1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * Driver for the Atheros Wireless LAN controller. 36 * 37 * This software is derived from work of Atsushi Onoe; his contribution 38 * is greatly appreciated. 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_ath.h" 43 #include "opt_wlan.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/mbuf.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/kernel.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/errno.h> 56 #include <sys/callout.h> 57 #include <sys/bus.h> 58 #include <sys/endian.h> 59 #include <sys/kthread.h> 60 #include <sys/taskqueue.h> 61 #include <sys/priv.h> 62 63 #include <machine/bus.h> 64 65 #include <net/if.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 #include <net80211/ieee80211_regdomain.h> 75 #ifdef IEEE80211_SUPPORT_SUPERG 76 #include <net80211/ieee80211_superg.h> 77 #endif 78 #ifdef IEEE80211_SUPPORT_TDMA 79 #include <net80211/ieee80211_tdma.h> 80 #endif 81 #include <net80211/ieee80211_ht.h> 82 83 #include <net/bpf.h> 84 85 #ifdef INET 86 #include <netinet/in.h> 87 #include <netinet/if_ether.h> 88 #endif 89 90 #include <dev/ath/if_athvar.h> 91 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 92 #include <dev/ath/ath_hal/ah_diagcodes.h> 93 94 #include <dev/ath/if_ath_debug.h> 95 96 #ifdef ATH_TX99_DIAG 97 #include <dev/ath/ath_tx99/ath_tx99.h> 98 #endif 99 100 #include <dev/ath/if_ath_misc.h> 101 #include <dev/ath/if_ath_tx.h> 102 #include <dev/ath/if_ath_tx_ht.h> 103 104 /* 105 * How many retries to perform in software 106 */ 107 #define SWMAX_RETRIES 10 108 109 /* 110 * What queue to throw the non-QoS TID traffic into 111 */ 112 #define ATH_NONQOS_TID_AC WME_AC_VO 113 114 #if 0 115 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an); 116 #endif 117 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, 118 int tid); 119 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, 120 int tid); 121 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, 122 struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0); 123 static int ath_tx_action_frame_override_queue(struct ath_softc *sc, 124 struct ieee80211_node *ni, struct mbuf *m0, int *tid); 125 static struct ath_buf * 126 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 127 struct ath_tid *tid, struct ath_buf *bf); 128 129 /* 130 * Whether to use the 11n rate scenario functions or not 131 */ 132 static inline int 133 ath_tx_is_11n(struct ath_softc *sc) 134 { 135 return ((sc->sc_ah->ah_magic == 0x20065416) || 136 (sc->sc_ah->ah_magic == 0x19741014)); 137 } 138 139 /* 140 * Obtain the current TID from the given frame. 141 * 142 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.) 143 * This has implications for which AC/priority the packet is placed 144 * in. 145 */ 146 static int 147 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0) 148 { 149 const struct ieee80211_frame *wh; 150 int pri = M_WME_GETAC(m0); 151 152 wh = mtod(m0, const struct ieee80211_frame *); 153 if (! IEEE80211_QOS_HAS_SEQ(wh)) 154 return IEEE80211_NONQOS_TID; 155 else 156 return WME_AC_TO_TID(pri); 157 } 158 159 static void 160 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) 161 { 162 struct ieee80211_frame *wh; 163 164 wh = mtod(bf->bf_m, struct ieee80211_frame *); 165 /* Only update/resync if needed */ 166 if (bf->bf_state.bfs_isretried == 0) { 167 wh->i_fc[1] |= IEEE80211_FC1_RETRY; 168 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 169 BUS_DMASYNC_PREWRITE); 170 } 171 bf->bf_state.bfs_isretried = 1; 172 bf->bf_state.bfs_retries ++; 173 } 174 175 /* 176 * Determine what the correct AC queue for the given frame 177 * should be. 178 * 179 * This code assumes that the TIDs map consistently to 180 * the underlying hardware (or software) ath_txq. 181 * Since the sender may try to set an AC which is 182 * arbitrary, non-QoS TIDs may end up being put on 183 * completely different ACs. There's no way to put a 184 * TID into multiple ath_txq's for scheduling, so 185 * for now we override the AC/TXQ selection and set 186 * non-QOS TID frames into the BE queue. 187 * 188 * This may be completely incorrect - specifically, 189 * some management frames may end up out of order 190 * compared to the QoS traffic they're controlling. 191 * I'll look into this later. 192 */ 193 static int 194 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0) 195 { 196 const struct ieee80211_frame *wh; 197 int pri = M_WME_GETAC(m0); 198 wh = mtod(m0, const struct ieee80211_frame *); 199 if (IEEE80211_QOS_HAS_SEQ(wh)) 200 return pri; 201 202 return ATH_NONQOS_TID_AC; 203 } 204 205 void 206 ath_txfrag_cleanup(struct ath_softc *sc, 207 ath_bufhead *frags, struct ieee80211_node *ni) 208 { 209 struct ath_buf *bf, *next; 210 211 ATH_TXBUF_LOCK_ASSERT(sc); 212 213 TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { 214 /* NB: bf assumed clean */ 215 TAILQ_REMOVE(frags, bf, bf_list); 216 ath_returnbuf_head(sc, bf); 217 ieee80211_node_decref(ni); 218 } 219 } 220 221 /* 222 * Setup xmit of a fragmented frame. Allocate a buffer 223 * for each frag and bump the node reference count to 224 * reflect the held reference to be setup by ath_tx_start. 225 */ 226 int 227 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 228 struct mbuf *m0, struct ieee80211_node *ni) 229 { 230 struct mbuf *m; 231 struct ath_buf *bf; 232 233 ATH_TXBUF_LOCK(sc); 234 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 235 /* XXX non-management? */ 236 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 237 if (bf == NULL) { /* out of buffers, cleanup */ 238 device_printf(sc->sc_dev, "%s: no buffer?\n", 239 __func__); 240 ath_txfrag_cleanup(sc, frags, ni); 241 break; 242 } 243 ieee80211_node_incref(ni); 244 TAILQ_INSERT_TAIL(frags, bf, bf_list); 245 } 246 ATH_TXBUF_UNLOCK(sc); 247 248 return !TAILQ_EMPTY(frags); 249 } 250 251 /* 252 * Reclaim mbuf resources. For fragmented frames we 253 * need to claim each frag chained with m_nextpkt. 254 */ 255 void 256 ath_freetx(struct mbuf *m) 257 { 258 struct mbuf *next; 259 260 do { 261 next = m->m_nextpkt; 262 m->m_nextpkt = NULL; 263 m_freem(m); 264 } while ((m = next) != NULL); 265 } 266 267 static int 268 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) 269 { 270 struct mbuf *m; 271 int error; 272 273 /* 274 * Load the DMA map so any coalescing is done. This 275 * also calculates the number of descriptors we need. 276 */ 277 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 278 bf->bf_segs, &bf->bf_nseg, 279 BUS_DMA_NOWAIT); 280 if (error == EFBIG) { 281 /* XXX packet requires too many descriptors */ 282 bf->bf_nseg = ATH_TXDESC+1; 283 } else if (error != 0) { 284 sc->sc_stats.ast_tx_busdma++; 285 ath_freetx(m0); 286 return error; 287 } 288 /* 289 * Discard null packets and check for packets that 290 * require too many TX descriptors. We try to convert 291 * the latter to a cluster. 292 */ 293 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 294 sc->sc_stats.ast_tx_linear++; 295 m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC); 296 if (m == NULL) { 297 ath_freetx(m0); 298 sc->sc_stats.ast_tx_nombuf++; 299 return ENOMEM; 300 } 301 m0 = m; 302 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 303 bf->bf_segs, &bf->bf_nseg, 304 BUS_DMA_NOWAIT); 305 if (error != 0) { 306 sc->sc_stats.ast_tx_busdma++; 307 ath_freetx(m0); 308 return error; 309 } 310 KASSERT(bf->bf_nseg <= ATH_TXDESC, 311 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 312 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 313 sc->sc_stats.ast_tx_nodata++; 314 ath_freetx(m0); 315 return EIO; 316 } 317 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", 318 __func__, m0, m0->m_pkthdr.len); 319 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 320 bf->bf_m = m0; 321 322 return 0; 323 } 324 325 /* 326 * Chain together segments+descriptors for a non-11n frame. 327 */ 328 static void 329 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf) 330 { 331 struct ath_hal *ah = sc->sc_ah; 332 char *ds, *ds0; 333 int i, bp, dsp; 334 HAL_DMA_ADDR bufAddrList[4]; 335 uint32_t segLenList[4]; 336 int numTxMaps = 1; 337 int isFirstDesc = 1; 338 int qnum; 339 340 /* 341 * XXX There's txdma and txdma_mgmt; the descriptor 342 * sizes must match. 343 */ 344 struct ath_descdma *dd = &sc->sc_txdma; 345 346 /* 347 * Fillin the remainder of the descriptor info. 348 */ 349 350 /* 351 * For now the HAL doesn't implement halNumTxMaps for non-EDMA 352 * (ie it's 0.) So just work around it. 353 * 354 * XXX TODO: populate halNumTxMaps for each HAL chip and 355 * then undo this hack. 356 */ 357 if (sc->sc_ah->ah_magic == 0x19741014) 358 numTxMaps = 4; 359 360 /* 361 * For EDMA and later chips ensure the TX map is fully populated 362 * before advancing to the next descriptor. 363 */ 364 ds0 = ds = (char *) bf->bf_desc; 365 bp = dsp = 0; 366 bzero(bufAddrList, sizeof(bufAddrList)); 367 bzero(segLenList, sizeof(segLenList)); 368 for (i = 0; i < bf->bf_nseg; i++) { 369 bufAddrList[bp] = bf->bf_segs[i].ds_addr; 370 segLenList[bp] = bf->bf_segs[i].ds_len; 371 bp++; 372 373 /* 374 * Go to the next segment if this isn't the last segment 375 * and there's space in the current TX map. 376 */ 377 if ((i != bf->bf_nseg - 1) && (bp < numTxMaps)) 378 continue; 379 380 /* 381 * Last segment or we're out of buffer pointers. 382 */ 383 bp = 0; 384 385 if (i == bf->bf_nseg - 1) 386 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0); 387 else 388 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 389 bf->bf_daddr + dd->dd_descsize * (dsp + 1)); 390 391 /* 392 * XXX this assumes that bfs_txq is the actual destination 393 * hardware queue at this point. It may not have been assigned, 394 * it may actually be pointing to the multicast software 395 * TXQ id. These must be fixed! 396 */ 397 qnum = bf->bf_state.bfs_txq->axq_qnum; 398 399 ath_hal_filltxdesc(ah, (struct ath_desc *) ds 400 , bufAddrList 401 , segLenList 402 , bf->bf_descid /* XXX desc id */ 403 , qnum 404 , isFirstDesc /* first segment */ 405 , i == bf->bf_nseg - 1 /* last segment */ 406 , (struct ath_desc *) ds0 /* first descriptor */ 407 ); 408 409 /* Make sure the 11n aggregate fields are cleared */ 410 if (ath_tx_is_11n(sc)) 411 ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds); 412 413 isFirstDesc = 0; 414 #ifdef ATH_DEBUG 415 if (sc->sc_debug & ATH_DEBUG_XMIT) 416 ath_printtxbuf(sc, bf, qnum, 0, 0); 417 #endif 418 bf->bf_lastds = (struct ath_desc *) ds; 419 420 /* 421 * Don't forget to skip to the next descriptor. 422 */ 423 ds += sc->sc_tx_desclen; 424 dsp++; 425 426 /* 427 * .. and don't forget to blank these out! 428 */ 429 bzero(bufAddrList, sizeof(bufAddrList)); 430 bzero(segLenList, sizeof(segLenList)); 431 } 432 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 433 } 434 435 /* 436 * Fill in the descriptor list for a aggregate subframe. 437 * 438 * The subframe is returned with the ds_link field in the last subframe 439 * pointing to 0. 440 */ 441 static void 442 ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf) 443 { 444 struct ath_hal *ah = sc->sc_ah; 445 struct ath_desc *ds, *ds0; 446 int i; 447 HAL_DMA_ADDR bufAddrList[4]; 448 uint32_t segLenList[4]; 449 450 /* 451 * XXX There's txdma and txdma_mgmt; the descriptor 452 * sizes must match. 453 */ 454 struct ath_descdma *dd = &sc->sc_txdma; 455 456 ds0 = ds = bf->bf_desc; 457 458 /* 459 * There's no need to call ath_hal_setupfirsttxdesc here; 460 * That's only going to occur for the first frame in an aggregate. 461 */ 462 for (i = 0; i < bf->bf_nseg; i++, ds++) { 463 bzero(bufAddrList, sizeof(bufAddrList)); 464 bzero(segLenList, sizeof(segLenList)); 465 if (i == bf->bf_nseg - 1) 466 ath_hal_settxdesclink(ah, ds, 0); 467 else 468 ath_hal_settxdesclink(ah, ds, 469 bf->bf_daddr + dd->dd_descsize * (i + 1)); 470 471 bufAddrList[0] = bf->bf_segs[i].ds_addr; 472 segLenList[0] = bf->bf_segs[i].ds_len; 473 474 /* 475 * This performs the setup for an aggregate frame. 476 * This includes enabling the aggregate flags if needed. 477 */ 478 ath_hal_chaintxdesc(ah, ds, 479 bufAddrList, 480 segLenList, 481 bf->bf_state.bfs_pktlen, 482 bf->bf_state.bfs_hdrlen, 483 HAL_PKT_TYPE_AMPDU, /* forces aggregate bits to be set */ 484 bf->bf_state.bfs_keyix, 485 0, /* cipher, calculated from keyix */ 486 bf->bf_state.bfs_ndelim, 487 i == 0, /* first segment */ 488 i == bf->bf_nseg - 1, /* last segment */ 489 bf->bf_next == NULL /* last sub-frame in aggr */ 490 ); 491 492 DPRINTF(sc, ATH_DEBUG_XMIT, 493 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 494 __func__, i, ds->ds_link, ds->ds_data, 495 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 496 bf->bf_lastds = ds; 497 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 498 BUS_DMASYNC_PREWRITE); 499 } 500 } 501 502 /* 503 * Set the rate control fields in the given descriptor based on 504 * the bf_state fields and node state. 505 * 506 * The bfs fields should already be set with the relevant rate 507 * control information, including whether MRR is to be enabled. 508 * 509 * Since the FreeBSD HAL currently sets up the first TX rate 510 * in ath_hal_setuptxdesc(), this will setup the MRR 511 * conditionally for the pre-11n chips, and call ath_buf_set_rate 512 * unconditionally for 11n chips. These require the 11n rate 513 * scenario to be set if MCS rates are enabled, so it's easier 514 * to just always call it. The caller can then only set rates 2, 3 515 * and 4 if multi-rate retry is needed. 516 */ 517 static void 518 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 519 struct ath_buf *bf) 520 { 521 struct ath_rc_series *rc = bf->bf_state.bfs_rc; 522 523 /* If mrr is disabled, blank tries 1, 2, 3 */ 524 if (! bf->bf_state.bfs_ismrr) 525 rc[1].tries = rc[2].tries = rc[3].tries = 0; 526 527 /* 528 * Always call - that way a retried descriptor will 529 * have the MRR fields overwritten. 530 * 531 * XXX TODO: see if this is really needed - setting up 532 * the first descriptor should set the MRR fields to 0 533 * for us anyway. 534 */ 535 if (ath_tx_is_11n(sc)) { 536 ath_buf_set_rate(sc, ni, bf); 537 } else { 538 ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc 539 , rc[1].ratecode, rc[1].tries 540 , rc[2].ratecode, rc[2].tries 541 , rc[3].ratecode, rc[3].tries 542 ); 543 } 544 } 545 546 /* 547 * Setup segments+descriptors for an 11n aggregate. 548 * bf_first is the first buffer in the aggregate. 549 * The descriptor list must already been linked together using 550 * bf->bf_next. 551 */ 552 static void 553 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first) 554 { 555 struct ath_buf *bf, *bf_prev = NULL; 556 557 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n", 558 __func__, bf_first->bf_state.bfs_nframes, 559 bf_first->bf_state.bfs_al); 560 561 /* 562 * Setup all descriptors of all subframes. 563 */ 564 bf = bf_first; 565 while (bf != NULL) { 566 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 567 "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n", 568 __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen, 569 SEQNO(bf->bf_state.bfs_seqno)); 570 571 /* Sub-frame setup */ 572 ath_tx_chaindesclist_subframe(sc, bf); 573 574 /* 575 * Link the last descriptor of the previous frame 576 * to the beginning descriptor of this frame. 577 */ 578 if (bf_prev != NULL) 579 ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds, 580 bf->bf_daddr); 581 582 /* Save a copy so we can link the next descriptor in */ 583 bf_prev = bf; 584 bf = bf->bf_next; 585 } 586 587 /* 588 * Setup first descriptor of first frame. 589 * chaintxdesc() overwrites the descriptor entries; 590 * setupfirsttxdesc() merges in things. 591 * Otherwise various fields aren't set correctly (eg flags). 592 */ 593 ath_hal_setupfirsttxdesc(sc->sc_ah, 594 bf_first->bf_desc, 595 bf_first->bf_state.bfs_al, 596 bf_first->bf_state.bfs_txflags | HAL_TXDESC_INTREQ, 597 bf_first->bf_state.bfs_txpower, 598 bf_first->bf_state.bfs_txrate0, 599 bf_first->bf_state.bfs_try0, 600 bf_first->bf_state.bfs_txantenna, 601 bf_first->bf_state.bfs_ctsrate, 602 bf_first->bf_state.bfs_ctsduration); 603 604 /* 605 * Set the first descriptor bf_lastds field to point to 606 * the last descriptor in the last subframe, that's where 607 * the status update will occur. 608 */ 609 bf_first->bf_lastds = bf_prev->bf_lastds; 610 611 /* 612 * And bf_last in the first descriptor points to the end of 613 * the aggregate list. 614 */ 615 bf_first->bf_last = bf_prev; 616 617 /* 618 * setup first desc with rate and aggr info 619 */ 620 ath_tx_set_ratectrl(sc, bf_first->bf_node, bf_first); 621 622 /* 623 * Setup the last descriptor in the list. 624 * 625 * bf_first->bf_lastds already points to it; the rate 626 * control information needs to be squirreled away here 627 * as well ans clearing the moreaggr/paddelim fields. 628 */ 629 ath_hal_setuplasttxdesc(sc->sc_ah, bf_first->bf_lastds, 630 bf_first->bf_desc); 631 632 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__); 633 } 634 635 /* 636 * Hand-off a frame to the multicast TX queue. 637 * 638 * This is a software TXQ which will be appended to the CAB queue 639 * during the beacon setup code. 640 * 641 * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID 642 * as part of the TX descriptor, bf_state.bfs_txq must be updated 643 * with the actual hardware txq, or all of this will fall apart. 644 * 645 * XXX It may not be a bad idea to just stuff the QCU ID into bf_state 646 * and retire bfs_txq; then make sure the CABQ QCU ID is populated 647 * correctly. 648 */ 649 static void 650 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, 651 struct ath_buf *bf) 652 { 653 ATH_TXQ_LOCK_ASSERT(txq); 654 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 655 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 656 if (txq->axq_link != NULL) { 657 struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s); 658 struct ieee80211_frame *wh; 659 660 /* mark previous frame */ 661 wh = mtod(last->bf_m, struct ieee80211_frame *); 662 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 663 bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap, 664 BUS_DMASYNC_PREWRITE); 665 666 /* link descriptor */ 667 *txq->axq_link = bf->bf_daddr; 668 } 669 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 670 ath_hal_gettxdesclinkptr(sc->sc_ah, bf->bf_lastds, &txq->axq_link); 671 } 672 673 /* 674 * Hand-off packet to a hardware queue. 675 */ 676 static void 677 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, 678 struct ath_buf *bf) 679 { 680 struct ath_hal *ah = sc->sc_ah; 681 682 /* 683 * Insert the frame on the outbound list and pass it on 684 * to the hardware. Multicast frames buffered for power 685 * save stations and transmit from the CAB queue are stored 686 * on a s/w only queue and loaded on to the CAB queue in 687 * the SWBA handler since frames only go out on DTIM and 688 * to avoid possible races. 689 */ 690 ATH_TXQ_LOCK_ASSERT(txq); 691 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 692 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 693 KASSERT(txq->axq_qnum != ATH_TXQ_SWQ, 694 ("ath_tx_handoff_hw called for mcast queue")); 695 696 #if 0 697 /* 698 * This causes a LOR. Find out where the PCU lock is being 699 * held whilst the TXQ lock is grabbed - that shouldn't 700 * be occuring. 701 */ 702 ATH_PCU_LOCK(sc); 703 if (sc->sc_inreset_cnt) { 704 ATH_PCU_UNLOCK(sc); 705 DPRINTF(sc, ATH_DEBUG_RESET, 706 "%s: called with sc_in_reset != 0\n", 707 __func__); 708 DPRINTF(sc, ATH_DEBUG_XMIT, 709 "%s: queued: TXDP[%u] = %p (%p) depth %d\n", 710 __func__, txq->axq_qnum, 711 (caddr_t)bf->bf_daddr, bf->bf_desc, 712 txq->axq_depth); 713 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 714 if (bf->bf_state.bfs_aggr) 715 txq->axq_aggr_depth++; 716 /* 717 * There's no need to update axq_link; the hardware 718 * is in reset and once the reset is complete, any 719 * non-empty queues will simply have DMA restarted. 720 */ 721 return; 722 } 723 ATH_PCU_UNLOCK(sc); 724 #endif 725 726 /* For now, so not to generate whitespace diffs */ 727 if (1) { 728 #ifdef IEEE80211_SUPPORT_TDMA 729 int qbusy; 730 731 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 732 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum); 733 734 ATH_KTR(sc, ATH_KTR_TX, 4, 735 "ath_tx_handoff: txq=%u, add bf=%p, qbusy=%d, depth=%d", 736 txq->axq_qnum, bf, qbusy, txq->axq_depth); 737 if (txq->axq_link == NULL) { 738 /* 739 * Be careful writing the address to TXDP. If 740 * the tx q is enabled then this write will be 741 * ignored. Normally this is not an issue but 742 * when tdma is in use and the q is beacon gated 743 * this race can occur. If the q is busy then 744 * defer the work to later--either when another 745 * packet comes along or when we prepare a beacon 746 * frame at SWBA. 747 */ 748 if (!qbusy) { 749 ath_hal_puttxbuf(ah, txq->axq_qnum, 750 bf->bf_daddr); 751 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 752 DPRINTF(sc, ATH_DEBUG_XMIT, 753 "%s: TXDP[%u] = %p (%p) lastds=%p depth %d\n", 754 __func__, txq->axq_qnum, 755 (caddr_t)bf->bf_daddr, bf->bf_desc, 756 bf->bf_lastds, 757 txq->axq_depth); 758 ATH_KTR(sc, ATH_KTR_TX, 5, 759 "ath_tx_handoff: TXDP[%u] = %p (%p) " 760 "lastds=%p depth %d", 761 txq->axq_qnum, 762 (caddr_t)bf->bf_daddr, bf->bf_desc, 763 bf->bf_lastds, 764 txq->axq_depth); 765 } else { 766 txq->axq_flags |= ATH_TXQ_PUTPENDING; 767 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 768 "%s: Q%u busy, defer enable\n", __func__, 769 txq->axq_qnum); 770 ATH_KTR(sc, ATH_KTR_TX, 0, "defer enable"); 771 } 772 } else { 773 *txq->axq_link = bf->bf_daddr; 774 DPRINTF(sc, ATH_DEBUG_XMIT, 775 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 776 txq->axq_qnum, txq->axq_link, 777 (caddr_t)bf->bf_daddr, bf->bf_desc, 778 txq->axq_depth); 779 ATH_KTR(sc, ATH_KTR_TX, 5, 780 "ath_tx_handoff: link[%u](%p)=%p (%p) lastds=%p", 781 txq->axq_qnum, txq->axq_link, 782 (caddr_t)bf->bf_daddr, bf->bf_desc, 783 bf->bf_lastds); 784 785 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) { 786 /* 787 * The q was busy when we previously tried 788 * to write the address of the first buffer 789 * in the chain. Since it's not busy now 790 * handle this chore. We are certain the 791 * buffer at the front is the right one since 792 * axq_link is NULL only when the buffer list 793 * is/was empty. 794 */ 795 ath_hal_puttxbuf(ah, txq->axq_qnum, 796 TAILQ_FIRST(&txq->axq_q)->bf_daddr); 797 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 798 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 799 "%s: Q%u restarted\n", __func__, 800 txq->axq_qnum); 801 ATH_KTR(sc, ATH_KTR_TX, 4, 802 "ath_tx_handoff: txq[%d] restarted, bf=%p " 803 "daddr=%p ds=%p", 804 txq->axq_qnum, 805 bf, 806 (caddr_t)bf->bf_daddr, 807 bf->bf_desc); 808 } 809 } 810 #else 811 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 812 ATH_KTR(sc, ATH_KTR_TX, 3, 813 "ath_tx_handoff: non-tdma: txq=%u, add bf=%p " 814 "depth=%d", 815 txq->axq_qnum, 816 bf, 817 txq->axq_depth); 818 if (txq->axq_link == NULL) { 819 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 820 DPRINTF(sc, ATH_DEBUG_XMIT, 821 "%s: TXDP[%u] = %p (%p) depth %d\n", 822 __func__, txq->axq_qnum, 823 (caddr_t)bf->bf_daddr, bf->bf_desc, 824 txq->axq_depth); 825 ATH_KTR(sc, ATH_KTR_TX, 5, 826 "ath_tx_handoff: non-tdma: TXDP[%u] = %p (%p) " 827 "lastds=%p depth %d", 828 txq->axq_qnum, 829 (caddr_t)bf->bf_daddr, bf->bf_desc, 830 bf->bf_lastds, 831 txq->axq_depth); 832 833 } else { 834 *txq->axq_link = bf->bf_daddr; 835 DPRINTF(sc, ATH_DEBUG_XMIT, 836 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 837 txq->axq_qnum, txq->axq_link, 838 (caddr_t)bf->bf_daddr, bf->bf_desc, 839 txq->axq_depth); 840 ATH_KTR(sc, ATH_KTR_TX, 5, 841 "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) " 842 "lastds=%d", 843 txq->axq_qnum, txq->axq_link, 844 (caddr_t)bf->bf_daddr, bf->bf_desc, 845 bf->bf_lastds); 846 847 } 848 #endif /* IEEE80211_SUPPORT_TDMA */ 849 if (bf->bf_state.bfs_aggr) 850 txq->axq_aggr_depth++; 851 ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link); 852 ath_hal_txstart(ah, txq->axq_qnum); 853 ATH_KTR(sc, ATH_KTR_TX, 1, 854 "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum); 855 } 856 } 857 858 /* 859 * Restart TX DMA for the given TXQ. 860 * 861 * This must be called whether the queue is empty or not. 862 */ 863 static void 864 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq) 865 { 866 struct ath_hal *ah = sc->sc_ah; 867 struct ath_buf *bf, *bf_last; 868 869 ATH_TXQ_LOCK_ASSERT(txq); 870 871 /* This is always going to be cleared, empty or not */ 872 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 873 874 /* XXX make this ATH_TXQ_FIRST */ 875 bf = TAILQ_FIRST(&txq->axq_q); 876 bf_last = ATH_TXQ_LAST(txq, axq_q_s); 877 878 if (bf == NULL) 879 return; 880 881 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 882 ath_hal_gettxdesclinkptr(ah, bf_last->bf_lastds, &txq->axq_link); 883 ath_hal_txstart(ah, txq->axq_qnum); 884 } 885 886 /* 887 * Hand off a packet to the hardware (or mcast queue.) 888 * 889 * The relevant hardware txq should be locked. 890 */ 891 static void 892 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, 893 struct ath_buf *bf) 894 { 895 ATH_TXQ_LOCK_ASSERT(txq); 896 897 if (txq->axq_qnum == ATH_TXQ_SWQ) 898 ath_tx_handoff_mcast(sc, txq, bf); 899 else 900 ath_tx_handoff_hw(sc, txq, bf); 901 } 902 903 static int 904 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni, 905 struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, 906 int *keyix) 907 { 908 DPRINTF(sc, ATH_DEBUG_XMIT, 909 "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n", 910 __func__, 911 *hdrlen, 912 *pktlen, 913 isfrag, 914 iswep, 915 m0); 916 917 if (iswep) { 918 const struct ieee80211_cipher *cip; 919 struct ieee80211_key *k; 920 921 /* 922 * Construct the 802.11 header+trailer for an encrypted 923 * frame. The only reason this can fail is because of an 924 * unknown or unsupported cipher/key type. 925 */ 926 k = ieee80211_crypto_encap(ni, m0); 927 if (k == NULL) { 928 /* 929 * This can happen when the key is yanked after the 930 * frame was queued. Just discard the frame; the 931 * 802.11 layer counts failures and provides 932 * debugging/diagnostics. 933 */ 934 return (0); 935 } 936 /* 937 * Adjust the packet + header lengths for the crypto 938 * additions and calculate the h/w key index. When 939 * a s/w mic is done the frame will have had any mic 940 * added to it prior to entry so m0->m_pkthdr.len will 941 * account for it. Otherwise we need to add it to the 942 * packet length. 943 */ 944 cip = k->wk_cipher; 945 (*hdrlen) += cip->ic_header; 946 (*pktlen) += cip->ic_header + cip->ic_trailer; 947 /* NB: frags always have any TKIP MIC done in s/w */ 948 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 949 (*pktlen) += cip->ic_miclen; 950 (*keyix) = k->wk_keyix; 951 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 952 /* 953 * Use station key cache slot, if assigned. 954 */ 955 (*keyix) = ni->ni_ucastkey.wk_keyix; 956 if ((*keyix) == IEEE80211_KEYIX_NONE) 957 (*keyix) = HAL_TXKEYIX_INVALID; 958 } else 959 (*keyix) = HAL_TXKEYIX_INVALID; 960 961 return (1); 962 } 963 964 /* 965 * Calculate whether interoperability protection is required for 966 * this frame. 967 * 968 * This requires the rate control information be filled in, 969 * as the protection requirement depends upon the current 970 * operating mode / PHY. 971 */ 972 static void 973 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf) 974 { 975 struct ieee80211_frame *wh; 976 uint8_t rix; 977 uint16_t flags; 978 int shortPreamble; 979 const HAL_RATE_TABLE *rt = sc->sc_currates; 980 struct ifnet *ifp = sc->sc_ifp; 981 struct ieee80211com *ic = ifp->if_l2com; 982 983 flags = bf->bf_state.bfs_txflags; 984 rix = bf->bf_state.bfs_rc[0].rix; 985 shortPreamble = bf->bf_state.bfs_shpream; 986 wh = mtod(bf->bf_m, struct ieee80211_frame *); 987 988 /* 989 * If 802.11g protection is enabled, determine whether 990 * to use RTS/CTS or just CTS. Note that this is only 991 * done for OFDM unicast frames. 992 */ 993 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 994 rt->info[rix].phy == IEEE80211_T_OFDM && 995 (flags & HAL_TXDESC_NOACK) == 0) { 996 bf->bf_state.bfs_doprot = 1; 997 /* XXX fragments must use CCK rates w/ protection */ 998 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { 999 flags |= HAL_TXDESC_RTSENA; 1000 } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { 1001 flags |= HAL_TXDESC_CTSENA; 1002 } 1003 /* 1004 * For frags it would be desirable to use the 1005 * highest CCK rate for RTS/CTS. But stations 1006 * farther away may detect it at a lower CCK rate 1007 * so use the configured protection rate instead 1008 * (for now). 1009 */ 1010 sc->sc_stats.ast_tx_protect++; 1011 } 1012 1013 /* 1014 * If 11n protection is enabled and it's a HT frame, 1015 * enable RTS. 1016 * 1017 * XXX ic_htprotmode or ic_curhtprotmode? 1018 * XXX should it_htprotmode only matter if ic_curhtprotmode 1019 * XXX indicates it's not a HT pure environment? 1020 */ 1021 if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) && 1022 rt->info[rix].phy == IEEE80211_T_HT && 1023 (flags & HAL_TXDESC_NOACK) == 0) { 1024 flags |= HAL_TXDESC_RTSENA; 1025 sc->sc_stats.ast_tx_htprotect++; 1026 } 1027 bf->bf_state.bfs_txflags = flags; 1028 } 1029 1030 /* 1031 * Update the frame duration given the currently selected rate. 1032 * 1033 * This also updates the frame duration value, so it will require 1034 * a DMA flush. 1035 */ 1036 static void 1037 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf) 1038 { 1039 struct ieee80211_frame *wh; 1040 uint8_t rix; 1041 uint16_t flags; 1042 int shortPreamble; 1043 struct ath_hal *ah = sc->sc_ah; 1044 const HAL_RATE_TABLE *rt = sc->sc_currates; 1045 int isfrag = bf->bf_m->m_flags & M_FRAG; 1046 1047 flags = bf->bf_state.bfs_txflags; 1048 rix = bf->bf_state.bfs_rc[0].rix; 1049 shortPreamble = bf->bf_state.bfs_shpream; 1050 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1051 1052 /* 1053 * Calculate duration. This logically belongs in the 802.11 1054 * layer but it lacks sufficient information to calculate it. 1055 */ 1056 if ((flags & HAL_TXDESC_NOACK) == 0 && 1057 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 1058 u_int16_t dur; 1059 if (shortPreamble) 1060 dur = rt->info[rix].spAckDuration; 1061 else 1062 dur = rt->info[rix].lpAckDuration; 1063 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 1064 dur += dur; /* additional SIFS+ACK */ 1065 KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment")); 1066 /* 1067 * Include the size of next fragment so NAV is 1068 * updated properly. The last fragment uses only 1069 * the ACK duration 1070 */ 1071 dur += ath_hal_computetxtime(ah, rt, 1072 bf->bf_m->m_nextpkt->m_pkthdr.len, 1073 rix, shortPreamble); 1074 } 1075 if (isfrag) { 1076 /* 1077 * Force hardware to use computed duration for next 1078 * fragment by disabling multi-rate retry which updates 1079 * duration based on the multi-rate duration table. 1080 */ 1081 bf->bf_state.bfs_ismrr = 0; 1082 bf->bf_state.bfs_try0 = ATH_TXMGTTRY; 1083 /* XXX update bfs_rc[0].try? */ 1084 } 1085 1086 /* Update the duration field itself */ 1087 *(u_int16_t *)wh->i_dur = htole16(dur); 1088 } 1089 } 1090 1091 static uint8_t 1092 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt, 1093 int cix, int shortPreamble) 1094 { 1095 uint8_t ctsrate; 1096 1097 /* 1098 * CTS transmit rate is derived from the transmit rate 1099 * by looking in the h/w rate table. We must also factor 1100 * in whether or not a short preamble is to be used. 1101 */ 1102 /* NB: cix is set above where RTS/CTS is enabled */ 1103 KASSERT(cix != 0xff, ("cix not setup")); 1104 ctsrate = rt->info[cix].rateCode; 1105 1106 /* XXX this should only matter for legacy rates */ 1107 if (shortPreamble) 1108 ctsrate |= rt->info[cix].shortPreamble; 1109 1110 return (ctsrate); 1111 } 1112 1113 /* 1114 * Calculate the RTS/CTS duration for legacy frames. 1115 */ 1116 static int 1117 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix, 1118 int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt, 1119 int flags) 1120 { 1121 int ctsduration = 0; 1122 1123 /* This mustn't be called for HT modes */ 1124 if (rt->info[cix].phy == IEEE80211_T_HT) { 1125 printf("%s: HT rate where it shouldn't be (0x%x)\n", 1126 __func__, rt->info[cix].rateCode); 1127 return (-1); 1128 } 1129 1130 /* 1131 * Compute the transmit duration based on the frame 1132 * size and the size of an ACK frame. We call into the 1133 * HAL to do the computation since it depends on the 1134 * characteristics of the actual PHY being used. 1135 * 1136 * NB: CTS is assumed the same size as an ACK so we can 1137 * use the precalculated ACK durations. 1138 */ 1139 if (shortPreamble) { 1140 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1141 ctsduration += rt->info[cix].spAckDuration; 1142 ctsduration += ath_hal_computetxtime(ah, 1143 rt, pktlen, rix, AH_TRUE); 1144 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1145 ctsduration += rt->info[rix].spAckDuration; 1146 } else { 1147 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1148 ctsduration += rt->info[cix].lpAckDuration; 1149 ctsduration += ath_hal_computetxtime(ah, 1150 rt, pktlen, rix, AH_FALSE); 1151 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1152 ctsduration += rt->info[rix].lpAckDuration; 1153 } 1154 1155 return (ctsduration); 1156 } 1157 1158 /* 1159 * Update the given ath_buf with updated rts/cts setup and duration 1160 * values. 1161 * 1162 * To support rate lookups for each software retry, the rts/cts rate 1163 * and cts duration must be re-calculated. 1164 * 1165 * This function assumes the RTS/CTS flags have been set as needed; 1166 * mrr has been disabled; and the rate control lookup has been done. 1167 * 1168 * XXX TODO: MRR need only be disabled for the pre-11n NICs. 1169 * XXX The 11n NICs support per-rate RTS/CTS configuration. 1170 */ 1171 static void 1172 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf) 1173 { 1174 uint16_t ctsduration = 0; 1175 uint8_t ctsrate = 0; 1176 uint8_t rix = bf->bf_state.bfs_rc[0].rix; 1177 uint8_t cix = 0; 1178 const HAL_RATE_TABLE *rt = sc->sc_currates; 1179 1180 /* 1181 * No RTS/CTS enabled? Don't bother. 1182 */ 1183 if ((bf->bf_state.bfs_txflags & 1184 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) { 1185 /* XXX is this really needed? */ 1186 bf->bf_state.bfs_ctsrate = 0; 1187 bf->bf_state.bfs_ctsduration = 0; 1188 return; 1189 } 1190 1191 /* 1192 * If protection is enabled, use the protection rix control 1193 * rate. Otherwise use the rate0 control rate. 1194 */ 1195 if (bf->bf_state.bfs_doprot) 1196 rix = sc->sc_protrix; 1197 else 1198 rix = bf->bf_state.bfs_rc[0].rix; 1199 1200 /* 1201 * If the raw path has hard-coded ctsrate0 to something, 1202 * use it. 1203 */ 1204 if (bf->bf_state.bfs_ctsrate0 != 0) 1205 cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0); 1206 else 1207 /* Control rate from above */ 1208 cix = rt->info[rix].controlRate; 1209 1210 /* Calculate the rtscts rate for the given cix */ 1211 ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix, 1212 bf->bf_state.bfs_shpream); 1213 1214 /* The 11n chipsets do ctsduration calculations for you */ 1215 if (! ath_tx_is_11n(sc)) 1216 ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix, 1217 bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, 1218 rt, bf->bf_state.bfs_txflags); 1219 1220 /* Squirrel away in ath_buf */ 1221 bf->bf_state.bfs_ctsrate = ctsrate; 1222 bf->bf_state.bfs_ctsduration = ctsduration; 1223 1224 /* 1225 * Must disable multi-rate retry when using RTS/CTS. 1226 */ 1227 if (!sc->sc_mrrprot) { 1228 bf->bf_state.bfs_ismrr = 0; 1229 bf->bf_state.bfs_try0 = 1230 bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */ 1231 } 1232 } 1233 1234 /* 1235 * Setup the descriptor chain for a normal or fast-frame 1236 * frame. 1237 * 1238 * XXX TODO: extend to include the destination hardware QCU ID. 1239 * Make sure that is correct. Make sure that when being added 1240 * to the mcastq, the CABQ QCUID is set or things will get a bit 1241 * odd. 1242 */ 1243 static void 1244 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf) 1245 { 1246 struct ath_desc *ds = bf->bf_desc; 1247 struct ath_hal *ah = sc->sc_ah; 1248 1249 ath_hal_setuptxdesc(ah, ds 1250 , bf->bf_state.bfs_pktlen /* packet length */ 1251 , bf->bf_state.bfs_hdrlen /* header length */ 1252 , bf->bf_state.bfs_atype /* Atheros packet type */ 1253 , bf->bf_state.bfs_txpower /* txpower */ 1254 , bf->bf_state.bfs_txrate0 1255 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 1256 , bf->bf_state.bfs_keyix /* key cache index */ 1257 , bf->bf_state.bfs_txantenna /* antenna mode */ 1258 , bf->bf_state.bfs_txflags /* flags */ 1259 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 1260 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 1261 ); 1262 1263 /* 1264 * This will be overriden when the descriptor chain is written. 1265 */ 1266 bf->bf_lastds = ds; 1267 bf->bf_last = bf; 1268 1269 /* Set rate control and descriptor chain for this frame */ 1270 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 1271 ath_tx_chaindesclist(sc, bf); 1272 } 1273 1274 /* 1275 * Do a rate lookup. 1276 * 1277 * This performs a rate lookup for the given ath_buf only if it's required. 1278 * Non-data frames and raw frames don't require it. 1279 * 1280 * This populates the primary and MRR entries; MRR values are 1281 * then disabled later on if something requires it (eg RTS/CTS on 1282 * pre-11n chipsets. 1283 * 1284 * This needs to be done before the RTS/CTS fields are calculated 1285 * as they may depend upon the rate chosen. 1286 */ 1287 static void 1288 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf) 1289 { 1290 uint8_t rate, rix; 1291 int try0; 1292 1293 if (! bf->bf_state.bfs_doratelookup) 1294 return; 1295 1296 /* Get rid of any previous state */ 1297 bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1298 1299 ATH_NODE_LOCK(ATH_NODE(bf->bf_node)); 1300 ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream, 1301 bf->bf_state.bfs_pktlen, &rix, &try0, &rate); 1302 1303 /* In case MRR is disabled, make sure rc[0] is setup correctly */ 1304 bf->bf_state.bfs_rc[0].rix = rix; 1305 bf->bf_state.bfs_rc[0].ratecode = rate; 1306 bf->bf_state.bfs_rc[0].tries = try0; 1307 1308 if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY) 1309 ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix, 1310 bf->bf_state.bfs_rc); 1311 ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node)); 1312 1313 sc->sc_txrix = rix; /* for LED blinking */ 1314 sc->sc_lastdatarix = rix; /* for fast frames */ 1315 bf->bf_state.bfs_try0 = try0; 1316 bf->bf_state.bfs_txrate0 = rate; 1317 } 1318 1319 /* 1320 * Update the CLRDMASK bit in the ath_buf if it needs to be set. 1321 */ 1322 static void 1323 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid, 1324 struct ath_buf *bf) 1325 { 1326 1327 ATH_TID_LOCK_ASSERT(sc, tid); 1328 1329 if (tid->clrdmask == 1) { 1330 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1331 tid->clrdmask = 0; 1332 } 1333 } 1334 1335 /* 1336 * Transmit the given frame to the hardware. 1337 * 1338 * The frame must already be setup; rate control must already have 1339 * been done. 1340 * 1341 * XXX since the TXQ lock is being held here (and I dislike holding 1342 * it for this long when not doing software aggregation), later on 1343 * break this function into "setup_normal" and "xmit_normal". The 1344 * lock only needs to be held for the ath_tx_handoff call. 1345 */ 1346 static void 1347 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq, 1348 struct ath_buf *bf) 1349 { 1350 struct ath_node *an = ATH_NODE(bf->bf_node); 1351 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 1352 1353 ATH_TXQ_LOCK_ASSERT(txq); 1354 1355 /* 1356 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does 1357 * set a completion handler however it doesn't (yet) properly 1358 * handle the strict ordering requirements needed for normal, 1359 * non-aggregate session frames. 1360 * 1361 * Once this is implemented, only set CLRDMASK like this for 1362 * frames that must go out - eg management/raw frames. 1363 */ 1364 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1365 1366 /* Setup the descriptor before handoff */ 1367 ath_tx_do_ratelookup(sc, bf); 1368 ath_tx_calc_duration(sc, bf); 1369 ath_tx_calc_protection(sc, bf); 1370 ath_tx_set_rtscts(sc, bf); 1371 ath_tx_rate_fill_rcflags(sc, bf); 1372 ath_tx_setds(sc, bf); 1373 1374 /* Track per-TID hardware queue depth correctly */ 1375 tid->hwq_depth++; 1376 1377 /* Assign the completion handler */ 1378 bf->bf_comp = ath_tx_normal_comp; 1379 1380 /* Hand off to hardware */ 1381 ath_tx_handoff(sc, txq, bf); 1382 } 1383 1384 /* 1385 * Do the basic frame setup stuff that's required before the frame 1386 * is added to a software queue. 1387 * 1388 * All frames get mostly the same treatment and it's done once. 1389 * Retransmits fiddle with things like the rate control setup, 1390 * setting the retransmit bit in the packet; doing relevant DMA/bus 1391 * syncing and relinking it (back) into the hardware TX queue. 1392 * 1393 * Note that this may cause the mbuf to be reallocated, so 1394 * m0 may not be valid. 1395 */ 1396 static int 1397 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni, 1398 struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq) 1399 { 1400 struct ieee80211vap *vap = ni->ni_vap; 1401 struct ath_hal *ah = sc->sc_ah; 1402 struct ifnet *ifp = sc->sc_ifp; 1403 struct ieee80211com *ic = ifp->if_l2com; 1404 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1405 int error, iswep, ismcast, isfrag, ismrr; 1406 int keyix, hdrlen, pktlen, try0 = 0; 1407 u_int8_t rix = 0, txrate = 0; 1408 struct ath_desc *ds; 1409 struct ieee80211_frame *wh; 1410 u_int subtype, flags; 1411 HAL_PKT_TYPE atype; 1412 const HAL_RATE_TABLE *rt; 1413 HAL_BOOL shortPreamble; 1414 struct ath_node *an; 1415 u_int pri; 1416 1417 /* 1418 * To ensure that both sequence numbers and the CCMP PN handling 1419 * is "correct", make sure that the relevant TID queue is locked. 1420 * Otherwise the CCMP PN and seqno may appear out of order, causing 1421 * re-ordered frames to have out of order CCMP PN's, resulting 1422 * in many, many frame drops. 1423 */ 1424 ATH_TXQ_LOCK_ASSERT(txq); 1425 1426 wh = mtod(m0, struct ieee80211_frame *); 1427 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 1428 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1429 isfrag = m0->m_flags & M_FRAG; 1430 hdrlen = ieee80211_anyhdrsize(wh); 1431 /* 1432 * Packet length must not include any 1433 * pad bytes; deduct them here. 1434 */ 1435 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 1436 1437 /* Handle encryption twiddling if needed */ 1438 if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen, 1439 &pktlen, &keyix)) { 1440 ath_freetx(m0); 1441 return EIO; 1442 } 1443 1444 /* packet header may have moved, reset our local pointer */ 1445 wh = mtod(m0, struct ieee80211_frame *); 1446 1447 pktlen += IEEE80211_CRC_LEN; 1448 1449 /* 1450 * Load the DMA map so any coalescing is done. This 1451 * also calculates the number of descriptors we need. 1452 */ 1453 error = ath_tx_dmasetup(sc, bf, m0); 1454 if (error != 0) 1455 return error; 1456 bf->bf_node = ni; /* NB: held reference */ 1457 m0 = bf->bf_m; /* NB: may have changed */ 1458 wh = mtod(m0, struct ieee80211_frame *); 1459 1460 /* setup descriptors */ 1461 ds = bf->bf_desc; 1462 rt = sc->sc_currates; 1463 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1464 1465 /* 1466 * NB: the 802.11 layer marks whether or not we should 1467 * use short preamble based on the current mode and 1468 * negotiated parameters. 1469 */ 1470 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1471 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 1472 shortPreamble = AH_TRUE; 1473 sc->sc_stats.ast_tx_shortpre++; 1474 } else { 1475 shortPreamble = AH_FALSE; 1476 } 1477 1478 an = ATH_NODE(ni); 1479 //flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 1480 flags = 0; 1481 ismrr = 0; /* default no multi-rate retry*/ 1482 pri = M_WME_GETAC(m0); /* honor classification */ 1483 /* XXX use txparams instead of fixed values */ 1484 /* 1485 * Calculate Atheros packet type from IEEE80211 packet header, 1486 * setup for rate calculations, and select h/w transmit queue. 1487 */ 1488 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1489 case IEEE80211_FC0_TYPE_MGT: 1490 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1491 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 1492 atype = HAL_PKT_TYPE_BEACON; 1493 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1494 atype = HAL_PKT_TYPE_PROBE_RESP; 1495 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 1496 atype = HAL_PKT_TYPE_ATIM; 1497 else 1498 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 1499 rix = an->an_mgmtrix; 1500 txrate = rt->info[rix].rateCode; 1501 if (shortPreamble) 1502 txrate |= rt->info[rix].shortPreamble; 1503 try0 = ATH_TXMGTTRY; 1504 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1505 break; 1506 case IEEE80211_FC0_TYPE_CTL: 1507 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 1508 rix = an->an_mgmtrix; 1509 txrate = rt->info[rix].rateCode; 1510 if (shortPreamble) 1511 txrate |= rt->info[rix].shortPreamble; 1512 try0 = ATH_TXMGTTRY; 1513 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1514 break; 1515 case IEEE80211_FC0_TYPE_DATA: 1516 atype = HAL_PKT_TYPE_NORMAL; /* default */ 1517 /* 1518 * Data frames: multicast frames go out at a fixed rate, 1519 * EAPOL frames use the mgmt frame rate; otherwise consult 1520 * the rate control module for the rate to use. 1521 */ 1522 if (ismcast) { 1523 rix = an->an_mcastrix; 1524 txrate = rt->info[rix].rateCode; 1525 if (shortPreamble) 1526 txrate |= rt->info[rix].shortPreamble; 1527 try0 = 1; 1528 } else if (m0->m_flags & M_EAPOL) { 1529 /* XXX? maybe always use long preamble? */ 1530 rix = an->an_mgmtrix; 1531 txrate = rt->info[rix].rateCode; 1532 if (shortPreamble) 1533 txrate |= rt->info[rix].shortPreamble; 1534 try0 = ATH_TXMAXTRY; /* XXX?too many? */ 1535 } else { 1536 /* 1537 * Do rate lookup on each TX, rather than using 1538 * the hard-coded TX information decided here. 1539 */ 1540 ismrr = 1; 1541 bf->bf_state.bfs_doratelookup = 1; 1542 } 1543 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 1544 flags |= HAL_TXDESC_NOACK; 1545 break; 1546 default: 1547 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 1548 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1549 /* XXX statistic */ 1550 ath_freetx(m0); 1551 return EIO; 1552 } 1553 1554 /* 1555 * There are two known scenarios where the frame AC doesn't match 1556 * what the destination TXQ is. 1557 * 1558 * + non-QoS frames (eg management?) that the net80211 stack has 1559 * assigned a higher AC to, but since it's a non-QoS TID, it's 1560 * being thrown into TID 16. TID 16 gets the AC_BE queue. 1561 * It's quite possible that management frames should just be 1562 * direct dispatched to hardware rather than go via the software 1563 * queue; that should be investigated in the future. There are 1564 * some specific scenarios where this doesn't make sense, mostly 1565 * surrounding ADDBA request/response - hence why that is special 1566 * cased. 1567 * 1568 * + Multicast frames going into the VAP mcast queue. That shows up 1569 * as "TXQ 11". 1570 * 1571 * This driver should eventually support separate TID and TXQ locking, 1572 * allowing for arbitrary AC frames to appear on arbitrary software 1573 * queues, being queued to the "correct" hardware queue when needed. 1574 */ 1575 #if 0 1576 if (txq != sc->sc_ac2q[pri]) { 1577 device_printf(sc->sc_dev, 1578 "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n", 1579 __func__, 1580 txq, 1581 txq->axq_qnum, 1582 pri, 1583 sc->sc_ac2q[pri], 1584 sc->sc_ac2q[pri]->axq_qnum); 1585 } 1586 #endif 1587 1588 /* 1589 * Calculate miscellaneous flags. 1590 */ 1591 if (ismcast) { 1592 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 1593 } else if (pktlen > vap->iv_rtsthreshold && 1594 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { 1595 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 1596 sc->sc_stats.ast_tx_rts++; 1597 } 1598 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 1599 sc->sc_stats.ast_tx_noack++; 1600 #ifdef IEEE80211_SUPPORT_TDMA 1601 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { 1602 DPRINTF(sc, ATH_DEBUG_TDMA, 1603 "%s: discard frame, ACK required w/ TDMA\n", __func__); 1604 sc->sc_stats.ast_tdma_ack++; 1605 ath_freetx(m0); 1606 return EIO; 1607 } 1608 #endif 1609 1610 /* 1611 * Determine if a tx interrupt should be generated for 1612 * this descriptor. We take a tx interrupt to reap 1613 * descriptors when the h/w hits an EOL condition or 1614 * when the descriptor is specifically marked to generate 1615 * an interrupt. We periodically mark descriptors in this 1616 * way to insure timely replenishing of the supply needed 1617 * for sending frames. Defering interrupts reduces system 1618 * load and potentially allows more concurrent work to be 1619 * done but if done to aggressively can cause senders to 1620 * backup. 1621 * 1622 * NB: use >= to deal with sc_txintrperiod changing 1623 * dynamically through sysctl. 1624 */ 1625 if (flags & HAL_TXDESC_INTREQ) { 1626 txq->axq_intrcnt = 0; 1627 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 1628 flags |= HAL_TXDESC_INTREQ; 1629 txq->axq_intrcnt = 0; 1630 } 1631 1632 /* This point forward is actual TX bits */ 1633 1634 /* 1635 * At this point we are committed to sending the frame 1636 * and we don't need to look at m_nextpkt; clear it in 1637 * case this frame is part of frag chain. 1638 */ 1639 m0->m_nextpkt = NULL; 1640 1641 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 1642 ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 1643 sc->sc_hwmap[rix].ieeerate, -1); 1644 1645 if (ieee80211_radiotap_active_vap(vap)) { 1646 u_int64_t tsf = ath_hal_gettsf64(ah); 1647 1648 sc->sc_tx_th.wt_tsf = htole64(tsf); 1649 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 1650 if (iswep) 1651 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1652 if (isfrag) 1653 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1654 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 1655 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 1656 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 1657 1658 ieee80211_radiotap_tx(vap, m0); 1659 } 1660 1661 /* Blank the legacy rate array */ 1662 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1663 1664 /* 1665 * ath_buf_set_rate needs at least one rate/try to setup 1666 * the rate scenario. 1667 */ 1668 bf->bf_state.bfs_rc[0].rix = rix; 1669 bf->bf_state.bfs_rc[0].tries = try0; 1670 bf->bf_state.bfs_rc[0].ratecode = txrate; 1671 1672 /* Store the decided rate index values away */ 1673 bf->bf_state.bfs_pktlen = pktlen; 1674 bf->bf_state.bfs_hdrlen = hdrlen; 1675 bf->bf_state.bfs_atype = atype; 1676 bf->bf_state.bfs_txpower = ni->ni_txpower; 1677 bf->bf_state.bfs_txrate0 = txrate; 1678 bf->bf_state.bfs_try0 = try0; 1679 bf->bf_state.bfs_keyix = keyix; 1680 bf->bf_state.bfs_txantenna = sc->sc_txantenna; 1681 bf->bf_state.bfs_txflags = flags; 1682 bf->bf_state.bfs_shpream = shortPreamble; 1683 1684 /* XXX this should be done in ath_tx_setrate() */ 1685 bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */ 1686 bf->bf_state.bfs_ctsrate = 0; /* calculated later */ 1687 bf->bf_state.bfs_ctsduration = 0; 1688 bf->bf_state.bfs_ismrr = ismrr; 1689 1690 return 0; 1691 } 1692 1693 /* 1694 * Queue a frame to the hardware or software queue. 1695 * 1696 * This can be called by the net80211 code. 1697 * 1698 * XXX what about locking? Or, push the seqno assign into the 1699 * XXX aggregate scheduler so its serialised? 1700 * 1701 * XXX When sending management frames via ath_raw_xmit(), 1702 * should CLRDMASK be set unconditionally? 1703 */ 1704 int 1705 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, 1706 struct ath_buf *bf, struct mbuf *m0) 1707 { 1708 struct ieee80211vap *vap = ni->ni_vap; 1709 struct ath_vap *avp = ATH_VAP(vap); 1710 int r = 0; 1711 u_int pri; 1712 int tid; 1713 struct ath_txq *txq; 1714 int ismcast; 1715 const struct ieee80211_frame *wh; 1716 int is_ampdu, is_ampdu_tx, is_ampdu_pending; 1717 ieee80211_seq seqno; 1718 uint8_t type, subtype; 1719 1720 /* 1721 * Determine the target hardware queue. 1722 * 1723 * For multicast frames, the txq gets overridden appropriately 1724 * depending upon the state of PS. 1725 * 1726 * For any other frame, we do a TID/QoS lookup inside the frame 1727 * to see what the TID should be. If it's a non-QoS frame, the 1728 * AC and TID are overridden. The TID/TXQ code assumes the 1729 * TID is on a predictable hardware TXQ, so we don't support 1730 * having a node TID queued to multiple hardware TXQs. 1731 * This may change in the future but would require some locking 1732 * fudgery. 1733 */ 1734 pri = ath_tx_getac(sc, m0); 1735 tid = ath_tx_gettid(sc, m0); 1736 1737 txq = sc->sc_ac2q[pri]; 1738 wh = mtod(m0, struct ieee80211_frame *); 1739 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1740 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1741 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1742 1743 /* 1744 * Enforce how deep the multicast queue can grow. 1745 * 1746 * XXX duplicated in ath_raw_xmit(). 1747 */ 1748 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1749 ATH_TXQ_LOCK(sc->sc_cabq); 1750 1751 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { 1752 sc->sc_stats.ast_tx_mcastq_overflow++; 1753 r = ENOBUFS; 1754 } 1755 1756 ATH_TXQ_UNLOCK(sc->sc_cabq); 1757 1758 if (r != 0) { 1759 m_freem(m0); 1760 return r; 1761 } 1762 } 1763 1764 /* A-MPDU TX */ 1765 is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid); 1766 is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid); 1767 is_ampdu = is_ampdu_tx | is_ampdu_pending; 1768 1769 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n", 1770 __func__, tid, pri, is_ampdu); 1771 1772 /* Set local packet state, used to queue packets to hardware */ 1773 bf->bf_state.bfs_tid = tid; 1774 bf->bf_state.bfs_txq = txq; 1775 bf->bf_state.bfs_pri = pri; 1776 1777 /* 1778 * When servicing one or more stations in power-save mode 1779 * (or) if there is some mcast data waiting on the mcast 1780 * queue (to prevent out of order delivery) multicast frames 1781 * must be bufferd until after the beacon. 1782 * 1783 * TODO: we should lock the mcastq before we check the length. 1784 */ 1785 if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) { 1786 txq = &avp->av_mcastq; 1787 /* 1788 * Mark the frame as eventually belonging on the CAB 1789 * queue, so the descriptor setup functions will 1790 * correctly initialise the descriptor 'qcuId' field. 1791 */ 1792 bf->bf_state.bfs_txq = sc->sc_cabq; 1793 } 1794 1795 /* Do the generic frame setup */ 1796 /* XXX should just bzero the bf_state? */ 1797 bf->bf_state.bfs_dobaw = 0; 1798 1799 /* 1800 * Acquire the TXQ lock early, so both the encap and seqno 1801 * are allocated together. 1802 * 1803 * XXX should TXQ for CABQ traffic be the multicast queue, 1804 * or the TXQ the given PRI would allocate from? (eg for 1805 * sequence number allocation locking.) 1806 */ 1807 ATH_TXQ_LOCK(txq); 1808 1809 /* A-MPDU TX? Manually set sequence number */ 1810 /* 1811 * Don't do it whilst pending; the net80211 layer still 1812 * assigns them. 1813 */ 1814 if (is_ampdu_tx) { 1815 /* 1816 * Always call; this function will 1817 * handle making sure that null data frames 1818 * don't get a sequence number from the current 1819 * TID and thus mess with the BAW. 1820 */ 1821 seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0); 1822 1823 /* 1824 * Don't add QoS NULL frames to the BAW. 1825 */ 1826 if (IEEE80211_QOS_HAS_SEQ(wh) && 1827 subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) { 1828 bf->bf_state.bfs_dobaw = 1; 1829 } 1830 } 1831 1832 /* 1833 * If needed, the sequence number has been assigned. 1834 * Squirrel it away somewhere easy to get to. 1835 */ 1836 bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT; 1837 1838 /* Is ampdu pending? fetch the seqno and print it out */ 1839 if (is_ampdu_pending) 1840 DPRINTF(sc, ATH_DEBUG_SW_TX, 1841 "%s: tid %d: ampdu pending, seqno %d\n", 1842 __func__, tid, M_SEQNO_GET(m0)); 1843 1844 /* This also sets up the DMA map */ 1845 r = ath_tx_normal_setup(sc, ni, bf, m0, txq); 1846 1847 if (r != 0) 1848 goto done; 1849 1850 /* At this point m0 could have changed! */ 1851 m0 = bf->bf_m; 1852 1853 #if 1 1854 /* 1855 * If it's a multicast frame, do a direct-dispatch to the 1856 * destination hardware queue. Don't bother software 1857 * queuing it. 1858 */ 1859 /* 1860 * If it's a BAR frame, do a direct dispatch to the 1861 * destination hardware queue. Don't bother software 1862 * queuing it, as the TID will now be paused. 1863 * Sending a BAR frame can occur from the net80211 txa timer 1864 * (ie, retries) or from the ath txtask (completion call.) 1865 * It queues directly to hardware because the TID is paused 1866 * at this point (and won't be unpaused until the BAR has 1867 * either been TXed successfully or max retries has been 1868 * reached.) 1869 */ 1870 if (txq == &avp->av_mcastq) { 1871 DPRINTF(sc, ATH_DEBUG_SW_TX, 1872 "%s: bf=%p: mcastq: TX'ing\n", __func__, bf); 1873 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1874 ath_tx_xmit_normal(sc, txq, bf); 1875 } else if (type == IEEE80211_FC0_TYPE_CTL && 1876 subtype == IEEE80211_FC0_SUBTYPE_BAR) { 1877 DPRINTF(sc, ATH_DEBUG_SW_TX, 1878 "%s: BAR: TX'ing direct\n", __func__); 1879 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1880 ath_tx_xmit_normal(sc, txq, bf); 1881 } else { 1882 /* add to software queue */ 1883 DPRINTF(sc, ATH_DEBUG_SW_TX, 1884 "%s: bf=%p: swq: TX'ing\n", __func__, bf); 1885 ath_tx_swq(sc, ni, txq, bf); 1886 } 1887 #else 1888 /* 1889 * For now, since there's no software queue, 1890 * direct-dispatch to the hardware. 1891 */ 1892 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1893 ath_tx_xmit_normal(sc, txq, bf); 1894 #endif 1895 done: 1896 ATH_TXQ_UNLOCK(txq); 1897 1898 return 0; 1899 } 1900 1901 static int 1902 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, 1903 struct ath_buf *bf, struct mbuf *m0, 1904 const struct ieee80211_bpf_params *params) 1905 { 1906 struct ifnet *ifp = sc->sc_ifp; 1907 struct ieee80211com *ic = ifp->if_l2com; 1908 struct ath_hal *ah = sc->sc_ah; 1909 struct ieee80211vap *vap = ni->ni_vap; 1910 int error, ismcast, ismrr; 1911 int keyix, hdrlen, pktlen, try0, txantenna; 1912 u_int8_t rix, txrate; 1913 struct ieee80211_frame *wh; 1914 u_int flags; 1915 HAL_PKT_TYPE atype; 1916 const HAL_RATE_TABLE *rt; 1917 struct ath_desc *ds; 1918 u_int pri; 1919 int o_tid = -1; 1920 int do_override; 1921 1922 wh = mtod(m0, struct ieee80211_frame *); 1923 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1924 hdrlen = ieee80211_anyhdrsize(wh); 1925 /* 1926 * Packet length must not include any 1927 * pad bytes; deduct them here. 1928 */ 1929 /* XXX honor IEEE80211_BPF_DATAPAD */ 1930 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; 1931 1932 ATH_KTR(sc, ATH_KTR_TX, 2, 1933 "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf); 1934 1935 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n", 1936 __func__, ismcast); 1937 1938 pri = params->ibp_pri & 3; 1939 /* Override pri if the frame isn't a QoS one */ 1940 if (! IEEE80211_QOS_HAS_SEQ(wh)) 1941 pri = ath_tx_getac(sc, m0); 1942 1943 /* XXX If it's an ADDBA, override the correct queue */ 1944 do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid); 1945 1946 /* Map ADDBA to the correct priority */ 1947 if (do_override) { 1948 #if 0 1949 device_printf(sc->sc_dev, 1950 "%s: overriding tid %d pri %d -> %d\n", 1951 __func__, o_tid, pri, TID_TO_WME_AC(o_tid)); 1952 #endif 1953 pri = TID_TO_WME_AC(o_tid); 1954 } 1955 1956 ATH_TXQ_LOCK(sc->sc_ac2q[pri]); 1957 1958 /* Handle encryption twiddling if needed */ 1959 if (! ath_tx_tag_crypto(sc, ni, 1960 m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0, 1961 &hdrlen, &pktlen, &keyix)) { 1962 ath_freetx(m0); 1963 return EIO; 1964 } 1965 /* packet header may have moved, reset our local pointer */ 1966 wh = mtod(m0, struct ieee80211_frame *); 1967 1968 /* Do the generic frame setup */ 1969 /* XXX should just bzero the bf_state? */ 1970 bf->bf_state.bfs_dobaw = 0; 1971 1972 error = ath_tx_dmasetup(sc, bf, m0); 1973 if (error != 0) 1974 return error; 1975 m0 = bf->bf_m; /* NB: may have changed */ 1976 wh = mtod(m0, struct ieee80211_frame *); 1977 bf->bf_node = ni; /* NB: held reference */ 1978 1979 /* Always enable CLRDMASK for raw frames for now.. */ 1980 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 1981 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1982 if (params->ibp_flags & IEEE80211_BPF_RTS) 1983 flags |= HAL_TXDESC_RTSENA; 1984 else if (params->ibp_flags & IEEE80211_BPF_CTS) { 1985 /* XXX assume 11g/11n protection? */ 1986 bf->bf_state.bfs_doprot = 1; 1987 flags |= HAL_TXDESC_CTSENA; 1988 } 1989 /* XXX leave ismcast to injector? */ 1990 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) 1991 flags |= HAL_TXDESC_NOACK; 1992 1993 rt = sc->sc_currates; 1994 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1995 rix = ath_tx_findrix(sc, params->ibp_rate0); 1996 txrate = rt->info[rix].rateCode; 1997 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 1998 txrate |= rt->info[rix].shortPreamble; 1999 sc->sc_txrix = rix; 2000 try0 = params->ibp_try0; 2001 ismrr = (params->ibp_try1 != 0); 2002 txantenna = params->ibp_pri >> 2; 2003 if (txantenna == 0) /* XXX? */ 2004 txantenna = sc->sc_txantenna; 2005 2006 /* 2007 * Since ctsrate is fixed, store it away for later 2008 * use when the descriptor fields are being set. 2009 */ 2010 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) 2011 bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate; 2012 2013 /* 2014 * NB: we mark all packets as type PSPOLL so the h/w won't 2015 * set the sequence number, duration, etc. 2016 */ 2017 atype = HAL_PKT_TYPE_PSPOLL; 2018 2019 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 2020 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 2021 sc->sc_hwmap[rix].ieeerate, -1); 2022 2023 if (ieee80211_radiotap_active_vap(vap)) { 2024 u_int64_t tsf = ath_hal_gettsf64(ah); 2025 2026 sc->sc_tx_th.wt_tsf = htole64(tsf); 2027 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 2028 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2029 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2030 if (m0->m_flags & M_FRAG) 2031 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2032 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 2033 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 2034 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 2035 2036 ieee80211_radiotap_tx(vap, m0); 2037 } 2038 2039 /* 2040 * Formulate first tx descriptor with tx controls. 2041 */ 2042 ds = bf->bf_desc; 2043 /* XXX check return value? */ 2044 2045 /* Store the decided rate index values away */ 2046 bf->bf_state.bfs_pktlen = pktlen; 2047 bf->bf_state.bfs_hdrlen = hdrlen; 2048 bf->bf_state.bfs_atype = atype; 2049 bf->bf_state.bfs_txpower = params->ibp_power; 2050 bf->bf_state.bfs_txrate0 = txrate; 2051 bf->bf_state.bfs_try0 = try0; 2052 bf->bf_state.bfs_keyix = keyix; 2053 bf->bf_state.bfs_txantenna = txantenna; 2054 bf->bf_state.bfs_txflags = flags; 2055 bf->bf_state.bfs_shpream = 2056 !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE); 2057 2058 /* Set local packet state, used to queue packets to hardware */ 2059 bf->bf_state.bfs_tid = WME_AC_TO_TID(pri); 2060 bf->bf_state.bfs_txq = sc->sc_ac2q[pri]; 2061 bf->bf_state.bfs_pri = pri; 2062 2063 /* XXX this should be done in ath_tx_setrate() */ 2064 bf->bf_state.bfs_ctsrate = 0; 2065 bf->bf_state.bfs_ctsduration = 0; 2066 bf->bf_state.bfs_ismrr = ismrr; 2067 2068 /* Blank the legacy rate array */ 2069 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 2070 2071 bf->bf_state.bfs_rc[0].rix = 2072 ath_tx_findrix(sc, params->ibp_rate0); 2073 bf->bf_state.bfs_rc[0].tries = try0; 2074 bf->bf_state.bfs_rc[0].ratecode = txrate; 2075 2076 if (ismrr) { 2077 int rix; 2078 2079 rix = ath_tx_findrix(sc, params->ibp_rate1); 2080 bf->bf_state.bfs_rc[1].rix = rix; 2081 bf->bf_state.bfs_rc[1].tries = params->ibp_try1; 2082 2083 rix = ath_tx_findrix(sc, params->ibp_rate2); 2084 bf->bf_state.bfs_rc[2].rix = rix; 2085 bf->bf_state.bfs_rc[2].tries = params->ibp_try2; 2086 2087 rix = ath_tx_findrix(sc, params->ibp_rate3); 2088 bf->bf_state.bfs_rc[3].rix = rix; 2089 bf->bf_state.bfs_rc[3].tries = params->ibp_try3; 2090 } 2091 /* 2092 * All the required rate control decisions have been made; 2093 * fill in the rc flags. 2094 */ 2095 ath_tx_rate_fill_rcflags(sc, bf); 2096 2097 /* NB: no buffered multicast in power save support */ 2098 2099 /* 2100 * If we're overiding the ADDBA destination, dump directly 2101 * into the hardware queue, right after any pending 2102 * frames to that node are. 2103 */ 2104 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n", 2105 __func__, do_override); 2106 2107 #if 1 2108 if (do_override) { 2109 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2110 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2111 } else { 2112 /* Queue to software queue */ 2113 ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf); 2114 } 2115 #else 2116 /* Direct-dispatch to the hardware */ 2117 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2118 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2119 #endif 2120 ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]); 2121 2122 return 0; 2123 } 2124 2125 /* 2126 * Send a raw frame. 2127 * 2128 * This can be called by net80211. 2129 */ 2130 int 2131 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2132 const struct ieee80211_bpf_params *params) 2133 { 2134 struct ieee80211com *ic = ni->ni_ic; 2135 struct ifnet *ifp = ic->ic_ifp; 2136 struct ath_softc *sc = ifp->if_softc; 2137 struct ath_buf *bf; 2138 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 2139 int error = 0; 2140 2141 ATH_PCU_LOCK(sc); 2142 if (sc->sc_inreset_cnt > 0) { 2143 device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n", 2144 __func__); 2145 error = EIO; 2146 ATH_PCU_UNLOCK(sc); 2147 goto bad0; 2148 } 2149 sc->sc_txstart_cnt++; 2150 ATH_PCU_UNLOCK(sc); 2151 2152 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) { 2153 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__, 2154 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ? 2155 "!running" : "invalid"); 2156 m_freem(m); 2157 error = ENETDOWN; 2158 goto bad; 2159 } 2160 2161 /* 2162 * Enforce how deep the multicast queue can grow. 2163 * 2164 * XXX duplicated in ath_tx_start(). 2165 */ 2166 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2167 ATH_TXQ_LOCK(sc->sc_cabq); 2168 2169 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { 2170 sc->sc_stats.ast_tx_mcastq_overflow++; 2171 error = ENOBUFS; 2172 } 2173 2174 ATH_TXQ_UNLOCK(sc->sc_cabq); 2175 2176 if (error != 0) { 2177 m_freem(m); 2178 goto bad; 2179 } 2180 } 2181 2182 /* 2183 * Grab a TX buffer and associated resources. 2184 */ 2185 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 2186 if (bf == NULL) { 2187 sc->sc_stats.ast_tx_nobuf++; 2188 m_freem(m); 2189 error = ENOBUFS; 2190 goto bad; 2191 } 2192 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n", 2193 m, params, bf); 2194 2195 if (params == NULL) { 2196 /* 2197 * Legacy path; interpret frame contents to decide 2198 * precisely how to send the frame. 2199 */ 2200 if (ath_tx_start(sc, ni, bf, m)) { 2201 error = EIO; /* XXX */ 2202 goto bad2; 2203 } 2204 } else { 2205 /* 2206 * Caller supplied explicit parameters to use in 2207 * sending the frame. 2208 */ 2209 if (ath_tx_raw_start(sc, ni, bf, m, params)) { 2210 error = EIO; /* XXX */ 2211 goto bad2; 2212 } 2213 } 2214 sc->sc_wd_timer = 5; 2215 ifp->if_opackets++; 2216 sc->sc_stats.ast_tx_raw++; 2217 2218 ATH_PCU_LOCK(sc); 2219 sc->sc_txstart_cnt--; 2220 ATH_PCU_UNLOCK(sc); 2221 2222 return 0; 2223 bad2: 2224 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, " 2225 "bf=%p", 2226 m, 2227 params, 2228 bf); 2229 ATH_TXBUF_LOCK(sc); 2230 ath_returnbuf_head(sc, bf); 2231 ATH_TXBUF_UNLOCK(sc); 2232 bad: 2233 ATH_PCU_LOCK(sc); 2234 sc->sc_txstart_cnt--; 2235 ATH_PCU_UNLOCK(sc); 2236 bad0: 2237 ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p", 2238 m, params); 2239 ifp->if_oerrors++; 2240 sc->sc_stats.ast_tx_raw_fail++; 2241 ieee80211_free_node(ni); 2242 2243 return error; 2244 } 2245 2246 /* Some helper functions */ 2247 2248 /* 2249 * ADDBA (and potentially others) need to be placed in the same 2250 * hardware queue as the TID/node it's relating to. This is so 2251 * it goes out after any pending non-aggregate frames to the 2252 * same node/TID. 2253 * 2254 * If this isn't done, the ADDBA can go out before the frames 2255 * queued in hardware. Even though these frames have a sequence 2256 * number -earlier- than the ADDBA can be transmitted (but 2257 * no frames whose sequence numbers are after the ADDBA should 2258 * be!) they'll arrive after the ADDBA - and the receiving end 2259 * will simply drop them as being out of the BAW. 2260 * 2261 * The frames can't be appended to the TID software queue - it'll 2262 * never be sent out. So these frames have to be directly 2263 * dispatched to the hardware, rather than queued in software. 2264 * So if this function returns true, the TXQ has to be 2265 * overridden and it has to be directly dispatched. 2266 * 2267 * It's a dirty hack, but someone's gotta do it. 2268 */ 2269 2270 /* 2271 * XXX doesn't belong here! 2272 */ 2273 static int 2274 ieee80211_is_action(struct ieee80211_frame *wh) 2275 { 2276 /* Type: Management frame? */ 2277 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 2278 IEEE80211_FC0_TYPE_MGT) 2279 return 0; 2280 2281 /* Subtype: Action frame? */ 2282 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) != 2283 IEEE80211_FC0_SUBTYPE_ACTION) 2284 return 0; 2285 2286 return 1; 2287 } 2288 2289 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2290 /* 2291 * Return an alternate TID for ADDBA request frames. 2292 * 2293 * Yes, this likely should be done in the net80211 layer. 2294 */ 2295 static int 2296 ath_tx_action_frame_override_queue(struct ath_softc *sc, 2297 struct ieee80211_node *ni, 2298 struct mbuf *m0, int *tid) 2299 { 2300 struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); 2301 struct ieee80211_action_ba_addbarequest *ia; 2302 uint8_t *frm; 2303 uint16_t baparamset; 2304 2305 /* Not action frame? Bail */ 2306 if (! ieee80211_is_action(wh)) 2307 return 0; 2308 2309 /* XXX Not needed for frames we send? */ 2310 #if 0 2311 /* Correct length? */ 2312 if (! ieee80211_parse_action(ni, m)) 2313 return 0; 2314 #endif 2315 2316 /* Extract out action frame */ 2317 frm = (u_int8_t *)&wh[1]; 2318 ia = (struct ieee80211_action_ba_addbarequest *) frm; 2319 2320 /* Not ADDBA? Bail */ 2321 if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA) 2322 return 0; 2323 if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST) 2324 return 0; 2325 2326 /* Extract TID, return it */ 2327 baparamset = le16toh(ia->rq_baparamset); 2328 *tid = (int) MS(baparamset, IEEE80211_BAPS_TID); 2329 2330 return 1; 2331 } 2332 #undef MS 2333 2334 /* Per-node software queue operations */ 2335 2336 /* 2337 * Add the current packet to the given BAW. 2338 * It is assumed that the current packet 2339 * 2340 * + fits inside the BAW; 2341 * + already has had a sequence number allocated. 2342 * 2343 * Since the BAW status may be modified by both the ath task and 2344 * the net80211/ifnet contexts, the TID must be locked. 2345 */ 2346 void 2347 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an, 2348 struct ath_tid *tid, struct ath_buf *bf) 2349 { 2350 int index, cindex; 2351 struct ieee80211_tx_ampdu *tap; 2352 2353 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 2354 ATH_TID_LOCK_ASSERT(sc, tid); 2355 2356 if (bf->bf_state.bfs_isretried) 2357 return; 2358 2359 tap = ath_tx_get_tx_tid(an, tid->tid); 2360 2361 if (! bf->bf_state.bfs_dobaw) { 2362 device_printf(sc->sc_dev, 2363 "%s: dobaw=0, seqno=%d, window %d:%d\n", 2364 __func__, 2365 SEQNO(bf->bf_state.bfs_seqno), 2366 tap->txa_start, 2367 tap->txa_wnd); 2368 } 2369 2370 if (bf->bf_state.bfs_addedbaw) 2371 device_printf(sc->sc_dev, 2372 "%s: re-added? tid=%d, seqno %d; window %d:%d; " 2373 "baw head=%d tail=%d\n", 2374 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2375 tap->txa_start, tap->txa_wnd, tid->baw_head, 2376 tid->baw_tail); 2377 2378 /* 2379 * Verify that the given sequence number is not outside of the 2380 * BAW. Complain loudly if that's the case. 2381 */ 2382 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2383 SEQNO(bf->bf_state.bfs_seqno))) { 2384 device_printf(sc->sc_dev, 2385 "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; " 2386 "baw head=%d tail=%d\n", 2387 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2388 tap->txa_start, tap->txa_wnd, tid->baw_head, 2389 tid->baw_tail); 2390 } 2391 2392 /* 2393 * ni->ni_txseqs[] is the currently allocated seqno. 2394 * the txa state contains the current baw start. 2395 */ 2396 index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno)); 2397 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2398 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2399 "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d " 2400 "baw head=%d tail=%d\n", 2401 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2402 tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, 2403 tid->baw_tail); 2404 2405 2406 #if 0 2407 assert(tid->tx_buf[cindex] == NULL); 2408 #endif 2409 if (tid->tx_buf[cindex] != NULL) { 2410 device_printf(sc->sc_dev, 2411 "%s: ba packet dup (index=%d, cindex=%d, " 2412 "head=%d, tail=%d)\n", 2413 __func__, index, cindex, tid->baw_head, tid->baw_tail); 2414 device_printf(sc->sc_dev, 2415 "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n", 2416 __func__, 2417 tid->tx_buf[cindex], 2418 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno), 2419 bf, 2420 SEQNO(bf->bf_state.bfs_seqno) 2421 ); 2422 } 2423 tid->tx_buf[cindex] = bf; 2424 2425 if (index >= ((tid->baw_tail - tid->baw_head) & 2426 (ATH_TID_MAX_BUFS - 1))) { 2427 tid->baw_tail = cindex; 2428 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 2429 } 2430 } 2431 2432 /* 2433 * Flip the BAW buffer entry over from the existing one to the new one. 2434 * 2435 * When software retransmitting a (sub-)frame, it is entirely possible that 2436 * the frame ath_buf is marked as BUSY and can't be immediately reused. 2437 * In that instance the buffer is cloned and the new buffer is used for 2438 * retransmit. We thus need to update the ath_buf slot in the BAW buf 2439 * tracking array to maintain consistency. 2440 */ 2441 static void 2442 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an, 2443 struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf) 2444 { 2445 int index, cindex; 2446 struct ieee80211_tx_ampdu *tap; 2447 int seqno = SEQNO(old_bf->bf_state.bfs_seqno); 2448 2449 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 2450 ATH_TID_LOCK_ASSERT(sc, tid); 2451 2452 tap = ath_tx_get_tx_tid(an, tid->tid); 2453 index = ATH_BA_INDEX(tap->txa_start, seqno); 2454 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2455 2456 /* 2457 * Just warn for now; if it happens then we should find out 2458 * about it. It's highly likely the aggregation session will 2459 * soon hang. 2460 */ 2461 if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) { 2462 device_printf(sc->sc_dev, "%s: retransmitted buffer" 2463 " has mismatching seqno's, BA session may hang.\n", 2464 __func__); 2465 device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n", 2466 __func__, 2467 old_bf->bf_state.bfs_seqno, 2468 new_bf->bf_state.bfs_seqno); 2469 } 2470 2471 if (tid->tx_buf[cindex] != old_bf) { 2472 device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; " 2473 " has m BA session may hang.\n", 2474 __func__); 2475 device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n", 2476 __func__, 2477 old_bf, new_bf); 2478 } 2479 2480 tid->tx_buf[cindex] = new_bf; 2481 } 2482 2483 /* 2484 * seq_start - left edge of BAW 2485 * seq_next - current/next sequence number to allocate 2486 * 2487 * Since the BAW status may be modified by both the ath task and 2488 * the net80211/ifnet contexts, the TID must be locked. 2489 */ 2490 static void 2491 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an, 2492 struct ath_tid *tid, const struct ath_buf *bf) 2493 { 2494 int index, cindex; 2495 struct ieee80211_tx_ampdu *tap; 2496 int seqno = SEQNO(bf->bf_state.bfs_seqno); 2497 2498 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 2499 ATH_TID_LOCK_ASSERT(sc, tid); 2500 2501 tap = ath_tx_get_tx_tid(an, tid->tid); 2502 index = ATH_BA_INDEX(tap->txa_start, seqno); 2503 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2504 2505 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2506 "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, " 2507 "baw head=%d, tail=%d\n", 2508 __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index, 2509 cindex, tid->baw_head, tid->baw_tail); 2510 2511 /* 2512 * If this occurs then we have a big problem - something else 2513 * has slid tap->txa_start along without updating the BAW 2514 * tracking start/end pointers. Thus the TX BAW state is now 2515 * completely busted. 2516 * 2517 * But for now, since I haven't yet fixed TDMA and buffer cloning, 2518 * it's quite possible that a cloned buffer is making its way 2519 * here and causing it to fire off. Disable TDMA for now. 2520 */ 2521 if (tid->tx_buf[cindex] != bf) { 2522 device_printf(sc->sc_dev, 2523 "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n", 2524 __func__, 2525 bf, SEQNO(bf->bf_state.bfs_seqno), 2526 tid->tx_buf[cindex], 2527 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno)); 2528 } 2529 2530 tid->tx_buf[cindex] = NULL; 2531 2532 while (tid->baw_head != tid->baw_tail && 2533 !tid->tx_buf[tid->baw_head]) { 2534 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 2535 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 2536 } 2537 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2538 "%s: baw is now %d:%d, baw head=%d\n", 2539 __func__, tap->txa_start, tap->txa_wnd, tid->baw_head); 2540 } 2541 2542 /* 2543 * Mark the current node/TID as ready to TX. 2544 * 2545 * This is done to make it easy for the software scheduler to 2546 * find which nodes have data to send. 2547 * 2548 * The TXQ lock must be held. 2549 */ 2550 static void 2551 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid) 2552 { 2553 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2554 2555 ATH_TXQ_LOCK_ASSERT(txq); 2556 2557 if (tid->paused) 2558 return; /* paused, can't schedule yet */ 2559 2560 if (tid->sched) 2561 return; /* already scheduled */ 2562 2563 tid->sched = 1; 2564 2565 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); 2566 } 2567 2568 /* 2569 * Mark the current node as no longer needing to be polled for 2570 * TX packets. 2571 * 2572 * The TXQ lock must be held. 2573 */ 2574 static void 2575 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid) 2576 { 2577 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2578 2579 ATH_TXQ_LOCK_ASSERT(txq); 2580 2581 if (tid->sched == 0) 2582 return; 2583 2584 tid->sched = 0; 2585 TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem); 2586 } 2587 2588 /* 2589 * Assign a sequence number manually to the given frame. 2590 * 2591 * This should only be called for A-MPDU TX frames. 2592 */ 2593 static ieee80211_seq 2594 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, 2595 struct ath_buf *bf, struct mbuf *m0) 2596 { 2597 struct ieee80211_frame *wh; 2598 int tid, pri; 2599 ieee80211_seq seqno; 2600 uint8_t subtype; 2601 2602 /* TID lookup */ 2603 wh = mtod(m0, struct ieee80211_frame *); 2604 pri = M_WME_GETAC(m0); /* honor classification */ 2605 tid = WME_AC_TO_TID(pri); 2606 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n", 2607 __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2608 2609 /* XXX Is it a control frame? Ignore */ 2610 2611 /* Does the packet require a sequence number? */ 2612 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2613 return -1; 2614 2615 ATH_TID_LOCK_ASSERT(sc, &(ATH_NODE(ni)->an_tid[tid])); 2616 2617 /* 2618 * Is it a QOS NULL Data frame? Give it a sequence number from 2619 * the default TID (IEEE80211_NONQOS_TID.) 2620 * 2621 * The RX path of everything I've looked at doesn't include the NULL 2622 * data frame sequence number in the aggregation state updates, so 2623 * assigning it a sequence number there will cause a BAW hole on the 2624 * RX side. 2625 */ 2626 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2627 if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) { 2628 /* XXX no locking for this TID? This is a bit of a problem. */ 2629 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; 2630 INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); 2631 } else { 2632 /* Manually assign sequence number */ 2633 seqno = ni->ni_txseqs[tid]; 2634 INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE); 2635 } 2636 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 2637 M_SEQNO_SET(m0, seqno); 2638 2639 /* Return so caller can do something with it if needed */ 2640 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno); 2641 return seqno; 2642 } 2643 2644 /* 2645 * Attempt to direct dispatch an aggregate frame to hardware. 2646 * If the frame is out of BAW, queue. 2647 * Otherwise, schedule it as a single frame. 2648 */ 2649 static void 2650 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, 2651 struct ath_txq *txq, struct ath_buf *bf) 2652 { 2653 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 2654 // struct ath_txq *txq = bf->bf_state.bfs_txq; 2655 struct ieee80211_tx_ampdu *tap; 2656 2657 if (txq != bf->bf_state.bfs_txq) { 2658 device_printf(sc->sc_dev, "%s: txq %d != bfs_txq %d!\n", 2659 __func__, 2660 txq->axq_qnum, 2661 bf->bf_state.bfs_txq->axq_qnum); 2662 } 2663 2664 ATH_TXQ_LOCK_ASSERT(txq); 2665 ATH_TID_LOCK_ASSERT(sc, tid); 2666 2667 tap = ath_tx_get_tx_tid(an, tid->tid); 2668 2669 /* paused? queue */ 2670 if (tid->paused) { 2671 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2672 /* XXX don't sched - we're paused! */ 2673 return; 2674 } 2675 2676 /* outside baw? queue */ 2677 if (bf->bf_state.bfs_dobaw && 2678 (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2679 SEQNO(bf->bf_state.bfs_seqno)))) { 2680 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2681 ath_tx_tid_sched(sc, tid); 2682 return; 2683 } 2684 2685 /* 2686 * This is a temporary check and should be removed once 2687 * all the relevant code paths have been fixed. 2688 * 2689 * During aggregate retries, it's possible that the head 2690 * frame will fail (which has the bfs_aggr and bfs_nframes 2691 * fields set for said aggregate) and will be retried as 2692 * a single frame. In this instance, the values should 2693 * be reset or the completion code will get upset with you. 2694 */ 2695 if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) { 2696 device_printf(sc->sc_dev, "%s: bfs_aggr=%d, bfs_nframes=%d\n", 2697 __func__, 2698 bf->bf_state.bfs_aggr, 2699 bf->bf_state.bfs_nframes); 2700 bf->bf_state.bfs_aggr = 0; 2701 bf->bf_state.bfs_nframes = 1; 2702 } 2703 2704 /* Update CLRDMASK just before this frame is queued */ 2705 ath_tx_update_clrdmask(sc, tid, bf); 2706 2707 /* Direct dispatch to hardware */ 2708 ath_tx_do_ratelookup(sc, bf); 2709 ath_tx_calc_duration(sc, bf); 2710 ath_tx_calc_protection(sc, bf); 2711 ath_tx_set_rtscts(sc, bf); 2712 ath_tx_rate_fill_rcflags(sc, bf); 2713 ath_tx_setds(sc, bf); 2714 2715 /* Statistics */ 2716 sc->sc_aggr_stats.aggr_low_hwq_single_pkt++; 2717 2718 /* Track per-TID hardware queue depth correctly */ 2719 tid->hwq_depth++; 2720 2721 /* Add to BAW */ 2722 if (bf->bf_state.bfs_dobaw) { 2723 ath_tx_addto_baw(sc, an, tid, bf); 2724 bf->bf_state.bfs_addedbaw = 1; 2725 } 2726 2727 /* Set completion handler, multi-frame aggregate or not */ 2728 bf->bf_comp = ath_tx_aggr_comp; 2729 2730 /* Hand off to hardware */ 2731 ath_tx_handoff(sc, txq, bf); 2732 } 2733 2734 /* 2735 * Attempt to send the packet. 2736 * If the queue isn't busy, direct-dispatch. 2737 * If the queue is busy enough, queue the given packet on the 2738 * relevant software queue. 2739 */ 2740 void 2741 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq, 2742 struct ath_buf *bf) 2743 { 2744 struct ath_node *an = ATH_NODE(ni); 2745 struct ieee80211_frame *wh; 2746 struct ath_tid *atid; 2747 int pri, tid; 2748 struct mbuf *m0 = bf->bf_m; 2749 2750 ATH_TXQ_LOCK_ASSERT(txq); 2751 2752 /* Fetch the TID - non-QoS frames get assigned to TID 16 */ 2753 wh = mtod(m0, struct ieee80211_frame *); 2754 pri = ath_tx_getac(sc, m0); 2755 tid = ath_tx_gettid(sc, m0); 2756 atid = &an->an_tid[tid]; 2757 2758 ATH_TID_LOCK_ASSERT(sc, atid); 2759 2760 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n", 2761 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2762 2763 /* Set local packet state, used to queue packets to hardware */ 2764 /* XXX potentially duplicate info, re-check */ 2765 /* XXX remember, txq must be the hardware queue, not the av_mcastq */ 2766 bf->bf_state.bfs_tid = tid; 2767 bf->bf_state.bfs_txq = txq; 2768 bf->bf_state.bfs_pri = pri; 2769 2770 /* 2771 * If the hardware queue isn't busy, queue it directly. 2772 * If the hardware queue is busy, queue it. 2773 * If the TID is paused or the traffic it outside BAW, software 2774 * queue it. 2775 */ 2776 if (atid->paused) { 2777 /* TID is paused, queue */ 2778 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__); 2779 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2780 } else if (ath_tx_ampdu_pending(sc, an, tid)) { 2781 /* AMPDU pending; queue */ 2782 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__); 2783 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2784 /* XXX sched? */ 2785 } else if (ath_tx_ampdu_running(sc, an, tid)) { 2786 /* AMPDU running, attempt direct dispatch if possible */ 2787 2788 /* 2789 * Always queue the frame to the tail of the list. 2790 */ 2791 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2792 2793 /* 2794 * If the hardware queue isn't busy, direct dispatch 2795 * the head frame in the list. Don't schedule the 2796 * TID - let it build some more frames first? 2797 * 2798 * Otherwise, schedule the TID. 2799 */ 2800 if (txq->axq_depth < sc->sc_hwq_limit) { 2801 bf = ATH_TID_FIRST(atid); 2802 ATH_TID_REMOVE(atid, bf, bf_list); 2803 2804 /* 2805 * Ensure it's definitely treated as a non-AMPDU 2806 * frame - this information may have been left 2807 * over from a previous attempt. 2808 */ 2809 bf->bf_state.bfs_aggr = 0; 2810 bf->bf_state.bfs_nframes = 1; 2811 2812 /* Queue to the hardware */ 2813 ath_tx_xmit_aggr(sc, an, txq, bf); 2814 DPRINTF(sc, ATH_DEBUG_SW_TX, 2815 "%s: xmit_aggr\n", 2816 __func__); 2817 } else { 2818 DPRINTF(sc, ATH_DEBUG_SW_TX, 2819 "%s: ampdu; swq'ing\n", 2820 __func__); 2821 2822 ath_tx_tid_sched(sc, atid); 2823 } 2824 } else if (txq->axq_depth < sc->sc_hwq_limit) { 2825 /* AMPDU not running, attempt direct dispatch */ 2826 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__); 2827 /* See if clrdmask needs to be set */ 2828 ath_tx_update_clrdmask(sc, atid, bf); 2829 ath_tx_xmit_normal(sc, txq, bf); 2830 } else { 2831 /* Busy; queue */ 2832 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__); 2833 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2834 ath_tx_tid_sched(sc, atid); 2835 } 2836 } 2837 2838 /* 2839 * Configure the per-TID node state. 2840 * 2841 * This likely belongs in if_ath_node.c but I can't think of anywhere 2842 * else to put it just yet. 2843 * 2844 * This sets up the SLISTs and the mutex as appropriate. 2845 */ 2846 void 2847 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an) 2848 { 2849 int i, j; 2850 struct ath_tid *atid; 2851 2852 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2853 atid = &an->an_tid[i]; 2854 2855 /* XXX now with this bzer(), is the field 0'ing needed? */ 2856 bzero(atid, sizeof(*atid)); 2857 2858 TAILQ_INIT(&atid->tid_q); 2859 TAILQ_INIT(&atid->filtq.tid_q); 2860 atid->tid = i; 2861 atid->an = an; 2862 for (j = 0; j < ATH_TID_MAX_BUFS; j++) 2863 atid->tx_buf[j] = NULL; 2864 atid->baw_head = atid->baw_tail = 0; 2865 atid->paused = 0; 2866 atid->sched = 0; 2867 atid->hwq_depth = 0; 2868 atid->cleanup_inprogress = 0; 2869 atid->clrdmask = 1; /* Always start by setting this bit */ 2870 if (i == IEEE80211_NONQOS_TID) 2871 atid->ac = ATH_NONQOS_TID_AC; 2872 else 2873 atid->ac = TID_TO_WME_AC(i); 2874 } 2875 } 2876 2877 /* 2878 * Pause the current TID. This stops packets from being transmitted 2879 * on it. 2880 * 2881 * Since this is also called from upper layers as well as the driver, 2882 * it will get the TID lock. 2883 */ 2884 static void 2885 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid) 2886 { 2887 2888 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 2889 tid->paused++; 2890 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n", 2891 __func__, tid->paused); 2892 } 2893 2894 /* 2895 * Unpause the current TID, and schedule it if needed. 2896 */ 2897 static void 2898 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid) 2899 { 2900 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 2901 2902 tid->paused--; 2903 2904 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n", 2905 __func__, tid->paused); 2906 2907 if (tid->paused) 2908 return; 2909 2910 /* 2911 * Override the clrdmask configuration for the next frame 2912 * from this TID, just to get the ball rolling. 2913 */ 2914 tid->clrdmask = 1; 2915 2916 if (tid->axq_depth == 0) 2917 return; 2918 2919 /* XXX isfiltered shouldn't ever be 0 at this point */ 2920 if (tid->isfiltered == 1) { 2921 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 2922 return; 2923 } 2924 2925 ath_tx_tid_sched(sc, tid); 2926 /* Punt some frames to the hardware if needed */ 2927 //ath_txq_sched(sc, sc->sc_ac2q[tid->ac]); 2928 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 2929 } 2930 2931 /* 2932 * Add the given ath_buf to the TID filtered frame list. 2933 * This requires the TID be filtered. 2934 */ 2935 static void 2936 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid, 2937 struct ath_buf *bf) 2938 { 2939 2940 ATH_TID_LOCK_ASSERT(sc, tid); 2941 if (! tid->isfiltered) 2942 device_printf(sc->sc_dev, "%s: not filtered?!\n", __func__); 2943 2944 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf); 2945 2946 /* Set the retry bit and bump the retry counter */ 2947 ath_tx_set_retry(sc, bf); 2948 sc->sc_stats.ast_tx_swfiltered++; 2949 2950 ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list); 2951 } 2952 2953 /* 2954 * Handle a completed filtered frame from the given TID. 2955 * This just enables/pauses the filtered frame state if required 2956 * and appends the filtered frame to the filtered queue. 2957 */ 2958 static void 2959 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid, 2960 struct ath_buf *bf) 2961 { 2962 2963 ATH_TID_LOCK_ASSERT(sc, tid); 2964 2965 if (! tid->isfiltered) { 2966 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: filter transition\n", 2967 __func__); 2968 tid->isfiltered = 1; 2969 ath_tx_tid_pause(sc, tid); 2970 } 2971 2972 /* Add the frame to the filter queue */ 2973 ath_tx_tid_filt_addbuf(sc, tid, bf); 2974 } 2975 2976 /* 2977 * Complete the filtered frame TX completion. 2978 * 2979 * If there are no more frames in the hardware queue, unpause/unfilter 2980 * the TID if applicable. Otherwise we will wait for a node PS transition 2981 * to unfilter. 2982 */ 2983 static void 2984 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid) 2985 { 2986 struct ath_buf *bf; 2987 2988 ATH_TID_LOCK_ASSERT(sc, tid); 2989 2990 if (tid->hwq_depth != 0) 2991 return; 2992 2993 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: hwq=0, transition back\n", 2994 __func__); 2995 tid->isfiltered = 0; 2996 tid->clrdmask = 1; 2997 2998 /* XXX this is really quite inefficient */ 2999 while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) { 3000 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3001 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 3002 } 3003 3004 ath_tx_tid_resume(sc, tid); 3005 } 3006 3007 /* 3008 * Called when a single (aggregate or otherwise) frame is completed. 3009 * 3010 * Returns 1 if the buffer could be added to the filtered list 3011 * (cloned or otherwise), 0 if the buffer couldn't be added to the 3012 * filtered list (failed clone; expired retry) and the caller should 3013 * free it and handle it like a failure (eg by sending a BAR.) 3014 */ 3015 static int 3016 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid, 3017 struct ath_buf *bf) 3018 { 3019 struct ath_buf *nbf; 3020 int retval; 3021 3022 ATH_TID_LOCK_ASSERT(sc, tid); 3023 3024 /* 3025 * Don't allow a filtered frame to live forever. 3026 */ 3027 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3028 sc->sc_stats.ast_tx_swretrymax++; 3029 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3030 "%s: bf=%p, seqno=%d, exceeded retries\n", 3031 __func__, 3032 bf, 3033 bf->bf_state.bfs_seqno); 3034 return (0); 3035 } 3036 3037 /* 3038 * A busy buffer can't be added to the retry list. 3039 * It needs to be cloned. 3040 */ 3041 if (bf->bf_flags & ATH_BUF_BUSY) { 3042 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3043 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3044 "%s: busy buffer clone: %p -> %p\n", 3045 __func__, bf, nbf); 3046 } else { 3047 nbf = bf; 3048 } 3049 3050 if (nbf == NULL) { 3051 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3052 "%s: busy buffer couldn't be cloned (%p)!\n", 3053 __func__, bf); 3054 retval = 1; 3055 } else { 3056 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3057 retval = 0; 3058 } 3059 ath_tx_tid_filt_comp_complete(sc, tid); 3060 3061 return (retval); 3062 } 3063 3064 static void 3065 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid, 3066 struct ath_buf *bf_first, ath_bufhead *bf_q) 3067 { 3068 struct ath_buf *bf, *bf_next, *nbf; 3069 3070 ATH_TID_LOCK_ASSERT(sc, tid); 3071 3072 bf = bf_first; 3073 while (bf) { 3074 bf_next = bf->bf_next; 3075 bf->bf_next = NULL; /* Remove it from the aggr list */ 3076 3077 /* 3078 * Don't allow a filtered frame to live forever. 3079 */ 3080 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3081 sc->sc_stats.ast_tx_swretrymax++; 3082 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3083 "%s: bf=%p, seqno=%d, exceeded retries\n", 3084 __func__, 3085 bf, 3086 bf->bf_state.bfs_seqno); 3087 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3088 goto next; 3089 } 3090 3091 if (bf->bf_flags & ATH_BUF_BUSY) { 3092 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3093 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3094 "%s: busy buffer cloned: %p -> %p", 3095 __func__, bf, nbf); 3096 } else { 3097 nbf = bf; 3098 } 3099 3100 /* 3101 * If the buffer couldn't be cloned, add it to bf_q; 3102 * the caller will free the buffer(s) as required. 3103 */ 3104 if (nbf == NULL) { 3105 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3106 "%s: buffer couldn't be cloned! (%p)\n", 3107 __func__, bf); 3108 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3109 } else { 3110 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3111 } 3112 next: 3113 bf = bf_next; 3114 } 3115 3116 ath_tx_tid_filt_comp_complete(sc, tid); 3117 } 3118 3119 /* 3120 * Suspend the queue because we need to TX a BAR. 3121 */ 3122 static void 3123 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid) 3124 { 3125 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 3126 3127 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3128 "%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n", 3129 __func__, 3130 tid, 3131 tid->bar_wait, 3132 tid->bar_tx); 3133 3134 /* We shouldn't be called when bar_tx is 1 */ 3135 if (tid->bar_tx) { 3136 device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n", 3137 __func__); 3138 } 3139 3140 /* If we've already been called, just be patient. */ 3141 if (tid->bar_wait) 3142 return; 3143 3144 /* Wait! */ 3145 tid->bar_wait = 1; 3146 3147 /* Only one pause, no matter how many frames fail */ 3148 ath_tx_tid_pause(sc, tid); 3149 } 3150 3151 /* 3152 * We've finished with BAR handling - either we succeeded or 3153 * failed. Either way, unsuspend TX. 3154 */ 3155 static void 3156 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid) 3157 { 3158 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 3159 3160 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3161 "%s: tid=%p, called\n", 3162 __func__, 3163 tid); 3164 3165 if (tid->bar_tx == 0 || tid->bar_wait == 0) { 3166 device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n", 3167 __func__, tid->bar_tx, tid->bar_wait); 3168 } 3169 3170 tid->bar_tx = tid->bar_wait = 0; 3171 ath_tx_tid_resume(sc, tid); 3172 } 3173 3174 /* 3175 * Return whether we're ready to TX a BAR frame. 3176 * 3177 * Requires the TID lock be held. 3178 */ 3179 static int 3180 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid) 3181 { 3182 3183 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 3184 3185 if (tid->bar_wait == 0 || tid->hwq_depth > 0) 3186 return (0); 3187 3188 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n", 3189 __func__, tid, tid->tid); 3190 3191 return (1); 3192 } 3193 3194 /* 3195 * Check whether the current TID is ready to have a BAR 3196 * TXed and if so, do the TX. 3197 * 3198 * Since the TID/TXQ lock can't be held during a call to 3199 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it, 3200 * sending the BAR and locking it again. 3201 * 3202 * Eventually, the code to send the BAR should be broken out 3203 * from this routine so the lock doesn't have to be reacquired 3204 * just to be immediately dropped by the caller. 3205 */ 3206 static void 3207 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid) 3208 { 3209 struct ieee80211_tx_ampdu *tap; 3210 3211 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); 3212 3213 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3214 "%s: tid=%p, called\n", 3215 __func__, 3216 tid); 3217 3218 tap = ath_tx_get_tx_tid(tid->an, tid->tid); 3219 3220 /* 3221 * This is an error condition! 3222 */ 3223 if (tid->bar_wait == 0 || tid->bar_tx == 1) { 3224 device_printf(sc->sc_dev, 3225 "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n", 3226 __func__, 3227 tid, 3228 tid->bar_tx, 3229 tid->bar_wait); 3230 return; 3231 } 3232 3233 /* Don't do anything if we still have pending frames */ 3234 if (tid->hwq_depth > 0) { 3235 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3236 "%s: tid=%p, hwq_depth=%d, waiting\n", 3237 __func__, 3238 tid, 3239 tid->hwq_depth); 3240 return; 3241 } 3242 3243 /* We're now about to TX */ 3244 tid->bar_tx = 1; 3245 3246 /* 3247 * Override the clrdmask configuration for the next frame, 3248 * just to get the ball rolling. 3249 */ 3250 tid->clrdmask = 1; 3251 3252 /* 3253 * Calculate new BAW left edge, now that all frames have either 3254 * succeeded or failed. 3255 * 3256 * XXX verify this is _actually_ the valid value to begin at! 3257 */ 3258 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3259 "%s: tid=%p, new BAW left edge=%d\n", 3260 __func__, 3261 tid, 3262 tap->txa_start); 3263 3264 /* Try sending the BAR frame */ 3265 /* We can't hold the lock here! */ 3266 3267 ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]); 3268 if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) { 3269 /* Success? Now we wait for notification that it's done */ 3270 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]); 3271 return; 3272 } 3273 3274 /* Failure? For now, warn loudly and continue */ 3275 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]); 3276 device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n", 3277 __func__, tid); 3278 ath_tx_tid_bar_unsuspend(sc, tid); 3279 } 3280 3281 static void 3282 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an, 3283 struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf) 3284 { 3285 3286 ATH_TID_LOCK_ASSERT(sc, tid); 3287 3288 /* 3289 * If the current TID is running AMPDU, update 3290 * the BAW. 3291 */ 3292 if (ath_tx_ampdu_running(sc, an, tid->tid) && 3293 bf->bf_state.bfs_dobaw) { 3294 /* 3295 * Only remove the frame from the BAW if it's 3296 * been transmitted at least once; this means 3297 * the frame was in the BAW to begin with. 3298 */ 3299 if (bf->bf_state.bfs_retries > 0) { 3300 ath_tx_update_baw(sc, an, tid, bf); 3301 bf->bf_state.bfs_dobaw = 0; 3302 } 3303 /* 3304 * This has become a non-fatal error now 3305 */ 3306 if (! bf->bf_state.bfs_addedbaw) 3307 device_printf(sc->sc_dev, 3308 "%s: wasn't added: seqno %d\n", 3309 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3310 } 3311 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); 3312 } 3313 3314 static void 3315 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an, 3316 const char *pfx, struct ath_tid *tid, struct ath_buf *bf) 3317 { 3318 struct ieee80211_node *ni = &an->an_node; 3319 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 3320 struct ieee80211_tx_ampdu *tap; 3321 3322 tap = ath_tx_get_tx_tid(an, tid->tid); 3323 3324 device_printf(sc->sc_dev, 3325 "%s: %s: node %p: bf=%p: addbaw=%d, dobaw=%d, " 3326 "seqno=%d, retry=%d\n", 3327 __func__, pfx, ni, bf, 3328 bf->bf_state.bfs_addedbaw, 3329 bf->bf_state.bfs_dobaw, 3330 SEQNO(bf->bf_state.bfs_seqno), 3331 bf->bf_state.bfs_retries); 3332 device_printf(sc->sc_dev, 3333 "%s: node %p: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n", 3334 __func__, ni, bf, 3335 txq->axq_qnum, 3336 txq->axq_depth, 3337 txq->axq_aggr_depth); 3338 3339 device_printf(sc->sc_dev, 3340 "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, isfiltered=%d\n", 3341 __func__, ni, bf, 3342 tid->axq_depth, 3343 tid->hwq_depth, 3344 tid->bar_wait, 3345 tid->isfiltered); 3346 device_printf(sc->sc_dev, 3347 "%s: node %p: tid %d: " 3348 "sched=%d, paused=%d, " 3349 "incomp=%d, baw_head=%d, " 3350 "baw_tail=%d txa_start=%d, ni_txseqs=%d\n", 3351 __func__, ni, tid->tid, 3352 tid->sched, tid->paused, 3353 tid->incomp, tid->baw_head, 3354 tid->baw_tail, tap == NULL ? -1 : tap->txa_start, 3355 ni->ni_txseqs[tid->tid]); 3356 3357 /* XXX Dump the frame, see what it is? */ 3358 ieee80211_dump_pkt(ni->ni_ic, 3359 mtod(bf->bf_m, const uint8_t *), 3360 bf->bf_m->m_len, 0, -1); 3361 } 3362 3363 /* 3364 * Free any packets currently pending in the software TX queue. 3365 * 3366 * This will be called when a node is being deleted. 3367 * 3368 * It can also be called on an active node during an interface 3369 * reset or state transition. 3370 * 3371 * (From Linux/reference): 3372 * 3373 * TODO: For frame(s) that are in the retry state, we will reuse the 3374 * sequence number(s) without setting the retry bit. The 3375 * alternative is to give up on these and BAR the receiver's window 3376 * forward. 3377 */ 3378 static void 3379 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, 3380 struct ath_tid *tid, ath_bufhead *bf_cq) 3381 { 3382 struct ath_buf *bf; 3383 struct ieee80211_tx_ampdu *tap; 3384 struct ieee80211_node *ni = &an->an_node; 3385 int t; 3386 3387 tap = ath_tx_get_tx_tid(an, tid->tid); 3388 3389 ATH_TID_LOCK_ASSERT(sc, tid); 3390 3391 /* Walk the queue, free frames */ 3392 t = 0; 3393 for (;;) { 3394 bf = ATH_TID_FIRST(tid); 3395 if (bf == NULL) { 3396 break; 3397 } 3398 3399 if (t == 0) { 3400 ath_tx_tid_drain_print(sc, an, "norm", tid, bf); 3401 t = 1; 3402 } 3403 3404 ATH_TID_REMOVE(tid, bf, bf_list); 3405 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3406 } 3407 3408 /* And now, drain the filtered frame queue */ 3409 t = 0; 3410 for (;;) { 3411 bf = ATH_TID_FILT_FIRST(tid); 3412 if (bf == NULL) 3413 break; 3414 3415 if (t == 0) { 3416 ath_tx_tid_drain_print(sc, an, "filt", tid, bf); 3417 t = 1; 3418 } 3419 3420 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3421 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3422 } 3423 3424 /* 3425 * Override the clrdmask configuration for the next frame 3426 * in case there is some future transmission, just to get 3427 * the ball rolling. 3428 * 3429 * This won't hurt things if the TID is about to be freed. 3430 */ 3431 tid->clrdmask = 1; 3432 3433 /* 3434 * Now that it's completed, grab the TID lock and update 3435 * the sequence number and BAW window. 3436 * Because sequence numbers have been assigned to frames 3437 * that haven't been sent yet, it's entirely possible 3438 * we'll be called with some pending frames that have not 3439 * been transmitted. 3440 * 3441 * The cleaner solution is to do the sequence number allocation 3442 * when the packet is first transmitted - and thus the "retries" 3443 * check above would be enough to update the BAW/seqno. 3444 */ 3445 3446 /* But don't do it for non-QoS TIDs */ 3447 if (tap) { 3448 #if 0 3449 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3450 "%s: node %p: TID %d: sliding BAW left edge to %d\n", 3451 __func__, an, tid->tid, tap->txa_start); 3452 #endif 3453 ni->ni_txseqs[tid->tid] = tap->txa_start; 3454 tid->baw_tail = tid->baw_head; 3455 } 3456 } 3457 3458 /* 3459 * Flush all software queued packets for the given node. 3460 * 3461 * This occurs when a completion handler frees the last buffer 3462 * for a node, and the node is thus freed. This causes the node 3463 * to be cleaned up, which ends up calling ath_tx_node_flush. 3464 */ 3465 void 3466 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an) 3467 { 3468 int tid; 3469 ath_bufhead bf_cq; 3470 struct ath_buf *bf; 3471 3472 TAILQ_INIT(&bf_cq); 3473 3474 ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p", 3475 &an->an_node); 3476 3477 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 3478 struct ath_tid *atid = &an->an_tid[tid]; 3479 struct ath_txq *txq = sc->sc_ac2q[atid->ac]; 3480 3481 ATH_TXQ_LOCK(txq); 3482 /* Free packets */ 3483 ath_tx_tid_drain(sc, an, atid, &bf_cq); 3484 /* Remove this tid from the list of active tids */ 3485 ath_tx_tid_unsched(sc, atid); 3486 ATH_TXQ_UNLOCK(txq); 3487 } 3488 3489 /* Handle completed frames */ 3490 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3491 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3492 ath_tx_default_comp(sc, bf, 0); 3493 } 3494 } 3495 3496 /* 3497 * Drain all the software TXQs currently with traffic queued. 3498 */ 3499 void 3500 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq) 3501 { 3502 struct ath_tid *tid; 3503 ath_bufhead bf_cq; 3504 struct ath_buf *bf; 3505 3506 TAILQ_INIT(&bf_cq); 3507 ATH_TXQ_LOCK(txq); 3508 3509 /* 3510 * Iterate over all active tids for the given txq, 3511 * flushing and unsched'ing them 3512 */ 3513 while (! TAILQ_EMPTY(&txq->axq_tidq)) { 3514 tid = TAILQ_FIRST(&txq->axq_tidq); 3515 ath_tx_tid_drain(sc, tid->an, tid, &bf_cq); 3516 ath_tx_tid_unsched(sc, tid); 3517 } 3518 3519 ATH_TXQ_UNLOCK(txq); 3520 3521 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3522 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3523 ath_tx_default_comp(sc, bf, 0); 3524 } 3525 } 3526 3527 /* 3528 * Handle completion of non-aggregate session frames. 3529 * 3530 * This (currently) doesn't implement software retransmission of 3531 * non-aggregate frames! 3532 * 3533 * Software retransmission of non-aggregate frames needs to obey 3534 * the strict sequence number ordering, and drop any frames that 3535 * will fail this. 3536 * 3537 * For now, filtered frames and frame transmission will cause 3538 * all kinds of issues. So we don't support them. 3539 * 3540 * So anyone queuing frames via ath_tx_normal_xmit() or 3541 * ath_tx_hw_queue_norm() must override and set CLRDMASK. 3542 */ 3543 void 3544 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3545 { 3546 struct ieee80211_node *ni = bf->bf_node; 3547 struct ath_node *an = ATH_NODE(ni); 3548 int tid = bf->bf_state.bfs_tid; 3549 struct ath_tid *atid = &an->an_tid[tid]; 3550 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3551 3552 /* The TID state is protected behind the TXQ lock */ 3553 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 3554 3555 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n", 3556 __func__, bf, fail, atid->hwq_depth - 1); 3557 3558 atid->hwq_depth--; 3559 3560 #if 0 3561 /* 3562 * If the frame was filtered, stick it on the filter frame 3563 * queue and complain about it. It shouldn't happen! 3564 */ 3565 if ((ts->ts_status & HAL_TXERR_FILT) || 3566 (ts->ts_status != 0 && atid->isfiltered)) { 3567 device_printf(sc->sc_dev, 3568 "%s: isfiltered=%d, ts_status=%d: huh?\n", 3569 __func__, 3570 atid->isfiltered, 3571 ts->ts_status); 3572 ath_tx_tid_filt_comp_buf(sc, atid, bf); 3573 } 3574 #endif 3575 if (atid->isfiltered) 3576 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 3577 if (atid->hwq_depth < 0) 3578 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 3579 __func__, atid->hwq_depth); 3580 3581 /* 3582 * If the queue is filtered, potentially mark it as complete 3583 * and reschedule it as needed. 3584 * 3585 * This is required as there may be a subsequent TX descriptor 3586 * for this end-node that has CLRDMASK set, so it's quite possible 3587 * that a filtered frame will be followed by a non-filtered 3588 * (complete or otherwise) frame. 3589 * 3590 * XXX should we do this before we complete the frame? 3591 */ 3592 if (atid->isfiltered) 3593 ath_tx_tid_filt_comp_complete(sc, atid); 3594 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 3595 3596 /* 3597 * punt to rate control if we're not being cleaned up 3598 * during a hw queue drain and the frame wanted an ACK. 3599 */ 3600 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 3601 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 3602 ts, bf->bf_state.bfs_pktlen, 3603 1, (ts->ts_status == 0) ? 0 : 1); 3604 3605 ath_tx_default_comp(sc, bf, fail); 3606 } 3607 3608 /* 3609 * Handle cleanup of aggregate session packets that aren't 3610 * an A-MPDU. 3611 * 3612 * There's no need to update the BAW here - the session is being 3613 * torn down. 3614 */ 3615 static void 3616 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3617 { 3618 struct ieee80211_node *ni = bf->bf_node; 3619 struct ath_node *an = ATH_NODE(ni); 3620 int tid = bf->bf_state.bfs_tid; 3621 struct ath_tid *atid = &an->an_tid[tid]; 3622 3623 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n", 3624 __func__, tid, atid->incomp); 3625 3626 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 3627 atid->incomp--; 3628 if (atid->incomp == 0) { 3629 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3630 "%s: TID %d: cleaned up! resume!\n", 3631 __func__, tid); 3632 atid->cleanup_inprogress = 0; 3633 ath_tx_tid_resume(sc, atid); 3634 } 3635 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 3636 3637 ath_tx_default_comp(sc, bf, 0); 3638 } 3639 3640 /* 3641 * Performs transmit side cleanup when TID changes from aggregated to 3642 * unaggregated. 3643 * 3644 * - Discard all retry frames from the s/w queue. 3645 * - Fix the tx completion function for all buffers in s/w queue. 3646 * - Count the number of unacked frames, and let transmit completion 3647 * handle it later. 3648 * 3649 * The caller is responsible for pausing the TID. 3650 */ 3651 static void 3652 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid) 3653 { 3654 struct ath_tid *atid = &an->an_tid[tid]; 3655 struct ieee80211_tx_ampdu *tap; 3656 struct ath_buf *bf, *bf_next; 3657 ath_bufhead bf_cq; 3658 3659 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 3660 "%s: TID %d: called\n", __func__, tid); 3661 3662 TAILQ_INIT(&bf_cq); 3663 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 3664 3665 /* 3666 * Move the filtered frames to the TX queue, before 3667 * we run off and discard/process things. 3668 */ 3669 /* XXX this is really quite inefficient */ 3670 while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) { 3671 ATH_TID_FILT_REMOVE(atid, bf, bf_list); 3672 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3673 } 3674 3675 /* 3676 * Update the frames in the software TX queue: 3677 * 3678 * + Discard retry frames in the queue 3679 * + Fix the completion function to be non-aggregate 3680 */ 3681 bf = ATH_TID_FIRST(atid); 3682 while (bf) { 3683 if (bf->bf_state.bfs_isretried) { 3684 bf_next = TAILQ_NEXT(bf, bf_list); 3685 ATH_TID_REMOVE(atid, bf, bf_list); 3686 atid->axq_depth--; 3687 if (bf->bf_state.bfs_dobaw) { 3688 ath_tx_update_baw(sc, an, atid, bf); 3689 if (! bf->bf_state.bfs_addedbaw) 3690 device_printf(sc->sc_dev, 3691 "%s: wasn't added: seqno %d\n", 3692 __func__, 3693 SEQNO(bf->bf_state.bfs_seqno)); 3694 } 3695 bf->bf_state.bfs_dobaw = 0; 3696 /* 3697 * Call the default completion handler with "fail" just 3698 * so upper levels are suitably notified about this. 3699 */ 3700 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 3701 bf = bf_next; 3702 continue; 3703 } 3704 /* Give these the default completion handler */ 3705 bf->bf_comp = ath_tx_normal_comp; 3706 bf = TAILQ_NEXT(bf, bf_list); 3707 } 3708 3709 /* The caller is required to pause the TID */ 3710 #if 0 3711 /* Pause the TID */ 3712 ath_tx_tid_pause(sc, atid); 3713 #endif 3714 3715 /* 3716 * Calculate what hardware-queued frames exist based 3717 * on the current BAW size. Ie, what frames have been 3718 * added to the TX hardware queue for this TID but 3719 * not yet ACKed. 3720 */ 3721 tap = ath_tx_get_tx_tid(an, tid); 3722 /* Need the lock - fiddling with BAW */ 3723 while (atid->baw_head != atid->baw_tail) { 3724 if (atid->tx_buf[atid->baw_head]) { 3725 atid->incomp++; 3726 atid->cleanup_inprogress = 1; 3727 atid->tx_buf[atid->baw_head] = NULL; 3728 } 3729 INCR(atid->baw_head, ATH_TID_MAX_BUFS); 3730 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 3731 } 3732 3733 /* 3734 * If cleanup is required, defer TID scheduling 3735 * until all the HW queued packets have been 3736 * sent. 3737 */ 3738 if (! atid->cleanup_inprogress) 3739 ath_tx_tid_resume(sc, atid); 3740 3741 if (atid->cleanup_inprogress) 3742 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3743 "%s: TID %d: cleanup needed: %d packets\n", 3744 __func__, tid, atid->incomp); 3745 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 3746 3747 /* Handle completing frames and fail them */ 3748 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3749 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3750 ath_tx_default_comp(sc, bf, 1); 3751 } 3752 } 3753 3754 static struct ath_buf * 3755 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 3756 struct ath_tid *tid, struct ath_buf *bf) 3757 { 3758 struct ath_buf *nbf; 3759 int error; 3760 3761 nbf = ath_buf_clone(sc, bf); 3762 3763 #if 0 3764 device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n", 3765 __func__); 3766 #endif 3767 3768 if (nbf == NULL) { 3769 /* Failed to clone */ 3770 device_printf(sc->sc_dev, 3771 "%s: failed to clone a busy buffer\n", 3772 __func__); 3773 return NULL; 3774 } 3775 3776 /* Setup the dma for the new buffer */ 3777 error = ath_tx_dmasetup(sc, nbf, nbf->bf_m); 3778 if (error != 0) { 3779 device_printf(sc->sc_dev, 3780 "%s: failed to setup dma for clone\n", 3781 __func__); 3782 /* 3783 * Put this at the head of the list, not tail; 3784 * that way it doesn't interfere with the 3785 * busy buffer logic (which uses the tail of 3786 * the list.) 3787 */ 3788 ATH_TXBUF_LOCK(sc); 3789 ath_returnbuf_head(sc, nbf); 3790 ATH_TXBUF_UNLOCK(sc); 3791 return NULL; 3792 } 3793 3794 /* Update BAW if required, before we free the original buf */ 3795 if (bf->bf_state.bfs_dobaw) 3796 ath_tx_switch_baw_buf(sc, an, tid, bf, nbf); 3797 3798 /* Free current buffer; return the older buffer */ 3799 bf->bf_m = NULL; 3800 bf->bf_node = NULL; 3801 ath_freebuf(sc, bf); 3802 3803 return nbf; 3804 } 3805 3806 /* 3807 * Handle retrying an unaggregate frame in an aggregate 3808 * session. 3809 * 3810 * If too many retries occur, pause the TID, wait for 3811 * any further retransmits (as there's no reason why 3812 * non-aggregate frames in an aggregate session are 3813 * transmitted in-order; they just have to be in-BAW) 3814 * and then queue a BAR. 3815 */ 3816 static void 3817 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3818 { 3819 struct ieee80211_node *ni = bf->bf_node; 3820 struct ath_node *an = ATH_NODE(ni); 3821 int tid = bf->bf_state.bfs_tid; 3822 struct ath_tid *atid = &an->an_tid[tid]; 3823 struct ieee80211_tx_ampdu *tap; 3824 3825 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 3826 3827 tap = ath_tx_get_tx_tid(an, tid); 3828 3829 /* 3830 * If the buffer is marked as busy, we can't directly 3831 * reuse it. Instead, try to clone the buffer. 3832 * If the clone is successful, recycle the old buffer. 3833 * If the clone is unsuccessful, set bfs_retries to max 3834 * to force the next bit of code to free the buffer 3835 * for us. 3836 */ 3837 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 3838 (bf->bf_flags & ATH_BUF_BUSY)) { 3839 struct ath_buf *nbf; 3840 nbf = ath_tx_retry_clone(sc, an, atid, bf); 3841 if (nbf) 3842 /* bf has been freed at this point */ 3843 bf = nbf; 3844 else 3845 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 3846 } 3847 3848 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 3849 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 3850 "%s: exceeded retries; seqno %d\n", 3851 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3852 sc->sc_stats.ast_tx_swretrymax++; 3853 3854 /* Update BAW anyway */ 3855 if (bf->bf_state.bfs_dobaw) { 3856 ath_tx_update_baw(sc, an, atid, bf); 3857 if (! bf->bf_state.bfs_addedbaw) 3858 device_printf(sc->sc_dev, 3859 "%s: wasn't added: seqno %d\n", 3860 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3861 } 3862 bf->bf_state.bfs_dobaw = 0; 3863 3864 /* Suspend the TX queue and get ready to send the BAR */ 3865 ath_tx_tid_bar_suspend(sc, atid); 3866 3867 /* Send the BAR if there are no other frames waiting */ 3868 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3869 ath_tx_tid_bar_tx(sc, atid); 3870 3871 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 3872 3873 /* Free buffer, bf is free after this call */ 3874 ath_tx_default_comp(sc, bf, 0); 3875 return; 3876 } 3877 3878 /* 3879 * This increments the retry counter as well as 3880 * sets the retry flag in the ath_buf and packet 3881 * body. 3882 */ 3883 ath_tx_set_retry(sc, bf); 3884 sc->sc_stats.ast_tx_swretries++; 3885 3886 /* 3887 * Insert this at the head of the queue, so it's 3888 * retried before any current/subsequent frames. 3889 */ 3890 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3891 ath_tx_tid_sched(sc, atid); 3892 /* Send the BAR if there are no other frames waiting */ 3893 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3894 ath_tx_tid_bar_tx(sc, atid); 3895 3896 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 3897 } 3898 3899 /* 3900 * Common code for aggregate excessive retry/subframe retry. 3901 * If retrying, queues buffers to bf_q. If not, frees the 3902 * buffers. 3903 * 3904 * XXX should unify this with ath_tx_aggr_retry_unaggr() 3905 */ 3906 static int 3907 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf, 3908 ath_bufhead *bf_q) 3909 { 3910 struct ieee80211_node *ni = bf->bf_node; 3911 struct ath_node *an = ATH_NODE(ni); 3912 int tid = bf->bf_state.bfs_tid; 3913 struct ath_tid *atid = &an->an_tid[tid]; 3914 3915 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]); 3916 3917 /* XXX clr11naggr should be done for all subframes */ 3918 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 3919 ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0); 3920 3921 /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */ 3922 3923 /* 3924 * If the buffer is marked as busy, we can't directly 3925 * reuse it. Instead, try to clone the buffer. 3926 * If the clone is successful, recycle the old buffer. 3927 * If the clone is unsuccessful, set bfs_retries to max 3928 * to force the next bit of code to free the buffer 3929 * for us. 3930 */ 3931 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 3932 (bf->bf_flags & ATH_BUF_BUSY)) { 3933 struct ath_buf *nbf; 3934 nbf = ath_tx_retry_clone(sc, an, atid, bf); 3935 if (nbf) 3936 /* bf has been freed at this point */ 3937 bf = nbf; 3938 else 3939 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 3940 } 3941 3942 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 3943 sc->sc_stats.ast_tx_swretrymax++; 3944 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 3945 "%s: max retries: seqno %d\n", 3946 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3947 ath_tx_update_baw(sc, an, atid, bf); 3948 if (! bf->bf_state.bfs_addedbaw) 3949 device_printf(sc->sc_dev, 3950 "%s: wasn't added: seqno %d\n", 3951 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3952 bf->bf_state.bfs_dobaw = 0; 3953 return 1; 3954 } 3955 3956 ath_tx_set_retry(sc, bf); 3957 sc->sc_stats.ast_tx_swretries++; 3958 bf->bf_next = NULL; /* Just to make sure */ 3959 3960 /* Clear the aggregate state */ 3961 bf->bf_state.bfs_aggr = 0; 3962 bf->bf_state.bfs_ndelim = 0; /* ??? needed? */ 3963 bf->bf_state.bfs_nframes = 1; 3964 3965 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3966 return 0; 3967 } 3968 3969 /* 3970 * error pkt completion for an aggregate destination 3971 */ 3972 static void 3973 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first, 3974 struct ath_tid *tid) 3975 { 3976 struct ieee80211_node *ni = bf_first->bf_node; 3977 struct ath_node *an = ATH_NODE(ni); 3978 struct ath_buf *bf_next, *bf; 3979 ath_bufhead bf_q; 3980 int drops = 0; 3981 struct ieee80211_tx_ampdu *tap; 3982 ath_bufhead bf_cq; 3983 3984 TAILQ_INIT(&bf_q); 3985 TAILQ_INIT(&bf_cq); 3986 3987 /* 3988 * Update rate control - all frames have failed. 3989 * 3990 * XXX use the length in the first frame in the series; 3991 * XXX just so things are consistent for now. 3992 */ 3993 ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc, 3994 &bf_first->bf_status.ds_txstat, 3995 bf_first->bf_state.bfs_pktlen, 3996 bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes); 3997 3998 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]); 3999 tap = ath_tx_get_tx_tid(an, tid->tid); 4000 sc->sc_stats.ast_tx_aggr_failall++; 4001 4002 /* Retry all subframes */ 4003 bf = bf_first; 4004 while (bf) { 4005 bf_next = bf->bf_next; 4006 bf->bf_next = NULL; /* Remove it from the aggr list */ 4007 sc->sc_stats.ast_tx_aggr_fail++; 4008 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4009 drops++; 4010 bf->bf_next = NULL; 4011 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4012 } 4013 bf = bf_next; 4014 } 4015 4016 /* Prepend all frames to the beginning of the queue */ 4017 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4018 TAILQ_REMOVE(&bf_q, bf, bf_list); 4019 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 4020 } 4021 4022 /* 4023 * Schedule the TID to be re-tried. 4024 */ 4025 ath_tx_tid_sched(sc, tid); 4026 4027 /* 4028 * send bar if we dropped any frames 4029 * 4030 * Keep the txq lock held for now, as we need to ensure 4031 * that ni_txseqs[] is consistent (as it's being updated 4032 * in the ifnet TX context or raw TX context.) 4033 */ 4034 if (drops) { 4035 /* Suspend the TX queue and get ready to send the BAR */ 4036 ath_tx_tid_bar_suspend(sc, tid); 4037 } 4038 4039 /* 4040 * Send BAR if required 4041 */ 4042 if (ath_tx_tid_bar_tx_ready(sc, tid)) 4043 ath_tx_tid_bar_tx(sc, tid); 4044 4045 ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]); 4046 4047 /* Complete frames which errored out */ 4048 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4049 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4050 ath_tx_default_comp(sc, bf, 0); 4051 } 4052 } 4053 4054 /* 4055 * Handle clean-up of packets from an aggregate list. 4056 * 4057 * There's no need to update the BAW here - the session is being 4058 * torn down. 4059 */ 4060 static void 4061 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first) 4062 { 4063 struct ath_buf *bf, *bf_next; 4064 struct ieee80211_node *ni = bf_first->bf_node; 4065 struct ath_node *an = ATH_NODE(ni); 4066 int tid = bf_first->bf_state.bfs_tid; 4067 struct ath_tid *atid = &an->an_tid[tid]; 4068 4069 bf = bf_first; 4070 4071 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 4072 4073 /* update incomp */ 4074 while (bf) { 4075 atid->incomp--; 4076 bf = bf->bf_next; 4077 } 4078 4079 if (atid->incomp == 0) { 4080 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4081 "%s: TID %d: cleaned up! resume!\n", 4082 __func__, tid); 4083 atid->cleanup_inprogress = 0; 4084 ath_tx_tid_resume(sc, atid); 4085 } 4086 4087 /* Send BAR if required */ 4088 /* XXX why would we send a BAR when transitioning to non-aggregation? */ 4089 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4090 ath_tx_tid_bar_tx(sc, atid); 4091 4092 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4093 4094 /* Handle frame completion */ 4095 while (bf) { 4096 bf_next = bf->bf_next; 4097 ath_tx_default_comp(sc, bf, 1); 4098 bf = bf_next; 4099 } 4100 } 4101 4102 /* 4103 * Handle completion of an set of aggregate frames. 4104 * 4105 * XXX for now, simply complete each sub-frame. 4106 * 4107 * Note: the completion handler is the last descriptor in the aggregate, 4108 * not the last descriptor in the first frame. 4109 */ 4110 static void 4111 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, 4112 int fail) 4113 { 4114 //struct ath_desc *ds = bf->bf_lastds; 4115 struct ieee80211_node *ni = bf_first->bf_node; 4116 struct ath_node *an = ATH_NODE(ni); 4117 int tid = bf_first->bf_state.bfs_tid; 4118 struct ath_tid *atid = &an->an_tid[tid]; 4119 struct ath_tx_status ts; 4120 struct ieee80211_tx_ampdu *tap; 4121 ath_bufhead bf_q; 4122 ath_bufhead bf_cq; 4123 int seq_st, tx_ok; 4124 int hasba, isaggr; 4125 uint32_t ba[2]; 4126 struct ath_buf *bf, *bf_next; 4127 int ba_index; 4128 int drops = 0; 4129 int nframes = 0, nbad = 0, nf; 4130 int pktlen; 4131 /* XXX there's too much on the stack? */ 4132 struct ath_rc_series rc[ATH_RC_NUM]; 4133 int txseq; 4134 4135 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n", 4136 __func__, atid->hwq_depth); 4137 4138 /* 4139 * Take a copy; this may be needed -after- bf_first 4140 * has been completed and freed. 4141 */ 4142 ts = bf_first->bf_status.ds_txstat; 4143 4144 TAILQ_INIT(&bf_q); 4145 TAILQ_INIT(&bf_cq); 4146 4147 /* The TID state is kept behind the TXQ lock */ 4148 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 4149 4150 atid->hwq_depth--; 4151 if (atid->hwq_depth < 0) 4152 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4153 __func__, atid->hwq_depth); 4154 4155 /* 4156 * If the TID is filtered, handle completing the filter 4157 * transition before potentially kicking it to the cleanup 4158 * function. 4159 * 4160 * XXX this is duplicate work, ew. 4161 */ 4162 if (atid->isfiltered) 4163 ath_tx_tid_filt_comp_complete(sc, atid); 4164 4165 /* 4166 * Punt cleanup to the relevant function, not our problem now 4167 */ 4168 if (atid->cleanup_inprogress) { 4169 if (atid->isfiltered) 4170 device_printf(sc->sc_dev, 4171 "%s: isfiltered=1, normal_comp?\n", 4172 __func__); 4173 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4174 ath_tx_comp_cleanup_aggr(sc, bf_first); 4175 return; 4176 } 4177 4178 /* 4179 * If the frame is filtered, transition to filtered frame 4180 * mode and add this to the filtered frame list. 4181 * 4182 * XXX TODO: figure out how this interoperates with 4183 * BAR, pause and cleanup states. 4184 */ 4185 if ((ts.ts_status & HAL_TXERR_FILT) || 4186 (ts.ts_status != 0 && atid->isfiltered)) { 4187 if (fail != 0) 4188 device_printf(sc->sc_dev, 4189 "%s: isfiltered=1, fail=%d\n", __func__, fail); 4190 ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq); 4191 4192 /* Remove from BAW */ 4193 TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) { 4194 if (bf->bf_state.bfs_addedbaw) 4195 drops++; 4196 if (bf->bf_state.bfs_dobaw) { 4197 ath_tx_update_baw(sc, an, atid, bf); 4198 if (! bf->bf_state.bfs_addedbaw) 4199 device_printf(sc->sc_dev, 4200 "%s: wasn't added: seqno %d\n", 4201 __func__, 4202 SEQNO(bf->bf_state.bfs_seqno)); 4203 } 4204 bf->bf_state.bfs_dobaw = 0; 4205 } 4206 /* 4207 * If any intermediate frames in the BAW were dropped when 4208 * handling filtering things, send a BAR. 4209 */ 4210 if (drops) 4211 ath_tx_tid_bar_suspend(sc, atid); 4212 4213 /* 4214 * Finish up by sending a BAR if required and freeing 4215 * the frames outside of the TX lock. 4216 */ 4217 goto finish_send_bar; 4218 } 4219 4220 /* 4221 * XXX for now, use the first frame in the aggregate for 4222 * XXX rate control completion; it's at least consistent. 4223 */ 4224 pktlen = bf_first->bf_state.bfs_pktlen; 4225 4226 /* 4227 * Handle errors first! 4228 * 4229 * Here, handle _any_ error as a "exceeded retries" error. 4230 * Later on (when filtered frames are to be specially handled) 4231 * it'll have to be expanded. 4232 */ 4233 #if 0 4234 if (ts.ts_status & HAL_TXERR_XRETRY) { 4235 #endif 4236 if (ts.ts_status != 0) { 4237 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4238 ath_tx_comp_aggr_error(sc, bf_first, atid); 4239 return; 4240 } 4241 4242 tap = ath_tx_get_tx_tid(an, tid); 4243 4244 /* 4245 * extract starting sequence and block-ack bitmap 4246 */ 4247 /* XXX endian-ness of seq_st, ba? */ 4248 seq_st = ts.ts_seqnum; 4249 hasba = !! (ts.ts_flags & HAL_TX_BA); 4250 tx_ok = (ts.ts_status == 0); 4251 isaggr = bf_first->bf_state.bfs_aggr; 4252 ba[0] = ts.ts_ba_low; 4253 ba[1] = ts.ts_ba_high; 4254 4255 /* 4256 * Copy the TX completion status and the rate control 4257 * series from the first descriptor, as it may be freed 4258 * before the rate control code can get its grubby fingers 4259 * into things. 4260 */ 4261 memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc)); 4262 4263 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4264 "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, " 4265 "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n", 4266 __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags, 4267 isaggr, seq_st, hasba, ba[0], ba[1]); 4268 4269 /* Occasionally, the MAC sends a tx status for the wrong TID. */ 4270 if (tid != ts.ts_tid) { 4271 device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n", 4272 __func__, tid, ts.ts_tid); 4273 tx_ok = 0; 4274 } 4275 4276 /* AR5416 BA bug; this requires an interface reset */ 4277 if (isaggr && tx_ok && (! hasba)) { 4278 device_printf(sc->sc_dev, 4279 "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, " 4280 "seq_st=%d\n", 4281 __func__, hasba, tx_ok, isaggr, seq_st); 4282 /* XXX TODO: schedule an interface reset */ 4283 #ifdef ATH_DEBUG 4284 ath_printtxbuf(sc, bf_first, 4285 sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0); 4286 #endif 4287 } 4288 4289 /* 4290 * Walk the list of frames, figure out which ones were correctly 4291 * sent and which weren't. 4292 */ 4293 bf = bf_first; 4294 nf = bf_first->bf_state.bfs_nframes; 4295 4296 /* bf_first is going to be invalid once this list is walked */ 4297 bf_first = NULL; 4298 4299 /* 4300 * Walk the list of completed frames and determine 4301 * which need to be completed and which need to be 4302 * retransmitted. 4303 * 4304 * For completed frames, the completion functions need 4305 * to be called at the end of this function as the last 4306 * node reference may free the node. 4307 * 4308 * Finally, since the TXQ lock can't be held during the 4309 * completion callback (to avoid lock recursion), 4310 * the completion calls have to be done outside of the 4311 * lock. 4312 */ 4313 while (bf) { 4314 nframes++; 4315 ba_index = ATH_BA_INDEX(seq_st, 4316 SEQNO(bf->bf_state.bfs_seqno)); 4317 bf_next = bf->bf_next; 4318 bf->bf_next = NULL; /* Remove it from the aggr list */ 4319 4320 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4321 "%s: checking bf=%p seqno=%d; ack=%d\n", 4322 __func__, bf, SEQNO(bf->bf_state.bfs_seqno), 4323 ATH_BA_ISSET(ba, ba_index)); 4324 4325 if (tx_ok && ATH_BA_ISSET(ba, ba_index)) { 4326 sc->sc_stats.ast_tx_aggr_ok++; 4327 ath_tx_update_baw(sc, an, atid, bf); 4328 bf->bf_state.bfs_dobaw = 0; 4329 if (! bf->bf_state.bfs_addedbaw) 4330 device_printf(sc->sc_dev, 4331 "%s: wasn't added: seqno %d\n", 4332 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4333 bf->bf_next = NULL; 4334 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4335 } else { 4336 sc->sc_stats.ast_tx_aggr_fail++; 4337 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4338 drops++; 4339 bf->bf_next = NULL; 4340 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4341 } 4342 nbad++; 4343 } 4344 bf = bf_next; 4345 } 4346 4347 /* 4348 * Now that the BAW updates have been done, unlock 4349 * 4350 * txseq is grabbed before the lock is released so we 4351 * have a consistent view of what -was- in the BAW. 4352 * Anything after this point will not yet have been 4353 * TXed. 4354 */ 4355 txseq = tap->txa_start; 4356 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4357 4358 if (nframes != nf) 4359 device_printf(sc->sc_dev, 4360 "%s: num frames seen=%d; bf nframes=%d\n", 4361 __func__, nframes, nf); 4362 4363 /* 4364 * Now we know how many frames were bad, call the rate 4365 * control code. 4366 */ 4367 if (fail == 0) 4368 ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, 4369 nbad); 4370 4371 /* 4372 * send bar if we dropped any frames 4373 */ 4374 if (drops) { 4375 /* Suspend the TX queue and get ready to send the BAR */ 4376 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 4377 ath_tx_tid_bar_suspend(sc, atid); 4378 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4379 } 4380 4381 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4382 "%s: txa_start now %d\n", __func__, tap->txa_start); 4383 4384 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 4385 4386 /* Prepend all frames to the beginning of the queue */ 4387 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4388 TAILQ_REMOVE(&bf_q, bf, bf_list); 4389 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 4390 } 4391 4392 /* 4393 * Reschedule to grab some further frames. 4394 */ 4395 ath_tx_tid_sched(sc, atid); 4396 4397 /* 4398 * If the queue is filtered, re-schedule as required. 4399 * 4400 * This is required as there may be a subsequent TX descriptor 4401 * for this end-node that has CLRDMASK set, so it's quite possible 4402 * that a filtered frame will be followed by a non-filtered 4403 * (complete or otherwise) frame. 4404 * 4405 * XXX should we do this before we complete the frame? 4406 */ 4407 if (atid->isfiltered) 4408 ath_tx_tid_filt_comp_complete(sc, atid); 4409 4410 finish_send_bar: 4411 4412 /* 4413 * Send BAR if required 4414 */ 4415 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4416 ath_tx_tid_bar_tx(sc, atid); 4417 4418 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4419 4420 /* Do deferred completion */ 4421 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4422 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4423 ath_tx_default_comp(sc, bf, 0); 4424 } 4425 } 4426 4427 /* 4428 * Handle completion of unaggregated frames in an ADDBA 4429 * session. 4430 * 4431 * Fail is set to 1 if the entry is being freed via a call to 4432 * ath_tx_draintxq(). 4433 */ 4434 static void 4435 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail) 4436 { 4437 struct ieee80211_node *ni = bf->bf_node; 4438 struct ath_node *an = ATH_NODE(ni); 4439 int tid = bf->bf_state.bfs_tid; 4440 struct ath_tid *atid = &an->an_tid[tid]; 4441 struct ath_tx_status ts; 4442 int drops = 0; 4443 4444 /* 4445 * Take a copy of this; filtering/cloning the frame may free the 4446 * bf pointer. 4447 */ 4448 ts = bf->bf_status.ds_txstat; 4449 4450 /* 4451 * Update rate control status here, before we possibly 4452 * punt to retry or cleanup. 4453 * 4454 * Do it outside of the TXQ lock. 4455 */ 4456 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 4457 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 4458 &bf->bf_status.ds_txstat, 4459 bf->bf_state.bfs_pktlen, 4460 1, (ts.ts_status == 0) ? 0 : 1); 4461 4462 /* 4463 * This is called early so atid->hwq_depth can be tracked. 4464 * This unfortunately means that it's released and regrabbed 4465 * during retry and cleanup. That's rather inefficient. 4466 */ 4467 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 4468 4469 if (tid == IEEE80211_NONQOS_TID) 4470 device_printf(sc->sc_dev, "%s: TID=16!\n", __func__); 4471 4472 DPRINTF(sc, ATH_DEBUG_SW_TX, 4473 "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n", 4474 __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth, 4475 SEQNO(bf->bf_state.bfs_seqno)); 4476 4477 atid->hwq_depth--; 4478 if (atid->hwq_depth < 0) 4479 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4480 __func__, atid->hwq_depth); 4481 4482 /* 4483 * If the TID is filtered, handle completing the filter 4484 * transition before potentially kicking it to the cleanup 4485 * function. 4486 */ 4487 if (atid->isfiltered) 4488 ath_tx_tid_filt_comp_complete(sc, atid); 4489 4490 /* 4491 * If a cleanup is in progress, punt to comp_cleanup; 4492 * rather than handling it here. It's thus their 4493 * responsibility to clean up, call the completion 4494 * function in net80211, etc. 4495 */ 4496 if (atid->cleanup_inprogress) { 4497 if (atid->isfiltered) 4498 device_printf(sc->sc_dev, 4499 "%s: isfiltered=1, normal_comp?\n", 4500 __func__); 4501 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4502 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n", 4503 __func__); 4504 ath_tx_comp_cleanup_unaggr(sc, bf); 4505 return; 4506 } 4507 4508 /* 4509 * XXX TODO: how does cleanup, BAR and filtered frame handling 4510 * overlap? 4511 * 4512 * If the frame is filtered OR if it's any failure but 4513 * the TID is filtered, the frame must be added to the 4514 * filtered frame list. 4515 * 4516 * However - a busy buffer can't be added to the filtered 4517 * list as it will end up being recycled without having 4518 * been made available for the hardware. 4519 */ 4520 if ((ts.ts_status & HAL_TXERR_FILT) || 4521 (ts.ts_status != 0 && atid->isfiltered)) { 4522 int freeframe; 4523 4524 if (fail != 0) 4525 device_printf(sc->sc_dev, 4526 "%s: isfiltered=1, fail=%d\n", 4527 __func__, 4528 fail); 4529 freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf); 4530 if (freeframe) { 4531 /* Remove from BAW */ 4532 if (bf->bf_state.bfs_addedbaw) 4533 drops++; 4534 if (bf->bf_state.bfs_dobaw) { 4535 ath_tx_update_baw(sc, an, atid, bf); 4536 if (! bf->bf_state.bfs_addedbaw) 4537 device_printf(sc->sc_dev, 4538 "%s: wasn't added: seqno %d\n", 4539 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4540 } 4541 bf->bf_state.bfs_dobaw = 0; 4542 } 4543 4544 /* 4545 * If the frame couldn't be filtered, treat it as a drop and 4546 * prepare to send a BAR. 4547 */ 4548 if (freeframe && drops) 4549 ath_tx_tid_bar_suspend(sc, atid); 4550 4551 /* 4552 * Send BAR if required 4553 */ 4554 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4555 ath_tx_tid_bar_tx(sc, atid); 4556 4557 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4558 /* 4559 * If freeframe is set, then the frame couldn't be 4560 * cloned and bf is still valid. Just complete/free it. 4561 */ 4562 if (freeframe) 4563 ath_tx_default_comp(sc, bf, fail); 4564 4565 4566 return; 4567 } 4568 /* 4569 * Don't bother with the retry check if all frames 4570 * are being failed (eg during queue deletion.) 4571 */ 4572 #if 0 4573 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) { 4574 #endif 4575 if (fail == 0 && ts.ts_status != 0) { 4576 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4577 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n", 4578 __func__); 4579 ath_tx_aggr_retry_unaggr(sc, bf); 4580 return; 4581 } 4582 4583 /* Success? Complete */ 4584 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n", 4585 __func__, tid, SEQNO(bf->bf_state.bfs_seqno)); 4586 if (bf->bf_state.bfs_dobaw) { 4587 ath_tx_update_baw(sc, an, atid, bf); 4588 bf->bf_state.bfs_dobaw = 0; 4589 if (! bf->bf_state.bfs_addedbaw) 4590 device_printf(sc->sc_dev, 4591 "%s: wasn't added: seqno %d\n", 4592 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4593 } 4594 4595 /* 4596 * If the queue is filtered, re-schedule as required. 4597 * 4598 * This is required as there may be a subsequent TX descriptor 4599 * for this end-node that has CLRDMASK set, so it's quite possible 4600 * that a filtered frame will be followed by a non-filtered 4601 * (complete or otherwise) frame. 4602 * 4603 * XXX should we do this before we complete the frame? 4604 */ 4605 if (atid->isfiltered) 4606 ath_tx_tid_filt_comp_complete(sc, atid); 4607 4608 /* 4609 * Send BAR if required 4610 */ 4611 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4612 ath_tx_tid_bar_tx(sc, atid); 4613 4614 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 4615 4616 ath_tx_default_comp(sc, bf, fail); 4617 /* bf is freed at this point */ 4618 } 4619 4620 void 4621 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4622 { 4623 if (bf->bf_state.bfs_aggr) 4624 ath_tx_aggr_comp_aggr(sc, bf, fail); 4625 else 4626 ath_tx_aggr_comp_unaggr(sc, bf, fail); 4627 } 4628 4629 /* 4630 * Schedule some packets from the given node/TID to the hardware. 4631 * 4632 * This is the aggregate version. 4633 */ 4634 void 4635 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an, 4636 struct ath_tid *tid) 4637 { 4638 struct ath_buf *bf; 4639 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4640 struct ieee80211_tx_ampdu *tap; 4641 ATH_AGGR_STATUS status; 4642 ath_bufhead bf_q; 4643 4644 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid); 4645 ATH_TXQ_LOCK_ASSERT(txq); 4646 4647 tap = ath_tx_get_tx_tid(an, tid->tid); 4648 4649 if (tid->tid == IEEE80211_NONQOS_TID) 4650 device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n", 4651 __func__); 4652 4653 for (;;) { 4654 status = ATH_AGGR_DONE; 4655 4656 /* 4657 * If the upper layer has paused the TID, don't 4658 * queue any further packets. 4659 * 4660 * This can also occur from the completion task because 4661 * of packet loss; but as its serialised with this code, 4662 * it won't "appear" half way through queuing packets. 4663 */ 4664 if (tid->paused) 4665 break; 4666 4667 bf = ATH_TID_FIRST(tid); 4668 if (bf == NULL) { 4669 break; 4670 } 4671 4672 /* 4673 * If the packet doesn't fall within the BAW (eg a NULL 4674 * data frame), schedule it directly; continue. 4675 */ 4676 if (! bf->bf_state.bfs_dobaw) { 4677 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4678 "%s: non-baw packet\n", 4679 __func__); 4680 ATH_TID_REMOVE(tid, bf, bf_list); 4681 4682 if (bf->bf_state.bfs_nframes > 1) 4683 device_printf(sc->sc_dev, 4684 "%s: aggr=%d, nframes=%d\n", 4685 __func__, 4686 bf->bf_state.bfs_aggr, 4687 bf->bf_state.bfs_nframes); 4688 4689 /* 4690 * This shouldn't happen - such frames shouldn't 4691 * ever have been queued as an aggregate in the 4692 * first place. However, make sure the fields 4693 * are correctly setup just to be totally sure. 4694 */ 4695 bf->bf_state.bfs_aggr = 0; 4696 bf->bf_state.bfs_nframes = 1; 4697 4698 /* Update CLRDMASK just before this frame is queued */ 4699 ath_tx_update_clrdmask(sc, tid, bf); 4700 4701 ath_tx_do_ratelookup(sc, bf); 4702 ath_tx_calc_duration(sc, bf); 4703 ath_tx_calc_protection(sc, bf); 4704 ath_tx_set_rtscts(sc, bf); 4705 ath_tx_rate_fill_rcflags(sc, bf); 4706 ath_tx_setds(sc, bf); 4707 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4708 4709 sc->sc_aggr_stats.aggr_nonbaw_pkt++; 4710 4711 /* Queue the packet; continue */ 4712 goto queuepkt; 4713 } 4714 4715 TAILQ_INIT(&bf_q); 4716 4717 /* 4718 * Do a rate control lookup on the first frame in the 4719 * list. The rate control code needs that to occur 4720 * before it can determine whether to TX. 4721 * It's inaccurate because the rate control code doesn't 4722 * really "do" aggregate lookups, so it only considers 4723 * the size of the first frame. 4724 */ 4725 ath_tx_do_ratelookup(sc, bf); 4726 bf->bf_state.bfs_rc[3].rix = 0; 4727 bf->bf_state.bfs_rc[3].tries = 0; 4728 4729 ath_tx_calc_duration(sc, bf); 4730 ath_tx_calc_protection(sc, bf); 4731 4732 ath_tx_set_rtscts(sc, bf); 4733 ath_tx_rate_fill_rcflags(sc, bf); 4734 4735 status = ath_tx_form_aggr(sc, an, tid, &bf_q); 4736 4737 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4738 "%s: ath_tx_form_aggr() status=%d\n", __func__, status); 4739 4740 /* 4741 * No frames to be picked up - out of BAW 4742 */ 4743 if (TAILQ_EMPTY(&bf_q)) 4744 break; 4745 4746 /* 4747 * This assumes that the descriptor list in the ath_bufhead 4748 * are already linked together via bf_next pointers. 4749 */ 4750 bf = TAILQ_FIRST(&bf_q); 4751 4752 if (status == ATH_AGGR_8K_LIMITED) 4753 sc->sc_aggr_stats.aggr_rts_aggr_limited++; 4754 4755 /* 4756 * If it's the only frame send as non-aggregate 4757 * assume that ath_tx_form_aggr() has checked 4758 * whether it's in the BAW and added it appropriately. 4759 */ 4760 if (bf->bf_state.bfs_nframes == 1) { 4761 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4762 "%s: single-frame aggregate\n", __func__); 4763 4764 /* Update CLRDMASK just before this frame is queued */ 4765 ath_tx_update_clrdmask(sc, tid, bf); 4766 4767 bf->bf_state.bfs_aggr = 0; 4768 bf->bf_state.bfs_ndelim = 0; 4769 ath_tx_setds(sc, bf); 4770 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4771 if (status == ATH_AGGR_BAW_CLOSED) 4772 sc->sc_aggr_stats.aggr_baw_closed_single_pkt++; 4773 else 4774 sc->sc_aggr_stats.aggr_single_pkt++; 4775 } else { 4776 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4777 "%s: multi-frame aggregate: %d frames, " 4778 "length %d\n", 4779 __func__, bf->bf_state.bfs_nframes, 4780 bf->bf_state.bfs_al); 4781 bf->bf_state.bfs_aggr = 1; 4782 sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++; 4783 sc->sc_aggr_stats.aggr_aggr_pkt++; 4784 4785 /* Update CLRDMASK just before this frame is queued */ 4786 ath_tx_update_clrdmask(sc, tid, bf); 4787 4788 /* 4789 * Calculate the duration/protection as required. 4790 */ 4791 ath_tx_calc_duration(sc, bf); 4792 ath_tx_calc_protection(sc, bf); 4793 4794 /* 4795 * Update the rate and rtscts information based on the 4796 * rate decision made by the rate control code; 4797 * the first frame in the aggregate needs it. 4798 */ 4799 ath_tx_set_rtscts(sc, bf); 4800 4801 /* 4802 * Setup the relevant descriptor fields 4803 * for aggregation. The first descriptor 4804 * already points to the rest in the chain. 4805 */ 4806 ath_tx_setds_11n(sc, bf); 4807 4808 } 4809 queuepkt: 4810 //txq = bf->bf_state.bfs_txq; 4811 4812 /* Set completion handler, multi-frame aggregate or not */ 4813 bf->bf_comp = ath_tx_aggr_comp; 4814 4815 if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID) 4816 device_printf(sc->sc_dev, "%s: TID=16?\n", __func__); 4817 4818 /* Punt to txq */ 4819 ath_tx_handoff(sc, txq, bf); 4820 4821 /* Track outstanding buffer count to hardware */ 4822 /* aggregates are "one" buffer */ 4823 tid->hwq_depth++; 4824 4825 /* 4826 * Break out if ath_tx_form_aggr() indicated 4827 * there can't be any further progress (eg BAW is full.) 4828 * Checking for an empty txq is done above. 4829 * 4830 * XXX locking on txq here? 4831 */ 4832 if (txq->axq_aggr_depth >= sc->sc_hwq_limit || 4833 status == ATH_AGGR_BAW_CLOSED) 4834 break; 4835 } 4836 } 4837 4838 /* 4839 * Schedule some packets from the given node/TID to the hardware. 4840 */ 4841 void 4842 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an, 4843 struct ath_tid *tid) 4844 { 4845 struct ath_buf *bf; 4846 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4847 4848 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n", 4849 __func__, an, tid->tid); 4850 4851 ATH_TID_LOCK_ASSERT(sc, tid); 4852 4853 /* Check - is AMPDU pending or running? then print out something */ 4854 if (ath_tx_ampdu_pending(sc, an, tid->tid)) 4855 device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n", 4856 __func__, tid->tid); 4857 if (ath_tx_ampdu_running(sc, an, tid->tid)) 4858 device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n", 4859 __func__, tid->tid); 4860 4861 for (;;) { 4862 4863 /* 4864 * If the upper layers have paused the TID, don't 4865 * queue any further packets. 4866 */ 4867 if (tid->paused) 4868 break; 4869 4870 bf = ATH_TID_FIRST(tid); 4871 if (bf == NULL) { 4872 break; 4873 } 4874 4875 ATH_TID_REMOVE(tid, bf, bf_list); 4876 4877 KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n")); 4878 4879 /* Sanity check! */ 4880 if (tid->tid != bf->bf_state.bfs_tid) { 4881 device_printf(sc->sc_dev, "%s: bfs_tid %d !=" 4882 " tid %d\n", 4883 __func__, bf->bf_state.bfs_tid, tid->tid); 4884 } 4885 /* Normal completion handler */ 4886 bf->bf_comp = ath_tx_normal_comp; 4887 4888 /* 4889 * Override this for now, until the non-aggregate 4890 * completion handler correctly handles software retransmits. 4891 */ 4892 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 4893 4894 /* Update CLRDMASK just before this frame is queued */ 4895 ath_tx_update_clrdmask(sc, tid, bf); 4896 4897 /* Program descriptors + rate control */ 4898 ath_tx_do_ratelookup(sc, bf); 4899 ath_tx_calc_duration(sc, bf); 4900 ath_tx_calc_protection(sc, bf); 4901 ath_tx_set_rtscts(sc, bf); 4902 ath_tx_rate_fill_rcflags(sc, bf); 4903 ath_tx_setds(sc, bf); 4904 4905 /* Track outstanding buffer count to hardware */ 4906 /* aggregates are "one" buffer */ 4907 tid->hwq_depth++; 4908 4909 /* Punt to hardware or software txq */ 4910 ath_tx_handoff(sc, txq, bf); 4911 } 4912 } 4913 4914 /* 4915 * Schedule some packets to the given hardware queue. 4916 * 4917 * This function walks the list of TIDs (ie, ath_node TIDs 4918 * with queued traffic) and attempts to schedule traffic 4919 * from them. 4920 * 4921 * TID scheduling is implemented as a FIFO, with TIDs being 4922 * added to the end of the queue after some frames have been 4923 * scheduled. 4924 */ 4925 void 4926 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq) 4927 { 4928 struct ath_tid *tid, *next, *last; 4929 4930 ATH_TXQ_LOCK_ASSERT(txq); 4931 4932 /* 4933 * Don't schedule if the hardware queue is busy. 4934 * This (hopefully) gives some more time to aggregate 4935 * some packets in the aggregation queue. 4936 */ 4937 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 4938 sc->sc_aggr_stats.aggr_sched_nopkt++; 4939 return; 4940 } 4941 4942 last = TAILQ_LAST(&txq->axq_tidq, axq_t_s); 4943 4944 TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) { 4945 /* 4946 * Suspend paused queues here; they'll be resumed 4947 * once the addba completes or times out. 4948 */ 4949 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n", 4950 __func__, tid->tid, tid->paused); 4951 ath_tx_tid_unsched(sc, tid); 4952 if (tid->paused) { 4953 continue; 4954 } 4955 if (ath_tx_ampdu_running(sc, tid->an, tid->tid)) 4956 ath_tx_tid_hw_queue_aggr(sc, tid->an, tid); 4957 else 4958 ath_tx_tid_hw_queue_norm(sc, tid->an, tid); 4959 4960 /* Not empty? Re-schedule */ 4961 if (tid->axq_depth != 0) 4962 ath_tx_tid_sched(sc, tid); 4963 4964 /* Give the software queue time to aggregate more packets */ 4965 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 4966 break; 4967 } 4968 4969 /* 4970 * If this was the last entry on the original list, stop. 4971 * Otherwise nodes that have been rescheduled onto the end 4972 * of the TID FIFO list will just keep being rescheduled. 4973 */ 4974 if (tid == last) 4975 break; 4976 } 4977 } 4978 4979 /* 4980 * TX addba handling 4981 */ 4982 4983 /* 4984 * Return net80211 TID struct pointer, or NULL for none 4985 */ 4986 struct ieee80211_tx_ampdu * 4987 ath_tx_get_tx_tid(struct ath_node *an, int tid) 4988 { 4989 struct ieee80211_node *ni = &an->an_node; 4990 struct ieee80211_tx_ampdu *tap; 4991 4992 if (tid == IEEE80211_NONQOS_TID) 4993 return NULL; 4994 4995 tap = &ni->ni_tx_ampdu[tid]; 4996 return tap; 4997 } 4998 4999 /* 5000 * Is AMPDU-TX running? 5001 */ 5002 static int 5003 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid) 5004 { 5005 struct ieee80211_tx_ampdu *tap; 5006 5007 if (tid == IEEE80211_NONQOS_TID) 5008 return 0; 5009 5010 tap = ath_tx_get_tx_tid(an, tid); 5011 if (tap == NULL) 5012 return 0; /* Not valid; default to not running */ 5013 5014 return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING); 5015 } 5016 5017 /* 5018 * Is AMPDU-TX negotiation pending? 5019 */ 5020 static int 5021 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid) 5022 { 5023 struct ieee80211_tx_ampdu *tap; 5024 5025 if (tid == IEEE80211_NONQOS_TID) 5026 return 0; 5027 5028 tap = ath_tx_get_tx_tid(an, tid); 5029 if (tap == NULL) 5030 return 0; /* Not valid; default to not pending */ 5031 5032 return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND); 5033 } 5034 5035 /* 5036 * Is AMPDU-TX pending for the given TID? 5037 */ 5038 5039 5040 /* 5041 * Method to handle sending an ADDBA request. 5042 * 5043 * We tap this so the relevant flags can be set to pause the TID 5044 * whilst waiting for the response. 5045 * 5046 * XXX there's no timeout handler we can override? 5047 */ 5048 int 5049 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5050 int dialogtoken, int baparamset, int batimeout) 5051 { 5052 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5053 int tid = tap->txa_tid; 5054 struct ath_node *an = ATH_NODE(ni); 5055 struct ath_tid *atid = &an->an_tid[tid]; 5056 5057 /* 5058 * XXX danger Will Robinson! 5059 * 5060 * Although the taskqueue may be running and scheduling some more 5061 * packets, these should all be _before_ the addba sequence number. 5062 * However, net80211 will keep self-assigning sequence numbers 5063 * until addba has been negotiated. 5064 * 5065 * In the past, these packets would be "paused" (which still works 5066 * fine, as they're being scheduled to the driver in the same 5067 * serialised method which is calling the addba request routine) 5068 * and when the aggregation session begins, they'll be dequeued 5069 * as aggregate packets and added to the BAW. However, now there's 5070 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these 5071 * packets. Thus they never get included in the BAW tracking and 5072 * this can cause the initial burst of packets after the addba 5073 * negotiation to "hang", as they quickly fall outside the BAW. 5074 * 5075 * The "eventual" solution should be to tag these packets with 5076 * dobaw. Although net80211 has given us a sequence number, 5077 * it'll be "after" the left edge of the BAW and thus it'll 5078 * fall within it. 5079 */ 5080 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5081 /* 5082 * This is a bit annoying. Until net80211 HT code inherits some 5083 * (any) locking, we may have this called in parallel BUT only 5084 * one response/timeout will be called. Grr. 5085 */ 5086 if (atid->addba_tx_pending == 0) { 5087 ath_tx_tid_pause(sc, atid); 5088 atid->addba_tx_pending = 1; 5089 } 5090 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5091 5092 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5093 "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n", 5094 __func__, dialogtoken, baparamset, batimeout); 5095 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5096 "%s: txa_start=%d, ni_txseqs=%d\n", 5097 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5098 5099 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 5100 batimeout); 5101 } 5102 5103 /* 5104 * Handle an ADDBA response. 5105 * 5106 * We unpause the queue so TX'ing can resume. 5107 * 5108 * Any packets TX'ed from this point should be "aggregate" (whether 5109 * aggregate or not) so the BAW is updated. 5110 * 5111 * Note! net80211 keeps self-assigning sequence numbers until 5112 * ampdu is negotiated. This means the initially-negotiated BAW left 5113 * edge won't match the ni->ni_txseq. 5114 * 5115 * So, being very dirty, the BAW left edge is "slid" here to match 5116 * ni->ni_txseq. 5117 * 5118 * What likely SHOULD happen is that all packets subsequent to the 5119 * addba request should be tagged as aggregate and queued as non-aggregate 5120 * frames; thus updating the BAW. For now though, I'll just slide the 5121 * window. 5122 */ 5123 int 5124 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5125 int status, int code, int batimeout) 5126 { 5127 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5128 int tid = tap->txa_tid; 5129 struct ath_node *an = ATH_NODE(ni); 5130 struct ath_tid *atid = &an->an_tid[tid]; 5131 int r; 5132 5133 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5134 "%s: called; status=%d, code=%d, batimeout=%d\n", __func__, 5135 status, code, batimeout); 5136 5137 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5138 "%s: txa_start=%d, ni_txseqs=%d\n", 5139 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5140 5141 /* 5142 * Call this first, so the interface flags get updated 5143 * before the TID is unpaused. Otherwise a race condition 5144 * exists where the unpaused TID still doesn't yet have 5145 * IEEE80211_AGGR_RUNNING set. 5146 */ 5147 r = sc->sc_addba_response(ni, tap, status, code, batimeout); 5148 5149 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5150 atid->addba_tx_pending = 0; 5151 /* 5152 * XXX dirty! 5153 * Slide the BAW left edge to wherever net80211 left it for us. 5154 * Read above for more information. 5155 */ 5156 tap->txa_start = ni->ni_txseqs[tid]; 5157 ath_tx_tid_resume(sc, atid); 5158 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5159 return r; 5160 } 5161 5162 5163 /* 5164 * Stop ADDBA on a queue. 5165 * 5166 * This can be called whilst BAR TX is currently active on the queue, 5167 * so make sure this is unblocked before continuing. 5168 */ 5169 void 5170 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 5171 { 5172 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5173 int tid = tap->txa_tid; 5174 struct ath_node *an = ATH_NODE(ni); 5175 struct ath_tid *atid = &an->an_tid[tid]; 5176 5177 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__); 5178 5179 /* 5180 * Pause TID traffic early, so there aren't any races 5181 * Unblock the pending BAR held traffic, if it's currently paused. 5182 */ 5183 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5184 ath_tx_tid_pause(sc, atid); 5185 if (atid->bar_wait) { 5186 /* 5187 * bar_unsuspend() expects bar_tx == 1, as it should be 5188 * called from the TX completion path. This quietens 5189 * the warning. It's cleared for us anyway. 5190 */ 5191 atid->bar_tx = 1; 5192 ath_tx_tid_bar_unsuspend(sc, atid); 5193 } 5194 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5195 5196 /* There's no need to hold the TXQ lock here */ 5197 sc->sc_addba_stop(ni, tap); 5198 5199 /* 5200 * ath_tx_tid_cleanup will resume the TID if possible, otherwise 5201 * it'll set the cleanup flag, and it'll be unpaused once 5202 * things have been cleaned up. 5203 */ 5204 ath_tx_tid_cleanup(sc, an, tid); 5205 } 5206 5207 /* 5208 * Note: net80211 bar_timeout() doesn't call this function on BAR failure; 5209 * it simply tears down the aggregation session. Ew. 5210 * 5211 * It however will call ieee80211_ampdu_stop() which will call 5212 * ic->ic_addba_stop(). 5213 * 5214 * XXX This uses a hard-coded max BAR count value; the whole 5215 * XXX BAR TX success or failure should be better handled! 5216 */ 5217 void 5218 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5219 int status) 5220 { 5221 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5222 int tid = tap->txa_tid; 5223 struct ath_node *an = ATH_NODE(ni); 5224 struct ath_tid *atid = &an->an_tid[tid]; 5225 int attempts = tap->txa_attempts; 5226 5227 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 5228 "%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n", 5229 __func__, 5230 tap, 5231 atid, 5232 tap->txa_tid, 5233 atid->tid, 5234 status, 5235 attempts); 5236 5237 /* Note: This may update the BAW details */ 5238 sc->sc_bar_response(ni, tap, status); 5239 5240 /* Unpause the TID */ 5241 /* 5242 * XXX if this is attempt=50, the TID will be downgraded 5243 * XXX to a non-aggregate session. So we must unpause the 5244 * XXX TID here or it'll never be done. 5245 * 5246 * Also, don't call it if bar_tx/bar_wait are 0; something 5247 * has beaten us to the punch? (XXX figure out what?) 5248 */ 5249 if (status == 0 || attempts == 50) { 5250 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5251 if (atid->bar_tx == 0 || atid->bar_wait == 0) 5252 device_printf(sc->sc_dev, 5253 "%s: huh? bar_tx=%d, bar_wait=%d\n", 5254 __func__, 5255 atid->bar_tx, atid->bar_wait); 5256 else 5257 ath_tx_tid_bar_unsuspend(sc, atid); 5258 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5259 } 5260 } 5261 5262 /* 5263 * This is called whenever the pending ADDBA request times out. 5264 * Unpause and reschedule the TID. 5265 */ 5266 void 5267 ath_addba_response_timeout(struct ieee80211_node *ni, 5268 struct ieee80211_tx_ampdu *tap) 5269 { 5270 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5271 int tid = tap->txa_tid; 5272 struct ath_node *an = ATH_NODE(ni); 5273 struct ath_tid *atid = &an->an_tid[tid]; 5274 5275 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5276 "%s: called; resuming\n", __func__); 5277 5278 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5279 atid->addba_tx_pending = 0; 5280 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5281 5282 /* Note: This updates the aggregate state to (again) pending */ 5283 sc->sc_addba_response_timeout(ni, tap); 5284 5285 /* Unpause the TID; which reschedules it */ 5286 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); 5287 ath_tx_tid_resume(sc, atid); 5288 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); 5289 } 5290 5291 #if 0 5292 /* 5293 * Check if a node is asleep or not. 5294 */ 5295 static int 5296 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an) 5297 { 5298 5299 ATH_NODE_LOCK_ASSERT(an); 5300 5301 return (an->an_is_powersave); 5302 } 5303 #endif 5304 5305 /* 5306 * Mark a node as currently "in powersaving." 5307 * This suspends all traffic on the node. 5308 * 5309 * This must be called with the node/tx locks free. 5310 * 5311 * XXX TODO: the locking silliness below is due to how the node 5312 * locking currently works. Right now, the node lock is grabbed 5313 * to do rate control lookups and these are done with the TX 5314 * queue lock held. This means the node lock can't be grabbed 5315 * first here or a LOR will occur. 5316 * 5317 * Eventually (hopefully!) the TX path code will only grab 5318 * the TXQ lock when transmitting and the ath_node lock when 5319 * doing node/TID operations. There are other complications - 5320 * the sched/unsched operations involve walking the per-txq 5321 * 'active tid' list and this requires both locks to be held. 5322 */ 5323 void 5324 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an) 5325 { 5326 struct ath_tid *atid; 5327 struct ath_txq *txq; 5328 int tid; 5329 5330 ATH_NODE_UNLOCK_ASSERT(an); 5331 5332 /* 5333 * It's possible that a parallel call to ath_tx_node_wakeup() 5334 * will unpause these queues. 5335 * 5336 * The node lock can't just be grabbed here, as there's places 5337 * in the driver where the node lock is grabbed _within_ a 5338 * TXQ lock. 5339 * So, we do this delicately and unwind state if needed. 5340 * 5341 * + Pause all the queues 5342 * + Grab the node lock 5343 * + If the queue is already asleep, unpause and quit 5344 * + else just mark as asleep. 5345 * 5346 * A parallel sleep() call will just pause and then 5347 * find they're already paused, so undo it. 5348 * 5349 * A parallel wakeup() call will check if asleep is 1 5350 * and if it's not (ie, it's 0), it'll treat it as already 5351 * being awake. If it's 1, it'll mark it as 0 and then 5352 * unpause everything. 5353 * 5354 * (Talk about a delicate hack.) 5355 */ 5356 5357 /* Suspend all traffic on the node */ 5358 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5359 atid = &an->an_tid[tid]; 5360 txq = sc->sc_ac2q[atid->ac]; 5361 5362 ATH_TXQ_LOCK(txq); 5363 ath_tx_tid_pause(sc, atid); 5364 ATH_TXQ_UNLOCK(txq); 5365 } 5366 5367 ATH_NODE_LOCK(an); 5368 5369 /* In case of concurrency races from net80211.. */ 5370 if (an->an_is_powersave == 1) { 5371 ATH_NODE_UNLOCK(an); 5372 device_printf(sc->sc_dev, 5373 "%s: an=%p: node was already asleep\n", 5374 __func__, an); 5375 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5376 atid = &an->an_tid[tid]; 5377 txq = sc->sc_ac2q[atid->ac]; 5378 5379 ATH_TXQ_LOCK(txq); 5380 ath_tx_tid_resume(sc, atid); 5381 ATH_TXQ_UNLOCK(txq); 5382 } 5383 return; 5384 } 5385 5386 /* Mark node as in powersaving */ 5387 an->an_is_powersave = 1; 5388 5389 ATH_NODE_UNLOCK(an); 5390 } 5391 5392 /* 5393 * Mark a node as currently "awake." 5394 * This resumes all traffic to the node. 5395 */ 5396 void 5397 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an) 5398 { 5399 struct ath_tid *atid; 5400 struct ath_txq *txq; 5401 int tid; 5402 5403 ATH_NODE_UNLOCK_ASSERT(an); 5404 ATH_NODE_LOCK(an); 5405 5406 /* In case of concurrency races from net80211.. */ 5407 if (an->an_is_powersave == 0) { 5408 ATH_NODE_UNLOCK(an); 5409 device_printf(sc->sc_dev, 5410 "%s: an=%p: node was already awake\n", 5411 __func__, an); 5412 return; 5413 } 5414 5415 /* Mark node as awake */ 5416 an->an_is_powersave = 0; 5417 5418 ATH_NODE_UNLOCK(an); 5419 5420 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5421 atid = &an->an_tid[tid]; 5422 txq = sc->sc_ac2q[atid->ac]; 5423 5424 ATH_TXQ_LOCK(txq); 5425 ath_tx_tid_resume(sc, atid); 5426 ATH_TXQ_UNLOCK(txq); 5427 } 5428 } 5429 5430 static int 5431 ath_legacy_dma_txsetup(struct ath_softc *sc) 5432 { 5433 5434 /* nothing new needed */ 5435 return (0); 5436 } 5437 5438 static int 5439 ath_legacy_dma_txteardown(struct ath_softc *sc) 5440 { 5441 5442 /* nothing new needed */ 5443 return (0); 5444 } 5445 5446 void 5447 ath_xmit_setup_legacy(struct ath_softc *sc) 5448 { 5449 /* 5450 * For now, just set the descriptor length to sizeof(ath_desc); 5451 * worry about extracting the real length out of the HAL later. 5452 */ 5453 sc->sc_tx_desclen = sizeof(struct ath_desc); 5454 sc->sc_tx_statuslen = 0; 5455 sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */ 5456 5457 sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup; 5458 sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown; 5459 sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func; 5460 5461 sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart; 5462 sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff; 5463 5464 sc->sc_tx.xmit_drain = ath_legacy_tx_drain; 5465 } 5466