xref: /freebsd/sys/dev/ath/if_ath_tx.c (revision 87c1627502a5dde91e5284118eec8682b60f27a2)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
14  *    redistribution must be conditioned upon including a substantially
15  *    similar Disclaimer requirement for further binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
21  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
23  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
26  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGES.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * Driver for the Atheros Wireless LAN controller.
36  *
37  * This software is derived from work of Atsushi Onoe; his contribution
38  * is greatly appreciated.
39  */
40 
41 #include "opt_inet.h"
42 #include "opt_ath.h"
43 #include "opt_wlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/mbuf.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/kernel.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/errno.h>
56 #include <sys/callout.h>
57 #include <sys/bus.h>
58 #include <sys/endian.h>
59 #include <sys/kthread.h>
60 #include <sys/taskqueue.h>
61 #include <sys/priv.h>
62 
63 #include <machine/bus.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_types.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72 
73 #include <net80211/ieee80211_var.h>
74 #include <net80211/ieee80211_regdomain.h>
75 #ifdef IEEE80211_SUPPORT_SUPERG
76 #include <net80211/ieee80211_superg.h>
77 #endif
78 #ifdef IEEE80211_SUPPORT_TDMA
79 #include <net80211/ieee80211_tdma.h>
80 #endif
81 #include <net80211/ieee80211_ht.h>
82 
83 #include <net/bpf.h>
84 
85 #ifdef INET
86 #include <netinet/in.h>
87 #include <netinet/if_ether.h>
88 #endif
89 
90 #include <dev/ath/if_athvar.h>
91 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
92 #include <dev/ath/ath_hal/ah_diagcodes.h>
93 
94 #include <dev/ath/if_ath_debug.h>
95 
96 #ifdef ATH_TX99_DIAG
97 #include <dev/ath/ath_tx99/ath_tx99.h>
98 #endif
99 
100 #include <dev/ath/if_ath_misc.h>
101 #include <dev/ath/if_ath_tx.h>
102 #include <dev/ath/if_ath_tx_ht.h>
103 
104 #ifdef	ATH_DEBUG_ALQ
105 #include <dev/ath/if_ath_alq.h>
106 #endif
107 
108 /*
109  * How many retries to perform in software
110  */
111 #define	SWMAX_RETRIES		10
112 
113 /*
114  * What queue to throw the non-QoS TID traffic into
115  */
116 #define	ATH_NONQOS_TID_AC	WME_AC_VO
117 
118 #if 0
119 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an);
120 #endif
121 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
122     int tid);
123 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
124     int tid);
125 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
126     struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
127 static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
128     struct ieee80211_node *ni, struct mbuf *m0, int *tid);
129 static struct ath_buf *
130 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
131     struct ath_tid *tid, struct ath_buf *bf);
132 
133 #ifdef	ATH_DEBUG_ALQ
134 void
135 ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first)
136 {
137 	struct ath_buf *bf;
138 	int i, n;
139 	const char *ds;
140 
141 	/* XXX we should skip out early if debugging isn't enabled! */
142 	bf = bf_first;
143 
144 	while (bf != NULL) {
145 		/* XXX should ensure bf_nseg > 0! */
146 		if (bf->bf_nseg == 0)
147 			break;
148 		n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1;
149 		for (i = 0, ds = (const char *) bf->bf_desc;
150 		    i < n;
151 		    i++, ds += sc->sc_tx_desclen) {
152 			if_ath_alq_post(&sc->sc_alq,
153 			    ATH_ALQ_EDMA_TXDESC,
154 			    sc->sc_tx_desclen,
155 			    ds);
156 		}
157 		bf = bf->bf_next;
158 	}
159 }
160 #endif /* ATH_DEBUG_ALQ */
161 
162 /*
163  * Whether to use the 11n rate scenario functions or not
164  */
165 static inline int
166 ath_tx_is_11n(struct ath_softc *sc)
167 {
168 	return ((sc->sc_ah->ah_magic == 0x20065416) ||
169 		    (sc->sc_ah->ah_magic == 0x19741014));
170 }
171 
172 /*
173  * Obtain the current TID from the given frame.
174  *
175  * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.)
176  * This has implications for which AC/priority the packet is placed
177  * in.
178  */
179 static int
180 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
181 {
182 	const struct ieee80211_frame *wh;
183 	int pri = M_WME_GETAC(m0);
184 
185 	wh = mtod(m0, const struct ieee80211_frame *);
186 	if (! IEEE80211_QOS_HAS_SEQ(wh))
187 		return IEEE80211_NONQOS_TID;
188 	else
189 		return WME_AC_TO_TID(pri);
190 }
191 
192 static void
193 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
194 {
195 	struct ieee80211_frame *wh;
196 
197 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
198 	/* Only update/resync if needed */
199 	if (bf->bf_state.bfs_isretried == 0) {
200 		wh->i_fc[1] |= IEEE80211_FC1_RETRY;
201 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
202 		    BUS_DMASYNC_PREWRITE);
203 	}
204 	bf->bf_state.bfs_isretried = 1;
205 	bf->bf_state.bfs_retries ++;
206 }
207 
208 /*
209  * Determine what the correct AC queue for the given frame
210  * should be.
211  *
212  * This code assumes that the TIDs map consistently to
213  * the underlying hardware (or software) ath_txq.
214  * Since the sender may try to set an AC which is
215  * arbitrary, non-QoS TIDs may end up being put on
216  * completely different ACs. There's no way to put a
217  * TID into multiple ath_txq's for scheduling, so
218  * for now we override the AC/TXQ selection and set
219  * non-QOS TID frames into the BE queue.
220  *
221  * This may be completely incorrect - specifically,
222  * some management frames may end up out of order
223  * compared to the QoS traffic they're controlling.
224  * I'll look into this later.
225  */
226 static int
227 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
228 {
229 	const struct ieee80211_frame *wh;
230 	int pri = M_WME_GETAC(m0);
231 	wh = mtod(m0, const struct ieee80211_frame *);
232 	if (IEEE80211_QOS_HAS_SEQ(wh))
233 		return pri;
234 
235 	return ATH_NONQOS_TID_AC;
236 }
237 
238 void
239 ath_txfrag_cleanup(struct ath_softc *sc,
240 	ath_bufhead *frags, struct ieee80211_node *ni)
241 {
242 	struct ath_buf *bf, *next;
243 
244 	ATH_TXBUF_LOCK_ASSERT(sc);
245 
246 	TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
247 		/* NB: bf assumed clean */
248 		TAILQ_REMOVE(frags, bf, bf_list);
249 		ath_returnbuf_head(sc, bf);
250 		ieee80211_node_decref(ni);
251 	}
252 }
253 
254 /*
255  * Setup xmit of a fragmented frame.  Allocate a buffer
256  * for each frag and bump the node reference count to
257  * reflect the held reference to be setup by ath_tx_start.
258  */
259 int
260 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
261 	struct mbuf *m0, struct ieee80211_node *ni)
262 {
263 	struct mbuf *m;
264 	struct ath_buf *bf;
265 
266 	ATH_TXBUF_LOCK(sc);
267 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
268 		/* XXX non-management? */
269 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
270 		if (bf == NULL) {	/* out of buffers, cleanup */
271 			device_printf(sc->sc_dev, "%s: no buffer?\n",
272 			    __func__);
273 			ath_txfrag_cleanup(sc, frags, ni);
274 			break;
275 		}
276 		ieee80211_node_incref(ni);
277 		TAILQ_INSERT_TAIL(frags, bf, bf_list);
278 	}
279 	ATH_TXBUF_UNLOCK(sc);
280 
281 	return !TAILQ_EMPTY(frags);
282 }
283 
284 /*
285  * Reclaim mbuf resources.  For fragmented frames we
286  * need to claim each frag chained with m_nextpkt.
287  */
288 void
289 ath_freetx(struct mbuf *m)
290 {
291 	struct mbuf *next;
292 
293 	do {
294 		next = m->m_nextpkt;
295 		m->m_nextpkt = NULL;
296 		m_freem(m);
297 	} while ((m = next) != NULL);
298 }
299 
300 static int
301 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
302 {
303 	struct mbuf *m;
304 	int error;
305 
306 	/*
307 	 * Load the DMA map so any coalescing is done.  This
308 	 * also calculates the number of descriptors we need.
309 	 */
310 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
311 				     bf->bf_segs, &bf->bf_nseg,
312 				     BUS_DMA_NOWAIT);
313 	if (error == EFBIG) {
314 		/* XXX packet requires too many descriptors */
315 		bf->bf_nseg = ATH_MAX_SCATTER + 1;
316 	} else if (error != 0) {
317 		sc->sc_stats.ast_tx_busdma++;
318 		ath_freetx(m0);
319 		return error;
320 	}
321 	/*
322 	 * Discard null packets and check for packets that
323 	 * require too many TX descriptors.  We try to convert
324 	 * the latter to a cluster.
325 	 */
326 	if (bf->bf_nseg > ATH_MAX_SCATTER) {		/* too many desc's, linearize */
327 		sc->sc_stats.ast_tx_linear++;
328 		m = m_collapse(m0, M_NOWAIT, ATH_MAX_SCATTER);
329 		if (m == NULL) {
330 			ath_freetx(m0);
331 			sc->sc_stats.ast_tx_nombuf++;
332 			return ENOMEM;
333 		}
334 		m0 = m;
335 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
336 					     bf->bf_segs, &bf->bf_nseg,
337 					     BUS_DMA_NOWAIT);
338 		if (error != 0) {
339 			sc->sc_stats.ast_tx_busdma++;
340 			ath_freetx(m0);
341 			return error;
342 		}
343 		KASSERT(bf->bf_nseg <= ATH_MAX_SCATTER,
344 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
345 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
346 		sc->sc_stats.ast_tx_nodata++;
347 		ath_freetx(m0);
348 		return EIO;
349 	}
350 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
351 		__func__, m0, m0->m_pkthdr.len);
352 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
353 	bf->bf_m = m0;
354 
355 	return 0;
356 }
357 
358 /*
359  * Chain together segments+descriptors for a frame - 11n or otherwise.
360  *
361  * For aggregates, this is called on each frame in the aggregate.
362  */
363 static void
364 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0,
365     struct ath_buf *bf, int is_aggr, int is_first_subframe,
366     int is_last_subframe)
367 {
368 	struct ath_hal *ah = sc->sc_ah;
369 	char *ds;
370 	int i, bp, dsp;
371 	HAL_DMA_ADDR bufAddrList[4];
372 	uint32_t segLenList[4];
373 	int numTxMaps = 1;
374 	int isFirstDesc = 1;
375 
376 	/*
377 	 * XXX There's txdma and txdma_mgmt; the descriptor
378 	 * sizes must match.
379 	 */
380 	struct ath_descdma *dd = &sc->sc_txdma;
381 
382 	/*
383 	 * Fillin the remainder of the descriptor info.
384 	 */
385 
386 	/*
387 	 * We need the number of TX data pointers in each descriptor.
388 	 * EDMA and later chips support 4 TX buffers per descriptor;
389 	 * previous chips just support one.
390 	 */
391 	numTxMaps = sc->sc_tx_nmaps;
392 
393 	/*
394 	 * For EDMA and later chips ensure the TX map is fully populated
395 	 * before advancing to the next descriptor.
396 	 */
397 	ds = (char *) bf->bf_desc;
398 	bp = dsp = 0;
399 	bzero(bufAddrList, sizeof(bufAddrList));
400 	bzero(segLenList, sizeof(segLenList));
401 	for (i = 0; i < bf->bf_nseg; i++) {
402 		bufAddrList[bp] = bf->bf_segs[i].ds_addr;
403 		segLenList[bp] = bf->bf_segs[i].ds_len;
404 		bp++;
405 
406 		/*
407 		 * Go to the next segment if this isn't the last segment
408 		 * and there's space in the current TX map.
409 		 */
410 		if ((i != bf->bf_nseg - 1) && (bp < numTxMaps))
411 			continue;
412 
413 		/*
414 		 * Last segment or we're out of buffer pointers.
415 		 */
416 		bp = 0;
417 
418 		if (i == bf->bf_nseg - 1)
419 			ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0);
420 		else
421 			ath_hal_settxdesclink(ah, (struct ath_desc *) ds,
422 			    bf->bf_daddr + dd->dd_descsize * (dsp + 1));
423 
424 		/*
425 		 * XXX This assumes that bfs_txq is the actual destination
426 		 * hardware queue at this point.  It may not have been
427 		 * assigned, it may actually be pointing to the multicast
428 		 * software TXQ id.  These must be fixed!
429 		 */
430 		ath_hal_filltxdesc(ah, (struct ath_desc *) ds
431 			, bufAddrList
432 			, segLenList
433 			, bf->bf_descid		/* XXX desc id */
434 			, bf->bf_state.bfs_tx_queue
435 			, isFirstDesc		/* first segment */
436 			, i == bf->bf_nseg - 1	/* last segment */
437 			, (struct ath_desc *) ds0	/* first descriptor */
438 		);
439 
440 		/*
441 		 * Make sure the 11n aggregate fields are cleared.
442 		 *
443 		 * XXX TODO: this doesn't need to be called for
444 		 * aggregate frames; as it'll be called on all
445 		 * sub-frames.  Since the descriptors are in
446 		 * non-cacheable memory, this leads to some
447 		 * rather slow writes on MIPS/ARM platforms.
448 		 */
449 		if (ath_tx_is_11n(sc))
450 			ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds);
451 
452 		/*
453 		 * If 11n is enabled, set it up as if it's an aggregate
454 		 * frame.
455 		 */
456 		if (is_last_subframe) {
457 			ath_hal_set11n_aggr_last(sc->sc_ah,
458 			    (struct ath_desc *) ds);
459 		} else if (is_aggr) {
460 			/*
461 			 * This clears the aggrlen field; so
462 			 * the caller needs to call set_aggr_first()!
463 			 *
464 			 * XXX TODO: don't call this for the first
465 			 * descriptor in the first frame in an
466 			 * aggregate!
467 			 */
468 			ath_hal_set11n_aggr_middle(sc->sc_ah,
469 			    (struct ath_desc *) ds,
470 			    bf->bf_state.bfs_ndelim);
471 		}
472 		isFirstDesc = 0;
473 		bf->bf_lastds = (struct ath_desc *) ds;
474 
475 		/*
476 		 * Don't forget to skip to the next descriptor.
477 		 */
478 		ds += sc->sc_tx_desclen;
479 		dsp++;
480 
481 		/*
482 		 * .. and don't forget to blank these out!
483 		 */
484 		bzero(bufAddrList, sizeof(bufAddrList));
485 		bzero(segLenList, sizeof(segLenList));
486 	}
487 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
488 }
489 
490 /*
491  * Set the rate control fields in the given descriptor based on
492  * the bf_state fields and node state.
493  *
494  * The bfs fields should already be set with the relevant rate
495  * control information, including whether MRR is to be enabled.
496  *
497  * Since the FreeBSD HAL currently sets up the first TX rate
498  * in ath_hal_setuptxdesc(), this will setup the MRR
499  * conditionally for the pre-11n chips, and call ath_buf_set_rate
500  * unconditionally for 11n chips. These require the 11n rate
501  * scenario to be set if MCS rates are enabled, so it's easier
502  * to just always call it. The caller can then only set rates 2, 3
503  * and 4 if multi-rate retry is needed.
504  */
505 static void
506 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
507     struct ath_buf *bf)
508 {
509 	struct ath_rc_series *rc = bf->bf_state.bfs_rc;
510 
511 	/* If mrr is disabled, blank tries 1, 2, 3 */
512 	if (! bf->bf_state.bfs_ismrr)
513 		rc[1].tries = rc[2].tries = rc[3].tries = 0;
514 
515 #if 0
516 	/*
517 	 * If NOACK is set, just set ntries=1.
518 	 */
519 	else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) {
520 		rc[1].tries = rc[2].tries = rc[3].tries = 0;
521 		rc[0].tries = 1;
522 	}
523 #endif
524 
525 	/*
526 	 * Always call - that way a retried descriptor will
527 	 * have the MRR fields overwritten.
528 	 *
529 	 * XXX TODO: see if this is really needed - setting up
530 	 * the first descriptor should set the MRR fields to 0
531 	 * for us anyway.
532 	 */
533 	if (ath_tx_is_11n(sc)) {
534 		ath_buf_set_rate(sc, ni, bf);
535 	} else {
536 		ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
537 			, rc[1].ratecode, rc[1].tries
538 			, rc[2].ratecode, rc[2].tries
539 			, rc[3].ratecode, rc[3].tries
540 		);
541 	}
542 }
543 
544 /*
545  * Setup segments+descriptors for an 11n aggregate.
546  * bf_first is the first buffer in the aggregate.
547  * The descriptor list must already been linked together using
548  * bf->bf_next.
549  */
550 static void
551 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
552 {
553 	struct ath_buf *bf, *bf_prev = NULL;
554 	struct ath_desc *ds0 = bf_first->bf_desc;
555 
556 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
557 	    __func__, bf_first->bf_state.bfs_nframes,
558 	    bf_first->bf_state.bfs_al);
559 
560 	bf = bf_first;
561 
562 	if (bf->bf_state.bfs_txrate0 == 0)
563 		device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n",
564 		    __func__, bf, 0);
565 	if (bf->bf_state.bfs_rc[0].ratecode == 0)
566 		device_printf(sc->sc_dev, "%s: bf=%p, rix0=%d\n",
567 		    __func__, bf, 0);
568 
569 	/*
570 	 * Setup all descriptors of all subframes - this will
571 	 * call ath_hal_set11naggrmiddle() on every frame.
572 	 */
573 	while (bf != NULL) {
574 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
575 		    "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
576 		    __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
577 		    SEQNO(bf->bf_state.bfs_seqno));
578 
579 		/*
580 		 * Setup the initial fields for the first descriptor - all
581 		 * the non-11n specific stuff.
582 		 */
583 		ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc
584 			, bf->bf_state.bfs_pktlen	/* packet length */
585 			, bf->bf_state.bfs_hdrlen	/* header length */
586 			, bf->bf_state.bfs_atype	/* Atheros packet type */
587 			, bf->bf_state.bfs_txpower	/* txpower */
588 			, bf->bf_state.bfs_txrate0
589 			, bf->bf_state.bfs_try0		/* series 0 rate/tries */
590 			, bf->bf_state.bfs_keyix	/* key cache index */
591 			, bf->bf_state.bfs_txantenna	/* antenna mode */
592 			, bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ	/* flags */
593 			, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
594 			, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
595 		);
596 
597 		/*
598 		 * First descriptor? Setup the rate control and initial
599 		 * aggregate header information.
600 		 */
601 		if (bf == bf_first) {
602 			/*
603 			 * setup first desc with rate and aggr info
604 			 */
605 			ath_tx_set_ratectrl(sc, bf->bf_node, bf);
606 		}
607 
608 		/*
609 		 * Setup the descriptors for a multi-descriptor frame.
610 		 * This is both aggregate and non-aggregate aware.
611 		 */
612 		ath_tx_chaindesclist(sc, ds0, bf,
613 		    1, /* is_aggr */
614 		    !! (bf == bf_first), /* is_first_subframe */
615 		    !! (bf->bf_next == NULL) /* is_last_subframe */
616 		    );
617 
618 		if (bf == bf_first) {
619 			/*
620 			 * Initialise the first 11n aggregate with the
621 			 * aggregate length and aggregate enable bits.
622 			 */
623 			ath_hal_set11n_aggr_first(sc->sc_ah,
624 			    ds0,
625 			    bf->bf_state.bfs_al,
626 			    bf->bf_state.bfs_ndelim);
627 		}
628 
629 		/*
630 		 * Link the last descriptor of the previous frame
631 		 * to the beginning descriptor of this frame.
632 		 */
633 		if (bf_prev != NULL)
634 			ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds,
635 			    bf->bf_daddr);
636 
637 		/* Save a copy so we can link the next descriptor in */
638 		bf_prev = bf;
639 		bf = bf->bf_next;
640 	}
641 
642 	/*
643 	 * Set the first descriptor bf_lastds field to point to
644 	 * the last descriptor in the last subframe, that's where
645 	 * the status update will occur.
646 	 */
647 	bf_first->bf_lastds = bf_prev->bf_lastds;
648 
649 	/*
650 	 * And bf_last in the first descriptor points to the end of
651 	 * the aggregate list.
652 	 */
653 	bf_first->bf_last = bf_prev;
654 
655 	/*
656 	 * For non-AR9300 NICs, which require the rate control
657 	 * in the final descriptor - let's set that up now.
658 	 *
659 	 * This is because the filltxdesc() HAL call doesn't
660 	 * populate the last segment with rate control information
661 	 * if firstSeg is also true.  For non-aggregate frames
662 	 * that is fine, as the first frame already has rate control
663 	 * info.  But if the last frame in an aggregate has one
664 	 * descriptor, both firstseg and lastseg will be true and
665 	 * the rate info isn't copied.
666 	 *
667 	 * This is inefficient on MIPS/ARM platforms that have
668 	 * non-cachable memory for TX descriptors, but we'll just
669 	 * make do for now.
670 	 *
671 	 * As to why the rate table is stashed in the last descriptor
672 	 * rather than the first descriptor?  Because proctxdesc()
673 	 * is called on the final descriptor in an MPDU or A-MPDU -
674 	 * ie, the one that gets updated by the hardware upon
675 	 * completion.  That way proctxdesc() doesn't need to know
676 	 * about the first _and_ last TX descriptor.
677 	 */
678 	ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0);
679 
680 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
681 }
682 
683 /*
684  * Hand-off a frame to the multicast TX queue.
685  *
686  * This is a software TXQ which will be appended to the CAB queue
687  * during the beacon setup code.
688  *
689  * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID
690  * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated
691  * with the actual hardware txq, or all of this will fall apart.
692  *
693  * XXX It may not be a bad idea to just stuff the QCU ID into bf_state
694  * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated
695  * correctly.
696  */
697 static void
698 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
699     struct ath_buf *bf)
700 {
701 	ATH_TX_LOCK_ASSERT(sc);
702 
703 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
704 	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
705 
706 	ATH_TXQ_LOCK(txq);
707 	if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) {
708 		struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s);
709 		struct ieee80211_frame *wh;
710 
711 		/* mark previous frame */
712 		wh = mtod(bf_last->bf_m, struct ieee80211_frame *);
713 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
714 		bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap,
715 		    BUS_DMASYNC_PREWRITE);
716 
717 		/* link descriptor */
718 		ath_hal_settxdesclink(sc->sc_ah,
719 		    bf_last->bf_lastds,
720 		    bf->bf_daddr);
721 	}
722 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
723 	ATH_TXQ_UNLOCK(txq);
724 }
725 
726 /*
727  * Hand-off packet to a hardware queue.
728  */
729 static void
730 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
731     struct ath_buf *bf)
732 {
733 	struct ath_hal *ah = sc->sc_ah;
734 
735 	/*
736 	 * Insert the frame on the outbound list and pass it on
737 	 * to the hardware.  Multicast frames buffered for power
738 	 * save stations and transmit from the CAB queue are stored
739 	 * on a s/w only queue and loaded on to the CAB queue in
740 	 * the SWBA handler since frames only go out on DTIM and
741 	 * to avoid possible races.
742 	 */
743 	ATH_TX_LOCK_ASSERT(sc);
744 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
745 	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
746 	KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
747 	     ("ath_tx_handoff_hw called for mcast queue"));
748 
749 #if 0
750 	/*
751 	 * This causes a LOR. Find out where the PCU lock is being
752 	 * held whilst the TXQ lock is grabbed - that shouldn't
753 	 * be occuring.
754 	 */
755 	ATH_PCU_LOCK(sc);
756 	if (sc->sc_inreset_cnt) {
757 		ATH_PCU_UNLOCK(sc);
758 		DPRINTF(sc, ATH_DEBUG_RESET,
759 		    "%s: called with sc_in_reset != 0\n",
760 		    __func__);
761 		DPRINTF(sc, ATH_DEBUG_XMIT,
762 		    "%s: queued: TXDP[%u] = %p (%p) depth %d\n",
763 		    __func__, txq->axq_qnum,
764 		    (caddr_t)bf->bf_daddr, bf->bf_desc,
765 		    txq->axq_depth);
766 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
767 		if (bf->bf_state.bfs_aggr)
768 			txq->axq_aggr_depth++;
769 		/*
770 		 * There's no need to update axq_link; the hardware
771 		 * is in reset and once the reset is complete, any
772 		 * non-empty queues will simply have DMA restarted.
773 		 */
774 		return;
775 		}
776 	ATH_PCU_UNLOCK(sc);
777 #endif
778 
779 	/* For now, so not to generate whitespace diffs */
780 	if (1) {
781 		ATH_TXQ_LOCK(txq);
782 #ifdef IEEE80211_SUPPORT_TDMA
783 		int qbusy;
784 
785 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
786 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
787 
788 		ATH_KTR(sc, ATH_KTR_TX, 4,
789 		    "ath_tx_handoff: txq=%u, add bf=%p, qbusy=%d, depth=%d",
790 		    txq->axq_qnum, bf, qbusy, txq->axq_depth);
791 		if (txq->axq_link == NULL) {
792 			/*
793 			 * Be careful writing the address to TXDP.  If
794 			 * the tx q is enabled then this write will be
795 			 * ignored.  Normally this is not an issue but
796 			 * when tdma is in use and the q is beacon gated
797 			 * this race can occur.  If the q is busy then
798 			 * defer the work to later--either when another
799 			 * packet comes along or when we prepare a beacon
800 			 * frame at SWBA.
801 			 */
802 			if (!qbusy) {
803 				ath_hal_puttxbuf(ah, txq->axq_qnum,
804 				    bf->bf_daddr);
805 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
806 				DPRINTF(sc, ATH_DEBUG_XMIT,
807 				    "%s: TXDP[%u] = %p (%p) lastds=%p depth %d\n",
808 				    __func__, txq->axq_qnum,
809 				    (caddr_t)bf->bf_daddr, bf->bf_desc,
810 				    bf->bf_lastds,
811 				    txq->axq_depth);
812 				ATH_KTR(sc, ATH_KTR_TX, 5,
813 				    "ath_tx_handoff: TXDP[%u] = %p (%p) "
814 				    "lastds=%p depth %d",
815 				    txq->axq_qnum,
816 				    (caddr_t)bf->bf_daddr, bf->bf_desc,
817 				    bf->bf_lastds,
818 				    txq->axq_depth);
819 			} else {
820 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
821 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
822 				    "%s: Q%u busy, defer enable\n", __func__,
823 				    txq->axq_qnum);
824 				ATH_KTR(sc, ATH_KTR_TX, 0, "defer enable");
825 			}
826 		} else {
827 			*txq->axq_link = bf->bf_daddr;
828 			DPRINTF(sc, ATH_DEBUG_XMIT,
829 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
830 			    txq->axq_qnum, txq->axq_link,
831 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
832 			    txq->axq_depth);
833 			ATH_KTR(sc, ATH_KTR_TX, 5,
834 			    "ath_tx_handoff: link[%u](%p)=%p (%p) lastds=%p",
835 			    txq->axq_qnum, txq->axq_link,
836 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
837 			    bf->bf_lastds);
838 
839 			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
840 				/*
841 				 * The q was busy when we previously tried
842 				 * to write the address of the first buffer
843 				 * in the chain.  Since it's not busy now
844 				 * handle this chore.  We are certain the
845 				 * buffer at the front is the right one since
846 				 * axq_link is NULL only when the buffer list
847 				 * is/was empty.
848 				 */
849 				ath_hal_puttxbuf(ah, txq->axq_qnum,
850 					TAILQ_FIRST(&txq->axq_q)->bf_daddr);
851 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
852 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
853 				    "%s: Q%u restarted\n", __func__,
854 				    txq->axq_qnum);
855 				ATH_KTR(sc, ATH_KTR_TX, 4,
856 				  "ath_tx_handoff: txq[%d] restarted, bf=%p "
857 				  "daddr=%p ds=%p",
858 				    txq->axq_qnum,
859 				    bf,
860 				    (caddr_t)bf->bf_daddr,
861 				    bf->bf_desc);
862 			}
863 		}
864 #else
865 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
866 		ATH_KTR(sc, ATH_KTR_TX, 3,
867 		    "ath_tx_handoff: non-tdma: txq=%u, add bf=%p "
868 		    "depth=%d",
869 		    txq->axq_qnum,
870 		    bf,
871 		    txq->axq_depth);
872 		if (txq->axq_link == NULL) {
873 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
874 			DPRINTF(sc, ATH_DEBUG_XMIT,
875 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
876 			    __func__, txq->axq_qnum,
877 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
878 			    txq->axq_depth);
879 			ATH_KTR(sc, ATH_KTR_TX, 5,
880 			    "ath_tx_handoff: non-tdma: TXDP[%u] = %p (%p) "
881 			    "lastds=%p depth %d",
882 			    txq->axq_qnum,
883 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
884 			    bf->bf_lastds,
885 			    txq->axq_depth);
886 
887 		} else {
888 			*txq->axq_link = bf->bf_daddr;
889 			DPRINTF(sc, ATH_DEBUG_XMIT,
890 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
891 			    txq->axq_qnum, txq->axq_link,
892 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
893 			    txq->axq_depth);
894 			ATH_KTR(sc, ATH_KTR_TX, 5,
895 			    "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) "
896 			    "lastds=%d",
897 			    txq->axq_qnum, txq->axq_link,
898 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
899 			    bf->bf_lastds);
900 
901 		}
902 #endif /* IEEE80211_SUPPORT_TDMA */
903 		if (bf->bf_state.bfs_aggr)
904 			txq->axq_aggr_depth++;
905 		ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link);
906 		ath_hal_txstart(ah, txq->axq_qnum);
907 		ATH_TXQ_UNLOCK(txq);
908 		ATH_KTR(sc, ATH_KTR_TX, 1,
909 		    "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum);
910 	}
911 }
912 
913 /*
914  * Restart TX DMA for the given TXQ.
915  *
916  * This must be called whether the queue is empty or not.
917  */
918 static void
919 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq)
920 {
921 	struct ath_hal *ah = sc->sc_ah;
922 	struct ath_buf *bf, *bf_last;
923 
924 	ATH_TXQ_LOCK_ASSERT(txq);
925 	/* This is always going to be cleared, empty or not */
926 	txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
927 
928 	/* XXX make this ATH_TXQ_FIRST */
929 	bf = TAILQ_FIRST(&txq->axq_q);
930 	bf_last = ATH_TXQ_LAST(txq, axq_q_s);
931 
932 	if (bf == NULL)
933 		return;
934 
935 	ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
936 	ath_hal_gettxdesclinkptr(ah, bf_last->bf_lastds, &txq->axq_link);
937 	ath_hal_txstart(ah, txq->axq_qnum);
938 }
939 
940 /*
941  * Hand off a packet to the hardware (or mcast queue.)
942  *
943  * The relevant hardware txq should be locked.
944  */
945 static void
946 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq,
947     struct ath_buf *bf)
948 {
949 	ATH_TX_LOCK_ASSERT(sc);
950 
951 #ifdef	ATH_DEBUG_ALQ
952 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
953 		ath_tx_alq_post(sc, bf);
954 #endif
955 
956 	if (txq->axq_qnum == ATH_TXQ_SWQ)
957 		ath_tx_handoff_mcast(sc, txq, bf);
958 	else
959 		ath_tx_handoff_hw(sc, txq, bf);
960 }
961 
962 static int
963 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
964     struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen,
965     int *keyix)
966 {
967 	DPRINTF(sc, ATH_DEBUG_XMIT,
968 	    "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n",
969 	    __func__,
970 	    *hdrlen,
971 	    *pktlen,
972 	    isfrag,
973 	    iswep,
974 	    m0);
975 
976 	if (iswep) {
977 		const struct ieee80211_cipher *cip;
978 		struct ieee80211_key *k;
979 
980 		/*
981 		 * Construct the 802.11 header+trailer for an encrypted
982 		 * frame. The only reason this can fail is because of an
983 		 * unknown or unsupported cipher/key type.
984 		 */
985 		k = ieee80211_crypto_encap(ni, m0);
986 		if (k == NULL) {
987 			/*
988 			 * This can happen when the key is yanked after the
989 			 * frame was queued.  Just discard the frame; the
990 			 * 802.11 layer counts failures and provides
991 			 * debugging/diagnostics.
992 			 */
993 			return (0);
994 		}
995 		/*
996 		 * Adjust the packet + header lengths for the crypto
997 		 * additions and calculate the h/w key index.  When
998 		 * a s/w mic is done the frame will have had any mic
999 		 * added to it prior to entry so m0->m_pkthdr.len will
1000 		 * account for it. Otherwise we need to add it to the
1001 		 * packet length.
1002 		 */
1003 		cip = k->wk_cipher;
1004 		(*hdrlen) += cip->ic_header;
1005 		(*pktlen) += cip->ic_header + cip->ic_trailer;
1006 		/* NB: frags always have any TKIP MIC done in s/w */
1007 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
1008 			(*pktlen) += cip->ic_miclen;
1009 		(*keyix) = k->wk_keyix;
1010 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
1011 		/*
1012 		 * Use station key cache slot, if assigned.
1013 		 */
1014 		(*keyix) = ni->ni_ucastkey.wk_keyix;
1015 		if ((*keyix) == IEEE80211_KEYIX_NONE)
1016 			(*keyix) = HAL_TXKEYIX_INVALID;
1017 	} else
1018 		(*keyix) = HAL_TXKEYIX_INVALID;
1019 
1020 	return (1);
1021 }
1022 
1023 /*
1024  * Calculate whether interoperability protection is required for
1025  * this frame.
1026  *
1027  * This requires the rate control information be filled in,
1028  * as the protection requirement depends upon the current
1029  * operating mode / PHY.
1030  */
1031 static void
1032 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf)
1033 {
1034 	struct ieee80211_frame *wh;
1035 	uint8_t rix;
1036 	uint16_t flags;
1037 	int shortPreamble;
1038 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1039 	struct ifnet *ifp = sc->sc_ifp;
1040 	struct ieee80211com *ic = ifp->if_l2com;
1041 
1042 	flags = bf->bf_state.bfs_txflags;
1043 	rix = bf->bf_state.bfs_rc[0].rix;
1044 	shortPreamble = bf->bf_state.bfs_shpream;
1045 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
1046 
1047 	/*
1048 	 * If 802.11g protection is enabled, determine whether
1049 	 * to use RTS/CTS or just CTS.  Note that this is only
1050 	 * done for OFDM unicast frames.
1051 	 */
1052 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1053 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
1054 	    (flags & HAL_TXDESC_NOACK) == 0) {
1055 		bf->bf_state.bfs_doprot = 1;
1056 		/* XXX fragments must use CCK rates w/ protection */
1057 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
1058 			flags |= HAL_TXDESC_RTSENA;
1059 		} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
1060 			flags |= HAL_TXDESC_CTSENA;
1061 		}
1062 		/*
1063 		 * For frags it would be desirable to use the
1064 		 * highest CCK rate for RTS/CTS.  But stations
1065 		 * farther away may detect it at a lower CCK rate
1066 		 * so use the configured protection rate instead
1067 		 * (for now).
1068 		 */
1069 		sc->sc_stats.ast_tx_protect++;
1070 	}
1071 
1072 	/*
1073 	 * If 11n protection is enabled and it's a HT frame,
1074 	 * enable RTS.
1075 	 *
1076 	 * XXX ic_htprotmode or ic_curhtprotmode?
1077 	 * XXX should it_htprotmode only matter if ic_curhtprotmode
1078 	 * XXX indicates it's not a HT pure environment?
1079 	 */
1080 	if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
1081 	    rt->info[rix].phy == IEEE80211_T_HT &&
1082 	    (flags & HAL_TXDESC_NOACK) == 0) {
1083 		flags |= HAL_TXDESC_RTSENA;
1084 		sc->sc_stats.ast_tx_htprotect++;
1085 	}
1086 	bf->bf_state.bfs_txflags = flags;
1087 }
1088 
1089 /*
1090  * Update the frame duration given the currently selected rate.
1091  *
1092  * This also updates the frame duration value, so it will require
1093  * a DMA flush.
1094  */
1095 static void
1096 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf)
1097 {
1098 	struct ieee80211_frame *wh;
1099 	uint8_t rix;
1100 	uint16_t flags;
1101 	int shortPreamble;
1102 	struct ath_hal *ah = sc->sc_ah;
1103 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1104 	int isfrag = bf->bf_m->m_flags & M_FRAG;
1105 
1106 	flags = bf->bf_state.bfs_txflags;
1107 	rix = bf->bf_state.bfs_rc[0].rix;
1108 	shortPreamble = bf->bf_state.bfs_shpream;
1109 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
1110 
1111 	/*
1112 	 * Calculate duration.  This logically belongs in the 802.11
1113 	 * layer but it lacks sufficient information to calculate it.
1114 	 */
1115 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
1116 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
1117 		u_int16_t dur;
1118 		if (shortPreamble)
1119 			dur = rt->info[rix].spAckDuration;
1120 		else
1121 			dur = rt->info[rix].lpAckDuration;
1122 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
1123 			dur += dur;		/* additional SIFS+ACK */
1124 			KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment"));
1125 			/*
1126 			 * Include the size of next fragment so NAV is
1127 			 * updated properly.  The last fragment uses only
1128 			 * the ACK duration
1129 			 *
1130 			 * XXX TODO: ensure that the rate lookup for each
1131 			 * fragment is the same as the rate used by the
1132 			 * first fragment!
1133 			 */
1134 			dur += ath_hal_computetxtime(ah, rt,
1135 					bf->bf_m->m_nextpkt->m_pkthdr.len,
1136 					rix, shortPreamble);
1137 		}
1138 		if (isfrag) {
1139 			/*
1140 			 * Force hardware to use computed duration for next
1141 			 * fragment by disabling multi-rate retry which updates
1142 			 * duration based on the multi-rate duration table.
1143 			 */
1144 			bf->bf_state.bfs_ismrr = 0;
1145 			bf->bf_state.bfs_try0 = ATH_TXMGTTRY;
1146 			/* XXX update bfs_rc[0].try? */
1147 		}
1148 
1149 		/* Update the duration field itself */
1150 		*(u_int16_t *)wh->i_dur = htole16(dur);
1151 	}
1152 }
1153 
1154 static uint8_t
1155 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
1156     int cix, int shortPreamble)
1157 {
1158 	uint8_t ctsrate;
1159 
1160 	/*
1161 	 * CTS transmit rate is derived from the transmit rate
1162 	 * by looking in the h/w rate table.  We must also factor
1163 	 * in whether or not a short preamble is to be used.
1164 	 */
1165 	/* NB: cix is set above where RTS/CTS is enabled */
1166 	KASSERT(cix != 0xff, ("cix not setup"));
1167 	ctsrate = rt->info[cix].rateCode;
1168 
1169 	/* XXX this should only matter for legacy rates */
1170 	if (shortPreamble)
1171 		ctsrate |= rt->info[cix].shortPreamble;
1172 
1173 	return (ctsrate);
1174 }
1175 
1176 /*
1177  * Calculate the RTS/CTS duration for legacy frames.
1178  */
1179 static int
1180 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
1181     int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
1182     int flags)
1183 {
1184 	int ctsduration = 0;
1185 
1186 	/* This mustn't be called for HT modes */
1187 	if (rt->info[cix].phy == IEEE80211_T_HT) {
1188 		printf("%s: HT rate where it shouldn't be (0x%x)\n",
1189 		    __func__, rt->info[cix].rateCode);
1190 		return (-1);
1191 	}
1192 
1193 	/*
1194 	 * Compute the transmit duration based on the frame
1195 	 * size and the size of an ACK frame.  We call into the
1196 	 * HAL to do the computation since it depends on the
1197 	 * characteristics of the actual PHY being used.
1198 	 *
1199 	 * NB: CTS is assumed the same size as an ACK so we can
1200 	 *     use the precalculated ACK durations.
1201 	 */
1202 	if (shortPreamble) {
1203 		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
1204 			ctsduration += rt->info[cix].spAckDuration;
1205 		ctsduration += ath_hal_computetxtime(ah,
1206 			rt, pktlen, rix, AH_TRUE);
1207 		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
1208 			ctsduration += rt->info[rix].spAckDuration;
1209 	} else {
1210 		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
1211 			ctsduration += rt->info[cix].lpAckDuration;
1212 		ctsduration += ath_hal_computetxtime(ah,
1213 			rt, pktlen, rix, AH_FALSE);
1214 		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
1215 			ctsduration += rt->info[rix].lpAckDuration;
1216 	}
1217 
1218 	return (ctsduration);
1219 }
1220 
1221 /*
1222  * Update the given ath_buf with updated rts/cts setup and duration
1223  * values.
1224  *
1225  * To support rate lookups for each software retry, the rts/cts rate
1226  * and cts duration must be re-calculated.
1227  *
1228  * This function assumes the RTS/CTS flags have been set as needed;
1229  * mrr has been disabled; and the rate control lookup has been done.
1230  *
1231  * XXX TODO: MRR need only be disabled for the pre-11n NICs.
1232  * XXX The 11n NICs support per-rate RTS/CTS configuration.
1233  */
1234 static void
1235 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
1236 {
1237 	uint16_t ctsduration = 0;
1238 	uint8_t ctsrate = 0;
1239 	uint8_t rix = bf->bf_state.bfs_rc[0].rix;
1240 	uint8_t cix = 0;
1241 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1242 
1243 	/*
1244 	 * No RTS/CTS enabled? Don't bother.
1245 	 */
1246 	if ((bf->bf_state.bfs_txflags &
1247 	    (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
1248 		/* XXX is this really needed? */
1249 		bf->bf_state.bfs_ctsrate = 0;
1250 		bf->bf_state.bfs_ctsduration = 0;
1251 		return;
1252 	}
1253 
1254 	/*
1255 	 * If protection is enabled, use the protection rix control
1256 	 * rate. Otherwise use the rate0 control rate.
1257 	 */
1258 	if (bf->bf_state.bfs_doprot)
1259 		rix = sc->sc_protrix;
1260 	else
1261 		rix = bf->bf_state.bfs_rc[0].rix;
1262 
1263 	/*
1264 	 * If the raw path has hard-coded ctsrate0 to something,
1265 	 * use it.
1266 	 */
1267 	if (bf->bf_state.bfs_ctsrate0 != 0)
1268 		cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
1269 	else
1270 		/* Control rate from above */
1271 		cix = rt->info[rix].controlRate;
1272 
1273 	/* Calculate the rtscts rate for the given cix */
1274 	ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
1275 	    bf->bf_state.bfs_shpream);
1276 
1277 	/* The 11n chipsets do ctsduration calculations for you */
1278 	if (! ath_tx_is_11n(sc))
1279 		ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
1280 		    bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
1281 		    rt, bf->bf_state.bfs_txflags);
1282 
1283 	/* Squirrel away in ath_buf */
1284 	bf->bf_state.bfs_ctsrate = ctsrate;
1285 	bf->bf_state.bfs_ctsduration = ctsduration;
1286 
1287 	/*
1288 	 * Must disable multi-rate retry when using RTS/CTS.
1289 	 */
1290 	if (!sc->sc_mrrprot) {
1291 		bf->bf_state.bfs_ismrr = 0;
1292 		bf->bf_state.bfs_try0 =
1293 		    bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */
1294 	}
1295 }
1296 
1297 /*
1298  * Setup the descriptor chain for a normal or fast-frame
1299  * frame.
1300  *
1301  * XXX TODO: extend to include the destination hardware QCU ID.
1302  * Make sure that is correct.  Make sure that when being added
1303  * to the mcastq, the CABQ QCUID is set or things will get a bit
1304  * odd.
1305  */
1306 static void
1307 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
1308 {
1309 	struct ath_desc *ds = bf->bf_desc;
1310 	struct ath_hal *ah = sc->sc_ah;
1311 
1312 	if (bf->bf_state.bfs_txrate0 == 0)
1313 		device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n",
1314 		    __func__, bf, 0);
1315 
1316 	ath_hal_setuptxdesc(ah, ds
1317 		, bf->bf_state.bfs_pktlen	/* packet length */
1318 		, bf->bf_state.bfs_hdrlen	/* header length */
1319 		, bf->bf_state.bfs_atype	/* Atheros packet type */
1320 		, bf->bf_state.bfs_txpower	/* txpower */
1321 		, bf->bf_state.bfs_txrate0
1322 		, bf->bf_state.bfs_try0		/* series 0 rate/tries */
1323 		, bf->bf_state.bfs_keyix	/* key cache index */
1324 		, bf->bf_state.bfs_txantenna	/* antenna mode */
1325 		, bf->bf_state.bfs_txflags	/* flags */
1326 		, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
1327 		, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
1328 	);
1329 
1330 	/*
1331 	 * This will be overriden when the descriptor chain is written.
1332 	 */
1333 	bf->bf_lastds = ds;
1334 	bf->bf_last = bf;
1335 
1336 	/* Set rate control and descriptor chain for this frame */
1337 	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
1338 	ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0);
1339 }
1340 
1341 /*
1342  * Do a rate lookup.
1343  *
1344  * This performs a rate lookup for the given ath_buf only if it's required.
1345  * Non-data frames and raw frames don't require it.
1346  *
1347  * This populates the primary and MRR entries; MRR values are
1348  * then disabled later on if something requires it (eg RTS/CTS on
1349  * pre-11n chipsets.
1350  *
1351  * This needs to be done before the RTS/CTS fields are calculated
1352  * as they may depend upon the rate chosen.
1353  */
1354 static void
1355 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
1356 {
1357 	uint8_t rate, rix;
1358 	int try0;
1359 
1360 	if (! bf->bf_state.bfs_doratelookup)
1361 		return;
1362 
1363 	/* Get rid of any previous state */
1364 	bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1365 
1366 	ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
1367 	ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
1368 	    bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
1369 
1370 	/* In case MRR is disabled, make sure rc[0] is setup correctly */
1371 	bf->bf_state.bfs_rc[0].rix = rix;
1372 	bf->bf_state.bfs_rc[0].ratecode = rate;
1373 	bf->bf_state.bfs_rc[0].tries = try0;
1374 
1375 	if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
1376 		ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
1377 		    bf->bf_state.bfs_rc);
1378 	ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
1379 
1380 	sc->sc_txrix = rix;	/* for LED blinking */
1381 	sc->sc_lastdatarix = rix;	/* for fast frames */
1382 	bf->bf_state.bfs_try0 = try0;
1383 	bf->bf_state.bfs_txrate0 = rate;
1384 }
1385 
1386 /*
1387  * Update the CLRDMASK bit in the ath_buf if it needs to be set.
1388  */
1389 static void
1390 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid,
1391     struct ath_buf *bf)
1392 {
1393 	struct ath_node *an = ATH_NODE(bf->bf_node);
1394 
1395 	ATH_TX_LOCK_ASSERT(sc);
1396 
1397 	if (an->clrdmask == 1) {
1398 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1399 		an->clrdmask = 0;
1400 	}
1401 }
1402 
1403 /*
1404  * Transmit the given frame to the hardware.
1405  *
1406  * The frame must already be setup; rate control must already have
1407  * been done.
1408  *
1409  * XXX since the TXQ lock is being held here (and I dislike holding
1410  * it for this long when not doing software aggregation), later on
1411  * break this function into "setup_normal" and "xmit_normal". The
1412  * lock only needs to be held for the ath_tx_handoff call.
1413  */
1414 static void
1415 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
1416     struct ath_buf *bf)
1417 {
1418 	struct ath_node *an = ATH_NODE(bf->bf_node);
1419 	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
1420 
1421 	ATH_TX_LOCK_ASSERT(sc);
1422 
1423 	/*
1424 	 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does
1425 	 * set a completion handler however it doesn't (yet) properly
1426 	 * handle the strict ordering requirements needed for normal,
1427 	 * non-aggregate session frames.
1428 	 *
1429 	 * Once this is implemented, only set CLRDMASK like this for
1430 	 * frames that must go out - eg management/raw frames.
1431 	 */
1432 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1433 
1434 	/* Setup the descriptor before handoff */
1435 	ath_tx_do_ratelookup(sc, bf);
1436 	ath_tx_calc_duration(sc, bf);
1437 	ath_tx_calc_protection(sc, bf);
1438 	ath_tx_set_rtscts(sc, bf);
1439 	ath_tx_rate_fill_rcflags(sc, bf);
1440 	ath_tx_setds(sc, bf);
1441 
1442 	/* Track per-TID hardware queue depth correctly */
1443 	tid->hwq_depth++;
1444 
1445 	/* Assign the completion handler */
1446 	bf->bf_comp = ath_tx_normal_comp;
1447 
1448 	/* Hand off to hardware */
1449 	ath_tx_handoff(sc, txq, bf);
1450 }
1451 
1452 /*
1453  * Do the basic frame setup stuff that's required before the frame
1454  * is added to a software queue.
1455  *
1456  * All frames get mostly the same treatment and it's done once.
1457  * Retransmits fiddle with things like the rate control setup,
1458  * setting the retransmit bit in the packet; doing relevant DMA/bus
1459  * syncing and relinking it (back) into the hardware TX queue.
1460  *
1461  * Note that this may cause the mbuf to be reallocated, so
1462  * m0 may not be valid.
1463  */
1464 static int
1465 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
1466     struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq)
1467 {
1468 	struct ieee80211vap *vap = ni->ni_vap;
1469 	struct ath_hal *ah = sc->sc_ah;
1470 	struct ifnet *ifp = sc->sc_ifp;
1471 	struct ieee80211com *ic = ifp->if_l2com;
1472 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1473 	int error, iswep, ismcast, isfrag, ismrr;
1474 	int keyix, hdrlen, pktlen, try0 = 0;
1475 	u_int8_t rix = 0, txrate = 0;
1476 	struct ath_desc *ds;
1477 	struct ieee80211_frame *wh;
1478 	u_int subtype, flags;
1479 	HAL_PKT_TYPE atype;
1480 	const HAL_RATE_TABLE *rt;
1481 	HAL_BOOL shortPreamble;
1482 	struct ath_node *an;
1483 	u_int pri;
1484 
1485 	/*
1486 	 * To ensure that both sequence numbers and the CCMP PN handling
1487 	 * is "correct", make sure that the relevant TID queue is locked.
1488 	 * Otherwise the CCMP PN and seqno may appear out of order, causing
1489 	 * re-ordered frames to have out of order CCMP PN's, resulting
1490 	 * in many, many frame drops.
1491 	 */
1492 	ATH_TX_LOCK_ASSERT(sc);
1493 
1494 	wh = mtod(m0, struct ieee80211_frame *);
1495 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1496 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1497 	isfrag = m0->m_flags & M_FRAG;
1498 	hdrlen = ieee80211_anyhdrsize(wh);
1499 	/*
1500 	 * Packet length must not include any
1501 	 * pad bytes; deduct them here.
1502 	 */
1503 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
1504 
1505 	/* Handle encryption twiddling if needed */
1506 	if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
1507 	    &pktlen, &keyix)) {
1508 		ath_freetx(m0);
1509 		return EIO;
1510 	}
1511 
1512 	/* packet header may have moved, reset our local pointer */
1513 	wh = mtod(m0, struct ieee80211_frame *);
1514 
1515 	pktlen += IEEE80211_CRC_LEN;
1516 
1517 	/*
1518 	 * Load the DMA map so any coalescing is done.  This
1519 	 * also calculates the number of descriptors we need.
1520 	 */
1521 	error = ath_tx_dmasetup(sc, bf, m0);
1522 	if (error != 0)
1523 		return error;
1524 	bf->bf_node = ni;			/* NB: held reference */
1525 	m0 = bf->bf_m;				/* NB: may have changed */
1526 	wh = mtod(m0, struct ieee80211_frame *);
1527 
1528 	/* setup descriptors */
1529 	ds = bf->bf_desc;
1530 	rt = sc->sc_currates;
1531 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1532 
1533 	/*
1534 	 * NB: the 802.11 layer marks whether or not we should
1535 	 * use short preamble based on the current mode and
1536 	 * negotiated parameters.
1537 	 */
1538 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1539 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1540 		shortPreamble = AH_TRUE;
1541 		sc->sc_stats.ast_tx_shortpre++;
1542 	} else {
1543 		shortPreamble = AH_FALSE;
1544 	}
1545 
1546 	an = ATH_NODE(ni);
1547 	//flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1548 	flags = 0;
1549 	ismrr = 0;				/* default no multi-rate retry*/
1550 	pri = M_WME_GETAC(m0);			/* honor classification */
1551 	/* XXX use txparams instead of fixed values */
1552 	/*
1553 	 * Calculate Atheros packet type from IEEE80211 packet header,
1554 	 * setup for rate calculations, and select h/w transmit queue.
1555 	 */
1556 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1557 	case IEEE80211_FC0_TYPE_MGT:
1558 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1559 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1560 			atype = HAL_PKT_TYPE_BEACON;
1561 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1562 			atype = HAL_PKT_TYPE_PROBE_RESP;
1563 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1564 			atype = HAL_PKT_TYPE_ATIM;
1565 		else
1566 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
1567 		rix = an->an_mgmtrix;
1568 		txrate = rt->info[rix].rateCode;
1569 		if (shortPreamble)
1570 			txrate |= rt->info[rix].shortPreamble;
1571 		try0 = ATH_TXMGTTRY;
1572 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1573 		break;
1574 	case IEEE80211_FC0_TYPE_CTL:
1575 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
1576 		rix = an->an_mgmtrix;
1577 		txrate = rt->info[rix].rateCode;
1578 		if (shortPreamble)
1579 			txrate |= rt->info[rix].shortPreamble;
1580 		try0 = ATH_TXMGTTRY;
1581 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1582 		break;
1583 	case IEEE80211_FC0_TYPE_DATA:
1584 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
1585 		/*
1586 		 * Data frames: multicast frames go out at a fixed rate,
1587 		 * EAPOL frames use the mgmt frame rate; otherwise consult
1588 		 * the rate control module for the rate to use.
1589 		 */
1590 		if (ismcast) {
1591 			rix = an->an_mcastrix;
1592 			txrate = rt->info[rix].rateCode;
1593 			if (shortPreamble)
1594 				txrate |= rt->info[rix].shortPreamble;
1595 			try0 = 1;
1596 		} else if (m0->m_flags & M_EAPOL) {
1597 			/* XXX? maybe always use long preamble? */
1598 			rix = an->an_mgmtrix;
1599 			txrate = rt->info[rix].rateCode;
1600 			if (shortPreamble)
1601 				txrate |= rt->info[rix].shortPreamble;
1602 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
1603 		} else {
1604 			/*
1605 			 * Do rate lookup on each TX, rather than using
1606 			 * the hard-coded TX information decided here.
1607 			 */
1608 			ismrr = 1;
1609 			bf->bf_state.bfs_doratelookup = 1;
1610 		}
1611 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
1612 			flags |= HAL_TXDESC_NOACK;
1613 		break;
1614 	default:
1615 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
1616 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1617 		/* XXX statistic */
1618 		/* XXX free tx dmamap */
1619 		ath_freetx(m0);
1620 		return EIO;
1621 	}
1622 
1623 	/*
1624 	 * There are two known scenarios where the frame AC doesn't match
1625 	 * what the destination TXQ is.
1626 	 *
1627 	 * + non-QoS frames (eg management?) that the net80211 stack has
1628 	 *   assigned a higher AC to, but since it's a non-QoS TID, it's
1629 	 *   being thrown into TID 16.  TID 16 gets the AC_BE queue.
1630 	 *   It's quite possible that management frames should just be
1631 	 *   direct dispatched to hardware rather than go via the software
1632 	 *   queue; that should be investigated in the future.  There are
1633 	 *   some specific scenarios where this doesn't make sense, mostly
1634 	 *   surrounding ADDBA request/response - hence why that is special
1635 	 *   cased.
1636 	 *
1637 	 * + Multicast frames going into the VAP mcast queue.  That shows up
1638 	 *   as "TXQ 11".
1639 	 *
1640 	 * This driver should eventually support separate TID and TXQ locking,
1641 	 * allowing for arbitrary AC frames to appear on arbitrary software
1642 	 * queues, being queued to the "correct" hardware queue when needed.
1643 	 */
1644 #if 0
1645 	if (txq != sc->sc_ac2q[pri]) {
1646 		device_printf(sc->sc_dev,
1647 		    "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n",
1648 		    __func__,
1649 		    txq,
1650 		    txq->axq_qnum,
1651 		    pri,
1652 		    sc->sc_ac2q[pri],
1653 		    sc->sc_ac2q[pri]->axq_qnum);
1654 	}
1655 #endif
1656 
1657 	/*
1658 	 * Calculate miscellaneous flags.
1659 	 */
1660 	if (ismcast) {
1661 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
1662 	} else if (pktlen > vap->iv_rtsthreshold &&
1663 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
1664 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
1665 		sc->sc_stats.ast_tx_rts++;
1666 	}
1667 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
1668 		sc->sc_stats.ast_tx_noack++;
1669 #ifdef IEEE80211_SUPPORT_TDMA
1670 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
1671 		DPRINTF(sc, ATH_DEBUG_TDMA,
1672 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
1673 		sc->sc_stats.ast_tdma_ack++;
1674 		/* XXX free tx dmamap */
1675 		ath_freetx(m0);
1676 		return EIO;
1677 	}
1678 #endif
1679 
1680 	/*
1681 	 * Determine if a tx interrupt should be generated for
1682 	 * this descriptor.  We take a tx interrupt to reap
1683 	 * descriptors when the h/w hits an EOL condition or
1684 	 * when the descriptor is specifically marked to generate
1685 	 * an interrupt.  We periodically mark descriptors in this
1686 	 * way to insure timely replenishing of the supply needed
1687 	 * for sending frames.  Defering interrupts reduces system
1688 	 * load and potentially allows more concurrent work to be
1689 	 * done but if done to aggressively can cause senders to
1690 	 * backup.
1691 	 *
1692 	 * NB: use >= to deal with sc_txintrperiod changing
1693 	 *     dynamically through sysctl.
1694 	 */
1695 	if (flags & HAL_TXDESC_INTREQ) {
1696 		txq->axq_intrcnt = 0;
1697 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
1698 		flags |= HAL_TXDESC_INTREQ;
1699 		txq->axq_intrcnt = 0;
1700 	}
1701 
1702 	/* This point forward is actual TX bits */
1703 
1704 	/*
1705 	 * At this point we are committed to sending the frame
1706 	 * and we don't need to look at m_nextpkt; clear it in
1707 	 * case this frame is part of frag chain.
1708 	 */
1709 	m0->m_nextpkt = NULL;
1710 
1711 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1712 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
1713 		    sc->sc_hwmap[rix].ieeerate, -1);
1714 
1715 	if (ieee80211_radiotap_active_vap(vap)) {
1716 		u_int64_t tsf = ath_hal_gettsf64(ah);
1717 
1718 		sc->sc_tx_th.wt_tsf = htole64(tsf);
1719 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1720 		if (iswep)
1721 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1722 		if (isfrag)
1723 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1724 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1725 		sc->sc_tx_th.wt_txpower = ieee80211_get_node_txpower(ni);
1726 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1727 
1728 		ieee80211_radiotap_tx(vap, m0);
1729 	}
1730 
1731 	/* Blank the legacy rate array */
1732 	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1733 
1734 	/*
1735 	 * ath_buf_set_rate needs at least one rate/try to setup
1736 	 * the rate scenario.
1737 	 */
1738 	bf->bf_state.bfs_rc[0].rix = rix;
1739 	bf->bf_state.bfs_rc[0].tries = try0;
1740 	bf->bf_state.bfs_rc[0].ratecode = txrate;
1741 
1742 	/* Store the decided rate index values away */
1743 	bf->bf_state.bfs_pktlen = pktlen;
1744 	bf->bf_state.bfs_hdrlen = hdrlen;
1745 	bf->bf_state.bfs_atype = atype;
1746 	bf->bf_state.bfs_txpower = ieee80211_get_node_txpower(ni);
1747 	bf->bf_state.bfs_txrate0 = txrate;
1748 	bf->bf_state.bfs_try0 = try0;
1749 	bf->bf_state.bfs_keyix = keyix;
1750 	bf->bf_state.bfs_txantenna = sc->sc_txantenna;
1751 	bf->bf_state.bfs_txflags = flags;
1752 	bf->bf_state.bfs_shpream = shortPreamble;
1753 
1754 	/* XXX this should be done in ath_tx_setrate() */
1755 	bf->bf_state.bfs_ctsrate0 = 0;	/* ie, no hard-coded ctsrate */
1756 	bf->bf_state.bfs_ctsrate = 0;	/* calculated later */
1757 	bf->bf_state.bfs_ctsduration = 0;
1758 	bf->bf_state.bfs_ismrr = ismrr;
1759 
1760 	return 0;
1761 }
1762 
1763 /*
1764  * Queue a frame to the hardware or software queue.
1765  *
1766  * This can be called by the net80211 code.
1767  *
1768  * XXX what about locking? Or, push the seqno assign into the
1769  * XXX aggregate scheduler so its serialised?
1770  *
1771  * XXX When sending management frames via ath_raw_xmit(),
1772  *     should CLRDMASK be set unconditionally?
1773  */
1774 int
1775 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
1776     struct ath_buf *bf, struct mbuf *m0)
1777 {
1778 	struct ieee80211vap *vap = ni->ni_vap;
1779 	struct ath_vap *avp = ATH_VAP(vap);
1780 	int r = 0;
1781 	u_int pri;
1782 	int tid;
1783 	struct ath_txq *txq;
1784 	int ismcast;
1785 	const struct ieee80211_frame *wh;
1786 	int is_ampdu, is_ampdu_tx, is_ampdu_pending;
1787 	ieee80211_seq seqno;
1788 	uint8_t type, subtype;
1789 
1790 	ATH_TX_LOCK_ASSERT(sc);
1791 
1792 	/*
1793 	 * Determine the target hardware queue.
1794 	 *
1795 	 * For multicast frames, the txq gets overridden appropriately
1796 	 * depending upon the state of PS.
1797 	 *
1798 	 * For any other frame, we do a TID/QoS lookup inside the frame
1799 	 * to see what the TID should be. If it's a non-QoS frame, the
1800 	 * AC and TID are overridden. The TID/TXQ code assumes the
1801 	 * TID is on a predictable hardware TXQ, so we don't support
1802 	 * having a node TID queued to multiple hardware TXQs.
1803 	 * This may change in the future but would require some locking
1804 	 * fudgery.
1805 	 */
1806 	pri = ath_tx_getac(sc, m0);
1807 	tid = ath_tx_gettid(sc, m0);
1808 
1809 	txq = sc->sc_ac2q[pri];
1810 	wh = mtod(m0, struct ieee80211_frame *);
1811 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1812 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1813 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1814 
1815 	/*
1816 	 * Enforce how deep the multicast queue can grow.
1817 	 *
1818 	 * XXX duplicated in ath_raw_xmit().
1819 	 */
1820 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1821 		if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
1822 		    > sc->sc_txq_mcastq_maxdepth) {
1823 			sc->sc_stats.ast_tx_mcastq_overflow++;
1824 			r = ENOBUFS;
1825 		}
1826 		if (r != 0) {
1827 			m_freem(m0);
1828 			return r;
1829 		}
1830 	}
1831 
1832 	/* A-MPDU TX */
1833 	is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
1834 	is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
1835 	is_ampdu = is_ampdu_tx | is_ampdu_pending;
1836 
1837 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
1838 	    __func__, tid, pri, is_ampdu);
1839 
1840 	/* Set local packet state, used to queue packets to hardware */
1841 	bf->bf_state.bfs_tid = tid;
1842 	bf->bf_state.bfs_tx_queue = txq->axq_qnum;
1843 	bf->bf_state.bfs_pri = pri;
1844 
1845 #if 1
1846 	/*
1847 	 * When servicing one or more stations in power-save mode
1848 	 * (or) if there is some mcast data waiting on the mcast
1849 	 * queue (to prevent out of order delivery) multicast frames
1850 	 * must be bufferd until after the beacon.
1851 	 *
1852 	 * TODO: we should lock the mcastq before we check the length.
1853 	 */
1854 	if (sc->sc_cabq_enable && ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) {
1855 		txq = &avp->av_mcastq;
1856 		/*
1857 		 * Mark the frame as eventually belonging on the CAB
1858 		 * queue, so the descriptor setup functions will
1859 		 * correctly initialise the descriptor 'qcuId' field.
1860 		 */
1861 		bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum;
1862 	}
1863 #endif
1864 
1865 	/* Do the generic frame setup */
1866 	/* XXX should just bzero the bf_state? */
1867 	bf->bf_state.bfs_dobaw = 0;
1868 
1869 	/* A-MPDU TX? Manually set sequence number */
1870 	/*
1871 	 * Don't do it whilst pending; the net80211 layer still
1872 	 * assigns them.
1873 	 */
1874 	if (is_ampdu_tx) {
1875 		/*
1876 		 * Always call; this function will
1877 		 * handle making sure that null data frames
1878 		 * don't get a sequence number from the current
1879 		 * TID and thus mess with the BAW.
1880 		 */
1881 		seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
1882 
1883 		/*
1884 		 * Don't add QoS NULL frames to the BAW.
1885 		 */
1886 		if (IEEE80211_QOS_HAS_SEQ(wh) &&
1887 		    subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) {
1888 			bf->bf_state.bfs_dobaw = 1;
1889 		}
1890 	}
1891 
1892 	/*
1893 	 * If needed, the sequence number has been assigned.
1894 	 * Squirrel it away somewhere easy to get to.
1895 	 */
1896 	bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
1897 
1898 	/* Is ampdu pending? fetch the seqno and print it out */
1899 	if (is_ampdu_pending)
1900 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1901 		    "%s: tid %d: ampdu pending, seqno %d\n",
1902 		    __func__, tid, M_SEQNO_GET(m0));
1903 
1904 	/* This also sets up the DMA map */
1905 	r = ath_tx_normal_setup(sc, ni, bf, m0, txq);
1906 
1907 	if (r != 0)
1908 		goto done;
1909 
1910 	/* At this point m0 could have changed! */
1911 	m0 = bf->bf_m;
1912 
1913 #if 1
1914 	/*
1915 	 * If it's a multicast frame, do a direct-dispatch to the
1916 	 * destination hardware queue. Don't bother software
1917 	 * queuing it.
1918 	 */
1919 	/*
1920 	 * If it's a BAR frame, do a direct dispatch to the
1921 	 * destination hardware queue. Don't bother software
1922 	 * queuing it, as the TID will now be paused.
1923 	 * Sending a BAR frame can occur from the net80211 txa timer
1924 	 * (ie, retries) or from the ath txtask (completion call.)
1925 	 * It queues directly to hardware because the TID is paused
1926 	 * at this point (and won't be unpaused until the BAR has
1927 	 * either been TXed successfully or max retries has been
1928 	 * reached.)
1929 	 */
1930 	if (txq == &avp->av_mcastq) {
1931 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1932 		    "%s: bf=%p: mcastq: TX'ing\n", __func__, bf);
1933 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1934 		ath_tx_xmit_normal(sc, txq, bf);
1935 	} else if (type == IEEE80211_FC0_TYPE_CTL &&
1936 		    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1937 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1938 		    "%s: BAR: TX'ing direct\n", __func__);
1939 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1940 		ath_tx_xmit_normal(sc, txq, bf);
1941 	} else {
1942 		/* add to software queue */
1943 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1944 		    "%s: bf=%p: swq: TX'ing\n", __func__, bf);
1945 		ath_tx_swq(sc, ni, txq, bf);
1946 	}
1947 #else
1948 	/*
1949 	 * For now, since there's no software queue,
1950 	 * direct-dispatch to the hardware.
1951 	 */
1952 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1953 	ath_tx_xmit_normal(sc, txq, bf);
1954 #endif
1955 done:
1956 	return 0;
1957 }
1958 
1959 static int
1960 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
1961 	struct ath_buf *bf, struct mbuf *m0,
1962 	const struct ieee80211_bpf_params *params)
1963 {
1964 	struct ifnet *ifp = sc->sc_ifp;
1965 	struct ieee80211com *ic = ifp->if_l2com;
1966 	struct ath_hal *ah = sc->sc_ah;
1967 	struct ieee80211vap *vap = ni->ni_vap;
1968 	int error, ismcast, ismrr;
1969 	int keyix, hdrlen, pktlen, try0, txantenna;
1970 	u_int8_t rix, txrate;
1971 	struct ieee80211_frame *wh;
1972 	u_int flags;
1973 	HAL_PKT_TYPE atype;
1974 	const HAL_RATE_TABLE *rt;
1975 	struct ath_desc *ds;
1976 	u_int pri;
1977 	int o_tid = -1;
1978 	int do_override;
1979 
1980 	ATH_TX_LOCK_ASSERT(sc);
1981 
1982 	wh = mtod(m0, struct ieee80211_frame *);
1983 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1984 	hdrlen = ieee80211_anyhdrsize(wh);
1985 	/*
1986 	 * Packet length must not include any
1987 	 * pad bytes; deduct them here.
1988 	 */
1989 	/* XXX honor IEEE80211_BPF_DATAPAD */
1990 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
1991 
1992 	ATH_KTR(sc, ATH_KTR_TX, 2,
1993 	     "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf);
1994 
1995 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
1996 	    __func__, ismcast);
1997 
1998 	pri = params->ibp_pri & 3;
1999 	/* Override pri if the frame isn't a QoS one */
2000 	if (! IEEE80211_QOS_HAS_SEQ(wh))
2001 		pri = ath_tx_getac(sc, m0);
2002 
2003 	/* XXX If it's an ADDBA, override the correct queue */
2004 	do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
2005 
2006 	/* Map ADDBA to the correct priority */
2007 	if (do_override) {
2008 #if 0
2009 		device_printf(sc->sc_dev,
2010 		    "%s: overriding tid %d pri %d -> %d\n",
2011 		    __func__, o_tid, pri, TID_TO_WME_AC(o_tid));
2012 #endif
2013 		pri = TID_TO_WME_AC(o_tid);
2014 	}
2015 
2016 	/* Handle encryption twiddling if needed */
2017 	if (! ath_tx_tag_crypto(sc, ni,
2018 	    m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
2019 	    &hdrlen, &pktlen, &keyix)) {
2020 		ath_freetx(m0);
2021 		return EIO;
2022 	}
2023 	/* packet header may have moved, reset our local pointer */
2024 	wh = mtod(m0, struct ieee80211_frame *);
2025 
2026 	/* Do the generic frame setup */
2027 	/* XXX should just bzero the bf_state? */
2028 	bf->bf_state.bfs_dobaw = 0;
2029 
2030 	error = ath_tx_dmasetup(sc, bf, m0);
2031 	if (error != 0)
2032 		return error;
2033 	m0 = bf->bf_m;				/* NB: may have changed */
2034 	wh = mtod(m0, struct ieee80211_frame *);
2035 	bf->bf_node = ni;			/* NB: held reference */
2036 
2037 	/* Always enable CLRDMASK for raw frames for now.. */
2038 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
2039 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
2040 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2041 		flags |= HAL_TXDESC_RTSENA;
2042 	else if (params->ibp_flags & IEEE80211_BPF_CTS) {
2043 		/* XXX assume 11g/11n protection? */
2044 		bf->bf_state.bfs_doprot = 1;
2045 		flags |= HAL_TXDESC_CTSENA;
2046 	}
2047 	/* XXX leave ismcast to injector? */
2048 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
2049 		flags |= HAL_TXDESC_NOACK;
2050 
2051 	rt = sc->sc_currates;
2052 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2053 	rix = ath_tx_findrix(sc, params->ibp_rate0);
2054 	txrate = rt->info[rix].rateCode;
2055 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
2056 		txrate |= rt->info[rix].shortPreamble;
2057 	sc->sc_txrix = rix;
2058 	try0 = params->ibp_try0;
2059 	ismrr = (params->ibp_try1 != 0);
2060 	txantenna = params->ibp_pri >> 2;
2061 	if (txantenna == 0)			/* XXX? */
2062 		txantenna = sc->sc_txantenna;
2063 
2064 	/*
2065 	 * Since ctsrate is fixed, store it away for later
2066 	 * use when the descriptor fields are being set.
2067 	 */
2068 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
2069 		bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
2070 
2071 	/*
2072 	 * NB: we mark all packets as type PSPOLL so the h/w won't
2073 	 * set the sequence number, duration, etc.
2074 	 */
2075 	atype = HAL_PKT_TYPE_PSPOLL;
2076 
2077 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
2078 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
2079 		    sc->sc_hwmap[rix].ieeerate, -1);
2080 
2081 	if (ieee80211_radiotap_active_vap(vap)) {
2082 		u_int64_t tsf = ath_hal_gettsf64(ah);
2083 
2084 		sc->sc_tx_th.wt_tsf = htole64(tsf);
2085 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
2086 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2087 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2088 		if (m0->m_flags & M_FRAG)
2089 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2090 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
2091 		sc->sc_tx_th.wt_txpower = MIN(params->ibp_power,
2092 		    ieee80211_get_node_txpower(ni));
2093 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
2094 
2095 		ieee80211_radiotap_tx(vap, m0);
2096 	}
2097 
2098 	/*
2099 	 * Formulate first tx descriptor with tx controls.
2100 	 */
2101 	ds = bf->bf_desc;
2102 	/* XXX check return value? */
2103 
2104 	/* Store the decided rate index values away */
2105 	bf->bf_state.bfs_pktlen = pktlen;
2106 	bf->bf_state.bfs_hdrlen = hdrlen;
2107 	bf->bf_state.bfs_atype = atype;
2108 	bf->bf_state.bfs_txpower = MIN(params->ibp_power,
2109 	    ieee80211_get_node_txpower(ni));
2110 	bf->bf_state.bfs_txrate0 = txrate;
2111 	bf->bf_state.bfs_try0 = try0;
2112 	bf->bf_state.bfs_keyix = keyix;
2113 	bf->bf_state.bfs_txantenna = txantenna;
2114 	bf->bf_state.bfs_txflags = flags;
2115 	bf->bf_state.bfs_shpream =
2116 	    !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
2117 
2118 	/* Set local packet state, used to queue packets to hardware */
2119 	bf->bf_state.bfs_tid = WME_AC_TO_TID(pri);
2120 	bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum;
2121 	bf->bf_state.bfs_pri = pri;
2122 
2123 	/* XXX this should be done in ath_tx_setrate() */
2124 	bf->bf_state.bfs_ctsrate = 0;
2125 	bf->bf_state.bfs_ctsduration = 0;
2126 	bf->bf_state.bfs_ismrr = ismrr;
2127 
2128 	/* Blank the legacy rate array */
2129 	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
2130 
2131 	bf->bf_state.bfs_rc[0].rix =
2132 	    ath_tx_findrix(sc, params->ibp_rate0);
2133 	bf->bf_state.bfs_rc[0].tries = try0;
2134 	bf->bf_state.bfs_rc[0].ratecode = txrate;
2135 
2136 	if (ismrr) {
2137 		int rix;
2138 
2139 		rix = ath_tx_findrix(sc, params->ibp_rate1);
2140 		bf->bf_state.bfs_rc[1].rix = rix;
2141 		bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
2142 
2143 		rix = ath_tx_findrix(sc, params->ibp_rate2);
2144 		bf->bf_state.bfs_rc[2].rix = rix;
2145 		bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
2146 
2147 		rix = ath_tx_findrix(sc, params->ibp_rate3);
2148 		bf->bf_state.bfs_rc[3].rix = rix;
2149 		bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
2150 	}
2151 	/*
2152 	 * All the required rate control decisions have been made;
2153 	 * fill in the rc flags.
2154 	 */
2155 	ath_tx_rate_fill_rcflags(sc, bf);
2156 
2157 	/* NB: no buffered multicast in power save support */
2158 
2159 	/*
2160 	 * If we're overiding the ADDBA destination, dump directly
2161 	 * into the hardware queue, right after any pending
2162 	 * frames to that node are.
2163 	 */
2164 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
2165 	    __func__, do_override);
2166 
2167 #if 1
2168 	if (do_override) {
2169 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2170 		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2171 	} else {
2172 		/* Queue to software queue */
2173 		ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf);
2174 	}
2175 #else
2176 	/* Direct-dispatch to the hardware */
2177 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2178 	ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2179 #endif
2180 	return 0;
2181 }
2182 
2183 /*
2184  * Send a raw frame.
2185  *
2186  * This can be called by net80211.
2187  */
2188 int
2189 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2190 	const struct ieee80211_bpf_params *params)
2191 {
2192 	struct ieee80211com *ic = ni->ni_ic;
2193 	struct ifnet *ifp = ic->ic_ifp;
2194 	struct ath_softc *sc = ifp->if_softc;
2195 	struct ath_buf *bf;
2196 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
2197 	int error = 0;
2198 
2199 	ATH_PCU_LOCK(sc);
2200 	if (sc->sc_inreset_cnt > 0) {
2201 		device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n",
2202 		    __func__);
2203 		error = EIO;
2204 		ATH_PCU_UNLOCK(sc);
2205 		goto bad0;
2206 	}
2207 	sc->sc_txstart_cnt++;
2208 	ATH_PCU_UNLOCK(sc);
2209 
2210 	ATH_TX_LOCK(sc);
2211 
2212 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
2213 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
2214 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
2215 			"!running" : "invalid");
2216 		m_freem(m);
2217 		error = ENETDOWN;
2218 		goto bad;
2219 	}
2220 
2221 	/*
2222 	 * Enforce how deep the multicast queue can grow.
2223 	 *
2224 	 * XXX duplicated in ath_tx_start().
2225 	 */
2226 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2227 		if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
2228 		    > sc->sc_txq_mcastq_maxdepth) {
2229 			sc->sc_stats.ast_tx_mcastq_overflow++;
2230 			error = ENOBUFS;
2231 		}
2232 
2233 		if (error != 0) {
2234 			m_freem(m);
2235 			goto bad;
2236 		}
2237 	}
2238 
2239 	/*
2240 	 * Grab a TX buffer and associated resources.
2241 	 */
2242 	bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
2243 	if (bf == NULL) {
2244 		sc->sc_stats.ast_tx_nobuf++;
2245 		m_freem(m);
2246 		error = ENOBUFS;
2247 		goto bad;
2248 	}
2249 	ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n",
2250 	    m, params,  bf);
2251 
2252 	if (params == NULL) {
2253 		/*
2254 		 * Legacy path; interpret frame contents to decide
2255 		 * precisely how to send the frame.
2256 		 */
2257 		if (ath_tx_start(sc, ni, bf, m)) {
2258 			error = EIO;		/* XXX */
2259 			goto bad2;
2260 		}
2261 	} else {
2262 		/*
2263 		 * Caller supplied explicit parameters to use in
2264 		 * sending the frame.
2265 		 */
2266 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
2267 			error = EIO;		/* XXX */
2268 			goto bad2;
2269 		}
2270 	}
2271 	sc->sc_wd_timer = 5;
2272 	ifp->if_opackets++;
2273 	sc->sc_stats.ast_tx_raw++;
2274 
2275 	/*
2276 	 * Update the TIM - if there's anything queued to the
2277 	 * software queue and power save is enabled, we should
2278 	 * set the TIM.
2279 	 */
2280 	ath_tx_update_tim(sc, ni, 1);
2281 
2282 	ATH_TX_UNLOCK(sc);
2283 
2284 	ATH_PCU_LOCK(sc);
2285 	sc->sc_txstart_cnt--;
2286 	ATH_PCU_UNLOCK(sc);
2287 
2288 	return 0;
2289 bad2:
2290 	ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, "
2291 	    "bf=%p",
2292 	    m,
2293 	    params,
2294 	    bf);
2295 	ATH_TXBUF_LOCK(sc);
2296 	ath_returnbuf_head(sc, bf);
2297 	ATH_TXBUF_UNLOCK(sc);
2298 bad:
2299 
2300 	ATH_TX_UNLOCK(sc);
2301 
2302 	ATH_PCU_LOCK(sc);
2303 	sc->sc_txstart_cnt--;
2304 	ATH_PCU_UNLOCK(sc);
2305 bad0:
2306 	ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p",
2307 	    m, params);
2308 	ifp->if_oerrors++;
2309 	sc->sc_stats.ast_tx_raw_fail++;
2310 	ieee80211_free_node(ni);
2311 
2312 	return error;
2313 }
2314 
2315 /* Some helper functions */
2316 
2317 /*
2318  * ADDBA (and potentially others) need to be placed in the same
2319  * hardware queue as the TID/node it's relating to. This is so
2320  * it goes out after any pending non-aggregate frames to the
2321  * same node/TID.
2322  *
2323  * If this isn't done, the ADDBA can go out before the frames
2324  * queued in hardware. Even though these frames have a sequence
2325  * number -earlier- than the ADDBA can be transmitted (but
2326  * no frames whose sequence numbers are after the ADDBA should
2327  * be!) they'll arrive after the ADDBA - and the receiving end
2328  * will simply drop them as being out of the BAW.
2329  *
2330  * The frames can't be appended to the TID software queue - it'll
2331  * never be sent out. So these frames have to be directly
2332  * dispatched to the hardware, rather than queued in software.
2333  * So if this function returns true, the TXQ has to be
2334  * overridden and it has to be directly dispatched.
2335  *
2336  * It's a dirty hack, but someone's gotta do it.
2337  */
2338 
2339 /*
2340  * XXX doesn't belong here!
2341  */
2342 static int
2343 ieee80211_is_action(struct ieee80211_frame *wh)
2344 {
2345 	/* Type: Management frame? */
2346 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
2347 	    IEEE80211_FC0_TYPE_MGT)
2348 		return 0;
2349 
2350 	/* Subtype: Action frame? */
2351 	if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
2352 	    IEEE80211_FC0_SUBTYPE_ACTION)
2353 		return 0;
2354 
2355 	return 1;
2356 }
2357 
2358 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
2359 /*
2360  * Return an alternate TID for ADDBA request frames.
2361  *
2362  * Yes, this likely should be done in the net80211 layer.
2363  */
2364 static int
2365 ath_tx_action_frame_override_queue(struct ath_softc *sc,
2366     struct ieee80211_node *ni,
2367     struct mbuf *m0, int *tid)
2368 {
2369 	struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
2370 	struct ieee80211_action_ba_addbarequest *ia;
2371 	uint8_t *frm;
2372 	uint16_t baparamset;
2373 
2374 	/* Not action frame? Bail */
2375 	if (! ieee80211_is_action(wh))
2376 		return 0;
2377 
2378 	/* XXX Not needed for frames we send? */
2379 #if 0
2380 	/* Correct length? */
2381 	if (! ieee80211_parse_action(ni, m))
2382 		return 0;
2383 #endif
2384 
2385 	/* Extract out action frame */
2386 	frm = (u_int8_t *)&wh[1];
2387 	ia = (struct ieee80211_action_ba_addbarequest *) frm;
2388 
2389 	/* Not ADDBA? Bail */
2390 	if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
2391 		return 0;
2392 	if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
2393 		return 0;
2394 
2395 	/* Extract TID, return it */
2396 	baparamset = le16toh(ia->rq_baparamset);
2397 	*tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
2398 
2399 	return 1;
2400 }
2401 #undef	MS
2402 
2403 /* Per-node software queue operations */
2404 
2405 /*
2406  * Add the current packet to the given BAW.
2407  * It is assumed that the current packet
2408  *
2409  * + fits inside the BAW;
2410  * + already has had a sequence number allocated.
2411  *
2412  * Since the BAW status may be modified by both the ath task and
2413  * the net80211/ifnet contexts, the TID must be locked.
2414  */
2415 void
2416 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
2417     struct ath_tid *tid, struct ath_buf *bf)
2418 {
2419 	int index, cindex;
2420 	struct ieee80211_tx_ampdu *tap;
2421 
2422 	ATH_TX_LOCK_ASSERT(sc);
2423 
2424 	if (bf->bf_state.bfs_isretried)
2425 		return;
2426 
2427 	tap = ath_tx_get_tx_tid(an, tid->tid);
2428 
2429 	if (! bf->bf_state.bfs_dobaw) {
2430 		device_printf(sc->sc_dev,
2431 		    "%s: dobaw=0, seqno=%d, window %d:%d\n",
2432 		    __func__,
2433 		    SEQNO(bf->bf_state.bfs_seqno),
2434 		    tap->txa_start,
2435 		    tap->txa_wnd);
2436 	}
2437 
2438 	if (bf->bf_state.bfs_addedbaw)
2439 		device_printf(sc->sc_dev,
2440 		    "%s: re-added? tid=%d, seqno %d; window %d:%d; "
2441 		    "baw head=%d tail=%d\n",
2442 		    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2443 		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2444 		    tid->baw_tail);
2445 
2446 	/*
2447 	 * Verify that the given sequence number is not outside of the
2448 	 * BAW.  Complain loudly if that's the case.
2449 	 */
2450 	if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2451 	    SEQNO(bf->bf_state.bfs_seqno))) {
2452 		device_printf(sc->sc_dev,
2453 		    "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; "
2454 		    "baw head=%d tail=%d\n",
2455 		    __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2456 		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2457 		    tid->baw_tail);
2458 	}
2459 
2460 	/*
2461 	 * ni->ni_txseqs[] is the currently allocated seqno.
2462 	 * the txa state contains the current baw start.
2463 	 */
2464 	index  = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
2465 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2466 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2467 	    "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d "
2468 	    "baw head=%d tail=%d\n",
2469 	    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2470 	    tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head,
2471 	    tid->baw_tail);
2472 
2473 
2474 #if 0
2475 	assert(tid->tx_buf[cindex] == NULL);
2476 #endif
2477 	if (tid->tx_buf[cindex] != NULL) {
2478 		device_printf(sc->sc_dev,
2479 		    "%s: ba packet dup (index=%d, cindex=%d, "
2480 		    "head=%d, tail=%d)\n",
2481 		    __func__, index, cindex, tid->baw_head, tid->baw_tail);
2482 		device_printf(sc->sc_dev,
2483 		    "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
2484 		    __func__,
2485 		    tid->tx_buf[cindex],
2486 		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
2487 		    bf,
2488 		    SEQNO(bf->bf_state.bfs_seqno)
2489 		);
2490 	}
2491 	tid->tx_buf[cindex] = bf;
2492 
2493 	if (index >= ((tid->baw_tail - tid->baw_head) &
2494 	    (ATH_TID_MAX_BUFS - 1))) {
2495 		tid->baw_tail = cindex;
2496 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
2497 	}
2498 }
2499 
2500 /*
2501  * Flip the BAW buffer entry over from the existing one to the new one.
2502  *
2503  * When software retransmitting a (sub-)frame, it is entirely possible that
2504  * the frame ath_buf is marked as BUSY and can't be immediately reused.
2505  * In that instance the buffer is cloned and the new buffer is used for
2506  * retransmit. We thus need to update the ath_buf slot in the BAW buf
2507  * tracking array to maintain consistency.
2508  */
2509 static void
2510 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
2511     struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
2512 {
2513 	int index, cindex;
2514 	struct ieee80211_tx_ampdu *tap;
2515 	int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
2516 
2517 	ATH_TX_LOCK_ASSERT(sc);
2518 
2519 	tap = ath_tx_get_tx_tid(an, tid->tid);
2520 	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2521 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2522 
2523 	/*
2524 	 * Just warn for now; if it happens then we should find out
2525 	 * about it. It's highly likely the aggregation session will
2526 	 * soon hang.
2527 	 */
2528 	if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
2529 		device_printf(sc->sc_dev, "%s: retransmitted buffer"
2530 		    " has mismatching seqno's, BA session may hang.\n",
2531 		    __func__);
2532 		device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n",
2533 		    __func__,
2534 		    old_bf->bf_state.bfs_seqno,
2535 		    new_bf->bf_state.bfs_seqno);
2536 	}
2537 
2538 	if (tid->tx_buf[cindex] != old_bf) {
2539 		device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; "
2540 		    " has m BA session may hang.\n",
2541 		    __func__);
2542 		device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n",
2543 		    __func__,
2544 		    old_bf, new_bf);
2545 	}
2546 
2547 	tid->tx_buf[cindex] = new_bf;
2548 }
2549 
2550 /*
2551  * seq_start - left edge of BAW
2552  * seq_next - current/next sequence number to allocate
2553  *
2554  * Since the BAW status may be modified by both the ath task and
2555  * the net80211/ifnet contexts, the TID must be locked.
2556  */
2557 static void
2558 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
2559     struct ath_tid *tid, const struct ath_buf *bf)
2560 {
2561 	int index, cindex;
2562 	struct ieee80211_tx_ampdu *tap;
2563 	int seqno = SEQNO(bf->bf_state.bfs_seqno);
2564 
2565 	ATH_TX_LOCK_ASSERT(sc);
2566 
2567 	tap = ath_tx_get_tx_tid(an, tid->tid);
2568 	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2569 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2570 
2571 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2572 	    "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, "
2573 	    "baw head=%d, tail=%d\n",
2574 	    __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
2575 	    cindex, tid->baw_head, tid->baw_tail);
2576 
2577 	/*
2578 	 * If this occurs then we have a big problem - something else
2579 	 * has slid tap->txa_start along without updating the BAW
2580 	 * tracking start/end pointers. Thus the TX BAW state is now
2581 	 * completely busted.
2582 	 *
2583 	 * But for now, since I haven't yet fixed TDMA and buffer cloning,
2584 	 * it's quite possible that a cloned buffer is making its way
2585 	 * here and causing it to fire off. Disable TDMA for now.
2586 	 */
2587 	if (tid->tx_buf[cindex] != bf) {
2588 		device_printf(sc->sc_dev,
2589 		    "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
2590 		    __func__,
2591 		    bf, SEQNO(bf->bf_state.bfs_seqno),
2592 		    tid->tx_buf[cindex],
2593 		    (tid->tx_buf[cindex] != NULL) ?
2594 		      SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno) : -1);
2595 	}
2596 
2597 	tid->tx_buf[cindex] = NULL;
2598 
2599 	while (tid->baw_head != tid->baw_tail &&
2600 	    !tid->tx_buf[tid->baw_head]) {
2601 		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2602 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
2603 	}
2604 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2605 	    "%s: baw is now %d:%d, baw head=%d\n",
2606 	    __func__, tap->txa_start, tap->txa_wnd, tid->baw_head);
2607 }
2608 
2609 /*
2610  * Mark the current node/TID as ready to TX.
2611  *
2612  * This is done to make it easy for the software scheduler to
2613  * find which nodes have data to send.
2614  *
2615  * The TXQ lock must be held.
2616  */
2617 static void
2618 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
2619 {
2620 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2621 
2622 	ATH_TX_LOCK_ASSERT(sc);
2623 
2624 	if (tid->paused)
2625 		return;		/* paused, can't schedule yet */
2626 
2627 	if (tid->sched)
2628 		return;		/* already scheduled */
2629 
2630 	tid->sched = 1;
2631 
2632 	TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2633 }
2634 
2635 /*
2636  * Mark the current node as no longer needing to be polled for
2637  * TX packets.
2638  *
2639  * The TXQ lock must be held.
2640  */
2641 static void
2642 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
2643 {
2644 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2645 
2646 	ATH_TX_LOCK_ASSERT(sc);
2647 
2648 	if (tid->sched == 0)
2649 		return;
2650 
2651 	tid->sched = 0;
2652 	TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
2653 }
2654 
2655 /*
2656  * Assign a sequence number manually to the given frame.
2657  *
2658  * This should only be called for A-MPDU TX frames.
2659  */
2660 static ieee80211_seq
2661 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
2662     struct ath_buf *bf, struct mbuf *m0)
2663 {
2664 	struct ieee80211_frame *wh;
2665 	int tid, pri;
2666 	ieee80211_seq seqno;
2667 	uint8_t subtype;
2668 
2669 	/* TID lookup */
2670 	wh = mtod(m0, struct ieee80211_frame *);
2671 	pri = M_WME_GETAC(m0);			/* honor classification */
2672 	tid = WME_AC_TO_TID(pri);
2673 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n",
2674 	    __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2675 
2676 	/* XXX Is it a control frame? Ignore */
2677 
2678 	/* Does the packet require a sequence number? */
2679 	if (! IEEE80211_QOS_HAS_SEQ(wh))
2680 		return -1;
2681 
2682 	ATH_TX_LOCK_ASSERT(sc);
2683 
2684 	/*
2685 	 * Is it a QOS NULL Data frame? Give it a sequence number from
2686 	 * the default TID (IEEE80211_NONQOS_TID.)
2687 	 *
2688 	 * The RX path of everything I've looked at doesn't include the NULL
2689 	 * data frame sequence number in the aggregation state updates, so
2690 	 * assigning it a sequence number there will cause a BAW hole on the
2691 	 * RX side.
2692 	 */
2693 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2694 	if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
2695 		/* XXX no locking for this TID? This is a bit of a problem. */
2696 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
2697 		INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
2698 	} else {
2699 		/* Manually assign sequence number */
2700 		seqno = ni->ni_txseqs[tid];
2701 		INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
2702 	}
2703 	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2704 	M_SEQNO_SET(m0, seqno);
2705 
2706 	/* Return so caller can do something with it if needed */
2707 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s:  -> seqno=%d\n", __func__, seqno);
2708 	return seqno;
2709 }
2710 
2711 /*
2712  * Attempt to direct dispatch an aggregate frame to hardware.
2713  * If the frame is out of BAW, queue.
2714  * Otherwise, schedule it as a single frame.
2715  */
2716 static void
2717 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an,
2718     struct ath_txq *txq, struct ath_buf *bf)
2719 {
2720 	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
2721 	struct ieee80211_tx_ampdu *tap;
2722 
2723 	ATH_TX_LOCK_ASSERT(sc);
2724 
2725 	tap = ath_tx_get_tx_tid(an, tid->tid);
2726 
2727 	/* paused? queue */
2728 	if (tid->paused) {
2729 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
2730 		/* XXX don't sched - we're paused! */
2731 		return;
2732 	}
2733 
2734 	/* outside baw? queue */
2735 	if (bf->bf_state.bfs_dobaw &&
2736 	    (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2737 	    SEQNO(bf->bf_state.bfs_seqno)))) {
2738 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
2739 		ath_tx_tid_sched(sc, tid);
2740 		return;
2741 	}
2742 
2743 	/*
2744 	 * This is a temporary check and should be removed once
2745 	 * all the relevant code paths have been fixed.
2746 	 *
2747 	 * During aggregate retries, it's possible that the head
2748 	 * frame will fail (which has the bfs_aggr and bfs_nframes
2749 	 * fields set for said aggregate) and will be retried as
2750 	 * a single frame.  In this instance, the values should
2751 	 * be reset or the completion code will get upset with you.
2752 	 */
2753 	if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) {
2754 		device_printf(sc->sc_dev, "%s: bfs_aggr=%d, bfs_nframes=%d\n",
2755 		    __func__,
2756 		    bf->bf_state.bfs_aggr,
2757 		    bf->bf_state.bfs_nframes);
2758 		bf->bf_state.bfs_aggr = 0;
2759 		bf->bf_state.bfs_nframes = 1;
2760 	}
2761 
2762 	/* Update CLRDMASK just before this frame is queued */
2763 	ath_tx_update_clrdmask(sc, tid, bf);
2764 
2765 	/* Direct dispatch to hardware */
2766 	ath_tx_do_ratelookup(sc, bf);
2767 	ath_tx_calc_duration(sc, bf);
2768 	ath_tx_calc_protection(sc, bf);
2769 	ath_tx_set_rtscts(sc, bf);
2770 	ath_tx_rate_fill_rcflags(sc, bf);
2771 	ath_tx_setds(sc, bf);
2772 
2773 	/* Statistics */
2774 	sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
2775 
2776 	/* Track per-TID hardware queue depth correctly */
2777 	tid->hwq_depth++;
2778 
2779 	/* Add to BAW */
2780 	if (bf->bf_state.bfs_dobaw) {
2781 		ath_tx_addto_baw(sc, an, tid, bf);
2782 		bf->bf_state.bfs_addedbaw = 1;
2783 	}
2784 
2785 	/* Set completion handler, multi-frame aggregate or not */
2786 	bf->bf_comp = ath_tx_aggr_comp;
2787 
2788 	/* Hand off to hardware */
2789 	ath_tx_handoff(sc, txq, bf);
2790 }
2791 
2792 /*
2793  * Attempt to send the packet.
2794  * If the queue isn't busy, direct-dispatch.
2795  * If the queue is busy enough, queue the given packet on the
2796  *  relevant software queue.
2797  */
2798 void
2799 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq,
2800     struct ath_buf *bf)
2801 {
2802 	struct ath_node *an = ATH_NODE(ni);
2803 	struct ieee80211_frame *wh;
2804 	struct ath_tid *atid;
2805 	int pri, tid;
2806 	struct mbuf *m0 = bf->bf_m;
2807 
2808 	ATH_TX_LOCK_ASSERT(sc);
2809 
2810 	/* Fetch the TID - non-QoS frames get assigned to TID 16 */
2811 	wh = mtod(m0, struct ieee80211_frame *);
2812 	pri = ath_tx_getac(sc, m0);
2813 	tid = ath_tx_gettid(sc, m0);
2814 	atid = &an->an_tid[tid];
2815 
2816 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
2817 	    __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2818 
2819 	/* Set local packet state, used to queue packets to hardware */
2820 	/* XXX potentially duplicate info, re-check */
2821 	bf->bf_state.bfs_tid = tid;
2822 	bf->bf_state.bfs_tx_queue = txq->axq_qnum;
2823 	bf->bf_state.bfs_pri = pri;
2824 
2825 	/*
2826 	 * If the hardware queue isn't busy, queue it directly.
2827 	 * If the hardware queue is busy, queue it.
2828 	 * If the TID is paused or the traffic it outside BAW, software
2829 	 * queue it.
2830 	 */
2831 	if (atid->paused) {
2832 		/* TID is paused, queue */
2833 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__);
2834 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
2835 	} else if (ath_tx_ampdu_pending(sc, an, tid)) {
2836 		/* AMPDU pending; queue */
2837 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__);
2838 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
2839 		/* XXX sched? */
2840 	} else if (ath_tx_ampdu_running(sc, an, tid)) {
2841 		/* AMPDU running, attempt direct dispatch if possible */
2842 
2843 		/*
2844 		 * Always queue the frame to the tail of the list.
2845 		 */
2846 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
2847 
2848 		/*
2849 		 * If the hardware queue isn't busy, direct dispatch
2850 		 * the head frame in the list.  Don't schedule the
2851 		 * TID - let it build some more frames first?
2852 		 *
2853 		 * Otherwise, schedule the TID.
2854 		 */
2855 		if (txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit) {
2856 			bf = ATH_TID_FIRST(atid);
2857 			ATH_TID_REMOVE(atid, bf, bf_list);
2858 
2859 			/*
2860 			 * Ensure it's definitely treated as a non-AMPDU
2861 			 * frame - this information may have been left
2862 			 * over from a previous attempt.
2863 			 */
2864 			bf->bf_state.bfs_aggr = 0;
2865 			bf->bf_state.bfs_nframes = 1;
2866 
2867 			/* Queue to the hardware */
2868 			ath_tx_xmit_aggr(sc, an, txq, bf);
2869 			DPRINTF(sc, ATH_DEBUG_SW_TX,
2870 			    "%s: xmit_aggr\n",
2871 			    __func__);
2872 		} else {
2873 			DPRINTF(sc, ATH_DEBUG_SW_TX,
2874 			    "%s: ampdu; swq'ing\n",
2875 			    __func__);
2876 
2877 			ath_tx_tid_sched(sc, atid);
2878 		}
2879 	} else if (txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit) {
2880 		/* AMPDU not running, attempt direct dispatch */
2881 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__);
2882 		/* See if clrdmask needs to be set */
2883 		ath_tx_update_clrdmask(sc, atid, bf);
2884 		ath_tx_xmit_normal(sc, txq, bf);
2885 	} else {
2886 		/* Busy; queue */
2887 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__);
2888 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
2889 		ath_tx_tid_sched(sc, atid);
2890 	}
2891 }
2892 
2893 /*
2894  * Only set the clrdmask bit if none of the nodes are currently
2895  * filtered.
2896  *
2897  * XXX TODO: go through all the callers and check to see
2898  * which are being called in the context of looping over all
2899  * TIDs (eg, if all tids are being paused, resumed, etc.)
2900  * That'll avoid O(n^2) complexity here.
2901  */
2902 static void
2903 ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an)
2904 {
2905 	int i;
2906 
2907 	ATH_TX_LOCK_ASSERT(sc);
2908 
2909 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
2910 		if (an->an_tid[i].isfiltered == 1)
2911 			return;
2912 	}
2913 	an->clrdmask = 1;
2914 }
2915 
2916 /*
2917  * Configure the per-TID node state.
2918  *
2919  * This likely belongs in if_ath_node.c but I can't think of anywhere
2920  * else to put it just yet.
2921  *
2922  * This sets up the SLISTs and the mutex as appropriate.
2923  */
2924 void
2925 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
2926 {
2927 	int i, j;
2928 	struct ath_tid *atid;
2929 
2930 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
2931 		atid = &an->an_tid[i];
2932 
2933 		/* XXX now with this bzer(), is the field 0'ing needed? */
2934 		bzero(atid, sizeof(*atid));
2935 
2936 		TAILQ_INIT(&atid->tid_q);
2937 		TAILQ_INIT(&atid->filtq.tid_q);
2938 		atid->tid = i;
2939 		atid->an = an;
2940 		for (j = 0; j < ATH_TID_MAX_BUFS; j++)
2941 			atid->tx_buf[j] = NULL;
2942 		atid->baw_head = atid->baw_tail = 0;
2943 		atid->paused = 0;
2944 		atid->sched = 0;
2945 		atid->hwq_depth = 0;
2946 		atid->cleanup_inprogress = 0;
2947 		if (i == IEEE80211_NONQOS_TID)
2948 			atid->ac = ATH_NONQOS_TID_AC;
2949 		else
2950 			atid->ac = TID_TO_WME_AC(i);
2951 	}
2952 	an->clrdmask = 1;	/* Always start by setting this bit */
2953 }
2954 
2955 /*
2956  * Pause the current TID. This stops packets from being transmitted
2957  * on it.
2958  *
2959  * Since this is also called from upper layers as well as the driver,
2960  * it will get the TID lock.
2961  */
2962 static void
2963 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
2964 {
2965 
2966 	ATH_TX_LOCK_ASSERT(sc);
2967 	tid->paused++;
2968 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n",
2969 	    __func__, tid->paused);
2970 }
2971 
2972 /*
2973  * Unpause the current TID, and schedule it if needed.
2974  */
2975 static void
2976 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
2977 {
2978 	ATH_TX_LOCK_ASSERT(sc);
2979 
2980 	/*
2981 	 * There's some odd places where ath_tx_tid_resume() is called
2982 	 * when it shouldn't be; this works around that particular issue
2983 	 * until it's actually resolved.
2984 	 */
2985 	if (tid->paused == 0) {
2986 		device_printf(sc->sc_dev, "%s: %6D: paused=0?\n",
2987 		    __func__,
2988 		    tid->an->an_node.ni_macaddr,
2989 		    ":");
2990 	} else {
2991 		tid->paused--;
2992 	}
2993 
2994 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n",
2995 	    __func__, tid->paused);
2996 
2997 	if (tid->paused)
2998 		return;
2999 
3000 	/*
3001 	 * Override the clrdmask configuration for the next frame
3002 	 * from this TID, just to get the ball rolling.
3003 	 */
3004 	ath_tx_set_clrdmask(sc, tid->an);
3005 
3006 	if (tid->axq_depth == 0)
3007 		return;
3008 
3009 	/* XXX isfiltered shouldn't ever be 0 at this point */
3010 	if (tid->isfiltered == 1) {
3011 		device_printf(sc->sc_dev, "%s: filtered?!\n", __func__);
3012 		return;
3013 	}
3014 
3015 	ath_tx_tid_sched(sc, tid);
3016 
3017 	/*
3018 	 * Queue the software TX scheduler.
3019 	 */
3020 	ath_tx_swq_kick(sc);
3021 }
3022 
3023 /*
3024  * Add the given ath_buf to the TID filtered frame list.
3025  * This requires the TID be filtered.
3026  */
3027 static void
3028 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid,
3029     struct ath_buf *bf)
3030 {
3031 
3032 	ATH_TX_LOCK_ASSERT(sc);
3033 
3034 	if (! tid->isfiltered)
3035 		device_printf(sc->sc_dev, "%s: not filtered?!\n", __func__);
3036 
3037 	DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf);
3038 
3039 	/* Set the retry bit and bump the retry counter */
3040 	ath_tx_set_retry(sc, bf);
3041 	sc->sc_stats.ast_tx_swfiltered++;
3042 
3043 	ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list);
3044 }
3045 
3046 /*
3047  * Handle a completed filtered frame from the given TID.
3048  * This just enables/pauses the filtered frame state if required
3049  * and appends the filtered frame to the filtered queue.
3050  */
3051 static void
3052 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid,
3053     struct ath_buf *bf)
3054 {
3055 
3056 	ATH_TX_LOCK_ASSERT(sc);
3057 
3058 	if (! tid->isfiltered) {
3059 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: filter transition\n",
3060 		    __func__);
3061 		tid->isfiltered = 1;
3062 		ath_tx_tid_pause(sc, tid);
3063 	}
3064 
3065 	/* Add the frame to the filter queue */
3066 	ath_tx_tid_filt_addbuf(sc, tid, bf);
3067 }
3068 
3069 /*
3070  * Complete the filtered frame TX completion.
3071  *
3072  * If there are no more frames in the hardware queue, unpause/unfilter
3073  * the TID if applicable.  Otherwise we will wait for a node PS transition
3074  * to unfilter.
3075  */
3076 static void
3077 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid)
3078 {
3079 	struct ath_buf *bf;
3080 
3081 	ATH_TX_LOCK_ASSERT(sc);
3082 
3083 	if (tid->hwq_depth != 0)
3084 		return;
3085 
3086 	DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: hwq=0, transition back\n",
3087 	    __func__);
3088 	tid->isfiltered = 0;
3089 	/* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */
3090 	ath_tx_set_clrdmask(sc, tid->an);
3091 
3092 	/* XXX this is really quite inefficient */
3093 	while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) {
3094 		ATH_TID_FILT_REMOVE(tid, bf, bf_list);
3095 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
3096 	}
3097 
3098 	ath_tx_tid_resume(sc, tid);
3099 }
3100 
3101 /*
3102  * Called when a single (aggregate or otherwise) frame is completed.
3103  *
3104  * Returns 1 if the buffer could be added to the filtered list
3105  * (cloned or otherwise), 0 if the buffer couldn't be added to the
3106  * filtered list (failed clone; expired retry) and the caller should
3107  * free it and handle it like a failure (eg by sending a BAR.)
3108  */
3109 static int
3110 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid,
3111     struct ath_buf *bf)
3112 {
3113 	struct ath_buf *nbf;
3114 	int retval;
3115 
3116 	ATH_TX_LOCK_ASSERT(sc);
3117 
3118 	/*
3119 	 * Don't allow a filtered frame to live forever.
3120 	 */
3121 	if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
3122 		sc->sc_stats.ast_tx_swretrymax++;
3123 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3124 		    "%s: bf=%p, seqno=%d, exceeded retries\n",
3125 		    __func__,
3126 		    bf,
3127 		    bf->bf_state.bfs_seqno);
3128 		return (0);
3129 	}
3130 
3131 	/*
3132 	 * A busy buffer can't be added to the retry list.
3133 	 * It needs to be cloned.
3134 	 */
3135 	if (bf->bf_flags & ATH_BUF_BUSY) {
3136 		nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
3137 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3138 		    "%s: busy buffer clone: %p -> %p\n",
3139 		    __func__, bf, nbf);
3140 	} else {
3141 		nbf = bf;
3142 	}
3143 
3144 	if (nbf == NULL) {
3145 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3146 		    "%s: busy buffer couldn't be cloned (%p)!\n",
3147 		    __func__, bf);
3148 		retval = 1;
3149 	} else {
3150 		ath_tx_tid_filt_comp_buf(sc, tid, nbf);
3151 		retval = 0;
3152 	}
3153 	ath_tx_tid_filt_comp_complete(sc, tid);
3154 
3155 	return (retval);
3156 }
3157 
3158 static void
3159 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid,
3160     struct ath_buf *bf_first, ath_bufhead *bf_q)
3161 {
3162 	struct ath_buf *bf, *bf_next, *nbf;
3163 
3164 	ATH_TX_LOCK_ASSERT(sc);
3165 
3166 	bf = bf_first;
3167 	while (bf) {
3168 		bf_next = bf->bf_next;
3169 		bf->bf_next = NULL;	/* Remove it from the aggr list */
3170 
3171 		/*
3172 		 * Don't allow a filtered frame to live forever.
3173 		 */
3174 		if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
3175 			sc->sc_stats.ast_tx_swretrymax++;
3176 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3177 			    "%s: bf=%p, seqno=%d, exceeded retries\n",
3178 			    __func__,
3179 			    bf,
3180 			    bf->bf_state.bfs_seqno);
3181 			TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3182 			goto next;
3183 		}
3184 
3185 		if (bf->bf_flags & ATH_BUF_BUSY) {
3186 			nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
3187 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3188 			    "%s: busy buffer cloned: %p -> %p",
3189 			    __func__, bf, nbf);
3190 		} else {
3191 			nbf = bf;
3192 		}
3193 
3194 		/*
3195 		 * If the buffer couldn't be cloned, add it to bf_q;
3196 		 * the caller will free the buffer(s) as required.
3197 		 */
3198 		if (nbf == NULL) {
3199 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3200 			    "%s: buffer couldn't be cloned! (%p)\n",
3201 			    __func__, bf);
3202 			TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3203 		} else {
3204 			ath_tx_tid_filt_comp_buf(sc, tid, nbf);
3205 		}
3206 next:
3207 		bf = bf_next;
3208 	}
3209 
3210 	ath_tx_tid_filt_comp_complete(sc, tid);
3211 }
3212 
3213 /*
3214  * Suspend the queue because we need to TX a BAR.
3215  */
3216 static void
3217 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid)
3218 {
3219 
3220 	ATH_TX_LOCK_ASSERT(sc);
3221 
3222 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3223 	    "%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n",
3224 	    __func__,
3225 	    tid,
3226 	    tid->bar_wait,
3227 	    tid->bar_tx);
3228 
3229 	/* We shouldn't be called when bar_tx is 1 */
3230 	if (tid->bar_tx) {
3231 		device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n",
3232 		    __func__);
3233 	}
3234 
3235 	/* If we've already been called, just be patient. */
3236 	if (tid->bar_wait)
3237 		return;
3238 
3239 	/* Wait! */
3240 	tid->bar_wait = 1;
3241 
3242 	/* Only one pause, no matter how many frames fail */
3243 	ath_tx_tid_pause(sc, tid);
3244 }
3245 
3246 /*
3247  * We've finished with BAR handling - either we succeeded or
3248  * failed. Either way, unsuspend TX.
3249  */
3250 static void
3251 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid)
3252 {
3253 
3254 	ATH_TX_LOCK_ASSERT(sc);
3255 
3256 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3257 	    "%s: tid=%p, called\n",
3258 	    __func__,
3259 	    tid);
3260 
3261 	if (tid->bar_tx == 0 || tid->bar_wait == 0) {
3262 		device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n",
3263 		    __func__, tid->bar_tx, tid->bar_wait);
3264 	}
3265 
3266 	tid->bar_tx = tid->bar_wait = 0;
3267 	ath_tx_tid_resume(sc, tid);
3268 }
3269 
3270 /*
3271  * Return whether we're ready to TX a BAR frame.
3272  *
3273  * Requires the TID lock be held.
3274  */
3275 static int
3276 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid)
3277 {
3278 
3279 	ATH_TX_LOCK_ASSERT(sc);
3280 
3281 	if (tid->bar_wait == 0 || tid->hwq_depth > 0)
3282 		return (0);
3283 
3284 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n",
3285 	    __func__, tid, tid->tid);
3286 
3287 	return (1);
3288 }
3289 
3290 /*
3291  * Check whether the current TID is ready to have a BAR
3292  * TXed and if so, do the TX.
3293  *
3294  * Since the TID/TXQ lock can't be held during a call to
3295  * ieee80211_send_bar(), we have to do the dirty thing of unlocking it,
3296  * sending the BAR and locking it again.
3297  *
3298  * Eventually, the code to send the BAR should be broken out
3299  * from this routine so the lock doesn't have to be reacquired
3300  * just to be immediately dropped by the caller.
3301  */
3302 static void
3303 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid)
3304 {
3305 	struct ieee80211_tx_ampdu *tap;
3306 
3307 	ATH_TX_LOCK_ASSERT(sc);
3308 
3309 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3310 	    "%s: tid=%p, called\n",
3311 	    __func__,
3312 	    tid);
3313 
3314 	tap = ath_tx_get_tx_tid(tid->an, tid->tid);
3315 
3316 	/*
3317 	 * This is an error condition!
3318 	 */
3319 	if (tid->bar_wait == 0 || tid->bar_tx == 1) {
3320 		device_printf(sc->sc_dev,
3321 		    "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n",
3322 		    __func__,
3323 		    tid,
3324 		    tid->bar_tx,
3325 		    tid->bar_wait);
3326 		return;
3327 	}
3328 
3329 	/* Don't do anything if we still have pending frames */
3330 	if (tid->hwq_depth > 0) {
3331 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3332 		    "%s: tid=%p, hwq_depth=%d, waiting\n",
3333 		    __func__,
3334 		    tid,
3335 		    tid->hwq_depth);
3336 		return;
3337 	}
3338 
3339 	/* We're now about to TX */
3340 	tid->bar_tx = 1;
3341 
3342 	/*
3343 	 * Override the clrdmask configuration for the next frame,
3344 	 * just to get the ball rolling.
3345 	 */
3346 	ath_tx_set_clrdmask(sc, tid->an);
3347 
3348 	/*
3349 	 * Calculate new BAW left edge, now that all frames have either
3350 	 * succeeded or failed.
3351 	 *
3352 	 * XXX verify this is _actually_ the valid value to begin at!
3353 	 */
3354 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3355 	    "%s: tid=%p, new BAW left edge=%d\n",
3356 	    __func__,
3357 	    tid,
3358 	    tap->txa_start);
3359 
3360 	/* Try sending the BAR frame */
3361 	/* We can't hold the lock here! */
3362 
3363 	ATH_TX_UNLOCK(sc);
3364 	if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) {
3365 		/* Success? Now we wait for notification that it's done */
3366 		ATH_TX_LOCK(sc);
3367 		return;
3368 	}
3369 
3370 	/* Failure? For now, warn loudly and continue */
3371 	ATH_TX_LOCK(sc);
3372 	device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n",
3373 	    __func__, tid);
3374 	ath_tx_tid_bar_unsuspend(sc, tid);
3375 }
3376 
3377 static void
3378 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an,
3379     struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf)
3380 {
3381 
3382 	ATH_TX_LOCK_ASSERT(sc);
3383 
3384 	/*
3385 	 * If the current TID is running AMPDU, update
3386 	 * the BAW.
3387 	 */
3388 	if (ath_tx_ampdu_running(sc, an, tid->tid) &&
3389 	    bf->bf_state.bfs_dobaw) {
3390 		/*
3391 		 * Only remove the frame from the BAW if it's
3392 		 * been transmitted at least once; this means
3393 		 * the frame was in the BAW to begin with.
3394 		 */
3395 		if (bf->bf_state.bfs_retries > 0) {
3396 			ath_tx_update_baw(sc, an, tid, bf);
3397 			bf->bf_state.bfs_dobaw = 0;
3398 		}
3399 #if 0
3400 		/*
3401 		 * This has become a non-fatal error now
3402 		 */
3403 		if (! bf->bf_state.bfs_addedbaw)
3404 			device_printf(sc->sc_dev,
3405 			    "%s: wasn't added: seqno %d\n",
3406 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
3407 #endif
3408 	}
3409 
3410 	/* Strip it out of an aggregate list if it was in one */
3411 	bf->bf_next = NULL;
3412 
3413 	/* Insert on the free queue to be freed by the caller */
3414 	TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
3415 }
3416 
3417 static void
3418 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an,
3419     const char *pfx, struct ath_tid *tid, struct ath_buf *bf)
3420 {
3421 	struct ieee80211_node *ni = &an->an_node;
3422 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3423 	struct ieee80211_tx_ampdu *tap;
3424 
3425 	tap = ath_tx_get_tx_tid(an, tid->tid);
3426 
3427 	device_printf(sc->sc_dev,
3428 	    "%s: %s: node %p: bf=%p: addbaw=%d, dobaw=%d, "
3429 	    "seqno=%d, retry=%d\n",
3430 	    __func__, pfx, ni, bf,
3431 	    bf->bf_state.bfs_addedbaw,
3432 	    bf->bf_state.bfs_dobaw,
3433 	    SEQNO(bf->bf_state.bfs_seqno),
3434 	    bf->bf_state.bfs_retries);
3435 	device_printf(sc->sc_dev,
3436 	    "%s: node %p: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n",
3437 	        __func__, ni, bf,
3438 	    txq->axq_qnum,
3439 	    txq->axq_depth,
3440 	    txq->axq_aggr_depth);
3441 
3442 	device_printf(sc->sc_dev,
3443 	    "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, isfiltered=%d\n",
3444 	    __func__, ni, bf,
3445 	    tid->axq_depth,
3446 	    tid->hwq_depth,
3447 	    tid->bar_wait,
3448 	    tid->isfiltered);
3449 	device_printf(sc->sc_dev,
3450 	    "%s: node %p: tid %d: "
3451 	    "sched=%d, paused=%d, "
3452 	    "incomp=%d, baw_head=%d, "
3453 	    "baw_tail=%d txa_start=%d, ni_txseqs=%d\n",
3454 	     __func__, ni, tid->tid,
3455 	     tid->sched, tid->paused,
3456 	     tid->incomp, tid->baw_head,
3457 	     tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
3458 	     ni->ni_txseqs[tid->tid]);
3459 
3460 	/* XXX Dump the frame, see what it is? */
3461 	ieee80211_dump_pkt(ni->ni_ic,
3462 	    mtod(bf->bf_m, const uint8_t *),
3463 	    bf->bf_m->m_len, 0, -1);
3464 }
3465 
3466 /*
3467  * Free any packets currently pending in the software TX queue.
3468  *
3469  * This will be called when a node is being deleted.
3470  *
3471  * It can also be called on an active node during an interface
3472  * reset or state transition.
3473  *
3474  * (From Linux/reference):
3475  *
3476  * TODO: For frame(s) that are in the retry state, we will reuse the
3477  * sequence number(s) without setting the retry bit. The
3478  * alternative is to give up on these and BAR the receiver's window
3479  * forward.
3480  */
3481 static void
3482 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an,
3483     struct ath_tid *tid, ath_bufhead *bf_cq)
3484 {
3485 	struct ath_buf *bf;
3486 	struct ieee80211_tx_ampdu *tap;
3487 	struct ieee80211_node *ni = &an->an_node;
3488 	int t;
3489 
3490 	tap = ath_tx_get_tx_tid(an, tid->tid);
3491 
3492 	ATH_TX_LOCK_ASSERT(sc);
3493 
3494 	/* Walk the queue, free frames */
3495 	t = 0;
3496 	for (;;) {
3497 		bf = ATH_TID_FIRST(tid);
3498 		if (bf == NULL) {
3499 			break;
3500 		}
3501 
3502 		if (t == 0) {
3503 			ath_tx_tid_drain_print(sc, an, "norm", tid, bf);
3504 			t = 1;
3505 		}
3506 
3507 		ATH_TID_REMOVE(tid, bf, bf_list);
3508 		ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
3509 	}
3510 
3511 	/* And now, drain the filtered frame queue */
3512 	t = 0;
3513 	for (;;) {
3514 		bf = ATH_TID_FILT_FIRST(tid);
3515 		if (bf == NULL)
3516 			break;
3517 
3518 		if (t == 0) {
3519 			ath_tx_tid_drain_print(sc, an, "filt", tid, bf);
3520 			t = 1;
3521 		}
3522 
3523 		ATH_TID_FILT_REMOVE(tid, bf, bf_list);
3524 		ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
3525 	}
3526 
3527 	/*
3528 	 * Override the clrdmask configuration for the next frame
3529 	 * in case there is some future transmission, just to get
3530 	 * the ball rolling.
3531 	 *
3532 	 * This won't hurt things if the TID is about to be freed.
3533 	 */
3534 	ath_tx_set_clrdmask(sc, tid->an);
3535 
3536 	/*
3537 	 * Now that it's completed, grab the TID lock and update
3538 	 * the sequence number and BAW window.
3539 	 * Because sequence numbers have been assigned to frames
3540 	 * that haven't been sent yet, it's entirely possible
3541 	 * we'll be called with some pending frames that have not
3542 	 * been transmitted.
3543 	 *
3544 	 * The cleaner solution is to do the sequence number allocation
3545 	 * when the packet is first transmitted - and thus the "retries"
3546 	 * check above would be enough to update the BAW/seqno.
3547 	 */
3548 
3549 	/* But don't do it for non-QoS TIDs */
3550 	if (tap) {
3551 #if 0
3552 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3553 		    "%s: node %p: TID %d: sliding BAW left edge to %d\n",
3554 		    __func__, an, tid->tid, tap->txa_start);
3555 #endif
3556 		ni->ni_txseqs[tid->tid] = tap->txa_start;
3557 		tid->baw_tail = tid->baw_head;
3558 	}
3559 }
3560 
3561 /*
3562  * Flush all software queued packets for the given node.
3563  *
3564  * This occurs when a completion handler frees the last buffer
3565  * for a node, and the node is thus freed. This causes the node
3566  * to be cleaned up, which ends up calling ath_tx_node_flush.
3567  */
3568 void
3569 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
3570 {
3571 	int tid;
3572 	ath_bufhead bf_cq;
3573 	struct ath_buf *bf;
3574 
3575 	TAILQ_INIT(&bf_cq);
3576 
3577 	ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p",
3578 	    &an->an_node);
3579 
3580 	ATH_TX_LOCK(sc);
3581 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
3582 		struct ath_tid *atid = &an->an_tid[tid];
3583 
3584 		/* Free packets */
3585 		ath_tx_tid_drain(sc, an, atid, &bf_cq);
3586 		/* Remove this tid from the list of active tids */
3587 		ath_tx_tid_unsched(sc, atid);
3588 	}
3589 	ATH_TX_UNLOCK(sc);
3590 
3591 	/* Handle completed frames */
3592 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3593 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3594 		ath_tx_default_comp(sc, bf, 0);
3595 	}
3596 }
3597 
3598 /*
3599  * Drain all the software TXQs currently with traffic queued.
3600  */
3601 void
3602 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
3603 {
3604 	struct ath_tid *tid;
3605 	ath_bufhead bf_cq;
3606 	struct ath_buf *bf;
3607 
3608 	TAILQ_INIT(&bf_cq);
3609 	ATH_TX_LOCK(sc);
3610 
3611 	/*
3612 	 * Iterate over all active tids for the given txq,
3613 	 * flushing and unsched'ing them
3614 	 */
3615 	while (! TAILQ_EMPTY(&txq->axq_tidq)) {
3616 		tid = TAILQ_FIRST(&txq->axq_tidq);
3617 		ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
3618 		ath_tx_tid_unsched(sc, tid);
3619 	}
3620 
3621 	ATH_TX_UNLOCK(sc);
3622 
3623 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3624 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3625 		ath_tx_default_comp(sc, bf, 0);
3626 	}
3627 }
3628 
3629 /*
3630  * Handle completion of non-aggregate session frames.
3631  *
3632  * This (currently) doesn't implement software retransmission of
3633  * non-aggregate frames!
3634  *
3635  * Software retransmission of non-aggregate frames needs to obey
3636  * the strict sequence number ordering, and drop any frames that
3637  * will fail this.
3638  *
3639  * For now, filtered frames and frame transmission will cause
3640  * all kinds of issues.  So we don't support them.
3641  *
3642  * So anyone queuing frames via ath_tx_normal_xmit() or
3643  * ath_tx_hw_queue_norm() must override and set CLRDMASK.
3644  */
3645 void
3646 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3647 {
3648 	struct ieee80211_node *ni = bf->bf_node;
3649 	struct ath_node *an = ATH_NODE(ni);
3650 	int tid = bf->bf_state.bfs_tid;
3651 	struct ath_tid *atid = &an->an_tid[tid];
3652 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3653 
3654 	/* The TID state is protected behind the TXQ lock */
3655 	ATH_TX_LOCK(sc);
3656 
3657 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
3658 	    __func__, bf, fail, atid->hwq_depth - 1);
3659 
3660 	atid->hwq_depth--;
3661 
3662 #if 0
3663 	/*
3664 	 * If the frame was filtered, stick it on the filter frame
3665 	 * queue and complain about it.  It shouldn't happen!
3666 	 */
3667 	if ((ts->ts_status & HAL_TXERR_FILT) ||
3668 	    (ts->ts_status != 0 && atid->isfiltered)) {
3669 		device_printf(sc->sc_dev,
3670 		    "%s: isfiltered=%d, ts_status=%d: huh?\n",
3671 		    __func__,
3672 		    atid->isfiltered,
3673 		    ts->ts_status);
3674 		ath_tx_tid_filt_comp_buf(sc, atid, bf);
3675 	}
3676 #endif
3677 	if (atid->isfiltered)
3678 		device_printf(sc->sc_dev, "%s: filtered?!\n", __func__);
3679 	if (atid->hwq_depth < 0)
3680 		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3681 		    __func__, atid->hwq_depth);
3682 
3683 	/*
3684 	 * If the queue is filtered, potentially mark it as complete
3685 	 * and reschedule it as needed.
3686 	 *
3687 	 * This is required as there may be a subsequent TX descriptor
3688 	 * for this end-node that has CLRDMASK set, so it's quite possible
3689 	 * that a filtered frame will be followed by a non-filtered
3690 	 * (complete or otherwise) frame.
3691 	 *
3692 	 * XXX should we do this before we complete the frame?
3693 	 */
3694 	if (atid->isfiltered)
3695 		ath_tx_tid_filt_comp_complete(sc, atid);
3696 	ATH_TX_UNLOCK(sc);
3697 
3698 	/*
3699 	 * punt to rate control if we're not being cleaned up
3700 	 * during a hw queue drain and the frame wanted an ACK.
3701 	 */
3702 	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
3703 		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
3704 		    ts, bf->bf_state.bfs_pktlen,
3705 		    1, (ts->ts_status == 0) ? 0 : 1);
3706 
3707 	ath_tx_default_comp(sc, bf, fail);
3708 }
3709 
3710 /*
3711  * Handle cleanup of aggregate session packets that aren't
3712  * an A-MPDU.
3713  *
3714  * There's no need to update the BAW here - the session is being
3715  * torn down.
3716  */
3717 static void
3718 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
3719 {
3720 	struct ieee80211_node *ni = bf->bf_node;
3721 	struct ath_node *an = ATH_NODE(ni);
3722 	int tid = bf->bf_state.bfs_tid;
3723 	struct ath_tid *atid = &an->an_tid[tid];
3724 
3725 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
3726 	    __func__, tid, atid->incomp);
3727 
3728 	ATH_TX_LOCK(sc);
3729 	atid->incomp--;
3730 	if (atid->incomp == 0) {
3731 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3732 		    "%s: TID %d: cleaned up! resume!\n",
3733 		    __func__, tid);
3734 		atid->cleanup_inprogress = 0;
3735 		ath_tx_tid_resume(sc, atid);
3736 	}
3737 	ATH_TX_UNLOCK(sc);
3738 
3739 	ath_tx_default_comp(sc, bf, 0);
3740 }
3741 
3742 /*
3743  * Performs transmit side cleanup when TID changes from aggregated to
3744  * unaggregated.
3745  *
3746  * - Discard all retry frames from the s/w queue.
3747  * - Fix the tx completion function for all buffers in s/w queue.
3748  * - Count the number of unacked frames, and let transmit completion
3749  *   handle it later.
3750  *
3751  * The caller is responsible for pausing the TID.
3752  */
3753 static void
3754 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid)
3755 {
3756 	struct ath_tid *atid = &an->an_tid[tid];
3757 	struct ieee80211_tx_ampdu *tap;
3758 	struct ath_buf *bf, *bf_next;
3759 	ath_bufhead bf_cq;
3760 
3761 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
3762 	    "%s: TID %d: called\n", __func__, tid);
3763 
3764 	TAILQ_INIT(&bf_cq);
3765 	ATH_TX_LOCK(sc);
3766 
3767 	/*
3768 	 * Move the filtered frames to the TX queue, before
3769 	 * we run off and discard/process things.
3770 	 */
3771 	/* XXX this is really quite inefficient */
3772 	while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) {
3773 		ATH_TID_FILT_REMOVE(atid, bf, bf_list);
3774 		ATH_TID_INSERT_HEAD(atid, bf, bf_list);
3775 	}
3776 
3777 	/*
3778 	 * Update the frames in the software TX queue:
3779 	 *
3780 	 * + Discard retry frames in the queue
3781 	 * + Fix the completion function to be non-aggregate
3782 	 */
3783 	bf = ATH_TID_FIRST(atid);
3784 	while (bf) {
3785 		if (bf->bf_state.bfs_isretried) {
3786 			bf_next = TAILQ_NEXT(bf, bf_list);
3787 			ATH_TID_REMOVE(atid, bf, bf_list);
3788 			if (bf->bf_state.bfs_dobaw) {
3789 				ath_tx_update_baw(sc, an, atid, bf);
3790 				if (! bf->bf_state.bfs_addedbaw)
3791 					device_printf(sc->sc_dev,
3792 					    "%s: wasn't added: seqno %d\n",
3793 					    __func__,
3794 					    SEQNO(bf->bf_state.bfs_seqno));
3795 			}
3796 			bf->bf_state.bfs_dobaw = 0;
3797 			/*
3798 			 * Call the default completion handler with "fail" just
3799 			 * so upper levels are suitably notified about this.
3800 			 */
3801 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3802 			bf = bf_next;
3803 			continue;
3804 		}
3805 		/* Give these the default completion handler */
3806 		bf->bf_comp = ath_tx_normal_comp;
3807 		bf = TAILQ_NEXT(bf, bf_list);
3808 	}
3809 
3810 	/* The caller is required to pause the TID */
3811 #if 0
3812 	/* Pause the TID */
3813 	ath_tx_tid_pause(sc, atid);
3814 #endif
3815 
3816 	/*
3817 	 * Calculate what hardware-queued frames exist based
3818 	 * on the current BAW size. Ie, what frames have been
3819 	 * added to the TX hardware queue for this TID but
3820 	 * not yet ACKed.
3821 	 */
3822 	tap = ath_tx_get_tx_tid(an, tid);
3823 	/* Need the lock - fiddling with BAW */
3824 	while (atid->baw_head != atid->baw_tail) {
3825 		if (atid->tx_buf[atid->baw_head]) {
3826 			atid->incomp++;
3827 			atid->cleanup_inprogress = 1;
3828 			atid->tx_buf[atid->baw_head] = NULL;
3829 		}
3830 		INCR(atid->baw_head, ATH_TID_MAX_BUFS);
3831 		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
3832 	}
3833 
3834 	/*
3835 	 * If cleanup is required, defer TID scheduling
3836 	 * until all the HW queued packets have been
3837 	 * sent.
3838 	 */
3839 	if (! atid->cleanup_inprogress)
3840 		ath_tx_tid_resume(sc, atid);
3841 
3842 	if (atid->cleanup_inprogress)
3843 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3844 		    "%s: TID %d: cleanup needed: %d packets\n",
3845 		    __func__, tid, atid->incomp);
3846 	ATH_TX_UNLOCK(sc);
3847 
3848 	/* Handle completing frames and fail them */
3849 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3850 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3851 		ath_tx_default_comp(sc, bf, 1);
3852 	}
3853 }
3854 
3855 static struct ath_buf *
3856 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
3857     struct ath_tid *tid, struct ath_buf *bf)
3858 {
3859 	struct ath_buf *nbf;
3860 	int error;
3861 
3862 	/*
3863 	 * Clone the buffer.  This will handle the dma unmap and
3864 	 * copy the node reference to the new buffer.  If this
3865 	 * works out, 'bf' will have no DMA mapping, no mbuf
3866 	 * pointer and no node reference.
3867 	 */
3868 	nbf = ath_buf_clone(sc, bf);
3869 
3870 #if 0
3871 	device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n",
3872 	    __func__);
3873 #endif
3874 
3875 	if (nbf == NULL) {
3876 		/* Failed to clone */
3877 		device_printf(sc->sc_dev,
3878 		    "%s: failed to clone a busy buffer\n",
3879 		    __func__);
3880 		return NULL;
3881 	}
3882 
3883 	/* Setup the dma for the new buffer */
3884 	error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
3885 	if (error != 0) {
3886 		device_printf(sc->sc_dev,
3887 		    "%s: failed to setup dma for clone\n",
3888 		    __func__);
3889 		/*
3890 		 * Put this at the head of the list, not tail;
3891 		 * that way it doesn't interfere with the
3892 		 * busy buffer logic (which uses the tail of
3893 		 * the list.)
3894 		 */
3895 		ATH_TXBUF_LOCK(sc);
3896 		ath_returnbuf_head(sc, nbf);
3897 		ATH_TXBUF_UNLOCK(sc);
3898 		return NULL;
3899 	}
3900 
3901 	/* Update BAW if required, before we free the original buf */
3902 	if (bf->bf_state.bfs_dobaw)
3903 		ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
3904 
3905 	/* Free original buffer; return new buffer */
3906 	ath_freebuf(sc, bf);
3907 
3908 	return nbf;
3909 }
3910 
3911 /*
3912  * Handle retrying an unaggregate frame in an aggregate
3913  * session.
3914  *
3915  * If too many retries occur, pause the TID, wait for
3916  * any further retransmits (as there's no reason why
3917  * non-aggregate frames in an aggregate session are
3918  * transmitted in-order; they just have to be in-BAW)
3919  * and then queue a BAR.
3920  */
3921 static void
3922 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
3923 {
3924 	struct ieee80211_node *ni = bf->bf_node;
3925 	struct ath_node *an = ATH_NODE(ni);
3926 	int tid = bf->bf_state.bfs_tid;
3927 	struct ath_tid *atid = &an->an_tid[tid];
3928 	struct ieee80211_tx_ampdu *tap;
3929 
3930 	ATH_TX_LOCK(sc);
3931 
3932 	tap = ath_tx_get_tx_tid(an, tid);
3933 
3934 	/*
3935 	 * If the buffer is marked as busy, we can't directly
3936 	 * reuse it. Instead, try to clone the buffer.
3937 	 * If the clone is successful, recycle the old buffer.
3938 	 * If the clone is unsuccessful, set bfs_retries to max
3939 	 * to force the next bit of code to free the buffer
3940 	 * for us.
3941 	 */
3942 	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
3943 	    (bf->bf_flags & ATH_BUF_BUSY)) {
3944 		struct ath_buf *nbf;
3945 		nbf = ath_tx_retry_clone(sc, an, atid, bf);
3946 		if (nbf)
3947 			/* bf has been freed at this point */
3948 			bf = nbf;
3949 		else
3950 			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
3951 	}
3952 
3953 	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
3954 		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
3955 		    "%s: exceeded retries; seqno %d\n",
3956 		    __func__, SEQNO(bf->bf_state.bfs_seqno));
3957 		sc->sc_stats.ast_tx_swretrymax++;
3958 
3959 		/* Update BAW anyway */
3960 		if (bf->bf_state.bfs_dobaw) {
3961 			ath_tx_update_baw(sc, an, atid, bf);
3962 			if (! bf->bf_state.bfs_addedbaw)
3963 				device_printf(sc->sc_dev,
3964 				    "%s: wasn't added: seqno %d\n",
3965 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
3966 		}
3967 		bf->bf_state.bfs_dobaw = 0;
3968 
3969 		/* Suspend the TX queue and get ready to send the BAR */
3970 		ath_tx_tid_bar_suspend(sc, atid);
3971 
3972 		/* Send the BAR if there are no other frames waiting */
3973 		if (ath_tx_tid_bar_tx_ready(sc, atid))
3974 			ath_tx_tid_bar_tx(sc, atid);
3975 
3976 		ATH_TX_UNLOCK(sc);
3977 
3978 		/* Free buffer, bf is free after this call */
3979 		ath_tx_default_comp(sc, bf, 0);
3980 		return;
3981 	}
3982 
3983 	/*
3984 	 * This increments the retry counter as well as
3985 	 * sets the retry flag in the ath_buf and packet
3986 	 * body.
3987 	 */
3988 	ath_tx_set_retry(sc, bf);
3989 	sc->sc_stats.ast_tx_swretries++;
3990 
3991 	/*
3992 	 * Insert this at the head of the queue, so it's
3993 	 * retried before any current/subsequent frames.
3994 	 */
3995 	ATH_TID_INSERT_HEAD(atid, bf, bf_list);
3996 	ath_tx_tid_sched(sc, atid);
3997 	/* Send the BAR if there are no other frames waiting */
3998 	if (ath_tx_tid_bar_tx_ready(sc, atid))
3999 		ath_tx_tid_bar_tx(sc, atid);
4000 
4001 	ATH_TX_UNLOCK(sc);
4002 }
4003 
4004 /*
4005  * Common code for aggregate excessive retry/subframe retry.
4006  * If retrying, queues buffers to bf_q. If not, frees the
4007  * buffers.
4008  *
4009  * XXX should unify this with ath_tx_aggr_retry_unaggr()
4010  */
4011 static int
4012 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
4013     ath_bufhead *bf_q)
4014 {
4015 	struct ieee80211_node *ni = bf->bf_node;
4016 	struct ath_node *an = ATH_NODE(ni);
4017 	int tid = bf->bf_state.bfs_tid;
4018 	struct ath_tid *atid = &an->an_tid[tid];
4019 
4020 	ATH_TX_LOCK_ASSERT(sc);
4021 
4022 	/* XXX clr11naggr should be done for all subframes */
4023 	ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
4024 	ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
4025 
4026 	/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
4027 
4028 	/*
4029 	 * If the buffer is marked as busy, we can't directly
4030 	 * reuse it. Instead, try to clone the buffer.
4031 	 * If the clone is successful, recycle the old buffer.
4032 	 * If the clone is unsuccessful, set bfs_retries to max
4033 	 * to force the next bit of code to free the buffer
4034 	 * for us.
4035 	 */
4036 	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
4037 	    (bf->bf_flags & ATH_BUF_BUSY)) {
4038 		struct ath_buf *nbf;
4039 		nbf = ath_tx_retry_clone(sc, an, atid, bf);
4040 		if (nbf)
4041 			/* bf has been freed at this point */
4042 			bf = nbf;
4043 		else
4044 			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
4045 	}
4046 
4047 	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
4048 		sc->sc_stats.ast_tx_swretrymax++;
4049 		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
4050 		    "%s: max retries: seqno %d\n",
4051 		    __func__, SEQNO(bf->bf_state.bfs_seqno));
4052 		ath_tx_update_baw(sc, an, atid, bf);
4053 		if (! bf->bf_state.bfs_addedbaw)
4054 			device_printf(sc->sc_dev,
4055 			    "%s: wasn't added: seqno %d\n",
4056 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
4057 		bf->bf_state.bfs_dobaw = 0;
4058 		return 1;
4059 	}
4060 
4061 	ath_tx_set_retry(sc, bf);
4062 	sc->sc_stats.ast_tx_swretries++;
4063 	bf->bf_next = NULL;		/* Just to make sure */
4064 
4065 	/* Clear the aggregate state */
4066 	bf->bf_state.bfs_aggr = 0;
4067 	bf->bf_state.bfs_ndelim = 0;	/* ??? needed? */
4068 	bf->bf_state.bfs_nframes = 1;
4069 
4070 	TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
4071 	return 0;
4072 }
4073 
4074 /*
4075  * error pkt completion for an aggregate destination
4076  */
4077 static void
4078 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
4079     struct ath_tid *tid)
4080 {
4081 	struct ieee80211_node *ni = bf_first->bf_node;
4082 	struct ath_node *an = ATH_NODE(ni);
4083 	struct ath_buf *bf_next, *bf;
4084 	ath_bufhead bf_q;
4085 	int drops = 0;
4086 	struct ieee80211_tx_ampdu *tap;
4087 	ath_bufhead bf_cq;
4088 
4089 	TAILQ_INIT(&bf_q);
4090 	TAILQ_INIT(&bf_cq);
4091 
4092 	/*
4093 	 * Update rate control - all frames have failed.
4094 	 *
4095 	 * XXX use the length in the first frame in the series;
4096 	 * XXX just so things are consistent for now.
4097 	 */
4098 	ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
4099 	    &bf_first->bf_status.ds_txstat,
4100 	    bf_first->bf_state.bfs_pktlen,
4101 	    bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
4102 
4103 	ATH_TX_LOCK(sc);
4104 	tap = ath_tx_get_tx_tid(an, tid->tid);
4105 	sc->sc_stats.ast_tx_aggr_failall++;
4106 
4107 	/* Retry all subframes */
4108 	bf = bf_first;
4109 	while (bf) {
4110 		bf_next = bf->bf_next;
4111 		bf->bf_next = NULL;	/* Remove it from the aggr list */
4112 		sc->sc_stats.ast_tx_aggr_fail++;
4113 		if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
4114 			drops++;
4115 			bf->bf_next = NULL;
4116 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
4117 		}
4118 		bf = bf_next;
4119 	}
4120 
4121 	/* Prepend all frames to the beginning of the queue */
4122 	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
4123 		TAILQ_REMOVE(&bf_q, bf, bf_list);
4124 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
4125 	}
4126 
4127 	/*
4128 	 * Schedule the TID to be re-tried.
4129 	 */
4130 	ath_tx_tid_sched(sc, tid);
4131 
4132 	/*
4133 	 * send bar if we dropped any frames
4134 	 *
4135 	 * Keep the txq lock held for now, as we need to ensure
4136 	 * that ni_txseqs[] is consistent (as it's being updated
4137 	 * in the ifnet TX context or raw TX context.)
4138 	 */
4139 	if (drops) {
4140 		/* Suspend the TX queue and get ready to send the BAR */
4141 		ath_tx_tid_bar_suspend(sc, tid);
4142 	}
4143 
4144 	/*
4145 	 * Send BAR if required
4146 	 */
4147 	if (ath_tx_tid_bar_tx_ready(sc, tid))
4148 		ath_tx_tid_bar_tx(sc, tid);
4149 
4150 	ATH_TX_UNLOCK(sc);
4151 
4152 	/* Complete frames which errored out */
4153 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4154 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4155 		ath_tx_default_comp(sc, bf, 0);
4156 	}
4157 }
4158 
4159 /*
4160  * Handle clean-up of packets from an aggregate list.
4161  *
4162  * There's no need to update the BAW here - the session is being
4163  * torn down.
4164  */
4165 static void
4166 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
4167 {
4168 	struct ath_buf *bf, *bf_next;
4169 	struct ieee80211_node *ni = bf_first->bf_node;
4170 	struct ath_node *an = ATH_NODE(ni);
4171 	int tid = bf_first->bf_state.bfs_tid;
4172 	struct ath_tid *atid = &an->an_tid[tid];
4173 
4174 	ATH_TX_LOCK(sc);
4175 
4176 	/* update incomp */
4177 	bf = bf_first;
4178 	while (bf) {
4179 		atid->incomp--;
4180 		bf = bf->bf_next;
4181 	}
4182 
4183 	if (atid->incomp == 0) {
4184 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4185 		    "%s: TID %d: cleaned up! resume!\n",
4186 		    __func__, tid);
4187 		atid->cleanup_inprogress = 0;
4188 		ath_tx_tid_resume(sc, atid);
4189 	}
4190 
4191 	/* Send BAR if required */
4192 	/* XXX why would we send a BAR when transitioning to non-aggregation? */
4193 	/*
4194 	 * XXX TODO: we should likely just tear down the BAR state here,
4195 	 * rather than sending a BAR.
4196 	 */
4197 	if (ath_tx_tid_bar_tx_ready(sc, atid))
4198 		ath_tx_tid_bar_tx(sc, atid);
4199 
4200 	ATH_TX_UNLOCK(sc);
4201 
4202 	/* Handle frame completion */
4203 	bf = bf_first;
4204 	while (bf) {
4205 		bf_next = bf->bf_next;
4206 		ath_tx_default_comp(sc, bf, 1);
4207 		bf = bf_next;
4208 	}
4209 }
4210 
4211 /*
4212  * Handle completion of an set of aggregate frames.
4213  *
4214  * Note: the completion handler is the last descriptor in the aggregate,
4215  * not the last descriptor in the first frame.
4216  */
4217 static void
4218 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first,
4219     int fail)
4220 {
4221 	//struct ath_desc *ds = bf->bf_lastds;
4222 	struct ieee80211_node *ni = bf_first->bf_node;
4223 	struct ath_node *an = ATH_NODE(ni);
4224 	int tid = bf_first->bf_state.bfs_tid;
4225 	struct ath_tid *atid = &an->an_tid[tid];
4226 	struct ath_tx_status ts;
4227 	struct ieee80211_tx_ampdu *tap;
4228 	ath_bufhead bf_q;
4229 	ath_bufhead bf_cq;
4230 	int seq_st, tx_ok;
4231 	int hasba, isaggr;
4232 	uint32_t ba[2];
4233 	struct ath_buf *bf, *bf_next;
4234 	int ba_index;
4235 	int drops = 0;
4236 	int nframes = 0, nbad = 0, nf;
4237 	int pktlen;
4238 	/* XXX there's too much on the stack? */
4239 	struct ath_rc_series rc[ATH_RC_NUM];
4240 	int txseq;
4241 
4242 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
4243 	    __func__, atid->hwq_depth);
4244 
4245 	/*
4246 	 * Take a copy; this may be needed -after- bf_first
4247 	 * has been completed and freed.
4248 	 */
4249 	ts = bf_first->bf_status.ds_txstat;
4250 
4251 	TAILQ_INIT(&bf_q);
4252 	TAILQ_INIT(&bf_cq);
4253 
4254 	/* The TID state is kept behind the TXQ lock */
4255 	ATH_TX_LOCK(sc);
4256 
4257 	atid->hwq_depth--;
4258 	if (atid->hwq_depth < 0)
4259 		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
4260 		    __func__, atid->hwq_depth);
4261 
4262 	/*
4263 	 * If the TID is filtered, handle completing the filter
4264 	 * transition before potentially kicking it to the cleanup
4265 	 * function.
4266 	 *
4267 	 * XXX this is duplicate work, ew.
4268 	 */
4269 	if (atid->isfiltered)
4270 		ath_tx_tid_filt_comp_complete(sc, atid);
4271 
4272 	/*
4273 	 * Punt cleanup to the relevant function, not our problem now
4274 	 */
4275 	if (atid->cleanup_inprogress) {
4276 		if (atid->isfiltered)
4277 			device_printf(sc->sc_dev,
4278 			    "%s: isfiltered=1, normal_comp?\n",
4279 			    __func__);
4280 		ATH_TX_UNLOCK(sc);
4281 		ath_tx_comp_cleanup_aggr(sc, bf_first);
4282 		return;
4283 	}
4284 
4285 	/*
4286 	 * If the frame is filtered, transition to filtered frame
4287 	 * mode and add this to the filtered frame list.
4288 	 *
4289 	 * XXX TODO: figure out how this interoperates with
4290 	 * BAR, pause and cleanup states.
4291 	 */
4292 	if ((ts.ts_status & HAL_TXERR_FILT) ||
4293 	    (ts.ts_status != 0 && atid->isfiltered)) {
4294 		if (fail != 0)
4295 			device_printf(sc->sc_dev,
4296 			    "%s: isfiltered=1, fail=%d\n", __func__, fail);
4297 		ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq);
4298 
4299 		/* Remove from BAW */
4300 		TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) {
4301 			if (bf->bf_state.bfs_addedbaw)
4302 				drops++;
4303 			if (bf->bf_state.bfs_dobaw) {
4304 				ath_tx_update_baw(sc, an, atid, bf);
4305 				if (! bf->bf_state.bfs_addedbaw)
4306 					device_printf(sc->sc_dev,
4307 					    "%s: wasn't added: seqno %d\n",
4308 					    __func__,
4309 					    SEQNO(bf->bf_state.bfs_seqno));
4310 			}
4311 			bf->bf_state.bfs_dobaw = 0;
4312 		}
4313 		/*
4314 		 * If any intermediate frames in the BAW were dropped when
4315 		 * handling filtering things, send a BAR.
4316 		 */
4317 		if (drops)
4318 			ath_tx_tid_bar_suspend(sc, atid);
4319 
4320 		/*
4321 		 * Finish up by sending a BAR if required and freeing
4322 		 * the frames outside of the TX lock.
4323 		 */
4324 		goto finish_send_bar;
4325 	}
4326 
4327 	/*
4328 	 * XXX for now, use the first frame in the aggregate for
4329 	 * XXX rate control completion; it's at least consistent.
4330 	 */
4331 	pktlen = bf_first->bf_state.bfs_pktlen;
4332 
4333 	/*
4334 	 * Handle errors first!
4335 	 *
4336 	 * Here, handle _any_ error as a "exceeded retries" error.
4337 	 * Later on (when filtered frames are to be specially handled)
4338 	 * it'll have to be expanded.
4339 	 */
4340 #if 0
4341 	if (ts.ts_status & HAL_TXERR_XRETRY) {
4342 #endif
4343 	if (ts.ts_status != 0) {
4344 		ATH_TX_UNLOCK(sc);
4345 		ath_tx_comp_aggr_error(sc, bf_first, atid);
4346 		return;
4347 	}
4348 
4349 	tap = ath_tx_get_tx_tid(an, tid);
4350 
4351 	/*
4352 	 * extract starting sequence and block-ack bitmap
4353 	 */
4354 	/* XXX endian-ness of seq_st, ba? */
4355 	seq_st = ts.ts_seqnum;
4356 	hasba = !! (ts.ts_flags & HAL_TX_BA);
4357 	tx_ok = (ts.ts_status == 0);
4358 	isaggr = bf_first->bf_state.bfs_aggr;
4359 	ba[0] = ts.ts_ba_low;
4360 	ba[1] = ts.ts_ba_high;
4361 
4362 	/*
4363 	 * Copy the TX completion status and the rate control
4364 	 * series from the first descriptor, as it may be freed
4365 	 * before the rate control code can get its grubby fingers
4366 	 * into things.
4367 	 */
4368 	memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
4369 
4370 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4371 	    "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, "
4372 	    "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
4373 	    __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
4374 	    isaggr, seq_st, hasba, ba[0], ba[1]);
4375 
4376 	/*
4377 	 * The reference driver doesn't do this; it simply ignores
4378 	 * this check in its entirety.
4379 	 *
4380 	 * I've seen this occur when using iperf to send traffic
4381 	 * out tid 1 - the aggregate frames are all marked as TID 1,
4382 	 * but the TXSTATUS has TID=0.  So, let's just ignore this
4383 	 * check.
4384 	 */
4385 #if 0
4386 	/* Occasionally, the MAC sends a tx status for the wrong TID. */
4387 	if (tid != ts.ts_tid) {
4388 		device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n",
4389 		    __func__, tid, ts.ts_tid);
4390 		tx_ok = 0;
4391 	}
4392 #endif
4393 
4394 	/* AR5416 BA bug; this requires an interface reset */
4395 	if (isaggr && tx_ok && (! hasba)) {
4396 		device_printf(sc->sc_dev,
4397 		    "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, "
4398 		    "seq_st=%d\n",
4399 		    __func__, hasba, tx_ok, isaggr, seq_st);
4400 		/* XXX TODO: schedule an interface reset */
4401 #ifdef ATH_DEBUG
4402 		ath_printtxbuf(sc, bf_first,
4403 		    sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0);
4404 #endif
4405 	}
4406 
4407 	/*
4408 	 * Walk the list of frames, figure out which ones were correctly
4409 	 * sent and which weren't.
4410 	 */
4411 	bf = bf_first;
4412 	nf = bf_first->bf_state.bfs_nframes;
4413 
4414 	/* bf_first is going to be invalid once this list is walked */
4415 	bf_first = NULL;
4416 
4417 	/*
4418 	 * Walk the list of completed frames and determine
4419 	 * which need to be completed and which need to be
4420 	 * retransmitted.
4421 	 *
4422 	 * For completed frames, the completion functions need
4423 	 * to be called at the end of this function as the last
4424 	 * node reference may free the node.
4425 	 *
4426 	 * Finally, since the TXQ lock can't be held during the
4427 	 * completion callback (to avoid lock recursion),
4428 	 * the completion calls have to be done outside of the
4429 	 * lock.
4430 	 */
4431 	while (bf) {
4432 		nframes++;
4433 		ba_index = ATH_BA_INDEX(seq_st,
4434 		    SEQNO(bf->bf_state.bfs_seqno));
4435 		bf_next = bf->bf_next;
4436 		bf->bf_next = NULL;	/* Remove it from the aggr list */
4437 
4438 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4439 		    "%s: checking bf=%p seqno=%d; ack=%d\n",
4440 		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
4441 		    ATH_BA_ISSET(ba, ba_index));
4442 
4443 		if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
4444 			sc->sc_stats.ast_tx_aggr_ok++;
4445 			ath_tx_update_baw(sc, an, atid, bf);
4446 			bf->bf_state.bfs_dobaw = 0;
4447 			if (! bf->bf_state.bfs_addedbaw)
4448 				device_printf(sc->sc_dev,
4449 				    "%s: wasn't added: seqno %d\n",
4450 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
4451 			bf->bf_next = NULL;
4452 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
4453 		} else {
4454 			sc->sc_stats.ast_tx_aggr_fail++;
4455 			if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
4456 				drops++;
4457 				bf->bf_next = NULL;
4458 				TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
4459 			}
4460 			nbad++;
4461 		}
4462 		bf = bf_next;
4463 	}
4464 
4465 	/*
4466 	 * Now that the BAW updates have been done, unlock
4467 	 *
4468 	 * txseq is grabbed before the lock is released so we
4469 	 * have a consistent view of what -was- in the BAW.
4470 	 * Anything after this point will not yet have been
4471 	 * TXed.
4472 	 */
4473 	txseq = tap->txa_start;
4474 	ATH_TX_UNLOCK(sc);
4475 
4476 	if (nframes != nf)
4477 		device_printf(sc->sc_dev,
4478 		    "%s: num frames seen=%d; bf nframes=%d\n",
4479 		    __func__, nframes, nf);
4480 
4481 	/*
4482 	 * Now we know how many frames were bad, call the rate
4483 	 * control code.
4484 	 */
4485 	if (fail == 0)
4486 		ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes,
4487 		    nbad);
4488 
4489 	/*
4490 	 * send bar if we dropped any frames
4491 	 */
4492 	if (drops) {
4493 		/* Suspend the TX queue and get ready to send the BAR */
4494 		ATH_TX_LOCK(sc);
4495 		ath_tx_tid_bar_suspend(sc, atid);
4496 		ATH_TX_UNLOCK(sc);
4497 	}
4498 
4499 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4500 	    "%s: txa_start now %d\n", __func__, tap->txa_start);
4501 
4502 	ATH_TX_LOCK(sc);
4503 
4504 	/* Prepend all frames to the beginning of the queue */
4505 	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
4506 		TAILQ_REMOVE(&bf_q, bf, bf_list);
4507 		ATH_TID_INSERT_HEAD(atid, bf, bf_list);
4508 	}
4509 
4510 	/*
4511 	 * Reschedule to grab some further frames.
4512 	 */
4513 	ath_tx_tid_sched(sc, atid);
4514 
4515 	/*
4516 	 * If the queue is filtered, re-schedule as required.
4517 	 *
4518 	 * This is required as there may be a subsequent TX descriptor
4519 	 * for this end-node that has CLRDMASK set, so it's quite possible
4520 	 * that a filtered frame will be followed by a non-filtered
4521 	 * (complete or otherwise) frame.
4522 	 *
4523 	 * XXX should we do this before we complete the frame?
4524 	 */
4525 	if (atid->isfiltered)
4526 		ath_tx_tid_filt_comp_complete(sc, atid);
4527 
4528 finish_send_bar:
4529 
4530 	/*
4531 	 * Send BAR if required
4532 	 */
4533 	if (ath_tx_tid_bar_tx_ready(sc, atid))
4534 		ath_tx_tid_bar_tx(sc, atid);
4535 
4536 	ATH_TX_UNLOCK(sc);
4537 
4538 	/* Do deferred completion */
4539 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4540 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4541 		ath_tx_default_comp(sc, bf, 0);
4542 	}
4543 }
4544 
4545 /*
4546  * Handle completion of unaggregated frames in an ADDBA
4547  * session.
4548  *
4549  * Fail is set to 1 if the entry is being freed via a call to
4550  * ath_tx_draintxq().
4551  */
4552 static void
4553 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
4554 {
4555 	struct ieee80211_node *ni = bf->bf_node;
4556 	struct ath_node *an = ATH_NODE(ni);
4557 	int tid = bf->bf_state.bfs_tid;
4558 	struct ath_tid *atid = &an->an_tid[tid];
4559 	struct ath_tx_status ts;
4560 	int drops = 0;
4561 
4562 	/*
4563 	 * Take a copy of this; filtering/cloning the frame may free the
4564 	 * bf pointer.
4565 	 */
4566 	ts = bf->bf_status.ds_txstat;
4567 
4568 	/*
4569 	 * Update rate control status here, before we possibly
4570 	 * punt to retry or cleanup.
4571 	 *
4572 	 * Do it outside of the TXQ lock.
4573 	 */
4574 	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
4575 		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
4576 		    &bf->bf_status.ds_txstat,
4577 		    bf->bf_state.bfs_pktlen,
4578 		    1, (ts.ts_status == 0) ? 0 : 1);
4579 
4580 	/*
4581 	 * This is called early so atid->hwq_depth can be tracked.
4582 	 * This unfortunately means that it's released and regrabbed
4583 	 * during retry and cleanup. That's rather inefficient.
4584 	 */
4585 	ATH_TX_LOCK(sc);
4586 
4587 	if (tid == IEEE80211_NONQOS_TID)
4588 		device_printf(sc->sc_dev, "%s: TID=16!\n", __func__);
4589 
4590 	DPRINTF(sc, ATH_DEBUG_SW_TX,
4591 	    "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n",
4592 	    __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth,
4593 	    SEQNO(bf->bf_state.bfs_seqno));
4594 
4595 	atid->hwq_depth--;
4596 	if (atid->hwq_depth < 0)
4597 		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
4598 		    __func__, atid->hwq_depth);
4599 
4600 	/*
4601 	 * If the TID is filtered, handle completing the filter
4602 	 * transition before potentially kicking it to the cleanup
4603 	 * function.
4604 	 */
4605 	if (atid->isfiltered)
4606 		ath_tx_tid_filt_comp_complete(sc, atid);
4607 
4608 	/*
4609 	 * If a cleanup is in progress, punt to comp_cleanup;
4610 	 * rather than handling it here. It's thus their
4611 	 * responsibility to clean up, call the completion
4612 	 * function in net80211, etc.
4613 	 */
4614 	if (atid->cleanup_inprogress) {
4615 		if (atid->isfiltered)
4616 			device_printf(sc->sc_dev,
4617 			    "%s: isfiltered=1, normal_comp?\n",
4618 			    __func__);
4619 		ATH_TX_UNLOCK(sc);
4620 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n",
4621 		    __func__);
4622 		ath_tx_comp_cleanup_unaggr(sc, bf);
4623 		return;
4624 	}
4625 
4626 	/*
4627 	 * XXX TODO: how does cleanup, BAR and filtered frame handling
4628 	 * overlap?
4629 	 *
4630 	 * If the frame is filtered OR if it's any failure but
4631 	 * the TID is filtered, the frame must be added to the
4632 	 * filtered frame list.
4633 	 *
4634 	 * However - a busy buffer can't be added to the filtered
4635 	 * list as it will end up being recycled without having
4636 	 * been made available for the hardware.
4637 	 */
4638 	if ((ts.ts_status & HAL_TXERR_FILT) ||
4639 	    (ts.ts_status != 0 && atid->isfiltered)) {
4640 		int freeframe;
4641 
4642 		if (fail != 0)
4643 			device_printf(sc->sc_dev,
4644 			    "%s: isfiltered=1, fail=%d\n",
4645 			    __func__,
4646 			    fail);
4647 		freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf);
4648 		if (freeframe) {
4649 			/* Remove from BAW */
4650 			if (bf->bf_state.bfs_addedbaw)
4651 				drops++;
4652 			if (bf->bf_state.bfs_dobaw) {
4653 				ath_tx_update_baw(sc, an, atid, bf);
4654 				if (! bf->bf_state.bfs_addedbaw)
4655 					device_printf(sc->sc_dev,
4656 					    "%s: wasn't added: seqno %d\n",
4657 					    __func__, SEQNO(bf->bf_state.bfs_seqno));
4658 			}
4659 			bf->bf_state.bfs_dobaw = 0;
4660 		}
4661 
4662 		/*
4663 		 * If the frame couldn't be filtered, treat it as a drop and
4664 		 * prepare to send a BAR.
4665 		 */
4666 		if (freeframe && drops)
4667 			ath_tx_tid_bar_suspend(sc, atid);
4668 
4669 		/*
4670 		 * Send BAR if required
4671 		 */
4672 		if (ath_tx_tid_bar_tx_ready(sc, atid))
4673 			ath_tx_tid_bar_tx(sc, atid);
4674 
4675 		ATH_TX_UNLOCK(sc);
4676 		/*
4677 		 * If freeframe is set, then the frame couldn't be
4678 		 * cloned and bf is still valid.  Just complete/free it.
4679 		 */
4680 		if (freeframe)
4681 			ath_tx_default_comp(sc, bf, fail);
4682 
4683 
4684 		return;
4685 	}
4686 	/*
4687 	 * Don't bother with the retry check if all frames
4688 	 * are being failed (eg during queue deletion.)
4689 	 */
4690 #if 0
4691 	if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
4692 #endif
4693 	if (fail == 0 && ts.ts_status != 0) {
4694 		ATH_TX_UNLOCK(sc);
4695 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n",
4696 		    __func__);
4697 		ath_tx_aggr_retry_unaggr(sc, bf);
4698 		return;
4699 	}
4700 
4701 	/* Success? Complete */
4702 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
4703 	    __func__, tid, SEQNO(bf->bf_state.bfs_seqno));
4704 	if (bf->bf_state.bfs_dobaw) {
4705 		ath_tx_update_baw(sc, an, atid, bf);
4706 		bf->bf_state.bfs_dobaw = 0;
4707 		if (! bf->bf_state.bfs_addedbaw)
4708 			device_printf(sc->sc_dev,
4709 			    "%s: wasn't added: seqno %d\n",
4710 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
4711 	}
4712 
4713 	/*
4714 	 * If the queue is filtered, re-schedule as required.
4715 	 *
4716 	 * This is required as there may be a subsequent TX descriptor
4717 	 * for this end-node that has CLRDMASK set, so it's quite possible
4718 	 * that a filtered frame will be followed by a non-filtered
4719 	 * (complete or otherwise) frame.
4720 	 *
4721 	 * XXX should we do this before we complete the frame?
4722 	 */
4723 	if (atid->isfiltered)
4724 		ath_tx_tid_filt_comp_complete(sc, atid);
4725 
4726 	/*
4727 	 * Send BAR if required
4728 	 */
4729 	if (ath_tx_tid_bar_tx_ready(sc, atid))
4730 		ath_tx_tid_bar_tx(sc, atid);
4731 
4732 	ATH_TX_UNLOCK(sc);
4733 
4734 	ath_tx_default_comp(sc, bf, fail);
4735 	/* bf is freed at this point */
4736 }
4737 
4738 void
4739 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4740 {
4741 	if (bf->bf_state.bfs_aggr)
4742 		ath_tx_aggr_comp_aggr(sc, bf, fail);
4743 	else
4744 		ath_tx_aggr_comp_unaggr(sc, bf, fail);
4745 }
4746 
4747 /*
4748  * Schedule some packets from the given node/TID to the hardware.
4749  *
4750  * This is the aggregate version.
4751  */
4752 void
4753 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
4754     struct ath_tid *tid)
4755 {
4756 	struct ath_buf *bf;
4757 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
4758 	struct ieee80211_tx_ampdu *tap;
4759 	ATH_AGGR_STATUS status;
4760 	ath_bufhead bf_q;
4761 
4762 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
4763 	ATH_TX_LOCK_ASSERT(sc);
4764 
4765 	tap = ath_tx_get_tx_tid(an, tid->tid);
4766 
4767 	if (tid->tid == IEEE80211_NONQOS_TID)
4768 		device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n",
4769 		    __func__);
4770 
4771 	for (;;) {
4772 		status = ATH_AGGR_DONE;
4773 
4774 		/*
4775 		 * If the upper layer has paused the TID, don't
4776 		 * queue any further packets.
4777 		 *
4778 		 * This can also occur from the completion task because
4779 		 * of packet loss; but as its serialised with this code,
4780 		 * it won't "appear" half way through queuing packets.
4781 		 */
4782 		if (tid->paused)
4783 			break;
4784 
4785 		bf = ATH_TID_FIRST(tid);
4786 		if (bf == NULL) {
4787 			break;
4788 		}
4789 
4790 		/*
4791 		 * If the packet doesn't fall within the BAW (eg a NULL
4792 		 * data frame), schedule it directly; continue.
4793 		 */
4794 		if (! bf->bf_state.bfs_dobaw) {
4795 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4796 			    "%s: non-baw packet\n",
4797 			    __func__);
4798 			ATH_TID_REMOVE(tid, bf, bf_list);
4799 
4800 			if (bf->bf_state.bfs_nframes > 1)
4801 				device_printf(sc->sc_dev,
4802 				    "%s: aggr=%d, nframes=%d\n",
4803 				    __func__,
4804 				    bf->bf_state.bfs_aggr,
4805 				    bf->bf_state.bfs_nframes);
4806 
4807 			/*
4808 			 * This shouldn't happen - such frames shouldn't
4809 			 * ever have been queued as an aggregate in the
4810 			 * first place.  However, make sure the fields
4811 			 * are correctly setup just to be totally sure.
4812 			 */
4813 			bf->bf_state.bfs_aggr = 0;
4814 			bf->bf_state.bfs_nframes = 1;
4815 
4816 			/* Update CLRDMASK just before this frame is queued */
4817 			ath_tx_update_clrdmask(sc, tid, bf);
4818 
4819 			ath_tx_do_ratelookup(sc, bf);
4820 			ath_tx_calc_duration(sc, bf);
4821 			ath_tx_calc_protection(sc, bf);
4822 			ath_tx_set_rtscts(sc, bf);
4823 			ath_tx_rate_fill_rcflags(sc, bf);
4824 			ath_tx_setds(sc, bf);
4825 			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
4826 
4827 			sc->sc_aggr_stats.aggr_nonbaw_pkt++;
4828 
4829 			/* Queue the packet; continue */
4830 			goto queuepkt;
4831 		}
4832 
4833 		TAILQ_INIT(&bf_q);
4834 
4835 		/*
4836 		 * Do a rate control lookup on the first frame in the
4837 		 * list. The rate control code needs that to occur
4838 		 * before it can determine whether to TX.
4839 		 * It's inaccurate because the rate control code doesn't
4840 		 * really "do" aggregate lookups, so it only considers
4841 		 * the size of the first frame.
4842 		 */
4843 		ath_tx_do_ratelookup(sc, bf);
4844 		bf->bf_state.bfs_rc[3].rix = 0;
4845 		bf->bf_state.bfs_rc[3].tries = 0;
4846 
4847 		ath_tx_calc_duration(sc, bf);
4848 		ath_tx_calc_protection(sc, bf);
4849 
4850 		ath_tx_set_rtscts(sc, bf);
4851 		ath_tx_rate_fill_rcflags(sc, bf);
4852 
4853 		status = ath_tx_form_aggr(sc, an, tid, &bf_q);
4854 
4855 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4856 		    "%s: ath_tx_form_aggr() status=%d\n", __func__, status);
4857 
4858 		/*
4859 		 * No frames to be picked up - out of BAW
4860 		 */
4861 		if (TAILQ_EMPTY(&bf_q))
4862 			break;
4863 
4864 		/*
4865 		 * This assumes that the descriptor list in the ath_bufhead
4866 		 * are already linked together via bf_next pointers.
4867 		 */
4868 		bf = TAILQ_FIRST(&bf_q);
4869 
4870 		if (status == ATH_AGGR_8K_LIMITED)
4871 			sc->sc_aggr_stats.aggr_rts_aggr_limited++;
4872 
4873 		/*
4874 		 * If it's the only frame send as non-aggregate
4875 		 * assume that ath_tx_form_aggr() has checked
4876 		 * whether it's in the BAW and added it appropriately.
4877 		 */
4878 		if (bf->bf_state.bfs_nframes == 1) {
4879 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4880 			    "%s: single-frame aggregate\n", __func__);
4881 
4882 			/* Update CLRDMASK just before this frame is queued */
4883 			ath_tx_update_clrdmask(sc, tid, bf);
4884 
4885 			bf->bf_state.bfs_aggr = 0;
4886 			bf->bf_state.bfs_ndelim = 0;
4887 			ath_tx_setds(sc, bf);
4888 			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
4889 			if (status == ATH_AGGR_BAW_CLOSED)
4890 				sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
4891 			else
4892 				sc->sc_aggr_stats.aggr_single_pkt++;
4893 		} else {
4894 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4895 			    "%s: multi-frame aggregate: %d frames, "
4896 			    "length %d\n",
4897 			     __func__, bf->bf_state.bfs_nframes,
4898 			    bf->bf_state.bfs_al);
4899 			bf->bf_state.bfs_aggr = 1;
4900 			sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
4901 			sc->sc_aggr_stats.aggr_aggr_pkt++;
4902 
4903 			/* Update CLRDMASK just before this frame is queued */
4904 			ath_tx_update_clrdmask(sc, tid, bf);
4905 
4906 			/*
4907 			 * Calculate the duration/protection as required.
4908 			 */
4909 			ath_tx_calc_duration(sc, bf);
4910 			ath_tx_calc_protection(sc, bf);
4911 
4912 			/*
4913 			 * Update the rate and rtscts information based on the
4914 			 * rate decision made by the rate control code;
4915 			 * the first frame in the aggregate needs it.
4916 			 */
4917 			ath_tx_set_rtscts(sc, bf);
4918 
4919 			/*
4920 			 * Setup the relevant descriptor fields
4921 			 * for aggregation. The first descriptor
4922 			 * already points to the rest in the chain.
4923 			 */
4924 			ath_tx_setds_11n(sc, bf);
4925 
4926 		}
4927 	queuepkt:
4928 		/* Set completion handler, multi-frame aggregate or not */
4929 		bf->bf_comp = ath_tx_aggr_comp;
4930 
4931 		if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
4932 		    device_printf(sc->sc_dev, "%s: TID=16?\n", __func__);
4933 
4934 		/* Punt to txq */
4935 		ath_tx_handoff(sc, txq, bf);
4936 
4937 		/* Track outstanding buffer count to hardware */
4938 		/* aggregates are "one" buffer */
4939 		tid->hwq_depth++;
4940 
4941 		/*
4942 		 * Break out if ath_tx_form_aggr() indicated
4943 		 * there can't be any further progress (eg BAW is full.)
4944 		 * Checking for an empty txq is done above.
4945 		 *
4946 		 * XXX locking on txq here?
4947 		 */
4948 		if (txq->axq_aggr_depth >= sc->sc_hwq_limit ||
4949 		    status == ATH_AGGR_BAW_CLOSED)
4950 			break;
4951 	}
4952 }
4953 
4954 /*
4955  * Schedule some packets from the given node/TID to the hardware.
4956  */
4957 void
4958 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
4959     struct ath_tid *tid)
4960 {
4961 	struct ath_buf *bf;
4962 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
4963 
4964 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
4965 	    __func__, an, tid->tid);
4966 
4967 	ATH_TX_LOCK_ASSERT(sc);
4968 
4969 	/* Check - is AMPDU pending or running? then print out something */
4970 	if (ath_tx_ampdu_pending(sc, an, tid->tid))
4971 		device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n",
4972 		    __func__, tid->tid);
4973 	if (ath_tx_ampdu_running(sc, an, tid->tid))
4974 		device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n",
4975 		    __func__, tid->tid);
4976 
4977 	for (;;) {
4978 
4979 		/*
4980 		 * If the upper layers have paused the TID, don't
4981 		 * queue any further packets.
4982 		 */
4983 		if (tid->paused)
4984 			break;
4985 
4986 		bf = ATH_TID_FIRST(tid);
4987 		if (bf == NULL) {
4988 			break;
4989 		}
4990 
4991 		ATH_TID_REMOVE(tid, bf, bf_list);
4992 
4993 		/* Sanity check! */
4994 		if (tid->tid != bf->bf_state.bfs_tid) {
4995 			device_printf(sc->sc_dev, "%s: bfs_tid %d !="
4996 			    " tid %d\n",
4997 			    __func__, bf->bf_state.bfs_tid, tid->tid);
4998 		}
4999 		/* Normal completion handler */
5000 		bf->bf_comp = ath_tx_normal_comp;
5001 
5002 		/*
5003 		 * Override this for now, until the non-aggregate
5004 		 * completion handler correctly handles software retransmits.
5005 		 */
5006 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
5007 
5008 		/* Update CLRDMASK just before this frame is queued */
5009 		ath_tx_update_clrdmask(sc, tid, bf);
5010 
5011 		/* Program descriptors + rate control */
5012 		ath_tx_do_ratelookup(sc, bf);
5013 		ath_tx_calc_duration(sc, bf);
5014 		ath_tx_calc_protection(sc, bf);
5015 		ath_tx_set_rtscts(sc, bf);
5016 		ath_tx_rate_fill_rcflags(sc, bf);
5017 		ath_tx_setds(sc, bf);
5018 
5019 		/* Track outstanding buffer count to hardware */
5020 		/* aggregates are "one" buffer */
5021 		tid->hwq_depth++;
5022 
5023 		/* Punt to hardware or software txq */
5024 		ath_tx_handoff(sc, txq, bf);
5025 	}
5026 }
5027 
5028 /*
5029  * Schedule some packets to the given hardware queue.
5030  *
5031  * This function walks the list of TIDs (ie, ath_node TIDs
5032  * with queued traffic) and attempts to schedule traffic
5033  * from them.
5034  *
5035  * TID scheduling is implemented as a FIFO, with TIDs being
5036  * added to the end of the queue after some frames have been
5037  * scheduled.
5038  */
5039 void
5040 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
5041 {
5042 	struct ath_tid *tid, *next, *last;
5043 
5044 	ATH_TX_LOCK_ASSERT(sc);
5045 
5046 	/*
5047 	 * Don't schedule if the hardware queue is busy.
5048 	 * This (hopefully) gives some more time to aggregate
5049 	 * some packets in the aggregation queue.
5050 	 */
5051 	if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
5052 		sc->sc_aggr_stats.aggr_sched_nopkt++;
5053 		return;
5054 	}
5055 
5056 	last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
5057 
5058 	TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
5059 		/*
5060 		 * Suspend paused queues here; they'll be resumed
5061 		 * once the addba completes or times out.
5062 		 */
5063 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
5064 		    __func__, tid->tid, tid->paused);
5065 		ath_tx_tid_unsched(sc, tid);
5066 		if (tid->paused) {
5067 			continue;
5068 		}
5069 		if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
5070 			ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
5071 		else
5072 			ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
5073 
5074 		/* Not empty? Re-schedule */
5075 		if (tid->axq_depth != 0)
5076 			ath_tx_tid_sched(sc, tid);
5077 
5078 		/* Give the software queue time to aggregate more packets */
5079 		if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
5080 			break;
5081 		}
5082 
5083 		/*
5084 		 * If this was the last entry on the original list, stop.
5085 		 * Otherwise nodes that have been rescheduled onto the end
5086 		 * of the TID FIFO list will just keep being rescheduled.
5087 		 */
5088 		if (tid == last)
5089 			break;
5090 	}
5091 }
5092 
5093 /*
5094  * TX addba handling
5095  */
5096 
5097 /*
5098  * Return net80211 TID struct pointer, or NULL for none
5099  */
5100 struct ieee80211_tx_ampdu *
5101 ath_tx_get_tx_tid(struct ath_node *an, int tid)
5102 {
5103 	struct ieee80211_node *ni = &an->an_node;
5104 	struct ieee80211_tx_ampdu *tap;
5105 
5106 	if (tid == IEEE80211_NONQOS_TID)
5107 		return NULL;
5108 
5109 	tap = &ni->ni_tx_ampdu[tid];
5110 	return tap;
5111 }
5112 
5113 /*
5114  * Is AMPDU-TX running?
5115  */
5116 static int
5117 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
5118 {
5119 	struct ieee80211_tx_ampdu *tap;
5120 
5121 	if (tid == IEEE80211_NONQOS_TID)
5122 		return 0;
5123 
5124 	tap = ath_tx_get_tx_tid(an, tid);
5125 	if (tap == NULL)
5126 		return 0;	/* Not valid; default to not running */
5127 
5128 	return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
5129 }
5130 
5131 /*
5132  * Is AMPDU-TX negotiation pending?
5133  */
5134 static int
5135 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
5136 {
5137 	struct ieee80211_tx_ampdu *tap;
5138 
5139 	if (tid == IEEE80211_NONQOS_TID)
5140 		return 0;
5141 
5142 	tap = ath_tx_get_tx_tid(an, tid);
5143 	if (tap == NULL)
5144 		return 0;	/* Not valid; default to not pending */
5145 
5146 	return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
5147 }
5148 
5149 /*
5150  * Is AMPDU-TX pending for the given TID?
5151  */
5152 
5153 
5154 /*
5155  * Method to handle sending an ADDBA request.
5156  *
5157  * We tap this so the relevant flags can be set to pause the TID
5158  * whilst waiting for the response.
5159  *
5160  * XXX there's no timeout handler we can override?
5161  */
5162 int
5163 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5164     int dialogtoken, int baparamset, int batimeout)
5165 {
5166 	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5167 	int tid = tap->txa_tid;
5168 	struct ath_node *an = ATH_NODE(ni);
5169 	struct ath_tid *atid = &an->an_tid[tid];
5170 
5171 	/*
5172 	 * XXX danger Will Robinson!
5173 	 *
5174 	 * Although the taskqueue may be running and scheduling some more
5175 	 * packets, these should all be _before_ the addba sequence number.
5176 	 * However, net80211 will keep self-assigning sequence numbers
5177 	 * until addba has been negotiated.
5178 	 *
5179 	 * In the past, these packets would be "paused" (which still works
5180 	 * fine, as they're being scheduled to the driver in the same
5181 	 * serialised method which is calling the addba request routine)
5182 	 * and when the aggregation session begins, they'll be dequeued
5183 	 * as aggregate packets and added to the BAW. However, now there's
5184 	 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
5185 	 * packets. Thus they never get included in the BAW tracking and
5186 	 * this can cause the initial burst of packets after the addba
5187 	 * negotiation to "hang", as they quickly fall outside the BAW.
5188 	 *
5189 	 * The "eventual" solution should be to tag these packets with
5190 	 * dobaw. Although net80211 has given us a sequence number,
5191 	 * it'll be "after" the left edge of the BAW and thus it'll
5192 	 * fall within it.
5193 	 */
5194 	ATH_TX_LOCK(sc);
5195 	/*
5196 	 * This is a bit annoying.  Until net80211 HT code inherits some
5197 	 * (any) locking, we may have this called in parallel BUT only
5198 	 * one response/timeout will be called.  Grr.
5199 	 */
5200 	if (atid->addba_tx_pending == 0) {
5201 		ath_tx_tid_pause(sc, atid);
5202 		atid->addba_tx_pending = 1;
5203 	}
5204 	ATH_TX_UNLOCK(sc);
5205 
5206 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5207 	    "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
5208 	    __func__, dialogtoken, baparamset, batimeout);
5209 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5210 	    "%s: txa_start=%d, ni_txseqs=%d\n",
5211 	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
5212 
5213 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5214 	    batimeout);
5215 }
5216 
5217 /*
5218  * Handle an ADDBA response.
5219  *
5220  * We unpause the queue so TX'ing can resume.
5221  *
5222  * Any packets TX'ed from this point should be "aggregate" (whether
5223  * aggregate or not) so the BAW is updated.
5224  *
5225  * Note! net80211 keeps self-assigning sequence numbers until
5226  * ampdu is negotiated. This means the initially-negotiated BAW left
5227  * edge won't match the ni->ni_txseq.
5228  *
5229  * So, being very dirty, the BAW left edge is "slid" here to match
5230  * ni->ni_txseq.
5231  *
5232  * What likely SHOULD happen is that all packets subsequent to the
5233  * addba request should be tagged as aggregate and queued as non-aggregate
5234  * frames; thus updating the BAW. For now though, I'll just slide the
5235  * window.
5236  */
5237 int
5238 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5239     int status, int code, int batimeout)
5240 {
5241 	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5242 	int tid = tap->txa_tid;
5243 	struct ath_node *an = ATH_NODE(ni);
5244 	struct ath_tid *atid = &an->an_tid[tid];
5245 	int r;
5246 
5247 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5248 	    "%s: called; status=%d, code=%d, batimeout=%d\n", __func__,
5249 	    status, code, batimeout);
5250 
5251 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5252 	    "%s: txa_start=%d, ni_txseqs=%d\n",
5253 	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
5254 
5255 	/*
5256 	 * Call this first, so the interface flags get updated
5257 	 * before the TID is unpaused. Otherwise a race condition
5258 	 * exists where the unpaused TID still doesn't yet have
5259 	 * IEEE80211_AGGR_RUNNING set.
5260 	 */
5261 	r = sc->sc_addba_response(ni, tap, status, code, batimeout);
5262 
5263 	ATH_TX_LOCK(sc);
5264 	atid->addba_tx_pending = 0;
5265 	/*
5266 	 * XXX dirty!
5267 	 * Slide the BAW left edge to wherever net80211 left it for us.
5268 	 * Read above for more information.
5269 	 */
5270 	tap->txa_start = ni->ni_txseqs[tid];
5271 	ath_tx_tid_resume(sc, atid);
5272 	ATH_TX_UNLOCK(sc);
5273 	return r;
5274 }
5275 
5276 
5277 /*
5278  * Stop ADDBA on a queue.
5279  *
5280  * This can be called whilst BAR TX is currently active on the queue,
5281  * so make sure this is unblocked before continuing.
5282  */
5283 void
5284 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
5285 {
5286 	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5287 	int tid = tap->txa_tid;
5288 	struct ath_node *an = ATH_NODE(ni);
5289 	struct ath_tid *atid = &an->an_tid[tid];
5290 
5291 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__);
5292 
5293 	/*
5294 	 * Pause TID traffic early, so there aren't any races
5295 	 * Unblock the pending BAR held traffic, if it's currently paused.
5296 	 */
5297 	ATH_TX_LOCK(sc);
5298 	ath_tx_tid_pause(sc, atid);
5299 	if (atid->bar_wait) {
5300 		/*
5301 		 * bar_unsuspend() expects bar_tx == 1, as it should be
5302 		 * called from the TX completion path.  This quietens
5303 		 * the warning.  It's cleared for us anyway.
5304 		 */
5305 		atid->bar_tx = 1;
5306 		ath_tx_tid_bar_unsuspend(sc, atid);
5307 	}
5308 	ATH_TX_UNLOCK(sc);
5309 
5310 	/* There's no need to hold the TXQ lock here */
5311 	sc->sc_addba_stop(ni, tap);
5312 
5313 	/*
5314 	 * ath_tx_tid_cleanup will resume the TID if possible, otherwise
5315 	 * it'll set the cleanup flag, and it'll be unpaused once
5316 	 * things have been cleaned up.
5317 	 */
5318 	ath_tx_tid_cleanup(sc, an, tid);
5319 }
5320 
5321 /*
5322  * Note: net80211 bar_timeout() doesn't call this function on BAR failure;
5323  * it simply tears down the aggregation session. Ew.
5324  *
5325  * It however will call ieee80211_ampdu_stop() which will call
5326  * ic->ic_addba_stop().
5327  *
5328  * XXX This uses a hard-coded max BAR count value; the whole
5329  * XXX BAR TX success or failure should be better handled!
5330  */
5331 void
5332 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5333     int status)
5334 {
5335 	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5336 	int tid = tap->txa_tid;
5337 	struct ath_node *an = ATH_NODE(ni);
5338 	struct ath_tid *atid = &an->an_tid[tid];
5339 	int attempts = tap->txa_attempts;
5340 
5341 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
5342 	    "%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n",
5343 	    __func__,
5344 	    tap,
5345 	    atid,
5346 	    tap->txa_tid,
5347 	    atid->tid,
5348 	    status,
5349 	    attempts);
5350 
5351 	/* Note: This may update the BAW details */
5352 	sc->sc_bar_response(ni, tap, status);
5353 
5354 	/* Unpause the TID */
5355 	/*
5356 	 * XXX if this is attempt=50, the TID will be downgraded
5357 	 * XXX to a non-aggregate session. So we must unpause the
5358 	 * XXX TID here or it'll never be done.
5359 	 *
5360 	 * Also, don't call it if bar_tx/bar_wait are 0; something
5361 	 * has beaten us to the punch? (XXX figure out what?)
5362 	 */
5363 	if (status == 0 || attempts == 50) {
5364 		ATH_TX_LOCK(sc);
5365 		if (atid->bar_tx == 0 || atid->bar_wait == 0)
5366 			device_printf(sc->sc_dev,
5367 			    "%s: huh? bar_tx=%d, bar_wait=%d\n",
5368 			    __func__,
5369 			    atid->bar_tx, atid->bar_wait);
5370 		else
5371 			ath_tx_tid_bar_unsuspend(sc, atid);
5372 		ATH_TX_UNLOCK(sc);
5373 	}
5374 }
5375 
5376 /*
5377  * This is called whenever the pending ADDBA request times out.
5378  * Unpause and reschedule the TID.
5379  */
5380 void
5381 ath_addba_response_timeout(struct ieee80211_node *ni,
5382     struct ieee80211_tx_ampdu *tap)
5383 {
5384 	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5385 	int tid = tap->txa_tid;
5386 	struct ath_node *an = ATH_NODE(ni);
5387 	struct ath_tid *atid = &an->an_tid[tid];
5388 
5389 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5390 	    "%s: called; resuming\n", __func__);
5391 
5392 	ATH_TX_LOCK(sc);
5393 	atid->addba_tx_pending = 0;
5394 	ATH_TX_UNLOCK(sc);
5395 
5396 	/* Note: This updates the aggregate state to (again) pending */
5397 	sc->sc_addba_response_timeout(ni, tap);
5398 
5399 	/* Unpause the TID; which reschedules it */
5400 	ATH_TX_LOCK(sc);
5401 	ath_tx_tid_resume(sc, atid);
5402 	ATH_TX_UNLOCK(sc);
5403 }
5404 
5405 /*
5406  * Check if a node is asleep or not.
5407  */
5408 int
5409 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an)
5410 {
5411 
5412 	ATH_NODE_LOCK_ASSERT(an);
5413 
5414 	return (an->an_is_powersave);
5415 }
5416 
5417 /*
5418  * Mark a node as currently "in powersaving."
5419  * This suspends all traffic on the node.
5420  *
5421  * This must be called with the node/tx locks free.
5422  *
5423  * XXX TODO: the locking silliness below is due to how the node
5424  * locking currently works.  Right now, the node lock is grabbed
5425  * to do rate control lookups and these are done with the TX
5426  * queue lock held.  This means the node lock can't be grabbed
5427  * first here or a LOR will occur.
5428  *
5429  * Eventually (hopefully!) the TX path code will only grab
5430  * the TXQ lock when transmitting and the ath_node lock when
5431  * doing node/TID operations.  There are other complications -
5432  * the sched/unsched operations involve walking the per-txq
5433  * 'active tid' list and this requires both locks to be held.
5434  */
5435 void
5436 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an)
5437 {
5438 	struct ath_tid *atid;
5439 	struct ath_txq *txq;
5440 	int tid;
5441 
5442 	ATH_NODE_UNLOCK_ASSERT(an);
5443 
5444 	/*
5445 	 * It's possible that a parallel call to ath_tx_node_wakeup()
5446 	 * will unpause these queues.
5447 	 *
5448 	 * The node lock can't just be grabbed here, as there's places
5449 	 * in the driver where the node lock is grabbed _within_ a
5450 	 * TXQ lock.
5451 	 * So, we do this delicately and unwind state if needed.
5452 	 *
5453 	 * + Pause all the queues
5454 	 * + Grab the node lock
5455 	 * + If the queue is already asleep, unpause and quit
5456 	 * + else just mark as asleep.
5457 	 *
5458 	 * A parallel sleep() call will just pause and then
5459 	 * find they're already paused, so undo it.
5460 	 *
5461 	 * A parallel wakeup() call will check if asleep is 1
5462 	 * and if it's not (ie, it's 0), it'll treat it as already
5463 	 * being awake. If it's 1, it'll mark it as 0 and then
5464 	 * unpause everything.
5465 	 *
5466 	 * (Talk about a delicate hack.)
5467 	 */
5468 
5469 	/* Suspend all traffic on the node */
5470 	ATH_TX_LOCK(sc);
5471 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
5472 		atid = &an->an_tid[tid];
5473 		txq = sc->sc_ac2q[atid->ac];
5474 
5475 		ath_tx_tid_pause(sc, atid);
5476 	}
5477 	ATH_TX_UNLOCK(sc);
5478 
5479 	ATH_NODE_LOCK(an);
5480 
5481 	/* In case of concurrency races from net80211.. */
5482 	if (an->an_is_powersave == 1) {
5483 		ATH_NODE_UNLOCK(an);
5484 		device_printf(sc->sc_dev,
5485 		    "%s: an=%p: node was already asleep\n",
5486 		    __func__, an);
5487 		ATH_TX_LOCK(sc);
5488 		for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
5489 			atid = &an->an_tid[tid];
5490 			txq = sc->sc_ac2q[atid->ac];
5491 
5492 			ath_tx_tid_resume(sc, atid);
5493 		}
5494 		ATH_TX_UNLOCK(sc);
5495 		return;
5496 	}
5497 
5498 	/* Mark node as in powersaving */
5499 	an->an_is_powersave = 1;
5500 
5501 	ATH_NODE_UNLOCK(an);
5502 }
5503 
5504 /*
5505  * Mark a node as currently "awake."
5506  * This resumes all traffic to the node.
5507  */
5508 void
5509 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an)
5510 {
5511 	struct ath_tid *atid;
5512 	struct ath_txq *txq;
5513 	int tid;
5514 
5515 	ATH_NODE_UNLOCK_ASSERT(an);
5516 	ATH_NODE_LOCK(an);
5517 
5518 	/* In case of concurrency races from net80211.. */
5519 	if (an->an_is_powersave == 0) {
5520 		ATH_NODE_UNLOCK(an);
5521 		device_printf(sc->sc_dev,
5522 		    "%s: an=%p: node was already awake\n",
5523 		    __func__, an);
5524 		return;
5525 	}
5526 
5527 	/* Mark node as awake */
5528 	an->an_is_powersave = 0;
5529 
5530 	ATH_NODE_UNLOCK(an);
5531 
5532 	ATH_TX_LOCK(sc);
5533 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
5534 		atid = &an->an_tid[tid];
5535 		txq = sc->sc_ac2q[atid->ac];
5536 
5537 		ath_tx_tid_resume(sc, atid);
5538 	}
5539 	ATH_TX_UNLOCK(sc);
5540 }
5541 
5542 static int
5543 ath_legacy_dma_txsetup(struct ath_softc *sc)
5544 {
5545 
5546 	/* nothing new needed */
5547 	return (0);
5548 }
5549 
5550 static int
5551 ath_legacy_dma_txteardown(struct ath_softc *sc)
5552 {
5553 
5554 	/* nothing new needed */
5555 	return (0);
5556 }
5557 
5558 void
5559 ath_xmit_setup_legacy(struct ath_softc *sc)
5560 {
5561 	/*
5562 	 * For now, just set the descriptor length to sizeof(ath_desc);
5563 	 * worry about extracting the real length out of the HAL later.
5564 	 */
5565 	sc->sc_tx_desclen = sizeof(struct ath_desc);
5566 	sc->sc_tx_statuslen = sizeof(struct ath_desc);
5567 	sc->sc_tx_nmaps = 1;	/* only one buffer per TX desc */
5568 
5569 	sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup;
5570 	sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown;
5571 	sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func;
5572 
5573 	sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart;
5574 	sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff;
5575 
5576 	sc->sc_tx.xmit_drain = ath_legacy_tx_drain;
5577 }
5578