1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * Driver for the Atheros Wireless LAN controller. 36 * 37 * This software is derived from work of Atsushi Onoe; his contribution 38 * is greatly appreciated. 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_ath.h" 43 #include "opt_wlan.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/mbuf.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/kernel.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/errno.h> 56 #include <sys/callout.h> 57 #include <sys/bus.h> 58 #include <sys/endian.h> 59 #include <sys/kthread.h> 60 #include <sys/taskqueue.h> 61 #include <sys/priv.h> 62 63 #include <machine/bus.h> 64 65 #include <net/if.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 #include <net80211/ieee80211_regdomain.h> 75 #ifdef IEEE80211_SUPPORT_SUPERG 76 #include <net80211/ieee80211_superg.h> 77 #endif 78 #ifdef IEEE80211_SUPPORT_TDMA 79 #include <net80211/ieee80211_tdma.h> 80 #endif 81 #include <net80211/ieee80211_ht.h> 82 83 #include <net/bpf.h> 84 85 #ifdef INET 86 #include <netinet/in.h> 87 #include <netinet/if_ether.h> 88 #endif 89 90 #include <dev/ath/if_athvar.h> 91 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 92 #include <dev/ath/ath_hal/ah_diagcodes.h> 93 94 #include <dev/ath/if_ath_debug.h> 95 96 #ifdef ATH_TX99_DIAG 97 #include <dev/ath/ath_tx99/ath_tx99.h> 98 #endif 99 100 #include <dev/ath/if_ath_misc.h> 101 #include <dev/ath/if_ath_tx.h> 102 #include <dev/ath/if_ath_tx_ht.h> 103 104 #ifdef ATH_DEBUG_ALQ 105 #include <dev/ath/if_ath_alq.h> 106 #endif 107 108 /* 109 * How many retries to perform in software 110 */ 111 #define SWMAX_RETRIES 10 112 113 /* 114 * What queue to throw the non-QoS TID traffic into 115 */ 116 #define ATH_NONQOS_TID_AC WME_AC_VO 117 118 #if 0 119 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an); 120 #endif 121 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, 122 int tid); 123 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, 124 int tid); 125 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, 126 struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0); 127 static int ath_tx_action_frame_override_queue(struct ath_softc *sc, 128 struct ieee80211_node *ni, struct mbuf *m0, int *tid); 129 static struct ath_buf * 130 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 131 struct ath_tid *tid, struct ath_buf *bf); 132 133 #ifdef ATH_DEBUG_ALQ 134 void 135 ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first) 136 { 137 struct ath_buf *bf; 138 int i, n; 139 const char *ds; 140 141 /* XXX we should skip out early if debugging isn't enabled! */ 142 bf = bf_first; 143 144 while (bf != NULL) { 145 /* XXX should ensure bf_nseg > 0! */ 146 if (bf->bf_nseg == 0) 147 break; 148 n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1; 149 for (i = 0, ds = (const char *) bf->bf_desc; 150 i < n; 151 i++, ds += sc->sc_tx_desclen) { 152 if_ath_alq_post(&sc->sc_alq, 153 ATH_ALQ_EDMA_TXDESC, 154 sc->sc_tx_desclen, 155 ds); 156 } 157 bf = bf->bf_next; 158 } 159 } 160 #endif /* ATH_DEBUG_ALQ */ 161 162 /* 163 * Whether to use the 11n rate scenario functions or not 164 */ 165 static inline int 166 ath_tx_is_11n(struct ath_softc *sc) 167 { 168 return ((sc->sc_ah->ah_magic == 0x20065416) || 169 (sc->sc_ah->ah_magic == 0x19741014)); 170 } 171 172 /* 173 * Obtain the current TID from the given frame. 174 * 175 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.) 176 * This has implications for which AC/priority the packet is placed 177 * in. 178 */ 179 static int 180 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0) 181 { 182 const struct ieee80211_frame *wh; 183 int pri = M_WME_GETAC(m0); 184 185 wh = mtod(m0, const struct ieee80211_frame *); 186 if (! IEEE80211_QOS_HAS_SEQ(wh)) 187 return IEEE80211_NONQOS_TID; 188 else 189 return WME_AC_TO_TID(pri); 190 } 191 192 static void 193 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) 194 { 195 struct ieee80211_frame *wh; 196 197 wh = mtod(bf->bf_m, struct ieee80211_frame *); 198 /* Only update/resync if needed */ 199 if (bf->bf_state.bfs_isretried == 0) { 200 wh->i_fc[1] |= IEEE80211_FC1_RETRY; 201 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 202 BUS_DMASYNC_PREWRITE); 203 } 204 bf->bf_state.bfs_isretried = 1; 205 bf->bf_state.bfs_retries ++; 206 } 207 208 /* 209 * Determine what the correct AC queue for the given frame 210 * should be. 211 * 212 * This code assumes that the TIDs map consistently to 213 * the underlying hardware (or software) ath_txq. 214 * Since the sender may try to set an AC which is 215 * arbitrary, non-QoS TIDs may end up being put on 216 * completely different ACs. There's no way to put a 217 * TID into multiple ath_txq's for scheduling, so 218 * for now we override the AC/TXQ selection and set 219 * non-QOS TID frames into the BE queue. 220 * 221 * This may be completely incorrect - specifically, 222 * some management frames may end up out of order 223 * compared to the QoS traffic they're controlling. 224 * I'll look into this later. 225 */ 226 static int 227 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0) 228 { 229 const struct ieee80211_frame *wh; 230 int pri = M_WME_GETAC(m0); 231 wh = mtod(m0, const struct ieee80211_frame *); 232 if (IEEE80211_QOS_HAS_SEQ(wh)) 233 return pri; 234 235 return ATH_NONQOS_TID_AC; 236 } 237 238 void 239 ath_txfrag_cleanup(struct ath_softc *sc, 240 ath_bufhead *frags, struct ieee80211_node *ni) 241 { 242 struct ath_buf *bf, *next; 243 244 ATH_TXBUF_LOCK_ASSERT(sc); 245 246 TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { 247 /* NB: bf assumed clean */ 248 TAILQ_REMOVE(frags, bf, bf_list); 249 ath_returnbuf_head(sc, bf); 250 ieee80211_node_decref(ni); 251 } 252 } 253 254 /* 255 * Setup xmit of a fragmented frame. Allocate a buffer 256 * for each frag and bump the node reference count to 257 * reflect the held reference to be setup by ath_tx_start. 258 */ 259 int 260 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 261 struct mbuf *m0, struct ieee80211_node *ni) 262 { 263 struct mbuf *m; 264 struct ath_buf *bf; 265 266 ATH_TXBUF_LOCK(sc); 267 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 268 /* XXX non-management? */ 269 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 270 if (bf == NULL) { /* out of buffers, cleanup */ 271 device_printf(sc->sc_dev, "%s: no buffer?\n", 272 __func__); 273 ath_txfrag_cleanup(sc, frags, ni); 274 break; 275 } 276 ieee80211_node_incref(ni); 277 TAILQ_INSERT_TAIL(frags, bf, bf_list); 278 } 279 ATH_TXBUF_UNLOCK(sc); 280 281 return !TAILQ_EMPTY(frags); 282 } 283 284 /* 285 * Reclaim mbuf resources. For fragmented frames we 286 * need to claim each frag chained with m_nextpkt. 287 */ 288 void 289 ath_freetx(struct mbuf *m) 290 { 291 struct mbuf *next; 292 293 do { 294 next = m->m_nextpkt; 295 m->m_nextpkt = NULL; 296 m_freem(m); 297 } while ((m = next) != NULL); 298 } 299 300 static int 301 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) 302 { 303 struct mbuf *m; 304 int error; 305 306 /* 307 * Load the DMA map so any coalescing is done. This 308 * also calculates the number of descriptors we need. 309 */ 310 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 311 bf->bf_segs, &bf->bf_nseg, 312 BUS_DMA_NOWAIT); 313 if (error == EFBIG) { 314 /* XXX packet requires too many descriptors */ 315 bf->bf_nseg = ATH_TXDESC+1; 316 } else if (error != 0) { 317 sc->sc_stats.ast_tx_busdma++; 318 ath_freetx(m0); 319 return error; 320 } 321 /* 322 * Discard null packets and check for packets that 323 * require too many TX descriptors. We try to convert 324 * the latter to a cluster. 325 */ 326 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 327 sc->sc_stats.ast_tx_linear++; 328 m = m_collapse(m0, M_NOWAIT, ATH_TXDESC); 329 if (m == NULL) { 330 ath_freetx(m0); 331 sc->sc_stats.ast_tx_nombuf++; 332 return ENOMEM; 333 } 334 m0 = m; 335 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 336 bf->bf_segs, &bf->bf_nseg, 337 BUS_DMA_NOWAIT); 338 if (error != 0) { 339 sc->sc_stats.ast_tx_busdma++; 340 ath_freetx(m0); 341 return error; 342 } 343 KASSERT(bf->bf_nseg <= ATH_TXDESC, 344 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 345 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 346 sc->sc_stats.ast_tx_nodata++; 347 ath_freetx(m0); 348 return EIO; 349 } 350 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", 351 __func__, m0, m0->m_pkthdr.len); 352 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 353 bf->bf_m = m0; 354 355 return 0; 356 } 357 358 /* 359 * Chain together segments+descriptors for a frame - 11n or otherwise. 360 * 361 * For aggregates, this is called on each frame in the aggregate. 362 */ 363 static void 364 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0, 365 struct ath_buf *bf, int is_aggr, int is_first_subframe, 366 int is_last_subframe) 367 { 368 struct ath_hal *ah = sc->sc_ah; 369 char *ds; 370 int i, bp, dsp; 371 HAL_DMA_ADDR bufAddrList[4]; 372 uint32_t segLenList[4]; 373 int numTxMaps = 1; 374 int isFirstDesc = 1; 375 376 /* 377 * XXX There's txdma and txdma_mgmt; the descriptor 378 * sizes must match. 379 */ 380 struct ath_descdma *dd = &sc->sc_txdma; 381 382 /* 383 * Fillin the remainder of the descriptor info. 384 */ 385 386 /* 387 * For now the HAL doesn't implement halNumTxMaps for non-EDMA 388 * (ie it's 0.) So just work around it. 389 * 390 * XXX TODO: populate halNumTxMaps for each HAL chip and 391 * then undo this hack. 392 */ 393 if (sc->sc_ah->ah_magic == 0x19741014) 394 numTxMaps = 4; 395 396 /* 397 * For EDMA and later chips ensure the TX map is fully populated 398 * before advancing to the next descriptor. 399 */ 400 ds = (char *) bf->bf_desc; 401 bp = dsp = 0; 402 bzero(bufAddrList, sizeof(bufAddrList)); 403 bzero(segLenList, sizeof(segLenList)); 404 for (i = 0; i < bf->bf_nseg; i++) { 405 bufAddrList[bp] = bf->bf_segs[i].ds_addr; 406 segLenList[bp] = bf->bf_segs[i].ds_len; 407 bp++; 408 409 /* 410 * Go to the next segment if this isn't the last segment 411 * and there's space in the current TX map. 412 */ 413 if ((i != bf->bf_nseg - 1) && (bp < numTxMaps)) 414 continue; 415 416 /* 417 * Last segment or we're out of buffer pointers. 418 */ 419 bp = 0; 420 421 if (i == bf->bf_nseg - 1) 422 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0); 423 else 424 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 425 bf->bf_daddr + dd->dd_descsize * (dsp + 1)); 426 427 /* 428 * XXX This assumes that bfs_txq is the actual destination 429 * hardware queue at this point. It may not have been 430 * assigned, it may actually be pointing to the multicast 431 * software TXQ id. These must be fixed! 432 */ 433 ath_hal_filltxdesc(ah, (struct ath_desc *) ds 434 , bufAddrList 435 , segLenList 436 , bf->bf_descid /* XXX desc id */ 437 , bf->bf_state.bfs_tx_queue 438 , isFirstDesc /* first segment */ 439 , i == bf->bf_nseg - 1 /* last segment */ 440 , (struct ath_desc *) ds0 /* first descriptor */ 441 ); 442 443 /* 444 * Make sure the 11n aggregate fields are cleared. 445 * 446 * XXX TODO: this doesn't need to be called for 447 * aggregate frames; as it'll be called on all 448 * sub-frames. Since the descriptors are in 449 * non-cacheable memory, this leads to some 450 * rather slow writes on MIPS/ARM platforms. 451 */ 452 if (ath_tx_is_11n(sc)) 453 ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds); 454 455 /* 456 * If 11n is enabled, set it up as if it's an aggregate 457 * frame. 458 */ 459 if (is_last_subframe) { 460 ath_hal_set11n_aggr_last(sc->sc_ah, 461 (struct ath_desc *) ds); 462 } else if (is_aggr) { 463 /* 464 * This clears the aggrlen field; so 465 * the caller needs to call set_aggr_first()! 466 * 467 * XXX TODO: don't call this for the first 468 * descriptor in the first frame in an 469 * aggregate! 470 */ 471 ath_hal_set11n_aggr_middle(sc->sc_ah, 472 (struct ath_desc *) ds, 473 bf->bf_state.bfs_ndelim); 474 } 475 isFirstDesc = 0; 476 #ifdef ATH_DEBUG 477 if (sc->sc_debug & ATH_DEBUG_XMIT) 478 ath_printtxbuf(sc, bf, bf->bf_state.bfs_tx_queue, 479 0, 0); 480 #endif 481 bf->bf_lastds = (struct ath_desc *) ds; 482 483 /* 484 * Don't forget to skip to the next descriptor. 485 */ 486 ds += sc->sc_tx_desclen; 487 dsp++; 488 489 /* 490 * .. and don't forget to blank these out! 491 */ 492 bzero(bufAddrList, sizeof(bufAddrList)); 493 bzero(segLenList, sizeof(segLenList)); 494 } 495 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 496 } 497 498 /* 499 * Set the rate control fields in the given descriptor based on 500 * the bf_state fields and node state. 501 * 502 * The bfs fields should already be set with the relevant rate 503 * control information, including whether MRR is to be enabled. 504 * 505 * Since the FreeBSD HAL currently sets up the first TX rate 506 * in ath_hal_setuptxdesc(), this will setup the MRR 507 * conditionally for the pre-11n chips, and call ath_buf_set_rate 508 * unconditionally for 11n chips. These require the 11n rate 509 * scenario to be set if MCS rates are enabled, so it's easier 510 * to just always call it. The caller can then only set rates 2, 3 511 * and 4 if multi-rate retry is needed. 512 */ 513 static void 514 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 515 struct ath_buf *bf) 516 { 517 struct ath_rc_series *rc = bf->bf_state.bfs_rc; 518 519 /* If mrr is disabled, blank tries 1, 2, 3 */ 520 if (! bf->bf_state.bfs_ismrr) 521 rc[1].tries = rc[2].tries = rc[3].tries = 0; 522 523 #if 0 524 /* 525 * If NOACK is set, just set ntries=1. 526 */ 527 else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) { 528 rc[1].tries = rc[2].tries = rc[3].tries = 0; 529 rc[0].tries = 1; 530 } 531 #endif 532 533 /* 534 * Always call - that way a retried descriptor will 535 * have the MRR fields overwritten. 536 * 537 * XXX TODO: see if this is really needed - setting up 538 * the first descriptor should set the MRR fields to 0 539 * for us anyway. 540 */ 541 if (ath_tx_is_11n(sc)) { 542 ath_buf_set_rate(sc, ni, bf); 543 } else { 544 ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc 545 , rc[1].ratecode, rc[1].tries 546 , rc[2].ratecode, rc[2].tries 547 , rc[3].ratecode, rc[3].tries 548 ); 549 } 550 } 551 552 /* 553 * Setup segments+descriptors for an 11n aggregate. 554 * bf_first is the first buffer in the aggregate. 555 * The descriptor list must already been linked together using 556 * bf->bf_next. 557 */ 558 static void 559 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first) 560 { 561 struct ath_buf *bf, *bf_prev = NULL; 562 struct ath_desc *ds0 = bf_first->bf_desc; 563 564 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n", 565 __func__, bf_first->bf_state.bfs_nframes, 566 bf_first->bf_state.bfs_al); 567 568 bf = bf_first; 569 570 if (bf->bf_state.bfs_txrate0 == 0) 571 device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n", 572 __func__, bf, 0); 573 if (bf->bf_state.bfs_rc[0].ratecode == 0) 574 device_printf(sc->sc_dev, "%s: bf=%p, rix0=%d\n", 575 __func__, bf, 0); 576 577 /* 578 * Setup all descriptors of all subframes - this will 579 * call ath_hal_set11naggrmiddle() on every frame. 580 */ 581 while (bf != NULL) { 582 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 583 "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n", 584 __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen, 585 SEQNO(bf->bf_state.bfs_seqno)); 586 587 /* 588 * Setup the initial fields for the first descriptor - all 589 * the non-11n specific stuff. 590 */ 591 ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc 592 , bf->bf_state.bfs_pktlen /* packet length */ 593 , bf->bf_state.bfs_hdrlen /* header length */ 594 , bf->bf_state.bfs_atype /* Atheros packet type */ 595 , bf->bf_state.bfs_txpower /* txpower */ 596 , bf->bf_state.bfs_txrate0 597 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 598 , bf->bf_state.bfs_keyix /* key cache index */ 599 , bf->bf_state.bfs_txantenna /* antenna mode */ 600 , bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ /* flags */ 601 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 602 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 603 ); 604 605 /* 606 * First descriptor? Setup the rate control and initial 607 * aggregate header information. 608 */ 609 if (bf == bf_first) { 610 /* 611 * setup first desc with rate and aggr info 612 */ 613 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 614 } 615 616 /* 617 * Setup the descriptors for a multi-descriptor frame. 618 * This is both aggregate and non-aggregate aware. 619 */ 620 ath_tx_chaindesclist(sc, ds0, bf, 621 1, /* is_aggr */ 622 !! (bf == bf_first), /* is_first_subframe */ 623 !! (bf->bf_next == NULL) /* is_last_subframe */ 624 ); 625 626 if (bf == bf_first) { 627 /* 628 * Initialise the first 11n aggregate with the 629 * aggregate length and aggregate enable bits. 630 */ 631 ath_hal_set11n_aggr_first(sc->sc_ah, 632 ds0, 633 bf->bf_state.bfs_al, 634 bf->bf_state.bfs_ndelim); 635 } 636 637 /* 638 * Link the last descriptor of the previous frame 639 * to the beginning descriptor of this frame. 640 */ 641 if (bf_prev != NULL) 642 ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds, 643 bf->bf_daddr); 644 645 /* Save a copy so we can link the next descriptor in */ 646 bf_prev = bf; 647 bf = bf->bf_next; 648 } 649 650 /* 651 * Set the first descriptor bf_lastds field to point to 652 * the last descriptor in the last subframe, that's where 653 * the status update will occur. 654 */ 655 bf_first->bf_lastds = bf_prev->bf_lastds; 656 657 /* 658 * And bf_last in the first descriptor points to the end of 659 * the aggregate list. 660 */ 661 bf_first->bf_last = bf_prev; 662 663 /* 664 * For non-AR9300 NICs, which require the rate control 665 * in the final descriptor - let's set that up now. 666 * 667 * This is because the filltxdesc() HAL call doesn't 668 * populate the last segment with rate control information 669 * if firstSeg is also true. For non-aggregate frames 670 * that is fine, as the first frame already has rate control 671 * info. But if the last frame in an aggregate has one 672 * descriptor, both firstseg and lastseg will be true and 673 * the rate info isn't copied. 674 * 675 * This is inefficient on MIPS/ARM platforms that have 676 * non-cachable memory for TX descriptors, but we'll just 677 * make do for now. 678 * 679 * As to why the rate table is stashed in the last descriptor 680 * rather than the first descriptor? Because proctxdesc() 681 * is called on the final descriptor in an MPDU or A-MPDU - 682 * ie, the one that gets updated by the hardware upon 683 * completion. That way proctxdesc() doesn't need to know 684 * about the first _and_ last TX descriptor. 685 */ 686 ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0); 687 688 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__); 689 } 690 691 /* 692 * Hand-off a frame to the multicast TX queue. 693 * 694 * This is a software TXQ which will be appended to the CAB queue 695 * during the beacon setup code. 696 * 697 * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID 698 * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated 699 * with the actual hardware txq, or all of this will fall apart. 700 * 701 * XXX It may not be a bad idea to just stuff the QCU ID into bf_state 702 * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated 703 * correctly. 704 */ 705 static void 706 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, 707 struct ath_buf *bf) 708 { 709 ATH_TX_LOCK_ASSERT(sc); 710 711 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 712 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 713 if (txq->axq_link != NULL) { 714 struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s); 715 struct ieee80211_frame *wh; 716 717 /* mark previous frame */ 718 wh = mtod(last->bf_m, struct ieee80211_frame *); 719 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 720 bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap, 721 BUS_DMASYNC_PREWRITE); 722 723 /* link descriptor */ 724 *txq->axq_link = bf->bf_daddr; 725 } 726 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 727 ath_hal_gettxdesclinkptr(sc->sc_ah, bf->bf_lastds, &txq->axq_link); 728 } 729 730 /* 731 * Hand-off packet to a hardware queue. 732 */ 733 static void 734 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, 735 struct ath_buf *bf) 736 { 737 struct ath_hal *ah = sc->sc_ah; 738 739 /* 740 * Insert the frame on the outbound list and pass it on 741 * to the hardware. Multicast frames buffered for power 742 * save stations and transmit from the CAB queue are stored 743 * on a s/w only queue and loaded on to the CAB queue in 744 * the SWBA handler since frames only go out on DTIM and 745 * to avoid possible races. 746 */ 747 ATH_TX_LOCK_ASSERT(sc); 748 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 749 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 750 KASSERT(txq->axq_qnum != ATH_TXQ_SWQ, 751 ("ath_tx_handoff_hw called for mcast queue")); 752 753 #if 0 754 /* 755 * This causes a LOR. Find out where the PCU lock is being 756 * held whilst the TXQ lock is grabbed - that shouldn't 757 * be occuring. 758 */ 759 ATH_PCU_LOCK(sc); 760 if (sc->sc_inreset_cnt) { 761 ATH_PCU_UNLOCK(sc); 762 DPRINTF(sc, ATH_DEBUG_RESET, 763 "%s: called with sc_in_reset != 0\n", 764 __func__); 765 DPRINTF(sc, ATH_DEBUG_XMIT, 766 "%s: queued: TXDP[%u] = %p (%p) depth %d\n", 767 __func__, txq->axq_qnum, 768 (caddr_t)bf->bf_daddr, bf->bf_desc, 769 txq->axq_depth); 770 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 771 if (bf->bf_state.bfs_aggr) 772 txq->axq_aggr_depth++; 773 /* 774 * There's no need to update axq_link; the hardware 775 * is in reset and once the reset is complete, any 776 * non-empty queues will simply have DMA restarted. 777 */ 778 return; 779 } 780 ATH_PCU_UNLOCK(sc); 781 #endif 782 783 /* For now, so not to generate whitespace diffs */ 784 if (1) { 785 #ifdef IEEE80211_SUPPORT_TDMA 786 int qbusy; 787 788 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 789 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum); 790 791 ATH_KTR(sc, ATH_KTR_TX, 4, 792 "ath_tx_handoff: txq=%u, add bf=%p, qbusy=%d, depth=%d", 793 txq->axq_qnum, bf, qbusy, txq->axq_depth); 794 if (txq->axq_link == NULL) { 795 /* 796 * Be careful writing the address to TXDP. If 797 * the tx q is enabled then this write will be 798 * ignored. Normally this is not an issue but 799 * when tdma is in use and the q is beacon gated 800 * this race can occur. If the q is busy then 801 * defer the work to later--either when another 802 * packet comes along or when we prepare a beacon 803 * frame at SWBA. 804 */ 805 if (!qbusy) { 806 ath_hal_puttxbuf(ah, txq->axq_qnum, 807 bf->bf_daddr); 808 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 809 DPRINTF(sc, ATH_DEBUG_XMIT, 810 "%s: TXDP[%u] = %p (%p) lastds=%p depth %d\n", 811 __func__, txq->axq_qnum, 812 (caddr_t)bf->bf_daddr, bf->bf_desc, 813 bf->bf_lastds, 814 txq->axq_depth); 815 ATH_KTR(sc, ATH_KTR_TX, 5, 816 "ath_tx_handoff: TXDP[%u] = %p (%p) " 817 "lastds=%p depth %d", 818 txq->axq_qnum, 819 (caddr_t)bf->bf_daddr, bf->bf_desc, 820 bf->bf_lastds, 821 txq->axq_depth); 822 } else { 823 txq->axq_flags |= ATH_TXQ_PUTPENDING; 824 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 825 "%s: Q%u busy, defer enable\n", __func__, 826 txq->axq_qnum); 827 ATH_KTR(sc, ATH_KTR_TX, 0, "defer enable"); 828 } 829 } else { 830 *txq->axq_link = bf->bf_daddr; 831 DPRINTF(sc, ATH_DEBUG_XMIT, 832 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 833 txq->axq_qnum, txq->axq_link, 834 (caddr_t)bf->bf_daddr, bf->bf_desc, 835 txq->axq_depth); 836 ATH_KTR(sc, ATH_KTR_TX, 5, 837 "ath_tx_handoff: link[%u](%p)=%p (%p) lastds=%p", 838 txq->axq_qnum, txq->axq_link, 839 (caddr_t)bf->bf_daddr, bf->bf_desc, 840 bf->bf_lastds); 841 842 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) { 843 /* 844 * The q was busy when we previously tried 845 * to write the address of the first buffer 846 * in the chain. Since it's not busy now 847 * handle this chore. We are certain the 848 * buffer at the front is the right one since 849 * axq_link is NULL only when the buffer list 850 * is/was empty. 851 */ 852 ath_hal_puttxbuf(ah, txq->axq_qnum, 853 TAILQ_FIRST(&txq->axq_q)->bf_daddr); 854 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 855 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 856 "%s: Q%u restarted\n", __func__, 857 txq->axq_qnum); 858 ATH_KTR(sc, ATH_KTR_TX, 4, 859 "ath_tx_handoff: txq[%d] restarted, bf=%p " 860 "daddr=%p ds=%p", 861 txq->axq_qnum, 862 bf, 863 (caddr_t)bf->bf_daddr, 864 bf->bf_desc); 865 } 866 } 867 #else 868 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 869 ATH_KTR(sc, ATH_KTR_TX, 3, 870 "ath_tx_handoff: non-tdma: txq=%u, add bf=%p " 871 "depth=%d", 872 txq->axq_qnum, 873 bf, 874 txq->axq_depth); 875 if (txq->axq_link == NULL) { 876 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 877 DPRINTF(sc, ATH_DEBUG_XMIT, 878 "%s: TXDP[%u] = %p (%p) depth %d\n", 879 __func__, txq->axq_qnum, 880 (caddr_t)bf->bf_daddr, bf->bf_desc, 881 txq->axq_depth); 882 ATH_KTR(sc, ATH_KTR_TX, 5, 883 "ath_tx_handoff: non-tdma: TXDP[%u] = %p (%p) " 884 "lastds=%p depth %d", 885 txq->axq_qnum, 886 (caddr_t)bf->bf_daddr, bf->bf_desc, 887 bf->bf_lastds, 888 txq->axq_depth); 889 890 } else { 891 *txq->axq_link = bf->bf_daddr; 892 DPRINTF(sc, ATH_DEBUG_XMIT, 893 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 894 txq->axq_qnum, txq->axq_link, 895 (caddr_t)bf->bf_daddr, bf->bf_desc, 896 txq->axq_depth); 897 ATH_KTR(sc, ATH_KTR_TX, 5, 898 "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) " 899 "lastds=%d", 900 txq->axq_qnum, txq->axq_link, 901 (caddr_t)bf->bf_daddr, bf->bf_desc, 902 bf->bf_lastds); 903 904 } 905 #endif /* IEEE80211_SUPPORT_TDMA */ 906 if (bf->bf_state.bfs_aggr) 907 txq->axq_aggr_depth++; 908 ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link); 909 ath_hal_txstart(ah, txq->axq_qnum); 910 ATH_KTR(sc, ATH_KTR_TX, 1, 911 "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum); 912 } 913 } 914 915 /* 916 * Restart TX DMA for the given TXQ. 917 * 918 * This must be called whether the queue is empty or not. 919 */ 920 static void 921 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq) 922 { 923 struct ath_hal *ah = sc->sc_ah; 924 struct ath_buf *bf, *bf_last; 925 926 ATH_TX_LOCK_ASSERT(sc); 927 928 /* This is always going to be cleared, empty or not */ 929 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 930 931 /* XXX make this ATH_TXQ_FIRST */ 932 bf = TAILQ_FIRST(&txq->axq_q); 933 bf_last = ATH_TXQ_LAST(txq, axq_q_s); 934 935 if (bf == NULL) 936 return; 937 938 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 939 ath_hal_gettxdesclinkptr(ah, bf_last->bf_lastds, &txq->axq_link); 940 ath_hal_txstart(ah, txq->axq_qnum); 941 } 942 943 /* 944 * Hand off a packet to the hardware (or mcast queue.) 945 * 946 * The relevant hardware txq should be locked. 947 */ 948 static void 949 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, 950 struct ath_buf *bf) 951 { 952 ATH_TX_LOCK_ASSERT(sc); 953 954 #ifdef ATH_DEBUG_ALQ 955 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC)) 956 ath_tx_alq_post(sc, bf); 957 #endif 958 959 if (txq->axq_qnum == ATH_TXQ_SWQ) 960 ath_tx_handoff_mcast(sc, txq, bf); 961 else 962 ath_tx_handoff_hw(sc, txq, bf); 963 } 964 965 static int 966 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni, 967 struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, 968 int *keyix) 969 { 970 DPRINTF(sc, ATH_DEBUG_XMIT, 971 "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n", 972 __func__, 973 *hdrlen, 974 *pktlen, 975 isfrag, 976 iswep, 977 m0); 978 979 if (iswep) { 980 const struct ieee80211_cipher *cip; 981 struct ieee80211_key *k; 982 983 /* 984 * Construct the 802.11 header+trailer for an encrypted 985 * frame. The only reason this can fail is because of an 986 * unknown or unsupported cipher/key type. 987 */ 988 k = ieee80211_crypto_encap(ni, m0); 989 if (k == NULL) { 990 /* 991 * This can happen when the key is yanked after the 992 * frame was queued. Just discard the frame; the 993 * 802.11 layer counts failures and provides 994 * debugging/diagnostics. 995 */ 996 return (0); 997 } 998 /* 999 * Adjust the packet + header lengths for the crypto 1000 * additions and calculate the h/w key index. When 1001 * a s/w mic is done the frame will have had any mic 1002 * added to it prior to entry so m0->m_pkthdr.len will 1003 * account for it. Otherwise we need to add it to the 1004 * packet length. 1005 */ 1006 cip = k->wk_cipher; 1007 (*hdrlen) += cip->ic_header; 1008 (*pktlen) += cip->ic_header + cip->ic_trailer; 1009 /* NB: frags always have any TKIP MIC done in s/w */ 1010 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 1011 (*pktlen) += cip->ic_miclen; 1012 (*keyix) = k->wk_keyix; 1013 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 1014 /* 1015 * Use station key cache slot, if assigned. 1016 */ 1017 (*keyix) = ni->ni_ucastkey.wk_keyix; 1018 if ((*keyix) == IEEE80211_KEYIX_NONE) 1019 (*keyix) = HAL_TXKEYIX_INVALID; 1020 } else 1021 (*keyix) = HAL_TXKEYIX_INVALID; 1022 1023 return (1); 1024 } 1025 1026 /* 1027 * Calculate whether interoperability protection is required for 1028 * this frame. 1029 * 1030 * This requires the rate control information be filled in, 1031 * as the protection requirement depends upon the current 1032 * operating mode / PHY. 1033 */ 1034 static void 1035 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf) 1036 { 1037 struct ieee80211_frame *wh; 1038 uint8_t rix; 1039 uint16_t flags; 1040 int shortPreamble; 1041 const HAL_RATE_TABLE *rt = sc->sc_currates; 1042 struct ifnet *ifp = sc->sc_ifp; 1043 struct ieee80211com *ic = ifp->if_l2com; 1044 1045 flags = bf->bf_state.bfs_txflags; 1046 rix = bf->bf_state.bfs_rc[0].rix; 1047 shortPreamble = bf->bf_state.bfs_shpream; 1048 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1049 1050 /* 1051 * If 802.11g protection is enabled, determine whether 1052 * to use RTS/CTS or just CTS. Note that this is only 1053 * done for OFDM unicast frames. 1054 */ 1055 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1056 rt->info[rix].phy == IEEE80211_T_OFDM && 1057 (flags & HAL_TXDESC_NOACK) == 0) { 1058 bf->bf_state.bfs_doprot = 1; 1059 /* XXX fragments must use CCK rates w/ protection */ 1060 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { 1061 flags |= HAL_TXDESC_RTSENA; 1062 } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { 1063 flags |= HAL_TXDESC_CTSENA; 1064 } 1065 /* 1066 * For frags it would be desirable to use the 1067 * highest CCK rate for RTS/CTS. But stations 1068 * farther away may detect it at a lower CCK rate 1069 * so use the configured protection rate instead 1070 * (for now). 1071 */ 1072 sc->sc_stats.ast_tx_protect++; 1073 } 1074 1075 /* 1076 * If 11n protection is enabled and it's a HT frame, 1077 * enable RTS. 1078 * 1079 * XXX ic_htprotmode or ic_curhtprotmode? 1080 * XXX should it_htprotmode only matter if ic_curhtprotmode 1081 * XXX indicates it's not a HT pure environment? 1082 */ 1083 if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) && 1084 rt->info[rix].phy == IEEE80211_T_HT && 1085 (flags & HAL_TXDESC_NOACK) == 0) { 1086 flags |= HAL_TXDESC_RTSENA; 1087 sc->sc_stats.ast_tx_htprotect++; 1088 } 1089 bf->bf_state.bfs_txflags = flags; 1090 } 1091 1092 /* 1093 * Update the frame duration given the currently selected rate. 1094 * 1095 * This also updates the frame duration value, so it will require 1096 * a DMA flush. 1097 */ 1098 static void 1099 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf) 1100 { 1101 struct ieee80211_frame *wh; 1102 uint8_t rix; 1103 uint16_t flags; 1104 int shortPreamble; 1105 struct ath_hal *ah = sc->sc_ah; 1106 const HAL_RATE_TABLE *rt = sc->sc_currates; 1107 int isfrag = bf->bf_m->m_flags & M_FRAG; 1108 1109 flags = bf->bf_state.bfs_txflags; 1110 rix = bf->bf_state.bfs_rc[0].rix; 1111 shortPreamble = bf->bf_state.bfs_shpream; 1112 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1113 1114 /* 1115 * Calculate duration. This logically belongs in the 802.11 1116 * layer but it lacks sufficient information to calculate it. 1117 */ 1118 if ((flags & HAL_TXDESC_NOACK) == 0 && 1119 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 1120 u_int16_t dur; 1121 if (shortPreamble) 1122 dur = rt->info[rix].spAckDuration; 1123 else 1124 dur = rt->info[rix].lpAckDuration; 1125 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 1126 dur += dur; /* additional SIFS+ACK */ 1127 if (bf->bf_state.bfs_nextpktlen == 0) { 1128 device_printf(sc->sc_dev, 1129 "%s: next txfrag len=0?\n", 1130 __func__); 1131 } 1132 /* 1133 * Include the size of next fragment so NAV is 1134 * updated properly. The last fragment uses only 1135 * the ACK duration 1136 * 1137 * XXX TODO: ensure that the rate lookup for each 1138 * fragment is the same as the rate used by the 1139 * first fragment! 1140 */ 1141 dur += ath_hal_computetxtime(ah, rt, 1142 bf->bf_state.bfs_nextpktlen, 1143 rix, shortPreamble); 1144 } 1145 if (isfrag) { 1146 /* 1147 * Force hardware to use computed duration for next 1148 * fragment by disabling multi-rate retry which updates 1149 * duration based on the multi-rate duration table. 1150 */ 1151 bf->bf_state.bfs_ismrr = 0; 1152 bf->bf_state.bfs_try0 = ATH_TXMGTTRY; 1153 /* XXX update bfs_rc[0].try? */ 1154 } 1155 1156 /* Update the duration field itself */ 1157 *(u_int16_t *)wh->i_dur = htole16(dur); 1158 } 1159 } 1160 1161 static uint8_t 1162 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt, 1163 int cix, int shortPreamble) 1164 { 1165 uint8_t ctsrate; 1166 1167 /* 1168 * CTS transmit rate is derived from the transmit rate 1169 * by looking in the h/w rate table. We must also factor 1170 * in whether or not a short preamble is to be used. 1171 */ 1172 /* NB: cix is set above where RTS/CTS is enabled */ 1173 KASSERT(cix != 0xff, ("cix not setup")); 1174 ctsrate = rt->info[cix].rateCode; 1175 1176 /* XXX this should only matter for legacy rates */ 1177 if (shortPreamble) 1178 ctsrate |= rt->info[cix].shortPreamble; 1179 1180 return (ctsrate); 1181 } 1182 1183 /* 1184 * Calculate the RTS/CTS duration for legacy frames. 1185 */ 1186 static int 1187 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix, 1188 int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt, 1189 int flags) 1190 { 1191 int ctsduration = 0; 1192 1193 /* This mustn't be called for HT modes */ 1194 if (rt->info[cix].phy == IEEE80211_T_HT) { 1195 printf("%s: HT rate where it shouldn't be (0x%x)\n", 1196 __func__, rt->info[cix].rateCode); 1197 return (-1); 1198 } 1199 1200 /* 1201 * Compute the transmit duration based on the frame 1202 * size and the size of an ACK frame. We call into the 1203 * HAL to do the computation since it depends on the 1204 * characteristics of the actual PHY being used. 1205 * 1206 * NB: CTS is assumed the same size as an ACK so we can 1207 * use the precalculated ACK durations. 1208 */ 1209 if (shortPreamble) { 1210 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1211 ctsduration += rt->info[cix].spAckDuration; 1212 ctsduration += ath_hal_computetxtime(ah, 1213 rt, pktlen, rix, AH_TRUE); 1214 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1215 ctsduration += rt->info[rix].spAckDuration; 1216 } else { 1217 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1218 ctsduration += rt->info[cix].lpAckDuration; 1219 ctsduration += ath_hal_computetxtime(ah, 1220 rt, pktlen, rix, AH_FALSE); 1221 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1222 ctsduration += rt->info[rix].lpAckDuration; 1223 } 1224 1225 return (ctsduration); 1226 } 1227 1228 /* 1229 * Update the given ath_buf with updated rts/cts setup and duration 1230 * values. 1231 * 1232 * To support rate lookups for each software retry, the rts/cts rate 1233 * and cts duration must be re-calculated. 1234 * 1235 * This function assumes the RTS/CTS flags have been set as needed; 1236 * mrr has been disabled; and the rate control lookup has been done. 1237 * 1238 * XXX TODO: MRR need only be disabled for the pre-11n NICs. 1239 * XXX The 11n NICs support per-rate RTS/CTS configuration. 1240 */ 1241 static void 1242 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf) 1243 { 1244 uint16_t ctsduration = 0; 1245 uint8_t ctsrate = 0; 1246 uint8_t rix = bf->bf_state.bfs_rc[0].rix; 1247 uint8_t cix = 0; 1248 const HAL_RATE_TABLE *rt = sc->sc_currates; 1249 1250 /* 1251 * No RTS/CTS enabled? Don't bother. 1252 */ 1253 if ((bf->bf_state.bfs_txflags & 1254 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) { 1255 /* XXX is this really needed? */ 1256 bf->bf_state.bfs_ctsrate = 0; 1257 bf->bf_state.bfs_ctsduration = 0; 1258 return; 1259 } 1260 1261 /* 1262 * If protection is enabled, use the protection rix control 1263 * rate. Otherwise use the rate0 control rate. 1264 */ 1265 if (bf->bf_state.bfs_doprot) 1266 rix = sc->sc_protrix; 1267 else 1268 rix = bf->bf_state.bfs_rc[0].rix; 1269 1270 /* 1271 * If the raw path has hard-coded ctsrate0 to something, 1272 * use it. 1273 */ 1274 if (bf->bf_state.bfs_ctsrate0 != 0) 1275 cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0); 1276 else 1277 /* Control rate from above */ 1278 cix = rt->info[rix].controlRate; 1279 1280 /* Calculate the rtscts rate for the given cix */ 1281 ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix, 1282 bf->bf_state.bfs_shpream); 1283 1284 /* The 11n chipsets do ctsduration calculations for you */ 1285 if (! ath_tx_is_11n(sc)) 1286 ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix, 1287 bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, 1288 rt, bf->bf_state.bfs_txflags); 1289 1290 /* Squirrel away in ath_buf */ 1291 bf->bf_state.bfs_ctsrate = ctsrate; 1292 bf->bf_state.bfs_ctsduration = ctsduration; 1293 1294 /* 1295 * Must disable multi-rate retry when using RTS/CTS. 1296 */ 1297 if (!sc->sc_mrrprot) { 1298 bf->bf_state.bfs_ismrr = 0; 1299 bf->bf_state.bfs_try0 = 1300 bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */ 1301 } 1302 } 1303 1304 /* 1305 * Setup the descriptor chain for a normal or fast-frame 1306 * frame. 1307 * 1308 * XXX TODO: extend to include the destination hardware QCU ID. 1309 * Make sure that is correct. Make sure that when being added 1310 * to the mcastq, the CABQ QCUID is set or things will get a bit 1311 * odd. 1312 */ 1313 static void 1314 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf) 1315 { 1316 struct ath_desc *ds = bf->bf_desc; 1317 struct ath_hal *ah = sc->sc_ah; 1318 1319 if (bf->bf_state.bfs_txrate0 == 0) 1320 device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n", 1321 __func__, bf, 0); 1322 1323 ath_hal_setuptxdesc(ah, ds 1324 , bf->bf_state.bfs_pktlen /* packet length */ 1325 , bf->bf_state.bfs_hdrlen /* header length */ 1326 , bf->bf_state.bfs_atype /* Atheros packet type */ 1327 , bf->bf_state.bfs_txpower /* txpower */ 1328 , bf->bf_state.bfs_txrate0 1329 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 1330 , bf->bf_state.bfs_keyix /* key cache index */ 1331 , bf->bf_state.bfs_txantenna /* antenna mode */ 1332 , bf->bf_state.bfs_txflags /* flags */ 1333 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 1334 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 1335 ); 1336 1337 /* 1338 * This will be overriden when the descriptor chain is written. 1339 */ 1340 bf->bf_lastds = ds; 1341 bf->bf_last = bf; 1342 1343 /* Set rate control and descriptor chain for this frame */ 1344 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 1345 ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0); 1346 } 1347 1348 /* 1349 * Do a rate lookup. 1350 * 1351 * This performs a rate lookup for the given ath_buf only if it's required. 1352 * Non-data frames and raw frames don't require it. 1353 * 1354 * This populates the primary and MRR entries; MRR values are 1355 * then disabled later on if something requires it (eg RTS/CTS on 1356 * pre-11n chipsets. 1357 * 1358 * This needs to be done before the RTS/CTS fields are calculated 1359 * as they may depend upon the rate chosen. 1360 */ 1361 static void 1362 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf) 1363 { 1364 uint8_t rate, rix; 1365 int try0; 1366 1367 if (! bf->bf_state.bfs_doratelookup) 1368 return; 1369 1370 /* Get rid of any previous state */ 1371 bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1372 1373 ATH_NODE_LOCK(ATH_NODE(bf->bf_node)); 1374 ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream, 1375 bf->bf_state.bfs_pktlen, &rix, &try0, &rate); 1376 1377 /* In case MRR is disabled, make sure rc[0] is setup correctly */ 1378 bf->bf_state.bfs_rc[0].rix = rix; 1379 bf->bf_state.bfs_rc[0].ratecode = rate; 1380 bf->bf_state.bfs_rc[0].tries = try0; 1381 1382 if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY) 1383 ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix, 1384 bf->bf_state.bfs_rc); 1385 ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node)); 1386 1387 sc->sc_txrix = rix; /* for LED blinking */ 1388 sc->sc_lastdatarix = rix; /* for fast frames */ 1389 bf->bf_state.bfs_try0 = try0; 1390 bf->bf_state.bfs_txrate0 = rate; 1391 } 1392 1393 /* 1394 * Update the CLRDMASK bit in the ath_buf if it needs to be set. 1395 */ 1396 static void 1397 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid, 1398 struct ath_buf *bf) 1399 { 1400 struct ath_node *an = ATH_NODE(bf->bf_node); 1401 1402 ATH_TX_LOCK_ASSERT(sc); 1403 1404 if (an->clrdmask == 1) { 1405 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1406 an->clrdmask = 0; 1407 } 1408 } 1409 1410 /* 1411 * Transmit the given frame to the hardware. 1412 * 1413 * The frame must already be setup; rate control must already have 1414 * been done. 1415 * 1416 * XXX since the TXQ lock is being held here (and I dislike holding 1417 * it for this long when not doing software aggregation), later on 1418 * break this function into "setup_normal" and "xmit_normal". The 1419 * lock only needs to be held for the ath_tx_handoff call. 1420 */ 1421 static void 1422 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq, 1423 struct ath_buf *bf) 1424 { 1425 struct ath_node *an = ATH_NODE(bf->bf_node); 1426 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 1427 1428 ATH_TX_LOCK_ASSERT(sc); 1429 1430 /* 1431 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does 1432 * set a completion handler however it doesn't (yet) properly 1433 * handle the strict ordering requirements needed for normal, 1434 * non-aggregate session frames. 1435 * 1436 * Once this is implemented, only set CLRDMASK like this for 1437 * frames that must go out - eg management/raw frames. 1438 */ 1439 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1440 1441 /* Setup the descriptor before handoff */ 1442 ath_tx_do_ratelookup(sc, bf); 1443 ath_tx_calc_duration(sc, bf); 1444 ath_tx_calc_protection(sc, bf); 1445 ath_tx_set_rtscts(sc, bf); 1446 ath_tx_rate_fill_rcflags(sc, bf); 1447 ath_tx_setds(sc, bf); 1448 1449 /* Track per-TID hardware queue depth correctly */ 1450 tid->hwq_depth++; 1451 1452 /* Assign the completion handler */ 1453 bf->bf_comp = ath_tx_normal_comp; 1454 1455 /* Hand off to hardware */ 1456 ath_tx_handoff(sc, txq, bf); 1457 } 1458 1459 /* 1460 * Do the basic frame setup stuff that's required before the frame 1461 * is added to a software queue. 1462 * 1463 * All frames get mostly the same treatment and it's done once. 1464 * Retransmits fiddle with things like the rate control setup, 1465 * setting the retransmit bit in the packet; doing relevant DMA/bus 1466 * syncing and relinking it (back) into the hardware TX queue. 1467 * 1468 * Note that this may cause the mbuf to be reallocated, so 1469 * m0 may not be valid. 1470 */ 1471 static int 1472 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni, 1473 struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq) 1474 { 1475 struct ieee80211vap *vap = ni->ni_vap; 1476 struct ath_hal *ah = sc->sc_ah; 1477 struct ifnet *ifp = sc->sc_ifp; 1478 struct ieee80211com *ic = ifp->if_l2com; 1479 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1480 int error, iswep, ismcast, isfrag, ismrr; 1481 int keyix, hdrlen, pktlen, try0 = 0; 1482 u_int8_t rix = 0, txrate = 0; 1483 struct ath_desc *ds; 1484 struct ieee80211_frame *wh; 1485 u_int subtype, flags; 1486 HAL_PKT_TYPE atype; 1487 const HAL_RATE_TABLE *rt; 1488 HAL_BOOL shortPreamble; 1489 struct ath_node *an; 1490 u_int pri; 1491 1492 /* 1493 * To ensure that both sequence numbers and the CCMP PN handling 1494 * is "correct", make sure that the relevant TID queue is locked. 1495 * Otherwise the CCMP PN and seqno may appear out of order, causing 1496 * re-ordered frames to have out of order CCMP PN's, resulting 1497 * in many, many frame drops. 1498 */ 1499 ATH_TX_LOCK_ASSERT(sc); 1500 1501 wh = mtod(m0, struct ieee80211_frame *); 1502 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 1503 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1504 isfrag = m0->m_flags & M_FRAG; 1505 hdrlen = ieee80211_anyhdrsize(wh); 1506 /* 1507 * Packet length must not include any 1508 * pad bytes; deduct them here. 1509 */ 1510 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 1511 1512 /* Handle encryption twiddling if needed */ 1513 if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen, 1514 &pktlen, &keyix)) { 1515 ath_freetx(m0); 1516 return EIO; 1517 } 1518 1519 /* packet header may have moved, reset our local pointer */ 1520 wh = mtod(m0, struct ieee80211_frame *); 1521 1522 pktlen += IEEE80211_CRC_LEN; 1523 1524 /* 1525 * Load the DMA map so any coalescing is done. This 1526 * also calculates the number of descriptors we need. 1527 */ 1528 error = ath_tx_dmasetup(sc, bf, m0); 1529 if (error != 0) 1530 return error; 1531 bf->bf_node = ni; /* NB: held reference */ 1532 m0 = bf->bf_m; /* NB: may have changed */ 1533 wh = mtod(m0, struct ieee80211_frame *); 1534 1535 /* setup descriptors */ 1536 ds = bf->bf_desc; 1537 rt = sc->sc_currates; 1538 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1539 1540 /* 1541 * NB: the 802.11 layer marks whether or not we should 1542 * use short preamble based on the current mode and 1543 * negotiated parameters. 1544 */ 1545 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1546 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 1547 shortPreamble = AH_TRUE; 1548 sc->sc_stats.ast_tx_shortpre++; 1549 } else { 1550 shortPreamble = AH_FALSE; 1551 } 1552 1553 an = ATH_NODE(ni); 1554 //flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 1555 flags = 0; 1556 ismrr = 0; /* default no multi-rate retry*/ 1557 pri = M_WME_GETAC(m0); /* honor classification */ 1558 /* XXX use txparams instead of fixed values */ 1559 /* 1560 * Calculate Atheros packet type from IEEE80211 packet header, 1561 * setup for rate calculations, and select h/w transmit queue. 1562 */ 1563 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1564 case IEEE80211_FC0_TYPE_MGT: 1565 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1566 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 1567 atype = HAL_PKT_TYPE_BEACON; 1568 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1569 atype = HAL_PKT_TYPE_PROBE_RESP; 1570 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 1571 atype = HAL_PKT_TYPE_ATIM; 1572 else 1573 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 1574 rix = an->an_mgmtrix; 1575 txrate = rt->info[rix].rateCode; 1576 if (shortPreamble) 1577 txrate |= rt->info[rix].shortPreamble; 1578 try0 = ATH_TXMGTTRY; 1579 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1580 break; 1581 case IEEE80211_FC0_TYPE_CTL: 1582 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 1583 rix = an->an_mgmtrix; 1584 txrate = rt->info[rix].rateCode; 1585 if (shortPreamble) 1586 txrate |= rt->info[rix].shortPreamble; 1587 try0 = ATH_TXMGTTRY; 1588 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1589 break; 1590 case IEEE80211_FC0_TYPE_DATA: 1591 atype = HAL_PKT_TYPE_NORMAL; /* default */ 1592 /* 1593 * Data frames: multicast frames go out at a fixed rate, 1594 * EAPOL frames use the mgmt frame rate; otherwise consult 1595 * the rate control module for the rate to use. 1596 */ 1597 if (ismcast) { 1598 rix = an->an_mcastrix; 1599 txrate = rt->info[rix].rateCode; 1600 if (shortPreamble) 1601 txrate |= rt->info[rix].shortPreamble; 1602 try0 = 1; 1603 } else if (m0->m_flags & M_EAPOL) { 1604 /* XXX? maybe always use long preamble? */ 1605 rix = an->an_mgmtrix; 1606 txrate = rt->info[rix].rateCode; 1607 if (shortPreamble) 1608 txrate |= rt->info[rix].shortPreamble; 1609 try0 = ATH_TXMAXTRY; /* XXX?too many? */ 1610 } else { 1611 /* 1612 * Do rate lookup on each TX, rather than using 1613 * the hard-coded TX information decided here. 1614 */ 1615 ismrr = 1; 1616 bf->bf_state.bfs_doratelookup = 1; 1617 } 1618 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 1619 flags |= HAL_TXDESC_NOACK; 1620 break; 1621 default: 1622 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 1623 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1624 /* XXX statistic */ 1625 ath_freetx(m0); 1626 return EIO; 1627 } 1628 1629 /* 1630 * There are two known scenarios where the frame AC doesn't match 1631 * what the destination TXQ is. 1632 * 1633 * + non-QoS frames (eg management?) that the net80211 stack has 1634 * assigned a higher AC to, but since it's a non-QoS TID, it's 1635 * being thrown into TID 16. TID 16 gets the AC_BE queue. 1636 * It's quite possible that management frames should just be 1637 * direct dispatched to hardware rather than go via the software 1638 * queue; that should be investigated in the future. There are 1639 * some specific scenarios where this doesn't make sense, mostly 1640 * surrounding ADDBA request/response - hence why that is special 1641 * cased. 1642 * 1643 * + Multicast frames going into the VAP mcast queue. That shows up 1644 * as "TXQ 11". 1645 * 1646 * This driver should eventually support separate TID and TXQ locking, 1647 * allowing for arbitrary AC frames to appear on arbitrary software 1648 * queues, being queued to the "correct" hardware queue when needed. 1649 */ 1650 #if 0 1651 if (txq != sc->sc_ac2q[pri]) { 1652 device_printf(sc->sc_dev, 1653 "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n", 1654 __func__, 1655 txq, 1656 txq->axq_qnum, 1657 pri, 1658 sc->sc_ac2q[pri], 1659 sc->sc_ac2q[pri]->axq_qnum); 1660 } 1661 #endif 1662 1663 /* 1664 * Calculate miscellaneous flags. 1665 */ 1666 if (ismcast) { 1667 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 1668 } else if (pktlen > vap->iv_rtsthreshold && 1669 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { 1670 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 1671 sc->sc_stats.ast_tx_rts++; 1672 } 1673 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 1674 sc->sc_stats.ast_tx_noack++; 1675 #ifdef IEEE80211_SUPPORT_TDMA 1676 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { 1677 DPRINTF(sc, ATH_DEBUG_TDMA, 1678 "%s: discard frame, ACK required w/ TDMA\n", __func__); 1679 sc->sc_stats.ast_tdma_ack++; 1680 ath_freetx(m0); 1681 return EIO; 1682 } 1683 #endif 1684 1685 /* 1686 * Determine if a tx interrupt should be generated for 1687 * this descriptor. We take a tx interrupt to reap 1688 * descriptors when the h/w hits an EOL condition or 1689 * when the descriptor is specifically marked to generate 1690 * an interrupt. We periodically mark descriptors in this 1691 * way to insure timely replenishing of the supply needed 1692 * for sending frames. Defering interrupts reduces system 1693 * load and potentially allows more concurrent work to be 1694 * done but if done to aggressively can cause senders to 1695 * backup. 1696 * 1697 * NB: use >= to deal with sc_txintrperiod changing 1698 * dynamically through sysctl. 1699 */ 1700 if (flags & HAL_TXDESC_INTREQ) { 1701 txq->axq_intrcnt = 0; 1702 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 1703 flags |= HAL_TXDESC_INTREQ; 1704 txq->axq_intrcnt = 0; 1705 } 1706 1707 /* This point forward is actual TX bits */ 1708 1709 /* 1710 * At this point we are committed to sending the frame 1711 * and we don't need to look at m_nextpkt; clear it in 1712 * case this frame is part of frag chain. 1713 */ 1714 m0->m_nextpkt = NULL; 1715 1716 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 1717 ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 1718 sc->sc_hwmap[rix].ieeerate, -1); 1719 1720 if (ieee80211_radiotap_active_vap(vap)) { 1721 u_int64_t tsf = ath_hal_gettsf64(ah); 1722 1723 sc->sc_tx_th.wt_tsf = htole64(tsf); 1724 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 1725 if (iswep) 1726 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1727 if (isfrag) 1728 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1729 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 1730 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 1731 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 1732 1733 ieee80211_radiotap_tx(vap, m0); 1734 } 1735 1736 /* Blank the legacy rate array */ 1737 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1738 1739 /* 1740 * ath_buf_set_rate needs at least one rate/try to setup 1741 * the rate scenario. 1742 */ 1743 bf->bf_state.bfs_rc[0].rix = rix; 1744 bf->bf_state.bfs_rc[0].tries = try0; 1745 bf->bf_state.bfs_rc[0].ratecode = txrate; 1746 1747 /* Store the decided rate index values away */ 1748 bf->bf_state.bfs_pktlen = pktlen; 1749 bf->bf_state.bfs_hdrlen = hdrlen; 1750 bf->bf_state.bfs_atype = atype; 1751 bf->bf_state.bfs_txpower = ni->ni_txpower; 1752 bf->bf_state.bfs_txrate0 = txrate; 1753 bf->bf_state.bfs_try0 = try0; 1754 bf->bf_state.bfs_keyix = keyix; 1755 bf->bf_state.bfs_txantenna = sc->sc_txantenna; 1756 bf->bf_state.bfs_txflags = flags; 1757 bf->bf_state.bfs_shpream = shortPreamble; 1758 1759 /* XXX this should be done in ath_tx_setrate() */ 1760 bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */ 1761 bf->bf_state.bfs_ctsrate = 0; /* calculated later */ 1762 bf->bf_state.bfs_ctsduration = 0; 1763 bf->bf_state.bfs_ismrr = ismrr; 1764 1765 return 0; 1766 } 1767 1768 /* 1769 * Queue a frame to the hardware or software queue. 1770 * 1771 * This can be called by the net80211 code. 1772 * 1773 * XXX what about locking? Or, push the seqno assign into the 1774 * XXX aggregate scheduler so its serialised? 1775 * 1776 * XXX When sending management frames via ath_raw_xmit(), 1777 * should CLRDMASK be set unconditionally? 1778 */ 1779 int 1780 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, 1781 struct ath_buf *bf, struct mbuf *m0) 1782 { 1783 struct ieee80211vap *vap = ni->ni_vap; 1784 struct ath_vap *avp = ATH_VAP(vap); 1785 int r = 0; 1786 u_int pri; 1787 int tid; 1788 struct ath_txq *txq; 1789 int ismcast; 1790 const struct ieee80211_frame *wh; 1791 int is_ampdu, is_ampdu_tx, is_ampdu_pending; 1792 ieee80211_seq seqno; 1793 uint8_t type, subtype; 1794 1795 ATH_TX_LOCK_ASSERT(sc); 1796 1797 /* 1798 * Determine the target hardware queue. 1799 * 1800 * For multicast frames, the txq gets overridden appropriately 1801 * depending upon the state of PS. 1802 * 1803 * For any other frame, we do a TID/QoS lookup inside the frame 1804 * to see what the TID should be. If it's a non-QoS frame, the 1805 * AC and TID are overridden. The TID/TXQ code assumes the 1806 * TID is on a predictable hardware TXQ, so we don't support 1807 * having a node TID queued to multiple hardware TXQs. 1808 * This may change in the future but would require some locking 1809 * fudgery. 1810 */ 1811 pri = ath_tx_getac(sc, m0); 1812 tid = ath_tx_gettid(sc, m0); 1813 1814 txq = sc->sc_ac2q[pri]; 1815 wh = mtod(m0, struct ieee80211_frame *); 1816 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1817 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1818 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1819 1820 /* 1821 * Enforce how deep the multicast queue can grow. 1822 * 1823 * XXX duplicated in ath_raw_xmit(). 1824 */ 1825 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1826 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { 1827 sc->sc_stats.ast_tx_mcastq_overflow++; 1828 r = ENOBUFS; 1829 } 1830 if (r != 0) { 1831 m_freem(m0); 1832 return r; 1833 } 1834 } 1835 1836 /* A-MPDU TX */ 1837 is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid); 1838 is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid); 1839 is_ampdu = is_ampdu_tx | is_ampdu_pending; 1840 1841 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n", 1842 __func__, tid, pri, is_ampdu); 1843 1844 /* Set local packet state, used to queue packets to hardware */ 1845 bf->bf_state.bfs_tid = tid; 1846 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 1847 bf->bf_state.bfs_pri = pri; 1848 1849 /* 1850 * When servicing one or more stations in power-save mode 1851 * (or) if there is some mcast data waiting on the mcast 1852 * queue (to prevent out of order delivery) multicast frames 1853 * must be bufferd until after the beacon. 1854 * 1855 * TODO: we should lock the mcastq before we check the length. 1856 */ 1857 if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) { 1858 txq = &avp->av_mcastq; 1859 /* 1860 * Mark the frame as eventually belonging on the CAB 1861 * queue, so the descriptor setup functions will 1862 * correctly initialise the descriptor 'qcuId' field. 1863 */ 1864 bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum; 1865 } 1866 1867 /* Do the generic frame setup */ 1868 /* XXX should just bzero the bf_state? */ 1869 bf->bf_state.bfs_dobaw = 0; 1870 1871 /* A-MPDU TX? Manually set sequence number */ 1872 /* 1873 * Don't do it whilst pending; the net80211 layer still 1874 * assigns them. 1875 */ 1876 if (is_ampdu_tx) { 1877 /* 1878 * Always call; this function will 1879 * handle making sure that null data frames 1880 * don't get a sequence number from the current 1881 * TID and thus mess with the BAW. 1882 */ 1883 seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0); 1884 1885 /* 1886 * Don't add QoS NULL frames to the BAW. 1887 */ 1888 if (IEEE80211_QOS_HAS_SEQ(wh) && 1889 subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) { 1890 bf->bf_state.bfs_dobaw = 1; 1891 } 1892 } 1893 1894 /* 1895 * If needed, the sequence number has been assigned. 1896 * Squirrel it away somewhere easy to get to. 1897 */ 1898 bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT; 1899 1900 /* Is ampdu pending? fetch the seqno and print it out */ 1901 if (is_ampdu_pending) 1902 DPRINTF(sc, ATH_DEBUG_SW_TX, 1903 "%s: tid %d: ampdu pending, seqno %d\n", 1904 __func__, tid, M_SEQNO_GET(m0)); 1905 1906 /* This also sets up the DMA map */ 1907 r = ath_tx_normal_setup(sc, ni, bf, m0, txq); 1908 1909 if (r != 0) 1910 goto done; 1911 1912 /* At this point m0 could have changed! */ 1913 m0 = bf->bf_m; 1914 1915 #if 1 1916 /* 1917 * If it's a multicast frame, do a direct-dispatch to the 1918 * destination hardware queue. Don't bother software 1919 * queuing it. 1920 */ 1921 /* 1922 * If it's a BAR frame, do a direct dispatch to the 1923 * destination hardware queue. Don't bother software 1924 * queuing it, as the TID will now be paused. 1925 * Sending a BAR frame can occur from the net80211 txa timer 1926 * (ie, retries) or from the ath txtask (completion call.) 1927 * It queues directly to hardware because the TID is paused 1928 * at this point (and won't be unpaused until the BAR has 1929 * either been TXed successfully or max retries has been 1930 * reached.) 1931 */ 1932 if (txq == &avp->av_mcastq) { 1933 DPRINTF(sc, ATH_DEBUG_SW_TX, 1934 "%s: bf=%p: mcastq: TX'ing\n", __func__, bf); 1935 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1936 ath_tx_xmit_normal(sc, txq, bf); 1937 } else if (type == IEEE80211_FC0_TYPE_CTL && 1938 subtype == IEEE80211_FC0_SUBTYPE_BAR) { 1939 DPRINTF(sc, ATH_DEBUG_SW_TX, 1940 "%s: BAR: TX'ing direct\n", __func__); 1941 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1942 ath_tx_xmit_normal(sc, txq, bf); 1943 } else { 1944 /* add to software queue */ 1945 DPRINTF(sc, ATH_DEBUG_SW_TX, 1946 "%s: bf=%p: swq: TX'ing\n", __func__, bf); 1947 ath_tx_swq(sc, ni, txq, bf); 1948 } 1949 #else 1950 /* 1951 * For now, since there's no software queue, 1952 * direct-dispatch to the hardware. 1953 */ 1954 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1955 ath_tx_xmit_normal(sc, txq, bf); 1956 #endif 1957 done: 1958 return 0; 1959 } 1960 1961 static int 1962 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, 1963 struct ath_buf *bf, struct mbuf *m0, 1964 const struct ieee80211_bpf_params *params) 1965 { 1966 struct ifnet *ifp = sc->sc_ifp; 1967 struct ieee80211com *ic = ifp->if_l2com; 1968 struct ath_hal *ah = sc->sc_ah; 1969 struct ieee80211vap *vap = ni->ni_vap; 1970 int error, ismcast, ismrr; 1971 int keyix, hdrlen, pktlen, try0, txantenna; 1972 u_int8_t rix, txrate; 1973 struct ieee80211_frame *wh; 1974 u_int flags; 1975 HAL_PKT_TYPE atype; 1976 const HAL_RATE_TABLE *rt; 1977 struct ath_desc *ds; 1978 u_int pri; 1979 int o_tid = -1; 1980 int do_override; 1981 1982 ATH_TX_LOCK_ASSERT(sc); 1983 1984 wh = mtod(m0, struct ieee80211_frame *); 1985 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1986 hdrlen = ieee80211_anyhdrsize(wh); 1987 /* 1988 * Packet length must not include any 1989 * pad bytes; deduct them here. 1990 */ 1991 /* XXX honor IEEE80211_BPF_DATAPAD */ 1992 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; 1993 1994 ATH_KTR(sc, ATH_KTR_TX, 2, 1995 "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf); 1996 1997 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n", 1998 __func__, ismcast); 1999 2000 pri = params->ibp_pri & 3; 2001 /* Override pri if the frame isn't a QoS one */ 2002 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2003 pri = ath_tx_getac(sc, m0); 2004 2005 /* XXX If it's an ADDBA, override the correct queue */ 2006 do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid); 2007 2008 /* Map ADDBA to the correct priority */ 2009 if (do_override) { 2010 #if 0 2011 device_printf(sc->sc_dev, 2012 "%s: overriding tid %d pri %d -> %d\n", 2013 __func__, o_tid, pri, TID_TO_WME_AC(o_tid)); 2014 #endif 2015 pri = TID_TO_WME_AC(o_tid); 2016 } 2017 2018 /* Handle encryption twiddling if needed */ 2019 if (! ath_tx_tag_crypto(sc, ni, 2020 m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0, 2021 &hdrlen, &pktlen, &keyix)) { 2022 ath_freetx(m0); 2023 return EIO; 2024 } 2025 /* packet header may have moved, reset our local pointer */ 2026 wh = mtod(m0, struct ieee80211_frame *); 2027 2028 /* Do the generic frame setup */ 2029 /* XXX should just bzero the bf_state? */ 2030 bf->bf_state.bfs_dobaw = 0; 2031 2032 error = ath_tx_dmasetup(sc, bf, m0); 2033 if (error != 0) 2034 return error; 2035 m0 = bf->bf_m; /* NB: may have changed */ 2036 wh = mtod(m0, struct ieee80211_frame *); 2037 bf->bf_node = ni; /* NB: held reference */ 2038 2039 /* Always enable CLRDMASK for raw frames for now.. */ 2040 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 2041 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 2042 if (params->ibp_flags & IEEE80211_BPF_RTS) 2043 flags |= HAL_TXDESC_RTSENA; 2044 else if (params->ibp_flags & IEEE80211_BPF_CTS) { 2045 /* XXX assume 11g/11n protection? */ 2046 bf->bf_state.bfs_doprot = 1; 2047 flags |= HAL_TXDESC_CTSENA; 2048 } 2049 /* XXX leave ismcast to injector? */ 2050 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) 2051 flags |= HAL_TXDESC_NOACK; 2052 2053 rt = sc->sc_currates; 2054 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 2055 rix = ath_tx_findrix(sc, params->ibp_rate0); 2056 txrate = rt->info[rix].rateCode; 2057 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 2058 txrate |= rt->info[rix].shortPreamble; 2059 sc->sc_txrix = rix; 2060 try0 = params->ibp_try0; 2061 ismrr = (params->ibp_try1 != 0); 2062 txantenna = params->ibp_pri >> 2; 2063 if (txantenna == 0) /* XXX? */ 2064 txantenna = sc->sc_txantenna; 2065 2066 /* 2067 * Since ctsrate is fixed, store it away for later 2068 * use when the descriptor fields are being set. 2069 */ 2070 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) 2071 bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate; 2072 2073 /* 2074 * NB: we mark all packets as type PSPOLL so the h/w won't 2075 * set the sequence number, duration, etc. 2076 */ 2077 atype = HAL_PKT_TYPE_PSPOLL; 2078 2079 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 2080 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 2081 sc->sc_hwmap[rix].ieeerate, -1); 2082 2083 if (ieee80211_radiotap_active_vap(vap)) { 2084 u_int64_t tsf = ath_hal_gettsf64(ah); 2085 2086 sc->sc_tx_th.wt_tsf = htole64(tsf); 2087 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 2088 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2089 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2090 if (m0->m_flags & M_FRAG) 2091 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2092 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 2093 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 2094 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 2095 2096 ieee80211_radiotap_tx(vap, m0); 2097 } 2098 2099 /* 2100 * Formulate first tx descriptor with tx controls. 2101 */ 2102 ds = bf->bf_desc; 2103 /* XXX check return value? */ 2104 2105 /* Store the decided rate index values away */ 2106 bf->bf_state.bfs_pktlen = pktlen; 2107 bf->bf_state.bfs_hdrlen = hdrlen; 2108 bf->bf_state.bfs_atype = atype; 2109 bf->bf_state.bfs_txpower = params->ibp_power; 2110 bf->bf_state.bfs_txrate0 = txrate; 2111 bf->bf_state.bfs_try0 = try0; 2112 bf->bf_state.bfs_keyix = keyix; 2113 bf->bf_state.bfs_txantenna = txantenna; 2114 bf->bf_state.bfs_txflags = flags; 2115 bf->bf_state.bfs_shpream = 2116 !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE); 2117 2118 /* Set local packet state, used to queue packets to hardware */ 2119 bf->bf_state.bfs_tid = WME_AC_TO_TID(pri); 2120 bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum; 2121 bf->bf_state.bfs_pri = pri; 2122 2123 /* XXX this should be done in ath_tx_setrate() */ 2124 bf->bf_state.bfs_ctsrate = 0; 2125 bf->bf_state.bfs_ctsduration = 0; 2126 bf->bf_state.bfs_ismrr = ismrr; 2127 2128 /* Blank the legacy rate array */ 2129 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 2130 2131 bf->bf_state.bfs_rc[0].rix = 2132 ath_tx_findrix(sc, params->ibp_rate0); 2133 bf->bf_state.bfs_rc[0].tries = try0; 2134 bf->bf_state.bfs_rc[0].ratecode = txrate; 2135 2136 if (ismrr) { 2137 int rix; 2138 2139 rix = ath_tx_findrix(sc, params->ibp_rate1); 2140 bf->bf_state.bfs_rc[1].rix = rix; 2141 bf->bf_state.bfs_rc[1].tries = params->ibp_try1; 2142 2143 rix = ath_tx_findrix(sc, params->ibp_rate2); 2144 bf->bf_state.bfs_rc[2].rix = rix; 2145 bf->bf_state.bfs_rc[2].tries = params->ibp_try2; 2146 2147 rix = ath_tx_findrix(sc, params->ibp_rate3); 2148 bf->bf_state.bfs_rc[3].rix = rix; 2149 bf->bf_state.bfs_rc[3].tries = params->ibp_try3; 2150 } 2151 /* 2152 * All the required rate control decisions have been made; 2153 * fill in the rc flags. 2154 */ 2155 ath_tx_rate_fill_rcflags(sc, bf); 2156 2157 /* NB: no buffered multicast in power save support */ 2158 2159 /* 2160 * If we're overiding the ADDBA destination, dump directly 2161 * into the hardware queue, right after any pending 2162 * frames to that node are. 2163 */ 2164 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n", 2165 __func__, do_override); 2166 2167 #if 1 2168 if (do_override) { 2169 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2170 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2171 } else { 2172 /* Queue to software queue */ 2173 ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf); 2174 } 2175 #else 2176 /* Direct-dispatch to the hardware */ 2177 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2178 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2179 #endif 2180 return 0; 2181 } 2182 2183 /* 2184 * Send a raw frame. 2185 * 2186 * This can be called by net80211. 2187 */ 2188 int 2189 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2190 const struct ieee80211_bpf_params *params) 2191 { 2192 struct ieee80211com *ic = ni->ni_ic; 2193 struct ifnet *ifp = ic->ic_ifp; 2194 struct ath_softc *sc = ifp->if_softc; 2195 struct ath_buf *bf; 2196 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 2197 int error = 0; 2198 2199 ATH_PCU_LOCK(sc); 2200 if (sc->sc_inreset_cnt > 0) { 2201 device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n", 2202 __func__); 2203 error = EIO; 2204 ATH_PCU_UNLOCK(sc); 2205 goto bad0; 2206 } 2207 sc->sc_txstart_cnt++; 2208 ATH_PCU_UNLOCK(sc); 2209 2210 ATH_TX_LOCK(sc); 2211 2212 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) { 2213 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__, 2214 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ? 2215 "!running" : "invalid"); 2216 m_freem(m); 2217 error = ENETDOWN; 2218 goto bad; 2219 } 2220 2221 /* 2222 * Enforce how deep the multicast queue can grow. 2223 * 2224 * XXX duplicated in ath_tx_start(). 2225 */ 2226 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2227 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { 2228 sc->sc_stats.ast_tx_mcastq_overflow++; 2229 error = ENOBUFS; 2230 } 2231 2232 if (error != 0) { 2233 m_freem(m); 2234 goto bad; 2235 } 2236 } 2237 2238 /* 2239 * Grab a TX buffer and associated resources. 2240 */ 2241 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 2242 if (bf == NULL) { 2243 sc->sc_stats.ast_tx_nobuf++; 2244 m_freem(m); 2245 error = ENOBUFS; 2246 goto bad; 2247 } 2248 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n", 2249 m, params, bf); 2250 2251 if (params == NULL) { 2252 /* 2253 * Legacy path; interpret frame contents to decide 2254 * precisely how to send the frame. 2255 */ 2256 if (ath_tx_start(sc, ni, bf, m)) { 2257 error = EIO; /* XXX */ 2258 goto bad2; 2259 } 2260 } else { 2261 /* 2262 * Caller supplied explicit parameters to use in 2263 * sending the frame. 2264 */ 2265 if (ath_tx_raw_start(sc, ni, bf, m, params)) { 2266 error = EIO; /* XXX */ 2267 goto bad2; 2268 } 2269 } 2270 sc->sc_wd_timer = 5; 2271 ifp->if_opackets++; 2272 sc->sc_stats.ast_tx_raw++; 2273 2274 /* 2275 * Update the TIM - if there's anything queued to the 2276 * software queue and power save is enabled, we should 2277 * set the TIM. 2278 */ 2279 ath_tx_update_tim(sc, ni, 1); 2280 2281 ATH_TX_UNLOCK(sc); 2282 2283 ATH_PCU_LOCK(sc); 2284 sc->sc_txstart_cnt--; 2285 ATH_PCU_UNLOCK(sc); 2286 2287 return 0; 2288 bad2: 2289 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, " 2290 "bf=%p", 2291 m, 2292 params, 2293 bf); 2294 ATH_TXBUF_LOCK(sc); 2295 ath_returnbuf_head(sc, bf); 2296 ATH_TXBUF_UNLOCK(sc); 2297 bad: 2298 2299 ATH_TX_UNLOCK(sc); 2300 2301 ATH_PCU_LOCK(sc); 2302 sc->sc_txstart_cnt--; 2303 ATH_PCU_UNLOCK(sc); 2304 bad0: 2305 ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p", 2306 m, params); 2307 ifp->if_oerrors++; 2308 sc->sc_stats.ast_tx_raw_fail++; 2309 ieee80211_free_node(ni); 2310 2311 return error; 2312 } 2313 2314 /* Some helper functions */ 2315 2316 /* 2317 * ADDBA (and potentially others) need to be placed in the same 2318 * hardware queue as the TID/node it's relating to. This is so 2319 * it goes out after any pending non-aggregate frames to the 2320 * same node/TID. 2321 * 2322 * If this isn't done, the ADDBA can go out before the frames 2323 * queued in hardware. Even though these frames have a sequence 2324 * number -earlier- than the ADDBA can be transmitted (but 2325 * no frames whose sequence numbers are after the ADDBA should 2326 * be!) they'll arrive after the ADDBA - and the receiving end 2327 * will simply drop them as being out of the BAW. 2328 * 2329 * The frames can't be appended to the TID software queue - it'll 2330 * never be sent out. So these frames have to be directly 2331 * dispatched to the hardware, rather than queued in software. 2332 * So if this function returns true, the TXQ has to be 2333 * overridden and it has to be directly dispatched. 2334 * 2335 * It's a dirty hack, but someone's gotta do it. 2336 */ 2337 2338 /* 2339 * XXX doesn't belong here! 2340 */ 2341 static int 2342 ieee80211_is_action(struct ieee80211_frame *wh) 2343 { 2344 /* Type: Management frame? */ 2345 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 2346 IEEE80211_FC0_TYPE_MGT) 2347 return 0; 2348 2349 /* Subtype: Action frame? */ 2350 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) != 2351 IEEE80211_FC0_SUBTYPE_ACTION) 2352 return 0; 2353 2354 return 1; 2355 } 2356 2357 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2358 /* 2359 * Return an alternate TID for ADDBA request frames. 2360 * 2361 * Yes, this likely should be done in the net80211 layer. 2362 */ 2363 static int 2364 ath_tx_action_frame_override_queue(struct ath_softc *sc, 2365 struct ieee80211_node *ni, 2366 struct mbuf *m0, int *tid) 2367 { 2368 struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); 2369 struct ieee80211_action_ba_addbarequest *ia; 2370 uint8_t *frm; 2371 uint16_t baparamset; 2372 2373 /* Not action frame? Bail */ 2374 if (! ieee80211_is_action(wh)) 2375 return 0; 2376 2377 /* XXX Not needed for frames we send? */ 2378 #if 0 2379 /* Correct length? */ 2380 if (! ieee80211_parse_action(ni, m)) 2381 return 0; 2382 #endif 2383 2384 /* Extract out action frame */ 2385 frm = (u_int8_t *)&wh[1]; 2386 ia = (struct ieee80211_action_ba_addbarequest *) frm; 2387 2388 /* Not ADDBA? Bail */ 2389 if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA) 2390 return 0; 2391 if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST) 2392 return 0; 2393 2394 /* Extract TID, return it */ 2395 baparamset = le16toh(ia->rq_baparamset); 2396 *tid = (int) MS(baparamset, IEEE80211_BAPS_TID); 2397 2398 return 1; 2399 } 2400 #undef MS 2401 2402 /* Per-node software queue operations */ 2403 2404 /* 2405 * Add the current packet to the given BAW. 2406 * It is assumed that the current packet 2407 * 2408 * + fits inside the BAW; 2409 * + already has had a sequence number allocated. 2410 * 2411 * Since the BAW status may be modified by both the ath task and 2412 * the net80211/ifnet contexts, the TID must be locked. 2413 */ 2414 void 2415 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an, 2416 struct ath_tid *tid, struct ath_buf *bf) 2417 { 2418 int index, cindex; 2419 struct ieee80211_tx_ampdu *tap; 2420 2421 ATH_TX_LOCK_ASSERT(sc); 2422 2423 if (bf->bf_state.bfs_isretried) 2424 return; 2425 2426 tap = ath_tx_get_tx_tid(an, tid->tid); 2427 2428 if (! bf->bf_state.bfs_dobaw) { 2429 device_printf(sc->sc_dev, 2430 "%s: dobaw=0, seqno=%d, window %d:%d\n", 2431 __func__, 2432 SEQNO(bf->bf_state.bfs_seqno), 2433 tap->txa_start, 2434 tap->txa_wnd); 2435 } 2436 2437 if (bf->bf_state.bfs_addedbaw) 2438 device_printf(sc->sc_dev, 2439 "%s: re-added? tid=%d, seqno %d; window %d:%d; " 2440 "baw head=%d tail=%d\n", 2441 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2442 tap->txa_start, tap->txa_wnd, tid->baw_head, 2443 tid->baw_tail); 2444 2445 /* 2446 * Verify that the given sequence number is not outside of the 2447 * BAW. Complain loudly if that's the case. 2448 */ 2449 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2450 SEQNO(bf->bf_state.bfs_seqno))) { 2451 device_printf(sc->sc_dev, 2452 "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; " 2453 "baw head=%d tail=%d\n", 2454 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2455 tap->txa_start, tap->txa_wnd, tid->baw_head, 2456 tid->baw_tail); 2457 } 2458 2459 /* 2460 * ni->ni_txseqs[] is the currently allocated seqno. 2461 * the txa state contains the current baw start. 2462 */ 2463 index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno)); 2464 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2465 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2466 "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d " 2467 "baw head=%d tail=%d\n", 2468 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2469 tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, 2470 tid->baw_tail); 2471 2472 2473 #if 0 2474 assert(tid->tx_buf[cindex] == NULL); 2475 #endif 2476 if (tid->tx_buf[cindex] != NULL) { 2477 device_printf(sc->sc_dev, 2478 "%s: ba packet dup (index=%d, cindex=%d, " 2479 "head=%d, tail=%d)\n", 2480 __func__, index, cindex, tid->baw_head, tid->baw_tail); 2481 device_printf(sc->sc_dev, 2482 "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n", 2483 __func__, 2484 tid->tx_buf[cindex], 2485 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno), 2486 bf, 2487 SEQNO(bf->bf_state.bfs_seqno) 2488 ); 2489 } 2490 tid->tx_buf[cindex] = bf; 2491 2492 if (index >= ((tid->baw_tail - tid->baw_head) & 2493 (ATH_TID_MAX_BUFS - 1))) { 2494 tid->baw_tail = cindex; 2495 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 2496 } 2497 } 2498 2499 /* 2500 * Flip the BAW buffer entry over from the existing one to the new one. 2501 * 2502 * When software retransmitting a (sub-)frame, it is entirely possible that 2503 * the frame ath_buf is marked as BUSY and can't be immediately reused. 2504 * In that instance the buffer is cloned and the new buffer is used for 2505 * retransmit. We thus need to update the ath_buf slot in the BAW buf 2506 * tracking array to maintain consistency. 2507 */ 2508 static void 2509 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an, 2510 struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf) 2511 { 2512 int index, cindex; 2513 struct ieee80211_tx_ampdu *tap; 2514 int seqno = SEQNO(old_bf->bf_state.bfs_seqno); 2515 2516 ATH_TX_LOCK_ASSERT(sc); 2517 2518 tap = ath_tx_get_tx_tid(an, tid->tid); 2519 index = ATH_BA_INDEX(tap->txa_start, seqno); 2520 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2521 2522 /* 2523 * Just warn for now; if it happens then we should find out 2524 * about it. It's highly likely the aggregation session will 2525 * soon hang. 2526 */ 2527 if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) { 2528 device_printf(sc->sc_dev, "%s: retransmitted buffer" 2529 " has mismatching seqno's, BA session may hang.\n", 2530 __func__); 2531 device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n", 2532 __func__, 2533 old_bf->bf_state.bfs_seqno, 2534 new_bf->bf_state.bfs_seqno); 2535 } 2536 2537 if (tid->tx_buf[cindex] != old_bf) { 2538 device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; " 2539 " has m BA session may hang.\n", 2540 __func__); 2541 device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n", 2542 __func__, 2543 old_bf, new_bf); 2544 } 2545 2546 tid->tx_buf[cindex] = new_bf; 2547 } 2548 2549 /* 2550 * seq_start - left edge of BAW 2551 * seq_next - current/next sequence number to allocate 2552 * 2553 * Since the BAW status may be modified by both the ath task and 2554 * the net80211/ifnet contexts, the TID must be locked. 2555 */ 2556 static void 2557 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an, 2558 struct ath_tid *tid, const struct ath_buf *bf) 2559 { 2560 int index, cindex; 2561 struct ieee80211_tx_ampdu *tap; 2562 int seqno = SEQNO(bf->bf_state.bfs_seqno); 2563 2564 ATH_TX_LOCK_ASSERT(sc); 2565 2566 tap = ath_tx_get_tx_tid(an, tid->tid); 2567 index = ATH_BA_INDEX(tap->txa_start, seqno); 2568 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2569 2570 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2571 "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, " 2572 "baw head=%d, tail=%d\n", 2573 __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index, 2574 cindex, tid->baw_head, tid->baw_tail); 2575 2576 /* 2577 * If this occurs then we have a big problem - something else 2578 * has slid tap->txa_start along without updating the BAW 2579 * tracking start/end pointers. Thus the TX BAW state is now 2580 * completely busted. 2581 * 2582 * But for now, since I haven't yet fixed TDMA and buffer cloning, 2583 * it's quite possible that a cloned buffer is making its way 2584 * here and causing it to fire off. Disable TDMA for now. 2585 */ 2586 if (tid->tx_buf[cindex] != bf) { 2587 device_printf(sc->sc_dev, 2588 "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n", 2589 __func__, 2590 bf, SEQNO(bf->bf_state.bfs_seqno), 2591 tid->tx_buf[cindex], 2592 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno)); 2593 } 2594 2595 tid->tx_buf[cindex] = NULL; 2596 2597 while (tid->baw_head != tid->baw_tail && 2598 !tid->tx_buf[tid->baw_head]) { 2599 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 2600 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 2601 } 2602 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2603 "%s: baw is now %d:%d, baw head=%d\n", 2604 __func__, tap->txa_start, tap->txa_wnd, tid->baw_head); 2605 } 2606 2607 /* 2608 * Mark the current node/TID as ready to TX. 2609 * 2610 * This is done to make it easy for the software scheduler to 2611 * find which nodes have data to send. 2612 * 2613 * The TXQ lock must be held. 2614 */ 2615 static void 2616 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid) 2617 { 2618 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2619 2620 ATH_TX_LOCK_ASSERT(sc); 2621 2622 if (tid->paused) 2623 return; /* paused, can't schedule yet */ 2624 2625 if (tid->sched) 2626 return; /* already scheduled */ 2627 2628 tid->sched = 1; 2629 2630 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); 2631 } 2632 2633 /* 2634 * Mark the current node as no longer needing to be polled for 2635 * TX packets. 2636 * 2637 * The TXQ lock must be held. 2638 */ 2639 static void 2640 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid) 2641 { 2642 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2643 2644 ATH_TX_LOCK_ASSERT(sc); 2645 2646 if (tid->sched == 0) 2647 return; 2648 2649 tid->sched = 0; 2650 TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem); 2651 } 2652 2653 /* 2654 * Assign a sequence number manually to the given frame. 2655 * 2656 * This should only be called for A-MPDU TX frames. 2657 */ 2658 static ieee80211_seq 2659 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, 2660 struct ath_buf *bf, struct mbuf *m0) 2661 { 2662 struct ieee80211_frame *wh; 2663 int tid, pri; 2664 ieee80211_seq seqno; 2665 uint8_t subtype; 2666 2667 /* TID lookup */ 2668 wh = mtod(m0, struct ieee80211_frame *); 2669 pri = M_WME_GETAC(m0); /* honor classification */ 2670 tid = WME_AC_TO_TID(pri); 2671 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n", 2672 __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2673 2674 /* XXX Is it a control frame? Ignore */ 2675 2676 /* Does the packet require a sequence number? */ 2677 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2678 return -1; 2679 2680 ATH_TX_LOCK_ASSERT(sc); 2681 2682 /* 2683 * Is it a QOS NULL Data frame? Give it a sequence number from 2684 * the default TID (IEEE80211_NONQOS_TID.) 2685 * 2686 * The RX path of everything I've looked at doesn't include the NULL 2687 * data frame sequence number in the aggregation state updates, so 2688 * assigning it a sequence number there will cause a BAW hole on the 2689 * RX side. 2690 */ 2691 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2692 if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) { 2693 /* XXX no locking for this TID? This is a bit of a problem. */ 2694 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; 2695 INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); 2696 } else { 2697 /* Manually assign sequence number */ 2698 seqno = ni->ni_txseqs[tid]; 2699 INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE); 2700 } 2701 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 2702 M_SEQNO_SET(m0, seqno); 2703 2704 /* Return so caller can do something with it if needed */ 2705 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno); 2706 return seqno; 2707 } 2708 2709 /* 2710 * Attempt to direct dispatch an aggregate frame to hardware. 2711 * If the frame is out of BAW, queue. 2712 * Otherwise, schedule it as a single frame. 2713 */ 2714 static void 2715 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, 2716 struct ath_txq *txq, struct ath_buf *bf) 2717 { 2718 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 2719 struct ieee80211_tx_ampdu *tap; 2720 2721 ATH_TX_LOCK_ASSERT(sc); 2722 2723 tap = ath_tx_get_tx_tid(an, tid->tid); 2724 2725 /* paused? queue */ 2726 if (tid->paused) { 2727 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2728 /* XXX don't sched - we're paused! */ 2729 return; 2730 } 2731 2732 /* outside baw? queue */ 2733 if (bf->bf_state.bfs_dobaw && 2734 (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2735 SEQNO(bf->bf_state.bfs_seqno)))) { 2736 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2737 ath_tx_tid_sched(sc, tid); 2738 return; 2739 } 2740 2741 /* 2742 * This is a temporary check and should be removed once 2743 * all the relevant code paths have been fixed. 2744 * 2745 * During aggregate retries, it's possible that the head 2746 * frame will fail (which has the bfs_aggr and bfs_nframes 2747 * fields set for said aggregate) and will be retried as 2748 * a single frame. In this instance, the values should 2749 * be reset or the completion code will get upset with you. 2750 */ 2751 if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) { 2752 device_printf(sc->sc_dev, "%s: bfs_aggr=%d, bfs_nframes=%d\n", 2753 __func__, 2754 bf->bf_state.bfs_aggr, 2755 bf->bf_state.bfs_nframes); 2756 bf->bf_state.bfs_aggr = 0; 2757 bf->bf_state.bfs_nframes = 1; 2758 } 2759 2760 /* Update CLRDMASK just before this frame is queued */ 2761 ath_tx_update_clrdmask(sc, tid, bf); 2762 2763 /* Direct dispatch to hardware */ 2764 ath_tx_do_ratelookup(sc, bf); 2765 ath_tx_calc_duration(sc, bf); 2766 ath_tx_calc_protection(sc, bf); 2767 ath_tx_set_rtscts(sc, bf); 2768 ath_tx_rate_fill_rcflags(sc, bf); 2769 ath_tx_setds(sc, bf); 2770 2771 /* Statistics */ 2772 sc->sc_aggr_stats.aggr_low_hwq_single_pkt++; 2773 2774 /* Track per-TID hardware queue depth correctly */ 2775 tid->hwq_depth++; 2776 2777 /* Add to BAW */ 2778 if (bf->bf_state.bfs_dobaw) { 2779 ath_tx_addto_baw(sc, an, tid, bf); 2780 bf->bf_state.bfs_addedbaw = 1; 2781 } 2782 2783 /* Set completion handler, multi-frame aggregate or not */ 2784 bf->bf_comp = ath_tx_aggr_comp; 2785 2786 /* Hand off to hardware */ 2787 ath_tx_handoff(sc, txq, bf); 2788 } 2789 2790 /* 2791 * Attempt to send the packet. 2792 * If the queue isn't busy, direct-dispatch. 2793 * If the queue is busy enough, queue the given packet on the 2794 * relevant software queue. 2795 */ 2796 void 2797 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq, 2798 struct ath_buf *bf) 2799 { 2800 struct ath_node *an = ATH_NODE(ni); 2801 struct ieee80211_frame *wh; 2802 struct ath_tid *atid; 2803 int pri, tid; 2804 struct mbuf *m0 = bf->bf_m; 2805 2806 ATH_TX_LOCK_ASSERT(sc); 2807 2808 /* Fetch the TID - non-QoS frames get assigned to TID 16 */ 2809 wh = mtod(m0, struct ieee80211_frame *); 2810 pri = ath_tx_getac(sc, m0); 2811 tid = ath_tx_gettid(sc, m0); 2812 atid = &an->an_tid[tid]; 2813 2814 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n", 2815 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2816 2817 /* Set local packet state, used to queue packets to hardware */ 2818 /* XXX potentially duplicate info, re-check */ 2819 bf->bf_state.bfs_tid = tid; 2820 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 2821 bf->bf_state.bfs_pri = pri; 2822 2823 /* 2824 * If the hardware queue isn't busy, queue it directly. 2825 * If the hardware queue is busy, queue it. 2826 * If the TID is paused or the traffic it outside BAW, software 2827 * queue it. 2828 */ 2829 if (atid->paused) { 2830 /* TID is paused, queue */ 2831 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__); 2832 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2833 } else if (ath_tx_ampdu_pending(sc, an, tid)) { 2834 /* AMPDU pending; queue */ 2835 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__); 2836 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2837 /* XXX sched? */ 2838 } else if (ath_tx_ampdu_running(sc, an, tid)) { 2839 /* AMPDU running, attempt direct dispatch if possible */ 2840 2841 /* 2842 * Always queue the frame to the tail of the list. 2843 */ 2844 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2845 2846 /* 2847 * If the hardware queue isn't busy, direct dispatch 2848 * the head frame in the list. Don't schedule the 2849 * TID - let it build some more frames first? 2850 * 2851 * Otherwise, schedule the TID. 2852 */ 2853 if (txq->axq_depth < sc->sc_hwq_limit) { 2854 bf = ATH_TID_FIRST(atid); 2855 ATH_TID_REMOVE(atid, bf, bf_list); 2856 2857 /* 2858 * Ensure it's definitely treated as a non-AMPDU 2859 * frame - this information may have been left 2860 * over from a previous attempt. 2861 */ 2862 bf->bf_state.bfs_aggr = 0; 2863 bf->bf_state.bfs_nframes = 1; 2864 2865 /* Queue to the hardware */ 2866 ath_tx_xmit_aggr(sc, an, txq, bf); 2867 DPRINTF(sc, ATH_DEBUG_SW_TX, 2868 "%s: xmit_aggr\n", 2869 __func__); 2870 } else { 2871 DPRINTF(sc, ATH_DEBUG_SW_TX, 2872 "%s: ampdu; swq'ing\n", 2873 __func__); 2874 2875 ath_tx_tid_sched(sc, atid); 2876 } 2877 } else if (txq->axq_depth < sc->sc_hwq_limit) { 2878 /* AMPDU not running, attempt direct dispatch */ 2879 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__); 2880 /* See if clrdmask needs to be set */ 2881 ath_tx_update_clrdmask(sc, atid, bf); 2882 ath_tx_xmit_normal(sc, txq, bf); 2883 } else { 2884 /* Busy; queue */ 2885 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__); 2886 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2887 ath_tx_tid_sched(sc, atid); 2888 } 2889 } 2890 2891 /* 2892 * Only set the clrdmask bit if none of the nodes are currently 2893 * filtered. 2894 * 2895 * XXX TODO: go through all the callers and check to see 2896 * which are being called in the context of looping over all 2897 * TIDs (eg, if all tids are being paused, resumed, etc.) 2898 * That'll avoid O(n^2) complexity here. 2899 */ 2900 static void 2901 ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an) 2902 { 2903 int i; 2904 2905 ATH_TX_LOCK_ASSERT(sc); 2906 2907 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2908 if (an->an_tid[i].isfiltered == 1) 2909 return; 2910 } 2911 an->clrdmask = 1; 2912 } 2913 2914 /* 2915 * Configure the per-TID node state. 2916 * 2917 * This likely belongs in if_ath_node.c but I can't think of anywhere 2918 * else to put it just yet. 2919 * 2920 * This sets up the SLISTs and the mutex as appropriate. 2921 */ 2922 void 2923 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an) 2924 { 2925 int i, j; 2926 struct ath_tid *atid; 2927 2928 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2929 atid = &an->an_tid[i]; 2930 2931 /* XXX now with this bzer(), is the field 0'ing needed? */ 2932 bzero(atid, sizeof(*atid)); 2933 2934 TAILQ_INIT(&atid->tid_q); 2935 TAILQ_INIT(&atid->filtq.tid_q); 2936 atid->tid = i; 2937 atid->an = an; 2938 for (j = 0; j < ATH_TID_MAX_BUFS; j++) 2939 atid->tx_buf[j] = NULL; 2940 atid->baw_head = atid->baw_tail = 0; 2941 atid->paused = 0; 2942 atid->sched = 0; 2943 atid->hwq_depth = 0; 2944 atid->cleanup_inprogress = 0; 2945 if (i == IEEE80211_NONQOS_TID) 2946 atid->ac = ATH_NONQOS_TID_AC; 2947 else 2948 atid->ac = TID_TO_WME_AC(i); 2949 } 2950 an->clrdmask = 1; /* Always start by setting this bit */ 2951 } 2952 2953 /* 2954 * Pause the current TID. This stops packets from being transmitted 2955 * on it. 2956 * 2957 * Since this is also called from upper layers as well as the driver, 2958 * it will get the TID lock. 2959 */ 2960 static void 2961 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid) 2962 { 2963 2964 ATH_TX_LOCK_ASSERT(sc); 2965 tid->paused++; 2966 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n", 2967 __func__, tid->paused); 2968 } 2969 2970 /* 2971 * Unpause the current TID, and schedule it if needed. 2972 */ 2973 static void 2974 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid) 2975 { 2976 ATH_TX_LOCK_ASSERT(sc); 2977 2978 tid->paused--; 2979 2980 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n", 2981 __func__, tid->paused); 2982 2983 if (tid->paused) 2984 return; 2985 2986 /* 2987 * Override the clrdmask configuration for the next frame 2988 * from this TID, just to get the ball rolling. 2989 */ 2990 ath_tx_set_clrdmask(sc, tid->an); 2991 2992 if (tid->axq_depth == 0) 2993 return; 2994 2995 /* XXX isfiltered shouldn't ever be 0 at this point */ 2996 if (tid->isfiltered == 1) { 2997 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 2998 return; 2999 } 3000 3001 ath_tx_tid_sched(sc, tid); 3002 /* Punt some frames to the hardware if needed */ 3003 //ath_txq_sched(sc, sc->sc_ac2q[tid->ac]); 3004 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 3005 } 3006 3007 /* 3008 * Add the given ath_buf to the TID filtered frame list. 3009 * This requires the TID be filtered. 3010 */ 3011 static void 3012 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid, 3013 struct ath_buf *bf) 3014 { 3015 3016 ATH_TX_LOCK_ASSERT(sc); 3017 3018 if (! tid->isfiltered) 3019 device_printf(sc->sc_dev, "%s: not filtered?!\n", __func__); 3020 3021 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf); 3022 3023 /* Set the retry bit and bump the retry counter */ 3024 ath_tx_set_retry(sc, bf); 3025 sc->sc_stats.ast_tx_swfiltered++; 3026 3027 ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list); 3028 } 3029 3030 /* 3031 * Handle a completed filtered frame from the given TID. 3032 * This just enables/pauses the filtered frame state if required 3033 * and appends the filtered frame to the filtered queue. 3034 */ 3035 static void 3036 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid, 3037 struct ath_buf *bf) 3038 { 3039 3040 ATH_TX_LOCK_ASSERT(sc); 3041 3042 if (! tid->isfiltered) { 3043 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: filter transition\n", 3044 __func__); 3045 tid->isfiltered = 1; 3046 ath_tx_tid_pause(sc, tid); 3047 } 3048 3049 /* Add the frame to the filter queue */ 3050 ath_tx_tid_filt_addbuf(sc, tid, bf); 3051 } 3052 3053 /* 3054 * Complete the filtered frame TX completion. 3055 * 3056 * If there are no more frames in the hardware queue, unpause/unfilter 3057 * the TID if applicable. Otherwise we will wait for a node PS transition 3058 * to unfilter. 3059 */ 3060 static void 3061 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid) 3062 { 3063 struct ath_buf *bf; 3064 3065 ATH_TX_LOCK_ASSERT(sc); 3066 3067 if (tid->hwq_depth != 0) 3068 return; 3069 3070 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: hwq=0, transition back\n", 3071 __func__); 3072 tid->isfiltered = 0; 3073 /* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */ 3074 ath_tx_set_clrdmask(sc, tid->an); 3075 3076 /* XXX this is really quite inefficient */ 3077 while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) { 3078 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3079 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 3080 } 3081 3082 ath_tx_tid_resume(sc, tid); 3083 } 3084 3085 /* 3086 * Called when a single (aggregate or otherwise) frame is completed. 3087 * 3088 * Returns 1 if the buffer could be added to the filtered list 3089 * (cloned or otherwise), 0 if the buffer couldn't be added to the 3090 * filtered list (failed clone; expired retry) and the caller should 3091 * free it and handle it like a failure (eg by sending a BAR.) 3092 */ 3093 static int 3094 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid, 3095 struct ath_buf *bf) 3096 { 3097 struct ath_buf *nbf; 3098 int retval; 3099 3100 ATH_TX_LOCK_ASSERT(sc); 3101 3102 /* 3103 * Don't allow a filtered frame to live forever. 3104 */ 3105 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3106 sc->sc_stats.ast_tx_swretrymax++; 3107 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3108 "%s: bf=%p, seqno=%d, exceeded retries\n", 3109 __func__, 3110 bf, 3111 bf->bf_state.bfs_seqno); 3112 return (0); 3113 } 3114 3115 /* 3116 * A busy buffer can't be added to the retry list. 3117 * It needs to be cloned. 3118 */ 3119 if (bf->bf_flags & ATH_BUF_BUSY) { 3120 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3121 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3122 "%s: busy buffer clone: %p -> %p\n", 3123 __func__, bf, nbf); 3124 } else { 3125 nbf = bf; 3126 } 3127 3128 if (nbf == NULL) { 3129 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3130 "%s: busy buffer couldn't be cloned (%p)!\n", 3131 __func__, bf); 3132 retval = 1; 3133 } else { 3134 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3135 retval = 0; 3136 } 3137 ath_tx_tid_filt_comp_complete(sc, tid); 3138 3139 return (retval); 3140 } 3141 3142 static void 3143 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid, 3144 struct ath_buf *bf_first, ath_bufhead *bf_q) 3145 { 3146 struct ath_buf *bf, *bf_next, *nbf; 3147 3148 ATH_TX_LOCK_ASSERT(sc); 3149 3150 bf = bf_first; 3151 while (bf) { 3152 bf_next = bf->bf_next; 3153 bf->bf_next = NULL; /* Remove it from the aggr list */ 3154 3155 /* 3156 * Don't allow a filtered frame to live forever. 3157 */ 3158 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3159 sc->sc_stats.ast_tx_swretrymax++; 3160 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3161 "%s: bf=%p, seqno=%d, exceeded retries\n", 3162 __func__, 3163 bf, 3164 bf->bf_state.bfs_seqno); 3165 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3166 goto next; 3167 } 3168 3169 if (bf->bf_flags & ATH_BUF_BUSY) { 3170 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3171 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3172 "%s: busy buffer cloned: %p -> %p", 3173 __func__, bf, nbf); 3174 } else { 3175 nbf = bf; 3176 } 3177 3178 /* 3179 * If the buffer couldn't be cloned, add it to bf_q; 3180 * the caller will free the buffer(s) as required. 3181 */ 3182 if (nbf == NULL) { 3183 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3184 "%s: buffer couldn't be cloned! (%p)\n", 3185 __func__, bf); 3186 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3187 } else { 3188 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3189 } 3190 next: 3191 bf = bf_next; 3192 } 3193 3194 ath_tx_tid_filt_comp_complete(sc, tid); 3195 } 3196 3197 /* 3198 * Suspend the queue because we need to TX a BAR. 3199 */ 3200 static void 3201 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid) 3202 { 3203 3204 ATH_TX_LOCK_ASSERT(sc); 3205 3206 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3207 "%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n", 3208 __func__, 3209 tid, 3210 tid->bar_wait, 3211 tid->bar_tx); 3212 3213 /* We shouldn't be called when bar_tx is 1 */ 3214 if (tid->bar_tx) { 3215 device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n", 3216 __func__); 3217 } 3218 3219 /* If we've already been called, just be patient. */ 3220 if (tid->bar_wait) 3221 return; 3222 3223 /* Wait! */ 3224 tid->bar_wait = 1; 3225 3226 /* Only one pause, no matter how many frames fail */ 3227 ath_tx_tid_pause(sc, tid); 3228 } 3229 3230 /* 3231 * We've finished with BAR handling - either we succeeded or 3232 * failed. Either way, unsuspend TX. 3233 */ 3234 static void 3235 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid) 3236 { 3237 3238 ATH_TX_LOCK_ASSERT(sc); 3239 3240 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3241 "%s: tid=%p, called\n", 3242 __func__, 3243 tid); 3244 3245 if (tid->bar_tx == 0 || tid->bar_wait == 0) { 3246 device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n", 3247 __func__, tid->bar_tx, tid->bar_wait); 3248 } 3249 3250 tid->bar_tx = tid->bar_wait = 0; 3251 ath_tx_tid_resume(sc, tid); 3252 } 3253 3254 /* 3255 * Return whether we're ready to TX a BAR frame. 3256 * 3257 * Requires the TID lock be held. 3258 */ 3259 static int 3260 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid) 3261 { 3262 3263 ATH_TX_LOCK_ASSERT(sc); 3264 3265 if (tid->bar_wait == 0 || tid->hwq_depth > 0) 3266 return (0); 3267 3268 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n", 3269 __func__, tid, tid->tid); 3270 3271 return (1); 3272 } 3273 3274 /* 3275 * Check whether the current TID is ready to have a BAR 3276 * TXed and if so, do the TX. 3277 * 3278 * Since the TID/TXQ lock can't be held during a call to 3279 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it, 3280 * sending the BAR and locking it again. 3281 * 3282 * Eventually, the code to send the BAR should be broken out 3283 * from this routine so the lock doesn't have to be reacquired 3284 * just to be immediately dropped by the caller. 3285 */ 3286 static void 3287 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid) 3288 { 3289 struct ieee80211_tx_ampdu *tap; 3290 3291 ATH_TX_LOCK_ASSERT(sc); 3292 3293 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3294 "%s: tid=%p, called\n", 3295 __func__, 3296 tid); 3297 3298 tap = ath_tx_get_tx_tid(tid->an, tid->tid); 3299 3300 /* 3301 * This is an error condition! 3302 */ 3303 if (tid->bar_wait == 0 || tid->bar_tx == 1) { 3304 device_printf(sc->sc_dev, 3305 "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n", 3306 __func__, 3307 tid, 3308 tid->bar_tx, 3309 tid->bar_wait); 3310 return; 3311 } 3312 3313 /* Don't do anything if we still have pending frames */ 3314 if (tid->hwq_depth > 0) { 3315 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3316 "%s: tid=%p, hwq_depth=%d, waiting\n", 3317 __func__, 3318 tid, 3319 tid->hwq_depth); 3320 return; 3321 } 3322 3323 /* We're now about to TX */ 3324 tid->bar_tx = 1; 3325 3326 /* 3327 * Override the clrdmask configuration for the next frame, 3328 * just to get the ball rolling. 3329 */ 3330 ath_tx_set_clrdmask(sc, tid->an); 3331 3332 /* 3333 * Calculate new BAW left edge, now that all frames have either 3334 * succeeded or failed. 3335 * 3336 * XXX verify this is _actually_ the valid value to begin at! 3337 */ 3338 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3339 "%s: tid=%p, new BAW left edge=%d\n", 3340 __func__, 3341 tid, 3342 tap->txa_start); 3343 3344 /* Try sending the BAR frame */ 3345 /* We can't hold the lock here! */ 3346 3347 ATH_TX_UNLOCK(sc); 3348 if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) { 3349 /* Success? Now we wait for notification that it's done */ 3350 ATH_TX_LOCK(sc); 3351 return; 3352 } 3353 3354 /* Failure? For now, warn loudly and continue */ 3355 ATH_TX_LOCK(sc); 3356 device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n", 3357 __func__, tid); 3358 ath_tx_tid_bar_unsuspend(sc, tid); 3359 } 3360 3361 static void 3362 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an, 3363 struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf) 3364 { 3365 3366 ATH_TX_LOCK_ASSERT(sc); 3367 3368 /* 3369 * If the current TID is running AMPDU, update 3370 * the BAW. 3371 */ 3372 if (ath_tx_ampdu_running(sc, an, tid->tid) && 3373 bf->bf_state.bfs_dobaw) { 3374 /* 3375 * Only remove the frame from the BAW if it's 3376 * been transmitted at least once; this means 3377 * the frame was in the BAW to begin with. 3378 */ 3379 if (bf->bf_state.bfs_retries > 0) { 3380 ath_tx_update_baw(sc, an, tid, bf); 3381 bf->bf_state.bfs_dobaw = 0; 3382 } 3383 /* 3384 * This has become a non-fatal error now 3385 */ 3386 if (! bf->bf_state.bfs_addedbaw) 3387 device_printf(sc->sc_dev, 3388 "%s: wasn't added: seqno %d\n", 3389 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3390 } 3391 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); 3392 } 3393 3394 static void 3395 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an, 3396 const char *pfx, struct ath_tid *tid, struct ath_buf *bf) 3397 { 3398 struct ieee80211_node *ni = &an->an_node; 3399 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 3400 struct ieee80211_tx_ampdu *tap; 3401 3402 tap = ath_tx_get_tx_tid(an, tid->tid); 3403 3404 device_printf(sc->sc_dev, 3405 "%s: %s: node %p: bf=%p: addbaw=%d, dobaw=%d, " 3406 "seqno=%d, retry=%d\n", 3407 __func__, pfx, ni, bf, 3408 bf->bf_state.bfs_addedbaw, 3409 bf->bf_state.bfs_dobaw, 3410 SEQNO(bf->bf_state.bfs_seqno), 3411 bf->bf_state.bfs_retries); 3412 device_printf(sc->sc_dev, 3413 "%s: node %p: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n", 3414 __func__, ni, bf, 3415 txq->axq_qnum, 3416 txq->axq_depth, 3417 txq->axq_aggr_depth); 3418 3419 device_printf(sc->sc_dev, 3420 "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, isfiltered=%d\n", 3421 __func__, ni, bf, 3422 tid->axq_depth, 3423 tid->hwq_depth, 3424 tid->bar_wait, 3425 tid->isfiltered); 3426 device_printf(sc->sc_dev, 3427 "%s: node %p: tid %d: " 3428 "sched=%d, paused=%d, " 3429 "incomp=%d, baw_head=%d, " 3430 "baw_tail=%d txa_start=%d, ni_txseqs=%d\n", 3431 __func__, ni, tid->tid, 3432 tid->sched, tid->paused, 3433 tid->incomp, tid->baw_head, 3434 tid->baw_tail, tap == NULL ? -1 : tap->txa_start, 3435 ni->ni_txseqs[tid->tid]); 3436 3437 /* XXX Dump the frame, see what it is? */ 3438 ieee80211_dump_pkt(ni->ni_ic, 3439 mtod(bf->bf_m, const uint8_t *), 3440 bf->bf_m->m_len, 0, -1); 3441 } 3442 3443 /* 3444 * Free any packets currently pending in the software TX queue. 3445 * 3446 * This will be called when a node is being deleted. 3447 * 3448 * It can also be called on an active node during an interface 3449 * reset or state transition. 3450 * 3451 * (From Linux/reference): 3452 * 3453 * TODO: For frame(s) that are in the retry state, we will reuse the 3454 * sequence number(s) without setting the retry bit. The 3455 * alternative is to give up on these and BAR the receiver's window 3456 * forward. 3457 */ 3458 static void 3459 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, 3460 struct ath_tid *tid, ath_bufhead *bf_cq) 3461 { 3462 struct ath_buf *bf; 3463 struct ieee80211_tx_ampdu *tap; 3464 struct ieee80211_node *ni = &an->an_node; 3465 int t; 3466 3467 tap = ath_tx_get_tx_tid(an, tid->tid); 3468 3469 ATH_TX_LOCK_ASSERT(sc); 3470 3471 /* Walk the queue, free frames */ 3472 t = 0; 3473 for (;;) { 3474 bf = ATH_TID_FIRST(tid); 3475 if (bf == NULL) { 3476 break; 3477 } 3478 3479 if (t == 0) { 3480 ath_tx_tid_drain_print(sc, an, "norm", tid, bf); 3481 t = 1; 3482 } 3483 3484 ATH_TID_REMOVE(tid, bf, bf_list); 3485 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3486 } 3487 3488 /* And now, drain the filtered frame queue */ 3489 t = 0; 3490 for (;;) { 3491 bf = ATH_TID_FILT_FIRST(tid); 3492 if (bf == NULL) 3493 break; 3494 3495 if (t == 0) { 3496 ath_tx_tid_drain_print(sc, an, "filt", tid, bf); 3497 t = 1; 3498 } 3499 3500 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3501 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3502 } 3503 3504 /* 3505 * Override the clrdmask configuration for the next frame 3506 * in case there is some future transmission, just to get 3507 * the ball rolling. 3508 * 3509 * This won't hurt things if the TID is about to be freed. 3510 */ 3511 ath_tx_set_clrdmask(sc, tid->an); 3512 3513 /* 3514 * Now that it's completed, grab the TID lock and update 3515 * the sequence number and BAW window. 3516 * Because sequence numbers have been assigned to frames 3517 * that haven't been sent yet, it's entirely possible 3518 * we'll be called with some pending frames that have not 3519 * been transmitted. 3520 * 3521 * The cleaner solution is to do the sequence number allocation 3522 * when the packet is first transmitted - and thus the "retries" 3523 * check above would be enough to update the BAW/seqno. 3524 */ 3525 3526 /* But don't do it for non-QoS TIDs */ 3527 if (tap) { 3528 #if 0 3529 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3530 "%s: node %p: TID %d: sliding BAW left edge to %d\n", 3531 __func__, an, tid->tid, tap->txa_start); 3532 #endif 3533 ni->ni_txseqs[tid->tid] = tap->txa_start; 3534 tid->baw_tail = tid->baw_head; 3535 } 3536 } 3537 3538 /* 3539 * Flush all software queued packets for the given node. 3540 * 3541 * This occurs when a completion handler frees the last buffer 3542 * for a node, and the node is thus freed. This causes the node 3543 * to be cleaned up, which ends up calling ath_tx_node_flush. 3544 */ 3545 void 3546 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an) 3547 { 3548 int tid; 3549 ath_bufhead bf_cq; 3550 struct ath_buf *bf; 3551 3552 TAILQ_INIT(&bf_cq); 3553 3554 ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p", 3555 &an->an_node); 3556 3557 ATH_TX_LOCK(sc); 3558 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 3559 struct ath_tid *atid = &an->an_tid[tid]; 3560 3561 /* Free packets */ 3562 ath_tx_tid_drain(sc, an, atid, &bf_cq); 3563 /* Remove this tid from the list of active tids */ 3564 ath_tx_tid_unsched(sc, atid); 3565 } 3566 ATH_TX_UNLOCK(sc); 3567 3568 /* Handle completed frames */ 3569 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3570 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3571 ath_tx_default_comp(sc, bf, 0); 3572 } 3573 } 3574 3575 /* 3576 * Drain all the software TXQs currently with traffic queued. 3577 */ 3578 void 3579 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq) 3580 { 3581 struct ath_tid *tid; 3582 ath_bufhead bf_cq; 3583 struct ath_buf *bf; 3584 3585 TAILQ_INIT(&bf_cq); 3586 ATH_TX_LOCK(sc); 3587 3588 /* 3589 * Iterate over all active tids for the given txq, 3590 * flushing and unsched'ing them 3591 */ 3592 while (! TAILQ_EMPTY(&txq->axq_tidq)) { 3593 tid = TAILQ_FIRST(&txq->axq_tidq); 3594 ath_tx_tid_drain(sc, tid->an, tid, &bf_cq); 3595 ath_tx_tid_unsched(sc, tid); 3596 } 3597 3598 ATH_TX_UNLOCK(sc); 3599 3600 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3601 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3602 ath_tx_default_comp(sc, bf, 0); 3603 } 3604 } 3605 3606 /* 3607 * Handle completion of non-aggregate session frames. 3608 * 3609 * This (currently) doesn't implement software retransmission of 3610 * non-aggregate frames! 3611 * 3612 * Software retransmission of non-aggregate frames needs to obey 3613 * the strict sequence number ordering, and drop any frames that 3614 * will fail this. 3615 * 3616 * For now, filtered frames and frame transmission will cause 3617 * all kinds of issues. So we don't support them. 3618 * 3619 * So anyone queuing frames via ath_tx_normal_xmit() or 3620 * ath_tx_hw_queue_norm() must override and set CLRDMASK. 3621 */ 3622 void 3623 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3624 { 3625 struct ieee80211_node *ni = bf->bf_node; 3626 struct ath_node *an = ATH_NODE(ni); 3627 int tid = bf->bf_state.bfs_tid; 3628 struct ath_tid *atid = &an->an_tid[tid]; 3629 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3630 3631 /* The TID state is protected behind the TXQ lock */ 3632 ATH_TX_LOCK(sc); 3633 3634 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n", 3635 __func__, bf, fail, atid->hwq_depth - 1); 3636 3637 atid->hwq_depth--; 3638 3639 #if 0 3640 /* 3641 * If the frame was filtered, stick it on the filter frame 3642 * queue and complain about it. It shouldn't happen! 3643 */ 3644 if ((ts->ts_status & HAL_TXERR_FILT) || 3645 (ts->ts_status != 0 && atid->isfiltered)) { 3646 device_printf(sc->sc_dev, 3647 "%s: isfiltered=%d, ts_status=%d: huh?\n", 3648 __func__, 3649 atid->isfiltered, 3650 ts->ts_status); 3651 ath_tx_tid_filt_comp_buf(sc, atid, bf); 3652 } 3653 #endif 3654 if (atid->isfiltered) 3655 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 3656 if (atid->hwq_depth < 0) 3657 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 3658 __func__, atid->hwq_depth); 3659 3660 /* 3661 * If the queue is filtered, potentially mark it as complete 3662 * and reschedule it as needed. 3663 * 3664 * This is required as there may be a subsequent TX descriptor 3665 * for this end-node that has CLRDMASK set, so it's quite possible 3666 * that a filtered frame will be followed by a non-filtered 3667 * (complete or otherwise) frame. 3668 * 3669 * XXX should we do this before we complete the frame? 3670 */ 3671 if (atid->isfiltered) 3672 ath_tx_tid_filt_comp_complete(sc, atid); 3673 ATH_TX_UNLOCK(sc); 3674 3675 /* 3676 * punt to rate control if we're not being cleaned up 3677 * during a hw queue drain and the frame wanted an ACK. 3678 */ 3679 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 3680 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 3681 ts, bf->bf_state.bfs_pktlen, 3682 1, (ts->ts_status == 0) ? 0 : 1); 3683 3684 ath_tx_default_comp(sc, bf, fail); 3685 } 3686 3687 /* 3688 * Handle cleanup of aggregate session packets that aren't 3689 * an A-MPDU. 3690 * 3691 * There's no need to update the BAW here - the session is being 3692 * torn down. 3693 */ 3694 static void 3695 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3696 { 3697 struct ieee80211_node *ni = bf->bf_node; 3698 struct ath_node *an = ATH_NODE(ni); 3699 int tid = bf->bf_state.bfs_tid; 3700 struct ath_tid *atid = &an->an_tid[tid]; 3701 3702 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n", 3703 __func__, tid, atid->incomp); 3704 3705 ATH_TX_LOCK(sc); 3706 atid->incomp--; 3707 if (atid->incomp == 0) { 3708 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3709 "%s: TID %d: cleaned up! resume!\n", 3710 __func__, tid); 3711 atid->cleanup_inprogress = 0; 3712 ath_tx_tid_resume(sc, atid); 3713 } 3714 ATH_TX_UNLOCK(sc); 3715 3716 ath_tx_default_comp(sc, bf, 0); 3717 } 3718 3719 /* 3720 * Performs transmit side cleanup when TID changes from aggregated to 3721 * unaggregated. 3722 * 3723 * - Discard all retry frames from the s/w queue. 3724 * - Fix the tx completion function for all buffers in s/w queue. 3725 * - Count the number of unacked frames, and let transmit completion 3726 * handle it later. 3727 * 3728 * The caller is responsible for pausing the TID. 3729 */ 3730 static void 3731 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid) 3732 { 3733 struct ath_tid *atid = &an->an_tid[tid]; 3734 struct ieee80211_tx_ampdu *tap; 3735 struct ath_buf *bf, *bf_next; 3736 ath_bufhead bf_cq; 3737 3738 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 3739 "%s: TID %d: called\n", __func__, tid); 3740 3741 TAILQ_INIT(&bf_cq); 3742 ATH_TX_LOCK(sc); 3743 3744 /* 3745 * Move the filtered frames to the TX queue, before 3746 * we run off and discard/process things. 3747 */ 3748 /* XXX this is really quite inefficient */ 3749 while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) { 3750 ATH_TID_FILT_REMOVE(atid, bf, bf_list); 3751 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3752 } 3753 3754 /* 3755 * Update the frames in the software TX queue: 3756 * 3757 * + Discard retry frames in the queue 3758 * + Fix the completion function to be non-aggregate 3759 */ 3760 bf = ATH_TID_FIRST(atid); 3761 while (bf) { 3762 if (bf->bf_state.bfs_isretried) { 3763 bf_next = TAILQ_NEXT(bf, bf_list); 3764 ATH_TID_REMOVE(atid, bf, bf_list); 3765 atid->axq_depth--; 3766 if (bf->bf_state.bfs_dobaw) { 3767 ath_tx_update_baw(sc, an, atid, bf); 3768 if (! bf->bf_state.bfs_addedbaw) 3769 device_printf(sc->sc_dev, 3770 "%s: wasn't added: seqno %d\n", 3771 __func__, 3772 SEQNO(bf->bf_state.bfs_seqno)); 3773 } 3774 bf->bf_state.bfs_dobaw = 0; 3775 /* 3776 * Call the default completion handler with "fail" just 3777 * so upper levels are suitably notified about this. 3778 */ 3779 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 3780 bf = bf_next; 3781 continue; 3782 } 3783 /* Give these the default completion handler */ 3784 bf->bf_comp = ath_tx_normal_comp; 3785 bf = TAILQ_NEXT(bf, bf_list); 3786 } 3787 3788 /* The caller is required to pause the TID */ 3789 #if 0 3790 /* Pause the TID */ 3791 ath_tx_tid_pause(sc, atid); 3792 #endif 3793 3794 /* 3795 * Calculate what hardware-queued frames exist based 3796 * on the current BAW size. Ie, what frames have been 3797 * added to the TX hardware queue for this TID but 3798 * not yet ACKed. 3799 */ 3800 tap = ath_tx_get_tx_tid(an, tid); 3801 /* Need the lock - fiddling with BAW */ 3802 while (atid->baw_head != atid->baw_tail) { 3803 if (atid->tx_buf[atid->baw_head]) { 3804 atid->incomp++; 3805 atid->cleanup_inprogress = 1; 3806 atid->tx_buf[atid->baw_head] = NULL; 3807 } 3808 INCR(atid->baw_head, ATH_TID_MAX_BUFS); 3809 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 3810 } 3811 3812 /* 3813 * If cleanup is required, defer TID scheduling 3814 * until all the HW queued packets have been 3815 * sent. 3816 */ 3817 if (! atid->cleanup_inprogress) 3818 ath_tx_tid_resume(sc, atid); 3819 3820 if (atid->cleanup_inprogress) 3821 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3822 "%s: TID %d: cleanup needed: %d packets\n", 3823 __func__, tid, atid->incomp); 3824 ATH_TX_UNLOCK(sc); 3825 3826 /* Handle completing frames and fail them */ 3827 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3828 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3829 ath_tx_default_comp(sc, bf, 1); 3830 } 3831 } 3832 3833 static struct ath_buf * 3834 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 3835 struct ath_tid *tid, struct ath_buf *bf) 3836 { 3837 struct ath_buf *nbf; 3838 int error; 3839 3840 nbf = ath_buf_clone(sc, bf); 3841 3842 #if 0 3843 device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n", 3844 __func__); 3845 #endif 3846 3847 if (nbf == NULL) { 3848 /* Failed to clone */ 3849 device_printf(sc->sc_dev, 3850 "%s: failed to clone a busy buffer\n", 3851 __func__); 3852 return NULL; 3853 } 3854 3855 /* Setup the dma for the new buffer */ 3856 error = ath_tx_dmasetup(sc, nbf, nbf->bf_m); 3857 if (error != 0) { 3858 device_printf(sc->sc_dev, 3859 "%s: failed to setup dma for clone\n", 3860 __func__); 3861 /* 3862 * Put this at the head of the list, not tail; 3863 * that way it doesn't interfere with the 3864 * busy buffer logic (which uses the tail of 3865 * the list.) 3866 */ 3867 ATH_TXBUF_LOCK(sc); 3868 ath_returnbuf_head(sc, nbf); 3869 ATH_TXBUF_UNLOCK(sc); 3870 return NULL; 3871 } 3872 3873 /* Update BAW if required, before we free the original buf */ 3874 if (bf->bf_state.bfs_dobaw) 3875 ath_tx_switch_baw_buf(sc, an, tid, bf, nbf); 3876 3877 /* Free current buffer; return the older buffer */ 3878 bf->bf_m = NULL; 3879 bf->bf_node = NULL; 3880 ath_freebuf(sc, bf); 3881 3882 return nbf; 3883 } 3884 3885 /* 3886 * Handle retrying an unaggregate frame in an aggregate 3887 * session. 3888 * 3889 * If too many retries occur, pause the TID, wait for 3890 * any further retransmits (as there's no reason why 3891 * non-aggregate frames in an aggregate session are 3892 * transmitted in-order; they just have to be in-BAW) 3893 * and then queue a BAR. 3894 */ 3895 static void 3896 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3897 { 3898 struct ieee80211_node *ni = bf->bf_node; 3899 struct ath_node *an = ATH_NODE(ni); 3900 int tid = bf->bf_state.bfs_tid; 3901 struct ath_tid *atid = &an->an_tid[tid]; 3902 struct ieee80211_tx_ampdu *tap; 3903 3904 ATH_TX_LOCK(sc); 3905 3906 tap = ath_tx_get_tx_tid(an, tid); 3907 3908 /* 3909 * If the buffer is marked as busy, we can't directly 3910 * reuse it. Instead, try to clone the buffer. 3911 * If the clone is successful, recycle the old buffer. 3912 * If the clone is unsuccessful, set bfs_retries to max 3913 * to force the next bit of code to free the buffer 3914 * for us. 3915 */ 3916 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 3917 (bf->bf_flags & ATH_BUF_BUSY)) { 3918 struct ath_buf *nbf; 3919 nbf = ath_tx_retry_clone(sc, an, atid, bf); 3920 if (nbf) 3921 /* bf has been freed at this point */ 3922 bf = nbf; 3923 else 3924 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 3925 } 3926 3927 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 3928 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 3929 "%s: exceeded retries; seqno %d\n", 3930 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3931 sc->sc_stats.ast_tx_swretrymax++; 3932 3933 /* Update BAW anyway */ 3934 if (bf->bf_state.bfs_dobaw) { 3935 ath_tx_update_baw(sc, an, atid, bf); 3936 if (! bf->bf_state.bfs_addedbaw) 3937 device_printf(sc->sc_dev, 3938 "%s: wasn't added: seqno %d\n", 3939 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3940 } 3941 bf->bf_state.bfs_dobaw = 0; 3942 3943 /* Suspend the TX queue and get ready to send the BAR */ 3944 ath_tx_tid_bar_suspend(sc, atid); 3945 3946 /* Send the BAR if there are no other frames waiting */ 3947 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3948 ath_tx_tid_bar_tx(sc, atid); 3949 3950 ATH_TX_UNLOCK(sc); 3951 3952 /* Free buffer, bf is free after this call */ 3953 ath_tx_default_comp(sc, bf, 0); 3954 return; 3955 } 3956 3957 /* 3958 * This increments the retry counter as well as 3959 * sets the retry flag in the ath_buf and packet 3960 * body. 3961 */ 3962 ath_tx_set_retry(sc, bf); 3963 sc->sc_stats.ast_tx_swretries++; 3964 3965 /* 3966 * Insert this at the head of the queue, so it's 3967 * retried before any current/subsequent frames. 3968 */ 3969 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3970 ath_tx_tid_sched(sc, atid); 3971 /* Send the BAR if there are no other frames waiting */ 3972 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3973 ath_tx_tid_bar_tx(sc, atid); 3974 3975 ATH_TX_UNLOCK(sc); 3976 } 3977 3978 /* 3979 * Common code for aggregate excessive retry/subframe retry. 3980 * If retrying, queues buffers to bf_q. If not, frees the 3981 * buffers. 3982 * 3983 * XXX should unify this with ath_tx_aggr_retry_unaggr() 3984 */ 3985 static int 3986 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf, 3987 ath_bufhead *bf_q) 3988 { 3989 struct ieee80211_node *ni = bf->bf_node; 3990 struct ath_node *an = ATH_NODE(ni); 3991 int tid = bf->bf_state.bfs_tid; 3992 struct ath_tid *atid = &an->an_tid[tid]; 3993 3994 ATH_TX_LOCK_ASSERT(sc); 3995 3996 /* XXX clr11naggr should be done for all subframes */ 3997 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 3998 ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0); 3999 4000 /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */ 4001 4002 /* 4003 * If the buffer is marked as busy, we can't directly 4004 * reuse it. Instead, try to clone the buffer. 4005 * If the clone is successful, recycle the old buffer. 4006 * If the clone is unsuccessful, set bfs_retries to max 4007 * to force the next bit of code to free the buffer 4008 * for us. 4009 */ 4010 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 4011 (bf->bf_flags & ATH_BUF_BUSY)) { 4012 struct ath_buf *nbf; 4013 nbf = ath_tx_retry_clone(sc, an, atid, bf); 4014 if (nbf) 4015 /* bf has been freed at this point */ 4016 bf = nbf; 4017 else 4018 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 4019 } 4020 4021 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 4022 sc->sc_stats.ast_tx_swretrymax++; 4023 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 4024 "%s: max retries: seqno %d\n", 4025 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4026 ath_tx_update_baw(sc, an, atid, bf); 4027 if (! bf->bf_state.bfs_addedbaw) 4028 device_printf(sc->sc_dev, 4029 "%s: wasn't added: seqno %d\n", 4030 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4031 bf->bf_state.bfs_dobaw = 0; 4032 return 1; 4033 } 4034 4035 ath_tx_set_retry(sc, bf); 4036 sc->sc_stats.ast_tx_swretries++; 4037 bf->bf_next = NULL; /* Just to make sure */ 4038 4039 /* Clear the aggregate state */ 4040 bf->bf_state.bfs_aggr = 0; 4041 bf->bf_state.bfs_ndelim = 0; /* ??? needed? */ 4042 bf->bf_state.bfs_nframes = 1; 4043 4044 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 4045 return 0; 4046 } 4047 4048 /* 4049 * error pkt completion for an aggregate destination 4050 */ 4051 static void 4052 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first, 4053 struct ath_tid *tid) 4054 { 4055 struct ieee80211_node *ni = bf_first->bf_node; 4056 struct ath_node *an = ATH_NODE(ni); 4057 struct ath_buf *bf_next, *bf; 4058 ath_bufhead bf_q; 4059 int drops = 0; 4060 struct ieee80211_tx_ampdu *tap; 4061 ath_bufhead bf_cq; 4062 4063 TAILQ_INIT(&bf_q); 4064 TAILQ_INIT(&bf_cq); 4065 4066 /* 4067 * Update rate control - all frames have failed. 4068 * 4069 * XXX use the length in the first frame in the series; 4070 * XXX just so things are consistent for now. 4071 */ 4072 ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc, 4073 &bf_first->bf_status.ds_txstat, 4074 bf_first->bf_state.bfs_pktlen, 4075 bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes); 4076 4077 ATH_TX_LOCK(sc); 4078 tap = ath_tx_get_tx_tid(an, tid->tid); 4079 sc->sc_stats.ast_tx_aggr_failall++; 4080 4081 /* Retry all subframes */ 4082 bf = bf_first; 4083 while (bf) { 4084 bf_next = bf->bf_next; 4085 bf->bf_next = NULL; /* Remove it from the aggr list */ 4086 sc->sc_stats.ast_tx_aggr_fail++; 4087 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4088 drops++; 4089 bf->bf_next = NULL; 4090 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4091 } 4092 bf = bf_next; 4093 } 4094 4095 /* Prepend all frames to the beginning of the queue */ 4096 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4097 TAILQ_REMOVE(&bf_q, bf, bf_list); 4098 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 4099 } 4100 4101 /* 4102 * Schedule the TID to be re-tried. 4103 */ 4104 ath_tx_tid_sched(sc, tid); 4105 4106 /* 4107 * send bar if we dropped any frames 4108 * 4109 * Keep the txq lock held for now, as we need to ensure 4110 * that ni_txseqs[] is consistent (as it's being updated 4111 * in the ifnet TX context or raw TX context.) 4112 */ 4113 if (drops) { 4114 /* Suspend the TX queue and get ready to send the BAR */ 4115 ath_tx_tid_bar_suspend(sc, tid); 4116 } 4117 4118 /* 4119 * Send BAR if required 4120 */ 4121 if (ath_tx_tid_bar_tx_ready(sc, tid)) 4122 ath_tx_tid_bar_tx(sc, tid); 4123 4124 ATH_TX_UNLOCK(sc); 4125 4126 /* Complete frames which errored out */ 4127 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4128 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4129 ath_tx_default_comp(sc, bf, 0); 4130 } 4131 } 4132 4133 /* 4134 * Handle clean-up of packets from an aggregate list. 4135 * 4136 * There's no need to update the BAW here - the session is being 4137 * torn down. 4138 */ 4139 static void 4140 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first) 4141 { 4142 struct ath_buf *bf, *bf_next; 4143 struct ieee80211_node *ni = bf_first->bf_node; 4144 struct ath_node *an = ATH_NODE(ni); 4145 int tid = bf_first->bf_state.bfs_tid; 4146 struct ath_tid *atid = &an->an_tid[tid]; 4147 4148 bf = bf_first; 4149 4150 ATH_TX_LOCK(sc); 4151 4152 /* update incomp */ 4153 while (bf) { 4154 atid->incomp--; 4155 bf = bf->bf_next; 4156 } 4157 4158 if (atid->incomp == 0) { 4159 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4160 "%s: TID %d: cleaned up! resume!\n", 4161 __func__, tid); 4162 atid->cleanup_inprogress = 0; 4163 ath_tx_tid_resume(sc, atid); 4164 } 4165 4166 /* Send BAR if required */ 4167 /* XXX why would we send a BAR when transitioning to non-aggregation? */ 4168 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4169 ath_tx_tid_bar_tx(sc, atid); 4170 4171 ATH_TX_UNLOCK(sc); 4172 4173 /* Handle frame completion */ 4174 while (bf) { 4175 bf_next = bf->bf_next; 4176 ath_tx_default_comp(sc, bf, 1); 4177 bf = bf_next; 4178 } 4179 } 4180 4181 /* 4182 * Handle completion of an set of aggregate frames. 4183 * 4184 * XXX for now, simply complete each sub-frame. 4185 * 4186 * Note: the completion handler is the last descriptor in the aggregate, 4187 * not the last descriptor in the first frame. 4188 */ 4189 static void 4190 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, 4191 int fail) 4192 { 4193 //struct ath_desc *ds = bf->bf_lastds; 4194 struct ieee80211_node *ni = bf_first->bf_node; 4195 struct ath_node *an = ATH_NODE(ni); 4196 int tid = bf_first->bf_state.bfs_tid; 4197 struct ath_tid *atid = &an->an_tid[tid]; 4198 struct ath_tx_status ts; 4199 struct ieee80211_tx_ampdu *tap; 4200 ath_bufhead bf_q; 4201 ath_bufhead bf_cq; 4202 int seq_st, tx_ok; 4203 int hasba, isaggr; 4204 uint32_t ba[2]; 4205 struct ath_buf *bf, *bf_next; 4206 int ba_index; 4207 int drops = 0; 4208 int nframes = 0, nbad = 0, nf; 4209 int pktlen; 4210 /* XXX there's too much on the stack? */ 4211 struct ath_rc_series rc[ATH_RC_NUM]; 4212 int txseq; 4213 4214 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n", 4215 __func__, atid->hwq_depth); 4216 4217 /* 4218 * Take a copy; this may be needed -after- bf_first 4219 * has been completed and freed. 4220 */ 4221 ts = bf_first->bf_status.ds_txstat; 4222 4223 TAILQ_INIT(&bf_q); 4224 TAILQ_INIT(&bf_cq); 4225 4226 /* The TID state is kept behind the TXQ lock */ 4227 ATH_TX_LOCK(sc); 4228 4229 atid->hwq_depth--; 4230 if (atid->hwq_depth < 0) 4231 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4232 __func__, atid->hwq_depth); 4233 4234 /* 4235 * If the TID is filtered, handle completing the filter 4236 * transition before potentially kicking it to the cleanup 4237 * function. 4238 * 4239 * XXX this is duplicate work, ew. 4240 */ 4241 if (atid->isfiltered) 4242 ath_tx_tid_filt_comp_complete(sc, atid); 4243 4244 /* 4245 * Punt cleanup to the relevant function, not our problem now 4246 */ 4247 if (atid->cleanup_inprogress) { 4248 if (atid->isfiltered) 4249 device_printf(sc->sc_dev, 4250 "%s: isfiltered=1, normal_comp?\n", 4251 __func__); 4252 ATH_TX_UNLOCK(sc); 4253 ath_tx_comp_cleanup_aggr(sc, bf_first); 4254 return; 4255 } 4256 4257 /* 4258 * If the frame is filtered, transition to filtered frame 4259 * mode and add this to the filtered frame list. 4260 * 4261 * XXX TODO: figure out how this interoperates with 4262 * BAR, pause and cleanup states. 4263 */ 4264 if ((ts.ts_status & HAL_TXERR_FILT) || 4265 (ts.ts_status != 0 && atid->isfiltered)) { 4266 if (fail != 0) 4267 device_printf(sc->sc_dev, 4268 "%s: isfiltered=1, fail=%d\n", __func__, fail); 4269 ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq); 4270 4271 /* Remove from BAW */ 4272 TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) { 4273 if (bf->bf_state.bfs_addedbaw) 4274 drops++; 4275 if (bf->bf_state.bfs_dobaw) { 4276 ath_tx_update_baw(sc, an, atid, bf); 4277 if (! bf->bf_state.bfs_addedbaw) 4278 device_printf(sc->sc_dev, 4279 "%s: wasn't added: seqno %d\n", 4280 __func__, 4281 SEQNO(bf->bf_state.bfs_seqno)); 4282 } 4283 bf->bf_state.bfs_dobaw = 0; 4284 } 4285 /* 4286 * If any intermediate frames in the BAW were dropped when 4287 * handling filtering things, send a BAR. 4288 */ 4289 if (drops) 4290 ath_tx_tid_bar_suspend(sc, atid); 4291 4292 /* 4293 * Finish up by sending a BAR if required and freeing 4294 * the frames outside of the TX lock. 4295 */ 4296 goto finish_send_bar; 4297 } 4298 4299 /* 4300 * XXX for now, use the first frame in the aggregate for 4301 * XXX rate control completion; it's at least consistent. 4302 */ 4303 pktlen = bf_first->bf_state.bfs_pktlen; 4304 4305 /* 4306 * Handle errors first! 4307 * 4308 * Here, handle _any_ error as a "exceeded retries" error. 4309 * Later on (when filtered frames are to be specially handled) 4310 * it'll have to be expanded. 4311 */ 4312 #if 0 4313 if (ts.ts_status & HAL_TXERR_XRETRY) { 4314 #endif 4315 if (ts.ts_status != 0) { 4316 ATH_TX_UNLOCK(sc); 4317 ath_tx_comp_aggr_error(sc, bf_first, atid); 4318 return; 4319 } 4320 4321 tap = ath_tx_get_tx_tid(an, tid); 4322 4323 /* 4324 * extract starting sequence and block-ack bitmap 4325 */ 4326 /* XXX endian-ness of seq_st, ba? */ 4327 seq_st = ts.ts_seqnum; 4328 hasba = !! (ts.ts_flags & HAL_TX_BA); 4329 tx_ok = (ts.ts_status == 0); 4330 isaggr = bf_first->bf_state.bfs_aggr; 4331 ba[0] = ts.ts_ba_low; 4332 ba[1] = ts.ts_ba_high; 4333 4334 /* 4335 * Copy the TX completion status and the rate control 4336 * series from the first descriptor, as it may be freed 4337 * before the rate control code can get its grubby fingers 4338 * into things. 4339 */ 4340 memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc)); 4341 4342 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4343 "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, " 4344 "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n", 4345 __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags, 4346 isaggr, seq_st, hasba, ba[0], ba[1]); 4347 4348 /* Occasionally, the MAC sends a tx status for the wrong TID. */ 4349 if (tid != ts.ts_tid) { 4350 device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n", 4351 __func__, tid, ts.ts_tid); 4352 tx_ok = 0; 4353 } 4354 4355 /* AR5416 BA bug; this requires an interface reset */ 4356 if (isaggr && tx_ok && (! hasba)) { 4357 device_printf(sc->sc_dev, 4358 "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, " 4359 "seq_st=%d\n", 4360 __func__, hasba, tx_ok, isaggr, seq_st); 4361 /* XXX TODO: schedule an interface reset */ 4362 #ifdef ATH_DEBUG 4363 ath_printtxbuf(sc, bf_first, 4364 sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0); 4365 #endif 4366 } 4367 4368 /* 4369 * Walk the list of frames, figure out which ones were correctly 4370 * sent and which weren't. 4371 */ 4372 bf = bf_first; 4373 nf = bf_first->bf_state.bfs_nframes; 4374 4375 /* bf_first is going to be invalid once this list is walked */ 4376 bf_first = NULL; 4377 4378 /* 4379 * Walk the list of completed frames and determine 4380 * which need to be completed and which need to be 4381 * retransmitted. 4382 * 4383 * For completed frames, the completion functions need 4384 * to be called at the end of this function as the last 4385 * node reference may free the node. 4386 * 4387 * Finally, since the TXQ lock can't be held during the 4388 * completion callback (to avoid lock recursion), 4389 * the completion calls have to be done outside of the 4390 * lock. 4391 */ 4392 while (bf) { 4393 nframes++; 4394 ba_index = ATH_BA_INDEX(seq_st, 4395 SEQNO(bf->bf_state.bfs_seqno)); 4396 bf_next = bf->bf_next; 4397 bf->bf_next = NULL; /* Remove it from the aggr list */ 4398 4399 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4400 "%s: checking bf=%p seqno=%d; ack=%d\n", 4401 __func__, bf, SEQNO(bf->bf_state.bfs_seqno), 4402 ATH_BA_ISSET(ba, ba_index)); 4403 4404 if (tx_ok && ATH_BA_ISSET(ba, ba_index)) { 4405 sc->sc_stats.ast_tx_aggr_ok++; 4406 ath_tx_update_baw(sc, an, atid, bf); 4407 bf->bf_state.bfs_dobaw = 0; 4408 if (! bf->bf_state.bfs_addedbaw) 4409 device_printf(sc->sc_dev, 4410 "%s: wasn't added: seqno %d\n", 4411 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4412 bf->bf_next = NULL; 4413 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4414 } else { 4415 sc->sc_stats.ast_tx_aggr_fail++; 4416 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4417 drops++; 4418 bf->bf_next = NULL; 4419 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4420 } 4421 nbad++; 4422 } 4423 bf = bf_next; 4424 } 4425 4426 /* 4427 * Now that the BAW updates have been done, unlock 4428 * 4429 * txseq is grabbed before the lock is released so we 4430 * have a consistent view of what -was- in the BAW. 4431 * Anything after this point will not yet have been 4432 * TXed. 4433 */ 4434 txseq = tap->txa_start; 4435 ATH_TX_UNLOCK(sc); 4436 4437 if (nframes != nf) 4438 device_printf(sc->sc_dev, 4439 "%s: num frames seen=%d; bf nframes=%d\n", 4440 __func__, nframes, nf); 4441 4442 /* 4443 * Now we know how many frames were bad, call the rate 4444 * control code. 4445 */ 4446 if (fail == 0) 4447 ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, 4448 nbad); 4449 4450 /* 4451 * send bar if we dropped any frames 4452 */ 4453 if (drops) { 4454 /* Suspend the TX queue and get ready to send the BAR */ 4455 ATH_TX_LOCK(sc); 4456 ath_tx_tid_bar_suspend(sc, atid); 4457 ATH_TX_UNLOCK(sc); 4458 } 4459 4460 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4461 "%s: txa_start now %d\n", __func__, tap->txa_start); 4462 4463 ATH_TX_LOCK(sc); 4464 4465 /* Prepend all frames to the beginning of the queue */ 4466 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4467 TAILQ_REMOVE(&bf_q, bf, bf_list); 4468 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 4469 } 4470 4471 /* 4472 * Reschedule to grab some further frames. 4473 */ 4474 ath_tx_tid_sched(sc, atid); 4475 4476 /* 4477 * If the queue is filtered, re-schedule as required. 4478 * 4479 * This is required as there may be a subsequent TX descriptor 4480 * for this end-node that has CLRDMASK set, so it's quite possible 4481 * that a filtered frame will be followed by a non-filtered 4482 * (complete or otherwise) frame. 4483 * 4484 * XXX should we do this before we complete the frame? 4485 */ 4486 if (atid->isfiltered) 4487 ath_tx_tid_filt_comp_complete(sc, atid); 4488 4489 finish_send_bar: 4490 4491 /* 4492 * Send BAR if required 4493 */ 4494 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4495 ath_tx_tid_bar_tx(sc, atid); 4496 4497 ATH_TX_UNLOCK(sc); 4498 4499 /* Do deferred completion */ 4500 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4501 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4502 ath_tx_default_comp(sc, bf, 0); 4503 } 4504 } 4505 4506 /* 4507 * Handle completion of unaggregated frames in an ADDBA 4508 * session. 4509 * 4510 * Fail is set to 1 if the entry is being freed via a call to 4511 * ath_tx_draintxq(). 4512 */ 4513 static void 4514 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail) 4515 { 4516 struct ieee80211_node *ni = bf->bf_node; 4517 struct ath_node *an = ATH_NODE(ni); 4518 int tid = bf->bf_state.bfs_tid; 4519 struct ath_tid *atid = &an->an_tid[tid]; 4520 struct ath_tx_status ts; 4521 int drops = 0; 4522 4523 /* 4524 * Take a copy of this; filtering/cloning the frame may free the 4525 * bf pointer. 4526 */ 4527 ts = bf->bf_status.ds_txstat; 4528 4529 /* 4530 * Update rate control status here, before we possibly 4531 * punt to retry or cleanup. 4532 * 4533 * Do it outside of the TXQ lock. 4534 */ 4535 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 4536 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 4537 &bf->bf_status.ds_txstat, 4538 bf->bf_state.bfs_pktlen, 4539 1, (ts.ts_status == 0) ? 0 : 1); 4540 4541 /* 4542 * This is called early so atid->hwq_depth can be tracked. 4543 * This unfortunately means that it's released and regrabbed 4544 * during retry and cleanup. That's rather inefficient. 4545 */ 4546 ATH_TX_LOCK(sc); 4547 4548 if (tid == IEEE80211_NONQOS_TID) 4549 device_printf(sc->sc_dev, "%s: TID=16!\n", __func__); 4550 4551 DPRINTF(sc, ATH_DEBUG_SW_TX, 4552 "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n", 4553 __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth, 4554 SEQNO(bf->bf_state.bfs_seqno)); 4555 4556 atid->hwq_depth--; 4557 if (atid->hwq_depth < 0) 4558 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4559 __func__, atid->hwq_depth); 4560 4561 /* 4562 * If the TID is filtered, handle completing the filter 4563 * transition before potentially kicking it to the cleanup 4564 * function. 4565 */ 4566 if (atid->isfiltered) 4567 ath_tx_tid_filt_comp_complete(sc, atid); 4568 4569 /* 4570 * If a cleanup is in progress, punt to comp_cleanup; 4571 * rather than handling it here. It's thus their 4572 * responsibility to clean up, call the completion 4573 * function in net80211, etc. 4574 */ 4575 if (atid->cleanup_inprogress) { 4576 if (atid->isfiltered) 4577 device_printf(sc->sc_dev, 4578 "%s: isfiltered=1, normal_comp?\n", 4579 __func__); 4580 ATH_TX_UNLOCK(sc); 4581 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n", 4582 __func__); 4583 ath_tx_comp_cleanup_unaggr(sc, bf); 4584 return; 4585 } 4586 4587 /* 4588 * XXX TODO: how does cleanup, BAR and filtered frame handling 4589 * overlap? 4590 * 4591 * If the frame is filtered OR if it's any failure but 4592 * the TID is filtered, the frame must be added to the 4593 * filtered frame list. 4594 * 4595 * However - a busy buffer can't be added to the filtered 4596 * list as it will end up being recycled without having 4597 * been made available for the hardware. 4598 */ 4599 if ((ts.ts_status & HAL_TXERR_FILT) || 4600 (ts.ts_status != 0 && atid->isfiltered)) { 4601 int freeframe; 4602 4603 if (fail != 0) 4604 device_printf(sc->sc_dev, 4605 "%s: isfiltered=1, fail=%d\n", 4606 __func__, 4607 fail); 4608 freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf); 4609 if (freeframe) { 4610 /* Remove from BAW */ 4611 if (bf->bf_state.bfs_addedbaw) 4612 drops++; 4613 if (bf->bf_state.bfs_dobaw) { 4614 ath_tx_update_baw(sc, an, atid, bf); 4615 if (! bf->bf_state.bfs_addedbaw) 4616 device_printf(sc->sc_dev, 4617 "%s: wasn't added: seqno %d\n", 4618 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4619 } 4620 bf->bf_state.bfs_dobaw = 0; 4621 } 4622 4623 /* 4624 * If the frame couldn't be filtered, treat it as a drop and 4625 * prepare to send a BAR. 4626 */ 4627 if (freeframe && drops) 4628 ath_tx_tid_bar_suspend(sc, atid); 4629 4630 /* 4631 * Send BAR if required 4632 */ 4633 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4634 ath_tx_tid_bar_tx(sc, atid); 4635 4636 ATH_TX_UNLOCK(sc); 4637 /* 4638 * If freeframe is set, then the frame couldn't be 4639 * cloned and bf is still valid. Just complete/free it. 4640 */ 4641 if (freeframe) 4642 ath_tx_default_comp(sc, bf, fail); 4643 4644 4645 return; 4646 } 4647 /* 4648 * Don't bother with the retry check if all frames 4649 * are being failed (eg during queue deletion.) 4650 */ 4651 #if 0 4652 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) { 4653 #endif 4654 if (fail == 0 && ts.ts_status != 0) { 4655 ATH_TX_UNLOCK(sc); 4656 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n", 4657 __func__); 4658 ath_tx_aggr_retry_unaggr(sc, bf); 4659 return; 4660 } 4661 4662 /* Success? Complete */ 4663 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n", 4664 __func__, tid, SEQNO(bf->bf_state.bfs_seqno)); 4665 if (bf->bf_state.bfs_dobaw) { 4666 ath_tx_update_baw(sc, an, atid, bf); 4667 bf->bf_state.bfs_dobaw = 0; 4668 if (! bf->bf_state.bfs_addedbaw) 4669 device_printf(sc->sc_dev, 4670 "%s: wasn't added: seqno %d\n", 4671 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4672 } 4673 4674 /* 4675 * If the queue is filtered, re-schedule as required. 4676 * 4677 * This is required as there may be a subsequent TX descriptor 4678 * for this end-node that has CLRDMASK set, so it's quite possible 4679 * that a filtered frame will be followed by a non-filtered 4680 * (complete or otherwise) frame. 4681 * 4682 * XXX should we do this before we complete the frame? 4683 */ 4684 if (atid->isfiltered) 4685 ath_tx_tid_filt_comp_complete(sc, atid); 4686 4687 /* 4688 * Send BAR if required 4689 */ 4690 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4691 ath_tx_tid_bar_tx(sc, atid); 4692 4693 ATH_TX_UNLOCK(sc); 4694 4695 ath_tx_default_comp(sc, bf, fail); 4696 /* bf is freed at this point */ 4697 } 4698 4699 void 4700 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4701 { 4702 if (bf->bf_state.bfs_aggr) 4703 ath_tx_aggr_comp_aggr(sc, bf, fail); 4704 else 4705 ath_tx_aggr_comp_unaggr(sc, bf, fail); 4706 } 4707 4708 /* 4709 * Schedule some packets from the given node/TID to the hardware. 4710 * 4711 * This is the aggregate version. 4712 */ 4713 void 4714 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an, 4715 struct ath_tid *tid) 4716 { 4717 struct ath_buf *bf; 4718 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4719 struct ieee80211_tx_ampdu *tap; 4720 ATH_AGGR_STATUS status; 4721 ath_bufhead bf_q; 4722 4723 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid); 4724 ATH_TX_LOCK_ASSERT(sc); 4725 4726 tap = ath_tx_get_tx_tid(an, tid->tid); 4727 4728 if (tid->tid == IEEE80211_NONQOS_TID) 4729 device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n", 4730 __func__); 4731 4732 for (;;) { 4733 status = ATH_AGGR_DONE; 4734 4735 /* 4736 * If the upper layer has paused the TID, don't 4737 * queue any further packets. 4738 * 4739 * This can also occur from the completion task because 4740 * of packet loss; but as its serialised with this code, 4741 * it won't "appear" half way through queuing packets. 4742 */ 4743 if (tid->paused) 4744 break; 4745 4746 bf = ATH_TID_FIRST(tid); 4747 if (bf == NULL) { 4748 break; 4749 } 4750 4751 /* 4752 * If the packet doesn't fall within the BAW (eg a NULL 4753 * data frame), schedule it directly; continue. 4754 */ 4755 if (! bf->bf_state.bfs_dobaw) { 4756 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4757 "%s: non-baw packet\n", 4758 __func__); 4759 ATH_TID_REMOVE(tid, bf, bf_list); 4760 4761 if (bf->bf_state.bfs_nframes > 1) 4762 device_printf(sc->sc_dev, 4763 "%s: aggr=%d, nframes=%d\n", 4764 __func__, 4765 bf->bf_state.bfs_aggr, 4766 bf->bf_state.bfs_nframes); 4767 4768 /* 4769 * This shouldn't happen - such frames shouldn't 4770 * ever have been queued as an aggregate in the 4771 * first place. However, make sure the fields 4772 * are correctly setup just to be totally sure. 4773 */ 4774 bf->bf_state.bfs_aggr = 0; 4775 bf->bf_state.bfs_nframes = 1; 4776 4777 /* Update CLRDMASK just before this frame is queued */ 4778 ath_tx_update_clrdmask(sc, tid, bf); 4779 4780 ath_tx_do_ratelookup(sc, bf); 4781 ath_tx_calc_duration(sc, bf); 4782 ath_tx_calc_protection(sc, bf); 4783 ath_tx_set_rtscts(sc, bf); 4784 ath_tx_rate_fill_rcflags(sc, bf); 4785 ath_tx_setds(sc, bf); 4786 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4787 4788 sc->sc_aggr_stats.aggr_nonbaw_pkt++; 4789 4790 /* Queue the packet; continue */ 4791 goto queuepkt; 4792 } 4793 4794 TAILQ_INIT(&bf_q); 4795 4796 /* 4797 * Do a rate control lookup on the first frame in the 4798 * list. The rate control code needs that to occur 4799 * before it can determine whether to TX. 4800 * It's inaccurate because the rate control code doesn't 4801 * really "do" aggregate lookups, so it only considers 4802 * the size of the first frame. 4803 */ 4804 ath_tx_do_ratelookup(sc, bf); 4805 bf->bf_state.bfs_rc[3].rix = 0; 4806 bf->bf_state.bfs_rc[3].tries = 0; 4807 4808 ath_tx_calc_duration(sc, bf); 4809 ath_tx_calc_protection(sc, bf); 4810 4811 ath_tx_set_rtscts(sc, bf); 4812 ath_tx_rate_fill_rcflags(sc, bf); 4813 4814 status = ath_tx_form_aggr(sc, an, tid, &bf_q); 4815 4816 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4817 "%s: ath_tx_form_aggr() status=%d\n", __func__, status); 4818 4819 /* 4820 * No frames to be picked up - out of BAW 4821 */ 4822 if (TAILQ_EMPTY(&bf_q)) 4823 break; 4824 4825 /* 4826 * This assumes that the descriptor list in the ath_bufhead 4827 * are already linked together via bf_next pointers. 4828 */ 4829 bf = TAILQ_FIRST(&bf_q); 4830 4831 if (status == ATH_AGGR_8K_LIMITED) 4832 sc->sc_aggr_stats.aggr_rts_aggr_limited++; 4833 4834 /* 4835 * If it's the only frame send as non-aggregate 4836 * assume that ath_tx_form_aggr() has checked 4837 * whether it's in the BAW and added it appropriately. 4838 */ 4839 if (bf->bf_state.bfs_nframes == 1) { 4840 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4841 "%s: single-frame aggregate\n", __func__); 4842 4843 /* Update CLRDMASK just before this frame is queued */ 4844 ath_tx_update_clrdmask(sc, tid, bf); 4845 4846 bf->bf_state.bfs_aggr = 0; 4847 bf->bf_state.bfs_ndelim = 0; 4848 ath_tx_setds(sc, bf); 4849 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4850 if (status == ATH_AGGR_BAW_CLOSED) 4851 sc->sc_aggr_stats.aggr_baw_closed_single_pkt++; 4852 else 4853 sc->sc_aggr_stats.aggr_single_pkt++; 4854 } else { 4855 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4856 "%s: multi-frame aggregate: %d frames, " 4857 "length %d\n", 4858 __func__, bf->bf_state.bfs_nframes, 4859 bf->bf_state.bfs_al); 4860 bf->bf_state.bfs_aggr = 1; 4861 sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++; 4862 sc->sc_aggr_stats.aggr_aggr_pkt++; 4863 4864 /* Update CLRDMASK just before this frame is queued */ 4865 ath_tx_update_clrdmask(sc, tid, bf); 4866 4867 /* 4868 * Calculate the duration/protection as required. 4869 */ 4870 ath_tx_calc_duration(sc, bf); 4871 ath_tx_calc_protection(sc, bf); 4872 4873 /* 4874 * Update the rate and rtscts information based on the 4875 * rate decision made by the rate control code; 4876 * the first frame in the aggregate needs it. 4877 */ 4878 ath_tx_set_rtscts(sc, bf); 4879 4880 /* 4881 * Setup the relevant descriptor fields 4882 * for aggregation. The first descriptor 4883 * already points to the rest in the chain. 4884 */ 4885 ath_tx_setds_11n(sc, bf); 4886 4887 } 4888 queuepkt: 4889 /* Set completion handler, multi-frame aggregate or not */ 4890 bf->bf_comp = ath_tx_aggr_comp; 4891 4892 if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID) 4893 device_printf(sc->sc_dev, "%s: TID=16?\n", __func__); 4894 4895 /* Punt to txq */ 4896 ath_tx_handoff(sc, txq, bf); 4897 4898 /* Track outstanding buffer count to hardware */ 4899 /* aggregates are "one" buffer */ 4900 tid->hwq_depth++; 4901 4902 /* 4903 * Break out if ath_tx_form_aggr() indicated 4904 * there can't be any further progress (eg BAW is full.) 4905 * Checking for an empty txq is done above. 4906 * 4907 * XXX locking on txq here? 4908 */ 4909 if (txq->axq_aggr_depth >= sc->sc_hwq_limit || 4910 status == ATH_AGGR_BAW_CLOSED) 4911 break; 4912 } 4913 } 4914 4915 /* 4916 * Schedule some packets from the given node/TID to the hardware. 4917 */ 4918 void 4919 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an, 4920 struct ath_tid *tid) 4921 { 4922 struct ath_buf *bf; 4923 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4924 4925 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n", 4926 __func__, an, tid->tid); 4927 4928 ATH_TX_LOCK_ASSERT(sc); 4929 4930 /* Check - is AMPDU pending or running? then print out something */ 4931 if (ath_tx_ampdu_pending(sc, an, tid->tid)) 4932 device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n", 4933 __func__, tid->tid); 4934 if (ath_tx_ampdu_running(sc, an, tid->tid)) 4935 device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n", 4936 __func__, tid->tid); 4937 4938 for (;;) { 4939 4940 /* 4941 * If the upper layers have paused the TID, don't 4942 * queue any further packets. 4943 */ 4944 if (tid->paused) 4945 break; 4946 4947 bf = ATH_TID_FIRST(tid); 4948 if (bf == NULL) { 4949 break; 4950 } 4951 4952 ATH_TID_REMOVE(tid, bf, bf_list); 4953 4954 /* Sanity check! */ 4955 if (tid->tid != bf->bf_state.bfs_tid) { 4956 device_printf(sc->sc_dev, "%s: bfs_tid %d !=" 4957 " tid %d\n", 4958 __func__, bf->bf_state.bfs_tid, tid->tid); 4959 } 4960 /* Normal completion handler */ 4961 bf->bf_comp = ath_tx_normal_comp; 4962 4963 /* 4964 * Override this for now, until the non-aggregate 4965 * completion handler correctly handles software retransmits. 4966 */ 4967 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 4968 4969 /* Update CLRDMASK just before this frame is queued */ 4970 ath_tx_update_clrdmask(sc, tid, bf); 4971 4972 /* Program descriptors + rate control */ 4973 ath_tx_do_ratelookup(sc, bf); 4974 ath_tx_calc_duration(sc, bf); 4975 ath_tx_calc_protection(sc, bf); 4976 ath_tx_set_rtscts(sc, bf); 4977 ath_tx_rate_fill_rcflags(sc, bf); 4978 ath_tx_setds(sc, bf); 4979 4980 /* Track outstanding buffer count to hardware */ 4981 /* aggregates are "one" buffer */ 4982 tid->hwq_depth++; 4983 4984 /* Punt to hardware or software txq */ 4985 ath_tx_handoff(sc, txq, bf); 4986 } 4987 } 4988 4989 /* 4990 * Schedule some packets to the given hardware queue. 4991 * 4992 * This function walks the list of TIDs (ie, ath_node TIDs 4993 * with queued traffic) and attempts to schedule traffic 4994 * from them. 4995 * 4996 * TID scheduling is implemented as a FIFO, with TIDs being 4997 * added to the end of the queue after some frames have been 4998 * scheduled. 4999 */ 5000 void 5001 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq) 5002 { 5003 struct ath_tid *tid, *next, *last; 5004 5005 ATH_TX_LOCK_ASSERT(sc); 5006 5007 /* 5008 * Don't schedule if the hardware queue is busy. 5009 * This (hopefully) gives some more time to aggregate 5010 * some packets in the aggregation queue. 5011 */ 5012 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 5013 sc->sc_aggr_stats.aggr_sched_nopkt++; 5014 return; 5015 } 5016 5017 last = TAILQ_LAST(&txq->axq_tidq, axq_t_s); 5018 5019 TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) { 5020 /* 5021 * Suspend paused queues here; they'll be resumed 5022 * once the addba completes or times out. 5023 */ 5024 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n", 5025 __func__, tid->tid, tid->paused); 5026 ath_tx_tid_unsched(sc, tid); 5027 if (tid->paused) { 5028 continue; 5029 } 5030 if (ath_tx_ampdu_running(sc, tid->an, tid->tid)) 5031 ath_tx_tid_hw_queue_aggr(sc, tid->an, tid); 5032 else 5033 ath_tx_tid_hw_queue_norm(sc, tid->an, tid); 5034 5035 /* Not empty? Re-schedule */ 5036 if (tid->axq_depth != 0) 5037 ath_tx_tid_sched(sc, tid); 5038 5039 /* Give the software queue time to aggregate more packets */ 5040 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 5041 break; 5042 } 5043 5044 /* 5045 * If this was the last entry on the original list, stop. 5046 * Otherwise nodes that have been rescheduled onto the end 5047 * of the TID FIFO list will just keep being rescheduled. 5048 */ 5049 if (tid == last) 5050 break; 5051 } 5052 } 5053 5054 /* 5055 * TX addba handling 5056 */ 5057 5058 /* 5059 * Return net80211 TID struct pointer, or NULL for none 5060 */ 5061 struct ieee80211_tx_ampdu * 5062 ath_tx_get_tx_tid(struct ath_node *an, int tid) 5063 { 5064 struct ieee80211_node *ni = &an->an_node; 5065 struct ieee80211_tx_ampdu *tap; 5066 5067 if (tid == IEEE80211_NONQOS_TID) 5068 return NULL; 5069 5070 tap = &ni->ni_tx_ampdu[tid]; 5071 return tap; 5072 } 5073 5074 /* 5075 * Is AMPDU-TX running? 5076 */ 5077 static int 5078 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid) 5079 { 5080 struct ieee80211_tx_ampdu *tap; 5081 5082 if (tid == IEEE80211_NONQOS_TID) 5083 return 0; 5084 5085 tap = ath_tx_get_tx_tid(an, tid); 5086 if (tap == NULL) 5087 return 0; /* Not valid; default to not running */ 5088 5089 return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING); 5090 } 5091 5092 /* 5093 * Is AMPDU-TX negotiation pending? 5094 */ 5095 static int 5096 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid) 5097 { 5098 struct ieee80211_tx_ampdu *tap; 5099 5100 if (tid == IEEE80211_NONQOS_TID) 5101 return 0; 5102 5103 tap = ath_tx_get_tx_tid(an, tid); 5104 if (tap == NULL) 5105 return 0; /* Not valid; default to not pending */ 5106 5107 return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND); 5108 } 5109 5110 /* 5111 * Is AMPDU-TX pending for the given TID? 5112 */ 5113 5114 5115 /* 5116 * Method to handle sending an ADDBA request. 5117 * 5118 * We tap this so the relevant flags can be set to pause the TID 5119 * whilst waiting for the response. 5120 * 5121 * XXX there's no timeout handler we can override? 5122 */ 5123 int 5124 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5125 int dialogtoken, int baparamset, int batimeout) 5126 { 5127 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5128 int tid = tap->txa_tid; 5129 struct ath_node *an = ATH_NODE(ni); 5130 struct ath_tid *atid = &an->an_tid[tid]; 5131 5132 /* 5133 * XXX danger Will Robinson! 5134 * 5135 * Although the taskqueue may be running and scheduling some more 5136 * packets, these should all be _before_ the addba sequence number. 5137 * However, net80211 will keep self-assigning sequence numbers 5138 * until addba has been negotiated. 5139 * 5140 * In the past, these packets would be "paused" (which still works 5141 * fine, as they're being scheduled to the driver in the same 5142 * serialised method which is calling the addba request routine) 5143 * and when the aggregation session begins, they'll be dequeued 5144 * as aggregate packets and added to the BAW. However, now there's 5145 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these 5146 * packets. Thus they never get included in the BAW tracking and 5147 * this can cause the initial burst of packets after the addba 5148 * negotiation to "hang", as they quickly fall outside the BAW. 5149 * 5150 * The "eventual" solution should be to tag these packets with 5151 * dobaw. Although net80211 has given us a sequence number, 5152 * it'll be "after" the left edge of the BAW and thus it'll 5153 * fall within it. 5154 */ 5155 ATH_TX_LOCK(sc); 5156 /* 5157 * This is a bit annoying. Until net80211 HT code inherits some 5158 * (any) locking, we may have this called in parallel BUT only 5159 * one response/timeout will be called. Grr. 5160 */ 5161 if (atid->addba_tx_pending == 0) { 5162 ath_tx_tid_pause(sc, atid); 5163 atid->addba_tx_pending = 1; 5164 } 5165 ATH_TX_UNLOCK(sc); 5166 5167 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5168 "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n", 5169 __func__, dialogtoken, baparamset, batimeout); 5170 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5171 "%s: txa_start=%d, ni_txseqs=%d\n", 5172 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5173 5174 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 5175 batimeout); 5176 } 5177 5178 /* 5179 * Handle an ADDBA response. 5180 * 5181 * We unpause the queue so TX'ing can resume. 5182 * 5183 * Any packets TX'ed from this point should be "aggregate" (whether 5184 * aggregate or not) so the BAW is updated. 5185 * 5186 * Note! net80211 keeps self-assigning sequence numbers until 5187 * ampdu is negotiated. This means the initially-negotiated BAW left 5188 * edge won't match the ni->ni_txseq. 5189 * 5190 * So, being very dirty, the BAW left edge is "slid" here to match 5191 * ni->ni_txseq. 5192 * 5193 * What likely SHOULD happen is that all packets subsequent to the 5194 * addba request should be tagged as aggregate and queued as non-aggregate 5195 * frames; thus updating the BAW. For now though, I'll just slide the 5196 * window. 5197 */ 5198 int 5199 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5200 int status, int code, int batimeout) 5201 { 5202 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5203 int tid = tap->txa_tid; 5204 struct ath_node *an = ATH_NODE(ni); 5205 struct ath_tid *atid = &an->an_tid[tid]; 5206 int r; 5207 5208 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5209 "%s: called; status=%d, code=%d, batimeout=%d\n", __func__, 5210 status, code, batimeout); 5211 5212 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5213 "%s: txa_start=%d, ni_txseqs=%d\n", 5214 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5215 5216 /* 5217 * Call this first, so the interface flags get updated 5218 * before the TID is unpaused. Otherwise a race condition 5219 * exists where the unpaused TID still doesn't yet have 5220 * IEEE80211_AGGR_RUNNING set. 5221 */ 5222 r = sc->sc_addba_response(ni, tap, status, code, batimeout); 5223 5224 ATH_TX_LOCK(sc); 5225 atid->addba_tx_pending = 0; 5226 /* 5227 * XXX dirty! 5228 * Slide the BAW left edge to wherever net80211 left it for us. 5229 * Read above for more information. 5230 */ 5231 tap->txa_start = ni->ni_txseqs[tid]; 5232 ath_tx_tid_resume(sc, atid); 5233 ATH_TX_UNLOCK(sc); 5234 return r; 5235 } 5236 5237 5238 /* 5239 * Stop ADDBA on a queue. 5240 * 5241 * This can be called whilst BAR TX is currently active on the queue, 5242 * so make sure this is unblocked before continuing. 5243 */ 5244 void 5245 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 5246 { 5247 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5248 int tid = tap->txa_tid; 5249 struct ath_node *an = ATH_NODE(ni); 5250 struct ath_tid *atid = &an->an_tid[tid]; 5251 5252 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__); 5253 5254 /* 5255 * Pause TID traffic early, so there aren't any races 5256 * Unblock the pending BAR held traffic, if it's currently paused. 5257 */ 5258 ATH_TX_LOCK(sc); 5259 ath_tx_tid_pause(sc, atid); 5260 if (atid->bar_wait) { 5261 /* 5262 * bar_unsuspend() expects bar_tx == 1, as it should be 5263 * called from the TX completion path. This quietens 5264 * the warning. It's cleared for us anyway. 5265 */ 5266 atid->bar_tx = 1; 5267 ath_tx_tid_bar_unsuspend(sc, atid); 5268 } 5269 ATH_TX_UNLOCK(sc); 5270 5271 /* There's no need to hold the TXQ lock here */ 5272 sc->sc_addba_stop(ni, tap); 5273 5274 /* 5275 * ath_tx_tid_cleanup will resume the TID if possible, otherwise 5276 * it'll set the cleanup flag, and it'll be unpaused once 5277 * things have been cleaned up. 5278 */ 5279 ath_tx_tid_cleanup(sc, an, tid); 5280 } 5281 5282 /* 5283 * Note: net80211 bar_timeout() doesn't call this function on BAR failure; 5284 * it simply tears down the aggregation session. Ew. 5285 * 5286 * It however will call ieee80211_ampdu_stop() which will call 5287 * ic->ic_addba_stop(). 5288 * 5289 * XXX This uses a hard-coded max BAR count value; the whole 5290 * XXX BAR TX success or failure should be better handled! 5291 */ 5292 void 5293 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5294 int status) 5295 { 5296 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5297 int tid = tap->txa_tid; 5298 struct ath_node *an = ATH_NODE(ni); 5299 struct ath_tid *atid = &an->an_tid[tid]; 5300 int attempts = tap->txa_attempts; 5301 5302 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 5303 "%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n", 5304 __func__, 5305 tap, 5306 atid, 5307 tap->txa_tid, 5308 atid->tid, 5309 status, 5310 attempts); 5311 5312 /* Note: This may update the BAW details */ 5313 sc->sc_bar_response(ni, tap, status); 5314 5315 /* Unpause the TID */ 5316 /* 5317 * XXX if this is attempt=50, the TID will be downgraded 5318 * XXX to a non-aggregate session. So we must unpause the 5319 * XXX TID here or it'll never be done. 5320 * 5321 * Also, don't call it if bar_tx/bar_wait are 0; something 5322 * has beaten us to the punch? (XXX figure out what?) 5323 */ 5324 if (status == 0 || attempts == 50) { 5325 ATH_TX_LOCK(sc); 5326 if (atid->bar_tx == 0 || atid->bar_wait == 0) 5327 device_printf(sc->sc_dev, 5328 "%s: huh? bar_tx=%d, bar_wait=%d\n", 5329 __func__, 5330 atid->bar_tx, atid->bar_wait); 5331 else 5332 ath_tx_tid_bar_unsuspend(sc, atid); 5333 ATH_TX_UNLOCK(sc); 5334 } 5335 } 5336 5337 /* 5338 * This is called whenever the pending ADDBA request times out. 5339 * Unpause and reschedule the TID. 5340 */ 5341 void 5342 ath_addba_response_timeout(struct ieee80211_node *ni, 5343 struct ieee80211_tx_ampdu *tap) 5344 { 5345 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5346 int tid = tap->txa_tid; 5347 struct ath_node *an = ATH_NODE(ni); 5348 struct ath_tid *atid = &an->an_tid[tid]; 5349 5350 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5351 "%s: called; resuming\n", __func__); 5352 5353 ATH_TX_LOCK(sc); 5354 atid->addba_tx_pending = 0; 5355 ATH_TX_UNLOCK(sc); 5356 5357 /* Note: This updates the aggregate state to (again) pending */ 5358 sc->sc_addba_response_timeout(ni, tap); 5359 5360 /* Unpause the TID; which reschedules it */ 5361 ATH_TX_LOCK(sc); 5362 ath_tx_tid_resume(sc, atid); 5363 ATH_TX_UNLOCK(sc); 5364 } 5365 5366 /* 5367 * Check if a node is asleep or not. 5368 */ 5369 int 5370 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an) 5371 { 5372 5373 ATH_NODE_LOCK_ASSERT(an); 5374 5375 return (an->an_is_powersave); 5376 } 5377 5378 /* 5379 * Mark a node as currently "in powersaving." 5380 * This suspends all traffic on the node. 5381 * 5382 * This must be called with the node/tx locks free. 5383 * 5384 * XXX TODO: the locking silliness below is due to how the node 5385 * locking currently works. Right now, the node lock is grabbed 5386 * to do rate control lookups and these are done with the TX 5387 * queue lock held. This means the node lock can't be grabbed 5388 * first here or a LOR will occur. 5389 * 5390 * Eventually (hopefully!) the TX path code will only grab 5391 * the TXQ lock when transmitting and the ath_node lock when 5392 * doing node/TID operations. There are other complications - 5393 * the sched/unsched operations involve walking the per-txq 5394 * 'active tid' list and this requires both locks to be held. 5395 */ 5396 void 5397 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an) 5398 { 5399 struct ath_tid *atid; 5400 struct ath_txq *txq; 5401 int tid; 5402 5403 ATH_NODE_UNLOCK_ASSERT(an); 5404 5405 /* 5406 * It's possible that a parallel call to ath_tx_node_wakeup() 5407 * will unpause these queues. 5408 * 5409 * The node lock can't just be grabbed here, as there's places 5410 * in the driver where the node lock is grabbed _within_ a 5411 * TXQ lock. 5412 * So, we do this delicately and unwind state if needed. 5413 * 5414 * + Pause all the queues 5415 * + Grab the node lock 5416 * + If the queue is already asleep, unpause and quit 5417 * + else just mark as asleep. 5418 * 5419 * A parallel sleep() call will just pause and then 5420 * find they're already paused, so undo it. 5421 * 5422 * A parallel wakeup() call will check if asleep is 1 5423 * and if it's not (ie, it's 0), it'll treat it as already 5424 * being awake. If it's 1, it'll mark it as 0 and then 5425 * unpause everything. 5426 * 5427 * (Talk about a delicate hack.) 5428 */ 5429 5430 /* Suspend all traffic on the node */ 5431 ATH_TX_LOCK(sc); 5432 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5433 atid = &an->an_tid[tid]; 5434 txq = sc->sc_ac2q[atid->ac]; 5435 5436 ath_tx_tid_pause(sc, atid); 5437 } 5438 ATH_TX_UNLOCK(sc); 5439 5440 ATH_NODE_LOCK(an); 5441 5442 /* In case of concurrency races from net80211.. */ 5443 if (an->an_is_powersave == 1) { 5444 ATH_NODE_UNLOCK(an); 5445 device_printf(sc->sc_dev, 5446 "%s: an=%p: node was already asleep\n", 5447 __func__, an); 5448 ATH_TX_LOCK(sc); 5449 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5450 atid = &an->an_tid[tid]; 5451 txq = sc->sc_ac2q[atid->ac]; 5452 5453 ath_tx_tid_resume(sc, atid); 5454 } 5455 ATH_TX_UNLOCK(sc); 5456 return; 5457 } 5458 5459 /* Mark node as in powersaving */ 5460 an->an_is_powersave = 1; 5461 5462 ATH_NODE_UNLOCK(an); 5463 } 5464 5465 /* 5466 * Mark a node as currently "awake." 5467 * This resumes all traffic to the node. 5468 */ 5469 void 5470 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an) 5471 { 5472 struct ath_tid *atid; 5473 struct ath_txq *txq; 5474 int tid; 5475 5476 ATH_NODE_UNLOCK_ASSERT(an); 5477 ATH_NODE_LOCK(an); 5478 5479 /* In case of concurrency races from net80211.. */ 5480 if (an->an_is_powersave == 0) { 5481 ATH_NODE_UNLOCK(an); 5482 device_printf(sc->sc_dev, 5483 "%s: an=%p: node was already awake\n", 5484 __func__, an); 5485 return; 5486 } 5487 5488 /* Mark node as awake */ 5489 an->an_is_powersave = 0; 5490 5491 ATH_NODE_UNLOCK(an); 5492 5493 ATH_TX_LOCK(sc); 5494 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5495 atid = &an->an_tid[tid]; 5496 txq = sc->sc_ac2q[atid->ac]; 5497 5498 ath_tx_tid_resume(sc, atid); 5499 } 5500 ATH_TX_UNLOCK(sc); 5501 } 5502 5503 static int 5504 ath_legacy_dma_txsetup(struct ath_softc *sc) 5505 { 5506 5507 /* nothing new needed */ 5508 return (0); 5509 } 5510 5511 static int 5512 ath_legacy_dma_txteardown(struct ath_softc *sc) 5513 { 5514 5515 /* nothing new needed */ 5516 return (0); 5517 } 5518 5519 void 5520 ath_xmit_setup_legacy(struct ath_softc *sc) 5521 { 5522 /* 5523 * For now, just set the descriptor length to sizeof(ath_desc); 5524 * worry about extracting the real length out of the HAL later. 5525 */ 5526 sc->sc_tx_desclen = sizeof(struct ath_desc); 5527 sc->sc_tx_statuslen = sizeof(struct ath_desc); 5528 sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */ 5529 5530 sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup; 5531 sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown; 5532 sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func; 5533 5534 sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart; 5535 sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff; 5536 5537 sc->sc_tx.xmit_drain = ath_legacy_tx_drain; 5538 } 5539