cq);
4399 
4400 		/*
4401 		 * Next frame!
4402 		 */
4403 		bf = bf_next;
4404 	}
4405 
4406 	/*
4407 	 * If there's anything in the hardware queue we wait
4408 	 * for the TID HWQ to empty.
4409 	 */
4410 	if (atid->hwq_depth > 0) {
4411 		/*
4412 		 * XXX how about we kill atid->incomp, and instead
4413 		 * replace it with a macro that checks that atid->hwq_depth
4414 		 * is 0?
4415 		 */
4416 		atid->incomp = atid->hwq_depth;
4417 		atid->cleanup_inprogress = 1;
4418 	}
4419 
4420 	if (atid->cleanup_inprogress)
4421 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4422 		    "%s: TID %d: cleanup needed: %d packets\n",
4423 		    __func__, tid, atid->incomp);
4424 
4425 	/* Owner now must free completed frames */
4426 }
4427 
4428 static struct ath_buf *
4429 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
4430     struct ath_tid *tid, struct ath_buf *bf)
4431 {
4432 	struct ath_buf *nbf;
4433 	int error;
4434 
4435 	/*
4436 	 * Clone the buffer.  This will handle the dma unmap and
4437 	 * copy the node reference to the new buffer.  If this
4438 	 * works out, 'bf' will have no DMA mapping, no mbuf
4439 	 * pointer and no node reference.
4440 	 */
4441 	nbf = ath_buf_clone(sc, bf);
4442 
4443 #if 0
4444 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: ATH_BUF_BUSY; cloning\n",
4445 	    __func__);
4446 #endif
4447 
4448 	if (nbf == NULL) {
4449 		/* Failed to clone */
4450 		DPRINTF(sc, ATH_DEBUG_XMIT,
4451 		    "%s: failed to clone a busy buffer\n",
4452 		    __func__);
4453 		return NULL;
4454 	}
4455 
4456 	/* Setup the dma for the new buffer */
4457 	error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
4458 	if (error != 0) {
4459 		DPRINTF(sc, ATH_DEBUG_XMIT,
4460 		    "%s: failed to setup dma for clone\n",
4461 		    __func__);
4462 		/*
4463 		 * Put this at the head of the list, not tail;
4464 		 * that way it doesn't interfere with the
4465 		 * busy buffer logic (which uses the tail of
4466 		 * the list.)
4467 		 */
4468 		ATH_TXBUF_LOCK(sc);
4469 		ath_returnbuf_head(sc, nbf);
4470 		ATH_TXBUF_UNLOCK(sc);
4471 		return NULL;
4472 	}
4473 
4474 	/* Update BAW if required, before we free the original buf */
4475 	if (bf->bf_state.bfs_dobaw)
4476 		ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
4477 
4478 	/* Free original buffer; return new buffer */
4479 	ath_freebuf(sc, bf);
4480 
4481 	return nbf;
4482 }
4483 
4484 /*
4485  * Handle retrying an unaggregate frame in an aggregate
4486  * session.
4487  *
4488  * If too many retries occur, pause the TID, wait for
4489  * any further retransmits (as there's no reason why
4490  * non-aggregate frames in an aggregate session are
4491  * transmitted in-order; they just have to be in-BAW)
4492  * and then queue a BAR.
4493  */
4494 static void
4495 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
4496 {
4497 	struct ieee80211_node *ni = bf->bf_node;
4498 	struct ath_node *an = ATH_NODE(ni);
4499 	int tid = bf->bf_state.bfs_tid;
4500 	struct ath_tid *atid = &an->an_tid[tid];
4501 	struct ieee80211_tx_ampdu *tap;
4502 
4503 	ATH_TX_LOCK(sc);
4504 
4505 	tap = ath_tx_get_tx_tid(an, tid);
4506 
4507 	/*
4508 	 * If the buffer is marked as busy, we can't directly
4509 	 * reuse it. Instead, try to clone the buffer.
4510 	 * If the clone is successful, recycle the old buffer.
4511 	 * If the clone is unsuccessful, set bfs_retries to max
4512 	 * to force the next bit of code to free the buffer
4513 	 * for us.
4514 	 */
4515 	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
4516 	    (bf->bf_flags & ATH_BUF_BUSY)) {
4517 		struct ath_buf *nbf;
4518 		nbf = ath_tx_retry_clone(sc, an, atid, bf);
4519 		if (nbf)
4520 			/* bf has been freed at this point */
4521 			bf = nbf;
4522 		else
4523 			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
4524 	}
4525 
4526 	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
4527 		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
4528 		    "%s: exceeded retries; seqno %d\n",
4529 		    __func__, SEQNO(bf->bf_state.bfs_seqno));
4530 		sc->sc_stats.ast_tx_swretrymax++;
4531 
4532 		/* Update BAW anyway */
4533 		if (bf->bf_state.bfs_dobaw) {
4534 			ath_tx_update_baw(sc, an, atid, bf);
4535 			if (! bf->bf_state.bfs_addedbaw)
4536 				DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
4537 				    "%s: wasn't added: seqno %d\n",
4538 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
4539 		}
4540 		bf->bf_state.bfs_dobaw = 0;
4541 
4542 		/* Suspend the TX queue and get ready to send the BAR */
4543 		ath_tx_tid_bar_suspend(sc, atid);
4544 
4545 		/* Send the BAR if there are no other frames waiting */
4546 		if (ath_tx_tid_bar_tx_ready(sc, atid))
4547 			ath_tx_tid_bar_tx(sc, atid);
4548 
4549 		ATH_TX_UNLOCK(sc);
4550 
4551 		/* Free buffer, bf is free after this call */
4552 		ath_tx_default_comp(sc, bf, 0);
4553 		return;
4554 	}
4555 
4556 	/*
4557 	 * This increments the retry counter as well as
4558 	 * sets the retry flag in the ath_buf and packet
4559 	 * body.
4560 	 */
4561 	ath_tx_set_retry(sc, bf);
4562 	sc->sc_stats.ast_tx_swretries++;
4563 
4564 	/*
4565 	 * Insert this at the head of the queue, so it's
4566 	 * retried before any current/subsequent frames.
4567 	 */
4568 	ATH_TID_INSERT_HEAD(atid, bf, bf_list);
4569 	ath_tx_tid_sched(sc, atid);
4570 	/* Send the BAR if there are no other frames waiting */
4571 	if (ath_tx_tid_bar_tx_ready(sc, atid))
4572 		ath_tx_tid_bar_tx(sc, atid);
4573 
4574 	ATH_TX_UNLOCK(sc);
4575 }
4576 
4577 /*
4578  * Common code for aggregate excessive retry/subframe retry.
4579  * If retrying, queues buffers to bf_q. If not, frees the
4580  * buffers.
4581  *
4582  * XXX should unify this with ath_tx_aggr_retry_unaggr()
4583  */
4584 static int
4585 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
4586     ath_bufhead *bf_q)
4587 {
4588 	struct ieee80211_node *ni = bf->bf_node;
4589 	struct ath_node *an = ATH_NODE(ni);
4590 	int tid = bf->bf_state.bfs_tid;
4591 	struct ath_tid *atid = &an->an_tid[tid];
4592 
4593 	ATH_TX_LOCK_ASSERT(sc);
4594 
4595 	/* XXX clr11naggr should be done for all subframes */
4596 	ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
4597 	ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
4598 
4599 	/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
4600 
4601 	/*
4602 	 * If the buffer is marked as busy, we can't directly
4603 	 * reuse it. Instead, try to clone the buffer.
4604 	 * If the clone is successful, recycle the old buffer.
4605 	 * If the clone is unsuccessful, set bfs_retries to max
4606 	 * to force the next bit of code to free the buffer
4607 	 * for us.
4608 	 */
4609 	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
4610 	    (bf->bf_flags & ATH_BUF_BUSY)) {
4611 		struct ath_buf *nbf;
4612 		nbf = ath_tx_retry_clone(sc, an, atid, bf);
4613 		if (nbf)
4614 			/* bf has been freed at this point */
4615 			bf = nbf;
4616 		else
4617 			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
4618 	}
4619 
4620 	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
4621 		sc->sc_stats.ast_tx_swretrymax++;
4622 		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
4623 		    "%s: max retries: seqno %d\n",
4624 		    __func__, SEQNO(bf->bf_state.bfs_seqno));
4625 		ath_tx_update_baw(sc, an, atid, bf);
4626 		if (!bf->bf_state.bfs_addedbaw)
4627 			DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
4628 			    "%s: wasn't added: seqno %d\n",
4629 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
4630 		bf->bf_state.bfs_dobaw = 0;
4631 		return 1;
4632 	}
4633 
4634 	ath_tx_set_retry(sc, bf);
4635 	sc->sc_stats.ast_tx_swretries++;
4636 	bf->bf_next = NULL;		/* Just to make sure */
4637 
4638 	/* Clear the aggregate state */
4639 	bf->bf_state.bfs_aggr = 0;
4640 	bf->bf_state.bfs_ndelim = 0;	/* ??? needed? */
4641 	bf->bf_state.bfs_nframes = 1;
4642 
4643 	TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
4644 	return 0;
4645 }
4646 
4647 /*
4648  * error pkt completion for an aggregate destination
4649  */
4650 static void
4651 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
4652     struct ath_tid *tid)
4653 {
4654 	struct ieee80211_node *ni = bf_first->bf_node;
4655 	struct ath_node *an = ATH_NODE(ni);
4656 	struct ath_buf *bf_next, *bf;
4657 	ath_bufhead bf_q;
4658 	int drops = 0;
4659 	struct ieee80211_tx_ampdu *tap;
4660 	ath_bufhead bf_cq;
4661 
4662 	TAILQ_INIT(&bf_q);
4663 	TAILQ_INIT(&bf_cq);
4664 
4665 	/*
4666 	 * Update rate control - all frames have failed.
4667 	 */
4668 	ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
4669 	    &bf_first->bf_status.ds_txstat,
4670 	    bf_first->bf_state.bfs_al,
4671 	    bf_first->bf_state.bfs_rc_maxpktlen,
4672 	    bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
4673 
4674 	ATH_TX_LOCK(sc);
4675 	tap = ath_tx_get_tx_tid(an, tid->tid);
4676 	sc->sc_stats.ast_tx_aggr_failall++;
4677 
4678 	/* Retry all subframes */
4679 	bf = bf_first;
4680 	while (bf) {
4681 		bf_next = bf->bf_next;
4682 		bf->bf_next = NULL;	/* Remove it from the aggr list */
4683 		sc->sc_stats.ast_tx_aggr_fail++;
4684 		if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
4685 			drops++;
4686 			bf->bf_next = NULL;
4687 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
4688 		}
4689 		bf = bf_next;
4690 	}
4691 
4692 	/* Prepend all frames to the beginning of the queue */
4693 	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
4694 		TAILQ_REMOVE(&bf_q, bf, bf_list);
4695 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
4696 	}
4697 
4698 	/*
4699 	 * Schedule the TID to be re-tried.
4700 	 */
4701 	ath_tx_tid_sched(sc, tid);
4702 
4703 	/*
4704 	 * send bar if we dropped any frames
4705 	 *
4706 	 * Keep the txq lock held for now, as we need to ensure
4707 	 * that ni_txseqs[] is consistent (as it's being updated
4708 	 * in the ifnet TX context or raw TX context.)
4709 	 */
4710 	if (drops) {
4711 		/* Suspend the TX queue and get ready to send the BAR */
4712 		ath_tx_tid_bar_suspend(sc, tid);
4713 	}
4714 
4715 	/*
4716 	 * Send BAR if required
4717 	 */
4718 	if (ath_tx_tid_bar_tx_ready(sc, tid))
4719 		ath_tx_tid_bar_tx(sc, tid);
4720 
4721 	ATH_TX_UNLOCK(sc);
4722 
4723 	/* Complete frames which errored out */
4724 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4725 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4726 		ath_tx_default_comp(sc, bf, 0);
4727 	}
4728 }
4729 
4730 /*
4731  * Handle clean-up of packets from an aggregate list.
4732  *
4733  * There's no need to update the BAW here - the session is being
4734  * torn down.
4735  */
4736 static void
4737 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
4738 {
4739 	struct ath_buf *bf, *bf_next;
4740 	struct ieee80211_node *ni = bf_first->bf_node;
4741 	struct ath_node *an = ATH_NODE(ni);
4742 	int tid = bf_first->bf_state.bfs_tid;
4743 	struct ath_tid *atid = &an->an_tid[tid];
4744 
4745 	ATH_TX_LOCK(sc);
4746 
4747 	/* update incomp */
4748 	atid->incomp--;
4749 
4750 	/* Update the BAW */
4751 	bf = bf_first;
4752 	while (bf) {
4753 		/* XXX refactor! */
4754 		if (bf->bf_state.bfs_dobaw) {
4755 			ath_tx_update_baw(sc, an, atid, bf);
4756 			if (!bf->bf_state.bfs_addedbaw)
4757 				DPRINTF(sc, ATH_DEBUG_SW_TX,
4758 				    "%s: wasn't added: seqno %d\n",
4759 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
4760 		}
4761 		bf = bf->bf_next;
4762 	}
4763 
4764 	if (atid->incomp == 0) {
4765 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4766 		    "%s: TID %d: cleaned up! resume!\n",
4767 		    __func__, tid);
4768 		atid->cleanup_inprogress = 0;
4769 		ath_tx_tid_resume(sc, atid);
4770 	}
4771 
4772 	/* Send BAR if required */
4773 	/* XXX why would we send a BAR when transitioning to non-aggregation? */
4774 	/*
4775 	 * XXX TODO: we should likely just tear down the BAR state here,
4776 	 * rather than sending a BAR.
4777 	 */
4778 	if (ath_tx_tid_bar_tx_ready(sc, atid))
4779 		ath_tx_tid_bar_tx(sc, atid);
4780 
4781 	ATH_TX_UNLOCK(sc);
4782 
4783 	/* Handle frame completion as individual frames */
4784 	bf = bf_first;
4785 	while (bf) {
4786 		bf_next = bf->bf_next;
4787 		bf->bf_next = NULL;
4788 		ath_tx_default_comp(sc, bf, 1);
4789 		bf = bf_next;
4790 	}
4791 }
4792 
4793 /*
4794  * Handle completion of an set of aggregate frames.
4795  *
4796  * Note: the completion handler is the last descriptor in the aggregate,
4797  * not the last descriptor in the first frame.
4798  */
4799 static void
4800 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first,
4801     int fail)
4802 {
4803 	//struct ath_desc *ds = bf->bf_lastds;
4804 	struct ieee80211_node *ni = bf_first->bf_node;
4805 	struct ath_node *an = ATH_NODE(ni);
4806 	int tid = bf_first->bf_state.bfs_tid;
4807 	struct ath_tid *atid = &an->an_tid[tid];
4808 	struct ath_tx_status ts;
4809 	struct ieee80211_tx_ampdu *tap;
4810 	ath_bufhead bf_q;
4811 	ath_bufhead bf_cq;
4812 	int seq_st, tx_ok;
4813 	int hasba, isaggr;
4814 	uint32_t ba[2];
4815 	struct ath_buf *bf, *bf_next;
4816 	int ba_index;
4817 	int drops = 0;
4818 	int nframes = 0, nbad = 0, nf;
4819 	int pktlen;
4820 	int agglen, rc_agglen;
4821 	/* XXX there's too much on the stack? */
4822 	struct ath_rc_series rc[ATH_RC_NUM];
4823 	int txseq;
4824 
4825 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
4826 	    __func__, atid->hwq_depth);
4827 
4828 	/*
4829 	 * Take a copy; this may be needed -after- bf_first
4830 	 * has been completed and freed.
4831 	 */
4832 	ts = bf_first->bf_status.ds_txstat;
4833 	agglen = bf_first->bf_state.bfs_al;
4834 	rc_agglen = bf_first->bf_state.bfs_rc_maxpktlen;
4835 
4836 	TAILQ_INIT(&bf_q);
4837 	TAILQ_INIT(&bf_cq);
4838 
4839 	/* The TID state is kept behind the TXQ lock */
4840 	ATH_TX_LOCK(sc);
4841 
4842 	atid->hwq_depth--;
4843 	if (atid->hwq_depth < 0)
4844 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: hwq_depth < 0: %d\n",
4845 		    __func__, atid->hwq_depth);
4846 
4847 	/*
4848 	 * If the TID is filtered, handle completing the filter
4849 	 * transition before potentially kicking it to the cleanup
4850 	 * function.
4851 	 *
4852 	 * XXX this is duplicate work, ew.
4853 	 */
4854 	if (atid->isfiltered)
4855 		ath_tx_tid_filt_comp_complete(sc, atid);
4856 
4857 	/*
4858 	 * Punt cleanup to the relevant function, not our problem now
4859 	 */
4860 	if (atid->cleanup_inprogress) {
4861 		if (atid->isfiltered)
4862 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4863 			    "%s: isfiltered=1, normal_comp?\n",
4864 			    __func__);
4865 		ATH_TX_UNLOCK(sc);
4866 		ath_tx_comp_cleanup_aggr(sc, bf_first);
4867 		return;
4868 	}
4869 
4870 	/*
4871 	 * If the frame is filtered, transition to filtered frame
4872 	 * mode and add this to the filtered frame list.
4873 	 *
4874 	 * XXX TODO: figure out how this interoperates with
4875 	 * BAR, pause and cleanup states.
4876 	 */
4877 	if ((ts.ts_status & HAL_TXERR_FILT) ||
4878 	    (ts.ts_status != 0 && atid->isfiltered)) {
4879 		if (fail != 0)
4880 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4881 			    "%s: isfiltered=1, fail=%d\n", __func__, fail);
4882 		ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq);
4883 
4884 		/* Remove from BAW */
4885 		TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) {
4886 			if (bf->bf_state.bfs_addedbaw)
4887 				drops++;
4888 			if (bf->bf_state.bfs_dobaw) {
4889 				ath_tx_update_baw(sc, an, atid, bf);
4890 				if (!bf->bf_state.bfs_addedbaw)
4891 					DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4892 					    "%s: wasn't added: seqno %d\n",
4893 					    __func__,
4894 					    SEQNO(bf->bf_state.bfs_seqno));
4895 			}
4896 			bf->bf_state.bfs_dobaw = 0;
4897 		}
4898 		/*
4899 		 * If any intermediate frames in the BAW were dropped when
4900 		 * handling filtering things, send a BAR.
4901 		 */
4902 		if (drops)
4903 			ath_tx_tid_bar_suspend(sc, atid);
4904 
4905 		/*
4906 		 * Finish up by sending a BAR if required and freeing
4907 		 * the frames outside of the TX lock.
4908 		 */
4909 		goto finish_send_bar;
4910 	}
4911 
4912 	/*
4913 	 * XXX for now, use the first frame in the aggregate for
4914 	 * XXX rate control completion; it's at least consistent.
4915 	 */
4916 	pktlen = bf_first->bf_state.bfs_pktlen;
4917 
4918 	/*
4919 	 * Handle errors first!
4920 	 *
4921 	 * Here, handle _any_ error as a "exceeded retries" error.
4922 	 * Later on (when filtered frames are to be specially handled)
4923 	 * it'll have to be expanded.
4924 	 */
4925 #if 0
4926 	if (ts.ts_status & HAL_TXERR_XRETRY) {
4927 #endif
4928 	if (ts.ts_status != 0) {
4929 		ATH_TX_UNLOCK(sc);
4930 		ath_tx_comp_aggr_error(sc, bf_first, atid);
4931 		return;
4932 	}
4933 
4934 	tap = ath_tx_get_tx_tid(an, tid);
4935 
4936 	/*
4937 	 * extract starting sequence and block-ack bitmap
4938 	 */
4939 	/* XXX endian-ness of seq_st, ba? */
4940 	seq_st = ts.ts_seqnum;
4941 	hasba = !! (ts.ts_flags & HAL_TX_BA);
4942 	tx_ok = (ts.ts_status == 0);
4943 	isaggr = bf_first->bf_state.bfs_aggr;
4944 	ba[0] = ts.ts_ba_low;
4945 	ba[1] = ts.ts_ba_high;
4946 
4947 	/*
4948 	 * Copy the TX completion status and the rate control
4949 	 * series from the first descriptor, as it may be freed
4950 	 * before the rate control code can get its grubby fingers
4951 	 * into things.
4952 	 */
4953 	memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
4954 
4955 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4956 	    "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, "
4957 	    "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
4958 	    __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
4959 	    isaggr, seq_st, hasba, ba[0], ba[1]);
4960 
4961 	/*
4962 	 * The reference driver doesn't do this; it simply ignores
4963 	 * this check in its entirety.
4964 	 *
4965 	 * I've seen this occur when using iperf to send traffic
4966 	 * out tid 1 - the aggregate frames are all marked as TID 1,
4967 	 * but the TXSTATUS has TID=0.  So, let's just ignore this
4968 	 * check.
4969 	 */
4970 #if 0
4971 	/* Occasionally, the MAC sends a tx status for the wrong TID. */
4972 	if (tid != ts.ts_tid) {
4973 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: tid %d != hw tid %d\n",
4974 		    __func__, tid, ts.ts_tid);
4975 		tx_ok = 0;
4976 	}
4977 #endif
4978 
4979 	/* AR5416 BA bug; this requires an interface reset */
4980 	if (isaggr && tx_ok && (! hasba)) {
4981 		device_printf(sc->sc_dev,
4982 		    "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, "
4983 		    "seq_st=%d\n",
4984 		    __func__, hasba, tx_ok, isaggr, seq_st);
4985 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
4986 		/* And as we can't really trust the BA here .. */
4987 		ba[0] = 0;
4988 		ba[1] = 0;
4989 		seq_st = 0;
4990 #ifdef ATH_DEBUG
4991 		ath_printtxbuf(sc, bf_first,
4992 		    sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0);
4993 #endif
4994 	}
4995 
4996 	/*
4997 	 * Walk the list of frames, figure out which ones were correctly
4998 	 * sent and which weren't.
4999 	 */
5000 	bf = bf_first;
5001 	nf = bf_first->bf_state.bfs_nframes;
5002 
5003 	/* bf_first is going to be invalid once this list is walked */
5004 	bf_first = NULL;
5005 
5006 	/*
5007 	 * Walk the list of completed frames and determine
5008 	 * which need to be completed and which need to be
5009 	 * retransmitted.
5010 	 *
5011 	 * For completed frames, the completion functions need
5012 	 * to be called at the end of this function as the last
5013 	 * node reference may free the node.
5014 	 *
5015 	 * Finally, since the TXQ lock can't be held during the
5016 	 * completion callback (to avoid lock recursion),
5017 	 * the completion calls have to be done outside of the
5018 	 * lock.
5019 	 */
5020 	while (bf) {
5021 		nframes++;
5022 		ba_index = ATH_BA_INDEX(seq_st,
5023 		    SEQNO(bf->bf_state.bfs_seqno));
5024 		bf_next = bf->bf_next;
5025 		bf->bf_next = NULL;	/* Remove it from the aggr list */
5026 
5027 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5028 		    "%s: checking bf=%p seqno=%d; ack=%d\n",
5029 		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
5030 		    ATH_BA_ISSET(ba, ba_index));
5031 
5032 		if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
5033 			sc->sc_stats.ast_tx_aggr_ok++;
5034 			ath_tx_update_baw(sc, an, atid, bf);
5035 			bf->bf_state.bfs_dobaw = 0;
5036 			if (!bf->bf_state.bfs_addedbaw)
5037 				DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5038 				    "%s: wasn't added: seqno %d\n",
5039 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
5040 			bf->bf_next = NULL;
5041 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
5042 		} else {
5043 			sc->sc_stats.ast_tx_aggr_fail++;
5044 			if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
5045 				drops++;
5046 				bf->bf_next = NULL;
5047 				TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
5048 			}
5049 			nbad++;
5050 		}
5051 		bf = bf_next;
5052 	}
5053 
5054 	/*
5055 	 * Now that the BAW updates have been done, unlock
5056 	 *
5057 	 * txseq is grabbed before the lock is released so we
5058 	 * have a consistent view of what -was- in the BAW.
5059 	 * Anything after this point will not yet have been
5060 	 * TXed.
5061 	 */
5062 	txseq = tap->txa_start;
5063 	ATH_TX_UNLOCK(sc);
5064 
5065 	if (nframes != nf)
5066 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5067 		    "%s: num frames seen=%d; bf nframes=%d\n",
5068 		    __func__, nframes, nf);
5069 
5070 	/*
5071 	 * Now we know how many frames were bad, call the rate
5072 	 * control code.
5073 	 */
5074 	if (fail == 0) {
5075 		ath_tx_update_ratectrl(sc, ni, rc, &ts, agglen, rc_agglen,
5076 		    nframes, nbad);
5077 	}
5078 
5079 	/*
5080 	 * send bar if we dropped any frames
5081 	 */
5082 	if (drops) {
5083 		/* Suspend the TX queue and get ready to send the BAR */
5084 		ATH_TX_LOCK(sc);
5085 		ath_tx_tid_bar_suspend(sc, atid);
5086 		ATH_TX_UNLOCK(sc);
5087 	}
5088 
5089 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5090 	    "%s: txa_start now %d\n", __func__, tap->txa_start);
5091 
5092 	ATH_TX_LOCK(sc);
5093 
5094 	/* Prepend all frames to the beginning of the queue */
5095 	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
5096 		TAILQ_REMOVE(&bf_q, bf, bf_list);
5097 		ATH_TID_INSERT_HEAD(atid, bf, bf_list);
5098 	}
5099 
5100 	/*
5101 	 * Reschedule to grab some further frames.
5102 	 */
5103 	ath_tx_tid_sched(sc, atid);
5104 
5105 	/*
5106 	 * If the queue is filtered, re-schedule as required.
5107 	 *
5108 	 * This is required as there may be a subsequent TX descriptor
5109 	 * for this end-node that has CLRDMASK set, so it's quite possible
5110 	 * that a filtered frame will be followed by a non-filtered
5111 	 * (complete or otherwise) frame.
5112 	 *
5113 	 * XXX should we do this before we complete the frame?
5114 	 */
5115 	if (atid->isfiltered)
5116 		ath_tx_tid_filt_comp_complete(sc, atid);
5117 
5118 finish_send_bar:
5119 
5120 	/*
5121 	 * Send BAR if required
5122 	 */
5123 	if (ath_tx_tid_bar_tx_ready(sc, atid))
5124 		ath_tx_tid_bar_tx(sc, atid);
5125 
5126 	ATH_TX_UNLOCK(sc);
5127 
5128 	/* Do deferred completion */
5129 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
5130 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
5131 		ath_tx_default_comp(sc, bf, 0);
5132 	}
5133 }
5134 
5135 /*
5136  * Handle completion of unaggregated frames in an ADDBA
5137  * session.
5138  *
5139  * Fail is set to 1 if the entry is being freed via a call to
5140  * ath_tx_draintxq().
5141  */
5142 static void
5143 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
5144 {
5145 	struct ieee80211_node *ni = bf->bf_node;
5146 	struct ath_node *an = ATH_NODE(ni);
5147 	int tid = bf->bf_state.bfs_tid;
5148 	struct ath_tid *atid = &an->an_tid[tid];
5149 	struct ath_tx_status ts;
5150 	int drops = 0;
5151 
5152 	/*
5153 	 * Take a copy of this; filtering/cloning the frame may free the
5154 	 * bf pointer.
5155 	 */
5156 	ts = bf->bf_status.ds_txstat;
5157 
5158 	/*
5159 	 * Update rate control status here, before we possibly
5160 	 * punt to retry or cleanup.
5161 	 *
5162 	 * Do it outside of the TXQ lock.
5163 	 */
5164 	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
5165 		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
5166 		    &bf->bf_status.ds_txstat,
5167 		    bf->bf_state.bfs_pktlen,
5168 		    bf->bf_state.bfs_pktlen,
5169 		    1, (ts.ts_status == 0) ? 0 : 1);
5170 
5171 	/*
5172 	 * This is called early so atid->hwq_depth can be tracked.
5173 	 * This unfortunately means that it's released and regrabbed
5174 	 * during retry and cleanup. That's rather inefficient.
5175 	 */
5176 	ATH_TX_LOCK(sc);
5177 
5178 	if (tid == IEEE80211_NONQOS_TID)
5179 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16!\n", __func__);
5180 
5181 	DPRINTF(sc, ATH_DEBUG_SW_TX,
5182 	    "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n",
5183 	    __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth,
5184 	    SEQNO(bf->bf_state.bfs_seqno));
5185 
5186 	atid->hwq_depth--;
5187 	if (atid->hwq_depth < 0)
5188 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n",
5189 		    __func__, atid->hwq_depth);
5190 
5191 	/*
5192 	 * If the TID is filtered, handle completing the filter
5193 	 * transition before potentially kicking it to the cleanup
5194 	 * function.
5195 	 */
5196 	if (atid->isfiltered)
5197 		ath_tx_tid_filt_comp_complete(sc, atid);
5198 
5199 	/*
5200 	 * If a cleanup is in progress, punt to comp_cleanup;
5201 	 * rather than handling it here. It's thus their
5202 	 * responsibility to clean up, call the completion
5203 	 * function in net80211, etc.
5204 	 */
5205 	if (atid->cleanup_inprogress) {
5206 		if (atid->isfiltered)
5207 			DPRINTF(sc, ATH_DEBUG_SW_TX,
5208 			    "%s: isfiltered=1, normal_comp?\n",
5209 			    __func__);
5210 		ATH_TX_UNLOCK(sc);
5211 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n",
5212 		    __func__);
5213 		ath_tx_comp_cleanup_unaggr(sc, bf);
5214 		return;
5215 	}
5216 
5217 	/*
5218 	 * XXX TODO: how does cleanup, BAR and filtered frame handling
5219 	 * overlap?
5220 	 *
5221 	 * If the frame is filtered OR if it's any failure but
5222 	 * the TID is filtered, the frame must be added to the
5223 	 * filtered frame list.
5224 	 *
5225 	 * However - a busy buffer can't be added to the filtered
5226 	 * list as it will end up being recycled without having
5227 	 * been made available for the hardware.
5228 	 */
5229 	if ((ts.ts_status & HAL_TXERR_FILT) ||
5230 	    (ts.ts_status != 0 && atid->isfiltered)) {
5231 		int freeframe;
5232 
5233 		if (fail != 0)
5234 			DPRINTF(sc, ATH_DEBUG_SW_TX,
5235 			    "%s: isfiltered=1, fail=%d\n",
5236 			    __func__, fail);
5237 		freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf);
5238 		/*
5239 		 * If freeframe=0 then bf is no longer ours; don't
5240 		 * touch it.
5241 		 */
5242 		if (freeframe) {
5243 			/* Remove from BAW */
5244 			if (bf->bf_state.bfs_addedbaw)
5245 				drops++;
5246 			if (bf->bf_state.bfs_dobaw) {
5247 				ath_tx_update_baw(sc, an, atid, bf);
5248 				if (!bf->bf_state.bfs_addedbaw)
5249 					DPRINTF(sc, ATH_DEBUG_SW_TX,
5250 					    "%s: wasn't added: seqno %d\n",
5251 					    __func__, SEQNO(bf->bf_state.bfs_seqno));
5252 			}
5253 			bf->bf_state.bfs_dobaw = 0;
5254 		}
5255 
5256 		/*
5257 		 * If the frame couldn't be filtered, treat it as a drop and
5258 		 * prepare to send a BAR.
5259 		 */
5260 		if (freeframe && drops)
5261 			ath_tx_tid_bar_suspend(sc, atid);
5262 
5263 		/*
5264 		 * Send BAR if required
5265 		 */
5266 		if (ath_tx_tid_bar_tx_ready(sc, atid))
5267 			ath_tx_tid_bar_tx(sc, atid);
5268 
5269 		ATH_TX_UNLOCK(sc);
5270 		/*
5271 		 * If freeframe is set, then the frame couldn't be
5272 		 * cloned and bf is still valid.  Just complete/free it.
5273 		 */
5274 		if (freeframe)
5275 			ath_tx_default_comp(sc, bf, fail);
5276 
5277 		return;
5278 	}
5279 	/*
5280 	 * Don't bother with the retry check if all frames
5281 	 * are being failed (eg during queue deletion.)
5282 	 */
5283 #if 0
5284 	if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
5285 #endif
5286 	if (fail == 0 && ts.ts_status != 0) {
5287 		ATH_TX_UNLOCK(sc);
5288 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n",
5289 		    __func__);
5290 		ath_tx_aggr_retry_unaggr(sc, bf);
5291 		return;
5292 	}
5293 
5294 	/* Success? Complete */
5295 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
5296 	    __func__, tid, SEQNO(bf->bf_state.bfs_seqno));
5297 	if (bf->bf_state.bfs_dobaw) {
5298 		ath_tx_update_baw(sc, an, atid, bf);
5299 		bf->bf_state.bfs_dobaw = 0;
5300 		if (!bf->bf_state.bfs_addedbaw)
5301 			DPRINTF(sc, ATH_DEBUG_SW_TX,
5302 			    "%s: wasn't added: seqno %d\n",
5303 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
5304 	}
5305 
5306 	/*
5307 	 * If the queue is filtered, re-schedule as required.
5308 	 *
5309 	 * This is required as there may be a subsequent TX descriptor
5310 	 * for this end-node that has CLRDMASK set, so it's quite possible
5311 	 * that a filtered frame will be followed by a non-filtered
5312 	 * (complete or otherwise) frame.
5313 	 *
5314 	 * XXX should we do this before we complete the frame?
5315 	 */
5316 	if (atid->isfiltered)
5317 		ath_tx_tid_filt_comp_complete(sc, atid);
5318 
5319 	/*
5320 	 * Send BAR if required
5321 	 */
5322 	if (ath_tx_tid_bar_tx_ready(sc, atid))
5323 		ath_tx_tid_bar_tx(sc, atid);
5324 
5325 	ATH_TX_UNLOCK(sc);
5326 
5327 	ath_tx_default_comp(sc, bf, fail);
5328 	/* bf is freed at this point */
5329 }
5330 
5331 void
5332 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
5333 {
5334 	if (bf->bf_state.bfs_aggr)
5335 		ath_tx_aggr_comp_aggr(sc, bf, fail);
5336 	else
5337 		ath_tx_aggr_comp_unaggr(sc, bf, fail);
5338 }
5339 
5340 /*
5341  * Grab the software queue depth that we COULD transmit.
5342  *
5343  * This includes checks if it's in the BAW, whether it's a frame
5344  * that is supposed to be in the BAW.  Other checks could be done;
5345  * but for now let's try and avoid doing the whole of ath_tx_form_aggr()
5346  * here.
5347  */
5348 static int
5349 ath_tx_tid_swq_depth_bytes(struct ath_softc *sc, struct ath_node *an,
5350     struct ath_tid *tid)
5351 {
5352 	struct ath_buf *bf;
5353 	struct ieee80211_tx_ampdu *tap;
5354 	int nbytes = 0;
5355 
5356 	ATH_TX_LOCK_ASSERT(sc);
5357 
5358 	tap = ath_tx_get_tx_tid(an, tid->tid);
5359 
5360 	/*
5361 	 * Iterate over each buffer and sum the pkt_len.
5362 	 * Bail if we exceed ATH_AGGR_MAXSIZE bytes; we won't
5363 	 * ever queue more than that in a single frame.
5364 	 */
5365 	TAILQ_FOREACH(bf, &tid->tid_q, bf_list) {
5366 		/*
5367 		 * TODO: I'm not sure if we're going to hit cases where
5368 		 * no frames get sent because the list is empty.
5369 		 */
5370 
5371 		/* Check if it's in the BAW */
5372 		if (tap != NULL && (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
5373 		    SEQNO(bf->bf_state.bfs_seqno)))) {
5374 			break;
5375 		}
5376 
5377 		/* Check if it's even supposed to be in the BAW */
5378 		if (! bf->bf_state.bfs_dobaw) {
5379 			break;
5380 		}
5381 
5382 		nbytes += bf->bf_state.bfs_pktlen;
5383 		if (nbytes >= ATH_AGGR_MAXSIZE)
5384 			break;
5385 
5386 		/*
5387 		 * Check if we're likely going to leak a frame
5388 		 * as part of a PSPOLL.  Break out at this point;
5389 		 * we're only going to send a single frame anyway.
5390 		 */
5391 		if (an->an_leak_count) {
5392 			break;
5393 		}
5394 	}
5395 
5396 	return MIN(nbytes, ATH_AGGR_MAXSIZE);
5397 }
5398 
5399 /*
5400  * Schedule some packets from the given node/TID to the hardware.
5401  *
5402  * This is the aggregate version.
5403  */
5404 void
5405 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
5406     struct ath_tid *tid)
5407 {
5408 	struct ath_buf *bf;
5409 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
5410 	struct ieee80211_tx_ampdu *tap;
5411 	ATH_AGGR_STATUS status;
5412 	ath_bufhead bf_q;
5413 	int swq_pktbytes;
5414 
5415 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
5416 	ATH_TX_LOCK_ASSERT(sc);
5417 
5418 	/*
5419 	 * XXX TODO: If we're called for a queue that we're leaking frames to,
5420 	 * ensure we only leak one.
5421 	 */
5422 
5423 	tap = ath_tx_get_tx_tid(an, tid->tid);
5424 
5425 	if (tid->tid == IEEE80211_NONQOS_TID)
5426 		DPRINTF(sc, ATH_DEBUG_SW_TX,
5427 		    "%s: called for TID=NONQOS_TID?\n", __func__);
5428 
5429 	for (;;) {
5430 		status = ATH_AGGR_DONE;
5431 
5432 		/*
5433 		 * If the upper layer has paused the TID, don't
5434 		 * queue any further packets.
5435 		 *
5436 		 * This can also occur from the completion task because
5437 		 * of packet loss; but as its serialised with this code,
5438 		 * it won't "appear" half way through queuing packets.
5439 		 */
5440 		if (! ath_tx_tid_can_tx_or_sched(sc, tid))
5441 			break;
5442 
5443 		bf = ATH_TID_FIRST(tid);
5444 		if (bf == NULL) {
5445 			break;
5446 		}
5447 
5448 		/*
5449 		 * If the packet doesn't fall within the BAW (eg a NULL
5450 		 * data frame), schedule it directly; continue.
5451 		 */
5452 		if (! bf->bf_state.bfs_dobaw) {
5453 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5454 			    "%s: non-baw packet\n",
5455 			    __func__);
5456 			ATH_TID_REMOVE(tid, bf, bf_list);
5457 
5458 			if (bf->bf_state.bfs_nframes > 1)
5459 				DPRINTF(sc, ATH_DEBUG_SW_TX,
5460 				    "%s: aggr=%d, nframes=%d\n",
5461 				    __func__,
5462 				    bf->bf_state.bfs_aggr,
5463 				    bf->bf_state.bfs_nframes);
5464 
5465 			/*
5466 			 * This shouldn't happen - such frames shouldn't
5467 			 * ever have been queued as an aggregate in the
5468 			 * first place.  However, make sure the fields
5469 			 * are correctly setup just to be totally sure.
5470 			 */
5471 			bf->bf_state.bfs_aggr = 0;
5472 			bf->bf_state.bfs_nframes = 1;
5473 
5474 			/* Update CLRDMASK just before this frame is queued */
5475 			ath_tx_update_clrdmask(sc, tid, bf);
5476 
5477 			ath_tx_do_ratelookup(sc, bf, tid->tid,
5478 			    bf->bf_state.bfs_pktlen, false);
5479 			ath_tx_calc_duration(sc, bf);
5480 			ath_tx_calc_protection(sc, bf);
5481 			ath_tx_set_rtscts(sc, bf);
5482 			ath_tx_rate_fill_rcflags(sc, bf);
5483 			ath_tx_setds(sc, bf);
5484 			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
5485 
5486 			sc->sc_aggr_stats.aggr_nonbaw_pkt++;
5487 
5488 			/* Queue the packet; continue */
5489 			goto queuepkt;
5490 		}
5491 
5492 		TAILQ_INIT(&bf_q);
5493 
5494 		/*
5495 		 * Loop over the swq to find out how long
5496 		 * each packet is (up until 64k) and provide that
5497 		 * to the rate control lookup.
5498 		 */
5499 		swq_pktbytes = ath_tx_tid_swq_depth_bytes(sc, an, tid);
5500 		ath_tx_do_ratelookup(sc, bf, tid->tid, swq_pktbytes, true);
5501 
5502 		/*
5503 		 * Note this only is used for the fragment paths and
5504 		 * should really be rethought out if we want to do
5505 		 * things like an RTS burst across >1 aggregate.
5506 		 */
5507 		ath_tx_calc_duration(sc, bf);
5508 		ath_tx_calc_protection(sc, bf);
5509 
5510 		ath_tx_set_rtscts(sc, bf);
5511 		ath_tx_rate_fill_rcflags(sc, bf);
5512 
5513 		status = ath_tx_form_aggr(sc, an, tid, &bf_q);
5514 
5515 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5516 		    "%s: ath_tx_form_aggr() status=%d\n", __func__, status);
5517 
5518 		/*
5519 		 * No frames to be picked up - out of BAW
5520 		 */
5521 		if (TAILQ_EMPTY(&bf_q))
5522 			break;
5523 
5524 		/*
5525 		 * This assumes that the descriptor list in the ath_bufhead
5526 		 * are already linked together via bf_next pointers.
5527 		 */
5528 		bf = TAILQ_FIRST(&bf_q);
5529 
5530 		if (status == ATH_AGGR_8K_LIMITED)
5531 			sc->sc_aggr_stats.aggr_rts_aggr_limited++;
5532 
5533 		/*
5534 		 * If it's the only frame send as non-aggregate
5535 		 * assume that ath_tx_form_aggr() has checked
5536 		 * whether it's in the BAW and added it appropriately.
5537 		 */
5538 		if (bf->bf_state.bfs_nframes == 1) {
5539 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5540 			    "%s: single-frame aggregate\n", __func__);
5541 
5542 			/* Update CLRDMASK just before this frame is queued */
5543 			ath_tx_update_clrdmask(sc, tid, bf);
5544 
5545 			bf->bf_state.bfs_aggr = 0;
5546 			bf->bf_state.bfs_ndelim = 0;
5547 			ath_tx_setds(sc, bf);
5548 			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
5549 			if (status == ATH_AGGR_BAW_CLOSED)
5550 				sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
5551 			else
5552 				sc->sc_aggr_stats.aggr_single_pkt++;
5553 		} else {
5554 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5555 			    "%s: multi-frame aggregate: %d frames, "
5556 			    "length %d\n",
5557 			     __func__, bf->bf_state.bfs_nframes,
5558 			    bf->bf_state.bfs_al);
5559 			bf->bf_state.bfs_aggr = 1;
5560 			sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
5561 			sc->sc_aggr_stats.aggr_aggr_pkt++;
5562 
5563 			/* Update CLRDMASK just before this frame is queued */
5564 			ath_tx_update_clrdmask(sc, tid, bf);
5565 
5566 			/*
5567 			 * Calculate the duration/protection as required.
5568 			 */
5569 			ath_tx_calc_duration(sc, bf);
5570 			ath_tx_calc_protection(sc, bf);
5571 
5572 			/*
5573 			 * Update the rate and rtscts information based on the
5574 			 * rate decision made by the rate control code;
5575 			 * the first frame in the aggregate needs it.
5576 			 */
5577 			ath_tx_set_rtscts(sc, bf);
5578 
5579 			/*
5580 			 * Setup the relevant descriptor fields
5581 			 * for aggregation. The first descriptor
5582 			 * already points to the rest in the chain.
5583 			 */
5584 			ath_tx_setds_11n(sc, bf);
5585 		}
5586 	queuepkt:
5587 		/* Set completion handler, multi-frame aggregate or not */
5588 		bf->bf_comp = ath_tx_aggr_comp;
5589 
5590 		if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
5591 			DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16?\n", __func__);
5592 
5593 		/*
5594 		 * Update leak count and frame config if were leaking frames.
5595 		 *
5596 		 * XXX TODO: it should update all frames in an aggregate
5597 		 * correctly!
5598 		 */
5599 		ath_tx_leak_count_update(sc, tid, bf);
5600 
5601 		/* Punt to txq */
5602 		ath_tx_handoff(sc, txq, bf);
5603 
5604 		/* Track outstanding buffer count to hardware */
5605 		/* aggregates are "one" buffer */
5606 		tid->hwq_depth++;
5607 
5608 		/*
5609 		 * Break out if ath_tx_form_aggr() indicated
5610 		 * there can't be any further progress (eg BAW is full.)
5611 		 * Checking for an empty txq is done above.
5612 		 *
5613 		 * XXX locking on txq here?
5614 		 */
5615 		/* XXX TXQ locking */
5616 		if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr ||
5617 		    (status == ATH_AGGR_BAW_CLOSED ||
5618 		     status == ATH_AGGR_LEAK_CLOSED))
5619 			break;
5620 	}
5621 }
5622 
5623 /*
5624  * Schedule some packets from the given node/TID to the hardware.
5625  *
5626  * XXX TODO: this routine doesn't enforce the maximum TXQ depth.
5627  * It just dumps frames into the TXQ.  We should limit how deep
5628  * the transmit queue can grow for frames dispatched to the given
5629  * TXQ.
5630  *
5631  * To avoid locking issues, either we need to own the TXQ lock
5632  * at this point, or we need to pass in the maximum frame count
5633  * from the caller.
5634  */
5635 void
5636 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
5637     struct ath_tid *tid)
5638 {
5639 	struct ath_buf *bf;
5640 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
5641 
5642 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
5643 	    __func__, an, tid->tid);
5644 
5645 	ATH_TX_LOCK_ASSERT(sc);
5646 
5647 	/* Check - is AMPDU pending or running? then print out something */
5648 	if (ath_tx_ampdu_pending(sc, an, tid->tid))
5649 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu pending?\n",
5650 		    __func__, tid->tid);
5651 	if (ath_tx_ampdu_running(sc, an, tid->tid))
5652 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu running?\n",
5653 		    __func__, tid->tid);
5654 
5655 	for (;;) {
5656 		/*
5657 		 * If the upper layers have paused the TID, don't
5658 		 * queue any further packets.
5659 		 *
5660 		 * XXX if we are leaking frames, make sure we decrement
5661 		 * that counter _and_ we continue here.
5662 		 */
5663 		if (! ath_tx_tid_can_tx_or_sched(sc, tid))
5664 			break;
5665 
5666 		bf = ATH_TID_FIRST(tid);
5667 		if (bf == NULL) {
5668 			break;
5669 		}
5670 
5671 		ATH_TID_REMOVE(tid, bf, bf_list);
5672 
5673 		/* Sanity check! */
5674 		if (tid->tid != bf->bf_state.bfs_tid) {
5675 			DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bfs_tid %d !="
5676 			    " tid %d\n", __func__, bf->bf_state.bfs_tid,
5677 			    tid->tid);
5678 		}
5679 		/* Normal completion handler */
5680 		bf->bf_comp = ath_tx_normal_comp;
5681 
5682 		/*
5683 		 * Override this for now, until the non-aggregate
5684 		 * completion handler correctly handles software retransmits.
5685 		 */
5686 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
5687 
5688 		/* Update CLRDMASK just before this frame is queued */
5689 		ath_tx_update_clrdmask(sc, tid, bf);
5690 
5691 		/* Program descriptors + rate control */
5692 		ath_tx_do_ratelookup(sc, bf, tid->tid,
5693 		    bf->bf_state.bfs_pktlen, false);
5694 		ath_tx_calc_duration(sc, bf);
5695 		ath_tx_calc_protection(sc, bf);
5696 		ath_tx_set_rtscts(sc, bf);
5697 		ath_tx_rate_fill_rcflags(sc, bf);
5698 		ath_tx_setds(sc, bf);
5699 
5700 		/*
5701 		 * Update the current leak count if
5702 		 * we're leaking frames; and set the
5703 		 * MORE flag as appropriate.
5704 		 */
5705 		ath_tx_leak_count_update(sc, tid, bf);
5706 
5707 		/* Track outstanding buffer count to hardware */
5708 		/* aggregates are "one" buffer */
5709 		tid->hwq_depth++;
5710 
5711 		/* Punt to hardware or software txq */
5712 		ath_tx_handoff(sc, txq, bf);
5713 	}
5714 }
5715 
5716 /*
5717  * Schedule some packets to the given hardware queue.
5718  *
5719  * This function walks the list of TIDs (ie, ath_node TIDs
5720  * with queued traffic) and attempts to schedule traffic
5721  * from them.
5722  *
5723  * TID scheduling is implemented as a FIFO, with TIDs being
5724  * added to the end of the queue after some frames have been
5725  * scheduled.
5726  */
5727 void
5728 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
5729 {
5730 	struct ath_tid *tid, *next, *last;
5731 
5732 	ATH_TX_LOCK_ASSERT(sc);
5733 
5734 	/*
5735 	 * For non-EDMA chips, aggr frames that have been built are
5736 	 * in axq_aggr_depth, whether they've been scheduled or not.
5737 	 * There's no FIFO, so txq->axq_depth is what's been scheduled
5738 	 * to the hardware.
5739 	 *
5740 	 * For EDMA chips, we do it in two stages.  The existing code
5741 	 * builds a list of frames to go to the hardware and the EDMA
5742 	 * code turns it into a single entry to push into the FIFO.
5743 	 * That way we don't take up one packet per FIFO slot.
5744 	 * We do push one aggregate per FIFO slot though, just to keep
5745 	 * things simple.
5746 	 *
5747 	 * The FIFO depth is what's in the hardware; the txq->axq_depth
5748 	 * is what's been scheduled to the FIFO.
5749 	 *
5750 	 * fifo.axq_depth is the number of frames (or aggregates) pushed
5751 	 *  into the EDMA FIFO.  For multi-frame lists, this is the number
5752 	 *  of frames pushed in.
5753 	 * axq_fifo_depth is the number of FIFO slots currently busy.
5754 	 */
5755 
5756 	/* For EDMA and non-EDMA, check built/scheduled against aggr limit */
5757 	if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr) {
5758 		sc->sc_aggr_stats.aggr_sched_nopkt++;
5759 		return;
5760 	}
5761 
5762 	/*
5763 	 * For non-EDMA chips, axq_depth is the "what's scheduled to
5764 	 * the hardware list".  For EDMA it's "What's built for the hardware"
5765 	 * and fifo.axq_depth is how many frames have been dispatched
5766 	 * already to the hardware.
5767 	 */
5768 	if (txq->axq_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_nonaggr) {
5769 		sc->sc_aggr_stats.aggr_sched_nopkt++;
5770 		return;
5771 	}
5772 
5773 	last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
5774 
5775 	TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
5776 		/*
5777 		 * Suspend paused queues here; they'll be resumed
5778 		 * once the addba completes or times out.
5779 		 */
5780 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
5781 		    __func__, tid->tid, tid->paused);
5782 		ath_tx_tid_unsched(sc, tid);
5783 		/*
5784 		 * This node may be in power-save and we're leaking
5785 		 * a frame; be careful.
5786 		 */
5787 		if (! ath_tx_tid_can_tx_or_sched(sc, tid)) {
5788 			goto loop_done;
5789 		}
5790 		if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
5791 			ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
5792 		else
5793 			ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
5794 
5795 		/* Not empty? Re-schedule */
5796 		if (tid->axq_depth != 0)
5797 			ath_tx_tid_sched(sc, tid);
5798 
5799 		/*
5800 		 * Give the software queue time to aggregate more
5801 		 * packets.  If we aren't running aggregation then
5802 		 * we should still limit the hardware queue depth.
5803 		 */
5804 		/* XXX TXQ locking */
5805 		if (txq->axq_aggr_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_aggr) {
5806 			break;
5807 		}
5808 		if (txq->axq_depth >= sc->sc_hwq_limit_nonaggr) {
5809 			break;
5810 		}
5811 loop_done:
5812 		/*
5813 		 * If this was the last entry on the original list, stop.
5814 		 * Otherwise nodes that have been rescheduled onto the end
5815 		 * of the TID FIFO list will just keep being rescheduled.
5816 		 *
5817 		 * XXX What should we do about nodes that were paused
5818 		 * but are pending a leaking frame in response to a ps-poll?
5819 		 * They'll be put at the front of the list; so they'll
5820 		 * prematurely trigger this condition! Ew.
5821 		 */
5822 		if (tid == last)
5823 			break;
5824 	}
5825 }
5826 
5827 /*
5828  * TX addba handling
5829  */
5830 
5831 /*
5832  * Return net80211 TID struct pointer, or NULL for none
5833  */
5834 struct ieee80211_tx_ampdu *
5835 ath_tx_get_tx_tid(struct ath_node *an, int tid)
5836 {
5837 	struct ieee80211_node *ni = &an->an_node;
5838 	struct ieee80211_tx_ampdu *tap;
5839 
5840 	if (tid == IEEE80211_NONQOS_TID)
5841 		return NULL;
5842 
5843 	tap = &ni->ni_tx_ampdu[tid];
5844 	return tap;
5845 }
5846 
5847 /*
5848  * Is AMPDU-TX running?
5849  */
5850 static int
5851 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
5852 {
5853 	struct ieee80211_tx_ampdu *tap;
5854 
5855 	if (tid == IEEE80211_NONQOS_TID)
5856 		return 0;
5857 
5858 	tap = ath_tx_get_tx_tid(an, tid);
5859 	if (tap == NULL)
5860 		return 0;	/* Not valid; default to not running */
5861 
5862 	return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
5863 }
5864 
5865 /*
5866  * Is AMPDU-TX negotiation pending?
5867  */
5868 static int
5869 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
5870 {
5871 	struct ieee80211_tx_ampdu *tap;
5872 
5873 	if (tid == IEEE80211_NONQOS_TID)
5874 		return 0;
5875 
5876 	tap = ath_tx_get_tx_tid(an, tid);
5877 	if (tap == NULL)
5878 		return 0;	/* Not valid; default to not pending */
5879 
5880 	return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
5881 }
5882 
5883 /*
5884  * Is AMPDU-TX pending for the given TID?
5885  */
5886 
5887 /*
5888  * Method to handle sending an ADDBA request.
5889  *
5890  * We tap this so the relevant flags can be set to pause the TID
5891  * whilst waiting for the response.
5892  *
5893  * XXX there's no timeout handler we can override?
5894  */
5895 int
5896 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5897     int dialogtoken, int baparamset, int batimeout)
5898 {
5899 	struct ath_softc *sc = ni->ni_ic->ic_softc;
5900 	int tid = tap->txa_tid;
5901 	struct ath_node *an = ATH_NODE(ni);
5902 	struct ath_tid *atid = &an->an_tid[tid];
5903 
5904 	/*
5905 	 * XXX danger Will Robinson!
5906 	 *
5907 	 * Although the taskqueue may be running and scheduling some more
5908 	 * packets, these should all be _before_ the addba sequence number.
5909 	 * However, net80211 will keep self-assigning sequence numbers
5910 	 * until addba has been negotiated.
5911 	 *
5912 	 * In the past, these packets would be "paused" (which still works
5913 	 * fine, as they're being scheduled to the driver in the same
5914 	 * serialised method which is calling the addba request routine)
5915 	 * and when the aggregation session begins, they'll be dequeued
5916 	 * as aggregate packets and added to the BAW. However, now there's
5917 	 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
5918 	 * packets. Thus they never get included in the BAW tracking and
5919 	 * this can cause the initial burst of packets after the addba
5920 	 * negotiation to "hang", as they quickly fall outside the BAW.
5921 	 *
5922 	 * The "eventual" solution should be to tag these packets with
5923 	 * dobaw. Although net80211 has given us a sequence number,
5924 	 * it'll be "after" the left edge of the BAW and thus it'll
5925 	 * fall within it.
5926 	 */
5927 	ATH_TX_LOCK(sc);
5928 	/*
5929 	 * This is a bit annoying.  Until net80211 HT code inherits some
5930 	 * (any) locking, we may have this called in parallel BUT only
5931 	 * one response/timeout will be called.  Grr.
5932 	 */
5933 	if (atid->addba_tx_pending == 0) {
5934 		ath_tx_tid_pause(sc, atid);
5935 		atid->addba_tx_pending = 1;
5936 	}
5937 	ATH_TX_UNLOCK(sc);
5938 
5939 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5940 	    "%s: %6D: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
5941 	    __func__,
5942 	    ni->ni_macaddr,
5943 	    ":",
5944 	    dialogtoken, baparamset, batimeout);
5945 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5946 	    "%s: txa_start=%d, ni_txseqs=%d\n",
5947 	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
5948 
5949 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5950 	    batimeout);
5951 }
5952 
5953 /*
5954  * Handle an ADDBA response.
5955  *
5956  * We unpause the queue so TX'ing can resume.
5957  *
5958  * Any packets TX'ed from this point should be "aggregate" (whether
5959  * aggregate or not) so the BAW is updated.
5960  *
5961  * Note! net80211 keeps self-assigning sequence numbers until
5962  * ampdu is negotiated. This means the initially-negotiated BAW left
5963  * edge won't match the ni->ni_txseq.
5964  *
5965  * So, being very dirty, the BAW left edge is "slid" here to match
5966  * ni->ni_txseq.
5967  *
5968  * What likely SHOULD happen is that all packets subsequent to the
5969  * addba request should be tagged as aggregate and queued as non-aggregate
5970  * frames; thus updating the BAW. For now though, I'll just slide the
5971  * window.
5972  */
5973 int
5974 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5975     int status, int code, int batimeout)
5976 {
5977 	struct ath_softc *sc = ni->ni_ic->ic_softc;
5978 	int tid = tap->txa_tid;
5979 	struct ath_node *an = ATH_NODE(ni);
5980 	struct ath_tid *atid = &an->an_tid[tid];
5981 	int r;
5982 
5983 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5984 	    "%s: %6D: called; status=%d, code=%d, batimeout=%d\n", __func__,
5985 	    ni->ni_macaddr,
5986 	    ":",
5987 	    status, code, batimeout);
5988 
5989 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5990 	    "%s: txa_start=%d, ni_txseqs=%d\n",
5991 	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
5992 
5993 	/*
5994 	 * Call this first, so the interface flags get updated
5995 	 * before the TID is unpaused. Otherwise a race condition
5996 	 * exists where the unpaused TID still doesn't yet have
5997 	 * IEEE80211_AGGR_RUNNING set.
5998 	 */
5999 	r = sc->sc_addba_response(ni, tap, status, code, batimeout);
6000 
6001 	ATH_TX_LOCK(sc);
6002 	atid->addba_tx_pending = 0;
6003 	/*
6004 	 * XXX dirty!
6005 	 * Slide the BAW left edge to wherever net80211 left it for us.
6006 	 * Read above for more information.
6007 	 */
6008 	tap->txa_start = ni->ni_txseqs[tid];
6009 	ath_tx_tid_resume(sc, atid);
6010 	ATH_TX_UNLOCK(sc);
6011 	return r;
6012 }
6013 
6014 /*
6015  * Stop ADDBA on a queue.
6016  *
6017  * This can be called whilst BAR TX is currently active on the queue,
6018  * so make sure this is unblocked before continuing.
6019  */
6020 void
6021 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
6022 {
6023 	struct ath_softc *sc = ni->ni_ic->ic_softc;
6024 	int tid = tap->txa_tid;
6025 	struct ath_node *an = ATH_NODE(ni);
6026 	struct ath_tid *atid = &an->an_tid[tid];
6027 	ath_bufhead bf_cq;
6028 	struct ath_buf *bf;
6029 
6030 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: called\n",
6031 	    __func__,
6032 	    ni->ni_macaddr,
6033 	    ":");
6034 
6035 	/*
6036 	 * Pause TID traffic early, so there aren't any races
6037 	 * Unblock the pending BAR held traffic, if it's currently paused.
6038 	 */
6039 	ATH_TX_LOCK(sc);
6040 	ath_tx_tid_pause(sc, atid);
6041 	if (atid->bar_wait) {
6042 		/*
6043 		 * bar_unsuspend() expects bar_tx == 1, as it should be
6044 		 * called from the TX completion path.  This quietens
6045 		 * the warning.  It's cleared for us anyway.
6046 		 */
6047 		atid->bar_tx = 1;
6048 		ath_tx_tid_bar_unsuspend(sc, atid);
6049 	}
6050 	ATH_TX_UNLOCK(sc);
6051 
6052 	/* There's no need to hold the TXQ lock here */
6053 	sc->sc_addba_stop(ni, tap);
6054 
6055 	/*
6056 	 * ath_tx_tid_cleanup will resume the TID if possible, otherwise
6057 	 * it'll set the cleanup flag, and it'll be unpaused once
6058 	 * things have been cleaned up.
6059 	 */
6060 	TAILQ_INIT(&bf_cq);
6061 	ATH_TX_LOCK(sc);
6062 
6063 	/*
6064 	 * In case there's a followup call to this, only call it
6065 	 * if we don't have a cleanup in progress.
6066 	 *
6067 	 * Since we've paused the queue above, we need to make
6068 	 * sure we unpause if there's already a cleanup in
6069 	 * progress - it means something else is also doing
6070 	 * this stuff, so we don't need to also keep it paused.
6071 	 */
6072 	if (atid->cleanup_inprogress) {
6073 		ath_tx_tid_resume(sc, atid);
6074 	} else {
6075 		ath_tx_tid_cleanup(sc, an, tid, &bf_cq);
6076 		/*
6077 		 * Unpause the TID if no cleanup is required.
6078 		 */
6079 		if (! atid->cleanup_inprogress)
6080 			ath_tx_tid_resume(sc, atid);
6081 	}
6082 	ATH_TX_UNLOCK(sc);
6083 
6084 	/* Handle completing frames and fail them */
6085 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
6086 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
6087 		ath_tx_default_comp(sc, bf, 1);
6088 	}
6089 
6090 }
6091 
6092 /*
6093  * Handle a node reassociation.
6094  *
6095  * We may have a bunch of frames queued to the hardware; those need
6096  * to be marked as cleanup.
6097  */
6098 void
6099 ath_tx_node_reassoc(struct ath_softc *sc, struct ath_node *an)
6100 {
6101 	struct ath_tid *tid;
6102 	int i;
6103 	ath_bufhead bf_cq;
6104 	struct ath_buf *bf;
6105 
6106 	TAILQ_INIT(&bf_cq);
6107 
6108 	ATH_TX_UNLOCK_ASSERT(sc);
6109 
6110 	ATH_TX_LOCK(sc);
6111 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
6112 		tid = &an->an_tid[i];
6113 		if (tid->hwq_depth == 0)
6114 			continue;
6115 		DPRINTF(sc, ATH_DEBUG_NODE,
6116 		    "%s: %6D: TID %d: cleaning up TID\n",
6117 		    __func__,
6118 		    an->an_node.ni_macaddr,
6119 		    ":",
6120 		    i);
6121 		/*
6122 		 * In case there's a followup call to this, only call it
6123 		 * if we don't have a cleanup in progress.
6124 		 */
6125 		if (! tid->cleanup_inprogress) {
6126 			ath_tx_tid_pause(sc, tid);
6127 			ath_tx_tid_cleanup(sc, an, i, &bf_cq);
6128 			/*
6129 			 * Unpause the TID if no cleanup is required.
6130 			 */
6131 			if (! tid->cleanup_inprogress)
6132 				ath_tx_tid_resume(sc, tid);
6133 		}
6134 	}
6135 	ATH_TX_UNLOCK(sc);
6136 
6137 	/* Handle completing frames and fail them */
6138 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
6139 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
6140 		ath_tx_default_comp(sc, bf, 1);
6141 	}
6142 }
6143 
6144 /*
6145  * Note: net80211 bar_timeout() doesn't call this function on BAR failure;
6146  * it simply tears down the aggregation session. Ew.
6147  *
6148  * It however will call ieee80211_ampdu_stop() which will call
6149  * ic->ic_addba_stop().
6150  *
6151  * XXX This uses a hard-coded max BAR count value; the whole
6152  * XXX BAR TX success or failure should be better handled!
6153  */
6154 void
6155 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
6156     int status)
6157 {
6158 	struct ath_softc *sc = ni->ni_ic->ic_softc;
6159 	int tid = tap->txa_tid;
6160 	struct ath_node *an = ATH_NODE(ni);
6161 	struct ath_tid *atid = &an->an_tid[tid];
6162 	int attempts = tap->txa_attempts;
6163 	int old_txa_start;
6164 
6165 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
6166 	    "%s: %6D: called; txa_tid=%d, atid->tid=%d, status=%d, attempts=%d, txa_start=%d, txa_seqpending=%d\n",
6167 	    __func__,
6168 	    ni->ni_macaddr,
6169 	    ":",
6170 	    tap->txa_tid,
6171 	    atid->tid,
6172 	    status,
6173 	    attempts,
6174 	    tap->txa_start,
6175 	    tap->txa_seqpending);
6176 
6177 	/* Note: This may update the BAW details */
6178 	/*
6179 	 * XXX What if this does slide the BAW along? We need to somehow
6180 	 * XXX either fix things when it does happen, or prevent the
6181 	 * XXX seqpending value to be anything other than exactly what
6182 	 * XXX the hell we want!
6183 	 *
6184 	 * XXX So for now, how I do this inside the TX lock for now
6185 	 * XXX and just correct it afterwards? The below condition should
6186 	 * XXX never happen and if it does I need to fix all kinds of things.
6187 	 */
6188 	ATH_TX_LOCK(sc);
6189 	old_txa_start = tap->txa_start;
6190 	sc->sc_bar_response(ni, tap, status);
6191 	if (tap->txa_start != old_txa_start) {
6192 		device_printf(sc->sc_dev, "%s: tid=%d; txa_start=%d, old=%d, adjusting\n",
6193 		    __func__,
6194 		    tid,
6195 		    tap->txa_start,
6196 		    old_txa_start);
6197 	}
6198 	tap->txa_start = old_txa_start;
6199 	ATH_TX_UNLOCK(sc);
6200 
6201 	/* Unpause the TID */
6202 	/*
6203 	 * XXX if this is attempt=50, the TID will be downgraded
6204 	 * XXX to a non-aggregate session. So we must unpause the
6205 	 * XXX TID here or it'll never be done.
6206 	 *
6207 	 * Also, don't call it if bar_tx/bar_wait are 0; something
6208 	 * has beaten us to the punch? (XXX figure out what?)
6209 	 */
6210 	if (status == 0 || attempts == 50) {
6211 		ATH_TX_LOCK(sc);
6212 		if (atid->bar_tx == 0 || atid->bar_wait == 0)
6213 			DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
6214 			    "%s: huh? bar_tx=%d, bar_wait=%d\n",
6215 			    __func__,
6216 			    atid->bar_tx, atid->bar_wait);
6217 		else
6218 			ath_tx_tid_bar_unsuspend(sc, atid);
6219 		ATH_TX_UNLOCK(sc);
6220 	}
6221 }
6222 
6223 /*
6224  * This is called whenever the pending ADDBA request times out.
6225  * Unpause and reschedule the TID.
6226  */
6227 void
6228 ath_addba_response_timeout(struct ieee80211_node *ni,
6229     struct ieee80211_tx_ampdu *tap)
6230 {
6231 	struct ath_softc *sc = ni->ni_ic->ic_softc;
6232 	int tid = tap->txa_tid;
6233 	struct ath_node *an = ATH_NODE(ni);
6234 	struct ath_tid *atid = &an->an_tid[tid];
6235 
6236 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
6237 	    "%s: %6D: TID=%d, called; resuming\n",
6238 	    __func__,
6239 	    ni->ni_macaddr,
6240 	    ":",
6241 	    tid);
6242 
6243 	ATH_TX_LOCK(sc);
6244 	atid->addba_tx_pending = 0;
6245 	ATH_TX_UNLOCK(sc);
6246 
6247 	/* Note: This updates the aggregate state to (again) pending */
6248 	sc->sc_addba_response_timeout(ni, tap);
6249 
6250 	/* Unpause the TID; which reschedules it */
6251 	ATH_TX_LOCK(sc);
6252 	ath_tx_tid_resume(sc, atid);
6253 	ATH_TX_UNLOCK(sc);
6254 }
6255 
6256 /*
6257  * Check if a node is asleep or not.
6258  */
6259 int
6260 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an)
6261 {
6262 
6263 	ATH_TX_LOCK_ASSERT(sc);
6264 
6265 	return (an->an_is_powersave);
6266 }
6267 
6268 /*
6269  * Mark a node as currently "in powersaving."
6270  * This suspends all traffic on the node.
6271  *
6272  * This must be called with the node/tx locks free.
6273  *
6274  * XXX TODO: the locking silliness below is due to how the node
6275  * locking currently works.  Right now, the node lock is grabbed
6276  * to do rate control lookups and these are done with the TX
6277  * queue lock held.  This means the node lock can't be grabbed
6278  * first here or a LOR will occur.
6279  *
6280  * Eventually (hopefully!) the TX path code will only grab
6281  * the TXQ lock when transmitting and the ath_node lock when
6282  * doing node/TID operations.  There are other complications -
6283  * the sched/unsched operations involve walking the per-txq
6284  * 'active tid' list and this requires both locks to be held.
6285  */
6286 void
6287 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an)
6288 {
6289 	struct ath_tid *atid;
6290 	struct ath_txq *txq;
6291 	int tid;
6292 
6293 	ATH_TX_UNLOCK_ASSERT(sc);
6294 
6295 	/* Suspend all traffic on the node */
6296 	ATH_TX_LOCK(sc);
6297 
6298 	if (an->an_is_powersave) {
6299 		DPRINTF(sc, ATH_DEBUG_XMIT,
6300 		    "%s: %6D: node was already asleep!\n",
6301 		    __func__, an->an_node.ni_macaddr, ":");
6302 		ATH_TX_UNLOCK(sc);
6303 		return;
6304 	}
6305 
6306 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
6307 		atid = &an->an_tid[tid];
6308 		txq = sc->sc_ac2q[atid->ac];
6309 
6310 		ath_tx_tid_pause(sc, atid);
6311 	}
6312 
6313 	/* Mark node as in powersaving */
6314 	an->an_is_powersave = 1;
6315 
6316 	ATH_TX_UNLOCK(sc);
6317 }
6318 
6319 /*
6320  * Mark a node as currently "awake."
6321  * This resumes all traffic to the node.
6322  */
6323 void
6324 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an)
6325 {
6326 	struct ath_tid *atid;
6327 	struct ath_txq *txq;
6328 	int tid;
6329 
6330 	ATH_TX_UNLOCK_ASSERT(sc);
6331 
6332 	ATH_TX_LOCK(sc);
6333 
6334 	/* !? */
6335 	if (an->an_is_powersave == 0) {
6336 		ATH_TX_UNLOCK(sc);
6337 		DPRINTF(sc, ATH_DEBUG_XMIT,
6338 		    "%s: an=%p: node was already awake\n",
6339 		    __func__, an);
6340 		return;
6341 	}
6342 
6343 	/* Mark node as awake */
6344 	an->an_is_powersave = 0;
6345 	/*
6346 	 * Clear any pending leaked frame requests
6347 	 */
6348 	an->an_leak_count = 0;
6349 
6350 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
6351 		atid = &an->an_tid[tid];
6352 		txq = sc->sc_ac2q[atid->ac];
6353 
6354 		ath_tx_tid_resume(sc, atid);
6355 	}
6356 	ATH_TX_UNLOCK(sc);
6357 }
6358 
6359 static int
6360 ath_legacy_dma_txsetup(struct ath_softc *sc)
6361 {
6362 
6363 	/* nothing new needed */
6364 	return (0);
6365 }
6366 
6367 static int
6368 ath_legacy_dma_txteardown(struct ath_softc *sc)
6369 {
6370 
6371 	/* nothing new needed */
6372 	return (0);
6373 }
6374 
6375 void
6376 ath_xmit_setup_legacy(struct ath_softc *sc)
6377 {
6378 	/*
6379 	 * For now, just set the descriptor length to sizeof(ath_desc);
6380 	 * worry about extracting the real length out of the HAL later.
6381 	 */
6382 	sc->sc_tx_desclen = sizeof(struct ath_desc);
6383 	sc->sc_tx_statuslen = sizeof(struct ath_desc);
6384 	sc->sc_tx_nmaps = 1;	/* only one buffer per TX desc */
6385 
6386 	sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup;
6387 	sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown;
6388 	sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func;
6389 
6390 	sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart;
6391 	sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff;
6392 
6393 	sc->sc_tx.xmit_drain = ath_legacy_tx_drain;
6394 }
6395