1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * Driver for the Atheros Wireless LAN controller. 36 * 37 * This software is derived from work of Atsushi Onoe; his contribution 38 * is greatly appreciated. 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_ath.h" 43 #include "opt_wlan.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/mbuf.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/kernel.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/errno.h> 56 #include <sys/callout.h> 57 #include <sys/bus.h> 58 #include <sys/endian.h> 59 #include <sys/kthread.h> 60 #include <sys/taskqueue.h> 61 #include <sys/priv.h> 62 63 #include <machine/bus.h> 64 65 #include <net/if.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 #include <net80211/ieee80211_regdomain.h> 75 #ifdef IEEE80211_SUPPORT_SUPERG 76 #include <net80211/ieee80211_superg.h> 77 #endif 78 #ifdef IEEE80211_SUPPORT_TDMA 79 #include <net80211/ieee80211_tdma.h> 80 #endif 81 #include <net80211/ieee80211_ht.h> 82 83 #include <net/bpf.h> 84 85 #ifdef INET 86 #include <netinet/in.h> 87 #include <netinet/if_ether.h> 88 #endif 89 90 #include <dev/ath/if_athvar.h> 91 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 92 #include <dev/ath/ath_hal/ah_diagcodes.h> 93 94 #include <dev/ath/if_ath_debug.h> 95 96 #ifdef ATH_TX99_DIAG 97 #include <dev/ath/ath_tx99/ath_tx99.h> 98 #endif 99 100 #include <dev/ath/if_ath_misc.h> 101 #include <dev/ath/if_ath_tx.h> 102 #include <dev/ath/if_ath_tx_ht.h> 103 104 #ifdef ATH_DEBUG_ALQ 105 #include <dev/ath/if_ath_alq.h> 106 #endif 107 108 /* 109 * How many retries to perform in software 110 */ 111 #define SWMAX_RETRIES 10 112 113 /* 114 * What queue to throw the non-QoS TID traffic into 115 */ 116 #define ATH_NONQOS_TID_AC WME_AC_VO 117 118 #if 0 119 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an); 120 #endif 121 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, 122 int tid); 123 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, 124 int tid); 125 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, 126 struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0); 127 static int ath_tx_action_frame_override_queue(struct ath_softc *sc, 128 struct ieee80211_node *ni, struct mbuf *m0, int *tid); 129 static struct ath_buf * 130 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 131 struct ath_tid *tid, struct ath_buf *bf); 132 133 #ifdef ATH_DEBUG_ALQ 134 void 135 ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first) 136 { 137 struct ath_buf *bf; 138 int i, n; 139 const char *ds; 140 141 /* XXX we should skip out early if debugging isn't enabled! */ 142 bf = bf_first; 143 144 while (bf != NULL) { 145 /* XXX should ensure bf_nseg > 0! */ 146 if (bf->bf_nseg == 0) 147 break; 148 n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1; 149 for (i = 0, ds = (const char *) bf->bf_desc; 150 i < n; 151 i++, ds += sc->sc_tx_desclen) { 152 if_ath_alq_post(&sc->sc_alq, 153 ATH_ALQ_EDMA_TXDESC, 154 sc->sc_tx_desclen, 155 ds); 156 } 157 bf = bf->bf_next; 158 } 159 } 160 #endif /* ATH_DEBUG_ALQ */ 161 162 /* 163 * Whether to use the 11n rate scenario functions or not 164 */ 165 static inline int 166 ath_tx_is_11n(struct ath_softc *sc) 167 { 168 return ((sc->sc_ah->ah_magic == 0x20065416) || 169 (sc->sc_ah->ah_magic == 0x19741014)); 170 } 171 172 /* 173 * Obtain the current TID from the given frame. 174 * 175 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.) 176 * This has implications for which AC/priority the packet is placed 177 * in. 178 */ 179 static int 180 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0) 181 { 182 const struct ieee80211_frame *wh; 183 int pri = M_WME_GETAC(m0); 184 185 wh = mtod(m0, const struct ieee80211_frame *); 186 if (! IEEE80211_QOS_HAS_SEQ(wh)) 187 return IEEE80211_NONQOS_TID; 188 else 189 return WME_AC_TO_TID(pri); 190 } 191 192 static void 193 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) 194 { 195 struct ieee80211_frame *wh; 196 197 wh = mtod(bf->bf_m, struct ieee80211_frame *); 198 /* Only update/resync if needed */ 199 if (bf->bf_state.bfs_isretried == 0) { 200 wh->i_fc[1] |= IEEE80211_FC1_RETRY; 201 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 202 BUS_DMASYNC_PREWRITE); 203 } 204 bf->bf_state.bfs_isretried = 1; 205 bf->bf_state.bfs_retries ++; 206 } 207 208 /* 209 * Determine what the correct AC queue for the given frame 210 * should be. 211 * 212 * This code assumes that the TIDs map consistently to 213 * the underlying hardware (or software) ath_txq. 214 * Since the sender may try to set an AC which is 215 * arbitrary, non-QoS TIDs may end up being put on 216 * completely different ACs. There's no way to put a 217 * TID into multiple ath_txq's for scheduling, so 218 * for now we override the AC/TXQ selection and set 219 * non-QOS TID frames into the BE queue. 220 * 221 * This may be completely incorrect - specifically, 222 * some management frames may end up out of order 223 * compared to the QoS traffic they're controlling. 224 * I'll look into this later. 225 */ 226 static int 227 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0) 228 { 229 const struct ieee80211_frame *wh; 230 int pri = M_WME_GETAC(m0); 231 wh = mtod(m0, const struct ieee80211_frame *); 232 if (IEEE80211_QOS_HAS_SEQ(wh)) 233 return pri; 234 235 return ATH_NONQOS_TID_AC; 236 } 237 238 void 239 ath_txfrag_cleanup(struct ath_softc *sc, 240 ath_bufhead *frags, struct ieee80211_node *ni) 241 { 242 struct ath_buf *bf, *next; 243 244 ATH_TXBUF_LOCK_ASSERT(sc); 245 246 TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { 247 /* NB: bf assumed clean */ 248 TAILQ_REMOVE(frags, bf, bf_list); 249 ath_returnbuf_head(sc, bf); 250 ieee80211_node_decref(ni); 251 } 252 } 253 254 /* 255 * Setup xmit of a fragmented frame. Allocate a buffer 256 * for each frag and bump the node reference count to 257 * reflect the held reference to be setup by ath_tx_start. 258 */ 259 int 260 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 261 struct mbuf *m0, struct ieee80211_node *ni) 262 { 263 struct mbuf *m; 264 struct ath_buf *bf; 265 266 ATH_TXBUF_LOCK(sc); 267 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 268 /* XXX non-management? */ 269 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 270 if (bf == NULL) { /* out of buffers, cleanup */ 271 device_printf(sc->sc_dev, "%s: no buffer?\n", 272 __func__); 273 ath_txfrag_cleanup(sc, frags, ni); 274 break; 275 } 276 ieee80211_node_incref(ni); 277 TAILQ_INSERT_TAIL(frags, bf, bf_list); 278 } 279 ATH_TXBUF_UNLOCK(sc); 280 281 return !TAILQ_EMPTY(frags); 282 } 283 284 /* 285 * Reclaim mbuf resources. For fragmented frames we 286 * need to claim each frag chained with m_nextpkt. 287 */ 288 void 289 ath_freetx(struct mbuf *m) 290 { 291 struct mbuf *next; 292 293 do { 294 next = m->m_nextpkt; 295 m->m_nextpkt = NULL; 296 m_freem(m); 297 } while ((m = next) != NULL); 298 } 299 300 static int 301 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) 302 { 303 struct mbuf *m; 304 int error; 305 306 /* 307 * Load the DMA map so any coalescing is done. This 308 * also calculates the number of descriptors we need. 309 */ 310 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 311 bf->bf_segs, &bf->bf_nseg, 312 BUS_DMA_NOWAIT); 313 if (error == EFBIG) { 314 /* XXX packet requires too many descriptors */ 315 bf->bf_nseg = ATH_TXDESC+1; 316 } else if (error != 0) { 317 sc->sc_stats.ast_tx_busdma++; 318 ath_freetx(m0); 319 return error; 320 } 321 /* 322 * Discard null packets and check for packets that 323 * require too many TX descriptors. We try to convert 324 * the latter to a cluster. 325 */ 326 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 327 sc->sc_stats.ast_tx_linear++; 328 m = m_collapse(m0, M_NOWAIT, ATH_TXDESC); 329 if (m == NULL) { 330 ath_freetx(m0); 331 sc->sc_stats.ast_tx_nombuf++; 332 return ENOMEM; 333 } 334 m0 = m; 335 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 336 bf->bf_segs, &bf->bf_nseg, 337 BUS_DMA_NOWAIT); 338 if (error != 0) { 339 sc->sc_stats.ast_tx_busdma++; 340 ath_freetx(m0); 341 return error; 342 } 343 KASSERT(bf->bf_nseg <= ATH_TXDESC, 344 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 345 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 346 sc->sc_stats.ast_tx_nodata++; 347 ath_freetx(m0); 348 return EIO; 349 } 350 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", 351 __func__, m0, m0->m_pkthdr.len); 352 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 353 bf->bf_m = m0; 354 355 return 0; 356 } 357 358 /* 359 * Chain together segments+descriptors for a frame - 11n or otherwise. 360 * 361 * For aggregates, this is called on each frame in the aggregate. 362 */ 363 static void 364 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0, 365 struct ath_buf *bf, int is_aggr, int is_first_subframe, 366 int is_last_subframe) 367 { 368 struct ath_hal *ah = sc->sc_ah; 369 char *ds; 370 int i, bp, dsp; 371 HAL_DMA_ADDR bufAddrList[4]; 372 uint32_t segLenList[4]; 373 int numTxMaps = 1; 374 int isFirstDesc = 1; 375 376 /* 377 * XXX There's txdma and txdma_mgmt; the descriptor 378 * sizes must match. 379 */ 380 struct ath_descdma *dd = &sc->sc_txdma; 381 382 /* 383 * Fillin the remainder of the descriptor info. 384 */ 385 386 /* 387 * For now the HAL doesn't implement halNumTxMaps for non-EDMA 388 * (ie it's 0.) So just work around it. 389 * 390 * XXX TODO: populate halNumTxMaps for each HAL chip and 391 * then undo this hack. 392 */ 393 if (sc->sc_ah->ah_magic == 0x19741014) 394 numTxMaps = 4; 395 396 /* 397 * For EDMA and later chips ensure the TX map is fully populated 398 * before advancing to the next descriptor. 399 */ 400 ds = (char *) bf->bf_desc; 401 bp = dsp = 0; 402 bzero(bufAddrList, sizeof(bufAddrList)); 403 bzero(segLenList, sizeof(segLenList)); 404 for (i = 0; i < bf->bf_nseg; i++) { 405 bufAddrList[bp] = bf->bf_segs[i].ds_addr; 406 segLenList[bp] = bf->bf_segs[i].ds_len; 407 bp++; 408 409 /* 410 * Go to the next segment if this isn't the last segment 411 * and there's space in the current TX map. 412 */ 413 if ((i != bf->bf_nseg - 1) && (bp < numTxMaps)) 414 continue; 415 416 /* 417 * Last segment or we're out of buffer pointers. 418 */ 419 bp = 0; 420 421 if (i == bf->bf_nseg - 1) 422 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0); 423 else 424 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 425 bf->bf_daddr + dd->dd_descsize * (dsp + 1)); 426 427 /* 428 * XXX This assumes that bfs_txq is the actual destination 429 * hardware queue at this point. It may not have been 430 * assigned, it may actually be pointing to the multicast 431 * software TXQ id. These must be fixed! 432 */ 433 ath_hal_filltxdesc(ah, (struct ath_desc *) ds 434 , bufAddrList 435 , segLenList 436 , bf->bf_descid /* XXX desc id */ 437 , bf->bf_state.bfs_tx_queue 438 , isFirstDesc /* first segment */ 439 , i == bf->bf_nseg - 1 /* last segment */ 440 , (struct ath_desc *) ds0 /* first descriptor */ 441 ); 442 443 /* 444 * Make sure the 11n aggregate fields are cleared. 445 * 446 * XXX TODO: this doesn't need to be called for 447 * aggregate frames; as it'll be called on all 448 * sub-frames. Since the descriptors are in 449 * non-cacheable memory, this leads to some 450 * rather slow writes on MIPS/ARM platforms. 451 */ 452 if (ath_tx_is_11n(sc)) 453 ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds); 454 455 /* 456 * If 11n is enabled, set it up as if it's an aggregate 457 * frame. 458 */ 459 if (is_last_subframe) { 460 ath_hal_set11n_aggr_last(sc->sc_ah, 461 (struct ath_desc *) ds); 462 } else if (is_aggr) { 463 /* 464 * This clears the aggrlen field; so 465 * the caller needs to call set_aggr_first()! 466 * 467 * XXX TODO: don't call this for the first 468 * descriptor in the first frame in an 469 * aggregate! 470 */ 471 ath_hal_set11n_aggr_middle(sc->sc_ah, 472 (struct ath_desc *) ds, 473 bf->bf_state.bfs_ndelim); 474 } 475 isFirstDesc = 0; 476 #ifdef ATH_DEBUG 477 if (sc->sc_debug & ATH_DEBUG_XMIT) 478 ath_printtxbuf(sc, bf, bf->bf_state.bfs_tx_queue, 479 0, 0); 480 #endif 481 bf->bf_lastds = (struct ath_desc *) ds; 482 483 /* 484 * Don't forget to skip to the next descriptor. 485 */ 486 ds += sc->sc_tx_desclen; 487 dsp++; 488 489 /* 490 * .. and don't forget to blank these out! 491 */ 492 bzero(bufAddrList, sizeof(bufAddrList)); 493 bzero(segLenList, sizeof(segLenList)); 494 } 495 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 496 } 497 498 /* 499 * Set the rate control fields in the given descriptor based on 500 * the bf_state fields and node state. 501 * 502 * The bfs fields should already be set with the relevant rate 503 * control information, including whether MRR is to be enabled. 504 * 505 * Since the FreeBSD HAL currently sets up the first TX rate 506 * in ath_hal_setuptxdesc(), this will setup the MRR 507 * conditionally for the pre-11n chips, and call ath_buf_set_rate 508 * unconditionally for 11n chips. These require the 11n rate 509 * scenario to be set if MCS rates are enabled, so it's easier 510 * to just always call it. The caller can then only set rates 2, 3 511 * and 4 if multi-rate retry is needed. 512 */ 513 static void 514 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 515 struct ath_buf *bf) 516 { 517 struct ath_rc_series *rc = bf->bf_state.bfs_rc; 518 519 /* If mrr is disabled, blank tries 1, 2, 3 */ 520 if (! bf->bf_state.bfs_ismrr) 521 rc[1].tries = rc[2].tries = rc[3].tries = 0; 522 523 #if 0 524 /* 525 * If NOACK is set, just set ntries=1. 526 */ 527 else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) { 528 rc[1].tries = rc[2].tries = rc[3].tries = 0; 529 rc[0].tries = 1; 530 } 531 #endif 532 533 /* 534 * Always call - that way a retried descriptor will 535 * have the MRR fields overwritten. 536 * 537 * XXX TODO: see if this is really needed - setting up 538 * the first descriptor should set the MRR fields to 0 539 * for us anyway. 540 */ 541 if (ath_tx_is_11n(sc)) { 542 ath_buf_set_rate(sc, ni, bf); 543 } else { 544 ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc 545 , rc[1].ratecode, rc[1].tries 546 , rc[2].ratecode, rc[2].tries 547 , rc[3].ratecode, rc[3].tries 548 ); 549 } 550 } 551 552 /* 553 * Setup segments+descriptors for an 11n aggregate. 554 * bf_first is the first buffer in the aggregate. 555 * The descriptor list must already been linked together using 556 * bf->bf_next. 557 */ 558 static void 559 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first) 560 { 561 struct ath_buf *bf, *bf_prev = NULL; 562 struct ath_desc *ds0 = bf_first->bf_desc; 563 564 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n", 565 __func__, bf_first->bf_state.bfs_nframes, 566 bf_first->bf_state.bfs_al); 567 568 bf = bf_first; 569 570 if (bf->bf_state.bfs_txrate0 == 0) 571 device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n", 572 __func__, bf, 0); 573 if (bf->bf_state.bfs_rc[0].ratecode == 0) 574 device_printf(sc->sc_dev, "%s: bf=%p, rix0=%d\n", 575 __func__, bf, 0); 576 577 /* 578 * Setup all descriptors of all subframes - this will 579 * call ath_hal_set11naggrmiddle() on every frame. 580 */ 581 while (bf != NULL) { 582 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 583 "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n", 584 __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen, 585 SEQNO(bf->bf_state.bfs_seqno)); 586 587 /* 588 * Setup the initial fields for the first descriptor - all 589 * the non-11n specific stuff. 590 */ 591 ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc 592 , bf->bf_state.bfs_pktlen /* packet length */ 593 , bf->bf_state.bfs_hdrlen /* header length */ 594 , bf->bf_state.bfs_atype /* Atheros packet type */ 595 , bf->bf_state.bfs_txpower /* txpower */ 596 , bf->bf_state.bfs_txrate0 597 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 598 , bf->bf_state.bfs_keyix /* key cache index */ 599 , bf->bf_state.bfs_txantenna /* antenna mode */ 600 , bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ /* flags */ 601 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 602 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 603 ); 604 605 /* 606 * First descriptor? Setup the rate control and initial 607 * aggregate header information. 608 */ 609 if (bf == bf_first) { 610 /* 611 * setup first desc with rate and aggr info 612 */ 613 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 614 } 615 616 /* 617 * Setup the descriptors for a multi-descriptor frame. 618 * This is both aggregate and non-aggregate aware. 619 */ 620 ath_tx_chaindesclist(sc, ds0, bf, 621 1, /* is_aggr */ 622 !! (bf == bf_first), /* is_first_subframe */ 623 !! (bf->bf_next == NULL) /* is_last_subframe */ 624 ); 625 626 if (bf == bf_first) { 627 /* 628 * Initialise the first 11n aggregate with the 629 * aggregate length and aggregate enable bits. 630 */ 631 ath_hal_set11n_aggr_first(sc->sc_ah, 632 ds0, 633 bf->bf_state.bfs_al, 634 bf->bf_state.bfs_ndelim); 635 } 636 637 /* 638 * Link the last descriptor of the previous frame 639 * to the beginning descriptor of this frame. 640 */ 641 if (bf_prev != NULL) 642 ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds, 643 bf->bf_daddr); 644 645 /* Save a copy so we can link the next descriptor in */ 646 bf_prev = bf; 647 bf = bf->bf_next; 648 } 649 650 /* 651 * Set the first descriptor bf_lastds field to point to 652 * the last descriptor in the last subframe, that's where 653 * the status update will occur. 654 */ 655 bf_first->bf_lastds = bf_prev->bf_lastds; 656 657 /* 658 * And bf_last in the first descriptor points to the end of 659 * the aggregate list. 660 */ 661 bf_first->bf_last = bf_prev; 662 663 /* 664 * For non-AR9300 NICs, which require the rate control 665 * in the final descriptor - let's set that up now. 666 * 667 * This is because the filltxdesc() HAL call doesn't 668 * populate the last segment with rate control information 669 * if firstSeg is also true. For non-aggregate frames 670 * that is fine, as the first frame already has rate control 671 * info. But if the last frame in an aggregate has one 672 * descriptor, both firstseg and lastseg will be true and 673 * the rate info isn't copied. 674 * 675 * This is inefficient on MIPS/ARM platforms that have 676 * non-cachable memory for TX descriptors, but we'll just 677 * make do for now. 678 * 679 * As to why the rate table is stashed in the last descriptor 680 * rather than the first descriptor? Because proctxdesc() 681 * is called on the final descriptor in an MPDU or A-MPDU - 682 * ie, the one that gets updated by the hardware upon 683 * completion. That way proctxdesc() doesn't need to know 684 * about the first _and_ last TX descriptor. 685 */ 686 ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0); 687 688 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__); 689 } 690 691 /* 692 * Hand-off a frame to the multicast TX queue. 693 * 694 * This is a software TXQ which will be appended to the CAB queue 695 * during the beacon setup code. 696 * 697 * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID 698 * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated 699 * with the actual hardware txq, or all of this will fall apart. 700 * 701 * XXX It may not be a bad idea to just stuff the QCU ID into bf_state 702 * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated 703 * correctly. 704 */ 705 static void 706 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, 707 struct ath_buf *bf) 708 { 709 ATH_TX_LOCK_ASSERT(sc); 710 711 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 712 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 713 if (txq->axq_link != NULL) { 714 struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s); 715 struct ieee80211_frame *wh; 716 717 /* mark previous frame */ 718 wh = mtod(last->bf_m, struct ieee80211_frame *); 719 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 720 bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap, 721 BUS_DMASYNC_PREWRITE); 722 723 /* link descriptor */ 724 *txq->axq_link = bf->bf_daddr; 725 } 726 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 727 ath_hal_gettxdesclinkptr(sc->sc_ah, bf->bf_lastds, &txq->axq_link); 728 } 729 730 /* 731 * Hand-off packet to a hardware queue. 732 */ 733 static void 734 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, 735 struct ath_buf *bf) 736 { 737 struct ath_hal *ah = sc->sc_ah; 738 739 /* 740 * Insert the frame on the outbound list and pass it on 741 * to the hardware. Multicast frames buffered for power 742 * save stations and transmit from the CAB queue are stored 743 * on a s/w only queue and loaded on to the CAB queue in 744 * the SWBA handler since frames only go out on DTIM and 745 * to avoid possible races. 746 */ 747 ATH_TX_LOCK_ASSERT(sc); 748 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 749 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 750 KASSERT(txq->axq_qnum != ATH_TXQ_SWQ, 751 ("ath_tx_handoff_hw called for mcast queue")); 752 753 #if 0 754 /* 755 * This causes a LOR. Find out where the PCU lock is being 756 * held whilst the TXQ lock is grabbed - that shouldn't 757 * be occuring. 758 */ 759 ATH_PCU_LOCK(sc); 760 if (sc->sc_inreset_cnt) { 761 ATH_PCU_UNLOCK(sc); 762 DPRINTF(sc, ATH_DEBUG_RESET, 763 "%s: called with sc_in_reset != 0\n", 764 __func__); 765 DPRINTF(sc, ATH_DEBUG_XMIT, 766 "%s: queued: TXDP[%u] = %p (%p) depth %d\n", 767 __func__, txq->axq_qnum, 768 (caddr_t)bf->bf_daddr, bf->bf_desc, 769 txq->axq_depth); 770 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 771 if (bf->bf_state.bfs_aggr) 772 txq->axq_aggr_depth++; 773 /* 774 * There's no need to update axq_link; the hardware 775 * is in reset and once the reset is complete, any 776 * non-empty queues will simply have DMA restarted. 777 */ 778 return; 779 } 780 ATH_PCU_UNLOCK(sc); 781 #endif 782 783 /* For now, so not to generate whitespace diffs */ 784 if (1) { 785 #ifdef IEEE80211_SUPPORT_TDMA 786 int qbusy; 787 788 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 789 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum); 790 791 ATH_KTR(sc, ATH_KTR_TX, 4, 792 "ath_tx_handoff: txq=%u, add bf=%p, qbusy=%d, depth=%d", 793 txq->axq_qnum, bf, qbusy, txq->axq_depth); 794 if (txq->axq_link == NULL) { 795 /* 796 * Be careful writing the address to TXDP. If 797 * the tx q is enabled then this write will be 798 * ignored. Normally this is not an issue but 799 * when tdma is in use and the q is beacon gated 800 * this race can occur. If the q is busy then 801 * defer the work to later--either when another 802 * packet comes along or when we prepare a beacon 803 * frame at SWBA. 804 */ 805 if (!qbusy) { 806 ath_hal_puttxbuf(ah, txq->axq_qnum, 807 bf->bf_daddr); 808 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 809 DPRINTF(sc, ATH_DEBUG_XMIT, 810 "%s: TXDP[%u] = %p (%p) lastds=%p depth %d\n", 811 __func__, txq->axq_qnum, 812 (caddr_t)bf->bf_daddr, bf->bf_desc, 813 bf->bf_lastds, 814 txq->axq_depth); 815 ATH_KTR(sc, ATH_KTR_TX, 5, 816 "ath_tx_handoff: TXDP[%u] = %p (%p) " 817 "lastds=%p depth %d", 818 txq->axq_qnum, 819 (caddr_t)bf->bf_daddr, bf->bf_desc, 820 bf->bf_lastds, 821 txq->axq_depth); 822 } else { 823 txq->axq_flags |= ATH_TXQ_PUTPENDING; 824 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 825 "%s: Q%u busy, defer enable\n", __func__, 826 txq->axq_qnum); 827 ATH_KTR(sc, ATH_KTR_TX, 0, "defer enable"); 828 } 829 } else { 830 *txq->axq_link = bf->bf_daddr; 831 DPRINTF(sc, ATH_DEBUG_XMIT, 832 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 833 txq->axq_qnum, txq->axq_link, 834 (caddr_t)bf->bf_daddr, bf->bf_desc, 835 txq->axq_depth); 836 ATH_KTR(sc, ATH_KTR_TX, 5, 837 "ath_tx_handoff: link[%u](%p)=%p (%p) lastds=%p", 838 txq->axq_qnum, txq->axq_link, 839 (caddr_t)bf->bf_daddr, bf->bf_desc, 840 bf->bf_lastds); 841 842 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) { 843 /* 844 * The q was busy when we previously tried 845 * to write the address of the first buffer 846 * in the chain. Since it's not busy now 847 * handle this chore. We are certain the 848 * buffer at the front is the right one since 849 * axq_link is NULL only when the buffer list 850 * is/was empty. 851 */ 852 ath_hal_puttxbuf(ah, txq->axq_qnum, 853 TAILQ_FIRST(&txq->axq_q)->bf_daddr); 854 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 855 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 856 "%s: Q%u restarted\n", __func__, 857 txq->axq_qnum); 858 ATH_KTR(sc, ATH_KTR_TX, 4, 859 "ath_tx_handoff: txq[%d] restarted, bf=%p " 860 "daddr=%p ds=%p", 861 txq->axq_qnum, 862 bf, 863 (caddr_t)bf->bf_daddr, 864 bf->bf_desc); 865 } 866 } 867 #else 868 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 869 ATH_KTR(sc, ATH_KTR_TX, 3, 870 "ath_tx_handoff: non-tdma: txq=%u, add bf=%p " 871 "depth=%d", 872 txq->axq_qnum, 873 bf, 874 txq->axq_depth); 875 if (txq->axq_link == NULL) { 876 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 877 DPRINTF(sc, ATH_DEBUG_XMIT, 878 "%s: TXDP[%u] = %p (%p) depth %d\n", 879 __func__, txq->axq_qnum, 880 (caddr_t)bf->bf_daddr, bf->bf_desc, 881 txq->axq_depth); 882 ATH_KTR(sc, ATH_KTR_TX, 5, 883 "ath_tx_handoff: non-tdma: TXDP[%u] = %p (%p) " 884 "lastds=%p depth %d", 885 txq->axq_qnum, 886 (caddr_t)bf->bf_daddr, bf->bf_desc, 887 bf->bf_lastds, 888 txq->axq_depth); 889 890 } else { 891 *txq->axq_link = bf->bf_daddr; 892 DPRINTF(sc, ATH_DEBUG_XMIT, 893 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 894 txq->axq_qnum, txq->axq_link, 895 (caddr_t)bf->bf_daddr, bf->bf_desc, 896 txq->axq_depth); 897 ATH_KTR(sc, ATH_KTR_TX, 5, 898 "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) " 899 "lastds=%d", 900 txq->axq_qnum, txq->axq_link, 901 (caddr_t)bf->bf_daddr, bf->bf_desc, 902 bf->bf_lastds); 903 904 } 905 #endif /* IEEE80211_SUPPORT_TDMA */ 906 if (bf->bf_state.bfs_aggr) 907 txq->axq_aggr_depth++; 908 ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link); 909 ath_hal_txstart(ah, txq->axq_qnum); 910 ATH_KTR(sc, ATH_KTR_TX, 1, 911 "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum); 912 } 913 } 914 915 /* 916 * Restart TX DMA for the given TXQ. 917 * 918 * This must be called whether the queue is empty or not. 919 */ 920 static void 921 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq) 922 { 923 struct ath_hal *ah = sc->sc_ah; 924 struct ath_buf *bf, *bf_last; 925 926 ATH_TX_LOCK_ASSERT(sc); 927 928 /* This is always going to be cleared, empty or not */ 929 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 930 931 /* XXX make this ATH_TXQ_FIRST */ 932 bf = TAILQ_FIRST(&txq->axq_q); 933 bf_last = ATH_TXQ_LAST(txq, axq_q_s); 934 935 if (bf == NULL) 936 return; 937 938 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 939 ath_hal_gettxdesclinkptr(ah, bf_last->bf_lastds, &txq->axq_link); 940 ath_hal_txstart(ah, txq->axq_qnum); 941 } 942 943 /* 944 * Hand off a packet to the hardware (or mcast queue.) 945 * 946 * The relevant hardware txq should be locked. 947 */ 948 static void 949 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, 950 struct ath_buf *bf) 951 { 952 ATH_TX_LOCK_ASSERT(sc); 953 954 #ifdef ATH_DEBUG_ALQ 955 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC)) 956 ath_tx_alq_post(sc, bf); 957 #endif 958 959 if (txq->axq_qnum == ATH_TXQ_SWQ) 960 ath_tx_handoff_mcast(sc, txq, bf); 961 else 962 ath_tx_handoff_hw(sc, txq, bf); 963 } 964 965 static int 966 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni, 967 struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, 968 int *keyix) 969 { 970 DPRINTF(sc, ATH_DEBUG_XMIT, 971 "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n", 972 __func__, 973 *hdrlen, 974 *pktlen, 975 isfrag, 976 iswep, 977 m0); 978 979 if (iswep) { 980 const struct ieee80211_cipher *cip; 981 struct ieee80211_key *k; 982 983 /* 984 * Construct the 802.11 header+trailer for an encrypted 985 * frame. The only reason this can fail is because of an 986 * unknown or unsupported cipher/key type. 987 */ 988 k = ieee80211_crypto_encap(ni, m0); 989 if (k == NULL) { 990 /* 991 * This can happen when the key is yanked after the 992 * frame was queued. Just discard the frame; the 993 * 802.11 layer counts failures and provides 994 * debugging/diagnostics. 995 */ 996 return (0); 997 } 998 /* 999 * Adjust the packet + header lengths for the crypto 1000 * additions and calculate the h/w key index. When 1001 * a s/w mic is done the frame will have had any mic 1002 * added to it prior to entry so m0->m_pkthdr.len will 1003 * account for it. Otherwise we need to add it to the 1004 * packet length. 1005 */ 1006 cip = k->wk_cipher; 1007 (*hdrlen) += cip->ic_header; 1008 (*pktlen) += cip->ic_header + cip->ic_trailer; 1009 /* NB: frags always have any TKIP MIC done in s/w */ 1010 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 1011 (*pktlen) += cip->ic_miclen; 1012 (*keyix) = k->wk_keyix; 1013 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 1014 /* 1015 * Use station key cache slot, if assigned. 1016 */ 1017 (*keyix) = ni->ni_ucastkey.wk_keyix; 1018 if ((*keyix) == IEEE80211_KEYIX_NONE) 1019 (*keyix) = HAL_TXKEYIX_INVALID; 1020 } else 1021 (*keyix) = HAL_TXKEYIX_INVALID; 1022 1023 return (1); 1024 } 1025 1026 /* 1027 * Calculate whether interoperability protection is required for 1028 * this frame. 1029 * 1030 * This requires the rate control information be filled in, 1031 * as the protection requirement depends upon the current 1032 * operating mode / PHY. 1033 */ 1034 static void 1035 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf) 1036 { 1037 struct ieee80211_frame *wh; 1038 uint8_t rix; 1039 uint16_t flags; 1040 int shortPreamble; 1041 const HAL_RATE_TABLE *rt = sc->sc_currates; 1042 struct ifnet *ifp = sc->sc_ifp; 1043 struct ieee80211com *ic = ifp->if_l2com; 1044 1045 flags = bf->bf_state.bfs_txflags; 1046 rix = bf->bf_state.bfs_rc[0].rix; 1047 shortPreamble = bf->bf_state.bfs_shpream; 1048 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1049 1050 /* 1051 * If 802.11g protection is enabled, determine whether 1052 * to use RTS/CTS or just CTS. Note that this is only 1053 * done for OFDM unicast frames. 1054 */ 1055 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1056 rt->info[rix].phy == IEEE80211_T_OFDM && 1057 (flags & HAL_TXDESC_NOACK) == 0) { 1058 bf->bf_state.bfs_doprot = 1; 1059 /* XXX fragments must use CCK rates w/ protection */ 1060 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { 1061 flags |= HAL_TXDESC_RTSENA; 1062 } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { 1063 flags |= HAL_TXDESC_CTSENA; 1064 } 1065 /* 1066 * For frags it would be desirable to use the 1067 * highest CCK rate for RTS/CTS. But stations 1068 * farther away may detect it at a lower CCK rate 1069 * so use the configured protection rate instead 1070 * (for now). 1071 */ 1072 sc->sc_stats.ast_tx_protect++; 1073 } 1074 1075 /* 1076 * If 11n protection is enabled and it's a HT frame, 1077 * enable RTS. 1078 * 1079 * XXX ic_htprotmode or ic_curhtprotmode? 1080 * XXX should it_htprotmode only matter if ic_curhtprotmode 1081 * XXX indicates it's not a HT pure environment? 1082 */ 1083 if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) && 1084 rt->info[rix].phy == IEEE80211_T_HT && 1085 (flags & HAL_TXDESC_NOACK) == 0) { 1086 flags |= HAL_TXDESC_RTSENA; 1087 sc->sc_stats.ast_tx_htprotect++; 1088 } 1089 bf->bf_state.bfs_txflags = flags; 1090 } 1091 1092 /* 1093 * Update the frame duration given the currently selected rate. 1094 * 1095 * This also updates the frame duration value, so it will require 1096 * a DMA flush. 1097 */ 1098 static void 1099 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf) 1100 { 1101 struct ieee80211_frame *wh; 1102 uint8_t rix; 1103 uint16_t flags; 1104 int shortPreamble; 1105 struct ath_hal *ah = sc->sc_ah; 1106 const HAL_RATE_TABLE *rt = sc->sc_currates; 1107 int isfrag = bf->bf_m->m_flags & M_FRAG; 1108 1109 flags = bf->bf_state.bfs_txflags; 1110 rix = bf->bf_state.bfs_rc[0].rix; 1111 shortPreamble = bf->bf_state.bfs_shpream; 1112 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1113 1114 /* 1115 * Calculate duration. This logically belongs in the 802.11 1116 * layer but it lacks sufficient information to calculate it. 1117 */ 1118 if ((flags & HAL_TXDESC_NOACK) == 0 && 1119 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 1120 u_int16_t dur; 1121 if (shortPreamble) 1122 dur = rt->info[rix].spAckDuration; 1123 else 1124 dur = rt->info[rix].lpAckDuration; 1125 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 1126 dur += dur; /* additional SIFS+ACK */ 1127 KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment")); 1128 /* 1129 * Include the size of next fragment so NAV is 1130 * updated properly. The last fragment uses only 1131 * the ACK duration 1132 * 1133 * XXX TODO: ensure that the rate lookup for each 1134 * fragment is the same as the rate used by the 1135 * first fragment! 1136 */ 1137 dur += ath_hal_computetxtime(ah, rt, 1138 bf->bf_m->m_nextpkt->m_pkthdr.len, 1139 rix, shortPreamble); 1140 } 1141 if (isfrag) { 1142 /* 1143 * Force hardware to use computed duration for next 1144 * fragment by disabling multi-rate retry which updates 1145 * duration based on the multi-rate duration table. 1146 */ 1147 bf->bf_state.bfs_ismrr = 0; 1148 bf->bf_state.bfs_try0 = ATH_TXMGTTRY; 1149 /* XXX update bfs_rc[0].try? */ 1150 } 1151 1152 /* Update the duration field itself */ 1153 *(u_int16_t *)wh->i_dur = htole16(dur); 1154 } 1155 } 1156 1157 static uint8_t 1158 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt, 1159 int cix, int shortPreamble) 1160 { 1161 uint8_t ctsrate; 1162 1163 /* 1164 * CTS transmit rate is derived from the transmit rate 1165 * by looking in the h/w rate table. We must also factor 1166 * in whether or not a short preamble is to be used. 1167 */ 1168 /* NB: cix is set above where RTS/CTS is enabled */ 1169 KASSERT(cix != 0xff, ("cix not setup")); 1170 ctsrate = rt->info[cix].rateCode; 1171 1172 /* XXX this should only matter for legacy rates */ 1173 if (shortPreamble) 1174 ctsrate |= rt->info[cix].shortPreamble; 1175 1176 return (ctsrate); 1177 } 1178 1179 /* 1180 * Calculate the RTS/CTS duration for legacy frames. 1181 */ 1182 static int 1183 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix, 1184 int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt, 1185 int flags) 1186 { 1187 int ctsduration = 0; 1188 1189 /* This mustn't be called for HT modes */ 1190 if (rt->info[cix].phy == IEEE80211_T_HT) { 1191 printf("%s: HT rate where it shouldn't be (0x%x)\n", 1192 __func__, rt->info[cix].rateCode); 1193 return (-1); 1194 } 1195 1196 /* 1197 * Compute the transmit duration based on the frame 1198 * size and the size of an ACK frame. We call into the 1199 * HAL to do the computation since it depends on the 1200 * characteristics of the actual PHY being used. 1201 * 1202 * NB: CTS is assumed the same size as an ACK so we can 1203 * use the precalculated ACK durations. 1204 */ 1205 if (shortPreamble) { 1206 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1207 ctsduration += rt->info[cix].spAckDuration; 1208 ctsduration += ath_hal_computetxtime(ah, 1209 rt, pktlen, rix, AH_TRUE); 1210 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1211 ctsduration += rt->info[rix].spAckDuration; 1212 } else { 1213 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1214 ctsduration += rt->info[cix].lpAckDuration; 1215 ctsduration += ath_hal_computetxtime(ah, 1216 rt, pktlen, rix, AH_FALSE); 1217 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1218 ctsduration += rt->info[rix].lpAckDuration; 1219 } 1220 1221 return (ctsduration); 1222 } 1223 1224 /* 1225 * Update the given ath_buf with updated rts/cts setup and duration 1226 * values. 1227 * 1228 * To support rate lookups for each software retry, the rts/cts rate 1229 * and cts duration must be re-calculated. 1230 * 1231 * This function assumes the RTS/CTS flags have been set as needed; 1232 * mrr has been disabled; and the rate control lookup has been done. 1233 * 1234 * XXX TODO: MRR need only be disabled for the pre-11n NICs. 1235 * XXX The 11n NICs support per-rate RTS/CTS configuration. 1236 */ 1237 static void 1238 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf) 1239 { 1240 uint16_t ctsduration = 0; 1241 uint8_t ctsrate = 0; 1242 uint8_t rix = bf->bf_state.bfs_rc[0].rix; 1243 uint8_t cix = 0; 1244 const HAL_RATE_TABLE *rt = sc->sc_currates; 1245 1246 /* 1247 * No RTS/CTS enabled? Don't bother. 1248 */ 1249 if ((bf->bf_state.bfs_txflags & 1250 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) { 1251 /* XXX is this really needed? */ 1252 bf->bf_state.bfs_ctsrate = 0; 1253 bf->bf_state.bfs_ctsduration = 0; 1254 return; 1255 } 1256 1257 /* 1258 * If protection is enabled, use the protection rix control 1259 * rate. Otherwise use the rate0 control rate. 1260 */ 1261 if (bf->bf_state.bfs_doprot) 1262 rix = sc->sc_protrix; 1263 else 1264 rix = bf->bf_state.bfs_rc[0].rix; 1265 1266 /* 1267 * If the raw path has hard-coded ctsrate0 to something, 1268 * use it. 1269 */ 1270 if (bf->bf_state.bfs_ctsrate0 != 0) 1271 cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0); 1272 else 1273 /* Control rate from above */ 1274 cix = rt->info[rix].controlRate; 1275 1276 /* Calculate the rtscts rate for the given cix */ 1277 ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix, 1278 bf->bf_state.bfs_shpream); 1279 1280 /* The 11n chipsets do ctsduration calculations for you */ 1281 if (! ath_tx_is_11n(sc)) 1282 ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix, 1283 bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, 1284 rt, bf->bf_state.bfs_txflags); 1285 1286 /* Squirrel away in ath_buf */ 1287 bf->bf_state.bfs_ctsrate = ctsrate; 1288 bf->bf_state.bfs_ctsduration = ctsduration; 1289 1290 /* 1291 * Must disable multi-rate retry when using RTS/CTS. 1292 */ 1293 if (!sc->sc_mrrprot) { 1294 bf->bf_state.bfs_ismrr = 0; 1295 bf->bf_state.bfs_try0 = 1296 bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */ 1297 } 1298 } 1299 1300 /* 1301 * Setup the descriptor chain for a normal or fast-frame 1302 * frame. 1303 * 1304 * XXX TODO: extend to include the destination hardware QCU ID. 1305 * Make sure that is correct. Make sure that when being added 1306 * to the mcastq, the CABQ QCUID is set or things will get a bit 1307 * odd. 1308 */ 1309 static void 1310 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf) 1311 { 1312 struct ath_desc *ds = bf->bf_desc; 1313 struct ath_hal *ah = sc->sc_ah; 1314 1315 if (bf->bf_state.bfs_txrate0 == 0) 1316 device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n", 1317 __func__, bf, 0); 1318 1319 ath_hal_setuptxdesc(ah, ds 1320 , bf->bf_state.bfs_pktlen /* packet length */ 1321 , bf->bf_state.bfs_hdrlen /* header length */ 1322 , bf->bf_state.bfs_atype /* Atheros packet type */ 1323 , bf->bf_state.bfs_txpower /* txpower */ 1324 , bf->bf_state.bfs_txrate0 1325 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 1326 , bf->bf_state.bfs_keyix /* key cache index */ 1327 , bf->bf_state.bfs_txantenna /* antenna mode */ 1328 , bf->bf_state.bfs_txflags /* flags */ 1329 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 1330 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 1331 ); 1332 1333 /* 1334 * This will be overriden when the descriptor chain is written. 1335 */ 1336 bf->bf_lastds = ds; 1337 bf->bf_last = bf; 1338 1339 /* Set rate control and descriptor chain for this frame */ 1340 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 1341 ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0); 1342 } 1343 1344 /* 1345 * Do a rate lookup. 1346 * 1347 * This performs a rate lookup for the given ath_buf only if it's required. 1348 * Non-data frames and raw frames don't require it. 1349 * 1350 * This populates the primary and MRR entries; MRR values are 1351 * then disabled later on if something requires it (eg RTS/CTS on 1352 * pre-11n chipsets. 1353 * 1354 * This needs to be done before the RTS/CTS fields are calculated 1355 * as they may depend upon the rate chosen. 1356 */ 1357 static void 1358 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf) 1359 { 1360 uint8_t rate, rix; 1361 int try0; 1362 1363 if (! bf->bf_state.bfs_doratelookup) 1364 return; 1365 1366 /* Get rid of any previous state */ 1367 bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1368 1369 ATH_NODE_LOCK(ATH_NODE(bf->bf_node)); 1370 ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream, 1371 bf->bf_state.bfs_pktlen, &rix, &try0, &rate); 1372 1373 /* In case MRR is disabled, make sure rc[0] is setup correctly */ 1374 bf->bf_state.bfs_rc[0].rix = rix; 1375 bf->bf_state.bfs_rc[0].ratecode = rate; 1376 bf->bf_state.bfs_rc[0].tries = try0; 1377 1378 if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY) 1379 ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix, 1380 bf->bf_state.bfs_rc); 1381 ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node)); 1382 1383 sc->sc_txrix = rix; /* for LED blinking */ 1384 sc->sc_lastdatarix = rix; /* for fast frames */ 1385 bf->bf_state.bfs_try0 = try0; 1386 bf->bf_state.bfs_txrate0 = rate; 1387 } 1388 1389 /* 1390 * Update the CLRDMASK bit in the ath_buf if it needs to be set. 1391 */ 1392 static void 1393 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid, 1394 struct ath_buf *bf) 1395 { 1396 1397 ATH_TX_LOCK_ASSERT(sc); 1398 1399 if (tid->clrdmask == 1) { 1400 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1401 tid->clrdmask = 0; 1402 } 1403 } 1404 1405 /* 1406 * Transmit the given frame to the hardware. 1407 * 1408 * The frame must already be setup; rate control must already have 1409 * been done. 1410 * 1411 * XXX since the TXQ lock is being held here (and I dislike holding 1412 * it for this long when not doing software aggregation), later on 1413 * break this function into "setup_normal" and "xmit_normal". The 1414 * lock only needs to be held for the ath_tx_handoff call. 1415 */ 1416 static void 1417 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq, 1418 struct ath_buf *bf) 1419 { 1420 struct ath_node *an = ATH_NODE(bf->bf_node); 1421 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 1422 1423 ATH_TX_LOCK_ASSERT(sc); 1424 1425 /* 1426 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does 1427 * set a completion handler however it doesn't (yet) properly 1428 * handle the strict ordering requirements needed for normal, 1429 * non-aggregate session frames. 1430 * 1431 * Once this is implemented, only set CLRDMASK like this for 1432 * frames that must go out - eg management/raw frames. 1433 */ 1434 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1435 1436 /* Setup the descriptor before handoff */ 1437 ath_tx_do_ratelookup(sc, bf); 1438 ath_tx_calc_duration(sc, bf); 1439 ath_tx_calc_protection(sc, bf); 1440 ath_tx_set_rtscts(sc, bf); 1441 ath_tx_rate_fill_rcflags(sc, bf); 1442 ath_tx_setds(sc, bf); 1443 1444 /* Track per-TID hardware queue depth correctly */ 1445 tid->hwq_depth++; 1446 1447 /* Assign the completion handler */ 1448 bf->bf_comp = ath_tx_normal_comp; 1449 1450 /* Hand off to hardware */ 1451 ath_tx_handoff(sc, txq, bf); 1452 } 1453 1454 /* 1455 * Do the basic frame setup stuff that's required before the frame 1456 * is added to a software queue. 1457 * 1458 * All frames get mostly the same treatment and it's done once. 1459 * Retransmits fiddle with things like the rate control setup, 1460 * setting the retransmit bit in the packet; doing relevant DMA/bus 1461 * syncing and relinking it (back) into the hardware TX queue. 1462 * 1463 * Note that this may cause the mbuf to be reallocated, so 1464 * m0 may not be valid. 1465 */ 1466 static int 1467 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni, 1468 struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq) 1469 { 1470 struct ieee80211vap *vap = ni->ni_vap; 1471 struct ath_hal *ah = sc->sc_ah; 1472 struct ifnet *ifp = sc->sc_ifp; 1473 struct ieee80211com *ic = ifp->if_l2com; 1474 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1475 int error, iswep, ismcast, isfrag, ismrr; 1476 int keyix, hdrlen, pktlen, try0 = 0; 1477 u_int8_t rix = 0, txrate = 0; 1478 struct ath_desc *ds; 1479 struct ieee80211_frame *wh; 1480 u_int subtype, flags; 1481 HAL_PKT_TYPE atype; 1482 const HAL_RATE_TABLE *rt; 1483 HAL_BOOL shortPreamble; 1484 struct ath_node *an; 1485 u_int pri; 1486 1487 /* 1488 * To ensure that both sequence numbers and the CCMP PN handling 1489 * is "correct", make sure that the relevant TID queue is locked. 1490 * Otherwise the CCMP PN and seqno may appear out of order, causing 1491 * re-ordered frames to have out of order CCMP PN's, resulting 1492 * in many, many frame drops. 1493 */ 1494 ATH_TX_LOCK_ASSERT(sc); 1495 1496 wh = mtod(m0, struct ieee80211_frame *); 1497 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 1498 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1499 isfrag = m0->m_flags & M_FRAG; 1500 hdrlen = ieee80211_anyhdrsize(wh); 1501 /* 1502 * Packet length must not include any 1503 * pad bytes; deduct them here. 1504 */ 1505 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 1506 1507 /* Handle encryption twiddling if needed */ 1508 if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen, 1509 &pktlen, &keyix)) { 1510 ath_freetx(m0); 1511 return EIO; 1512 } 1513 1514 /* packet header may have moved, reset our local pointer */ 1515 wh = mtod(m0, struct ieee80211_frame *); 1516 1517 pktlen += IEEE80211_CRC_LEN; 1518 1519 /* 1520 * Load the DMA map so any coalescing is done. This 1521 * also calculates the number of descriptors we need. 1522 */ 1523 error = ath_tx_dmasetup(sc, bf, m0); 1524 if (error != 0) 1525 return error; 1526 bf->bf_node = ni; /* NB: held reference */ 1527 m0 = bf->bf_m; /* NB: may have changed */ 1528 wh = mtod(m0, struct ieee80211_frame *); 1529 1530 /* setup descriptors */ 1531 ds = bf->bf_desc; 1532 rt = sc->sc_currates; 1533 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1534 1535 /* 1536 * NB: the 802.11 layer marks whether or not we should 1537 * use short preamble based on the current mode and 1538 * negotiated parameters. 1539 */ 1540 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1541 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 1542 shortPreamble = AH_TRUE; 1543 sc->sc_stats.ast_tx_shortpre++; 1544 } else { 1545 shortPreamble = AH_FALSE; 1546 } 1547 1548 an = ATH_NODE(ni); 1549 //flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 1550 flags = 0; 1551 ismrr = 0; /* default no multi-rate retry*/ 1552 pri = M_WME_GETAC(m0); /* honor classification */ 1553 /* XXX use txparams instead of fixed values */ 1554 /* 1555 * Calculate Atheros packet type from IEEE80211 packet header, 1556 * setup for rate calculations, and select h/w transmit queue. 1557 */ 1558 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1559 case IEEE80211_FC0_TYPE_MGT: 1560 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1561 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 1562 atype = HAL_PKT_TYPE_BEACON; 1563 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1564 atype = HAL_PKT_TYPE_PROBE_RESP; 1565 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 1566 atype = HAL_PKT_TYPE_ATIM; 1567 else 1568 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 1569 rix = an->an_mgmtrix; 1570 txrate = rt->info[rix].rateCode; 1571 if (shortPreamble) 1572 txrate |= rt->info[rix].shortPreamble; 1573 try0 = ATH_TXMGTTRY; 1574 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1575 break; 1576 case IEEE80211_FC0_TYPE_CTL: 1577 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 1578 rix = an->an_mgmtrix; 1579 txrate = rt->info[rix].rateCode; 1580 if (shortPreamble) 1581 txrate |= rt->info[rix].shortPreamble; 1582 try0 = ATH_TXMGTTRY; 1583 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1584 break; 1585 case IEEE80211_FC0_TYPE_DATA: 1586 atype = HAL_PKT_TYPE_NORMAL; /* default */ 1587 /* 1588 * Data frames: multicast frames go out at a fixed rate, 1589 * EAPOL frames use the mgmt frame rate; otherwise consult 1590 * the rate control module for the rate to use. 1591 */ 1592 if (ismcast) { 1593 rix = an->an_mcastrix; 1594 txrate = rt->info[rix].rateCode; 1595 if (shortPreamble) 1596 txrate |= rt->info[rix].shortPreamble; 1597 try0 = 1; 1598 } else if (m0->m_flags & M_EAPOL) { 1599 /* XXX? maybe always use long preamble? */ 1600 rix = an->an_mgmtrix; 1601 txrate = rt->info[rix].rateCode; 1602 if (shortPreamble) 1603 txrate |= rt->info[rix].shortPreamble; 1604 try0 = ATH_TXMAXTRY; /* XXX?too many? */ 1605 } else { 1606 /* 1607 * Do rate lookup on each TX, rather than using 1608 * the hard-coded TX information decided here. 1609 */ 1610 ismrr = 1; 1611 bf->bf_state.bfs_doratelookup = 1; 1612 } 1613 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 1614 flags |= HAL_TXDESC_NOACK; 1615 break; 1616 default: 1617 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 1618 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1619 /* XXX statistic */ 1620 ath_freetx(m0); 1621 return EIO; 1622 } 1623 1624 /* 1625 * There are two known scenarios where the frame AC doesn't match 1626 * what the destination TXQ is. 1627 * 1628 * + non-QoS frames (eg management?) that the net80211 stack has 1629 * assigned a higher AC to, but since it's a non-QoS TID, it's 1630 * being thrown into TID 16. TID 16 gets the AC_BE queue. 1631 * It's quite possible that management frames should just be 1632 * direct dispatched to hardware rather than go via the software 1633 * queue; that should be investigated in the future. There are 1634 * some specific scenarios where this doesn't make sense, mostly 1635 * surrounding ADDBA request/response - hence why that is special 1636 * cased. 1637 * 1638 * + Multicast frames going into the VAP mcast queue. That shows up 1639 * as "TXQ 11". 1640 * 1641 * This driver should eventually support separate TID and TXQ locking, 1642 * allowing for arbitrary AC frames to appear on arbitrary software 1643 * queues, being queued to the "correct" hardware queue when needed. 1644 */ 1645 #if 0 1646 if (txq != sc->sc_ac2q[pri]) { 1647 device_printf(sc->sc_dev, 1648 "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n", 1649 __func__, 1650 txq, 1651 txq->axq_qnum, 1652 pri, 1653 sc->sc_ac2q[pri], 1654 sc->sc_ac2q[pri]->axq_qnum); 1655 } 1656 #endif 1657 1658 /* 1659 * Calculate miscellaneous flags. 1660 */ 1661 if (ismcast) { 1662 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 1663 } else if (pktlen > vap->iv_rtsthreshold && 1664 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { 1665 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 1666 sc->sc_stats.ast_tx_rts++; 1667 } 1668 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 1669 sc->sc_stats.ast_tx_noack++; 1670 #ifdef IEEE80211_SUPPORT_TDMA 1671 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { 1672 DPRINTF(sc, ATH_DEBUG_TDMA, 1673 "%s: discard frame, ACK required w/ TDMA\n", __func__); 1674 sc->sc_stats.ast_tdma_ack++; 1675 ath_freetx(m0); 1676 return EIO; 1677 } 1678 #endif 1679 1680 /* 1681 * Determine if a tx interrupt should be generated for 1682 * this descriptor. We take a tx interrupt to reap 1683 * descriptors when the h/w hits an EOL condition or 1684 * when the descriptor is specifically marked to generate 1685 * an interrupt. We periodically mark descriptors in this 1686 * way to insure timely replenishing of the supply needed 1687 * for sending frames. Defering interrupts reduces system 1688 * load and potentially allows more concurrent work to be 1689 * done but if done to aggressively can cause senders to 1690 * backup. 1691 * 1692 * NB: use >= to deal with sc_txintrperiod changing 1693 * dynamically through sysctl. 1694 */ 1695 if (flags & HAL_TXDESC_INTREQ) { 1696 txq->axq_intrcnt = 0; 1697 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 1698 flags |= HAL_TXDESC_INTREQ; 1699 txq->axq_intrcnt = 0; 1700 } 1701 1702 /* This point forward is actual TX bits */ 1703 1704 /* 1705 * At this point we are committed to sending the frame 1706 * and we don't need to look at m_nextpkt; clear it in 1707 * case this frame is part of frag chain. 1708 */ 1709 m0->m_nextpkt = NULL; 1710 1711 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 1712 ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 1713 sc->sc_hwmap[rix].ieeerate, -1); 1714 1715 if (ieee80211_radiotap_active_vap(vap)) { 1716 u_int64_t tsf = ath_hal_gettsf64(ah); 1717 1718 sc->sc_tx_th.wt_tsf = htole64(tsf); 1719 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 1720 if (iswep) 1721 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1722 if (isfrag) 1723 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1724 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 1725 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 1726 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 1727 1728 ieee80211_radiotap_tx(vap, m0); 1729 } 1730 1731 /* Blank the legacy rate array */ 1732 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1733 1734 /* 1735 * ath_buf_set_rate needs at least one rate/try to setup 1736 * the rate scenario. 1737 */ 1738 bf->bf_state.bfs_rc[0].rix = rix; 1739 bf->bf_state.bfs_rc[0].tries = try0; 1740 bf->bf_state.bfs_rc[0].ratecode = txrate; 1741 1742 /* Store the decided rate index values away */ 1743 bf->bf_state.bfs_pktlen = pktlen; 1744 bf->bf_state.bfs_hdrlen = hdrlen; 1745 bf->bf_state.bfs_atype = atype; 1746 bf->bf_state.bfs_txpower = ni->ni_txpower; 1747 bf->bf_state.bfs_txrate0 = txrate; 1748 bf->bf_state.bfs_try0 = try0; 1749 bf->bf_state.bfs_keyix = keyix; 1750 bf->bf_state.bfs_txantenna = sc->sc_txantenna; 1751 bf->bf_state.bfs_txflags = flags; 1752 bf->bf_state.bfs_shpream = shortPreamble; 1753 1754 /* XXX this should be done in ath_tx_setrate() */ 1755 bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */ 1756 bf->bf_state.bfs_ctsrate = 0; /* calculated later */ 1757 bf->bf_state.bfs_ctsduration = 0; 1758 bf->bf_state.bfs_ismrr = ismrr; 1759 1760 return 0; 1761 } 1762 1763 /* 1764 * Queue a frame to the hardware or software queue. 1765 * 1766 * This can be called by the net80211 code. 1767 * 1768 * XXX what about locking? Or, push the seqno assign into the 1769 * XXX aggregate scheduler so its serialised? 1770 * 1771 * XXX When sending management frames via ath_raw_xmit(), 1772 * should CLRDMASK be set unconditionally? 1773 */ 1774 int 1775 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, 1776 struct ath_buf *bf, struct mbuf *m0) 1777 { 1778 struct ieee80211vap *vap = ni->ni_vap; 1779 struct ath_vap *avp = ATH_VAP(vap); 1780 int r = 0; 1781 u_int pri; 1782 int tid; 1783 struct ath_txq *txq; 1784 int ismcast; 1785 const struct ieee80211_frame *wh; 1786 int is_ampdu, is_ampdu_tx, is_ampdu_pending; 1787 ieee80211_seq seqno; 1788 uint8_t type, subtype; 1789 1790 ATH_TX_LOCK_ASSERT(sc); 1791 1792 /* 1793 * Determine the target hardware queue. 1794 * 1795 * For multicast frames, the txq gets overridden appropriately 1796 * depending upon the state of PS. 1797 * 1798 * For any other frame, we do a TID/QoS lookup inside the frame 1799 * to see what the TID should be. If it's a non-QoS frame, the 1800 * AC and TID are overridden. The TID/TXQ code assumes the 1801 * TID is on a predictable hardware TXQ, so we don't support 1802 * having a node TID queued to multiple hardware TXQs. 1803 * This may change in the future but would require some locking 1804 * fudgery. 1805 */ 1806 pri = ath_tx_getac(sc, m0); 1807 tid = ath_tx_gettid(sc, m0); 1808 1809 txq = sc->sc_ac2q[pri]; 1810 wh = mtod(m0, struct ieee80211_frame *); 1811 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1812 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1813 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1814 1815 /* 1816 * Enforce how deep the multicast queue can grow. 1817 * 1818 * XXX duplicated in ath_raw_xmit(). 1819 */ 1820 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1821 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { 1822 sc->sc_stats.ast_tx_mcastq_overflow++; 1823 r = ENOBUFS; 1824 } 1825 if (r != 0) { 1826 m_freem(m0); 1827 return r; 1828 } 1829 } 1830 1831 /* A-MPDU TX */ 1832 is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid); 1833 is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid); 1834 is_ampdu = is_ampdu_tx | is_ampdu_pending; 1835 1836 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n", 1837 __func__, tid, pri, is_ampdu); 1838 1839 /* Set local packet state, used to queue packets to hardware */ 1840 bf->bf_state.bfs_tid = tid; 1841 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 1842 bf->bf_state.bfs_pri = pri; 1843 1844 /* 1845 * When servicing one or more stations in power-save mode 1846 * (or) if there is some mcast data waiting on the mcast 1847 * queue (to prevent out of order delivery) multicast frames 1848 * must be bufferd until after the beacon. 1849 * 1850 * TODO: we should lock the mcastq before we check the length. 1851 */ 1852 if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) { 1853 txq = &avp->av_mcastq; 1854 /* 1855 * Mark the frame as eventually belonging on the CAB 1856 * queue, so the descriptor setup functions will 1857 * correctly initialise the descriptor 'qcuId' field. 1858 */ 1859 bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum; 1860 } 1861 1862 /* Do the generic frame setup */ 1863 /* XXX should just bzero the bf_state? */ 1864 bf->bf_state.bfs_dobaw = 0; 1865 1866 /* A-MPDU TX? Manually set sequence number */ 1867 /* 1868 * Don't do it whilst pending; the net80211 layer still 1869 * assigns them. 1870 */ 1871 if (is_ampdu_tx) { 1872 /* 1873 * Always call; this function will 1874 * handle making sure that null data frames 1875 * don't get a sequence number from the current 1876 * TID and thus mess with the BAW. 1877 */ 1878 seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0); 1879 1880 /* 1881 * Don't add QoS NULL frames to the BAW. 1882 */ 1883 if (IEEE80211_QOS_HAS_SEQ(wh) && 1884 subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) { 1885 bf->bf_state.bfs_dobaw = 1; 1886 } 1887 } 1888 1889 /* 1890 * If needed, the sequence number has been assigned. 1891 * Squirrel it away somewhere easy to get to. 1892 */ 1893 bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT; 1894 1895 /* Is ampdu pending? fetch the seqno and print it out */ 1896 if (is_ampdu_pending) 1897 DPRINTF(sc, ATH_DEBUG_SW_TX, 1898 "%s: tid %d: ampdu pending, seqno %d\n", 1899 __func__, tid, M_SEQNO_GET(m0)); 1900 1901 /* This also sets up the DMA map */ 1902 r = ath_tx_normal_setup(sc, ni, bf, m0, txq); 1903 1904 if (r != 0) 1905 goto done; 1906 1907 /* At this point m0 could have changed! */ 1908 m0 = bf->bf_m; 1909 1910 #if 1 1911 /* 1912 * If it's a multicast frame, do a direct-dispatch to the 1913 * destination hardware queue. Don't bother software 1914 * queuing it. 1915 */ 1916 /* 1917 * If it's a BAR frame, do a direct dispatch to the 1918 * destination hardware queue. Don't bother software 1919 * queuing it, as the TID will now be paused. 1920 * Sending a BAR frame can occur from the net80211 txa timer 1921 * (ie, retries) or from the ath txtask (completion call.) 1922 * It queues directly to hardware because the TID is paused 1923 * at this point (and won't be unpaused until the BAR has 1924 * either been TXed successfully or max retries has been 1925 * reached.) 1926 */ 1927 if (txq == &avp->av_mcastq) { 1928 DPRINTF(sc, ATH_DEBUG_SW_TX, 1929 "%s: bf=%p: mcastq: TX'ing\n", __func__, bf); 1930 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1931 ath_tx_xmit_normal(sc, txq, bf); 1932 } else if (type == IEEE80211_FC0_TYPE_CTL && 1933 subtype == IEEE80211_FC0_SUBTYPE_BAR) { 1934 DPRINTF(sc, ATH_DEBUG_SW_TX, 1935 "%s: BAR: TX'ing direct\n", __func__); 1936 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1937 ath_tx_xmit_normal(sc, txq, bf); 1938 } else { 1939 /* add to software queue */ 1940 DPRINTF(sc, ATH_DEBUG_SW_TX, 1941 "%s: bf=%p: swq: TX'ing\n", __func__, bf); 1942 ath_tx_swq(sc, ni, txq, bf); 1943 } 1944 #else 1945 /* 1946 * For now, since there's no software queue, 1947 * direct-dispatch to the hardware. 1948 */ 1949 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1950 ath_tx_xmit_normal(sc, txq, bf); 1951 #endif 1952 done: 1953 return 0; 1954 } 1955 1956 static int 1957 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, 1958 struct ath_buf *bf, struct mbuf *m0, 1959 const struct ieee80211_bpf_params *params) 1960 { 1961 struct ifnet *ifp = sc->sc_ifp; 1962 struct ieee80211com *ic = ifp->if_l2com; 1963 struct ath_hal *ah = sc->sc_ah; 1964 struct ieee80211vap *vap = ni->ni_vap; 1965 int error, ismcast, ismrr; 1966 int keyix, hdrlen, pktlen, try0, txantenna; 1967 u_int8_t rix, txrate; 1968 struct ieee80211_frame *wh; 1969 u_int flags; 1970 HAL_PKT_TYPE atype; 1971 const HAL_RATE_TABLE *rt; 1972 struct ath_desc *ds; 1973 u_int pri; 1974 int o_tid = -1; 1975 int do_override; 1976 1977 ATH_TX_LOCK_ASSERT(sc); 1978 1979 wh = mtod(m0, struct ieee80211_frame *); 1980 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1981 hdrlen = ieee80211_anyhdrsize(wh); 1982 /* 1983 * Packet length must not include any 1984 * pad bytes; deduct them here. 1985 */ 1986 /* XXX honor IEEE80211_BPF_DATAPAD */ 1987 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; 1988 1989 ATH_KTR(sc, ATH_KTR_TX, 2, 1990 "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf); 1991 1992 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n", 1993 __func__, ismcast); 1994 1995 pri = params->ibp_pri & 3; 1996 /* Override pri if the frame isn't a QoS one */ 1997 if (! IEEE80211_QOS_HAS_SEQ(wh)) 1998 pri = ath_tx_getac(sc, m0); 1999 2000 /* XXX If it's an ADDBA, override the correct queue */ 2001 do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid); 2002 2003 /* Map ADDBA to the correct priority */ 2004 if (do_override) { 2005 #if 0 2006 device_printf(sc->sc_dev, 2007 "%s: overriding tid %d pri %d -> %d\n", 2008 __func__, o_tid, pri, TID_TO_WME_AC(o_tid)); 2009 #endif 2010 pri = TID_TO_WME_AC(o_tid); 2011 } 2012 2013 /* Handle encryption twiddling if needed */ 2014 if (! ath_tx_tag_crypto(sc, ni, 2015 m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0, 2016 &hdrlen, &pktlen, &keyix)) { 2017 ath_freetx(m0); 2018 return EIO; 2019 } 2020 /* packet header may have moved, reset our local pointer */ 2021 wh = mtod(m0, struct ieee80211_frame *); 2022 2023 /* Do the generic frame setup */ 2024 /* XXX should just bzero the bf_state? */ 2025 bf->bf_state.bfs_dobaw = 0; 2026 2027 error = ath_tx_dmasetup(sc, bf, m0); 2028 if (error != 0) 2029 return error; 2030 m0 = bf->bf_m; /* NB: may have changed */ 2031 wh = mtod(m0, struct ieee80211_frame *); 2032 bf->bf_node = ni; /* NB: held reference */ 2033 2034 /* Always enable CLRDMASK for raw frames for now.. */ 2035 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 2036 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 2037 if (params->ibp_flags & IEEE80211_BPF_RTS) 2038 flags |= HAL_TXDESC_RTSENA; 2039 else if (params->ibp_flags & IEEE80211_BPF_CTS) { 2040 /* XXX assume 11g/11n protection? */ 2041 bf->bf_state.bfs_doprot = 1; 2042 flags |= HAL_TXDESC_CTSENA; 2043 } 2044 /* XXX leave ismcast to injector? */ 2045 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) 2046 flags |= HAL_TXDESC_NOACK; 2047 2048 rt = sc->sc_currates; 2049 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 2050 rix = ath_tx_findrix(sc, params->ibp_rate0); 2051 txrate = rt->info[rix].rateCode; 2052 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 2053 txrate |= rt->info[rix].shortPreamble; 2054 sc->sc_txrix = rix; 2055 try0 = params->ibp_try0; 2056 ismrr = (params->ibp_try1 != 0); 2057 txantenna = params->ibp_pri >> 2; 2058 if (txantenna == 0) /* XXX? */ 2059 txantenna = sc->sc_txantenna; 2060 2061 /* 2062 * Since ctsrate is fixed, store it away for later 2063 * use when the descriptor fields are being set. 2064 */ 2065 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) 2066 bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate; 2067 2068 /* 2069 * NB: we mark all packets as type PSPOLL so the h/w won't 2070 * set the sequence number, duration, etc. 2071 */ 2072 atype = HAL_PKT_TYPE_PSPOLL; 2073 2074 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 2075 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 2076 sc->sc_hwmap[rix].ieeerate, -1); 2077 2078 if (ieee80211_radiotap_active_vap(vap)) { 2079 u_int64_t tsf = ath_hal_gettsf64(ah); 2080 2081 sc->sc_tx_th.wt_tsf = htole64(tsf); 2082 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 2083 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2084 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2085 if (m0->m_flags & M_FRAG) 2086 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2087 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 2088 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 2089 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 2090 2091 ieee80211_radiotap_tx(vap, m0); 2092 } 2093 2094 /* 2095 * Formulate first tx descriptor with tx controls. 2096 */ 2097 ds = bf->bf_desc; 2098 /* XXX check return value? */ 2099 2100 /* Store the decided rate index values away */ 2101 bf->bf_state.bfs_pktlen = pktlen; 2102 bf->bf_state.bfs_hdrlen = hdrlen; 2103 bf->bf_state.bfs_atype = atype; 2104 bf->bf_state.bfs_txpower = params->ibp_power; 2105 bf->bf_state.bfs_txrate0 = txrate; 2106 bf->bf_state.bfs_try0 = try0; 2107 bf->bf_state.bfs_keyix = keyix; 2108 bf->bf_state.bfs_txantenna = txantenna; 2109 bf->bf_state.bfs_txflags = flags; 2110 bf->bf_state.bfs_shpream = 2111 !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE); 2112 2113 /* Set local packet state, used to queue packets to hardware */ 2114 bf->bf_state.bfs_tid = WME_AC_TO_TID(pri); 2115 bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum; 2116 bf->bf_state.bfs_pri = pri; 2117 2118 /* XXX this should be done in ath_tx_setrate() */ 2119 bf->bf_state.bfs_ctsrate = 0; 2120 bf->bf_state.bfs_ctsduration = 0; 2121 bf->bf_state.bfs_ismrr = ismrr; 2122 2123 /* Blank the legacy rate array */ 2124 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 2125 2126 bf->bf_state.bfs_rc[0].rix = 2127 ath_tx_findrix(sc, params->ibp_rate0); 2128 bf->bf_state.bfs_rc[0].tries = try0; 2129 bf->bf_state.bfs_rc[0].ratecode = txrate; 2130 2131 if (ismrr) { 2132 int rix; 2133 2134 rix = ath_tx_findrix(sc, params->ibp_rate1); 2135 bf->bf_state.bfs_rc[1].rix = rix; 2136 bf->bf_state.bfs_rc[1].tries = params->ibp_try1; 2137 2138 rix = ath_tx_findrix(sc, params->ibp_rate2); 2139 bf->bf_state.bfs_rc[2].rix = rix; 2140 bf->bf_state.bfs_rc[2].tries = params->ibp_try2; 2141 2142 rix = ath_tx_findrix(sc, params->ibp_rate3); 2143 bf->bf_state.bfs_rc[3].rix = rix; 2144 bf->bf_state.bfs_rc[3].tries = params->ibp_try3; 2145 } 2146 /* 2147 * All the required rate control decisions have been made; 2148 * fill in the rc flags. 2149 */ 2150 ath_tx_rate_fill_rcflags(sc, bf); 2151 2152 /* NB: no buffered multicast in power save support */ 2153 2154 /* 2155 * If we're overiding the ADDBA destination, dump directly 2156 * into the hardware queue, right after any pending 2157 * frames to that node are. 2158 */ 2159 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n", 2160 __func__, do_override); 2161 2162 #if 1 2163 if (do_override) { 2164 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2165 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2166 } else { 2167 /* Queue to software queue */ 2168 ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf); 2169 } 2170 #else 2171 /* Direct-dispatch to the hardware */ 2172 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2173 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2174 #endif 2175 return 0; 2176 } 2177 2178 /* 2179 * Send a raw frame. 2180 * 2181 * This can be called by net80211. 2182 */ 2183 int 2184 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2185 const struct ieee80211_bpf_params *params) 2186 { 2187 struct ieee80211com *ic = ni->ni_ic; 2188 struct ifnet *ifp = ic->ic_ifp; 2189 struct ath_softc *sc = ifp->if_softc; 2190 struct ath_buf *bf; 2191 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 2192 int error = 0; 2193 2194 ATH_PCU_LOCK(sc); 2195 if (sc->sc_inreset_cnt > 0) { 2196 device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n", 2197 __func__); 2198 error = EIO; 2199 ATH_PCU_UNLOCK(sc); 2200 goto bad0; 2201 } 2202 sc->sc_txstart_cnt++; 2203 ATH_PCU_UNLOCK(sc); 2204 2205 ATH_TX_LOCK(sc); 2206 2207 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) { 2208 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__, 2209 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ? 2210 "!running" : "invalid"); 2211 m_freem(m); 2212 error = ENETDOWN; 2213 goto bad; 2214 } 2215 2216 /* 2217 * Enforce how deep the multicast queue can grow. 2218 * 2219 * XXX duplicated in ath_tx_start(). 2220 */ 2221 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2222 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { 2223 sc->sc_stats.ast_tx_mcastq_overflow++; 2224 error = ENOBUFS; 2225 } 2226 2227 if (error != 0) { 2228 m_freem(m); 2229 goto bad; 2230 } 2231 } 2232 2233 /* 2234 * Grab a TX buffer and associated resources. 2235 */ 2236 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 2237 if (bf == NULL) { 2238 sc->sc_stats.ast_tx_nobuf++; 2239 m_freem(m); 2240 error = ENOBUFS; 2241 goto bad; 2242 } 2243 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n", 2244 m, params, bf); 2245 2246 if (params == NULL) { 2247 /* 2248 * Legacy path; interpret frame contents to decide 2249 * precisely how to send the frame. 2250 */ 2251 if (ath_tx_start(sc, ni, bf, m)) { 2252 error = EIO; /* XXX */ 2253 goto bad2; 2254 } 2255 } else { 2256 /* 2257 * Caller supplied explicit parameters to use in 2258 * sending the frame. 2259 */ 2260 if (ath_tx_raw_start(sc, ni, bf, m, params)) { 2261 error = EIO; /* XXX */ 2262 goto bad2; 2263 } 2264 } 2265 sc->sc_wd_timer = 5; 2266 ifp->if_opackets++; 2267 sc->sc_stats.ast_tx_raw++; 2268 2269 /* 2270 * Update the TIM - if there's anything queued to the 2271 * software queue and power save is enabled, we should 2272 * set the TIM. 2273 */ 2274 ath_tx_update_tim(sc, ni, 1); 2275 2276 ATH_TX_UNLOCK(sc); 2277 2278 ATH_PCU_LOCK(sc); 2279 sc->sc_txstart_cnt--; 2280 ATH_PCU_UNLOCK(sc); 2281 2282 return 0; 2283 bad2: 2284 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, " 2285 "bf=%p", 2286 m, 2287 params, 2288 bf); 2289 ATH_TXBUF_LOCK(sc); 2290 ath_returnbuf_head(sc, bf); 2291 ATH_TXBUF_UNLOCK(sc); 2292 bad: 2293 2294 ATH_TX_UNLOCK(sc); 2295 2296 ATH_PCU_LOCK(sc); 2297 sc->sc_txstart_cnt--; 2298 ATH_PCU_UNLOCK(sc); 2299 bad0: 2300 ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p", 2301 m, params); 2302 ifp->if_oerrors++; 2303 sc->sc_stats.ast_tx_raw_fail++; 2304 ieee80211_free_node(ni); 2305 2306 return error; 2307 } 2308 2309 /* Some helper functions */ 2310 2311 /* 2312 * ADDBA (and potentially others) need to be placed in the same 2313 * hardware queue as the TID/node it's relating to. This is so 2314 * it goes out after any pending non-aggregate frames to the 2315 * same node/TID. 2316 * 2317 * If this isn't done, the ADDBA can go out before the frames 2318 * queued in hardware. Even though these frames have a sequence 2319 * number -earlier- than the ADDBA can be transmitted (but 2320 * no frames whose sequence numbers are after the ADDBA should 2321 * be!) they'll arrive after the ADDBA - and the receiving end 2322 * will simply drop them as being out of the BAW. 2323 * 2324 * The frames can't be appended to the TID software queue - it'll 2325 * never be sent out. So these frames have to be directly 2326 * dispatched to the hardware, rather than queued in software. 2327 * So if this function returns true, the TXQ has to be 2328 * overridden and it has to be directly dispatched. 2329 * 2330 * It's a dirty hack, but someone's gotta do it. 2331 */ 2332 2333 /* 2334 * XXX doesn't belong here! 2335 */ 2336 static int 2337 ieee80211_is_action(struct ieee80211_frame *wh) 2338 { 2339 /* Type: Management frame? */ 2340 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 2341 IEEE80211_FC0_TYPE_MGT) 2342 return 0; 2343 2344 /* Subtype: Action frame? */ 2345 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) != 2346 IEEE80211_FC0_SUBTYPE_ACTION) 2347 return 0; 2348 2349 return 1; 2350 } 2351 2352 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2353 /* 2354 * Return an alternate TID for ADDBA request frames. 2355 * 2356 * Yes, this likely should be done in the net80211 layer. 2357 */ 2358 static int 2359 ath_tx_action_frame_override_queue(struct ath_softc *sc, 2360 struct ieee80211_node *ni, 2361 struct mbuf *m0, int *tid) 2362 { 2363 struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); 2364 struct ieee80211_action_ba_addbarequest *ia; 2365 uint8_t *frm; 2366 uint16_t baparamset; 2367 2368 /* Not action frame? Bail */ 2369 if (! ieee80211_is_action(wh)) 2370 return 0; 2371 2372 /* XXX Not needed for frames we send? */ 2373 #if 0 2374 /* Correct length? */ 2375 if (! ieee80211_parse_action(ni, m)) 2376 return 0; 2377 #endif 2378 2379 /* Extract out action frame */ 2380 frm = (u_int8_t *)&wh[1]; 2381 ia = (struct ieee80211_action_ba_addbarequest *) frm; 2382 2383 /* Not ADDBA? Bail */ 2384 if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA) 2385 return 0; 2386 if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST) 2387 return 0; 2388 2389 /* Extract TID, return it */ 2390 baparamset = le16toh(ia->rq_baparamset); 2391 *tid = (int) MS(baparamset, IEEE80211_BAPS_TID); 2392 2393 return 1; 2394 } 2395 #undef MS 2396 2397 /* Per-node software queue operations */ 2398 2399 /* 2400 * Add the current packet to the given BAW. 2401 * It is assumed that the current packet 2402 * 2403 * + fits inside the BAW; 2404 * + already has had a sequence number allocated. 2405 * 2406 * Since the BAW status may be modified by both the ath task and 2407 * the net80211/ifnet contexts, the TID must be locked. 2408 */ 2409 void 2410 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an, 2411 struct ath_tid *tid, struct ath_buf *bf) 2412 { 2413 int index, cindex; 2414 struct ieee80211_tx_ampdu *tap; 2415 2416 ATH_TX_LOCK_ASSERT(sc); 2417 2418 if (bf->bf_state.bfs_isretried) 2419 return; 2420 2421 tap = ath_tx_get_tx_tid(an, tid->tid); 2422 2423 if (! bf->bf_state.bfs_dobaw) { 2424 device_printf(sc->sc_dev, 2425 "%s: dobaw=0, seqno=%d, window %d:%d\n", 2426 __func__, 2427 SEQNO(bf->bf_state.bfs_seqno), 2428 tap->txa_start, 2429 tap->txa_wnd); 2430 } 2431 2432 if (bf->bf_state.bfs_addedbaw) 2433 device_printf(sc->sc_dev, 2434 "%s: re-added? tid=%d, seqno %d; window %d:%d; " 2435 "baw head=%d tail=%d\n", 2436 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2437 tap->txa_start, tap->txa_wnd, tid->baw_head, 2438 tid->baw_tail); 2439 2440 /* 2441 * Verify that the given sequence number is not outside of the 2442 * BAW. Complain loudly if that's the case. 2443 */ 2444 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2445 SEQNO(bf->bf_state.bfs_seqno))) { 2446 device_printf(sc->sc_dev, 2447 "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; " 2448 "baw head=%d tail=%d\n", 2449 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2450 tap->txa_start, tap->txa_wnd, tid->baw_head, 2451 tid->baw_tail); 2452 } 2453 2454 /* 2455 * ni->ni_txseqs[] is the currently allocated seqno. 2456 * the txa state contains the current baw start. 2457 */ 2458 index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno)); 2459 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2460 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2461 "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d " 2462 "baw head=%d tail=%d\n", 2463 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2464 tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, 2465 tid->baw_tail); 2466 2467 2468 #if 0 2469 assert(tid->tx_buf[cindex] == NULL); 2470 #endif 2471 if (tid->tx_buf[cindex] != NULL) { 2472 device_printf(sc->sc_dev, 2473 "%s: ba packet dup (index=%d, cindex=%d, " 2474 "head=%d, tail=%d)\n", 2475 __func__, index, cindex, tid->baw_head, tid->baw_tail); 2476 device_printf(sc->sc_dev, 2477 "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n", 2478 __func__, 2479 tid->tx_buf[cindex], 2480 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno), 2481 bf, 2482 SEQNO(bf->bf_state.bfs_seqno) 2483 ); 2484 } 2485 tid->tx_buf[cindex] = bf; 2486 2487 if (index >= ((tid->baw_tail - tid->baw_head) & 2488 (ATH_TID_MAX_BUFS - 1))) { 2489 tid->baw_tail = cindex; 2490 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 2491 } 2492 } 2493 2494 /* 2495 * Flip the BAW buffer entry over from the existing one to the new one. 2496 * 2497 * When software retransmitting a (sub-)frame, it is entirely possible that 2498 * the frame ath_buf is marked as BUSY and can't be immediately reused. 2499 * In that instance the buffer is cloned and the new buffer is used for 2500 * retransmit. We thus need to update the ath_buf slot in the BAW buf 2501 * tracking array to maintain consistency. 2502 */ 2503 static void 2504 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an, 2505 struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf) 2506 { 2507 int index, cindex; 2508 struct ieee80211_tx_ampdu *tap; 2509 int seqno = SEQNO(old_bf->bf_state.bfs_seqno); 2510 2511 ATH_TX_LOCK_ASSERT(sc); 2512 2513 tap = ath_tx_get_tx_tid(an, tid->tid); 2514 index = ATH_BA_INDEX(tap->txa_start, seqno); 2515 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2516 2517 /* 2518 * Just warn for now; if it happens then we should find out 2519 * about it. It's highly likely the aggregation session will 2520 * soon hang. 2521 */ 2522 if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) { 2523 device_printf(sc->sc_dev, "%s: retransmitted buffer" 2524 " has mismatching seqno's, BA session may hang.\n", 2525 __func__); 2526 device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n", 2527 __func__, 2528 old_bf->bf_state.bfs_seqno, 2529 new_bf->bf_state.bfs_seqno); 2530 } 2531 2532 if (tid->tx_buf[cindex] != old_bf) { 2533 device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; " 2534 " has m BA session may hang.\n", 2535 __func__); 2536 device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n", 2537 __func__, 2538 old_bf, new_bf); 2539 } 2540 2541 tid->tx_buf[cindex] = new_bf; 2542 } 2543 2544 /* 2545 * seq_start - left edge of BAW 2546 * seq_next - current/next sequence number to allocate 2547 * 2548 * Since the BAW status may be modified by both the ath task and 2549 * the net80211/ifnet contexts, the TID must be locked. 2550 */ 2551 static void 2552 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an, 2553 struct ath_tid *tid, const struct ath_buf *bf) 2554 { 2555 int index, cindex; 2556 struct ieee80211_tx_ampdu *tap; 2557 int seqno = SEQNO(bf->bf_state.bfs_seqno); 2558 2559 ATH_TX_LOCK_ASSERT(sc); 2560 2561 tap = ath_tx_get_tx_tid(an, tid->tid); 2562 index = ATH_BA_INDEX(tap->txa_start, seqno); 2563 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2564 2565 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2566 "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, " 2567 "baw head=%d, tail=%d\n", 2568 __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index, 2569 cindex, tid->baw_head, tid->baw_tail); 2570 2571 /* 2572 * If this occurs then we have a big problem - something else 2573 * has slid tap->txa_start along without updating the BAW 2574 * tracking start/end pointers. Thus the TX BAW state is now 2575 * completely busted. 2576 * 2577 * But for now, since I haven't yet fixed TDMA and buffer cloning, 2578 * it's quite possible that a cloned buffer is making its way 2579 * here and causing it to fire off. Disable TDMA for now. 2580 */ 2581 if (tid->tx_buf[cindex] != bf) { 2582 device_printf(sc->sc_dev, 2583 "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n", 2584 __func__, 2585 bf, SEQNO(bf->bf_state.bfs_seqno), 2586 tid->tx_buf[cindex], 2587 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno)); 2588 } 2589 2590 tid->tx_buf[cindex] = NULL; 2591 2592 while (tid->baw_head != tid->baw_tail && 2593 !tid->tx_buf[tid->baw_head]) { 2594 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 2595 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 2596 } 2597 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2598 "%s: baw is now %d:%d, baw head=%d\n", 2599 __func__, tap->txa_start, tap->txa_wnd, tid->baw_head); 2600 } 2601 2602 /* 2603 * Mark the current node/TID as ready to TX. 2604 * 2605 * This is done to make it easy for the software scheduler to 2606 * find which nodes have data to send. 2607 * 2608 * The TXQ lock must be held. 2609 */ 2610 static void 2611 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid) 2612 { 2613 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2614 2615 ATH_TX_LOCK_ASSERT(sc); 2616 2617 if (tid->paused) 2618 return; /* paused, can't schedule yet */ 2619 2620 if (tid->sched) 2621 return; /* already scheduled */ 2622 2623 tid->sched = 1; 2624 2625 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); 2626 } 2627 2628 /* 2629 * Mark the current node as no longer needing to be polled for 2630 * TX packets. 2631 * 2632 * The TXQ lock must be held. 2633 */ 2634 static void 2635 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid) 2636 { 2637 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2638 2639 ATH_TX_LOCK_ASSERT(sc); 2640 2641 if (tid->sched == 0) 2642 return; 2643 2644 tid->sched = 0; 2645 TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem); 2646 } 2647 2648 /* 2649 * Assign a sequence number manually to the given frame. 2650 * 2651 * This should only be called for A-MPDU TX frames. 2652 */ 2653 static ieee80211_seq 2654 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, 2655 struct ath_buf *bf, struct mbuf *m0) 2656 { 2657 struct ieee80211_frame *wh; 2658 int tid, pri; 2659 ieee80211_seq seqno; 2660 uint8_t subtype; 2661 2662 /* TID lookup */ 2663 wh = mtod(m0, struct ieee80211_frame *); 2664 pri = M_WME_GETAC(m0); /* honor classification */ 2665 tid = WME_AC_TO_TID(pri); 2666 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n", 2667 __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2668 2669 /* XXX Is it a control frame? Ignore */ 2670 2671 /* Does the packet require a sequence number? */ 2672 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2673 return -1; 2674 2675 ATH_TX_LOCK_ASSERT(sc); 2676 2677 /* 2678 * Is it a QOS NULL Data frame? Give it a sequence number from 2679 * the default TID (IEEE80211_NONQOS_TID.) 2680 * 2681 * The RX path of everything I've looked at doesn't include the NULL 2682 * data frame sequence number in the aggregation state updates, so 2683 * assigning it a sequence number there will cause a BAW hole on the 2684 * RX side. 2685 */ 2686 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2687 if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) { 2688 /* XXX no locking for this TID? This is a bit of a problem. */ 2689 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; 2690 INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); 2691 } else { 2692 /* Manually assign sequence number */ 2693 seqno = ni->ni_txseqs[tid]; 2694 INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE); 2695 } 2696 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 2697 M_SEQNO_SET(m0, seqno); 2698 2699 /* Return so caller can do something with it if needed */ 2700 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno); 2701 return seqno; 2702 } 2703 2704 /* 2705 * Attempt to direct dispatch an aggregate frame to hardware. 2706 * If the frame is out of BAW, queue. 2707 * Otherwise, schedule it as a single frame. 2708 */ 2709 static void 2710 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, 2711 struct ath_txq *txq, struct ath_buf *bf) 2712 { 2713 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 2714 struct ieee80211_tx_ampdu *tap; 2715 2716 ATH_TX_LOCK_ASSERT(sc); 2717 2718 tap = ath_tx_get_tx_tid(an, tid->tid); 2719 2720 /* paused? queue */ 2721 if (tid->paused) { 2722 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2723 /* XXX don't sched - we're paused! */ 2724 return; 2725 } 2726 2727 /* outside baw? queue */ 2728 if (bf->bf_state.bfs_dobaw && 2729 (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2730 SEQNO(bf->bf_state.bfs_seqno)))) { 2731 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2732 ath_tx_tid_sched(sc, tid); 2733 return; 2734 } 2735 2736 /* 2737 * This is a temporary check and should be removed once 2738 * all the relevant code paths have been fixed. 2739 * 2740 * During aggregate retries, it's possible that the head 2741 * frame will fail (which has the bfs_aggr and bfs_nframes 2742 * fields set for said aggregate) and will be retried as 2743 * a single frame. In this instance, the values should 2744 * be reset or the completion code will get upset with you. 2745 */ 2746 if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) { 2747 device_printf(sc->sc_dev, "%s: bfs_aggr=%d, bfs_nframes=%d\n", 2748 __func__, 2749 bf->bf_state.bfs_aggr, 2750 bf->bf_state.bfs_nframes); 2751 bf->bf_state.bfs_aggr = 0; 2752 bf->bf_state.bfs_nframes = 1; 2753 } 2754 2755 /* Update CLRDMASK just before this frame is queued */ 2756 ath_tx_update_clrdmask(sc, tid, bf); 2757 2758 /* Direct dispatch to hardware */ 2759 ath_tx_do_ratelookup(sc, bf); 2760 ath_tx_calc_duration(sc, bf); 2761 ath_tx_calc_protection(sc, bf); 2762 ath_tx_set_rtscts(sc, bf); 2763 ath_tx_rate_fill_rcflags(sc, bf); 2764 ath_tx_setds(sc, bf); 2765 2766 /* Statistics */ 2767 sc->sc_aggr_stats.aggr_low_hwq_single_pkt++; 2768 2769 /* Track per-TID hardware queue depth correctly */ 2770 tid->hwq_depth++; 2771 2772 /* Add to BAW */ 2773 if (bf->bf_state.bfs_dobaw) { 2774 ath_tx_addto_baw(sc, an, tid, bf); 2775 bf->bf_state.bfs_addedbaw = 1; 2776 } 2777 2778 /* Set completion handler, multi-frame aggregate or not */ 2779 bf->bf_comp = ath_tx_aggr_comp; 2780 2781 /* Hand off to hardware */ 2782 ath_tx_handoff(sc, txq, bf); 2783 } 2784 2785 /* 2786 * Attempt to send the packet. 2787 * If the queue isn't busy, direct-dispatch. 2788 * If the queue is busy enough, queue the given packet on the 2789 * relevant software queue. 2790 */ 2791 void 2792 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq, 2793 struct ath_buf *bf) 2794 { 2795 struct ath_node *an = ATH_NODE(ni); 2796 struct ieee80211_frame *wh; 2797 struct ath_tid *atid; 2798 int pri, tid; 2799 struct mbuf *m0 = bf->bf_m; 2800 2801 ATH_TX_LOCK_ASSERT(sc); 2802 2803 /* Fetch the TID - non-QoS frames get assigned to TID 16 */ 2804 wh = mtod(m0, struct ieee80211_frame *); 2805 pri = ath_tx_getac(sc, m0); 2806 tid = ath_tx_gettid(sc, m0); 2807 atid = &an->an_tid[tid]; 2808 2809 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n", 2810 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2811 2812 /* Set local packet state, used to queue packets to hardware */ 2813 /* XXX potentially duplicate info, re-check */ 2814 bf->bf_state.bfs_tid = tid; 2815 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 2816 bf->bf_state.bfs_pri = pri; 2817 2818 /* 2819 * If the hardware queue isn't busy, queue it directly. 2820 * If the hardware queue is busy, queue it. 2821 * If the TID is paused or the traffic it outside BAW, software 2822 * queue it. 2823 */ 2824 if (atid->paused) { 2825 /* TID is paused, queue */ 2826 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__); 2827 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2828 } else if (ath_tx_ampdu_pending(sc, an, tid)) { 2829 /* AMPDU pending; queue */ 2830 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__); 2831 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2832 /* XXX sched? */ 2833 } else if (ath_tx_ampdu_running(sc, an, tid)) { 2834 /* AMPDU running, attempt direct dispatch if possible */ 2835 2836 /* 2837 * Always queue the frame to the tail of the list. 2838 */ 2839 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2840 2841 /* 2842 * If the hardware queue isn't busy, direct dispatch 2843 * the head frame in the list. Don't schedule the 2844 * TID - let it build some more frames first? 2845 * 2846 * Otherwise, schedule the TID. 2847 */ 2848 if (txq->axq_depth < sc->sc_hwq_limit) { 2849 bf = ATH_TID_FIRST(atid); 2850 ATH_TID_REMOVE(atid, bf, bf_list); 2851 2852 /* 2853 * Ensure it's definitely treated as a non-AMPDU 2854 * frame - this information may have been left 2855 * over from a previous attempt. 2856 */ 2857 bf->bf_state.bfs_aggr = 0; 2858 bf->bf_state.bfs_nframes = 1; 2859 2860 /* Queue to the hardware */ 2861 ath_tx_xmit_aggr(sc, an, txq, bf); 2862 DPRINTF(sc, ATH_DEBUG_SW_TX, 2863 "%s: xmit_aggr\n", 2864 __func__); 2865 } else { 2866 DPRINTF(sc, ATH_DEBUG_SW_TX, 2867 "%s: ampdu; swq'ing\n", 2868 __func__); 2869 2870 ath_tx_tid_sched(sc, atid); 2871 } 2872 } else if (txq->axq_depth < sc->sc_hwq_limit) { 2873 /* AMPDU not running, attempt direct dispatch */ 2874 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__); 2875 /* See if clrdmask needs to be set */ 2876 ath_tx_update_clrdmask(sc, atid, bf); 2877 ath_tx_xmit_normal(sc, txq, bf); 2878 } else { 2879 /* Busy; queue */ 2880 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__); 2881 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2882 ath_tx_tid_sched(sc, atid); 2883 } 2884 } 2885 2886 /* 2887 * Configure the per-TID node state. 2888 * 2889 * This likely belongs in if_ath_node.c but I can't think of anywhere 2890 * else to put it just yet. 2891 * 2892 * This sets up the SLISTs and the mutex as appropriate. 2893 */ 2894 void 2895 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an) 2896 { 2897 int i, j; 2898 struct ath_tid *atid; 2899 2900 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2901 atid = &an->an_tid[i]; 2902 2903 /* XXX now with this bzer(), is the field 0'ing needed? */ 2904 bzero(atid, sizeof(*atid)); 2905 2906 TAILQ_INIT(&atid->tid_q); 2907 TAILQ_INIT(&atid->filtq.tid_q); 2908 atid->tid = i; 2909 atid->an = an; 2910 for (j = 0; j < ATH_TID_MAX_BUFS; j++) 2911 atid->tx_buf[j] = NULL; 2912 atid->baw_head = atid->baw_tail = 0; 2913 atid->paused = 0; 2914 atid->sched = 0; 2915 atid->hwq_depth = 0; 2916 atid->cleanup_inprogress = 0; 2917 atid->clrdmask = 1; /* Always start by setting this bit */ 2918 if (i == IEEE80211_NONQOS_TID) 2919 atid->ac = ATH_NONQOS_TID_AC; 2920 else 2921 atid->ac = TID_TO_WME_AC(i); 2922 } 2923 } 2924 2925 /* 2926 * Pause the current TID. This stops packets from being transmitted 2927 * on it. 2928 * 2929 * Since this is also called from upper layers as well as the driver, 2930 * it will get the TID lock. 2931 */ 2932 static void 2933 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid) 2934 { 2935 2936 ATH_TX_LOCK_ASSERT(sc); 2937 tid->paused++; 2938 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n", 2939 __func__, tid->paused); 2940 } 2941 2942 /* 2943 * Unpause the current TID, and schedule it if needed. 2944 */ 2945 static void 2946 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid) 2947 { 2948 2949 ATH_TX_LOCK_ASSERT(sc); 2950 2951 tid->paused--; 2952 2953 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n", 2954 __func__, tid->paused); 2955 2956 if (tid->paused) 2957 return; 2958 2959 /* 2960 * Override the clrdmask configuration for the next frame 2961 * from this TID, just to get the ball rolling. 2962 */ 2963 tid->clrdmask = 1; 2964 2965 if (tid->axq_depth == 0) 2966 return; 2967 2968 /* XXX isfiltered shouldn't ever be 0 at this point */ 2969 if (tid->isfiltered == 1) { 2970 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 2971 return; 2972 } 2973 2974 ath_tx_tid_sched(sc, tid); 2975 /* Punt some frames to the hardware if needed */ 2976 //ath_txq_sched(sc, sc->sc_ac2q[tid->ac]); 2977 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 2978 } 2979 2980 /* 2981 * Add the given ath_buf to the TID filtered frame list. 2982 * This requires the TID be filtered. 2983 */ 2984 static void 2985 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid, 2986 struct ath_buf *bf) 2987 { 2988 2989 ATH_TX_LOCK_ASSERT(sc); 2990 2991 if (! tid->isfiltered) 2992 device_printf(sc->sc_dev, "%s: not filtered?!\n", __func__); 2993 2994 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf); 2995 2996 /* Set the retry bit and bump the retry counter */ 2997 ath_tx_set_retry(sc, bf); 2998 sc->sc_stats.ast_tx_swfiltered++; 2999 3000 ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list); 3001 } 3002 3003 /* 3004 * Handle a completed filtered frame from the given TID. 3005 * This just enables/pauses the filtered frame state if required 3006 * and appends the filtered frame to the filtered queue. 3007 */ 3008 static void 3009 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid, 3010 struct ath_buf *bf) 3011 { 3012 3013 ATH_TX_LOCK_ASSERT(sc); 3014 3015 if (! tid->isfiltered) { 3016 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: filter transition\n", 3017 __func__); 3018 tid->isfiltered = 1; 3019 ath_tx_tid_pause(sc, tid); 3020 } 3021 3022 /* Add the frame to the filter queue */ 3023 ath_tx_tid_filt_addbuf(sc, tid, bf); 3024 } 3025 3026 /* 3027 * Complete the filtered frame TX completion. 3028 * 3029 * If there are no more frames in the hardware queue, unpause/unfilter 3030 * the TID if applicable. Otherwise we will wait for a node PS transition 3031 * to unfilter. 3032 */ 3033 static void 3034 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid) 3035 { 3036 struct ath_buf *bf; 3037 3038 ATH_TX_LOCK_ASSERT(sc); 3039 3040 if (tid->hwq_depth != 0) 3041 return; 3042 3043 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: hwq=0, transition back\n", 3044 __func__); 3045 tid->isfiltered = 0; 3046 tid->clrdmask = 1; 3047 3048 /* XXX this is really quite inefficient */ 3049 while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) { 3050 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3051 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 3052 } 3053 3054 ath_tx_tid_resume(sc, tid); 3055 } 3056 3057 /* 3058 * Called when a single (aggregate or otherwise) frame is completed. 3059 * 3060 * Returns 1 if the buffer could be added to the filtered list 3061 * (cloned or otherwise), 0 if the buffer couldn't be added to the 3062 * filtered list (failed clone; expired retry) and the caller should 3063 * free it and handle it like a failure (eg by sending a BAR.) 3064 */ 3065 static int 3066 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid, 3067 struct ath_buf *bf) 3068 { 3069 struct ath_buf *nbf; 3070 int retval; 3071 3072 ATH_TX_LOCK_ASSERT(sc); 3073 3074 /* 3075 * Don't allow a filtered frame to live forever. 3076 */ 3077 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3078 sc->sc_stats.ast_tx_swretrymax++; 3079 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3080 "%s: bf=%p, seqno=%d, exceeded retries\n", 3081 __func__, 3082 bf, 3083 bf->bf_state.bfs_seqno); 3084 return (0); 3085 } 3086 3087 /* 3088 * A busy buffer can't be added to the retry list. 3089 * It needs to be cloned. 3090 */ 3091 if (bf->bf_flags & ATH_BUF_BUSY) { 3092 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3093 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3094 "%s: busy buffer clone: %p -> %p\n", 3095 __func__, bf, nbf); 3096 } else { 3097 nbf = bf; 3098 } 3099 3100 if (nbf == NULL) { 3101 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3102 "%s: busy buffer couldn't be cloned (%p)!\n", 3103 __func__, bf); 3104 retval = 1; 3105 } else { 3106 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3107 retval = 0; 3108 } 3109 ath_tx_tid_filt_comp_complete(sc, tid); 3110 3111 return (retval); 3112 } 3113 3114 static void 3115 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid, 3116 struct ath_buf *bf_first, ath_bufhead *bf_q) 3117 { 3118 struct ath_buf *bf, *bf_next, *nbf; 3119 3120 ATH_TX_LOCK_ASSERT(sc); 3121 3122 bf = bf_first; 3123 while (bf) { 3124 bf_next = bf->bf_next; 3125 bf->bf_next = NULL; /* Remove it from the aggr list */ 3126 3127 /* 3128 * Don't allow a filtered frame to live forever. 3129 */ 3130 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3131 sc->sc_stats.ast_tx_swretrymax++; 3132 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3133 "%s: bf=%p, seqno=%d, exceeded retries\n", 3134 __func__, 3135 bf, 3136 bf->bf_state.bfs_seqno); 3137 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3138 goto next; 3139 } 3140 3141 if (bf->bf_flags & ATH_BUF_BUSY) { 3142 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3143 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3144 "%s: busy buffer cloned: %p -> %p", 3145 __func__, bf, nbf); 3146 } else { 3147 nbf = bf; 3148 } 3149 3150 /* 3151 * If the buffer couldn't be cloned, add it to bf_q; 3152 * the caller will free the buffer(s) as required. 3153 */ 3154 if (nbf == NULL) { 3155 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3156 "%s: buffer couldn't be cloned! (%p)\n", 3157 __func__, bf); 3158 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3159 } else { 3160 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3161 } 3162 next: 3163 bf = bf_next; 3164 } 3165 3166 ath_tx_tid_filt_comp_complete(sc, tid); 3167 } 3168 3169 /* 3170 * Suspend the queue because we need to TX a BAR. 3171 */ 3172 static void 3173 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid) 3174 { 3175 3176 ATH_TX_LOCK_ASSERT(sc); 3177 3178 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3179 "%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n", 3180 __func__, 3181 tid, 3182 tid->bar_wait, 3183 tid->bar_tx); 3184 3185 /* We shouldn't be called when bar_tx is 1 */ 3186 if (tid->bar_tx) { 3187 device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n", 3188 __func__); 3189 } 3190 3191 /* If we've already been called, just be patient. */ 3192 if (tid->bar_wait) 3193 return; 3194 3195 /* Wait! */ 3196 tid->bar_wait = 1; 3197 3198 /* Only one pause, no matter how many frames fail */ 3199 ath_tx_tid_pause(sc, tid); 3200 } 3201 3202 /* 3203 * We've finished with BAR handling - either we succeeded or 3204 * failed. Either way, unsuspend TX. 3205 */ 3206 static void 3207 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid) 3208 { 3209 3210 ATH_TX_LOCK_ASSERT(sc); 3211 3212 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3213 "%s: tid=%p, called\n", 3214 __func__, 3215 tid); 3216 3217 if (tid->bar_tx == 0 || tid->bar_wait == 0) { 3218 device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n", 3219 __func__, tid->bar_tx, tid->bar_wait); 3220 } 3221 3222 tid->bar_tx = tid->bar_wait = 0; 3223 ath_tx_tid_resume(sc, tid); 3224 } 3225 3226 /* 3227 * Return whether we're ready to TX a BAR frame. 3228 * 3229 * Requires the TID lock be held. 3230 */ 3231 static int 3232 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid) 3233 { 3234 3235 ATH_TX_LOCK_ASSERT(sc); 3236 3237 if (tid->bar_wait == 0 || tid->hwq_depth > 0) 3238 return (0); 3239 3240 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n", 3241 __func__, tid, tid->tid); 3242 3243 return (1); 3244 } 3245 3246 /* 3247 * Check whether the current TID is ready to have a BAR 3248 * TXed and if so, do the TX. 3249 * 3250 * Since the TID/TXQ lock can't be held during a call to 3251 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it, 3252 * sending the BAR and locking it again. 3253 * 3254 * Eventually, the code to send the BAR should be broken out 3255 * from this routine so the lock doesn't have to be reacquired 3256 * just to be immediately dropped by the caller. 3257 */ 3258 static void 3259 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid) 3260 { 3261 struct ieee80211_tx_ampdu *tap; 3262 3263 ATH_TX_LOCK_ASSERT(sc); 3264 3265 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3266 "%s: tid=%p, called\n", 3267 __func__, 3268 tid); 3269 3270 tap = ath_tx_get_tx_tid(tid->an, tid->tid); 3271 3272 /* 3273 * This is an error condition! 3274 */ 3275 if (tid->bar_wait == 0 || tid->bar_tx == 1) { 3276 device_printf(sc->sc_dev, 3277 "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n", 3278 __func__, 3279 tid, 3280 tid->bar_tx, 3281 tid->bar_wait); 3282 return; 3283 } 3284 3285 /* Don't do anything if we still have pending frames */ 3286 if (tid->hwq_depth > 0) { 3287 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3288 "%s: tid=%p, hwq_depth=%d, waiting\n", 3289 __func__, 3290 tid, 3291 tid->hwq_depth); 3292 return; 3293 } 3294 3295 /* We're now about to TX */ 3296 tid->bar_tx = 1; 3297 3298 /* 3299 * Override the clrdmask configuration for the next frame, 3300 * just to get the ball rolling. 3301 */ 3302 tid->clrdmask = 1; 3303 3304 /* 3305 * Calculate new BAW left edge, now that all frames have either 3306 * succeeded or failed. 3307 * 3308 * XXX verify this is _actually_ the valid value to begin at! 3309 */ 3310 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3311 "%s: tid=%p, new BAW left edge=%d\n", 3312 __func__, 3313 tid, 3314 tap->txa_start); 3315 3316 /* Try sending the BAR frame */ 3317 /* We can't hold the lock here! */ 3318 3319 ATH_TX_UNLOCK(sc); 3320 if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) { 3321 /* Success? Now we wait for notification that it's done */ 3322 ATH_TX_LOCK(sc); 3323 return; 3324 } 3325 3326 /* Failure? For now, warn loudly and continue */ 3327 ATH_TX_LOCK(sc); 3328 device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n", 3329 __func__, tid); 3330 ath_tx_tid_bar_unsuspend(sc, tid); 3331 } 3332 3333 static void 3334 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an, 3335 struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf) 3336 { 3337 3338 ATH_TX_LOCK_ASSERT(sc); 3339 3340 /* 3341 * If the current TID is running AMPDU, update 3342 * the BAW. 3343 */ 3344 if (ath_tx_ampdu_running(sc, an, tid->tid) && 3345 bf->bf_state.bfs_dobaw) { 3346 /* 3347 * Only remove the frame from the BAW if it's 3348 * been transmitted at least once; this means 3349 * the frame was in the BAW to begin with. 3350 */ 3351 if (bf->bf_state.bfs_retries > 0) { 3352 ath_tx_update_baw(sc, an, tid, bf); 3353 bf->bf_state.bfs_dobaw = 0; 3354 } 3355 /* 3356 * This has become a non-fatal error now 3357 */ 3358 if (! bf->bf_state.bfs_addedbaw) 3359 device_printf(sc->sc_dev, 3360 "%s: wasn't added: seqno %d\n", 3361 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3362 } 3363 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); 3364 } 3365 3366 static void 3367 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an, 3368 const char *pfx, struct ath_tid *tid, struct ath_buf *bf) 3369 { 3370 struct ieee80211_node *ni = &an->an_node; 3371 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 3372 struct ieee80211_tx_ampdu *tap; 3373 3374 tap = ath_tx_get_tx_tid(an, tid->tid); 3375 3376 device_printf(sc->sc_dev, 3377 "%s: %s: node %p: bf=%p: addbaw=%d, dobaw=%d, " 3378 "seqno=%d, retry=%d\n", 3379 __func__, pfx, ni, bf, 3380 bf->bf_state.bfs_addedbaw, 3381 bf->bf_state.bfs_dobaw, 3382 SEQNO(bf->bf_state.bfs_seqno), 3383 bf->bf_state.bfs_retries); 3384 device_printf(sc->sc_dev, 3385 "%s: node %p: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n", 3386 __func__, ni, bf, 3387 txq->axq_qnum, 3388 txq->axq_depth, 3389 txq->axq_aggr_depth); 3390 3391 device_printf(sc->sc_dev, 3392 "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, isfiltered=%d\n", 3393 __func__, ni, bf, 3394 tid->axq_depth, 3395 tid->hwq_depth, 3396 tid->bar_wait, 3397 tid->isfiltered); 3398 device_printf(sc->sc_dev, 3399 "%s: node %p: tid %d: " 3400 "sched=%d, paused=%d, " 3401 "incomp=%d, baw_head=%d, " 3402 "baw_tail=%d txa_start=%d, ni_txseqs=%d\n", 3403 __func__, ni, tid->tid, 3404 tid->sched, tid->paused, 3405 tid->incomp, tid->baw_head, 3406 tid->baw_tail, tap == NULL ? -1 : tap->txa_start, 3407 ni->ni_txseqs[tid->tid]); 3408 3409 /* XXX Dump the frame, see what it is? */ 3410 ieee80211_dump_pkt(ni->ni_ic, 3411 mtod(bf->bf_m, const uint8_t *), 3412 bf->bf_m->m_len, 0, -1); 3413 } 3414 3415 /* 3416 * Free any packets currently pending in the software TX queue. 3417 * 3418 * This will be called when a node is being deleted. 3419 * 3420 * It can also be called on an active node during an interface 3421 * reset or state transition. 3422 * 3423 * (From Linux/reference): 3424 * 3425 * TODO: For frame(s) that are in the retry state, we will reuse the 3426 * sequence number(s) without setting the retry bit. The 3427 * alternative is to give up on these and BAR the receiver's window 3428 * forward. 3429 */ 3430 static void 3431 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, 3432 struct ath_tid *tid, ath_bufhead *bf_cq) 3433 { 3434 struct ath_buf *bf; 3435 struct ieee80211_tx_ampdu *tap; 3436 struct ieee80211_node *ni = &an->an_node; 3437 int t; 3438 3439 tap = ath_tx_get_tx_tid(an, tid->tid); 3440 3441 ATH_TX_LOCK_ASSERT(sc); 3442 3443 /* Walk the queue, free frames */ 3444 t = 0; 3445 for (;;) { 3446 bf = ATH_TID_FIRST(tid); 3447 if (bf == NULL) { 3448 break; 3449 } 3450 3451 if (t == 0) { 3452 ath_tx_tid_drain_print(sc, an, "norm", tid, bf); 3453 t = 1; 3454 } 3455 3456 ATH_TID_REMOVE(tid, bf, bf_list); 3457 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3458 } 3459 3460 /* And now, drain the filtered frame queue */ 3461 t = 0; 3462 for (;;) { 3463 bf = ATH_TID_FILT_FIRST(tid); 3464 if (bf == NULL) 3465 break; 3466 3467 if (t == 0) { 3468 ath_tx_tid_drain_print(sc, an, "filt", tid, bf); 3469 t = 1; 3470 } 3471 3472 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3473 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3474 } 3475 3476 /* 3477 * Override the clrdmask configuration for the next frame 3478 * in case there is some future transmission, just to get 3479 * the ball rolling. 3480 * 3481 * This won't hurt things if the TID is about to be freed. 3482 */ 3483 tid->clrdmask = 1; 3484 3485 /* 3486 * Now that it's completed, grab the TID lock and update 3487 * the sequence number and BAW window. 3488 * Because sequence numbers have been assigned to frames 3489 * that haven't been sent yet, it's entirely possible 3490 * we'll be called with some pending frames that have not 3491 * been transmitted. 3492 * 3493 * The cleaner solution is to do the sequence number allocation 3494 * when the packet is first transmitted - and thus the "retries" 3495 * check above would be enough to update the BAW/seqno. 3496 */ 3497 3498 /* But don't do it for non-QoS TIDs */ 3499 if (tap) { 3500 #if 0 3501 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3502 "%s: node %p: TID %d: sliding BAW left edge to %d\n", 3503 __func__, an, tid->tid, tap->txa_start); 3504 #endif 3505 ni->ni_txseqs[tid->tid] = tap->txa_start; 3506 tid->baw_tail = tid->baw_head; 3507 } 3508 } 3509 3510 /* 3511 * Flush all software queued packets for the given node. 3512 * 3513 * This occurs when a completion handler frees the last buffer 3514 * for a node, and the node is thus freed. This causes the node 3515 * to be cleaned up, which ends up calling ath_tx_node_flush. 3516 */ 3517 void 3518 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an) 3519 { 3520 int tid; 3521 ath_bufhead bf_cq; 3522 struct ath_buf *bf; 3523 3524 TAILQ_INIT(&bf_cq); 3525 3526 ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p", 3527 &an->an_node); 3528 3529 ATH_TX_LOCK(sc); 3530 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 3531 struct ath_tid *atid = &an->an_tid[tid]; 3532 3533 /* Free packets */ 3534 ath_tx_tid_drain(sc, an, atid, &bf_cq); 3535 /* Remove this tid from the list of active tids */ 3536 ath_tx_tid_unsched(sc, atid); 3537 } 3538 ATH_TX_UNLOCK(sc); 3539 3540 /* Handle completed frames */ 3541 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3542 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3543 ath_tx_default_comp(sc, bf, 0); 3544 } 3545 } 3546 3547 /* 3548 * Drain all the software TXQs currently with traffic queued. 3549 */ 3550 void 3551 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq) 3552 { 3553 struct ath_tid *tid; 3554 ath_bufhead bf_cq; 3555 struct ath_buf *bf; 3556 3557 TAILQ_INIT(&bf_cq); 3558 ATH_TX_LOCK(sc); 3559 3560 /* 3561 * Iterate over all active tids for the given txq, 3562 * flushing and unsched'ing them 3563 */ 3564 while (! TAILQ_EMPTY(&txq->axq_tidq)) { 3565 tid = TAILQ_FIRST(&txq->axq_tidq); 3566 ath_tx_tid_drain(sc, tid->an, tid, &bf_cq); 3567 ath_tx_tid_unsched(sc, tid); 3568 } 3569 3570 ATH_TX_UNLOCK(sc); 3571 3572 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3573 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3574 ath_tx_default_comp(sc, bf, 0); 3575 } 3576 } 3577 3578 /* 3579 * Handle completion of non-aggregate session frames. 3580 * 3581 * This (currently) doesn't implement software retransmission of 3582 * non-aggregate frames! 3583 * 3584 * Software retransmission of non-aggregate frames needs to obey 3585 * the strict sequence number ordering, and drop any frames that 3586 * will fail this. 3587 * 3588 * For now, filtered frames and frame transmission will cause 3589 * all kinds of issues. So we don't support them. 3590 * 3591 * So anyone queuing frames via ath_tx_normal_xmit() or 3592 * ath_tx_hw_queue_norm() must override and set CLRDMASK. 3593 */ 3594 void 3595 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3596 { 3597 struct ieee80211_node *ni = bf->bf_node; 3598 struct ath_node *an = ATH_NODE(ni); 3599 int tid = bf->bf_state.bfs_tid; 3600 struct ath_tid *atid = &an->an_tid[tid]; 3601 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3602 3603 /* The TID state is protected behind the TXQ lock */ 3604 ATH_TX_LOCK(sc); 3605 3606 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n", 3607 __func__, bf, fail, atid->hwq_depth - 1); 3608 3609 atid->hwq_depth--; 3610 3611 #if 0 3612 /* 3613 * If the frame was filtered, stick it on the filter frame 3614 * queue and complain about it. It shouldn't happen! 3615 */ 3616 if ((ts->ts_status & HAL_TXERR_FILT) || 3617 (ts->ts_status != 0 && atid->isfiltered)) { 3618 device_printf(sc->sc_dev, 3619 "%s: isfiltered=%d, ts_status=%d: huh?\n", 3620 __func__, 3621 atid->isfiltered, 3622 ts->ts_status); 3623 ath_tx_tid_filt_comp_buf(sc, atid, bf); 3624 } 3625 #endif 3626 if (atid->isfiltered) 3627 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 3628 if (atid->hwq_depth < 0) 3629 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 3630 __func__, atid->hwq_depth); 3631 3632 /* 3633 * If the queue is filtered, potentially mark it as complete 3634 * and reschedule it as needed. 3635 * 3636 * This is required as there may be a subsequent TX descriptor 3637 * for this end-node that has CLRDMASK set, so it's quite possible 3638 * that a filtered frame will be followed by a non-filtered 3639 * (complete or otherwise) frame. 3640 * 3641 * XXX should we do this before we complete the frame? 3642 */ 3643 if (atid->isfiltered) 3644 ath_tx_tid_filt_comp_complete(sc, atid); 3645 ATH_TX_UNLOCK(sc); 3646 3647 /* 3648 * punt to rate control if we're not being cleaned up 3649 * during a hw queue drain and the frame wanted an ACK. 3650 */ 3651 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 3652 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 3653 ts, bf->bf_state.bfs_pktlen, 3654 1, (ts->ts_status == 0) ? 0 : 1); 3655 3656 ath_tx_default_comp(sc, bf, fail); 3657 } 3658 3659 /* 3660 * Handle cleanup of aggregate session packets that aren't 3661 * an A-MPDU. 3662 * 3663 * There's no need to update the BAW here - the session is being 3664 * torn down. 3665 */ 3666 static void 3667 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3668 { 3669 struct ieee80211_node *ni = bf->bf_node; 3670 struct ath_node *an = ATH_NODE(ni); 3671 int tid = bf->bf_state.bfs_tid; 3672 struct ath_tid *atid = &an->an_tid[tid]; 3673 3674 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n", 3675 __func__, tid, atid->incomp); 3676 3677 ATH_TX_LOCK(sc); 3678 atid->incomp--; 3679 if (atid->incomp == 0) { 3680 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3681 "%s: TID %d: cleaned up! resume!\n", 3682 __func__, tid); 3683 atid->cleanup_inprogress = 0; 3684 ath_tx_tid_resume(sc, atid); 3685 } 3686 ATH_TX_UNLOCK(sc); 3687 3688 ath_tx_default_comp(sc, bf, 0); 3689 } 3690 3691 /* 3692 * Performs transmit side cleanup when TID changes from aggregated to 3693 * unaggregated. 3694 * 3695 * - Discard all retry frames from the s/w queue. 3696 * - Fix the tx completion function for all buffers in s/w queue. 3697 * - Count the number of unacked frames, and let transmit completion 3698 * handle it later. 3699 * 3700 * The caller is responsible for pausing the TID. 3701 */ 3702 static void 3703 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid) 3704 { 3705 struct ath_tid *atid = &an->an_tid[tid]; 3706 struct ieee80211_tx_ampdu *tap; 3707 struct ath_buf *bf, *bf_next; 3708 ath_bufhead bf_cq; 3709 3710 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 3711 "%s: TID %d: called\n", __func__, tid); 3712 3713 TAILQ_INIT(&bf_cq); 3714 ATH_TX_LOCK(sc); 3715 3716 /* 3717 * Move the filtered frames to the TX queue, before 3718 * we run off and discard/process things. 3719 */ 3720 /* XXX this is really quite inefficient */ 3721 while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) { 3722 ATH_TID_FILT_REMOVE(atid, bf, bf_list); 3723 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3724 } 3725 3726 /* 3727 * Update the frames in the software TX queue: 3728 * 3729 * + Discard retry frames in the queue 3730 * + Fix the completion function to be non-aggregate 3731 */ 3732 bf = ATH_TID_FIRST(atid); 3733 while (bf) { 3734 if (bf->bf_state.bfs_isretried) { 3735 bf_next = TAILQ_NEXT(bf, bf_list); 3736 ATH_TID_REMOVE(atid, bf, bf_list); 3737 atid->axq_depth--; 3738 if (bf->bf_state.bfs_dobaw) { 3739 ath_tx_update_baw(sc, an, atid, bf); 3740 if (! bf->bf_state.bfs_addedbaw) 3741 device_printf(sc->sc_dev, 3742 "%s: wasn't added: seqno %d\n", 3743 __func__, 3744 SEQNO(bf->bf_state.bfs_seqno)); 3745 } 3746 bf->bf_state.bfs_dobaw = 0; 3747 /* 3748 * Call the default completion handler with "fail" just 3749 * so upper levels are suitably notified about this. 3750 */ 3751 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 3752 bf = bf_next; 3753 continue; 3754 } 3755 /* Give these the default completion handler */ 3756 bf->bf_comp = ath_tx_normal_comp; 3757 bf = TAILQ_NEXT(bf, bf_list); 3758 } 3759 3760 /* The caller is required to pause the TID */ 3761 #if 0 3762 /* Pause the TID */ 3763 ath_tx_tid_pause(sc, atid); 3764 #endif 3765 3766 /* 3767 * Calculate what hardware-queued frames exist based 3768 * on the current BAW size. Ie, what frames have been 3769 * added to the TX hardware queue for this TID but 3770 * not yet ACKed. 3771 */ 3772 tap = ath_tx_get_tx_tid(an, tid); 3773 /* Need the lock - fiddling with BAW */ 3774 while (atid->baw_head != atid->baw_tail) { 3775 if (atid->tx_buf[atid->baw_head]) { 3776 atid->incomp++; 3777 atid->cleanup_inprogress = 1; 3778 atid->tx_buf[atid->baw_head] = NULL; 3779 } 3780 INCR(atid->baw_head, ATH_TID_MAX_BUFS); 3781 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 3782 } 3783 3784 /* 3785 * If cleanup is required, defer TID scheduling 3786 * until all the HW queued packets have been 3787 * sent. 3788 */ 3789 if (! atid->cleanup_inprogress) 3790 ath_tx_tid_resume(sc, atid); 3791 3792 if (atid->cleanup_inprogress) 3793 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3794 "%s: TID %d: cleanup needed: %d packets\n", 3795 __func__, tid, atid->incomp); 3796 ATH_TX_UNLOCK(sc); 3797 3798 /* Handle completing frames and fail them */ 3799 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3800 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3801 ath_tx_default_comp(sc, bf, 1); 3802 } 3803 } 3804 3805 static struct ath_buf * 3806 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 3807 struct ath_tid *tid, struct ath_buf *bf) 3808 { 3809 struct ath_buf *nbf; 3810 int error; 3811 3812 nbf = ath_buf_clone(sc, bf); 3813 3814 #if 0 3815 device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n", 3816 __func__); 3817 #endif 3818 3819 if (nbf == NULL) { 3820 /* Failed to clone */ 3821 device_printf(sc->sc_dev, 3822 "%s: failed to clone a busy buffer\n", 3823 __func__); 3824 return NULL; 3825 } 3826 3827 /* Setup the dma for the new buffer */ 3828 error = ath_tx_dmasetup(sc, nbf, nbf->bf_m); 3829 if (error != 0) { 3830 device_printf(sc->sc_dev, 3831 "%s: failed to setup dma for clone\n", 3832 __func__); 3833 /* 3834 * Put this at the head of the list, not tail; 3835 * that way it doesn't interfere with the 3836 * busy buffer logic (which uses the tail of 3837 * the list.) 3838 */ 3839 ATH_TXBUF_LOCK(sc); 3840 ath_returnbuf_head(sc, nbf); 3841 ATH_TXBUF_UNLOCK(sc); 3842 return NULL; 3843 } 3844 3845 /* Update BAW if required, before we free the original buf */ 3846 if (bf->bf_state.bfs_dobaw) 3847 ath_tx_switch_baw_buf(sc, an, tid, bf, nbf); 3848 3849 /* Free current buffer; return the older buffer */ 3850 bf->bf_m = NULL; 3851 bf->bf_node = NULL; 3852 ath_freebuf(sc, bf); 3853 3854 return nbf; 3855 } 3856 3857 /* 3858 * Handle retrying an unaggregate frame in an aggregate 3859 * session. 3860 * 3861 * If too many retries occur, pause the TID, wait for 3862 * any further retransmits (as there's no reason why 3863 * non-aggregate frames in an aggregate session are 3864 * transmitted in-order; they just have to be in-BAW) 3865 * and then queue a BAR. 3866 */ 3867 static void 3868 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3869 { 3870 struct ieee80211_node *ni = bf->bf_node; 3871 struct ath_node *an = ATH_NODE(ni); 3872 int tid = bf->bf_state.bfs_tid; 3873 struct ath_tid *atid = &an->an_tid[tid]; 3874 struct ieee80211_tx_ampdu *tap; 3875 3876 ATH_TX_LOCK(sc); 3877 3878 tap = ath_tx_get_tx_tid(an, tid); 3879 3880 /* 3881 * If the buffer is marked as busy, we can't directly 3882 * reuse it. Instead, try to clone the buffer. 3883 * If the clone is successful, recycle the old buffer. 3884 * If the clone is unsuccessful, set bfs_retries to max 3885 * to force the next bit of code to free the buffer 3886 * for us. 3887 */ 3888 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 3889 (bf->bf_flags & ATH_BUF_BUSY)) { 3890 struct ath_buf *nbf; 3891 nbf = ath_tx_retry_clone(sc, an, atid, bf); 3892 if (nbf) 3893 /* bf has been freed at this point */ 3894 bf = nbf; 3895 else 3896 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 3897 } 3898 3899 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 3900 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 3901 "%s: exceeded retries; seqno %d\n", 3902 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3903 sc->sc_stats.ast_tx_swretrymax++; 3904 3905 /* Update BAW anyway */ 3906 if (bf->bf_state.bfs_dobaw) { 3907 ath_tx_update_baw(sc, an, atid, bf); 3908 if (! bf->bf_state.bfs_addedbaw) 3909 device_printf(sc->sc_dev, 3910 "%s: wasn't added: seqno %d\n", 3911 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3912 } 3913 bf->bf_state.bfs_dobaw = 0; 3914 3915 /* Suspend the TX queue and get ready to send the BAR */ 3916 ath_tx_tid_bar_suspend(sc, atid); 3917 3918 /* Send the BAR if there are no other frames waiting */ 3919 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3920 ath_tx_tid_bar_tx(sc, atid); 3921 3922 ATH_TX_UNLOCK(sc); 3923 3924 /* Free buffer, bf is free after this call */ 3925 ath_tx_default_comp(sc, bf, 0); 3926 return; 3927 } 3928 3929 /* 3930 * This increments the retry counter as well as 3931 * sets the retry flag in the ath_buf and packet 3932 * body. 3933 */ 3934 ath_tx_set_retry(sc, bf); 3935 sc->sc_stats.ast_tx_swretries++; 3936 3937 /* 3938 * Insert this at the head of the queue, so it's 3939 * retried before any current/subsequent frames. 3940 */ 3941 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3942 ath_tx_tid_sched(sc, atid); 3943 /* Send the BAR if there are no other frames waiting */ 3944 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3945 ath_tx_tid_bar_tx(sc, atid); 3946 3947 ATH_TX_UNLOCK(sc); 3948 } 3949 3950 /* 3951 * Common code for aggregate excessive retry/subframe retry. 3952 * If retrying, queues buffers to bf_q. If not, frees the 3953 * buffers. 3954 * 3955 * XXX should unify this with ath_tx_aggr_retry_unaggr() 3956 */ 3957 static int 3958 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf, 3959 ath_bufhead *bf_q) 3960 { 3961 struct ieee80211_node *ni = bf->bf_node; 3962 struct ath_node *an = ATH_NODE(ni); 3963 int tid = bf->bf_state.bfs_tid; 3964 struct ath_tid *atid = &an->an_tid[tid]; 3965 3966 ATH_TX_LOCK_ASSERT(sc); 3967 3968 /* XXX clr11naggr should be done for all subframes */ 3969 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 3970 ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0); 3971 3972 /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */ 3973 3974 /* 3975 * If the buffer is marked as busy, we can't directly 3976 * reuse it. Instead, try to clone the buffer. 3977 * If the clone is successful, recycle the old buffer. 3978 * If the clone is unsuccessful, set bfs_retries to max 3979 * to force the next bit of code to free the buffer 3980 * for us. 3981 */ 3982 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 3983 (bf->bf_flags & ATH_BUF_BUSY)) { 3984 struct ath_buf *nbf; 3985 nbf = ath_tx_retry_clone(sc, an, atid, bf); 3986 if (nbf) 3987 /* bf has been freed at this point */ 3988 bf = nbf; 3989 else 3990 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 3991 } 3992 3993 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 3994 sc->sc_stats.ast_tx_swretrymax++; 3995 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 3996 "%s: max retries: seqno %d\n", 3997 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3998 ath_tx_update_baw(sc, an, atid, bf); 3999 if (! bf->bf_state.bfs_addedbaw) 4000 device_printf(sc->sc_dev, 4001 "%s: wasn't added: seqno %d\n", 4002 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4003 bf->bf_state.bfs_dobaw = 0; 4004 return 1; 4005 } 4006 4007 ath_tx_set_retry(sc, bf); 4008 sc->sc_stats.ast_tx_swretries++; 4009 bf->bf_next = NULL; /* Just to make sure */ 4010 4011 /* Clear the aggregate state */ 4012 bf->bf_state.bfs_aggr = 0; 4013 bf->bf_state.bfs_ndelim = 0; /* ??? needed? */ 4014 bf->bf_state.bfs_nframes = 1; 4015 4016 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 4017 return 0; 4018 } 4019 4020 /* 4021 * error pkt completion for an aggregate destination 4022 */ 4023 static void 4024 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first, 4025 struct ath_tid *tid) 4026 { 4027 struct ieee80211_node *ni = bf_first->bf_node; 4028 struct ath_node *an = ATH_NODE(ni); 4029 struct ath_buf *bf_next, *bf; 4030 ath_bufhead bf_q; 4031 int drops = 0; 4032 struct ieee80211_tx_ampdu *tap; 4033 ath_bufhead bf_cq; 4034 4035 TAILQ_INIT(&bf_q); 4036 TAILQ_INIT(&bf_cq); 4037 4038 /* 4039 * Update rate control - all frames have failed. 4040 * 4041 * XXX use the length in the first frame in the series; 4042 * XXX just so things are consistent for now. 4043 */ 4044 ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc, 4045 &bf_first->bf_status.ds_txstat, 4046 bf_first->bf_state.bfs_pktlen, 4047 bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes); 4048 4049 ATH_TX_LOCK(sc); 4050 tap = ath_tx_get_tx_tid(an, tid->tid); 4051 sc->sc_stats.ast_tx_aggr_failall++; 4052 4053 /* Retry all subframes */ 4054 bf = bf_first; 4055 while (bf) { 4056 bf_next = bf->bf_next; 4057 bf->bf_next = NULL; /* Remove it from the aggr list */ 4058 sc->sc_stats.ast_tx_aggr_fail++; 4059 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4060 drops++; 4061 bf->bf_next = NULL; 4062 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4063 } 4064 bf = bf_next; 4065 } 4066 4067 /* Prepend all frames to the beginning of the queue */ 4068 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4069 TAILQ_REMOVE(&bf_q, bf, bf_list); 4070 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 4071 } 4072 4073 /* 4074 * Schedule the TID to be re-tried. 4075 */ 4076 ath_tx_tid_sched(sc, tid); 4077 4078 /* 4079 * send bar if we dropped any frames 4080 * 4081 * Keep the txq lock held for now, as we need to ensure 4082 * that ni_txseqs[] is consistent (as it's being updated 4083 * in the ifnet TX context or raw TX context.) 4084 */ 4085 if (drops) { 4086 /* Suspend the TX queue and get ready to send the BAR */ 4087 ath_tx_tid_bar_suspend(sc, tid); 4088 } 4089 4090 /* 4091 * Send BAR if required 4092 */ 4093 if (ath_tx_tid_bar_tx_ready(sc, tid)) 4094 ath_tx_tid_bar_tx(sc, tid); 4095 4096 ATH_TX_UNLOCK(sc); 4097 4098 /* Complete frames which errored out */ 4099 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4100 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4101 ath_tx_default_comp(sc, bf, 0); 4102 } 4103 } 4104 4105 /* 4106 * Handle clean-up of packets from an aggregate list. 4107 * 4108 * There's no need to update the BAW here - the session is being 4109 * torn down. 4110 */ 4111 static void 4112 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first) 4113 { 4114 struct ath_buf *bf, *bf_next; 4115 struct ieee80211_node *ni = bf_first->bf_node; 4116 struct ath_node *an = ATH_NODE(ni); 4117 int tid = bf_first->bf_state.bfs_tid; 4118 struct ath_tid *atid = &an->an_tid[tid]; 4119 4120 bf = bf_first; 4121 4122 ATH_TX_LOCK(sc); 4123 4124 /* update incomp */ 4125 while (bf) { 4126 atid->incomp--; 4127 bf = bf->bf_next; 4128 } 4129 4130 if (atid->incomp == 0) { 4131 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4132 "%s: TID %d: cleaned up! resume!\n", 4133 __func__, tid); 4134 atid->cleanup_inprogress = 0; 4135 ath_tx_tid_resume(sc, atid); 4136 } 4137 4138 /* Send BAR if required */ 4139 /* XXX why would we send a BAR when transitioning to non-aggregation? */ 4140 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4141 ath_tx_tid_bar_tx(sc, atid); 4142 4143 ATH_TX_UNLOCK(sc); 4144 4145 /* Handle frame completion */ 4146 while (bf) { 4147 bf_next = bf->bf_next; 4148 ath_tx_default_comp(sc, bf, 1); 4149 bf = bf_next; 4150 } 4151 } 4152 4153 /* 4154 * Handle completion of an set of aggregate frames. 4155 * 4156 * XXX for now, simply complete each sub-frame. 4157 * 4158 * Note: the completion handler is the last descriptor in the aggregate, 4159 * not the last descriptor in the first frame. 4160 */ 4161 static void 4162 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, 4163 int fail) 4164 { 4165 //struct ath_desc *ds = bf->bf_lastds; 4166 struct ieee80211_node *ni = bf_first->bf_node; 4167 struct ath_node *an = ATH_NODE(ni); 4168 int tid = bf_first->bf_state.bfs_tid; 4169 struct ath_tid *atid = &an->an_tid[tid]; 4170 struct ath_tx_status ts; 4171 struct ieee80211_tx_ampdu *tap; 4172 ath_bufhead bf_q; 4173 ath_bufhead bf_cq; 4174 int seq_st, tx_ok; 4175 int hasba, isaggr; 4176 uint32_t ba[2]; 4177 struct ath_buf *bf, *bf_next; 4178 int ba_index; 4179 int drops = 0; 4180 int nframes = 0, nbad = 0, nf; 4181 int pktlen; 4182 /* XXX there's too much on the stack? */ 4183 struct ath_rc_series rc[ATH_RC_NUM]; 4184 int txseq; 4185 4186 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n", 4187 __func__, atid->hwq_depth); 4188 4189 /* 4190 * Take a copy; this may be needed -after- bf_first 4191 * has been completed and freed. 4192 */ 4193 ts = bf_first->bf_status.ds_txstat; 4194 4195 TAILQ_INIT(&bf_q); 4196 TAILQ_INIT(&bf_cq); 4197 4198 /* The TID state is kept behind the TXQ lock */ 4199 ATH_TX_LOCK(sc); 4200 4201 atid->hwq_depth--; 4202 if (atid->hwq_depth < 0) 4203 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4204 __func__, atid->hwq_depth); 4205 4206 /* 4207 * If the TID is filtered, handle completing the filter 4208 * transition before potentially kicking it to the cleanup 4209 * function. 4210 * 4211 * XXX this is duplicate work, ew. 4212 */ 4213 if (atid->isfiltered) 4214 ath_tx_tid_filt_comp_complete(sc, atid); 4215 4216 /* 4217 * Punt cleanup to the relevant function, not our problem now 4218 */ 4219 if (atid->cleanup_inprogress) { 4220 if (atid->isfiltered) 4221 device_printf(sc->sc_dev, 4222 "%s: isfiltered=1, normal_comp?\n", 4223 __func__); 4224 ATH_TX_UNLOCK(sc); 4225 ath_tx_comp_cleanup_aggr(sc, bf_first); 4226 return; 4227 } 4228 4229 /* 4230 * If the frame is filtered, transition to filtered frame 4231 * mode and add this to the filtered frame list. 4232 * 4233 * XXX TODO: figure out how this interoperates with 4234 * BAR, pause and cleanup states. 4235 */ 4236 if ((ts.ts_status & HAL_TXERR_FILT) || 4237 (ts.ts_status != 0 && atid->isfiltered)) { 4238 if (fail != 0) 4239 device_printf(sc->sc_dev, 4240 "%s: isfiltered=1, fail=%d\n", __func__, fail); 4241 ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq); 4242 4243 /* Remove from BAW */ 4244 TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) { 4245 if (bf->bf_state.bfs_addedbaw) 4246 drops++; 4247 if (bf->bf_state.bfs_dobaw) { 4248 ath_tx_update_baw(sc, an, atid, bf); 4249 if (! bf->bf_state.bfs_addedbaw) 4250 device_printf(sc->sc_dev, 4251 "%s: wasn't added: seqno %d\n", 4252 __func__, 4253 SEQNO(bf->bf_state.bfs_seqno)); 4254 } 4255 bf->bf_state.bfs_dobaw = 0; 4256 } 4257 /* 4258 * If any intermediate frames in the BAW were dropped when 4259 * handling filtering things, send a BAR. 4260 */ 4261 if (drops) 4262 ath_tx_tid_bar_suspend(sc, atid); 4263 4264 /* 4265 * Finish up by sending a BAR if required and freeing 4266 * the frames outside of the TX lock. 4267 */ 4268 goto finish_send_bar; 4269 } 4270 4271 /* 4272 * XXX for now, use the first frame in the aggregate for 4273 * XXX rate control completion; it's at least consistent. 4274 */ 4275 pktlen = bf_first->bf_state.bfs_pktlen; 4276 4277 /* 4278 * Handle errors first! 4279 * 4280 * Here, handle _any_ error as a "exceeded retries" error. 4281 * Later on (when filtered frames are to be specially handled) 4282 * it'll have to be expanded. 4283 */ 4284 #if 0 4285 if (ts.ts_status & HAL_TXERR_XRETRY) { 4286 #endif 4287 if (ts.ts_status != 0) { 4288 ATH_TX_UNLOCK(sc); 4289 ath_tx_comp_aggr_error(sc, bf_first, atid); 4290 return; 4291 } 4292 4293 tap = ath_tx_get_tx_tid(an, tid); 4294 4295 /* 4296 * extract starting sequence and block-ack bitmap 4297 */ 4298 /* XXX endian-ness of seq_st, ba? */ 4299 seq_st = ts.ts_seqnum; 4300 hasba = !! (ts.ts_flags & HAL_TX_BA); 4301 tx_ok = (ts.ts_status == 0); 4302 isaggr = bf_first->bf_state.bfs_aggr; 4303 ba[0] = ts.ts_ba_low; 4304 ba[1] = ts.ts_ba_high; 4305 4306 /* 4307 * Copy the TX completion status and the rate control 4308 * series from the first descriptor, as it may be freed 4309 * before the rate control code can get its grubby fingers 4310 * into things. 4311 */ 4312 memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc)); 4313 4314 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4315 "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, " 4316 "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n", 4317 __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags, 4318 isaggr, seq_st, hasba, ba[0], ba[1]); 4319 4320 /* Occasionally, the MAC sends a tx status for the wrong TID. */ 4321 if (tid != ts.ts_tid) { 4322 device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n", 4323 __func__, tid, ts.ts_tid); 4324 tx_ok = 0; 4325 } 4326 4327 /* AR5416 BA bug; this requires an interface reset */ 4328 if (isaggr && tx_ok && (! hasba)) { 4329 device_printf(sc->sc_dev, 4330 "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, " 4331 "seq_st=%d\n", 4332 __func__, hasba, tx_ok, isaggr, seq_st); 4333 /* XXX TODO: schedule an interface reset */ 4334 #ifdef ATH_DEBUG 4335 ath_printtxbuf(sc, bf_first, 4336 sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0); 4337 #endif 4338 } 4339 4340 /* 4341 * Walk the list of frames, figure out which ones were correctly 4342 * sent and which weren't. 4343 */ 4344 bf = bf_first; 4345 nf = bf_first->bf_state.bfs_nframes; 4346 4347 /* bf_first is going to be invalid once this list is walked */ 4348 bf_first = NULL; 4349 4350 /* 4351 * Walk the list of completed frames and determine 4352 * which need to be completed and which need to be 4353 * retransmitted. 4354 * 4355 * For completed frames, the completion functions need 4356 * to be called at the end of this function as the last 4357 * node reference may free the node. 4358 * 4359 * Finally, since the TXQ lock can't be held during the 4360 * completion callback (to avoid lock recursion), 4361 * the completion calls have to be done outside of the 4362 * lock. 4363 */ 4364 while (bf) { 4365 nframes++; 4366 ba_index = ATH_BA_INDEX(seq_st, 4367 SEQNO(bf->bf_state.bfs_seqno)); 4368 bf_next = bf->bf_next; 4369 bf->bf_next = NULL; /* Remove it from the aggr list */ 4370 4371 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4372 "%s: checking bf=%p seqno=%d; ack=%d\n", 4373 __func__, bf, SEQNO(bf->bf_state.bfs_seqno), 4374 ATH_BA_ISSET(ba, ba_index)); 4375 4376 if (tx_ok && ATH_BA_ISSET(ba, ba_index)) { 4377 sc->sc_stats.ast_tx_aggr_ok++; 4378 ath_tx_update_baw(sc, an, atid, bf); 4379 bf->bf_state.bfs_dobaw = 0; 4380 if (! bf->bf_state.bfs_addedbaw) 4381 device_printf(sc->sc_dev, 4382 "%s: wasn't added: seqno %d\n", 4383 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4384 bf->bf_next = NULL; 4385 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4386 } else { 4387 sc->sc_stats.ast_tx_aggr_fail++; 4388 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4389 drops++; 4390 bf->bf_next = NULL; 4391 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4392 } 4393 nbad++; 4394 } 4395 bf = bf_next; 4396 } 4397 4398 /* 4399 * Now that the BAW updates have been done, unlock 4400 * 4401 * txseq is grabbed before the lock is released so we 4402 * have a consistent view of what -was- in the BAW. 4403 * Anything after this point will not yet have been 4404 * TXed. 4405 */ 4406 txseq = tap->txa_start; 4407 ATH_TX_UNLOCK(sc); 4408 4409 if (nframes != nf) 4410 device_printf(sc->sc_dev, 4411 "%s: num frames seen=%d; bf nframes=%d\n", 4412 __func__, nframes, nf); 4413 4414 /* 4415 * Now we know how many frames were bad, call the rate 4416 * control code. 4417 */ 4418 if (fail == 0) 4419 ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, 4420 nbad); 4421 4422 /* 4423 * send bar if we dropped any frames 4424 */ 4425 if (drops) { 4426 /* Suspend the TX queue and get ready to send the BAR */ 4427 ATH_TX_LOCK(sc); 4428 ath_tx_tid_bar_suspend(sc, atid); 4429 ATH_TX_UNLOCK(sc); 4430 } 4431 4432 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4433 "%s: txa_start now %d\n", __func__, tap->txa_start); 4434 4435 ATH_TX_LOCK(sc); 4436 4437 /* Prepend all frames to the beginning of the queue */ 4438 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4439 TAILQ_REMOVE(&bf_q, bf, bf_list); 4440 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 4441 } 4442 4443 /* 4444 * Reschedule to grab some further frames. 4445 */ 4446 ath_tx_tid_sched(sc, atid); 4447 4448 /* 4449 * If the queue is filtered, re-schedule as required. 4450 * 4451 * This is required as there may be a subsequent TX descriptor 4452 * for this end-node that has CLRDMASK set, so it's quite possible 4453 * that a filtered frame will be followed by a non-filtered 4454 * (complete or otherwise) frame. 4455 * 4456 * XXX should we do this before we complete the frame? 4457 */ 4458 if (atid->isfiltered) 4459 ath_tx_tid_filt_comp_complete(sc, atid); 4460 4461 finish_send_bar: 4462 4463 /* 4464 * Send BAR if required 4465 */ 4466 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4467 ath_tx_tid_bar_tx(sc, atid); 4468 4469 ATH_TX_UNLOCK(sc); 4470 4471 /* Do deferred completion */ 4472 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4473 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4474 ath_tx_default_comp(sc, bf, 0); 4475 } 4476 } 4477 4478 /* 4479 * Handle completion of unaggregated frames in an ADDBA 4480 * session. 4481 * 4482 * Fail is set to 1 if the entry is being freed via a call to 4483 * ath_tx_draintxq(). 4484 */ 4485 static void 4486 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail) 4487 { 4488 struct ieee80211_node *ni = bf->bf_node; 4489 struct ath_node *an = ATH_NODE(ni); 4490 int tid = bf->bf_state.bfs_tid; 4491 struct ath_tid *atid = &an->an_tid[tid]; 4492 struct ath_tx_status ts; 4493 int drops = 0; 4494 4495 /* 4496 * Take a copy of this; filtering/cloning the frame may free the 4497 * bf pointer. 4498 */ 4499 ts = bf->bf_status.ds_txstat; 4500 4501 /* 4502 * Update rate control status here, before we possibly 4503 * punt to retry or cleanup. 4504 * 4505 * Do it outside of the TXQ lock. 4506 */ 4507 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 4508 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 4509 &bf->bf_status.ds_txstat, 4510 bf->bf_state.bfs_pktlen, 4511 1, (ts.ts_status == 0) ? 0 : 1); 4512 4513 /* 4514 * This is called early so atid->hwq_depth can be tracked. 4515 * This unfortunately means that it's released and regrabbed 4516 * during retry and cleanup. That's rather inefficient. 4517 */ 4518 ATH_TX_LOCK(sc); 4519 4520 if (tid == IEEE80211_NONQOS_TID) 4521 device_printf(sc->sc_dev, "%s: TID=16!\n", __func__); 4522 4523 DPRINTF(sc, ATH_DEBUG_SW_TX, 4524 "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n", 4525 __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth, 4526 SEQNO(bf->bf_state.bfs_seqno)); 4527 4528 atid->hwq_depth--; 4529 if (atid->hwq_depth < 0) 4530 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4531 __func__, atid->hwq_depth); 4532 4533 /* 4534 * If the TID is filtered, handle completing the filter 4535 * transition before potentially kicking it to the cleanup 4536 * function. 4537 */ 4538 if (atid->isfiltered) 4539 ath_tx_tid_filt_comp_complete(sc, atid); 4540 4541 /* 4542 * If a cleanup is in progress, punt to comp_cleanup; 4543 * rather than handling it here. It's thus their 4544 * responsibility to clean up, call the completion 4545 * function in net80211, etc. 4546 */ 4547 if (atid->cleanup_inprogress) { 4548 if (atid->isfiltered) 4549 device_printf(sc->sc_dev, 4550 "%s: isfiltered=1, normal_comp?\n", 4551 __func__); 4552 ATH_TX_UNLOCK(sc); 4553 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n", 4554 __func__); 4555 ath_tx_comp_cleanup_unaggr(sc, bf); 4556 return; 4557 } 4558 4559 /* 4560 * XXX TODO: how does cleanup, BAR and filtered frame handling 4561 * overlap? 4562 * 4563 * If the frame is filtered OR if it's any failure but 4564 * the TID is filtered, the frame must be added to the 4565 * filtered frame list. 4566 * 4567 * However - a busy buffer can't be added to the filtered 4568 * list as it will end up being recycled without having 4569 * been made available for the hardware. 4570 */ 4571 if ((ts.ts_status & HAL_TXERR_FILT) || 4572 (ts.ts_status != 0 && atid->isfiltered)) { 4573 int freeframe; 4574 4575 if (fail != 0) 4576 device_printf(sc->sc_dev, 4577 "%s: isfiltered=1, fail=%d\n", 4578 __func__, 4579 fail); 4580 freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf); 4581 if (freeframe) { 4582 /* Remove from BAW */ 4583 if (bf->bf_state.bfs_addedbaw) 4584 drops++; 4585 if (bf->bf_state.bfs_dobaw) { 4586 ath_tx_update_baw(sc, an, atid, bf); 4587 if (! bf->bf_state.bfs_addedbaw) 4588 device_printf(sc->sc_dev, 4589 "%s: wasn't added: seqno %d\n", 4590 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4591 } 4592 bf->bf_state.bfs_dobaw = 0; 4593 } 4594 4595 /* 4596 * If the frame couldn't be filtered, treat it as a drop and 4597 * prepare to send a BAR. 4598 */ 4599 if (freeframe && drops) 4600 ath_tx_tid_bar_suspend(sc, atid); 4601 4602 /* 4603 * Send BAR if required 4604 */ 4605 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4606 ath_tx_tid_bar_tx(sc, atid); 4607 4608 ATH_TX_UNLOCK(sc); 4609 /* 4610 * If freeframe is set, then the frame couldn't be 4611 * cloned and bf is still valid. Just complete/free it. 4612 */ 4613 if (freeframe) 4614 ath_tx_default_comp(sc, bf, fail); 4615 4616 4617 return; 4618 } 4619 /* 4620 * Don't bother with the retry check if all frames 4621 * are being failed (eg during queue deletion.) 4622 */ 4623 #if 0 4624 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) { 4625 #endif 4626 if (fail == 0 && ts.ts_status != 0) { 4627 ATH_TX_UNLOCK(sc); 4628 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n", 4629 __func__); 4630 ath_tx_aggr_retry_unaggr(sc, bf); 4631 return; 4632 } 4633 4634 /* Success? Complete */ 4635 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n", 4636 __func__, tid, SEQNO(bf->bf_state.bfs_seqno)); 4637 if (bf->bf_state.bfs_dobaw) { 4638 ath_tx_update_baw(sc, an, atid, bf); 4639 bf->bf_state.bfs_dobaw = 0; 4640 if (! bf->bf_state.bfs_addedbaw) 4641 device_printf(sc->sc_dev, 4642 "%s: wasn't added: seqno %d\n", 4643 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4644 } 4645 4646 /* 4647 * If the queue is filtered, re-schedule as required. 4648 * 4649 * This is required as there may be a subsequent TX descriptor 4650 * for this end-node that has CLRDMASK set, so it's quite possible 4651 * that a filtered frame will be followed by a non-filtered 4652 * (complete or otherwise) frame. 4653 * 4654 * XXX should we do this before we complete the frame? 4655 */ 4656 if (atid->isfiltered) 4657 ath_tx_tid_filt_comp_complete(sc, atid); 4658 4659 /* 4660 * Send BAR if required 4661 */ 4662 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4663 ath_tx_tid_bar_tx(sc, atid); 4664 4665 ATH_TX_UNLOCK(sc); 4666 4667 ath_tx_default_comp(sc, bf, fail); 4668 /* bf is freed at this point */ 4669 } 4670 4671 void 4672 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4673 { 4674 if (bf->bf_state.bfs_aggr) 4675 ath_tx_aggr_comp_aggr(sc, bf, fail); 4676 else 4677 ath_tx_aggr_comp_unaggr(sc, bf, fail); 4678 } 4679 4680 /* 4681 * Schedule some packets from the given node/TID to the hardware. 4682 * 4683 * This is the aggregate version. 4684 */ 4685 void 4686 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an, 4687 struct ath_tid *tid) 4688 { 4689 struct ath_buf *bf; 4690 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4691 struct ieee80211_tx_ampdu *tap; 4692 ATH_AGGR_STATUS status; 4693 ath_bufhead bf_q; 4694 4695 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid); 4696 ATH_TX_LOCK_ASSERT(sc); 4697 4698 tap = ath_tx_get_tx_tid(an, tid->tid); 4699 4700 if (tid->tid == IEEE80211_NONQOS_TID) 4701 device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n", 4702 __func__); 4703 4704 for (;;) { 4705 status = ATH_AGGR_DONE; 4706 4707 /* 4708 * If the upper layer has paused the TID, don't 4709 * queue any further packets. 4710 * 4711 * This can also occur from the completion task because 4712 * of packet loss; but as its serialised with this code, 4713 * it won't "appear" half way through queuing packets. 4714 */ 4715 if (tid->paused) 4716 break; 4717 4718 bf = ATH_TID_FIRST(tid); 4719 if (bf == NULL) { 4720 break; 4721 } 4722 4723 /* 4724 * If the packet doesn't fall within the BAW (eg a NULL 4725 * data frame), schedule it directly; continue. 4726 */ 4727 if (! bf->bf_state.bfs_dobaw) { 4728 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4729 "%s: non-baw packet\n", 4730 __func__); 4731 ATH_TID_REMOVE(tid, bf, bf_list); 4732 4733 if (bf->bf_state.bfs_nframes > 1) 4734 device_printf(sc->sc_dev, 4735 "%s: aggr=%d, nframes=%d\n", 4736 __func__, 4737 bf->bf_state.bfs_aggr, 4738 bf->bf_state.bfs_nframes); 4739 4740 /* 4741 * This shouldn't happen - such frames shouldn't 4742 * ever have been queued as an aggregate in the 4743 * first place. However, make sure the fields 4744 * are correctly setup just to be totally sure. 4745 */ 4746 bf->bf_state.bfs_aggr = 0; 4747 bf->bf_state.bfs_nframes = 1; 4748 4749 /* Update CLRDMASK just before this frame is queued */ 4750 ath_tx_update_clrdmask(sc, tid, bf); 4751 4752 ath_tx_do_ratelookup(sc, bf); 4753 ath_tx_calc_duration(sc, bf); 4754 ath_tx_calc_protection(sc, bf); 4755 ath_tx_set_rtscts(sc, bf); 4756 ath_tx_rate_fill_rcflags(sc, bf); 4757 ath_tx_setds(sc, bf); 4758 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4759 4760 sc->sc_aggr_stats.aggr_nonbaw_pkt++; 4761 4762 /* Queue the packet; continue */ 4763 goto queuepkt; 4764 } 4765 4766 TAILQ_INIT(&bf_q); 4767 4768 /* 4769 * Do a rate control lookup on the first frame in the 4770 * list. The rate control code needs that to occur 4771 * before it can determine whether to TX. 4772 * It's inaccurate because the rate control code doesn't 4773 * really "do" aggregate lookups, so it only considers 4774 * the size of the first frame. 4775 */ 4776 ath_tx_do_ratelookup(sc, bf); 4777 bf->bf_state.bfs_rc[3].rix = 0; 4778 bf->bf_state.bfs_rc[3].tries = 0; 4779 4780 ath_tx_calc_duration(sc, bf); 4781 ath_tx_calc_protection(sc, bf); 4782 4783 ath_tx_set_rtscts(sc, bf); 4784 ath_tx_rate_fill_rcflags(sc, bf); 4785 4786 status = ath_tx_form_aggr(sc, an, tid, &bf_q); 4787 4788 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4789 "%s: ath_tx_form_aggr() status=%d\n", __func__, status); 4790 4791 /* 4792 * No frames to be picked up - out of BAW 4793 */ 4794 if (TAILQ_EMPTY(&bf_q)) 4795 break; 4796 4797 /* 4798 * This assumes that the descriptor list in the ath_bufhead 4799 * are already linked together via bf_next pointers. 4800 */ 4801 bf = TAILQ_FIRST(&bf_q); 4802 4803 if (status == ATH_AGGR_8K_LIMITED) 4804 sc->sc_aggr_stats.aggr_rts_aggr_limited++; 4805 4806 /* 4807 * If it's the only frame send as non-aggregate 4808 * assume that ath_tx_form_aggr() has checked 4809 * whether it's in the BAW and added it appropriately. 4810 */ 4811 if (bf->bf_state.bfs_nframes == 1) { 4812 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4813 "%s: single-frame aggregate\n", __func__); 4814 4815 /* Update CLRDMASK just before this frame is queued */ 4816 ath_tx_update_clrdmask(sc, tid, bf); 4817 4818 bf->bf_state.bfs_aggr = 0; 4819 bf->bf_state.bfs_ndelim = 0; 4820 ath_tx_setds(sc, bf); 4821 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4822 if (status == ATH_AGGR_BAW_CLOSED) 4823 sc->sc_aggr_stats.aggr_baw_closed_single_pkt++; 4824 else 4825 sc->sc_aggr_stats.aggr_single_pkt++; 4826 } else { 4827 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4828 "%s: multi-frame aggregate: %d frames, " 4829 "length %d\n", 4830 __func__, bf->bf_state.bfs_nframes, 4831 bf->bf_state.bfs_al); 4832 bf->bf_state.bfs_aggr = 1; 4833 sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++; 4834 sc->sc_aggr_stats.aggr_aggr_pkt++; 4835 4836 /* Update CLRDMASK just before this frame is queued */ 4837 ath_tx_update_clrdmask(sc, tid, bf); 4838 4839 /* 4840 * Calculate the duration/protection as required. 4841 */ 4842 ath_tx_calc_duration(sc, bf); 4843 ath_tx_calc_protection(sc, bf); 4844 4845 /* 4846 * Update the rate and rtscts information based on the 4847 * rate decision made by the rate control code; 4848 * the first frame in the aggregate needs it. 4849 */ 4850 ath_tx_set_rtscts(sc, bf); 4851 4852 /* 4853 * Setup the relevant descriptor fields 4854 * for aggregation. The first descriptor 4855 * already points to the rest in the chain. 4856 */ 4857 ath_tx_setds_11n(sc, bf); 4858 4859 } 4860 queuepkt: 4861 /* Set completion handler, multi-frame aggregate or not */ 4862 bf->bf_comp = ath_tx_aggr_comp; 4863 4864 if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID) 4865 device_printf(sc->sc_dev, "%s: TID=16?\n", __func__); 4866 4867 /* Punt to txq */ 4868 ath_tx_handoff(sc, txq, bf); 4869 4870 /* Track outstanding buffer count to hardware */ 4871 /* aggregates are "one" buffer */ 4872 tid->hwq_depth++; 4873 4874 /* 4875 * Break out if ath_tx_form_aggr() indicated 4876 * there can't be any further progress (eg BAW is full.) 4877 * Checking for an empty txq is done above. 4878 * 4879 * XXX locking on txq here? 4880 */ 4881 if (txq->axq_aggr_depth >= sc->sc_hwq_limit || 4882 status == ATH_AGGR_BAW_CLOSED) 4883 break; 4884 } 4885 } 4886 4887 /* 4888 * Schedule some packets from the given node/TID to the hardware. 4889 */ 4890 void 4891 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an, 4892 struct ath_tid *tid) 4893 { 4894 struct ath_buf *bf; 4895 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4896 4897 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n", 4898 __func__, an, tid->tid); 4899 4900 ATH_TX_LOCK_ASSERT(sc); 4901 4902 /* Check - is AMPDU pending or running? then print out something */ 4903 if (ath_tx_ampdu_pending(sc, an, tid->tid)) 4904 device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n", 4905 __func__, tid->tid); 4906 if (ath_tx_ampdu_running(sc, an, tid->tid)) 4907 device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n", 4908 __func__, tid->tid); 4909 4910 for (;;) { 4911 4912 /* 4913 * If the upper layers have paused the TID, don't 4914 * queue any further packets. 4915 */ 4916 if (tid->paused) 4917 break; 4918 4919 bf = ATH_TID_FIRST(tid); 4920 if (bf == NULL) { 4921 break; 4922 } 4923 4924 ATH_TID_REMOVE(tid, bf, bf_list); 4925 4926 /* Sanity check! */ 4927 if (tid->tid != bf->bf_state.bfs_tid) { 4928 device_printf(sc->sc_dev, "%s: bfs_tid %d !=" 4929 " tid %d\n", 4930 __func__, bf->bf_state.bfs_tid, tid->tid); 4931 } 4932 /* Normal completion handler */ 4933 bf->bf_comp = ath_tx_normal_comp; 4934 4935 /* 4936 * Override this for now, until the non-aggregate 4937 * completion handler correctly handles software retransmits. 4938 */ 4939 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 4940 4941 /* Update CLRDMASK just before this frame is queued */ 4942 ath_tx_update_clrdmask(sc, tid, bf); 4943 4944 /* Program descriptors + rate control */ 4945 ath_tx_do_ratelookup(sc, bf); 4946 ath_tx_calc_duration(sc, bf); 4947 ath_tx_calc_protection(sc, bf); 4948 ath_tx_set_rtscts(sc, bf); 4949 ath_tx_rate_fill_rcflags(sc, bf); 4950 ath_tx_setds(sc, bf); 4951 4952 /* Track outstanding buffer count to hardware */ 4953 /* aggregates are "one" buffer */ 4954 tid->hwq_depth++; 4955 4956 /* Punt to hardware or software txq */ 4957 ath_tx_handoff(sc, txq, bf); 4958 } 4959 } 4960 4961 /* 4962 * Schedule some packets to the given hardware queue. 4963 * 4964 * This function walks the list of TIDs (ie, ath_node TIDs 4965 * with queued traffic) and attempts to schedule traffic 4966 * from them. 4967 * 4968 * TID scheduling is implemented as a FIFO, with TIDs being 4969 * added to the end of the queue after some frames have been 4970 * scheduled. 4971 */ 4972 void 4973 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq) 4974 { 4975 struct ath_tid *tid, *next, *last; 4976 4977 ATH_TX_LOCK_ASSERT(sc); 4978 4979 /* 4980 * Don't schedule if the hardware queue is busy. 4981 * This (hopefully) gives some more time to aggregate 4982 * some packets in the aggregation queue. 4983 */ 4984 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 4985 sc->sc_aggr_stats.aggr_sched_nopkt++; 4986 return; 4987 } 4988 4989 last = TAILQ_LAST(&txq->axq_tidq, axq_t_s); 4990 4991 TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) { 4992 /* 4993 * Suspend paused queues here; they'll be resumed 4994 * once the addba completes or times out. 4995 */ 4996 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n", 4997 __func__, tid->tid, tid->paused); 4998 ath_tx_tid_unsched(sc, tid); 4999 if (tid->paused) { 5000 continue; 5001 } 5002 if (ath_tx_ampdu_running(sc, tid->an, tid->tid)) 5003 ath_tx_tid_hw_queue_aggr(sc, tid->an, tid); 5004 else 5005 ath_tx_tid_hw_queue_norm(sc, tid->an, tid); 5006 5007 /* Not empty? Re-schedule */ 5008 if (tid->axq_depth != 0) 5009 ath_tx_tid_sched(sc, tid); 5010 5011 /* Give the software queue time to aggregate more packets */ 5012 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 5013 break; 5014 } 5015 5016 /* 5017 * If this was the last entry on the original list, stop. 5018 * Otherwise nodes that have been rescheduled onto the end 5019 * of the TID FIFO list will just keep being rescheduled. 5020 */ 5021 if (tid == last) 5022 break; 5023 } 5024 } 5025 5026 /* 5027 * TX addba handling 5028 */ 5029 5030 /* 5031 * Return net80211 TID struct pointer, or NULL for none 5032 */ 5033 struct ieee80211_tx_ampdu * 5034 ath_tx_get_tx_tid(struct ath_node *an, int tid) 5035 { 5036 struct ieee80211_node *ni = &an->an_node; 5037 struct ieee80211_tx_ampdu *tap; 5038 5039 if (tid == IEEE80211_NONQOS_TID) 5040 return NULL; 5041 5042 tap = &ni->ni_tx_ampdu[tid]; 5043 return tap; 5044 } 5045 5046 /* 5047 * Is AMPDU-TX running? 5048 */ 5049 static int 5050 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid) 5051 { 5052 struct ieee80211_tx_ampdu *tap; 5053 5054 if (tid == IEEE80211_NONQOS_TID) 5055 return 0; 5056 5057 tap = ath_tx_get_tx_tid(an, tid); 5058 if (tap == NULL) 5059 return 0; /* Not valid; default to not running */ 5060 5061 return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING); 5062 } 5063 5064 /* 5065 * Is AMPDU-TX negotiation pending? 5066 */ 5067 static int 5068 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid) 5069 { 5070 struct ieee80211_tx_ampdu *tap; 5071 5072 if (tid == IEEE80211_NONQOS_TID) 5073 return 0; 5074 5075 tap = ath_tx_get_tx_tid(an, tid); 5076 if (tap == NULL) 5077 return 0; /* Not valid; default to not pending */ 5078 5079 return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND); 5080 } 5081 5082 /* 5083 * Is AMPDU-TX pending for the given TID? 5084 */ 5085 5086 5087 /* 5088 * Method to handle sending an ADDBA request. 5089 * 5090 * We tap this so the relevant flags can be set to pause the TID 5091 * whilst waiting for the response. 5092 * 5093 * XXX there's no timeout handler we can override? 5094 */ 5095 int 5096 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5097 int dialogtoken, int baparamset, int batimeout) 5098 { 5099 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5100 int tid = tap->txa_tid; 5101 struct ath_node *an = ATH_NODE(ni); 5102 struct ath_tid *atid = &an->an_tid[tid]; 5103 5104 /* 5105 * XXX danger Will Robinson! 5106 * 5107 * Although the taskqueue may be running and scheduling some more 5108 * packets, these should all be _before_ the addba sequence number. 5109 * However, net80211 will keep self-assigning sequence numbers 5110 * until addba has been negotiated. 5111 * 5112 * In the past, these packets would be "paused" (which still works 5113 * fine, as they're being scheduled to the driver in the same 5114 * serialised method which is calling the addba request routine) 5115 * and when the aggregation session begins, they'll be dequeued 5116 * as aggregate packets and added to the BAW. However, now there's 5117 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these 5118 * packets. Thus they never get included in the BAW tracking and 5119 * this can cause the initial burst of packets after the addba 5120 * negotiation to "hang", as they quickly fall outside the BAW. 5121 * 5122 * The "eventual" solution should be to tag these packets with 5123 * dobaw. Although net80211 has given us a sequence number, 5124 * it'll be "after" the left edge of the BAW and thus it'll 5125 * fall within it. 5126 */ 5127 ATH_TX_LOCK(sc); 5128 /* 5129 * This is a bit annoying. Until net80211 HT code inherits some 5130 * (any) locking, we may have this called in parallel BUT only 5131 * one response/timeout will be called. Grr. 5132 */ 5133 if (atid->addba_tx_pending == 0) { 5134 ath_tx_tid_pause(sc, atid); 5135 atid->addba_tx_pending = 1; 5136 } 5137 ATH_TX_UNLOCK(sc); 5138 5139 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5140 "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n", 5141 __func__, dialogtoken, baparamset, batimeout); 5142 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5143 "%s: txa_start=%d, ni_txseqs=%d\n", 5144 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5145 5146 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 5147 batimeout); 5148 } 5149 5150 /* 5151 * Handle an ADDBA response. 5152 * 5153 * We unpause the queue so TX'ing can resume. 5154 * 5155 * Any packets TX'ed from this point should be "aggregate" (whether 5156 * aggregate or not) so the BAW is updated. 5157 * 5158 * Note! net80211 keeps self-assigning sequence numbers until 5159 * ampdu is negotiated. This means the initially-negotiated BAW left 5160 * edge won't match the ni->ni_txseq. 5161 * 5162 * So, being very dirty, the BAW left edge is "slid" here to match 5163 * ni->ni_txseq. 5164 * 5165 * What likely SHOULD happen is that all packets subsequent to the 5166 * addba request should be tagged as aggregate and queued as non-aggregate 5167 * frames; thus updating the BAW. For now though, I'll just slide the 5168 * window. 5169 */ 5170 int 5171 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5172 int status, int code, int batimeout) 5173 { 5174 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5175 int tid = tap->txa_tid; 5176 struct ath_node *an = ATH_NODE(ni); 5177 struct ath_tid *atid = &an->an_tid[tid]; 5178 int r; 5179 5180 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5181 "%s: called; status=%d, code=%d, batimeout=%d\n", __func__, 5182 status, code, batimeout); 5183 5184 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5185 "%s: txa_start=%d, ni_txseqs=%d\n", 5186 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5187 5188 /* 5189 * Call this first, so the interface flags get updated 5190 * before the TID is unpaused. Otherwise a race condition 5191 * exists where the unpaused TID still doesn't yet have 5192 * IEEE80211_AGGR_RUNNING set. 5193 */ 5194 r = sc->sc_addba_response(ni, tap, status, code, batimeout); 5195 5196 ATH_TX_LOCK(sc); 5197 atid->addba_tx_pending = 0; 5198 /* 5199 * XXX dirty! 5200 * Slide the BAW left edge to wherever net80211 left it for us. 5201 * Read above for more information. 5202 */ 5203 tap->txa_start = ni->ni_txseqs[tid]; 5204 ath_tx_tid_resume(sc, atid); 5205 ATH_TX_UNLOCK(sc); 5206 return r; 5207 } 5208 5209 5210 /* 5211 * Stop ADDBA on a queue. 5212 * 5213 * This can be called whilst BAR TX is currently active on the queue, 5214 * so make sure this is unblocked before continuing. 5215 */ 5216 void 5217 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 5218 { 5219 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5220 int tid = tap->txa_tid; 5221 struct ath_node *an = ATH_NODE(ni); 5222 struct ath_tid *atid = &an->an_tid[tid]; 5223 5224 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__); 5225 5226 /* 5227 * Pause TID traffic early, so there aren't any races 5228 * Unblock the pending BAR held traffic, if it's currently paused. 5229 */ 5230 ATH_TX_LOCK(sc); 5231 ath_tx_tid_pause(sc, atid); 5232 if (atid->bar_wait) { 5233 /* 5234 * bar_unsuspend() expects bar_tx == 1, as it should be 5235 * called from the TX completion path. This quietens 5236 * the warning. It's cleared for us anyway. 5237 */ 5238 atid->bar_tx = 1; 5239 ath_tx_tid_bar_unsuspend(sc, atid); 5240 } 5241 ATH_TX_UNLOCK(sc); 5242 5243 /* There's no need to hold the TXQ lock here */ 5244 sc->sc_addba_stop(ni, tap); 5245 5246 /* 5247 * ath_tx_tid_cleanup will resume the TID if possible, otherwise 5248 * it'll set the cleanup flag, and it'll be unpaused once 5249 * things have been cleaned up. 5250 */ 5251 ath_tx_tid_cleanup(sc, an, tid); 5252 } 5253 5254 /* 5255 * Note: net80211 bar_timeout() doesn't call this function on BAR failure; 5256 * it simply tears down the aggregation session. Ew. 5257 * 5258 * It however will call ieee80211_ampdu_stop() which will call 5259 * ic->ic_addba_stop(). 5260 * 5261 * XXX This uses a hard-coded max BAR count value; the whole 5262 * XXX BAR TX success or failure should be better handled! 5263 */ 5264 void 5265 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5266 int status) 5267 { 5268 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5269 int tid = tap->txa_tid; 5270 struct ath_node *an = ATH_NODE(ni); 5271 struct ath_tid *atid = &an->an_tid[tid]; 5272 int attempts = tap->txa_attempts; 5273 5274 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 5275 "%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n", 5276 __func__, 5277 tap, 5278 atid, 5279 tap->txa_tid, 5280 atid->tid, 5281 status, 5282 attempts); 5283 5284 /* Note: This may update the BAW details */ 5285 sc->sc_bar_response(ni, tap, status); 5286 5287 /* Unpause the TID */ 5288 /* 5289 * XXX if this is attempt=50, the TID will be downgraded 5290 * XXX to a non-aggregate session. So we must unpause the 5291 * XXX TID here or it'll never be done. 5292 * 5293 * Also, don't call it if bar_tx/bar_wait are 0; something 5294 * has beaten us to the punch? (XXX figure out what?) 5295 */ 5296 if (status == 0 || attempts == 50) { 5297 ATH_TX_LOCK(sc); 5298 if (atid->bar_tx == 0 || atid->bar_wait == 0) 5299 device_printf(sc->sc_dev, 5300 "%s: huh? bar_tx=%d, bar_wait=%d\n", 5301 __func__, 5302 atid->bar_tx, atid->bar_wait); 5303 else 5304 ath_tx_tid_bar_unsuspend(sc, atid); 5305 ATH_TX_UNLOCK(sc); 5306 } 5307 } 5308 5309 /* 5310 * This is called whenever the pending ADDBA request times out. 5311 * Unpause and reschedule the TID. 5312 */ 5313 void 5314 ath_addba_response_timeout(struct ieee80211_node *ni, 5315 struct ieee80211_tx_ampdu *tap) 5316 { 5317 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5318 int tid = tap->txa_tid; 5319 struct ath_node *an = ATH_NODE(ni); 5320 struct ath_tid *atid = &an->an_tid[tid]; 5321 5322 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5323 "%s: called; resuming\n", __func__); 5324 5325 ATH_TX_LOCK(sc); 5326 atid->addba_tx_pending = 0; 5327 ATH_TX_UNLOCK(sc); 5328 5329 /* Note: This updates the aggregate state to (again) pending */ 5330 sc->sc_addba_response_timeout(ni, tap); 5331 5332 /* Unpause the TID; which reschedules it */ 5333 ATH_TX_LOCK(sc); 5334 ath_tx_tid_resume(sc, atid); 5335 ATH_TX_UNLOCK(sc); 5336 } 5337 5338 /* 5339 * Check if a node is asleep or not. 5340 */ 5341 int 5342 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an) 5343 { 5344 5345 ATH_NODE_LOCK_ASSERT(an); 5346 5347 return (an->an_is_powersave); 5348 } 5349 5350 /* 5351 * Mark a node as currently "in powersaving." 5352 * This suspends all traffic on the node. 5353 * 5354 * This must be called with the node/tx locks free. 5355 * 5356 * XXX TODO: the locking silliness below is due to how the node 5357 * locking currently works. Right now, the node lock is grabbed 5358 * to do rate control lookups and these are done with the TX 5359 * queue lock held. This means the node lock can't be grabbed 5360 * first here or a LOR will occur. 5361 * 5362 * Eventually (hopefully!) the TX path code will only grab 5363 * the TXQ lock when transmitting and the ath_node lock when 5364 * doing node/TID operations. There are other complications - 5365 * the sched/unsched operations involve walking the per-txq 5366 * 'active tid' list and this requires both locks to be held. 5367 */ 5368 void 5369 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an) 5370 { 5371 struct ath_tid *atid; 5372 struct ath_txq *txq; 5373 int tid; 5374 5375 ATH_NODE_UNLOCK_ASSERT(an); 5376 5377 /* 5378 * It's possible that a parallel call to ath_tx_node_wakeup() 5379 * will unpause these queues. 5380 * 5381 * The node lock can't just be grabbed here, as there's places 5382 * in the driver where the node lock is grabbed _within_ a 5383 * TXQ lock. 5384 * So, we do this delicately and unwind state if needed. 5385 * 5386 * + Pause all the queues 5387 * + Grab the node lock 5388 * + If the queue is already asleep, unpause and quit 5389 * + else just mark as asleep. 5390 * 5391 * A parallel sleep() call will just pause and then 5392 * find they're already paused, so undo it. 5393 * 5394 * A parallel wakeup() call will check if asleep is 1 5395 * and if it's not (ie, it's 0), it'll treat it as already 5396 * being awake. If it's 1, it'll mark it as 0 and then 5397 * unpause everything. 5398 * 5399 * (Talk about a delicate hack.) 5400 */ 5401 5402 /* Suspend all traffic on the node */ 5403 ATH_TX_LOCK(sc); 5404 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5405 atid = &an->an_tid[tid]; 5406 txq = sc->sc_ac2q[atid->ac]; 5407 5408 ath_tx_tid_pause(sc, atid); 5409 } 5410 ATH_TX_UNLOCK(sc); 5411 5412 ATH_NODE_LOCK(an); 5413 5414 /* In case of concurrency races from net80211.. */ 5415 if (an->an_is_powersave == 1) { 5416 ATH_NODE_UNLOCK(an); 5417 device_printf(sc->sc_dev, 5418 "%s: an=%p: node was already asleep\n", 5419 __func__, an); 5420 ATH_TX_LOCK(sc); 5421 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5422 atid = &an->an_tid[tid]; 5423 txq = sc->sc_ac2q[atid->ac]; 5424 5425 ath_tx_tid_resume(sc, atid); 5426 } 5427 ATH_TX_UNLOCK(sc); 5428 return; 5429 } 5430 5431 /* Mark node as in powersaving */ 5432 an->an_is_powersave = 1; 5433 5434 ATH_NODE_UNLOCK(an); 5435 } 5436 5437 /* 5438 * Mark a node as currently "awake." 5439 * This resumes all traffic to the node. 5440 */ 5441 void 5442 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an) 5443 { 5444 struct ath_tid *atid; 5445 struct ath_txq *txq; 5446 int tid; 5447 5448 ATH_NODE_UNLOCK_ASSERT(an); 5449 ATH_NODE_LOCK(an); 5450 5451 /* In case of concurrency races from net80211.. */ 5452 if (an->an_is_powersave == 0) { 5453 ATH_NODE_UNLOCK(an); 5454 device_printf(sc->sc_dev, 5455 "%s: an=%p: node was already awake\n", 5456 __func__, an); 5457 return; 5458 } 5459 5460 /* Mark node as awake */ 5461 an->an_is_powersave = 0; 5462 5463 ATH_NODE_UNLOCK(an); 5464 5465 ATH_TX_LOCK(sc); 5466 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5467 atid = &an->an_tid[tid]; 5468 txq = sc->sc_ac2q[atid->ac]; 5469 5470 ath_tx_tid_resume(sc, atid); 5471 } 5472 ATH_TX_UNLOCK(sc); 5473 } 5474 5475 static int 5476 ath_legacy_dma_txsetup(struct ath_softc *sc) 5477 { 5478 5479 /* nothing new needed */ 5480 return (0); 5481 } 5482 5483 static int 5484 ath_legacy_dma_txteardown(struct ath_softc *sc) 5485 { 5486 5487 /* nothing new needed */ 5488 return (0); 5489 } 5490 5491 void 5492 ath_xmit_setup_legacy(struct ath_softc *sc) 5493 { 5494 /* 5495 * For now, just set the descriptor length to sizeof(ath_desc); 5496 * worry about extracting the real length out of the HAL later. 5497 */ 5498 sc->sc_tx_desclen = sizeof(struct ath_desc); 5499 sc->sc_tx_statuslen = sizeof(struct ath_desc); 5500 sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */ 5501 5502 sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup; 5503 sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown; 5504 sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func; 5505 5506 sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart; 5507 sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff; 5508 5509 sc->sc_tx.xmit_drain = ath_legacy_tx_drain; 5510 } 5511