1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * Driver for the Atheros Wireless LAN controller. 36 * 37 * This software is derived from work of Atsushi Onoe; his contribution 38 * is greatly appreciated. 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_ath.h" 43 #include "opt_wlan.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/mbuf.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/kernel.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/errno.h> 56 #include <sys/callout.h> 57 #include <sys/bus.h> 58 #include <sys/endian.h> 59 #include <sys/kthread.h> 60 #include <sys/taskqueue.h> 61 #include <sys/priv.h> 62 #include <sys/ktr.h> 63 64 #include <machine/bus.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_dl.h> 69 #include <net/if_media.h> 70 #include <net/if_types.h> 71 #include <net/if_arp.h> 72 #include <net/ethernet.h> 73 #include <net/if_llc.h> 74 75 #include <net80211/ieee80211_var.h> 76 #include <net80211/ieee80211_regdomain.h> 77 #ifdef IEEE80211_SUPPORT_SUPERG 78 #include <net80211/ieee80211_superg.h> 79 #endif 80 #ifdef IEEE80211_SUPPORT_TDMA 81 #include <net80211/ieee80211_tdma.h> 82 #endif 83 #include <net80211/ieee80211_ht.h> 84 85 #include <net/bpf.h> 86 87 #ifdef INET 88 #include <netinet/in.h> 89 #include <netinet/if_ether.h> 90 #endif 91 92 #include <dev/ath/if_athvar.h> 93 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 94 #include <dev/ath/ath_hal/ah_diagcodes.h> 95 96 #include <dev/ath/if_ath_debug.h> 97 98 #ifdef ATH_TX99_DIAG 99 #include <dev/ath/ath_tx99/ath_tx99.h> 100 #endif 101 102 #include <dev/ath/if_ath_misc.h> 103 #include <dev/ath/if_ath_tx.h> 104 #include <dev/ath/if_ath_tx_ht.h> 105 106 #ifdef ATH_DEBUG_ALQ 107 #include <dev/ath/if_ath_alq.h> 108 #endif 109 110 /* 111 * How many retries to perform in software 112 */ 113 #define SWMAX_RETRIES 10 114 115 /* 116 * What queue to throw the non-QoS TID traffic into 117 */ 118 #define ATH_NONQOS_TID_AC WME_AC_VO 119 120 #if 0 121 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an); 122 #endif 123 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, 124 int tid); 125 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, 126 int tid); 127 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, 128 struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0); 129 static int ath_tx_action_frame_override_queue(struct ath_softc *sc, 130 struct ieee80211_node *ni, struct mbuf *m0, int *tid); 131 static struct ath_buf * 132 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 133 struct ath_tid *tid, struct ath_buf *bf); 134 135 #ifdef ATH_DEBUG_ALQ 136 void 137 ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first) 138 { 139 struct ath_buf *bf; 140 int i, n; 141 const char *ds; 142 143 /* XXX we should skip out early if debugging isn't enabled! */ 144 bf = bf_first; 145 146 while (bf != NULL) { 147 /* XXX should ensure bf_nseg > 0! */ 148 if (bf->bf_nseg == 0) 149 break; 150 n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1; 151 for (i = 0, ds = (const char *) bf->bf_desc; 152 i < n; 153 i++, ds += sc->sc_tx_desclen) { 154 if_ath_alq_post(&sc->sc_alq, 155 ATH_ALQ_EDMA_TXDESC, 156 sc->sc_tx_desclen, 157 ds); 158 } 159 bf = bf->bf_next; 160 } 161 } 162 #endif /* ATH_DEBUG_ALQ */ 163 164 /* 165 * Whether to use the 11n rate scenario functions or not 166 */ 167 static inline int 168 ath_tx_is_11n(struct ath_softc *sc) 169 { 170 return ((sc->sc_ah->ah_magic == 0x20065416) || 171 (sc->sc_ah->ah_magic == 0x19741014)); 172 } 173 174 /* 175 * Obtain the current TID from the given frame. 176 * 177 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.) 178 * This has implications for which AC/priority the packet is placed 179 * in. 180 */ 181 static int 182 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0) 183 { 184 const struct ieee80211_frame *wh; 185 int pri = M_WME_GETAC(m0); 186 187 wh = mtod(m0, const struct ieee80211_frame *); 188 if (! IEEE80211_QOS_HAS_SEQ(wh)) 189 return IEEE80211_NONQOS_TID; 190 else 191 return WME_AC_TO_TID(pri); 192 } 193 194 static void 195 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) 196 { 197 struct ieee80211_frame *wh; 198 199 wh = mtod(bf->bf_m, struct ieee80211_frame *); 200 /* Only update/resync if needed */ 201 if (bf->bf_state.bfs_isretried == 0) { 202 wh->i_fc[1] |= IEEE80211_FC1_RETRY; 203 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 204 BUS_DMASYNC_PREWRITE); 205 } 206 bf->bf_state.bfs_isretried = 1; 207 bf->bf_state.bfs_retries ++; 208 } 209 210 /* 211 * Determine what the correct AC queue for the given frame 212 * should be. 213 * 214 * This code assumes that the TIDs map consistently to 215 * the underlying hardware (or software) ath_txq. 216 * Since the sender may try to set an AC which is 217 * arbitrary, non-QoS TIDs may end up being put on 218 * completely different ACs. There's no way to put a 219 * TID into multiple ath_txq's for scheduling, so 220 * for now we override the AC/TXQ selection and set 221 * non-QOS TID frames into the BE queue. 222 * 223 * This may be completely incorrect - specifically, 224 * some management frames may end up out of order 225 * compared to the QoS traffic they're controlling. 226 * I'll look into this later. 227 */ 228 static int 229 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0) 230 { 231 const struct ieee80211_frame *wh; 232 int pri = M_WME_GETAC(m0); 233 wh = mtod(m0, const struct ieee80211_frame *); 234 if (IEEE80211_QOS_HAS_SEQ(wh)) 235 return pri; 236 237 return ATH_NONQOS_TID_AC; 238 } 239 240 void 241 ath_txfrag_cleanup(struct ath_softc *sc, 242 ath_bufhead *frags, struct ieee80211_node *ni) 243 { 244 struct ath_buf *bf, *next; 245 246 ATH_TXBUF_LOCK_ASSERT(sc); 247 248 TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { 249 /* NB: bf assumed clean */ 250 TAILQ_REMOVE(frags, bf, bf_list); 251 ath_returnbuf_head(sc, bf); 252 ieee80211_node_decref(ni); 253 } 254 } 255 256 /* 257 * Setup xmit of a fragmented frame. Allocate a buffer 258 * for each frag and bump the node reference count to 259 * reflect the held reference to be setup by ath_tx_start. 260 */ 261 int 262 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 263 struct mbuf *m0, struct ieee80211_node *ni) 264 { 265 struct mbuf *m; 266 struct ath_buf *bf; 267 268 ATH_TXBUF_LOCK(sc); 269 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 270 /* XXX non-management? */ 271 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 272 if (bf == NULL) { /* out of buffers, cleanup */ 273 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: no buffer?\n", 274 __func__); 275 ath_txfrag_cleanup(sc, frags, ni); 276 break; 277 } 278 ieee80211_node_incref(ni); 279 TAILQ_INSERT_TAIL(frags, bf, bf_list); 280 } 281 ATH_TXBUF_UNLOCK(sc); 282 283 return !TAILQ_EMPTY(frags); 284 } 285 286 static int 287 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) 288 { 289 struct mbuf *m; 290 int error; 291 292 /* 293 * Load the DMA map so any coalescing is done. This 294 * also calculates the number of descriptors we need. 295 */ 296 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 297 bf->bf_segs, &bf->bf_nseg, 298 BUS_DMA_NOWAIT); 299 if (error == EFBIG) { 300 /* XXX packet requires too many descriptors */ 301 bf->bf_nseg = ATH_MAX_SCATTER + 1; 302 } else if (error != 0) { 303 sc->sc_stats.ast_tx_busdma++; 304 ieee80211_free_mbuf(m0); 305 return error; 306 } 307 /* 308 * Discard null packets and check for packets that 309 * require too many TX descriptors. We try to convert 310 * the latter to a cluster. 311 */ 312 if (bf->bf_nseg > ATH_MAX_SCATTER) { /* too many desc's, linearize */ 313 sc->sc_stats.ast_tx_linear++; 314 m = m_collapse(m0, M_NOWAIT, ATH_MAX_SCATTER); 315 if (m == NULL) { 316 ieee80211_free_mbuf(m0); 317 sc->sc_stats.ast_tx_nombuf++; 318 return ENOMEM; 319 } 320 m0 = m; 321 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 322 bf->bf_segs, &bf->bf_nseg, 323 BUS_DMA_NOWAIT); 324 if (error != 0) { 325 sc->sc_stats.ast_tx_busdma++; 326 ieee80211_free_mbuf(m0); 327 return error; 328 } 329 KASSERT(bf->bf_nseg <= ATH_MAX_SCATTER, 330 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 331 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 332 sc->sc_stats.ast_tx_nodata++; 333 ieee80211_free_mbuf(m0); 334 return EIO; 335 } 336 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", 337 __func__, m0, m0->m_pkthdr.len); 338 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 339 bf->bf_m = m0; 340 341 return 0; 342 } 343 344 /* 345 * Chain together segments+descriptors for a frame - 11n or otherwise. 346 * 347 * For aggregates, this is called on each frame in the aggregate. 348 */ 349 static void 350 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0, 351 struct ath_buf *bf, int is_aggr, int is_first_subframe, 352 int is_last_subframe) 353 { 354 struct ath_hal *ah = sc->sc_ah; 355 char *ds; 356 int i, bp, dsp; 357 HAL_DMA_ADDR bufAddrList[4]; 358 uint32_t segLenList[4]; 359 int numTxMaps = 1; 360 int isFirstDesc = 1; 361 362 /* 363 * XXX There's txdma and txdma_mgmt; the descriptor 364 * sizes must match. 365 */ 366 struct ath_descdma *dd = &sc->sc_txdma; 367 368 /* 369 * Fillin the remainder of the descriptor info. 370 */ 371 372 /* 373 * We need the number of TX data pointers in each descriptor. 374 * EDMA and later chips support 4 TX buffers per descriptor; 375 * previous chips just support one. 376 */ 377 numTxMaps = sc->sc_tx_nmaps; 378 379 /* 380 * For EDMA and later chips ensure the TX map is fully populated 381 * before advancing to the next descriptor. 382 */ 383 ds = (char *) bf->bf_desc; 384 bp = dsp = 0; 385 bzero(bufAddrList, sizeof(bufAddrList)); 386 bzero(segLenList, sizeof(segLenList)); 387 for (i = 0; i < bf->bf_nseg; i++) { 388 bufAddrList[bp] = bf->bf_segs[i].ds_addr; 389 segLenList[bp] = bf->bf_segs[i].ds_len; 390 bp++; 391 392 /* 393 * Go to the next segment if this isn't the last segment 394 * and there's space in the current TX map. 395 */ 396 if ((i != bf->bf_nseg - 1) && (bp < numTxMaps)) 397 continue; 398 399 /* 400 * Last segment or we're out of buffer pointers. 401 */ 402 bp = 0; 403 404 if (i == bf->bf_nseg - 1) 405 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0); 406 else 407 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 408 bf->bf_daddr + dd->dd_descsize * (dsp + 1)); 409 410 /* 411 * XXX This assumes that bfs_txq is the actual destination 412 * hardware queue at this point. It may not have been 413 * assigned, it may actually be pointing to the multicast 414 * software TXQ id. These must be fixed! 415 */ 416 ath_hal_filltxdesc(ah, (struct ath_desc *) ds 417 , bufAddrList 418 , segLenList 419 , bf->bf_descid /* XXX desc id */ 420 , bf->bf_state.bfs_tx_queue 421 , isFirstDesc /* first segment */ 422 , i == bf->bf_nseg - 1 /* last segment */ 423 , (struct ath_desc *) ds0 /* first descriptor */ 424 ); 425 426 /* 427 * Make sure the 11n aggregate fields are cleared. 428 * 429 * XXX TODO: this doesn't need to be called for 430 * aggregate frames; as it'll be called on all 431 * sub-frames. Since the descriptors are in 432 * non-cacheable memory, this leads to some 433 * rather slow writes on MIPS/ARM platforms. 434 */ 435 if (ath_tx_is_11n(sc)) 436 ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds); 437 438 /* 439 * If 11n is enabled, set it up as if it's an aggregate 440 * frame. 441 */ 442 if (is_last_subframe) { 443 ath_hal_set11n_aggr_last(sc->sc_ah, 444 (struct ath_desc *) ds); 445 } else if (is_aggr) { 446 /* 447 * This clears the aggrlen field; so 448 * the caller needs to call set_aggr_first()! 449 * 450 * XXX TODO: don't call this for the first 451 * descriptor in the first frame in an 452 * aggregate! 453 */ 454 ath_hal_set11n_aggr_middle(sc->sc_ah, 455 (struct ath_desc *) ds, 456 bf->bf_state.bfs_ndelim); 457 } 458 isFirstDesc = 0; 459 bf->bf_lastds = (struct ath_desc *) ds; 460 461 /* 462 * Don't forget to skip to the next descriptor. 463 */ 464 ds += sc->sc_tx_desclen; 465 dsp++; 466 467 /* 468 * .. and don't forget to blank these out! 469 */ 470 bzero(bufAddrList, sizeof(bufAddrList)); 471 bzero(segLenList, sizeof(segLenList)); 472 } 473 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 474 } 475 476 /* 477 * Set the rate control fields in the given descriptor based on 478 * the bf_state fields and node state. 479 * 480 * The bfs fields should already be set with the relevant rate 481 * control information, including whether MRR is to be enabled. 482 * 483 * Since the FreeBSD HAL currently sets up the first TX rate 484 * in ath_hal_setuptxdesc(), this will setup the MRR 485 * conditionally for the pre-11n chips, and call ath_buf_set_rate 486 * unconditionally for 11n chips. These require the 11n rate 487 * scenario to be set if MCS rates are enabled, so it's easier 488 * to just always call it. The caller can then only set rates 2, 3 489 * and 4 if multi-rate retry is needed. 490 */ 491 static void 492 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 493 struct ath_buf *bf) 494 { 495 struct ath_rc_series *rc = bf->bf_state.bfs_rc; 496 497 /* If mrr is disabled, blank tries 1, 2, 3 */ 498 if (! bf->bf_state.bfs_ismrr) 499 rc[1].tries = rc[2].tries = rc[3].tries = 0; 500 501 #if 0 502 /* 503 * If NOACK is set, just set ntries=1. 504 */ 505 else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) { 506 rc[1].tries = rc[2].tries = rc[3].tries = 0; 507 rc[0].tries = 1; 508 } 509 #endif 510 511 /* 512 * Always call - that way a retried descriptor will 513 * have the MRR fields overwritten. 514 * 515 * XXX TODO: see if this is really needed - setting up 516 * the first descriptor should set the MRR fields to 0 517 * for us anyway. 518 */ 519 if (ath_tx_is_11n(sc)) { 520 ath_buf_set_rate(sc, ni, bf); 521 } else { 522 ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc 523 , rc[1].ratecode, rc[1].tries 524 , rc[2].ratecode, rc[2].tries 525 , rc[3].ratecode, rc[3].tries 526 ); 527 } 528 } 529 530 /* 531 * Setup segments+descriptors for an 11n aggregate. 532 * bf_first is the first buffer in the aggregate. 533 * The descriptor list must already been linked together using 534 * bf->bf_next. 535 */ 536 static void 537 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first) 538 { 539 struct ath_buf *bf, *bf_prev = NULL; 540 struct ath_desc *ds0 = bf_first->bf_desc; 541 542 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n", 543 __func__, bf_first->bf_state.bfs_nframes, 544 bf_first->bf_state.bfs_al); 545 546 bf = bf_first; 547 548 if (bf->bf_state.bfs_txrate0 == 0) 549 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, txrate0=%d\n", 550 __func__, bf, 0); 551 if (bf->bf_state.bfs_rc[0].ratecode == 0) 552 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, rix0=%d\n", 553 __func__, bf, 0); 554 555 /* 556 * Setup all descriptors of all subframes - this will 557 * call ath_hal_set11naggrmiddle() on every frame. 558 */ 559 while (bf != NULL) { 560 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 561 "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n", 562 __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen, 563 SEQNO(bf->bf_state.bfs_seqno)); 564 565 /* 566 * Setup the initial fields for the first descriptor - all 567 * the non-11n specific stuff. 568 */ 569 ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc 570 , bf->bf_state.bfs_pktlen /* packet length */ 571 , bf->bf_state.bfs_hdrlen /* header length */ 572 , bf->bf_state.bfs_atype /* Atheros packet type */ 573 , bf->bf_state.bfs_txpower /* txpower */ 574 , bf->bf_state.bfs_txrate0 575 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 576 , bf->bf_state.bfs_keyix /* key cache index */ 577 , bf->bf_state.bfs_txantenna /* antenna mode */ 578 , bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ /* flags */ 579 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 580 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 581 ); 582 583 /* 584 * First descriptor? Setup the rate control and initial 585 * aggregate header information. 586 */ 587 if (bf == bf_first) { 588 /* 589 * setup first desc with rate and aggr info 590 */ 591 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 592 } 593 594 /* 595 * Setup the descriptors for a multi-descriptor frame. 596 * This is both aggregate and non-aggregate aware. 597 */ 598 ath_tx_chaindesclist(sc, ds0, bf, 599 1, /* is_aggr */ 600 !! (bf == bf_first), /* is_first_subframe */ 601 !! (bf->bf_next == NULL) /* is_last_subframe */ 602 ); 603 604 if (bf == bf_first) { 605 /* 606 * Initialise the first 11n aggregate with the 607 * aggregate length and aggregate enable bits. 608 */ 609 ath_hal_set11n_aggr_first(sc->sc_ah, 610 ds0, 611 bf->bf_state.bfs_al, 612 bf->bf_state.bfs_ndelim); 613 } 614 615 /* 616 * Link the last descriptor of the previous frame 617 * to the beginning descriptor of this frame. 618 */ 619 if (bf_prev != NULL) 620 ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds, 621 bf->bf_daddr); 622 623 /* Save a copy so we can link the next descriptor in */ 624 bf_prev = bf; 625 bf = bf->bf_next; 626 } 627 628 /* 629 * Set the first descriptor bf_lastds field to point to 630 * the last descriptor in the last subframe, that's where 631 * the status update will occur. 632 */ 633 bf_first->bf_lastds = bf_prev->bf_lastds; 634 635 /* 636 * And bf_last in the first descriptor points to the end of 637 * the aggregate list. 638 */ 639 bf_first->bf_last = bf_prev; 640 641 /* 642 * For non-AR9300 NICs, which require the rate control 643 * in the final descriptor - let's set that up now. 644 * 645 * This is because the filltxdesc() HAL call doesn't 646 * populate the last segment with rate control information 647 * if firstSeg is also true. For non-aggregate frames 648 * that is fine, as the first frame already has rate control 649 * info. But if the last frame in an aggregate has one 650 * descriptor, both firstseg and lastseg will be true and 651 * the rate info isn't copied. 652 * 653 * This is inefficient on MIPS/ARM platforms that have 654 * non-cachable memory for TX descriptors, but we'll just 655 * make do for now. 656 * 657 * As to why the rate table is stashed in the last descriptor 658 * rather than the first descriptor? Because proctxdesc() 659 * is called on the final descriptor in an MPDU or A-MPDU - 660 * ie, the one that gets updated by the hardware upon 661 * completion. That way proctxdesc() doesn't need to know 662 * about the first _and_ last TX descriptor. 663 */ 664 ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0); 665 666 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__); 667 } 668 669 /* 670 * Hand-off a frame to the multicast TX queue. 671 * 672 * This is a software TXQ which will be appended to the CAB queue 673 * during the beacon setup code. 674 * 675 * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID 676 * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated 677 * with the actual hardware txq, or all of this will fall apart. 678 * 679 * XXX It may not be a bad idea to just stuff the QCU ID into bf_state 680 * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated 681 * correctly. 682 */ 683 static void 684 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, 685 struct ath_buf *bf) 686 { 687 ATH_TX_LOCK_ASSERT(sc); 688 689 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 690 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 691 692 /* 693 * Ensure that the tx queue is the cabq, so things get 694 * mapped correctly. 695 */ 696 if (bf->bf_state.bfs_tx_queue != sc->sc_cabq->axq_qnum) { 697 DPRINTF(sc, ATH_DEBUG_XMIT, 698 "%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n", 699 __func__, bf, bf->bf_state.bfs_tx_queue, 700 txq->axq_qnum); 701 } 702 703 ATH_TXQ_LOCK(txq); 704 if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) { 705 struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s); 706 struct ieee80211_frame *wh; 707 708 /* mark previous frame */ 709 wh = mtod(bf_last->bf_m, struct ieee80211_frame *); 710 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 711 bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap, 712 BUS_DMASYNC_PREWRITE); 713 714 /* link descriptor */ 715 ath_hal_settxdesclink(sc->sc_ah, 716 bf_last->bf_lastds, 717 bf->bf_daddr); 718 } 719 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 720 ATH_TXQ_UNLOCK(txq); 721 } 722 723 /* 724 * Hand-off packet to a hardware queue. 725 */ 726 static void 727 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, 728 struct ath_buf *bf) 729 { 730 struct ath_hal *ah = sc->sc_ah; 731 struct ath_buf *bf_first; 732 733 /* 734 * Insert the frame on the outbound list and pass it on 735 * to the hardware. Multicast frames buffered for power 736 * save stations and transmit from the CAB queue are stored 737 * on a s/w only queue and loaded on to the CAB queue in 738 * the SWBA handler since frames only go out on DTIM and 739 * to avoid possible races. 740 */ 741 ATH_TX_LOCK_ASSERT(sc); 742 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 743 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 744 KASSERT(txq->axq_qnum != ATH_TXQ_SWQ, 745 ("ath_tx_handoff_hw called for mcast queue")); 746 747 /* 748 * XXX We should instead just verify that sc_txstart_cnt 749 * or ath_txproc_cnt > 0. That would mean that 750 * the reset is going to be waiting for us to complete. 751 */ 752 if (sc->sc_txproc_cnt == 0 && sc->sc_txstart_cnt == 0) { 753 device_printf(sc->sc_dev, 754 "%s: TX dispatch without holding txcount/txstart refcnt!\n", 755 __func__); 756 } 757 758 /* 759 * XXX .. this is going to cause the hardware to get upset; 760 * so we really should find some way to drop or queue 761 * things. 762 */ 763 764 ATH_TXQ_LOCK(txq); 765 766 /* 767 * XXX TODO: if there's a holdingbf, then 768 * ATH_TXQ_PUTRUNNING should be clear. 769 * 770 * If there is a holdingbf and the list is empty, 771 * then axq_link should be pointing to the holdingbf. 772 * 773 * Otherwise it should point to the last descriptor 774 * in the last ath_buf. 775 * 776 * In any case, we should really ensure that we 777 * update the previous descriptor link pointer to 778 * this descriptor, regardless of all of the above state. 779 * 780 * For now this is captured by having axq_link point 781 * to either the holdingbf (if the TXQ list is empty) 782 * or the end of the list (if the TXQ list isn't empty.) 783 * I'd rather just kill axq_link here and do it as above. 784 */ 785 786 /* 787 * Append the frame to the TX queue. 788 */ 789 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 790 ATH_KTR(sc, ATH_KTR_TX, 3, 791 "ath_tx_handoff: non-tdma: txq=%u, add bf=%p " 792 "depth=%d", 793 txq->axq_qnum, 794 bf, 795 txq->axq_depth); 796 797 /* 798 * If there's a link pointer, update it. 799 * 800 * XXX we should replace this with the above logic, just 801 * to kill axq_link with fire. 802 */ 803 if (txq->axq_link != NULL) { 804 *txq->axq_link = bf->bf_daddr; 805 DPRINTF(sc, ATH_DEBUG_XMIT, 806 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 807 txq->axq_qnum, txq->axq_link, 808 (caddr_t)bf->bf_daddr, bf->bf_desc, 809 txq->axq_depth); 810 ATH_KTR(sc, ATH_KTR_TX, 5, 811 "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) " 812 "lastds=%d", 813 txq->axq_qnum, txq->axq_link, 814 (caddr_t)bf->bf_daddr, bf->bf_desc, 815 bf->bf_lastds); 816 } 817 818 /* 819 * If we've not pushed anything into the hardware yet, 820 * push the head of the queue into the TxDP. 821 * 822 * Once we've started DMA, there's no guarantee that 823 * updating the TxDP with a new value will actually work. 824 * So we just don't do that - if we hit the end of the list, 825 * we keep that buffer around (the "holding buffer") and 826 * re-start DMA by updating the link pointer of _that_ 827 * descriptor and then restart DMA. 828 */ 829 if (! (txq->axq_flags & ATH_TXQ_PUTRUNNING)) { 830 bf_first = TAILQ_FIRST(&txq->axq_q); 831 txq->axq_flags |= ATH_TXQ_PUTRUNNING; 832 ath_hal_puttxbuf(ah, txq->axq_qnum, bf_first->bf_daddr); 833 DPRINTF(sc, ATH_DEBUG_XMIT, 834 "%s: TXDP[%u] = %p (%p) depth %d\n", 835 __func__, txq->axq_qnum, 836 (caddr_t)bf_first->bf_daddr, bf_first->bf_desc, 837 txq->axq_depth); 838 ATH_KTR(sc, ATH_KTR_TX, 5, 839 "ath_tx_handoff: TXDP[%u] = %p (%p) " 840 "lastds=%p depth %d", 841 txq->axq_qnum, 842 (caddr_t)bf_first->bf_daddr, bf_first->bf_desc, 843 bf_first->bf_lastds, 844 txq->axq_depth); 845 } 846 847 /* 848 * Ensure that the bf TXQ matches this TXQ, so later 849 * checking and holding buffer manipulation is sane. 850 */ 851 if (bf->bf_state.bfs_tx_queue != txq->axq_qnum) { 852 DPRINTF(sc, ATH_DEBUG_XMIT, 853 "%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n", 854 __func__, bf, bf->bf_state.bfs_tx_queue, 855 txq->axq_qnum); 856 } 857 858 /* 859 * Track aggregate queue depth. 860 */ 861 if (bf->bf_state.bfs_aggr) 862 txq->axq_aggr_depth++; 863 864 /* 865 * Update the link pointer. 866 */ 867 ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link); 868 869 /* 870 * Start DMA. 871 * 872 * If we wrote a TxDP above, DMA will start from here. 873 * 874 * If DMA is running, it'll do nothing. 875 * 876 * If the DMA engine hit the end of the QCU list (ie LINK=NULL, 877 * or VEOL) then it stops at the last transmitted write. 878 * We then append a new frame by updating the link pointer 879 * in that descriptor and then kick TxE here; it will re-read 880 * that last descriptor and find the new descriptor to transmit. 881 * 882 * This is why we keep the holding descriptor around. 883 */ 884 ath_hal_txstart(ah, txq->axq_qnum); 885 ATH_TXQ_UNLOCK(txq); 886 ATH_KTR(sc, ATH_KTR_TX, 1, 887 "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum); 888 } 889 890 /* 891 * Restart TX DMA for the given TXQ. 892 * 893 * This must be called whether the queue is empty or not. 894 */ 895 static void 896 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq) 897 { 898 struct ath_buf *bf, *bf_last; 899 900 ATH_TXQ_LOCK_ASSERT(txq); 901 902 /* XXX make this ATH_TXQ_FIRST */ 903 bf = TAILQ_FIRST(&txq->axq_q); 904 bf_last = ATH_TXQ_LAST(txq, axq_q_s); 905 906 if (bf == NULL) 907 return; 908 909 DPRINTF(sc, ATH_DEBUG_RESET, 910 "%s: Q%d: bf=%p, bf_last=%p, daddr=0x%08x\n", 911 __func__, 912 txq->axq_qnum, 913 bf, 914 bf_last, 915 (uint32_t) bf->bf_daddr); 916 917 #ifdef ATH_DEBUG 918 if (sc->sc_debug & ATH_DEBUG_RESET) 919 ath_tx_dump(sc, txq); 920 #endif 921 922 /* 923 * This is called from a restart, so DMA is known to be 924 * completely stopped. 925 */ 926 KASSERT((!(txq->axq_flags & ATH_TXQ_PUTRUNNING)), 927 ("%s: Q%d: called with PUTRUNNING=1\n", 928 __func__, 929 txq->axq_qnum)); 930 931 ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr); 932 txq->axq_flags |= ATH_TXQ_PUTRUNNING; 933 934 ath_hal_gettxdesclinkptr(sc->sc_ah, bf_last->bf_lastds, 935 &txq->axq_link); 936 ath_hal_txstart(sc->sc_ah, txq->axq_qnum); 937 } 938 939 /* 940 * Hand off a packet to the hardware (or mcast queue.) 941 * 942 * The relevant hardware txq should be locked. 943 */ 944 static void 945 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, 946 struct ath_buf *bf) 947 { 948 ATH_TX_LOCK_ASSERT(sc); 949 950 #ifdef ATH_DEBUG_ALQ 951 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC)) 952 ath_tx_alq_post(sc, bf); 953 #endif 954 955 if (txq->axq_qnum == ATH_TXQ_SWQ) 956 ath_tx_handoff_mcast(sc, txq, bf); 957 else 958 ath_tx_handoff_hw(sc, txq, bf); 959 } 960 961 static int 962 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni, 963 struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, 964 int *keyix) 965 { 966 DPRINTF(sc, ATH_DEBUG_XMIT, 967 "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n", 968 __func__, 969 *hdrlen, 970 *pktlen, 971 isfrag, 972 iswep, 973 m0); 974 975 if (iswep) { 976 const struct ieee80211_cipher *cip; 977 struct ieee80211_key *k; 978 979 /* 980 * Construct the 802.11 header+trailer for an encrypted 981 * frame. The only reason this can fail is because of an 982 * unknown or unsupported cipher/key type. 983 */ 984 k = ieee80211_crypto_encap(ni, m0); 985 if (k == NULL) { 986 /* 987 * This can happen when the key is yanked after the 988 * frame was queued. Just discard the frame; the 989 * 802.11 layer counts failures and provides 990 * debugging/diagnostics. 991 */ 992 return (0); 993 } 994 /* 995 * Adjust the packet + header lengths for the crypto 996 * additions and calculate the h/w key index. When 997 * a s/w mic is done the frame will have had any mic 998 * added to it prior to entry so m0->m_pkthdr.len will 999 * account for it. Otherwise we need to add it to the 1000 * packet length. 1001 */ 1002 cip = k->wk_cipher; 1003 (*hdrlen) += cip->ic_header; 1004 (*pktlen) += cip->ic_header + cip->ic_trailer; 1005 /* NB: frags always have any TKIP MIC done in s/w */ 1006 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 1007 (*pktlen) += cip->ic_miclen; 1008 (*keyix) = k->wk_keyix; 1009 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 1010 /* 1011 * Use station key cache slot, if assigned. 1012 */ 1013 (*keyix) = ni->ni_ucastkey.wk_keyix; 1014 if ((*keyix) == IEEE80211_KEYIX_NONE) 1015 (*keyix) = HAL_TXKEYIX_INVALID; 1016 } else 1017 (*keyix) = HAL_TXKEYIX_INVALID; 1018 1019 return (1); 1020 } 1021 1022 /* 1023 * Calculate whether interoperability protection is required for 1024 * this frame. 1025 * 1026 * This requires the rate control information be filled in, 1027 * as the protection requirement depends upon the current 1028 * operating mode / PHY. 1029 */ 1030 static void 1031 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf) 1032 { 1033 struct ieee80211_frame *wh; 1034 uint8_t rix; 1035 uint16_t flags; 1036 int shortPreamble; 1037 const HAL_RATE_TABLE *rt = sc->sc_currates; 1038 struct ieee80211com *ic = &sc->sc_ic; 1039 1040 flags = bf->bf_state.bfs_txflags; 1041 rix = bf->bf_state.bfs_rc[0].rix; 1042 shortPreamble = bf->bf_state.bfs_shpream; 1043 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1044 1045 /* 1046 * If 802.11g protection is enabled, determine whether 1047 * to use RTS/CTS or just CTS. Note that this is only 1048 * done for OFDM unicast frames. 1049 */ 1050 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1051 rt->info[rix].phy == IEEE80211_T_OFDM && 1052 (flags & HAL_TXDESC_NOACK) == 0) { 1053 bf->bf_state.bfs_doprot = 1; 1054 /* XXX fragments must use CCK rates w/ protection */ 1055 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { 1056 flags |= HAL_TXDESC_RTSENA; 1057 } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { 1058 flags |= HAL_TXDESC_CTSENA; 1059 } 1060 /* 1061 * For frags it would be desirable to use the 1062 * highest CCK rate for RTS/CTS. But stations 1063 * farther away may detect it at a lower CCK rate 1064 * so use the configured protection rate instead 1065 * (for now). 1066 */ 1067 sc->sc_stats.ast_tx_protect++; 1068 } 1069 1070 /* 1071 * If 11n protection is enabled and it's a HT frame, 1072 * enable RTS. 1073 * 1074 * XXX ic_htprotmode or ic_curhtprotmode? 1075 * XXX should it_htprotmode only matter if ic_curhtprotmode 1076 * XXX indicates it's not a HT pure environment? 1077 */ 1078 if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) && 1079 rt->info[rix].phy == IEEE80211_T_HT && 1080 (flags & HAL_TXDESC_NOACK) == 0) { 1081 flags |= HAL_TXDESC_RTSENA; 1082 sc->sc_stats.ast_tx_htprotect++; 1083 } 1084 bf->bf_state.bfs_txflags = flags; 1085 } 1086 1087 /* 1088 * Update the frame duration given the currently selected rate. 1089 * 1090 * This also updates the frame duration value, so it will require 1091 * a DMA flush. 1092 */ 1093 static void 1094 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf) 1095 { 1096 struct ieee80211_frame *wh; 1097 uint8_t rix; 1098 uint16_t flags; 1099 int shortPreamble; 1100 struct ath_hal *ah = sc->sc_ah; 1101 const HAL_RATE_TABLE *rt = sc->sc_currates; 1102 int isfrag = bf->bf_m->m_flags & M_FRAG; 1103 1104 flags = bf->bf_state.bfs_txflags; 1105 rix = bf->bf_state.bfs_rc[0].rix; 1106 shortPreamble = bf->bf_state.bfs_shpream; 1107 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1108 1109 /* 1110 * Calculate duration. This logically belongs in the 802.11 1111 * layer but it lacks sufficient information to calculate it. 1112 */ 1113 if ((flags & HAL_TXDESC_NOACK) == 0 && 1114 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 1115 u_int16_t dur; 1116 if (shortPreamble) 1117 dur = rt->info[rix].spAckDuration; 1118 else 1119 dur = rt->info[rix].lpAckDuration; 1120 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 1121 dur += dur; /* additional SIFS+ACK */ 1122 /* 1123 * Include the size of next fragment so NAV is 1124 * updated properly. The last fragment uses only 1125 * the ACK duration 1126 * 1127 * XXX TODO: ensure that the rate lookup for each 1128 * fragment is the same as the rate used by the 1129 * first fragment! 1130 */ 1131 dur += ath_hal_computetxtime(ah, 1132 rt, 1133 bf->bf_nextfraglen, 1134 rix, shortPreamble, 1135 AH_TRUE); 1136 } 1137 if (isfrag) { 1138 /* 1139 * Force hardware to use computed duration for next 1140 * fragment by disabling multi-rate retry which updates 1141 * duration based on the multi-rate duration table. 1142 */ 1143 bf->bf_state.bfs_ismrr = 0; 1144 bf->bf_state.bfs_try0 = ATH_TXMGTTRY; 1145 /* XXX update bfs_rc[0].try? */ 1146 } 1147 1148 /* Update the duration field itself */ 1149 *(u_int16_t *)wh->i_dur = htole16(dur); 1150 } 1151 } 1152 1153 static uint8_t 1154 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt, 1155 int cix, int shortPreamble) 1156 { 1157 uint8_t ctsrate; 1158 1159 /* 1160 * CTS transmit rate is derived from the transmit rate 1161 * by looking in the h/w rate table. We must also factor 1162 * in whether or not a short preamble is to be used. 1163 */ 1164 /* NB: cix is set above where RTS/CTS is enabled */ 1165 KASSERT(cix != 0xff, ("cix not setup")); 1166 ctsrate = rt->info[cix].rateCode; 1167 1168 /* XXX this should only matter for legacy rates */ 1169 if (shortPreamble) 1170 ctsrate |= rt->info[cix].shortPreamble; 1171 1172 return (ctsrate); 1173 } 1174 1175 /* 1176 * Calculate the RTS/CTS duration for legacy frames. 1177 */ 1178 static int 1179 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix, 1180 int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt, 1181 int flags) 1182 { 1183 int ctsduration = 0; 1184 1185 /* This mustn't be called for HT modes */ 1186 if (rt->info[cix].phy == IEEE80211_T_HT) { 1187 printf("%s: HT rate where it shouldn't be (0x%x)\n", 1188 __func__, rt->info[cix].rateCode); 1189 return (-1); 1190 } 1191 1192 /* 1193 * Compute the transmit duration based on the frame 1194 * size and the size of an ACK frame. We call into the 1195 * HAL to do the computation since it depends on the 1196 * characteristics of the actual PHY being used. 1197 * 1198 * NB: CTS is assumed the same size as an ACK so we can 1199 * use the precalculated ACK durations. 1200 */ 1201 if (shortPreamble) { 1202 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1203 ctsduration += rt->info[cix].spAckDuration; 1204 ctsduration += ath_hal_computetxtime(ah, 1205 rt, pktlen, rix, AH_TRUE, AH_TRUE); 1206 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1207 ctsduration += rt->info[rix].spAckDuration; 1208 } else { 1209 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1210 ctsduration += rt->info[cix].lpAckDuration; 1211 ctsduration += ath_hal_computetxtime(ah, 1212 rt, pktlen, rix, AH_FALSE, AH_TRUE); 1213 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1214 ctsduration += rt->info[rix].lpAckDuration; 1215 } 1216 1217 return (ctsduration); 1218 } 1219 1220 /* 1221 * Update the given ath_buf with updated rts/cts setup and duration 1222 * values. 1223 * 1224 * To support rate lookups for each software retry, the rts/cts rate 1225 * and cts duration must be re-calculated. 1226 * 1227 * This function assumes the RTS/CTS flags have been set as needed; 1228 * mrr has been disabled; and the rate control lookup has been done. 1229 * 1230 * XXX TODO: MRR need only be disabled for the pre-11n NICs. 1231 * XXX The 11n NICs support per-rate RTS/CTS configuration. 1232 */ 1233 static void 1234 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf) 1235 { 1236 uint16_t ctsduration = 0; 1237 uint8_t ctsrate = 0; 1238 uint8_t rix = bf->bf_state.bfs_rc[0].rix; 1239 uint8_t cix = 0; 1240 const HAL_RATE_TABLE *rt = sc->sc_currates; 1241 1242 /* 1243 * No RTS/CTS enabled? Don't bother. 1244 */ 1245 if ((bf->bf_state.bfs_txflags & 1246 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) { 1247 /* XXX is this really needed? */ 1248 bf->bf_state.bfs_ctsrate = 0; 1249 bf->bf_state.bfs_ctsduration = 0; 1250 return; 1251 } 1252 1253 /* 1254 * If protection is enabled, use the protection rix control 1255 * rate. Otherwise use the rate0 control rate. 1256 */ 1257 if (bf->bf_state.bfs_doprot) 1258 rix = sc->sc_protrix; 1259 else 1260 rix = bf->bf_state.bfs_rc[0].rix; 1261 1262 /* 1263 * If the raw path has hard-coded ctsrate0 to something, 1264 * use it. 1265 */ 1266 if (bf->bf_state.bfs_ctsrate0 != 0) 1267 cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0); 1268 else 1269 /* Control rate from above */ 1270 cix = rt->info[rix].controlRate; 1271 1272 /* Calculate the rtscts rate for the given cix */ 1273 ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix, 1274 bf->bf_state.bfs_shpream); 1275 1276 /* The 11n chipsets do ctsduration calculations for you */ 1277 if (! ath_tx_is_11n(sc)) 1278 ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix, 1279 bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, 1280 rt, bf->bf_state.bfs_txflags); 1281 1282 /* Squirrel away in ath_buf */ 1283 bf->bf_state.bfs_ctsrate = ctsrate; 1284 bf->bf_state.bfs_ctsduration = ctsduration; 1285 1286 /* 1287 * Must disable multi-rate retry when using RTS/CTS. 1288 */ 1289 if (!sc->sc_mrrprot) { 1290 bf->bf_state.bfs_ismrr = 0; 1291 bf->bf_state.bfs_try0 = 1292 bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */ 1293 } 1294 } 1295 1296 /* 1297 * Setup the descriptor chain for a normal or fast-frame 1298 * frame. 1299 * 1300 * XXX TODO: extend to include the destination hardware QCU ID. 1301 * Make sure that is correct. Make sure that when being added 1302 * to the mcastq, the CABQ QCUID is set or things will get a bit 1303 * odd. 1304 */ 1305 static void 1306 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf) 1307 { 1308 struct ath_desc *ds = bf->bf_desc; 1309 struct ath_hal *ah = sc->sc_ah; 1310 1311 if (bf->bf_state.bfs_txrate0 == 0) 1312 DPRINTF(sc, ATH_DEBUG_XMIT, 1313 "%s: bf=%p, txrate0=%d\n", __func__, bf, 0); 1314 1315 ath_hal_setuptxdesc(ah, ds 1316 , bf->bf_state.bfs_pktlen /* packet length */ 1317 , bf->bf_state.bfs_hdrlen /* header length */ 1318 , bf->bf_state.bfs_atype /* Atheros packet type */ 1319 , bf->bf_state.bfs_txpower /* txpower */ 1320 , bf->bf_state.bfs_txrate0 1321 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 1322 , bf->bf_state.bfs_keyix /* key cache index */ 1323 , bf->bf_state.bfs_txantenna /* antenna mode */ 1324 , bf->bf_state.bfs_txflags /* flags */ 1325 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 1326 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 1327 ); 1328 1329 /* 1330 * This will be overriden when the descriptor chain is written. 1331 */ 1332 bf->bf_lastds = ds; 1333 bf->bf_last = bf; 1334 1335 /* Set rate control and descriptor chain for this frame */ 1336 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 1337 ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0); 1338 } 1339 1340 /* 1341 * Do a rate lookup. 1342 * 1343 * This performs a rate lookup for the given ath_buf only if it's required. 1344 * Non-data frames and raw frames don't require it. 1345 * 1346 * This populates the primary and MRR entries; MRR values are 1347 * then disabled later on if something requires it (eg RTS/CTS on 1348 * pre-11n chipsets. 1349 * 1350 * This needs to be done before the RTS/CTS fields are calculated 1351 * as they may depend upon the rate chosen. 1352 */ 1353 static void 1354 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf) 1355 { 1356 uint8_t rate, rix; 1357 int try0; 1358 1359 if (! bf->bf_state.bfs_doratelookup) 1360 return; 1361 1362 /* Get rid of any previous state */ 1363 bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1364 1365 ATH_NODE_LOCK(ATH_NODE(bf->bf_node)); 1366 ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream, 1367 bf->bf_state.bfs_pktlen, &rix, &try0, &rate); 1368 1369 /* In case MRR is disabled, make sure rc[0] is setup correctly */ 1370 bf->bf_state.bfs_rc[0].rix = rix; 1371 bf->bf_state.bfs_rc[0].ratecode = rate; 1372 bf->bf_state.bfs_rc[0].tries = try0; 1373 1374 if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY) 1375 ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix, 1376 bf->bf_state.bfs_rc); 1377 ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node)); 1378 1379 sc->sc_txrix = rix; /* for LED blinking */ 1380 sc->sc_lastdatarix = rix; /* for fast frames */ 1381 bf->bf_state.bfs_try0 = try0; 1382 bf->bf_state.bfs_txrate0 = rate; 1383 } 1384 1385 /* 1386 * Update the CLRDMASK bit in the ath_buf if it needs to be set. 1387 */ 1388 static void 1389 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid, 1390 struct ath_buf *bf) 1391 { 1392 struct ath_node *an = ATH_NODE(bf->bf_node); 1393 1394 ATH_TX_LOCK_ASSERT(sc); 1395 1396 if (an->clrdmask == 1) { 1397 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1398 an->clrdmask = 0; 1399 } 1400 } 1401 1402 /* 1403 * Return whether this frame should be software queued or 1404 * direct dispatched. 1405 * 1406 * When doing powersave, BAR frames should be queued but other management 1407 * frames should be directly sent. 1408 * 1409 * When not doing powersave, stick BAR frames into the hardware queue 1410 * so it goes out even though the queue is paused. 1411 * 1412 * For now, management frames are also software queued by default. 1413 */ 1414 static int 1415 ath_tx_should_swq_frame(struct ath_softc *sc, struct ath_node *an, 1416 struct mbuf *m0, int *queue_to_head) 1417 { 1418 struct ieee80211_node *ni = &an->an_node; 1419 struct ieee80211_frame *wh; 1420 uint8_t type, subtype; 1421 1422 wh = mtod(m0, struct ieee80211_frame *); 1423 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1424 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1425 1426 (*queue_to_head) = 0; 1427 1428 /* If it's not in powersave - direct-dispatch BAR */ 1429 if ((ATH_NODE(ni)->an_is_powersave == 0) 1430 && type == IEEE80211_FC0_TYPE_CTL && 1431 subtype == IEEE80211_FC0_SUBTYPE_BAR) { 1432 DPRINTF(sc, ATH_DEBUG_SW_TX, 1433 "%s: BAR: TX'ing direct\n", __func__); 1434 return (0); 1435 } else if ((ATH_NODE(ni)->an_is_powersave == 1) 1436 && type == IEEE80211_FC0_TYPE_CTL && 1437 subtype == IEEE80211_FC0_SUBTYPE_BAR) { 1438 /* BAR TX whilst asleep; queue */ 1439 DPRINTF(sc, ATH_DEBUG_SW_TX, 1440 "%s: swq: TX'ing\n", __func__); 1441 (*queue_to_head) = 1; 1442 return (1); 1443 } else if ((ATH_NODE(ni)->an_is_powersave == 1) 1444 && (type == IEEE80211_FC0_TYPE_MGT || 1445 type == IEEE80211_FC0_TYPE_CTL)) { 1446 /* 1447 * Other control/mgmt frame; bypass software queuing 1448 * for now! 1449 */ 1450 DPRINTF(sc, ATH_DEBUG_XMIT, 1451 "%s: %6D: Node is asleep; sending mgmt " 1452 "(type=%d, subtype=%d)\n", 1453 __func__, ni->ni_macaddr, ":", type, subtype); 1454 return (0); 1455 } else { 1456 return (1); 1457 } 1458 } 1459 1460 1461 /* 1462 * Transmit the given frame to the hardware. 1463 * 1464 * The frame must already be setup; rate control must already have 1465 * been done. 1466 * 1467 * XXX since the TXQ lock is being held here (and I dislike holding 1468 * it for this long when not doing software aggregation), later on 1469 * break this function into "setup_normal" and "xmit_normal". The 1470 * lock only needs to be held for the ath_tx_handoff call. 1471 * 1472 * XXX we don't update the leak count here - if we're doing 1473 * direct frame dispatch, we need to be able to do it without 1474 * decrementing the leak count (eg multicast queue frames.) 1475 */ 1476 static void 1477 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq, 1478 struct ath_buf *bf) 1479 { 1480 struct ath_node *an = ATH_NODE(bf->bf_node); 1481 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 1482 1483 ATH_TX_LOCK_ASSERT(sc); 1484 1485 /* 1486 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does 1487 * set a completion handler however it doesn't (yet) properly 1488 * handle the strict ordering requirements needed for normal, 1489 * non-aggregate session frames. 1490 * 1491 * Once this is implemented, only set CLRDMASK like this for 1492 * frames that must go out - eg management/raw frames. 1493 */ 1494 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1495 1496 /* Setup the descriptor before handoff */ 1497 ath_tx_do_ratelookup(sc, bf); 1498 ath_tx_calc_duration(sc, bf); 1499 ath_tx_calc_protection(sc, bf); 1500 ath_tx_set_rtscts(sc, bf); 1501 ath_tx_rate_fill_rcflags(sc, bf); 1502 ath_tx_setds(sc, bf); 1503 1504 /* Track per-TID hardware queue depth correctly */ 1505 tid->hwq_depth++; 1506 1507 /* Assign the completion handler */ 1508 bf->bf_comp = ath_tx_normal_comp; 1509 1510 /* Hand off to hardware */ 1511 ath_tx_handoff(sc, txq, bf); 1512 } 1513 1514 /* 1515 * Do the basic frame setup stuff that's required before the frame 1516 * is added to a software queue. 1517 * 1518 * All frames get mostly the same treatment and it's done once. 1519 * Retransmits fiddle with things like the rate control setup, 1520 * setting the retransmit bit in the packet; doing relevant DMA/bus 1521 * syncing and relinking it (back) into the hardware TX queue. 1522 * 1523 * Note that this may cause the mbuf to be reallocated, so 1524 * m0 may not be valid. 1525 */ 1526 static int 1527 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni, 1528 struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq) 1529 { 1530 struct ieee80211vap *vap = ni->ni_vap; 1531 struct ath_hal *ah = sc->sc_ah; 1532 struct ieee80211com *ic = &sc->sc_ic; 1533 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1534 int error, iswep, ismcast, isfrag, ismrr; 1535 int keyix, hdrlen, pktlen, try0 = 0; 1536 u_int8_t rix = 0, txrate = 0; 1537 struct ath_desc *ds; 1538 struct ieee80211_frame *wh; 1539 u_int subtype, flags; 1540 HAL_PKT_TYPE atype; 1541 const HAL_RATE_TABLE *rt; 1542 HAL_BOOL shortPreamble; 1543 struct ath_node *an; 1544 u_int pri; 1545 1546 /* 1547 * To ensure that both sequence numbers and the CCMP PN handling 1548 * is "correct", make sure that the relevant TID queue is locked. 1549 * Otherwise the CCMP PN and seqno may appear out of order, causing 1550 * re-ordered frames to have out of order CCMP PN's, resulting 1551 * in many, many frame drops. 1552 */ 1553 ATH_TX_LOCK_ASSERT(sc); 1554 1555 wh = mtod(m0, struct ieee80211_frame *); 1556 iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED; 1557 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1558 isfrag = m0->m_flags & M_FRAG; 1559 hdrlen = ieee80211_anyhdrsize(wh); 1560 /* 1561 * Packet length must not include any 1562 * pad bytes; deduct them here. 1563 */ 1564 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 1565 1566 /* Handle encryption twiddling if needed */ 1567 if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen, 1568 &pktlen, &keyix)) { 1569 ieee80211_free_mbuf(m0); 1570 return EIO; 1571 } 1572 1573 /* packet header may have moved, reset our local pointer */ 1574 wh = mtod(m0, struct ieee80211_frame *); 1575 1576 pktlen += IEEE80211_CRC_LEN; 1577 1578 /* 1579 * Load the DMA map so any coalescing is done. This 1580 * also calculates the number of descriptors we need. 1581 */ 1582 error = ath_tx_dmasetup(sc, bf, m0); 1583 if (error != 0) 1584 return error; 1585 KASSERT((ni != NULL), ("%s: ni=NULL!", __func__)); 1586 bf->bf_node = ni; /* NB: held reference */ 1587 m0 = bf->bf_m; /* NB: may have changed */ 1588 wh = mtod(m0, struct ieee80211_frame *); 1589 1590 /* setup descriptors */ 1591 ds = bf->bf_desc; 1592 rt = sc->sc_currates; 1593 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1594 1595 /* 1596 * NB: the 802.11 layer marks whether or not we should 1597 * use short preamble based on the current mode and 1598 * negotiated parameters. 1599 */ 1600 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1601 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 1602 shortPreamble = AH_TRUE; 1603 sc->sc_stats.ast_tx_shortpre++; 1604 } else { 1605 shortPreamble = AH_FALSE; 1606 } 1607 1608 an = ATH_NODE(ni); 1609 //flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 1610 flags = 0; 1611 ismrr = 0; /* default no multi-rate retry*/ 1612 pri = M_WME_GETAC(m0); /* honor classification */ 1613 /* XXX use txparams instead of fixed values */ 1614 /* 1615 * Calculate Atheros packet type from IEEE80211 packet header, 1616 * setup for rate calculations, and select h/w transmit queue. 1617 */ 1618 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1619 case IEEE80211_FC0_TYPE_MGT: 1620 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1621 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 1622 atype = HAL_PKT_TYPE_BEACON; 1623 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1624 atype = HAL_PKT_TYPE_PROBE_RESP; 1625 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 1626 atype = HAL_PKT_TYPE_ATIM; 1627 else 1628 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 1629 rix = an->an_mgmtrix; 1630 txrate = rt->info[rix].rateCode; 1631 if (shortPreamble) 1632 txrate |= rt->info[rix].shortPreamble; 1633 try0 = ATH_TXMGTTRY; 1634 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1635 break; 1636 case IEEE80211_FC0_TYPE_CTL: 1637 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 1638 rix = an->an_mgmtrix; 1639 txrate = rt->info[rix].rateCode; 1640 if (shortPreamble) 1641 txrate |= rt->info[rix].shortPreamble; 1642 try0 = ATH_TXMGTTRY; 1643 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1644 break; 1645 case IEEE80211_FC0_TYPE_DATA: 1646 atype = HAL_PKT_TYPE_NORMAL; /* default */ 1647 /* 1648 * Data frames: multicast frames go out at a fixed rate, 1649 * EAPOL frames use the mgmt frame rate; otherwise consult 1650 * the rate control module for the rate to use. 1651 */ 1652 if (ismcast) { 1653 rix = an->an_mcastrix; 1654 txrate = rt->info[rix].rateCode; 1655 if (shortPreamble) 1656 txrate |= rt->info[rix].shortPreamble; 1657 try0 = 1; 1658 } else if (m0->m_flags & M_EAPOL) { 1659 /* XXX? maybe always use long preamble? */ 1660 rix = an->an_mgmtrix; 1661 txrate = rt->info[rix].rateCode; 1662 if (shortPreamble) 1663 txrate |= rt->info[rix].shortPreamble; 1664 try0 = ATH_TXMAXTRY; /* XXX?too many? */ 1665 } else { 1666 /* 1667 * Do rate lookup on each TX, rather than using 1668 * the hard-coded TX information decided here. 1669 */ 1670 ismrr = 1; 1671 bf->bf_state.bfs_doratelookup = 1; 1672 } 1673 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 1674 flags |= HAL_TXDESC_NOACK; 1675 break; 1676 default: 1677 device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", 1678 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1679 /* XXX statistic */ 1680 /* XXX free tx dmamap */ 1681 ieee80211_free_mbuf(m0); 1682 return EIO; 1683 } 1684 1685 /* 1686 * There are two known scenarios where the frame AC doesn't match 1687 * what the destination TXQ is. 1688 * 1689 * + non-QoS frames (eg management?) that the net80211 stack has 1690 * assigned a higher AC to, but since it's a non-QoS TID, it's 1691 * being thrown into TID 16. TID 16 gets the AC_BE queue. 1692 * It's quite possible that management frames should just be 1693 * direct dispatched to hardware rather than go via the software 1694 * queue; that should be investigated in the future. There are 1695 * some specific scenarios where this doesn't make sense, mostly 1696 * surrounding ADDBA request/response - hence why that is special 1697 * cased. 1698 * 1699 * + Multicast frames going into the VAP mcast queue. That shows up 1700 * as "TXQ 11". 1701 * 1702 * This driver should eventually support separate TID and TXQ locking, 1703 * allowing for arbitrary AC frames to appear on arbitrary software 1704 * queues, being queued to the "correct" hardware queue when needed. 1705 */ 1706 #if 0 1707 if (txq != sc->sc_ac2q[pri]) { 1708 DPRINTF(sc, ATH_DEBUG_XMIT, 1709 "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n", 1710 __func__, 1711 txq, 1712 txq->axq_qnum, 1713 pri, 1714 sc->sc_ac2q[pri], 1715 sc->sc_ac2q[pri]->axq_qnum); 1716 } 1717 #endif 1718 1719 /* 1720 * Calculate miscellaneous flags. 1721 */ 1722 if (ismcast) { 1723 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 1724 } else if (pktlen > vap->iv_rtsthreshold && 1725 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { 1726 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 1727 sc->sc_stats.ast_tx_rts++; 1728 } 1729 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 1730 sc->sc_stats.ast_tx_noack++; 1731 #ifdef IEEE80211_SUPPORT_TDMA 1732 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { 1733 DPRINTF(sc, ATH_DEBUG_TDMA, 1734 "%s: discard frame, ACK required w/ TDMA\n", __func__); 1735 sc->sc_stats.ast_tdma_ack++; 1736 /* XXX free tx dmamap */ 1737 ieee80211_free_mbuf(m0); 1738 return EIO; 1739 } 1740 #endif 1741 1742 #if 0 1743 /* 1744 * Placeholder: if you want to transmit with the azimuth 1745 * timestamp in the end of the payload, here's where you 1746 * should set the TXDESC field. 1747 */ 1748 flags |= HAL_TXDESC_HWTS; 1749 #endif 1750 1751 /* 1752 * Determine if a tx interrupt should be generated for 1753 * this descriptor. We take a tx interrupt to reap 1754 * descriptors when the h/w hits an EOL condition or 1755 * when the descriptor is specifically marked to generate 1756 * an interrupt. We periodically mark descriptors in this 1757 * way to insure timely replenishing of the supply needed 1758 * for sending frames. Defering interrupts reduces system 1759 * load and potentially allows more concurrent work to be 1760 * done but if done to aggressively can cause senders to 1761 * backup. 1762 * 1763 * NB: use >= to deal with sc_txintrperiod changing 1764 * dynamically through sysctl. 1765 */ 1766 if (flags & HAL_TXDESC_INTREQ) { 1767 txq->axq_intrcnt = 0; 1768 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 1769 flags |= HAL_TXDESC_INTREQ; 1770 txq->axq_intrcnt = 0; 1771 } 1772 1773 /* This point forward is actual TX bits */ 1774 1775 /* 1776 * At this point we are committed to sending the frame 1777 * and we don't need to look at m_nextpkt; clear it in 1778 * case this frame is part of frag chain. 1779 */ 1780 m0->m_nextpkt = NULL; 1781 1782 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 1783 ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 1784 sc->sc_hwmap[rix].ieeerate, -1); 1785 1786 if (ieee80211_radiotap_active_vap(vap)) { 1787 u_int64_t tsf = ath_hal_gettsf64(ah); 1788 1789 sc->sc_tx_th.wt_tsf = htole64(tsf); 1790 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 1791 if (iswep) 1792 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1793 if (isfrag) 1794 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1795 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 1796 sc->sc_tx_th.wt_txpower = ieee80211_get_node_txpower(ni); 1797 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 1798 1799 ieee80211_radiotap_tx(vap, m0); 1800 } 1801 1802 /* Blank the legacy rate array */ 1803 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1804 1805 /* 1806 * ath_buf_set_rate needs at least one rate/try to setup 1807 * the rate scenario. 1808 */ 1809 bf->bf_state.bfs_rc[0].rix = rix; 1810 bf->bf_state.bfs_rc[0].tries = try0; 1811 bf->bf_state.bfs_rc[0].ratecode = txrate; 1812 1813 /* Store the decided rate index values away */ 1814 bf->bf_state.bfs_pktlen = pktlen; 1815 bf->bf_state.bfs_hdrlen = hdrlen; 1816 bf->bf_state.bfs_atype = atype; 1817 bf->bf_state.bfs_txpower = ieee80211_get_node_txpower(ni); 1818 bf->bf_state.bfs_txrate0 = txrate; 1819 bf->bf_state.bfs_try0 = try0; 1820 bf->bf_state.bfs_keyix = keyix; 1821 bf->bf_state.bfs_txantenna = sc->sc_txantenna; 1822 bf->bf_state.bfs_txflags = flags; 1823 bf->bf_state.bfs_shpream = shortPreamble; 1824 1825 /* XXX this should be done in ath_tx_setrate() */ 1826 bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */ 1827 bf->bf_state.bfs_ctsrate = 0; /* calculated later */ 1828 bf->bf_state.bfs_ctsduration = 0; 1829 bf->bf_state.bfs_ismrr = ismrr; 1830 1831 return 0; 1832 } 1833 1834 /* 1835 * Queue a frame to the hardware or software queue. 1836 * 1837 * This can be called by the net80211 code. 1838 * 1839 * XXX what about locking? Or, push the seqno assign into the 1840 * XXX aggregate scheduler so its serialised? 1841 * 1842 * XXX When sending management frames via ath_raw_xmit(), 1843 * should CLRDMASK be set unconditionally? 1844 */ 1845 int 1846 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, 1847 struct ath_buf *bf, struct mbuf *m0) 1848 { 1849 struct ieee80211vap *vap = ni->ni_vap; 1850 struct ath_vap *avp = ATH_VAP(vap); 1851 int r = 0; 1852 u_int pri; 1853 int tid; 1854 struct ath_txq *txq; 1855 int ismcast; 1856 const struct ieee80211_frame *wh; 1857 int is_ampdu, is_ampdu_tx, is_ampdu_pending; 1858 ieee80211_seq seqno; 1859 uint8_t type, subtype; 1860 int queue_to_head; 1861 1862 ATH_TX_LOCK_ASSERT(sc); 1863 1864 /* 1865 * Determine the target hardware queue. 1866 * 1867 * For multicast frames, the txq gets overridden appropriately 1868 * depending upon the state of PS. 1869 * 1870 * For any other frame, we do a TID/QoS lookup inside the frame 1871 * to see what the TID should be. If it's a non-QoS frame, the 1872 * AC and TID are overridden. The TID/TXQ code assumes the 1873 * TID is on a predictable hardware TXQ, so we don't support 1874 * having a node TID queued to multiple hardware TXQs. 1875 * This may change in the future but would require some locking 1876 * fudgery. 1877 */ 1878 pri = ath_tx_getac(sc, m0); 1879 tid = ath_tx_gettid(sc, m0); 1880 1881 txq = sc->sc_ac2q[pri]; 1882 wh = mtod(m0, struct ieee80211_frame *); 1883 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1884 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1885 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1886 1887 /* 1888 * Enforce how deep the multicast queue can grow. 1889 * 1890 * XXX duplicated in ath_raw_xmit(). 1891 */ 1892 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1893 if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth 1894 > sc->sc_txq_mcastq_maxdepth) { 1895 sc->sc_stats.ast_tx_mcastq_overflow++; 1896 m_freem(m0); 1897 return (ENOBUFS); 1898 } 1899 } 1900 1901 /* 1902 * Enforce how deep the unicast queue can grow. 1903 * 1904 * If the node is in power save then we don't want 1905 * the software queue to grow too deep, or a node may 1906 * end up consuming all of the ath_buf entries. 1907 * 1908 * For now, only do this for DATA frames. 1909 * 1910 * We will want to cap how many management/control 1911 * frames get punted to the software queue so it doesn't 1912 * fill up. But the correct solution isn't yet obvious. 1913 * In any case, this check should at least let frames pass 1914 * that we are direct-dispatching. 1915 * 1916 * XXX TODO: duplicate this to the raw xmit path! 1917 */ 1918 if (type == IEEE80211_FC0_TYPE_DATA && 1919 ATH_NODE(ni)->an_is_powersave && 1920 ATH_NODE(ni)->an_swq_depth > 1921 sc->sc_txq_node_psq_maxdepth) { 1922 sc->sc_stats.ast_tx_node_psq_overflow++; 1923 m_freem(m0); 1924 return (ENOBUFS); 1925 } 1926 1927 /* A-MPDU TX */ 1928 is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid); 1929 is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid); 1930 is_ampdu = is_ampdu_tx | is_ampdu_pending; 1931 1932 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n", 1933 __func__, tid, pri, is_ampdu); 1934 1935 /* Set local packet state, used to queue packets to hardware */ 1936 bf->bf_state.bfs_tid = tid; 1937 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 1938 bf->bf_state.bfs_pri = pri; 1939 1940 #if 1 1941 /* 1942 * When servicing one or more stations in power-save mode 1943 * (or) if there is some mcast data waiting on the mcast 1944 * queue (to prevent out of order delivery) multicast frames 1945 * must be bufferd until after the beacon. 1946 * 1947 * TODO: we should lock the mcastq before we check the length. 1948 */ 1949 if (sc->sc_cabq_enable && ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) { 1950 txq = &avp->av_mcastq; 1951 /* 1952 * Mark the frame as eventually belonging on the CAB 1953 * queue, so the descriptor setup functions will 1954 * correctly initialise the descriptor 'qcuId' field. 1955 */ 1956 bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum; 1957 } 1958 #endif 1959 1960 /* Do the generic frame setup */ 1961 /* XXX should just bzero the bf_state? */ 1962 bf->bf_state.bfs_dobaw = 0; 1963 1964 /* A-MPDU TX? Manually set sequence number */ 1965 /* 1966 * Don't do it whilst pending; the net80211 layer still 1967 * assigns them. 1968 */ 1969 if (is_ampdu_tx) { 1970 /* 1971 * Always call; this function will 1972 * handle making sure that null data frames 1973 * don't get a sequence number from the current 1974 * TID and thus mess with the BAW. 1975 */ 1976 seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0); 1977 1978 /* 1979 * Don't add QoS NULL frames to the BAW. 1980 */ 1981 if (IEEE80211_QOS_HAS_SEQ(wh) && 1982 subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) { 1983 bf->bf_state.bfs_dobaw = 1; 1984 } 1985 } 1986 1987 /* 1988 * If needed, the sequence number has been assigned. 1989 * Squirrel it away somewhere easy to get to. 1990 */ 1991 bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT; 1992 1993 /* Is ampdu pending? fetch the seqno and print it out */ 1994 if (is_ampdu_pending) 1995 DPRINTF(sc, ATH_DEBUG_SW_TX, 1996 "%s: tid %d: ampdu pending, seqno %d\n", 1997 __func__, tid, M_SEQNO_GET(m0)); 1998 1999 /* This also sets up the DMA map */ 2000 r = ath_tx_normal_setup(sc, ni, bf, m0, txq); 2001 2002 if (r != 0) 2003 goto done; 2004 2005 /* At this point m0 could have changed! */ 2006 m0 = bf->bf_m; 2007 2008 #if 1 2009 /* 2010 * If it's a multicast frame, do a direct-dispatch to the 2011 * destination hardware queue. Don't bother software 2012 * queuing it. 2013 */ 2014 /* 2015 * If it's a BAR frame, do a direct dispatch to the 2016 * destination hardware queue. Don't bother software 2017 * queuing it, as the TID will now be paused. 2018 * Sending a BAR frame can occur from the net80211 txa timer 2019 * (ie, retries) or from the ath txtask (completion call.) 2020 * It queues directly to hardware because the TID is paused 2021 * at this point (and won't be unpaused until the BAR has 2022 * either been TXed successfully or max retries has been 2023 * reached.) 2024 */ 2025 /* 2026 * Until things are better debugged - if this node is asleep 2027 * and we're sending it a non-BAR frame, direct dispatch it. 2028 * Why? Because we need to figure out what's actually being 2029 * sent - eg, during reassociation/reauthentication after 2030 * the node (last) disappeared whilst asleep, the driver should 2031 * have unpaused/unsleep'ed the node. So until that is 2032 * sorted out, use this workaround. 2033 */ 2034 if (txq == &avp->av_mcastq) { 2035 DPRINTF(sc, ATH_DEBUG_SW_TX, 2036 "%s: bf=%p: mcastq: TX'ing\n", __func__, bf); 2037 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2038 ath_tx_xmit_normal(sc, txq, bf); 2039 } else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0, 2040 &queue_to_head)) { 2041 ath_tx_swq(sc, ni, txq, queue_to_head, bf); 2042 } else { 2043 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2044 ath_tx_xmit_normal(sc, txq, bf); 2045 } 2046 #else 2047 /* 2048 * For now, since there's no software queue, 2049 * direct-dispatch to the hardware. 2050 */ 2051 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2052 /* 2053 * Update the current leak count if 2054 * we're leaking frames; and set the 2055 * MORE flag as appropriate. 2056 */ 2057 ath_tx_leak_count_update(sc, tid, bf); 2058 ath_tx_xmit_normal(sc, txq, bf); 2059 #endif 2060 done: 2061 return 0; 2062 } 2063 2064 static int 2065 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, 2066 struct ath_buf *bf, struct mbuf *m0, 2067 const struct ieee80211_bpf_params *params) 2068 { 2069 struct ieee80211com *ic = &sc->sc_ic; 2070 struct ath_hal *ah = sc->sc_ah; 2071 struct ieee80211vap *vap = ni->ni_vap; 2072 int error, ismcast, ismrr; 2073 int keyix, hdrlen, pktlen, try0, txantenna; 2074 u_int8_t rix, txrate; 2075 struct ieee80211_frame *wh; 2076 u_int flags; 2077 HAL_PKT_TYPE atype; 2078 const HAL_RATE_TABLE *rt; 2079 struct ath_desc *ds; 2080 u_int pri; 2081 int o_tid = -1; 2082 int do_override; 2083 uint8_t type, subtype; 2084 int queue_to_head; 2085 struct ath_node *an = ATH_NODE(ni); 2086 2087 ATH_TX_LOCK_ASSERT(sc); 2088 2089 wh = mtod(m0, struct ieee80211_frame *); 2090 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2091 hdrlen = ieee80211_anyhdrsize(wh); 2092 /* 2093 * Packet length must not include any 2094 * pad bytes; deduct them here. 2095 */ 2096 /* XXX honor IEEE80211_BPF_DATAPAD */ 2097 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; 2098 2099 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2100 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2101 2102 ATH_KTR(sc, ATH_KTR_TX, 2, 2103 "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf); 2104 2105 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n", 2106 __func__, ismcast); 2107 2108 pri = params->ibp_pri & 3; 2109 /* Override pri if the frame isn't a QoS one */ 2110 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2111 pri = ath_tx_getac(sc, m0); 2112 2113 /* XXX If it's an ADDBA, override the correct queue */ 2114 do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid); 2115 2116 /* Map ADDBA to the correct priority */ 2117 if (do_override) { 2118 #if 0 2119 DPRINTF(sc, ATH_DEBUG_XMIT, 2120 "%s: overriding tid %d pri %d -> %d\n", 2121 __func__, o_tid, pri, TID_TO_WME_AC(o_tid)); 2122 #endif 2123 pri = TID_TO_WME_AC(o_tid); 2124 } 2125 2126 /* Handle encryption twiddling if needed */ 2127 if (! ath_tx_tag_crypto(sc, ni, 2128 m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0, 2129 &hdrlen, &pktlen, &keyix)) { 2130 ieee80211_free_mbuf(m0); 2131 return EIO; 2132 } 2133 /* packet header may have moved, reset our local pointer */ 2134 wh = mtod(m0, struct ieee80211_frame *); 2135 2136 /* Do the generic frame setup */ 2137 /* XXX should just bzero the bf_state? */ 2138 bf->bf_state.bfs_dobaw = 0; 2139 2140 error = ath_tx_dmasetup(sc, bf, m0); 2141 if (error != 0) 2142 return error; 2143 m0 = bf->bf_m; /* NB: may have changed */ 2144 wh = mtod(m0, struct ieee80211_frame *); 2145 KASSERT((ni != NULL), ("%s: ni=NULL!", __func__)); 2146 bf->bf_node = ni; /* NB: held reference */ 2147 2148 /* Always enable CLRDMASK for raw frames for now.. */ 2149 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 2150 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 2151 if (params->ibp_flags & IEEE80211_BPF_RTS) 2152 flags |= HAL_TXDESC_RTSENA; 2153 else if (params->ibp_flags & IEEE80211_BPF_CTS) { 2154 /* XXX assume 11g/11n protection? */ 2155 bf->bf_state.bfs_doprot = 1; 2156 flags |= HAL_TXDESC_CTSENA; 2157 } 2158 /* XXX leave ismcast to injector? */ 2159 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) 2160 flags |= HAL_TXDESC_NOACK; 2161 2162 rt = sc->sc_currates; 2163 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 2164 2165 /* Fetch first rate information */ 2166 rix = ath_tx_findrix(sc, params->ibp_rate0); 2167 try0 = params->ibp_try0; 2168 2169 /* 2170 * Override EAPOL rate as appropriate. 2171 */ 2172 if (m0->m_flags & M_EAPOL) { 2173 /* XXX? maybe always use long preamble? */ 2174 rix = an->an_mgmtrix; 2175 try0 = ATH_TXMAXTRY; /* XXX?too many? */ 2176 } 2177 2178 txrate = rt->info[rix].rateCode; 2179 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 2180 txrate |= rt->info[rix].shortPreamble; 2181 sc->sc_txrix = rix; 2182 ismrr = (params->ibp_try1 != 0); 2183 txantenna = params->ibp_pri >> 2; 2184 if (txantenna == 0) /* XXX? */ 2185 txantenna = sc->sc_txantenna; 2186 2187 /* 2188 * Since ctsrate is fixed, store it away for later 2189 * use when the descriptor fields are being set. 2190 */ 2191 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) 2192 bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate; 2193 2194 /* 2195 * NB: we mark all packets as type PSPOLL so the h/w won't 2196 * set the sequence number, duration, etc. 2197 */ 2198 atype = HAL_PKT_TYPE_PSPOLL; 2199 2200 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 2201 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 2202 sc->sc_hwmap[rix].ieeerate, -1); 2203 2204 if (ieee80211_radiotap_active_vap(vap)) { 2205 u_int64_t tsf = ath_hal_gettsf64(ah); 2206 2207 sc->sc_tx_th.wt_tsf = htole64(tsf); 2208 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 2209 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 2210 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2211 if (m0->m_flags & M_FRAG) 2212 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2213 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 2214 sc->sc_tx_th.wt_txpower = MIN(params->ibp_power, 2215 ieee80211_get_node_txpower(ni)); 2216 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 2217 2218 ieee80211_radiotap_tx(vap, m0); 2219 } 2220 2221 /* 2222 * Formulate first tx descriptor with tx controls. 2223 */ 2224 ds = bf->bf_desc; 2225 /* XXX check return value? */ 2226 2227 /* Store the decided rate index values away */ 2228 bf->bf_state.bfs_pktlen = pktlen; 2229 bf->bf_state.bfs_hdrlen = hdrlen; 2230 bf->bf_state.bfs_atype = atype; 2231 bf->bf_state.bfs_txpower = MIN(params->ibp_power, 2232 ieee80211_get_node_txpower(ni)); 2233 bf->bf_state.bfs_txrate0 = txrate; 2234 bf->bf_state.bfs_try0 = try0; 2235 bf->bf_state.bfs_keyix = keyix; 2236 bf->bf_state.bfs_txantenna = txantenna; 2237 bf->bf_state.bfs_txflags = flags; 2238 bf->bf_state.bfs_shpream = 2239 !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE); 2240 2241 /* Set local packet state, used to queue packets to hardware */ 2242 bf->bf_state.bfs_tid = WME_AC_TO_TID(pri); 2243 bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum; 2244 bf->bf_state.bfs_pri = pri; 2245 2246 /* XXX this should be done in ath_tx_setrate() */ 2247 bf->bf_state.bfs_ctsrate = 0; 2248 bf->bf_state.bfs_ctsduration = 0; 2249 bf->bf_state.bfs_ismrr = ismrr; 2250 2251 /* Blank the legacy rate array */ 2252 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 2253 2254 bf->bf_state.bfs_rc[0].rix = rix; 2255 bf->bf_state.bfs_rc[0].tries = try0; 2256 bf->bf_state.bfs_rc[0].ratecode = txrate; 2257 2258 if (ismrr) { 2259 int rix; 2260 2261 rix = ath_tx_findrix(sc, params->ibp_rate1); 2262 bf->bf_state.bfs_rc[1].rix = rix; 2263 bf->bf_state.bfs_rc[1].tries = params->ibp_try1; 2264 2265 rix = ath_tx_findrix(sc, params->ibp_rate2); 2266 bf->bf_state.bfs_rc[2].rix = rix; 2267 bf->bf_state.bfs_rc[2].tries = params->ibp_try2; 2268 2269 rix = ath_tx_findrix(sc, params->ibp_rate3); 2270 bf->bf_state.bfs_rc[3].rix = rix; 2271 bf->bf_state.bfs_rc[3].tries = params->ibp_try3; 2272 } 2273 /* 2274 * All the required rate control decisions have been made; 2275 * fill in the rc flags. 2276 */ 2277 ath_tx_rate_fill_rcflags(sc, bf); 2278 2279 /* NB: no buffered multicast in power save support */ 2280 2281 /* 2282 * If we're overiding the ADDBA destination, dump directly 2283 * into the hardware queue, right after any pending 2284 * frames to that node are. 2285 */ 2286 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n", 2287 __func__, do_override); 2288 2289 #if 1 2290 /* 2291 * Put addba frames in the right place in the right TID/HWQ. 2292 */ 2293 if (do_override) { 2294 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2295 /* 2296 * XXX if it's addba frames, should we be leaking 2297 * them out via the frame leak method? 2298 * XXX for now let's not risk it; but we may wish 2299 * to investigate this later. 2300 */ 2301 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2302 } else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0, 2303 &queue_to_head)) { 2304 /* Queue to software queue */ 2305 ath_tx_swq(sc, ni, sc->sc_ac2q[pri], queue_to_head, bf); 2306 } else { 2307 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2308 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2309 } 2310 #else 2311 /* Direct-dispatch to the hardware */ 2312 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2313 /* 2314 * Update the current leak count if 2315 * we're leaking frames; and set the 2316 * MORE flag as appropriate. 2317 */ 2318 ath_tx_leak_count_update(sc, tid, bf); 2319 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2320 #endif 2321 return 0; 2322 } 2323 2324 /* 2325 * Send a raw frame. 2326 * 2327 * This can be called by net80211. 2328 */ 2329 int 2330 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2331 const struct ieee80211_bpf_params *params) 2332 { 2333 struct ieee80211com *ic = ni->ni_ic; 2334 struct ath_softc *sc = ic->ic_softc; 2335 struct ath_buf *bf; 2336 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 2337 int error = 0; 2338 2339 ATH_PCU_LOCK(sc); 2340 if (sc->sc_inreset_cnt > 0) { 2341 DPRINTF(sc, ATH_DEBUG_XMIT, 2342 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2343 error = EIO; 2344 ATH_PCU_UNLOCK(sc); 2345 goto badbad; 2346 } 2347 sc->sc_txstart_cnt++; 2348 ATH_PCU_UNLOCK(sc); 2349 2350 /* Wake the hardware up already */ 2351 ATH_LOCK(sc); 2352 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2353 ATH_UNLOCK(sc); 2354 2355 ATH_TX_LOCK(sc); 2356 2357 if (!sc->sc_running || sc->sc_invalid) { 2358 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, r/i: %d/%d", 2359 __func__, sc->sc_running, sc->sc_invalid); 2360 m_freem(m); 2361 error = ENETDOWN; 2362 goto bad; 2363 } 2364 2365 /* 2366 * Enforce how deep the multicast queue can grow. 2367 * 2368 * XXX duplicated in ath_tx_start(). 2369 */ 2370 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2371 if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth 2372 > sc->sc_txq_mcastq_maxdepth) { 2373 sc->sc_stats.ast_tx_mcastq_overflow++; 2374 error = ENOBUFS; 2375 } 2376 2377 if (error != 0) { 2378 m_freem(m); 2379 goto bad; 2380 } 2381 } 2382 2383 /* 2384 * Grab a TX buffer and associated resources. 2385 */ 2386 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 2387 if (bf == NULL) { 2388 sc->sc_stats.ast_tx_nobuf++; 2389 m_freem(m); 2390 error = ENOBUFS; 2391 goto bad; 2392 } 2393 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n", 2394 m, params, bf); 2395 2396 if (params == NULL) { 2397 /* 2398 * Legacy path; interpret frame contents to decide 2399 * precisely how to send the frame. 2400 */ 2401 if (ath_tx_start(sc, ni, bf, m)) { 2402 error = EIO; /* XXX */ 2403 goto bad2; 2404 } 2405 } else { 2406 /* 2407 * Caller supplied explicit parameters to use in 2408 * sending the frame. 2409 */ 2410 if (ath_tx_raw_start(sc, ni, bf, m, params)) { 2411 error = EIO; /* XXX */ 2412 goto bad2; 2413 } 2414 } 2415 sc->sc_wd_timer = 5; 2416 sc->sc_stats.ast_tx_raw++; 2417 2418 /* 2419 * Update the TIM - if there's anything queued to the 2420 * software queue and power save is enabled, we should 2421 * set the TIM. 2422 */ 2423 ath_tx_update_tim(sc, ni, 1); 2424 2425 ATH_TX_UNLOCK(sc); 2426 2427 ATH_PCU_LOCK(sc); 2428 sc->sc_txstart_cnt--; 2429 ATH_PCU_UNLOCK(sc); 2430 2431 2432 /* Put the hardware back to sleep if required */ 2433 ATH_LOCK(sc); 2434 ath_power_restore_power_state(sc); 2435 ATH_UNLOCK(sc); 2436 2437 return 0; 2438 2439 bad2: 2440 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, " 2441 "bf=%p", 2442 m, 2443 params, 2444 bf); 2445 ATH_TXBUF_LOCK(sc); 2446 ath_returnbuf_head(sc, bf); 2447 ATH_TXBUF_UNLOCK(sc); 2448 2449 bad: 2450 ATH_TX_UNLOCK(sc); 2451 2452 ATH_PCU_LOCK(sc); 2453 sc->sc_txstart_cnt--; 2454 ATH_PCU_UNLOCK(sc); 2455 2456 /* Put the hardware back to sleep if required */ 2457 ATH_LOCK(sc); 2458 ath_power_restore_power_state(sc); 2459 ATH_UNLOCK(sc); 2460 2461 badbad: 2462 ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p", 2463 m, params); 2464 sc->sc_stats.ast_tx_raw_fail++; 2465 2466 return error; 2467 } 2468 2469 /* Some helper functions */ 2470 2471 /* 2472 * ADDBA (and potentially others) need to be placed in the same 2473 * hardware queue as the TID/node it's relating to. This is so 2474 * it goes out after any pending non-aggregate frames to the 2475 * same node/TID. 2476 * 2477 * If this isn't done, the ADDBA can go out before the frames 2478 * queued in hardware. Even though these frames have a sequence 2479 * number -earlier- than the ADDBA can be transmitted (but 2480 * no frames whose sequence numbers are after the ADDBA should 2481 * be!) they'll arrive after the ADDBA - and the receiving end 2482 * will simply drop them as being out of the BAW. 2483 * 2484 * The frames can't be appended to the TID software queue - it'll 2485 * never be sent out. So these frames have to be directly 2486 * dispatched to the hardware, rather than queued in software. 2487 * So if this function returns true, the TXQ has to be 2488 * overridden and it has to be directly dispatched. 2489 * 2490 * It's a dirty hack, but someone's gotta do it. 2491 */ 2492 2493 /* 2494 * XXX doesn't belong here! 2495 */ 2496 static int 2497 ieee80211_is_action(struct ieee80211_frame *wh) 2498 { 2499 /* Type: Management frame? */ 2500 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 2501 IEEE80211_FC0_TYPE_MGT) 2502 return 0; 2503 2504 /* Subtype: Action frame? */ 2505 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) != 2506 IEEE80211_FC0_SUBTYPE_ACTION) 2507 return 0; 2508 2509 return 1; 2510 } 2511 2512 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2513 /* 2514 * Return an alternate TID for ADDBA request frames. 2515 * 2516 * Yes, this likely should be done in the net80211 layer. 2517 */ 2518 static int 2519 ath_tx_action_frame_override_queue(struct ath_softc *sc, 2520 struct ieee80211_node *ni, 2521 struct mbuf *m0, int *tid) 2522 { 2523 struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); 2524 struct ieee80211_action_ba_addbarequest *ia; 2525 uint8_t *frm; 2526 uint16_t baparamset; 2527 2528 /* Not action frame? Bail */ 2529 if (! ieee80211_is_action(wh)) 2530 return 0; 2531 2532 /* XXX Not needed for frames we send? */ 2533 #if 0 2534 /* Correct length? */ 2535 if (! ieee80211_parse_action(ni, m)) 2536 return 0; 2537 #endif 2538 2539 /* Extract out action frame */ 2540 frm = (u_int8_t *)&wh[1]; 2541 ia = (struct ieee80211_action_ba_addbarequest *) frm; 2542 2543 /* Not ADDBA? Bail */ 2544 if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA) 2545 return 0; 2546 if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST) 2547 return 0; 2548 2549 /* Extract TID, return it */ 2550 baparamset = le16toh(ia->rq_baparamset); 2551 *tid = (int) MS(baparamset, IEEE80211_BAPS_TID); 2552 2553 return 1; 2554 } 2555 #undef MS 2556 2557 /* Per-node software queue operations */ 2558 2559 /* 2560 * Add the current packet to the given BAW. 2561 * It is assumed that the current packet 2562 * 2563 * + fits inside the BAW; 2564 * + already has had a sequence number allocated. 2565 * 2566 * Since the BAW status may be modified by both the ath task and 2567 * the net80211/ifnet contexts, the TID must be locked. 2568 */ 2569 void 2570 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an, 2571 struct ath_tid *tid, struct ath_buf *bf) 2572 { 2573 int index, cindex; 2574 struct ieee80211_tx_ampdu *tap; 2575 2576 ATH_TX_LOCK_ASSERT(sc); 2577 2578 if (bf->bf_state.bfs_isretried) 2579 return; 2580 2581 tap = ath_tx_get_tx_tid(an, tid->tid); 2582 2583 if (! bf->bf_state.bfs_dobaw) { 2584 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2585 "%s: dobaw=0, seqno=%d, window %d:%d\n", 2586 __func__, SEQNO(bf->bf_state.bfs_seqno), 2587 tap->txa_start, tap->txa_wnd); 2588 } 2589 2590 if (bf->bf_state.bfs_addedbaw) 2591 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2592 "%s: re-added? tid=%d, seqno %d; window %d:%d; " 2593 "baw head=%d tail=%d\n", 2594 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2595 tap->txa_start, tap->txa_wnd, tid->baw_head, 2596 tid->baw_tail); 2597 2598 /* 2599 * Verify that the given sequence number is not outside of the 2600 * BAW. Complain loudly if that's the case. 2601 */ 2602 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2603 SEQNO(bf->bf_state.bfs_seqno))) { 2604 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2605 "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; " 2606 "baw head=%d tail=%d\n", 2607 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2608 tap->txa_start, tap->txa_wnd, tid->baw_head, 2609 tid->baw_tail); 2610 } 2611 2612 /* 2613 * ni->ni_txseqs[] is the currently allocated seqno. 2614 * the txa state contains the current baw start. 2615 */ 2616 index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno)); 2617 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2618 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2619 "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d " 2620 "baw head=%d tail=%d\n", 2621 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2622 tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, 2623 tid->baw_tail); 2624 2625 2626 #if 0 2627 assert(tid->tx_buf[cindex] == NULL); 2628 #endif 2629 if (tid->tx_buf[cindex] != NULL) { 2630 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2631 "%s: ba packet dup (index=%d, cindex=%d, " 2632 "head=%d, tail=%d)\n", 2633 __func__, index, cindex, tid->baw_head, tid->baw_tail); 2634 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2635 "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n", 2636 __func__, 2637 tid->tx_buf[cindex], 2638 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno), 2639 bf, 2640 SEQNO(bf->bf_state.bfs_seqno) 2641 ); 2642 } 2643 tid->tx_buf[cindex] = bf; 2644 2645 if (index >= ((tid->baw_tail - tid->baw_head) & 2646 (ATH_TID_MAX_BUFS - 1))) { 2647 tid->baw_tail = cindex; 2648 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 2649 } 2650 } 2651 2652 /* 2653 * Flip the BAW buffer entry over from the existing one to the new one. 2654 * 2655 * When software retransmitting a (sub-)frame, it is entirely possible that 2656 * the frame ath_buf is marked as BUSY and can't be immediately reused. 2657 * In that instance the buffer is cloned and the new buffer is used for 2658 * retransmit. We thus need to update the ath_buf slot in the BAW buf 2659 * tracking array to maintain consistency. 2660 */ 2661 static void 2662 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an, 2663 struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf) 2664 { 2665 int index, cindex; 2666 struct ieee80211_tx_ampdu *tap; 2667 int seqno = SEQNO(old_bf->bf_state.bfs_seqno); 2668 2669 ATH_TX_LOCK_ASSERT(sc); 2670 2671 tap = ath_tx_get_tx_tid(an, tid->tid); 2672 index = ATH_BA_INDEX(tap->txa_start, seqno); 2673 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2674 2675 /* 2676 * Just warn for now; if it happens then we should find out 2677 * about it. It's highly likely the aggregation session will 2678 * soon hang. 2679 */ 2680 if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) { 2681 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2682 "%s: retransmitted buffer" 2683 " has mismatching seqno's, BA session may hang.\n", 2684 __func__); 2685 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2686 "%s: old seqno=%d, new_seqno=%d\n", __func__, 2687 old_bf->bf_state.bfs_seqno, new_bf->bf_state.bfs_seqno); 2688 } 2689 2690 if (tid->tx_buf[cindex] != old_bf) { 2691 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2692 "%s: ath_buf pointer incorrect; " 2693 " has m BA session may hang.\n", __func__); 2694 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2695 "%s: old bf=%p, new bf=%p\n", __func__, old_bf, new_bf); 2696 } 2697 2698 tid->tx_buf[cindex] = new_bf; 2699 } 2700 2701 /* 2702 * seq_start - left edge of BAW 2703 * seq_next - current/next sequence number to allocate 2704 * 2705 * Since the BAW status may be modified by both the ath task and 2706 * the net80211/ifnet contexts, the TID must be locked. 2707 */ 2708 static void 2709 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an, 2710 struct ath_tid *tid, const struct ath_buf *bf) 2711 { 2712 int index, cindex; 2713 struct ieee80211_tx_ampdu *tap; 2714 int seqno = SEQNO(bf->bf_state.bfs_seqno); 2715 2716 ATH_TX_LOCK_ASSERT(sc); 2717 2718 tap = ath_tx_get_tx_tid(an, tid->tid); 2719 index = ATH_BA_INDEX(tap->txa_start, seqno); 2720 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2721 2722 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2723 "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, " 2724 "baw head=%d, tail=%d\n", 2725 __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index, 2726 cindex, tid->baw_head, tid->baw_tail); 2727 2728 /* 2729 * If this occurs then we have a big problem - something else 2730 * has slid tap->txa_start along without updating the BAW 2731 * tracking start/end pointers. Thus the TX BAW state is now 2732 * completely busted. 2733 * 2734 * But for now, since I haven't yet fixed TDMA and buffer cloning, 2735 * it's quite possible that a cloned buffer is making its way 2736 * here and causing it to fire off. Disable TDMA for now. 2737 */ 2738 if (tid->tx_buf[cindex] != bf) { 2739 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2740 "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n", 2741 __func__, bf, SEQNO(bf->bf_state.bfs_seqno), 2742 tid->tx_buf[cindex], 2743 (tid->tx_buf[cindex] != NULL) ? 2744 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno) : -1); 2745 } 2746 2747 tid->tx_buf[cindex] = NULL; 2748 2749 while (tid->baw_head != tid->baw_tail && 2750 !tid->tx_buf[tid->baw_head]) { 2751 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 2752 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 2753 } 2754 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2755 "%s: tid=%d: baw is now %d:%d, baw head=%d\n", 2756 __func__, tid->tid, tap->txa_start, tap->txa_wnd, tid->baw_head); 2757 } 2758 2759 static void 2760 ath_tx_leak_count_update(struct ath_softc *sc, struct ath_tid *tid, 2761 struct ath_buf *bf) 2762 { 2763 struct ieee80211_frame *wh; 2764 2765 ATH_TX_LOCK_ASSERT(sc); 2766 2767 if (tid->an->an_leak_count > 0) { 2768 wh = mtod(bf->bf_m, struct ieee80211_frame *); 2769 2770 /* 2771 * Update MORE based on the software/net80211 queue states. 2772 */ 2773 if ((tid->an->an_stack_psq > 0) 2774 || (tid->an->an_swq_depth > 0)) 2775 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 2776 else 2777 wh->i_fc[1] &= ~IEEE80211_FC1_MORE_DATA; 2778 2779 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 2780 "%s: %6D: leak count = %d, psq=%d, swq=%d, MORE=%d\n", 2781 __func__, 2782 tid->an->an_node.ni_macaddr, 2783 ":", 2784 tid->an->an_leak_count, 2785 tid->an->an_stack_psq, 2786 tid->an->an_swq_depth, 2787 !! (wh->i_fc[1] & IEEE80211_FC1_MORE_DATA)); 2788 2789 /* 2790 * Re-sync the underlying buffer. 2791 */ 2792 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2793 BUS_DMASYNC_PREWRITE); 2794 2795 tid->an->an_leak_count --; 2796 } 2797 } 2798 2799 static int 2800 ath_tx_tid_can_tx_or_sched(struct ath_softc *sc, struct ath_tid *tid) 2801 { 2802 2803 ATH_TX_LOCK_ASSERT(sc); 2804 2805 if (tid->an->an_leak_count > 0) { 2806 return (1); 2807 } 2808 if (tid->paused) 2809 return (0); 2810 return (1); 2811 } 2812 2813 /* 2814 * Mark the current node/TID as ready to TX. 2815 * 2816 * This is done to make it easy for the software scheduler to 2817 * find which nodes have data to send. 2818 * 2819 * The TXQ lock must be held. 2820 */ 2821 void 2822 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid) 2823 { 2824 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2825 2826 ATH_TX_LOCK_ASSERT(sc); 2827 2828 /* 2829 * If we are leaking out a frame to this destination 2830 * for PS-POLL, ensure that we allow scheduling to 2831 * occur. 2832 */ 2833 if (! ath_tx_tid_can_tx_or_sched(sc, tid)) 2834 return; /* paused, can't schedule yet */ 2835 2836 if (tid->sched) 2837 return; /* already scheduled */ 2838 2839 tid->sched = 1; 2840 2841 #if 0 2842 /* 2843 * If this is a sleeping node we're leaking to, given 2844 * it a higher priority. This is so bad for QoS it hurts. 2845 */ 2846 if (tid->an->an_leak_count) { 2847 TAILQ_INSERT_HEAD(&txq->axq_tidq, tid, axq_qelem); 2848 } else { 2849 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); 2850 } 2851 #endif 2852 2853 /* 2854 * We can't do the above - it'll confuse the TXQ software 2855 * scheduler which will keep checking the _head_ TID 2856 * in the list to see if it has traffic. If we queue 2857 * a TID to the head of the list and it doesn't transmit, 2858 * we'll check it again. 2859 * 2860 * So, get the rest of this leaking frames support working 2861 * and reliable first and _then_ optimise it so they're 2862 * pushed out in front of any other pending software 2863 * queued nodes. 2864 */ 2865 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); 2866 } 2867 2868 /* 2869 * Mark the current node as no longer needing to be polled for 2870 * TX packets. 2871 * 2872 * The TXQ lock must be held. 2873 */ 2874 static void 2875 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid) 2876 { 2877 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2878 2879 ATH_TX_LOCK_ASSERT(sc); 2880 2881 if (tid->sched == 0) 2882 return; 2883 2884 tid->sched = 0; 2885 TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem); 2886 } 2887 2888 /* 2889 * Assign a sequence number manually to the given frame. 2890 * 2891 * This should only be called for A-MPDU TX frames. 2892 */ 2893 static ieee80211_seq 2894 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, 2895 struct ath_buf *bf, struct mbuf *m0) 2896 { 2897 struct ieee80211_frame *wh; 2898 int tid, pri; 2899 ieee80211_seq seqno; 2900 uint8_t subtype; 2901 2902 /* TID lookup */ 2903 wh = mtod(m0, struct ieee80211_frame *); 2904 pri = M_WME_GETAC(m0); /* honor classification */ 2905 tid = WME_AC_TO_TID(pri); 2906 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n", 2907 __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2908 2909 /* XXX Is it a control frame? Ignore */ 2910 2911 /* Does the packet require a sequence number? */ 2912 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2913 return -1; 2914 2915 ATH_TX_LOCK_ASSERT(sc); 2916 2917 /* 2918 * Is it a QOS NULL Data frame? Give it a sequence number from 2919 * the default TID (IEEE80211_NONQOS_TID.) 2920 * 2921 * The RX path of everything I've looked at doesn't include the NULL 2922 * data frame sequence number in the aggregation state updates, so 2923 * assigning it a sequence number there will cause a BAW hole on the 2924 * RX side. 2925 */ 2926 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2927 if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) { 2928 /* XXX no locking for this TID? This is a bit of a problem. */ 2929 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; 2930 INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); 2931 } else { 2932 /* Manually assign sequence number */ 2933 seqno = ni->ni_txseqs[tid]; 2934 INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE); 2935 } 2936 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 2937 M_SEQNO_SET(m0, seqno); 2938 2939 /* Return so caller can do something with it if needed */ 2940 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno); 2941 return seqno; 2942 } 2943 2944 /* 2945 * Attempt to direct dispatch an aggregate frame to hardware. 2946 * If the frame is out of BAW, queue. 2947 * Otherwise, schedule it as a single frame. 2948 */ 2949 static void 2950 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, 2951 struct ath_txq *txq, struct ath_buf *bf) 2952 { 2953 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 2954 struct ieee80211_tx_ampdu *tap; 2955 2956 ATH_TX_LOCK_ASSERT(sc); 2957 2958 tap = ath_tx_get_tx_tid(an, tid->tid); 2959 2960 /* paused? queue */ 2961 if (! ath_tx_tid_can_tx_or_sched(sc, tid)) { 2962 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2963 /* XXX don't sched - we're paused! */ 2964 return; 2965 } 2966 2967 /* outside baw? queue */ 2968 if (bf->bf_state.bfs_dobaw && 2969 (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2970 SEQNO(bf->bf_state.bfs_seqno)))) { 2971 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2972 ath_tx_tid_sched(sc, tid); 2973 return; 2974 } 2975 2976 /* 2977 * This is a temporary check and should be removed once 2978 * all the relevant code paths have been fixed. 2979 * 2980 * During aggregate retries, it's possible that the head 2981 * frame will fail (which has the bfs_aggr and bfs_nframes 2982 * fields set for said aggregate) and will be retried as 2983 * a single frame. In this instance, the values should 2984 * be reset or the completion code will get upset with you. 2985 */ 2986 if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) { 2987 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 2988 "%s: bfs_aggr=%d, bfs_nframes=%d\n", __func__, 2989 bf->bf_state.bfs_aggr, bf->bf_state.bfs_nframes); 2990 bf->bf_state.bfs_aggr = 0; 2991 bf->bf_state.bfs_nframes = 1; 2992 } 2993 2994 /* Update CLRDMASK just before this frame is queued */ 2995 ath_tx_update_clrdmask(sc, tid, bf); 2996 2997 /* Direct dispatch to hardware */ 2998 ath_tx_do_ratelookup(sc, bf); 2999 ath_tx_calc_duration(sc, bf); 3000 ath_tx_calc_protection(sc, bf); 3001 ath_tx_set_rtscts(sc, bf); 3002 ath_tx_rate_fill_rcflags(sc, bf); 3003 ath_tx_setds(sc, bf); 3004 3005 /* Statistics */ 3006 sc->sc_aggr_stats.aggr_low_hwq_single_pkt++; 3007 3008 /* Track per-TID hardware queue depth correctly */ 3009 tid->hwq_depth++; 3010 3011 /* Add to BAW */ 3012 if (bf->bf_state.bfs_dobaw) { 3013 ath_tx_addto_baw(sc, an, tid, bf); 3014 bf->bf_state.bfs_addedbaw = 1; 3015 } 3016 3017 /* Set completion handler, multi-frame aggregate or not */ 3018 bf->bf_comp = ath_tx_aggr_comp; 3019 3020 /* 3021 * Update the current leak count if 3022 * we're leaking frames; and set the 3023 * MORE flag as appropriate. 3024 */ 3025 ath_tx_leak_count_update(sc, tid, bf); 3026 3027 /* Hand off to hardware */ 3028 ath_tx_handoff(sc, txq, bf); 3029 } 3030 3031 /* 3032 * Attempt to send the packet. 3033 * If the queue isn't busy, direct-dispatch. 3034 * If the queue is busy enough, queue the given packet on the 3035 * relevant software queue. 3036 */ 3037 void 3038 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, 3039 struct ath_txq *txq, int queue_to_head, struct ath_buf *bf) 3040 { 3041 struct ath_node *an = ATH_NODE(ni); 3042 struct ieee80211_frame *wh; 3043 struct ath_tid *atid; 3044 int pri, tid; 3045 struct mbuf *m0 = bf->bf_m; 3046 3047 ATH_TX_LOCK_ASSERT(sc); 3048 3049 /* Fetch the TID - non-QoS frames get assigned to TID 16 */ 3050 wh = mtod(m0, struct ieee80211_frame *); 3051 pri = ath_tx_getac(sc, m0); 3052 tid = ath_tx_gettid(sc, m0); 3053 atid = &an->an_tid[tid]; 3054 3055 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n", 3056 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 3057 3058 /* Set local packet state, used to queue packets to hardware */ 3059 /* XXX potentially duplicate info, re-check */ 3060 bf->bf_state.bfs_tid = tid; 3061 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 3062 bf->bf_state.bfs_pri = pri; 3063 3064 /* 3065 * If the hardware queue isn't busy, queue it directly. 3066 * If the hardware queue is busy, queue it. 3067 * If the TID is paused or the traffic it outside BAW, software 3068 * queue it. 3069 * 3070 * If the node is in power-save and we're leaking a frame, 3071 * leak a single frame. 3072 */ 3073 if (! ath_tx_tid_can_tx_or_sched(sc, atid)) { 3074 /* TID is paused, queue */ 3075 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__); 3076 /* 3077 * If the caller requested that it be sent at a high 3078 * priority, queue it at the head of the list. 3079 */ 3080 if (queue_to_head) 3081 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3082 else 3083 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 3084 } else if (ath_tx_ampdu_pending(sc, an, tid)) { 3085 /* AMPDU pending; queue */ 3086 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__); 3087 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 3088 /* XXX sched? */ 3089 } else if (ath_tx_ampdu_running(sc, an, tid)) { 3090 /* AMPDU running, attempt direct dispatch if possible */ 3091 3092 /* 3093 * Always queue the frame to the tail of the list. 3094 */ 3095 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 3096 3097 /* 3098 * If the hardware queue isn't busy, direct dispatch 3099 * the head frame in the list. Don't schedule the 3100 * TID - let it build some more frames first? 3101 * 3102 * When running A-MPDU, always just check the hardware 3103 * queue depth against the aggregate frame limit. 3104 * We don't want to burst a large number of single frames 3105 * out to the hardware; we want to aggressively hold back. 3106 * 3107 * Otherwise, schedule the TID. 3108 */ 3109 /* XXX TXQ locking */ 3110 if (txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit_aggr) { 3111 bf = ATH_TID_FIRST(atid); 3112 ATH_TID_REMOVE(atid, bf, bf_list); 3113 3114 /* 3115 * Ensure it's definitely treated as a non-AMPDU 3116 * frame - this information may have been left 3117 * over from a previous attempt. 3118 */ 3119 bf->bf_state.bfs_aggr = 0; 3120 bf->bf_state.bfs_nframes = 1; 3121 3122 /* Queue to the hardware */ 3123 ath_tx_xmit_aggr(sc, an, txq, bf); 3124 DPRINTF(sc, ATH_DEBUG_SW_TX, 3125 "%s: xmit_aggr\n", 3126 __func__); 3127 } else { 3128 DPRINTF(sc, ATH_DEBUG_SW_TX, 3129 "%s: ampdu; swq'ing\n", 3130 __func__); 3131 3132 ath_tx_tid_sched(sc, atid); 3133 } 3134 /* 3135 * If we're not doing A-MPDU, be prepared to direct dispatch 3136 * up to both limits if possible. This particular corner 3137 * case may end up with packet starvation between aggregate 3138 * traffic and non-aggregate traffic: we want to ensure 3139 * that non-aggregate stations get a few frames queued to the 3140 * hardware before the aggregate station(s) get their chance. 3141 * 3142 * So if you only ever see a couple of frames direct dispatched 3143 * to the hardware from a non-AMPDU client, check both here 3144 * and in the software queue dispatcher to ensure that those 3145 * non-AMPDU stations get a fair chance to transmit. 3146 */ 3147 /* XXX TXQ locking */ 3148 } else if ((txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit_nonaggr) && 3149 (txq->axq_aggr_depth < sc->sc_hwq_limit_aggr)) { 3150 /* AMPDU not running, attempt direct dispatch */ 3151 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__); 3152 /* See if clrdmask needs to be set */ 3153 ath_tx_update_clrdmask(sc, atid, bf); 3154 3155 /* 3156 * Update the current leak count if 3157 * we're leaking frames; and set the 3158 * MORE flag as appropriate. 3159 */ 3160 ath_tx_leak_count_update(sc, atid, bf); 3161 3162 /* 3163 * Dispatch the frame. 3164 */ 3165 ath_tx_xmit_normal(sc, txq, bf); 3166 } else { 3167 /* Busy; queue */ 3168 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__); 3169 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 3170 ath_tx_tid_sched(sc, atid); 3171 } 3172 } 3173 3174 /* 3175 * Only set the clrdmask bit if none of the nodes are currently 3176 * filtered. 3177 * 3178 * XXX TODO: go through all the callers and check to see 3179 * which are being called in the context of looping over all 3180 * TIDs (eg, if all tids are being paused, resumed, etc.) 3181 * That'll avoid O(n^2) complexity here. 3182 */ 3183 static void 3184 ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an) 3185 { 3186 int i; 3187 3188 ATH_TX_LOCK_ASSERT(sc); 3189 3190 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 3191 if (an->an_tid[i].isfiltered == 1) 3192 return; 3193 } 3194 an->clrdmask = 1; 3195 } 3196 3197 /* 3198 * Configure the per-TID node state. 3199 * 3200 * This likely belongs in if_ath_node.c but I can't think of anywhere 3201 * else to put it just yet. 3202 * 3203 * This sets up the SLISTs and the mutex as appropriate. 3204 */ 3205 void 3206 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an) 3207 { 3208 int i, j; 3209 struct ath_tid *atid; 3210 3211 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 3212 atid = &an->an_tid[i]; 3213 3214 /* XXX now with this bzer(), is the field 0'ing needed? */ 3215 bzero(atid, sizeof(*atid)); 3216 3217 TAILQ_INIT(&atid->tid_q); 3218 TAILQ_INIT(&atid->filtq.tid_q); 3219 atid->tid = i; 3220 atid->an = an; 3221 for (j = 0; j < ATH_TID_MAX_BUFS; j++) 3222 atid->tx_buf[j] = NULL; 3223 atid->baw_head = atid->baw_tail = 0; 3224 atid->paused = 0; 3225 atid->sched = 0; 3226 atid->hwq_depth = 0; 3227 atid->cleanup_inprogress = 0; 3228 if (i == IEEE80211_NONQOS_TID) 3229 atid->ac = ATH_NONQOS_TID_AC; 3230 else 3231 atid->ac = TID_TO_WME_AC(i); 3232 } 3233 an->clrdmask = 1; /* Always start by setting this bit */ 3234 } 3235 3236 /* 3237 * Pause the current TID. This stops packets from being transmitted 3238 * on it. 3239 * 3240 * Since this is also called from upper layers as well as the driver, 3241 * it will get the TID lock. 3242 */ 3243 static void 3244 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid) 3245 { 3246 3247 ATH_TX_LOCK_ASSERT(sc); 3248 tid->paused++; 3249 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: [%6D]: tid=%d, paused = %d\n", 3250 __func__, 3251 tid->an->an_node.ni_macaddr, ":", 3252 tid->tid, 3253 tid->paused); 3254 } 3255 3256 /* 3257 * Unpause the current TID, and schedule it if needed. 3258 */ 3259 static void 3260 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid) 3261 { 3262 ATH_TX_LOCK_ASSERT(sc); 3263 3264 /* 3265 * There's some odd places where ath_tx_tid_resume() is called 3266 * when it shouldn't be; this works around that particular issue 3267 * until it's actually resolved. 3268 */ 3269 if (tid->paused == 0) { 3270 device_printf(sc->sc_dev, 3271 "%s: [%6D]: tid=%d, paused=0?\n", 3272 __func__, 3273 tid->an->an_node.ni_macaddr, ":", 3274 tid->tid); 3275 } else { 3276 tid->paused--; 3277 } 3278 3279 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3280 "%s: [%6D]: tid=%d, unpaused = %d\n", 3281 __func__, 3282 tid->an->an_node.ni_macaddr, ":", 3283 tid->tid, 3284 tid->paused); 3285 3286 if (tid->paused) 3287 return; 3288 3289 /* 3290 * Override the clrdmask configuration for the next frame 3291 * from this TID, just to get the ball rolling. 3292 */ 3293 ath_tx_set_clrdmask(sc, tid->an); 3294 3295 if (tid->axq_depth == 0) 3296 return; 3297 3298 /* XXX isfiltered shouldn't ever be 0 at this point */ 3299 if (tid->isfiltered == 1) { 3300 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: filtered?!\n", 3301 __func__); 3302 return; 3303 } 3304 3305 ath_tx_tid_sched(sc, tid); 3306 3307 /* 3308 * Queue the software TX scheduler. 3309 */ 3310 ath_tx_swq_kick(sc); 3311 } 3312 3313 /* 3314 * Add the given ath_buf to the TID filtered frame list. 3315 * This requires the TID be filtered. 3316 */ 3317 static void 3318 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid, 3319 struct ath_buf *bf) 3320 { 3321 3322 ATH_TX_LOCK_ASSERT(sc); 3323 3324 if (!tid->isfiltered) 3325 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: not filtered?!\n", 3326 __func__); 3327 3328 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf); 3329 3330 /* Set the retry bit and bump the retry counter */ 3331 ath_tx_set_retry(sc, bf); 3332 sc->sc_stats.ast_tx_swfiltered++; 3333 3334 ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list); 3335 } 3336 3337 /* 3338 * Handle a completed filtered frame from the given TID. 3339 * This just enables/pauses the filtered frame state if required 3340 * and appends the filtered frame to the filtered queue. 3341 */ 3342 static void 3343 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid, 3344 struct ath_buf *bf) 3345 { 3346 3347 ATH_TX_LOCK_ASSERT(sc); 3348 3349 if (! tid->isfiltered) { 3350 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d; filter transition\n", 3351 __func__, tid->tid); 3352 tid->isfiltered = 1; 3353 ath_tx_tid_pause(sc, tid); 3354 } 3355 3356 /* Add the frame to the filter queue */ 3357 ath_tx_tid_filt_addbuf(sc, tid, bf); 3358 } 3359 3360 /* 3361 * Complete the filtered frame TX completion. 3362 * 3363 * If there are no more frames in the hardware queue, unpause/unfilter 3364 * the TID if applicable. Otherwise we will wait for a node PS transition 3365 * to unfilter. 3366 */ 3367 static void 3368 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid) 3369 { 3370 struct ath_buf *bf; 3371 int do_resume = 0; 3372 3373 ATH_TX_LOCK_ASSERT(sc); 3374 3375 if (tid->hwq_depth != 0) 3376 return; 3377 3378 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d, hwq=0, transition back\n", 3379 __func__, tid->tid); 3380 if (tid->isfiltered == 1) { 3381 tid->isfiltered = 0; 3382 do_resume = 1; 3383 } 3384 3385 /* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */ 3386 ath_tx_set_clrdmask(sc, tid->an); 3387 3388 /* XXX this is really quite inefficient */ 3389 while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) { 3390 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3391 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 3392 } 3393 3394 /* And only resume if we had paused before */ 3395 if (do_resume) 3396 ath_tx_tid_resume(sc, tid); 3397 } 3398 3399 /* 3400 * Called when a single (aggregate or otherwise) frame is completed. 3401 * 3402 * Returns 0 if the buffer could be added to the filtered list 3403 * (cloned or otherwise), 1 if the buffer couldn't be added to the 3404 * filtered list (failed clone; expired retry) and the caller should 3405 * free it and handle it like a failure (eg by sending a BAR.) 3406 * 3407 * since the buffer may be cloned, bf must be not touched after this 3408 * if the return value is 0. 3409 */ 3410 static int 3411 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid, 3412 struct ath_buf *bf) 3413 { 3414 struct ath_buf *nbf; 3415 int retval; 3416 3417 ATH_TX_LOCK_ASSERT(sc); 3418 3419 /* 3420 * Don't allow a filtered frame to live forever. 3421 */ 3422 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3423 sc->sc_stats.ast_tx_swretrymax++; 3424 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3425 "%s: bf=%p, seqno=%d, exceeded retries\n", 3426 __func__, 3427 bf, 3428 SEQNO(bf->bf_state.bfs_seqno)); 3429 retval = 1; /* error */ 3430 goto finish; 3431 } 3432 3433 /* 3434 * A busy buffer can't be added to the retry list. 3435 * It needs to be cloned. 3436 */ 3437 if (bf->bf_flags & ATH_BUF_BUSY) { 3438 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3439 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3440 "%s: busy buffer clone: %p -> %p\n", 3441 __func__, bf, nbf); 3442 } else { 3443 nbf = bf; 3444 } 3445 3446 if (nbf == NULL) { 3447 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3448 "%s: busy buffer couldn't be cloned (%p)!\n", 3449 __func__, bf); 3450 retval = 1; /* error */ 3451 } else { 3452 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3453 retval = 0; /* ok */ 3454 } 3455 finish: 3456 ath_tx_tid_filt_comp_complete(sc, tid); 3457 3458 return (retval); 3459 } 3460 3461 static void 3462 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid, 3463 struct ath_buf *bf_first, ath_bufhead *bf_q) 3464 { 3465 struct ath_buf *bf, *bf_next, *nbf; 3466 3467 ATH_TX_LOCK_ASSERT(sc); 3468 3469 bf = bf_first; 3470 while (bf) { 3471 bf_next = bf->bf_next; 3472 bf->bf_next = NULL; /* Remove it from the aggr list */ 3473 3474 /* 3475 * Don't allow a filtered frame to live forever. 3476 */ 3477 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3478 sc->sc_stats.ast_tx_swretrymax++; 3479 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3480 "%s: tid=%d, bf=%p, seqno=%d, exceeded retries\n", 3481 __func__, 3482 tid->tid, 3483 bf, 3484 SEQNO(bf->bf_state.bfs_seqno)); 3485 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3486 goto next; 3487 } 3488 3489 if (bf->bf_flags & ATH_BUF_BUSY) { 3490 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3491 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3492 "%s: tid=%d, busy buffer cloned: %p -> %p, seqno=%d\n", 3493 __func__, tid->tid, bf, nbf, SEQNO(bf->bf_state.bfs_seqno)); 3494 } else { 3495 nbf = bf; 3496 } 3497 3498 /* 3499 * If the buffer couldn't be cloned, add it to bf_q; 3500 * the caller will free the buffer(s) as required. 3501 */ 3502 if (nbf == NULL) { 3503 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3504 "%s: tid=%d, buffer couldn't be cloned! (%p) seqno=%d\n", 3505 __func__, tid->tid, bf, SEQNO(bf->bf_state.bfs_seqno)); 3506 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3507 } else { 3508 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3509 } 3510 next: 3511 bf = bf_next; 3512 } 3513 3514 ath_tx_tid_filt_comp_complete(sc, tid); 3515 } 3516 3517 /* 3518 * Suspend the queue because we need to TX a BAR. 3519 */ 3520 static void 3521 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid) 3522 { 3523 3524 ATH_TX_LOCK_ASSERT(sc); 3525 3526 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3527 "%s: tid=%d, bar_wait=%d, bar_tx=%d, called\n", 3528 __func__, 3529 tid->tid, 3530 tid->bar_wait, 3531 tid->bar_tx); 3532 3533 /* We shouldn't be called when bar_tx is 1 */ 3534 if (tid->bar_tx) { 3535 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3536 "%s: bar_tx is 1?!\n", __func__); 3537 } 3538 3539 /* If we've already been called, just be patient. */ 3540 if (tid->bar_wait) 3541 return; 3542 3543 /* Wait! */ 3544 tid->bar_wait = 1; 3545 3546 /* Only one pause, no matter how many frames fail */ 3547 ath_tx_tid_pause(sc, tid); 3548 } 3549 3550 /* 3551 * We've finished with BAR handling - either we succeeded or 3552 * failed. Either way, unsuspend TX. 3553 */ 3554 static void 3555 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid) 3556 { 3557 3558 ATH_TX_LOCK_ASSERT(sc); 3559 3560 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3561 "%s: %6D: TID=%d, called\n", 3562 __func__, 3563 tid->an->an_node.ni_macaddr, 3564 ":", 3565 tid->tid); 3566 3567 if (tid->bar_tx == 0 || tid->bar_wait == 0) { 3568 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3569 "%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n", 3570 __func__, tid->an->an_node.ni_macaddr, ":", 3571 tid->tid, tid->bar_tx, tid->bar_wait); 3572 } 3573 3574 tid->bar_tx = tid->bar_wait = 0; 3575 ath_tx_tid_resume(sc, tid); 3576 } 3577 3578 /* 3579 * Return whether we're ready to TX a BAR frame. 3580 * 3581 * Requires the TID lock be held. 3582 */ 3583 static int 3584 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid) 3585 { 3586 3587 ATH_TX_LOCK_ASSERT(sc); 3588 3589 if (tid->bar_wait == 0 || tid->hwq_depth > 0) 3590 return (0); 3591 3592 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3593 "%s: %6D: TID=%d, bar ready\n", 3594 __func__, 3595 tid->an->an_node.ni_macaddr, 3596 ":", 3597 tid->tid); 3598 3599 return (1); 3600 } 3601 3602 /* 3603 * Check whether the current TID is ready to have a BAR 3604 * TXed and if so, do the TX. 3605 * 3606 * Since the TID/TXQ lock can't be held during a call to 3607 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it, 3608 * sending the BAR and locking it again. 3609 * 3610 * Eventually, the code to send the BAR should be broken out 3611 * from this routine so the lock doesn't have to be reacquired 3612 * just to be immediately dropped by the caller. 3613 */ 3614 static void 3615 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid) 3616 { 3617 struct ieee80211_tx_ampdu *tap; 3618 3619 ATH_TX_LOCK_ASSERT(sc); 3620 3621 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3622 "%s: %6D: TID=%d, called\n", 3623 __func__, 3624 tid->an->an_node.ni_macaddr, 3625 ":", 3626 tid->tid); 3627 3628 tap = ath_tx_get_tx_tid(tid->an, tid->tid); 3629 3630 /* 3631 * This is an error condition! 3632 */ 3633 if (tid->bar_wait == 0 || tid->bar_tx == 1) { 3634 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3635 "%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n", 3636 __func__, tid->an->an_node.ni_macaddr, ":", 3637 tid->tid, tid->bar_tx, tid->bar_wait); 3638 return; 3639 } 3640 3641 /* Don't do anything if we still have pending frames */ 3642 if (tid->hwq_depth > 0) { 3643 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3644 "%s: %6D: TID=%d, hwq_depth=%d, waiting\n", 3645 __func__, 3646 tid->an->an_node.ni_macaddr, 3647 ":", 3648 tid->tid, 3649 tid->hwq_depth); 3650 return; 3651 } 3652 3653 /* We're now about to TX */ 3654 tid->bar_tx = 1; 3655 3656 /* 3657 * Override the clrdmask configuration for the next frame, 3658 * just to get the ball rolling. 3659 */ 3660 ath_tx_set_clrdmask(sc, tid->an); 3661 3662 /* 3663 * Calculate new BAW left edge, now that all frames have either 3664 * succeeded or failed. 3665 * 3666 * XXX verify this is _actually_ the valid value to begin at! 3667 */ 3668 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3669 "%s: %6D: TID=%d, new BAW left edge=%d\n", 3670 __func__, 3671 tid->an->an_node.ni_macaddr, 3672 ":", 3673 tid->tid, 3674 tap->txa_start); 3675 3676 /* Try sending the BAR frame */ 3677 /* We can't hold the lock here! */ 3678 3679 ATH_TX_UNLOCK(sc); 3680 if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) { 3681 /* Success? Now we wait for notification that it's done */ 3682 ATH_TX_LOCK(sc); 3683 return; 3684 } 3685 3686 /* Failure? For now, warn loudly and continue */ 3687 ATH_TX_LOCK(sc); 3688 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3689 "%s: %6D: TID=%d, failed to TX BAR, continue!\n", 3690 __func__, tid->an->an_node.ni_macaddr, ":", 3691 tid->tid); 3692 ath_tx_tid_bar_unsuspend(sc, tid); 3693 } 3694 3695 static void 3696 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an, 3697 struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf) 3698 { 3699 3700 ATH_TX_LOCK_ASSERT(sc); 3701 3702 /* 3703 * If the current TID is running AMPDU, update 3704 * the BAW. 3705 */ 3706 if (ath_tx_ampdu_running(sc, an, tid->tid) && 3707 bf->bf_state.bfs_dobaw) { 3708 /* 3709 * Only remove the frame from the BAW if it's 3710 * been transmitted at least once; this means 3711 * the frame was in the BAW to begin with. 3712 */ 3713 if (bf->bf_state.bfs_retries > 0) { 3714 ath_tx_update_baw(sc, an, tid, bf); 3715 bf->bf_state.bfs_dobaw = 0; 3716 } 3717 #if 0 3718 /* 3719 * This has become a non-fatal error now 3720 */ 3721 if (! bf->bf_state.bfs_addedbaw) 3722 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW 3723 "%s: wasn't added: seqno %d\n", 3724 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3725 #endif 3726 } 3727 3728 /* Strip it out of an aggregate list if it was in one */ 3729 bf->bf_next = NULL; 3730 3731 /* Insert on the free queue to be freed by the caller */ 3732 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); 3733 } 3734 3735 static void 3736 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an, 3737 const char *pfx, struct ath_tid *tid, struct ath_buf *bf) 3738 { 3739 struct ieee80211_node *ni = &an->an_node; 3740 struct ath_txq *txq; 3741 struct ieee80211_tx_ampdu *tap; 3742 3743 txq = sc->sc_ac2q[tid->ac]; 3744 tap = ath_tx_get_tx_tid(an, tid->tid); 3745 3746 DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET, 3747 "%s: %s: %6D: bf=%p: addbaw=%d, dobaw=%d, " 3748 "seqno=%d, retry=%d\n", 3749 __func__, 3750 pfx, 3751 ni->ni_macaddr, 3752 ":", 3753 bf, 3754 bf->bf_state.bfs_addedbaw, 3755 bf->bf_state.bfs_dobaw, 3756 SEQNO(bf->bf_state.bfs_seqno), 3757 bf->bf_state.bfs_retries); 3758 DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET, 3759 "%s: %s: %6D: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n", 3760 __func__, 3761 pfx, 3762 ni->ni_macaddr, 3763 ":", 3764 bf, 3765 txq->axq_qnum, 3766 txq->axq_depth, 3767 txq->axq_aggr_depth); 3768 DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET, 3769 "%s: %s: %6D: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, " 3770 "isfiltered=%d\n", 3771 __func__, 3772 pfx, 3773 ni->ni_macaddr, 3774 ":", 3775 bf, 3776 tid->axq_depth, 3777 tid->hwq_depth, 3778 tid->bar_wait, 3779 tid->isfiltered); 3780 DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET, 3781 "%s: %s: %6D: tid %d: " 3782 "sched=%d, paused=%d, " 3783 "incomp=%d, baw_head=%d, " 3784 "baw_tail=%d txa_start=%d, ni_txseqs=%d\n", 3785 __func__, 3786 pfx, 3787 ni->ni_macaddr, 3788 ":", 3789 tid->tid, 3790 tid->sched, tid->paused, 3791 tid->incomp, tid->baw_head, 3792 tid->baw_tail, tap == NULL ? -1 : tap->txa_start, 3793 ni->ni_txseqs[tid->tid]); 3794 3795 /* XXX Dump the frame, see what it is? */ 3796 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3797 ieee80211_dump_pkt(ni->ni_ic, 3798 mtod(bf->bf_m, const uint8_t *), 3799 bf->bf_m->m_len, 0, -1); 3800 } 3801 3802 /* 3803 * Free any packets currently pending in the software TX queue. 3804 * 3805 * This will be called when a node is being deleted. 3806 * 3807 * It can also be called on an active node during an interface 3808 * reset or state transition. 3809 * 3810 * (From Linux/reference): 3811 * 3812 * TODO: For frame(s) that are in the retry state, we will reuse the 3813 * sequence number(s) without setting the retry bit. The 3814 * alternative is to give up on these and BAR the receiver's window 3815 * forward. 3816 */ 3817 static void 3818 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, 3819 struct ath_tid *tid, ath_bufhead *bf_cq) 3820 { 3821 struct ath_buf *bf; 3822 struct ieee80211_tx_ampdu *tap; 3823 struct ieee80211_node *ni = &an->an_node; 3824 int t; 3825 3826 tap = ath_tx_get_tx_tid(an, tid->tid); 3827 3828 ATH_TX_LOCK_ASSERT(sc); 3829 3830 /* Walk the queue, free frames */ 3831 t = 0; 3832 for (;;) { 3833 bf = ATH_TID_FIRST(tid); 3834 if (bf == NULL) { 3835 break; 3836 } 3837 3838 if (t == 0) { 3839 ath_tx_tid_drain_print(sc, an, "norm", tid, bf); 3840 // t = 1; 3841 } 3842 3843 ATH_TID_REMOVE(tid, bf, bf_list); 3844 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3845 } 3846 3847 /* And now, drain the filtered frame queue */ 3848 t = 0; 3849 for (;;) { 3850 bf = ATH_TID_FILT_FIRST(tid); 3851 if (bf == NULL) 3852 break; 3853 3854 if (t == 0) { 3855 ath_tx_tid_drain_print(sc, an, "filt", tid, bf); 3856 // t = 1; 3857 } 3858 3859 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3860 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3861 } 3862 3863 /* 3864 * Override the clrdmask configuration for the next frame 3865 * in case there is some future transmission, just to get 3866 * the ball rolling. 3867 * 3868 * This won't hurt things if the TID is about to be freed. 3869 */ 3870 ath_tx_set_clrdmask(sc, tid->an); 3871 3872 /* 3873 * Now that it's completed, grab the TID lock and update 3874 * the sequence number and BAW window. 3875 * Because sequence numbers have been assigned to frames 3876 * that haven't been sent yet, it's entirely possible 3877 * we'll be called with some pending frames that have not 3878 * been transmitted. 3879 * 3880 * The cleaner solution is to do the sequence number allocation 3881 * when the packet is first transmitted - and thus the "retries" 3882 * check above would be enough to update the BAW/seqno. 3883 */ 3884 3885 /* But don't do it for non-QoS TIDs */ 3886 if (tap) { 3887 #if 1 3888 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3889 "%s: %6D: node %p: TID %d: sliding BAW left edge to %d\n", 3890 __func__, 3891 ni->ni_macaddr, 3892 ":", 3893 an, 3894 tid->tid, 3895 tap->txa_start); 3896 #endif 3897 ni->ni_txseqs[tid->tid] = tap->txa_start; 3898 tid->baw_tail = tid->baw_head; 3899 } 3900 } 3901 3902 /* 3903 * Reset the TID state. This must be only called once the node has 3904 * had its frames flushed from this TID, to ensure that no other 3905 * pause / unpause logic can kick in. 3906 */ 3907 static void 3908 ath_tx_tid_reset(struct ath_softc *sc, struct ath_tid *tid) 3909 { 3910 3911 #if 0 3912 tid->bar_wait = tid->bar_tx = tid->isfiltered = 0; 3913 tid->paused = tid->sched = tid->addba_tx_pending = 0; 3914 tid->incomp = tid->cleanup_inprogress = 0; 3915 #endif 3916 3917 /* 3918 * If we have a bar_wait set, we need to unpause the TID 3919 * here. Otherwise once cleanup has finished, the TID won't 3920 * have the right paused counter. 3921 * 3922 * XXX I'm not going through resume here - I don't want the 3923 * node to be rescheuled just yet. This however should be 3924 * methodized! 3925 */ 3926 if (tid->bar_wait) { 3927 if (tid->paused > 0) { 3928 tid->paused --; 3929 } 3930 } 3931 3932 /* 3933 * XXX same with a currently filtered TID. 3934 * 3935 * Since this is being called during a flush, we assume that 3936 * the filtered frame list is actually empty. 3937 * 3938 * XXX TODO: add in a check to ensure that the filtered queue 3939 * depth is actually 0! 3940 */ 3941 if (tid->isfiltered) { 3942 if (tid->paused > 0) { 3943 tid->paused --; 3944 } 3945 } 3946 3947 /* 3948 * Clear BAR, filtered frames, scheduled and ADDBA pending. 3949 * The TID may be going through cleanup from the last association 3950 * where things in the BAW are still in the hardware queue. 3951 */ 3952 tid->bar_wait = 0; 3953 tid->bar_tx = 0; 3954 tid->isfiltered = 0; 3955 tid->sched = 0; 3956 tid->addba_tx_pending = 0; 3957 3958 /* 3959 * XXX TODO: it may just be enough to walk the HWQs and mark 3960 * frames for that node as non-aggregate; or mark the ath_node 3961 * with something that indicates that aggregation is no longer 3962 * occurring. Then we can just toss the BAW complaints and 3963 * do a complete hard reset of state here - no pause, no 3964 * complete counter, etc. 3965 */ 3966 3967 } 3968 3969 /* 3970 * Flush all software queued packets for the given node. 3971 * 3972 * This occurs when a completion handler frees the last buffer 3973 * for a node, and the node is thus freed. This causes the node 3974 * to be cleaned up, which ends up calling ath_tx_node_flush. 3975 */ 3976 void 3977 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an) 3978 { 3979 int tid; 3980 ath_bufhead bf_cq; 3981 struct ath_buf *bf; 3982 3983 TAILQ_INIT(&bf_cq); 3984 3985 ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p", 3986 &an->an_node); 3987 3988 ATH_TX_LOCK(sc); 3989 DPRINTF(sc, ATH_DEBUG_NODE, 3990 "%s: %6D: flush; is_powersave=%d, stack_psq=%d, tim=%d, " 3991 "swq_depth=%d, clrdmask=%d, leak_count=%d\n", 3992 __func__, 3993 an->an_node.ni_macaddr, 3994 ":", 3995 an->an_is_powersave, 3996 an->an_stack_psq, 3997 an->an_tim_set, 3998 an->an_swq_depth, 3999 an->clrdmask, 4000 an->an_leak_count); 4001 4002 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 4003 struct ath_tid *atid = &an->an_tid[tid]; 4004 4005 /* Free packets */ 4006 ath_tx_tid_drain(sc, an, atid, &bf_cq); 4007 4008 /* Remove this tid from the list of active tids */ 4009 ath_tx_tid_unsched(sc, atid); 4010 4011 /* Reset the per-TID pause, BAR, etc state */ 4012 ath_tx_tid_reset(sc, atid); 4013 } 4014 4015 /* 4016 * Clear global leak count 4017 */ 4018 an->an_leak_count = 0; 4019 ATH_TX_UNLOCK(sc); 4020 4021 /* Handle completed frames */ 4022 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4023 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4024 ath_tx_default_comp(sc, bf, 0); 4025 } 4026 } 4027 4028 /* 4029 * Drain all the software TXQs currently with traffic queued. 4030 */ 4031 void 4032 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq) 4033 { 4034 struct ath_tid *tid; 4035 ath_bufhead bf_cq; 4036 struct ath_buf *bf; 4037 4038 TAILQ_INIT(&bf_cq); 4039 ATH_TX_LOCK(sc); 4040 4041 /* 4042 * Iterate over all active tids for the given txq, 4043 * flushing and unsched'ing them 4044 */ 4045 while (! TAILQ_EMPTY(&txq->axq_tidq)) { 4046 tid = TAILQ_FIRST(&txq->axq_tidq); 4047 ath_tx_tid_drain(sc, tid->an, tid, &bf_cq); 4048 ath_tx_tid_unsched(sc, tid); 4049 } 4050 4051 ATH_TX_UNLOCK(sc); 4052 4053 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4054 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4055 ath_tx_default_comp(sc, bf, 0); 4056 } 4057 } 4058 4059 /* 4060 * Handle completion of non-aggregate session frames. 4061 * 4062 * This (currently) doesn't implement software retransmission of 4063 * non-aggregate frames! 4064 * 4065 * Software retransmission of non-aggregate frames needs to obey 4066 * the strict sequence number ordering, and drop any frames that 4067 * will fail this. 4068 * 4069 * For now, filtered frames and frame transmission will cause 4070 * all kinds of issues. So we don't support them. 4071 * 4072 * So anyone queuing frames via ath_tx_normal_xmit() or 4073 * ath_tx_hw_queue_norm() must override and set CLRDMASK. 4074 */ 4075 void 4076 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4077 { 4078 struct ieee80211_node *ni = bf->bf_node; 4079 struct ath_node *an = ATH_NODE(ni); 4080 int tid = bf->bf_state.bfs_tid; 4081 struct ath_tid *atid = &an->an_tid[tid]; 4082 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4083 4084 /* The TID state is protected behind the TXQ lock */ 4085 ATH_TX_LOCK(sc); 4086 4087 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n", 4088 __func__, bf, fail, atid->hwq_depth - 1); 4089 4090 atid->hwq_depth--; 4091 4092 #if 0 4093 /* 4094 * If the frame was filtered, stick it on the filter frame 4095 * queue and complain about it. It shouldn't happen! 4096 */ 4097 if ((ts->ts_status & HAL_TXERR_FILT) || 4098 (ts->ts_status != 0 && atid->isfiltered)) { 4099 DPRINTF(sc, ATH_DEBUG_SW_TX, 4100 "%s: isfiltered=%d, ts_status=%d: huh?\n", 4101 __func__, 4102 atid->isfiltered, 4103 ts->ts_status); 4104 ath_tx_tid_filt_comp_buf(sc, atid, bf); 4105 } 4106 #endif 4107 if (atid->isfiltered) 4108 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: filtered?!\n", __func__); 4109 if (atid->hwq_depth < 0) 4110 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n", 4111 __func__, atid->hwq_depth); 4112 4113 /* If the TID is being cleaned up, track things */ 4114 /* XXX refactor! */ 4115 if (atid->cleanup_inprogress) { 4116 atid->incomp--; 4117 if (atid->incomp == 0) { 4118 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4119 "%s: TID %d: cleaned up! resume!\n", 4120 __func__, tid); 4121 atid->cleanup_inprogress = 0; 4122 ath_tx_tid_resume(sc, atid); 4123 } 4124 } 4125 4126 /* 4127 * If the queue is filtered, potentially mark it as complete 4128 * and reschedule it as needed. 4129 * 4130 * This is required as there may be a subsequent TX descriptor 4131 * for this end-node that has CLRDMASK set, so it's quite possible 4132 * that a filtered frame will be followed by a non-filtered 4133 * (complete or otherwise) frame. 4134 * 4135 * XXX should we do this before we complete the frame? 4136 */ 4137 if (atid->isfiltered) 4138 ath_tx_tid_filt_comp_complete(sc, atid); 4139 ATH_TX_UNLOCK(sc); 4140 4141 /* 4142 * punt to rate control if we're not being cleaned up 4143 * during a hw queue drain and the frame wanted an ACK. 4144 */ 4145 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 4146 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 4147 ts, bf->bf_state.bfs_pktlen, 4148 1, (ts->ts_status == 0) ? 0 : 1); 4149 4150 ath_tx_default_comp(sc, bf, fail); 4151 } 4152 4153 /* 4154 * Handle cleanup of aggregate session packets that aren't 4155 * an A-MPDU. 4156 * 4157 * There's no need to update the BAW here - the session is being 4158 * torn down. 4159 */ 4160 static void 4161 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf) 4162 { 4163 struct ieee80211_node *ni = bf->bf_node; 4164 struct ath_node *an = ATH_NODE(ni); 4165 int tid = bf->bf_state.bfs_tid; 4166 struct ath_tid *atid = &an->an_tid[tid]; 4167 4168 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n", 4169 __func__, tid, atid->incomp); 4170 4171 ATH_TX_LOCK(sc); 4172 atid->incomp--; 4173 4174 /* XXX refactor! */ 4175 if (bf->bf_state.bfs_dobaw) { 4176 ath_tx_update_baw(sc, an, atid, bf); 4177 if (!bf->bf_state.bfs_addedbaw) 4178 DPRINTF(sc, ATH_DEBUG_SW_TX, 4179 "%s: wasn't added: seqno %d\n", 4180 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4181 } 4182 4183 if (atid->incomp == 0) { 4184 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4185 "%s: TID %d: cleaned up! resume!\n", 4186 __func__, tid); 4187 atid->cleanup_inprogress = 0; 4188 ath_tx_tid_resume(sc, atid); 4189 } 4190 ATH_TX_UNLOCK(sc); 4191 4192 ath_tx_default_comp(sc, bf, 0); 4193 } 4194 4195 4196 /* 4197 * This as it currently stands is a bit dumb. Ideally we'd just 4198 * fail the frame the normal way and have it permanently fail 4199 * via the normal aggregate completion path. 4200 */ 4201 static void 4202 ath_tx_tid_cleanup_frame(struct ath_softc *sc, struct ath_node *an, 4203 int tid, struct ath_buf *bf_head, ath_bufhead *bf_cq) 4204 { 4205 struct ath_tid *atid = &an->an_tid[tid]; 4206 struct ath_buf *bf, *bf_next; 4207 4208 ATH_TX_LOCK_ASSERT(sc); 4209 4210 /* 4211 * Remove this frame from the queue. 4212 */ 4213 ATH_TID_REMOVE(atid, bf_head, bf_list); 4214 4215 /* 4216 * Loop over all the frames in the aggregate. 4217 */ 4218 bf = bf_head; 4219 while (bf != NULL) { 4220 bf_next = bf->bf_next; /* next aggregate frame, or NULL */ 4221 4222 /* 4223 * If it's been added to the BAW we need to kick 4224 * it out of the BAW before we continue. 4225 * 4226 * XXX if it's an aggregate, assert that it's in the 4227 * BAW - we shouldn't have it be in an aggregate 4228 * otherwise! 4229 */ 4230 if (bf->bf_state.bfs_addedbaw) { 4231 ath_tx_update_baw(sc, an, atid, bf); 4232 bf->bf_state.bfs_dobaw = 0; 4233 } 4234 4235 /* 4236 * Give it the default completion handler. 4237 */ 4238 bf->bf_comp = ath_tx_normal_comp; 4239 bf->bf_next = NULL; 4240 4241 /* 4242 * Add it to the list to free. 4243 */ 4244 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); 4245 4246 /* 4247 * Now advance to the next frame in the aggregate. 4248 */ 4249 bf = bf_next; 4250 } 4251 } 4252 4253 /* 4254 * Performs transmit side cleanup when TID changes from aggregated to 4255 * unaggregated and during reassociation. 4256 * 4257 * For now, this just tosses everything from the TID software queue 4258 * whether or not it has been retried and marks the TID as 4259 * pending completion if there's anything for this TID queued to 4260 * the hardware. 4261 * 4262 * The caller is responsible for pausing the TID and unpausing the 4263 * TID if no cleanup was required. Otherwise the cleanup path will 4264 * unpause the TID once the last hardware queued frame is completed. 4265 */ 4266 static void 4267 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid, 4268 ath_bufhead *bf_cq) 4269 { 4270 struct ath_tid *atid = &an->an_tid[tid]; 4271 struct ath_buf *bf, *bf_next; 4272 4273 ATH_TX_LOCK_ASSERT(sc); 4274 4275 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 4276 "%s: TID %d: called; inprogress=%d\n", __func__, tid, 4277 atid->cleanup_inprogress); 4278 4279 /* 4280 * Move the filtered frames to the TX queue, before 4281 * we run off and discard/process things. 4282 */ 4283 4284 /* XXX this is really quite inefficient */ 4285 while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) { 4286 ATH_TID_FILT_REMOVE(atid, bf, bf_list); 4287 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 4288 } 4289 4290 /* 4291 * Update the frames in the software TX queue: 4292 * 4293 * + Discard retry frames in the queue 4294 * + Fix the completion function to be non-aggregate 4295 */ 4296 bf = ATH_TID_FIRST(atid); 4297 while (bf) { 4298 /* 4299 * Grab the next frame in the list, we may 4300 * be fiddling with the list. 4301 */ 4302 bf_next = TAILQ_NEXT(bf, bf_list); 4303 4304 /* 4305 * Free the frame and all subframes. 4306 */ 4307 ath_tx_tid_cleanup_frame(sc, an, tid, bf, bf_cq); 4308 4309 /* 4310 * Next frame! 4311 */ 4312 bf = bf_next; 4313 } 4314 4315 /* 4316 * If there's anything in the hardware queue we wait 4317 * for the TID HWQ to empty. 4318 */ 4319 if (atid->hwq_depth > 0) { 4320 /* 4321 * XXX how about we kill atid->incomp, and instead 4322 * replace it with a macro that checks that atid->hwq_depth 4323 * is 0? 4324 */ 4325 atid->incomp = atid->hwq_depth; 4326 atid->cleanup_inprogress = 1; 4327 } 4328 4329 if (atid->cleanup_inprogress) 4330 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4331 "%s: TID %d: cleanup needed: %d packets\n", 4332 __func__, tid, atid->incomp); 4333 4334 /* Owner now must free completed frames */ 4335 } 4336 4337 static struct ath_buf * 4338 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 4339 struct ath_tid *tid, struct ath_buf *bf) 4340 { 4341 struct ath_buf *nbf; 4342 int error; 4343 4344 /* 4345 * Clone the buffer. This will handle the dma unmap and 4346 * copy the node reference to the new buffer. If this 4347 * works out, 'bf' will have no DMA mapping, no mbuf 4348 * pointer and no node reference. 4349 */ 4350 nbf = ath_buf_clone(sc, bf); 4351 4352 #if 0 4353 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: ATH_BUF_BUSY; cloning\n", 4354 __func__); 4355 #endif 4356 4357 if (nbf == NULL) { 4358 /* Failed to clone */ 4359 DPRINTF(sc, ATH_DEBUG_XMIT, 4360 "%s: failed to clone a busy buffer\n", 4361 __func__); 4362 return NULL; 4363 } 4364 4365 /* Setup the dma for the new buffer */ 4366 error = ath_tx_dmasetup(sc, nbf, nbf->bf_m); 4367 if (error != 0) { 4368 DPRINTF(sc, ATH_DEBUG_XMIT, 4369 "%s: failed to setup dma for clone\n", 4370 __func__); 4371 /* 4372 * Put this at the head of the list, not tail; 4373 * that way it doesn't interfere with the 4374 * busy buffer logic (which uses the tail of 4375 * the list.) 4376 */ 4377 ATH_TXBUF_LOCK(sc); 4378 ath_returnbuf_head(sc, nbf); 4379 ATH_TXBUF_UNLOCK(sc); 4380 return NULL; 4381 } 4382 4383 /* Update BAW if required, before we free the original buf */ 4384 if (bf->bf_state.bfs_dobaw) 4385 ath_tx_switch_baw_buf(sc, an, tid, bf, nbf); 4386 4387 /* Free original buffer; return new buffer */ 4388 ath_freebuf(sc, bf); 4389 4390 return nbf; 4391 } 4392 4393 /* 4394 * Handle retrying an unaggregate frame in an aggregate 4395 * session. 4396 * 4397 * If too many retries occur, pause the TID, wait for 4398 * any further retransmits (as there's no reason why 4399 * non-aggregate frames in an aggregate session are 4400 * transmitted in-order; they just have to be in-BAW) 4401 * and then queue a BAR. 4402 */ 4403 static void 4404 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf) 4405 { 4406 struct ieee80211_node *ni = bf->bf_node; 4407 struct ath_node *an = ATH_NODE(ni); 4408 int tid = bf->bf_state.bfs_tid; 4409 struct ath_tid *atid = &an->an_tid[tid]; 4410 struct ieee80211_tx_ampdu *tap; 4411 4412 ATH_TX_LOCK(sc); 4413 4414 tap = ath_tx_get_tx_tid(an, tid); 4415 4416 /* 4417 * If the buffer is marked as busy, we can't directly 4418 * reuse it. Instead, try to clone the buffer. 4419 * If the clone is successful, recycle the old buffer. 4420 * If the clone is unsuccessful, set bfs_retries to max 4421 * to force the next bit of code to free the buffer 4422 * for us. 4423 */ 4424 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 4425 (bf->bf_flags & ATH_BUF_BUSY)) { 4426 struct ath_buf *nbf; 4427 nbf = ath_tx_retry_clone(sc, an, atid, bf); 4428 if (nbf) 4429 /* bf has been freed at this point */ 4430 bf = nbf; 4431 else 4432 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 4433 } 4434 4435 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 4436 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 4437 "%s: exceeded retries; seqno %d\n", 4438 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4439 sc->sc_stats.ast_tx_swretrymax++; 4440 4441 /* Update BAW anyway */ 4442 if (bf->bf_state.bfs_dobaw) { 4443 ath_tx_update_baw(sc, an, atid, bf); 4444 if (! bf->bf_state.bfs_addedbaw) 4445 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 4446 "%s: wasn't added: seqno %d\n", 4447 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4448 } 4449 bf->bf_state.bfs_dobaw = 0; 4450 4451 /* Suspend the TX queue and get ready to send the BAR */ 4452 ath_tx_tid_bar_suspend(sc, atid); 4453 4454 /* Send the BAR if there are no other frames waiting */ 4455 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4456 ath_tx_tid_bar_tx(sc, atid); 4457 4458 ATH_TX_UNLOCK(sc); 4459 4460 /* Free buffer, bf is free after this call */ 4461 ath_tx_default_comp(sc, bf, 0); 4462 return; 4463 } 4464 4465 /* 4466 * This increments the retry counter as well as 4467 * sets the retry flag in the ath_buf and packet 4468 * body. 4469 */ 4470 ath_tx_set_retry(sc, bf); 4471 sc->sc_stats.ast_tx_swretries++; 4472 4473 /* 4474 * Insert this at the head of the queue, so it's 4475 * retried before any current/subsequent frames. 4476 */ 4477 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 4478 ath_tx_tid_sched(sc, atid); 4479 /* Send the BAR if there are no other frames waiting */ 4480 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4481 ath_tx_tid_bar_tx(sc, atid); 4482 4483 ATH_TX_UNLOCK(sc); 4484 } 4485 4486 /* 4487 * Common code for aggregate excessive retry/subframe retry. 4488 * If retrying, queues buffers to bf_q. If not, frees the 4489 * buffers. 4490 * 4491 * XXX should unify this with ath_tx_aggr_retry_unaggr() 4492 */ 4493 static int 4494 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf, 4495 ath_bufhead *bf_q) 4496 { 4497 struct ieee80211_node *ni = bf->bf_node; 4498 struct ath_node *an = ATH_NODE(ni); 4499 int tid = bf->bf_state.bfs_tid; 4500 struct ath_tid *atid = &an->an_tid[tid]; 4501 4502 ATH_TX_LOCK_ASSERT(sc); 4503 4504 /* XXX clr11naggr should be done for all subframes */ 4505 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4506 ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0); 4507 4508 /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */ 4509 4510 /* 4511 * If the buffer is marked as busy, we can't directly 4512 * reuse it. Instead, try to clone the buffer. 4513 * If the clone is successful, recycle the old buffer. 4514 * If the clone is unsuccessful, set bfs_retries to max 4515 * to force the next bit of code to free the buffer 4516 * for us. 4517 */ 4518 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 4519 (bf->bf_flags & ATH_BUF_BUSY)) { 4520 struct ath_buf *nbf; 4521 nbf = ath_tx_retry_clone(sc, an, atid, bf); 4522 if (nbf) 4523 /* bf has been freed at this point */ 4524 bf = nbf; 4525 else 4526 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 4527 } 4528 4529 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 4530 sc->sc_stats.ast_tx_swretrymax++; 4531 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 4532 "%s: max retries: seqno %d\n", 4533 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4534 ath_tx_update_baw(sc, an, atid, bf); 4535 if (!bf->bf_state.bfs_addedbaw) 4536 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 4537 "%s: wasn't added: seqno %d\n", 4538 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4539 bf->bf_state.bfs_dobaw = 0; 4540 return 1; 4541 } 4542 4543 ath_tx_set_retry(sc, bf); 4544 sc->sc_stats.ast_tx_swretries++; 4545 bf->bf_next = NULL; /* Just to make sure */ 4546 4547 /* Clear the aggregate state */ 4548 bf->bf_state.bfs_aggr = 0; 4549 bf->bf_state.bfs_ndelim = 0; /* ??? needed? */ 4550 bf->bf_state.bfs_nframes = 1; 4551 4552 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 4553 return 0; 4554 } 4555 4556 /* 4557 * error pkt completion for an aggregate destination 4558 */ 4559 static void 4560 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first, 4561 struct ath_tid *tid) 4562 { 4563 struct ieee80211_node *ni = bf_first->bf_node; 4564 struct ath_node *an = ATH_NODE(ni); 4565 struct ath_buf *bf_next, *bf; 4566 ath_bufhead bf_q; 4567 int drops = 0; 4568 struct ieee80211_tx_ampdu *tap; 4569 ath_bufhead bf_cq; 4570 4571 TAILQ_INIT(&bf_q); 4572 TAILQ_INIT(&bf_cq); 4573 4574 /* 4575 * Update rate control - all frames have failed. 4576 * 4577 * XXX use the length in the first frame in the series; 4578 * XXX just so things are consistent for now. 4579 */ 4580 ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc, 4581 &bf_first->bf_status.ds_txstat, 4582 bf_first->bf_state.bfs_pktlen, 4583 bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes); 4584 4585 ATH_TX_LOCK(sc); 4586 tap = ath_tx_get_tx_tid(an, tid->tid); 4587 sc->sc_stats.ast_tx_aggr_failall++; 4588 4589 /* Retry all subframes */ 4590 bf = bf_first; 4591 while (bf) { 4592 bf_next = bf->bf_next; 4593 bf->bf_next = NULL; /* Remove it from the aggr list */ 4594 sc->sc_stats.ast_tx_aggr_fail++; 4595 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4596 drops++; 4597 bf->bf_next = NULL; 4598 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4599 } 4600 bf = bf_next; 4601 } 4602 4603 /* Prepend all frames to the beginning of the queue */ 4604 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4605 TAILQ_REMOVE(&bf_q, bf, bf_list); 4606 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 4607 } 4608 4609 /* 4610 * Schedule the TID to be re-tried. 4611 */ 4612 ath_tx_tid_sched(sc, tid); 4613 4614 /* 4615 * send bar if we dropped any frames 4616 * 4617 * Keep the txq lock held for now, as we need to ensure 4618 * that ni_txseqs[] is consistent (as it's being updated 4619 * in the ifnet TX context or raw TX context.) 4620 */ 4621 if (drops) { 4622 /* Suspend the TX queue and get ready to send the BAR */ 4623 ath_tx_tid_bar_suspend(sc, tid); 4624 } 4625 4626 /* 4627 * Send BAR if required 4628 */ 4629 if (ath_tx_tid_bar_tx_ready(sc, tid)) 4630 ath_tx_tid_bar_tx(sc, tid); 4631 4632 ATH_TX_UNLOCK(sc); 4633 4634 /* Complete frames which errored out */ 4635 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4636 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4637 ath_tx_default_comp(sc, bf, 0); 4638 } 4639 } 4640 4641 /* 4642 * Handle clean-up of packets from an aggregate list. 4643 * 4644 * There's no need to update the BAW here - the session is being 4645 * torn down. 4646 */ 4647 static void 4648 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first) 4649 { 4650 struct ath_buf *bf, *bf_next; 4651 struct ieee80211_node *ni = bf_first->bf_node; 4652 struct ath_node *an = ATH_NODE(ni); 4653 int tid = bf_first->bf_state.bfs_tid; 4654 struct ath_tid *atid = &an->an_tid[tid]; 4655 4656 ATH_TX_LOCK(sc); 4657 4658 /* update incomp */ 4659 atid->incomp--; 4660 4661 /* Update the BAW */ 4662 bf = bf_first; 4663 while (bf) { 4664 /* XXX refactor! */ 4665 if (bf->bf_state.bfs_dobaw) { 4666 ath_tx_update_baw(sc, an, atid, bf); 4667 if (!bf->bf_state.bfs_addedbaw) 4668 DPRINTF(sc, ATH_DEBUG_SW_TX, 4669 "%s: wasn't added: seqno %d\n", 4670 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4671 } 4672 bf = bf->bf_next; 4673 } 4674 4675 if (atid->incomp == 0) { 4676 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4677 "%s: TID %d: cleaned up! resume!\n", 4678 __func__, tid); 4679 atid->cleanup_inprogress = 0; 4680 ath_tx_tid_resume(sc, atid); 4681 } 4682 4683 /* Send BAR if required */ 4684 /* XXX why would we send a BAR when transitioning to non-aggregation? */ 4685 /* 4686 * XXX TODO: we should likely just tear down the BAR state here, 4687 * rather than sending a BAR. 4688 */ 4689 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4690 ath_tx_tid_bar_tx(sc, atid); 4691 4692 ATH_TX_UNLOCK(sc); 4693 4694 /* Handle frame completion as individual frames */ 4695 bf = bf_first; 4696 while (bf) { 4697 bf_next = bf->bf_next; 4698 bf->bf_next = NULL; 4699 ath_tx_default_comp(sc, bf, 1); 4700 bf = bf_next; 4701 } 4702 } 4703 4704 /* 4705 * Handle completion of an set of aggregate frames. 4706 * 4707 * Note: the completion handler is the last descriptor in the aggregate, 4708 * not the last descriptor in the first frame. 4709 */ 4710 static void 4711 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, 4712 int fail) 4713 { 4714 //struct ath_desc *ds = bf->bf_lastds; 4715 struct ieee80211_node *ni = bf_first->bf_node; 4716 struct ath_node *an = ATH_NODE(ni); 4717 int tid = bf_first->bf_state.bfs_tid; 4718 struct ath_tid *atid = &an->an_tid[tid]; 4719 struct ath_tx_status ts; 4720 struct ieee80211_tx_ampdu *tap; 4721 ath_bufhead bf_q; 4722 ath_bufhead bf_cq; 4723 int seq_st, tx_ok; 4724 int hasba, isaggr; 4725 uint32_t ba[2]; 4726 struct ath_buf *bf, *bf_next; 4727 int ba_index; 4728 int drops = 0; 4729 int nframes = 0, nbad = 0, nf; 4730 int pktlen; 4731 /* XXX there's too much on the stack? */ 4732 struct ath_rc_series rc[ATH_RC_NUM]; 4733 int txseq; 4734 4735 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n", 4736 __func__, atid->hwq_depth); 4737 4738 /* 4739 * Take a copy; this may be needed -after- bf_first 4740 * has been completed and freed. 4741 */ 4742 ts = bf_first->bf_status.ds_txstat; 4743 4744 TAILQ_INIT(&bf_q); 4745 TAILQ_INIT(&bf_cq); 4746 4747 /* The TID state is kept behind the TXQ lock */ 4748 ATH_TX_LOCK(sc); 4749 4750 atid->hwq_depth--; 4751 if (atid->hwq_depth < 0) 4752 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: hwq_depth < 0: %d\n", 4753 __func__, atid->hwq_depth); 4754 4755 /* 4756 * If the TID is filtered, handle completing the filter 4757 * transition before potentially kicking it to the cleanup 4758 * function. 4759 * 4760 * XXX this is duplicate work, ew. 4761 */ 4762 if (atid->isfiltered) 4763 ath_tx_tid_filt_comp_complete(sc, atid); 4764 4765 /* 4766 * Punt cleanup to the relevant function, not our problem now 4767 */ 4768 if (atid->cleanup_inprogress) { 4769 if (atid->isfiltered) 4770 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4771 "%s: isfiltered=1, normal_comp?\n", 4772 __func__); 4773 ATH_TX_UNLOCK(sc); 4774 ath_tx_comp_cleanup_aggr(sc, bf_first); 4775 return; 4776 } 4777 4778 /* 4779 * If the frame is filtered, transition to filtered frame 4780 * mode and add this to the filtered frame list. 4781 * 4782 * XXX TODO: figure out how this interoperates with 4783 * BAR, pause and cleanup states. 4784 */ 4785 if ((ts.ts_status & HAL_TXERR_FILT) || 4786 (ts.ts_status != 0 && atid->isfiltered)) { 4787 if (fail != 0) 4788 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4789 "%s: isfiltered=1, fail=%d\n", __func__, fail); 4790 ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq); 4791 4792 /* Remove from BAW */ 4793 TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) { 4794 if (bf->bf_state.bfs_addedbaw) 4795 drops++; 4796 if (bf->bf_state.bfs_dobaw) { 4797 ath_tx_update_baw(sc, an, atid, bf); 4798 if (!bf->bf_state.bfs_addedbaw) 4799 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4800 "%s: wasn't added: seqno %d\n", 4801 __func__, 4802 SEQNO(bf->bf_state.bfs_seqno)); 4803 } 4804 bf->bf_state.bfs_dobaw = 0; 4805 } 4806 /* 4807 * If any intermediate frames in the BAW were dropped when 4808 * handling filtering things, send a BAR. 4809 */ 4810 if (drops) 4811 ath_tx_tid_bar_suspend(sc, atid); 4812 4813 /* 4814 * Finish up by sending a BAR if required and freeing 4815 * the frames outside of the TX lock. 4816 */ 4817 goto finish_send_bar; 4818 } 4819 4820 /* 4821 * XXX for now, use the first frame in the aggregate for 4822 * XXX rate control completion; it's at least consistent. 4823 */ 4824 pktlen = bf_first->bf_state.bfs_pktlen; 4825 4826 /* 4827 * Handle errors first! 4828 * 4829 * Here, handle _any_ error as a "exceeded retries" error. 4830 * Later on (when filtered frames are to be specially handled) 4831 * it'll have to be expanded. 4832 */ 4833 #if 0 4834 if (ts.ts_status & HAL_TXERR_XRETRY) { 4835 #endif 4836 if (ts.ts_status != 0) { 4837 ATH_TX_UNLOCK(sc); 4838 ath_tx_comp_aggr_error(sc, bf_first, atid); 4839 return; 4840 } 4841 4842 tap = ath_tx_get_tx_tid(an, tid); 4843 4844 /* 4845 * extract starting sequence and block-ack bitmap 4846 */ 4847 /* XXX endian-ness of seq_st, ba? */ 4848 seq_st = ts.ts_seqnum; 4849 hasba = !! (ts.ts_flags & HAL_TX_BA); 4850 tx_ok = (ts.ts_status == 0); 4851 isaggr = bf_first->bf_state.bfs_aggr; 4852 ba[0] = ts.ts_ba_low; 4853 ba[1] = ts.ts_ba_high; 4854 4855 /* 4856 * Copy the TX completion status and the rate control 4857 * series from the first descriptor, as it may be freed 4858 * before the rate control code can get its grubby fingers 4859 * into things. 4860 */ 4861 memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc)); 4862 4863 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4864 "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, " 4865 "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n", 4866 __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags, 4867 isaggr, seq_st, hasba, ba[0], ba[1]); 4868 4869 /* 4870 * The reference driver doesn't do this; it simply ignores 4871 * this check in its entirety. 4872 * 4873 * I've seen this occur when using iperf to send traffic 4874 * out tid 1 - the aggregate frames are all marked as TID 1, 4875 * but the TXSTATUS has TID=0. So, let's just ignore this 4876 * check. 4877 */ 4878 #if 0 4879 /* Occasionally, the MAC sends a tx status for the wrong TID. */ 4880 if (tid != ts.ts_tid) { 4881 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: tid %d != hw tid %d\n", 4882 __func__, tid, ts.ts_tid); 4883 tx_ok = 0; 4884 } 4885 #endif 4886 4887 /* AR5416 BA bug; this requires an interface reset */ 4888 if (isaggr && tx_ok && (! hasba)) { 4889 device_printf(sc->sc_dev, 4890 "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, " 4891 "seq_st=%d\n", 4892 __func__, hasba, tx_ok, isaggr, seq_st); 4893 /* XXX TODO: schedule an interface reset */ 4894 #ifdef ATH_DEBUG 4895 ath_printtxbuf(sc, bf_first, 4896 sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0); 4897 #endif 4898 } 4899 4900 /* 4901 * Walk the list of frames, figure out which ones were correctly 4902 * sent and which weren't. 4903 */ 4904 bf = bf_first; 4905 nf = bf_first->bf_state.bfs_nframes; 4906 4907 /* bf_first is going to be invalid once this list is walked */ 4908 bf_first = NULL; 4909 4910 /* 4911 * Walk the list of completed frames and determine 4912 * which need to be completed and which need to be 4913 * retransmitted. 4914 * 4915 * For completed frames, the completion functions need 4916 * to be called at the end of this function as the last 4917 * node reference may free the node. 4918 * 4919 * Finally, since the TXQ lock can't be held during the 4920 * completion callback (to avoid lock recursion), 4921 * the completion calls have to be done outside of the 4922 * lock. 4923 */ 4924 while (bf) { 4925 nframes++; 4926 ba_index = ATH_BA_INDEX(seq_st, 4927 SEQNO(bf->bf_state.bfs_seqno)); 4928 bf_next = bf->bf_next; 4929 bf->bf_next = NULL; /* Remove it from the aggr list */ 4930 4931 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4932 "%s: checking bf=%p seqno=%d; ack=%d\n", 4933 __func__, bf, SEQNO(bf->bf_state.bfs_seqno), 4934 ATH_BA_ISSET(ba, ba_index)); 4935 4936 if (tx_ok && ATH_BA_ISSET(ba, ba_index)) { 4937 sc->sc_stats.ast_tx_aggr_ok++; 4938 ath_tx_update_baw(sc, an, atid, bf); 4939 bf->bf_state.bfs_dobaw = 0; 4940 if (!bf->bf_state.bfs_addedbaw) 4941 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4942 "%s: wasn't added: seqno %d\n", 4943 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4944 bf->bf_next = NULL; 4945 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4946 } else { 4947 sc->sc_stats.ast_tx_aggr_fail++; 4948 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4949 drops++; 4950 bf->bf_next = NULL; 4951 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4952 } 4953 nbad++; 4954 } 4955 bf = bf_next; 4956 } 4957 4958 /* 4959 * Now that the BAW updates have been done, unlock 4960 * 4961 * txseq is grabbed before the lock is released so we 4962 * have a consistent view of what -was- in the BAW. 4963 * Anything after this point will not yet have been 4964 * TXed. 4965 */ 4966 txseq = tap->txa_start; 4967 ATH_TX_UNLOCK(sc); 4968 4969 if (nframes != nf) 4970 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4971 "%s: num frames seen=%d; bf nframes=%d\n", 4972 __func__, nframes, nf); 4973 4974 /* 4975 * Now we know how many frames were bad, call the rate 4976 * control code. 4977 */ 4978 if (fail == 0) 4979 ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, 4980 nbad); 4981 4982 /* 4983 * send bar if we dropped any frames 4984 */ 4985 if (drops) { 4986 /* Suspend the TX queue and get ready to send the BAR */ 4987 ATH_TX_LOCK(sc); 4988 ath_tx_tid_bar_suspend(sc, atid); 4989 ATH_TX_UNLOCK(sc); 4990 } 4991 4992 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4993 "%s: txa_start now %d\n", __func__, tap->txa_start); 4994 4995 ATH_TX_LOCK(sc); 4996 4997 /* Prepend all frames to the beginning of the queue */ 4998 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4999 TAILQ_REMOVE(&bf_q, bf, bf_list); 5000 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 5001 } 5002 5003 /* 5004 * Reschedule to grab some further frames. 5005 */ 5006 ath_tx_tid_sched(sc, atid); 5007 5008 /* 5009 * If the queue is filtered, re-schedule as required. 5010 * 5011 * This is required as there may be a subsequent TX descriptor 5012 * for this end-node that has CLRDMASK set, so it's quite possible 5013 * that a filtered frame will be followed by a non-filtered 5014 * (complete or otherwise) frame. 5015 * 5016 * XXX should we do this before we complete the frame? 5017 */ 5018 if (atid->isfiltered) 5019 ath_tx_tid_filt_comp_complete(sc, atid); 5020 5021 finish_send_bar: 5022 5023 /* 5024 * Send BAR if required 5025 */ 5026 if (ath_tx_tid_bar_tx_ready(sc, atid)) 5027 ath_tx_tid_bar_tx(sc, atid); 5028 5029 ATH_TX_UNLOCK(sc); 5030 5031 /* Do deferred completion */ 5032 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 5033 TAILQ_REMOVE(&bf_cq, bf, bf_list); 5034 ath_tx_default_comp(sc, bf, 0); 5035 } 5036 } 5037 5038 /* 5039 * Handle completion of unaggregated frames in an ADDBA 5040 * session. 5041 * 5042 * Fail is set to 1 if the entry is being freed via a call to 5043 * ath_tx_draintxq(). 5044 */ 5045 static void 5046 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail) 5047 { 5048 struct ieee80211_node *ni = bf->bf_node; 5049 struct ath_node *an = ATH_NODE(ni); 5050 int tid = bf->bf_state.bfs_tid; 5051 struct ath_tid *atid = &an->an_tid[tid]; 5052 struct ath_tx_status ts; 5053 int drops = 0; 5054 5055 /* 5056 * Take a copy of this; filtering/cloning the frame may free the 5057 * bf pointer. 5058 */ 5059 ts = bf->bf_status.ds_txstat; 5060 5061 /* 5062 * Update rate control status here, before we possibly 5063 * punt to retry or cleanup. 5064 * 5065 * Do it outside of the TXQ lock. 5066 */ 5067 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 5068 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 5069 &bf->bf_status.ds_txstat, 5070 bf->bf_state.bfs_pktlen, 5071 1, (ts.ts_status == 0) ? 0 : 1); 5072 5073 /* 5074 * This is called early so atid->hwq_depth can be tracked. 5075 * This unfortunately means that it's released and regrabbed 5076 * during retry and cleanup. That's rather inefficient. 5077 */ 5078 ATH_TX_LOCK(sc); 5079 5080 if (tid == IEEE80211_NONQOS_TID) 5081 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16!\n", __func__); 5082 5083 DPRINTF(sc, ATH_DEBUG_SW_TX, 5084 "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n", 5085 __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth, 5086 SEQNO(bf->bf_state.bfs_seqno)); 5087 5088 atid->hwq_depth--; 5089 if (atid->hwq_depth < 0) 5090 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n", 5091 __func__, atid->hwq_depth); 5092 5093 /* 5094 * If the TID is filtered, handle completing the filter 5095 * transition before potentially kicking it to the cleanup 5096 * function. 5097 */ 5098 if (atid->isfiltered) 5099 ath_tx_tid_filt_comp_complete(sc, atid); 5100 5101 /* 5102 * If a cleanup is in progress, punt to comp_cleanup; 5103 * rather than handling it here. It's thus their 5104 * responsibility to clean up, call the completion 5105 * function in net80211, etc. 5106 */ 5107 if (atid->cleanup_inprogress) { 5108 if (atid->isfiltered) 5109 DPRINTF(sc, ATH_DEBUG_SW_TX, 5110 "%s: isfiltered=1, normal_comp?\n", 5111 __func__); 5112 ATH_TX_UNLOCK(sc); 5113 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n", 5114 __func__); 5115 ath_tx_comp_cleanup_unaggr(sc, bf); 5116 return; 5117 } 5118 5119 /* 5120 * XXX TODO: how does cleanup, BAR and filtered frame handling 5121 * overlap? 5122 * 5123 * If the frame is filtered OR if it's any failure but 5124 * the TID is filtered, the frame must be added to the 5125 * filtered frame list. 5126 * 5127 * However - a busy buffer can't be added to the filtered 5128 * list as it will end up being recycled without having 5129 * been made available for the hardware. 5130 */ 5131 if ((ts.ts_status & HAL_TXERR_FILT) || 5132 (ts.ts_status != 0 && atid->isfiltered)) { 5133 int freeframe; 5134 5135 if (fail != 0) 5136 DPRINTF(sc, ATH_DEBUG_SW_TX, 5137 "%s: isfiltered=1, fail=%d\n", 5138 __func__, fail); 5139 freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf); 5140 /* 5141 * If freeframe=0 then bf is no longer ours; don't 5142 * touch it. 5143 */ 5144 if (freeframe) { 5145 /* Remove from BAW */ 5146 if (bf->bf_state.bfs_addedbaw) 5147 drops++; 5148 if (bf->bf_state.bfs_dobaw) { 5149 ath_tx_update_baw(sc, an, atid, bf); 5150 if (!bf->bf_state.bfs_addedbaw) 5151 DPRINTF(sc, ATH_DEBUG_SW_TX, 5152 "%s: wasn't added: seqno %d\n", 5153 __func__, SEQNO(bf->bf_state.bfs_seqno)); 5154 } 5155 bf->bf_state.bfs_dobaw = 0; 5156 } 5157 5158 /* 5159 * If the frame couldn't be filtered, treat it as a drop and 5160 * prepare to send a BAR. 5161 */ 5162 if (freeframe && drops) 5163 ath_tx_tid_bar_suspend(sc, atid); 5164 5165 /* 5166 * Send BAR if required 5167 */ 5168 if (ath_tx_tid_bar_tx_ready(sc, atid)) 5169 ath_tx_tid_bar_tx(sc, atid); 5170 5171 ATH_TX_UNLOCK(sc); 5172 /* 5173 * If freeframe is set, then the frame couldn't be 5174 * cloned and bf is still valid. Just complete/free it. 5175 */ 5176 if (freeframe) 5177 ath_tx_default_comp(sc, bf, fail); 5178 5179 return; 5180 } 5181 /* 5182 * Don't bother with the retry check if all frames 5183 * are being failed (eg during queue deletion.) 5184 */ 5185 #if 0 5186 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) { 5187 #endif 5188 if (fail == 0 && ts.ts_status != 0) { 5189 ATH_TX_UNLOCK(sc); 5190 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n", 5191 __func__); 5192 ath_tx_aggr_retry_unaggr(sc, bf); 5193 return; 5194 } 5195 5196 /* Success? Complete */ 5197 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n", 5198 __func__, tid, SEQNO(bf->bf_state.bfs_seqno)); 5199 if (bf->bf_state.bfs_dobaw) { 5200 ath_tx_update_baw(sc, an, atid, bf); 5201 bf->bf_state.bfs_dobaw = 0; 5202 if (!bf->bf_state.bfs_addedbaw) 5203 DPRINTF(sc, ATH_DEBUG_SW_TX, 5204 "%s: wasn't added: seqno %d\n", 5205 __func__, SEQNO(bf->bf_state.bfs_seqno)); 5206 } 5207 5208 /* 5209 * If the queue is filtered, re-schedule as required. 5210 * 5211 * This is required as there may be a subsequent TX descriptor 5212 * for this end-node that has CLRDMASK set, so it's quite possible 5213 * that a filtered frame will be followed by a non-filtered 5214 * (complete or otherwise) frame. 5215 * 5216 * XXX should we do this before we complete the frame? 5217 */ 5218 if (atid->isfiltered) 5219 ath_tx_tid_filt_comp_complete(sc, atid); 5220 5221 /* 5222 * Send BAR if required 5223 */ 5224 if (ath_tx_tid_bar_tx_ready(sc, atid)) 5225 ath_tx_tid_bar_tx(sc, atid); 5226 5227 ATH_TX_UNLOCK(sc); 5228 5229 ath_tx_default_comp(sc, bf, fail); 5230 /* bf is freed at this point */ 5231 } 5232 5233 void 5234 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 5235 { 5236 if (bf->bf_state.bfs_aggr) 5237 ath_tx_aggr_comp_aggr(sc, bf, fail); 5238 else 5239 ath_tx_aggr_comp_unaggr(sc, bf, fail); 5240 } 5241 5242 /* 5243 * Schedule some packets from the given node/TID to the hardware. 5244 * 5245 * This is the aggregate version. 5246 */ 5247 void 5248 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an, 5249 struct ath_tid *tid) 5250 { 5251 struct ath_buf *bf; 5252 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 5253 struct ieee80211_tx_ampdu *tap; 5254 ATH_AGGR_STATUS status; 5255 ath_bufhead bf_q; 5256 5257 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid); 5258 ATH_TX_LOCK_ASSERT(sc); 5259 5260 /* 5261 * XXX TODO: If we're called for a queue that we're leaking frames to, 5262 * ensure we only leak one. 5263 */ 5264 5265 tap = ath_tx_get_tx_tid(an, tid->tid); 5266 5267 if (tid->tid == IEEE80211_NONQOS_TID) 5268 DPRINTF(sc, ATH_DEBUG_SW_TX, 5269 "%s: called for TID=NONQOS_TID?\n", __func__); 5270 5271 for (;;) { 5272 status = ATH_AGGR_DONE; 5273 5274 /* 5275 * If the upper layer has paused the TID, don't 5276 * queue any further packets. 5277 * 5278 * This can also occur from the completion task because 5279 * of packet loss; but as its serialised with this code, 5280 * it won't "appear" half way through queuing packets. 5281 */ 5282 if (! ath_tx_tid_can_tx_or_sched(sc, tid)) 5283 break; 5284 5285 bf = ATH_TID_FIRST(tid); 5286 if (bf == NULL) { 5287 break; 5288 } 5289 5290 /* 5291 * If the packet doesn't fall within the BAW (eg a NULL 5292 * data frame), schedule it directly; continue. 5293 */ 5294 if (! bf->bf_state.bfs_dobaw) { 5295 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 5296 "%s: non-baw packet\n", 5297 __func__); 5298 ATH_TID_REMOVE(tid, bf, bf_list); 5299 5300 if (bf->bf_state.bfs_nframes > 1) 5301 DPRINTF(sc, ATH_DEBUG_SW_TX, 5302 "%s: aggr=%d, nframes=%d\n", 5303 __func__, 5304 bf->bf_state.bfs_aggr, 5305 bf->bf_state.bfs_nframes); 5306 5307 /* 5308 * This shouldn't happen - such frames shouldn't 5309 * ever have been queued as an aggregate in the 5310 * first place. However, make sure the fields 5311 * are correctly setup just to be totally sure. 5312 */ 5313 bf->bf_state.bfs_aggr = 0; 5314 bf->bf_state.bfs_nframes = 1; 5315 5316 /* Update CLRDMASK just before this frame is queued */ 5317 ath_tx_update_clrdmask(sc, tid, bf); 5318 5319 ath_tx_do_ratelookup(sc, bf); 5320 ath_tx_calc_duration(sc, bf); 5321 ath_tx_calc_protection(sc, bf); 5322 ath_tx_set_rtscts(sc, bf); 5323 ath_tx_rate_fill_rcflags(sc, bf); 5324 ath_tx_setds(sc, bf); 5325 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 5326 5327 sc->sc_aggr_stats.aggr_nonbaw_pkt++; 5328 5329 /* Queue the packet; continue */ 5330 goto queuepkt; 5331 } 5332 5333 TAILQ_INIT(&bf_q); 5334 5335 /* 5336 * Do a rate control lookup on the first frame in the 5337 * list. The rate control code needs that to occur 5338 * before it can determine whether to TX. 5339 * It's inaccurate because the rate control code doesn't 5340 * really "do" aggregate lookups, so it only considers 5341 * the size of the first frame. 5342 */ 5343 ath_tx_do_ratelookup(sc, bf); 5344 bf->bf_state.bfs_rc[3].rix = 0; 5345 bf->bf_state.bfs_rc[3].tries = 0; 5346 5347 ath_tx_calc_duration(sc, bf); 5348 ath_tx_calc_protection(sc, bf); 5349 5350 ath_tx_set_rtscts(sc, bf); 5351 ath_tx_rate_fill_rcflags(sc, bf); 5352 5353 status = ath_tx_form_aggr(sc, an, tid, &bf_q); 5354 5355 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 5356 "%s: ath_tx_form_aggr() status=%d\n", __func__, status); 5357 5358 /* 5359 * No frames to be picked up - out of BAW 5360 */ 5361 if (TAILQ_EMPTY(&bf_q)) 5362 break; 5363 5364 /* 5365 * This assumes that the descriptor list in the ath_bufhead 5366 * are already linked together via bf_next pointers. 5367 */ 5368 bf = TAILQ_FIRST(&bf_q); 5369 5370 if (status == ATH_AGGR_8K_LIMITED) 5371 sc->sc_aggr_stats.aggr_rts_aggr_limited++; 5372 5373 /* 5374 * If it's the only frame send as non-aggregate 5375 * assume that ath_tx_form_aggr() has checked 5376 * whether it's in the BAW and added it appropriately. 5377 */ 5378 if (bf->bf_state.bfs_nframes == 1) { 5379 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 5380 "%s: single-frame aggregate\n", __func__); 5381 5382 /* Update CLRDMASK just before this frame is queued */ 5383 ath_tx_update_clrdmask(sc, tid, bf); 5384 5385 bf->bf_state.bfs_aggr = 0; 5386 bf->bf_state.bfs_ndelim = 0; 5387 ath_tx_setds(sc, bf); 5388 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 5389 if (status == ATH_AGGR_BAW_CLOSED) 5390 sc->sc_aggr_stats.aggr_baw_closed_single_pkt++; 5391 else 5392 sc->sc_aggr_stats.aggr_single_pkt++; 5393 } else { 5394 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 5395 "%s: multi-frame aggregate: %d frames, " 5396 "length %d\n", 5397 __func__, bf->bf_state.bfs_nframes, 5398 bf->bf_state.bfs_al); 5399 bf->bf_state.bfs_aggr = 1; 5400 sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++; 5401 sc->sc_aggr_stats.aggr_aggr_pkt++; 5402 5403 /* Update CLRDMASK just before this frame is queued */ 5404 ath_tx_update_clrdmask(sc, tid, bf); 5405 5406 /* 5407 * Calculate the duration/protection as required. 5408 */ 5409 ath_tx_calc_duration(sc, bf); 5410 ath_tx_calc_protection(sc, bf); 5411 5412 /* 5413 * Update the rate and rtscts information based on the 5414 * rate decision made by the rate control code; 5415 * the first frame in the aggregate needs it. 5416 */ 5417 ath_tx_set_rtscts(sc, bf); 5418 5419 /* 5420 * Setup the relevant descriptor fields 5421 * for aggregation. The first descriptor 5422 * already points to the rest in the chain. 5423 */ 5424 ath_tx_setds_11n(sc, bf); 5425 5426 } 5427 queuepkt: 5428 /* Set completion handler, multi-frame aggregate or not */ 5429 bf->bf_comp = ath_tx_aggr_comp; 5430 5431 if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID) 5432 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16?\n", __func__); 5433 5434 /* 5435 * Update leak count and frame config if were leaking frames. 5436 * 5437 * XXX TODO: it should update all frames in an aggregate 5438 * correctly! 5439 */ 5440 ath_tx_leak_count_update(sc, tid, bf); 5441 5442 /* Punt to txq */ 5443 ath_tx_handoff(sc, txq, bf); 5444 5445 /* Track outstanding buffer count to hardware */ 5446 /* aggregates are "one" buffer */ 5447 tid->hwq_depth++; 5448 5449 /* 5450 * Break out if ath_tx_form_aggr() indicated 5451 * there can't be any further progress (eg BAW is full.) 5452 * Checking for an empty txq is done above. 5453 * 5454 * XXX locking on txq here? 5455 */ 5456 /* XXX TXQ locking */ 5457 if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr || 5458 (status == ATH_AGGR_BAW_CLOSED || 5459 status == ATH_AGGR_LEAK_CLOSED)) 5460 break; 5461 } 5462 } 5463 5464 /* 5465 * Schedule some packets from the given node/TID to the hardware. 5466 * 5467 * XXX TODO: this routine doesn't enforce the maximum TXQ depth. 5468 * It just dumps frames into the TXQ. We should limit how deep 5469 * the transmit queue can grow for frames dispatched to the given 5470 * TXQ. 5471 * 5472 * To avoid locking issues, either we need to own the TXQ lock 5473 * at this point, or we need to pass in the maximum frame count 5474 * from the caller. 5475 */ 5476 void 5477 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an, 5478 struct ath_tid *tid) 5479 { 5480 struct ath_buf *bf; 5481 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 5482 5483 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n", 5484 __func__, an, tid->tid); 5485 5486 ATH_TX_LOCK_ASSERT(sc); 5487 5488 /* Check - is AMPDU pending or running? then print out something */ 5489 if (ath_tx_ampdu_pending(sc, an, tid->tid)) 5490 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu pending?\n", 5491 __func__, tid->tid); 5492 if (ath_tx_ampdu_running(sc, an, tid->tid)) 5493 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu running?\n", 5494 __func__, tid->tid); 5495 5496 for (;;) { 5497 5498 /* 5499 * If the upper layers have paused the TID, don't 5500 * queue any further packets. 5501 * 5502 * XXX if we are leaking frames, make sure we decrement 5503 * that counter _and_ we continue here. 5504 */ 5505 if (! ath_tx_tid_can_tx_or_sched(sc, tid)) 5506 break; 5507 5508 bf = ATH_TID_FIRST(tid); 5509 if (bf == NULL) { 5510 break; 5511 } 5512 5513 ATH_TID_REMOVE(tid, bf, bf_list); 5514 5515 /* Sanity check! */ 5516 if (tid->tid != bf->bf_state.bfs_tid) { 5517 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bfs_tid %d !=" 5518 " tid %d\n", __func__, bf->bf_state.bfs_tid, 5519 tid->tid); 5520 } 5521 /* Normal completion handler */ 5522 bf->bf_comp = ath_tx_normal_comp; 5523 5524 /* 5525 * Override this for now, until the non-aggregate 5526 * completion handler correctly handles software retransmits. 5527 */ 5528 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 5529 5530 /* Update CLRDMASK just before this frame is queued */ 5531 ath_tx_update_clrdmask(sc, tid, bf); 5532 5533 /* Program descriptors + rate control */ 5534 ath_tx_do_ratelookup(sc, bf); 5535 ath_tx_calc_duration(sc, bf); 5536 ath_tx_calc_protection(sc, bf); 5537 ath_tx_set_rtscts(sc, bf); 5538 ath_tx_rate_fill_rcflags(sc, bf); 5539 ath_tx_setds(sc, bf); 5540 5541 /* 5542 * Update the current leak count if 5543 * we're leaking frames; and set the 5544 * MORE flag as appropriate. 5545 */ 5546 ath_tx_leak_count_update(sc, tid, bf); 5547 5548 /* Track outstanding buffer count to hardware */ 5549 /* aggregates are "one" buffer */ 5550 tid->hwq_depth++; 5551 5552 /* Punt to hardware or software txq */ 5553 ath_tx_handoff(sc, txq, bf); 5554 } 5555 } 5556 5557 /* 5558 * Schedule some packets to the given hardware queue. 5559 * 5560 * This function walks the list of TIDs (ie, ath_node TIDs 5561 * with queued traffic) and attempts to schedule traffic 5562 * from them. 5563 * 5564 * TID scheduling is implemented as a FIFO, with TIDs being 5565 * added to the end of the queue after some frames have been 5566 * scheduled. 5567 */ 5568 void 5569 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq) 5570 { 5571 struct ath_tid *tid, *next, *last; 5572 5573 ATH_TX_LOCK_ASSERT(sc); 5574 5575 /* 5576 * Don't schedule if the hardware queue is busy. 5577 * This (hopefully) gives some more time to aggregate 5578 * some packets in the aggregation queue. 5579 * 5580 * XXX It doesn't stop a parallel sender from sneaking 5581 * in transmitting a frame! 5582 */ 5583 /* XXX TXQ locking */ 5584 if (txq->axq_aggr_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_aggr) { 5585 sc->sc_aggr_stats.aggr_sched_nopkt++; 5586 return; 5587 } 5588 if (txq->axq_depth >= sc->sc_hwq_limit_nonaggr) { 5589 sc->sc_aggr_stats.aggr_sched_nopkt++; 5590 return; 5591 } 5592 5593 last = TAILQ_LAST(&txq->axq_tidq, axq_t_s); 5594 5595 TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) { 5596 /* 5597 * Suspend paused queues here; they'll be resumed 5598 * once the addba completes or times out. 5599 */ 5600 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n", 5601 __func__, tid->tid, tid->paused); 5602 ath_tx_tid_unsched(sc, tid); 5603 /* 5604 * This node may be in power-save and we're leaking 5605 * a frame; be careful. 5606 */ 5607 if (! ath_tx_tid_can_tx_or_sched(sc, tid)) { 5608 goto loop_done; 5609 } 5610 if (ath_tx_ampdu_running(sc, tid->an, tid->tid)) 5611 ath_tx_tid_hw_queue_aggr(sc, tid->an, tid); 5612 else 5613 ath_tx_tid_hw_queue_norm(sc, tid->an, tid); 5614 5615 /* Not empty? Re-schedule */ 5616 if (tid->axq_depth != 0) 5617 ath_tx_tid_sched(sc, tid); 5618 5619 /* 5620 * Give the software queue time to aggregate more 5621 * packets. If we aren't running aggregation then 5622 * we should still limit the hardware queue depth. 5623 */ 5624 /* XXX TXQ locking */ 5625 if (txq->axq_aggr_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_aggr) { 5626 break; 5627 } 5628 if (txq->axq_depth >= sc->sc_hwq_limit_nonaggr) { 5629 break; 5630 } 5631 loop_done: 5632 /* 5633 * If this was the last entry on the original list, stop. 5634 * Otherwise nodes that have been rescheduled onto the end 5635 * of the TID FIFO list will just keep being rescheduled. 5636 * 5637 * XXX What should we do about nodes that were paused 5638 * but are pending a leaking frame in response to a ps-poll? 5639 * They'll be put at the front of the list; so they'll 5640 * prematurely trigger this condition! Ew. 5641 */ 5642 if (tid == last) 5643 break; 5644 } 5645 } 5646 5647 /* 5648 * TX addba handling 5649 */ 5650 5651 /* 5652 * Return net80211 TID struct pointer, or NULL for none 5653 */ 5654 struct ieee80211_tx_ampdu * 5655 ath_tx_get_tx_tid(struct ath_node *an, int tid) 5656 { 5657 struct ieee80211_node *ni = &an->an_node; 5658 struct ieee80211_tx_ampdu *tap; 5659 5660 if (tid == IEEE80211_NONQOS_TID) 5661 return NULL; 5662 5663 tap = &ni->ni_tx_ampdu[tid]; 5664 return tap; 5665 } 5666 5667 /* 5668 * Is AMPDU-TX running? 5669 */ 5670 static int 5671 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid) 5672 { 5673 struct ieee80211_tx_ampdu *tap; 5674 5675 if (tid == IEEE80211_NONQOS_TID) 5676 return 0; 5677 5678 tap = ath_tx_get_tx_tid(an, tid); 5679 if (tap == NULL) 5680 return 0; /* Not valid; default to not running */ 5681 5682 return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING); 5683 } 5684 5685 /* 5686 * Is AMPDU-TX negotiation pending? 5687 */ 5688 static int 5689 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid) 5690 { 5691 struct ieee80211_tx_ampdu *tap; 5692 5693 if (tid == IEEE80211_NONQOS_TID) 5694 return 0; 5695 5696 tap = ath_tx_get_tx_tid(an, tid); 5697 if (tap == NULL) 5698 return 0; /* Not valid; default to not pending */ 5699 5700 return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND); 5701 } 5702 5703 /* 5704 * Is AMPDU-TX pending for the given TID? 5705 */ 5706 5707 5708 /* 5709 * Method to handle sending an ADDBA request. 5710 * 5711 * We tap this so the relevant flags can be set to pause the TID 5712 * whilst waiting for the response. 5713 * 5714 * XXX there's no timeout handler we can override? 5715 */ 5716 int 5717 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5718 int dialogtoken, int baparamset, int batimeout) 5719 { 5720 struct ath_softc *sc = ni->ni_ic->ic_softc; 5721 int tid = tap->txa_tid; 5722 struct ath_node *an = ATH_NODE(ni); 5723 struct ath_tid *atid = &an->an_tid[tid]; 5724 5725 /* 5726 * XXX danger Will Robinson! 5727 * 5728 * Although the taskqueue may be running and scheduling some more 5729 * packets, these should all be _before_ the addba sequence number. 5730 * However, net80211 will keep self-assigning sequence numbers 5731 * until addba has been negotiated. 5732 * 5733 * In the past, these packets would be "paused" (which still works 5734 * fine, as they're being scheduled to the driver in the same 5735 * serialised method which is calling the addba request routine) 5736 * and when the aggregation session begins, they'll be dequeued 5737 * as aggregate packets and added to the BAW. However, now there's 5738 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these 5739 * packets. Thus they never get included in the BAW tracking and 5740 * this can cause the initial burst of packets after the addba 5741 * negotiation to "hang", as they quickly fall outside the BAW. 5742 * 5743 * The "eventual" solution should be to tag these packets with 5744 * dobaw. Although net80211 has given us a sequence number, 5745 * it'll be "after" the left edge of the BAW and thus it'll 5746 * fall within it. 5747 */ 5748 ATH_TX_LOCK(sc); 5749 /* 5750 * This is a bit annoying. Until net80211 HT code inherits some 5751 * (any) locking, we may have this called in parallel BUT only 5752 * one response/timeout will be called. Grr. 5753 */ 5754 if (atid->addba_tx_pending == 0) { 5755 ath_tx_tid_pause(sc, atid); 5756 atid->addba_tx_pending = 1; 5757 } 5758 ATH_TX_UNLOCK(sc); 5759 5760 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5761 "%s: %6D: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n", 5762 __func__, 5763 ni->ni_macaddr, 5764 ":", 5765 dialogtoken, baparamset, batimeout); 5766 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5767 "%s: txa_start=%d, ni_txseqs=%d\n", 5768 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5769 5770 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 5771 batimeout); 5772 } 5773 5774 /* 5775 * Handle an ADDBA response. 5776 * 5777 * We unpause the queue so TX'ing can resume. 5778 * 5779 * Any packets TX'ed from this point should be "aggregate" (whether 5780 * aggregate or not) so the BAW is updated. 5781 * 5782 * Note! net80211 keeps self-assigning sequence numbers until 5783 * ampdu is negotiated. This means the initially-negotiated BAW left 5784 * edge won't match the ni->ni_txseq. 5785 * 5786 * So, being very dirty, the BAW left edge is "slid" here to match 5787 * ni->ni_txseq. 5788 * 5789 * What likely SHOULD happen is that all packets subsequent to the 5790 * addba request should be tagged as aggregate and queued as non-aggregate 5791 * frames; thus updating the BAW. For now though, I'll just slide the 5792 * window. 5793 */ 5794 int 5795 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5796 int status, int code, int batimeout) 5797 { 5798 struct ath_softc *sc = ni->ni_ic->ic_softc; 5799 int tid = tap->txa_tid; 5800 struct ath_node *an = ATH_NODE(ni); 5801 struct ath_tid *atid = &an->an_tid[tid]; 5802 int r; 5803 5804 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5805 "%s: %6D: called; status=%d, code=%d, batimeout=%d\n", __func__, 5806 ni->ni_macaddr, 5807 ":", 5808 status, code, batimeout); 5809 5810 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5811 "%s: txa_start=%d, ni_txseqs=%d\n", 5812 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5813 5814 /* 5815 * Call this first, so the interface flags get updated 5816 * before the TID is unpaused. Otherwise a race condition 5817 * exists where the unpaused TID still doesn't yet have 5818 * IEEE80211_AGGR_RUNNING set. 5819 */ 5820 r = sc->sc_addba_response(ni, tap, status, code, batimeout); 5821 5822 ATH_TX_LOCK(sc); 5823 atid->addba_tx_pending = 0; 5824 /* 5825 * XXX dirty! 5826 * Slide the BAW left edge to wherever net80211 left it for us. 5827 * Read above for more information. 5828 */ 5829 tap->txa_start = ni->ni_txseqs[tid]; 5830 ath_tx_tid_resume(sc, atid); 5831 ATH_TX_UNLOCK(sc); 5832 return r; 5833 } 5834 5835 5836 /* 5837 * Stop ADDBA on a queue. 5838 * 5839 * This can be called whilst BAR TX is currently active on the queue, 5840 * so make sure this is unblocked before continuing. 5841 */ 5842 void 5843 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 5844 { 5845 struct ath_softc *sc = ni->ni_ic->ic_softc; 5846 int tid = tap->txa_tid; 5847 struct ath_node *an = ATH_NODE(ni); 5848 struct ath_tid *atid = &an->an_tid[tid]; 5849 ath_bufhead bf_cq; 5850 struct ath_buf *bf; 5851 5852 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: called\n", 5853 __func__, 5854 ni->ni_macaddr, 5855 ":"); 5856 5857 /* 5858 * Pause TID traffic early, so there aren't any races 5859 * Unblock the pending BAR held traffic, if it's currently paused. 5860 */ 5861 ATH_TX_LOCK(sc); 5862 ath_tx_tid_pause(sc, atid); 5863 if (atid->bar_wait) { 5864 /* 5865 * bar_unsuspend() expects bar_tx == 1, as it should be 5866 * called from the TX completion path. This quietens 5867 * the warning. It's cleared for us anyway. 5868 */ 5869 atid->bar_tx = 1; 5870 ath_tx_tid_bar_unsuspend(sc, atid); 5871 } 5872 ATH_TX_UNLOCK(sc); 5873 5874 /* There's no need to hold the TXQ lock here */ 5875 sc->sc_addba_stop(ni, tap); 5876 5877 /* 5878 * ath_tx_tid_cleanup will resume the TID if possible, otherwise 5879 * it'll set the cleanup flag, and it'll be unpaused once 5880 * things have been cleaned up. 5881 */ 5882 TAILQ_INIT(&bf_cq); 5883 ATH_TX_LOCK(sc); 5884 5885 /* 5886 * In case there's a followup call to this, only call it 5887 * if we don't have a cleanup in progress. 5888 * 5889 * Since we've paused the queue above, we need to make 5890 * sure we unpause if there's already a cleanup in 5891 * progress - it means something else is also doing 5892 * this stuff, so we don't need to also keep it paused. 5893 */ 5894 if (atid->cleanup_inprogress) { 5895 ath_tx_tid_resume(sc, atid); 5896 } else { 5897 ath_tx_tid_cleanup(sc, an, tid, &bf_cq); 5898 /* 5899 * Unpause the TID if no cleanup is required. 5900 */ 5901 if (! atid->cleanup_inprogress) 5902 ath_tx_tid_resume(sc, atid); 5903 } 5904 ATH_TX_UNLOCK(sc); 5905 5906 /* Handle completing frames and fail them */ 5907 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 5908 TAILQ_REMOVE(&bf_cq, bf, bf_list); 5909 ath_tx_default_comp(sc, bf, 1); 5910 } 5911 5912 } 5913 5914 /* 5915 * Handle a node reassociation. 5916 * 5917 * We may have a bunch of frames queued to the hardware; those need 5918 * to be marked as cleanup. 5919 */ 5920 void 5921 ath_tx_node_reassoc(struct ath_softc *sc, struct ath_node *an) 5922 { 5923 struct ath_tid *tid; 5924 int i; 5925 ath_bufhead bf_cq; 5926 struct ath_buf *bf; 5927 5928 TAILQ_INIT(&bf_cq); 5929 5930 ATH_TX_UNLOCK_ASSERT(sc); 5931 5932 ATH_TX_LOCK(sc); 5933 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 5934 tid = &an->an_tid[i]; 5935 if (tid->hwq_depth == 0) 5936 continue; 5937 DPRINTF(sc, ATH_DEBUG_NODE, 5938 "%s: %6D: TID %d: cleaning up TID\n", 5939 __func__, 5940 an->an_node.ni_macaddr, 5941 ":", 5942 i); 5943 /* 5944 * In case there's a followup call to this, only call it 5945 * if we don't have a cleanup in progress. 5946 */ 5947 if (! tid->cleanup_inprogress) { 5948 ath_tx_tid_pause(sc, tid); 5949 ath_tx_tid_cleanup(sc, an, i, &bf_cq); 5950 /* 5951 * Unpause the TID if no cleanup is required. 5952 */ 5953 if (! tid->cleanup_inprogress) 5954 ath_tx_tid_resume(sc, tid); 5955 } 5956 } 5957 ATH_TX_UNLOCK(sc); 5958 5959 /* Handle completing frames and fail them */ 5960 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 5961 TAILQ_REMOVE(&bf_cq, bf, bf_list); 5962 ath_tx_default_comp(sc, bf, 1); 5963 } 5964 } 5965 5966 /* 5967 * Note: net80211 bar_timeout() doesn't call this function on BAR failure; 5968 * it simply tears down the aggregation session. Ew. 5969 * 5970 * It however will call ieee80211_ampdu_stop() which will call 5971 * ic->ic_addba_stop(). 5972 * 5973 * XXX This uses a hard-coded max BAR count value; the whole 5974 * XXX BAR TX success or failure should be better handled! 5975 */ 5976 void 5977 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5978 int status) 5979 { 5980 struct ath_softc *sc = ni->ni_ic->ic_softc; 5981 int tid = tap->txa_tid; 5982 struct ath_node *an = ATH_NODE(ni); 5983 struct ath_tid *atid = &an->an_tid[tid]; 5984 int attempts = tap->txa_attempts; 5985 int old_txa_start; 5986 5987 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 5988 "%s: %6D: called; txa_tid=%d, atid->tid=%d, status=%d, attempts=%d, txa_start=%d, txa_seqpending=%d\n", 5989 __func__, 5990 ni->ni_macaddr, 5991 ":", 5992 tap->txa_tid, 5993 atid->tid, 5994 status, 5995 attempts, 5996 tap->txa_start, 5997 tap->txa_seqpending); 5998 5999 /* Note: This may update the BAW details */ 6000 /* 6001 * XXX What if this does slide the BAW along? We need to somehow 6002 * XXX either fix things when it does happen, or prevent the 6003 * XXX seqpending value to be anything other than exactly what 6004 * XXX the hell we want! 6005 * 6006 * XXX So for now, how I do this inside the TX lock for now 6007 * XXX and just correct it afterwards? The below condition should 6008 * XXX never happen and if it does I need to fix all kinds of things. 6009 */ 6010 ATH_TX_LOCK(sc); 6011 old_txa_start = tap->txa_start; 6012 sc->sc_bar_response(ni, tap, status); 6013 if (tap->txa_start != old_txa_start) { 6014 device_printf(sc->sc_dev, "%s: tid=%d; txa_start=%d, old=%d, adjusting\n", 6015 __func__, 6016 tid, 6017 tap->txa_start, 6018 old_txa_start); 6019 } 6020 tap->txa_start = old_txa_start; 6021 ATH_TX_UNLOCK(sc); 6022 6023 /* Unpause the TID */ 6024 /* 6025 * XXX if this is attempt=50, the TID will be downgraded 6026 * XXX to a non-aggregate session. So we must unpause the 6027 * XXX TID here or it'll never be done. 6028 * 6029 * Also, don't call it if bar_tx/bar_wait are 0; something 6030 * has beaten us to the punch? (XXX figure out what?) 6031 */ 6032 if (status == 0 || attempts == 50) { 6033 ATH_TX_LOCK(sc); 6034 if (atid->bar_tx == 0 || atid->bar_wait == 0) 6035 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 6036 "%s: huh? bar_tx=%d, bar_wait=%d\n", 6037 __func__, 6038 atid->bar_tx, atid->bar_wait); 6039 else 6040 ath_tx_tid_bar_unsuspend(sc, atid); 6041 ATH_TX_UNLOCK(sc); 6042 } 6043 } 6044 6045 /* 6046 * This is called whenever the pending ADDBA request times out. 6047 * Unpause and reschedule the TID. 6048 */ 6049 void 6050 ath_addba_response_timeout(struct ieee80211_node *ni, 6051 struct ieee80211_tx_ampdu *tap) 6052 { 6053 struct ath_softc *sc = ni->ni_ic->ic_softc; 6054 int tid = tap->txa_tid; 6055 struct ath_node *an = ATH_NODE(ni); 6056 struct ath_tid *atid = &an->an_tid[tid]; 6057 6058 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 6059 "%s: %6D: TID=%d, called; resuming\n", 6060 __func__, 6061 ni->ni_macaddr, 6062 ":", 6063 tid); 6064 6065 ATH_TX_LOCK(sc); 6066 atid->addba_tx_pending = 0; 6067 ATH_TX_UNLOCK(sc); 6068 6069 /* Note: This updates the aggregate state to (again) pending */ 6070 sc->sc_addba_response_timeout(ni, tap); 6071 6072 /* Unpause the TID; which reschedules it */ 6073 ATH_TX_LOCK(sc); 6074 ath_tx_tid_resume(sc, atid); 6075 ATH_TX_UNLOCK(sc); 6076 } 6077 6078 /* 6079 * Check if a node is asleep or not. 6080 */ 6081 int 6082 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an) 6083 { 6084 6085 ATH_TX_LOCK_ASSERT(sc); 6086 6087 return (an->an_is_powersave); 6088 } 6089 6090 /* 6091 * Mark a node as currently "in powersaving." 6092 * This suspends all traffic on the node. 6093 * 6094 * This must be called with the node/tx locks free. 6095 * 6096 * XXX TODO: the locking silliness below is due to how the node 6097 * locking currently works. Right now, the node lock is grabbed 6098 * to do rate control lookups and these are done with the TX 6099 * queue lock held. This means the node lock can't be grabbed 6100 * first here or a LOR will occur. 6101 * 6102 * Eventually (hopefully!) the TX path code will only grab 6103 * the TXQ lock when transmitting and the ath_node lock when 6104 * doing node/TID operations. There are other complications - 6105 * the sched/unsched operations involve walking the per-txq 6106 * 'active tid' list and this requires both locks to be held. 6107 */ 6108 void 6109 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an) 6110 { 6111 struct ath_tid *atid; 6112 struct ath_txq *txq; 6113 int tid; 6114 6115 ATH_TX_UNLOCK_ASSERT(sc); 6116 6117 /* Suspend all traffic on the node */ 6118 ATH_TX_LOCK(sc); 6119 6120 if (an->an_is_powersave) { 6121 DPRINTF(sc, ATH_DEBUG_XMIT, 6122 "%s: %6D: node was already asleep!\n", 6123 __func__, an->an_node.ni_macaddr, ":"); 6124 ATH_TX_UNLOCK(sc); 6125 return; 6126 } 6127 6128 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 6129 atid = &an->an_tid[tid]; 6130 txq = sc->sc_ac2q[atid->ac]; 6131 6132 ath_tx_tid_pause(sc, atid); 6133 } 6134 6135 /* Mark node as in powersaving */ 6136 an->an_is_powersave = 1; 6137 6138 ATH_TX_UNLOCK(sc); 6139 } 6140 6141 /* 6142 * Mark a node as currently "awake." 6143 * This resumes all traffic to the node. 6144 */ 6145 void 6146 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an) 6147 { 6148 struct ath_tid *atid; 6149 struct ath_txq *txq; 6150 int tid; 6151 6152 ATH_TX_UNLOCK_ASSERT(sc); 6153 6154 ATH_TX_LOCK(sc); 6155 6156 /* !? */ 6157 if (an->an_is_powersave == 0) { 6158 ATH_TX_UNLOCK(sc); 6159 DPRINTF(sc, ATH_DEBUG_XMIT, 6160 "%s: an=%p: node was already awake\n", 6161 __func__, an); 6162 return; 6163 } 6164 6165 /* Mark node as awake */ 6166 an->an_is_powersave = 0; 6167 /* 6168 * Clear any pending leaked frame requests 6169 */ 6170 an->an_leak_count = 0; 6171 6172 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 6173 atid = &an->an_tid[tid]; 6174 txq = sc->sc_ac2q[atid->ac]; 6175 6176 ath_tx_tid_resume(sc, atid); 6177 } 6178 ATH_TX_UNLOCK(sc); 6179 } 6180 6181 static int 6182 ath_legacy_dma_txsetup(struct ath_softc *sc) 6183 { 6184 6185 /* nothing new needed */ 6186 return (0); 6187 } 6188 6189 static int 6190 ath_legacy_dma_txteardown(struct ath_softc *sc) 6191 { 6192 6193 /* nothing new needed */ 6194 return (0); 6195 } 6196 6197 void 6198 ath_xmit_setup_legacy(struct ath_softc *sc) 6199 { 6200 /* 6201 * For now, just set the descriptor length to sizeof(ath_desc); 6202 * worry about extracting the real length out of the HAL later. 6203 */ 6204 sc->sc_tx_desclen = sizeof(struct ath_desc); 6205 sc->sc_tx_statuslen = sizeof(struct ath_desc); 6206 sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */ 6207 6208 sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup; 6209 sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown; 6210 sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func; 6211 6212 sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart; 6213 sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff; 6214 6215 sc->sc_tx.xmit_drain = ath_legacy_tx_drain; 6216 } 6217