xref: /freebsd/sys/dev/ath/if_ath_tx.c (revision 93a065e7496dfbfbd0a5b0208ef763f37ea975c7)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
14  *    redistribution must be conditioned upon including a substantially
15  *    similar Disclaimer requirement for further binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
21  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
23  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
26  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGES.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * Driver for the Atheros Wireless LAN controller.
36  *
37  * This software is derived from work of Atsushi Onoe; his contribution
38  * is greatly appreciated.
39  */
40 
41 #include "opt_inet.h"
42 #include "opt_ath.h"
43 #include "opt_wlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/mbuf.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/kernel.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/errno.h>
56 #include <sys/callout.h>
57 #include <sys/bus.h>
58 #include <sys/endian.h>
59 #include <sys/kthread.h>
60 #include <sys/taskqueue.h>
61 #include <sys/priv.h>
62 #include <sys/ktr.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_types.h>
71 #include <net/if_arp.h>
72 #include <net/ethernet.h>
73 #include <net/if_llc.h>
74 
75 #include <net80211/ieee80211_var.h>
76 #include <net80211/ieee80211_regdomain.h>
77 #ifdef IEEE80211_SUPPORT_SUPERG
78 #include <net80211/ieee80211_superg.h>
79 #endif
80 #ifdef IEEE80211_SUPPORT_TDMA
81 #include <net80211/ieee80211_tdma.h>
82 #endif
83 #include <net80211/ieee80211_ht.h>
84 
85 #include <net/bpf.h>
86 
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/if_ether.h>
90 #endif
91 
92 #include <dev/ath/if_athvar.h>
93 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
94 #include <dev/ath/ath_hal/ah_diagcodes.h>
95 
96 #include <dev/ath/if_ath_debug.h>
97 
98 #ifdef ATH_TX99_DIAG
99 #include <dev/ath/ath_tx99/ath_tx99.h>
100 #endif
101 
102 #include <dev/ath/if_ath_misc.h>
103 #include <dev/ath/if_ath_tx.h>
104 #include <dev/ath/if_ath_tx_ht.h>
105 
106 #ifdef	ATH_DEBUG_ALQ
107 #include <dev/ath/if_ath_alq.h>
108 #endif
109 
110 /*
111  * How many retries to perform in software
112  */
113 #define	SWMAX_RETRIES		10
114 
115 /*
116  * What queue to throw the non-QoS TID traffic into
117  */
118 #define	ATH_NONQOS_TID_AC	WME_AC_VO
119 
120 #if 0
121 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an);
122 #endif
123 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
124     int tid);
125 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
126     int tid);
127 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
128     struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
129 static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
130     struct ieee80211_node *ni, struct mbuf *m0, int *tid);
131 static struct ath_buf *
132 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
133     struct ath_tid *tid, struct ath_buf *bf);
134 
135 #ifdef	ATH_DEBUG_ALQ
136 void
137 ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first)
138 {
139 	struct ath_buf *bf;
140 	int i, n;
141 	const char *ds;
142 
143 	/* XXX we should skip out early if debugging isn't enabled! */
144 	bf = bf_first;
145 
146 	while (bf != NULL) {
147 		/* XXX should ensure bf_nseg > 0! */
148 		if (bf->bf_nseg == 0)
149 			break;
150 		n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1;
151 		for (i = 0, ds = (const char *) bf->bf_desc;
152 		    i < n;
153 		    i++, ds += sc->sc_tx_desclen) {
154 			if_ath_alq_post(&sc->sc_alq,
155 			    ATH_ALQ_EDMA_TXDESC,
156 			    sc->sc_tx_desclen,
157 			    ds);
158 		}
159 		bf = bf->bf_next;
160 	}
161 }
162 #endif /* ATH_DEBUG_ALQ */
163 
164 /*
165  * Whether to use the 11n rate scenario functions or not
166  */
167 static inline int
168 ath_tx_is_11n(struct ath_softc *sc)
169 {
170 	return ((sc->sc_ah->ah_magic == 0x20065416) ||
171 		    (sc->sc_ah->ah_magic == 0x19741014));
172 }
173 
174 /*
175  * Obtain the current TID from the given frame.
176  *
177  * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.)
178  * This has implications for which AC/priority the packet is placed
179  * in.
180  */
181 static int
182 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
183 {
184 	const struct ieee80211_frame *wh;
185 	int pri = M_WME_GETAC(m0);
186 
187 	wh = mtod(m0, const struct ieee80211_frame *);
188 	if (! IEEE80211_QOS_HAS_SEQ(wh))
189 		return IEEE80211_NONQOS_TID;
190 	else
191 		return WME_AC_TO_TID(pri);
192 }
193 
194 static void
195 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
196 {
197 	struct ieee80211_frame *wh;
198 
199 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
200 	/* Only update/resync if needed */
201 	if (bf->bf_state.bfs_isretried == 0) {
202 		wh->i_fc[1] |= IEEE80211_FC1_RETRY;
203 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
204 		    BUS_DMASYNC_PREWRITE);
205 	}
206 	bf->bf_state.bfs_isretried = 1;
207 	bf->bf_state.bfs_retries ++;
208 }
209 
210 /*
211  * Determine what the correct AC queue for the given frame
212  * should be.
213  *
214  * This code assumes that the TIDs map consistently to
215  * the underlying hardware (or software) ath_txq.
216  * Since the sender may try to set an AC which is
217  * arbitrary, non-QoS TIDs may end up being put on
218  * completely different ACs. There's no way to put a
219  * TID into multiple ath_txq's for scheduling, so
220  * for now we override the AC/TXQ selection and set
221  * non-QOS TID frames into the BE queue.
222  *
223  * This may be completely incorrect - specifically,
224  * some management frames may end up out of order
225  * compared to the QoS traffic they're controlling.
226  * I'll look into this later.
227  */
228 static int
229 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
230 {
231 	const struct ieee80211_frame *wh;
232 	int pri = M_WME_GETAC(m0);
233 	wh = mtod(m0, const struct ieee80211_frame *);
234 	if (IEEE80211_QOS_HAS_SEQ(wh))
235 		return pri;
236 
237 	return ATH_NONQOS_TID_AC;
238 }
239 
240 void
241 ath_txfrag_cleanup(struct ath_softc *sc,
242 	ath_bufhead *frags, struct ieee80211_node *ni)
243 {
244 	struct ath_buf *bf, *next;
245 
246 	ATH_TXBUF_LOCK_ASSERT(sc);
247 
248 	TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
249 		/* NB: bf assumed clean */
250 		TAILQ_REMOVE(frags, bf, bf_list);
251 		ath_returnbuf_head(sc, bf);
252 		ieee80211_node_decref(ni);
253 	}
254 }
255 
256 /*
257  * Setup xmit of a fragmented frame.  Allocate a buffer
258  * for each frag and bump the node reference count to
259  * reflect the held reference to be setup by ath_tx_start.
260  */
261 int
262 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
263 	struct mbuf *m0, struct ieee80211_node *ni)
264 {
265 	struct mbuf *m;
266 	struct ath_buf *bf;
267 
268 	ATH_TXBUF_LOCK(sc);
269 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
270 		/* XXX non-management? */
271 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
272 		if (bf == NULL) {	/* out of buffers, cleanup */
273 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: no buffer?\n",
274 			    __func__);
275 			ath_txfrag_cleanup(sc, frags, ni);
276 			break;
277 		}
278 		ieee80211_node_incref(ni);
279 		TAILQ_INSERT_TAIL(frags, bf, bf_list);
280 	}
281 	ATH_TXBUF_UNLOCK(sc);
282 
283 	return !TAILQ_EMPTY(frags);
284 }
285 
286 static int
287 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
288 {
289 	struct mbuf *m;
290 	int error;
291 
292 	/*
293 	 * Load the DMA map so any coalescing is done.  This
294 	 * also calculates the number of descriptors we need.
295 	 */
296 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
297 				     bf->bf_segs, &bf->bf_nseg,
298 				     BUS_DMA_NOWAIT);
299 	if (error == EFBIG) {
300 		/* XXX packet requires too many descriptors */
301 		bf->bf_nseg = ATH_MAX_SCATTER + 1;
302 	} else if (error != 0) {
303 		sc->sc_stats.ast_tx_busdma++;
304 		ieee80211_free_mbuf(m0);
305 		return error;
306 	}
307 	/*
308 	 * Discard null packets and check for packets that
309 	 * require too many TX descriptors.  We try to convert
310 	 * the latter to a cluster.
311 	 */
312 	if (bf->bf_nseg > ATH_MAX_SCATTER) {		/* too many desc's, linearize */
313 		sc->sc_stats.ast_tx_linear++;
314 		m = m_collapse(m0, M_NOWAIT, ATH_MAX_SCATTER);
315 		if (m == NULL) {
316 			ieee80211_free_mbuf(m0);
317 			sc->sc_stats.ast_tx_nombuf++;
318 			return ENOMEM;
319 		}
320 		m0 = m;
321 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
322 					     bf->bf_segs, &bf->bf_nseg,
323 					     BUS_DMA_NOWAIT);
324 		if (error != 0) {
325 			sc->sc_stats.ast_tx_busdma++;
326 			ieee80211_free_mbuf(m0);
327 			return error;
328 		}
329 		KASSERT(bf->bf_nseg <= ATH_MAX_SCATTER,
330 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
331 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
332 		sc->sc_stats.ast_tx_nodata++;
333 		ieee80211_free_mbuf(m0);
334 		return EIO;
335 	}
336 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
337 		__func__, m0, m0->m_pkthdr.len);
338 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
339 	bf->bf_m = m0;
340 
341 	return 0;
342 }
343 
344 /*
345  * Chain together segments+descriptors for a frame - 11n or otherwise.
346  *
347  * For aggregates, this is called on each frame in the aggregate.
348  */
349 static void
350 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0,
351     struct ath_buf *bf, int is_aggr, int is_first_subframe,
352     int is_last_subframe)
353 {
354 	struct ath_hal *ah = sc->sc_ah;
355 	char *ds;
356 	int i, bp, dsp;
357 	HAL_DMA_ADDR bufAddrList[4];
358 	uint32_t segLenList[4];
359 	int numTxMaps = 1;
360 	int isFirstDesc = 1;
361 
362 	/*
363 	 * XXX There's txdma and txdma_mgmt; the descriptor
364 	 * sizes must match.
365 	 */
366 	struct ath_descdma *dd = &sc->sc_txdma;
367 
368 	/*
369 	 * Fillin the remainder of the descriptor info.
370 	 */
371 
372 	/*
373 	 * We need the number of TX data pointers in each descriptor.
374 	 * EDMA and later chips support 4 TX buffers per descriptor;
375 	 * previous chips just support one.
376 	 */
377 	numTxMaps = sc->sc_tx_nmaps;
378 
379 	/*
380 	 * For EDMA and later chips ensure the TX map is fully populated
381 	 * before advancing to the next descriptor.
382 	 */
383 	ds = (char *) bf->bf_desc;
384 	bp = dsp = 0;
385 	bzero(bufAddrList, sizeof(bufAddrList));
386 	bzero(segLenList, sizeof(segLenList));
387 	for (i = 0; i < bf->bf_nseg; i++) {
388 		bufAddrList[bp] = bf->bf_segs[i].ds_addr;
389 		segLenList[bp] = bf->bf_segs[i].ds_len;
390 		bp++;
391 
392 		/*
393 		 * Go to the next segment if this isn't the last segment
394 		 * and there's space in the current TX map.
395 		 */
396 		if ((i != bf->bf_nseg - 1) && (bp < numTxMaps))
397 			continue;
398 
399 		/*
400 		 * Last segment or we're out of buffer pointers.
401 		 */
402 		bp = 0;
403 
404 		if (i == bf->bf_nseg - 1)
405 			ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0);
406 		else
407 			ath_hal_settxdesclink(ah, (struct ath_desc *) ds,
408 			    bf->bf_daddr + dd->dd_descsize * (dsp + 1));
409 
410 		/*
411 		 * XXX This assumes that bfs_txq is the actual destination
412 		 * hardware queue at this point.  It may not have been
413 		 * assigned, it may actually be pointing to the multicast
414 		 * software TXQ id.  These must be fixed!
415 		 */
416 		ath_hal_filltxdesc(ah, (struct ath_desc *) ds
417 			, bufAddrList
418 			, segLenList
419 			, bf->bf_descid		/* XXX desc id */
420 			, bf->bf_state.bfs_tx_queue
421 			, isFirstDesc		/* first segment */
422 			, i == bf->bf_nseg - 1	/* last segment */
423 			, (struct ath_desc *) ds0	/* first descriptor */
424 		);
425 
426 		/*
427 		 * Make sure the 11n aggregate fields are cleared.
428 		 *
429 		 * XXX TODO: this doesn't need to be called for
430 		 * aggregate frames; as it'll be called on all
431 		 * sub-frames.  Since the descriptors are in
432 		 * non-cacheable memory, this leads to some
433 		 * rather slow writes on MIPS/ARM platforms.
434 		 */
435 		if (ath_tx_is_11n(sc))
436 			ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds);
437 
438 		/*
439 		 * If 11n is enabled, set it up as if it's an aggregate
440 		 * frame.
441 		 */
442 		if (is_last_subframe) {
443 			ath_hal_set11n_aggr_last(sc->sc_ah,
444 			    (struct ath_desc *) ds);
445 		} else if (is_aggr) {
446 			/*
447 			 * This clears the aggrlen field; so
448 			 * the caller needs to call set_aggr_first()!
449 			 *
450 			 * XXX TODO: don't call this for the first
451 			 * descriptor in the first frame in an
452 			 * aggregate!
453 			 */
454 			ath_hal_set11n_aggr_middle(sc->sc_ah,
455 			    (struct ath_desc *) ds,
456 			    bf->bf_state.bfs_ndelim);
457 		}
458 		isFirstDesc = 0;
459 		bf->bf_lastds = (struct ath_desc *) ds;
460 
461 		/*
462 		 * Don't forget to skip to the next descriptor.
463 		 */
464 		ds += sc->sc_tx_desclen;
465 		dsp++;
466 
467 		/*
468 		 * .. and don't forget to blank these out!
469 		 */
470 		bzero(bufAddrList, sizeof(bufAddrList));
471 		bzero(segLenList, sizeof(segLenList));
472 	}
473 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
474 }
475 
476 /*
477  * Set the rate control fields in the given descriptor based on
478  * the bf_state fields and node state.
479  *
480  * The bfs fields should already be set with the relevant rate
481  * control information, including whether MRR is to be enabled.
482  *
483  * Since the FreeBSD HAL currently sets up the first TX rate
484  * in ath_hal_setuptxdesc(), this will setup the MRR
485  * conditionally for the pre-11n chips, and call ath_buf_set_rate
486  * unconditionally for 11n chips. These require the 11n rate
487  * scenario to be set if MCS rates are enabled, so it's easier
488  * to just always call it. The caller can then only set rates 2, 3
489  * and 4 if multi-rate retry is needed.
490  */
491 static void
492 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
493     struct ath_buf *bf)
494 {
495 	struct ath_rc_series *rc = bf->bf_state.bfs_rc;
496 
497 	/* If mrr is disabled, blank tries 1, 2, 3 */
498 	if (! bf->bf_state.bfs_ismrr)
499 		rc[1].tries = rc[2].tries = rc[3].tries = 0;
500 
501 #if 0
502 	/*
503 	 * If NOACK is set, just set ntries=1.
504 	 */
505 	else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) {
506 		rc[1].tries = rc[2].tries = rc[3].tries = 0;
507 		rc[0].tries = 1;
508 	}
509 #endif
510 
511 	/*
512 	 * Always call - that way a retried descriptor will
513 	 * have the MRR fields overwritten.
514 	 *
515 	 * XXX TODO: see if this is really needed - setting up
516 	 * the first descriptor should set the MRR fields to 0
517 	 * for us anyway.
518 	 */
519 	if (ath_tx_is_11n(sc)) {
520 		ath_buf_set_rate(sc, ni, bf);
521 	} else {
522 		ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
523 			, rc[1].ratecode, rc[1].tries
524 			, rc[2].ratecode, rc[2].tries
525 			, rc[3].ratecode, rc[3].tries
526 		);
527 	}
528 }
529 
530 /*
531  * Setup segments+descriptors for an 11n aggregate.
532  * bf_first is the first buffer in the aggregate.
533  * The descriptor list must already been linked together using
534  * bf->bf_next.
535  */
536 static void
537 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
538 {
539 	struct ath_buf *bf, *bf_prev = NULL;
540 	struct ath_desc *ds0 = bf_first->bf_desc;
541 
542 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
543 	    __func__, bf_first->bf_state.bfs_nframes,
544 	    bf_first->bf_state.bfs_al);
545 
546 	bf = bf_first;
547 
548 	if (bf->bf_state.bfs_txrate0 == 0)
549 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, txrate0=%d\n",
550 		    __func__, bf, 0);
551 	if (bf->bf_state.bfs_rc[0].ratecode == 0)
552 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, rix0=%d\n",
553 		    __func__, bf, 0);
554 
555 	/*
556 	 * Setup all descriptors of all subframes - this will
557 	 * call ath_hal_set11naggrmiddle() on every frame.
558 	 */
559 	while (bf != NULL) {
560 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
561 		    "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
562 		    __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
563 		    SEQNO(bf->bf_state.bfs_seqno));
564 
565 		/*
566 		 * Setup the initial fields for the first descriptor - all
567 		 * the non-11n specific stuff.
568 		 */
569 		ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc
570 			, bf->bf_state.bfs_pktlen	/* packet length */
571 			, bf->bf_state.bfs_hdrlen	/* header length */
572 			, bf->bf_state.bfs_atype	/* Atheros packet type */
573 			, bf->bf_state.bfs_txpower	/* txpower */
574 			, bf->bf_state.bfs_txrate0
575 			, bf->bf_state.bfs_try0		/* series 0 rate/tries */
576 			, bf->bf_state.bfs_keyix	/* key cache index */
577 			, bf->bf_state.bfs_txantenna	/* antenna mode */
578 			, bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ	/* flags */
579 			, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
580 			, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
581 		);
582 
583 		/*
584 		 * First descriptor? Setup the rate control and initial
585 		 * aggregate header information.
586 		 */
587 		if (bf == bf_first) {
588 			/*
589 			 * setup first desc with rate and aggr info
590 			 */
591 			ath_tx_set_ratectrl(sc, bf->bf_node, bf);
592 		}
593 
594 		/*
595 		 * Setup the descriptors for a multi-descriptor frame.
596 		 * This is both aggregate and non-aggregate aware.
597 		 */
598 		ath_tx_chaindesclist(sc, ds0, bf,
599 		    1, /* is_aggr */
600 		    !! (bf == bf_first), /* is_first_subframe */
601 		    !! (bf->bf_next == NULL) /* is_last_subframe */
602 		    );
603 
604 		if (bf == bf_first) {
605 			/*
606 			 * Initialise the first 11n aggregate with the
607 			 * aggregate length and aggregate enable bits.
608 			 */
609 			ath_hal_set11n_aggr_first(sc->sc_ah,
610 			    ds0,
611 			    bf->bf_state.bfs_al,
612 			    bf->bf_state.bfs_ndelim);
613 		}
614 
615 		/*
616 		 * Link the last descriptor of the previous frame
617 		 * to the beginning descriptor of this frame.
618 		 */
619 		if (bf_prev != NULL)
620 			ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds,
621 			    bf->bf_daddr);
622 
623 		/* Save a copy so we can link the next descriptor in */
624 		bf_prev = bf;
625 		bf = bf->bf_next;
626 	}
627 
628 	/*
629 	 * Set the first descriptor bf_lastds field to point to
630 	 * the last descriptor in the last subframe, that's where
631 	 * the status update will occur.
632 	 */
633 	bf_first->bf_lastds = bf_prev->bf_lastds;
634 
635 	/*
636 	 * And bf_last in the first descriptor points to the end of
637 	 * the aggregate list.
638 	 */
639 	bf_first->bf_last = bf_prev;
640 
641 	/*
642 	 * For non-AR9300 NICs, which require the rate control
643 	 * in the final descriptor - let's set that up now.
644 	 *
645 	 * This is because the filltxdesc() HAL call doesn't
646 	 * populate the last segment with rate control information
647 	 * if firstSeg is also true.  For non-aggregate frames
648 	 * that is fine, as the first frame already has rate control
649 	 * info.  But if the last frame in an aggregate has one
650 	 * descriptor, both firstseg and lastseg will be true and
651 	 * the rate info isn't copied.
652 	 *
653 	 * This is inefficient on MIPS/ARM platforms that have
654 	 * non-cachable memory for TX descriptors, but we'll just
655 	 * make do for now.
656 	 *
657 	 * As to why the rate table is stashed in the last descriptor
658 	 * rather than the first descriptor?  Because proctxdesc()
659 	 * is called on the final descriptor in an MPDU or A-MPDU -
660 	 * ie, the one that gets updated by the hardware upon
661 	 * completion.  That way proctxdesc() doesn't need to know
662 	 * about the first _and_ last TX descriptor.
663 	 */
664 	ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0);
665 
666 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
667 }
668 
669 /*
670  * Hand-off a frame to the multicast TX queue.
671  *
672  * This is a software TXQ which will be appended to the CAB queue
673  * during the beacon setup code.
674  *
675  * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID
676  * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated
677  * with the actual hardware txq, or all of this will fall apart.
678  *
679  * XXX It may not be a bad idea to just stuff the QCU ID into bf_state
680  * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated
681  * correctly.
682  */
683 static void
684 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
685     struct ath_buf *bf)
686 {
687 	ATH_TX_LOCK_ASSERT(sc);
688 
689 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
690 	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
691 
692 	/*
693 	 * Ensure that the tx queue is the cabq, so things get
694 	 * mapped correctly.
695 	 */
696 	if (bf->bf_state.bfs_tx_queue != sc->sc_cabq->axq_qnum) {
697 		DPRINTF(sc, ATH_DEBUG_XMIT,
698 		    "%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n",
699 		    __func__, bf, bf->bf_state.bfs_tx_queue,
700 		    txq->axq_qnum);
701 	}
702 
703 	ATH_TXQ_LOCK(txq);
704 	if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) {
705 		struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s);
706 		struct ieee80211_frame *wh;
707 
708 		/* mark previous frame */
709 		wh = mtod(bf_last->bf_m, struct ieee80211_frame *);
710 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
711 		bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap,
712 		    BUS_DMASYNC_PREWRITE);
713 
714 		/* link descriptor */
715 		ath_hal_settxdesclink(sc->sc_ah,
716 		    bf_last->bf_lastds,
717 		    bf->bf_daddr);
718 	}
719 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
720 	ATH_TXQ_UNLOCK(txq);
721 }
722 
723 /*
724  * Hand-off packet to a hardware queue.
725  */
726 static void
727 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
728     struct ath_buf *bf)
729 {
730 	struct ath_hal *ah = sc->sc_ah;
731 	struct ath_buf *bf_first;
732 
733 	/*
734 	 * Insert the frame on the outbound list and pass it on
735 	 * to the hardware.  Multicast frames buffered for power
736 	 * save stations and transmit from the CAB queue are stored
737 	 * on a s/w only queue and loaded on to the CAB queue in
738 	 * the SWBA handler since frames only go out on DTIM and
739 	 * to avoid possible races.
740 	 */
741 	ATH_TX_LOCK_ASSERT(sc);
742 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
743 	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
744 	KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
745 	     ("ath_tx_handoff_hw called for mcast queue"));
746 
747 	/*
748 	 * XXX We should instead just verify that sc_txstart_cnt
749 	 * or ath_txproc_cnt > 0.  That would mean that
750 	 * the reset is going to be waiting for us to complete.
751 	 */
752 	if (sc->sc_txproc_cnt == 0 && sc->sc_txstart_cnt == 0) {
753 		device_printf(sc->sc_dev,
754 		    "%s: TX dispatch without holding txcount/txstart refcnt!\n",
755 		    __func__);
756 	}
757 
758 	/*
759 	 * XXX .. this is going to cause the hardware to get upset;
760 	 * so we really should find some way to drop or queue
761 	 * things.
762 	 */
763 
764 	ATH_TXQ_LOCK(txq);
765 
766 	/*
767 	 * XXX TODO: if there's a holdingbf, then
768 	 * ATH_TXQ_PUTRUNNING should be clear.
769 	 *
770 	 * If there is a holdingbf and the list is empty,
771 	 * then axq_link should be pointing to the holdingbf.
772 	 *
773 	 * Otherwise it should point to the last descriptor
774 	 * in the last ath_buf.
775 	 *
776 	 * In any case, we should really ensure that we
777 	 * update the previous descriptor link pointer to
778 	 * this descriptor, regardless of all of the above state.
779 	 *
780 	 * For now this is captured by having axq_link point
781 	 * to either the holdingbf (if the TXQ list is empty)
782 	 * or the end of the list (if the TXQ list isn't empty.)
783 	 * I'd rather just kill axq_link here and do it as above.
784 	 */
785 
786 	/*
787 	 * Append the frame to the TX queue.
788 	 */
789 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
790 	ATH_KTR(sc, ATH_KTR_TX, 3,
791 	    "ath_tx_handoff: non-tdma: txq=%u, add bf=%p "
792 	    "depth=%d",
793 	    txq->axq_qnum,
794 	    bf,
795 	    txq->axq_depth);
796 
797 	/*
798 	 * If there's a link pointer, update it.
799 	 *
800 	 * XXX we should replace this with the above logic, just
801 	 * to kill axq_link with fire.
802 	 */
803 	if (txq->axq_link != NULL) {
804 		*txq->axq_link = bf->bf_daddr;
805 		DPRINTF(sc, ATH_DEBUG_XMIT,
806 		    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
807 		    txq->axq_qnum, txq->axq_link,
808 		    (caddr_t)bf->bf_daddr, bf->bf_desc,
809 		    txq->axq_depth);
810 		ATH_KTR(sc, ATH_KTR_TX, 5,
811 		    "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) "
812 		    "lastds=%d",
813 		    txq->axq_qnum, txq->axq_link,
814 		    (caddr_t)bf->bf_daddr, bf->bf_desc,
815 		    bf->bf_lastds);
816 	}
817 
818 	/*
819 	 * If we've not pushed anything into the hardware yet,
820 	 * push the head of the queue into the TxDP.
821 	 *
822 	 * Once we've started DMA, there's no guarantee that
823 	 * updating the TxDP with a new value will actually work.
824 	 * So we just don't do that - if we hit the end of the list,
825 	 * we keep that buffer around (the "holding buffer") and
826 	 * re-start DMA by updating the link pointer of _that_
827 	 * descriptor and then restart DMA.
828 	 */
829 	if (! (txq->axq_flags & ATH_TXQ_PUTRUNNING)) {
830 		bf_first = TAILQ_FIRST(&txq->axq_q);
831 		txq->axq_flags |= ATH_TXQ_PUTRUNNING;
832 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf_first->bf_daddr);
833 		DPRINTF(sc, ATH_DEBUG_XMIT,
834 		    "%s: TXDP[%u] = %p (%p) depth %d\n",
835 		    __func__, txq->axq_qnum,
836 		    (caddr_t)bf_first->bf_daddr, bf_first->bf_desc,
837 		    txq->axq_depth);
838 		ATH_KTR(sc, ATH_KTR_TX, 5,
839 		    "ath_tx_handoff: TXDP[%u] = %p (%p) "
840 		    "lastds=%p depth %d",
841 		    txq->axq_qnum,
842 		    (caddr_t)bf_first->bf_daddr, bf_first->bf_desc,
843 		    bf_first->bf_lastds,
844 		    txq->axq_depth);
845 	}
846 
847 	/*
848 	 * Ensure that the bf TXQ matches this TXQ, so later
849 	 * checking and holding buffer manipulation is sane.
850 	 */
851 	if (bf->bf_state.bfs_tx_queue != txq->axq_qnum) {
852 		DPRINTF(sc, ATH_DEBUG_XMIT,
853 		    "%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n",
854 		    __func__, bf, bf->bf_state.bfs_tx_queue,
855 		    txq->axq_qnum);
856 	}
857 
858 	/*
859 	 * Track aggregate queue depth.
860 	 */
861 	if (bf->bf_state.bfs_aggr)
862 		txq->axq_aggr_depth++;
863 
864 	/*
865 	 * Update the link pointer.
866 	 */
867 	ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link);
868 
869 	/*
870 	 * Start DMA.
871 	 *
872 	 * If we wrote a TxDP above, DMA will start from here.
873 	 *
874 	 * If DMA is running, it'll do nothing.
875 	 *
876 	 * If the DMA engine hit the end of the QCU list (ie LINK=NULL,
877 	 * or VEOL) then it stops at the last transmitted write.
878 	 * We then append a new frame by updating the link pointer
879 	 * in that descriptor and then kick TxE here; it will re-read
880 	 * that last descriptor and find the new descriptor to transmit.
881 	 *
882 	 * This is why we keep the holding descriptor around.
883 	 */
884 	ath_hal_txstart(ah, txq->axq_qnum);
885 	ATH_TXQ_UNLOCK(txq);
886 	ATH_KTR(sc, ATH_KTR_TX, 1,
887 	    "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum);
888 }
889 
890 /*
891  * Restart TX DMA for the given TXQ.
892  *
893  * This must be called whether the queue is empty or not.
894  */
895 static void
896 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq)
897 {
898 	struct ath_buf *bf, *bf_last;
899 
900 	ATH_TXQ_LOCK_ASSERT(txq);
901 
902 	/* XXX make this ATH_TXQ_FIRST */
903 	bf = TAILQ_FIRST(&txq->axq_q);
904 	bf_last = ATH_TXQ_LAST(txq, axq_q_s);
905 
906 	if (bf == NULL)
907 		return;
908 
909 	DPRINTF(sc, ATH_DEBUG_RESET,
910 	    "%s: Q%d: bf=%p, bf_last=%p, daddr=0x%08x\n",
911 	    __func__,
912 	    txq->axq_qnum,
913 	    bf,
914 	    bf_last,
915 	    (uint32_t) bf->bf_daddr);
916 
917 #ifdef	ATH_DEBUG
918 	if (sc->sc_debug & ATH_DEBUG_RESET)
919 		ath_tx_dump(sc, txq);
920 #endif
921 
922 	/*
923 	 * This is called from a restart, so DMA is known to be
924 	 * completely stopped.
925 	 */
926 	KASSERT((!(txq->axq_flags & ATH_TXQ_PUTRUNNING)),
927 	    ("%s: Q%d: called with PUTRUNNING=1\n",
928 	    __func__,
929 	    txq->axq_qnum));
930 
931 	ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
932 	txq->axq_flags |= ATH_TXQ_PUTRUNNING;
933 
934 	ath_hal_gettxdesclinkptr(sc->sc_ah, bf_last->bf_lastds,
935 	    &txq->axq_link);
936 	ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
937 }
938 
939 /*
940  * Hand off a packet to the hardware (or mcast queue.)
941  *
942  * The relevant hardware txq should be locked.
943  */
944 static void
945 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq,
946     struct ath_buf *bf)
947 {
948 	ATH_TX_LOCK_ASSERT(sc);
949 
950 #ifdef	ATH_DEBUG_ALQ
951 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
952 		ath_tx_alq_post(sc, bf);
953 #endif
954 
955 	if (txq->axq_qnum == ATH_TXQ_SWQ)
956 		ath_tx_handoff_mcast(sc, txq, bf);
957 	else
958 		ath_tx_handoff_hw(sc, txq, bf);
959 }
960 
961 static int
962 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
963     struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen,
964     int *keyix)
965 {
966 	DPRINTF(sc, ATH_DEBUG_XMIT,
967 	    "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n",
968 	    __func__,
969 	    *hdrlen,
970 	    *pktlen,
971 	    isfrag,
972 	    iswep,
973 	    m0);
974 
975 	if (iswep) {
976 		const struct ieee80211_cipher *cip;
977 		struct ieee80211_key *k;
978 
979 		/*
980 		 * Construct the 802.11 header+trailer for an encrypted
981 		 * frame. The only reason this can fail is because of an
982 		 * unknown or unsupported cipher/key type.
983 		 */
984 		k = ieee80211_crypto_encap(ni, m0);
985 		if (k == NULL) {
986 			/*
987 			 * This can happen when the key is yanked after the
988 			 * frame was queued.  Just discard the frame; the
989 			 * 802.11 layer counts failures and provides
990 			 * debugging/diagnostics.
991 			 */
992 			return (0);
993 		}
994 		/*
995 		 * Adjust the packet + header lengths for the crypto
996 		 * additions and calculate the h/w key index.  When
997 		 * a s/w mic is done the frame will have had any mic
998 		 * added to it prior to entry so m0->m_pkthdr.len will
999 		 * account for it. Otherwise we need to add it to the
1000 		 * packet length.
1001 		 */
1002 		cip = k->wk_cipher;
1003 		(*hdrlen) += cip->ic_header;
1004 		(*pktlen) += cip->ic_header + cip->ic_trailer;
1005 		/* NB: frags always have any TKIP MIC done in s/w */
1006 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
1007 			(*pktlen) += cip->ic_miclen;
1008 		(*keyix) = k->wk_keyix;
1009 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
1010 		/*
1011 		 * Use station key cache slot, if assigned.
1012 		 */
1013 		(*keyix) = ni->ni_ucastkey.wk_keyix;
1014 		if ((*keyix) == IEEE80211_KEYIX_NONE)
1015 			(*keyix) = HAL_TXKEYIX_INVALID;
1016 	} else
1017 		(*keyix) = HAL_TXKEYIX_INVALID;
1018 
1019 	return (1);
1020 }
1021 
1022 /*
1023  * Calculate whether interoperability protection is required for
1024  * this frame.
1025  *
1026  * This requires the rate control information be filled in,
1027  * as the protection requirement depends upon the current
1028  * operating mode / PHY.
1029  */
1030 static void
1031 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf)
1032 {
1033 	struct ieee80211_frame *wh;
1034 	uint8_t rix;
1035 	uint16_t flags;
1036 	int shortPreamble;
1037 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1038 	struct ieee80211com *ic = &sc->sc_ic;
1039 
1040 	flags = bf->bf_state.bfs_txflags;
1041 	rix = bf->bf_state.bfs_rc[0].rix;
1042 	shortPreamble = bf->bf_state.bfs_shpream;
1043 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
1044 
1045 	/* Disable frame protection for TOA probe frames */
1046 	if (bf->bf_flags & ATH_BUF_TOA_PROBE) {
1047 		/* XXX count */
1048 		flags &= ~(HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA);
1049 		bf->bf_state.bfs_doprot = 0;
1050 		goto finish;
1051 	}
1052 
1053 	/*
1054 	 * If 802.11g protection is enabled, determine whether
1055 	 * to use RTS/CTS or just CTS.  Note that this is only
1056 	 * done for OFDM unicast frames.
1057 	 */
1058 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1059 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
1060 	    (flags & HAL_TXDESC_NOACK) == 0) {
1061 		bf->bf_state.bfs_doprot = 1;
1062 		/* XXX fragments must use CCK rates w/ protection */
1063 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
1064 			flags |= HAL_TXDESC_RTSENA;
1065 		} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
1066 			flags |= HAL_TXDESC_CTSENA;
1067 		}
1068 		/*
1069 		 * For frags it would be desirable to use the
1070 		 * highest CCK rate for RTS/CTS.  But stations
1071 		 * farther away may detect it at a lower CCK rate
1072 		 * so use the configured protection rate instead
1073 		 * (for now).
1074 		 */
1075 		sc->sc_stats.ast_tx_protect++;
1076 	}
1077 
1078 	/*
1079 	 * If 11n protection is enabled and it's a HT frame,
1080 	 * enable RTS.
1081 	 *
1082 	 * XXX ic_htprotmode or ic_curhtprotmode?
1083 	 * XXX should it_htprotmode only matter if ic_curhtprotmode
1084 	 * XXX indicates it's not a HT pure environment?
1085 	 */
1086 	if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
1087 	    rt->info[rix].phy == IEEE80211_T_HT &&
1088 	    (flags & HAL_TXDESC_NOACK) == 0) {
1089 		flags |= HAL_TXDESC_RTSENA;
1090 		sc->sc_stats.ast_tx_htprotect++;
1091 	}
1092 
1093 finish:
1094 	bf->bf_state.bfs_txflags = flags;
1095 }
1096 
1097 /*
1098  * Update the frame duration given the currently selected rate.
1099  *
1100  * This also updates the frame duration value, so it will require
1101  * a DMA flush.
1102  */
1103 static void
1104 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf)
1105 {
1106 	struct ieee80211_frame *wh;
1107 	uint8_t rix;
1108 	uint16_t flags;
1109 	int shortPreamble;
1110 	struct ath_hal *ah = sc->sc_ah;
1111 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1112 	int isfrag = bf->bf_m->m_flags & M_FRAG;
1113 
1114 	flags = bf->bf_state.bfs_txflags;
1115 	rix = bf->bf_state.bfs_rc[0].rix;
1116 	shortPreamble = bf->bf_state.bfs_shpream;
1117 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
1118 
1119 	/*
1120 	 * Calculate duration.  This logically belongs in the 802.11
1121 	 * layer but it lacks sufficient information to calculate it.
1122 	 */
1123 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
1124 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
1125 		u_int16_t dur;
1126 		if (shortPreamble)
1127 			dur = rt->info[rix].spAckDuration;
1128 		else
1129 			dur = rt->info[rix].lpAckDuration;
1130 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
1131 			dur += dur;		/* additional SIFS+ACK */
1132 			/*
1133 			 * Include the size of next fragment so NAV is
1134 			 * updated properly.  The last fragment uses only
1135 			 * the ACK duration
1136 			 *
1137 			 * XXX TODO: ensure that the rate lookup for each
1138 			 * fragment is the same as the rate used by the
1139 			 * first fragment!
1140 			 */
1141 			dur += ath_hal_computetxtime(ah,
1142 			    rt,
1143 			    bf->bf_nextfraglen,
1144 			    rix, shortPreamble,
1145 			    AH_TRUE);
1146 		}
1147 		if (isfrag) {
1148 			/*
1149 			 * Force hardware to use computed duration for next
1150 			 * fragment by disabling multi-rate retry which updates
1151 			 * duration based on the multi-rate duration table.
1152 			 */
1153 			bf->bf_state.bfs_ismrr = 0;
1154 			bf->bf_state.bfs_try0 = ATH_TXMGTTRY;
1155 			/* XXX update bfs_rc[0].try? */
1156 		}
1157 
1158 		/* Update the duration field itself */
1159 		*(u_int16_t *)wh->i_dur = htole16(dur);
1160 	}
1161 }
1162 
1163 static uint8_t
1164 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
1165     int cix, int shortPreamble)
1166 {
1167 	uint8_t ctsrate;
1168 
1169 	/*
1170 	 * CTS transmit rate is derived from the transmit rate
1171 	 * by looking in the h/w rate table.  We must also factor
1172 	 * in whether or not a short preamble is to be used.
1173 	 */
1174 	/* NB: cix is set above where RTS/CTS is enabled */
1175 	KASSERT(cix != 0xff, ("cix not setup"));
1176 	ctsrate = rt->info[cix].rateCode;
1177 
1178 	/* XXX this should only matter for legacy rates */
1179 	if (shortPreamble)
1180 		ctsrate |= rt->info[cix].shortPreamble;
1181 
1182 	return (ctsrate);
1183 }
1184 
1185 /*
1186  * Calculate the RTS/CTS duration for legacy frames.
1187  */
1188 static int
1189 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
1190     int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
1191     int flags)
1192 {
1193 	int ctsduration = 0;
1194 
1195 	/* This mustn't be called for HT modes */
1196 	if (rt->info[cix].phy == IEEE80211_T_HT) {
1197 		printf("%s: HT rate where it shouldn't be (0x%x)\n",
1198 		    __func__, rt->info[cix].rateCode);
1199 		return (-1);
1200 	}
1201 
1202 	/*
1203 	 * Compute the transmit duration based on the frame
1204 	 * size and the size of an ACK frame.  We call into the
1205 	 * HAL to do the computation since it depends on the
1206 	 * characteristics of the actual PHY being used.
1207 	 *
1208 	 * NB: CTS is assumed the same size as an ACK so we can
1209 	 *     use the precalculated ACK durations.
1210 	 */
1211 	if (shortPreamble) {
1212 		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
1213 			ctsduration += rt->info[cix].spAckDuration;
1214 		ctsduration += ath_hal_computetxtime(ah,
1215 			rt, pktlen, rix, AH_TRUE, AH_TRUE);
1216 		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
1217 			ctsduration += rt->info[rix].spAckDuration;
1218 	} else {
1219 		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
1220 			ctsduration += rt->info[cix].lpAckDuration;
1221 		ctsduration += ath_hal_computetxtime(ah,
1222 			rt, pktlen, rix, AH_FALSE, AH_TRUE);
1223 		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
1224 			ctsduration += rt->info[rix].lpAckDuration;
1225 	}
1226 
1227 	return (ctsduration);
1228 }
1229 
1230 /*
1231  * Update the given ath_buf with updated rts/cts setup and duration
1232  * values.
1233  *
1234  * To support rate lookups for each software retry, the rts/cts rate
1235  * and cts duration must be re-calculated.
1236  *
1237  * This function assumes the RTS/CTS flags have been set as needed;
1238  * mrr has been disabled; and the rate control lookup has been done.
1239  *
1240  * XXX TODO: MRR need only be disabled for the pre-11n NICs.
1241  * XXX The 11n NICs support per-rate RTS/CTS configuration.
1242  */
1243 static void
1244 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
1245 {
1246 	uint16_t ctsduration = 0;
1247 	uint8_t ctsrate = 0;
1248 	uint8_t rix = bf->bf_state.bfs_rc[0].rix;
1249 	uint8_t cix = 0;
1250 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1251 
1252 	/*
1253 	 * No RTS/CTS enabled? Don't bother.
1254 	 */
1255 	if ((bf->bf_state.bfs_txflags &
1256 	    (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
1257 		/* XXX is this really needed? */
1258 		bf->bf_state.bfs_ctsrate = 0;
1259 		bf->bf_state.bfs_ctsduration = 0;
1260 		return;
1261 	}
1262 
1263 	/*
1264 	 * If protection is enabled, use the protection rix control
1265 	 * rate. Otherwise use the rate0 control rate.
1266 	 */
1267 	if (bf->bf_state.bfs_doprot)
1268 		rix = sc->sc_protrix;
1269 	else
1270 		rix = bf->bf_state.bfs_rc[0].rix;
1271 
1272 	/*
1273 	 * If the raw path has hard-coded ctsrate0 to something,
1274 	 * use it.
1275 	 */
1276 	if (bf->bf_state.bfs_ctsrate0 != 0)
1277 		cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
1278 	else
1279 		/* Control rate from above */
1280 		cix = rt->info[rix].controlRate;
1281 
1282 	/* Calculate the rtscts rate for the given cix */
1283 	ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
1284 	    bf->bf_state.bfs_shpream);
1285 
1286 	/* The 11n chipsets do ctsduration calculations for you */
1287 	if (! ath_tx_is_11n(sc))
1288 		ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
1289 		    bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
1290 		    rt, bf->bf_state.bfs_txflags);
1291 
1292 	/* Squirrel away in ath_buf */
1293 	bf->bf_state.bfs_ctsrate = ctsrate;
1294 	bf->bf_state.bfs_ctsduration = ctsduration;
1295 
1296 	/*
1297 	 * Must disable multi-rate retry when using RTS/CTS.
1298 	 */
1299 	if (!sc->sc_mrrprot) {
1300 		bf->bf_state.bfs_ismrr = 0;
1301 		bf->bf_state.bfs_try0 =
1302 		    bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */
1303 	}
1304 }
1305 
1306 /*
1307  * Setup the descriptor chain for a normal or fast-frame
1308  * frame.
1309  *
1310  * XXX TODO: extend to include the destination hardware QCU ID.
1311  * Make sure that is correct.  Make sure that when being added
1312  * to the mcastq, the CABQ QCUID is set or things will get a bit
1313  * odd.
1314  */
1315 static void
1316 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
1317 {
1318 	struct ath_desc *ds = bf->bf_desc;
1319 	struct ath_hal *ah = sc->sc_ah;
1320 
1321 	if (bf->bf_state.bfs_txrate0 == 0)
1322 		DPRINTF(sc, ATH_DEBUG_XMIT,
1323 		    "%s: bf=%p, txrate0=%d\n", __func__, bf, 0);
1324 
1325 	ath_hal_setuptxdesc(ah, ds
1326 		, bf->bf_state.bfs_pktlen	/* packet length */
1327 		, bf->bf_state.bfs_hdrlen	/* header length */
1328 		, bf->bf_state.bfs_atype	/* Atheros packet type */
1329 		, bf->bf_state.bfs_txpower	/* txpower */
1330 		, bf->bf_state.bfs_txrate0
1331 		, bf->bf_state.bfs_try0		/* series 0 rate/tries */
1332 		, bf->bf_state.bfs_keyix	/* key cache index */
1333 		, bf->bf_state.bfs_txantenna	/* antenna mode */
1334 		, bf->bf_state.bfs_txflags	/* flags */
1335 		, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
1336 		, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
1337 	);
1338 
1339 	/*
1340 	 * This will be overriden when the descriptor chain is written.
1341 	 */
1342 	bf->bf_lastds = ds;
1343 	bf->bf_last = bf;
1344 
1345 	/* Set rate control and descriptor chain for this frame */
1346 	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
1347 	ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0);
1348 }
1349 
1350 /*
1351  * Do a rate lookup.
1352  *
1353  * This performs a rate lookup for the given ath_buf only if it's required.
1354  * Non-data frames and raw frames don't require it.
1355  *
1356  * This populates the primary and MRR entries; MRR values are
1357  * then disabled later on if something requires it (eg RTS/CTS on
1358  * pre-11n chipsets.
1359  *
1360  * This needs to be done before the RTS/CTS fields are calculated
1361  * as they may depend upon the rate chosen.
1362  */
1363 static void
1364 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
1365 {
1366 	uint8_t rate, rix;
1367 	int try0;
1368 
1369 	if (! bf->bf_state.bfs_doratelookup)
1370 		return;
1371 
1372 	/* Get rid of any previous state */
1373 	bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1374 
1375 	ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
1376 	ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
1377 	    bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
1378 
1379 	/* In case MRR is disabled, make sure rc[0] is setup correctly */
1380 	bf->bf_state.bfs_rc[0].rix = rix;
1381 	bf->bf_state.bfs_rc[0].ratecode = rate;
1382 	bf->bf_state.bfs_rc[0].tries = try0;
1383 
1384 	if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
1385 		ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
1386 		    bf->bf_state.bfs_rc);
1387 	ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
1388 
1389 	sc->sc_txrix = rix;	/* for LED blinking */
1390 	sc->sc_lastdatarix = rix;	/* for fast frames */
1391 	bf->bf_state.bfs_try0 = try0;
1392 	bf->bf_state.bfs_txrate0 = rate;
1393 }
1394 
1395 /*
1396  * Update the CLRDMASK bit in the ath_buf if it needs to be set.
1397  */
1398 static void
1399 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid,
1400     struct ath_buf *bf)
1401 {
1402 	struct ath_node *an = ATH_NODE(bf->bf_node);
1403 
1404 	ATH_TX_LOCK_ASSERT(sc);
1405 
1406 	if (an->clrdmask == 1) {
1407 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1408 		an->clrdmask = 0;
1409 	}
1410 }
1411 
1412 /*
1413  * Return whether this frame should be software queued or
1414  * direct dispatched.
1415  *
1416  * When doing powersave, BAR frames should be queued but other management
1417  * frames should be directly sent.
1418  *
1419  * When not doing powersave, stick BAR frames into the hardware queue
1420  * so it goes out even though the queue is paused.
1421  *
1422  * For now, management frames are also software queued by default.
1423  */
1424 static int
1425 ath_tx_should_swq_frame(struct ath_softc *sc, struct ath_node *an,
1426     struct mbuf *m0, int *queue_to_head)
1427 {
1428 	struct ieee80211_node *ni = &an->an_node;
1429 	struct ieee80211_frame *wh;
1430 	uint8_t type, subtype;
1431 
1432 	wh = mtod(m0, struct ieee80211_frame *);
1433 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1434 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1435 
1436 	(*queue_to_head) = 0;
1437 
1438 	/* If it's not in powersave - direct-dispatch BAR */
1439 	if ((ATH_NODE(ni)->an_is_powersave == 0)
1440 	    && type == IEEE80211_FC0_TYPE_CTL &&
1441 	    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1442 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1443 		    "%s: BAR: TX'ing direct\n", __func__);
1444 		return (0);
1445 	} else if ((ATH_NODE(ni)->an_is_powersave == 1)
1446 	    && type == IEEE80211_FC0_TYPE_CTL &&
1447 	    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1448 		/* BAR TX whilst asleep; queue */
1449 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1450 		    "%s: swq: TX'ing\n", __func__);
1451 		(*queue_to_head) = 1;
1452 		return (1);
1453 	} else if ((ATH_NODE(ni)->an_is_powersave == 1)
1454 	    && (type == IEEE80211_FC0_TYPE_MGT ||
1455 	        type == IEEE80211_FC0_TYPE_CTL)) {
1456 		/*
1457 		 * Other control/mgmt frame; bypass software queuing
1458 		 * for now!
1459 		 */
1460 		DPRINTF(sc, ATH_DEBUG_XMIT,
1461 		    "%s: %6D: Node is asleep; sending mgmt "
1462 		    "(type=%d, subtype=%d)\n",
1463 		    __func__, ni->ni_macaddr, ":", type, subtype);
1464 		return (0);
1465 	} else {
1466 		return (1);
1467 	}
1468 }
1469 
1470 
1471 /*
1472  * Transmit the given frame to the hardware.
1473  *
1474  * The frame must already be setup; rate control must already have
1475  * been done.
1476  *
1477  * XXX since the TXQ lock is being held here (and I dislike holding
1478  * it for this long when not doing software aggregation), later on
1479  * break this function into "setup_normal" and "xmit_normal". The
1480  * lock only needs to be held for the ath_tx_handoff call.
1481  *
1482  * XXX we don't update the leak count here - if we're doing
1483  * direct frame dispatch, we need to be able to do it without
1484  * decrementing the leak count (eg multicast queue frames.)
1485  */
1486 static void
1487 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
1488     struct ath_buf *bf)
1489 {
1490 	struct ath_node *an = ATH_NODE(bf->bf_node);
1491 	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
1492 
1493 	ATH_TX_LOCK_ASSERT(sc);
1494 
1495 	/*
1496 	 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does
1497 	 * set a completion handler however it doesn't (yet) properly
1498 	 * handle the strict ordering requirements needed for normal,
1499 	 * non-aggregate session frames.
1500 	 *
1501 	 * Once this is implemented, only set CLRDMASK like this for
1502 	 * frames that must go out - eg management/raw frames.
1503 	 */
1504 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1505 
1506 	/* Setup the descriptor before handoff */
1507 	ath_tx_do_ratelookup(sc, bf);
1508 	ath_tx_calc_duration(sc, bf);
1509 	ath_tx_calc_protection(sc, bf);
1510 	ath_tx_set_rtscts(sc, bf);
1511 	ath_tx_rate_fill_rcflags(sc, bf);
1512 	ath_tx_setds(sc, bf);
1513 
1514 	/* Track per-TID hardware queue depth correctly */
1515 	tid->hwq_depth++;
1516 
1517 	/* Assign the completion handler */
1518 	bf->bf_comp = ath_tx_normal_comp;
1519 
1520 	/* Hand off to hardware */
1521 	ath_tx_handoff(sc, txq, bf);
1522 }
1523 
1524 /*
1525  * Do the basic frame setup stuff that's required before the frame
1526  * is added to a software queue.
1527  *
1528  * All frames get mostly the same treatment and it's done once.
1529  * Retransmits fiddle with things like the rate control setup,
1530  * setting the retransmit bit in the packet; doing relevant DMA/bus
1531  * syncing and relinking it (back) into the hardware TX queue.
1532  *
1533  * Note that this may cause the mbuf to be reallocated, so
1534  * m0 may not be valid.
1535  */
1536 static int
1537 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
1538     struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq)
1539 {
1540 	struct ieee80211vap *vap = ni->ni_vap;
1541 	struct ieee80211com *ic = &sc->sc_ic;
1542 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1543 	int error, iswep, ismcast, isfrag, ismrr;
1544 	int keyix, hdrlen, pktlen, try0 = 0;
1545 	u_int8_t rix = 0, txrate = 0;
1546 	struct ath_desc *ds;
1547 	struct ieee80211_frame *wh;
1548 	u_int subtype, flags;
1549 	HAL_PKT_TYPE atype;
1550 	const HAL_RATE_TABLE *rt;
1551 	HAL_BOOL shortPreamble;
1552 	struct ath_node *an;
1553 	u_int pri;
1554 
1555 	/*
1556 	 * To ensure that both sequence numbers and the CCMP PN handling
1557 	 * is "correct", make sure that the relevant TID queue is locked.
1558 	 * Otherwise the CCMP PN and seqno may appear out of order, causing
1559 	 * re-ordered frames to have out of order CCMP PN's, resulting
1560 	 * in many, many frame drops.
1561 	 */
1562 	ATH_TX_LOCK_ASSERT(sc);
1563 
1564 	wh = mtod(m0, struct ieee80211_frame *);
1565 	iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
1566 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1567 	isfrag = m0->m_flags & M_FRAG;
1568 	hdrlen = ieee80211_anyhdrsize(wh);
1569 	/*
1570 	 * Packet length must not include any
1571 	 * pad bytes; deduct them here.
1572 	 */
1573 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
1574 
1575 	/* Handle encryption twiddling if needed */
1576 	if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
1577 	    &pktlen, &keyix)) {
1578 		ieee80211_free_mbuf(m0);
1579 		return EIO;
1580 	}
1581 
1582 	/* packet header may have moved, reset our local pointer */
1583 	wh = mtod(m0, struct ieee80211_frame *);
1584 
1585 	pktlen += IEEE80211_CRC_LEN;
1586 
1587 	/*
1588 	 * Load the DMA map so any coalescing is done.  This
1589 	 * also calculates the number of descriptors we need.
1590 	 */
1591 	error = ath_tx_dmasetup(sc, bf, m0);
1592 	if (error != 0)
1593 		return error;
1594 	KASSERT((ni != NULL), ("%s: ni=NULL!", __func__));
1595 	bf->bf_node = ni;			/* NB: held reference */
1596 	m0 = bf->bf_m;				/* NB: may have changed */
1597 	wh = mtod(m0, struct ieee80211_frame *);
1598 
1599 	/* setup descriptors */
1600 	ds = bf->bf_desc;
1601 	rt = sc->sc_currates;
1602 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1603 
1604 	/*
1605 	 * NB: the 802.11 layer marks whether or not we should
1606 	 * use short preamble based on the current mode and
1607 	 * negotiated parameters.
1608 	 */
1609 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1610 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1611 		shortPreamble = AH_TRUE;
1612 		sc->sc_stats.ast_tx_shortpre++;
1613 	} else {
1614 		shortPreamble = AH_FALSE;
1615 	}
1616 
1617 	an = ATH_NODE(ni);
1618 	//flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1619 	flags = 0;
1620 	ismrr = 0;				/* default no multi-rate retry*/
1621 	pri = M_WME_GETAC(m0);			/* honor classification */
1622 	/* XXX use txparams instead of fixed values */
1623 	/*
1624 	 * Calculate Atheros packet type from IEEE80211 packet header,
1625 	 * setup for rate calculations, and select h/w transmit queue.
1626 	 */
1627 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1628 	case IEEE80211_FC0_TYPE_MGT:
1629 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1630 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1631 			atype = HAL_PKT_TYPE_BEACON;
1632 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1633 			atype = HAL_PKT_TYPE_PROBE_RESP;
1634 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1635 			atype = HAL_PKT_TYPE_ATIM;
1636 		else
1637 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
1638 		rix = an->an_mgmtrix;
1639 		txrate = rt->info[rix].rateCode;
1640 		if (shortPreamble)
1641 			txrate |= rt->info[rix].shortPreamble;
1642 		try0 = ATH_TXMGTTRY;
1643 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1644 		break;
1645 	case IEEE80211_FC0_TYPE_CTL:
1646 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
1647 		rix = an->an_mgmtrix;
1648 		txrate = rt->info[rix].rateCode;
1649 		if (shortPreamble)
1650 			txrate |= rt->info[rix].shortPreamble;
1651 		try0 = ATH_TXMGTTRY;
1652 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1653 		break;
1654 	case IEEE80211_FC0_TYPE_DATA:
1655 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
1656 		/*
1657 		 * Data frames: multicast frames go out at a fixed rate,
1658 		 * EAPOL frames use the mgmt frame rate; otherwise consult
1659 		 * the rate control module for the rate to use.
1660 		 */
1661 		if (ismcast) {
1662 			rix = an->an_mcastrix;
1663 			txrate = rt->info[rix].rateCode;
1664 			if (shortPreamble)
1665 				txrate |= rt->info[rix].shortPreamble;
1666 			try0 = 1;
1667 		} else if (m0->m_flags & M_EAPOL) {
1668 			/* XXX? maybe always use long preamble? */
1669 			rix = an->an_mgmtrix;
1670 			txrate = rt->info[rix].rateCode;
1671 			if (shortPreamble)
1672 				txrate |= rt->info[rix].shortPreamble;
1673 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
1674 		} else {
1675 			/*
1676 			 * Do rate lookup on each TX, rather than using
1677 			 * the hard-coded TX information decided here.
1678 			 */
1679 			ismrr = 1;
1680 			bf->bf_state.bfs_doratelookup = 1;
1681 		}
1682 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
1683 			flags |= HAL_TXDESC_NOACK;
1684 		break;
1685 	default:
1686 		device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n",
1687 		    wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1688 		/* XXX statistic */
1689 		/* XXX free tx dmamap */
1690 		ieee80211_free_mbuf(m0);
1691 		return EIO;
1692 	}
1693 
1694 	/*
1695 	 * There are two known scenarios where the frame AC doesn't match
1696 	 * what the destination TXQ is.
1697 	 *
1698 	 * + non-QoS frames (eg management?) that the net80211 stack has
1699 	 *   assigned a higher AC to, but since it's a non-QoS TID, it's
1700 	 *   being thrown into TID 16.  TID 16 gets the AC_BE queue.
1701 	 *   It's quite possible that management frames should just be
1702 	 *   direct dispatched to hardware rather than go via the software
1703 	 *   queue; that should be investigated in the future.  There are
1704 	 *   some specific scenarios where this doesn't make sense, mostly
1705 	 *   surrounding ADDBA request/response - hence why that is special
1706 	 *   cased.
1707 	 *
1708 	 * + Multicast frames going into the VAP mcast queue.  That shows up
1709 	 *   as "TXQ 11".
1710 	 *
1711 	 * This driver should eventually support separate TID and TXQ locking,
1712 	 * allowing for arbitrary AC frames to appear on arbitrary software
1713 	 * queues, being queued to the "correct" hardware queue when needed.
1714 	 */
1715 #if 0
1716 	if (txq != sc->sc_ac2q[pri]) {
1717 		DPRINTF(sc, ATH_DEBUG_XMIT,
1718 		    "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n",
1719 		    __func__,
1720 		    txq,
1721 		    txq->axq_qnum,
1722 		    pri,
1723 		    sc->sc_ac2q[pri],
1724 		    sc->sc_ac2q[pri]->axq_qnum);
1725 	}
1726 #endif
1727 
1728 	/*
1729 	 * Calculate miscellaneous flags.
1730 	 */
1731 	if (ismcast) {
1732 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
1733 	} else if (pktlen > vap->iv_rtsthreshold &&
1734 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
1735 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
1736 		sc->sc_stats.ast_tx_rts++;
1737 	}
1738 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
1739 		sc->sc_stats.ast_tx_noack++;
1740 #ifdef IEEE80211_SUPPORT_TDMA
1741 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
1742 		DPRINTF(sc, ATH_DEBUG_TDMA,
1743 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
1744 		sc->sc_stats.ast_tdma_ack++;
1745 		/* XXX free tx dmamap */
1746 		ieee80211_free_mbuf(m0);
1747 		return EIO;
1748 	}
1749 #endif
1750 
1751 	/*
1752 	 * If it's a frame to do location reporting on,
1753 	 * communicate it to the HAL.
1754 	 */
1755 	if (ieee80211_get_toa_params(m0, NULL)) {
1756 		device_printf(sc->sc_dev,
1757 		    "%s: setting TX positioning bit\n", __func__);
1758 		flags |= HAL_TXDESC_POS;
1759 
1760 		/*
1761 		 * Note: The hardware reports timestamps for
1762 		 * each of the RX'ed packets as part of the packet
1763 		 * exchange.  So this means things like RTS/CTS
1764 		 * exchanges, as well as the final ACK.
1765 		 *
1766 		 * So, if you send a RTS-protected NULL data frame,
1767 		 * you'll get an RX report for the RTS response, then
1768 		 * an RX report for the NULL frame, and then the TX
1769 		 * completion at the end.
1770 		 *
1771 		 * NOTE: it doesn't work right for CCK frames;
1772 		 * there's no channel info data provided unless
1773 		 * it's OFDM or HT.  Will have to dig into it.
1774 		 */
1775 		flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
1776 		bf->bf_flags |= ATH_BUF_TOA_PROBE;
1777 	}
1778 
1779 #if 0
1780 	/*
1781 	 * Placeholder: if you want to transmit with the azimuth
1782 	 * timestamp in the end of the payload, here's where you
1783 	 * should set the TXDESC field.
1784 	 */
1785 	flags |= HAL_TXDESC_HWTS;
1786 #endif
1787 
1788 	/*
1789 	 * Determine if a tx interrupt should be generated for
1790 	 * this descriptor.  We take a tx interrupt to reap
1791 	 * descriptors when the h/w hits an EOL condition or
1792 	 * when the descriptor is specifically marked to generate
1793 	 * an interrupt.  We periodically mark descriptors in this
1794 	 * way to insure timely replenishing of the supply needed
1795 	 * for sending frames.  Defering interrupts reduces system
1796 	 * load and potentially allows more concurrent work to be
1797 	 * done but if done to aggressively can cause senders to
1798 	 * backup.
1799 	 *
1800 	 * NB: use >= to deal with sc_txintrperiod changing
1801 	 *     dynamically through sysctl.
1802 	 */
1803 	if (flags & HAL_TXDESC_INTREQ) {
1804 		txq->axq_intrcnt = 0;
1805 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
1806 		flags |= HAL_TXDESC_INTREQ;
1807 		txq->axq_intrcnt = 0;
1808 	}
1809 
1810 	/* This point forward is actual TX bits */
1811 
1812 	/*
1813 	 * At this point we are committed to sending the frame
1814 	 * and we don't need to look at m_nextpkt; clear it in
1815 	 * case this frame is part of frag chain.
1816 	 */
1817 	m0->m_nextpkt = NULL;
1818 
1819 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1820 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
1821 		    sc->sc_hwmap[rix].ieeerate, -1);
1822 
1823 	if (ieee80211_radiotap_active_vap(vap)) {
1824 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1825 		if (iswep)
1826 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1827 		if (isfrag)
1828 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1829 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1830 		sc->sc_tx_th.wt_txpower = ieee80211_get_node_txpower(ni);
1831 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1832 
1833 		ieee80211_radiotap_tx(vap, m0);
1834 	}
1835 
1836 	/* Blank the legacy rate array */
1837 	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1838 
1839 	/*
1840 	 * ath_buf_set_rate needs at least one rate/try to setup
1841 	 * the rate scenario.
1842 	 */
1843 	bf->bf_state.bfs_rc[0].rix = rix;
1844 	bf->bf_state.bfs_rc[0].tries = try0;
1845 	bf->bf_state.bfs_rc[0].ratecode = txrate;
1846 
1847 	/* Store the decided rate index values away */
1848 	bf->bf_state.bfs_pktlen = pktlen;
1849 	bf->bf_state.bfs_hdrlen = hdrlen;
1850 	bf->bf_state.bfs_atype = atype;
1851 	bf->bf_state.bfs_txpower = ieee80211_get_node_txpower(ni);
1852 	bf->bf_state.bfs_txrate0 = txrate;
1853 	bf->bf_state.bfs_try0 = try0;
1854 	bf->bf_state.bfs_keyix = keyix;
1855 	bf->bf_state.bfs_txantenna = sc->sc_txantenna;
1856 	bf->bf_state.bfs_txflags = flags;
1857 	bf->bf_state.bfs_shpream = shortPreamble;
1858 
1859 	/* XXX this should be done in ath_tx_setrate() */
1860 	bf->bf_state.bfs_ctsrate0 = 0;	/* ie, no hard-coded ctsrate */
1861 	bf->bf_state.bfs_ctsrate = 0;	/* calculated later */
1862 	bf->bf_state.bfs_ctsduration = 0;
1863 	bf->bf_state.bfs_ismrr = ismrr;
1864 
1865 	return 0;
1866 }
1867 
1868 /*
1869  * Queue a frame to the hardware or software queue.
1870  *
1871  * This can be called by the net80211 code.
1872  *
1873  * XXX what about locking? Or, push the seqno assign into the
1874  * XXX aggregate scheduler so its serialised?
1875  *
1876  * XXX When sending management frames via ath_raw_xmit(),
1877  *     should CLRDMASK be set unconditionally?
1878  */
1879 int
1880 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
1881     struct ath_buf *bf, struct mbuf *m0)
1882 {
1883 	struct ieee80211vap *vap = ni->ni_vap;
1884 	struct ath_vap *avp = ATH_VAP(vap);
1885 	int r = 0;
1886 	u_int pri;
1887 	int tid;
1888 	struct ath_txq *txq;
1889 	int ismcast;
1890 	const struct ieee80211_frame *wh;
1891 	int is_ampdu, is_ampdu_tx, is_ampdu_pending;
1892 	ieee80211_seq seqno;
1893 	uint8_t type, subtype;
1894 	int queue_to_head;
1895 
1896 	ATH_TX_LOCK_ASSERT(sc);
1897 
1898 	/*
1899 	 * Determine the target hardware queue.
1900 	 *
1901 	 * For multicast frames, the txq gets overridden appropriately
1902 	 * depending upon the state of PS.
1903 	 *
1904 	 * For any other frame, we do a TID/QoS lookup inside the frame
1905 	 * to see what the TID should be. If it's a non-QoS frame, the
1906 	 * AC and TID are overridden. The TID/TXQ code assumes the
1907 	 * TID is on a predictable hardware TXQ, so we don't support
1908 	 * having a node TID queued to multiple hardware TXQs.
1909 	 * This may change in the future but would require some locking
1910 	 * fudgery.
1911 	 */
1912 	pri = ath_tx_getac(sc, m0);
1913 	tid = ath_tx_gettid(sc, m0);
1914 
1915 	txq = sc->sc_ac2q[pri];
1916 	wh = mtod(m0, struct ieee80211_frame *);
1917 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1918 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1919 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1920 
1921 	/*
1922 	 * Enforce how deep the multicast queue can grow.
1923 	 *
1924 	 * XXX duplicated in ath_raw_xmit().
1925 	 */
1926 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1927 		if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
1928 		    > sc->sc_txq_mcastq_maxdepth) {
1929 			sc->sc_stats.ast_tx_mcastq_overflow++;
1930 			m_freem(m0);
1931 			return (ENOBUFS);
1932 		}
1933 	}
1934 
1935 	/*
1936 	 * Enforce how deep the unicast queue can grow.
1937 	 *
1938 	 * If the node is in power save then we don't want
1939 	 * the software queue to grow too deep, or a node may
1940 	 * end up consuming all of the ath_buf entries.
1941 	 *
1942 	 * For now, only do this for DATA frames.
1943 	 *
1944 	 * We will want to cap how many management/control
1945 	 * frames get punted to the software queue so it doesn't
1946 	 * fill up.  But the correct solution isn't yet obvious.
1947 	 * In any case, this check should at least let frames pass
1948 	 * that we are direct-dispatching.
1949 	 *
1950 	 * XXX TODO: duplicate this to the raw xmit path!
1951 	 */
1952 	if (type == IEEE80211_FC0_TYPE_DATA &&
1953 	    ATH_NODE(ni)->an_is_powersave &&
1954 	    ATH_NODE(ni)->an_swq_depth >
1955 	     sc->sc_txq_node_psq_maxdepth) {
1956 		sc->sc_stats.ast_tx_node_psq_overflow++;
1957 		m_freem(m0);
1958 		return (ENOBUFS);
1959 	}
1960 
1961 	/* A-MPDU TX */
1962 	is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
1963 	is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
1964 	is_ampdu = is_ampdu_tx | is_ampdu_pending;
1965 
1966 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
1967 	    __func__, tid, pri, is_ampdu);
1968 
1969 	/* Set local packet state, used to queue packets to hardware */
1970 	bf->bf_state.bfs_tid = tid;
1971 	bf->bf_state.bfs_tx_queue = txq->axq_qnum;
1972 	bf->bf_state.bfs_pri = pri;
1973 
1974 #if 1
1975 	/*
1976 	 * When servicing one or more stations in power-save mode
1977 	 * (or) if there is some mcast data waiting on the mcast
1978 	 * queue (to prevent out of order delivery) multicast frames
1979 	 * must be bufferd until after the beacon.
1980 	 *
1981 	 * TODO: we should lock the mcastq before we check the length.
1982 	 */
1983 	if (sc->sc_cabq_enable && ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) {
1984 		txq = &avp->av_mcastq;
1985 		/*
1986 		 * Mark the frame as eventually belonging on the CAB
1987 		 * queue, so the descriptor setup functions will
1988 		 * correctly initialise the descriptor 'qcuId' field.
1989 		 */
1990 		bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum;
1991 	}
1992 #endif
1993 
1994 	/* Do the generic frame setup */
1995 	/* XXX should just bzero the bf_state? */
1996 	bf->bf_state.bfs_dobaw = 0;
1997 
1998 	/* A-MPDU TX? Manually set sequence number */
1999 	/*
2000 	 * Don't do it whilst pending; the net80211 layer still
2001 	 * assigns them.
2002 	 */
2003 	if (is_ampdu_tx) {
2004 		/*
2005 		 * Always call; this function will
2006 		 * handle making sure that null data frames
2007 		 * don't get a sequence number from the current
2008 		 * TID and thus mess with the BAW.
2009 		 */
2010 		seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
2011 
2012 		/*
2013 		 * Don't add QoS NULL frames to the BAW.
2014 		 */
2015 		if (IEEE80211_QOS_HAS_SEQ(wh) &&
2016 		    subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) {
2017 			bf->bf_state.bfs_dobaw = 1;
2018 		}
2019 	}
2020 
2021 	/*
2022 	 * If needed, the sequence number has been assigned.
2023 	 * Squirrel it away somewhere easy to get to.
2024 	 */
2025 	bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
2026 
2027 	/* Is ampdu pending? fetch the seqno and print it out */
2028 	if (is_ampdu_pending)
2029 		DPRINTF(sc, ATH_DEBUG_SW_TX,
2030 		    "%s: tid %d: ampdu pending, seqno %d\n",
2031 		    __func__, tid, M_SEQNO_GET(m0));
2032 
2033 	/* This also sets up the DMA map */
2034 	r = ath_tx_normal_setup(sc, ni, bf, m0, txq);
2035 
2036 	if (r != 0)
2037 		goto done;
2038 
2039 	/* At this point m0 could have changed! */
2040 	m0 = bf->bf_m;
2041 
2042 #if 1
2043 	/*
2044 	 * If it's a multicast frame, do a direct-dispatch to the
2045 	 * destination hardware queue. Don't bother software
2046 	 * queuing it.
2047 	 */
2048 	/*
2049 	 * If it's a BAR frame, do a direct dispatch to the
2050 	 * destination hardware queue. Don't bother software
2051 	 * queuing it, as the TID will now be paused.
2052 	 * Sending a BAR frame can occur from the net80211 txa timer
2053 	 * (ie, retries) or from the ath txtask (completion call.)
2054 	 * It queues directly to hardware because the TID is paused
2055 	 * at this point (and won't be unpaused until the BAR has
2056 	 * either been TXed successfully or max retries has been
2057 	 * reached.)
2058 	 */
2059 	/*
2060 	 * Until things are better debugged - if this node is asleep
2061 	 * and we're sending it a non-BAR frame, direct dispatch it.
2062 	 * Why? Because we need to figure out what's actually being
2063 	 * sent - eg, during reassociation/reauthentication after
2064 	 * the node (last) disappeared whilst asleep, the driver should
2065 	 * have unpaused/unsleep'ed the node.  So until that is
2066 	 * sorted out, use this workaround.
2067 	 */
2068 	if (txq == &avp->av_mcastq) {
2069 		DPRINTF(sc, ATH_DEBUG_SW_TX,
2070 		    "%s: bf=%p: mcastq: TX'ing\n", __func__, bf);
2071 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2072 		ath_tx_xmit_normal(sc, txq, bf);
2073 	} else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0,
2074 	    &queue_to_head)) {
2075 		ath_tx_swq(sc, ni, txq, queue_to_head, bf);
2076 	} else {
2077 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2078 		ath_tx_xmit_normal(sc, txq, bf);
2079 	}
2080 #else
2081 	/*
2082 	 * For now, since there's no software queue,
2083 	 * direct-dispatch to the hardware.
2084 	 */
2085 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2086 	/*
2087 	 * Update the current leak count if
2088 	 * we're leaking frames; and set the
2089 	 * MORE flag as appropriate.
2090 	 */
2091 	ath_tx_leak_count_update(sc, tid, bf);
2092 	ath_tx_xmit_normal(sc, txq, bf);
2093 #endif
2094 done:
2095 	return 0;
2096 }
2097 
2098 static int
2099 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
2100 	struct ath_buf *bf, struct mbuf *m0,
2101 	const struct ieee80211_bpf_params *params)
2102 {
2103 	struct ieee80211com *ic = &sc->sc_ic;
2104 	struct ieee80211vap *vap = ni->ni_vap;
2105 	int error, ismcast, ismrr;
2106 	int keyix, hdrlen, pktlen, try0, txantenna;
2107 	u_int8_t rix, txrate;
2108 	struct ieee80211_frame *wh;
2109 	u_int flags;
2110 	HAL_PKT_TYPE atype;
2111 	const HAL_RATE_TABLE *rt;
2112 	struct ath_desc *ds;
2113 	u_int pri;
2114 	int o_tid = -1;
2115 	int do_override;
2116 	uint8_t type, subtype;
2117 	int queue_to_head;
2118 	struct ath_node *an = ATH_NODE(ni);
2119 
2120 	ATH_TX_LOCK_ASSERT(sc);
2121 
2122 	wh = mtod(m0, struct ieee80211_frame *);
2123 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2124 	hdrlen = ieee80211_anyhdrsize(wh);
2125 	/*
2126 	 * Packet length must not include any
2127 	 * pad bytes; deduct them here.
2128 	 */
2129 	/* XXX honor IEEE80211_BPF_DATAPAD */
2130 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
2131 
2132 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2133 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2134 
2135 	ATH_KTR(sc, ATH_KTR_TX, 2,
2136 	     "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf);
2137 
2138 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
2139 	    __func__, ismcast);
2140 
2141 	pri = params->ibp_pri & 3;
2142 	/* Override pri if the frame isn't a QoS one */
2143 	if (! IEEE80211_QOS_HAS_SEQ(wh))
2144 		pri = ath_tx_getac(sc, m0);
2145 
2146 	/* XXX If it's an ADDBA, override the correct queue */
2147 	do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
2148 
2149 	/* Map ADDBA to the correct priority */
2150 	if (do_override) {
2151 #if 0
2152 		DPRINTF(sc, ATH_DEBUG_XMIT,
2153 		    "%s: overriding tid %d pri %d -> %d\n",
2154 		    __func__, o_tid, pri, TID_TO_WME_AC(o_tid));
2155 #endif
2156 		pri = TID_TO_WME_AC(o_tid);
2157 	}
2158 
2159 	/* Handle encryption twiddling if needed */
2160 	if (! ath_tx_tag_crypto(sc, ni,
2161 	    m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
2162 	    &hdrlen, &pktlen, &keyix)) {
2163 		ieee80211_free_mbuf(m0);
2164 		return EIO;
2165 	}
2166 	/* packet header may have moved, reset our local pointer */
2167 	wh = mtod(m0, struct ieee80211_frame *);
2168 
2169 	/* Do the generic frame setup */
2170 	/* XXX should just bzero the bf_state? */
2171 	bf->bf_state.bfs_dobaw = 0;
2172 
2173 	error = ath_tx_dmasetup(sc, bf, m0);
2174 	if (error != 0)
2175 		return error;
2176 	m0 = bf->bf_m;				/* NB: may have changed */
2177 	wh = mtod(m0, struct ieee80211_frame *);
2178 	KASSERT((ni != NULL), ("%s: ni=NULL!", __func__));
2179 	bf->bf_node = ni;			/* NB: held reference */
2180 
2181 	/* Always enable CLRDMASK for raw frames for now.. */
2182 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
2183 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
2184 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2185 		flags |= HAL_TXDESC_RTSENA;
2186 	else if (params->ibp_flags & IEEE80211_BPF_CTS) {
2187 		/* XXX assume 11g/11n protection? */
2188 		bf->bf_state.bfs_doprot = 1;
2189 		flags |= HAL_TXDESC_CTSENA;
2190 	}
2191 	/* XXX leave ismcast to injector? */
2192 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
2193 		flags |= HAL_TXDESC_NOACK;
2194 
2195 	rt = sc->sc_currates;
2196 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2197 
2198 	/* Fetch first rate information */
2199 	rix = ath_tx_findrix(sc, params->ibp_rate0);
2200 	try0 = params->ibp_try0;
2201 
2202 	/*
2203 	 * Override EAPOL rate as appropriate.
2204 	 */
2205 	if (m0->m_flags & M_EAPOL) {
2206 		/* XXX? maybe always use long preamble? */
2207 		rix = an->an_mgmtrix;
2208 		try0 = ATH_TXMAXTRY;	/* XXX?too many? */
2209 	}
2210 
2211 	/*
2212 	 * If it's a frame to do location reporting on,
2213 	 * communicate it to the HAL.
2214 	 */
2215 	if (ieee80211_get_toa_params(m0, NULL)) {
2216 		device_printf(sc->sc_dev,
2217 		    "%s: setting TX positioning bit\n", __func__);
2218 		flags |= HAL_TXDESC_POS;
2219 		flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
2220 		bf->bf_flags |= ATH_BUF_TOA_PROBE;
2221 	}
2222 
2223 	txrate = rt->info[rix].rateCode;
2224 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
2225 		txrate |= rt->info[rix].shortPreamble;
2226 	sc->sc_txrix = rix;
2227 	ismrr = (params->ibp_try1 != 0);
2228 	txantenna = params->ibp_pri >> 2;
2229 	if (txantenna == 0)			/* XXX? */
2230 		txantenna = sc->sc_txantenna;
2231 
2232 	/*
2233 	 * Since ctsrate is fixed, store it away for later
2234 	 * use when the descriptor fields are being set.
2235 	 */
2236 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
2237 		bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
2238 
2239 	/*
2240 	 * NB: we mark all packets as type PSPOLL so the h/w won't
2241 	 * set the sequence number, duration, etc.
2242 	 */
2243 	atype = HAL_PKT_TYPE_PSPOLL;
2244 
2245 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
2246 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
2247 		    sc->sc_hwmap[rix].ieeerate, -1);
2248 
2249 	if (ieee80211_radiotap_active_vap(vap)) {
2250 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
2251 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2252 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2253 		if (m0->m_flags & M_FRAG)
2254 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2255 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
2256 		sc->sc_tx_th.wt_txpower = MIN(params->ibp_power,
2257 		    ieee80211_get_node_txpower(ni));
2258 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
2259 
2260 		ieee80211_radiotap_tx(vap, m0);
2261 	}
2262 
2263 	/*
2264 	 * Formulate first tx descriptor with tx controls.
2265 	 */
2266 	ds = bf->bf_desc;
2267 	/* XXX check return value? */
2268 
2269 	/* Store the decided rate index values away */
2270 	bf->bf_state.bfs_pktlen = pktlen;
2271 	bf->bf_state.bfs_hdrlen = hdrlen;
2272 	bf->bf_state.bfs_atype = atype;
2273 	bf->bf_state.bfs_txpower = MIN(params->ibp_power,
2274 	    ieee80211_get_node_txpower(ni));
2275 	bf->bf_state.bfs_txrate0 = txrate;
2276 	bf->bf_state.bfs_try0 = try0;
2277 	bf->bf_state.bfs_keyix = keyix;
2278 	bf->bf_state.bfs_txantenna = txantenna;
2279 	bf->bf_state.bfs_txflags = flags;
2280 	bf->bf_state.bfs_shpream =
2281 	    !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
2282 
2283 	/* Set local packet state, used to queue packets to hardware */
2284 	bf->bf_state.bfs_tid = WME_AC_TO_TID(pri);
2285 	bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum;
2286 	bf->bf_state.bfs_pri = pri;
2287 
2288 	/* XXX this should be done in ath_tx_setrate() */
2289 	bf->bf_state.bfs_ctsrate = 0;
2290 	bf->bf_state.bfs_ctsduration = 0;
2291 	bf->bf_state.bfs_ismrr = ismrr;
2292 
2293 	/* Blank the legacy rate array */
2294 	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
2295 
2296 	bf->bf_state.bfs_rc[0].rix = rix;
2297 	bf->bf_state.bfs_rc[0].tries = try0;
2298 	bf->bf_state.bfs_rc[0].ratecode = txrate;
2299 
2300 	if (ismrr) {
2301 		int rix;
2302 
2303 		rix = ath_tx_findrix(sc, params->ibp_rate1);
2304 		bf->bf_state.bfs_rc[1].rix = rix;
2305 		bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
2306 
2307 		rix = ath_tx_findrix(sc, params->ibp_rate2);
2308 		bf->bf_state.bfs_rc[2].rix = rix;
2309 		bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
2310 
2311 		rix = ath_tx_findrix(sc, params->ibp_rate3);
2312 		bf->bf_state.bfs_rc[3].rix = rix;
2313 		bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
2314 	}
2315 	/*
2316 	 * All the required rate control decisions have been made;
2317 	 * fill in the rc flags.
2318 	 */
2319 	ath_tx_rate_fill_rcflags(sc, bf);
2320 
2321 	/* NB: no buffered multicast in power save support */
2322 
2323 	/*
2324 	 * If we're overiding the ADDBA destination, dump directly
2325 	 * into the hardware queue, right after any pending
2326 	 * frames to that node are.
2327 	 */
2328 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
2329 	    __func__, do_override);
2330 
2331 #if 1
2332 	/*
2333 	 * Put addba frames in the right place in the right TID/HWQ.
2334 	 */
2335 	if (do_override) {
2336 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2337 		/*
2338 		 * XXX if it's addba frames, should we be leaking
2339 		 * them out via the frame leak method?
2340 		 * XXX for now let's not risk it; but we may wish
2341 		 * to investigate this later.
2342 		 */
2343 		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2344 	} else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0,
2345 	    &queue_to_head)) {
2346 		/* Queue to software queue */
2347 		ath_tx_swq(sc, ni, sc->sc_ac2q[pri], queue_to_head, bf);
2348 	} else {
2349 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2350 		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2351 	}
2352 #else
2353 	/* Direct-dispatch to the hardware */
2354 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2355 	/*
2356 	 * Update the current leak count if
2357 	 * we're leaking frames; and set the
2358 	 * MORE flag as appropriate.
2359 	 */
2360 	ath_tx_leak_count_update(sc, tid, bf);
2361 	ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2362 #endif
2363 	return 0;
2364 }
2365 
2366 /*
2367  * Send a raw frame.
2368  *
2369  * This can be called by net80211.
2370  */
2371 int
2372 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2373 	const struct ieee80211_bpf_params *params)
2374 {
2375 	struct ieee80211com *ic = ni->ni_ic;
2376 	struct ath_softc *sc = ic->ic_softc;
2377 	struct ath_buf *bf;
2378 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
2379 	int error = 0;
2380 
2381 	ATH_PCU_LOCK(sc);
2382 	if (sc->sc_inreset_cnt > 0) {
2383 		DPRINTF(sc, ATH_DEBUG_XMIT,
2384 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2385 		error = EIO;
2386 		ATH_PCU_UNLOCK(sc);
2387 		goto badbad;
2388 	}
2389 	sc->sc_txstart_cnt++;
2390 	ATH_PCU_UNLOCK(sc);
2391 
2392 	/* Wake the hardware up already */
2393 	ATH_LOCK(sc);
2394 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2395 	ATH_UNLOCK(sc);
2396 
2397 	ATH_TX_LOCK(sc);
2398 
2399 	if (!sc->sc_running || sc->sc_invalid) {
2400 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, r/i: %d/%d",
2401 		    __func__, sc->sc_running, sc->sc_invalid);
2402 		m_freem(m);
2403 		error = ENETDOWN;
2404 		goto bad;
2405 	}
2406 
2407 	/*
2408 	 * Enforce how deep the multicast queue can grow.
2409 	 *
2410 	 * XXX duplicated in ath_tx_start().
2411 	 */
2412 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2413 		if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
2414 		    > sc->sc_txq_mcastq_maxdepth) {
2415 			sc->sc_stats.ast_tx_mcastq_overflow++;
2416 			error = ENOBUFS;
2417 		}
2418 
2419 		if (error != 0) {
2420 			m_freem(m);
2421 			goto bad;
2422 		}
2423 	}
2424 
2425 	/*
2426 	 * Grab a TX buffer and associated resources.
2427 	 */
2428 	bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
2429 	if (bf == NULL) {
2430 		sc->sc_stats.ast_tx_nobuf++;
2431 		m_freem(m);
2432 		error = ENOBUFS;
2433 		goto bad;
2434 	}
2435 	ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n",
2436 	    m, params,  bf);
2437 
2438 	if (params == NULL) {
2439 		/*
2440 		 * Legacy path; interpret frame contents to decide
2441 		 * precisely how to send the frame.
2442 		 */
2443 		if (ath_tx_start(sc, ni, bf, m)) {
2444 			error = EIO;		/* XXX */
2445 			goto bad2;
2446 		}
2447 	} else {
2448 		/*
2449 		 * Caller supplied explicit parameters to use in
2450 		 * sending the frame.
2451 		 */
2452 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
2453 			error = EIO;		/* XXX */
2454 			goto bad2;
2455 		}
2456 	}
2457 	sc->sc_wd_timer = 5;
2458 	sc->sc_stats.ast_tx_raw++;
2459 
2460 	/*
2461 	 * Update the TIM - if there's anything queued to the
2462 	 * software queue and power save is enabled, we should
2463 	 * set the TIM.
2464 	 */
2465 	ath_tx_update_tim(sc, ni, 1);
2466 
2467 	ATH_TX_UNLOCK(sc);
2468 
2469 	ATH_PCU_LOCK(sc);
2470 	sc->sc_txstart_cnt--;
2471 	ATH_PCU_UNLOCK(sc);
2472 
2473 
2474 	/* Put the hardware back to sleep if required */
2475 	ATH_LOCK(sc);
2476 	ath_power_restore_power_state(sc);
2477 	ATH_UNLOCK(sc);
2478 
2479 	return 0;
2480 
2481 bad2:
2482 	ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, "
2483 	    "bf=%p",
2484 	    m,
2485 	    params,
2486 	    bf);
2487 	ATH_TXBUF_LOCK(sc);
2488 	ath_returnbuf_head(sc, bf);
2489 	ATH_TXBUF_UNLOCK(sc);
2490 
2491 bad:
2492 	ATH_TX_UNLOCK(sc);
2493 
2494 	ATH_PCU_LOCK(sc);
2495 	sc->sc_txstart_cnt--;
2496 	ATH_PCU_UNLOCK(sc);
2497 
2498 	/* Put the hardware back to sleep if required */
2499 	ATH_LOCK(sc);
2500 	ath_power_restore_power_state(sc);
2501 	ATH_UNLOCK(sc);
2502 
2503 badbad:
2504 	ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p",
2505 	    m, params);
2506 	sc->sc_stats.ast_tx_raw_fail++;
2507 
2508 	return error;
2509 }
2510 
2511 /* Some helper functions */
2512 
2513 /*
2514  * ADDBA (and potentially others) need to be placed in the same
2515  * hardware queue as the TID/node it's relating to. This is so
2516  * it goes out after any pending non-aggregate frames to the
2517  * same node/TID.
2518  *
2519  * If this isn't done, the ADDBA can go out before the frames
2520  * queued in hardware. Even though these frames have a sequence
2521  * number -earlier- than the ADDBA can be transmitted (but
2522  * no frames whose sequence numbers are after the ADDBA should
2523  * be!) they'll arrive after the ADDBA - and the receiving end
2524  * will simply drop them as being out of the BAW.
2525  *
2526  * The frames can't be appended to the TID software queue - it'll
2527  * never be sent out. So these frames have to be directly
2528  * dispatched to the hardware, rather than queued in software.
2529  * So if this function returns true, the TXQ has to be
2530  * overridden and it has to be directly dispatched.
2531  *
2532  * It's a dirty hack, but someone's gotta do it.
2533  */
2534 
2535 /*
2536  * XXX doesn't belong here!
2537  */
2538 static int
2539 ieee80211_is_action(struct ieee80211_frame *wh)
2540 {
2541 	/* Type: Management frame? */
2542 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
2543 	    IEEE80211_FC0_TYPE_MGT)
2544 		return 0;
2545 
2546 	/* Subtype: Action frame? */
2547 	if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
2548 	    IEEE80211_FC0_SUBTYPE_ACTION)
2549 		return 0;
2550 
2551 	return 1;
2552 }
2553 
2554 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
2555 /*
2556  * Return an alternate TID for ADDBA request frames.
2557  *
2558  * Yes, this likely should be done in the net80211 layer.
2559  */
2560 static int
2561 ath_tx_action_frame_override_queue(struct ath_softc *sc,
2562     struct ieee80211_node *ni,
2563     struct mbuf *m0, int *tid)
2564 {
2565 	struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
2566 	struct ieee80211_action_ba_addbarequest *ia;
2567 	uint8_t *frm;
2568 	uint16_t baparamset;
2569 
2570 	/* Not action frame? Bail */
2571 	if (! ieee80211_is_action(wh))
2572 		return 0;
2573 
2574 	/* XXX Not needed for frames we send? */
2575 #if 0
2576 	/* Correct length? */
2577 	if (! ieee80211_parse_action(ni, m))
2578 		return 0;
2579 #endif
2580 
2581 	/* Extract out action frame */
2582 	frm = (u_int8_t *)&wh[1];
2583 	ia = (struct ieee80211_action_ba_addbarequest *) frm;
2584 
2585 	/* Not ADDBA? Bail */
2586 	if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
2587 		return 0;
2588 	if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
2589 		return 0;
2590 
2591 	/* Extract TID, return it */
2592 	baparamset = le16toh(ia->rq_baparamset);
2593 	*tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
2594 
2595 	return 1;
2596 }
2597 #undef	MS
2598 
2599 /* Per-node software queue operations */
2600 
2601 /*
2602  * Add the current packet to the given BAW.
2603  * It is assumed that the current packet
2604  *
2605  * + fits inside the BAW;
2606  * + already has had a sequence number allocated.
2607  *
2608  * Since the BAW status may be modified by both the ath task and
2609  * the net80211/ifnet contexts, the TID must be locked.
2610  */
2611 void
2612 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
2613     struct ath_tid *tid, struct ath_buf *bf)
2614 {
2615 	int index, cindex;
2616 	struct ieee80211_tx_ampdu *tap;
2617 
2618 	ATH_TX_LOCK_ASSERT(sc);
2619 
2620 	if (bf->bf_state.bfs_isretried)
2621 		return;
2622 
2623 	tap = ath_tx_get_tx_tid(an, tid->tid);
2624 
2625 	if (! bf->bf_state.bfs_dobaw) {
2626 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2627 		    "%s: dobaw=0, seqno=%d, window %d:%d\n",
2628 		    __func__, SEQNO(bf->bf_state.bfs_seqno),
2629 		    tap->txa_start, tap->txa_wnd);
2630 	}
2631 
2632 	if (bf->bf_state.bfs_addedbaw)
2633 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2634 		    "%s: re-added? tid=%d, seqno %d; window %d:%d; "
2635 		    "baw head=%d tail=%d\n",
2636 		    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2637 		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2638 		    tid->baw_tail);
2639 
2640 	/*
2641 	 * Verify that the given sequence number is not outside of the
2642 	 * BAW.  Complain loudly if that's the case.
2643 	 */
2644 	if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2645 	    SEQNO(bf->bf_state.bfs_seqno))) {
2646 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2647 		    "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; "
2648 		    "baw head=%d tail=%d\n",
2649 		    __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2650 		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2651 		    tid->baw_tail);
2652 	}
2653 
2654 	/*
2655 	 * ni->ni_txseqs[] is the currently allocated seqno.
2656 	 * the txa state contains the current baw start.
2657 	 */
2658 	index  = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
2659 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2660 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2661 	    "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d "
2662 	    "baw head=%d tail=%d\n",
2663 	    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2664 	    tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head,
2665 	    tid->baw_tail);
2666 
2667 
2668 #if 0
2669 	assert(tid->tx_buf[cindex] == NULL);
2670 #endif
2671 	if (tid->tx_buf[cindex] != NULL) {
2672 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2673 		    "%s: ba packet dup (index=%d, cindex=%d, "
2674 		    "head=%d, tail=%d)\n",
2675 		    __func__, index, cindex, tid->baw_head, tid->baw_tail);
2676 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2677 		    "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
2678 		    __func__,
2679 		    tid->tx_buf[cindex],
2680 		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
2681 		    bf,
2682 		    SEQNO(bf->bf_state.bfs_seqno)
2683 		);
2684 	}
2685 	tid->tx_buf[cindex] = bf;
2686 
2687 	if (index >= ((tid->baw_tail - tid->baw_head) &
2688 	    (ATH_TID_MAX_BUFS - 1))) {
2689 		tid->baw_tail = cindex;
2690 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
2691 	}
2692 }
2693 
2694 /*
2695  * Flip the BAW buffer entry over from the existing one to the new one.
2696  *
2697  * When software retransmitting a (sub-)frame, it is entirely possible that
2698  * the frame ath_buf is marked as BUSY and can't be immediately reused.
2699  * In that instance the buffer is cloned and the new buffer is used for
2700  * retransmit. We thus need to update the ath_buf slot in the BAW buf
2701  * tracking array to maintain consistency.
2702  */
2703 static void
2704 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
2705     struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
2706 {
2707 	int index, cindex;
2708 	struct ieee80211_tx_ampdu *tap;
2709 	int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
2710 
2711 	ATH_TX_LOCK_ASSERT(sc);
2712 
2713 	tap = ath_tx_get_tx_tid(an, tid->tid);
2714 	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2715 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2716 
2717 	/*
2718 	 * Just warn for now; if it happens then we should find out
2719 	 * about it. It's highly likely the aggregation session will
2720 	 * soon hang.
2721 	 */
2722 	if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
2723 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2724 		    "%s: retransmitted buffer"
2725 		    " has mismatching seqno's, BA session may hang.\n",
2726 		    __func__);
2727 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2728 		    "%s: old seqno=%d, new_seqno=%d\n", __func__,
2729 		    old_bf->bf_state.bfs_seqno, new_bf->bf_state.bfs_seqno);
2730 	}
2731 
2732 	if (tid->tx_buf[cindex] != old_bf) {
2733 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2734 		    "%s: ath_buf pointer incorrect; "
2735 		    " has m BA session may hang.\n", __func__);
2736 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2737 		    "%s: old bf=%p, new bf=%p\n", __func__, old_bf, new_bf);
2738 	}
2739 
2740 	tid->tx_buf[cindex] = new_bf;
2741 }
2742 
2743 /*
2744  * seq_start - left edge of BAW
2745  * seq_next - current/next sequence number to allocate
2746  *
2747  * Since the BAW status may be modified by both the ath task and
2748  * the net80211/ifnet contexts, the TID must be locked.
2749  */
2750 static void
2751 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
2752     struct ath_tid *tid, const struct ath_buf *bf)
2753 {
2754 	int index, cindex;
2755 	struct ieee80211_tx_ampdu *tap;
2756 	int seqno = SEQNO(bf->bf_state.bfs_seqno);
2757 
2758 	ATH_TX_LOCK_ASSERT(sc);
2759 
2760 	tap = ath_tx_get_tx_tid(an, tid->tid);
2761 	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2762 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2763 
2764 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2765 	    "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, "
2766 	    "baw head=%d, tail=%d\n",
2767 	    __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
2768 	    cindex, tid->baw_head, tid->baw_tail);
2769 
2770 	/*
2771 	 * If this occurs then we have a big problem - something else
2772 	 * has slid tap->txa_start along without updating the BAW
2773 	 * tracking start/end pointers. Thus the TX BAW state is now
2774 	 * completely busted.
2775 	 *
2776 	 * But for now, since I haven't yet fixed TDMA and buffer cloning,
2777 	 * it's quite possible that a cloned buffer is making its way
2778 	 * here and causing it to fire off. Disable TDMA for now.
2779 	 */
2780 	if (tid->tx_buf[cindex] != bf) {
2781 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2782 		    "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
2783 		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
2784 		    tid->tx_buf[cindex],
2785 		    (tid->tx_buf[cindex] != NULL) ?
2786 		      SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno) : -1);
2787 	}
2788 
2789 	tid->tx_buf[cindex] = NULL;
2790 
2791 	while (tid->baw_head != tid->baw_tail &&
2792 	    !tid->tx_buf[tid->baw_head]) {
2793 		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2794 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
2795 	}
2796 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2797 	    "%s: tid=%d: baw is now %d:%d, baw head=%d\n",
2798 	    __func__, tid->tid, tap->txa_start, tap->txa_wnd, tid->baw_head);
2799 }
2800 
2801 static void
2802 ath_tx_leak_count_update(struct ath_softc *sc, struct ath_tid *tid,
2803     struct ath_buf *bf)
2804 {
2805 	struct ieee80211_frame *wh;
2806 
2807 	ATH_TX_LOCK_ASSERT(sc);
2808 
2809 	if (tid->an->an_leak_count > 0) {
2810 		wh = mtod(bf->bf_m, struct ieee80211_frame *);
2811 
2812 		/*
2813 		 * Update MORE based on the software/net80211 queue states.
2814 		 */
2815 		if ((tid->an->an_stack_psq > 0)
2816 		    || (tid->an->an_swq_depth > 0))
2817 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
2818 		else
2819 			wh->i_fc[1] &= ~IEEE80211_FC1_MORE_DATA;
2820 
2821 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
2822 		    "%s: %6D: leak count = %d, psq=%d, swq=%d, MORE=%d\n",
2823 		    __func__,
2824 		    tid->an->an_node.ni_macaddr,
2825 		    ":",
2826 		    tid->an->an_leak_count,
2827 		    tid->an->an_stack_psq,
2828 		    tid->an->an_swq_depth,
2829 		    !! (wh->i_fc[1] & IEEE80211_FC1_MORE_DATA));
2830 
2831 		/*
2832 		 * Re-sync the underlying buffer.
2833 		 */
2834 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2835 		    BUS_DMASYNC_PREWRITE);
2836 
2837 		tid->an->an_leak_count --;
2838 	}
2839 }
2840 
2841 static int
2842 ath_tx_tid_can_tx_or_sched(struct ath_softc *sc, struct ath_tid *tid)
2843 {
2844 
2845 	ATH_TX_LOCK_ASSERT(sc);
2846 
2847 	if (tid->an->an_leak_count > 0) {
2848 		return (1);
2849 	}
2850 	if (tid->paused)
2851 		return (0);
2852 	return (1);
2853 }
2854 
2855 /*
2856  * Mark the current node/TID as ready to TX.
2857  *
2858  * This is done to make it easy for the software scheduler to
2859  * find which nodes have data to send.
2860  *
2861  * The TXQ lock must be held.
2862  */
2863 void
2864 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
2865 {
2866 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2867 
2868 	ATH_TX_LOCK_ASSERT(sc);
2869 
2870 	/*
2871 	 * If we are leaking out a frame to this destination
2872 	 * for PS-POLL, ensure that we allow scheduling to
2873 	 * occur.
2874 	 */
2875 	if (! ath_tx_tid_can_tx_or_sched(sc, tid))
2876 		return;		/* paused, can't schedule yet */
2877 
2878 	if (tid->sched)
2879 		return;		/* already scheduled */
2880 
2881 	tid->sched = 1;
2882 
2883 #if 0
2884 	/*
2885 	 * If this is a sleeping node we're leaking to, given
2886 	 * it a higher priority.  This is so bad for QoS it hurts.
2887 	 */
2888 	if (tid->an->an_leak_count) {
2889 		TAILQ_INSERT_HEAD(&txq->axq_tidq, tid, axq_qelem);
2890 	} else {
2891 		TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2892 	}
2893 #endif
2894 
2895 	/*
2896 	 * We can't do the above - it'll confuse the TXQ software
2897 	 * scheduler which will keep checking the _head_ TID
2898 	 * in the list to see if it has traffic.  If we queue
2899 	 * a TID to the head of the list and it doesn't transmit,
2900 	 * we'll check it again.
2901 	 *
2902 	 * So, get the rest of this leaking frames support working
2903 	 * and reliable first and _then_ optimise it so they're
2904 	 * pushed out in front of any other pending software
2905 	 * queued nodes.
2906 	 */
2907 	TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2908 }
2909 
2910 /*
2911  * Mark the current node as no longer needing to be polled for
2912  * TX packets.
2913  *
2914  * The TXQ lock must be held.
2915  */
2916 static void
2917 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
2918 {
2919 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2920 
2921 	ATH_TX_LOCK_ASSERT(sc);
2922 
2923 	if (tid->sched == 0)
2924 		return;
2925 
2926 	tid->sched = 0;
2927 	TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
2928 }
2929 
2930 /*
2931  * Assign a sequence number manually to the given frame.
2932  *
2933  * This should only be called for A-MPDU TX frames.
2934  */
2935 static ieee80211_seq
2936 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
2937     struct ath_buf *bf, struct mbuf *m0)
2938 {
2939 	struct ieee80211_frame *wh;
2940 	int tid, pri;
2941 	ieee80211_seq seqno;
2942 	uint8_t subtype;
2943 
2944 	/* TID lookup */
2945 	wh = mtod(m0, struct ieee80211_frame *);
2946 	pri = M_WME_GETAC(m0);			/* honor classification */
2947 	tid = WME_AC_TO_TID(pri);
2948 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n",
2949 	    __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2950 
2951 	/* XXX Is it a control frame? Ignore */
2952 
2953 	/* Does the packet require a sequence number? */
2954 	if (! IEEE80211_QOS_HAS_SEQ(wh))
2955 		return -1;
2956 
2957 	ATH_TX_LOCK_ASSERT(sc);
2958 
2959 	/*
2960 	 * Is it a QOS NULL Data frame? Give it a sequence number from
2961 	 * the default TID (IEEE80211_NONQOS_TID.)
2962 	 *
2963 	 * The RX path of everything I've looked at doesn't include the NULL
2964 	 * data frame sequence number in the aggregation state updates, so
2965 	 * assigning it a sequence number there will cause a BAW hole on the
2966 	 * RX side.
2967 	 */
2968 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2969 	if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
2970 		/* XXX no locking for this TID? This is a bit of a problem. */
2971 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
2972 		INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
2973 	} else {
2974 		/* Manually assign sequence number */
2975 		seqno = ni->ni_txseqs[tid];
2976 		INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
2977 	}
2978 	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2979 	M_SEQNO_SET(m0, seqno);
2980 
2981 	/* Return so caller can do something with it if needed */
2982 	DPRINTF(sc, ATH_DEBUG_SW_TX,
2983 	    "%s:  -> subtype=0x%x, tid=%d, seqno=%d\n",
2984 	    __func__, subtype, tid, seqno);
2985 	return seqno;
2986 }
2987 
2988 /*
2989  * Attempt to direct dispatch an aggregate frame to hardware.
2990  * If the frame is out of BAW, queue.
2991  * Otherwise, schedule it as a single frame.
2992  */
2993 static void
2994 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an,
2995     struct ath_txq *txq, struct ath_buf *bf)
2996 {
2997 	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
2998 	struct ieee80211_tx_ampdu *tap;
2999 
3000 	ATH_TX_LOCK_ASSERT(sc);
3001 
3002 	tap = ath_tx_get_tx_tid(an, tid->tid);
3003 
3004 	/* paused? queue */
3005 	if (! ath_tx_tid_can_tx_or_sched(sc, tid)) {
3006 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
3007 		/* XXX don't sched - we're paused! */
3008 		return;
3009 	}
3010 
3011 	/* outside baw? queue */
3012 	if (bf->bf_state.bfs_dobaw &&
3013 	    (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
3014 	    SEQNO(bf->bf_state.bfs_seqno)))) {
3015 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
3016 		ath_tx_tid_sched(sc, tid);
3017 		return;
3018 	}
3019 
3020 	/*
3021 	 * This is a temporary check and should be removed once
3022 	 * all the relevant code paths have been fixed.
3023 	 *
3024 	 * During aggregate retries, it's possible that the head
3025 	 * frame will fail (which has the bfs_aggr and bfs_nframes
3026 	 * fields set for said aggregate) and will be retried as
3027 	 * a single frame.  In this instance, the values should
3028 	 * be reset or the completion code will get upset with you.
3029 	 */
3030 	if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) {
3031 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3032 		    "%s: bfs_aggr=%d, bfs_nframes=%d\n", __func__,
3033 		    bf->bf_state.bfs_aggr, bf->bf_state.bfs_nframes);
3034 		bf->bf_state.bfs_aggr = 0;
3035 		bf->bf_state.bfs_nframes = 1;
3036 	}
3037 
3038 	/* Update CLRDMASK just before this frame is queued */
3039 	ath_tx_update_clrdmask(sc, tid, bf);
3040 
3041 	/* Direct dispatch to hardware */
3042 	ath_tx_do_ratelookup(sc, bf);
3043 	ath_tx_calc_duration(sc, bf);
3044 	ath_tx_calc_protection(sc, bf);
3045 	ath_tx_set_rtscts(sc, bf);
3046 	ath_tx_rate_fill_rcflags(sc, bf);
3047 	ath_tx_setds(sc, bf);
3048 
3049 	/* Statistics */
3050 	sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
3051 
3052 	/* Track per-TID hardware queue depth correctly */
3053 	tid->hwq_depth++;
3054 
3055 	/* Add to BAW */
3056 	if (bf->bf_state.bfs_dobaw) {
3057 		ath_tx_addto_baw(sc, an, tid, bf);
3058 		bf->bf_state.bfs_addedbaw = 1;
3059 	}
3060 
3061 	/* Set completion handler, multi-frame aggregate or not */
3062 	bf->bf_comp = ath_tx_aggr_comp;
3063 
3064 	/*
3065 	 * Update the current leak count if
3066 	 * we're leaking frames; and set the
3067 	 * MORE flag as appropriate.
3068 	 */
3069 	ath_tx_leak_count_update(sc, tid, bf);
3070 
3071 	/* Hand off to hardware */
3072 	ath_tx_handoff(sc, txq, bf);
3073 }
3074 
3075 /*
3076  * Attempt to send the packet.
3077  * If the queue isn't busy, direct-dispatch.
3078  * If the queue is busy enough, queue the given packet on the
3079  *  relevant software queue.
3080  */
3081 void
3082 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni,
3083     struct ath_txq *txq, int queue_to_head, struct ath_buf *bf)
3084 {
3085 	struct ath_node *an = ATH_NODE(ni);
3086 	struct ieee80211_frame *wh;
3087 	struct ath_tid *atid;
3088 	int pri, tid;
3089 	struct mbuf *m0 = bf->bf_m;
3090 
3091 	ATH_TX_LOCK_ASSERT(sc);
3092 
3093 	/* Fetch the TID - non-QoS frames get assigned to TID 16 */
3094 	wh = mtod(m0, struct ieee80211_frame *);
3095 	pri = ath_tx_getac(sc, m0);
3096 	tid = ath_tx_gettid(sc, m0);
3097 	atid = &an->an_tid[tid];
3098 
3099 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
3100 	    __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
3101 
3102 	/* Set local packet state, used to queue packets to hardware */
3103 	/* XXX potentially duplicate info, re-check */
3104 	bf->bf_state.bfs_tid = tid;
3105 	bf->bf_state.bfs_tx_queue = txq->axq_qnum;
3106 	bf->bf_state.bfs_pri = pri;
3107 
3108 	/*
3109 	 * If the hardware queue isn't busy, queue it directly.
3110 	 * If the hardware queue is busy, queue it.
3111 	 * If the TID is paused or the traffic it outside BAW, software
3112 	 * queue it.
3113 	 *
3114 	 * If the node is in power-save and we're leaking a frame,
3115 	 * leak a single frame.
3116 	 */
3117 	if (! ath_tx_tid_can_tx_or_sched(sc, atid)) {
3118 		/* TID is paused, queue */
3119 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__);
3120 		/*
3121 		 * If the caller requested that it be sent at a high
3122 		 * priority, queue it at the head of the list.
3123 		 */
3124 		if (queue_to_head)
3125 			ATH_TID_INSERT_HEAD(atid, bf, bf_list);
3126 		else
3127 			ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3128 	} else if (ath_tx_ampdu_pending(sc, an, tid)) {
3129 		/* AMPDU pending; queue */
3130 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__);
3131 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3132 		/* XXX sched? */
3133 	} else if (ath_tx_ampdu_running(sc, an, tid)) {
3134 		/*
3135 		 * AMPDU running, queue single-frame if the hardware queue
3136 		 * isn't busy.
3137 		 *
3138 		 * If the hardware queue is busy, sending an aggregate frame
3139 		 * then just hold off so we can queue more aggregate frames.
3140 		 *
3141 		 * Otherwise we may end up with single frames leaking through
3142 		 * because we are dispatching them too quickly.
3143 		 *
3144 		 * TODO: maybe we should treat this as two policies - minimise
3145 		 * latency, or maximise throughput.  Then for BE/BK we can
3146 		 * maximise throughput, and VO/VI (if AMPDU is enabled!)
3147 		 * minimise latency.
3148 		 */
3149 
3150 		/*
3151 		 * Always queue the frame to the tail of the list.
3152 		 */
3153 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3154 
3155 		/*
3156 		 * If the hardware queue isn't busy, direct dispatch
3157 		 * the head frame in the list.
3158 		 *
3159 		 * Note: if we're say, configured to do ADDBA but not A-MPDU
3160 		 * then maybe we want to still queue two non-aggregate frames
3161 		 * to the hardware.  Again with the per-TID policy
3162 		 * configuration..)
3163 		 *
3164 		 * Otherwise, schedule the TID.
3165 		 */
3166 		/* XXX TXQ locking */
3167 		if (txq->axq_depth + txq->fifo.axq_depth == 0) {
3168 
3169 			bf = ATH_TID_FIRST(atid);
3170 			ATH_TID_REMOVE(atid, bf, bf_list);
3171 
3172 			/*
3173 			 * Ensure it's definitely treated as a non-AMPDU
3174 			 * frame - this information may have been left
3175 			 * over from a previous attempt.
3176 			 */
3177 			bf->bf_state.bfs_aggr = 0;
3178 			bf->bf_state.bfs_nframes = 1;
3179 
3180 			/* Queue to the hardware */
3181 			ath_tx_xmit_aggr(sc, an, txq, bf);
3182 			DPRINTF(sc, ATH_DEBUG_SW_TX,
3183 			    "%s: xmit_aggr\n",
3184 			    __func__);
3185 		} else {
3186 			DPRINTF(sc, ATH_DEBUG_SW_TX,
3187 			    "%s: ampdu; swq'ing\n",
3188 			    __func__);
3189 
3190 			ath_tx_tid_sched(sc, atid);
3191 		}
3192 	/*
3193 	 * If we're not doing A-MPDU, be prepared to direct dispatch
3194 	 * up to both limits if possible.  This particular corner
3195 	 * case may end up with packet starvation between aggregate
3196 	 * traffic and non-aggregate traffic: we want to ensure
3197 	 * that non-aggregate stations get a few frames queued to the
3198 	 * hardware before the aggregate station(s) get their chance.
3199 	 *
3200 	 * So if you only ever see a couple of frames direct dispatched
3201 	 * to the hardware from a non-AMPDU client, check both here
3202 	 * and in the software queue dispatcher to ensure that those
3203 	 * non-AMPDU stations get a fair chance to transmit.
3204 	 */
3205 	/* XXX TXQ locking */
3206 	} else if ((txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit_nonaggr) &&
3207 		    (txq->axq_aggr_depth < sc->sc_hwq_limit_aggr)) {
3208 		/* AMPDU not running, attempt direct dispatch */
3209 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__);
3210 		/* See if clrdmask needs to be set */
3211 		ath_tx_update_clrdmask(sc, atid, bf);
3212 
3213 		/*
3214 		 * Update the current leak count if
3215 		 * we're leaking frames; and set the
3216 		 * MORE flag as appropriate.
3217 		 */
3218 		ath_tx_leak_count_update(sc, atid, bf);
3219 
3220 		/*
3221 		 * Dispatch the frame.
3222 		 */
3223 		ath_tx_xmit_normal(sc, txq, bf);
3224 	} else {
3225 		/* Busy; queue */
3226 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__);
3227 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3228 		ath_tx_tid_sched(sc, atid);
3229 	}
3230 }
3231 
3232 /*
3233  * Only set the clrdmask bit if none of the nodes are currently
3234  * filtered.
3235  *
3236  * XXX TODO: go through all the callers and check to see
3237  * which are being called in the context of looping over all
3238  * TIDs (eg, if all tids are being paused, resumed, etc.)
3239  * That'll avoid O(n^2) complexity here.
3240  */
3241 static void
3242 ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an)
3243 {
3244 	int i;
3245 
3246 	ATH_TX_LOCK_ASSERT(sc);
3247 
3248 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
3249 		if (an->an_tid[i].isfiltered == 1)
3250 			return;
3251 	}
3252 	an->clrdmask = 1;
3253 }
3254 
3255 /*
3256  * Configure the per-TID node state.
3257  *
3258  * This likely belongs in if_ath_node.c but I can't think of anywhere
3259  * else to put it just yet.
3260  *
3261  * This sets up the SLISTs and the mutex as appropriate.
3262  */
3263 void
3264 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
3265 {
3266 	int i, j;
3267 	struct ath_tid *atid;
3268 
3269 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
3270 		atid = &an->an_tid[i];
3271 
3272 		/* XXX now with this bzer(), is the field 0'ing needed? */
3273 		bzero(atid, sizeof(*atid));
3274 
3275 		TAILQ_INIT(&atid->tid_q);
3276 		TAILQ_INIT(&atid->filtq.tid_q);
3277 		atid->tid = i;
3278 		atid->an = an;
3279 		for (j = 0; j < ATH_TID_MAX_BUFS; j++)
3280 			atid->tx_buf[j] = NULL;
3281 		atid->baw_head = atid->baw_tail = 0;
3282 		atid->paused = 0;
3283 		atid->sched = 0;
3284 		atid->hwq_depth = 0;
3285 		atid->cleanup_inprogress = 0;
3286 		if (i == IEEE80211_NONQOS_TID)
3287 			atid->ac = ATH_NONQOS_TID_AC;
3288 		else
3289 			atid->ac = TID_TO_WME_AC(i);
3290 	}
3291 	an->clrdmask = 1;	/* Always start by setting this bit */
3292 }
3293 
3294 /*
3295  * Pause the current TID. This stops packets from being transmitted
3296  * on it.
3297  *
3298  * Since this is also called from upper layers as well as the driver,
3299  * it will get the TID lock.
3300  */
3301 static void
3302 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
3303 {
3304 
3305 	ATH_TX_LOCK_ASSERT(sc);
3306 	tid->paused++;
3307 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: [%6D]: tid=%d, paused = %d\n",
3308 	    __func__,
3309 	    tid->an->an_node.ni_macaddr, ":",
3310 	    tid->tid,
3311 	    tid->paused);
3312 }
3313 
3314 /*
3315  * Unpause the current TID, and schedule it if needed.
3316  */
3317 static void
3318 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
3319 {
3320 	ATH_TX_LOCK_ASSERT(sc);
3321 
3322 	/*
3323 	 * There's some odd places where ath_tx_tid_resume() is called
3324 	 * when it shouldn't be; this works around that particular issue
3325 	 * until it's actually resolved.
3326 	 */
3327 	if (tid->paused == 0) {
3328 		device_printf(sc->sc_dev,
3329 		    "%s: [%6D]: tid=%d, paused=0?\n",
3330 		    __func__,
3331 		    tid->an->an_node.ni_macaddr, ":",
3332 		    tid->tid);
3333 	} else {
3334 		tid->paused--;
3335 	}
3336 
3337 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3338 	    "%s: [%6D]: tid=%d, unpaused = %d\n",
3339 	    __func__,
3340 	    tid->an->an_node.ni_macaddr, ":",
3341 	    tid->tid,
3342 	    tid->paused);
3343 
3344 	if (tid->paused)
3345 		return;
3346 
3347 	/*
3348 	 * Override the clrdmask configuration for the next frame
3349 	 * from this TID, just to get the ball rolling.
3350 	 */
3351 	ath_tx_set_clrdmask(sc, tid->an);
3352 
3353 	if (tid->axq_depth == 0)
3354 		return;
3355 
3356 	/* XXX isfiltered shouldn't ever be 0 at this point */
3357 	if (tid->isfiltered == 1) {
3358 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: filtered?!\n",
3359 		    __func__);
3360 		return;
3361 	}
3362 
3363 	ath_tx_tid_sched(sc, tid);
3364 
3365 	/*
3366 	 * Queue the software TX scheduler.
3367 	 */
3368 	ath_tx_swq_kick(sc);
3369 }
3370 
3371 /*
3372  * Add the given ath_buf to the TID filtered frame list.
3373  * This requires the TID be filtered.
3374  */
3375 static void
3376 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid,
3377     struct ath_buf *bf)
3378 {
3379 
3380 	ATH_TX_LOCK_ASSERT(sc);
3381 
3382 	if (!tid->isfiltered)
3383 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: not filtered?!\n",
3384 		    __func__);
3385 
3386 	DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf);
3387 
3388 	/* Set the retry bit and bump the retry counter */
3389 	ath_tx_set_retry(sc, bf);
3390 	sc->sc_stats.ast_tx_swfiltered++;
3391 
3392 	ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list);
3393 }
3394 
3395 /*
3396  * Handle a completed filtered frame from the given TID.
3397  * This just enables/pauses the filtered frame state if required
3398  * and appends the filtered frame to the filtered queue.
3399  */
3400 static void
3401 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid,
3402     struct ath_buf *bf)
3403 {
3404 
3405 	ATH_TX_LOCK_ASSERT(sc);
3406 
3407 	if (! tid->isfiltered) {
3408 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d; filter transition\n",
3409 		    __func__, tid->tid);
3410 		tid->isfiltered = 1;
3411 		ath_tx_tid_pause(sc, tid);
3412 	}
3413 
3414 	/* Add the frame to the filter queue */
3415 	ath_tx_tid_filt_addbuf(sc, tid, bf);
3416 }
3417 
3418 /*
3419  * Complete the filtered frame TX completion.
3420  *
3421  * If there are no more frames in the hardware queue, unpause/unfilter
3422  * the TID if applicable.  Otherwise we will wait for a node PS transition
3423  * to unfilter.
3424  */
3425 static void
3426 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid)
3427 {
3428 	struct ath_buf *bf;
3429 	int do_resume = 0;
3430 
3431 	ATH_TX_LOCK_ASSERT(sc);
3432 
3433 	if (tid->hwq_depth != 0)
3434 		return;
3435 
3436 	DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d, hwq=0, transition back\n",
3437 	    __func__, tid->tid);
3438 	if (tid->isfiltered == 1) {
3439 		tid->isfiltered = 0;
3440 		do_resume = 1;
3441 	}
3442 
3443 	/* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */
3444 	ath_tx_set_clrdmask(sc, tid->an);
3445 
3446 	/* XXX this is really quite inefficient */
3447 	while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) {
3448 		ATH_TID_FILT_REMOVE(tid, bf, bf_list);
3449 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
3450 	}
3451 
3452 	/* And only resume if we had paused before */
3453 	if (do_resume)
3454 		ath_tx_tid_resume(sc, tid);
3455 }
3456 
3457 /*
3458  * Called when a single (aggregate or otherwise) frame is completed.
3459  *
3460  * Returns 0 if the buffer could be added to the filtered list
3461  * (cloned or otherwise), 1 if the buffer couldn't be added to the
3462  * filtered list (failed clone; expired retry) and the caller should
3463  * free it and handle it like a failure (eg by sending a BAR.)
3464  *
3465  * since the buffer may be cloned, bf must be not touched after this
3466  * if the return value is 0.
3467  */
3468 static int
3469 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid,
3470     struct ath_buf *bf)
3471 {
3472 	struct ath_buf *nbf;
3473 	int retval;
3474 
3475 	ATH_TX_LOCK_ASSERT(sc);
3476 
3477 	/*
3478 	 * Don't allow a filtered frame to live forever.
3479 	 */
3480 	if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
3481 		sc->sc_stats.ast_tx_swretrymax++;
3482 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3483 		    "%s: bf=%p, seqno=%d, exceeded retries\n",
3484 		    __func__,
3485 		    bf,
3486 		    SEQNO(bf->bf_state.bfs_seqno));
3487 		retval = 1; /* error */
3488 		goto finish;
3489 	}
3490 
3491 	/*
3492 	 * A busy buffer can't be added to the retry list.
3493 	 * It needs to be cloned.
3494 	 */
3495 	if (bf->bf_flags & ATH_BUF_BUSY) {
3496 		nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
3497 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3498 		    "%s: busy buffer clone: %p -> %p\n",
3499 		    __func__, bf, nbf);
3500 	} else {
3501 		nbf = bf;
3502 	}
3503 
3504 	if (nbf == NULL) {
3505 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3506 		    "%s: busy buffer couldn't be cloned (%p)!\n",
3507 		    __func__, bf);
3508 		retval = 1; /* error */
3509 	} else {
3510 		ath_tx_tid_filt_comp_buf(sc, tid, nbf);
3511 		retval = 0; /* ok */
3512 	}
3513 finish:
3514 	ath_tx_tid_filt_comp_complete(sc, tid);
3515 
3516 	return (retval);
3517 }
3518 
3519 static void
3520 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid,
3521     struct ath_buf *bf_first, ath_bufhead *bf_q)
3522 {
3523 	struct ath_buf *bf, *bf_next, *nbf;
3524 
3525 	ATH_TX_LOCK_ASSERT(sc);
3526 
3527 	bf = bf_first;
3528 	while (bf) {
3529 		bf_next = bf->bf_next;
3530 		bf->bf_next = NULL;	/* Remove it from the aggr list */
3531 
3532 		/*
3533 		 * Don't allow a filtered frame to live forever.
3534 		 */
3535 		if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
3536 			sc->sc_stats.ast_tx_swretrymax++;
3537 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3538 			    "%s: tid=%d, bf=%p, seqno=%d, exceeded retries\n",
3539 			    __func__,
3540 			    tid->tid,
3541 			    bf,
3542 			    SEQNO(bf->bf_state.bfs_seqno));
3543 			TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3544 			goto next;
3545 		}
3546 
3547 		if (bf->bf_flags & ATH_BUF_BUSY) {
3548 			nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
3549 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3550 			    "%s: tid=%d, busy buffer cloned: %p -> %p, seqno=%d\n",
3551 			    __func__, tid->tid, bf, nbf, SEQNO(bf->bf_state.bfs_seqno));
3552 		} else {
3553 			nbf = bf;
3554 		}
3555 
3556 		/*
3557 		 * If the buffer couldn't be cloned, add it to bf_q;
3558 		 * the caller will free the buffer(s) as required.
3559 		 */
3560 		if (nbf == NULL) {
3561 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3562 			    "%s: tid=%d, buffer couldn't be cloned! (%p) seqno=%d\n",
3563 			    __func__, tid->tid, bf, SEQNO(bf->bf_state.bfs_seqno));
3564 			TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3565 		} else {
3566 			ath_tx_tid_filt_comp_buf(sc, tid, nbf);
3567 		}
3568 next:
3569 		bf = bf_next;
3570 	}
3571 
3572 	ath_tx_tid_filt_comp_complete(sc, tid);
3573 }
3574 
3575 /*
3576  * Suspend the queue because we need to TX a BAR.
3577  */
3578 static void
3579 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid)
3580 {
3581 
3582 	ATH_TX_LOCK_ASSERT(sc);
3583 
3584 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3585 	    "%s: tid=%d, bar_wait=%d, bar_tx=%d, called\n",
3586 	    __func__,
3587 	    tid->tid,
3588 	    tid->bar_wait,
3589 	    tid->bar_tx);
3590 
3591 	/* We shouldn't be called when bar_tx is 1 */
3592 	if (tid->bar_tx) {
3593 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3594 		    "%s: bar_tx is 1?!\n", __func__);
3595 	}
3596 
3597 	/* If we've already been called, just be patient. */
3598 	if (tid->bar_wait)
3599 		return;
3600 
3601 	/* Wait! */
3602 	tid->bar_wait = 1;
3603 
3604 	/* Only one pause, no matter how many frames fail */
3605 	ath_tx_tid_pause(sc, tid);
3606 }
3607 
3608 /*
3609  * We've finished with BAR handling - either we succeeded or
3610  * failed. Either way, unsuspend TX.
3611  */
3612 static void
3613 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid)
3614 {
3615 
3616 	ATH_TX_LOCK_ASSERT(sc);
3617 
3618 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3619 	    "%s: %6D: TID=%d, called\n",
3620 	    __func__,
3621 	    tid->an->an_node.ni_macaddr,
3622 	    ":",
3623 	    tid->tid);
3624 
3625 	if (tid->bar_tx == 0 || tid->bar_wait == 0) {
3626 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3627 		    "%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n",
3628 		    __func__, tid->an->an_node.ni_macaddr, ":",
3629 		    tid->tid, tid->bar_tx, tid->bar_wait);
3630 	}
3631 
3632 	tid->bar_tx = tid->bar_wait = 0;
3633 	ath_tx_tid_resume(sc, tid);
3634 }
3635 
3636 /*
3637  * Return whether we're ready to TX a BAR frame.
3638  *
3639  * Requires the TID lock be held.
3640  */
3641 static int
3642 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid)
3643 {
3644 
3645 	ATH_TX_LOCK_ASSERT(sc);
3646 
3647 	if (tid->bar_wait == 0 || tid->hwq_depth > 0)
3648 		return (0);
3649 
3650 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3651 	    "%s: %6D: TID=%d, bar ready\n",
3652 	    __func__,
3653 	    tid->an->an_node.ni_macaddr,
3654 	    ":",
3655 	    tid->tid);
3656 
3657 	return (1);
3658 }
3659 
3660 /*
3661  * Check whether the current TID is ready to have a BAR
3662  * TXed and if so, do the TX.
3663  *
3664  * Since the TID/TXQ lock can't be held during a call to
3665  * ieee80211_send_bar(), we have to do the dirty thing of unlocking it,
3666  * sending the BAR and locking it again.
3667  *
3668  * Eventually, the code to send the BAR should be broken out
3669  * from this routine so the lock doesn't have to be reacquired
3670  * just to be immediately dropped by the caller.
3671  */
3672 static void
3673 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid)
3674 {
3675 	struct ieee80211_tx_ampdu *tap;
3676 
3677 	ATH_TX_LOCK_ASSERT(sc);
3678 
3679 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3680 	    "%s: %6D: TID=%d, called\n",
3681 	    __func__,
3682 	    tid->an->an_node.ni_macaddr,
3683 	    ":",
3684 	    tid->tid);
3685 
3686 	tap = ath_tx_get_tx_tid(tid->an, tid->tid);
3687 
3688 	/*
3689 	 * This is an error condition!
3690 	 */
3691 	if (tid->bar_wait == 0 || tid->bar_tx == 1) {
3692 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3693 		    "%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n",
3694 		    __func__, tid->an->an_node.ni_macaddr, ":",
3695 		    tid->tid, tid->bar_tx, tid->bar_wait);
3696 		return;
3697 	}
3698 
3699 	/* Don't do anything if we still have pending frames */
3700 	if (tid->hwq_depth > 0) {
3701 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3702 		    "%s: %6D: TID=%d, hwq_depth=%d, waiting\n",
3703 		    __func__,
3704 		    tid->an->an_node.ni_macaddr,
3705 		    ":",
3706 		    tid->tid,
3707 		    tid->hwq_depth);
3708 		return;
3709 	}
3710 
3711 	/* We're now about to TX */
3712 	tid->bar_tx = 1;
3713 
3714 	/*
3715 	 * Override the clrdmask configuration for the next frame,
3716 	 * just to get the ball rolling.
3717 	 */
3718 	ath_tx_set_clrdmask(sc, tid->an);
3719 
3720 	/*
3721 	 * Calculate new BAW left edge, now that all frames have either
3722 	 * succeeded or failed.
3723 	 *
3724 	 * XXX verify this is _actually_ the valid value to begin at!
3725 	 */
3726 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3727 	    "%s: %6D: TID=%d, new BAW left edge=%d\n",
3728 	    __func__,
3729 	    tid->an->an_node.ni_macaddr,
3730 	    ":",
3731 	    tid->tid,
3732 	    tap->txa_start);
3733 
3734 	/* Try sending the BAR frame */
3735 	/* We can't hold the lock here! */
3736 
3737 	ATH_TX_UNLOCK(sc);
3738 	if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) {
3739 		/* Success? Now we wait for notification that it's done */
3740 		ATH_TX_LOCK(sc);
3741 		return;
3742 	}
3743 
3744 	/* Failure? For now, warn loudly and continue */
3745 	ATH_TX_LOCK(sc);
3746 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3747 	    "%s: %6D: TID=%d, failed to TX BAR, continue!\n",
3748 	    __func__, tid->an->an_node.ni_macaddr, ":",
3749 	    tid->tid);
3750 	ath_tx_tid_bar_unsuspend(sc, tid);
3751 }
3752 
3753 static void
3754 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an,
3755     struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf)
3756 {
3757 
3758 	ATH_TX_LOCK_ASSERT(sc);
3759 
3760 	/*
3761 	 * If the current TID is running AMPDU, update
3762 	 * the BAW.
3763 	 */
3764 	if (ath_tx_ampdu_running(sc, an, tid->tid) &&
3765 	    bf->bf_state.bfs_dobaw) {
3766 		/*
3767 		 * Only remove the frame from the BAW if it's
3768 		 * been transmitted at least once; this means
3769 		 * the frame was in the BAW to begin with.
3770 		 */
3771 		if (bf->bf_state.bfs_retries > 0) {
3772 			ath_tx_update_baw(sc, an, tid, bf);
3773 			bf->bf_state.bfs_dobaw = 0;
3774 		}
3775 #if 0
3776 		/*
3777 		 * This has become a non-fatal error now
3778 		 */
3779 		if (! bf->bf_state.bfs_addedbaw)
3780 			DPRINTF(sc, ATH_DEBUG_SW_TX_BAW
3781 			    "%s: wasn't added: seqno %d\n",
3782 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
3783 #endif
3784 	}
3785 
3786 	/* Strip it out of an aggregate list if it was in one */
3787 	bf->bf_next = NULL;
3788 
3789 	/* Insert on the free queue to be freed by the caller */
3790 	TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
3791 }
3792 
3793 static void
3794 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an,
3795     const char *pfx, struct ath_tid *tid, struct ath_buf *bf)
3796 {
3797 	struct ieee80211_node *ni = &an->an_node;
3798 	struct ath_txq *txq;
3799 	struct ieee80211_tx_ampdu *tap;
3800 
3801 	txq = sc->sc_ac2q[tid->ac];
3802 	tap = ath_tx_get_tx_tid(an, tid->tid);
3803 
3804 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3805 	    "%s: %s: %6D: bf=%p: addbaw=%d, dobaw=%d, "
3806 	    "seqno=%d, retry=%d\n",
3807 	    __func__,
3808 	    pfx,
3809 	    ni->ni_macaddr,
3810 	    ":",
3811 	    bf,
3812 	    bf->bf_state.bfs_addedbaw,
3813 	    bf->bf_state.bfs_dobaw,
3814 	    SEQNO(bf->bf_state.bfs_seqno),
3815 	    bf->bf_state.bfs_retries);
3816 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3817 	    "%s: %s: %6D: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n",
3818 	    __func__,
3819 	    pfx,
3820 	    ni->ni_macaddr,
3821 	    ":",
3822 	    bf,
3823 	    txq->axq_qnum,
3824 	    txq->axq_depth,
3825 	    txq->axq_aggr_depth);
3826 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3827 	    "%s: %s: %6D: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, "
3828 	      "isfiltered=%d\n",
3829 	    __func__,
3830 	    pfx,
3831 	    ni->ni_macaddr,
3832 	    ":",
3833 	    bf,
3834 	    tid->axq_depth,
3835 	    tid->hwq_depth,
3836 	    tid->bar_wait,
3837 	    tid->isfiltered);
3838 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3839 	    "%s: %s: %6D: tid %d: "
3840 	    "sched=%d, paused=%d, "
3841 	    "incomp=%d, baw_head=%d, "
3842 	    "baw_tail=%d txa_start=%d, ni_txseqs=%d\n",
3843 	     __func__,
3844 	     pfx,
3845 	     ni->ni_macaddr,
3846 	     ":",
3847 	     tid->tid,
3848 	     tid->sched, tid->paused,
3849 	     tid->incomp, tid->baw_head,
3850 	     tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
3851 	     ni->ni_txseqs[tid->tid]);
3852 
3853 	/* XXX Dump the frame, see what it is? */
3854 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3855 		ieee80211_dump_pkt(ni->ni_ic,
3856 		    mtod(bf->bf_m, const uint8_t *),
3857 		    bf->bf_m->m_len, 0, -1);
3858 }
3859 
3860 /*
3861  * Free any packets currently pending in the software TX queue.
3862  *
3863  * This will be called when a node is being deleted.
3864  *
3865  * It can also be called on an active node during an interface
3866  * reset or state transition.
3867  *
3868  * (From Linux/reference):
3869  *
3870  * TODO: For frame(s) that are in the retry state, we will reuse the
3871  * sequence number(s) without setting the retry bit. The
3872  * alternative is to give up on these and BAR the receiver's window
3873  * forward.
3874  */
3875 static void
3876 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an,
3877     struct ath_tid *tid, ath_bufhead *bf_cq)
3878 {
3879 	struct ath_buf *bf;
3880 	struct ieee80211_tx_ampdu *tap;
3881 	struct ieee80211_node *ni = &an->an_node;
3882 	int t;
3883 
3884 	tap = ath_tx_get_tx_tid(an, tid->tid);
3885 
3886 	ATH_TX_LOCK_ASSERT(sc);
3887 
3888 	/* Walk the queue, free frames */
3889 	t = 0;
3890 	for (;;) {
3891 		bf = ATH_TID_FIRST(tid);
3892 		if (bf == NULL) {
3893 			break;
3894 		}
3895 
3896 		if (t == 0) {
3897 			ath_tx_tid_drain_print(sc, an, "norm", tid, bf);
3898 //			t = 1;
3899 		}
3900 
3901 		ATH_TID_REMOVE(tid, bf, bf_list);
3902 		ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
3903 	}
3904 
3905 	/* And now, drain the filtered frame queue */
3906 	t = 0;
3907 	for (;;) {
3908 		bf = ATH_TID_FILT_FIRST(tid);
3909 		if (bf == NULL)
3910 			break;
3911 
3912 		if (t == 0) {
3913 			ath_tx_tid_drain_print(sc, an, "filt", tid, bf);
3914 //			t = 1;
3915 		}
3916 
3917 		ATH_TID_FILT_REMOVE(tid, bf, bf_list);
3918 		ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
3919 	}
3920 
3921 	/*
3922 	 * Override the clrdmask configuration for the next frame
3923 	 * in case there is some future transmission, just to get
3924 	 * the ball rolling.
3925 	 *
3926 	 * This won't hurt things if the TID is about to be freed.
3927 	 */
3928 	ath_tx_set_clrdmask(sc, tid->an);
3929 
3930 	/*
3931 	 * Now that it's completed, grab the TID lock and update
3932 	 * the sequence number and BAW window.
3933 	 * Because sequence numbers have been assigned to frames
3934 	 * that haven't been sent yet, it's entirely possible
3935 	 * we'll be called with some pending frames that have not
3936 	 * been transmitted.
3937 	 *
3938 	 * The cleaner solution is to do the sequence number allocation
3939 	 * when the packet is first transmitted - and thus the "retries"
3940 	 * check above would be enough to update the BAW/seqno.
3941 	 */
3942 
3943 	/* But don't do it for non-QoS TIDs */
3944 	if (tap) {
3945 #if 1
3946 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3947 		    "%s: %6D: node %p: TID %d: sliding BAW left edge to %d\n",
3948 		    __func__,
3949 		    ni->ni_macaddr,
3950 		    ":",
3951 		    an,
3952 		    tid->tid,
3953 		    tap->txa_start);
3954 #endif
3955 		ni->ni_txseqs[tid->tid] = tap->txa_start;
3956 		tid->baw_tail = tid->baw_head;
3957 	}
3958 }
3959 
3960 /*
3961  * Reset the TID state.  This must be only called once the node has
3962  * had its frames flushed from this TID, to ensure that no other
3963  * pause / unpause logic can kick in.
3964  */
3965 static void
3966 ath_tx_tid_reset(struct ath_softc *sc, struct ath_tid *tid)
3967 {
3968 
3969 #if 0
3970 	tid->bar_wait = tid->bar_tx = tid->isfiltered = 0;
3971 	tid->paused = tid->sched = tid->addba_tx_pending = 0;
3972 	tid->incomp = tid->cleanup_inprogress = 0;
3973 #endif
3974 
3975 	/*
3976 	 * If we have a bar_wait set, we need to unpause the TID
3977 	 * here.  Otherwise once cleanup has finished, the TID won't
3978 	 * have the right paused counter.
3979 	 *
3980 	 * XXX I'm not going through resume here - I don't want the
3981 	 * node to be rescheuled just yet.  This however should be
3982 	 * methodized!
3983 	 */
3984 	if (tid->bar_wait) {
3985 		if (tid->paused > 0) {
3986 			tid->paused --;
3987 		}
3988 	}
3989 
3990 	/*
3991 	 * XXX same with a currently filtered TID.
3992 	 *
3993 	 * Since this is being called during a flush, we assume that
3994 	 * the filtered frame list is actually empty.
3995 	 *
3996 	 * XXX TODO: add in a check to ensure that the filtered queue
3997 	 * depth is actually 0!
3998 	 */
3999 	if (tid->isfiltered) {
4000 		if (tid->paused > 0) {
4001 			tid->paused --;
4002 		}
4003 	}
4004 
4005 	/*
4006 	 * Clear BAR, filtered frames, scheduled and ADDBA pending.
4007 	 * The TID may be going through cleanup from the last association
4008 	 * where things in the BAW are still in the hardware queue.
4009 	 */
4010 	tid->bar_wait = 0;
4011 	tid->bar_tx = 0;
4012 	tid->isfiltered = 0;
4013 	tid->sched = 0;
4014 	tid->addba_tx_pending = 0;
4015 
4016 	/*
4017 	 * XXX TODO: it may just be enough to walk the HWQs and mark
4018 	 * frames for that node as non-aggregate; or mark the ath_node
4019 	 * with something that indicates that aggregation is no longer
4020 	 * occurring.  Then we can just toss the BAW complaints and
4021 	 * do a complete hard reset of state here - no pause, no
4022 	 * complete counter, etc.
4023 	 */
4024 
4025 }
4026 
4027 /*
4028  * Flush all software queued packets for the given node.
4029  *
4030  * This occurs when a completion handler frees the last buffer
4031  * for a node, and the node is thus freed. This causes the node
4032  * to be cleaned up, which ends up calling ath_tx_node_flush.
4033  */
4034 void
4035 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
4036 {
4037 	int tid;
4038 	ath_bufhead bf_cq;
4039 	struct ath_buf *bf;
4040 
4041 	TAILQ_INIT(&bf_cq);
4042 
4043 	ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p",
4044 	    &an->an_node);
4045 
4046 	ATH_TX_LOCK(sc);
4047 	DPRINTF(sc, ATH_DEBUG_NODE,
4048 	    "%s: %6D: flush; is_powersave=%d, stack_psq=%d, tim=%d, "
4049 	    "swq_depth=%d, clrdmask=%d, leak_count=%d\n",
4050 	    __func__,
4051 	    an->an_node.ni_macaddr,
4052 	    ":",
4053 	    an->an_is_powersave,
4054 	    an->an_stack_psq,
4055 	    an->an_tim_set,
4056 	    an->an_swq_depth,
4057 	    an->clrdmask,
4058 	    an->an_leak_count);
4059 
4060 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
4061 		struct ath_tid *atid = &an->an_tid[tid];
4062 
4063 		/* Free packets */
4064 		ath_tx_tid_drain(sc, an, atid, &bf_cq);
4065 
4066 		/* Remove this tid from the list of active tids */
4067 		ath_tx_tid_unsched(sc, atid);
4068 
4069 		/* Reset the per-TID pause, BAR, etc state */
4070 		ath_tx_tid_reset(sc, atid);
4071 	}
4072 
4073 	/*
4074 	 * Clear global leak count
4075 	 */
4076 	an->an_leak_count = 0;
4077 	ATH_TX_UNLOCK(sc);
4078 
4079 	/* Handle completed frames */
4080 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4081 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4082 		ath_tx_default_comp(sc, bf, 0);
4083 	}
4084 }
4085 
4086 /*
4087  * Drain all the software TXQs currently with traffic queued.
4088  */
4089 void
4090 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
4091 {
4092 	struct ath_tid *tid;
4093 	ath_bufhead bf_cq;
4094 	struct ath_buf *bf;
4095 
4096 	TAILQ_INIT(&bf_cq);
4097 	ATH_TX_LOCK(sc);
4098 
4099 	/*
4100 	 * Iterate over all active tids for the given txq,
4101 	 * flushing and unsched'ing them
4102 	 */
4103 	while (! TAILQ_EMPTY(&txq->axq_tidq)) {
4104 		tid = TAILQ_FIRST(&txq->axq_tidq);
4105 		ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
4106 		ath_tx_tid_unsched(sc, tid);
4107 	}
4108 
4109 	ATH_TX_UNLOCK(sc);
4110 
4111 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4112 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4113 		ath_tx_default_comp(sc, bf, 0);
4114 	}
4115 }
4116 
4117 /*
4118  * Handle completion of non-aggregate session frames.
4119  *
4120  * This (currently) doesn't implement software retransmission of
4121  * non-aggregate frames!
4122  *
4123  * Software retransmission of non-aggregate frames needs to obey
4124  * the strict sequence number ordering, and drop any frames that
4125  * will fail this.
4126  *
4127  * For now, filtered frames and frame transmission will cause
4128  * all kinds of issues.  So we don't support them.
4129  *
4130  * So anyone queuing frames via ath_tx_normal_xmit() or
4131  * ath_tx_hw_queue_norm() must override and set CLRDMASK.
4132  */
4133 void
4134 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4135 {
4136 	struct ieee80211_node *ni = bf->bf_node;
4137 	struct ath_node *an = ATH_NODE(ni);
4138 	int tid = bf->bf_state.bfs_tid;
4139 	struct ath_tid *atid = &an->an_tid[tid];
4140 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4141 
4142 	/* The TID state is protected behind the TXQ lock */
4143 	ATH_TX_LOCK(sc);
4144 
4145 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
4146 	    __func__, bf, fail, atid->hwq_depth - 1);
4147 
4148 	atid->hwq_depth--;
4149 
4150 #if 0
4151 	/*
4152 	 * If the frame was filtered, stick it on the filter frame
4153 	 * queue and complain about it.  It shouldn't happen!
4154 	 */
4155 	if ((ts->ts_status & HAL_TXERR_FILT) ||
4156 	    (ts->ts_status != 0 && atid->isfiltered)) {
4157 		DPRINTF(sc, ATH_DEBUG_SW_TX,
4158 		    "%s: isfiltered=%d, ts_status=%d: huh?\n",
4159 		    __func__,
4160 		    atid->isfiltered,
4161 		    ts->ts_status);
4162 		ath_tx_tid_filt_comp_buf(sc, atid, bf);
4163 	}
4164 #endif
4165 	if (atid->isfiltered)
4166 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: filtered?!\n", __func__);
4167 	if (atid->hwq_depth < 0)
4168 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n",
4169 		    __func__, atid->hwq_depth);
4170 
4171 	/* If the TID is being cleaned up, track things */
4172 	/* XXX refactor! */
4173 	if (atid->cleanup_inprogress) {
4174 		atid->incomp--;
4175 		if (atid->incomp == 0) {
4176 			DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4177 			    "%s: TID %d: cleaned up! resume!\n",
4178 			    __func__, tid);
4179 			atid->cleanup_inprogress = 0;
4180 			ath_tx_tid_resume(sc, atid);
4181 		}
4182 	}
4183 
4184 	/*
4185 	 * If the queue is filtered, potentially mark it as complete
4186 	 * and reschedule it as needed.
4187 	 *
4188 	 * This is required as there may be a subsequent TX descriptor
4189 	 * for this end-node that has CLRDMASK set, so it's quite possible
4190 	 * that a filtered frame will be followed by a non-filtered
4191 	 * (complete or otherwise) frame.
4192 	 *
4193 	 * XXX should we do this before we complete the frame?
4194 	 */
4195 	if (atid->isfiltered)
4196 		ath_tx_tid_filt_comp_complete(sc, atid);
4197 	ATH_TX_UNLOCK(sc);
4198 
4199 	/*
4200 	 * punt to rate control if we're not being cleaned up
4201 	 * during a hw queue drain and the frame wanted an ACK.
4202 	 */
4203 	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
4204 		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
4205 		    ts, bf->bf_state.bfs_pktlen,
4206 		    1, (ts->ts_status == 0) ? 0 : 1);
4207 
4208 	ath_tx_default_comp(sc, bf, fail);
4209 }
4210 
4211 /*
4212  * Handle cleanup of aggregate session packets that aren't
4213  * an A-MPDU.
4214  *
4215  * There's no need to update the BAW here - the session is being
4216  * torn down.
4217  */
4218 static void
4219 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
4220 {
4221 	struct ieee80211_node *ni = bf->bf_node;
4222 	struct ath_node *an = ATH_NODE(ni);
4223 	int tid = bf->bf_state.bfs_tid;
4224 	struct ath_tid *atid = &an->an_tid[tid];
4225 
4226 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
4227 	    __func__, tid, atid->incomp);
4228 
4229 	ATH_TX_LOCK(sc);
4230 	atid->incomp--;
4231 
4232 	/* XXX refactor! */
4233 	if (bf->bf_state.bfs_dobaw) {
4234 		ath_tx_update_baw(sc, an, atid, bf);
4235 		if (!bf->bf_state.bfs_addedbaw)
4236 			DPRINTF(sc, ATH_DEBUG_SW_TX,
4237 			    "%s: wasn't added: seqno %d\n",
4238 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
4239 	}
4240 
4241 	if (atid->incomp == 0) {
4242 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4243 		    "%s: TID %d: cleaned up! resume!\n",
4244 		    __func__, tid);
4245 		atid->cleanup_inprogress = 0;
4246 		ath_tx_tid_resume(sc, atid);
4247 	}
4248 	ATH_TX_UNLOCK(sc);
4249 
4250 	ath_tx_default_comp(sc, bf, 0);
4251 }
4252 
4253 
4254 /*
4255  * This as it currently stands is a bit dumb.  Ideally we'd just
4256  * fail the frame the normal way and have it permanently fail
4257  * via the normal aggregate completion path.
4258  */
4259 static void
4260 ath_tx_tid_cleanup_frame(struct ath_softc *sc, struct ath_node *an,
4261     int tid, struct ath_buf *bf_head, ath_bufhead *bf_cq)
4262 {
4263 	struct ath_tid *atid = &an->an_tid[tid];
4264 	struct ath_buf *bf, *bf_next;
4265 
4266 	ATH_TX_LOCK_ASSERT(sc);
4267 
4268 	/*
4269 	 * Remove this frame from the queue.
4270 	 */
4271 	ATH_TID_REMOVE(atid, bf_head, bf_list);
4272 
4273 	/*
4274 	 * Loop over all the frames in the aggregate.
4275 	 */
4276 	bf = bf_head;
4277 	while (bf != NULL) {
4278 		bf_next = bf->bf_next;	/* next aggregate frame, or NULL */
4279 
4280 		/*
4281 		 * If it's been added to the BAW we need to kick
4282 		 * it out of the BAW before we continue.
4283 		 *
4284 		 * XXX if it's an aggregate, assert that it's in the
4285 		 * BAW - we shouldn't have it be in an aggregate
4286 		 * otherwise!
4287 		 */
4288 		if (bf->bf_state.bfs_addedbaw) {
4289 			ath_tx_update_baw(sc, an, atid, bf);
4290 			bf->bf_state.bfs_dobaw = 0;
4291 		}
4292 
4293 		/*
4294 		 * Give it the default completion handler.
4295 		 */
4296 		bf->bf_comp = ath_tx_normal_comp;
4297 		bf->bf_next = NULL;
4298 
4299 		/*
4300 		 * Add it to the list to free.
4301 		 */
4302 		TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
4303 
4304 		/*
4305 		 * Now advance to the next frame in the aggregate.
4306 		 */
4307 		bf = bf_next;
4308 	}
4309 }
4310 
4311 /*
4312  * Performs transmit side cleanup when TID changes from aggregated to
4313  * unaggregated and during reassociation.
4314  *
4315  * For now, this just tosses everything from the TID software queue
4316  * whether or not it has been retried and marks the TID as
4317  * pending completion if there's anything for this TID queued to
4318  * the hardware.
4319  *
4320  * The caller is responsible for pausing the TID and unpausing the
4321  * TID if no cleanup was required. Otherwise the cleanup path will
4322  * unpause the TID once the last hardware queued frame is completed.
4323  */
4324 static void
4325 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid,
4326     ath_bufhead *bf_cq)
4327 {
4328 	struct ath_tid *atid = &an->an_tid[tid];
4329 	struct ath_buf *bf, *bf_next;
4330 
4331 	ATH_TX_LOCK_ASSERT(sc);
4332 
4333 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
4334 	    "%s: TID %d: called; inprogress=%d\n", __func__, tid,
4335 	    atid->cleanup_inprogress);
4336 
4337 	/*
4338 	 * Move the filtered frames to the TX queue, before
4339 	 * we run off and discard/process things.
4340 	 */
4341 
4342 	/* XXX this is really quite inefficient */
4343 	while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) {
4344 		ATH_TID_FILT_REMOVE(atid, bf, bf_list);
4345 		ATH_TID_INSERT_HEAD(atid, bf, bf_list);
4346 	}
4347 
4348 	/*
4349 	 * Update the frames in the software TX queue:
4350 	 *
4351 	 * + Discard retry frames in the queue
4352 	 * + Fix the completion function to be non-aggregate
4353 	 */
4354 	bf = ATH_TID_FIRST(atid);
4355 	while (bf) {
4356 		/*
4357 		 * Grab the next frame in the list, we may
4358 		 * be fiddling with the list.
4359 		 */
4360 		bf_next = TAILQ_NEXT(bf, bf_list);
4361 
4362 		/*
4363 		 * Free the frame and all subframes.
4364 		 */
4365 		ath_tx_tid_cleanup_frame(sc, an, tid, bf, bf_cq);
4366 
4367 		/*
4368 		 * Next frame!
4369 		 */
4370 		bf = bf_next;
4371 	}
4372 
4373 	/*
4374 	 * If there's anything in the hardware queue we wait
4375 	 * for the TID HWQ to empty.
4376 	 */
4377 	if (atid->hwq_depth > 0) {
4378 		/*
4379 		 * XXX how about we kill atid->incomp, and instead
4380 		 * replace it with a macro that checks that atid->hwq_depth
4381 		 * is 0?
4382 		 */
4383 		atid->incomp = atid->hwq_depth;
4384 		atid->cleanup_inprogress = 1;
4385 	}
4386 
4387 	if (atid->cleanup_inprogress)
4388 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4389 		    "%s: TID %d: cleanup needed: %d packets\n",
4390 		    __func__, tid, atid->incomp);
4391 
4392 	/* Owner now must free completed frames */
4393 }
4394 
4395 static struct ath_buf *
4396 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
4397     struct ath_tid *tid, struct ath_buf *bf)
4398 {
4399 	struct ath_buf *nbf;
4400 	int error;
4401 
4402 	/*
4403 	 * Clone the buffer.  This will handle the dma unmap and
4404 	 * copy the node reference to the new buffer.  If this
4405 	 * works out, 'bf' will have no DMA mapping, no mbuf
4406 	 * pointer and no node reference.
4407 	 */
4408 	nbf = ath_buf_clone(sc, bf);
4409 
4410 #if 0
4411 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: ATH_BUF_BUSY; cloning\n",
4412 	    __func__);
4413 #endif
4414 
4415 	if (nbf == NULL) {
4416 		/* Failed to clone */
4417 		DPRINTF(sc, ATH_DEBUG_XMIT,
4418 		    "%s: failed to clone a busy buffer\n",
4419 		    __func__);
4420 		return NULL;
4421 	}
4422 
4423 	/* Setup the dma for the new buffer */
4424 	error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
4425 	if (error != 0) {
4426 		DPRINTF(sc, ATH_DEBUG_XMIT,
4427 		    "%s: failed to setup dma for clone\n",
4428 		    __func__);
4429 		/*
4430 		 * Put this at the head of the list, not tail;
4431 		 * that way it doesn't interfere with the
4432 		 * busy buffer logic (which uses the tail of
4433 		 * the list.)
4434 		 */
4435 		ATH_TXBUF_LOCK(sc);
4436 		ath_returnbuf_head(sc, nbf);
4437 		ATH_TXBUF_UNLOCK(sc);
4438 		return NULL;
4439 	}
4440 
4441 	/* Update BAW if required, before we free the original buf */
4442 	if (bf->bf_state.bfs_dobaw)
4443 		ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
4444 
4445 	/* Free original buffer; return new buffer */
4446 	ath_freebuf(sc, bf);
4447 
4448 	return nbf;
4449 }
4450 
4451 /*
4452  * Handle retrying an unaggregate frame in an aggregate
4453  * session.
4454  *
4455  * If too many retries occur, pause the TID, wait for
4456  * any further retransmits (as there's no reason why
4457  * non-aggregate frames in an aggregate session are
4458  * transmitted in-order; they just have to be in-BAW)
4459  * and then queue a BAR.
4460  */
4461 static void
4462 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
4463 {
4464 	struct ieee80211_node *ni = bf->bf_node;
4465 	struct ath_node *an = ATH_NODE(ni);
4466 	int tid = bf->bf_state.bfs_tid;
4467 	struct ath_tid *atid = &an->an_tid[tid];
4468 	struct ieee80211_tx_ampdu *tap;
4469 
4470 	ATH_TX_LOCK(sc);
4471 
4472 	tap = ath_tx_get_tx_tid(an, tid);
4473 
4474 	/*
4475 	 * If the buffer is marked as busy, we can't directly
4476 	 * reuse it. Instead, try to clone the buffer.
4477 	 * If the clone is successful, recycle the old buffer.
4478 	 * If the clone is unsuccessful, set bfs_retries to max
4479 	 * to force the next bit of code to free the buffer
4480 	 * for us.
4481 	 */
4482 	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
4483 	    (bf->bf_flags & ATH_BUF_BUSY)) {
4484 		struct ath_buf *nbf;
4485 		nbf = ath_tx_retry_clone(sc, an, atid, bf);
4486 		if (nbf)
4487 			/* bf has been freed at this point */
4488 			bf = nbf;
4489 		else
4490 			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
4491 	}
4492 
4493 	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
4494 		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
4495 		    "%s: exceeded retries; seqno %d\n",
4496 		    __func__, SEQNO(bf->bf_state.bfs_seqno));
4497 		sc->sc_stats.ast_tx_swretrymax++;
4498 
4499 		/* Update BAW anyway */
4500 		if (bf->bf_state.bfs_dobaw) {
4501 			ath_tx_update_baw(sc, an, atid, bf);
4502 			if (! bf->bf_state.bfs_addedbaw)
4503 				DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
4504 				    "%s: wasn't added: seqno %d\n",
4505 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
4506 		}
4507 		bf->bf_state.bfs_dobaw = 0;
4508 
4509 		/* Suspend the TX queue and get ready to send the BAR */
4510 		ath_tx_tid_bar_suspend(sc, atid);
4511 
4512 		/* Send the BAR if there are no other frames waiting */
4513 		if (ath_tx_tid_bar_tx_ready(sc, atid))
4514 			ath_tx_tid_bar_tx(sc, atid);
4515 
4516 		ATH_TX_UNLOCK(sc);
4517 
4518 		/* Free buffer, bf is free after this call */
4519 		ath_tx_default_comp(sc, bf, 0);
4520 		return;
4521 	}
4522 
4523 	/*
4524 	 * This increments the retry counter as well as
4525 	 * sets the retry flag in the ath_buf and packet
4526 	 * body.
4527 	 */
4528 	ath_tx_set_retry(sc, bf);
4529 	sc->sc_stats.ast_tx_swretries++;
4530 
4531 	/*
4532 	 * Insert this at the head of the queue, so it's
4533 	 * retried before any current/subsequent frames.
4534 	 */
4535 	ATH_TID_INSERT_HEAD(atid, bf, bf_list);
4536 	ath_tx_tid_sched(sc, atid);
4537 	/* Send the BAR if there are no other frames waiting */
4538 	if (ath_tx_tid_bar_tx_ready(sc, atid))
4539 		ath_tx_tid_bar_tx(sc, atid);
4540 
4541 	ATH_TX_UNLOCK(sc);
4542 }
4543 
4544 /*
4545  * Common code for aggregate excessive retry/subframe retry.
4546  * If retrying, queues buffers to bf_q. If not, frees the
4547  * buffers.
4548  *
4549  * XXX should unify this with ath_tx_aggr_retry_unaggr()
4550  */
4551 static int
4552 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
4553     ath_bufhead *bf_q)
4554 {
4555 	struct ieee80211_node *ni = bf->bf_node;
4556 	struct ath_node *an = ATH_NODE(ni);
4557 	int tid = bf->bf_state.bfs_tid;
4558 	struct ath_tid *atid = &an->an_tid[tid];
4559 
4560 	ATH_TX_LOCK_ASSERT(sc);
4561 
4562 	/* XXX clr11naggr should be done for all subframes */
4563 	ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
4564 	ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
4565 
4566 	/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
4567 
4568 	/*
4569 	 * If the buffer is marked as busy, we can't directly
4570 	 * reuse it. Instead, try to clone the buffer.
4571 	 * If the clone is successful, recycle the old buffer.
4572 	 * If the clone is unsuccessful, set bfs_retries to max
4573 	 * to force the next bit of code to free the buffer
4574 	 * for us.
4575 	 */
4576 	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
4577 	    (bf->bf_flags & ATH_BUF_BUSY)) {
4578 		struct ath_buf *nbf;
4579 		nbf = ath_tx_retry_clone(sc, an, atid, bf);
4580 		if (nbf)
4581 			/* bf has been freed at this point */
4582 			bf = nbf;
4583 		else
4584 			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
4585 	}
4586 
4587 	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
4588 		sc->sc_stats.ast_tx_swretrymax++;
4589 		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
4590 		    "%s: max retries: seqno %d\n",
4591 		    __func__, SEQNO(bf->bf_state.bfs_seqno));
4592 		ath_tx_update_baw(sc, an, atid, bf);
4593 		if (!bf->bf_state.bfs_addedbaw)
4594 			DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
4595 			    "%s: wasn't added: seqno %d\n",
4596 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
4597 		bf->bf_state.bfs_dobaw = 0;
4598 		return 1;
4599 	}
4600 
4601 	ath_tx_set_retry(sc, bf);
4602 	sc->sc_stats.ast_tx_swretries++;
4603 	bf->bf_next = NULL;		/* Just to make sure */
4604 
4605 	/* Clear the aggregate state */
4606 	bf->bf_state.bfs_aggr = 0;
4607 	bf->bf_state.bfs_ndelim = 0;	/* ??? needed? */
4608 	bf->bf_state.bfs_nframes = 1;
4609 
4610 	TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
4611 	return 0;
4612 }
4613 
4614 /*
4615  * error pkt completion for an aggregate destination
4616  */
4617 static void
4618 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
4619     struct ath_tid *tid)
4620 {
4621 	struct ieee80211_node *ni = bf_first->bf_node;
4622 	struct ath_node *an = ATH_NODE(ni);
4623 	struct ath_buf *bf_next, *bf;
4624 	ath_bufhead bf_q;
4625 	int drops = 0;
4626 	struct ieee80211_tx_ampdu *tap;
4627 	ath_bufhead bf_cq;
4628 
4629 	TAILQ_INIT(&bf_q);
4630 	TAILQ_INIT(&bf_cq);
4631 
4632 	/*
4633 	 * Update rate control - all frames have failed.
4634 	 *
4635 	 * XXX use the length in the first frame in the series;
4636 	 * XXX just so things are consistent for now.
4637 	 */
4638 	ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
4639 	    &bf_first->bf_status.ds_txstat,
4640 	    bf_first->bf_state.bfs_pktlen,
4641 	    bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
4642 
4643 	ATH_TX_LOCK(sc);
4644 	tap = ath_tx_get_tx_tid(an, tid->tid);
4645 	sc->sc_stats.ast_tx_aggr_failall++;
4646 
4647 	/* Retry all subframes */
4648 	bf = bf_first;
4649 	while (bf) {
4650 		bf_next = bf->bf_next;
4651 		bf->bf_next = NULL;	/* Remove it from the aggr list */
4652 		sc->sc_stats.ast_tx_aggr_fail++;
4653 		if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
4654 			drops++;
4655 			bf->bf_next = NULL;
4656 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
4657 		}
4658 		bf = bf_next;
4659 	}
4660 
4661 	/* Prepend all frames to the beginning of the queue */
4662 	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
4663 		TAILQ_REMOVE(&bf_q, bf, bf_list);
4664 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
4665 	}
4666 
4667 	/*
4668 	 * Schedule the TID to be re-tried.
4669 	 */
4670 	ath_tx_tid_sched(sc, tid);
4671 
4672 	/*
4673 	 * send bar if we dropped any frames
4674 	 *
4675 	 * Keep the txq lock held for now, as we need to ensure
4676 	 * that ni_txseqs[] is consistent (as it's being updated
4677 	 * in the ifnet TX context or raw TX context.)
4678 	 */
4679 	if (drops) {
4680 		/* Suspend the TX queue and get ready to send the BAR */
4681 		ath_tx_tid_bar_suspend(sc, tid);
4682 	}
4683 
4684 	/*
4685 	 * Send BAR if required
4686 	 */
4687 	if (ath_tx_tid_bar_tx_ready(sc, tid))
4688 		ath_tx_tid_bar_tx(sc, tid);
4689 
4690 	ATH_TX_UNLOCK(sc);
4691 
4692 	/* Complete frames which errored out */
4693 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4694 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4695 		ath_tx_default_comp(sc, bf, 0);
4696 	}
4697 }
4698 
4699 /*
4700  * Handle clean-up of packets from an aggregate list.
4701  *
4702  * There's no need to update the BAW here - the session is being
4703  * torn down.
4704  */
4705 static void
4706 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
4707 {
4708 	struct ath_buf *bf, *bf_next;
4709 	struct ieee80211_node *ni = bf_first->bf_node;
4710 	struct ath_node *an = ATH_NODE(ni);
4711 	int tid = bf_first->bf_state.bfs_tid;
4712 	struct ath_tid *atid = &an->an_tid[tid];
4713 
4714 	ATH_TX_LOCK(sc);
4715 
4716 	/* update incomp */
4717 	atid->incomp--;
4718 
4719 	/* Update the BAW */
4720 	bf = bf_first;
4721 	while (bf) {
4722 		/* XXX refactor! */
4723 		if (bf->bf_state.bfs_dobaw) {
4724 			ath_tx_update_baw(sc, an, atid, bf);
4725 			if (!bf->bf_state.bfs_addedbaw)
4726 				DPRINTF(sc, ATH_DEBUG_SW_TX,
4727 				    "%s: wasn't added: seqno %d\n",
4728 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
4729 		}
4730 		bf = bf->bf_next;
4731 	}
4732 
4733 	if (atid->incomp == 0) {
4734 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4735 		    "%s: TID %d: cleaned up! resume!\n",
4736 		    __func__, tid);
4737 		atid->cleanup_inprogress = 0;
4738 		ath_tx_tid_resume(sc, atid);
4739 	}
4740 
4741 	/* Send BAR if required */
4742 	/* XXX why would we send a BAR when transitioning to non-aggregation? */
4743 	/*
4744 	 * XXX TODO: we should likely just tear down the BAR state here,
4745 	 * rather than sending a BAR.
4746 	 */
4747 	if (ath_tx_tid_bar_tx_ready(sc, atid))
4748 		ath_tx_tid_bar_tx(sc, atid);
4749 
4750 	ATH_TX_UNLOCK(sc);
4751 
4752 	/* Handle frame completion as individual frames */
4753 	bf = bf_first;
4754 	while (bf) {
4755 		bf_next = bf->bf_next;
4756 		bf->bf_next = NULL;
4757 		ath_tx_default_comp(sc, bf, 1);
4758 		bf = bf_next;
4759 	}
4760 }
4761 
4762 /*
4763  * Handle completion of an set of aggregate frames.
4764  *
4765  * Note: the completion handler is the last descriptor in the aggregate,
4766  * not the last descriptor in the first frame.
4767  */
4768 static void
4769 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first,
4770     int fail)
4771 {
4772 	//struct ath_desc *ds = bf->bf_lastds;
4773 	struct ieee80211_node *ni = bf_first->bf_node;
4774 	struct ath_node *an = ATH_NODE(ni);
4775 	int tid = bf_first->bf_state.bfs_tid;
4776 	struct ath_tid *atid = &an->an_tid[tid];
4777 	struct ath_tx_status ts;
4778 	struct ieee80211_tx_ampdu *tap;
4779 	ath_bufhead bf_q;
4780 	ath_bufhead bf_cq;
4781 	int seq_st, tx_ok;
4782 	int hasba, isaggr;
4783 	uint32_t ba[2];
4784 	struct ath_buf *bf, *bf_next;
4785 	int ba_index;
4786 	int drops = 0;
4787 	int nframes = 0, nbad = 0, nf;
4788 	int pktlen;
4789 	/* XXX there's too much on the stack? */
4790 	struct ath_rc_series rc[ATH_RC_NUM];
4791 	int txseq;
4792 
4793 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
4794 	    __func__, atid->hwq_depth);
4795 
4796 	/*
4797 	 * Take a copy; this may be needed -after- bf_first
4798 	 * has been completed and freed.
4799 	 */
4800 	ts = bf_first->bf_status.ds_txstat;
4801 
4802 	TAILQ_INIT(&bf_q);
4803 	TAILQ_INIT(&bf_cq);
4804 
4805 	/* The TID state is kept behind the TXQ lock */
4806 	ATH_TX_LOCK(sc);
4807 
4808 	atid->hwq_depth--;
4809 	if (atid->hwq_depth < 0)
4810 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: hwq_depth < 0: %d\n",
4811 		    __func__, atid->hwq_depth);
4812 
4813 	/*
4814 	 * If the TID is filtered, handle completing the filter
4815 	 * transition before potentially kicking it to the cleanup
4816 	 * function.
4817 	 *
4818 	 * XXX this is duplicate work, ew.
4819 	 */
4820 	if (atid->isfiltered)
4821 		ath_tx_tid_filt_comp_complete(sc, atid);
4822 
4823 	/*
4824 	 * Punt cleanup to the relevant function, not our problem now
4825 	 */
4826 	if (atid->cleanup_inprogress) {
4827 		if (atid->isfiltered)
4828 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4829 			    "%s: isfiltered=1, normal_comp?\n",
4830 			    __func__);
4831 		ATH_TX_UNLOCK(sc);
4832 		ath_tx_comp_cleanup_aggr(sc, bf_first);
4833 		return;
4834 	}
4835 
4836 	/*
4837 	 * If the frame is filtered, transition to filtered frame
4838 	 * mode and add this to the filtered frame list.
4839 	 *
4840 	 * XXX TODO: figure out how this interoperates with
4841 	 * BAR, pause and cleanup states.
4842 	 */
4843 	if ((ts.ts_status & HAL_TXERR_FILT) ||
4844 	    (ts.ts_status != 0 && atid->isfiltered)) {
4845 		if (fail != 0)
4846 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4847 			    "%s: isfiltered=1, fail=%d\n", __func__, fail);
4848 		ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq);
4849 
4850 		/* Remove from BAW */
4851 		TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) {
4852 			if (bf->bf_state.bfs_addedbaw)
4853 				drops++;
4854 			if (bf->bf_state.bfs_dobaw) {
4855 				ath_tx_update_baw(sc, an, atid, bf);
4856 				if (!bf->bf_state.bfs_addedbaw)
4857 					DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4858 					    "%s: wasn't added: seqno %d\n",
4859 					    __func__,
4860 					    SEQNO(bf->bf_state.bfs_seqno));
4861 			}
4862 			bf->bf_state.bfs_dobaw = 0;
4863 		}
4864 		/*
4865 		 * If any intermediate frames in the BAW were dropped when
4866 		 * handling filtering things, send a BAR.
4867 		 */
4868 		if (drops)
4869 			ath_tx_tid_bar_suspend(sc, atid);
4870 
4871 		/*
4872 		 * Finish up by sending a BAR if required and freeing
4873 		 * the frames outside of the TX lock.
4874 		 */
4875 		goto finish_send_bar;
4876 	}
4877 
4878 	/*
4879 	 * XXX for now, use the first frame in the aggregate for
4880 	 * XXX rate control completion; it's at least consistent.
4881 	 */
4882 	pktlen = bf_first->bf_state.bfs_pktlen;
4883 
4884 	/*
4885 	 * Handle errors first!
4886 	 *
4887 	 * Here, handle _any_ error as a "exceeded retries" error.
4888 	 * Later on (when filtered frames are to be specially handled)
4889 	 * it'll have to be expanded.
4890 	 */
4891 #if 0
4892 	if (ts.ts_status & HAL_TXERR_XRETRY) {
4893 #endif
4894 	if (ts.ts_status != 0) {
4895 		ATH_TX_UNLOCK(sc);
4896 		ath_tx_comp_aggr_error(sc, bf_first, atid);
4897 		return;
4898 	}
4899 
4900 	tap = ath_tx_get_tx_tid(an, tid);
4901 
4902 	/*
4903 	 * extract starting sequence and block-ack bitmap
4904 	 */
4905 	/* XXX endian-ness of seq_st, ba? */
4906 	seq_st = ts.ts_seqnum;
4907 	hasba = !! (ts.ts_flags & HAL_TX_BA);
4908 	tx_ok = (ts.ts_status == 0);
4909 	isaggr = bf_first->bf_state.bfs_aggr;
4910 	ba[0] = ts.ts_ba_low;
4911 	ba[1] = ts.ts_ba_high;
4912 
4913 	/*
4914 	 * Copy the TX completion status and the rate control
4915 	 * series from the first descriptor, as it may be freed
4916 	 * before the rate control code can get its grubby fingers
4917 	 * into things.
4918 	 */
4919 	memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
4920 
4921 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4922 	    "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, "
4923 	    "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
4924 	    __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
4925 	    isaggr, seq_st, hasba, ba[0], ba[1]);
4926 
4927 	/*
4928 	 * The reference driver doesn't do this; it simply ignores
4929 	 * this check in its entirety.
4930 	 *
4931 	 * I've seen this occur when using iperf to send traffic
4932 	 * out tid 1 - the aggregate frames are all marked as TID 1,
4933 	 * but the TXSTATUS has TID=0.  So, let's just ignore this
4934 	 * check.
4935 	 */
4936 #if 0
4937 	/* Occasionally, the MAC sends a tx status for the wrong TID. */
4938 	if (tid != ts.ts_tid) {
4939 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: tid %d != hw tid %d\n",
4940 		    __func__, tid, ts.ts_tid);
4941 		tx_ok = 0;
4942 	}
4943 #endif
4944 
4945 	/* AR5416 BA bug; this requires an interface reset */
4946 	if (isaggr && tx_ok && (! hasba)) {
4947 		device_printf(sc->sc_dev,
4948 		    "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, "
4949 		    "seq_st=%d\n",
4950 		    __func__, hasba, tx_ok, isaggr, seq_st);
4951 		/* XXX TODO: schedule an interface reset */
4952 #ifdef ATH_DEBUG
4953 		ath_printtxbuf(sc, bf_first,
4954 		    sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0);
4955 #endif
4956 	}
4957 
4958 	/*
4959 	 * Walk the list of frames, figure out which ones were correctly
4960 	 * sent and which weren't.
4961 	 */
4962 	bf = bf_first;
4963 	nf = bf_first->bf_state.bfs_nframes;
4964 
4965 	/* bf_first is going to be invalid once this list is walked */
4966 	bf_first = NULL;
4967 
4968 	/*
4969 	 * Walk the list of completed frames and determine
4970 	 * which need to be completed and which need to be
4971 	 * retransmitted.
4972 	 *
4973 	 * For completed frames, the completion functions need
4974 	 * to be called at the end of this function as the last
4975 	 * node reference may free the node.
4976 	 *
4977 	 * Finally, since the TXQ lock can't be held during the
4978 	 * completion callback (to avoid lock recursion),
4979 	 * the completion calls have to be done outside of the
4980 	 * lock.
4981 	 */
4982 	while (bf) {
4983 		nframes++;
4984 		ba_index = ATH_BA_INDEX(seq_st,
4985 		    SEQNO(bf->bf_state.bfs_seqno));
4986 		bf_next = bf->bf_next;
4987 		bf->bf_next = NULL;	/* Remove it from the aggr list */
4988 
4989 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4990 		    "%s: checking bf=%p seqno=%d; ack=%d\n",
4991 		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
4992 		    ATH_BA_ISSET(ba, ba_index));
4993 
4994 		if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
4995 			sc->sc_stats.ast_tx_aggr_ok++;
4996 			ath_tx_update_baw(sc, an, atid, bf);
4997 			bf->bf_state.bfs_dobaw = 0;
4998 			if (!bf->bf_state.bfs_addedbaw)
4999 				DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5000 				    "%s: wasn't added: seqno %d\n",
5001 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
5002 			bf->bf_next = NULL;
5003 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
5004 		} else {
5005 			sc->sc_stats.ast_tx_aggr_fail++;
5006 			if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
5007 				drops++;
5008 				bf->bf_next = NULL;
5009 				TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
5010 			}
5011 			nbad++;
5012 		}
5013 		bf = bf_next;
5014 	}
5015 
5016 	/*
5017 	 * Now that the BAW updates have been done, unlock
5018 	 *
5019 	 * txseq is grabbed before the lock is released so we
5020 	 * have a consistent view of what -was- in the BAW.
5021 	 * Anything after this point will not yet have been
5022 	 * TXed.
5023 	 */
5024 	txseq = tap->txa_start;
5025 	ATH_TX_UNLOCK(sc);
5026 
5027 	if (nframes != nf)
5028 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5029 		    "%s: num frames seen=%d; bf nframes=%d\n",
5030 		    __func__, nframes, nf);
5031 
5032 	/*
5033 	 * Now we know how many frames were bad, call the rate
5034 	 * control code.
5035 	 */
5036 	if (fail == 0)
5037 		ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes,
5038 		    nbad);
5039 
5040 	/*
5041 	 * send bar if we dropped any frames
5042 	 */
5043 	if (drops) {
5044 		/* Suspend the TX queue and get ready to send the BAR */
5045 		ATH_TX_LOCK(sc);
5046 		ath_tx_tid_bar_suspend(sc, atid);
5047 		ATH_TX_UNLOCK(sc);
5048 	}
5049 
5050 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5051 	    "%s: txa_start now %d\n", __func__, tap->txa_start);
5052 
5053 	ATH_TX_LOCK(sc);
5054 
5055 	/* Prepend all frames to the beginning of the queue */
5056 	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
5057 		TAILQ_REMOVE(&bf_q, bf, bf_list);
5058 		ATH_TID_INSERT_HEAD(atid, bf, bf_list);
5059 	}
5060 
5061 	/*
5062 	 * Reschedule to grab some further frames.
5063 	 */
5064 	ath_tx_tid_sched(sc, atid);
5065 
5066 	/*
5067 	 * If the queue is filtered, re-schedule as required.
5068 	 *
5069 	 * This is required as there may be a subsequent TX descriptor
5070 	 * for this end-node that has CLRDMASK set, so it's quite possible
5071 	 * that a filtered frame will be followed by a non-filtered
5072 	 * (complete or otherwise) frame.
5073 	 *
5074 	 * XXX should we do this before we complete the frame?
5075 	 */
5076 	if (atid->isfiltered)
5077 		ath_tx_tid_filt_comp_complete(sc, atid);
5078 
5079 finish_send_bar:
5080 
5081 	/*
5082 	 * Send BAR if required
5083 	 */
5084 	if (ath_tx_tid_bar_tx_ready(sc, atid))
5085 		ath_tx_tid_bar_tx(sc, atid);
5086 
5087 	ATH_TX_UNLOCK(sc);
5088 
5089 	/* Do deferred completion */
5090 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
5091 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
5092 		ath_tx_default_comp(sc, bf, 0);
5093 	}
5094 }
5095 
5096 /*
5097  * Handle completion of unaggregated frames in an ADDBA
5098  * session.
5099  *
5100  * Fail is set to 1 if the entry is being freed via a call to
5101  * ath_tx_draintxq().
5102  */
5103 static void
5104 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
5105 {
5106 	struct ieee80211_node *ni = bf->bf_node;
5107 	struct ath_node *an = ATH_NODE(ni);
5108 	int tid = bf->bf_state.bfs_tid;
5109 	struct ath_tid *atid = &an->an_tid[tid];
5110 	struct ath_tx_status ts;
5111 	int drops = 0;
5112 
5113 	/*
5114 	 * Take a copy of this; filtering/cloning the frame may free the
5115 	 * bf pointer.
5116 	 */
5117 	ts = bf->bf_status.ds_txstat;
5118 
5119 	/*
5120 	 * Update rate control status here, before we possibly
5121 	 * punt to retry or cleanup.
5122 	 *
5123 	 * Do it outside of the TXQ lock.
5124 	 */
5125 	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
5126 		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
5127 		    &bf->bf_status.ds_txstat,
5128 		    bf->bf_state.bfs_pktlen,
5129 		    1, (ts.ts_status == 0) ? 0 : 1);
5130 
5131 	/*
5132 	 * This is called early so atid->hwq_depth can be tracked.
5133 	 * This unfortunately means that it's released and regrabbed
5134 	 * during retry and cleanup. That's rather inefficient.
5135 	 */
5136 	ATH_TX_LOCK(sc);
5137 
5138 	if (tid == IEEE80211_NONQOS_TID)
5139 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16!\n", __func__);
5140 
5141 	DPRINTF(sc, ATH_DEBUG_SW_TX,
5142 	    "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n",
5143 	    __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth,
5144 	    SEQNO(bf->bf_state.bfs_seqno));
5145 
5146 	atid->hwq_depth--;
5147 	if (atid->hwq_depth < 0)
5148 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n",
5149 		    __func__, atid->hwq_depth);
5150 
5151 	/*
5152 	 * If the TID is filtered, handle completing the filter
5153 	 * transition before potentially kicking it to the cleanup
5154 	 * function.
5155 	 */
5156 	if (atid->isfiltered)
5157 		ath_tx_tid_filt_comp_complete(sc, atid);
5158 
5159 	/*
5160 	 * If a cleanup is in progress, punt to comp_cleanup;
5161 	 * rather than handling it here. It's thus their
5162 	 * responsibility to clean up, call the completion
5163 	 * function in net80211, etc.
5164 	 */
5165 	if (atid->cleanup_inprogress) {
5166 		if (atid->isfiltered)
5167 			DPRINTF(sc, ATH_DEBUG_SW_TX,
5168 			    "%s: isfiltered=1, normal_comp?\n",
5169 			    __func__);
5170 		ATH_TX_UNLOCK(sc);
5171 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n",
5172 		    __func__);
5173 		ath_tx_comp_cleanup_unaggr(sc, bf);
5174 		return;
5175 	}
5176 
5177 	/*
5178 	 * XXX TODO: how does cleanup, BAR and filtered frame handling
5179 	 * overlap?
5180 	 *
5181 	 * If the frame is filtered OR if it's any failure but
5182 	 * the TID is filtered, the frame must be added to the
5183 	 * filtered frame list.
5184 	 *
5185 	 * However - a busy buffer can't be added to the filtered
5186 	 * list as it will end up being recycled without having
5187 	 * been made available for the hardware.
5188 	 */
5189 	if ((ts.ts_status & HAL_TXERR_FILT) ||
5190 	    (ts.ts_status != 0 && atid->isfiltered)) {
5191 		int freeframe;
5192 
5193 		if (fail != 0)
5194 			DPRINTF(sc, ATH_DEBUG_SW_TX,
5195 			    "%s: isfiltered=1, fail=%d\n",
5196 			    __func__, fail);
5197 		freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf);
5198 		/*
5199 		 * If freeframe=0 then bf is no longer ours; don't
5200 		 * touch it.
5201 		 */
5202 		if (freeframe) {
5203 			/* Remove from BAW */
5204 			if (bf->bf_state.bfs_addedbaw)
5205 				drops++;
5206 			if (bf->bf_state.bfs_dobaw) {
5207 				ath_tx_update_baw(sc, an, atid, bf);
5208 				if (!bf->bf_state.bfs_addedbaw)
5209 					DPRINTF(sc, ATH_DEBUG_SW_TX,
5210 					    "%s: wasn't added: seqno %d\n",
5211 					    __func__, SEQNO(bf->bf_state.bfs_seqno));
5212 			}
5213 			bf->bf_state.bfs_dobaw = 0;
5214 		}
5215 
5216 		/*
5217 		 * If the frame couldn't be filtered, treat it as a drop and
5218 		 * prepare to send a BAR.
5219 		 */
5220 		if (freeframe && drops)
5221 			ath_tx_tid_bar_suspend(sc, atid);
5222 
5223 		/*
5224 		 * Send BAR if required
5225 		 */
5226 		if (ath_tx_tid_bar_tx_ready(sc, atid))
5227 			ath_tx_tid_bar_tx(sc, atid);
5228 
5229 		ATH_TX_UNLOCK(sc);
5230 		/*
5231 		 * If freeframe is set, then the frame couldn't be
5232 		 * cloned and bf is still valid.  Just complete/free it.
5233 		 */
5234 		if (freeframe)
5235 			ath_tx_default_comp(sc, bf, fail);
5236 
5237 		return;
5238 	}
5239 	/*
5240 	 * Don't bother with the retry check if all frames
5241 	 * are being failed (eg during queue deletion.)
5242 	 */
5243 #if 0
5244 	if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
5245 #endif
5246 	if (fail == 0 && ts.ts_status != 0) {
5247 		ATH_TX_UNLOCK(sc);
5248 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n",
5249 		    __func__);
5250 		ath_tx_aggr_retry_unaggr(sc, bf);
5251 		return;
5252 	}
5253 
5254 	/* Success? Complete */
5255 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
5256 	    __func__, tid, SEQNO(bf->bf_state.bfs_seqno));
5257 	if (bf->bf_state.bfs_dobaw) {
5258 		ath_tx_update_baw(sc, an, atid, bf);
5259 		bf->bf_state.bfs_dobaw = 0;
5260 		if (!bf->bf_state.bfs_addedbaw)
5261 			DPRINTF(sc, ATH_DEBUG_SW_TX,
5262 			    "%s: wasn't added: seqno %d\n",
5263 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
5264 	}
5265 
5266 	/*
5267 	 * If the queue is filtered, re-schedule as required.
5268 	 *
5269 	 * This is required as there may be a subsequent TX descriptor
5270 	 * for this end-node that has CLRDMASK set, so it's quite possible
5271 	 * that a filtered frame will be followed by a non-filtered
5272 	 * (complete or otherwise) frame.
5273 	 *
5274 	 * XXX should we do this before we complete the frame?
5275 	 */
5276 	if (atid->isfiltered)
5277 		ath_tx_tid_filt_comp_complete(sc, atid);
5278 
5279 	/*
5280 	 * Send BAR if required
5281 	 */
5282 	if (ath_tx_tid_bar_tx_ready(sc, atid))
5283 		ath_tx_tid_bar_tx(sc, atid);
5284 
5285 	ATH_TX_UNLOCK(sc);
5286 
5287 	ath_tx_default_comp(sc, bf, fail);
5288 	/* bf is freed at this point */
5289 }
5290 
5291 void
5292 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
5293 {
5294 	if (bf->bf_state.bfs_aggr)
5295 		ath_tx_aggr_comp_aggr(sc, bf, fail);
5296 	else
5297 		ath_tx_aggr_comp_unaggr(sc, bf, fail);
5298 }
5299 
5300 /*
5301  * Schedule some packets from the given node/TID to the hardware.
5302  *
5303  * This is the aggregate version.
5304  */
5305 void
5306 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
5307     struct ath_tid *tid)
5308 {
5309 	struct ath_buf *bf;
5310 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
5311 	struct ieee80211_tx_ampdu *tap;
5312 	ATH_AGGR_STATUS status;
5313 	ath_bufhead bf_q;
5314 
5315 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
5316 	ATH_TX_LOCK_ASSERT(sc);
5317 
5318 	/*
5319 	 * XXX TODO: If we're called for a queue that we're leaking frames to,
5320 	 * ensure we only leak one.
5321 	 */
5322 
5323 	tap = ath_tx_get_tx_tid(an, tid->tid);
5324 
5325 	if (tid->tid == IEEE80211_NONQOS_TID)
5326 		DPRINTF(sc, ATH_DEBUG_SW_TX,
5327 		    "%s: called for TID=NONQOS_TID?\n", __func__);
5328 
5329 	for (;;) {
5330 		status = ATH_AGGR_DONE;
5331 
5332 		/*
5333 		 * If the upper layer has paused the TID, don't
5334 		 * queue any further packets.
5335 		 *
5336 		 * This can also occur from the completion task because
5337 		 * of packet loss; but as its serialised with this code,
5338 		 * it won't "appear" half way through queuing packets.
5339 		 */
5340 		if (! ath_tx_tid_can_tx_or_sched(sc, tid))
5341 			break;
5342 
5343 		bf = ATH_TID_FIRST(tid);
5344 		if (bf == NULL) {
5345 			break;
5346 		}
5347 
5348 		/*
5349 		 * If the packet doesn't fall within the BAW (eg a NULL
5350 		 * data frame), schedule it directly; continue.
5351 		 */
5352 		if (! bf->bf_state.bfs_dobaw) {
5353 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5354 			    "%s: non-baw packet\n",
5355 			    __func__);
5356 			ATH_TID_REMOVE(tid, bf, bf_list);
5357 
5358 			if (bf->bf_state.bfs_nframes > 1)
5359 				DPRINTF(sc, ATH_DEBUG_SW_TX,
5360 				    "%s: aggr=%d, nframes=%d\n",
5361 				    __func__,
5362 				    bf->bf_state.bfs_aggr,
5363 				    bf->bf_state.bfs_nframes);
5364 
5365 			/*
5366 			 * This shouldn't happen - such frames shouldn't
5367 			 * ever have been queued as an aggregate in the
5368 			 * first place.  However, make sure the fields
5369 			 * are correctly setup just to be totally sure.
5370 			 */
5371 			bf->bf_state.bfs_aggr = 0;
5372 			bf->bf_state.bfs_nframes = 1;
5373 
5374 			/* Update CLRDMASK just before this frame is queued */
5375 			ath_tx_update_clrdmask(sc, tid, bf);
5376 
5377 			ath_tx_do_ratelookup(sc, bf);
5378 			ath_tx_calc_duration(sc, bf);
5379 			ath_tx_calc_protection(sc, bf);
5380 			ath_tx_set_rtscts(sc, bf);
5381 			ath_tx_rate_fill_rcflags(sc, bf);
5382 			ath_tx_setds(sc, bf);
5383 			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
5384 
5385 			sc->sc_aggr_stats.aggr_nonbaw_pkt++;
5386 
5387 			/* Queue the packet; continue */
5388 			goto queuepkt;
5389 		}
5390 
5391 		TAILQ_INIT(&bf_q);
5392 
5393 		/*
5394 		 * Do a rate control lookup on the first frame in the
5395 		 * list. The rate control code needs that to occur
5396 		 * before it can determine whether to TX.
5397 		 * It's inaccurate because the rate control code doesn't
5398 		 * really "do" aggregate lookups, so it only considers
5399 		 * the size of the first frame.
5400 		 */
5401 		ath_tx_do_ratelookup(sc, bf);
5402 		bf->bf_state.bfs_rc[3].rix = 0;
5403 		bf->bf_state.bfs_rc[3].tries = 0;
5404 
5405 		ath_tx_calc_duration(sc, bf);
5406 		ath_tx_calc_protection(sc, bf);
5407 
5408 		ath_tx_set_rtscts(sc, bf);
5409 		ath_tx_rate_fill_rcflags(sc, bf);
5410 
5411 		status = ath_tx_form_aggr(sc, an, tid, &bf_q);
5412 
5413 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5414 		    "%s: ath_tx_form_aggr() status=%d\n", __func__, status);
5415 
5416 		/*
5417 		 * No frames to be picked up - out of BAW
5418 		 */
5419 		if (TAILQ_EMPTY(&bf_q))
5420 			break;
5421 
5422 		/*
5423 		 * This assumes that the descriptor list in the ath_bufhead
5424 		 * are already linked together via bf_next pointers.
5425 		 */
5426 		bf = TAILQ_FIRST(&bf_q);
5427 
5428 		if (status == ATH_AGGR_8K_LIMITED)
5429 			sc->sc_aggr_stats.aggr_rts_aggr_limited++;
5430 
5431 		/*
5432 		 * If it's the only frame send as non-aggregate
5433 		 * assume that ath_tx_form_aggr() has checked
5434 		 * whether it's in the BAW and added it appropriately.
5435 		 */
5436 		if (bf->bf_state.bfs_nframes == 1) {
5437 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5438 			    "%s: single-frame aggregate\n", __func__);
5439 
5440 			/* Update CLRDMASK just before this frame is queued */
5441 			ath_tx_update_clrdmask(sc, tid, bf);
5442 
5443 			bf->bf_state.bfs_aggr = 0;
5444 			bf->bf_state.bfs_ndelim = 0;
5445 			ath_tx_setds(sc, bf);
5446 			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
5447 			if (status == ATH_AGGR_BAW_CLOSED)
5448 				sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
5449 			else
5450 				sc->sc_aggr_stats.aggr_single_pkt++;
5451 		} else {
5452 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5453 			    "%s: multi-frame aggregate: %d frames, "
5454 			    "length %d\n",
5455 			     __func__, bf->bf_state.bfs_nframes,
5456 			    bf->bf_state.bfs_al);
5457 			bf->bf_state.bfs_aggr = 1;
5458 			sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
5459 			sc->sc_aggr_stats.aggr_aggr_pkt++;
5460 
5461 			/* Update CLRDMASK just before this frame is queued */
5462 			ath_tx_update_clrdmask(sc, tid, bf);
5463 
5464 			/*
5465 			 * Calculate the duration/protection as required.
5466 			 */
5467 			ath_tx_calc_duration(sc, bf);
5468 			ath_tx_calc_protection(sc, bf);
5469 
5470 			/*
5471 			 * Update the rate and rtscts information based on the
5472 			 * rate decision made by the rate control code;
5473 			 * the first frame in the aggregate needs it.
5474 			 */
5475 			ath_tx_set_rtscts(sc, bf);
5476 
5477 			/*
5478 			 * Setup the relevant descriptor fields
5479 			 * for aggregation. The first descriptor
5480 			 * already points to the rest in the chain.
5481 			 */
5482 			ath_tx_setds_11n(sc, bf);
5483 
5484 		}
5485 	queuepkt:
5486 		/* Set completion handler, multi-frame aggregate or not */
5487 		bf->bf_comp = ath_tx_aggr_comp;
5488 
5489 		if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
5490 			DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16?\n", __func__);
5491 
5492 		/*
5493 		 * Update leak count and frame config if were leaking frames.
5494 		 *
5495 		 * XXX TODO: it should update all frames in an aggregate
5496 		 * correctly!
5497 		 */
5498 		ath_tx_leak_count_update(sc, tid, bf);
5499 
5500 		/* Punt to txq */
5501 		ath_tx_handoff(sc, txq, bf);
5502 
5503 		/* Track outstanding buffer count to hardware */
5504 		/* aggregates are "one" buffer */
5505 		tid->hwq_depth++;
5506 
5507 		/*
5508 		 * Break out if ath_tx_form_aggr() indicated
5509 		 * there can't be any further progress (eg BAW is full.)
5510 		 * Checking for an empty txq is done above.
5511 		 *
5512 		 * XXX locking on txq here?
5513 		 */
5514 		/* XXX TXQ locking */
5515 		if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr ||
5516 		    (status == ATH_AGGR_BAW_CLOSED ||
5517 		     status == ATH_AGGR_LEAK_CLOSED))
5518 			break;
5519 	}
5520 }
5521 
5522 /*
5523  * Schedule some packets from the given node/TID to the hardware.
5524  *
5525  * XXX TODO: this routine doesn't enforce the maximum TXQ depth.
5526  * It just dumps frames into the TXQ.  We should limit how deep
5527  * the transmit queue can grow for frames dispatched to the given
5528  * TXQ.
5529  *
5530  * To avoid locking issues, either we need to own the TXQ lock
5531  * at this point, or we need to pass in the maximum frame count
5532  * from the caller.
5533  */
5534 void
5535 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
5536     struct ath_tid *tid)
5537 {
5538 	struct ath_buf *bf;
5539 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
5540 
5541 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
5542 	    __func__, an, tid->tid);
5543 
5544 	ATH_TX_LOCK_ASSERT(sc);
5545 
5546 	/* Check - is AMPDU pending or running? then print out something */
5547 	if (ath_tx_ampdu_pending(sc, an, tid->tid))
5548 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu pending?\n",
5549 		    __func__, tid->tid);
5550 	if (ath_tx_ampdu_running(sc, an, tid->tid))
5551 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu running?\n",
5552 		    __func__, tid->tid);
5553 
5554 	for (;;) {
5555 
5556 		/*
5557 		 * If the upper layers have paused the TID, don't
5558 		 * queue any further packets.
5559 		 *
5560 		 * XXX if we are leaking frames, make sure we decrement
5561 		 * that counter _and_ we continue here.
5562 		 */
5563 		if (! ath_tx_tid_can_tx_or_sched(sc, tid))
5564 			break;
5565 
5566 		bf = ATH_TID_FIRST(tid);
5567 		if (bf == NULL) {
5568 			break;
5569 		}
5570 
5571 		ATH_TID_REMOVE(tid, bf, bf_list);
5572 
5573 		/* Sanity check! */
5574 		if (tid->tid != bf->bf_state.bfs_tid) {
5575 			DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bfs_tid %d !="
5576 			    " tid %d\n", __func__, bf->bf_state.bfs_tid,
5577 			    tid->tid);
5578 		}
5579 		/* Normal completion handler */
5580 		bf->bf_comp = ath_tx_normal_comp;
5581 
5582 		/*
5583 		 * Override this for now, until the non-aggregate
5584 		 * completion handler correctly handles software retransmits.
5585 		 */
5586 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
5587 
5588 		/* Update CLRDMASK just before this frame is queued */
5589 		ath_tx_update_clrdmask(sc, tid, bf);
5590 
5591 		/* Program descriptors + rate control */
5592 		ath_tx_do_ratelookup(sc, bf);
5593 		ath_tx_calc_duration(sc, bf);
5594 		ath_tx_calc_protection(sc, bf);
5595 		ath_tx_set_rtscts(sc, bf);
5596 		ath_tx_rate_fill_rcflags(sc, bf);
5597 		ath_tx_setds(sc, bf);
5598 
5599 		/*
5600 		 * Update the current leak count if
5601 		 * we're leaking frames; and set the
5602 		 * MORE flag as appropriate.
5603 		 */
5604 		ath_tx_leak_count_update(sc, tid, bf);
5605 
5606 		/* Track outstanding buffer count to hardware */
5607 		/* aggregates are "one" buffer */
5608 		tid->hwq_depth++;
5609 
5610 		/* Punt to hardware or software txq */
5611 		ath_tx_handoff(sc, txq, bf);
5612 	}
5613 }
5614 
5615 /*
5616  * Schedule some packets to the given hardware queue.
5617  *
5618  * This function walks the list of TIDs (ie, ath_node TIDs
5619  * with queued traffic) and attempts to schedule traffic
5620  * from them.
5621  *
5622  * TID scheduling is implemented as a FIFO, with TIDs being
5623  * added to the end of the queue after some frames have been
5624  * scheduled.
5625  */
5626 void
5627 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
5628 {
5629 	struct ath_tid *tid, *next, *last;
5630 
5631 	ATH_TX_LOCK_ASSERT(sc);
5632 
5633 	/*
5634 	 * For non-EDMA chips, aggr frames that have been built are
5635 	 * in axq_aggr_depth, whether they've been scheduled or not.
5636 	 * There's no FIFO, so txq->axq_depth is what's been scheduled
5637 	 * to the hardware.
5638 	 *
5639 	 * For EDMA chips, we do it in two stages.  The existing code
5640 	 * builds a list of frames to go to the hardware and the EDMA
5641 	 * code turns it into a single entry to push into the FIFO.
5642 	 * That way we don't take up one packet per FIFO slot.
5643 	 * We do push one aggregate per FIFO slot though, just to keep
5644 	 * things simple.
5645 	 *
5646 	 * The FIFO depth is what's in the hardware; the txq->axq_depth
5647 	 * is what's been scheduled to the FIFO.
5648 	 *
5649 	 * fifo.axq_depth is the number of frames (or aggregates) pushed
5650 	 *  into the EDMA FIFO.  For multi-frame lists, this is the number
5651 	 *  of frames pushed in.
5652 	 * axq_fifo_depth is the number of FIFO slots currently busy.
5653 	 */
5654 
5655 	/* For EDMA and non-EDMA, check built/scheduled against aggr limit */
5656 	if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr) {
5657 		sc->sc_aggr_stats.aggr_sched_nopkt++;
5658 		return;
5659 	}
5660 
5661 	/*
5662 	 * For non-EDMA chips, axq_depth is the "what's scheduled to
5663 	 * the hardware list".  For EDMA it's "What's built for the hardware"
5664 	 * and fifo.axq_depth is how many frames have been dispatched
5665 	 * already to the hardware.
5666 	 */
5667 	if (txq->axq_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_nonaggr) {
5668 		sc->sc_aggr_stats.aggr_sched_nopkt++;
5669 		return;
5670 	}
5671 
5672 	last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
5673 
5674 	TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
5675 		/*
5676 		 * Suspend paused queues here; they'll be resumed
5677 		 * once the addba completes or times out.
5678 		 */
5679 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
5680 		    __func__, tid->tid, tid->paused);
5681 		ath_tx_tid_unsched(sc, tid);
5682 		/*
5683 		 * This node may be in power-save and we're leaking
5684 		 * a frame; be careful.
5685 		 */
5686 		if (! ath_tx_tid_can_tx_or_sched(sc, tid)) {
5687 			goto loop_done;
5688 		}
5689 		if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
5690 			ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
5691 		else
5692 			ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
5693 
5694 		/* Not empty? Re-schedule */
5695 		if (tid->axq_depth != 0)
5696 			ath_tx_tid_sched(sc, tid);
5697 
5698 		/*
5699 		 * Give the software queue time to aggregate more
5700 		 * packets.  If we aren't running aggregation then
5701 		 * we should still limit the hardware queue depth.
5702 		 */
5703 		/* XXX TXQ locking */
5704 		if (txq->axq_aggr_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_aggr) {
5705 			break;
5706 		}
5707 		if (txq->axq_depth >= sc->sc_hwq_limit_nonaggr) {
5708 			break;
5709 		}
5710 loop_done:
5711 		/*
5712 		 * If this was the last entry on the original list, stop.
5713 		 * Otherwise nodes that have been rescheduled onto the end
5714 		 * of the TID FIFO list will just keep being rescheduled.
5715 		 *
5716 		 * XXX What should we do about nodes that were paused
5717 		 * but are pending a leaking frame in response to a ps-poll?
5718 		 * They'll be put at the front of the list; so they'll
5719 		 * prematurely trigger this condition! Ew.
5720 		 */
5721 		if (tid == last)
5722 			break;
5723 	}
5724 }
5725 
5726 /*
5727  * TX addba handling
5728  */
5729 
5730 /*
5731  * Return net80211 TID struct pointer, or NULL for none
5732  */
5733 struct ieee80211_tx_ampdu *
5734 ath_tx_get_tx_tid(struct ath_node *an, int tid)
5735 {
5736 	struct ieee80211_node *ni = &an->an_node;
5737 	struct ieee80211_tx_ampdu *tap;
5738 
5739 	if (tid == IEEE80211_NONQOS_TID)
5740 		return NULL;
5741 
5742 	tap = &ni->ni_tx_ampdu[tid];
5743 	return tap;
5744 }
5745 
5746 /*
5747  * Is AMPDU-TX running?
5748  */
5749 static int
5750 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
5751 {
5752 	struct ieee80211_tx_ampdu *tap;
5753 
5754 	if (tid == IEEE80211_NONQOS_TID)
5755 		return 0;
5756 
5757 	tap = ath_tx_get_tx_tid(an, tid);
5758 	if (tap == NULL)
5759 		return 0;	/* Not valid; default to not running */
5760 
5761 	return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
5762 }
5763 
5764 /*
5765  * Is AMPDU-TX negotiation pending?
5766  */
5767 static int
5768 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
5769 {
5770 	struct ieee80211_tx_ampdu *tap;
5771 
5772 	if (tid == IEEE80211_NONQOS_TID)
5773 		return 0;
5774 
5775 	tap = ath_tx_get_tx_tid(an, tid);
5776 	if (tap == NULL)
5777 		return 0;	/* Not valid; default to not pending */
5778 
5779 	return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
5780 }
5781 
5782 /*
5783  * Is AMPDU-TX pending for the given TID?
5784  */
5785 
5786 
5787 /*
5788  * Method to handle sending an ADDBA request.
5789  *
5790  * We tap this so the relevant flags can be set to pause the TID
5791  * whilst waiting for the response.
5792  *
5793  * XXX there's no timeout handler we can override?
5794  */
5795 int
5796 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5797     int dialogtoken, int baparamset, int batimeout)
5798 {
5799 	struct ath_softc *sc = ni->ni_ic->ic_softc;
5800 	int tid = tap->txa_tid;
5801 	struct ath_node *an = ATH_NODE(ni);
5802 	struct ath_tid *atid = &an->an_tid[tid];
5803 
5804 	/*
5805 	 * XXX danger Will Robinson!
5806 	 *
5807 	 * Although the taskqueue may be running and scheduling some more
5808 	 * packets, these should all be _before_ the addba sequence number.
5809 	 * However, net80211 will keep self-assigning sequence numbers
5810 	 * until addba has been negotiated.
5811 	 *
5812 	 * In the past, these packets would be "paused" (which still works
5813 	 * fine, as they're being scheduled to the driver in the same
5814 	 * serialised method which is calling the addba request routine)
5815 	 * and when the aggregation session begins, they'll be dequeued
5816 	 * as aggregate packets and added to the BAW. However, now there's
5817 	 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
5818 	 * packets. Thus they never get included in the BAW tracking and
5819 	 * this can cause the initial burst of packets after the addba
5820 	 * negotiation to "hang", as they quickly fall outside the BAW.
5821 	 *
5822 	 * The "eventual" solution should be to tag these packets with
5823 	 * dobaw. Although net80211 has given us a sequence number,
5824 	 * it'll be "after" the left edge of the BAW and thus it'll
5825 	 * fall within it.
5826 	 */
5827 	ATH_TX_LOCK(sc);
5828 	/*
5829 	 * This is a bit annoying.  Until net80211 HT code inherits some
5830 	 * (any) locking, we may have this called in parallel BUT only
5831 	 * one response/timeout will be called.  Grr.
5832 	 */
5833 	if (atid->addba_tx_pending == 0) {
5834 		ath_tx_tid_pause(sc, atid);
5835 		atid->addba_tx_pending = 1;
5836 	}
5837 	ATH_TX_UNLOCK(sc);
5838 
5839 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5840 	    "%s: %6D: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
5841 	    __func__,
5842 	    ni->ni_macaddr,
5843 	    ":",
5844 	    dialogtoken, baparamset, batimeout);
5845 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5846 	    "%s: txa_start=%d, ni_txseqs=%d\n",
5847 	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
5848 
5849 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5850 	    batimeout);
5851 }
5852 
5853 /*
5854  * Handle an ADDBA response.
5855  *
5856  * We unpause the queue so TX'ing can resume.
5857  *
5858  * Any packets TX'ed from this point should be "aggregate" (whether
5859  * aggregate or not) so the BAW is updated.
5860  *
5861  * Note! net80211 keeps self-assigning sequence numbers until
5862  * ampdu is negotiated. This means the initially-negotiated BAW left
5863  * edge won't match the ni->ni_txseq.
5864  *
5865  * So, being very dirty, the BAW left edge is "slid" here to match
5866  * ni->ni_txseq.
5867  *
5868  * What likely SHOULD happen is that all packets subsequent to the
5869  * addba request should be tagged as aggregate and queued as non-aggregate
5870  * frames; thus updating the BAW. For now though, I'll just slide the
5871  * window.
5872  */
5873 int
5874 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5875     int status, int code, int batimeout)
5876 {
5877 	struct ath_softc *sc = ni->ni_ic->ic_softc;
5878 	int tid = tap->txa_tid;
5879 	struct ath_node *an = ATH_NODE(ni);
5880 	struct ath_tid *atid = &an->an_tid[tid];
5881 	int r;
5882 
5883 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5884 	    "%s: %6D: called; status=%d, code=%d, batimeout=%d\n", __func__,
5885 	    ni->ni_macaddr,
5886 	    ":",
5887 	    status, code, batimeout);
5888 
5889 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5890 	    "%s: txa_start=%d, ni_txseqs=%d\n",
5891 	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
5892 
5893 	/*
5894 	 * Call this first, so the interface flags get updated
5895 	 * before the TID is unpaused. Otherwise a race condition
5896 	 * exists where the unpaused TID still doesn't yet have
5897 	 * IEEE80211_AGGR_RUNNING set.
5898 	 */
5899 	r = sc->sc_addba_response(ni, tap, status, code, batimeout);
5900 
5901 	ATH_TX_LOCK(sc);
5902 	atid->addba_tx_pending = 0;
5903 	/*
5904 	 * XXX dirty!
5905 	 * Slide the BAW left edge to wherever net80211 left it for us.
5906 	 * Read above for more information.
5907 	 */
5908 	tap->txa_start = ni->ni_txseqs[tid];
5909 	ath_tx_tid_resume(sc, atid);
5910 	ATH_TX_UNLOCK(sc);
5911 	return r;
5912 }
5913 
5914 
5915 /*
5916  * Stop ADDBA on a queue.
5917  *
5918  * This can be called whilst BAR TX is currently active on the queue,
5919  * so make sure this is unblocked before continuing.
5920  */
5921 void
5922 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
5923 {
5924 	struct ath_softc *sc = ni->ni_ic->ic_softc;
5925 	int tid = tap->txa_tid;
5926 	struct ath_node *an = ATH_NODE(ni);
5927 	struct ath_tid *atid = &an->an_tid[tid];
5928 	ath_bufhead bf_cq;
5929 	struct ath_buf *bf;
5930 
5931 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: called\n",
5932 	    __func__,
5933 	    ni->ni_macaddr,
5934 	    ":");
5935 
5936 	/*
5937 	 * Pause TID traffic early, so there aren't any races
5938 	 * Unblock the pending BAR held traffic, if it's currently paused.
5939 	 */
5940 	ATH_TX_LOCK(sc);
5941 	ath_tx_tid_pause(sc, atid);
5942 	if (atid->bar_wait) {
5943 		/*
5944 		 * bar_unsuspend() expects bar_tx == 1, as it should be
5945 		 * called from the TX completion path.  This quietens
5946 		 * the warning.  It's cleared for us anyway.
5947 		 */
5948 		atid->bar_tx = 1;
5949 		ath_tx_tid_bar_unsuspend(sc, atid);
5950 	}
5951 	ATH_TX_UNLOCK(sc);
5952 
5953 	/* There's no need to hold the TXQ lock here */
5954 	sc->sc_addba_stop(ni, tap);
5955 
5956 	/*
5957 	 * ath_tx_tid_cleanup will resume the TID if possible, otherwise
5958 	 * it'll set the cleanup flag, and it'll be unpaused once
5959 	 * things have been cleaned up.
5960 	 */
5961 	TAILQ_INIT(&bf_cq);
5962 	ATH_TX_LOCK(sc);
5963 
5964 	/*
5965 	 * In case there's a followup call to this, only call it
5966 	 * if we don't have a cleanup in progress.
5967 	 *
5968 	 * Since we've paused the queue above, we need to make
5969 	 * sure we unpause if there's already a cleanup in
5970 	 * progress - it means something else is also doing
5971 	 * this stuff, so we don't need to also keep it paused.
5972 	 */
5973 	if (atid->cleanup_inprogress) {
5974 		ath_tx_tid_resume(sc, atid);
5975 	} else {
5976 		ath_tx_tid_cleanup(sc, an, tid, &bf_cq);
5977 		/*
5978 		 * Unpause the TID if no cleanup is required.
5979 		 */
5980 		if (! atid->cleanup_inprogress)
5981 			ath_tx_tid_resume(sc, atid);
5982 	}
5983 	ATH_TX_UNLOCK(sc);
5984 
5985 	/* Handle completing frames and fail them */
5986 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
5987 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
5988 		ath_tx_default_comp(sc, bf, 1);
5989 	}
5990 
5991 }
5992 
5993 /*
5994  * Handle a node reassociation.
5995  *
5996  * We may have a bunch of frames queued to the hardware; those need
5997  * to be marked as cleanup.
5998  */
5999 void
6000 ath_tx_node_reassoc(struct ath_softc *sc, struct ath_node *an)
6001 {
6002 	struct ath_tid *tid;
6003 	int i;
6004 	ath_bufhead bf_cq;
6005 	struct ath_buf *bf;
6006 
6007 	TAILQ_INIT(&bf_cq);
6008 
6009 	ATH_TX_UNLOCK_ASSERT(sc);
6010 
6011 	ATH_TX_LOCK(sc);
6012 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
6013 		tid = &an->an_tid[i];
6014 		if (tid->hwq_depth == 0)
6015 			continue;
6016 		DPRINTF(sc, ATH_DEBUG_NODE,
6017 		    "%s: %6D: TID %d: cleaning up TID\n",
6018 		    __func__,
6019 		    an->an_node.ni_macaddr,
6020 		    ":",
6021 		    i);
6022 		/*
6023 		 * In case there's a followup call to this, only call it
6024 		 * if we don't have a cleanup in progress.
6025 		 */
6026 		if (! tid->cleanup_inprogress) {
6027 			ath_tx_tid_pause(sc, tid);
6028 			ath_tx_tid_cleanup(sc, an, i, &bf_cq);
6029 			/*
6030 			 * Unpause the TID if no cleanup is required.
6031 			 */
6032 			if (! tid->cleanup_inprogress)
6033 				ath_tx_tid_resume(sc, tid);
6034 		}
6035 	}
6036 	ATH_TX_UNLOCK(sc);
6037 
6038 	/* Handle completing frames and fail them */
6039 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
6040 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
6041 		ath_tx_default_comp(sc, bf, 1);
6042 	}
6043 }
6044 
6045 /*
6046  * Note: net80211 bar_timeout() doesn't call this function on BAR failure;
6047  * it simply tears down the aggregation session. Ew.
6048  *
6049  * It however will call ieee80211_ampdu_stop() which will call
6050  * ic->ic_addba_stop().
6051  *
6052  * XXX This uses a hard-coded max BAR count value; the whole
6053  * XXX BAR TX success or failure should be better handled!
6054  */
6055 void
6056 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
6057     int status)
6058 {
6059 	struct ath_softc *sc = ni->ni_ic->ic_softc;
6060 	int tid = tap->txa_tid;
6061 	struct ath_node *an = ATH_NODE(ni);
6062 	struct ath_tid *atid = &an->an_tid[tid];
6063 	int attempts = tap->txa_attempts;
6064 	int old_txa_start;
6065 
6066 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
6067 	    "%s: %6D: called; txa_tid=%d, atid->tid=%d, status=%d, attempts=%d, txa_start=%d, txa_seqpending=%d\n",
6068 	    __func__,
6069 	    ni->ni_macaddr,
6070 	    ":",
6071 	    tap->txa_tid,
6072 	    atid->tid,
6073 	    status,
6074 	    attempts,
6075 	    tap->txa_start,
6076 	    tap->txa_seqpending);
6077 
6078 	/* Note: This may update the BAW details */
6079 	/*
6080 	 * XXX What if this does slide the BAW along? We need to somehow
6081 	 * XXX either fix things when it does happen, or prevent the
6082 	 * XXX seqpending value to be anything other than exactly what
6083 	 * XXX the hell we want!
6084 	 *
6085 	 * XXX So for now, how I do this inside the TX lock for now
6086 	 * XXX and just correct it afterwards? The below condition should
6087 	 * XXX never happen and if it does I need to fix all kinds of things.
6088 	 */
6089 	ATH_TX_LOCK(sc);
6090 	old_txa_start = tap->txa_start;
6091 	sc->sc_bar_response(ni, tap, status);
6092 	if (tap->txa_start != old_txa_start) {
6093 		device_printf(sc->sc_dev, "%s: tid=%d; txa_start=%d, old=%d, adjusting\n",
6094 		    __func__,
6095 		    tid,
6096 		    tap->txa_start,
6097 		    old_txa_start);
6098 	}
6099 	tap->txa_start = old_txa_start;
6100 	ATH_TX_UNLOCK(sc);
6101 
6102 	/* Unpause the TID */
6103 	/*
6104 	 * XXX if this is attempt=50, the TID will be downgraded
6105 	 * XXX to a non-aggregate session. So we must unpause the
6106 	 * XXX TID here or it'll never be done.
6107 	 *
6108 	 * Also, don't call it if bar_tx/bar_wait are 0; something
6109 	 * has beaten us to the punch? (XXX figure out what?)
6110 	 */
6111 	if (status == 0 || attempts == 50) {
6112 		ATH_TX_LOCK(sc);
6113 		if (atid->bar_tx == 0 || atid->bar_wait == 0)
6114 			DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
6115 			    "%s: huh? bar_tx=%d, bar_wait=%d\n",
6116 			    __func__,
6117 			    atid->bar_tx, atid->bar_wait);
6118 		else
6119 			ath_tx_tid_bar_unsuspend(sc, atid);
6120 		ATH_TX_UNLOCK(sc);
6121 	}
6122 }
6123 
6124 /*
6125  * This is called whenever the pending ADDBA request times out.
6126  * Unpause and reschedule the TID.
6127  */
6128 void
6129 ath_addba_response_timeout(struct ieee80211_node *ni,
6130     struct ieee80211_tx_ampdu *tap)
6131 {
6132 	struct ath_softc *sc = ni->ni_ic->ic_softc;
6133 	int tid = tap->txa_tid;
6134 	struct ath_node *an = ATH_NODE(ni);
6135 	struct ath_tid *atid = &an->an_tid[tid];
6136 
6137 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
6138 	    "%s: %6D: TID=%d, called; resuming\n",
6139 	    __func__,
6140 	    ni->ni_macaddr,
6141 	    ":",
6142 	    tid);
6143 
6144 	ATH_TX_LOCK(sc);
6145 	atid->addba_tx_pending = 0;
6146 	ATH_TX_UNLOCK(sc);
6147 
6148 	/* Note: This updates the aggregate state to (again) pending */
6149 	sc->sc_addba_response_timeout(ni, tap);
6150 
6151 	/* Unpause the TID; which reschedules it */
6152 	ATH_TX_LOCK(sc);
6153 	ath_tx_tid_resume(sc, atid);
6154 	ATH_TX_UNLOCK(sc);
6155 }
6156 
6157 /*
6158  * Check if a node is asleep or not.
6159  */
6160 int
6161 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an)
6162 {
6163 
6164 	ATH_TX_LOCK_ASSERT(sc);
6165 
6166 	return (an->an_is_powersave);
6167 }
6168 
6169 /*
6170  * Mark a node as currently "in powersaving."
6171  * This suspends all traffic on the node.
6172  *
6173  * This must be called with the node/tx locks free.
6174  *
6175  * XXX TODO: the locking silliness below is due to how the node
6176  * locking currently works.  Right now, the node lock is grabbed
6177  * to do rate control lookups and these are done with the TX
6178  * queue lock held.  This means the node lock can't be grabbed
6179  * first here or a LOR will occur.
6180  *
6181  * Eventually (hopefully!) the TX path code will only grab
6182  * the TXQ lock when transmitting and the ath_node lock when
6183  * doing node/TID operations.  There are other complications -
6184  * the sched/unsched operations involve walking the per-txq
6185  * 'active tid' list and this requires both locks to be held.
6186  */
6187 void
6188 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an)
6189 {
6190 	struct ath_tid *atid;
6191 	struct ath_txq *txq;
6192 	int tid;
6193 
6194 	ATH_TX_UNLOCK_ASSERT(sc);
6195 
6196 	/* Suspend all traffic on the node */
6197 	ATH_TX_LOCK(sc);
6198 
6199 	if (an->an_is_powersave) {
6200 		DPRINTF(sc, ATH_DEBUG_XMIT,
6201 		    "%s: %6D: node was already asleep!\n",
6202 		    __func__, an->an_node.ni_macaddr, ":");
6203 		ATH_TX_UNLOCK(sc);
6204 		return;
6205 	}
6206 
6207 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
6208 		atid = &an->an_tid[tid];
6209 		txq = sc->sc_ac2q[atid->ac];
6210 
6211 		ath_tx_tid_pause(sc, atid);
6212 	}
6213 
6214 	/* Mark node as in powersaving */
6215 	an->an_is_powersave = 1;
6216 
6217 	ATH_TX_UNLOCK(sc);
6218 }
6219 
6220 /*
6221  * Mark a node as currently "awake."
6222  * This resumes all traffic to the node.
6223  */
6224 void
6225 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an)
6226 {
6227 	struct ath_tid *atid;
6228 	struct ath_txq *txq;
6229 	int tid;
6230 
6231 	ATH_TX_UNLOCK_ASSERT(sc);
6232 
6233 	ATH_TX_LOCK(sc);
6234 
6235 	/* !? */
6236 	if (an->an_is_powersave == 0) {
6237 		ATH_TX_UNLOCK(sc);
6238 		DPRINTF(sc, ATH_DEBUG_XMIT,
6239 		    "%s: an=%p: node was already awake\n",
6240 		    __func__, an);
6241 		return;
6242 	}
6243 
6244 	/* Mark node as awake */
6245 	an->an_is_powersave = 0;
6246 	/*
6247 	 * Clear any pending leaked frame requests
6248 	 */
6249 	an->an_leak_count = 0;
6250 
6251 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
6252 		atid = &an->an_tid[tid];
6253 		txq = sc->sc_ac2q[atid->ac];
6254 
6255 		ath_tx_tid_resume(sc, atid);
6256 	}
6257 	ATH_TX_UNLOCK(sc);
6258 }
6259 
6260 static int
6261 ath_legacy_dma_txsetup(struct ath_softc *sc)
6262 {
6263 
6264 	/* nothing new needed */
6265 	return (0);
6266 }
6267 
6268 static int
6269 ath_legacy_dma_txteardown(struct ath_softc *sc)
6270 {
6271 
6272 	/* nothing new needed */
6273 	return (0);
6274 }
6275 
6276 void
6277 ath_xmit_setup_legacy(struct ath_softc *sc)
6278 {
6279 	/*
6280 	 * For now, just set the descriptor length to sizeof(ath_desc);
6281 	 * worry about extracting the real length out of the HAL later.
6282 	 */
6283 	sc->sc_tx_desclen = sizeof(struct ath_desc);
6284 	sc->sc_tx_statuslen = sizeof(struct ath_desc);
6285 	sc->sc_tx_nmaps = 1;	/* only one buffer per TX desc */
6286 
6287 	sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup;
6288 	sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown;
6289 	sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func;
6290 
6291 	sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart;
6292 	sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff;
6293 
6294 	sc->sc_tx.xmit_drain = ath_legacy_tx_drain;
6295 }
6296