1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * Driver for the Atheros Wireless LAN controller. 36 * 37 * This software is derived from work of Atsushi Onoe; his contribution 38 * is greatly appreciated. 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_ath.h" 43 #include "opt_wlan.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/mbuf.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/kernel.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/errno.h> 56 #include <sys/callout.h> 57 #include <sys/bus.h> 58 #include <sys/endian.h> 59 #include <sys/kthread.h> 60 #include <sys/taskqueue.h> 61 #include <sys/priv.h> 62 63 #include <machine/bus.h> 64 65 #include <net/if.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 #include <net80211/ieee80211_regdomain.h> 75 #ifdef IEEE80211_SUPPORT_SUPERG 76 #include <net80211/ieee80211_superg.h> 77 #endif 78 #ifdef IEEE80211_SUPPORT_TDMA 79 #include <net80211/ieee80211_tdma.h> 80 #endif 81 #include <net80211/ieee80211_ht.h> 82 83 #include <net/bpf.h> 84 85 #ifdef INET 86 #include <netinet/in.h> 87 #include <netinet/if_ether.h> 88 #endif 89 90 #include <dev/ath/if_athvar.h> 91 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 92 #include <dev/ath/ath_hal/ah_diagcodes.h> 93 94 #include <dev/ath/if_ath_debug.h> 95 96 #ifdef ATH_TX99_DIAG 97 #include <dev/ath/ath_tx99/ath_tx99.h> 98 #endif 99 100 #include <dev/ath/if_ath_misc.h> 101 #include <dev/ath/if_ath_tx.h> 102 #include <dev/ath/if_ath_tx_ht.h> 103 104 /* 105 * How many retries to perform in software 106 */ 107 #define SWMAX_RETRIES 10 108 109 /* 110 * What queue to throw the non-QoS TID traffic into 111 */ 112 #define ATH_NONQOS_TID_AC WME_AC_VO 113 114 #if 0 115 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an); 116 #endif 117 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, 118 int tid); 119 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, 120 int tid); 121 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, 122 struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0); 123 static int ath_tx_action_frame_override_queue(struct ath_softc *sc, 124 struct ieee80211_node *ni, struct mbuf *m0, int *tid); 125 static struct ath_buf * 126 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 127 struct ath_tid *tid, struct ath_buf *bf); 128 129 /* 130 * Whether to use the 11n rate scenario functions or not 131 */ 132 static inline int 133 ath_tx_is_11n(struct ath_softc *sc) 134 { 135 return ((sc->sc_ah->ah_magic == 0x20065416) || 136 (sc->sc_ah->ah_magic == 0x19741014)); 137 } 138 139 /* 140 * Obtain the current TID from the given frame. 141 * 142 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.) 143 * This has implications for which AC/priority the packet is placed 144 * in. 145 */ 146 static int 147 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0) 148 { 149 const struct ieee80211_frame *wh; 150 int pri = M_WME_GETAC(m0); 151 152 wh = mtod(m0, const struct ieee80211_frame *); 153 if (! IEEE80211_QOS_HAS_SEQ(wh)) 154 return IEEE80211_NONQOS_TID; 155 else 156 return WME_AC_TO_TID(pri); 157 } 158 159 static void 160 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) 161 { 162 struct ieee80211_frame *wh; 163 164 wh = mtod(bf->bf_m, struct ieee80211_frame *); 165 /* Only update/resync if needed */ 166 if (bf->bf_state.bfs_isretried == 0) { 167 wh->i_fc[1] |= IEEE80211_FC1_RETRY; 168 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 169 BUS_DMASYNC_PREWRITE); 170 } 171 bf->bf_state.bfs_isretried = 1; 172 bf->bf_state.bfs_retries ++; 173 } 174 175 /* 176 * Determine what the correct AC queue for the given frame 177 * should be. 178 * 179 * This code assumes that the TIDs map consistently to 180 * the underlying hardware (or software) ath_txq. 181 * Since the sender may try to set an AC which is 182 * arbitrary, non-QoS TIDs may end up being put on 183 * completely different ACs. There's no way to put a 184 * TID into multiple ath_txq's for scheduling, so 185 * for now we override the AC/TXQ selection and set 186 * non-QOS TID frames into the BE queue. 187 * 188 * This may be completely incorrect - specifically, 189 * some management frames may end up out of order 190 * compared to the QoS traffic they're controlling. 191 * I'll look into this later. 192 */ 193 static int 194 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0) 195 { 196 const struct ieee80211_frame *wh; 197 int pri = M_WME_GETAC(m0); 198 wh = mtod(m0, const struct ieee80211_frame *); 199 if (IEEE80211_QOS_HAS_SEQ(wh)) 200 return pri; 201 202 return ATH_NONQOS_TID_AC; 203 } 204 205 void 206 ath_txfrag_cleanup(struct ath_softc *sc, 207 ath_bufhead *frags, struct ieee80211_node *ni) 208 { 209 struct ath_buf *bf, *next; 210 211 ATH_TXBUF_LOCK_ASSERT(sc); 212 213 TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { 214 /* NB: bf assumed clean */ 215 TAILQ_REMOVE(frags, bf, bf_list); 216 ath_returnbuf_head(sc, bf); 217 ieee80211_node_decref(ni); 218 } 219 } 220 221 /* 222 * Setup xmit of a fragmented frame. Allocate a buffer 223 * for each frag and bump the node reference count to 224 * reflect the held reference to be setup by ath_tx_start. 225 */ 226 int 227 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 228 struct mbuf *m0, struct ieee80211_node *ni) 229 { 230 struct mbuf *m; 231 struct ath_buf *bf; 232 233 ATH_TXBUF_LOCK(sc); 234 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 235 /* XXX non-management? */ 236 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 237 if (bf == NULL) { /* out of buffers, cleanup */ 238 device_printf(sc->sc_dev, "%s: no buffer?\n", 239 __func__); 240 ath_txfrag_cleanup(sc, frags, ni); 241 break; 242 } 243 ieee80211_node_incref(ni); 244 TAILQ_INSERT_TAIL(frags, bf, bf_list); 245 } 246 ATH_TXBUF_UNLOCK(sc); 247 248 return !TAILQ_EMPTY(frags); 249 } 250 251 /* 252 * Reclaim mbuf resources. For fragmented frames we 253 * need to claim each frag chained with m_nextpkt. 254 */ 255 void 256 ath_freetx(struct mbuf *m) 257 { 258 struct mbuf *next; 259 260 do { 261 next = m->m_nextpkt; 262 m->m_nextpkt = NULL; 263 m_freem(m); 264 } while ((m = next) != NULL); 265 } 266 267 static int 268 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) 269 { 270 struct mbuf *m; 271 int error; 272 273 /* 274 * Load the DMA map so any coalescing is done. This 275 * also calculates the number of descriptors we need. 276 */ 277 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 278 bf->bf_segs, &bf->bf_nseg, 279 BUS_DMA_NOWAIT); 280 if (error == EFBIG) { 281 /* XXX packet requires too many descriptors */ 282 bf->bf_nseg = ATH_TXDESC+1; 283 } else if (error != 0) { 284 sc->sc_stats.ast_tx_busdma++; 285 ath_freetx(m0); 286 return error; 287 } 288 /* 289 * Discard null packets and check for packets that 290 * require too many TX descriptors. We try to convert 291 * the latter to a cluster. 292 */ 293 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 294 sc->sc_stats.ast_tx_linear++; 295 m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC); 296 if (m == NULL) { 297 ath_freetx(m0); 298 sc->sc_stats.ast_tx_nombuf++; 299 return ENOMEM; 300 } 301 m0 = m; 302 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 303 bf->bf_segs, &bf->bf_nseg, 304 BUS_DMA_NOWAIT); 305 if (error != 0) { 306 sc->sc_stats.ast_tx_busdma++; 307 ath_freetx(m0); 308 return error; 309 } 310 KASSERT(bf->bf_nseg <= ATH_TXDESC, 311 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 312 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 313 sc->sc_stats.ast_tx_nodata++; 314 ath_freetx(m0); 315 return EIO; 316 } 317 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", 318 __func__, m0, m0->m_pkthdr.len); 319 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 320 bf->bf_m = m0; 321 322 return 0; 323 } 324 325 /* 326 * Chain together segments+descriptors for a non-11n frame. 327 */ 328 static void 329 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf) 330 { 331 struct ath_hal *ah = sc->sc_ah; 332 char *ds, *ds0; 333 int i, bp, dsp; 334 HAL_DMA_ADDR bufAddrList[4]; 335 uint32_t segLenList[4]; 336 int numTxMaps = 1; 337 int isFirstDesc = 1; 338 int qnum; 339 340 /* 341 * XXX There's txdma and txdma_mgmt; the descriptor 342 * sizes must match. 343 */ 344 struct ath_descdma *dd = &sc->sc_txdma; 345 346 /* 347 * Fillin the remainder of the descriptor info. 348 */ 349 350 /* 351 * For now the HAL doesn't implement halNumTxMaps for non-EDMA 352 * (ie it's 0.) So just work around it. 353 * 354 * XXX TODO: populate halNumTxMaps for each HAL chip and 355 * then undo this hack. 356 */ 357 if (sc->sc_ah->ah_magic == 0x19741014) 358 numTxMaps = 4; 359 360 /* 361 * For EDMA and later chips ensure the TX map is fully populated 362 * before advancing to the next descriptor. 363 */ 364 ds0 = ds = (char *) bf->bf_desc; 365 bp = dsp = 0; 366 bzero(bufAddrList, sizeof(bufAddrList)); 367 bzero(segLenList, sizeof(segLenList)); 368 for (i = 0; i < bf->bf_nseg; i++) { 369 bufAddrList[bp] = bf->bf_segs[i].ds_addr; 370 segLenList[bp] = bf->bf_segs[i].ds_len; 371 bp++; 372 373 /* 374 * Go to the next segment if this isn't the last segment 375 * and there's space in the current TX map. 376 */ 377 if ((i != bf->bf_nseg - 1) && (bp < numTxMaps)) 378 continue; 379 380 /* 381 * Last segment or we're out of buffer pointers. 382 */ 383 bp = 0; 384 385 if (i == bf->bf_nseg - 1) 386 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0); 387 else 388 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 389 bf->bf_daddr + dd->dd_descsize * (dsp + 1)); 390 391 /* 392 * XXX this assumes that bfs_txq is the actual destination 393 * hardware queue at this point. It may not have been assigned, 394 * it may actually be pointing to the multicast software 395 * TXQ id. These must be fixed! 396 */ 397 qnum = bf->bf_state.bfs_txq->axq_qnum; 398 399 ath_hal_filltxdesc(ah, (struct ath_desc *) ds 400 , bufAddrList 401 , segLenList 402 , bf->bf_descid /* XXX desc id */ 403 , qnum 404 , isFirstDesc /* first segment */ 405 , i == bf->bf_nseg - 1 /* last segment */ 406 , (struct ath_desc *) ds0 /* first descriptor */ 407 ); 408 409 /* Make sure the 11n aggregate fields are cleared */ 410 if (ath_tx_is_11n(sc)) 411 ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds); 412 413 isFirstDesc = 0; 414 #ifdef ATH_DEBUG 415 if (sc->sc_debug & ATH_DEBUG_XMIT) 416 ath_printtxbuf(sc, bf, qnum, 0, 0); 417 #endif 418 bf->bf_lastds = (struct ath_desc *) ds; 419 420 /* 421 * Don't forget to skip to the next descriptor. 422 */ 423 ds += sc->sc_tx_desclen; 424 dsp++; 425 426 /* 427 * .. and don't forget to blank these out! 428 */ 429 bzero(bufAddrList, sizeof(bufAddrList)); 430 bzero(segLenList, sizeof(segLenList)); 431 } 432 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 433 } 434 435 /* 436 * Fill in the descriptor list for a aggregate subframe. 437 * 438 * The subframe is returned with the ds_link field in the last subframe 439 * pointing to 0. 440 */ 441 static void 442 ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf) 443 { 444 struct ath_hal *ah = sc->sc_ah; 445 struct ath_desc *ds, *ds0; 446 int i; 447 HAL_DMA_ADDR bufAddrList[4]; 448 uint32_t segLenList[4]; 449 450 /* 451 * XXX There's txdma and txdma_mgmt; the descriptor 452 * sizes must match. 453 */ 454 struct ath_descdma *dd = &sc->sc_txdma; 455 456 ds0 = ds = bf->bf_desc; 457 458 /* 459 * There's no need to call ath_hal_setupfirsttxdesc here; 460 * That's only going to occur for the first frame in an aggregate. 461 */ 462 for (i = 0; i < bf->bf_nseg; i++, ds++) { 463 bzero(bufAddrList, sizeof(bufAddrList)); 464 bzero(segLenList, sizeof(segLenList)); 465 if (i == bf->bf_nseg - 1) 466 ath_hal_settxdesclink(ah, ds, 0); 467 else 468 ath_hal_settxdesclink(ah, ds, 469 bf->bf_daddr + dd->dd_descsize * (i + 1)); 470 471 bufAddrList[0] = bf->bf_segs[i].ds_addr; 472 segLenList[0] = bf->bf_segs[i].ds_len; 473 474 /* 475 * This performs the setup for an aggregate frame. 476 * This includes enabling the aggregate flags if needed. 477 */ 478 ath_hal_chaintxdesc(ah, ds, 479 bufAddrList, 480 segLenList, 481 bf->bf_state.bfs_pktlen, 482 bf->bf_state.bfs_hdrlen, 483 HAL_PKT_TYPE_AMPDU, /* forces aggregate bits to be set */ 484 bf->bf_state.bfs_keyix, 485 0, /* cipher, calculated from keyix */ 486 bf->bf_state.bfs_ndelim, 487 i == 0, /* first segment */ 488 i == bf->bf_nseg - 1, /* last segment */ 489 bf->bf_next == NULL /* last sub-frame in aggr */ 490 ); 491 492 DPRINTF(sc, ATH_DEBUG_XMIT, 493 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 494 __func__, i, ds->ds_link, ds->ds_data, 495 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 496 bf->bf_lastds = ds; 497 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 498 BUS_DMASYNC_PREWRITE); 499 } 500 } 501 502 /* 503 * Set the rate control fields in the given descriptor based on 504 * the bf_state fields and node state. 505 * 506 * The bfs fields should already be set with the relevant rate 507 * control information, including whether MRR is to be enabled. 508 * 509 * Since the FreeBSD HAL currently sets up the first TX rate 510 * in ath_hal_setuptxdesc(), this will setup the MRR 511 * conditionally for the pre-11n chips, and call ath_buf_set_rate 512 * unconditionally for 11n chips. These require the 11n rate 513 * scenario to be set if MCS rates are enabled, so it's easier 514 * to just always call it. The caller can then only set rates 2, 3 515 * and 4 if multi-rate retry is needed. 516 */ 517 static void 518 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 519 struct ath_buf *bf) 520 { 521 struct ath_rc_series *rc = bf->bf_state.bfs_rc; 522 523 /* If mrr is disabled, blank tries 1, 2, 3 */ 524 if (! bf->bf_state.bfs_ismrr) 525 rc[1].tries = rc[2].tries = rc[3].tries = 0; 526 527 /* 528 * Always call - that way a retried descriptor will 529 * have the MRR fields overwritten. 530 * 531 * XXX TODO: see if this is really needed - setting up 532 * the first descriptor should set the MRR fields to 0 533 * for us anyway. 534 */ 535 if (ath_tx_is_11n(sc)) { 536 ath_buf_set_rate(sc, ni, bf); 537 } else { 538 ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc 539 , rc[1].ratecode, rc[1].tries 540 , rc[2].ratecode, rc[2].tries 541 , rc[3].ratecode, rc[3].tries 542 ); 543 } 544 } 545 546 /* 547 * Setup segments+descriptors for an 11n aggregate. 548 * bf_first is the first buffer in the aggregate. 549 * The descriptor list must already been linked together using 550 * bf->bf_next. 551 */ 552 static void 553 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first) 554 { 555 struct ath_buf *bf, *bf_prev = NULL; 556 557 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n", 558 __func__, bf_first->bf_state.bfs_nframes, 559 bf_first->bf_state.bfs_al); 560 561 /* 562 * Setup all descriptors of all subframes. 563 */ 564 bf = bf_first; 565 while (bf != NULL) { 566 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 567 "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n", 568 __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen, 569 SEQNO(bf->bf_state.bfs_seqno)); 570 571 /* Sub-frame setup */ 572 ath_tx_chaindesclist_subframe(sc, bf); 573 574 /* 575 * Link the last descriptor of the previous frame 576 * to the beginning descriptor of this frame. 577 */ 578 if (bf_prev != NULL) 579 ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds, 580 bf->bf_daddr); 581 582 /* Save a copy so we can link the next descriptor in */ 583 bf_prev = bf; 584 bf = bf->bf_next; 585 } 586 587 /* 588 * Setup first descriptor of first frame. 589 * chaintxdesc() overwrites the descriptor entries; 590 * setupfirsttxdesc() merges in things. 591 * Otherwise various fields aren't set correctly (eg flags). 592 */ 593 ath_hal_setupfirsttxdesc(sc->sc_ah, 594 bf_first->bf_desc, 595 bf_first->bf_state.bfs_al, 596 bf_first->bf_state.bfs_txflags | HAL_TXDESC_INTREQ, 597 bf_first->bf_state.bfs_txpower, 598 bf_first->bf_state.bfs_txrate0, 599 bf_first->bf_state.bfs_try0, 600 bf_first->bf_state.bfs_txantenna, 601 bf_first->bf_state.bfs_ctsrate, 602 bf_first->bf_state.bfs_ctsduration); 603 604 /* 605 * Set the first descriptor bf_lastds field to point to 606 * the last descriptor in the last subframe, that's where 607 * the status update will occur. 608 */ 609 bf_first->bf_lastds = bf_prev->bf_lastds; 610 611 /* 612 * And bf_last in the first descriptor points to the end of 613 * the aggregate list. 614 */ 615 bf_first->bf_last = bf_prev; 616 617 /* 618 * setup first desc with rate and aggr info 619 */ 620 ath_tx_set_ratectrl(sc, bf_first->bf_node, bf_first); 621 622 /* 623 * Setup the last descriptor in the list. 624 * 625 * bf_first->bf_lastds already points to it; the rate 626 * control information needs to be squirreled away here 627 * as well ans clearing the moreaggr/paddelim fields. 628 */ 629 ath_hal_setuplasttxdesc(sc->sc_ah, bf_first->bf_lastds, 630 bf_first->bf_desc); 631 632 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__); 633 } 634 635 /* 636 * Hand-off a frame to the multicast TX queue. 637 * 638 * This is a software TXQ which will be appended to the CAB queue 639 * during the beacon setup code. 640 * 641 * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID 642 * as part of the TX descriptor, bf_state.bfs_txq must be updated 643 * with the actual hardware txq, or all of this will fall apart. 644 * 645 * XXX It may not be a bad idea to just stuff the QCU ID into bf_state 646 * and retire bfs_txq; then make sure the CABQ QCU ID is populated 647 * correctly. 648 */ 649 static void 650 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, 651 struct ath_buf *bf) 652 { 653 ATH_TXQ_LOCK_ASSERT(txq); 654 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 655 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 656 if (txq->axq_link != NULL) { 657 struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s); 658 struct ieee80211_frame *wh; 659 660 /* mark previous frame */ 661 wh = mtod(last->bf_m, struct ieee80211_frame *); 662 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 663 bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap, 664 BUS_DMASYNC_PREWRITE); 665 666 /* link descriptor */ 667 *txq->axq_link = bf->bf_daddr; 668 } 669 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 670 ath_hal_gettxdesclinkptr(sc->sc_ah, bf->bf_lastds, &txq->axq_link); 671 } 672 673 /* 674 * Hand-off packet to a hardware queue. 675 */ 676 static void 677 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, 678 struct ath_buf *bf) 679 { 680 struct ath_hal *ah = sc->sc_ah; 681 682 /* 683 * Insert the frame on the outbound list and pass it on 684 * to the hardware. Multicast frames buffered for power 685 * save stations and transmit from the CAB queue are stored 686 * on a s/w only queue and loaded on to the CAB queue in 687 * the SWBA handler since frames only go out on DTIM and 688 * to avoid possible races. 689 */ 690 ATH_TXQ_LOCK_ASSERT(txq); 691 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 692 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 693 KASSERT(txq->axq_qnum != ATH_TXQ_SWQ, 694 ("ath_tx_handoff_hw called for mcast queue")); 695 696 #if 0 697 /* 698 * This causes a LOR. Find out where the PCU lock is being 699 * held whilst the TXQ lock is grabbed - that shouldn't 700 * be occuring. 701 */ 702 ATH_PCU_LOCK(sc); 703 if (sc->sc_inreset_cnt) { 704 ATH_PCU_UNLOCK(sc); 705 DPRINTF(sc, ATH_DEBUG_RESET, 706 "%s: called with sc_in_reset != 0\n", 707 __func__); 708 DPRINTF(sc, ATH_DEBUG_XMIT, 709 "%s: queued: TXDP[%u] = %p (%p) depth %d\n", 710 __func__, txq->axq_qnum, 711 (caddr_t)bf->bf_daddr, bf->bf_desc, 712 txq->axq_depth); 713 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 714 if (bf->bf_state.bfs_aggr) 715 txq->axq_aggr_depth++; 716 /* 717 * There's no need to update axq_link; the hardware 718 * is in reset and once the reset is complete, any 719 * non-empty queues will simply have DMA restarted. 720 */ 721 return; 722 } 723 ATH_PCU_UNLOCK(sc); 724 #endif 725 726 /* For now, so not to generate whitespace diffs */ 727 if (1) { 728 #ifdef IEEE80211_SUPPORT_TDMA 729 int qbusy; 730 731 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 732 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum); 733 734 ATH_KTR(sc, ATH_KTR_TX, 4, 735 "ath_tx_handoff: txq=%u, add bf=%p, qbusy=%d, depth=%d", 736 txq->axq_qnum, bf, qbusy, txq->axq_depth); 737 if (txq->axq_link == NULL) { 738 /* 739 * Be careful writing the address to TXDP. If 740 * the tx q is enabled then this write will be 741 * ignored. Normally this is not an issue but 742 * when tdma is in use and the q is beacon gated 743 * this race can occur. If the q is busy then 744 * defer the work to later--either when another 745 * packet comes along or when we prepare a beacon 746 * frame at SWBA. 747 */ 748 if (!qbusy) { 749 ath_hal_puttxbuf(ah, txq->axq_qnum, 750 bf->bf_daddr); 751 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 752 DPRINTF(sc, ATH_DEBUG_XMIT, 753 "%s: TXDP[%u] = %p (%p) lastds=%p depth %d\n", 754 __func__, txq->axq_qnum, 755 (caddr_t)bf->bf_daddr, bf->bf_desc, 756 bf->bf_lastds, 757 txq->axq_depth); 758 ATH_KTR(sc, ATH_KTR_TX, 5, 759 "ath_tx_handoff: TXDP[%u] = %p (%p) " 760 "lastds=%p depth %d", 761 txq->axq_qnum, 762 (caddr_t)bf->bf_daddr, bf->bf_desc, 763 bf->bf_lastds, 764 txq->axq_depth); 765 } else { 766 txq->axq_flags |= ATH_TXQ_PUTPENDING; 767 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 768 "%s: Q%u busy, defer enable\n", __func__, 769 txq->axq_qnum); 770 ATH_KTR(sc, ATH_KTR_TX, 0, "defer enable"); 771 } 772 } else { 773 *txq->axq_link = bf->bf_daddr; 774 DPRINTF(sc, ATH_DEBUG_XMIT, 775 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 776 txq->axq_qnum, txq->axq_link, 777 (caddr_t)bf->bf_daddr, bf->bf_desc, 778 txq->axq_depth); 779 ATH_KTR(sc, ATH_KTR_TX, 5, 780 "ath_tx_handoff: link[%u](%p)=%p (%p) lastds=%p", 781 txq->axq_qnum, txq->axq_link, 782 (caddr_t)bf->bf_daddr, bf->bf_desc, 783 bf->bf_lastds); 784 785 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) { 786 /* 787 * The q was busy when we previously tried 788 * to write the address of the first buffer 789 * in the chain. Since it's not busy now 790 * handle this chore. We are certain the 791 * buffer at the front is the right one since 792 * axq_link is NULL only when the buffer list 793 * is/was empty. 794 */ 795 ath_hal_puttxbuf(ah, txq->axq_qnum, 796 TAILQ_FIRST(&txq->axq_q)->bf_daddr); 797 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 798 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 799 "%s: Q%u restarted\n", __func__, 800 txq->axq_qnum); 801 ATH_KTR(sc, ATH_KTR_TX, 4, 802 "ath_tx_handoff: txq[%d] restarted, bf=%p " 803 "daddr=%p ds=%p", 804 txq->axq_qnum, 805 bf, 806 (caddr_t)bf->bf_daddr, 807 bf->bf_desc); 808 } 809 } 810 #else 811 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 812 ATH_KTR(sc, ATH_KTR_TX, 4, 813 "ath_tx_handoff: non-tdma: txq=%u, add bf=%p, qbusy=%d, " 814 "depth=%d", 815 txq->axq_qnum, 816 bf, 817 qbusy, 818 txq->axq_depth); 819 if (txq->axq_link == NULL) { 820 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 821 DPRINTF(sc, ATH_DEBUG_XMIT, 822 "%s: TXDP[%u] = %p (%p) depth %d\n", 823 __func__, txq->axq_qnum, 824 (caddr_t)bf->bf_daddr, bf->bf_desc, 825 txq->axq_depth); 826 ATH_KTR(sc, ATH_KTR_TX, 5, 827 "ath_tx_handoff: non-tdma: TXDP[%u] = %p (%p) " 828 "lastds=%p depth %d", 829 txq->axq_qnum, 830 (caddr_t)bf->bf_daddr, bf->bf_desc, 831 bf->bf_lastds, 832 txq->axq_depth); 833 834 } else { 835 *txq->axq_link = bf->bf_daddr; 836 DPRINTF(sc, ATH_DEBUG_XMIT, 837 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 838 txq->axq_qnum, txq->axq_link, 839 (caddr_t)bf->bf_daddr, bf->bf_desc, 840 txq->axq_depth); 841 ATH_KTR(sc, ATH_KTR_TX, 5, 842 "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) " 843 "lastds=%d", 844 txq->axq_qnum, txq->axq_link, 845 (caddr_t)bf->bf_daddr, bf->bf_desc, 846 bf->bf_lastds); 847 848 } 849 #endif /* IEEE80211_SUPPORT_TDMA */ 850 if (bf->bf_state.bfs_aggr) 851 txq->axq_aggr_depth++; 852 ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link); 853 ath_hal_txstart(ah, txq->axq_qnum); 854 ATH_KTR(sc, ATH_KTR_TX, 1, 855 "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum); 856 } 857 } 858 859 /* 860 * Restart TX DMA for the given TXQ. 861 * 862 * This must be called whether the queue is empty or not. 863 */ 864 static void 865 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq) 866 { 867 struct ath_hal *ah = sc->sc_ah; 868 struct ath_buf *bf, *bf_last; 869 870 ATH_TXQ_LOCK_ASSERT(txq); 871 872 /* This is always going to be cleared, empty or not */ 873 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 874 875 /* XXX make this ATH_TXQ_FIRST */ 876 bf = TAILQ_FIRST(&txq->axq_q); 877 bf_last = ATH_TXQ_LAST(txq, axq_q_s); 878 879 if (bf == NULL) 880 return; 881 882 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 883 ath_hal_gettxdesclinkptr(ah, bf_last->bf_lastds, &txq->axq_link); 884 ath_hal_txstart(ah, txq->axq_qnum); 885 } 886 887 /* 888 * Hand off a packet to the hardware (or mcast queue.) 889 * 890 * The relevant hardware txq should be locked. 891 */ 892 static void 893 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, 894 struct ath_buf *bf) 895 { 896 ATH_TXQ_LOCK_ASSERT(txq); 897 898 if (txq->axq_qnum == ATH_TXQ_SWQ) 899 ath_tx_handoff_mcast(sc, txq, bf); 900 else 901 ath_tx_handoff_hw(sc, txq, bf); 902 } 903 904 static int 905 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni, 906 struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, 907 int *keyix) 908 { 909 DPRINTF(sc, ATH_DEBUG_XMIT, 910 "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n", 911 __func__, 912 *hdrlen, 913 *pktlen, 914 isfrag, 915 iswep, 916 m0); 917 918 if (iswep) { 919 const struct ieee80211_cipher *cip; 920 struct ieee80211_key *k; 921 922 /* 923 * Construct the 802.11 header+trailer for an encrypted 924 * frame. The only reason this can fail is because of an 925 * unknown or unsupported cipher/key type. 926 */ 927 k = ieee80211_crypto_encap(ni, m0); 928 if (k == NULL) { 929 /* 930 * This can happen when the key is yanked after the 931 * frame was queued. Just discard the frame; the 932 * 802.11 layer counts failures and provides 933 * debugging/diagnostics. 934 */ 935 return (0); 936 } 937 /* 938 * Adjust the packet + header lengths for the crypto 939 * additions and calculate the h/w key index. When 940 * a s/w mic is done the frame will have had any mic 941 * added to it prior to entry so m0->m_pkthdr.len will 942 * account for it. Otherwise we need to add it to the 943 * packet length. 944 */ 945 cip = k->wk_cipher; 946 (*hdrlen) += cip->ic_header; 947 (*pktlen) += cip->ic_header + cip->ic_trailer; 948 /* NB: frags always have any TKIP MIC done in s/w */ 949 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 950 (*pktlen) += cip->ic_miclen; 951 (*keyix) = k->wk_keyix; 952 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 953 /* 954 * Use station key cache slot, if assigned. 955 */ 956 (*keyix) = ni->ni_ucastkey.wk_keyix; 957 if ((*keyix) == IEEE80211_KEYIX_NONE) 958 (*keyix) = HAL_TXKEYIX_INVALID; 959 } else 960 (*keyix) = HAL_TXKEYIX_INVALID; 961 962 return (1); 963 } 964 965 /* 966 * Calculate whether interoperability protection is required for 967 * this frame. 968 * 969 * This requires the rate control information be filled in, 970 * as the protection requirement depends upon the current 971 * operating mode / PHY. 972 */ 973 static void 974 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf) 975 { 976 struct ieee80211_frame *wh; 977 uint8_t rix; 978 uint16_t flags; 979 int shortPreamble; 980 const HAL_RATE_TABLE *rt = sc->sc_currates; 981 struct ifnet *ifp = sc->sc_ifp; 982 struct ieee80211com *ic = ifp->if_l2com; 983 984 flags = bf->bf_state.bfs_txflags; 985 rix = bf->bf_state.bfs_rc[0].rix; 986 shortPreamble = bf->bf_state.bfs_shpream; 987 wh = mtod(bf->bf_m, struct ieee80211_frame *); 988 989 /* 990 * If 802.11g protection is enabled, determine whether 991 * to use RTS/CTS or just CTS. Note that this is only 992 * done for OFDM unicast frames. 993 */ 994 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 995 rt->info[rix].phy == IEEE80211_T_OFDM && 996 (flags & HAL_TXDESC_NOACK) == 0) { 997 bf->bf_state.bfs_doprot = 1; 998 /* XXX fragments must use CCK rates w/ protection */ 999 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { 1000 flags |= HAL_TXDESC_RTSENA; 1001 } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { 1002 flags |= HAL_TXDESC_CTSENA; 1003 } 1004 /* 1005 * For frags it would be desirable to use the 1006 * highest CCK rate for RTS/CTS. But stations 1007 * farther away may detect it at a lower CCK rate 1008 * so use the configured protection rate instead 1009 * (for now). 1010 */ 1011 sc->sc_stats.ast_tx_protect++; 1012 } 1013 1014 /* 1015 * If 11n protection is enabled and it's a HT frame, 1016 * enable RTS. 1017 * 1018 * XXX ic_htprotmode or ic_curhtprotmode? 1019 * XXX should it_htprotmode only matter if ic_curhtprotmode 1020 * XXX indicates it's not a HT pure environment? 1021 */ 1022 if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) && 1023 rt->info[rix].phy == IEEE80211_T_HT && 1024 (flags & HAL_TXDESC_NOACK) == 0) { 1025 flags |= HAL_TXDESC_RTSENA; 1026 sc->sc_stats.ast_tx_htprotect++; 1027 } 1028 bf->bf_state.bfs_txflags = flags; 1029 } 1030 1031 /* 1032 * Update the frame duration given the currently selected rate. 1033 * 1034 * This also updates the frame duration value, so it will require 1035 * a DMA flush. 1036 */ 1037 static void 1038 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf) 1039 { 1040 struct ieee80211_frame *wh; 1041 uint8_t rix; 1042 uint16_t flags; 1043 int shortPreamble; 1044 struct ath_hal *ah = sc->sc_ah; 1045 const HAL_RATE_TABLE *rt = sc->sc_currates; 1046 int isfrag = bf->bf_m->m_flags & M_FRAG; 1047 1048 flags = bf->bf_state.bfs_txflags; 1049 rix = bf->bf_state.bfs_rc[0].rix; 1050 shortPreamble = bf->bf_state.bfs_shpream; 1051 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1052 1053 /* 1054 * Calculate duration. This logically belongs in the 802.11 1055 * layer but it lacks sufficient information to calculate it. 1056 */ 1057 if ((flags & HAL_TXDESC_NOACK) == 0 && 1058 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 1059 u_int16_t dur; 1060 if (shortPreamble) 1061 dur = rt->info[rix].spAckDuration; 1062 else 1063 dur = rt->info[rix].lpAckDuration; 1064 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 1065 dur += dur; /* additional SIFS+ACK */ 1066 KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment")); 1067 /* 1068 * Include the size of next fragment so NAV is 1069 * updated properly. The last fragment uses only 1070 * the ACK duration 1071 */ 1072 dur += ath_hal_computetxtime(ah, rt, 1073 bf->bf_m->m_nextpkt->m_pkthdr.len, 1074 rix, shortPreamble); 1075 } 1076 if (isfrag) { 1077 /* 1078 * Force hardware to use computed duration for next 1079 * fragment by disabling multi-rate retry which updates 1080 * duration based on the multi-rate duration table. 1081 */ 1082 bf->bf_state.bfs_ismrr = 0; 1083 bf->bf_state.bfs_try0 = ATH_TXMGTTRY; 1084 /* XXX update bfs_rc[0].try? */ 1085 } 1086 1087 /* Update the duration field itself */ 1088 *(u_int16_t *)wh->i_dur = htole16(dur); 1089 } 1090 } 1091 1092 static uint8_t 1093 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt, 1094 int cix, int shortPreamble) 1095 { 1096 uint8_t ctsrate; 1097 1098 /* 1099 * CTS transmit rate is derived from the transmit rate 1100 * by looking in the h/w rate table. We must also factor 1101 * in whether or not a short preamble is to be used. 1102 */ 1103 /* NB: cix is set above where RTS/CTS is enabled */ 1104 KASSERT(cix != 0xff, ("cix not setup")); 1105 ctsrate = rt->info[cix].rateCode; 1106 1107 /* XXX this should only matter for legacy rates */ 1108 if (shortPreamble) 1109 ctsrate |= rt->info[cix].shortPreamble; 1110 1111 return (ctsrate); 1112 } 1113 1114 /* 1115 * Calculate the RTS/CTS duration for legacy frames. 1116 */ 1117 static int 1118 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix, 1119 int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt, 1120 int flags) 1121 { 1122 int ctsduration = 0; 1123 1124 /* This mustn't be called for HT modes */ 1125 if (rt->info[cix].phy == IEEE80211_T_HT) { 1126 printf("%s: HT rate where it shouldn't be (0x%x)\n", 1127 __func__, rt->info[cix].rateCode); 1128 return (-1); 1129 } 1130 1131 /* 1132 * Compute the transmit duration based on the frame 1133 * size and the size of an ACK frame. We call into the 1134 * HAL to do the computation since it depends on the 1135 * characteristics of the actual PHY being used. 1136 * 1137 * NB: CTS is assumed the same size as an ACK so we can 1138 * use the precalculated ACK durations. 1139 */ 1140 if (shortPreamble) { 1141 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1142 ctsduration += rt->info[cix].spAckDuration; 1143 ctsduration += ath_hal_computetxtime(ah, 1144 rt, pktlen, rix, AH_TRUE); 1145 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1146 ctsduration += rt->info[rix].spAckDuration; 1147 } else { 1148 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1149 ctsduration += rt->info[cix].lpAckDuration; 1150 ctsduration += ath_hal_computetxtime(ah, 1151 rt, pktlen, rix, AH_FALSE); 1152 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1153 ctsduration += rt->info[rix].lpAckDuration; 1154 } 1155 1156 return (ctsduration); 1157 } 1158 1159 /* 1160 * Update the given ath_buf with updated rts/cts setup and duration 1161 * values. 1162 * 1163 * To support rate lookups for each software retry, the rts/cts rate 1164 * and cts duration must be re-calculated. 1165 * 1166 * This function assumes the RTS/CTS flags have been set as needed; 1167 * mrr has been disabled; and the rate control lookup has been done. 1168 * 1169 * XXX TODO: MRR need only be disabled for the pre-11n NICs. 1170 * XXX The 11n NICs support per-rate RTS/CTS configuration. 1171 */ 1172 static void 1173 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf) 1174 { 1175 uint16_t ctsduration = 0; 1176 uint8_t ctsrate = 0; 1177 uint8_t rix = bf->bf_state.bfs_rc[0].rix; 1178 uint8_t cix = 0; 1179 const HAL_RATE_TABLE *rt = sc->sc_currates; 1180 1181 /* 1182 * No RTS/CTS enabled? Don't bother. 1183 */ 1184 if ((bf->bf_state.bfs_txflags & 1185 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) { 1186 /* XXX is this really needed? */ 1187 bf->bf_state.bfs_ctsrate = 0; 1188 bf->bf_state.bfs_ctsduration = 0; 1189 return; 1190 } 1191 1192 /* 1193 * If protection is enabled, use the protection rix control 1194 * rate. Otherwise use the rate0 control rate. 1195 */ 1196 if (bf->bf_state.bfs_doprot) 1197 rix = sc->sc_protrix; 1198 else 1199 rix = bf->bf_state.bfs_rc[0].rix; 1200 1201 /* 1202 * If the raw path has hard-coded ctsrate0 to something, 1203 * use it. 1204 */ 1205 if (bf->bf_state.bfs_ctsrate0 != 0) 1206 cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0); 1207 else 1208 /* Control rate from above */ 1209 cix = rt->info[rix].controlRate; 1210 1211 /* Calculate the rtscts rate for the given cix */ 1212 ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix, 1213 bf->bf_state.bfs_shpream); 1214 1215 /* The 11n chipsets do ctsduration calculations for you */ 1216 if (! ath_tx_is_11n(sc)) 1217 ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix, 1218 bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, 1219 rt, bf->bf_state.bfs_txflags); 1220 1221 /* Squirrel away in ath_buf */ 1222 bf->bf_state.bfs_ctsrate = ctsrate; 1223 bf->bf_state.bfs_ctsduration = ctsduration; 1224 1225 /* 1226 * Must disable multi-rate retry when using RTS/CTS. 1227 */ 1228 if (!sc->sc_mrrprot) { 1229 bf->bf_state.bfs_ismrr = 0; 1230 bf->bf_state.bfs_try0 = 1231 bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */ 1232 } 1233 } 1234 1235 /* 1236 * Setup the descriptor chain for a normal or fast-frame 1237 * frame. 1238 * 1239 * XXX TODO: extend to include the destination hardware QCU ID. 1240 * Make sure that is correct. Make sure that when being added 1241 * to the mcastq, the CABQ QCUID is set or things will get a bit 1242 * odd. 1243 */ 1244 static void 1245 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf) 1246 { 1247 struct ath_desc *ds = bf->bf_desc; 1248 struct ath_hal *ah = sc->sc_ah; 1249 1250 ath_hal_setuptxdesc(ah, ds 1251 , bf->bf_state.bfs_pktlen /* packet length */ 1252 , bf->bf_state.bfs_hdrlen /* header length */ 1253 , bf->bf_state.bfs_atype /* Atheros packet type */ 1254 , bf->bf_state.bfs_txpower /* txpower */ 1255 , bf->bf_state.bfs_txrate0 1256 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 1257 , bf->bf_state.bfs_keyix /* key cache index */ 1258 , bf->bf_state.bfs_txantenna /* antenna mode */ 1259 , bf->bf_state.bfs_txflags /* flags */ 1260 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 1261 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 1262 ); 1263 1264 /* 1265 * This will be overriden when the descriptor chain is written. 1266 */ 1267 bf->bf_lastds = ds; 1268 bf->bf_last = bf; 1269 1270 /* Set rate control and descriptor chain for this frame */ 1271 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 1272 ath_tx_chaindesclist(sc, bf); 1273 } 1274 1275 /* 1276 * Do a rate lookup. 1277 * 1278 * This performs a rate lookup for the given ath_buf only if it's required. 1279 * Non-data frames and raw frames don't require it. 1280 * 1281 * This populates the primary and MRR entries; MRR values are 1282 * then disabled later on if something requires it (eg RTS/CTS on 1283 * pre-11n chipsets. 1284 * 1285 * This needs to be done before the RTS/CTS fields are calculated 1286 * as they may depend upon the rate chosen. 1287 */ 1288 static void 1289 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf) 1290 { 1291 uint8_t rate, rix; 1292 int try0; 1293 1294 if (! bf->bf_state.bfs_doratelookup) 1295 return; 1296 1297 /* Get rid of any previous state */ 1298 bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1299 1300 ATH_NODE_LOCK(ATH_NODE(bf->bf_node)); 1301 ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream, 1302 bf->bf_state.bfs_pktlen, &rix, &try0, &rate); 1303 1304 /* In case MRR is disabled, make sure rc[0] is setup correctly */ 1305 bf->bf_state.bfs_rc[0].rix = rix; 1306 bf->bf_state.bfs_rc[0].ratecode = rate; 1307 bf->bf_state.bfs_rc[0].tries = try0; 1308 1309 if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY) 1310 ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix, 1311 bf->bf_state.bfs_rc); 1312 ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node)); 1313 1314 sc->sc_txrix = rix; /* for LED blinking */ 1315 sc->sc_lastdatarix = rix; /* for fast frames */ 1316 bf->bf_state.bfs_try0 = try0; 1317 bf->bf_state.bfs_txrate0 = rate; 1318 } 1319 1320 /* 1321 * Update the CLRDMASK bit in the ath_buf if it needs to be set. 1322 */ 1323 static void 1324 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid, 1325 struct ath_buf *bf) 1326 { 1327 1328 ATH_TID_LOCK_ASSERT(sc, tid); 1329 1330 if (tid->clrdmask == 1) { 1331 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1332 tid->clrdmask = 0; 1333 } 1334 } 1335 1336 /* 1337 * Transmit the given frame to the hardware. 1338 * 1339 * The frame must already be setup; rate control must already have 1340 * been done. 1341 * 1342 * XXX since the TXQ lock is being held here (and I dislike holding 1343 * it for this long when not doing software aggregation), later on 1344 * break this function into "setup_normal" and "xmit_normal". The 1345 * lock only needs to be held for the ath_tx_handoff call. 1346 */ 1347 static void 1348 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq, 1349 struct ath_buf *bf) 1350 { 1351 struct ath_node *an = ATH_NODE(bf->bf_node); 1352 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 1353 1354 ATH_TXQ_LOCK_ASSERT(txq); 1355 1356 /* 1357 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does 1358 * set a completion handler however it doesn't (yet) properly 1359 * handle the strict ordering requirements needed for normal, 1360 * non-aggregate session frames. 1361 * 1362 * Once this is implemented, only set CLRDMASK like this for 1363 * frames that must go out - eg management/raw frames. 1364 */ 1365 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1366 1367 /* Setup the descriptor before handoff */ 1368 ath_tx_do_ratelookup(sc, bf); 1369 ath_tx_calc_duration(sc, bf); 1370 ath_tx_calc_protection(sc, bf); 1371 ath_tx_set_rtscts(sc, bf); 1372 ath_tx_rate_fill_rcflags(sc, bf); 1373 ath_tx_setds(sc, bf); 1374 1375 /* Track per-TID hardware queue depth correctly */ 1376 tid->hwq_depth++; 1377 1378 /* Assign the completion handler */ 1379 bf->bf_comp = ath_tx_normal_comp; 1380 1381 /* Hand off to hardware */ 1382 ath_tx_handoff(sc, txq, bf); 1383 } 1384 1385 /* 1386 * Do the basic frame setup stuff that's required before the frame 1387 * is added to a software queue. 1388 * 1389 * All frames get mostly the same treatment and it's done once. 1390 * Retransmits fiddle with things like the rate control setup, 1391 * setting the retransmit bit in the packet; doing relevant DMA/bus 1392 * syncing and relinking it (back) into the hardware TX queue. 1393 * 1394 * Note that this may cause the mbuf to be reallocated, so 1395 * m0 may not be valid. 1396 */ 1397 static int 1398 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni, 1399 struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq) 1400 { 1401 struct ieee80211vap *vap = ni->ni_vap; 1402 struct ath_hal *ah = sc->sc_ah; 1403 struct ifnet *ifp = sc->sc_ifp; 1404 struct ieee80211com *ic = ifp->if_l2com; 1405 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1406 int error, iswep, ismcast, isfrag, ismrr; 1407 int keyix, hdrlen, pktlen, try0 = 0; 1408 u_int8_t rix = 0, txrate = 0; 1409 struct ath_desc *ds; 1410 struct ieee80211_frame *wh; 1411 u_int subtype, flags; 1412 HAL_PKT_TYPE atype; 1413 const HAL_RATE_TABLE *rt; 1414 HAL_BOOL shortPreamble; 1415 struct ath_node *an; 1416 u_int pri; 1417 1418 /* 1419 * To ensure that both sequence numbers and the CCMP PN handling 1420 * is "correct", make sure that the relevant TID queue is locked. 1421 * Otherwise the CCMP PN and seqno may appear out of order, causing 1422 * re-ordered frames to have out of order CCMP PN's, resulting 1423 * in many, many frame drops. 1424 */ 1425 ATH_TXQ_LOCK_ASSERT(txq); 1426 1427 wh = mtod(m0, struct ieee80211_frame *); 1428 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 1429 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1430 isfrag = m0->m_flags & M_FRAG; 1431 hdrlen = ieee80211_anyhdrsize(wh); 1432 /* 1433 * Packet length must not include any 1434 * pad bytes; deduct them here. 1435 */ 1436 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 1437 1438 /* Handle encryption twiddling if needed */ 1439 if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen, 1440 &pktlen, &keyix)) { 1441 ath_freetx(m0); 1442 return EIO; 1443 } 1444 1445 /* packet header may have moved, reset our local pointer */ 1446 wh = mtod(m0, struct ieee80211_frame *); 1447 1448 pktlen += IEEE80211_CRC_LEN; 1449 1450 /* 1451 * Load the DMA map so any coalescing is done. This 1452 * also calculates the number of descriptors we need. 1453 */ 1454 error = ath_tx_dmasetup(sc, bf, m0); 1455 if (error != 0) 1456 return error; 1457 bf->bf_node = ni; /* NB: held reference */ 1458 m0 = bf->bf_m; /* NB: may have changed */ 1459 wh = mtod(m0, struct ieee80211_frame *); 1460 1461 /* setup descriptors */ 1462 ds = bf->bf_desc; 1463 rt = sc->sc_currates; 1464 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1465 1466 /* 1467 * NB: the 802.11 layer marks whether or not we should 1468 * use short preamble based on the current mode and 1469 * negotiated parameters. 1470 */ 1471 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1472 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 1473 shortPreamble = AH_TRUE; 1474 sc->sc_stats.ast_tx_shortpre++; 1475 } else { 1476 shortPreamble = AH_FALSE; 1477 } 1478 1479 an = ATH_NODE(ni); 1480 //flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 1481 flags = 0; 1482 ismrr = 0; /* default no multi-rate retry*/ 1483 pri = M_WME_GETAC(m0); /* honor classification */ 1484 /* XXX use txparams instead of fixed values */ 1485 /* 1486 * Calculate Atheros packet type from IEEE80211 packet header, 1487 * setup for rate calculations, and select h/w transmit queue. 1488 */ 1489 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1490 case IEEE80211_FC0_TYPE_MGT: 1491 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1492 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 1493 atype = HAL_PKT_TYPE_BEACON; 1494 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1495 atype = HAL_PKT_TYPE_PROBE_RESP; 1496 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 1497 atype = HAL_PKT_TYPE_ATIM; 1498 else 1499 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 1500 rix = an->an_mgmtrix; 1501 txrate = rt->info[rix].rateCode; 1502 if (shortPreamble) 1503 txrate |= rt->info[rix].shortPreamble; 1504 try0 = ATH_TXMGTTRY; 1505 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1506 break; 1507 case IEEE80211_FC0_TYPE_CTL: 1508 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 1509 rix = an->an_mgmtrix; 1510 txrate = rt->info[rix].rateCode; 1511 if (shortPreamble) 1512 txrate |= rt->info[rix].shortPreamble; 1513 try0 = ATH_TXMGTTRY; 1514 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1515 break; 1516 case IEEE80211_FC0_TYPE_DATA: 1517 atype = HAL_PKT_TYPE_NORMAL; /* default */ 1518 /* 1519 * Data frames: multicast frames go out at a fixed rate, 1520 * EAPOL frames use the mgmt frame rate; otherwise consult 1521 * the rate control module for the rate to use. 1522 */ 1523 if (ismcast) { 1524 rix = an->an_mcastrix; 1525 txrate = rt->info[rix].rateCode; 1526 if (shortPreamble) 1527 txrate |= rt->info[rix].shortPreamble; 1528 try0 = 1; 1529 } else if (m0->m_flags & M_EAPOL) { 1530 /* XXX? maybe always use long preamble? */ 1531 rix = an->an_mgmtrix; 1532 txrate = rt->info[rix].rateCode; 1533 if (shortPreamble) 1534 txrate |= rt->info[rix].shortPreamble; 1535 try0 = ATH_TXMAXTRY; /* XXX?too many? */ 1536 } else { 1537 /* 1538 * Do rate lookup on each TX, rather than using 1539 * the hard-coded TX information decided here. 1540 */ 1541 ismrr = 1; 1542 bf->bf_state.bfs_doratelookup = 1; 1543 } 1544 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 1545 flags |= HAL_TXDESC_NOACK; 1546 break; 1547 default: 1548 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 1549 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1550 /* XXX statistic */ 1551 ath_freetx(m0); 1552 return EIO; 1553 } 1554 1555 /* 1556 * There are two known scenarios where the frame AC doesn't match 1557 * what the destination TXQ is. 1558 * 1559 * + non-QoS frames (eg management?) that the net80211 stack has 1560 * assigned a higher AC to, but since it's a non-QoS TID, it's 1561 * being thrown into TID 16. TID 16 gets the AC_BE queue. 1562 * It's quite possible that management frames should just be 1563 * direct dispatched to hardware rather than go via the software 1564 * queue; that should be investigated in the future. There are 1565 * some specific scenarios where this doesn't make sense, mostly 1566 * surrounding ADDBA request/response - hence why that is special 1567 * cased. 1568 * 1569 * + Multicast frames going into the VAP mcast queue. That shows up 1570 * as "TXQ 11". 1571 * 1572 * This driver should eventually support separate TID and TXQ locking, 1573 * allowing for arbitrary AC frames to appear on arbitrary software 1574 * queues, being queued to the "correct" hardware queue when needed. 1575 */ 1576 #if 0 1577 if (txq != sc->sc_ac2q[pri]) { 1578 device_printf(sc->sc_dev, 1579 "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n", 1580 __func__, 1581 txq, 1582 txq->axq_qnum, 1583 pri, 1584 sc->sc_ac2q[pri], 1585 sc->sc_ac2q[pri]->axq_qnum); 1586 } 1587 #endif 1588 1589 /* 1590 * Calculate miscellaneous flags. 1591 */ 1592 if (ismcast) { 1593 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 1594 } else if (pktlen > vap->iv_rtsthreshold && 1595 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { 1596 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 1597 sc->sc_stats.ast_tx_rts++; 1598 } 1599 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 1600 sc->sc_stats.ast_tx_noack++; 1601 #ifdef IEEE80211_SUPPORT_TDMA 1602 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { 1603 DPRINTF(sc, ATH_DEBUG_TDMA, 1604 "%s: discard frame, ACK required w/ TDMA\n", __func__); 1605 sc->sc_stats.ast_tdma_ack++; 1606 ath_freetx(m0); 1607 return EIO; 1608 } 1609 #endif 1610 1611 /* 1612 * Determine if a tx interrupt should be generated for 1613 * this descriptor. We take a tx interrupt to reap 1614 * descriptors when the h/w hits an EOL condition or 1615 * when the descriptor is specifically marked to generate 1616 * an interrupt. We periodically mark descriptors in this 1617 * way to insure timely replenishing of the supply needed 1618 * for sending frames. Defering interrupts reduces system 1619 * load and potentially allows more concurrent work to be 1620 * done but if done to aggressively can cause senders to 1621 * backup. 1622 * 1623 * NB: use >= to deal with sc_txintrperiod changing 1624 * dynamically through sysctl. 1625 */ 1626 if (flags & HAL_TXDESC_INTREQ) { 1627 txq->axq_intrcnt = 0; 1628 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 1629 flags |= HAL_TXDESC_INTREQ; 1630 txq->axq_intrcnt = 0; 1631 } 1632 1633 /* This point forward is actual TX bits */ 1634 1635 /* 1636 * At this point we are committed to sending the frame 1637 * and we don't need to look at m_nextpkt; clear it in 1638 * case this frame is part of frag chain. 1639 */ 1640 m0->m_nextpkt = NULL; 1641 1642 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 1643 ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 1644 sc->sc_hwmap[rix].ieeerate, -1); 1645 1646 if (ieee80211_radiotap_active_vap(vap)) { 1647 u_int64_t tsf = ath_hal_gettsf64(ah); 1648 1649 sc->sc_tx_th.wt_tsf = htole64(tsf); 1650 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 1651 if (iswep) 1652 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1653 if (isfrag) 1654 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1655 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 1656 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 1657 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 1658 1659 ieee80211_radiotap_tx(vap, m0); 1660 } 1661 1662 /* Blank the legacy rate array */ 1663 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1664 1665 /* 1666 * ath_buf_set_rate needs at least one rate/try to setup 1667 * the rate scenario. 1668 */ 1669 bf->bf_state.bfs_rc[0].rix = rix; 1670 bf->bf_state.bfs_rc[0].tries = try0; 1671 bf->bf_state.bfs_rc[0].ratecode = txrate; 1672 1673 /* Store the decided rate index values away */ 1674 bf->bf_state.bfs_pktlen = pktlen; 1675 bf->bf_state.bfs_hdrlen = hdrlen; 1676 bf->bf_state.bfs_atype = atype; 1677 bf->bf_state.bfs_txpower = ni->ni_txpower; 1678 bf->bf_state.bfs_txrate0 = txrate; 1679 bf->bf_state.bfs_try0 = try0; 1680 bf->bf_state.bfs_keyix = keyix; 1681 bf->bf_state.bfs_txantenna = sc->sc_txantenna; 1682 bf->bf_state.bfs_txflags = flags; 1683 bf->bf_state.bfs_shpream = shortPreamble; 1684 1685 /* XXX this should be done in ath_tx_setrate() */ 1686 bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */ 1687 bf->bf_state.bfs_ctsrate = 0; /* calculated later */ 1688 bf->bf_state.bfs_ctsduration = 0; 1689 bf->bf_state.bfs_ismrr = ismrr; 1690 1691 return 0; 1692 } 1693 1694 /* 1695 * Queue a frame to the hardware or software queue. 1696 * 1697 * This can be called by the net80211 code. 1698 * 1699 * XXX what about locking? Or, push the seqno assign into the 1700 * XXX aggregate scheduler so its serialised? 1701 * 1702 * XXX When sending management frames via ath_raw_xmit(), 1703 * should CLRDMASK be set unconditionally? 1704 */ 1705 int 1706 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, 1707 struct ath_buf *bf, struct mbuf *m0) 1708 { 1709 struct ieee80211vap *vap = ni->ni_vap; 1710 struct ath_vap *avp = ATH_VAP(vap); 1711 int r = 0; 1712 u_int pri; 1713 int tid; 1714 struct ath_txq *txq; 1715 int ismcast; 1716 const struct ieee80211_frame *wh; 1717 int is_ampdu, is_ampdu_tx, is_ampdu_pending; 1718 ieee80211_seq seqno; 1719 uint8_t type, subtype; 1720 1721 /* 1722 * Determine the target hardware queue. 1723 * 1724 * For multicast frames, the txq gets overridden appropriately 1725 * depending upon the state of PS. 1726 * 1727 * For any other frame, we do a TID/QoS lookup inside the frame 1728 * to see what the TID should be. If it's a non-QoS frame, the 1729 * AC and TID are overridden. The TID/TXQ code assumes the 1730 * TID is on a predictable hardware TXQ, so we don't support 1731 * having a node TID queued to multiple hardware TXQs. 1732 * This may change in the future but would require some locking 1733 * fudgery. 1734 */ 1735 pri = ath_tx_getac(sc, m0); 1736 tid = ath_tx_gettid(sc, m0); 1737 1738 txq = sc->sc_ac2q[pri]; 1739 wh = mtod(m0, struct ieee80211_frame *); 1740 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1741 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1742 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1743 1744 /* 1745 * Enforce how deep the multicast queue can grow. 1746 * 1747 * XXX duplicated in ath_raw_xmit(). 1748 */ 1749 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1750 ATH_TXQ_LOCK(sc->sc_cabq); 1751 1752 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { 1753 sc->sc_stats.ast_tx_mcastq_overflow++; 1754 r = ENOBUFS; 1755 } 1756 1757 ATH_TXQ_UNLOCK(sc->sc_cabq); 1758 1759 if (r != 0) { 1760 m_freem(m0); 1761 return r; 1762 } 1763 } 1764 1765 /* A-MPDU TX */ 1766 is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid); 1767 is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid); 1768 is_ampdu = is_ampdu_tx | is_ampdu_pending; 1769 1770 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n", 1771 __func__, tid, pri, is_ampdu); 1772 1773 /* Set local packet state, used to queue packets to hardware */ 1774 bf->bf_state.bfs_tid = tid; 1775 bf->bf_state.bfs_txq = txq; 1776 bf->bf_state.bfs_pri = pri; 1777 1778 /* 1779 * When servicing one or more stations in power-save mode 1780 * (or) if there is some mcast data waiting on the mcast 1781 * queue (to prevent out of order delivery) multicast frames 1782 * must be bufferd until after the beacon. 1783 * 1784 * TODO: we should lock the mcastq before we check the length. 1785 */ 1786 if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) { 1787 txq = &avp->av_mcastq; 1788 /* 1789 * Mark the frame as eventually belonging on the CAB 1790 * queue, so the descriptor setup functions will 1791 * correctly initialise the descriptor 'qcuId' field. 1792 */ 1793 bf->bf_state.bfs_txq = sc->sc_cabq; 1794 } 1795 1796 /* Do the generic frame setup */ 1797 /* XXX should just bzero the bf_state? */ 1798 bf->bf_state.bfs_dobaw = 0; 1799 1800 /* 1801 * Acquire the TXQ lock early, so both the encap and seqno 1802 * are allocated together. 1803 * 1804 * XXX should TXQ for CABQ traffic be the multicast queue, 1805 * or the TXQ the given PRI would allocate from? (eg for 1806 * sequence number allocation locking.) 1807 */ 1808 ATH_TXQ_LOCK(txq); 1809 1810 /* A-MPDU TX? Manually set sequence number */ 1811 /* 1812 * Don't do it whilst pending; the net80211 layer still 1813 * assigns them. 1814 */ 1815 if (is_ampdu_tx) { 1816 /* 1817 * Always call; this function will 1818 * handle making sure that null data frames 1819 * don't get a sequence number from the current 1820 * TID and thus mess with the BAW. 1821 */ 1822 seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0); 1823 1824 /* 1825 * Don't add QoS NULL frames to the BAW. 1826 */ 1827 if (IEEE80211_QOS_HAS_SEQ(wh) && 1828 subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) { 1829 bf->bf_state.bfs_dobaw = 1; 1830 } 1831 } 1832 1833 /* 1834 * If needed, the sequence number has been assigned. 1835 * Squirrel it away somewhere easy to get to. 1836 */ 1837 bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT; 1838 1839 /* Is ampdu pending? fetch the seqno and print it out */ 1840 if (is_ampdu_pending) 1841 DPRINTF(sc, ATH_DEBUG_SW_TX, 1842 "%s: tid %d: ampdu pending, seqno %d\n", 1843 __func__, tid, M_SEQNO_GET(m0)); 1844 1845 /* This also sets up the DMA map */ 1846 r = ath_tx_normal_setup(sc, ni, bf, m0, txq); 1847 1848 if (r != 0) 1849 goto done; 1850 1851 /* At this point m0 could have changed! */ 1852 m0 = bf->bf_m; 1853 1854 #if 1 1855 /* 1856 * If it's a multicast frame, do a direct-dispatch to the 1857 * destination hardware queue. Don't bother software 1858 * queuing it. 1859 */ 1860 /* 1861 * If it's a BAR frame, do a direct dispatch to the 1862 * destination hardware queue. Don't bother software 1863 * queuing it, as the TID will now be paused. 1864 * Sending a BAR frame can occur from the net80211 txa timer 1865 * (ie, retries) or from the ath txtask (completion call.) 1866 * It queues directly to hardware because the TID is paused 1867 * at this point (and won't be unpaused until the BAR has 1868 * either been TXed successfully or max retries has been 1869 * reached.) 1870 */ 1871 if (txq == &avp->av_mcastq) { 1872 DPRINTF(sc, ATH_DEBUG_SW_TX, 1873 "%s: bf=%p: mcastq: TX'ing\n", __func__, bf); 1874 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1875 ath_tx_xmit_normal(sc, txq, bf); 1876 } else if (type == IEEE80211_FC0_TYPE_CTL && 1877 subtype == IEEE80211_FC0_SUBTYPE_BAR) { 1878 DPRINTF(sc, ATH_DEBUG_SW_TX, 1879 "%s: BAR: TX'ing direct\n", __func__); 1880 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1881 ath_tx_xmit_normal(sc, txq, bf); 1882 } else { 1883 /* add to software queue */ 1884 DPRINTF(sc, ATH_DEBUG_SW_TX, 1885 "%s: bf=%p: swq: TX'ing\n", __func__, bf); 1886 ath_tx_swq(sc, ni, txq, bf); 1887 } 1888 #else 1889 /* 1890 * For now, since there's no software queue, 1891 * direct-dispatch to the hardware. 1892 */ 1893 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1894 ath_tx_xmit_normal(sc, txq, bf); 1895 #endif 1896 done: 1897 ATH_TXQ_UNLOCK(txq); 1898 1899 return 0; 1900 } 1901 1902 static int 1903 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, 1904 struct ath_buf *bf, struct mbuf *m0, 1905 const struct ieee80211_bpf_params *params) 1906 { 1907 struct ifnet *ifp = sc->sc_ifp; 1908 struct ieee80211com *ic = ifp->if_l2com; 1909 struct ath_hal *ah = sc->sc_ah; 1910 struct ieee80211vap *vap = ni->ni_vap; 1911 int error, ismcast, ismrr; 1912 int keyix, hdrlen, pktlen, try0, txantenna; 1913 u_int8_t rix, txrate; 1914 struct ieee80211_frame *wh; 1915 u_int flags; 1916 HAL_PKT_TYPE atype; 1917 const HAL_RATE_TABLE *rt; 1918 struct ath_desc *ds; 1919 u_int pri; 1920 int o_tid = -1; 1921 int do_override; 1922 1923 wh = mtod(m0, struct ieee80211_frame *); 1924 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1925 hdrlen = ieee80211_anyhdrsize(wh); 1926 /* 1927 * Packet length must not include any 1928 * pad bytes; deduct them here. 1929 */ 1930 /* XXX honor IEEE80211_BPF_DATAPAD */ 1931 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; 1932 1933 ATH_KTR(sc, ATH_KTR_TX, 2, 1934 "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf); 1935 1936 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n", 1937 __func__, ismcast); 1938 1939 pri = params->ibp_pri & 3; 1940 /* Override pri if the frame isn't a QoS one */ 1941 if (! IEEE80211_QOS_HAS_SEQ(wh)) 1942 pri = ath_tx_getac(sc, m0); 1943 1944 /* XXX If it's an ADDBA, override the correct queue */ 1945 do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid); 1946 1947 /* Map ADDBA to the correct priority */ 1948 if (do_override) { 1949 #if 0 1950 device_printf(sc->sc_dev, 1951 "%s: overriding tid %d pri %d -> %d\n", 1952 __func__, o_tid, pri, TID_TO_WME_AC(o_tid)); 1953 #endif 1954 pri = TID_TO_WME_AC(o_tid); 1955 } 1956 1957 ATH_TXQ_LOCK(sc->sc_ac2q[pri]); 1958 1959 /* Handle encryption twiddling if needed */ 1960 if (! ath_tx_tag_crypto(sc, ni, 1961 m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0, 1962 &hdrlen, &pktlen, &keyix)) { 1963 ath_freetx(m0); 1964 return EIO; 1965 } 1966 /* packet header may have moved, reset our local pointer */ 1967 wh = mtod(m0, struct ieee80211_frame *); 1968 1969 /* Do the generic frame setup */ 1970 /* XXX should just bzero the bf_state? */ 1971 bf->bf_state.bfs_dobaw = 0; 1972 1973 error = ath_tx_dmasetup(sc, bf, m0); 1974 if (error != 0) 1975 return error; 1976 m0 = bf->bf_m; /* NB: may have changed */ 1977 wh = mtod(m0, struct ieee80211_frame *); 1978 bf->bf_node = ni; /* NB: held reference */ 1979 1980 /* Always enable CLRDMASK for raw frames for now.. */ 1981 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 1982 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1983 if (params->ibp_flags & IEEE80211_BPF_RTS) 1984 flags |= HAL_TXDESC_RTSENA; 1985 else if (params->ibp_flags & IEEE80211_BPF_CTS) { 1986 /* XXX assume 11g/11n protection? */ 1987 bf->bf_state.bfs_doprot = 1; 1988 flags |= HAL_TXDESC_CTSENA; 1989 } 1990 /* XXX leave ismcast to injector? */ 1991 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) 1992 flags |= HAL_TXDESC_NOACK; 1993 1994 rt = sc->sc_currates; 1995 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1996 rix = ath_tx_findrix(sc, params->ibp_rate0); 1997 txrate = rt->info[rix].rateCode; 1998 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 1999 txrate |= rt->info[rix].shortPreamble; 2000 sc->sc_txrix = rix; 2001 try0 = params->ibp_try0; 2002 ismrr = (params->ibp_try1 != 0); 2003 txantenna = params->ibp_pri >> 2; 2004 if (txantenna == 0) /* XXX? */ 2005 txantenna = sc->sc_txantenna; 2006 2007 /* 2008 * Since ctsrate is fixed, store it away for later 2009 * use when the descriptor fields are being set. 2010 */ 2011 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) 2012 bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate; 2013 2014 /* 2015 * NB: we mark all packets as type PSPOLL so the h/w won't 2016 * set the sequence number, duration, etc. 2017 */ 2018 atype = HAL_PKT_TYPE_PSPOLL; 2019 2020 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 2021 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 2022 sc->sc_hwmap[rix].ieeerate, -1); 2023 2024 if (ieee80211_radiotap_active_vap(vap)) { 2025 u_int64_t tsf = ath_hal_gettsf64(ah); 2026 2027 sc->sc_tx_th.wt_tsf = htole64(tsf); 2028 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 2029 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2030 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2031 if (m0->m_flags & M_FRAG) 2032 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2033 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 2034 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 2035 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 2036 2037 ieee80211_radiotap_tx(vap, m0); 2038 } 2039 2040 /* 2041 * Formulate first tx descriptor with tx controls. 2042 */ 2043 ds = bf->bf_desc; 2044 /* XXX check return value? */ 2045 2046 /* Store the decided rate index values away */ 2047 bf->bf_state.bfs_pktlen = pktlen; 2048 bf->bf_state.bfs_hdrlen = hdrlen; 2049 bf->bf_state.bfs_atype = atype; 2050 bf->bf_state.bfs_txpower = params->ibp_power; 2051 bf->bf_state.bfs_txrate0 = txrate; 2052 bf->bf_state.bfs_try0 = try0; 2053 bf->bf_state.bfs_keyix = keyix; 2054 bf->bf_state.bfs_txantenna = txantenna; 2055 bf->bf_state.bfs_txflags = flags; 2056 bf->bf_state.bfs_shpream = 2057 !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE); 2058 2059 /* Set local packet state, used to queue packets to hardware */ 2060 bf->bf_state.bfs_tid = WME_AC_TO_TID(pri); 2061 bf->bf_state.bfs_txq = sc->sc_ac2q[pri]; 2062 bf->bf_state.bfs_pri = pri; 2063 2064 /* XXX this should be done in ath_tx_setrate() */ 2065 bf->bf_state.bfs_ctsrate = 0; 2066 bf->bf_state.bfs_ctsduration = 0; 2067 bf->bf_state.bfs_ismrr = ismrr; 2068 2069 /* Blank the legacy rate array */ 2070 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 2071 2072 bf->bf_state.bfs_rc[0].rix = 2073 ath_tx_findrix(sc, params->ibp_rate0); 2074 bf->bf_state.bfs_rc[0].tries = try0; 2075 bf->bf_state.bfs_rc[0].ratecode = txrate; 2076 2077 if (ismrr) { 2078 int rix; 2079 2080 rix = ath_tx_findrix(sc, params->ibp_rate1); 2081 bf->bf_state.bfs_rc[1].rix = rix; 2082 bf->bf_state.bfs_rc[1].tries = params->ibp_try1; 2083 2084 rix = ath_tx_findrix(sc, params->ibp_rate2); 2085 bf->bf_state.bfs_rc[2].rix = rix; 2086 bf->bf_state.bfs_rc[2].tries = params->ibp_try2; 2087 2088 rix = ath_tx_findrix(sc, params->ibp_rate3); 2089 bf->bf_state.bfs_rc[3].rix = rix; 2090 bf->bf_state.bfs_rc[3].tries = params->ibp_try3; 2091 } 2092 /* 2093 * All the required rate control decisions have been made; 2094 * fill in the rc flags. 2095 */ 2096 ath_tx_rate_fill_rcflags(sc, bf); 2097 2098 /* NB: no buffered multicast in power save support */ 2099 2100 /* 2101 * If we're overiding the ADDBA destination, dump directly 2102 * into the hardware queue, right after any pending 2103 * frames to that node are. 2104 */ 2105 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n", 2106 __func__, do_override); 2107 2108 #if 1 2109 if (do_override) { 2110 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2111 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2112 } else { 2113 /* Queue to software queue */ 2114 ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf); 2115 } 2116 #else 2117 /* Direct-dispatch to the hardware */ 2118 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2119 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2120 #endif 2121 ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]); 2122 2123 return 0; 2124 } 2125 2126 /* 2127 * Send a raw frame. 2128 * 2129 * This can be called by net80211. 2130 */ 2131 int 2132 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2133 const struct ieee80211_bpf_params *params) 2134 { 2135 struct ieee80211com *ic = ni->ni_ic; 2136 struct ifnet *ifp = ic->ic_ifp; 2137 struct ath_softc *sc = ifp->if_softc; 2138 struct ath_buf *bf; 2139 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 2140 int error = 0; 2141 2142 ATH_PCU_LOCK(sc); 2143 if (sc->sc_inreset_cnt > 0) { 2144 device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n", 2145 __func__); 2146 error = EIO; 2147 ATH_PCU_UNLOCK(sc); 2148 goto bad0; 2149 } 2150 sc->sc_txstart_cnt++; 2151 ATH_PCU_UNLOCK(sc); 2152 2153 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) { 2154 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__, 2155 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ? 2156 "!running" : "invalid"); 2157 m_freem(m); 2158 error = ENETDOWN; 2159 goto bad; 2160 } 2161 2162 /* 2163 * Enforce how deep the multicast queue can grow. 2164 * 2165 * XXX duplicated in ath_tx_start(). 2166 */ 2167 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2168 ATH_TXQ_LOCK(sc->sc_cabq); 2169 2170 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { 2171 sc->sc_stats.ast_tx_mcastq_overflow++; 2172 error = ENOBUFS; 2173 } 2174 2175 ATH_TXQ_UNLOCK(sc->sc_cabq); 2176 2177 if (error != 0) { 2178 m_freem(m); 2179 goto bad; 2180 } 2181 } 2182 2183 /* 2184 * Grab a TX buffer and associated resources. 2185 */ 2186 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 2187 if (bf == NULL) { 2188 sc->sc_stats.ast_tx_nobuf++; 2189 m_freem(m); 2190 error = ENOBUFS; 2191 goto bad; 2192 } 2193 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n", 2194 m, params, bf); 2195 2196 if (params == NULL) { 2197 /* 2198 * Legacy path; interpret frame contents to decide 2199 * precisely how to send the frame. 2200 */ 2201 if (ath_tx_start(sc, ni, bf, m)) { 2202 error = EIO; /* XXX */ 2203 goto bad2; 2204 } 2205 } else { 2206 /* 2207 * Caller supplied explicit parameters to use in 2208 * sending the frame. 2209 */ 2210 if (ath_tx_raw_start(sc, ni, bf, m, params)) { 2211 error = EIO; /* XXX */ 2212 goto bad2; 2213 } 2214 } 2215 sc->sc_wd_timer = 5; 2216 ifp->if_opackets++; 2217 sc->sc_stats.ast_tx_raw++; 2218 2219 ATH_PCU_LOCK(sc); 2220 sc->sc_txstart_cnt--; 2221 ATH_PCU_UNLOCK(sc); 2222 2223 return 0; 2224 bad2: 2225 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, " 2226 "bf=%p", 2227 m, 2228 params, 2229 bf); 2230 ATH_TXBUF_LOCK(sc); 2231 ath_returnbuf_head(sc, bf); 2232 ATH_TXBUF_UNLOCK(sc); 2233 bad: 2234 ATH_PCU_LOCK(sc); 2235 sc->sc_txstart_cnt--; 2236 ATH_PCU_UNLOCK(sc); 2237 bad0: 2238 ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p", 2239 m, params); 2240 ifp->if_oerrors++; 2241 sc->sc_stats.ast_tx_raw_fail++; 2242 ieee80211_free_node(ni); 2243 2244 return error; 2245 } 2246 2247 /* Some helper functions */ 2248 2249 /* 2250 * ADDBA (and potentially others) need to be placed in the same 2251 * hardware queue as the TID/node it's relating to. This is so 2252 * it goes out after any pending non-aggregate frames to the 2253 * same node/TID. 2254 * 2255 * If this isn't done, the ADDBA can go out before the frames 2256 * queued in hardware. Even though these frames have a sequence 2257 * number -earlier- than the ADDBA can be transmitted (but 2258 * no frames whose sequence numbers are after the ADDBA should 2259 * be!) they'll arrive after the ADDBA - and the receiving end 2260 * will simply drop them as being out of the BAW. 2261 * 2262 * The frames can't be appended to the TID software queue - it'll 2263 * never be sent out. So these frames have to be directly 2264 * dispatched to the hardware, rather than queued in software. 2265 * So if this function returns true, the TXQ has to be 2266 * overridden and it has to be directly dispatched. 2267 * 2268 * It's a dirty hack, but someone's gotta do it. 2269 */ 2270 2271 /* 2272 * XXX doesn't belong here! 2273 */ 2274 static int 2275 ieee80211_is_action(struct ieee80211_frame *wh) 2276 { 2277 /* Type: Management frame? */ 2278 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 2279 IEEE80211_FC0_TYPE_MGT) 2280 return 0; 2281 2282 /* Subtype: Action frame? */ 2283 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) != 2284 IEEE80211_FC0_SUBTYPE_ACTION) 2285 return 0; 2286 2287 return 1; 2288 } 2289 2290 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2291 /* 2292 * Return an alternate TID for ADDBA request frames. 2293 * 2294 * Yes, this likely should be done in the net80211 layer. 2295 */ 2296 static int 2297 ath_tx_action_frame_override_queue(struct ath_softc *sc, 2298 struct ieee80211_node *ni, 2299 struct mbuf *m0, int *tid) 2300 { 2301 struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); 2302 struct ieee80211_action_ba_addbarequest *ia; 2303 uint8_t *frm; 2304 uint16_t baparamset; 2305 2306 /* Not action frame? Bail */ 2307 if (! ieee80211_is_action(wh)) 2308 return 0; 2309 2310 /* XXX Not needed for frames we send? */ 2311 #if 0 2312 /* Correct length? */ 2313 if (! ieee80211_parse_action(ni, m)) 2314 return 0; 2315 #endif 2316 2317 /* Extract out action frame */ 2318 frm = (u_int8_t *)&wh[1]; 2319 ia = (struct ieee80211_action_ba_addbarequest *) frm; 2320 2321 /* Not ADDBA? Bail */ 2322 if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA) 2323 return 0; 2324 if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST) 2325 return 0; 2326 2327 /* Extract TID, return it */ 2328 baparamset = le16toh(ia->rq_baparamset); 2329 *tid = (int) MS(baparamset, IEEE80211_BAPS_TID); 2330 2331 return 1; 2332 } 2333 #undef MS 2334 2335 /* Per-node software queue operations */ 2336 2337 /* 2338 * Add the current packet to the given BAW. 2339 * It is assumed that the current packet 2340 * 2341 * + fits inside the BAW; 2342 * + already has had a sequence number allocated. 2343 * 2344 * Since the BAW status may be modified by both the ath task and 2345 * the net80211/ifnet contexts, the TID must be locked. 2346 */ 2347 void 2348 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an, 2349 struct ath_tid *tid, struct ath_buf *bf) 2350 { 2351 int index, cindex; 2352 struct ieee80211_tx_ampdu *tap; 2353 2354 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 2355 ATH_TID_LOCK_ASSERT(sc, tid); 2356 2357 if (bf->bf_state.bfs_isretried) 2358 return; 2359 2360 tap = ath_tx_get_tx_tid(an, tid->tid); 2361 2362 if (! bf->bf_state.bfs_dobaw) { 2363 device_printf(sc->sc_dev, 2364 "%s: dobaw=0, seqno=%d, window %d:%d\n", 2365 __func__, 2366 SEQNO(bf->bf_state.bfs_seqno), 2367 tap->txa_start, 2368 tap->txa_wnd); 2369 } 2370 2371 if (bf->bf_state.bfs_addedbaw) 2372 device_printf(sc->sc_dev, 2373 "%s: re-added? tid=%d, seqno %d; window %d:%d; " 2374 "baw head=%d tail=%d\n", 2375 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2376 tap->txa_start, tap->txa_wnd, tid->baw_head, 2377 tid->baw_tail); 2378 2379 /* 2380 * Verify that the given sequence number is not outside of the 2381 * BAW. Complain loudly if that's the case. 2382 */ 2383 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2384 SEQNO(bf->bf_state.bfs_seqno))) { 2385 device_printf(sc->sc_dev, 2386 "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; " 2387 "baw head=%d tail=%d\n", 2388 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2389 tap->txa_start, tap->txa_wnd, tid->baw_head, 2390 tid->baw_tail); 2391 } 2392 2393 /* 2394 * ni->ni_txseqs[] is the currently allocated seqno. 2395 * the txa state contains the current baw start. 2396 */ 2397 index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno)); 2398 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2399 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2400 "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d " 2401 "baw head=%d tail=%d\n", 2402 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2403 tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, 2404 tid->baw_tail); 2405 2406 2407 #if 0 2408 assert(tid->tx_buf[cindex] == NULL); 2409 #endif 2410 if (tid->tx_buf[cindex] != NULL) { 2411 device_printf(sc->sc_dev, 2412 "%s: ba packet dup (index=%d, cindex=%d, " 2413 "head=%d, tail=%d)\n", 2414 __func__, index, cindex, tid->baw_head, tid->baw_tail); 2415 device_printf(sc->sc_dev, 2416 "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n", 2417 __func__, 2418 tid->tx_buf[cindex], 2419 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno), 2420 bf, 2421 SEQNO(bf->bf_state.bfs_seqno) 2422 ); 2423 } 2424 tid->tx_buf[cindex] = bf; 2425 2426 if (index >= ((tid->baw_tail - tid->baw_head) & 2427 (ATH_TID_MAX_BUFS - 1))) { 2428 tid->baw_tail = cindex; 2429 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 2430 } 2431 } 2432 2433 /* 2434 * Flip the BAW buffer entry over from the existing one to the new one. 2435 * 2436 * When software retransmitting a (sub-)frame, it is entirely possible that 2437 * the frame ath_buf is marked as BUSY and can't be immediately reused. 2438 * In that instance the buffer is cloned and the new buffer is used for 2439 * retransmit. We thus need to update the ath_buf slot in the BAW buf 2440 * tracking array to maintain consistency. 2441 */ 2442 static void 2443 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an, 2444 struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf) 2445 { 2446 int index, cindex; 2447 struct ieee80211_tx_ampdu *tap; 2448 int seqno = SEQNO(old_bf->bf_state.bfs_seqno); 2449 2450 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 2451 ATH_TID_LOCK_ASSERT(sc, tid); 2452 2453 tap = ath_tx_get_tx_tid(an, tid->tid); 2454 index = ATH_BA_INDEX(tap->txa_start, seqno); 2455 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2456 2457 /* 2458 * Just warn for now; if it happens then we should find out 2459 * about it. It's highly likely the aggregation session will 2460 * soon hang. 2461 */ 2462 if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) { 2463 device_printf(sc->sc_dev, "%s: retransmitted buffer" 2464 " has mismatching seqno's, BA session may hang.\n", 2465 __func__); 2466 device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n", 2467 __func__, 2468 old_bf->bf_state.bfs_seqno, 2469 new_bf->bf_state.bfs_seqno); 2470 } 2471 2472 if (tid->tx_buf[cindex] != old_bf) { 2473 device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; " 2474 " has m BA session may hang.\n", 2475 __func__); 2476 device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n", 2477 __func__, 2478 old_bf, new_bf); 2479 } 2480 2481 tid->tx_buf[cindex] = new_bf; 2482 } 2483 2484 /* 2485 * seq_start - left edge of BAW 2486 * seq_next - current/next sequence number to allocate 2487 * 2488 * Since the BAW status may be modified by both the ath task and 2489 * the net80211/ifnet contexts, the TID must be locked. 2490 */ 2491 static void 2492 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an, 2493 struct ath_tid *tid, const struct ath_buf *bf) 2494 { 2495 int index, cindex; 2496 struct ieee80211_tx_ampdu *tap; 2497 int seqno = SEQNO(bf->bf_state.bfs_seqno); 2498 2499 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 2500 ATH_TID_LOCK_ASSERT(sc, tid); 2501 2502 tap = ath_tx_get_tx_tid(an, tid->tid); 2503 index = ATH_BA_INDEX(tap->txa_start, seqno); 2504 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2505 2506 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2507 "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, " 2508 "baw head=%d, tail=%d\n", 2509 __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index, 2510 cindex, tid->baw_head, tid->baw_tail); 2511 2512 /* 2513 * If this occurs then we have a big problem - something else 2514 * has slid tap->txa_start along without updating the BAW 2515 * tracking start/end pointers. Thus the TX BAW state is now 2516 * completely busted. 2517 * 2518 * But for now, since I haven't yet fixed TDMA and buffer cloning, 2519 * it's quite possible that a cloned buffer is making its way 2520 * here and causing it to fire off. Disable TDMA for now. 2521 */ 2522 if (tid->tx_buf[cindex] != bf) { 2523 device_printf(sc->sc_dev, 2524 "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n", 2525 __func__, 2526 bf, SEQNO(bf->bf_state.bfs_seqno), 2527 tid->tx_buf[cindex], 2528 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno)); 2529 } 2530 2531 tid->tx_buf[cindex] = NULL; 2532 2533 while (tid->baw_head != tid->baw_tail && 2534 !tid->tx_buf[tid->baw_head]) { 2535 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 2536 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 2537 } 2538 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2539 "%s: baw is now %d:%d, baw head=%d\n", 2540 __func__, tap->txa_start, tap->txa_wnd, tid->baw_head); 2541 } 2542 2543 /* 2544 * Mark the current node/TID as ready to TX. 2545 * 2546 * This is done to make it easy for the software scheduler to 2547 * find which nodes have data to send. 2548 * 2549 * The TXQ lock must be held. 2550 */ 2551 static void 2552 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid) 2553 { 2554 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2555 2556 ATH_TXQ_LOCK_ASSERT(txq); 2557 2558 if (tid->paused) 2559 return; /* paused, can't schedule yet */ 2560 2561 if (tid->sched) 2562 return; /* already scheduled */ 2563 2564 tid->sched = 1; 2565 2566 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); 2567 } 2568 2569 /* 2570 * Mark the current node as no longer needing to be polled for 2571 * TX packets. 2572 * 2573 * The TXQ lock must be held. 2574 */ 2575 static void 2576 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid) 2577 { 2578 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2579 2580 ATH_TXQ_LOCK_ASSERT(txq); 2581 2582 if (tid->sched == 0) 2583 return; 2584 2585 tid->sched = 0; 2586 TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem); 2587 } 2588 2589 /* 2590 * Assign a sequence number manually to the given frame. 2591 * 2592 * This should only be called for A-MPDU TX frames. 2593 */ 2594 static ieee80211_seq 2595 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, 2596 struct ath_buf *bf, struct mbuf *m0) 2597 { 2598 struct ieee80211_frame *wh; 2599 int tid, pri; 2600 ieee80211_seq seqno; 2601 uint8_t subtype; 2602 2603 /* TID lookup */ 2604 wh = mtod(m0, struct ieee80211_frame *); 2605 pri = M_WME_GETAC(m0); /* honor classification */ 2606 tid = WME_AC_TO_TID(pri); 2607 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n", 2608 __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2609 2610 /* XXX Is it a control frame? Ignore */ 2611 2612 /* Does the packet require a sequence number? */ 2613 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2614 return -1; 2615 2616 ATH_TID_LOCK_ASSERT(sc, &(ATH_NODE(ni)->an_tid[tid])); 2617 2618 /* 2619 * Is it a QOS NULL Data frame? Give it a sequence number from 2620 * the default TID (IEEE80211_NONQOS_TID.) 2621 * 2622 * The RX path of everything I've looked at doesn't include the NULL 2623 * data frame sequence number in the aggregation state updates, so 2624 * assigning it a sequence number there will cause a BAW hole on the 2625 * RX side. 2626 */ 2627 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2628 if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) { 2629 /* XXX no locking for this TID? This is a bit of a problem. */ 2630 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; 2631 INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); 2632 } else { 2633 /* Manually assign sequence number */ 2634 seqno = ni->ni_txseqs[tid]; 2635 INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE); 2636 } 2637 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 2638 M_SEQNO_SET(m0, seqno); 2639 2640 /* Return so caller can do something with it if needed */ 2641 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno); 2642 return seqno; 2643 } 2644 2645 /* 2646 * Attempt to direct dispatch an aggregate frame to hardware. 2647 * If the frame is out of BAW, queue. 2648 * Otherwise, schedule it as a single frame. 2649 */ 2650 static void 2651 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, 2652 struct ath_txq *txq, struct ath_buf *bf) 2653 { 2654 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 2655 // struct ath_txq *txq = bf->bf_state.bfs_txq; 2656 struct ieee80211_tx_ampdu *tap; 2657 2658 if (txq != bf->bf_state.bfs_txq) { 2659 device_printf(sc->sc_dev, "%s: txq %d != bfs_txq %d!\n", 2660 __func__, 2661 txq->axq_qnum, 2662 bf->bf_state.bfs_txq->axq_qnum); 2663 } 2664 2665 ATH_TXQ_LOCK_ASSERT(txq); 2666 ATH_TID_LOCK_ASSERT(sc, tid); 2667 2668 tap = ath_tx_get_tx_tid(an, tid->tid); 2669 2670 /* paused? queue */ 2671 if (tid->paused) { 2672 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2673 /* XXX don't sched - we're paused! */ 2674 return; 2675 } 2676 2677 /* outside baw? queue */ 2678 if (bf->bf_state.bfs_dobaw && 2679 (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2680 SEQNO(bf->bf_state.bfs_seqno)))) { 2681 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2682 ath_tx_tid_sched(sc, tid); 2683 return; 2684 } 2685 2686 /* 2687 * This is a temporary check and should be removed once 2688 * all the relevant code paths have been fixed. 2689 * 2690 * During aggregate retries, it's possible that the head 2691 * frame will fail (which has the bfs_aggr and bfs_nframes 2692 * fields set for said aggregate) and will be retried as 2693 * a single frame. In this instance, the values should 2694 * be reset or the completion code will get upset with you. 2695 */ 2696 if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) { 2697 device_printf(sc->sc_dev, "%s: bfs_aggr=%d, bfs_nframes=%d\n", 2698 __func__, 2699 bf->bf_state.bfs_aggr, 2700 bf->bf_state.bfs_nframes); 2701 bf->bf_state.bfs_aggr = 0; 2702 bf->bf_state.bfs_nframes = 1; 2703 } 2704 2705 /* Update CLRDMASK just before this frame is queued */ 2706 ath_tx_update_clrdmask(sc, tid, bf); 2707 2708 /* Direct dispatch to hardware */ 2709 ath_tx_do_ratelookup(sc, bf); 2710 ath_tx_calc_duration(sc, bf); 2711 ath_tx_calc_protection(sc, bf); 2712 ath_tx_set_rtscts(sc, bf); 2713 ath_tx_rate_fill_rcflags(sc, bf); 2714 ath_tx_setds(sc, bf); 2715 2716 /* Statistics */ 2717 sc->sc_aggr_stats.aggr_low_hwq_single_pkt++; 2718 2719 /* Track per-TID hardware queue depth correctly */ 2720 tid->hwq_depth++; 2721 2722 /* Add to BAW */ 2723 if (bf->bf_state.bfs_dobaw) { 2724 ath_tx_addto_baw(sc, an, tid, bf); 2725 bf->bf_state.bfs_addedbaw = 1; 2726 } 2727 2728 /* Set completion handler, multi-frame aggregate or not */ 2729 bf->bf_comp = ath_tx_aggr_comp; 2730 2731 /* Hand off to hardware */ 2732 ath_tx_handoff(sc, txq, bf); 2733 } 2734 2735 /* 2736 * Attempt to send the packet. 2737 * If the queue isn't busy, direct-dispatch. 2738 * If the queue is busy enough, queue the given packet on the 2739 * relevant software queue. 2740 */ 2741 void 2742 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq, 2743 struct ath_buf *bf) 2744 { 2745 struct ath_node *an = ATH_NODE(ni); 2746 struct ieee80211_frame *wh; 2747 struct ath_tid *atid; 2748 int pri, tid; 2749 struct mbuf *m0 = bf->bf_m; 2750 2751 ATH_TXQ_LOCK_ASSERT(txq); 2752 2753 /* Fetch the TID - non-QoS frames get assigned to TID 16 */ 2754 wh = mtod(m0, struct ieee80211_frame *); 2755 pri = ath_tx_getac(sc, m0); 2756 tid = ath_tx_gettid(sc, m0); 2757 atid = &an->an_tid[tid]; 2758 2759 ATH_TID_LOCK_ASSERT(sc, atid); 2760 2761 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n", 2762 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2763 2764 /* Set local packet state, used to queue packets to hardware */ 2765 /* XXX potentially duplicate info, re-check */ 2766 /* XXX remember, txq must be the hardware queue, not the av_mcastq */ 2767 bf->bf_state.bfs_tid = tid; 2768 bf->bf_state.bfs_txq = txq; 2769 bf->bf_state.bfs_pri = pri; 2770 2771 /* 2772 * If the hardware queue isn't busy, queue it directly. 2773 * If the hardware queue is busy, queue it. 2774 * If the TID is paused or the traffic it outside BAW, software 2775 * queue it. 2776 */ 2777 if (atid->paused) { 2778 /* TID is paused, queue */ 2779 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__); 2780 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2781 } else if (ath_tx_ampdu_pending(sc, an, tid)) { 2782 /* AMPDU pending; queue */ 2783 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__); 2784 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2785 /* XXX sched? */ 2786 } else if (ath_tx_ampdu_running(sc, an, tid)) { 2787 /* AMPDU running, attempt direct dispatch if possible */ 2788 2789 /* 2790 * Always queue the frame to the tail of the list. 2791 */ 2792 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2793 2794 /* 2795 * If the hardware queue isn't busy, direct dispatch 2796 * the head frame in the list. Don't schedule the 2797 * TID - let it build some more frames first? 2798 * 2799 * Otherwise, schedule the TID. 2800 */ 2801 if (txq->axq_depth < sc->sc_hwq_limit) { 2802 bf = ATH_TID_FIRST(atid); 2803 ATH_TID_REMOVE(atid, bf, bf_list); 2804 2805 /* 2806 * Ensure it's definitely treated as a non-AMPDU 2807 * frame - this information may have been left 2808 * over from a previous attempt. 2809 */ 2810 bf->bf_state.bfs_aggr = 0; 2811 bf->bf_state.bfs_nframes = 1; 2812 2813 /* Queue to the hardware */ 2814 ath_tx_xmit_aggr(sc, an, txq, bf); 2815 DPRINTF(sc, ATH_DEBUG_SW_TX, 2816 "%s: xmit_aggr\n", 2817 __func__); 2818 } else { 2819 DPRINTF(sc, ATH_DEBUG_SW_TX, 2820 "%s: ampdu; swq'ing\n", 2821 __func__); 2822 2823 ath_tx_tid_sched(sc, atid); 2824 } 2825 } else if (txq->axq_depth < sc->sc_hwq_limit) { 2826 /* AMPDU not running, attempt direct dispatch */ 2827 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__); 2828 /* See if clrdmask needs to be set */ 2829 ath_tx_update_clrdmask(sc, atid, bf); 2830 ath_tx_xmit_normal(sc, txq, bf); 2831 } else { 2832 /* Busy; queue */ 2833 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__); 2834 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2835 ath_tx_tid_sched(sc, atid); 2836 } 2837 } 2838 2839 /* 2840 * Configure the per-TID node state. 2841 * 2842 * This likely belongs in if_ath_node.c but I can't think of anywhere 2843 * else to put it just yet. 2844 * 2845 * This sets up the SLISTs and the mutex as appropriate. 2846 */ 2847 void 2848 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an) 2849 { 2850 int i, j; 2851 struct ath_tid *atid; 2852 2853 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2854 atid = &an->an_tid[i]; 2855 2856 /* XXX now with this bzer(), is the field 0'ing needed? */ 2857 bzero(atid, sizeof(*atid)); 2858 2859 TAILQ_INIT(&atid->tid_q); 2860 TAILQ_INIT(&atid->filtq.tid_q); 2861 atid->tid = i; 2862 atid->an = an; 2863 for (j = 0; j < ATH_TID_MAX_BUFS; j++) 2864 atid->tx_buf[j] = NULL; 2865 atid->baw_head = atid->baw_tail = 0; 2866 atid->paused = 0; 2867 atid->sched = 0; 2868 atid->hwq_depth = 0; 2869 atid->cleanup_inprogress = 0; 2870 atid->clrdmask = 1; /* Always start by setting this bit */ 2871 if (i == IEEE80211_NONQOS_TID) 2872 atid->ac = ATH_NONQOS_TID_AC; 2873 else 2874 atid->ac = TID_TO_WME_AC(i); 2875 } 2876 } 2877 2878 /* 2879 * Pause the current TID. This stops packets from being transmitted 2880 * on it. 2881 * 2882 * Since this is also called from upper layers as well as the driver, 2883 * it will get the TID lock. 2884 */ 2885 static void 2886 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid) 2887 { 2888 2889 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 2890 tid->paused++; 2891 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n", 2892 __func__, tid->paused); 2893 } 2894 2895 /* 2896 * Unpause the current TID, and schedule it if needed. 2897 */ 2898 static void 2899 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid) 2900 { 2901 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 2902 2903 tid->paused--; 2904 2905 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n", 2906 __func__, tid->paused); 2907 2908 if (tid->paused) 2909 return; 2910 2911 /* 2912 * Override the clrdmask configuration for the next frame 2913 * from this TID, just to get the ball rolling. 2914 */ 2915 tid->clrdmask = 1; 2916 2917 if (tid->axq_depth == 0) 2918 return; 2919 2920 /* XXX isfiltered shouldn't ever be 0 at this point */ 2921 if (tid->isfiltered == 1) { 2922 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 2923 return; 2924 } 2925 2926 ath_tx_tid_sched(sc, tid); 2927 /* Punt some frames to the hardware if needed */ 2928 //ath_txq_sched(sc, sc->sc_ac2q[tid->ac]); 2929 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 2930 } 2931 2932 /* 2933 * Add the given ath_buf to the TID filtered frame list. 2934 * This requires the TID be filtered. 2935 */ 2936 static void 2937 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid, 2938 struct ath_buf *bf) 2939 { 2940 2941 ATH_TID_LOCK_ASSERT(sc, tid); 2942 if (! tid->isfiltered) 2943 device_printf(sc->sc_dev, "%s: not filtered?!\n", __func__); 2944 2945 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf); 2946 2947 /* Set the retry bit and bump the retry counter */ 2948 ath_tx_set_retry(sc, bf); 2949 sc->sc_stats.ast_tx_swfiltered++; 2950 2951 ATH_TID_INSERT_TAIL(&tid->filtq, bf, bf_list); 2952 } 2953 2954 /* 2955 * Handle a completed filtered frame from the given TID. 2956 * This just enables/pauses the filtered frame state if required 2957 * and appends the filtered frame to the filtered queue. 2958 */ 2959 static void 2960 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid, 2961 struct ath_buf *bf) 2962 { 2963 2964 ATH_TID_LOCK_ASSERT(sc, tid); 2965 2966 if (! tid->isfiltered) { 2967 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: filter transition\n", 2968 __func__); 2969 tid->isfiltered = 1; 2970 ath_tx_tid_pause(sc, tid); 2971 } 2972 2973 /* Add the frame to the filter queue */ 2974 ath_tx_tid_filt_addbuf(sc, tid, bf); 2975 } 2976 2977 /* 2978 * Complete the filtered frame TX completion. 2979 * 2980 * If there are no more frames in the hardware queue, unpause/unfilter 2981 * the TID if applicable. Otherwise we will wait for a node PS transition 2982 * to unfilter. 2983 */ 2984 static void 2985 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid) 2986 { 2987 struct ath_buf *bf; 2988 2989 ATH_TID_LOCK_ASSERT(sc, tid); 2990 2991 if (tid->hwq_depth != 0) 2992 return; 2993 2994 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: hwq=0, transition back\n", 2995 __func__); 2996 tid->isfiltered = 0; 2997 tid->clrdmask = 1; 2998 2999 /* XXX this is really quite inefficient */ 3000 while ((bf = ATH_TID_LAST(&tid->filtq, ath_bufhead_s)) != NULL) { 3001 ATH_TID_REMOVE(&tid->filtq, bf, bf_list); 3002 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 3003 } 3004 3005 ath_tx_tid_resume(sc, tid); 3006 } 3007 3008 /* 3009 * Called when a single (aggregate or otherwise) frame is completed. 3010 * 3011 * Returns 1 if the buffer could be added to the filtered list 3012 * (cloned or otherwise), 0 if the buffer couldn't be added to the 3013 * filtered list (failed clone; expired retry) and the caller should 3014 * free it and handle it like a failure (eg by sending a BAR.) 3015 */ 3016 static int 3017 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid, 3018 struct ath_buf *bf) 3019 { 3020 struct ath_buf *nbf; 3021 int retval; 3022 3023 ATH_TID_LOCK_ASSERT(sc, tid); 3024 3025 /* 3026 * Don't allow a filtered frame to live forever. 3027 */ 3028 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3029 sc->sc_stats.ast_tx_swretrymax++; 3030 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3031 "%s: bf=%p, seqno=%d, exceeded retries\n", 3032 __func__, 3033 bf, 3034 bf->bf_state.bfs_seqno); 3035 return (0); 3036 } 3037 3038 /* 3039 * A busy buffer can't be added to the retry list. 3040 * It needs to be cloned. 3041 */ 3042 if (bf->bf_flags & ATH_BUF_BUSY) { 3043 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3044 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3045 "%s: busy buffer clone: %p -> %p\n", 3046 __func__, bf, nbf); 3047 } else { 3048 nbf = bf; 3049 } 3050 3051 if (nbf == NULL) { 3052 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3053 "%s: busy buffer couldn't be cloned (%p)!\n", 3054 __func__, bf); 3055 retval = 1; 3056 } else { 3057 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3058 retval = 0; 3059 } 3060 ath_tx_tid_filt_comp_complete(sc, tid); 3061 3062 return (retval); 3063 } 3064 3065 static void 3066 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid, 3067 struct ath_buf *bf_first, ath_bufhead *bf_q) 3068 { 3069 struct ath_buf *bf, *bf_next, *nbf; 3070 3071 ATH_TID_LOCK_ASSERT(sc, tid); 3072 3073 bf = bf_first; 3074 while (bf) { 3075 bf_next = bf->bf_next; 3076 bf->bf_next = NULL; /* Remove it from the aggr list */ 3077 3078 /* 3079 * Don't allow a filtered frame to live forever. 3080 */ 3081 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3082 sc->sc_stats.ast_tx_swretrymax++; 3083 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3084 "%s: bf=%p, seqno=%d, exceeded retries\n", 3085 __func__, 3086 bf, 3087 bf->bf_state.bfs_seqno); 3088 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3089 goto next; 3090 } 3091 3092 if (bf->bf_flags & ATH_BUF_BUSY) { 3093 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3094 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3095 "%s: busy buffer cloned: %p -> %p", 3096 __func__, bf, nbf); 3097 } else { 3098 nbf = bf; 3099 } 3100 3101 /* 3102 * If the buffer couldn't be cloned, add it to bf_q; 3103 * the caller will free the buffer(s) as required. 3104 */ 3105 if (nbf == NULL) { 3106 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3107 "%s: buffer couldn't be cloned! (%p)\n", 3108 __func__, bf); 3109 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3110 } else { 3111 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3112 } 3113 next: 3114 bf = bf_next; 3115 } 3116 3117 ath_tx_tid_filt_comp_complete(sc, tid); 3118 } 3119 3120 /* 3121 * Suspend the queue because we need to TX a BAR. 3122 */ 3123 static void 3124 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid) 3125 { 3126 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 3127 3128 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3129 "%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n", 3130 __func__, 3131 tid, 3132 tid->bar_wait, 3133 tid->bar_tx); 3134 3135 /* We shouldn't be called when bar_tx is 1 */ 3136 if (tid->bar_tx) { 3137 device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n", 3138 __func__); 3139 } 3140 3141 /* If we've already been called, just be patient. */ 3142 if (tid->bar_wait) 3143 return; 3144 3145 /* Wait! */ 3146 tid->bar_wait = 1; 3147 3148 /* Only one pause, no matter how many frames fail */ 3149 ath_tx_tid_pause(sc, tid); 3150 } 3151 3152 /* 3153 * We've finished with BAR handling - either we succeeded or 3154 * failed. Either way, unsuspend TX. 3155 */ 3156 static void 3157 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid) 3158 { 3159 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 3160 3161 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3162 "%s: tid=%p, called\n", 3163 __func__, 3164 tid); 3165 3166 if (tid->bar_tx == 0 || tid->bar_wait == 0) { 3167 device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n", 3168 __func__, tid->bar_tx, tid->bar_wait); 3169 } 3170 3171 tid->bar_tx = tid->bar_wait = 0; 3172 ath_tx_tid_resume(sc, tid); 3173 } 3174 3175 /* 3176 * Return whether we're ready to TX a BAR frame. 3177 * 3178 * Requires the TID lock be held. 3179 */ 3180 static int 3181 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid) 3182 { 3183 3184 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 3185 3186 if (tid->bar_wait == 0 || tid->hwq_depth > 0) 3187 return (0); 3188 3189 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n", 3190 __func__, tid, tid->tid); 3191 3192 return (1); 3193 } 3194 3195 /* 3196 * Check whether the current TID is ready to have a BAR 3197 * TXed and if so, do the TX. 3198 * 3199 * Since the TID/TXQ lock can't be held during a call to 3200 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it, 3201 * sending the BAR and locking it again. 3202 * 3203 * Eventually, the code to send the BAR should be broken out 3204 * from this routine so the lock doesn't have to be reacquired 3205 * just to be immediately dropped by the caller. 3206 */ 3207 static void 3208 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid) 3209 { 3210 struct ieee80211_tx_ampdu *tap; 3211 3212 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 3213 3214 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3215 "%s: tid=%p, called\n", 3216 __func__, 3217 tid); 3218 3219 tap = ath_tx_get_tx_tid(tid->an, tid->tid); 3220 3221 /* 3222 * This is an error condition! 3223 */ 3224 if (tid->bar_wait == 0 || tid->bar_tx == 1) { 3225 device_printf(sc->sc_dev, 3226 "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n", 3227 __func__, 3228 tid, 3229 tid->bar_tx, 3230 tid->bar_wait); 3231 return; 3232 } 3233 3234 /* Don't do anything if we still have pending frames */ 3235 if (tid->hwq_depth > 0) { 3236 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3237 "%s: tid=%p, hwq_depth=%d, waiting\n", 3238 __func__, 3239 tid, 3240 tid->hwq_depth); 3241 return; 3242 } 3243 3244 /* We're now about to TX */ 3245 tid->bar_tx = 1; 3246 3247 /* 3248 * Override the clrdmask configuration for the next frame, 3249 * just to get the ball rolling. 3250 */ 3251 tid->clrdmask = 1; 3252 3253 /* 3254 * Calculate new BAW left edge, now that all frames have either 3255 * succeeded or failed. 3256 * 3257 * XXX verify this is _actually_ the valid value to begin at! 3258 */ 3259 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3260 "%s: tid=%p, new BAW left edge=%d\n", 3261 __func__, 3262 tid, 3263 tap->txa_start); 3264 3265 /* Try sending the BAR frame */ 3266 /* We can't hold the lock here! */ 3267 3268 ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]); 3269 if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) { 3270 /* Success? Now we wait for notification that it's done */ 3271 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]); 3272 return; 3273 } 3274 3275 /* Failure? For now, warn loudly and continue */ 3276 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]); 3277 device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n", 3278 __func__, tid); 3279 ath_tx_tid_bar_unsuspend(sc, tid); 3280 } 3281 3282 static void 3283 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an, 3284 struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf) 3285 { 3286 3287 ATH_TID_LOCK_ASSERT(sc, tid); 3288 3289 /* 3290 * If the current TID is running AMPDU, update 3291 * the BAW. 3292 */ 3293 if (ath_tx_ampdu_running(sc, an, tid->tid) && 3294 bf->bf_state.bfs_dobaw) { 3295 /* 3296 * Only remove the frame from the BAW if it's 3297 * been transmitted at least once; this means 3298 * the frame was in the BAW to begin with. 3299 */ 3300 if (bf->bf_state.bfs_retries > 0) { 3301 ath_tx_update_baw(sc, an, tid, bf); 3302 bf->bf_state.bfs_dobaw = 0; 3303 } 3304 /* 3305 * This has become a non-fatal error now 3306 */ 3307 if (! bf->bf_state.bfs_addedbaw) 3308 device_printf(sc->sc_dev, 3309 "%s: wasn't added: seqno %d\n", 3310 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3311 } 3312 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); 3313 } 3314 3315 static void 3316 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an, 3317 const char *pfx, struct ath_tid *tid, struct ath_buf *bf) 3318 { 3319 struct ieee80211_node *ni = &an->an_node; 3320 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 3321 struct ieee80211_tx_ampdu *tap; 3322 3323 tap = ath_tx_get_tx_tid(an, tid->tid); 3324 3325 device_printf(sc->sc_dev, 3326 "%s: %s: node %p: bf=%p: addbaw=%d, dobaw=%d, " 3327 "seqno=%d, retry=%d\n", 3328 __func__, pfx, ni, bf, 3329 bf->bf_state.bfs_addedbaw, 3330 bf->bf_state.bfs_dobaw, 3331 SEQNO(bf->bf_state.bfs_seqno), 3332 bf->bf_state.bfs_retries); 3333 device_printf(sc->sc_dev, 3334 "%s: node %p: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n", 3335 __func__, ni, bf, 3336 txq->axq_qnum, 3337 txq->axq_depth, 3338 txq->axq_aggr_depth); 3339 3340 device_printf(sc->sc_dev, 3341 "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, isfiltered=%d\n", 3342 __func__, ni, bf, 3343 tid->axq_depth, 3344 tid->hwq_depth, 3345 tid->bar_wait, 3346 tid->isfiltered); 3347 device_printf(sc->sc_dev, 3348 "%s: node %p: tid %d: " 3349 "sched=%d, paused=%d, " 3350 "incomp=%d, baw_head=%d, " 3351 "baw_tail=%d txa_start=%d, ni_txseqs=%d\n", 3352 __func__, ni, tid->tid, 3353 tid->sched, tid->paused, 3354 tid->incomp, tid->baw_head, 3355 tid->baw_tail, tap == NULL ? -1 : tap->txa_start, 3356 ni->ni_txseqs[tid->tid]); 3357 3358 /* XXX Dump the frame, see what it is? */ 3359 ieee80211_dump_pkt(ni->ni_ic, 3360 mtod(bf->bf_m, const uint8_t *), 3361 bf->bf_m->m_len, 0, -1); 3362 } 3363 3364 /* 3365 * Free any packets currently pending in the software TX queue. 3366 * 3367 * This will be called when a node is being deleted. 3368 * 3369 * It can also be called on an active node during an interface 3370 * reset or state transition. 3371 * 3372 * (From Linux/reference): 3373 * 3374 * TODO: For frame(s) that are in the retry state, we will reuse the 3375 * sequence number(s) without setting the retry bit. The 3376 * alternative is to give up on these and BAR the receiver's window 3377 * forward. 3378 */ 3379 static void 3380 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, 3381 struct ath_tid *tid, ath_bufhead *bf_cq) 3382 { 3383 struct ath_buf *bf; 3384 struct ieee80211_tx_ampdu *tap; 3385 struct ieee80211_node *ni = &an->an_node; 3386 int t; 3387 3388 tap = ath_tx_get_tx_tid(an, tid->tid); 3389 3390 ATH_TID_LOCK_ASSERT(sc, tid); 3391 3392 /* Walk the queue, free frames */ 3393 t = 0; 3394 for (;;) { 3395 bf = ATH_TID_FIRST(tid); 3396 if (bf == NULL) { 3397 break; 3398 } 3399 3400 if (t == 0) { 3401 ath_tx_tid_drain_print(sc, an, "norm", tid, bf); 3402 t = 1; 3403 } 3404 3405 ATH_TID_REMOVE(tid, bf, bf_list); 3406 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3407 } 3408 3409 /* And now, drain the filtered frame queue */ 3410 t = 0; 3411 for (;;) { 3412 bf = ATH_TID_FIRST(&tid->filtq); 3413 if (bf == NULL) 3414 break; 3415 3416 if (t == 0) { 3417 ath_tx_tid_drain_print(sc, an, "filt", tid, bf); 3418 t = 1; 3419 } 3420 3421 ATH_TID_REMOVE(&tid->filtq, bf, bf_list); 3422 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3423 } 3424 3425 /* 3426 * Override the clrdmask configuration for the next frame 3427 * in case there is some future transmission, just to get 3428 * the ball rolling. 3429 * 3430 * This won't hurt things if the TID is about to be freed. 3431 */ 3432 tid->clrdmask = 1; 3433 3434 /* 3435 * Now that it's completed, grab the TID lock and update 3436 * the sequence number and BAW window. 3437 * Because sequence numbers have been assigned to frames 3438 * that haven't been sent yet, it's entirely possible 3439 * we'll be called with some pending frames that have not 3440 * been transmitted. 3441 * 3442 * The cleaner solution is to do the sequence number allocation 3443 * when the packet is first transmitted - and thus the "retries" 3444 * check above would be enough to update the BAW/seqno. 3445 */ 3446 3447 /* But don't do it for non-QoS TIDs */ 3448 if (tap) { 3449 #if 0 3450 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3451 "%s: node %p: TID %d: sliding BAW left edge to %d\n", 3452 __func__, an, tid->tid, tap->txa_start); 3453 #endif 3454 ni->ni_txseqs[tid->tid] = tap->txa_start; 3455 tid->baw_tail = tid->baw_head; 3456 } 3457 } 3458 3459 /* 3460 * Flush all software queued packets for the given node. 3461 * 3462 * This occurs when a completion handler frees the last buffer 3463 * for a node, and the node is thus freed. This causes the node 3464 * to be cleaned up, which ends up calling ath_tx_node_flush. 3465 */ 3466 void 3467 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an) 3468 { 3469 int tid; 3470 ath_bufhead bf_cq; 3471 struct ath_buf *bf; 3472 3473 TAILQ_INIT(&bf_cq); 3474 3475 ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p", 3476 &an->an_node); 3477 3478 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 3479 struct ath_tid *atid = &an->an_tid[tid]; 3480 struct ath_txq *txq = sc->sc_ac2q[atid->ac]; 3481 3482 ATH_TXQ_LOCK(txq); 3483 /* Free packets */ 3484 ath_tx_tid_drain(sc, an, atid, &bf_cq); 3485 /* Remove this tid from the list of active tids */ 3486 ath_tx_tid_unsched(sc, atid); 3487 ATH_TXQ_UNLOCK(txq); 3488 } 3489 3490 /* Handle completed frames */ 3491 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3492 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3493 ath_tx_default_comp(sc, bf, 0); 3494 } 3495 } 3496 3497 /* 3498 * Drain all the software TXQs currently with traffic queued. 3499 */ 3500 void 3501 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq) 3502 { 3503 struct ath_tid *tid; 3504 ath_bufhead bf_cq; 3505 struct ath_buf *bf; 3506 3507 TAILQ_INIT(&bf_cq); 3508 ATH_TXQ_LOCK(txq); 3509 3510 /* 3511 * Iterate over all active tids for the given txq, 3512 * flushing and unsched'ing them 3513 */ 3514 while (! TAILQ_EMPTY(&txq->axq_tidq)) { 3515 tid = TAILQ_FIRST(&txq->axq_tidq); 3516 ath_tx_tid_drain(sc, tid->an, tid, &bf_cq); 3517 ath_tx_tid_unsched(sc, tid); 3518 } 3519 3520 ATH_TXQ_UNLOCK(txq); 3521 3522 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3523 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3524 ath_tx_default_comp(sc, bf, 0); 3525 } 3526 } 3527 3528 /* 3529 * Handle completion of non-aggregate session frames. 3530 * 3531 * This (currently) doesn't implement software retransmission of 3532 * non-aggregate frames! 3533 * 3534 * Software retransmission of non-aggregate frames needs to obey 3535 * the strict sequence number ordering, and drop any frames that 3536 * will fail this. 3537 * 3538 * For now, filtered frames and frame transmission will cause 3539 * all kinds of issues. So we don't support them. 3540 * 3541 * So anyone queuing frames via ath_tx_normal_xmit() or 3542 * ath_tx_hw_queue_norm() must override and set CLRDMASK. 3543 */ 3544 void 3545 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3546 { 3547 struct ieee80211_node *ni = bf->bf_node; 3548 struct ath_node *an = ATH_NODE(ni); 3549 int tid = bf->bf_state.bfs_tid; 3550 struct ath_tid *atid = &an->an_tid[tid]; 3551 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3552 3553 /* The TID state is protected behind the TXQ lock */ 3554 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 3555 3556 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n", 3557 __func__, bf, fail, atid->hwq_depth - 1); 3558 3559 atid->hwq_depth--; 3560 3561 #if 0 3562 /* 3563 * If the frame was filtered, stick it on the filter frame 3564 * queue and complain about it. It shouldn't happen! 3565 */ 3566 if ((ts->ts_status & HAL_TXERR_FILT) || 3567 (ts->ts_status != 0 && atid->isfiltered)) { 3568 device_printf(sc->sc_dev, 3569 "%s: isfiltered=%d, ts_status=%d: huh?\n", 3570 __func__, 3571 atid->isfiltered, 3572 ts->ts_status); 3573 ath_tx_tid_filt_comp_buf(sc, atid, bf); 3574 } 3575 #endif 3576 if (atid->isfiltered) 3577 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 3578 if (atid->hwq_depth < 0) 3579 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 3580 __func__, atid->hwq_depth); 3581 3582 /* 3583 * If the queue is filtered, potentially mark it as complete 3584 * and reschedule it as needed. 3585 * 3586 * This is required as there may be a subsequent TX descriptor 3587 * for this end-node that has CLRDMASK set, so it's quite possible 3588 * that a filtered frame will be followed by a non-filtered 3589 * (complete or otherwise) frame. 3590 * 3591 * XXX should we do this before we complete the frame? 3592 */ 3593 if (atid->isfiltered) 3594 ath_tx_tid_filt_comp_complete(sc, atid); 3595 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 3596 3597 /* 3598 * punt to rate control if we're not being cleaned up 3599 * during a hw queue drain and the frame wanted an ACK. 3600 */ 3601 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 3602 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 3603 ts, bf->bf_state.bfs_pktlen, 3604 1, (ts->ts_status == 0) ? 0 : 1); 3605 3606 ath_tx_default_comp(sc, bf, fail); 3607 } 3608 3609 /* 3610 * Handle cleanup of aggregate session packets that aren't 3611 * an A-MPDU. 3612 * 3613 * There's no need to update the BAW here - the session is being 3614 * torn down. 3615 */ 3616 static void 3617 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3618 { 3619 struct ieee80211_node *ni = bf->bf_node; 3620 struct ath_node *an = ATH_NODE(ni); 3621 int tid = bf->bf_state.bfs_tid; 3622 struct ath_tid *atid = &an->an_tid[tid]; 3623 3624 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n", 3625 __func__, tid, atid->incomp); 3626 3627 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 3628 atid->incomp--; 3629 if (atid->incomp == 0) { 3630 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3631 "%s: TID %d: cleaned up! resume!\n", 3632 __func__, tid); 3633 atid->cleanup_inprogress = 0; 3634 ath_tx_tid_resume(sc, atid); 3635 } 3636 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 3637 3638 ath_tx_default_comp(sc, bf, 0); 3639 } 3640 3641 /* 3642 * Performs transmit side cleanup when TID changes from aggregated to 3643 * unaggregated. 3644 * 3645 * - Discard all retry frames from the s/w queue. 3646 * - Fix the tx completion function for all buffers in s/w queue. 3647 * - Count the number of unacked frames, and let transmit completion 3648 * handle it later. 3649 * 3650 * The caller is responsible for pausing the TID. 3651 */ 3652 static void 3653 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid) 3654 { 3655 struct ath_tid *atid = &an->an_tid[tid]; 3656 struct ieee80211_tx_ampdu *tap; 3657 struct ath_buf *bf, *bf_next; 3658 ath_bufhead bf_cq; 3659 3660 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 3661 "%s: TID %d: called\n", __func__, tid); 3662 3663 TAILQ_INIT(&bf_cq); 3664 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 3665 3666 /* 3667 * Move the filtered frames to the TX queue, before 3668 * we run off and discard/process things. 3669 */ 3670 /* XXX this is really quite inefficient */ 3671 while ((bf = ATH_TID_LAST(&atid->filtq, ath_bufhead_s)) != NULL) { 3672 ATH_TID_REMOVE(&atid->filtq, bf, bf_list); 3673 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3674 } 3675 3676 /* 3677 * Update the frames in the software TX queue: 3678 * 3679 * + Discard retry frames in the queue 3680 * + Fix the completion function to be non-aggregate 3681 */ 3682 bf = ATH_TID_FIRST(atid); 3683 while (bf) { 3684 if (bf->bf_state.bfs_isretried) { 3685 bf_next = TAILQ_NEXT(bf, bf_list); 3686 ATH_TID_REMOVE(atid, bf, bf_list); 3687 atid->axq_depth--; 3688 if (bf->bf_state.bfs_dobaw) { 3689 ath_tx_update_baw(sc, an, atid, bf); 3690 if (! bf->bf_state.bfs_addedbaw) 3691 device_printf(sc->sc_dev, 3692 "%s: wasn't added: seqno %d\n", 3693 __func__, 3694 SEQNO(bf->bf_state.bfs_seqno)); 3695 } 3696 bf->bf_state.bfs_dobaw = 0; 3697 /* 3698 * Call the default completion handler with "fail" just 3699 * so upper levels are suitably notified about this. 3700 */ 3701 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 3702 bf = bf_next; 3703 continue; 3704 } 3705 /* Give these the default completion handler */ 3706 bf->bf_comp = ath_tx_normal_comp; 3707 bf = TAILQ_NEXT(bf, bf_list); 3708 } 3709 3710 /* The caller is required to pause the TID */ 3711 #if 0 3712 /* Pause the TID */ 3713 ath_tx_tid_pause(sc, atid); 3714 #endif 3715 3716 /* 3717 * Calculate what hardware-queued frames exist based 3718 * on the current BAW size. Ie, what frames have been 3719 * added to the TX hardware queue for this TID but 3720 * not yet ACKed. 3721 */ 3722 tap = ath_tx_get_tx_tid(an, tid); 3723 /* Need the lock - fiddling with BAW */ 3724 while (atid->baw_head != atid->baw_tail) { 3725 if (atid->tx_buf[atid->baw_head]) { 3726 atid->incomp++; 3727 atid->cleanup_inprogress = 1; 3728 atid->tx_buf[atid->baw_head] = NULL; 3729 } 3730 INCR(atid->baw_head, ATH_TID_MAX_BUFS); 3731 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 3732 } 3733 3734 /* 3735 * If cleanup is required, defer TID scheduling 3736 * until all the HW queued packets have been 3737 * sent. 3738 */ 3739 if (! atid->cleanup_inprogress) 3740 ath_tx_tid_resume(sc, atid); 3741 3742 if (atid->cleanup_inprogress) 3743 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3744 "%s: TID %d: cleanup needed: %d packets\n", 3745 __func__, tid, atid->incomp); 3746 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 3747 3748 /* Handle completing frames and fail them */ 3749 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3750 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3751 ath_tx_default_comp(sc, bf, 1); 3752 } 3753 } 3754 3755 static struct ath_buf * 3756 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 3757 struct ath_tid *tid, struct ath_buf *bf) 3758 { 3759 struct ath_buf *nbf; 3760 int error; 3761 3762 nbf = ath_buf_clone(sc, bf); 3763 3764 #if 0 3765 device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n", 3766 __func__); 3767 #endif 3768 3769 if (nbf == NULL) { 3770 /* Failed to clone */ 3771 device_printf(sc->sc_dev, 3772 "%s: failed to clone a busy buffer\n", 3773 __func__); 3774 return NULL; 3775 } 3776 3777 /* Setup the dma for the new buffer */ 3778 error = ath_tx_dmasetup(sc, nbf, nbf->bf_m); 3779 if (error != 0) { 3780 device_printf(sc->sc_dev, 3781 "%s: failed to setup dma for clone\n", 3782 __func__); 3783 /* 3784 * Put this at the head of the list, not tail; 3785 * that way it doesn't interfere with the 3786 * busy buffer logic (which uses the tail of 3787 * the list.) 3788 */ 3789 ATH_TXBUF_LOCK(sc); 3790 ath_returnbuf_head(sc, nbf); 3791 ATH_TXBUF_UNLOCK(sc); 3792 return NULL; 3793 } 3794 3795 /* Update BAW if required, before we free the original buf */ 3796 if (bf->bf_state.bfs_dobaw) 3797 ath_tx_switch_baw_buf(sc, an, tid, bf, nbf); 3798 3799 /* Free current buffer; return the older buffer */ 3800 bf->bf_m = NULL; 3801 bf->bf_node = NULL; 3802 ath_freebuf(sc, bf); 3803 3804 return nbf; 3805 } 3806 3807 /* 3808 * Handle retrying an unaggregate frame in an aggregate 3809 * session. 3810 * 3811 * If too many retries occur, pause the TID, wait for 3812 * any further retransmits (as there's no reason why 3813 * non-aggregate frames in an aggregate session are 3814 * transmitted in-order; they just have to be in-BAW) 3815 * and then queue a BAR. 3816 */ 3817 static void 3818 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3819 { 3820 struct ieee80211_node *ni = bf->bf_node; 3821 struct ath_node *an = ATH_NODE(ni); 3822 int tid = bf->bf_state.bfs_tid; 3823 struct ath_tid *atid = &an->an_tid[tid]; 3824 struct ieee80211_tx_ampdu *tap; 3825 3826 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 3827 3828 tap = ath_tx_get_tx_tid(an, tid); 3829 3830 /* 3831 * If the buffer is marked as busy, we can't directly 3832 * reuse it. Instead, try to clone the buffer. 3833 * If the clone is successful, recycle the old buffer. 3834 * If the clone is unsuccessful, set bfs_retries to max 3835 * to force the next bit of code to free the buffer 3836 * for us. 3837 */ 3838 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 3839 (bf->bf_flags & ATH_BUF_BUSY)) { 3840 struct ath_buf *nbf; 3841 nbf = ath_tx_retry_clone(sc, an, atid, bf); 3842 if (nbf) 3843 /* bf has been freed at this point */ 3844 bf = nbf; 3845 else 3846 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 3847 } 3848 3849 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 3850 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 3851 "%s: exceeded retries; seqno %d\n", 3852 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3853 sc->sc_stats.ast_tx_swretrymax++; 3854 3855 /* Update BAW anyway */ 3856 if (bf->bf_state.bfs_dobaw) { 3857 ath_tx_update_baw(sc, an, atid, bf); 3858 if (! bf->bf_state.bfs_addedbaw) 3859 device_printf(sc->sc_dev, 3860 "%s: wasn't added: seqno %d\n", 3861 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3862 } 3863 bf->bf_state.bfs_dobaw = 0; 3864 3865 /* Suspend the TX queue and get ready to send the BAR */ 3866 ath_tx_tid_bar_suspend(sc, atid); 3867 3868 /* Send the BAR if there are no other frames waiting */ 3869 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3870 ath_tx_tid_bar_tx(sc, atid); 3871 3872 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 3873 3874 /* Free buffer, bf is free after this call */ 3875 ath_tx_default_comp(sc, bf, 0); 3876 return; 3877 } 3878 3879 /* 3880 * This increments the retry counter as well as 3881 * sets the retry flag in the ath_buf and packet 3882 * body. 3883 */ 3884 ath_tx_set_retry(sc, bf); 3885 sc->sc_stats.ast_tx_swretries++; 3886 3887 /* 3888 * Insert this at the head of the queue, so it's 3889 * retried before any current/subsequent frames. 3890 */ 3891 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3892 ath_tx_tid_sched(sc, atid); 3893 /* Send the BAR if there are no other frames waiting */ 3894 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3895 ath_tx_tid_bar_tx(sc, atid); 3896 3897 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 3898 } 3899 3900 /* 3901 * Common code for aggregate excessive retry/subframe retry. 3902 * If retrying, queues buffers to bf_q. If not, frees the 3903 * buffers. 3904 * 3905 * XXX should unify this with ath_tx_aggr_retry_unaggr() 3906 */ 3907 static int 3908 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf, 3909 ath_bufhead *bf_q) 3910 { 3911 struct ieee80211_node *ni = bf->bf_node; 3912 struct ath_node *an = ATH_NODE(ni); 3913 int tid = bf->bf_state.bfs_tid; 3914 struct ath_tid *atid = &an->an_tid[tid]; 3915 3916 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]); 3917 3918 /* XXX clr11naggr should be done for all subframes */ 3919 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 3920 ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0); 3921 3922 /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */ 3923 3924 /* 3925 * If the buffer is marked as busy, we can't directly 3926 * reuse it. Instead, try to clone the buffer. 3927 * If the clone is successful, recycle the old buffer. 3928 * If the clone is unsuccessful, set bfs_retries to max 3929 * to force the next bit of code to free the buffer 3930 * for us. 3931 */ 3932 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 3933 (bf->bf_flags & ATH_BUF_BUSY)) { 3934 struct ath_buf *nbf; 3935 nbf = ath_tx_retry_clone(sc, an, atid, bf); 3936 if (nbf) 3937 /* bf has been freed at this point */ 3938 bf = nbf; 3939 else 3940 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 3941 } 3942 3943 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 3944 sc->sc_stats.ast_tx_swretrymax++; 3945 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 3946 "%s: max retries: seqno %d\n", 3947 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3948 ath_tx_update_baw(sc, an, atid, bf); 3949 if (! bf->bf_state.bfs_addedbaw) 3950 device_printf(sc->sc_dev, 3951 "%s: wasn't added: seqno %d\n", 3952 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3953 bf->bf_state.bfs_dobaw = 0; 3954 return 1; 3955 } 3956 3957 ath_tx_set_retry(sc, bf); 3958 sc->sc_stats.ast_tx_swretries++; 3959 bf->bf_next = NULL; /* Just to make sure */ 3960 3961 /* Clear the aggregate state */ 3962 bf->bf_state.bfs_aggr = 0; 3963 bf->bf_state.bfs_ndelim = 0; /* ??? needed? */ 3964 bf->bf_state.bfs_nframes = 1; 3965 3966 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3967 return 0; 3968 } 3969 3970 /* 3971 * error pkt completion for an aggregate destination 3972 */ 3973 static void 3974 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first, 3975 struct ath_tid *tid) 3976 { 3977 struct ieee80211_node *ni = bf_first->bf_node; 3978 struct ath_node *an = ATH_NODE(ni); 3979 struct ath_buf *bf_next, *bf; 3980 ath_bufhead bf_q; 3981 int drops = 0; 3982 struct ieee80211_tx_ampdu *tap; 3983 ath_bufhead bf_cq; 3984 3985 TAILQ_INIT(&bf_q); 3986 TAILQ_INIT(&bf_cq); 3987 3988 /* 3989 * Update rate control - all frames have failed. 3990 * 3991 * XXX use the length in the first frame in the series; 3992 * XXX just so things are consistent for now. 3993 */ 3994 ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc, 3995 &bf_first->bf_status.ds_txstat, 3996 bf_first->bf_state.bfs_pktlen, 3997 bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes); 3998 3999 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]); 4000 tap = ath_tx_get_tx_tid(an, tid->tid); 4001 sc->sc_stats.ast_tx_aggr_failall++; 4002 4003 /* Retry all subframes */ 4004 bf = bf_first; 4005 while (bf) { 4006 bf_next = bf->bf_next; 4007 bf->bf_next = NULL; /* Remove it from the aggr list */ 4008 sc->sc_stats.ast_tx_aggr_fail++; 4009 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4010 drops++; 4011 bf->bf_next = NULL; 4012 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4013 } 4014 bf = bf_next; 4015 } 4016 4017 /* Prepend all frames to the beginning of the queue */ 4018 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4019 TAILQ_REMOVE(&bf_q, bf, bf_list); 4020 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 4021 } 4022 4023 /* 4024 * Schedule the TID to be re-tried. 4025 */ 4026 ath_tx_tid_sched(sc, tid); 4027 4028 /* 4029 * send bar if we dropped any frames 4030 * 4031 * Keep the txq lock held for now, as we need to ensure 4032 * that ni_txseqs[] is consistent (as it's being updated 4033 * in the ifnet TX context or raw TX context.) 4034 */ 4035 if (drops) { 4036 /* Suspend the TX queue and get ready to send the BAR */ 4037 ath_tx_tid_bar_suspend(sc, tid); 4038 } 4039 4040 /* 4041 * Send BAR if required 4042 */ 4043 if (ath_tx_tid_bar_tx_ready(sc, tid)) 4044 ath_tx_tid_bar_tx(sc, tid); 4045 4046 ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]); 4047 4048 /* Complete frames which errored out */ 4049 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4050 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4051 ath_tx_default_comp(sc, bf, 0); 4052 } 4053 } 4054 4055 /* 4056 * Handle clean-up of packets from an aggregate list. 4057 * 4058 * There's no need to update the BAW here - the session is being 4059 * torn down. 4060 */ 4061 static void 4062 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first) 4063 { 4064 struct ath_buf *bf, *bf_next; 4065 struct ieee80211_node *ni = bf_first->bf_node; 4066 struct ath_node *an = ATH_NODE(ni); 4067 int tid = bf_first->bf_state.bfs_tid; 4068 struct ath_tid *atid = &an->an_tid[tid]; 4069 4070 bf = bf_first; 4071 4072 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 4073 4074 /* update incomp */ 4075 while (bf) { 4076 atid->incomp--; 4077 bf = bf->bf_next; 4078 } 4079 4080 if (atid->incomp == 0) { 4081 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4082 "%s: TID %d: cleaned up! resume!\n", 4083 __func__, tid); 4084 atid->cleanup_inprogress = 0; 4085 ath_tx_tid_resume(sc, atid); 4086 } 4087 4088 /* Send BAR if required */ 4089 /* XXX why would we send a BAR when transitioning to non-aggregation? */ 4090 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4091 ath_tx_tid_bar_tx(sc, atid); 4092 4093 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4094 4095 /* Handle frame completion */ 4096 while (bf) { 4097 bf_next = bf->bf_next; 4098 ath_tx_default_comp(sc, bf, 1); 4099 bf = bf_next; 4100 } 4101 } 4102 4103 /* 4104 * Handle completion of an set of aggregate frames. 4105 * 4106 * XXX for now, simply complete each sub-frame. 4107 * 4108 * Note: the completion handler is the last descriptor in the aggregate, 4109 * not the last descriptor in the first frame. 4110 */ 4111 static void 4112 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, 4113 int fail) 4114 { 4115 //struct ath_desc *ds = bf->bf_lastds; 4116 struct ieee80211_node *ni = bf_first->bf_node; 4117 struct ath_node *an = ATH_NODE(ni); 4118 int tid = bf_first->bf_state.bfs_tid; 4119 struct ath_tid *atid = &an->an_tid[tid]; 4120 struct ath_tx_status ts; 4121 struct ieee80211_tx_ampdu *tap; 4122 ath_bufhead bf_q; 4123 ath_bufhead bf_cq; 4124 int seq_st, tx_ok; 4125 int hasba, isaggr; 4126 uint32_t ba[2]; 4127 struct ath_buf *bf, *bf_next; 4128 int ba_index; 4129 int drops = 0; 4130 int nframes = 0, nbad = 0, nf; 4131 int pktlen; 4132 /* XXX there's too much on the stack? */ 4133 struct ath_rc_series rc[ATH_RC_NUM]; 4134 int txseq; 4135 4136 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n", 4137 __func__, atid->hwq_depth); 4138 4139 /* 4140 * Take a copy; this may be needed -after- bf_first 4141 * has been completed and freed. 4142 */ 4143 ts = bf_first->bf_status.ds_txstat; 4144 4145 TAILQ_INIT(&bf_q); 4146 TAILQ_INIT(&bf_cq); 4147 4148 /* The TID state is kept behind the TXQ lock */ 4149 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 4150 4151 atid->hwq_depth--; 4152 if (atid->hwq_depth < 0) 4153 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4154 __func__, atid->hwq_depth); 4155 4156 /* 4157 * If the TID is filtered, handle completing the filter 4158 * transition before potentially kicking it to the cleanup 4159 * function. 4160 * 4161 * XXX this is duplicate work, ew. 4162 */ 4163 if (atid->isfiltered) 4164 ath_tx_tid_filt_comp_complete(sc, atid); 4165 4166 /* 4167 * Punt cleanup to the relevant function, not our problem now 4168 */ 4169 if (atid->cleanup_inprogress) { 4170 if (atid->isfiltered) 4171 device_printf(sc->sc_dev, 4172 "%s: isfiltered=1, normal_comp?\n", 4173 __func__); 4174 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4175 ath_tx_comp_cleanup_aggr(sc, bf_first); 4176 return; 4177 } 4178 4179 /* 4180 * If the frame is filtered, transition to filtered frame 4181 * mode and add this to the filtered frame list. 4182 * 4183 * XXX TODO: figure out how this interoperates with 4184 * BAR, pause and cleanup states. 4185 */ 4186 if ((ts.ts_status & HAL_TXERR_FILT) || 4187 (ts.ts_status != 0 && atid->isfiltered)) { 4188 if (fail != 0) 4189 device_printf(sc->sc_dev, 4190 "%s: isfiltered=1, fail=%d\n", __func__, fail); 4191 ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq); 4192 4193 /* Remove from BAW */ 4194 TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) { 4195 if (bf->bf_state.bfs_addedbaw) 4196 drops++; 4197 if (bf->bf_state.bfs_dobaw) { 4198 ath_tx_update_baw(sc, an, atid, bf); 4199 if (! bf->bf_state.bfs_addedbaw) 4200 device_printf(sc->sc_dev, 4201 "%s: wasn't added: seqno %d\n", 4202 __func__, 4203 SEQNO(bf->bf_state.bfs_seqno)); 4204 } 4205 bf->bf_state.bfs_dobaw = 0; 4206 } 4207 /* 4208 * If any intermediate frames in the BAW were dropped when 4209 * handling filtering things, send a BAR. 4210 */ 4211 if (drops) 4212 ath_tx_tid_bar_suspend(sc, atid); 4213 4214 /* 4215 * Finish up by sending a BAR if required and freeing 4216 * the frames outside of the TX lock. 4217 */ 4218 goto finish_send_bar; 4219 } 4220 4221 /* 4222 * XXX for now, use the first frame in the aggregate for 4223 * XXX rate control completion; it's at least consistent. 4224 */ 4225 pktlen = bf_first->bf_state.bfs_pktlen; 4226 4227 /* 4228 * Handle errors first! 4229 * 4230 * Here, handle _any_ error as a "exceeded retries" error. 4231 * Later on (when filtered frames are to be specially handled) 4232 * it'll have to be expanded. 4233 */ 4234 #if 0 4235 if (ts.ts_status & HAL_TXERR_XRETRY) { 4236 #endif 4237 if (ts.ts_status != 0) { 4238 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4239 ath_tx_comp_aggr_error(sc, bf_first, atid); 4240 return; 4241 } 4242 4243 tap = ath_tx_get_tx_tid(an, tid); 4244 4245 /* 4246 * extract starting sequence and block-ack bitmap 4247 */ 4248 /* XXX endian-ness of seq_st, ba? */ 4249 seq_st = ts.ts_seqnum; 4250 hasba = !! (ts.ts_flags & HAL_TX_BA); 4251 tx_ok = (ts.ts_status == 0); 4252 isaggr = bf_first->bf_state.bfs_aggr; 4253 ba[0] = ts.ts_ba_low; 4254 ba[1] = ts.ts_ba_high; 4255 4256 /* 4257 * Copy the TX completion status and the rate control 4258 * series from the first descriptor, as it may be freed 4259 * before the rate control code can get its grubby fingers 4260 * into things. 4261 */ 4262 memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc)); 4263 4264 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4265 "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, " 4266 "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n", 4267 __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags, 4268 isaggr, seq_st, hasba, ba[0], ba[1]); 4269 4270 /* Occasionally, the MAC sends a tx status for the wrong TID. */ 4271 if (tid != ts.ts_tid) { 4272 device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n", 4273 __func__, tid, ts.ts_tid); 4274 tx_ok = 0; 4275 } 4276 4277 /* AR5416 BA bug; this requires an interface reset */ 4278 if (isaggr && tx_ok && (! hasba)) { 4279 device_printf(sc->sc_dev, 4280 "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, " 4281 "seq_st=%d\n", 4282 __func__, hasba, tx_ok, isaggr, seq_st); 4283 /* XXX TODO: schedule an interface reset */ 4284 #ifdef ATH_DEBUG 4285 ath_printtxbuf(sc, bf_first, 4286 sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0); 4287 #endif 4288 } 4289 4290 /* 4291 * Walk the list of frames, figure out which ones were correctly 4292 * sent and which weren't. 4293 */ 4294 bf = bf_first; 4295 nf = bf_first->bf_state.bfs_nframes; 4296 4297 /* bf_first is going to be invalid once this list is walked */ 4298 bf_first = NULL; 4299 4300 /* 4301 * Walk the list of completed frames and determine 4302 * which need to be completed and which need to be 4303 * retransmitted. 4304 * 4305 * For completed frames, the completion functions need 4306 * to be called at the end of this function as the last 4307 * node reference may free the node. 4308 * 4309 * Finally, since the TXQ lock can't be held during the 4310 * completion callback (to avoid lock recursion), 4311 * the completion calls have to be done outside of the 4312 * lock. 4313 */ 4314 while (bf) { 4315 nframes++; 4316 ba_index = ATH_BA_INDEX(seq_st, 4317 SEQNO(bf->bf_state.bfs_seqno)); 4318 bf_next = bf->bf_next; 4319 bf->bf_next = NULL; /* Remove it from the aggr list */ 4320 4321 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4322 "%s: checking bf=%p seqno=%d; ack=%d\n", 4323 __func__, bf, SEQNO(bf->bf_state.bfs_seqno), 4324 ATH_BA_ISSET(ba, ba_index)); 4325 4326 if (tx_ok && ATH_BA_ISSET(ba, ba_index)) { 4327 sc->sc_stats.ast_tx_aggr_ok++; 4328 ath_tx_update_baw(sc, an, atid, bf); 4329 bf->bf_state.bfs_dobaw = 0; 4330 if (! bf->bf_state.bfs_addedbaw) 4331 device_printf(sc->sc_dev, 4332 "%s: wasn't added: seqno %d\n", 4333 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4334 bf->bf_next = NULL; 4335 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4336 } else { 4337 sc->sc_stats.ast_tx_aggr_fail++; 4338 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4339 drops++; 4340 bf->bf_next = NULL; 4341 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4342 } 4343 nbad++; 4344 } 4345 bf = bf_next; 4346 } 4347 4348 /* 4349 * Now that the BAW updates have been done, unlock 4350 * 4351 * txseq is grabbed before the lock is released so we 4352 * have a consistent view of what -was- in the BAW. 4353 * Anything after this point will not yet have been 4354 * TXed. 4355 */ 4356 txseq = tap->txa_start; 4357 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4358 4359 if (nframes != nf) 4360 device_printf(sc->sc_dev, 4361 "%s: num frames seen=%d; bf nframes=%d\n", 4362 __func__, nframes, nf); 4363 4364 /* 4365 * Now we know how many frames were bad, call the rate 4366 * control code. 4367 */ 4368 if (fail == 0) 4369 ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, 4370 nbad); 4371 4372 /* 4373 * send bar if we dropped any frames 4374 */ 4375 if (drops) { 4376 /* Suspend the TX queue and get ready to send the BAR */ 4377 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 4378 ath_tx_tid_bar_suspend(sc, atid); 4379 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4380 } 4381 4382 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4383 "%s: txa_start now %d\n", __func__, tap->txa_start); 4384 4385 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 4386 4387 /* Prepend all frames to the beginning of the queue */ 4388 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4389 TAILQ_REMOVE(&bf_q, bf, bf_list); 4390 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 4391 } 4392 4393 /* 4394 * Reschedule to grab some further frames. 4395 */ 4396 ath_tx_tid_sched(sc, atid); 4397 4398 /* 4399 * If the queue is filtered, re-schedule as required. 4400 * 4401 * This is required as there may be a subsequent TX descriptor 4402 * for this end-node that has CLRDMASK set, so it's quite possible 4403 * that a filtered frame will be followed by a non-filtered 4404 * (complete or otherwise) frame. 4405 * 4406 * XXX should we do this before we complete the frame? 4407 */ 4408 if (atid->isfiltered) 4409 ath_tx_tid_filt_comp_complete(sc, atid); 4410 4411 finish_send_bar: 4412 4413 /* 4414 * Send BAR if required 4415 */ 4416 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4417 ath_tx_tid_bar_tx(sc, atid); 4418 4419 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4420 4421 /* Do deferred completion */ 4422 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4423 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4424 ath_tx_default_comp(sc, bf, 0); 4425 } 4426 } 4427 4428 /* 4429 * Handle completion of unaggregated frames in an ADDBA 4430 * session. 4431 * 4432 * Fail is set to 1 if the entry is being freed via a call to 4433 * ath_tx_draintxq(). 4434 */ 4435 static void 4436 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail) 4437 { 4438 struct ieee80211_node *ni = bf->bf_node; 4439 struct ath_node *an = ATH_NODE(ni); 4440 int tid = bf->bf_state.bfs_tid; 4441 struct ath_tid *atid = &an->an_tid[tid]; 4442 struct ath_tx_status ts; 4443 int drops = 0; 4444 4445 /* 4446 * Take a copy of this; filtering/cloning the frame may free the 4447 * bf pointer. 4448 */ 4449 ts = bf->bf_status.ds_txstat; 4450 4451 /* 4452 * Update rate control status here, before we possibly 4453 * punt to retry or cleanup. 4454 * 4455 * Do it outside of the TXQ lock. 4456 */ 4457 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 4458 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 4459 &bf->bf_status.ds_txstat, 4460 bf->bf_state.bfs_pktlen, 4461 1, (ts.ts_status == 0) ? 0 : 1); 4462 4463 /* 4464 * This is called early so atid->hwq_depth can be tracked. 4465 * This unfortunately means that it's released and regrabbed 4466 * during retry and cleanup. That's rather inefficient. 4467 */ 4468 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 4469 4470 if (tid == IEEE80211_NONQOS_TID) 4471 device_printf(sc->sc_dev, "%s: TID=16!\n", __func__); 4472 4473 DPRINTF(sc, ATH_DEBUG_SW_TX, 4474 "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n", 4475 __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth, 4476 SEQNO(bf->bf_state.bfs_seqno)); 4477 4478 atid->hwq_depth--; 4479 if (atid->hwq_depth < 0) 4480 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4481 __func__, atid->hwq_depth); 4482 4483 /* 4484 * If the TID is filtered, handle completing the filter 4485 * transition before potentially kicking it to the cleanup 4486 * function. 4487 */ 4488 if (atid->isfiltered) 4489 ath_tx_tid_filt_comp_complete(sc, atid); 4490 4491 /* 4492 * If a cleanup is in progress, punt to comp_cleanup; 4493 * rather than handling it here. It's thus their 4494 * responsibility to clean up, call the completion 4495 * function in net80211, etc. 4496 */ 4497 if (atid->cleanup_inprogress) { 4498 if (atid->isfiltered) 4499 device_printf(sc->sc_dev, 4500 "%s: isfiltered=1, normal_comp?\n", 4501 __func__); 4502 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4503 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n", 4504 __func__); 4505 ath_tx_comp_cleanup_unaggr(sc, bf); 4506 return; 4507 } 4508 4509 /* 4510 * XXX TODO: how does cleanup, BAR and filtered frame handling 4511 * overlap? 4512 * 4513 * If the frame is filtered OR if it's any failure but 4514 * the TID is filtered, the frame must be added to the 4515 * filtered frame list. 4516 * 4517 * However - a busy buffer can't be added to the filtered 4518 * list as it will end up being recycled without having 4519 * been made available for the hardware. 4520 */ 4521 if ((ts.ts_status & HAL_TXERR_FILT) || 4522 (ts.ts_status != 0 && atid->isfiltered)) { 4523 int freeframe; 4524 4525 if (fail != 0) 4526 device_printf(sc->sc_dev, 4527 "%s: isfiltered=1, fail=%d\n", 4528 __func__, 4529 fail); 4530 freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf); 4531 if (freeframe) { 4532 /* Remove from BAW */ 4533 if (bf->bf_state.bfs_addedbaw) 4534 drops++; 4535 if (bf->bf_state.bfs_dobaw) { 4536 ath_tx_update_baw(sc, an, atid, bf); 4537 if (! bf->bf_state.bfs_addedbaw) 4538 device_printf(sc->sc_dev, 4539 "%s: wasn't added: seqno %d\n", 4540 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4541 } 4542 bf->bf_state.bfs_dobaw = 0; 4543 } 4544 4545 /* 4546 * If the frame couldn't be filtered, treat it as a drop and 4547 * prepare to send a BAR. 4548 */ 4549 if (freeframe && drops) 4550 ath_tx_tid_bar_suspend(sc, atid); 4551 4552 /* 4553 * Send BAR if required 4554 */ 4555 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4556 ath_tx_tid_bar_tx(sc, atid); 4557 4558 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4559 /* 4560 * If freeframe is set, then the frame couldn't be 4561 * cloned and bf is still valid. Just complete/free it. 4562 */ 4563 if (freeframe) 4564 ath_tx_default_comp(sc, bf, fail); 4565 4566 4567 return; 4568 } 4569 /* 4570 * Don't bother with the retry check if all frames 4571 * are being failed (eg during queue deletion.) 4572 */ 4573 #if 0 4574 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) { 4575 #endif 4576 if (fail == 0 && ts.ts_status != 0) { 4577 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4578 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n", 4579 __func__); 4580 ath_tx_aggr_retry_unaggr(sc, bf); 4581 return; 4582 } 4583 4584 /* Success? Complete */ 4585 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n", 4586 __func__, tid, SEQNO(bf->bf_state.bfs_seqno)); 4587 if (bf->bf_state.bfs_dobaw) { 4588 ath_tx_update_baw(sc, an, atid, bf); 4589 bf->bf_state.bfs_dobaw = 0; 4590 if (! bf->bf_state.bfs_addedbaw) 4591 device_printf(sc->sc_dev, 4592 "%s: wasn't added: seqno %d\n", 4593 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4594 } 4595 4596 /* 4597 * If the queue is filtered, re-schedule as required. 4598 * 4599 * This is required as there may be a subsequent TX descriptor 4600 * for this end-node that has CLRDMASK set, so it's quite possible 4601 * that a filtered frame will be followed by a non-filtered 4602 * (complete or otherwise) frame. 4603 * 4604 * XXX should we do this before we complete the frame? 4605 */ 4606 if (atid->isfiltered) 4607 ath_tx_tid_filt_comp_complete(sc, atid); 4608 4609 /* 4610 * Send BAR if required 4611 */ 4612 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4613 ath_tx_tid_bar_tx(sc, atid); 4614 4615 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4616 4617 ath_tx_default_comp(sc, bf, fail); 4618 /* bf is freed at this point */ 4619 } 4620 4621 void 4622 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4623 { 4624 if (bf->bf_state.bfs_aggr) 4625 ath_tx_aggr_comp_aggr(sc, bf, fail); 4626 else 4627 ath_tx_aggr_comp_unaggr(sc, bf, fail); 4628 } 4629 4630 /* 4631 * Schedule some packets from the given node/TID to the hardware. 4632 * 4633 * This is the aggregate version. 4634 */ 4635 void 4636 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an, 4637 struct ath_tid *tid) 4638 { 4639 struct ath_buf *bf; 4640 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4641 struct ieee80211_tx_ampdu *tap; 4642 ATH_AGGR_STATUS status; 4643 ath_bufhead bf_q; 4644 4645 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid); 4646 ATH_TXQ_LOCK_ASSERT(txq); 4647 4648 tap = ath_tx_get_tx_tid(an, tid->tid); 4649 4650 if (tid->tid == IEEE80211_NONQOS_TID) 4651 device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n", 4652 __func__); 4653 4654 for (;;) { 4655 status = ATH_AGGR_DONE; 4656 4657 /* 4658 * If the upper layer has paused the TID, don't 4659 * queue any further packets. 4660 * 4661 * This can also occur from the completion task because 4662 * of packet loss; but as its serialised with this code, 4663 * it won't "appear" half way through queuing packets. 4664 */ 4665 if (tid->paused) 4666 break; 4667 4668 bf = ATH_TID_FIRST(tid); 4669 if (bf == NULL) { 4670 break; 4671 } 4672 4673 /* 4674 * If the packet doesn't fall within the BAW (eg a NULL 4675 * data frame), schedule it directly; continue. 4676 */ 4677 if (! bf->bf_state.bfs_dobaw) { 4678 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4679 "%s: non-baw packet\n", 4680 __func__); 4681 ATH_TID_REMOVE(tid, bf, bf_list); 4682 4683 if (bf->bf_state.bfs_nframes > 1) 4684 device_printf(sc->sc_dev, 4685 "%s: aggr=%d, nframes=%d\n", 4686 __func__, 4687 bf->bf_state.bfs_aggr, 4688 bf->bf_state.bfs_nframes); 4689 4690 /* 4691 * This shouldn't happen - such frames shouldn't 4692 * ever have been queued as an aggregate in the 4693 * first place. However, make sure the fields 4694 * are correctly setup just to be totally sure. 4695 */ 4696 bf->bf_state.bfs_aggr = 0; 4697 bf->bf_state.bfs_nframes = 1; 4698 4699 /* Update CLRDMASK just before this frame is queued */ 4700 ath_tx_update_clrdmask(sc, tid, bf); 4701 4702 ath_tx_do_ratelookup(sc, bf); 4703 ath_tx_calc_duration(sc, bf); 4704 ath_tx_calc_protection(sc, bf); 4705 ath_tx_set_rtscts(sc, bf); 4706 ath_tx_rate_fill_rcflags(sc, bf); 4707 ath_tx_setds(sc, bf); 4708 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4709 4710 sc->sc_aggr_stats.aggr_nonbaw_pkt++; 4711 4712 /* Queue the packet; continue */ 4713 goto queuepkt; 4714 } 4715 4716 TAILQ_INIT(&bf_q); 4717 4718 /* 4719 * Do a rate control lookup on the first frame in the 4720 * list. The rate control code needs that to occur 4721 * before it can determine whether to TX. 4722 * It's inaccurate because the rate control code doesn't 4723 * really "do" aggregate lookups, so it only considers 4724 * the size of the first frame. 4725 */ 4726 ath_tx_do_ratelookup(sc, bf); 4727 bf->bf_state.bfs_rc[3].rix = 0; 4728 bf->bf_state.bfs_rc[3].tries = 0; 4729 4730 ath_tx_calc_duration(sc, bf); 4731 ath_tx_calc_protection(sc, bf); 4732 4733 ath_tx_set_rtscts(sc, bf); 4734 ath_tx_rate_fill_rcflags(sc, bf); 4735 4736 status = ath_tx_form_aggr(sc, an, tid, &bf_q); 4737 4738 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4739 "%s: ath_tx_form_aggr() status=%d\n", __func__, status); 4740 4741 /* 4742 * No frames to be picked up - out of BAW 4743 */ 4744 if (TAILQ_EMPTY(&bf_q)) 4745 break; 4746 4747 /* 4748 * This assumes that the descriptor list in the ath_bufhead 4749 * are already linked together via bf_next pointers. 4750 */ 4751 bf = TAILQ_FIRST(&bf_q); 4752 4753 if (status == ATH_AGGR_8K_LIMITED) 4754 sc->sc_aggr_stats.aggr_rts_aggr_limited++; 4755 4756 /* 4757 * If it's the only frame send as non-aggregate 4758 * assume that ath_tx_form_aggr() has checked 4759 * whether it's in the BAW and added it appropriately. 4760 */ 4761 if (bf->bf_state.bfs_nframes == 1) { 4762 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4763 "%s: single-frame aggregate\n", __func__); 4764 4765 /* Update CLRDMASK just before this frame is queued */ 4766 ath_tx_update_clrdmask(sc, tid, bf); 4767 4768 bf->bf_state.bfs_aggr = 0; 4769 bf->bf_state.bfs_ndelim = 0; 4770 ath_tx_setds(sc, bf); 4771 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4772 if (status == ATH_AGGR_BAW_CLOSED) 4773 sc->sc_aggr_stats.aggr_baw_closed_single_pkt++; 4774 else 4775 sc->sc_aggr_stats.aggr_single_pkt++; 4776 } else { 4777 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4778 "%s: multi-frame aggregate: %d frames, " 4779 "length %d\n", 4780 __func__, bf->bf_state.bfs_nframes, 4781 bf->bf_state.bfs_al); 4782 bf->bf_state.bfs_aggr = 1; 4783 sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++; 4784 sc->sc_aggr_stats.aggr_aggr_pkt++; 4785 4786 /* Update CLRDMASK just before this frame is queued */ 4787 ath_tx_update_clrdmask(sc, tid, bf); 4788 4789 /* 4790 * Calculate the duration/protection as required. 4791 */ 4792 ath_tx_calc_duration(sc, bf); 4793 ath_tx_calc_protection(sc, bf); 4794 4795 /* 4796 * Update the rate and rtscts information based on the 4797 * rate decision made by the rate control code; 4798 * the first frame in the aggregate needs it. 4799 */ 4800 ath_tx_set_rtscts(sc, bf); 4801 4802 /* 4803 * Setup the relevant descriptor fields 4804 * for aggregation. The first descriptor 4805 * already points to the rest in the chain. 4806 */ 4807 ath_tx_setds_11n(sc, bf); 4808 4809 } 4810 queuepkt: 4811 //txq = bf->bf_state.bfs_txq; 4812 4813 /* Set completion handler, multi-frame aggregate or not */ 4814 bf->bf_comp = ath_tx_aggr_comp; 4815 4816 if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID) 4817 device_printf(sc->sc_dev, "%s: TID=16?\n", __func__); 4818 4819 /* Punt to txq */ 4820 ath_tx_handoff(sc, txq, bf); 4821 4822 /* Track outstanding buffer count to hardware */ 4823 /* aggregates are "one" buffer */ 4824 tid->hwq_depth++; 4825 4826 /* 4827 * Break out if ath_tx_form_aggr() indicated 4828 * there can't be any further progress (eg BAW is full.) 4829 * Checking for an empty txq is done above. 4830 * 4831 * XXX locking on txq here? 4832 */ 4833 if (txq->axq_aggr_depth >= sc->sc_hwq_limit || 4834 status == ATH_AGGR_BAW_CLOSED) 4835 break; 4836 } 4837 } 4838 4839 /* 4840 * Schedule some packets from the given node/TID to the hardware. 4841 */ 4842 void 4843 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an, 4844 struct ath_tid *tid) 4845 { 4846 struct ath_buf *bf; 4847 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4848 4849 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n", 4850 __func__, an, tid->tid); 4851 4852 ATH_TID_LOCK_ASSERT(sc, tid); 4853 4854 /* Check - is AMPDU pending or running? then print out something */ 4855 if (ath_tx_ampdu_pending(sc, an, tid->tid)) 4856 device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n", 4857 __func__, tid->tid); 4858 if (ath_tx_ampdu_running(sc, an, tid->tid)) 4859 device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n", 4860 __func__, tid->tid); 4861 4862 for (;;) { 4863 4864 /* 4865 * If the upper layers have paused the TID, don't 4866 * queue any further packets. 4867 */ 4868 if (tid->paused) 4869 break; 4870 4871 bf = ATH_TID_FIRST(tid); 4872 if (bf == NULL) { 4873 break; 4874 } 4875 4876 ATH_TID_REMOVE(tid, bf, bf_list); 4877 4878 KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n")); 4879 4880 /* Sanity check! */ 4881 if (tid->tid != bf->bf_state.bfs_tid) { 4882 device_printf(sc->sc_dev, "%s: bfs_tid %d !=" 4883 " tid %d\n", 4884 __func__, bf->bf_state.bfs_tid, tid->tid); 4885 } 4886 /* Normal completion handler */ 4887 bf->bf_comp = ath_tx_normal_comp; 4888 4889 /* 4890 * Override this for now, until the non-aggregate 4891 * completion handler correctly handles software retransmits. 4892 */ 4893 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 4894 4895 /* Update CLRDMASK just before this frame is queued */ 4896 ath_tx_update_clrdmask(sc, tid, bf); 4897 4898 /* Program descriptors + rate control */ 4899 ath_tx_do_ratelookup(sc, bf); 4900 ath_tx_calc_duration(sc, bf); 4901 ath_tx_calc_protection(sc, bf); 4902 ath_tx_set_rtscts(sc, bf); 4903 ath_tx_rate_fill_rcflags(sc, bf); 4904 ath_tx_setds(sc, bf); 4905 4906 /* Track outstanding buffer count to hardware */ 4907 /* aggregates are "one" buffer */ 4908 tid->hwq_depth++; 4909 4910 /* Punt to hardware or software txq */ 4911 ath_tx_handoff(sc, txq, bf); 4912 } 4913 } 4914 4915 /* 4916 * Schedule some packets to the given hardware queue. 4917 * 4918 * This function walks the list of TIDs (ie, ath_node TIDs 4919 * with queued traffic) and attempts to schedule traffic 4920 * from them. 4921 * 4922 * TID scheduling is implemented as a FIFO, with TIDs being 4923 * added to the end of the queue after some frames have been 4924 * scheduled. 4925 */ 4926 void 4927 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq) 4928 { 4929 struct ath_tid *tid, *next, *last; 4930 4931 ATH_TXQ_LOCK_ASSERT(txq); 4932 4933 /* 4934 * Don't schedule if the hardware queue is busy. 4935 * This (hopefully) gives some more time to aggregate 4936 * some packets in the aggregation queue. 4937 */ 4938 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 4939 sc->sc_aggr_stats.aggr_sched_nopkt++; 4940 return; 4941 } 4942 4943 last = TAILQ_LAST(&txq->axq_tidq, axq_t_s); 4944 4945 TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) { 4946 /* 4947 * Suspend paused queues here; they'll be resumed 4948 * once the addba completes or times out. 4949 */ 4950 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n", 4951 __func__, tid->tid, tid->paused); 4952 ath_tx_tid_unsched(sc, tid); 4953 if (tid->paused) { 4954 continue; 4955 } 4956 if (ath_tx_ampdu_running(sc, tid->an, tid->tid)) 4957 ath_tx_tid_hw_queue_aggr(sc, tid->an, tid); 4958 else 4959 ath_tx_tid_hw_queue_norm(sc, tid->an, tid); 4960 4961 /* Not empty? Re-schedule */ 4962 if (tid->axq_depth != 0) 4963 ath_tx_tid_sched(sc, tid); 4964 4965 /* Give the software queue time to aggregate more packets */ 4966 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 4967 break; 4968 } 4969 4970 /* 4971 * If this was the last entry on the original list, stop. 4972 * Otherwise nodes that have been rescheduled onto the end 4973 * of the TID FIFO list will just keep being rescheduled. 4974 */ 4975 if (tid == last) 4976 break; 4977 } 4978 } 4979 4980 /* 4981 * TX addba handling 4982 */ 4983 4984 /* 4985 * Return net80211 TID struct pointer, or NULL for none 4986 */ 4987 struct ieee80211_tx_ampdu * 4988 ath_tx_get_tx_tid(struct ath_node *an, int tid) 4989 { 4990 struct ieee80211_node *ni = &an->an_node; 4991 struct ieee80211_tx_ampdu *tap; 4992 4993 if (tid == IEEE80211_NONQOS_TID) 4994 return NULL; 4995 4996 tap = &ni->ni_tx_ampdu[tid]; 4997 return tap; 4998 } 4999 5000 /* 5001 * Is AMPDU-TX running? 5002 */ 5003 static int 5004 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid) 5005 { 5006 struct ieee80211_tx_ampdu *tap; 5007 5008 if (tid == IEEE80211_NONQOS_TID) 5009 return 0; 5010 5011 tap = ath_tx_get_tx_tid(an, tid); 5012 if (tap == NULL) 5013 return 0; /* Not valid; default to not running */ 5014 5015 return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING); 5016 } 5017 5018 /* 5019 * Is AMPDU-TX negotiation pending? 5020 */ 5021 static int 5022 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid) 5023 { 5024 struct ieee80211_tx_ampdu *tap; 5025 5026 if (tid == IEEE80211_NONQOS_TID) 5027 return 0; 5028 5029 tap = ath_tx_get_tx_tid(an, tid); 5030 if (tap == NULL) 5031 return 0; /* Not valid; default to not pending */ 5032 5033 return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND); 5034 } 5035 5036 /* 5037 * Is AMPDU-TX pending for the given TID? 5038 */ 5039 5040 5041 /* 5042 * Method to handle sending an ADDBA request. 5043 * 5044 * We tap this so the relevant flags can be set to pause the TID 5045 * whilst waiting for the response. 5046 * 5047 * XXX there's no timeout handler we can override? 5048 */ 5049 int 5050 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5051 int dialogtoken, int baparamset, int batimeout) 5052 { 5053 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5054 int tid = tap->txa_tid; 5055 struct ath_node *an = ATH_NODE(ni); 5056 struct ath_tid *atid = &an->an_tid[tid]; 5057 5058 /* 5059 * XXX danger Will Robinson! 5060 * 5061 * Although the taskqueue may be running and scheduling some more 5062 * packets, these should all be _before_ the addba sequence number. 5063 * However, net80211 will keep self-assigning sequence numbers 5064 * until addba has been negotiated. 5065 * 5066 * In the past, these packets would be "paused" (which still works 5067 * fine, as they're being scheduled to the driver in the same 5068 * serialised method which is calling the addba request routine) 5069 * and when the aggregation session begins, they'll be dequeued 5070 * as aggregate packets and added to the BAW. However, now there's 5071 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these 5072 * packets. Thus they never get included in the BAW tracking and 5073 * this can cause the initial burst of packets after the addba 5074 * negotiation to "hang", as they quickly fall outside the BAW. 5075 * 5076 * The "eventual" solution should be to tag these packets with 5077 * dobaw. Although net80211 has given us a sequence number, 5078 * it'll be "after" the left edge of the BAW and thus it'll 5079 * fall within it. 5080 */ 5081 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5082 /* 5083 * This is a bit annoying. Until net80211 HT code inherits some 5084 * (any) locking, we may have this called in parallel BUT only 5085 * one response/timeout will be called. Grr. 5086 */ 5087 if (atid->addba_tx_pending == 0) { 5088 ath_tx_tid_pause(sc, atid); 5089 atid->addba_tx_pending = 1; 5090 } 5091 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5092 5093 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5094 "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n", 5095 __func__, dialogtoken, baparamset, batimeout); 5096 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5097 "%s: txa_start=%d, ni_txseqs=%d\n", 5098 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5099 5100 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 5101 batimeout); 5102 } 5103 5104 /* 5105 * Handle an ADDBA response. 5106 * 5107 * We unpause the queue so TX'ing can resume. 5108 * 5109 * Any packets TX'ed from this point should be "aggregate" (whether 5110 * aggregate or not) so the BAW is updated. 5111 * 5112 * Note! net80211 keeps self-assigning sequence numbers until 5113 * ampdu is negotiated. This means the initially-negotiated BAW left 5114 * edge won't match the ni->ni_txseq. 5115 * 5116 * So, being very dirty, the BAW left edge is "slid" here to match 5117 * ni->ni_txseq. 5118 * 5119 * What likely SHOULD happen is that all packets subsequent to the 5120 * addba request should be tagged as aggregate and queued as non-aggregate 5121 * frames; thus updating the BAW. For now though, I'll just slide the 5122 * window. 5123 */ 5124 int 5125 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5126 int status, int code, int batimeout) 5127 { 5128 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5129 int tid = tap->txa_tid; 5130 struct ath_node *an = ATH_NODE(ni); 5131 struct ath_tid *atid = &an->an_tid[tid]; 5132 int r; 5133 5134 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5135 "%s: called; status=%d, code=%d, batimeout=%d\n", __func__, 5136 status, code, batimeout); 5137 5138 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5139 "%s: txa_start=%d, ni_txseqs=%d\n", 5140 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5141 5142 /* 5143 * Call this first, so the interface flags get updated 5144 * before the TID is unpaused. Otherwise a race condition 5145 * exists where the unpaused TID still doesn't yet have 5146 * IEEE80211_AGGR_RUNNING set. 5147 */ 5148 r = sc->sc_addba_response(ni, tap, status, code, batimeout); 5149 5150 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5151 atid->addba_tx_pending = 0; 5152 /* 5153 * XXX dirty! 5154 * Slide the BAW left edge to wherever net80211 left it for us. 5155 * Read above for more information. 5156 */ 5157 tap->txa_start = ni->ni_txseqs[tid]; 5158 ath_tx_tid_resume(sc, atid); 5159 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5160 return r; 5161 } 5162 5163 5164 /* 5165 * Stop ADDBA on a queue. 5166 * 5167 * This can be called whilst BAR TX is currently active on the queue, 5168 * so make sure this is unblocked before continuing. 5169 */ 5170 void 5171 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 5172 { 5173 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5174 int tid = tap->txa_tid; 5175 struct ath_node *an = ATH_NODE(ni); 5176 struct ath_tid *atid = &an->an_tid[tid]; 5177 5178 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__); 5179 5180 /* 5181 * Pause TID traffic early, so there aren't any races 5182 * Unblock the pending BAR held traffic, if it's currently paused. 5183 */ 5184 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5185 ath_tx_tid_pause(sc, atid); 5186 if (atid->bar_wait) { 5187 /* 5188 * bar_unsuspend() expects bar_tx == 1, as it should be 5189 * called from the TX completion path. This quietens 5190 * the warning. It's cleared for us anyway. 5191 */ 5192 atid->bar_tx = 1; 5193 ath_tx_tid_bar_unsuspend(sc, atid); 5194 } 5195 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5196 5197 /* There's no need to hold the TXQ lock here */ 5198 sc->sc_addba_stop(ni, tap); 5199 5200 /* 5201 * ath_tx_tid_cleanup will resume the TID if possible, otherwise 5202 * it'll set the cleanup flag, and it'll be unpaused once 5203 * things have been cleaned up. 5204 */ 5205 ath_tx_tid_cleanup(sc, an, tid); 5206 } 5207 5208 /* 5209 * Note: net80211 bar_timeout() doesn't call this function on BAR failure; 5210 * it simply tears down the aggregation session. Ew. 5211 * 5212 * It however will call ieee80211_ampdu_stop() which will call 5213 * ic->ic_addba_stop(). 5214 * 5215 * XXX This uses a hard-coded max BAR count value; the whole 5216 * XXX BAR TX success or failure should be better handled! 5217 */ 5218 void 5219 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5220 int status) 5221 { 5222 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5223 int tid = tap->txa_tid; 5224 struct ath_node *an = ATH_NODE(ni); 5225 struct ath_tid *atid = &an->an_tid[tid]; 5226 int attempts = tap->txa_attempts; 5227 5228 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 5229 "%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n", 5230 __func__, 5231 tap, 5232 atid, 5233 tap->txa_tid, 5234 atid->tid, 5235 status, 5236 attempts); 5237 5238 /* Note: This may update the BAW details */ 5239 sc->sc_bar_response(ni, tap, status); 5240 5241 /* Unpause the TID */ 5242 /* 5243 * XXX if this is attempt=50, the TID will be downgraded 5244 * XXX to a non-aggregate session. So we must unpause the 5245 * XXX TID here or it'll never be done. 5246 * 5247 * Also, don't call it if bar_tx/bar_wait are 0; something 5248 * has beaten us to the punch? (XXX figure out what?) 5249 */ 5250 if (status == 0 || attempts == 50) { 5251 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5252 if (atid->bar_tx == 0 || atid->bar_wait == 0) 5253 device_printf(sc->sc_dev, 5254 "%s: huh? bar_tx=%d, bar_wait=%d\n", 5255 __func__, 5256 atid->bar_tx, atid->bar_wait); 5257 else 5258 ath_tx_tid_bar_unsuspend(sc, atid); 5259 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5260 } 5261 } 5262 5263 /* 5264 * This is called whenever the pending ADDBA request times out. 5265 * Unpause and reschedule the TID. 5266 */ 5267 void 5268 ath_addba_response_timeout(struct ieee80211_node *ni, 5269 struct ieee80211_tx_ampdu *tap) 5270 { 5271 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5272 int tid = tap->txa_tid; 5273 struct ath_node *an = ATH_NODE(ni); 5274 struct ath_tid *atid = &an->an_tid[tid]; 5275 5276 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5277 "%s: called; resuming\n", __func__); 5278 5279 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5280 atid->addba_tx_pending = 0; 5281 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5282 5283 /* Note: This updates the aggregate state to (again) pending */ 5284 sc->sc_addba_response_timeout(ni, tap); 5285 5286 /* Unpause the TID; which reschedules it */ 5287 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5288 ath_tx_tid_resume(sc, atid); 5289 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5290 } 5291 5292 #if 0 5293 /* 5294 * Check if a node is asleep or not. 5295 */ 5296 static int 5297 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an) 5298 { 5299 5300 ATH_NODE_LOCK_ASSERT(an); 5301 5302 return (an->an_is_powersave); 5303 } 5304 #endif 5305 5306 /* 5307 * Mark a node as currently "in powersaving." 5308 * This suspends all traffic on the node. 5309 * 5310 * This must be called with the node/tx locks free. 5311 * 5312 * XXX TODO: the locking silliness below is due to how the node 5313 * locking currently works. Right now, the node lock is grabbed 5314 * to do rate control lookups and these are done with the TX 5315 * queue lock held. This means the node lock can't be grabbed 5316 * first here or a LOR will occur. 5317 * 5318 * Eventually (hopefully!) the TX path code will only grab 5319 * the TXQ lock when transmitting and the ath_node lock when 5320 * doing node/TID operations. There are other complications - 5321 * the sched/unsched operations involve walking the per-txq 5322 * 'active tid' list and this requires both locks to be held. 5323 */ 5324 void 5325 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an) 5326 { 5327 struct ath_tid *atid; 5328 struct ath_txq *txq; 5329 int tid; 5330 5331 ATH_NODE_UNLOCK_ASSERT(an); 5332 5333 /* 5334 * It's possible that a parallel call to ath_tx_node_wakeup() 5335 * will unpause these queues. 5336 * 5337 * The node lock can't just be grabbed here, as there's places 5338 * in the driver where the node lock is grabbed _within_ a 5339 * TXQ lock. 5340 * So, we do this delicately and unwind state if needed. 5341 * 5342 * + Pause all the queues 5343 * + Grab the node lock 5344 * + If the queue is already asleep, unpause and quit 5345 * + else just mark as asleep. 5346 * 5347 * A parallel sleep() call will just pause and then 5348 * find they're already paused, so undo it. 5349 * 5350 * A parallel wakeup() call will check if asleep is 1 5351 * and if it's not (ie, it's 0), it'll treat it as already 5352 * being awake. If it's 1, it'll mark it as 0 and then 5353 * unpause everything. 5354 * 5355 * (Talk about a delicate hack.) 5356 */ 5357 5358 /* Suspend all traffic on the node */ 5359 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5360 atid = &an->an_tid[tid]; 5361 txq = sc->sc_ac2q[atid->ac]; 5362 5363 ATH_TXQ_LOCK(txq); 5364 ath_tx_tid_pause(sc, atid); 5365 ATH_TXQ_UNLOCK(txq); 5366 } 5367 5368 ATH_NODE_LOCK(an); 5369 5370 /* In case of concurrency races from net80211.. */ 5371 if (an->an_is_powersave == 1) { 5372 ATH_NODE_UNLOCK(an); 5373 device_printf(sc->sc_dev, 5374 "%s: an=%p: node was already asleep\n", 5375 __func__, an); 5376 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5377 atid = &an->an_tid[tid]; 5378 txq = sc->sc_ac2q[atid->ac]; 5379 5380 ATH_TXQ_LOCK(txq); 5381 ath_tx_tid_resume(sc, atid); 5382 ATH_TXQ_UNLOCK(txq); 5383 } 5384 return; 5385 } 5386 5387 /* Mark node as in powersaving */ 5388 an->an_is_powersave = 1; 5389 5390 ATH_NODE_UNLOCK(an); 5391 } 5392 5393 /* 5394 * Mark a node as currently "awake." 5395 * This resumes all traffic to the node. 5396 */ 5397 void 5398 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an) 5399 { 5400 struct ath_tid *atid; 5401 struct ath_txq *txq; 5402 int tid; 5403 5404 ATH_NODE_UNLOCK_ASSERT(an); 5405 ATH_NODE_LOCK(an); 5406 5407 /* In case of concurrency races from net80211.. */ 5408 if (an->an_is_powersave == 0) { 5409 ATH_NODE_UNLOCK(an); 5410 device_printf(sc->sc_dev, 5411 "%s: an=%p: node was already awake\n", 5412 __func__, an); 5413 return; 5414 } 5415 5416 /* Mark node as awake */ 5417 an->an_is_powersave = 0; 5418 5419 ATH_NODE_UNLOCK(an); 5420 5421 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5422 atid = &an->an_tid[tid]; 5423 txq = sc->sc_ac2q[atid->ac]; 5424 5425 ATH_TXQ_LOCK(txq); 5426 ath_tx_tid_resume(sc, atid); 5427 ATH_TXQ_UNLOCK(txq); 5428 } 5429 } 5430 5431 static int 5432 ath_legacy_dma_txsetup(struct ath_softc *sc) 5433 { 5434 5435 /* nothing new needed */ 5436 return (0); 5437 } 5438 5439 static int 5440 ath_legacy_dma_txteardown(struct ath_softc *sc) 5441 { 5442 5443 /* nothing new needed */ 5444 return (0); 5445 } 5446 5447 void 5448 ath_xmit_setup_legacy(struct ath_softc *sc) 5449 { 5450 /* 5451 * For now, just set the descriptor length to sizeof(ath_desc); 5452 * worry about extracting the real length out of the HAL later. 5453 */ 5454 sc->sc_tx_desclen = sizeof(struct ath_desc); 5455 sc->sc_tx_statuslen = 0; 5456 sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */ 5457 5458 sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup; 5459 sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown; 5460 sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func; 5461 5462 sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart; 5463 sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff; 5464 5465 sc->sc_tx.xmit_drain = ath_legacy_tx_drain; 5466 } 5467