xref: /freebsd/sys/dev/ath/if_ath_tx.c (revision 7899f917b1c0ea178f1d2be0cfb452086d079d23)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
16  *    redistribution must be conditioned upon including a substantially
17  *    similar Disclaimer requirement for further binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
23  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
24  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
25  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
28  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGES.
31  */
32 
33 #include <sys/cdefs.h>
34 /*
35  * Driver for the Atheros Wireless LAN controller.
36  *
37  * This software is derived from work of Atsushi Onoe; his contribution
38  * is greatly appreciated.
39  */
40 
41 #include "opt_inet.h"
42 #include "opt_ath.h"
43 #include "opt_wlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/mbuf.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/kernel.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/errno.h>
56 #include <sys/callout.h>
57 #include <sys/bus.h>
58 #include <sys/endian.h>
59 #include <sys/kthread.h>
60 #include <sys/taskqueue.h>
61 #include <sys/priv.h>
62 #include <sys/ktr.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_types.h>
71 #include <net/if_arp.h>
72 #include <net/ethernet.h>
73 #include <net/if_llc.h>
74 
75 #include <net80211/ieee80211_var.h>
76 #include <net80211/ieee80211_regdomain.h>
77 #ifdef IEEE80211_SUPPORT_SUPERG
78 #include <net80211/ieee80211_superg.h>
79 #endif
80 #ifdef IEEE80211_SUPPORT_TDMA
81 #include <net80211/ieee80211_tdma.h>
82 #endif
83 #include <net80211/ieee80211_ht.h>
84 
85 #include <net/bpf.h>
86 
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/if_ether.h>
90 #endif
91 
92 #include <dev/ath/if_athvar.h>
93 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
94 #include <dev/ath/ath_hal/ah_diagcodes.h>
95 
96 #include <dev/ath/if_ath_debug.h>
97 
98 #ifdef ATH_TX99_DIAG
99 #include <dev/ath/ath_tx99/ath_tx99.h>
100 #endif
101 
102 #include <dev/ath/if_ath_misc.h>
103 #include <dev/ath/if_ath_tx.h>
104 #include <dev/ath/if_ath_tx_ht.h>
105 
106 #ifdef	ATH_DEBUG_ALQ
107 #include <dev/ath/if_ath_alq.h>
108 #endif
109 
110 /*
111  * How many retries to perform in software
112  */
113 #define	SWMAX_RETRIES		10
114 
115 /*
116  * What queue to throw the non-QoS TID traffic into
117  */
118 #define	ATH_NONQOS_TID_AC	WME_AC_VO
119 
120 #if 0
121 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an);
122 #endif
123 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
124     int tid);
125 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
126     int tid);
127 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
128     struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
129 static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
130     struct ieee80211_node *ni, struct mbuf *m0, int *tid);
131 static struct ath_buf *
132 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
133     struct ath_tid *tid, struct ath_buf *bf);
134 
135 #ifdef	ATH_DEBUG_ALQ
136 void
137 ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first)
138 {
139 	struct ath_buf *bf;
140 	int i, n;
141 	const char *ds;
142 
143 	/* XXX we should skip out early if debugging isn't enabled! */
144 	bf = bf_first;
145 
146 	while (bf != NULL) {
147 		/* XXX should ensure bf_nseg > 0! */
148 		if (bf->bf_nseg == 0)
149 			break;
150 		n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1;
151 		for (i = 0, ds = (const char *) bf->bf_desc;
152 		    i < n;
153 		    i++, ds += sc->sc_tx_desclen) {
154 			if_ath_alq_post(&sc->sc_alq,
155 			    ATH_ALQ_EDMA_TXDESC,
156 			    sc->sc_tx_desclen,
157 			    ds);
158 		}
159 		bf = bf->bf_next;
160 	}
161 }
162 #endif /* ATH_DEBUG_ALQ */
163 
164 /*
165  * Whether to use the 11n rate scenario functions or not
166  */
167 static inline int
168 ath_tx_is_11n(struct ath_softc *sc)
169 {
170 	return ((sc->sc_ah->ah_magic == 0x20065416) ||
171 		    (sc->sc_ah->ah_magic == 0x19741014));
172 }
173 
174 /*
175  * Obtain the current TID from the given frame.
176  *
177  * Non-QoS frames get mapped to a TID so frames consistently
178  * go on a sensible queue.
179  */
180 static int
181 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
182 {
183 	const struct ieee80211_frame *wh;
184 
185 	wh = mtod(m0, const struct ieee80211_frame *);
186 
187 	/* Non-QoS: map frame to a TID queue for software queueing */
188 	if (! IEEE80211_QOS_HAS_SEQ(wh))
189 		return (WME_AC_TO_TID(M_WME_GETAC(m0)));
190 
191 	/* QoS - fetch the TID from the header, ignore mbuf WME */
192 	return (ieee80211_gettid(wh));
193 }
194 
195 static void
196 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
197 {
198 	struct ieee80211_frame *wh;
199 
200 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
201 	/* Only update/resync if needed */
202 	if (bf->bf_state.bfs_isretried == 0) {
203 		wh->i_fc[1] |= IEEE80211_FC1_RETRY;
204 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
205 		    BUS_DMASYNC_PREWRITE);
206 	}
207 	bf->bf_state.bfs_isretried = 1;
208 	bf->bf_state.bfs_retries ++;
209 }
210 
211 /*
212  * Determine what the correct AC queue for the given frame
213  * should be.
214  *
215  * For QoS frames, obey the TID.  That way things like
216  * management frames that are related to a given TID
217  * are thus serialised with the rest of the TID traffic,
218  * regardless of net80211 overriding priority.
219  *
220  * For non-QoS frames, return the mbuf WMI priority.
221  *
222  * This has implications that higher priority non-QoS traffic
223  * may end up being scheduled before other non-QoS traffic,
224  * leading to out-of-sequence packets being emitted.
225  *
226  * (It'd be nice to log/count this so we can see if it
227  * really is a problem.)
228  *
229  * TODO: maybe we should throw multicast traffic, QoS or
230  * otherwise, into a separate TX queue?
231  */
232 static int
233 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
234 {
235 	const struct ieee80211_frame *wh;
236 
237 	wh = mtod(m0, const struct ieee80211_frame *);
238 
239 	/*
240 	 * QoS data frame (sequence number or otherwise) -
241 	 * return hardware queue mapping for the underlying
242 	 * TID.
243 	 */
244 	if (IEEE80211_QOS_HAS_SEQ(wh))
245 		return TID_TO_WME_AC(ieee80211_gettid(wh));
246 
247 	/*
248 	 * Otherwise - return mbuf QoS pri.
249 	 */
250 	return (M_WME_GETAC(m0));
251 }
252 
253 void
254 ath_txfrag_cleanup(struct ath_softc *sc,
255 	ath_bufhead *frags, struct ieee80211_node *ni)
256 {
257 	struct ath_buf *bf, *next;
258 
259 	ATH_TXBUF_LOCK_ASSERT(sc);
260 
261 	TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
262 		/* NB: bf assumed clean */
263 		TAILQ_REMOVE(frags, bf, bf_list);
264 		ath_returnbuf_head(sc, bf);
265 		ieee80211_node_decref(ni);
266 	}
267 }
268 
269 /*
270  * Setup xmit of a fragmented frame.  Allocate a buffer
271  * for each frag and bump the node reference count to
272  * reflect the held reference to be setup by ath_tx_start.
273  */
274 int
275 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
276 	struct mbuf *m0, struct ieee80211_node *ni)
277 {
278 	struct mbuf *m;
279 	struct ath_buf *bf;
280 
281 	ATH_TXBUF_LOCK(sc);
282 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
283 		/* XXX non-management? */
284 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
285 		if (bf == NULL) {	/* out of buffers, cleanup */
286 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: no buffer?\n",
287 			    __func__);
288 			ath_txfrag_cleanup(sc, frags, ni);
289 			break;
290 		}
291 		(void) ieee80211_ref_node(ni);
292 		TAILQ_INSERT_TAIL(frags, bf, bf_list);
293 	}
294 	ATH_TXBUF_UNLOCK(sc);
295 
296 	return !TAILQ_EMPTY(frags);
297 }
298 
299 static int
300 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
301 {
302 	struct mbuf *m;
303 	int error;
304 
305 	/*
306 	 * Load the DMA map so any coalescing is done.  This
307 	 * also calculates the number of descriptors we need.
308 	 */
309 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
310 				     bf->bf_segs, &bf->bf_nseg,
311 				     BUS_DMA_NOWAIT);
312 	if (error == EFBIG) {
313 		/* XXX packet requires too many descriptors */
314 		bf->bf_nseg = ATH_MAX_SCATTER + 1;
315 	} else if (error != 0) {
316 		sc->sc_stats.ast_tx_busdma++;
317 		ieee80211_free_mbuf(m0);
318 		return error;
319 	}
320 	/*
321 	 * Discard null packets and check for packets that
322 	 * require too many TX descriptors.  We try to convert
323 	 * the latter to a cluster.
324 	 */
325 	if (bf->bf_nseg > ATH_MAX_SCATTER) {		/* too many desc's, linearize */
326 		sc->sc_stats.ast_tx_linear++;
327 		m = m_collapse(m0, M_NOWAIT, ATH_MAX_SCATTER);
328 		if (m == NULL) {
329 			ieee80211_free_mbuf(m0);
330 			sc->sc_stats.ast_tx_nombuf++;
331 			return ENOMEM;
332 		}
333 		m0 = m;
334 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
335 					     bf->bf_segs, &bf->bf_nseg,
336 					     BUS_DMA_NOWAIT);
337 		if (error != 0) {
338 			sc->sc_stats.ast_tx_busdma++;
339 			ieee80211_free_mbuf(m0);
340 			return error;
341 		}
342 		KASSERT(bf->bf_nseg <= ATH_MAX_SCATTER,
343 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
344 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
345 		sc->sc_stats.ast_tx_nodata++;
346 		ieee80211_free_mbuf(m0);
347 		return EIO;
348 	}
349 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
350 		__func__, m0, m0->m_pkthdr.len);
351 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
352 	bf->bf_m = m0;
353 
354 	return 0;
355 }
356 
357 /*
358  * Chain together segments+descriptors for a frame - 11n or otherwise.
359  *
360  * For aggregates, this is called on each frame in the aggregate.
361  */
362 static void
363 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0,
364     struct ath_buf *bf, bool is_aggr, int is_first_subframe,
365     int is_last_subframe)
366 {
367 	struct ath_hal *ah = sc->sc_ah;
368 	char *ds;
369 	int i, bp, dsp;
370 	HAL_DMA_ADDR bufAddrList[4];
371 	uint32_t segLenList[4];
372 	int numTxMaps = 1;
373 	int isFirstDesc = 1;
374 
375 	/*
376 	 * XXX There's txdma and txdma_mgmt; the descriptor
377 	 * sizes must match.
378 	 */
379 	struct ath_descdma *dd = &sc->sc_txdma;
380 
381 	/*
382 	 * Fillin the remainder of the descriptor info.
383 	 */
384 
385 	/*
386 	 * We need the number of TX data pointers in each descriptor.
387 	 * EDMA and later chips support 4 TX buffers per descriptor;
388 	 * previous chips just support one.
389 	 */
390 	numTxMaps = sc->sc_tx_nmaps;
391 
392 	/*
393 	 * For EDMA and later chips ensure the TX map is fully populated
394 	 * before advancing to the next descriptor.
395 	 */
396 	ds = (char *) bf->bf_desc;
397 	bp = dsp = 0;
398 	bzero(bufAddrList, sizeof(bufAddrList));
399 	bzero(segLenList, sizeof(segLenList));
400 	for (i = 0; i < bf->bf_nseg; i++) {
401 		bufAddrList[bp] = bf->bf_segs[i].ds_addr;
402 		segLenList[bp] = bf->bf_segs[i].ds_len;
403 		bp++;
404 
405 		/*
406 		 * Go to the next segment if this isn't the last segment
407 		 * and there's space in the current TX map.
408 		 */
409 		if ((i != bf->bf_nseg - 1) && (bp < numTxMaps))
410 			continue;
411 
412 		/*
413 		 * Last segment or we're out of buffer pointers.
414 		 */
415 		bp = 0;
416 
417 		if (i == bf->bf_nseg - 1)
418 			ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0);
419 		else
420 			ath_hal_settxdesclink(ah, (struct ath_desc *) ds,
421 			    bf->bf_daddr + dd->dd_descsize * (dsp + 1));
422 
423 		/*
424 		 * XXX This assumes that bfs_txq is the actual destination
425 		 * hardware queue at this point.  It may not have been
426 		 * assigned, it may actually be pointing to the multicast
427 		 * software TXQ id.  These must be fixed!
428 		 */
429 		ath_hal_filltxdesc(ah, (struct ath_desc *) ds
430 			, bufAddrList
431 			, segLenList
432 			, bf->bf_descid		/* XXX desc id */
433 			, bf->bf_state.bfs_tx_queue
434 			, isFirstDesc		/* first segment */
435 			, i == bf->bf_nseg - 1	/* last segment */
436 			, (struct ath_desc *) ds0	/* first descriptor */
437 		);
438 
439 		/*
440 		 * Make sure the 11n aggregate fields are cleared.
441 		 *
442 		 * XXX TODO: this doesn't need to be called for
443 		 * aggregate frames; as it'll be called on all
444 		 * sub-frames.  Since the descriptors are in
445 		 * non-cacheable memory, this leads to some
446 		 * rather slow writes on MIPS/ARM platforms.
447 		 */
448 		if (ath_tx_is_11n(sc))
449 			ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds);
450 
451 		/*
452 		 * If 11n is enabled, set it up as if it's an aggregate
453 		 * frame.
454 		 */
455 		if (is_last_subframe) {
456 			ath_hal_set11n_aggr_last(sc->sc_ah,
457 			    (struct ath_desc *) ds);
458 		} else if (is_aggr) {
459 			/*
460 			 * This clears the aggrlen field; so
461 			 * the caller needs to call set_aggr_first()!
462 			 *
463 			 * XXX TODO: don't call this for the first
464 			 * descriptor in the first frame in an
465 			 * aggregate!
466 			 */
467 			ath_hal_set11n_aggr_middle(sc->sc_ah,
468 			    (struct ath_desc *) ds,
469 			    bf->bf_state.bfs_ndelim);
470 		}
471 		isFirstDesc = 0;
472 		bf->bf_lastds = (struct ath_desc *) ds;
473 
474 		/*
475 		 * Don't forget to skip to the next descriptor.
476 		 */
477 		ds += sc->sc_tx_desclen;
478 		dsp++;
479 
480 		/*
481 		 * .. and don't forget to blank these out!
482 		 */
483 		bzero(bufAddrList, sizeof(bufAddrList));
484 		bzero(segLenList, sizeof(segLenList));
485 	}
486 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
487 }
488 
489 /*
490  * Set the rate control fields in the given descriptor based on
491  * the bf_state fields and node state.
492  *
493  * The bfs fields should already be set with the relevant rate
494  * control information, including whether MRR is to be enabled.
495  *
496  * Since the FreeBSD HAL currently sets up the first TX rate
497  * in ath_hal_setuptxdesc(), this will setup the MRR
498  * conditionally for the pre-11n chips, and call ath_buf_set_rate
499  * unconditionally for 11n chips. These require the 11n rate
500  * scenario to be set if MCS rates are enabled, so it's easier
501  * to just always call it. The caller can then only set rates 2, 3
502  * and 4 if multi-rate retry is needed.
503  */
504 static void
505 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
506     struct ath_buf *bf)
507 {
508 	struct ath_rc_series *rc = bf->bf_state.bfs_rc;
509 
510 	/* If mrr is disabled, blank tries 1, 2, 3 */
511 	if (! bf->bf_state.bfs_ismrr)
512 		rc[1].tries = rc[2].tries = rc[3].tries = 0;
513 
514 #if 0
515 	/*
516 	 * If NOACK is set, just set ntries=1.
517 	 */
518 	else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) {
519 		rc[1].tries = rc[2].tries = rc[3].tries = 0;
520 		rc[0].tries = 1;
521 	}
522 #endif
523 
524 	/*
525 	 * Always call - that way a retried descriptor will
526 	 * have the MRR fields overwritten.
527 	 *
528 	 * XXX TODO: see if this is really needed - setting up
529 	 * the first descriptor should set the MRR fields to 0
530 	 * for us anyway.
531 	 */
532 	if (ath_tx_is_11n(sc)) {
533 		ath_buf_set_rate(sc, ni, bf);
534 	} else {
535 		ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
536 			, rc[1].ratecode, rc[1].tries
537 			, rc[2].ratecode, rc[2].tries
538 			, rc[3].ratecode, rc[3].tries
539 		);
540 	}
541 }
542 
543 /*
544  * Setup segments+descriptors for an 11n aggregate.
545  * bf_first is the first buffer in the aggregate.
546  * The descriptor list must already been linked together using
547  * bf->bf_next.
548  */
549 static void
550 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
551 {
552 	struct ath_buf *bf, *bf_prev = NULL;
553 	struct ath_desc *ds0 = bf_first->bf_desc;
554 
555 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
556 	    __func__, bf_first->bf_state.bfs_nframes,
557 	    bf_first->bf_state.bfs_al);
558 
559 	bf = bf_first;
560 
561 	if (bf->bf_state.bfs_txrate0 == 0)
562 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, txrate0=%d\n",
563 		    __func__, bf, 0);
564 	if (bf->bf_state.bfs_rc[0].ratecode == 0)
565 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, rix0=%d\n",
566 		    __func__, bf, 0);
567 
568 	/*
569 	 * Setup all descriptors of all subframes - this will
570 	 * call ath_hal_set11naggrmiddle() on every frame.
571 	 */
572 	while (bf != NULL) {
573 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
574 		    "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
575 		    __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
576 		    SEQNO(bf->bf_state.bfs_seqno));
577 
578 		/*
579 		 * Setup the initial fields for the first descriptor - all
580 		 * the non-11n specific stuff.
581 		 */
582 		ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc
583 			, bf->bf_state.bfs_pktlen	/* packet length */
584 			, bf->bf_state.bfs_hdrlen	/* header length */
585 			, bf->bf_state.bfs_atype	/* Atheros packet type */
586 			, bf->bf_state.bfs_txpower	/* txpower */
587 			, bf->bf_state.bfs_txrate0
588 			, bf->bf_state.bfs_try0		/* series 0 rate/tries */
589 			, bf->bf_state.bfs_keyix	/* key cache index */
590 			, bf->bf_state.bfs_txantenna	/* antenna mode */
591 			, bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ	/* flags */
592 			, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
593 			, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
594 		);
595 
596 		/*
597 		 * First descriptor? Setup the rate control and initial
598 		 * aggregate header information.
599 		 */
600 		if (bf == bf_first) {
601 			/*
602 			 * setup first desc with rate and aggr info
603 			 */
604 			ath_tx_set_ratectrl(sc, bf->bf_node, bf);
605 		}
606 
607 		/*
608 		 * Setup the descriptors for a multi-descriptor frame.
609 		 * This is both aggregate and non-aggregate aware.
610 		 */
611 		ath_tx_chaindesclist(sc, ds0, bf,
612 		    1, /* is_aggr */
613 		    !! (bf == bf_first), /* is_first_subframe */
614 		    !! (bf->bf_next == NULL) /* is_last_subframe */
615 		    );
616 
617 		if (bf == bf_first) {
618 			/*
619 			 * Initialise the first 11n aggregate with the
620 			 * aggregate length and aggregate enable bits.
621 			 */
622 			ath_hal_set11n_aggr_first(sc->sc_ah,
623 			    ds0,
624 			    bf->bf_state.bfs_al,
625 			    bf->bf_state.bfs_ndelim);
626 		}
627 
628 		/*
629 		 * Link the last descriptor of the previous frame
630 		 * to the beginning descriptor of this frame.
631 		 */
632 		if (bf_prev != NULL)
633 			ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds,
634 			    bf->bf_daddr);
635 
636 		/* Save a copy so we can link the next descriptor in */
637 		bf_prev = bf;
638 		bf = bf->bf_next;
639 	}
640 
641 	/*
642 	 * Set the first descriptor bf_lastds field to point to
643 	 * the last descriptor in the last subframe, that's where
644 	 * the status update will occur.
645 	 */
646 	bf_first->bf_lastds = bf_prev->bf_lastds;
647 
648 	/*
649 	 * And bf_last in the first descriptor points to the end of
650 	 * the aggregate list.
651 	 */
652 	bf_first->bf_last = bf_prev;
653 
654 	/*
655 	 * For non-AR9300 NICs, which require the rate control
656 	 * in the final descriptor - let's set that up now.
657 	 *
658 	 * This is because the filltxdesc() HAL call doesn't
659 	 * populate the last segment with rate control information
660 	 * if firstSeg is also true.  For non-aggregate frames
661 	 * that is fine, as the first frame already has rate control
662 	 * info.  But if the last frame in an aggregate has one
663 	 * descriptor, both firstseg and lastseg will be true and
664 	 * the rate info isn't copied.
665 	 *
666 	 * This is inefficient on MIPS/ARM platforms that have
667 	 * non-cachable memory for TX descriptors, but we'll just
668 	 * make do for now.
669 	 *
670 	 * As to why the rate table is stashed in the last descriptor
671 	 * rather than the first descriptor?  Because proctxdesc()
672 	 * is called on the final descriptor in an MPDU or A-MPDU -
673 	 * ie, the one that gets updated by the hardware upon
674 	 * completion.  That way proctxdesc() doesn't need to know
675 	 * about the first _and_ last TX descriptor.
676 	 */
677 	ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0);
678 
679 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
680 }
681 
682 /*
683  * Hand-off a frame to the multicast TX queue.
684  *
685  * This is a software TXQ which will be appended to the CAB queue
686  * during the beacon setup code.
687  *
688  * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID
689  * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated
690  * with the actual hardware txq, or all of this will fall apart.
691  *
692  * XXX It may not be a bad idea to just stuff the QCU ID into bf_state
693  * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated
694  * correctly.
695  */
696 static void
697 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
698     struct ath_buf *bf)
699 {
700 	ATH_TX_LOCK_ASSERT(sc);
701 
702 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
703 	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
704 
705 	/*
706 	 * Ensure that the tx queue is the cabq, so things get
707 	 * mapped correctly.
708 	 */
709 	if (bf->bf_state.bfs_tx_queue != sc->sc_cabq->axq_qnum) {
710 		DPRINTF(sc, ATH_DEBUG_XMIT,
711 		    "%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n",
712 		    __func__, bf, bf->bf_state.bfs_tx_queue,
713 		    txq->axq_qnum);
714 	}
715 
716 	ATH_TXQ_LOCK(txq);
717 	if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) {
718 		struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s);
719 		struct ieee80211_frame *wh;
720 
721 		/* mark previous frame */
722 		wh = mtod(bf_last->bf_m, struct ieee80211_frame *);
723 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
724 		bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap,
725 		    BUS_DMASYNC_PREWRITE);
726 
727 		/* link descriptor */
728 		ath_hal_settxdesclink(sc->sc_ah,
729 		    bf_last->bf_lastds,
730 		    bf->bf_daddr);
731 	}
732 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
733 	ATH_TXQ_UNLOCK(txq);
734 }
735 
736 /*
737  * Hand-off packet to a hardware queue.
738  */
739 static void
740 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
741     struct ath_buf *bf)
742 {
743 	struct ath_hal *ah = sc->sc_ah;
744 	struct ath_buf *bf_first;
745 
746 	/*
747 	 * Insert the frame on the outbound list and pass it on
748 	 * to the hardware.  Multicast frames buffered for power
749 	 * save stations and transmit from the CAB queue are stored
750 	 * on a s/w only queue and loaded on to the CAB queue in
751 	 * the SWBA handler since frames only go out on DTIM and
752 	 * to avoid possible races.
753 	 */
754 	ATH_TX_LOCK_ASSERT(sc);
755 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
756 	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
757 	KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
758 	     ("ath_tx_handoff_hw called for mcast queue"));
759 
760 	/*
761 	 * XXX We should instead just verify that sc_txstart_cnt
762 	 * or ath_txproc_cnt > 0.  That would mean that
763 	 * the reset is going to be waiting for us to complete.
764 	 */
765 	if (sc->sc_txproc_cnt == 0 && sc->sc_txstart_cnt == 0) {
766 		device_printf(sc->sc_dev,
767 		    "%s: TX dispatch without holding txcount/txstart refcnt!\n",
768 		    __func__);
769 	}
770 
771 	/*
772 	 * XXX .. this is going to cause the hardware to get upset;
773 	 * so we really should find some way to drop or queue
774 	 * things.
775 	 */
776 
777 	ATH_TXQ_LOCK(txq);
778 
779 	/*
780 	 * XXX TODO: if there's a holdingbf, then
781 	 * ATH_TXQ_PUTRUNNING should be clear.
782 	 *
783 	 * If there is a holdingbf and the list is empty,
784 	 * then axq_link should be pointing to the holdingbf.
785 	 *
786 	 * Otherwise it should point to the last descriptor
787 	 * in the last ath_buf.
788 	 *
789 	 * In any case, we should really ensure that we
790 	 * update the previous descriptor link pointer to
791 	 * this descriptor, regardless of all of the above state.
792 	 *
793 	 * For now this is captured by having axq_link point
794 	 * to either the holdingbf (if the TXQ list is empty)
795 	 * or the end of the list (if the TXQ list isn't empty.)
796 	 * I'd rather just kill axq_link here and do it as above.
797 	 */
798 
799 	/*
800 	 * Append the frame to the TX queue.
801 	 */
802 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
803 	ATH_KTR(sc, ATH_KTR_TX, 3,
804 	    "ath_tx_handoff: non-tdma: txq=%u, add bf=%p "
805 	    "depth=%d",
806 	    txq->axq_qnum,
807 	    bf,
808 	    txq->axq_depth);
809 
810 	/*
811 	 * If there's a link pointer, update it.
812 	 *
813 	 * XXX we should replace this with the above logic, just
814 	 * to kill axq_link with fire.
815 	 */
816 	if (txq->axq_link != NULL) {
817 		*txq->axq_link = bf->bf_daddr;
818 		DPRINTF(sc, ATH_DEBUG_XMIT,
819 		    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
820 		    txq->axq_qnum, txq->axq_link,
821 		    (caddr_t)bf->bf_daddr, bf->bf_desc,
822 		    txq->axq_depth);
823 		ATH_KTR(sc, ATH_KTR_TX, 5,
824 		    "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) "
825 		    "lastds=%d",
826 		    txq->axq_qnum, txq->axq_link,
827 		    (caddr_t)bf->bf_daddr, bf->bf_desc,
828 		    bf->bf_lastds);
829 	}
830 
831 	/*
832 	 * If we've not pushed anything into the hardware yet,
833 	 * push the head of the queue into the TxDP.
834 	 *
835 	 * Once we've started DMA, there's no guarantee that
836 	 * updating the TxDP with a new value will actually work.
837 	 * So we just don't do that - if we hit the end of the list,
838 	 * we keep that buffer around (the "holding buffer") and
839 	 * re-start DMA by updating the link pointer of _that_
840 	 * descriptor and then restart DMA.
841 	 */
842 	if (! (txq->axq_flags & ATH_TXQ_PUTRUNNING)) {
843 		bf_first = TAILQ_FIRST(&txq->axq_q);
844 		txq->axq_flags |= ATH_TXQ_PUTRUNNING;
845 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf_first->bf_daddr);
846 		DPRINTF(sc, ATH_DEBUG_XMIT,
847 		    "%s: TXDP[%u] = %p (%p) depth %d\n",
848 		    __func__, txq->axq_qnum,
849 		    (caddr_t)bf_first->bf_daddr, bf_first->bf_desc,
850 		    txq->axq_depth);
851 		ATH_KTR(sc, ATH_KTR_TX, 5,
852 		    "ath_tx_handoff: TXDP[%u] = %p (%p) "
853 		    "lastds=%p depth %d",
854 		    txq->axq_qnum,
855 		    (caddr_t)bf_first->bf_daddr, bf_first->bf_desc,
856 		    bf_first->bf_lastds,
857 		    txq->axq_depth);
858 	}
859 
860 	/*
861 	 * Ensure that the bf TXQ matches this TXQ, so later
862 	 * checking and holding buffer manipulation is sane.
863 	 */
864 	if (bf->bf_state.bfs_tx_queue != txq->axq_qnum) {
865 		DPRINTF(sc, ATH_DEBUG_XMIT,
866 		    "%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n",
867 		    __func__, bf, bf->bf_state.bfs_tx_queue,
868 		    txq->axq_qnum);
869 	}
870 
871 	/*
872 	 * Track aggregate queue depth.
873 	 */
874 	if (bf->bf_state.bfs_aggr)
875 		txq->axq_aggr_depth++;
876 
877 	/*
878 	 * Update the link pointer.
879 	 */
880 	ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link);
881 
882 	/*
883 	 * Start DMA.
884 	 *
885 	 * If we wrote a TxDP above, DMA will start from here.
886 	 *
887 	 * If DMA is running, it'll do nothing.
888 	 *
889 	 * If the DMA engine hit the end of the QCU list (ie LINK=NULL,
890 	 * or VEOL) then it stops at the last transmitted write.
891 	 * We then append a new frame by updating the link pointer
892 	 * in that descriptor and then kick TxE here; it will re-read
893 	 * that last descriptor and find the new descriptor to transmit.
894 	 *
895 	 * This is why we keep the holding descriptor around.
896 	 */
897 	ath_hal_txstart(ah, txq->axq_qnum);
898 	ATH_TXQ_UNLOCK(txq);
899 	ATH_KTR(sc, ATH_KTR_TX, 1,
900 	    "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum);
901 }
902 
903 /*
904  * Restart TX DMA for the given TXQ.
905  *
906  * This must be called whether the queue is empty or not.
907  */
908 static void
909 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq)
910 {
911 	struct ath_buf *bf, *bf_last;
912 
913 	ATH_TXQ_LOCK_ASSERT(txq);
914 
915 	/* XXX make this ATH_TXQ_FIRST */
916 	bf = TAILQ_FIRST(&txq->axq_q);
917 	bf_last = ATH_TXQ_LAST(txq, axq_q_s);
918 
919 	if (bf == NULL)
920 		return;
921 
922 	DPRINTF(sc, ATH_DEBUG_RESET,
923 	    "%s: Q%d: bf=%p, bf_last=%p, daddr=0x%08x\n",
924 	    __func__,
925 	    txq->axq_qnum,
926 	    bf,
927 	    bf_last,
928 	    (uint32_t) bf->bf_daddr);
929 
930 #ifdef	ATH_DEBUG
931 	if (sc->sc_debug & ATH_DEBUG_RESET)
932 		ath_tx_dump(sc, txq);
933 #endif
934 
935 	/*
936 	 * This is called from a restart, so DMA is known to be
937 	 * completely stopped.
938 	 */
939 	KASSERT((!(txq->axq_flags & ATH_TXQ_PUTRUNNING)),
940 	    ("%s: Q%d: called with PUTRUNNING=1\n",
941 	    __func__,
942 	    txq->axq_qnum));
943 
944 	ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
945 	txq->axq_flags |= ATH_TXQ_PUTRUNNING;
946 
947 	ath_hal_gettxdesclinkptr(sc->sc_ah, bf_last->bf_lastds,
948 	    &txq->axq_link);
949 	ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
950 }
951 
952 /*
953  * Hand off a packet to the hardware (or mcast queue.)
954  *
955  * The relevant hardware txq should be locked.
956  */
957 static void
958 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq,
959     struct ath_buf *bf)
960 {
961 	ATH_TX_LOCK_ASSERT(sc);
962 
963 #ifdef	ATH_DEBUG_ALQ
964 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
965 		ath_tx_alq_post(sc, bf);
966 #endif
967 
968 	if (txq->axq_qnum == ATH_TXQ_SWQ)
969 		ath_tx_handoff_mcast(sc, txq, bf);
970 	else
971 		ath_tx_handoff_hw(sc, txq, bf);
972 }
973 
974 static int
975 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
976     struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen,
977     int *keyix)
978 {
979 	DPRINTF(sc, ATH_DEBUG_XMIT,
980 	    "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n",
981 	    __func__,
982 	    *hdrlen,
983 	    *pktlen,
984 	    isfrag,
985 	    iswep,
986 	    m0);
987 
988 	if (iswep) {
989 		const struct ieee80211_cipher *cip;
990 		struct ieee80211_key *k;
991 
992 		/*
993 		 * Construct the 802.11 header+trailer for an encrypted
994 		 * frame. The only reason this can fail is because of an
995 		 * unknown or unsupported cipher/key type.
996 		 */
997 		k = ieee80211_crypto_encap(ni, m0);
998 		if (k == NULL) {
999 			/*
1000 			 * This can happen when the key is yanked after the
1001 			 * frame was queued.  Just discard the frame; the
1002 			 * 802.11 layer counts failures and provides
1003 			 * debugging/diagnostics.
1004 			 */
1005 			return (0);
1006 		}
1007 		/*
1008 		 * Adjust the packet + header lengths for the crypto
1009 		 * additions and calculate the h/w key index.  When
1010 		 * a s/w mic is done the frame will have had any mic
1011 		 * added to it prior to entry so m0->m_pkthdr.len will
1012 		 * account for it. Otherwise we need to add it to the
1013 		 * packet length.
1014 		 */
1015 		cip = k->wk_cipher;
1016 		(*hdrlen) += cip->ic_header;
1017 		(*pktlen) += cip->ic_header + cip->ic_trailer;
1018 		/* NB: frags always have any TKIP MIC done in s/w */
1019 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
1020 			(*pktlen) += cip->ic_miclen;
1021 		(*keyix) = k->wk_keyix;
1022 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
1023 		/*
1024 		 * Use station key cache slot, if assigned.
1025 		 */
1026 		(*keyix) = ni->ni_ucastkey.wk_keyix;
1027 		if ((*keyix) == IEEE80211_KEYIX_NONE)
1028 			(*keyix) = HAL_TXKEYIX_INVALID;
1029 	} else
1030 		(*keyix) = HAL_TXKEYIX_INVALID;
1031 
1032 	return (1);
1033 }
1034 
1035 /*
1036  * Calculate whether interoperability protection is required for
1037  * this frame.
1038  *
1039  * This requires the rate control information be filled in,
1040  * as the protection requirement depends upon the current
1041  * operating mode / PHY.
1042  */
1043 static void
1044 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf)
1045 {
1046 	struct ieee80211_frame *wh;
1047 	uint8_t rix;
1048 	uint16_t flags;
1049 	int shortPreamble;
1050 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1051 	struct ieee80211com *ic = &sc->sc_ic;
1052 
1053 	flags = bf->bf_state.bfs_txflags;
1054 	rix = bf->bf_state.bfs_rc[0].rix;
1055 	shortPreamble = bf->bf_state.bfs_shpream;
1056 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
1057 
1058 	/* Disable frame protection for TOA probe frames */
1059 	if (bf->bf_flags & ATH_BUF_TOA_PROBE) {
1060 		/* XXX count */
1061 		flags &= ~(HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA);
1062 		bf->bf_state.bfs_doprot = 0;
1063 		goto finish;
1064 	}
1065 
1066 	/*
1067 	 * If 802.11g protection is enabled, determine whether
1068 	 * to use RTS/CTS or just CTS.  Note that this is only
1069 	 * done for OFDM unicast frames.
1070 	 */
1071 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1072 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
1073 	    (flags & HAL_TXDESC_NOACK) == 0) {
1074 		bf->bf_state.bfs_doprot = 1;
1075 		/* XXX fragments must use CCK rates w/ protection */
1076 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
1077 			flags |= HAL_TXDESC_RTSENA;
1078 		} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
1079 			flags |= HAL_TXDESC_CTSENA;
1080 		}
1081 		/*
1082 		 * For frags it would be desirable to use the
1083 		 * highest CCK rate for RTS/CTS.  But stations
1084 		 * farther away may detect it at a lower CCK rate
1085 		 * so use the configured protection rate instead
1086 		 * (for now).
1087 		 */
1088 		sc->sc_stats.ast_tx_protect++;
1089 	}
1090 
1091 	/*
1092 	 * If 11n protection is enabled and it's a HT frame,
1093 	 * enable RTS.
1094 	 *
1095 	 * XXX ic_htprotmode or ic_curhtprotmode?
1096 	 * XXX should it_htprotmode only matter if ic_curhtprotmode
1097 	 * XXX indicates it's not a HT pure environment?
1098 	 */
1099 	if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
1100 	    rt->info[rix].phy == IEEE80211_T_HT &&
1101 	    (flags & HAL_TXDESC_NOACK) == 0) {
1102 		flags |= HAL_TXDESC_RTSENA;
1103 		sc->sc_stats.ast_tx_htprotect++;
1104 	}
1105 
1106 finish:
1107 	bf->bf_state.bfs_txflags = flags;
1108 }
1109 
1110 /*
1111  * Update the frame duration given the currently selected rate.
1112  *
1113  * This also updates the frame duration value, so it will require
1114  * a DMA flush.
1115  */
1116 static void
1117 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf)
1118 {
1119 	struct ieee80211_frame *wh;
1120 	uint8_t rix;
1121 	uint16_t flags;
1122 	int shortPreamble;
1123 	struct ath_hal *ah = sc->sc_ah;
1124 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1125 	int isfrag = bf->bf_m->m_flags & M_FRAG;
1126 
1127 	flags = bf->bf_state.bfs_txflags;
1128 	rix = bf->bf_state.bfs_rc[0].rix;
1129 	shortPreamble = bf->bf_state.bfs_shpream;
1130 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
1131 
1132 	/*
1133 	 * Calculate duration.  This logically belongs in the 802.11
1134 	 * layer but it lacks sufficient information to calculate it.
1135 	 */
1136 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
1137 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
1138 		u_int16_t dur;
1139 		if (shortPreamble)
1140 			dur = rt->info[rix].spAckDuration;
1141 		else
1142 			dur = rt->info[rix].lpAckDuration;
1143 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
1144 			dur += dur;		/* additional SIFS+ACK */
1145 			/*
1146 			 * Include the size of next fragment so NAV is
1147 			 * updated properly.  The last fragment uses only
1148 			 * the ACK duration
1149 			 *
1150 			 * XXX TODO: ensure that the rate lookup for each
1151 			 * fragment is the same as the rate used by the
1152 			 * first fragment!
1153 			 */
1154 			dur += ath_hal_computetxtime(ah,
1155 			    rt,
1156 			    bf->bf_nextfraglen,
1157 			    rix, shortPreamble,
1158 			    AH_TRUE);
1159 		}
1160 		if (isfrag) {
1161 			/*
1162 			 * Force hardware to use computed duration for next
1163 			 * fragment by disabling multi-rate retry which updates
1164 			 * duration based on the multi-rate duration table.
1165 			 */
1166 			bf->bf_state.bfs_ismrr = 0;
1167 			bf->bf_state.bfs_try0 = ATH_TXMGTTRY;
1168 			/* XXX update bfs_rc[0].try? */
1169 		}
1170 
1171 		/* Update the duration field itself */
1172 		*(u_int16_t *)wh->i_dur = htole16(dur);
1173 	}
1174 }
1175 
1176 static uint8_t
1177 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
1178     int cix, int shortPreamble)
1179 {
1180 	uint8_t ctsrate;
1181 
1182 	/*
1183 	 * CTS transmit rate is derived from the transmit rate
1184 	 * by looking in the h/w rate table.  We must also factor
1185 	 * in whether or not a short preamble is to be used.
1186 	 */
1187 	/* NB: cix is set above where RTS/CTS is enabled */
1188 	KASSERT(cix != 0xff, ("cix not setup"));
1189 	ctsrate = rt->info[cix].rateCode;
1190 
1191 	/* XXX this should only matter for legacy rates */
1192 	if (shortPreamble)
1193 		ctsrate |= rt->info[cix].shortPreamble;
1194 
1195 	return (ctsrate);
1196 }
1197 
1198 /*
1199  * Calculate the RTS/CTS duration for legacy frames.
1200  */
1201 static int
1202 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
1203     int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
1204     int flags)
1205 {
1206 	int ctsduration = 0;
1207 
1208 	/* This mustn't be called for HT modes */
1209 	if (rt->info[cix].phy == IEEE80211_T_HT) {
1210 		printf("%s: HT rate where it shouldn't be (0x%x)\n",
1211 		    __func__, rt->info[cix].rateCode);
1212 		return (-1);
1213 	}
1214 
1215 	/*
1216 	 * Compute the transmit duration based on the frame
1217 	 * size and the size of an ACK frame.  We call into the
1218 	 * HAL to do the computation since it depends on the
1219 	 * characteristics of the actual PHY being used.
1220 	 *
1221 	 * NB: CTS is assumed the same size as an ACK so we can
1222 	 *     use the precalculated ACK durations.
1223 	 */
1224 	if (shortPreamble) {
1225 		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
1226 			ctsduration += rt->info[cix].spAckDuration;
1227 		ctsduration += ath_hal_computetxtime(ah,
1228 			rt, pktlen, rix, AH_TRUE, AH_TRUE);
1229 		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
1230 			ctsduration += rt->info[rix].spAckDuration;
1231 	} else {
1232 		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
1233 			ctsduration += rt->info[cix].lpAckDuration;
1234 		ctsduration += ath_hal_computetxtime(ah,
1235 			rt, pktlen, rix, AH_FALSE, AH_TRUE);
1236 		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
1237 			ctsduration += rt->info[rix].lpAckDuration;
1238 	}
1239 
1240 	return (ctsduration);
1241 }
1242 
1243 /*
1244  * Update the given ath_buf with updated rts/cts setup and duration
1245  * values.
1246  *
1247  * To support rate lookups for each software retry, the rts/cts rate
1248  * and cts duration must be re-calculated.
1249  *
1250  * This function assumes the RTS/CTS flags have been set as needed;
1251  * mrr has been disabled; and the rate control lookup has been done.
1252  *
1253  * XXX TODO: MRR need only be disabled for the pre-11n NICs.
1254  * XXX The 11n NICs support per-rate RTS/CTS configuration.
1255  */
1256 static void
1257 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
1258 {
1259 	uint16_t ctsduration = 0;
1260 	uint8_t ctsrate = 0;
1261 	uint8_t rix = bf->bf_state.bfs_rc[0].rix;
1262 	uint8_t cix = 0;
1263 	const HAL_RATE_TABLE *rt = sc->sc_currates;
1264 
1265 	/*
1266 	 * No RTS/CTS enabled? Don't bother.
1267 	 */
1268 	if ((bf->bf_state.bfs_txflags &
1269 	    (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
1270 		/* XXX is this really needed? */
1271 		bf->bf_state.bfs_ctsrate = 0;
1272 		bf->bf_state.bfs_ctsduration = 0;
1273 		return;
1274 	}
1275 
1276 	/*
1277 	 * If protection is enabled, use the protection rix control
1278 	 * rate. Otherwise use the rate0 control rate.
1279 	 */
1280 	if (bf->bf_state.bfs_doprot)
1281 		rix = sc->sc_protrix;
1282 	else
1283 		rix = bf->bf_state.bfs_rc[0].rix;
1284 
1285 	/*
1286 	 * If the raw path has hard-coded ctsrate0 to something,
1287 	 * use it.
1288 	 */
1289 	if (bf->bf_state.bfs_ctsrate0 != 0)
1290 		cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
1291 	else
1292 		/* Control rate from above */
1293 		cix = rt->info[rix].controlRate;
1294 
1295 	/* Calculate the rtscts rate for the given cix */
1296 	ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
1297 	    bf->bf_state.bfs_shpream);
1298 
1299 	/* The 11n chipsets do ctsduration calculations for you */
1300 	if (! ath_tx_is_11n(sc))
1301 		ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
1302 		    bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
1303 		    rt, bf->bf_state.bfs_txflags);
1304 
1305 	/* Squirrel away in ath_buf */
1306 	bf->bf_state.bfs_ctsrate = ctsrate;
1307 	bf->bf_state.bfs_ctsduration = ctsduration;
1308 
1309 	/*
1310 	 * Must disable multi-rate retry when using RTS/CTS.
1311 	 */
1312 	if (!sc->sc_mrrprot) {
1313 		bf->bf_state.bfs_ismrr = 0;
1314 		bf->bf_state.bfs_try0 =
1315 		    bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */
1316 	}
1317 }
1318 
1319 /*
1320  * Setup the descriptor chain for a normal or fast-frame
1321  * frame.
1322  *
1323  * XXX TODO: extend to include the destination hardware QCU ID.
1324  * Make sure that is correct.  Make sure that when being added
1325  * to the mcastq, the CABQ QCUID is set or things will get a bit
1326  * odd.
1327  */
1328 static void
1329 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
1330 {
1331 	struct ath_desc *ds = bf->bf_desc;
1332 	struct ath_hal *ah = sc->sc_ah;
1333 
1334 	if (bf->bf_state.bfs_txrate0 == 0)
1335 		DPRINTF(sc, ATH_DEBUG_XMIT,
1336 		    "%s: bf=%p, txrate0=%d\n", __func__, bf, 0);
1337 
1338 	ath_hal_setuptxdesc(ah, ds
1339 		, bf->bf_state.bfs_pktlen	/* packet length */
1340 		, bf->bf_state.bfs_hdrlen	/* header length */
1341 		, bf->bf_state.bfs_atype	/* Atheros packet type */
1342 		, bf->bf_state.bfs_txpower	/* txpower */
1343 		, bf->bf_state.bfs_txrate0
1344 		, bf->bf_state.bfs_try0		/* series 0 rate/tries */
1345 		, bf->bf_state.bfs_keyix	/* key cache index */
1346 		, bf->bf_state.bfs_txantenna	/* antenna mode */
1347 		, bf->bf_state.bfs_txflags	/* flags */
1348 		, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
1349 		, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
1350 	);
1351 
1352 	/*
1353 	 * This will be overridden when the descriptor chain is written.
1354 	 */
1355 	bf->bf_lastds = ds;
1356 	bf->bf_last = bf;
1357 
1358 	/* Set rate control and descriptor chain for this frame */
1359 	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
1360 	ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0);
1361 }
1362 
1363 /*
1364  * Do a rate lookup.
1365  *
1366  * This performs a rate lookup for the given ath_buf only if it's required.
1367  * Non-data frames and raw frames don't require it.
1368  *
1369  * This populates the primary and MRR entries; MRR values are
1370  * then disabled later on if something requires it (eg RTS/CTS on
1371  * pre-11n chipsets.
1372  *
1373  * This needs to be done before the RTS/CTS fields are calculated
1374  * as they may depend upon the rate chosen.
1375  */
1376 static void
1377 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf, int tid,
1378     int pktlen, int is_aggr)
1379 {
1380 	uint8_t rate, rix;
1381 	int try0;
1382 	int maxdur; // Note: Unused for now
1383 	int maxpktlen;
1384 
1385 	if (! bf->bf_state.bfs_doratelookup)
1386 		return;
1387 
1388 	/* Get rid of any previous state */
1389 	bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1390 
1391 	ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
1392 	ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
1393 	    pktlen, tid, is_aggr, &rix, &try0, &rate, &maxdur, &maxpktlen);
1394 
1395 	/* In case MRR is disabled, make sure rc[0] is setup correctly */
1396 	bf->bf_state.bfs_rc[0].rix = rix;
1397 	bf->bf_state.bfs_rc[0].ratecode = rate;
1398 	bf->bf_state.bfs_rc[0].tries = try0;
1399 
1400 	if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
1401 		ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
1402 		    is_aggr, bf->bf_state.bfs_rc);
1403 	ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
1404 
1405 	sc->sc_txrix = rix;	/* for LED blinking */
1406 	sc->sc_lastdatarix = rix;	/* for fast frames */
1407 	bf->bf_state.bfs_try0 = try0;
1408 	bf->bf_state.bfs_txrate0 = rate;
1409 	bf->bf_state.bfs_rc_maxpktlen = maxpktlen;
1410 }
1411 
1412 /*
1413  * Update the CLRDMASK bit in the ath_buf if it needs to be set.
1414  */
1415 static void
1416 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid,
1417     struct ath_buf *bf)
1418 {
1419 	struct ath_node *an = ATH_NODE(bf->bf_node);
1420 
1421 	ATH_TX_LOCK_ASSERT(sc);
1422 
1423 	if (an->clrdmask == 1) {
1424 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1425 		an->clrdmask = 0;
1426 	}
1427 }
1428 
1429 /*
1430  * Return whether this frame should be software queued or
1431  * direct dispatched.
1432  *
1433  * When doing powersave, BAR frames should be queued but other management
1434  * frames should be directly sent.
1435  *
1436  * When not doing powersave, stick BAR frames into the hardware queue
1437  * so it goes out even though the queue is paused.
1438  *
1439  * For now, management frames are also software queued by default.
1440  */
1441 static int
1442 ath_tx_should_swq_frame(struct ath_softc *sc, struct ath_node *an,
1443     struct mbuf *m0, int *queue_to_head)
1444 {
1445 	struct ieee80211_node *ni = &an->an_node;
1446 	struct ieee80211_frame *wh;
1447 	uint8_t type, subtype;
1448 
1449 	wh = mtod(m0, struct ieee80211_frame *);
1450 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1451 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1452 
1453 	(*queue_to_head) = 0;
1454 
1455 	/* If it's not in powersave - direct-dispatch BAR */
1456 	if ((ATH_NODE(ni)->an_is_powersave == 0)
1457 	    && type == IEEE80211_FC0_TYPE_CTL &&
1458 	    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1459 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1460 		    "%s: BAR: TX'ing direct\n", __func__);
1461 		return (0);
1462 	} else if ((ATH_NODE(ni)->an_is_powersave == 1)
1463 	    && type == IEEE80211_FC0_TYPE_CTL &&
1464 	    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1465 		/* BAR TX whilst asleep; queue */
1466 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1467 		    "%s: swq: TX'ing\n", __func__);
1468 		(*queue_to_head) = 1;
1469 		return (1);
1470 	} else if ((ATH_NODE(ni)->an_is_powersave == 1)
1471 	    && (type == IEEE80211_FC0_TYPE_MGT ||
1472 	        type == IEEE80211_FC0_TYPE_CTL)) {
1473 		/*
1474 		 * Other control/mgmt frame; bypass software queuing
1475 		 * for now!
1476 		 */
1477 		DPRINTF(sc, ATH_DEBUG_XMIT,
1478 		    "%s: %6D: Node is asleep; sending mgmt "
1479 		    "(type=%d, subtype=%d)\n",
1480 		    __func__, ni->ni_macaddr, ":", type, subtype);
1481 		return (0);
1482 	} else {
1483 		return (1);
1484 	}
1485 }
1486 
1487 /*
1488  * Transmit the given frame to the hardware.
1489  *
1490  * The frame must already be setup; rate control must already have
1491  * been done.
1492  *
1493  * XXX since the TXQ lock is being held here (and I dislike holding
1494  * it for this long when not doing software aggregation), later on
1495  * break this function into "setup_normal" and "xmit_normal". The
1496  * lock only needs to be held for the ath_tx_handoff call.
1497  *
1498  * XXX we don't update the leak count here - if we're doing
1499  * direct frame dispatch, we need to be able to do it without
1500  * decrementing the leak count (eg multicast queue frames.)
1501  */
1502 static void
1503 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
1504     struct ath_buf *bf)
1505 {
1506 	struct ath_node *an = ATH_NODE(bf->bf_node);
1507 	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
1508 
1509 	ATH_TX_LOCK_ASSERT(sc);
1510 
1511 	/*
1512 	 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does
1513 	 * set a completion handler however it doesn't (yet) properly
1514 	 * handle the strict ordering requirements needed for normal,
1515 	 * non-aggregate session frames.
1516 	 *
1517 	 * Once this is implemented, only set CLRDMASK like this for
1518 	 * frames that must go out - eg management/raw frames.
1519 	 */
1520 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
1521 
1522 	/* Setup the descriptor before handoff */
1523 	ath_tx_do_ratelookup(sc, bf, tid->tid, bf->bf_state.bfs_pktlen, false);
1524 	ath_tx_calc_duration(sc, bf);
1525 	ath_tx_calc_protection(sc, bf);
1526 	ath_tx_set_rtscts(sc, bf);
1527 	ath_tx_rate_fill_rcflags(sc, bf);
1528 	ath_tx_setds(sc, bf);
1529 
1530 	/* Track per-TID hardware queue depth correctly */
1531 	tid->hwq_depth++;
1532 
1533 	/* Assign the completion handler */
1534 	bf->bf_comp = ath_tx_normal_comp;
1535 
1536 	/* Hand off to hardware */
1537 	ath_tx_handoff(sc, txq, bf);
1538 }
1539 
1540 /*
1541  * Do the basic frame setup stuff that's required before the frame
1542  * is added to a software queue.
1543  *
1544  * All frames get mostly the same treatment and it's done once.
1545  * Retransmits fiddle with things like the rate control setup,
1546  * setting the retransmit bit in the packet; doing relevant DMA/bus
1547  * syncing and relinking it (back) into the hardware TX queue.
1548  *
1549  * Note that this may cause the mbuf to be reallocated, so
1550  * m0 may not be valid.
1551  */
1552 static int
1553 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
1554     struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq)
1555 {
1556 	struct ieee80211vap *vap = ni->ni_vap;
1557 	struct ieee80211com *ic = &sc->sc_ic;
1558 	int error, iswep, ismcast, isfrag, ismrr;
1559 	int keyix, hdrlen, pktlen, try0 = 0;
1560 	u_int8_t rix = 0, txrate = 0;
1561 	struct ath_desc *ds;
1562 	struct ieee80211_frame *wh;
1563 	u_int subtype, flags;
1564 	HAL_PKT_TYPE atype;
1565 	const HAL_RATE_TABLE *rt;
1566 	HAL_BOOL shortPreamble;
1567 	struct ath_node *an;
1568 
1569 	/* XXX TODO: this pri is only used for non-QoS check, right? */
1570 	u_int pri;
1571 
1572 	/*
1573 	 * To ensure that both sequence numbers and the CCMP PN handling
1574 	 * is "correct", make sure that the relevant TID queue is locked.
1575 	 * Otherwise the CCMP PN and seqno may appear out of order, causing
1576 	 * re-ordered frames to have out of order CCMP PN's, resulting
1577 	 * in many, many frame drops.
1578 	 */
1579 	ATH_TX_LOCK_ASSERT(sc);
1580 
1581 	wh = mtod(m0, struct ieee80211_frame *);
1582 	iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
1583 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1584 	isfrag = m0->m_flags & M_FRAG;
1585 	hdrlen = ieee80211_anyhdrsize(wh);
1586 	/*
1587 	 * Packet length must not include any
1588 	 * pad bytes; deduct them here.
1589 	 */
1590 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
1591 
1592 	/* Handle encryption twiddling if needed */
1593 	if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
1594 	    &pktlen, &keyix)) {
1595 		ieee80211_free_mbuf(m0);
1596 		return EIO;
1597 	}
1598 
1599 	/* packet header may have moved, reset our local pointer */
1600 	wh = mtod(m0, struct ieee80211_frame *);
1601 
1602 	pktlen += IEEE80211_CRC_LEN;
1603 
1604 	/*
1605 	 * Load the DMA map so any coalescing is done.  This
1606 	 * also calculates the number of descriptors we need.
1607 	 */
1608 	error = ath_tx_dmasetup(sc, bf, m0);
1609 	if (error != 0)
1610 		return error;
1611 	KASSERT((ni != NULL), ("%s: ni=NULL!", __func__));
1612 	bf->bf_node = ni;			/* NB: held reference */
1613 	m0 = bf->bf_m;				/* NB: may have changed */
1614 	wh = mtod(m0, struct ieee80211_frame *);
1615 
1616 	/* setup descriptors */
1617 	ds = bf->bf_desc;
1618 	rt = sc->sc_currates;
1619 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1620 
1621 	/*
1622 	 * NB: the 802.11 layer marks whether or not we should
1623 	 * use short preamble based on the current mode and
1624 	 * negotiated parameters.
1625 	 */
1626 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1627 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1628 		shortPreamble = AH_TRUE;
1629 		sc->sc_stats.ast_tx_shortpre++;
1630 	} else {
1631 		shortPreamble = AH_FALSE;
1632 	}
1633 
1634 	an = ATH_NODE(ni);
1635 	//flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1636 	flags = 0;
1637 	ismrr = 0;				/* default no multi-rate retry*/
1638 
1639 	pri = ath_tx_getac(sc, m0);			/* honor classification */
1640 	/* XXX use txparams instead of fixed values */
1641 	/*
1642 	 * Calculate Atheros packet type from IEEE80211 packet header,
1643 	 * setup for rate calculations, and select h/w transmit queue.
1644 	 */
1645 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1646 	case IEEE80211_FC0_TYPE_MGT:
1647 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1648 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1649 			atype = HAL_PKT_TYPE_BEACON;
1650 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1651 			atype = HAL_PKT_TYPE_PROBE_RESP;
1652 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1653 			atype = HAL_PKT_TYPE_ATIM;
1654 		else
1655 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
1656 		rix = an->an_mgmtrix;
1657 		txrate = rt->info[rix].rateCode;
1658 		if (shortPreamble)
1659 			txrate |= rt->info[rix].shortPreamble;
1660 		try0 = ATH_TXMGTTRY;
1661 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1662 		break;
1663 	case IEEE80211_FC0_TYPE_CTL:
1664 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
1665 		rix = an->an_mgmtrix;
1666 		txrate = rt->info[rix].rateCode;
1667 		if (shortPreamble)
1668 			txrate |= rt->info[rix].shortPreamble;
1669 		try0 = ATH_TXMGTTRY;
1670 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1671 		break;
1672 	case IEEE80211_FC0_TYPE_DATA:
1673 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
1674 		/*
1675 		 * Data frames: multicast frames go out at a fixed rate,
1676 		 * EAPOL frames use the mgmt frame rate; otherwise consult
1677 		 * the rate control module for the rate to use.
1678 		 */
1679 		if (ismcast) {
1680 			rix = an->an_mcastrix;
1681 			txrate = rt->info[rix].rateCode;
1682 			if (shortPreamble)
1683 				txrate |= rt->info[rix].shortPreamble;
1684 			try0 = 1;
1685 		} else if (m0->m_flags & M_EAPOL) {
1686 			/* XXX? maybe always use long preamble? */
1687 			rix = an->an_mgmtrix;
1688 			txrate = rt->info[rix].rateCode;
1689 			if (shortPreamble)
1690 				txrate |= rt->info[rix].shortPreamble;
1691 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
1692 		} else {
1693 			/*
1694 			 * Do rate lookup on each TX, rather than using
1695 			 * the hard-coded TX information decided here.
1696 			 */
1697 			ismrr = 1;
1698 			bf->bf_state.bfs_doratelookup = 1;
1699 		}
1700 
1701 		/*
1702 		 * Check whether to set NOACK for this WME category or not.
1703 		 */
1704 		if (ieee80211_wme_vap_ac_is_noack(vap, pri))
1705 			flags |= HAL_TXDESC_NOACK;
1706 		break;
1707 	default:
1708 		device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n",
1709 		    wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1710 		/* XXX statistic */
1711 		/* XXX free tx dmamap */
1712 		ieee80211_free_mbuf(m0);
1713 		return EIO;
1714 	}
1715 
1716 	/*
1717 	 * There are two known scenarios where the frame AC doesn't match
1718 	 * what the destination TXQ is.
1719 	 *
1720 	 * + non-QoS frames (eg management?) that the net80211 stack has
1721 	 *   assigned a higher AC to, but since it's a non-QoS TID, it's
1722 	 *   being thrown into TID 16.  TID 16 gets the AC_BE queue.
1723 	 *   It's quite possible that management frames should just be
1724 	 *   direct dispatched to hardware rather than go via the software
1725 	 *   queue; that should be investigated in the future.  There are
1726 	 *   some specific scenarios where this doesn't make sense, mostly
1727 	 *   surrounding ADDBA request/response - hence why that is special
1728 	 *   cased.
1729 	 *
1730 	 * + Multicast frames going into the VAP mcast queue.  That shows up
1731 	 *   as "TXQ 11".
1732 	 *
1733 	 * This driver should eventually support separate TID and TXQ locking,
1734 	 * allowing for arbitrary AC frames to appear on arbitrary software
1735 	 * queues, being queued to the "correct" hardware queue when needed.
1736 	 */
1737 #if 0
1738 	if (txq != sc->sc_ac2q[pri]) {
1739 		DPRINTF(sc, ATH_DEBUG_XMIT,
1740 		    "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n",
1741 		    __func__,
1742 		    txq,
1743 		    txq->axq_qnum,
1744 		    pri,
1745 		    sc->sc_ac2q[pri],
1746 		    sc->sc_ac2q[pri]->axq_qnum);
1747 	}
1748 #endif
1749 
1750 	/*
1751 	 * Calculate miscellaneous flags.
1752 	 */
1753 	if (ismcast) {
1754 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
1755 	} else if (pktlen > vap->iv_rtsthreshold &&
1756 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
1757 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
1758 		sc->sc_stats.ast_tx_rts++;
1759 	}
1760 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
1761 		sc->sc_stats.ast_tx_noack++;
1762 #ifdef IEEE80211_SUPPORT_TDMA
1763 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
1764 		DPRINTF(sc, ATH_DEBUG_TDMA,
1765 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
1766 		sc->sc_stats.ast_tdma_ack++;
1767 		/* XXX free tx dmamap */
1768 		ieee80211_free_mbuf(m0);
1769 		return EIO;
1770 	}
1771 #endif
1772 
1773 	/*
1774 	 * If it's a frame to do location reporting on,
1775 	 * communicate it to the HAL.
1776 	 */
1777 	if (ieee80211_get_toa_params(m0, NULL)) {
1778 		device_printf(sc->sc_dev,
1779 		    "%s: setting TX positioning bit\n", __func__);
1780 		flags |= HAL_TXDESC_POS;
1781 
1782 		/*
1783 		 * Note: The hardware reports timestamps for
1784 		 * each of the RX'ed packets as part of the packet
1785 		 * exchange.  So this means things like RTS/CTS
1786 		 * exchanges, as well as the final ACK.
1787 		 *
1788 		 * So, if you send a RTS-protected NULL data frame,
1789 		 * you'll get an RX report for the RTS response, then
1790 		 * an RX report for the NULL frame, and then the TX
1791 		 * completion at the end.
1792 		 *
1793 		 * NOTE: it doesn't work right for CCK frames;
1794 		 * there's no channel info data provided unless
1795 		 * it's OFDM or HT.  Will have to dig into it.
1796 		 */
1797 		flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
1798 		bf->bf_flags |= ATH_BUF_TOA_PROBE;
1799 	}
1800 
1801 #if 0
1802 	/*
1803 	 * Placeholder: if you want to transmit with the azimuth
1804 	 * timestamp in the end of the payload, here's where you
1805 	 * should set the TXDESC field.
1806 	 */
1807 	flags |= HAL_TXDESC_HWTS;
1808 #endif
1809 
1810 	/*
1811 	 * Determine if a tx interrupt should be generated for
1812 	 * this descriptor.  We take a tx interrupt to reap
1813 	 * descriptors when the h/w hits an EOL condition or
1814 	 * when the descriptor is specifically marked to generate
1815 	 * an interrupt.  We periodically mark descriptors in this
1816 	 * way to insure timely replenishing of the supply needed
1817 	 * for sending frames.  Defering interrupts reduces system
1818 	 * load and potentially allows more concurrent work to be
1819 	 * done but if done to aggressively can cause senders to
1820 	 * backup.
1821 	 *
1822 	 * NB: use >= to deal with sc_txintrperiod changing
1823 	 *     dynamically through sysctl.
1824 	 */
1825 	if (flags & HAL_TXDESC_INTREQ) {
1826 		txq->axq_intrcnt = 0;
1827 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
1828 		flags |= HAL_TXDESC_INTREQ;
1829 		txq->axq_intrcnt = 0;
1830 	}
1831 
1832 	/* This point forward is actual TX bits */
1833 
1834 	/*
1835 	 * At this point we are committed to sending the frame
1836 	 * and we don't need to look at m_nextpkt; clear it in
1837 	 * case this frame is part of frag chain.
1838 	 */
1839 	m0->m_nextpkt = NULL;
1840 
1841 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1842 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
1843 		    sc->sc_hwmap[rix].ieeerate, -1);
1844 
1845 	if (ieee80211_radiotap_active_vap(vap)) {
1846 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1847 		if (iswep)
1848 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1849 		if (isfrag)
1850 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1851 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1852 		sc->sc_tx_th.wt_txpower = ieee80211_get_node_txpower(ni);
1853 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1854 
1855 		ieee80211_radiotap_tx(vap, m0);
1856 	}
1857 
1858 	/* Blank the legacy rate array */
1859 	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1860 
1861 	/*
1862 	 * ath_buf_set_rate needs at least one rate/try to setup
1863 	 * the rate scenario.
1864 	 */
1865 	bf->bf_state.bfs_rc[0].rix = rix;
1866 	bf->bf_state.bfs_rc[0].tries = try0;
1867 	bf->bf_state.bfs_rc[0].ratecode = txrate;
1868 
1869 	/* Store the decided rate index values away */
1870 	bf->bf_state.bfs_pktlen = pktlen;
1871 	bf->bf_state.bfs_hdrlen = hdrlen;
1872 	bf->bf_state.bfs_atype = atype;
1873 	bf->bf_state.bfs_txpower = ieee80211_get_node_txpower(ni);
1874 	bf->bf_state.bfs_txrate0 = txrate;
1875 	bf->bf_state.bfs_try0 = try0;
1876 	bf->bf_state.bfs_keyix = keyix;
1877 	bf->bf_state.bfs_txantenna = sc->sc_txantenna;
1878 	bf->bf_state.bfs_txflags = flags;
1879 	bf->bf_state.bfs_shpream = shortPreamble;
1880 
1881 	/* XXX this should be done in ath_tx_setrate() */
1882 	bf->bf_state.bfs_ctsrate0 = 0;	/* ie, no hard-coded ctsrate */
1883 	bf->bf_state.bfs_ctsrate = 0;	/* calculated later */
1884 	bf->bf_state.bfs_ctsduration = 0;
1885 	bf->bf_state.bfs_ismrr = ismrr;
1886 
1887 	return 0;
1888 }
1889 
1890 /*
1891  * Queue a frame to the hardware or software queue.
1892  *
1893  * This can be called by the net80211 code.
1894  *
1895  * XXX what about locking? Or, push the seqno assign into the
1896  * XXX aggregate scheduler so its serialised?
1897  *
1898  * XXX When sending management frames via ath_raw_xmit(),
1899  *     should CLRDMASK be set unconditionally?
1900  */
1901 int
1902 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
1903     struct ath_buf *bf, struct mbuf *m0)
1904 {
1905 	struct ieee80211vap *vap = ni->ni_vap;
1906 	struct ath_vap *avp = ATH_VAP(vap);
1907 	int r = 0;
1908 	u_int pri;
1909 	int tid;
1910 	struct ath_txq *txq;
1911 	int ismcast;
1912 	const struct ieee80211_frame *wh;
1913 	int is_ampdu, is_ampdu_tx, is_ampdu_pending;
1914 	ieee80211_seq seqno;
1915 	uint8_t type, subtype;
1916 	int queue_to_head;
1917 
1918 	ATH_TX_LOCK_ASSERT(sc);
1919 
1920 	/*
1921 	 * Determine the target hardware queue.
1922 	 *
1923 	 * For multicast frames, the txq gets overridden appropriately
1924 	 * depending upon the state of PS.  If powersave is enabled
1925 	 * then they get added to the cabq for later transmit.
1926 	 *
1927 	 * The "fun" issue here is that group addressed frames should
1928 	 * have the sequence number from a different pool, rather than
1929 	 * the per-TID pool.  That means that even QoS group addressed
1930 	 * frames will have a sequence number from that global value,
1931 	 * which means if we transmit different group addressed frames
1932 	 * at different traffic priorities, the sequence numbers will
1933 	 * all be out of whack.  So - chances are, the right thing
1934 	 * to do here is to always put group addressed frames into the BE
1935 	 * queue, and ignore the TID for queue selection.
1936 	 *
1937 	 * For any other frame, we do a TID/QoS lookup inside the frame
1938 	 * to see what the TID should be. If it's a non-QoS frame, the
1939 	 * AC and TID are overridden. The TID/TXQ code assumes the
1940 	 * TID is on a predictable hardware TXQ, so we don't support
1941 	 * having a node TID queued to multiple hardware TXQs.
1942 	 * This may change in the future but would require some locking
1943 	 * fudgery.
1944 	 */
1945 	pri = ath_tx_getac(sc, m0);
1946 	tid = ath_tx_gettid(sc, m0);
1947 
1948 	txq = sc->sc_ac2q[pri];
1949 	wh = mtod(m0, struct ieee80211_frame *);
1950 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1951 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1952 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1953 
1954 	/*
1955 	 * Enforce how deep the multicast queue can grow.
1956 	 *
1957 	 * XXX duplicated in ath_raw_xmit().
1958 	 */
1959 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1960 		if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
1961 		    > sc->sc_txq_mcastq_maxdepth) {
1962 			sc->sc_stats.ast_tx_mcastq_overflow++;
1963 			m_freem(m0);
1964 			return (ENOBUFS);
1965 		}
1966 	}
1967 
1968 	/*
1969 	 * Enforce how deep the unicast queue can grow.
1970 	 *
1971 	 * If the node is in power save then we don't want
1972 	 * the software queue to grow too deep, or a node may
1973 	 * end up consuming all of the ath_buf entries.
1974 	 *
1975 	 * For now, only do this for DATA frames.
1976 	 *
1977 	 * We will want to cap how many management/control
1978 	 * frames get punted to the software queue so it doesn't
1979 	 * fill up.  But the correct solution isn't yet obvious.
1980 	 * In any case, this check should at least let frames pass
1981 	 * that we are direct-dispatching.
1982 	 *
1983 	 * XXX TODO: duplicate this to the raw xmit path!
1984 	 */
1985 	if (type == IEEE80211_FC0_TYPE_DATA &&
1986 	    ATH_NODE(ni)->an_is_powersave &&
1987 	    ATH_NODE(ni)->an_swq_depth >
1988 	     sc->sc_txq_node_psq_maxdepth) {
1989 		sc->sc_stats.ast_tx_node_psq_overflow++;
1990 		m_freem(m0);
1991 		return (ENOBUFS);
1992 	}
1993 
1994 	/* A-MPDU TX */
1995 	is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
1996 	is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
1997 	is_ampdu = is_ampdu_tx | is_ampdu_pending;
1998 
1999 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
2000 	    __func__, tid, pri, is_ampdu);
2001 
2002 	/* Set local packet state, used to queue packets to hardware */
2003 	bf->bf_state.bfs_tid = tid;
2004 	bf->bf_state.bfs_tx_queue = txq->axq_qnum;
2005 	bf->bf_state.bfs_pri = pri;
2006 
2007 #if 1
2008 	/*
2009 	 * When servicing one or more stations in power-save mode
2010 	 * (or) if there is some mcast data waiting on the mcast
2011 	 * queue (to prevent out of order delivery) multicast frames
2012 	 * must be bufferd until after the beacon.
2013 	 *
2014 	 * TODO: we should lock the mcastq before we check the length.
2015 	 */
2016 	if (sc->sc_cabq_enable && ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) {
2017 		txq = &avp->av_mcastq;
2018 		/*
2019 		 * Mark the frame as eventually belonging on the CAB
2020 		 * queue, so the descriptor setup functions will
2021 		 * correctly initialise the descriptor 'qcuId' field.
2022 		 */
2023 		bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum;
2024 	}
2025 #endif
2026 
2027 	/* Do the generic frame setup */
2028 	/* XXX should just bzero the bf_state? */
2029 	bf->bf_state.bfs_dobaw = 0;
2030 
2031 	/* A-MPDU TX? Manually set sequence number */
2032 	/*
2033 	 * Don't do it whilst pending; the net80211 layer still
2034 	 * assigns them.
2035 	 *
2036 	 * Don't assign A-MPDU sequence numbers to group address
2037 	 * frames; they come from a different sequence number space.
2038 	 */
2039 	if (is_ampdu_tx && (! IEEE80211_IS_MULTICAST(wh->i_addr1))) {
2040 		/*
2041 		 * Always call; this function will
2042 		 * handle making sure that null data frames
2043 		 * and group-addressed frames don't get a sequence number
2044 		 * from the current TID and thus mess with the BAW.
2045 		 */
2046 		seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
2047 
2048 		/*
2049 		 * Don't add QoS NULL frames and group-addressed frames
2050 		 * to the BAW.
2051 		 */
2052 		if (IEEE80211_QOS_HAS_SEQ(wh) &&
2053 		    (! IEEE80211_IS_MULTICAST(wh->i_addr1)) &&
2054 		    (subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL)) {
2055 			bf->bf_state.bfs_dobaw = 1;
2056 		}
2057 	}
2058 
2059 	/*
2060 	 * If needed, the sequence number has been assigned.
2061 	 * Squirrel it away somewhere easy to get to.
2062 	 */
2063 	bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
2064 
2065 	/* Is ampdu pending? fetch the seqno and print it out */
2066 	if (is_ampdu_pending)
2067 		DPRINTF(sc, ATH_DEBUG_SW_TX,
2068 		    "%s: tid %d: ampdu pending, seqno %d\n",
2069 		    __func__, tid, M_SEQNO_GET(m0));
2070 
2071 	/* This also sets up the DMA map; crypto; frame parameters, etc */
2072 	r = ath_tx_normal_setup(sc, ni, bf, m0, txq);
2073 
2074 	if (r != 0)
2075 		goto done;
2076 
2077 	/* At this point m0 could have changed! */
2078 	m0 = bf->bf_m;
2079 
2080 #if 1
2081 	/*
2082 	 * If it's a multicast frame, do a direct-dispatch to the
2083 	 * destination hardware queue. Don't bother software
2084 	 * queuing it.
2085 	 */
2086 	/*
2087 	 * If it's a BAR frame, do a direct dispatch to the
2088 	 * destination hardware queue. Don't bother software
2089 	 * queuing it, as the TID will now be paused.
2090 	 * Sending a BAR frame can occur from the net80211 txa timer
2091 	 * (ie, retries) or from the ath txtask (completion call.)
2092 	 * It queues directly to hardware because the TID is paused
2093 	 * at this point (and won't be unpaused until the BAR has
2094 	 * either been TXed successfully or max retries has been
2095 	 * reached.)
2096 	 */
2097 	/*
2098 	 * Until things are better debugged - if this node is asleep
2099 	 * and we're sending it a non-BAR frame, direct dispatch it.
2100 	 * Why? Because we need to figure out what's actually being
2101 	 * sent - eg, during reassociation/reauthentication after
2102 	 * the node (last) disappeared whilst asleep, the driver should
2103 	 * have unpaused/unsleep'ed the node.  So until that is
2104 	 * sorted out, use this workaround.
2105 	 */
2106 	if (txq == &avp->av_mcastq) {
2107 		DPRINTF(sc, ATH_DEBUG_SW_TX,
2108 		    "%s: bf=%p: mcastq: TX'ing\n", __func__, bf);
2109 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2110 		ath_tx_xmit_normal(sc, txq, bf);
2111 	} else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0,
2112 	    &queue_to_head)) {
2113 		ath_tx_swq(sc, ni, txq, queue_to_head, bf);
2114 	} else {
2115 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2116 		ath_tx_xmit_normal(sc, txq, bf);
2117 	}
2118 #else
2119 	/*
2120 	 * For now, since there's no software queue,
2121 	 * direct-dispatch to the hardware.
2122 	 */
2123 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2124 	/*
2125 	 * Update the current leak count if
2126 	 * we're leaking frames; and set the
2127 	 * MORE flag as appropriate.
2128 	 */
2129 	ath_tx_leak_count_update(sc, tid, bf);
2130 	ath_tx_xmit_normal(sc, txq, bf);
2131 #endif
2132 done:
2133 	return 0;
2134 }
2135 
2136 static int
2137 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
2138 	struct ath_buf *bf, struct mbuf *m0,
2139 	const struct ieee80211_bpf_params *params)
2140 {
2141 	struct ieee80211com *ic = &sc->sc_ic;
2142 	struct ieee80211vap *vap = ni->ni_vap;
2143 	int error, ismcast, ismrr;
2144 	int keyix, hdrlen, pktlen, try0, txantenna;
2145 	u_int8_t rix, txrate;
2146 	struct ieee80211_frame *wh;
2147 	u_int flags;
2148 	HAL_PKT_TYPE atype;
2149 	const HAL_RATE_TABLE *rt;
2150 	struct ath_desc *ds;
2151 	u_int pri;
2152 	int o_tid = -1;
2153 	int do_override;
2154 	uint8_t type, subtype;
2155 	int queue_to_head;
2156 	struct ath_node *an = ATH_NODE(ni);
2157 
2158 	ATH_TX_LOCK_ASSERT(sc);
2159 
2160 	wh = mtod(m0, struct ieee80211_frame *);
2161 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2162 	hdrlen = ieee80211_anyhdrsize(wh);
2163 	/*
2164 	 * Packet length must not include any
2165 	 * pad bytes; deduct them here.
2166 	 */
2167 	/* XXX honor IEEE80211_BPF_DATAPAD */
2168 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
2169 
2170 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2171 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2172 
2173 	ATH_KTR(sc, ATH_KTR_TX, 2,
2174 	     "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf);
2175 
2176 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
2177 	    __func__, ismcast);
2178 
2179 	pri = params->ibp_pri & 3;
2180 	/* Override pri if the frame isn't a QoS one */
2181 	if (! IEEE80211_QOS_HAS_SEQ(wh))
2182 		pri = ath_tx_getac(sc, m0);
2183 
2184 	/* XXX If it's an ADDBA, override the correct queue */
2185 	do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
2186 
2187 	/* Map ADDBA to the correct priority */
2188 	if (do_override) {
2189 #if 1
2190 		DPRINTF(sc, ATH_DEBUG_XMIT,
2191 		    "%s: overriding tid %d pri %d -> %d\n",
2192 		    __func__, o_tid, pri, TID_TO_WME_AC(o_tid));
2193 #endif
2194 		pri = TID_TO_WME_AC(o_tid);
2195 	}
2196 
2197 	/*
2198 	 * "pri" is the hardware queue to transmit on.
2199 	 *
2200 	 * Look at the description in ath_tx_start() to understand
2201 	 * what needs to be "fixed" here so we just use the TID
2202 	 * for QoS frames.
2203 	 */
2204 
2205 	/* Handle encryption twiddling if needed */
2206 	if (! ath_tx_tag_crypto(sc, ni,
2207 	    m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
2208 	    &hdrlen, &pktlen, &keyix)) {
2209 		ieee80211_free_mbuf(m0);
2210 		return EIO;
2211 	}
2212 	/* packet header may have moved, reset our local pointer */
2213 	wh = mtod(m0, struct ieee80211_frame *);
2214 
2215 	/* Do the generic frame setup */
2216 	/* XXX should just bzero the bf_state? */
2217 	bf->bf_state.bfs_dobaw = 0;
2218 
2219 	error = ath_tx_dmasetup(sc, bf, m0);
2220 	if (error != 0)
2221 		return error;
2222 	m0 = bf->bf_m;				/* NB: may have changed */
2223 	wh = mtod(m0, struct ieee80211_frame *);
2224 	KASSERT((ni != NULL), ("%s: ni=NULL!", __func__));
2225 	bf->bf_node = ni;			/* NB: held reference */
2226 
2227 	/* Always enable CLRDMASK for raw frames for now.. */
2228 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
2229 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
2230 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2231 		flags |= HAL_TXDESC_RTSENA;
2232 	else if (params->ibp_flags & IEEE80211_BPF_CTS) {
2233 		/* XXX assume 11g/11n protection? */
2234 		bf->bf_state.bfs_doprot = 1;
2235 		flags |= HAL_TXDESC_CTSENA;
2236 	}
2237 	/* XXX leave ismcast to injector? */
2238 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
2239 		flags |= HAL_TXDESC_NOACK;
2240 
2241 	rt = sc->sc_currates;
2242 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2243 
2244 	/* Fetch first rate information */
2245 	rix = ath_tx_findrix(sc, params->ibp_rate0);
2246 	try0 = params->ibp_try0;
2247 
2248 	/*
2249 	 * Override EAPOL rate as appropriate.
2250 	 */
2251 	if (m0->m_flags & M_EAPOL) {
2252 		/* XXX? maybe always use long preamble? */
2253 		rix = an->an_mgmtrix;
2254 		try0 = ATH_TXMAXTRY;	/* XXX?too many? */
2255 	}
2256 
2257 	/*
2258 	 * If it's a frame to do location reporting on,
2259 	 * communicate it to the HAL.
2260 	 */
2261 	if (ieee80211_get_toa_params(m0, NULL)) {
2262 		device_printf(sc->sc_dev,
2263 		    "%s: setting TX positioning bit\n", __func__);
2264 		flags |= HAL_TXDESC_POS;
2265 		flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
2266 		bf->bf_flags |= ATH_BUF_TOA_PROBE;
2267 	}
2268 
2269 	txrate = rt->info[rix].rateCode;
2270 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
2271 		txrate |= rt->info[rix].shortPreamble;
2272 	sc->sc_txrix = rix;
2273 	ismrr = (params->ibp_try1 != 0);
2274 	txantenna = params->ibp_pri >> 2;
2275 	if (txantenna == 0)			/* XXX? */
2276 		txantenna = sc->sc_txantenna;
2277 
2278 	/*
2279 	 * Since ctsrate is fixed, store it away for later
2280 	 * use when the descriptor fields are being set.
2281 	 */
2282 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
2283 		bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
2284 
2285 	/*
2286 	 * NB: we mark all packets as type PSPOLL so the h/w won't
2287 	 * set the sequence number, duration, etc.
2288 	 */
2289 	atype = HAL_PKT_TYPE_PSPOLL;
2290 
2291 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
2292 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
2293 		    sc->sc_hwmap[rix].ieeerate, -1);
2294 
2295 	if (ieee80211_radiotap_active_vap(vap)) {
2296 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
2297 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2298 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2299 		if (m0->m_flags & M_FRAG)
2300 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2301 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
2302 		sc->sc_tx_th.wt_txpower = MIN(params->ibp_power,
2303 		    ieee80211_get_node_txpower(ni));
2304 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
2305 
2306 		ieee80211_radiotap_tx(vap, m0);
2307 	}
2308 
2309 	/*
2310 	 * Formulate first tx descriptor with tx controls.
2311 	 */
2312 	ds = bf->bf_desc;
2313 	/* XXX check return value? */
2314 
2315 	/* Store the decided rate index values away */
2316 	bf->bf_state.bfs_pktlen = pktlen;
2317 	bf->bf_state.bfs_hdrlen = hdrlen;
2318 	bf->bf_state.bfs_atype = atype;
2319 	bf->bf_state.bfs_txpower = MIN(params->ibp_power,
2320 	    ieee80211_get_node_txpower(ni));
2321 	bf->bf_state.bfs_txrate0 = txrate;
2322 	bf->bf_state.bfs_try0 = try0;
2323 	bf->bf_state.bfs_keyix = keyix;
2324 	bf->bf_state.bfs_txantenna = txantenna;
2325 	bf->bf_state.bfs_txflags = flags;
2326 	bf->bf_state.bfs_shpream =
2327 	    !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
2328 
2329 	/* Set local packet state, used to queue packets to hardware */
2330 	bf->bf_state.bfs_tid = WME_AC_TO_TID(pri);
2331 	bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum;
2332 	bf->bf_state.bfs_pri = pri;
2333 
2334 	/* XXX this should be done in ath_tx_setrate() */
2335 	bf->bf_state.bfs_ctsrate = 0;
2336 	bf->bf_state.bfs_ctsduration = 0;
2337 	bf->bf_state.bfs_ismrr = ismrr;
2338 
2339 	/* Blank the legacy rate array */
2340 	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
2341 
2342 	bf->bf_state.bfs_rc[0].rix = rix;
2343 	bf->bf_state.bfs_rc[0].tries = try0;
2344 	bf->bf_state.bfs_rc[0].ratecode = txrate;
2345 
2346 	if (ismrr) {
2347 		int rix;
2348 
2349 		rix = ath_tx_findrix(sc, params->ibp_rate1);
2350 		bf->bf_state.bfs_rc[1].rix = rix;
2351 		bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
2352 
2353 		rix = ath_tx_findrix(sc, params->ibp_rate2);
2354 		bf->bf_state.bfs_rc[2].rix = rix;
2355 		bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
2356 
2357 		rix = ath_tx_findrix(sc, params->ibp_rate3);
2358 		bf->bf_state.bfs_rc[3].rix = rix;
2359 		bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
2360 	}
2361 	/*
2362 	 * All the required rate control decisions have been made;
2363 	 * fill in the rc flags.
2364 	 */
2365 	ath_tx_rate_fill_rcflags(sc, bf);
2366 
2367 	/* NB: no buffered multicast in power save support */
2368 
2369 	/*
2370 	 * If we're overiding the ADDBA destination, dump directly
2371 	 * into the hardware queue, right after any pending
2372 	 * frames to that node are.
2373 	 */
2374 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
2375 	    __func__, do_override);
2376 
2377 #if 1
2378 	/*
2379 	 * Put addba frames in the right place in the right TID/HWQ.
2380 	 */
2381 	if (do_override) {
2382 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2383 		/*
2384 		 * XXX if it's addba frames, should we be leaking
2385 		 * them out via the frame leak method?
2386 		 * XXX for now let's not risk it; but we may wish
2387 		 * to investigate this later.
2388 		 */
2389 		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2390 	} else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0,
2391 	    &queue_to_head)) {
2392 		/* Queue to software queue */
2393 		ath_tx_swq(sc, ni, sc->sc_ac2q[pri], queue_to_head, bf);
2394 	} else {
2395 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2396 		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2397 	}
2398 #else
2399 	/* Direct-dispatch to the hardware */
2400 	bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
2401 	/*
2402 	 * Update the current leak count if
2403 	 * we're leaking frames; and set the
2404 	 * MORE flag as appropriate.
2405 	 */
2406 	ath_tx_leak_count_update(sc, tid, bf);
2407 	ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
2408 #endif
2409 	return 0;
2410 }
2411 
2412 /*
2413  * Send a raw frame.
2414  *
2415  * This can be called by net80211.
2416  */
2417 int
2418 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2419 	const struct ieee80211_bpf_params *params)
2420 {
2421 	struct ieee80211com *ic = ni->ni_ic;
2422 	struct ath_softc *sc = ic->ic_softc;
2423 	struct ath_buf *bf;
2424 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
2425 	int error = 0;
2426 
2427 	ATH_PCU_LOCK(sc);
2428 	if (sc->sc_inreset_cnt > 0) {
2429 		DPRINTF(sc, ATH_DEBUG_XMIT,
2430 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2431 		error = EIO;
2432 		ATH_PCU_UNLOCK(sc);
2433 		goto badbad;
2434 	}
2435 	sc->sc_txstart_cnt++;
2436 	ATH_PCU_UNLOCK(sc);
2437 
2438 	/* Wake the hardware up already */
2439 	ATH_LOCK(sc);
2440 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2441 	ATH_UNLOCK(sc);
2442 
2443 	ATH_TX_LOCK(sc);
2444 
2445 	if (!sc->sc_running || sc->sc_invalid) {
2446 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, r/i: %d/%d",
2447 		    __func__, sc->sc_running, sc->sc_invalid);
2448 		m_freem(m);
2449 		error = ENETDOWN;
2450 		goto bad;
2451 	}
2452 
2453 	/*
2454 	 * Enforce how deep the multicast queue can grow.
2455 	 *
2456 	 * XXX duplicated in ath_tx_start().
2457 	 */
2458 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2459 		if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
2460 		    > sc->sc_txq_mcastq_maxdepth) {
2461 			sc->sc_stats.ast_tx_mcastq_overflow++;
2462 			error = ENOBUFS;
2463 		}
2464 
2465 		if (error != 0) {
2466 			m_freem(m);
2467 			goto bad;
2468 		}
2469 	}
2470 
2471 	/*
2472 	 * Grab a TX buffer and associated resources.
2473 	 */
2474 	bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
2475 	if (bf == NULL) {
2476 		sc->sc_stats.ast_tx_nobuf++;
2477 		m_freem(m);
2478 		error = ENOBUFS;
2479 		goto bad;
2480 	}
2481 	ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n",
2482 	    m, params,  bf);
2483 
2484 	if (params == NULL) {
2485 		/*
2486 		 * Legacy path; interpret frame contents to decide
2487 		 * precisely how to send the frame.
2488 		 */
2489 		if (ath_tx_start(sc, ni, bf, m)) {
2490 			error = EIO;		/* XXX */
2491 			goto bad2;
2492 		}
2493 	} else {
2494 		/*
2495 		 * Caller supplied explicit parameters to use in
2496 		 * sending the frame.
2497 		 */
2498 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
2499 			error = EIO;		/* XXX */
2500 			goto bad2;
2501 		}
2502 	}
2503 	sc->sc_wd_timer = 5;
2504 	sc->sc_stats.ast_tx_raw++;
2505 
2506 	/*
2507 	 * Update the TIM - if there's anything queued to the
2508 	 * software queue and power save is enabled, we should
2509 	 * set the TIM.
2510 	 */
2511 	ath_tx_update_tim(sc, ni, 1);
2512 
2513 	ATH_TX_UNLOCK(sc);
2514 
2515 	ATH_PCU_LOCK(sc);
2516 	sc->sc_txstart_cnt--;
2517 	ATH_PCU_UNLOCK(sc);
2518 
2519 	/* Put the hardware back to sleep if required */
2520 	ATH_LOCK(sc);
2521 	ath_power_restore_power_state(sc);
2522 	ATH_UNLOCK(sc);
2523 
2524 	return 0;
2525 
2526 bad2:
2527 	ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, "
2528 	    "bf=%p",
2529 	    m,
2530 	    params,
2531 	    bf);
2532 	ATH_TXBUF_LOCK(sc);
2533 	ath_returnbuf_head(sc, bf);
2534 	ATH_TXBUF_UNLOCK(sc);
2535 
2536 bad:
2537 	ATH_TX_UNLOCK(sc);
2538 
2539 	ATH_PCU_LOCK(sc);
2540 	sc->sc_txstart_cnt--;
2541 	ATH_PCU_UNLOCK(sc);
2542 
2543 	/* Put the hardware back to sleep if required */
2544 	ATH_LOCK(sc);
2545 	ath_power_restore_power_state(sc);
2546 	ATH_UNLOCK(sc);
2547 
2548 badbad:
2549 	ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p",
2550 	    m, params);
2551 	sc->sc_stats.ast_tx_raw_fail++;
2552 
2553 	return error;
2554 }
2555 
2556 /* Some helper functions */
2557 
2558 /*
2559  * ADDBA (and potentially others) need to be placed in the same
2560  * hardware queue as the TID/node it's relating to. This is so
2561  * it goes out after any pending non-aggregate frames to the
2562  * same node/TID.
2563  *
2564  * If this isn't done, the ADDBA can go out before the frames
2565  * queued in hardware. Even though these frames have a sequence
2566  * number -earlier- than the ADDBA can be transmitted (but
2567  * no frames whose sequence numbers are after the ADDBA should
2568  * be!) they'll arrive after the ADDBA - and the receiving end
2569  * will simply drop them as being out of the BAW.
2570  *
2571  * The frames can't be appended to the TID software queue - it'll
2572  * never be sent out. So these frames have to be directly
2573  * dispatched to the hardware, rather than queued in software.
2574  * So if this function returns true, the TXQ has to be
2575  * overridden and it has to be directly dispatched.
2576  *
2577  * It's a dirty hack, but someone's gotta do it.
2578  */
2579 
2580 /*
2581  * XXX doesn't belong here!
2582  */
2583 static int
2584 ieee80211_is_action(struct ieee80211_frame *wh)
2585 {
2586 	/* Type: Management frame? */
2587 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
2588 	    IEEE80211_FC0_TYPE_MGT)
2589 		return 0;
2590 
2591 	/* Subtype: Action frame? */
2592 	if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
2593 	    IEEE80211_FC0_SUBTYPE_ACTION)
2594 		return 0;
2595 
2596 	return 1;
2597 }
2598 
2599 /*
2600  * Return an alternate TID for ADDBA request frames.
2601  *
2602  * Yes, this likely should be done in the net80211 layer.
2603  */
2604 static int
2605 ath_tx_action_frame_override_queue(struct ath_softc *sc,
2606     struct ieee80211_node *ni,
2607     struct mbuf *m0, int *tid)
2608 {
2609 	struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
2610 	struct ieee80211_action_ba_addbarequest *ia;
2611 	uint8_t *frm;
2612 	uint16_t baparamset;
2613 
2614 	/* Not action frame? Bail */
2615 	if (! ieee80211_is_action(wh))
2616 		return 0;
2617 
2618 	/* XXX Not needed for frames we send? */
2619 #if 0
2620 	/* Correct length? */
2621 	if (! ieee80211_parse_action(ni, m))
2622 		return 0;
2623 #endif
2624 
2625 	/* Extract out action frame */
2626 	frm = (u_int8_t *)&wh[1];
2627 	ia = (struct ieee80211_action_ba_addbarequest *) frm;
2628 
2629 	/* Not ADDBA? Bail */
2630 	if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
2631 		return 0;
2632 	if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
2633 		return 0;
2634 
2635 	/* Extract TID, return it */
2636 	baparamset = le16toh(ia->rq_baparamset);
2637 	*tid = (int) _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2638 
2639 	return 1;
2640 }
2641 
2642 /* Per-node software queue operations */
2643 
2644 /*
2645  * Add the current packet to the given BAW.
2646  * It is assumed that the current packet
2647  *
2648  * + fits inside the BAW;
2649  * + already has had a sequence number allocated.
2650  *
2651  * Since the BAW status may be modified by both the ath task and
2652  * the net80211/ifnet contexts, the TID must be locked.
2653  */
2654 void
2655 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
2656     struct ath_tid *tid, struct ath_buf *bf)
2657 {
2658 	int index, cindex;
2659 	struct ieee80211_tx_ampdu *tap;
2660 
2661 	ATH_TX_LOCK_ASSERT(sc);
2662 
2663 	if (bf->bf_state.bfs_isretried)
2664 		return;
2665 
2666 	tap = ath_tx_get_tx_tid(an, tid->tid);
2667 
2668 	if (! bf->bf_state.bfs_dobaw) {
2669 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2670 		    "%s: dobaw=0, seqno=%d, window %d:%d\n",
2671 		    __func__, SEQNO(bf->bf_state.bfs_seqno),
2672 		    tap->txa_start, tap->txa_wnd);
2673 	}
2674 
2675 	if (bf->bf_state.bfs_addedbaw)
2676 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2677 		    "%s: re-added? tid=%d, seqno %d; window %d:%d; "
2678 		    "baw head=%d tail=%d\n",
2679 		    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2680 		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2681 		    tid->baw_tail);
2682 
2683 	/*
2684 	 * Verify that the given sequence number is not outside of the
2685 	 * BAW.  Complain loudly if that's the case.
2686 	 */
2687 	if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2688 	    SEQNO(bf->bf_state.bfs_seqno))) {
2689 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2690 		    "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; "
2691 		    "baw head=%d tail=%d\n",
2692 		    __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2693 		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2694 		    tid->baw_tail);
2695 	}
2696 
2697 	/*
2698 	 * ni->ni_txseqs[] is the currently allocated seqno.
2699 	 * the txa state contains the current baw start.
2700 	 */
2701 	index  = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
2702 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2703 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2704 	    "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d "
2705 	    "baw head=%d tail=%d\n",
2706 	    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2707 	    tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head,
2708 	    tid->baw_tail);
2709 
2710 #if 0
2711 	assert(tid->tx_buf[cindex] == NULL);
2712 #endif
2713 	if (tid->tx_buf[cindex] != NULL) {
2714 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2715 		    "%s: ba packet dup (index=%d, cindex=%d, "
2716 		    "head=%d, tail=%d)\n",
2717 		    __func__, index, cindex, tid->baw_head, tid->baw_tail);
2718 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2719 		    "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
2720 		    __func__,
2721 		    tid->tx_buf[cindex],
2722 		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
2723 		    bf,
2724 		    SEQNO(bf->bf_state.bfs_seqno)
2725 		);
2726 	}
2727 	tid->tx_buf[cindex] = bf;
2728 
2729 	if (index >= ((tid->baw_tail - tid->baw_head) &
2730 	    (ATH_TID_MAX_BUFS - 1))) {
2731 		tid->baw_tail = cindex;
2732 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
2733 	}
2734 }
2735 
2736 /*
2737  * Flip the BAW buffer entry over from the existing one to the new one.
2738  *
2739  * When software retransmitting a (sub-)frame, it is entirely possible that
2740  * the frame ath_buf is marked as BUSY and can't be immediately reused.
2741  * In that instance the buffer is cloned and the new buffer is used for
2742  * retransmit. We thus need to update the ath_buf slot in the BAW buf
2743  * tracking array to maintain consistency.
2744  */
2745 static void
2746 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
2747     struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
2748 {
2749 	int index, cindex;
2750 	struct ieee80211_tx_ampdu *tap;
2751 	int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
2752 
2753 	ATH_TX_LOCK_ASSERT(sc);
2754 
2755 	tap = ath_tx_get_tx_tid(an, tid->tid);
2756 	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2757 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2758 
2759 	/*
2760 	 * Just warn for now; if it happens then we should find out
2761 	 * about it. It's highly likely the aggregation session will
2762 	 * soon hang.
2763 	 */
2764 	if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
2765 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2766 		    "%s: retransmitted buffer"
2767 		    " has mismatching seqno's, BA session may hang.\n",
2768 		    __func__);
2769 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2770 		    "%s: old seqno=%d, new_seqno=%d\n", __func__,
2771 		    old_bf->bf_state.bfs_seqno, new_bf->bf_state.bfs_seqno);
2772 	}
2773 
2774 	if (tid->tx_buf[cindex] != old_bf) {
2775 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2776 		    "%s: ath_buf pointer incorrect; "
2777 		    " has m BA session may hang.\n", __func__);
2778 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2779 		    "%s: old bf=%p, new bf=%p\n", __func__, old_bf, new_bf);
2780 	}
2781 
2782 	tid->tx_buf[cindex] = new_bf;
2783 }
2784 
2785 /*
2786  * seq_start - left edge of BAW
2787  * seq_next - current/next sequence number to allocate
2788  *
2789  * Since the BAW status may be modified by both the ath task and
2790  * the net80211/ifnet contexts, the TID must be locked.
2791  */
2792 static void
2793 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
2794     struct ath_tid *tid, const struct ath_buf *bf)
2795 {
2796 	int index, cindex;
2797 	struct ieee80211_tx_ampdu *tap;
2798 	int seqno = SEQNO(bf->bf_state.bfs_seqno);
2799 
2800 	ATH_TX_LOCK_ASSERT(sc);
2801 
2802 	tap = ath_tx_get_tx_tid(an, tid->tid);
2803 	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2804 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2805 
2806 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2807 	    "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, "
2808 	    "baw head=%d, tail=%d\n",
2809 	    __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
2810 	    cindex, tid->baw_head, tid->baw_tail);
2811 
2812 	/*
2813 	 * If this occurs then we have a big problem - something else
2814 	 * has slid tap->txa_start along without updating the BAW
2815 	 * tracking start/end pointers. Thus the TX BAW state is now
2816 	 * completely busted.
2817 	 *
2818 	 * But for now, since I haven't yet fixed TDMA and buffer cloning,
2819 	 * it's quite possible that a cloned buffer is making its way
2820 	 * here and causing it to fire off. Disable TDMA for now.
2821 	 */
2822 	if (tid->tx_buf[cindex] != bf) {
2823 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2824 		    "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
2825 		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
2826 		    tid->tx_buf[cindex],
2827 		    (tid->tx_buf[cindex] != NULL) ?
2828 		      SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno) : -1);
2829 	}
2830 
2831 	tid->tx_buf[cindex] = NULL;
2832 
2833 	while (tid->baw_head != tid->baw_tail &&
2834 	    !tid->tx_buf[tid->baw_head]) {
2835 		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2836 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
2837 	}
2838 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2839 	    "%s: tid=%d: baw is now %d:%d, baw head=%d\n",
2840 	    __func__, tid->tid, tap->txa_start, tap->txa_wnd, tid->baw_head);
2841 }
2842 
2843 static void
2844 ath_tx_leak_count_update(struct ath_softc *sc, struct ath_tid *tid,
2845     struct ath_buf *bf)
2846 {
2847 	struct ieee80211_frame *wh;
2848 
2849 	ATH_TX_LOCK_ASSERT(sc);
2850 
2851 	if (tid->an->an_leak_count > 0) {
2852 		wh = mtod(bf->bf_m, struct ieee80211_frame *);
2853 
2854 		/*
2855 		 * Update MORE based on the software/net80211 queue states.
2856 		 */
2857 		if ((tid->an->an_stack_psq > 0)
2858 		    || (tid->an->an_swq_depth > 0))
2859 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
2860 		else
2861 			wh->i_fc[1] &= ~IEEE80211_FC1_MORE_DATA;
2862 
2863 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
2864 		    "%s: %6D: leak count = %d, psq=%d, swq=%d, MORE=%d\n",
2865 		    __func__,
2866 		    tid->an->an_node.ni_macaddr,
2867 		    ":",
2868 		    tid->an->an_leak_count,
2869 		    tid->an->an_stack_psq,
2870 		    tid->an->an_swq_depth,
2871 		    !! (wh->i_fc[1] & IEEE80211_FC1_MORE_DATA));
2872 
2873 		/*
2874 		 * Re-sync the underlying buffer.
2875 		 */
2876 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2877 		    BUS_DMASYNC_PREWRITE);
2878 
2879 		tid->an->an_leak_count --;
2880 	}
2881 }
2882 
2883 static int
2884 ath_tx_tid_can_tx_or_sched(struct ath_softc *sc, struct ath_tid *tid)
2885 {
2886 
2887 	ATH_TX_LOCK_ASSERT(sc);
2888 
2889 	if (tid->an->an_leak_count > 0) {
2890 		return (1);
2891 	}
2892 	if (tid->paused)
2893 		return (0);
2894 	return (1);
2895 }
2896 
2897 /*
2898  * Mark the current node/TID as ready to TX.
2899  *
2900  * This is done to make it easy for the software scheduler to
2901  * find which nodes have data to send.
2902  *
2903  * The TXQ lock must be held.
2904  */
2905 void
2906 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
2907 {
2908 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2909 
2910 	ATH_TX_LOCK_ASSERT(sc);
2911 
2912 	/*
2913 	 * If we are leaking out a frame to this destination
2914 	 * for PS-POLL, ensure that we allow scheduling to
2915 	 * occur.
2916 	 */
2917 	if (! ath_tx_tid_can_tx_or_sched(sc, tid))
2918 		return;		/* paused, can't schedule yet */
2919 
2920 	if (tid->sched)
2921 		return;		/* already scheduled */
2922 
2923 	tid->sched = 1;
2924 
2925 #if 0
2926 	/*
2927 	 * If this is a sleeping node we're leaking to, given
2928 	 * it a higher priority.  This is so bad for QoS it hurts.
2929 	 */
2930 	if (tid->an->an_leak_count) {
2931 		TAILQ_INSERT_HEAD(&txq->axq_tidq, tid, axq_qelem);
2932 	} else {
2933 		TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2934 	}
2935 #endif
2936 
2937 	/*
2938 	 * We can't do the above - it'll confuse the TXQ software
2939 	 * scheduler which will keep checking the _head_ TID
2940 	 * in the list to see if it has traffic.  If we queue
2941 	 * a TID to the head of the list and it doesn't transmit,
2942 	 * we'll check it again.
2943 	 *
2944 	 * So, get the rest of this leaking frames support working
2945 	 * and reliable first and _then_ optimise it so they're
2946 	 * pushed out in front of any other pending software
2947 	 * queued nodes.
2948 	 */
2949 	TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2950 }
2951 
2952 /*
2953  * Mark the current node as no longer needing to be polled for
2954  * TX packets.
2955  *
2956  * The TXQ lock must be held.
2957  */
2958 static void
2959 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
2960 {
2961 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2962 
2963 	ATH_TX_LOCK_ASSERT(sc);
2964 
2965 	if (tid->sched == 0)
2966 		return;
2967 
2968 	tid->sched = 0;
2969 	TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
2970 }
2971 
2972 /*
2973  * Assign a sequence number manually to the given frame.
2974  *
2975  * This should only be called for A-MPDU TX frames.
2976  *
2977  * Note: for group addressed frames, the sequence number
2978  * should be from NONQOS_TID, and net80211 should have
2979  * already assigned it for us.
2980  */
2981 static ieee80211_seq
2982 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
2983     struct ath_buf *bf, struct mbuf *m0)
2984 {
2985 	struct ieee80211_frame *wh;
2986 	int tid;
2987 	ieee80211_seq seqno;
2988 	uint8_t subtype;
2989 
2990 	wh = mtod(m0, struct ieee80211_frame *);
2991 	tid = ieee80211_gettid(wh);
2992 
2993 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, qos has seq=%d\n",
2994 	    __func__, tid, IEEE80211_QOS_HAS_SEQ(wh));
2995 
2996 	/* XXX Is it a control frame? Ignore */
2997 
2998 	/* Does the packet require a sequence number? */
2999 	if (! IEEE80211_QOS_HAS_SEQ(wh))
3000 		return -1;
3001 
3002 	ATH_TX_LOCK_ASSERT(sc);
3003 
3004 	/*
3005 	 * Is it a QOS NULL Data frame? Give it a sequence number from
3006 	 * the default TID (IEEE80211_NONQOS_TID.)
3007 	 *
3008 	 * The RX path of everything I've looked at doesn't include the NULL
3009 	 * data frame sequence number in the aggregation state updates, so
3010 	 * assigning it a sequence number there will cause a BAW hole on the
3011 	 * RX side.
3012 	 */
3013 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3014 	if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
3015 		/* XXX no locking for this TID? This is a bit of a problem. */
3016 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
3017 		INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
3018 	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3019 		/*
3020 		 * group addressed frames get a sequence number from
3021 		 * a different sequence number space.
3022 		 */
3023 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
3024 		INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
3025 	} else {
3026 		/* Manually assign sequence number */
3027 		seqno = ni->ni_txseqs[tid];
3028 		INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
3029 	}
3030 	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3031 	M_SEQNO_SET(m0, seqno);
3032 
3033 	/* Return so caller can do something with it if needed */
3034 	DPRINTF(sc, ATH_DEBUG_SW_TX,
3035 	    "%s:  -> subtype=0x%x, tid=%d, seqno=%d\n",
3036 	    __func__, subtype, tid, seqno);
3037 	return seqno;
3038 }
3039 
3040 /*
3041  * Attempt to direct dispatch an aggregate frame to hardware.
3042  * If the frame is out of BAW, queue.
3043  * Otherwise, schedule it as a single frame.
3044  */
3045 static void
3046 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an,
3047     struct ath_txq *txq, struct ath_buf *bf)
3048 {
3049 	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
3050 	struct ieee80211_tx_ampdu *tap;
3051 
3052 	ATH_TX_LOCK_ASSERT(sc);
3053 
3054 	tap = ath_tx_get_tx_tid(an, tid->tid);
3055 
3056 	/* paused? queue */
3057 	if (! ath_tx_tid_can_tx_or_sched(sc, tid)) {
3058 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
3059 		/* XXX don't sched - we're paused! */
3060 		return;
3061 	}
3062 
3063 	/* outside baw? queue */
3064 	if (bf->bf_state.bfs_dobaw &&
3065 	    (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
3066 	    SEQNO(bf->bf_state.bfs_seqno)))) {
3067 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
3068 		ath_tx_tid_sched(sc, tid);
3069 		return;
3070 	}
3071 
3072 	/*
3073 	 * This is a temporary check and should be removed once
3074 	 * all the relevant code paths have been fixed.
3075 	 *
3076 	 * During aggregate retries, it's possible that the head
3077 	 * frame will fail (which has the bfs_aggr and bfs_nframes
3078 	 * fields set for said aggregate) and will be retried as
3079 	 * a single frame.  In this instance, the values should
3080 	 * be reset or the completion code will get upset with you.
3081 	 */
3082 	if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) {
3083 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3084 		    "%s: bfs_aggr=%d, bfs_nframes=%d\n", __func__,
3085 		    bf->bf_state.bfs_aggr, bf->bf_state.bfs_nframes);
3086 		bf->bf_state.bfs_aggr = 0;
3087 		bf->bf_state.bfs_nframes = 1;
3088 	}
3089 
3090 	/* Update CLRDMASK just before this frame is queued */
3091 	ath_tx_update_clrdmask(sc, tid, bf);
3092 
3093 	/* Direct dispatch to hardware */
3094 	ath_tx_do_ratelookup(sc, bf, tid->tid, bf->bf_state.bfs_pktlen,
3095 	    false);
3096 	ath_tx_calc_duration(sc, bf);
3097 	ath_tx_calc_protection(sc, bf);
3098 	ath_tx_set_rtscts(sc, bf);
3099 	ath_tx_rate_fill_rcflags(sc, bf);
3100 	ath_tx_setds(sc, bf);
3101 
3102 	/* Statistics */
3103 	sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
3104 
3105 	/* Track per-TID hardware queue depth correctly */
3106 	tid->hwq_depth++;
3107 
3108 	/* Add to BAW */
3109 	if (bf->bf_state.bfs_dobaw) {
3110 		ath_tx_addto_baw(sc, an, tid, bf);
3111 		bf->bf_state.bfs_addedbaw = 1;
3112 	}
3113 
3114 	/* Set completion handler, multi-frame aggregate or not */
3115 	bf->bf_comp = ath_tx_aggr_comp;
3116 
3117 	/*
3118 	 * Update the current leak count if
3119 	 * we're leaking frames; and set the
3120 	 * MORE flag as appropriate.
3121 	 */
3122 	ath_tx_leak_count_update(sc, tid, bf);
3123 
3124 	/* Hand off to hardware */
3125 	ath_tx_handoff(sc, txq, bf);
3126 }
3127 
3128 /*
3129  * Attempt to send the packet.
3130  * If the queue isn't busy, direct-dispatch.
3131  * If the queue is busy enough, queue the given packet on the
3132  *  relevant software queue.
3133  */
3134 void
3135 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni,
3136     struct ath_txq *txq, int queue_to_head, struct ath_buf *bf)
3137 {
3138 	struct ath_node *an = ATH_NODE(ni);
3139 	struct ieee80211_frame *wh;
3140 	struct ath_tid *atid;
3141 	int pri, tid;
3142 	struct mbuf *m0 = bf->bf_m;
3143 
3144 	ATH_TX_LOCK_ASSERT(sc);
3145 
3146 	/* Fetch the TID - non-QoS frames get assigned to TID 16 */
3147 	wh = mtod(m0, struct ieee80211_frame *);
3148 	pri = ath_tx_getac(sc, m0);
3149 	tid = ath_tx_gettid(sc, m0);
3150 	atid = &an->an_tid[tid];
3151 
3152 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
3153 	    __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
3154 
3155 	/* Set local packet state, used to queue packets to hardware */
3156 	/* XXX potentially duplicate info, re-check */
3157 	bf->bf_state.bfs_tid = tid;
3158 	bf->bf_state.bfs_tx_queue = txq->axq_qnum;
3159 	bf->bf_state.bfs_pri = pri;
3160 
3161 	/*
3162 	 * If the hardware queue isn't busy, queue it directly.
3163 	 * If the hardware queue is busy, queue it.
3164 	 * If the TID is paused or the traffic it outside BAW, software
3165 	 * queue it.
3166 	 *
3167 	 * If the node is in power-save and we're leaking a frame,
3168 	 * leak a single frame.
3169 	 */
3170 	if (! ath_tx_tid_can_tx_or_sched(sc, atid)) {
3171 		/* TID is paused, queue */
3172 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__);
3173 		/*
3174 		 * If the caller requested that it be sent at a high
3175 		 * priority, queue it at the head of the list.
3176 		 */
3177 		if (queue_to_head)
3178 			ATH_TID_INSERT_HEAD(atid, bf, bf_list);
3179 		else
3180 			ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3181 	} else if (ath_tx_ampdu_pending(sc, an, tid)) {
3182 		/* AMPDU pending; queue */
3183 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__);
3184 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3185 		/* XXX sched? */
3186 	} else if (ath_tx_ampdu_running(sc, an, tid)) {
3187 		/*
3188 		 * AMPDU running, queue single-frame if the hardware queue
3189 		 * isn't busy.
3190 		 *
3191 		 * If the hardware queue is busy, sending an aggregate frame
3192 		 * then just hold off so we can queue more aggregate frames.
3193 		 *
3194 		 * Otherwise we may end up with single frames leaking through
3195 		 * because we are dispatching them too quickly.
3196 		 *
3197 		 * TODO: maybe we should treat this as two policies - minimise
3198 		 * latency, or maximise throughput.  Then for BE/BK we can
3199 		 * maximise throughput, and VO/VI (if AMPDU is enabled!)
3200 		 * minimise latency.
3201 		 */
3202 
3203 		/*
3204 		 * Always queue the frame to the tail of the list.
3205 		 */
3206 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3207 
3208 		/*
3209 		 * If the hardware queue isn't busy, direct dispatch
3210 		 * the head frame in the list.
3211 		 *
3212 		 * Note: if we're say, configured to do ADDBA but not A-MPDU
3213 		 * then maybe we want to still queue two non-aggregate frames
3214 		 * to the hardware.  Again with the per-TID policy
3215 		 * configuration..)
3216 		 *
3217 		 * Otherwise, schedule the TID.
3218 		 */
3219 		/* XXX TXQ locking */
3220 		if (txq->axq_depth + txq->fifo.axq_depth == 0) {
3221 			bf = ATH_TID_FIRST(atid);
3222 			ATH_TID_REMOVE(atid, bf, bf_list);
3223 
3224 			/*
3225 			 * Ensure it's definitely treated as a non-AMPDU
3226 			 * frame - this information may have been left
3227 			 * over from a previous attempt.
3228 			 */
3229 			bf->bf_state.bfs_aggr = 0;
3230 			bf->bf_state.bfs_nframes = 1;
3231 
3232 			/* Queue to the hardware */
3233 			ath_tx_xmit_aggr(sc, an, txq, bf);
3234 			DPRINTF(sc, ATH_DEBUG_SW_TX,
3235 			    "%s: xmit_aggr\n",
3236 			    __func__);
3237 		} else {
3238 			DPRINTF(sc, ATH_DEBUG_SW_TX,
3239 			    "%s: ampdu; swq'ing\n",
3240 			    __func__);
3241 
3242 			ath_tx_tid_sched(sc, atid);
3243 		}
3244 	/*
3245 	 * If we're not doing A-MPDU, be prepared to direct dispatch
3246 	 * up to both limits if possible.  This particular corner
3247 	 * case may end up with packet starvation between aggregate
3248 	 * traffic and non-aggregate traffic: we want to ensure
3249 	 * that non-aggregate stations get a few frames queued to the
3250 	 * hardware before the aggregate station(s) get their chance.
3251 	 *
3252 	 * So if you only ever see a couple of frames direct dispatched
3253 	 * to the hardware from a non-AMPDU client, check both here
3254 	 * and in the software queue dispatcher to ensure that those
3255 	 * non-AMPDU stations get a fair chance to transmit.
3256 	 */
3257 	/* XXX TXQ locking */
3258 	} else if ((txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit_nonaggr) &&
3259 		    (txq->axq_aggr_depth < sc->sc_hwq_limit_aggr)) {
3260 		/* AMPDU not running, attempt direct dispatch */
3261 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__);
3262 		/* See if clrdmask needs to be set */
3263 		ath_tx_update_clrdmask(sc, atid, bf);
3264 
3265 		/*
3266 		 * Update the current leak count if
3267 		 * we're leaking frames; and set the
3268 		 * MORE flag as appropriate.
3269 		 */
3270 		ath_tx_leak_count_update(sc, atid, bf);
3271 
3272 		/*
3273 		 * Dispatch the frame.
3274 		 */
3275 		ath_tx_xmit_normal(sc, txq, bf);
3276 	} else {
3277 		/* Busy; queue */
3278 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__);
3279 		ATH_TID_INSERT_TAIL(atid, bf, bf_list);
3280 		ath_tx_tid_sched(sc, atid);
3281 	}
3282 }
3283 
3284 /*
3285  * Only set the clrdmask bit if none of the nodes are currently
3286  * filtered.
3287  *
3288  * XXX TODO: go through all the callers and check to see
3289  * which are being called in the context of looping over all
3290  * TIDs (eg, if all tids are being paused, resumed, etc.)
3291  * That'll avoid O(n^2) complexity here.
3292  */
3293 static void
3294 ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an)
3295 {
3296 	int i;
3297 
3298 	ATH_TX_LOCK_ASSERT(sc);
3299 
3300 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
3301 		if (an->an_tid[i].isfiltered == 1)
3302 			return;
3303 	}
3304 	an->clrdmask = 1;
3305 }
3306 
3307 /*
3308  * Configure the per-TID node state.
3309  *
3310  * This likely belongs in if_ath_node.c but I can't think of anywhere
3311  * else to put it just yet.
3312  *
3313  * This sets up the SLISTs and the mutex as appropriate.
3314  */
3315 void
3316 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
3317 {
3318 	int i, j;
3319 	struct ath_tid *atid;
3320 
3321 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
3322 		atid = &an->an_tid[i];
3323 
3324 		/* XXX now with this bzer(), is the field 0'ing needed? */
3325 		bzero(atid, sizeof(*atid));
3326 
3327 		TAILQ_INIT(&atid->tid_q);
3328 		TAILQ_INIT(&atid->filtq.tid_q);
3329 		atid->tid = i;
3330 		atid->an = an;
3331 		for (j = 0; j < ATH_TID_MAX_BUFS; j++)
3332 			atid->tx_buf[j] = NULL;
3333 		atid->baw_head = atid->baw_tail = 0;
3334 		atid->paused = 0;
3335 		atid->sched = 0;
3336 		atid->hwq_depth = 0;
3337 		atid->cleanup_inprogress = 0;
3338 		if (i == IEEE80211_NONQOS_TID)
3339 			atid->ac = ATH_NONQOS_TID_AC;
3340 		else
3341 			atid->ac = TID_TO_WME_AC(i);
3342 	}
3343 	an->clrdmask = 1;	/* Always start by setting this bit */
3344 }
3345 
3346 /*
3347  * Pause the current TID. This stops packets from being transmitted
3348  * on it.
3349  *
3350  * Since this is also called from upper layers as well as the driver,
3351  * it will get the TID lock.
3352  */
3353 static void
3354 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
3355 {
3356 
3357 	ATH_TX_LOCK_ASSERT(sc);
3358 	tid->paused++;
3359 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: [%6D]: tid=%d, paused = %d\n",
3360 	    __func__,
3361 	    tid->an->an_node.ni_macaddr, ":",
3362 	    tid->tid,
3363 	    tid->paused);
3364 }
3365 
3366 /*
3367  * Unpause the current TID, and schedule it if needed.
3368  */
3369 static void
3370 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
3371 {
3372 	ATH_TX_LOCK_ASSERT(sc);
3373 
3374 	/*
3375 	 * There's some odd places where ath_tx_tid_resume() is called
3376 	 * when it shouldn't be; this works around that particular issue
3377 	 * until it's actually resolved.
3378 	 */
3379 	if (tid->paused == 0) {
3380 		device_printf(sc->sc_dev,
3381 		    "%s: [%6D]: tid=%d, paused=0?\n",
3382 		    __func__,
3383 		    tid->an->an_node.ni_macaddr, ":",
3384 		    tid->tid);
3385 	} else {
3386 		tid->paused--;
3387 	}
3388 
3389 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3390 	    "%s: [%6D]: tid=%d, unpaused = %d\n",
3391 	    __func__,
3392 	    tid->an->an_node.ni_macaddr, ":",
3393 	    tid->tid,
3394 	    tid->paused);
3395 
3396 	if (tid->paused)
3397 		return;
3398 
3399 	/*
3400 	 * Override the clrdmask configuration for the next frame
3401 	 * from this TID, just to get the ball rolling.
3402 	 */
3403 	ath_tx_set_clrdmask(sc, tid->an);
3404 
3405 	if (tid->axq_depth == 0)
3406 		return;
3407 
3408 	/* XXX isfiltered shouldn't ever be 0 at this point */
3409 	if (tid->isfiltered == 1) {
3410 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: filtered?!\n",
3411 		    __func__);
3412 		return;
3413 	}
3414 
3415 	ath_tx_tid_sched(sc, tid);
3416 
3417 	/*
3418 	 * Queue the software TX scheduler.
3419 	 */
3420 	ath_tx_swq_kick(sc);
3421 }
3422 
3423 /*
3424  * Add the given ath_buf to the TID filtered frame list.
3425  * This requires the TID be filtered.
3426  */
3427 static void
3428 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid,
3429     struct ath_buf *bf)
3430 {
3431 
3432 	ATH_TX_LOCK_ASSERT(sc);
3433 
3434 	if (!tid->isfiltered)
3435 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: not filtered?!\n",
3436 		    __func__);
3437 
3438 	DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf);
3439 
3440 	/* Set the retry bit and bump the retry counter */
3441 	ath_tx_set_retry(sc, bf);
3442 	sc->sc_stats.ast_tx_swfiltered++;
3443 
3444 	ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list);
3445 }
3446 
3447 /*
3448  * Handle a completed filtered frame from the given TID.
3449  * This just enables/pauses the filtered frame state if required
3450  * and appends the filtered frame to the filtered queue.
3451  */
3452 static void
3453 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid,
3454     struct ath_buf *bf)
3455 {
3456 
3457 	ATH_TX_LOCK_ASSERT(sc);
3458 
3459 	if (! tid->isfiltered) {
3460 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d; filter transition\n",
3461 		    __func__, tid->tid);
3462 		tid->isfiltered = 1;
3463 		ath_tx_tid_pause(sc, tid);
3464 	}
3465 
3466 	/* Add the frame to the filter queue */
3467 	ath_tx_tid_filt_addbuf(sc, tid, bf);
3468 }
3469 
3470 /*
3471  * Complete the filtered frame TX completion.
3472  *
3473  * If there are no more frames in the hardware queue, unpause/unfilter
3474  * the TID if applicable.  Otherwise we will wait for a node PS transition
3475  * to unfilter.
3476  */
3477 static void
3478 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid)
3479 {
3480 	struct ath_buf *bf;
3481 	int do_resume = 0;
3482 
3483 	ATH_TX_LOCK_ASSERT(sc);
3484 
3485 	if (tid->hwq_depth != 0)
3486 		return;
3487 
3488 	DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d, hwq=0, transition back\n",
3489 	    __func__, tid->tid);
3490 	if (tid->isfiltered == 1) {
3491 		tid->isfiltered = 0;
3492 		do_resume = 1;
3493 	}
3494 
3495 	/* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */
3496 	ath_tx_set_clrdmask(sc, tid->an);
3497 
3498 	/* XXX this is really quite inefficient */
3499 	while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) {
3500 		ATH_TID_FILT_REMOVE(tid, bf, bf_list);
3501 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
3502 	}
3503 
3504 	/* And only resume if we had paused before */
3505 	if (do_resume)
3506 		ath_tx_tid_resume(sc, tid);
3507 }
3508 
3509 /*
3510  * Called when a single (aggregate or otherwise) frame is completed.
3511  *
3512  * Returns 0 if the buffer could be added to the filtered list
3513  * (cloned or otherwise), 1 if the buffer couldn't be added to the
3514  * filtered list (failed clone; expired retry) and the caller should
3515  * free it and handle it like a failure (eg by sending a BAR.)
3516  *
3517  * since the buffer may be cloned, bf must be not touched after this
3518  * if the return value is 0.
3519  */
3520 static int
3521 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid,
3522     struct ath_buf *bf)
3523 {
3524 	struct ath_buf *nbf;
3525 	int retval;
3526 
3527 	ATH_TX_LOCK_ASSERT(sc);
3528 
3529 	/*
3530 	 * Don't allow a filtered frame to live forever.
3531 	 */
3532 	if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
3533 		sc->sc_stats.ast_tx_swretrymax++;
3534 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3535 		    "%s: bf=%p, seqno=%d, exceeded retries\n",
3536 		    __func__,
3537 		    bf,
3538 		    SEQNO(bf->bf_state.bfs_seqno));
3539 		retval = 1; /* error */
3540 		goto finish;
3541 	}
3542 
3543 	/*
3544 	 * A busy buffer can't be added to the retry list.
3545 	 * It needs to be cloned.
3546 	 */
3547 	if (bf->bf_flags & ATH_BUF_BUSY) {
3548 		nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
3549 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3550 		    "%s: busy buffer clone: %p -> %p\n",
3551 		    __func__, bf, nbf);
3552 	} else {
3553 		nbf = bf;
3554 	}
3555 
3556 	if (nbf == NULL) {
3557 		DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3558 		    "%s: busy buffer couldn't be cloned (%p)!\n",
3559 		    __func__, bf);
3560 		retval = 1; /* error */
3561 	} else {
3562 		ath_tx_tid_filt_comp_buf(sc, tid, nbf);
3563 		retval = 0; /* ok */
3564 	}
3565 finish:
3566 	ath_tx_tid_filt_comp_complete(sc, tid);
3567 
3568 	return (retval);
3569 }
3570 
3571 static void
3572 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid,
3573     struct ath_buf *bf_first, ath_bufhead *bf_q)
3574 {
3575 	struct ath_buf *bf, *bf_next, *nbf;
3576 
3577 	ATH_TX_LOCK_ASSERT(sc);
3578 
3579 	bf = bf_first;
3580 	while (bf) {
3581 		bf_next = bf->bf_next;
3582 		bf->bf_next = NULL;	/* Remove it from the aggr list */
3583 
3584 		/*
3585 		 * Don't allow a filtered frame to live forever.
3586 		 */
3587 		if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
3588 			sc->sc_stats.ast_tx_swretrymax++;
3589 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3590 			    "%s: tid=%d, bf=%p, seqno=%d, exceeded retries\n",
3591 			    __func__,
3592 			    tid->tid,
3593 			    bf,
3594 			    SEQNO(bf->bf_state.bfs_seqno));
3595 			TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3596 			goto next;
3597 		}
3598 
3599 		if (bf->bf_flags & ATH_BUF_BUSY) {
3600 			nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
3601 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3602 			    "%s: tid=%d, busy buffer cloned: %p -> %p, seqno=%d\n",
3603 			    __func__, tid->tid, bf, nbf, SEQNO(bf->bf_state.bfs_seqno));
3604 		} else {
3605 			nbf = bf;
3606 		}
3607 
3608 		/*
3609 		 * If the buffer couldn't be cloned, add it to bf_q;
3610 		 * the caller will free the buffer(s) as required.
3611 		 */
3612 		if (nbf == NULL) {
3613 			DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
3614 			    "%s: tid=%d, buffer couldn't be cloned! (%p) seqno=%d\n",
3615 			    __func__, tid->tid, bf, SEQNO(bf->bf_state.bfs_seqno));
3616 			TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3617 		} else {
3618 			ath_tx_tid_filt_comp_buf(sc, tid, nbf);
3619 		}
3620 next:
3621 		bf = bf_next;
3622 	}
3623 
3624 	ath_tx_tid_filt_comp_complete(sc, tid);
3625 }
3626 
3627 /*
3628  * Suspend the queue because we need to TX a BAR.
3629  */
3630 static void
3631 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid)
3632 {
3633 
3634 	ATH_TX_LOCK_ASSERT(sc);
3635 
3636 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3637 	    "%s: tid=%d, bar_wait=%d, bar_tx=%d, called\n",
3638 	    __func__,
3639 	    tid->tid,
3640 	    tid->bar_wait,
3641 	    tid->bar_tx);
3642 
3643 	/* We shouldn't be called when bar_tx is 1 */
3644 	if (tid->bar_tx) {
3645 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3646 		    "%s: bar_tx is 1?!\n", __func__);
3647 	}
3648 
3649 	/* If we've already been called, just be patient. */
3650 	if (tid->bar_wait)
3651 		return;
3652 
3653 	/* Wait! */
3654 	tid->bar_wait = 1;
3655 
3656 	/* Only one pause, no matter how many frames fail */
3657 	ath_tx_tid_pause(sc, tid);
3658 }
3659 
3660 /*
3661  * We've finished with BAR handling - either we succeeded or
3662  * failed. Either way, unsuspend TX.
3663  */
3664 static void
3665 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid)
3666 {
3667 
3668 	ATH_TX_LOCK_ASSERT(sc);
3669 
3670 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3671 	    "%s: %6D: TID=%d, called\n",
3672 	    __func__,
3673 	    tid->an->an_node.ni_macaddr,
3674 	    ":",
3675 	    tid->tid);
3676 
3677 	if (tid->bar_tx == 0 || tid->bar_wait == 0) {
3678 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3679 		    "%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n",
3680 		    __func__, tid->an->an_node.ni_macaddr, ":",
3681 		    tid->tid, tid->bar_tx, tid->bar_wait);
3682 	}
3683 
3684 	tid->bar_tx = tid->bar_wait = 0;
3685 	ath_tx_tid_resume(sc, tid);
3686 }
3687 
3688 /*
3689  * Return whether we're ready to TX a BAR frame.
3690  *
3691  * Requires the TID lock be held.
3692  */
3693 static int
3694 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid)
3695 {
3696 
3697 	ATH_TX_LOCK_ASSERT(sc);
3698 
3699 	if (tid->bar_wait == 0 || tid->hwq_depth > 0)
3700 		return (0);
3701 
3702 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3703 	    "%s: %6D: TID=%d, bar ready\n",
3704 	    __func__,
3705 	    tid->an->an_node.ni_macaddr,
3706 	    ":",
3707 	    tid->tid);
3708 
3709 	return (1);
3710 }
3711 
3712 /*
3713  * Check whether the current TID is ready to have a BAR
3714  * TXed and if so, do the TX.
3715  *
3716  * Since the TID/TXQ lock can't be held during a call to
3717  * ieee80211_send_bar(), we have to do the dirty thing of unlocking it,
3718  * sending the BAR and locking it again.
3719  *
3720  * Eventually, the code to send the BAR should be broken out
3721  * from this routine so the lock doesn't have to be reacquired
3722  * just to be immediately dropped by the caller.
3723  */
3724 static void
3725 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid)
3726 {
3727 	struct ieee80211_tx_ampdu *tap;
3728 
3729 	ATH_TX_LOCK_ASSERT(sc);
3730 
3731 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3732 	    "%s: %6D: TID=%d, called\n",
3733 	    __func__,
3734 	    tid->an->an_node.ni_macaddr,
3735 	    ":",
3736 	    tid->tid);
3737 
3738 	tap = ath_tx_get_tx_tid(tid->an, tid->tid);
3739 
3740 	/*
3741 	 * This is an error condition!
3742 	 */
3743 	if (tid->bar_wait == 0 || tid->bar_tx == 1) {
3744 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3745 		    "%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n",
3746 		    __func__, tid->an->an_node.ni_macaddr, ":",
3747 		    tid->tid, tid->bar_tx, tid->bar_wait);
3748 		return;
3749 	}
3750 
3751 	/* Don't do anything if we still have pending frames */
3752 	if (tid->hwq_depth > 0) {
3753 		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3754 		    "%s: %6D: TID=%d, hwq_depth=%d, waiting\n",
3755 		    __func__,
3756 		    tid->an->an_node.ni_macaddr,
3757 		    ":",
3758 		    tid->tid,
3759 		    tid->hwq_depth);
3760 		return;
3761 	}
3762 
3763 	/* We're now about to TX */
3764 	tid->bar_tx = 1;
3765 
3766 	/*
3767 	 * Override the clrdmask configuration for the next frame,
3768 	 * just to get the ball rolling.
3769 	 */
3770 	ath_tx_set_clrdmask(sc, tid->an);
3771 
3772 	/*
3773 	 * Calculate new BAW left edge, now that all frames have either
3774 	 * succeeded or failed.
3775 	 *
3776 	 * XXX verify this is _actually_ the valid value to begin at!
3777 	 */
3778 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3779 	    "%s: %6D: TID=%d, new BAW left edge=%d\n",
3780 	    __func__,
3781 	    tid->an->an_node.ni_macaddr,
3782 	    ":",
3783 	    tid->tid,
3784 	    tap->txa_start);
3785 
3786 	/* Try sending the BAR frame */
3787 	/* We can't hold the lock here! */
3788 
3789 	ATH_TX_UNLOCK(sc);
3790 	if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) {
3791 		/* Success? Now we wait for notification that it's done */
3792 		ATH_TX_LOCK(sc);
3793 		return;
3794 	}
3795 
3796 	/* Failure? For now, warn loudly and continue */
3797 	ATH_TX_LOCK(sc);
3798 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
3799 	    "%s: %6D: TID=%d, failed to TX BAR, continue!\n",
3800 	    __func__, tid->an->an_node.ni_macaddr, ":",
3801 	    tid->tid);
3802 	ath_tx_tid_bar_unsuspend(sc, tid);
3803 }
3804 
3805 static void
3806 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an,
3807     struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf)
3808 {
3809 
3810 	ATH_TX_LOCK_ASSERT(sc);
3811 
3812 	/*
3813 	 * If the current TID is running AMPDU, update
3814 	 * the BAW.
3815 	 */
3816 	if (ath_tx_ampdu_running(sc, an, tid->tid) &&
3817 	    bf->bf_state.bfs_dobaw) {
3818 		/*
3819 		 * Only remove the frame from the BAW if it's
3820 		 * been transmitted at least once; this means
3821 		 * the frame was in the BAW to begin with.
3822 		 */
3823 		if (bf->bf_state.bfs_retries > 0) {
3824 			ath_tx_update_baw(sc, an, tid, bf);
3825 			bf->bf_state.bfs_dobaw = 0;
3826 		}
3827 #if 0
3828 		/*
3829 		 * This has become a non-fatal error now
3830 		 */
3831 		if (! bf->bf_state.bfs_addedbaw)
3832 			DPRINTF(sc, ATH_DEBUG_SW_TX_BAW
3833 			    "%s: wasn't added: seqno %d\n",
3834 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
3835 #endif
3836 	}
3837 
3838 	/* Strip it out of an aggregate list if it was in one */
3839 	bf->bf_next = NULL;
3840 
3841 	/* Insert on the free queue to be freed by the caller */
3842 	TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
3843 }
3844 
3845 static void
3846 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an,
3847     const char *pfx, struct ath_tid *tid, struct ath_buf *bf)
3848 {
3849 	struct ieee80211_node *ni = &an->an_node;
3850 	struct ath_txq *txq;
3851 	struct ieee80211_tx_ampdu *tap;
3852 
3853 	txq = sc->sc_ac2q[tid->ac];
3854 	tap = ath_tx_get_tx_tid(an, tid->tid);
3855 
3856 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3857 	    "%s: %s: %6D: bf=%p: addbaw=%d, dobaw=%d, "
3858 	    "seqno=%d, retry=%d\n",
3859 	    __func__,
3860 	    pfx,
3861 	    ni->ni_macaddr,
3862 	    ":",
3863 	    bf,
3864 	    bf->bf_state.bfs_addedbaw,
3865 	    bf->bf_state.bfs_dobaw,
3866 	    SEQNO(bf->bf_state.bfs_seqno),
3867 	    bf->bf_state.bfs_retries);
3868 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3869 	    "%s: %s: %6D: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n",
3870 	    __func__,
3871 	    pfx,
3872 	    ni->ni_macaddr,
3873 	    ":",
3874 	    bf,
3875 	    txq->axq_qnum,
3876 	    txq->axq_depth,
3877 	    txq->axq_aggr_depth);
3878 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3879 	    "%s: %s: %6D: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, "
3880 	      "isfiltered=%d\n",
3881 	    __func__,
3882 	    pfx,
3883 	    ni->ni_macaddr,
3884 	    ":",
3885 	    bf,
3886 	    tid->axq_depth,
3887 	    tid->hwq_depth,
3888 	    tid->bar_wait,
3889 	    tid->isfiltered);
3890 	DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
3891 	    "%s: %s: %6D: tid %d: "
3892 	    "sched=%d, paused=%d, "
3893 	    "incomp=%d, baw_head=%d, "
3894 	    "baw_tail=%d txa_start=%d, ni_txseqs=%d\n",
3895 	     __func__,
3896 	     pfx,
3897 	     ni->ni_macaddr,
3898 	     ":",
3899 	     tid->tid,
3900 	     tid->sched, tid->paused,
3901 	     tid->incomp, tid->baw_head,
3902 	     tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
3903 	     ni->ni_txseqs[tid->tid]);
3904 
3905 	/* XXX Dump the frame, see what it is? */
3906 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3907 		ieee80211_dump_pkt(ni->ni_ic,
3908 		    mtod(bf->bf_m, const uint8_t *),
3909 		    bf->bf_m->m_len, 0, -1);
3910 }
3911 
3912 /*
3913  * Free any packets currently pending in the software TX queue.
3914  *
3915  * This will be called when a node is being deleted.
3916  *
3917  * It can also be called on an active node during an interface
3918  * reset or state transition.
3919  *
3920  * (From Linux/reference):
3921  *
3922  * TODO: For frame(s) that are in the retry state, we will reuse the
3923  * sequence number(s) without setting the retry bit. The
3924  * alternative is to give up on these and BAR the receiver's window
3925  * forward.
3926  */
3927 static void
3928 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an,
3929     struct ath_tid *tid, ath_bufhead *bf_cq)
3930 {
3931 	struct ath_buf *bf;
3932 	struct ieee80211_tx_ampdu *tap;
3933 	struct ieee80211_node *ni = &an->an_node;
3934 	int t;
3935 
3936 	tap = ath_tx_get_tx_tid(an, tid->tid);
3937 
3938 	ATH_TX_LOCK_ASSERT(sc);
3939 
3940 	/* Walk the queue, free frames */
3941 	t = 0;
3942 	for (;;) {
3943 		bf = ATH_TID_FIRST(tid);
3944 		if (bf == NULL) {
3945 			break;
3946 		}
3947 
3948 		if (t == 0) {
3949 			ath_tx_tid_drain_print(sc, an, "norm", tid, bf);
3950 //			t = 1;
3951 		}
3952 
3953 		ATH_TID_REMOVE(tid, bf, bf_list);
3954 		ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
3955 	}
3956 
3957 	/* And now, drain the filtered frame queue */
3958 	t = 0;
3959 	for (;;) {
3960 		bf = ATH_TID_FILT_FIRST(tid);
3961 		if (bf == NULL)
3962 			break;
3963 
3964 		if (t == 0) {
3965 			ath_tx_tid_drain_print(sc, an, "filt", tid, bf);
3966 //			t = 1;
3967 		}
3968 
3969 		ATH_TID_FILT_REMOVE(tid, bf, bf_list);
3970 		ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
3971 	}
3972 
3973 	/*
3974 	 * Override the clrdmask configuration for the next frame
3975 	 * in case there is some future transmission, just to get
3976 	 * the ball rolling.
3977 	 *
3978 	 * This won't hurt things if the TID is about to be freed.
3979 	 */
3980 	ath_tx_set_clrdmask(sc, tid->an);
3981 
3982 	/*
3983 	 * Now that it's completed, grab the TID lock and update
3984 	 * the sequence number and BAW window.
3985 	 * Because sequence numbers have been assigned to frames
3986 	 * that haven't been sent yet, it's entirely possible
3987 	 * we'll be called with some pending frames that have not
3988 	 * been transmitted.
3989 	 *
3990 	 * The cleaner solution is to do the sequence number allocation
3991 	 * when the packet is first transmitted - and thus the "retries"
3992 	 * check above would be enough to update the BAW/seqno.
3993 	 */
3994 
3995 	/* But don't do it for non-QoS TIDs */
3996 	if (tap) {
3997 #if 1
3998 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3999 		    "%s: %6D: node %p: TID %d: sliding BAW left edge to %d\n",
4000 		    __func__,
4001 		    ni->ni_macaddr,
4002 		    ":",
4003 		    an,
4004 		    tid->tid,
4005 		    tap->txa_start);
4006 #endif
4007 		ni->ni_txseqs[tid->tid] = tap->txa_start;
4008 		tid->baw_tail = tid->baw_head;
4009 	}
4010 }
4011 
4012 /*
4013  * Reset the TID state.  This must be only called once the node has
4014  * had its frames flushed from this TID, to ensure that no other
4015  * pause / unpause logic can kick in.
4016  */
4017 static void
4018 ath_tx_tid_reset(struct ath_softc *sc, struct ath_tid *tid)
4019 {
4020 
4021 #if 0
4022 	tid->bar_wait = tid->bar_tx = tid->isfiltered = 0;
4023 	tid->paused = tid->sched = tid->addba_tx_pending = 0;
4024 	tid->incomp = tid->cleanup_inprogress = 0;
4025 #endif
4026 
4027 	/*
4028 	 * If we have a bar_wait set, we need to unpause the TID
4029 	 * here.  Otherwise once cleanup has finished, the TID won't
4030 	 * have the right paused counter.
4031 	 *
4032 	 * XXX I'm not going through resume here - I don't want the
4033 	 * node to be rescheuled just yet.  This however should be
4034 	 * methodized!
4035 	 */
4036 	if (tid->bar_wait) {
4037 		if (tid->paused > 0) {
4038 			tid->paused --;
4039 		}
4040 	}
4041 
4042 	/*
4043 	 * XXX same with a currently filtered TID.
4044 	 *
4045 	 * Since this is being called during a flush, we assume that
4046 	 * the filtered frame list is actually empty.
4047 	 *
4048 	 * XXX TODO: add in a check to ensure that the filtered queue
4049 	 * depth is actually 0!
4050 	 */
4051 	if (tid->isfiltered) {
4052 		if (tid->paused > 0) {
4053 			tid->paused --;
4054 		}
4055 	}
4056 
4057 	/*
4058 	 * Clear BAR, filtered frames, scheduled and ADDBA pending.
4059 	 * The TID may be going through cleanup from the last association
4060 	 * where things in the BAW are still in the hardware queue.
4061 	 */
4062 	tid->bar_wait = 0;
4063 	tid->bar_tx = 0;
4064 	tid->isfiltered = 0;
4065 	tid->sched = 0;
4066 	tid->addba_tx_pending = 0;
4067 
4068 	/*
4069 	 * XXX TODO: it may just be enough to walk the HWQs and mark
4070 	 * frames for that node as non-aggregate; or mark the ath_node
4071 	 * with something that indicates that aggregation is no longer
4072 	 * occurring.  Then we can just toss the BAW complaints and
4073 	 * do a complete hard reset of state here - no pause, no
4074 	 * complete counter, etc.
4075 	 */
4076 
4077 }
4078 
4079 /*
4080  * Flush all software queued packets for the given node.
4081  *
4082  * This occurs when a completion handler frees the last buffer
4083  * for a node, and the node is thus freed. This causes the node
4084  * to be cleaned up, which ends up calling ath_tx_node_flush.
4085  */
4086 void
4087 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
4088 {
4089 	int tid;
4090 	ath_bufhead bf_cq;
4091 	struct ath_buf *bf;
4092 
4093 	TAILQ_INIT(&bf_cq);
4094 
4095 	ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p",
4096 	    &an->an_node);
4097 
4098 	ATH_TX_LOCK(sc);
4099 	DPRINTF(sc, ATH_DEBUG_NODE,
4100 	    "%s: %6D: flush; is_powersave=%d, stack_psq=%d, tim=%d, "
4101 	    "swq_depth=%d, clrdmask=%d, leak_count=%d\n",
4102 	    __func__,
4103 	    an->an_node.ni_macaddr,
4104 	    ":",
4105 	    an->an_is_powersave,
4106 	    an->an_stack_psq,
4107 	    an->an_tim_set,
4108 	    an->an_swq_depth,
4109 	    an->clrdmask,
4110 	    an->an_leak_count);
4111 
4112 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
4113 		struct ath_tid *atid = &an->an_tid[tid];
4114 
4115 		/* Free packets */
4116 		ath_tx_tid_drain(sc, an, atid, &bf_cq);
4117 
4118 		/* Remove this tid from the list of active tids */
4119 		ath_tx_tid_unsched(sc, atid);
4120 
4121 		/* Reset the per-TID pause, BAR, etc state */
4122 		ath_tx_tid_reset(sc, atid);
4123 	}
4124 
4125 	/*
4126 	 * Clear global leak count
4127 	 */
4128 	an->an_leak_count = 0;
4129 	ATH_TX_UNLOCK(sc);
4130 
4131 	/* Handle completed frames */
4132 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4133 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4134 		ath_tx_default_comp(sc, bf, 0);
4135 	}
4136 }
4137 
4138 /*
4139  * Drain all the software TXQs currently with traffic queued.
4140  */
4141 void
4142 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
4143 {
4144 	struct ath_tid *tid;
4145 	ath_bufhead bf_cq;
4146 	struct ath_buf *bf;
4147 
4148 	TAILQ_INIT(&bf_cq);
4149 	ATH_TX_LOCK(sc);
4150 
4151 	/*
4152 	 * Iterate over all active tids for the given txq,
4153 	 * flushing and unsched'ing them
4154 	 */
4155 	while (! TAILQ_EMPTY(&txq->axq_tidq)) {
4156 		tid = TAILQ_FIRST(&txq->axq_tidq);
4157 		ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
4158 		ath_tx_tid_unsched(sc, tid);
4159 	}
4160 
4161 	ATH_TX_UNLOCK(sc);
4162 
4163 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4164 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4165 		ath_tx_default_comp(sc, bf, 0);
4166 	}
4167 }
4168 
4169 /*
4170  * Handle completion of non-aggregate session frames.
4171  *
4172  * This (currently) doesn't implement software retransmission of
4173  * non-aggregate frames!
4174  *
4175  * Software retransmission of non-aggregate frames needs to obey
4176  * the strict sequence number ordering, and drop any frames that
4177  * will fail this.
4178  *
4179  * For now, filtered frames and frame transmission will cause
4180  * all kinds of issues.  So we don't support them.
4181  *
4182  * So anyone queuing frames via ath_tx_normal_xmit() or
4183  * ath_tx_hw_queue_norm() must override and set CLRDMASK.
4184  */
4185 void
4186 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4187 {
4188 	struct ieee80211_node *ni = bf->bf_node;
4189 	struct ath_node *an = ATH_NODE(ni);
4190 	int tid = bf->bf_state.bfs_tid;
4191 	struct ath_tid *atid = &an->an_tid[tid];
4192 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4193 
4194 	/* The TID state is protected behind the TXQ lock */
4195 	ATH_TX_LOCK(sc);
4196 
4197 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
4198 	    __func__, bf, fail, atid->hwq_depth - 1);
4199 
4200 	atid->hwq_depth--;
4201 
4202 #if 0
4203 	/*
4204 	 * If the frame was filtered, stick it on the filter frame
4205 	 * queue and complain about it.  It shouldn't happen!
4206 	 */
4207 	if ((ts->ts_status & HAL_TXERR_FILT) ||
4208 	    (ts->ts_status != 0 && atid->isfiltered)) {
4209 		DPRINTF(sc, ATH_DEBUG_SW_TX,
4210 		    "%s: isfiltered=%d, ts_status=%d: huh?\n",
4211 		    __func__,
4212 		    atid->isfiltered,
4213 		    ts->ts_status);
4214 		ath_tx_tid_filt_comp_buf(sc, atid, bf);
4215 	}
4216 #endif
4217 	if (atid->isfiltered)
4218 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: filtered?!\n", __func__);
4219 	if (atid->hwq_depth < 0)
4220 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n",
4221 		    __func__, atid->hwq_depth);
4222 
4223 	/* If the TID is being cleaned up, track things */
4224 	/* XXX refactor! */
4225 	if (atid->cleanup_inprogress) {
4226 		atid->incomp--;
4227 		if (atid->incomp == 0) {
4228 			DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4229 			    "%s: TID %d: cleaned up! resume!\n",
4230 			    __func__, tid);
4231 			atid->cleanup_inprogress = 0;
4232 			ath_tx_tid_resume(sc, atid);
4233 		}
4234 	}
4235 
4236 	/*
4237 	 * If the queue is filtered, potentially mark it as complete
4238 	 * and reschedule it as needed.
4239 	 *
4240 	 * This is required as there may be a subsequent TX descriptor
4241 	 * for this end-node that has CLRDMASK set, so it's quite possible
4242 	 * that a filtered frame will be followed by a non-filtered
4243 	 * (complete or otherwise) frame.
4244 	 *
4245 	 * XXX should we do this before we complete the frame?
4246 	 */
4247 	if (atid->isfiltered)
4248 		ath_tx_tid_filt_comp_complete(sc, atid);
4249 	ATH_TX_UNLOCK(sc);
4250 
4251 	/*
4252 	 * punt to rate control if we're not being cleaned up
4253 	 * during a hw queue drain and the frame wanted an ACK.
4254 	 */
4255 	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
4256 		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
4257 		    ts,
4258 		    bf->bf_state.bfs_pktlen,
4259 		    bf->bf_state.bfs_pktlen,
4260 		    1, (ts->ts_status == 0) ? 0 : 1);
4261 
4262 	ath_tx_default_comp(sc, bf, fail);
4263 }
4264 
4265 /*
4266  * Handle cleanup of aggregate session packets that aren't
4267  * an A-MPDU.
4268  *
4269  * There's no need to update the BAW here - the session is being
4270  * torn down.
4271  */
4272 static void
4273 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
4274 {
4275 	struct ieee80211_node *ni = bf->bf_node;
4276 	struct ath_node *an = ATH_NODE(ni);
4277 	int tid = bf->bf_state.bfs_tid;
4278 	struct ath_tid *atid = &an->an_tid[tid];
4279 
4280 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
4281 	    __func__, tid, atid->incomp);
4282 
4283 	ATH_TX_LOCK(sc);
4284 	atid->incomp--;
4285 
4286 	/* XXX refactor! */
4287 	if (bf->bf_state.bfs_dobaw) {
4288 		ath_tx_update_baw(sc, an, atid, bf);
4289 		if (!bf->bf_state.bfs_addedbaw)
4290 			DPRINTF(sc, ATH_DEBUG_SW_TX,
4291 			    "%s: wasn't added: seqno %d\n",
4292 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
4293 	}
4294 
4295 	if (atid->incomp == 0) {
4296 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4297 		    "%s: TID %d: cleaned up! resume!\n",
4298 		    __func__, tid);
4299 		atid->cleanup_inprogress = 0;
4300 		ath_tx_tid_resume(sc, atid);
4301 	}
4302 	ATH_TX_UNLOCK(sc);
4303 
4304 	ath_tx_default_comp(sc, bf, 0);
4305 }
4306 
4307 /*
4308  * This as it currently stands is a bit dumb.  Ideally we'd just
4309  * fail the frame the normal way and have it permanently fail
4310  * via the normal aggregate completion path.
4311  */
4312 static void
4313 ath_tx_tid_cleanup_frame(struct ath_softc *sc, struct ath_node *an,
4314     int tid, struct ath_buf *bf_head, ath_bufhead *bf_cq)
4315 {
4316 	struct ath_tid *atid = &an->an_tid[tid];
4317 	struct ath_buf *bf, *bf_next;
4318 
4319 	ATH_TX_LOCK_ASSERT(sc);
4320 
4321 	/*
4322 	 * Remove this frame from the queue.
4323 	 */
4324 	ATH_TID_REMOVE(atid, bf_head, bf_list);
4325 
4326 	/*
4327 	 * Loop over all the frames in the aggregate.
4328 	 */
4329 	bf = bf_head;
4330 	while (bf != NULL) {
4331 		bf_next = bf->bf_next;	/* next aggregate frame, or NULL */
4332 
4333 		/*
4334 		 * If it's been added to the BAW we need to kick
4335 		 * it out of the BAW before we continue.
4336 		 *
4337 		 * XXX if it's an aggregate, assert that it's in the
4338 		 * BAW - we shouldn't have it be in an aggregate
4339 		 * otherwise!
4340 		 */
4341 		if (bf->bf_state.bfs_addedbaw) {
4342 			ath_tx_update_baw(sc, an, atid, bf);
4343 			bf->bf_state.bfs_dobaw = 0;
4344 		}
4345 
4346 		/*
4347 		 * Give it the default completion handler.
4348 		 */
4349 		bf->bf_comp = ath_tx_normal_comp;
4350 		bf->bf_next = NULL;
4351 
4352 		/*
4353 		 * Add it to the list to free.
4354 		 */
4355 		TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
4356 
4357 		/*
4358 		 * Now advance to the next frame in the aggregate.
4359 		 */
4360 		bf = bf_next;
4361 	}
4362 }
4363 
4364 /*
4365  * Performs transmit side cleanup when TID changes from aggregated to
4366  * unaggregated and during reassociation.
4367  *
4368  * For now, this just tosses everything from the TID software queue
4369  * whether or not it has been retried and marks the TID as
4370  * pending completion if there's anything for this TID queued to
4371  * the hardware.
4372  *
4373  * The caller is responsible for pausing the TID and unpausing the
4374  * TID if no cleanup was required. Otherwise the cleanup path will
4375  * unpause the TID once the last hardware queued frame is completed.
4376  */
4377 static void
4378 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid,
4379     ath_bufhead *bf_cq)
4380 {
4381 	struct ath_tid *atid = &an->an_tid[tid];
4382 	struct ath_buf *bf, *bf_next;
4383 
4384 	ATH_TX_LOCK_ASSERT(sc);
4385 
4386 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
4387 	    "%s: TID %d: called; inprogress=%d\n", __func__, tid,
4388 	    atid->cleanup_inprogress);
4389 
4390 	/*
4391 	 * Move the filtered frames to the TX queue, before
4392 	 * we run off and discard/process things.
4393 	 */
4394 
4395 	/* XXX this is really quite inefficient */
4396 	while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) {
4397 		ATH_TID_FILT_REMOVE(atid, bf, bf_list);
4398 		ATH_TID_INSERT_HEAD(atid, bf, bf_list);
4399 	}
4400 
4401 	/*
4402 	 * Update the frames in the software TX queue:
4403 	 *
4404 	 * + Discard retry frames in the queue
4405 	 * + Fix the completion function to be non-aggregate
4406 	 */
4407 	bf = ATH_TID_FIRST(atid);
4408 	while (bf) {
4409 		/*
4410 		 * Grab the next frame in the list, we may
4411 		 * be fiddling with the list.
4412 		 */
4413 		bf_next = TAILQ_NEXT(bf, bf_list);
4414 
4415 		/*
4416 		 * Free the frame and all subframes.
4417 		 */
4418 		ath_tx_tid_cleanup_frame(sc, an, tid, bf, bf_cq);
4419 
4420 		/*
4421 		 * Next frame!
4422 		 */
4423 		bf = bf_next;
4424 	}
4425 
4426 	/*
4427 	 * If there's anything in the hardware queue we wait
4428 	 * for the TID HWQ to empty.
4429 	 */
4430 	if (atid->hwq_depth > 0) {
4431 		/*
4432 		 * XXX how about we kill atid->incomp, and instead
4433 		 * replace it with a macro that checks that atid->hwq_depth
4434 		 * is 0?
4435 		 */
4436 		atid->incomp = atid->hwq_depth;
4437 		atid->cleanup_inprogress = 1;
4438 	}
4439 
4440 	if (atid->cleanup_inprogress)
4441 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4442 		    "%s: TID %d: cleanup needed: %d packets\n",
4443 		    __func__, tid, atid->incomp);
4444 
4445 	/* Owner now must free completed frames */
4446 }
4447 
4448 static struct ath_buf *
4449 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
4450     struct ath_tid *tid, struct ath_buf *bf)
4451 {
4452 	struct ath_buf *nbf;
4453 	int error;
4454 
4455 	/*
4456 	 * Clone the buffer.  This will handle the dma unmap and
4457 	 * copy the node reference to the new buffer.  If this
4458 	 * works out, 'bf' will have no DMA mapping, no mbuf
4459 	 * pointer and no node reference.
4460 	 */
4461 	nbf = ath_buf_clone(sc, bf);
4462 
4463 #if 0
4464 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: ATH_BUF_BUSY; cloning\n",
4465 	    __func__);
4466 #endif
4467 
4468 	if (nbf == NULL) {
4469 		/* Failed to clone */
4470 		DPRINTF(sc, ATH_DEBUG_XMIT,
4471 		    "%s: failed to clone a busy buffer\n",
4472 		    __func__);
4473 		return NULL;
4474 	}
4475 
4476 	/* Setup the dma for the new buffer */
4477 	error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
4478 	if (error != 0) {
4479 		DPRINTF(sc, ATH_DEBUG_XMIT,
4480 		    "%s: failed to setup dma for clone\n",
4481 		    __func__);
4482 		/*
4483 		 * Put this at the head of the list, not tail;
4484 		 * that way it doesn't interfere with the
4485 		 * busy buffer logic (which uses the tail of
4486 		 * the list.)
4487 		 */
4488 		ATH_TXBUF_LOCK(sc);
4489 		ath_returnbuf_head(sc, nbf);
4490 		ATH_TXBUF_UNLOCK(sc);
4491 		return NULL;
4492 	}
4493 
4494 	/* Update BAW if required, before we free the original buf */
4495 	if (bf->bf_state.bfs_dobaw)
4496 		ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
4497 
4498 	/* Free original buffer; return new buffer */
4499 	ath_freebuf(sc, bf);
4500 
4501 	return nbf;
4502 }
4503 
4504 /*
4505  * Handle retrying an unaggregate frame in an aggregate
4506  * session.
4507  *
4508  * If too many retries occur, pause the TID, wait for
4509  * any further retransmits (as there's no reason why
4510  * non-aggregate frames in an aggregate session are
4511  * transmitted in-order; they just have to be in-BAW)
4512  * and then queue a BAR.
4513  */
4514 static void
4515 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
4516 {
4517 	struct ieee80211_node *ni = bf->bf_node;
4518 	struct ath_node *an = ATH_NODE(ni);
4519 	int tid = bf->bf_state.bfs_tid;
4520 	struct ath_tid *atid = &an->an_tid[tid];
4521 	struct ieee80211_tx_ampdu *tap;
4522 
4523 	ATH_TX_LOCK(sc);
4524 
4525 	tap = ath_tx_get_tx_tid(an, tid);
4526 
4527 	/*
4528 	 * If the buffer is marked as busy, we can't directly
4529 	 * reuse it. Instead, try to clone the buffer.
4530 	 * If the clone is successful, recycle the old buffer.
4531 	 * If the clone is unsuccessful, set bfs_retries to max
4532 	 * to force the next bit of code to free the buffer
4533 	 * for us.
4534 	 */
4535 	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
4536 	    (bf->bf_flags & ATH_BUF_BUSY)) {
4537 		struct ath_buf *nbf;
4538 		nbf = ath_tx_retry_clone(sc, an, atid, bf);
4539 		if (nbf)
4540 			/* bf has been freed at this point */
4541 			bf = nbf;
4542 		else
4543 			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
4544 	}
4545 
4546 	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
4547 		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
4548 		    "%s: exceeded retries; seqno %d\n",
4549 		    __func__, SEQNO(bf->bf_state.bfs_seqno));
4550 		sc->sc_stats.ast_tx_swretrymax++;
4551 
4552 		/* Update BAW anyway */
4553 		if (bf->bf_state.bfs_dobaw) {
4554 			ath_tx_update_baw(sc, an, atid, bf);
4555 			if (! bf->bf_state.bfs_addedbaw)
4556 				DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
4557 				    "%s: wasn't added: seqno %d\n",
4558 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
4559 		}
4560 		bf->bf_state.bfs_dobaw = 0;
4561 
4562 		/* Suspend the TX queue and get ready to send the BAR */
4563 		ath_tx_tid_bar_suspend(sc, atid);
4564 
4565 		/* Send the BAR if there are no other frames waiting */
4566 		if (ath_tx_tid_bar_tx_ready(sc, atid))
4567 			ath_tx_tid_bar_tx(sc, atid);
4568 
4569 		ATH_TX_UNLOCK(sc);
4570 
4571 		/* Free buffer, bf is free after this call */
4572 		ath_tx_default_comp(sc, bf, 0);
4573 		return;
4574 	}
4575 
4576 	/*
4577 	 * This increments the retry counter as well as
4578 	 * sets the retry flag in the ath_buf and packet
4579 	 * body.
4580 	 */
4581 	ath_tx_set_retry(sc, bf);
4582 	sc->sc_stats.ast_tx_swretries++;
4583 
4584 	/*
4585 	 * Insert this at the head of the queue, so it's
4586 	 * retried before any current/subsequent frames.
4587 	 */
4588 	ATH_TID_INSERT_HEAD(atid, bf, bf_list);
4589 	ath_tx_tid_sched(sc, atid);
4590 	/* Send the BAR if there are no other frames waiting */
4591 	if (ath_tx_tid_bar_tx_ready(sc, atid))
4592 		ath_tx_tid_bar_tx(sc, atid);
4593 
4594 	ATH_TX_UNLOCK(sc);
4595 }
4596 
4597 /*
4598  * Common code for aggregate excessive retry/subframe retry.
4599  * If retrying, queues buffers to bf_q. If not, frees the
4600  * buffers.
4601  *
4602  * XXX should unify this with ath_tx_aggr_retry_unaggr()
4603  */
4604 static int
4605 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
4606     ath_bufhead *bf_q)
4607 {
4608 	struct ieee80211_node *ni = bf->bf_node;
4609 	struct ath_node *an = ATH_NODE(ni);
4610 	int tid = bf->bf_state.bfs_tid;
4611 	struct ath_tid *atid = &an->an_tid[tid];
4612 
4613 	ATH_TX_LOCK_ASSERT(sc);
4614 
4615 	/* XXX clr11naggr should be done for all subframes */
4616 	ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
4617 	ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
4618 
4619 	/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
4620 
4621 	/*
4622 	 * If the buffer is marked as busy, we can't directly
4623 	 * reuse it. Instead, try to clone the buffer.
4624 	 * If the clone is successful, recycle the old buffer.
4625 	 * If the clone is unsuccessful, set bfs_retries to max
4626 	 * to force the next bit of code to free the buffer
4627 	 * for us.
4628 	 */
4629 	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
4630 	    (bf->bf_flags & ATH_BUF_BUSY)) {
4631 		struct ath_buf *nbf;
4632 		nbf = ath_tx_retry_clone(sc, an, atid, bf);
4633 		if (nbf)
4634 			/* bf has been freed at this point */
4635 			bf = nbf;
4636 		else
4637 			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
4638 	}
4639 
4640 	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
4641 		sc->sc_stats.ast_tx_swretrymax++;
4642 		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
4643 		    "%s: max retries: seqno %d\n",
4644 		    __func__, SEQNO(bf->bf_state.bfs_seqno));
4645 		ath_tx_update_baw(sc, an, atid, bf);
4646 		if (!bf->bf_state.bfs_addedbaw)
4647 			DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
4648 			    "%s: wasn't added: seqno %d\n",
4649 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
4650 		bf->bf_state.bfs_dobaw = 0;
4651 		return 1;
4652 	}
4653 
4654 	ath_tx_set_retry(sc, bf);
4655 	sc->sc_stats.ast_tx_swretries++;
4656 	bf->bf_next = NULL;		/* Just to make sure */
4657 
4658 	/* Clear the aggregate state */
4659 	bf->bf_state.bfs_aggr = 0;
4660 	bf->bf_state.bfs_ndelim = 0;	/* ??? needed? */
4661 	bf->bf_state.bfs_nframes = 1;
4662 
4663 	TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
4664 	return 0;
4665 }
4666 
4667 /*
4668  * error pkt completion for an aggregate destination
4669  */
4670 static void
4671 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
4672     struct ath_tid *tid)
4673 {
4674 	struct ieee80211_node *ni = bf_first->bf_node;
4675 	struct ath_node *an = ATH_NODE(ni);
4676 	struct ath_buf *bf_next, *bf;
4677 	ath_bufhead bf_q;
4678 	int drops = 0;
4679 	struct ieee80211_tx_ampdu *tap;
4680 	ath_bufhead bf_cq;
4681 
4682 	TAILQ_INIT(&bf_q);
4683 	TAILQ_INIT(&bf_cq);
4684 
4685 	/*
4686 	 * Update rate control - all frames have failed.
4687 	 */
4688 	ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
4689 	    &bf_first->bf_status.ds_txstat,
4690 	    bf_first->bf_state.bfs_al,
4691 	    bf_first->bf_state.bfs_rc_maxpktlen,
4692 	    bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
4693 
4694 	ATH_TX_LOCK(sc);
4695 	tap = ath_tx_get_tx_tid(an, tid->tid);
4696 	sc->sc_stats.ast_tx_aggr_failall++;
4697 
4698 	/* Retry all subframes */
4699 	bf = bf_first;
4700 	while (bf) {
4701 		bf_next = bf->bf_next;
4702 		bf->bf_next = NULL;	/* Remove it from the aggr list */
4703 		sc->sc_stats.ast_tx_aggr_fail++;
4704 		if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
4705 			drops++;
4706 			bf->bf_next = NULL;
4707 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
4708 		}
4709 		bf = bf_next;
4710 	}
4711 
4712 	/* Prepend all frames to the beginning of the queue */
4713 	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
4714 		TAILQ_REMOVE(&bf_q, bf, bf_list);
4715 		ATH_TID_INSERT_HEAD(tid, bf, bf_list);
4716 	}
4717 
4718 	/*
4719 	 * Schedule the TID to be re-tried.
4720 	 */
4721 	ath_tx_tid_sched(sc, tid);
4722 
4723 	/*
4724 	 * send bar if we dropped any frames
4725 	 *
4726 	 * Keep the txq lock held for now, as we need to ensure
4727 	 * that ni_txseqs[] is consistent (as it's being updated
4728 	 * in the ifnet TX context or raw TX context.)
4729 	 */
4730 	if (drops) {
4731 		/* Suspend the TX queue and get ready to send the BAR */
4732 		ath_tx_tid_bar_suspend(sc, tid);
4733 	}
4734 
4735 	/*
4736 	 * Send BAR if required
4737 	 */
4738 	if (ath_tx_tid_bar_tx_ready(sc, tid))
4739 		ath_tx_tid_bar_tx(sc, tid);
4740 
4741 	ATH_TX_UNLOCK(sc);
4742 
4743 	/* Complete frames which errored out */
4744 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
4745 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
4746 		ath_tx_default_comp(sc, bf, 0);
4747 	}
4748 }
4749 
4750 /*
4751  * Handle clean-up of packets from an aggregate list.
4752  *
4753  * There's no need to update the BAW here - the session is being
4754  * torn down.
4755  */
4756 static void
4757 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
4758 {
4759 	struct ath_buf *bf, *bf_next;
4760 	struct ieee80211_node *ni = bf_first->bf_node;
4761 	struct ath_node *an = ATH_NODE(ni);
4762 	int tid = bf_first->bf_state.bfs_tid;
4763 	struct ath_tid *atid = &an->an_tid[tid];
4764 
4765 	ATH_TX_LOCK(sc);
4766 
4767 	/* update incomp */
4768 	atid->incomp--;
4769 
4770 	/* Update the BAW */
4771 	bf = bf_first;
4772 	while (bf) {
4773 		/* XXX refactor! */
4774 		if (bf->bf_state.bfs_dobaw) {
4775 			ath_tx_update_baw(sc, an, atid, bf);
4776 			if (!bf->bf_state.bfs_addedbaw)
4777 				DPRINTF(sc, ATH_DEBUG_SW_TX,
4778 				    "%s: wasn't added: seqno %d\n",
4779 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
4780 		}
4781 		bf = bf->bf_next;
4782 	}
4783 
4784 	if (atid->incomp == 0) {
4785 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4786 		    "%s: TID %d: cleaned up! resume!\n",
4787 		    __func__, tid);
4788 		atid->cleanup_inprogress = 0;
4789 		ath_tx_tid_resume(sc, atid);
4790 	}
4791 
4792 	/* Send BAR if required */
4793 	/* XXX why would we send a BAR when transitioning to non-aggregation? */
4794 	/*
4795 	 * XXX TODO: we should likely just tear down the BAR state here,
4796 	 * rather than sending a BAR.
4797 	 */
4798 	if (ath_tx_tid_bar_tx_ready(sc, atid))
4799 		ath_tx_tid_bar_tx(sc, atid);
4800 
4801 	ATH_TX_UNLOCK(sc);
4802 
4803 	/* Handle frame completion as individual frames */
4804 	bf = bf_first;
4805 	while (bf) {
4806 		bf_next = bf->bf_next;
4807 		bf->bf_next = NULL;
4808 		ath_tx_default_comp(sc, bf, 1);
4809 		bf = bf_next;
4810 	}
4811 }
4812 
4813 /*
4814  * Handle completion of an set of aggregate frames.
4815  *
4816  * Note: the completion handler is the last descriptor in the aggregate,
4817  * not the last descriptor in the first frame.
4818  */
4819 static void
4820 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first,
4821     int fail)
4822 {
4823 	//struct ath_desc *ds = bf->bf_lastds;
4824 	struct ieee80211_node *ni = bf_first->bf_node;
4825 	struct ath_node *an = ATH_NODE(ni);
4826 	int tid = bf_first->bf_state.bfs_tid;
4827 	struct ath_tid *atid = &an->an_tid[tid];
4828 	struct ath_tx_status ts;
4829 	struct ieee80211_tx_ampdu *tap;
4830 	ath_bufhead bf_q;
4831 	ath_bufhead bf_cq;
4832 	int seq_st, tx_ok;
4833 	int hasba, isaggr;
4834 	uint32_t ba[2];
4835 	struct ath_buf *bf, *bf_next;
4836 	int ba_index;
4837 	int drops = 0;
4838 	int nframes = 0, nbad = 0, nf;
4839 	int pktlen;
4840 	int agglen, rc_agglen;
4841 	/* XXX there's too much on the stack? */
4842 	struct ath_rc_series rc[ATH_RC_NUM];
4843 	int txseq;
4844 
4845 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
4846 	    __func__, atid->hwq_depth);
4847 
4848 	/*
4849 	 * Take a copy; this may be needed -after- bf_first
4850 	 * has been completed and freed.
4851 	 */
4852 	ts = bf_first->bf_status.ds_txstat;
4853 	agglen = bf_first->bf_state.bfs_al;
4854 	rc_agglen = bf_first->bf_state.bfs_rc_maxpktlen;
4855 
4856 	TAILQ_INIT(&bf_q);
4857 	TAILQ_INIT(&bf_cq);
4858 
4859 	/* The TID state is kept behind the TXQ lock */
4860 	ATH_TX_LOCK(sc);
4861 
4862 	atid->hwq_depth--;
4863 	if (atid->hwq_depth < 0)
4864 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: hwq_depth < 0: %d\n",
4865 		    __func__, atid->hwq_depth);
4866 
4867 	/*
4868 	 * If the TID is filtered, handle completing the filter
4869 	 * transition before potentially kicking it to the cleanup
4870 	 * function.
4871 	 *
4872 	 * XXX this is duplicate work, ew.
4873 	 */
4874 	if (atid->isfiltered)
4875 		ath_tx_tid_filt_comp_complete(sc, atid);
4876 
4877 	/*
4878 	 * Punt cleanup to the relevant function, not our problem now
4879 	 */
4880 	if (atid->cleanup_inprogress) {
4881 		if (atid->isfiltered)
4882 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4883 			    "%s: isfiltered=1, normal_comp?\n",
4884 			    __func__);
4885 		ATH_TX_UNLOCK(sc);
4886 		ath_tx_comp_cleanup_aggr(sc, bf_first);
4887 		return;
4888 	}
4889 
4890 	/*
4891 	 * If the frame is filtered, transition to filtered frame
4892 	 * mode and add this to the filtered frame list.
4893 	 *
4894 	 * XXX TODO: figure out how this interoperates with
4895 	 * BAR, pause and cleanup states.
4896 	 */
4897 	if ((ts.ts_status & HAL_TXERR_FILT) ||
4898 	    (ts.ts_status != 0 && atid->isfiltered)) {
4899 		if (fail != 0)
4900 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4901 			    "%s: isfiltered=1, fail=%d\n", __func__, fail);
4902 		ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq);
4903 
4904 		/* Remove from BAW */
4905 		TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) {
4906 			if (bf->bf_state.bfs_addedbaw)
4907 				drops++;
4908 			if (bf->bf_state.bfs_dobaw) {
4909 				ath_tx_update_baw(sc, an, atid, bf);
4910 				if (!bf->bf_state.bfs_addedbaw)
4911 					DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4912 					    "%s: wasn't added: seqno %d\n",
4913 					    __func__,
4914 					    SEQNO(bf->bf_state.bfs_seqno));
4915 			}
4916 			bf->bf_state.bfs_dobaw = 0;
4917 		}
4918 		/*
4919 		 * If any intermediate frames in the BAW were dropped when
4920 		 * handling filtering things, send a BAR.
4921 		 */
4922 		if (drops)
4923 			ath_tx_tid_bar_suspend(sc, atid);
4924 
4925 		/*
4926 		 * Finish up by sending a BAR if required and freeing
4927 		 * the frames outside of the TX lock.
4928 		 */
4929 		goto finish_send_bar;
4930 	}
4931 
4932 	/*
4933 	 * XXX for now, use the first frame in the aggregate for
4934 	 * XXX rate control completion; it's at least consistent.
4935 	 */
4936 	pktlen = bf_first->bf_state.bfs_pktlen;
4937 
4938 	/*
4939 	 * Handle errors first!
4940 	 *
4941 	 * Here, handle _any_ error as a "exceeded retries" error.
4942 	 * Later on (when filtered frames are to be specially handled)
4943 	 * it'll have to be expanded.
4944 	 */
4945 #if 0
4946 	if (ts.ts_status & HAL_TXERR_XRETRY) {
4947 #endif
4948 	if (ts.ts_status != 0) {
4949 		ATH_TX_UNLOCK(sc);
4950 		ath_tx_comp_aggr_error(sc, bf_first, atid);
4951 		return;
4952 	}
4953 
4954 	tap = ath_tx_get_tx_tid(an, tid);
4955 
4956 	/*
4957 	 * extract starting sequence and block-ack bitmap
4958 	 */
4959 	/* XXX endian-ness of seq_st, ba? */
4960 	seq_st = ts.ts_seqnum;
4961 	hasba = !! (ts.ts_flags & HAL_TX_BA);
4962 	tx_ok = (ts.ts_status == 0);
4963 	isaggr = bf_first->bf_state.bfs_aggr;
4964 	ba[0] = ts.ts_ba_low;
4965 	ba[1] = ts.ts_ba_high;
4966 
4967 	/*
4968 	 * Copy the TX completion status and the rate control
4969 	 * series from the first descriptor, as it may be freed
4970 	 * before the rate control code can get its grubby fingers
4971 	 * into things.
4972 	 */
4973 	memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
4974 
4975 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4976 	    "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, "
4977 	    "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
4978 	    __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
4979 	    isaggr, seq_st, hasba, ba[0], ba[1]);
4980 
4981 	/*
4982 	 * The reference driver doesn't do this; it simply ignores
4983 	 * this check in its entirety.
4984 	 *
4985 	 * I've seen this occur when using iperf to send traffic
4986 	 * out tid 1 - the aggregate frames are all marked as TID 1,
4987 	 * but the TXSTATUS has TID=0.  So, let's just ignore this
4988 	 * check.
4989 	 */
4990 #if 0
4991 	/* Occasionally, the MAC sends a tx status for the wrong TID. */
4992 	if (tid != ts.ts_tid) {
4993 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: tid %d != hw tid %d\n",
4994 		    __func__, tid, ts.ts_tid);
4995 		tx_ok = 0;
4996 	}
4997 #endif
4998 
4999 	/* AR5416 BA bug; this requires an interface reset */
5000 	if (isaggr && tx_ok && (! hasba)) {
5001 		device_printf(sc->sc_dev,
5002 		    "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, "
5003 		    "seq_st=%d\n",
5004 		    __func__, hasba, tx_ok, isaggr, seq_st);
5005 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
5006 		/* And as we can't really trust the BA here .. */
5007 		ba[0] = 0;
5008 		ba[1] = 0;
5009 		seq_st = 0;
5010 #ifdef ATH_DEBUG
5011 		ath_printtxbuf(sc, bf_first,
5012 		    sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0);
5013 #endif
5014 	}
5015 
5016 	/*
5017 	 * Walk the list of frames, figure out which ones were correctly
5018 	 * sent and which weren't.
5019 	 */
5020 	bf = bf_first;
5021 	nf = bf_first->bf_state.bfs_nframes;
5022 
5023 	/* bf_first is going to be invalid once this list is walked */
5024 	bf_first = NULL;
5025 
5026 	/*
5027 	 * Walk the list of completed frames and determine
5028 	 * which need to be completed and which need to be
5029 	 * retransmitted.
5030 	 *
5031 	 * For completed frames, the completion functions need
5032 	 * to be called at the end of this function as the last
5033 	 * node reference may free the node.
5034 	 *
5035 	 * Finally, since the TXQ lock can't be held during the
5036 	 * completion callback (to avoid lock recursion),
5037 	 * the completion calls have to be done outside of the
5038 	 * lock.
5039 	 */
5040 	while (bf) {
5041 		nframes++;
5042 		ba_index = ATH_BA_INDEX(seq_st,
5043 		    SEQNO(bf->bf_state.bfs_seqno));
5044 		bf_next = bf->bf_next;
5045 		bf->bf_next = NULL;	/* Remove it from the aggr list */
5046 
5047 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5048 		    "%s: checking bf=%p seqno=%d; ack=%d\n",
5049 		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
5050 		    ATH_BA_ISSET(ba, ba_index));
5051 
5052 		if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
5053 			sc->sc_stats.ast_tx_aggr_ok++;
5054 			ath_tx_update_baw(sc, an, atid, bf);
5055 			bf->bf_state.bfs_dobaw = 0;
5056 			if (!bf->bf_state.bfs_addedbaw)
5057 				DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5058 				    "%s: wasn't added: seqno %d\n",
5059 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
5060 			bf->bf_next = NULL;
5061 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
5062 		} else {
5063 			sc->sc_stats.ast_tx_aggr_fail++;
5064 			if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
5065 				drops++;
5066 				bf->bf_next = NULL;
5067 				TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
5068 			}
5069 			nbad++;
5070 		}
5071 		bf = bf_next;
5072 	}
5073 
5074 	/*
5075 	 * Now that the BAW updates have been done, unlock
5076 	 *
5077 	 * txseq is grabbed before the lock is released so we
5078 	 * have a consistent view of what -was- in the BAW.
5079 	 * Anything after this point will not yet have been
5080 	 * TXed.
5081 	 */
5082 	txseq = tap->txa_start;
5083 	ATH_TX_UNLOCK(sc);
5084 
5085 	if (nframes != nf)
5086 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5087 		    "%s: num frames seen=%d; bf nframes=%d\n",
5088 		    __func__, nframes, nf);
5089 
5090 	/*
5091 	 * Now we know how many frames were bad, call the rate
5092 	 * control code.
5093 	 */
5094 	if (fail == 0) {
5095 		ath_tx_update_ratectrl(sc, ni, rc, &ts, agglen, rc_agglen,
5096 		    nframes, nbad);
5097 	}
5098 
5099 	/*
5100 	 * send bar if we dropped any frames
5101 	 */
5102 	if (drops) {
5103 		/* Suspend the TX queue and get ready to send the BAR */
5104 		ATH_TX_LOCK(sc);
5105 		ath_tx_tid_bar_suspend(sc, atid);
5106 		ATH_TX_UNLOCK(sc);
5107 	}
5108 
5109 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5110 	    "%s: txa_start now %d\n", __func__, tap->txa_start);
5111 
5112 	ATH_TX_LOCK(sc);
5113 
5114 	/* Prepend all frames to the beginning of the queue */
5115 	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
5116 		TAILQ_REMOVE(&bf_q, bf, bf_list);
5117 		ATH_TID_INSERT_HEAD(atid, bf, bf_list);
5118 	}
5119 
5120 	/*
5121 	 * Reschedule to grab some further frames.
5122 	 */
5123 	ath_tx_tid_sched(sc, atid);
5124 
5125 	/*
5126 	 * If the queue is filtered, re-schedule as required.
5127 	 *
5128 	 * This is required as there may be a subsequent TX descriptor
5129 	 * for this end-node that has CLRDMASK set, so it's quite possible
5130 	 * that a filtered frame will be followed by a non-filtered
5131 	 * (complete or otherwise) frame.
5132 	 *
5133 	 * XXX should we do this before we complete the frame?
5134 	 */
5135 	if (atid->isfiltered)
5136 		ath_tx_tid_filt_comp_complete(sc, atid);
5137 
5138 finish_send_bar:
5139 
5140 	/*
5141 	 * Send BAR if required
5142 	 */
5143 	if (ath_tx_tid_bar_tx_ready(sc, atid))
5144 		ath_tx_tid_bar_tx(sc, atid);
5145 
5146 	ATH_TX_UNLOCK(sc);
5147 
5148 	/* Do deferred completion */
5149 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
5150 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
5151 		ath_tx_default_comp(sc, bf, 0);
5152 	}
5153 }
5154 
5155 /*
5156  * Handle completion of unaggregated frames in an ADDBA
5157  * session.
5158  *
5159  * Fail is set to 1 if the entry is being freed via a call to
5160  * ath_tx_draintxq().
5161  */
5162 static void
5163 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
5164 {
5165 	struct ieee80211_node *ni = bf->bf_node;
5166 	struct ath_node *an = ATH_NODE(ni);
5167 	int tid = bf->bf_state.bfs_tid;
5168 	struct ath_tid *atid = &an->an_tid[tid];
5169 	struct ath_tx_status ts;
5170 	int drops = 0;
5171 
5172 	/*
5173 	 * Take a copy of this; filtering/cloning the frame may free the
5174 	 * bf pointer.
5175 	 */
5176 	ts = bf->bf_status.ds_txstat;
5177 
5178 	/*
5179 	 * Update rate control status here, before we possibly
5180 	 * punt to retry or cleanup.
5181 	 *
5182 	 * Do it outside of the TXQ lock.
5183 	 */
5184 	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
5185 		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
5186 		    &bf->bf_status.ds_txstat,
5187 		    bf->bf_state.bfs_pktlen,
5188 		    bf->bf_state.bfs_pktlen,
5189 		    1, (ts.ts_status == 0) ? 0 : 1);
5190 
5191 	/*
5192 	 * This is called early so atid->hwq_depth can be tracked.
5193 	 * This unfortunately means that it's released and regrabbed
5194 	 * during retry and cleanup. That's rather inefficient.
5195 	 */
5196 	ATH_TX_LOCK(sc);
5197 
5198 	if (tid == IEEE80211_NONQOS_TID)
5199 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16!\n", __func__);
5200 
5201 	DPRINTF(sc, ATH_DEBUG_SW_TX,
5202 	    "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n",
5203 	    __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth,
5204 	    SEQNO(bf->bf_state.bfs_seqno));
5205 
5206 	atid->hwq_depth--;
5207 	if (atid->hwq_depth < 0)
5208 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n",
5209 		    __func__, atid->hwq_depth);
5210 
5211 	/*
5212 	 * If the TID is filtered, handle completing the filter
5213 	 * transition before potentially kicking it to the cleanup
5214 	 * function.
5215 	 */
5216 	if (atid->isfiltered)
5217 		ath_tx_tid_filt_comp_complete(sc, atid);
5218 
5219 	/*
5220 	 * If a cleanup is in progress, punt to comp_cleanup;
5221 	 * rather than handling it here. It's thus their
5222 	 * responsibility to clean up, call the completion
5223 	 * function in net80211, etc.
5224 	 */
5225 	if (atid->cleanup_inprogress) {
5226 		if (atid->isfiltered)
5227 			DPRINTF(sc, ATH_DEBUG_SW_TX,
5228 			    "%s: isfiltered=1, normal_comp?\n",
5229 			    __func__);
5230 		ATH_TX_UNLOCK(sc);
5231 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n",
5232 		    __func__);
5233 		ath_tx_comp_cleanup_unaggr(sc, bf);
5234 		return;
5235 	}
5236 
5237 	/*
5238 	 * XXX TODO: how does cleanup, BAR and filtered frame handling
5239 	 * overlap?
5240 	 *
5241 	 * If the frame is filtered OR if it's any failure but
5242 	 * the TID is filtered, the frame must be added to the
5243 	 * filtered frame list.
5244 	 *
5245 	 * However - a busy buffer can't be added to the filtered
5246 	 * list as it will end up being recycled without having
5247 	 * been made available for the hardware.
5248 	 */
5249 	if ((ts.ts_status & HAL_TXERR_FILT) ||
5250 	    (ts.ts_status != 0 && atid->isfiltered)) {
5251 		int freeframe;
5252 
5253 		if (fail != 0)
5254 			DPRINTF(sc, ATH_DEBUG_SW_TX,
5255 			    "%s: isfiltered=1, fail=%d\n",
5256 			    __func__, fail);
5257 		freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf);
5258 		/*
5259 		 * If freeframe=0 then bf is no longer ours; don't
5260 		 * touch it.
5261 		 */
5262 		if (freeframe) {
5263 			/* Remove from BAW */
5264 			if (bf->bf_state.bfs_addedbaw)
5265 				drops++;
5266 			if (bf->bf_state.bfs_dobaw) {
5267 				ath_tx_update_baw(sc, an, atid, bf);
5268 				if (!bf->bf_state.bfs_addedbaw)
5269 					DPRINTF(sc, ATH_DEBUG_SW_TX,
5270 					    "%s: wasn't added: seqno %d\n",
5271 					    __func__, SEQNO(bf->bf_state.bfs_seqno));
5272 			}
5273 			bf->bf_state.bfs_dobaw = 0;
5274 		}
5275 
5276 		/*
5277 		 * If the frame couldn't be filtered, treat it as a drop and
5278 		 * prepare to send a BAR.
5279 		 */
5280 		if (freeframe && drops)
5281 			ath_tx_tid_bar_suspend(sc, atid);
5282 
5283 		/*
5284 		 * Send BAR if required
5285 		 */
5286 		if (ath_tx_tid_bar_tx_ready(sc, atid))
5287 			ath_tx_tid_bar_tx(sc, atid);
5288 
5289 		ATH_TX_UNLOCK(sc);
5290 		/*
5291 		 * If freeframe is set, then the frame couldn't be
5292 		 * cloned and bf is still valid.  Just complete/free it.
5293 		 */
5294 		if (freeframe)
5295 			ath_tx_default_comp(sc, bf, fail);
5296 
5297 		return;
5298 	}
5299 	/*
5300 	 * Don't bother with the retry check if all frames
5301 	 * are being failed (eg during queue deletion.)
5302 	 */
5303 #if 0
5304 	if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
5305 #endif
5306 	if (fail == 0 && ts.ts_status != 0) {
5307 		ATH_TX_UNLOCK(sc);
5308 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n",
5309 		    __func__);
5310 		ath_tx_aggr_retry_unaggr(sc, bf);
5311 		return;
5312 	}
5313 
5314 	/* Success? Complete */
5315 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
5316 	    __func__, tid, SEQNO(bf->bf_state.bfs_seqno));
5317 	if (bf->bf_state.bfs_dobaw) {
5318 		ath_tx_update_baw(sc, an, atid, bf);
5319 		bf->bf_state.bfs_dobaw = 0;
5320 		if (!bf->bf_state.bfs_addedbaw)
5321 			DPRINTF(sc, ATH_DEBUG_SW_TX,
5322 			    "%s: wasn't added: seqno %d\n",
5323 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
5324 	}
5325 
5326 	/*
5327 	 * If the queue is filtered, re-schedule as required.
5328 	 *
5329 	 * This is required as there may be a subsequent TX descriptor
5330 	 * for this end-node that has CLRDMASK set, so it's quite possible
5331 	 * that a filtered frame will be followed by a non-filtered
5332 	 * (complete or otherwise) frame.
5333 	 *
5334 	 * XXX should we do this before we complete the frame?
5335 	 */
5336 	if (atid->isfiltered)
5337 		ath_tx_tid_filt_comp_complete(sc, atid);
5338 
5339 	/*
5340 	 * Send BAR if required
5341 	 */
5342 	if (ath_tx_tid_bar_tx_ready(sc, atid))
5343 		ath_tx_tid_bar_tx(sc, atid);
5344 
5345 	ATH_TX_UNLOCK(sc);
5346 
5347 	ath_tx_default_comp(sc, bf, fail);
5348 	/* bf is freed at this point */
5349 }
5350 
5351 void
5352 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
5353 {
5354 	if (bf->bf_state.bfs_aggr)
5355 		ath_tx_aggr_comp_aggr(sc, bf, fail);
5356 	else
5357 		ath_tx_aggr_comp_unaggr(sc, bf, fail);
5358 }
5359 
5360 /*
5361  * Grab the software queue depth that we COULD transmit.
5362  *
5363  * This includes checks if it's in the BAW, whether it's a frame
5364  * that is supposed to be in the BAW.  Other checks could be done;
5365  * but for now let's try and avoid doing the whole of ath_tx_form_aggr()
5366  * here.
5367  */
5368 static int
5369 ath_tx_tid_swq_depth_bytes(struct ath_softc *sc, struct ath_node *an,
5370     struct ath_tid *tid)
5371 {
5372 	struct ath_buf *bf;
5373 	struct ieee80211_tx_ampdu *tap;
5374 	int nbytes = 0;
5375 
5376 	ATH_TX_LOCK_ASSERT(sc);
5377 
5378 	tap = ath_tx_get_tx_tid(an, tid->tid);
5379 
5380 	/*
5381 	 * Iterate over each buffer and sum the pkt_len.
5382 	 * Bail if we exceed ATH_AGGR_MAXSIZE bytes; we won't
5383 	 * ever queue more than that in a single frame.
5384 	 */
5385 	TAILQ_FOREACH(bf, &tid->tid_q, bf_list) {
5386 		/*
5387 		 * TODO: I'm not sure if we're going to hit cases where
5388 		 * no frames get sent because the list is empty.
5389 		 */
5390 
5391 		/* Check if it's in the BAW */
5392 		if (tap != NULL && (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
5393 		    SEQNO(bf->bf_state.bfs_seqno)))) {
5394 			break;
5395 		}
5396 
5397 		/* Check if it's even supposed to be in the BAW */
5398 		if (! bf->bf_state.bfs_dobaw) {
5399 			break;
5400 		}
5401 
5402 		nbytes += bf->bf_state.bfs_pktlen;
5403 		if (nbytes >= ATH_AGGR_MAXSIZE)
5404 			break;
5405 
5406 		/*
5407 		 * Check if we're likely going to leak a frame
5408 		 * as part of a PSPOLL.  Break out at this point;
5409 		 * we're only going to send a single frame anyway.
5410 		 */
5411 		if (an->an_leak_count) {
5412 			break;
5413 		}
5414 	}
5415 
5416 	return MIN(nbytes, ATH_AGGR_MAXSIZE);
5417 }
5418 
5419 /*
5420  * Schedule some packets from the given node/TID to the hardware.
5421  *
5422  * This is the aggregate version.
5423  */
5424 void
5425 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
5426     struct ath_tid *tid)
5427 {
5428 	struct ath_buf *bf;
5429 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
5430 	struct ieee80211_tx_ampdu *tap;
5431 	ATH_AGGR_STATUS status;
5432 	ath_bufhead bf_q;
5433 	int swq_pktbytes;
5434 
5435 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
5436 	ATH_TX_LOCK_ASSERT(sc);
5437 
5438 	/*
5439 	 * XXX TODO: If we're called for a queue that we're leaking frames to,
5440 	 * ensure we only leak one.
5441 	 */
5442 
5443 	tap = ath_tx_get_tx_tid(an, tid->tid);
5444 
5445 	if (tid->tid == IEEE80211_NONQOS_TID)
5446 		DPRINTF(sc, ATH_DEBUG_SW_TX,
5447 		    "%s: called for TID=NONQOS_TID?\n", __func__);
5448 
5449 	for (;;) {
5450 		status = ATH_AGGR_DONE;
5451 
5452 		/*
5453 		 * If the upper layer has paused the TID, don't
5454 		 * queue any further packets.
5455 		 *
5456 		 * This can also occur from the completion task because
5457 		 * of packet loss; but as its serialised with this code,
5458 		 * it won't "appear" half way through queuing packets.
5459 		 */
5460 		if (! ath_tx_tid_can_tx_or_sched(sc, tid))
5461 			break;
5462 
5463 		bf = ATH_TID_FIRST(tid);
5464 		if (bf == NULL) {
5465 			break;
5466 		}
5467 
5468 		/*
5469 		 * If the packet doesn't fall within the BAW (eg a NULL
5470 		 * data frame), schedule it directly; continue.
5471 		 */
5472 		if (! bf->bf_state.bfs_dobaw) {
5473 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5474 			    "%s: non-baw packet\n",
5475 			    __func__);
5476 			ATH_TID_REMOVE(tid, bf, bf_list);
5477 
5478 			if (bf->bf_state.bfs_nframes > 1)
5479 				DPRINTF(sc, ATH_DEBUG_SW_TX,
5480 				    "%s: aggr=%d, nframes=%d\n",
5481 				    __func__,
5482 				    bf->bf_state.bfs_aggr,
5483 				    bf->bf_state.bfs_nframes);
5484 
5485 			/*
5486 			 * This shouldn't happen - such frames shouldn't
5487 			 * ever have been queued as an aggregate in the
5488 			 * first place.  However, make sure the fields
5489 			 * are correctly setup just to be totally sure.
5490 			 */
5491 			bf->bf_state.bfs_aggr = 0;
5492 			bf->bf_state.bfs_nframes = 1;
5493 
5494 			/* Update CLRDMASK just before this frame is queued */
5495 			ath_tx_update_clrdmask(sc, tid, bf);
5496 
5497 			ath_tx_do_ratelookup(sc, bf, tid->tid,
5498 			    bf->bf_state.bfs_pktlen, false);
5499 			ath_tx_calc_duration(sc, bf);
5500 			ath_tx_calc_protection(sc, bf);
5501 			ath_tx_set_rtscts(sc, bf);
5502 			ath_tx_rate_fill_rcflags(sc, bf);
5503 			ath_tx_setds(sc, bf);
5504 			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
5505 
5506 			sc->sc_aggr_stats.aggr_nonbaw_pkt++;
5507 
5508 			/* Queue the packet; continue */
5509 			goto queuepkt;
5510 		}
5511 
5512 		TAILQ_INIT(&bf_q);
5513 
5514 		/*
5515 		 * Loop over the swq to find out how long
5516 		 * each packet is (up until 64k) and provide that
5517 		 * to the rate control lookup.
5518 		 */
5519 		swq_pktbytes = ath_tx_tid_swq_depth_bytes(sc, an, tid);
5520 		ath_tx_do_ratelookup(sc, bf, tid->tid, swq_pktbytes, true);
5521 
5522 		/*
5523 		 * Note this only is used for the fragment paths and
5524 		 * should really be rethought out if we want to do
5525 		 * things like an RTS burst across >1 aggregate.
5526 		 */
5527 		ath_tx_calc_duration(sc, bf);
5528 		ath_tx_calc_protection(sc, bf);
5529 
5530 		ath_tx_set_rtscts(sc, bf);
5531 		ath_tx_rate_fill_rcflags(sc, bf);
5532 
5533 		status = ath_tx_form_aggr(sc, an, tid, &bf_q);
5534 
5535 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5536 		    "%s: ath_tx_form_aggr() status=%d\n", __func__, status);
5537 
5538 		/*
5539 		 * No frames to be picked up - out of BAW
5540 		 */
5541 		if (TAILQ_EMPTY(&bf_q))
5542 			break;
5543 
5544 		/*
5545 		 * This assumes that the descriptor list in the ath_bufhead
5546 		 * are already linked together via bf_next pointers.
5547 		 */
5548 		bf = TAILQ_FIRST(&bf_q);
5549 
5550 		if (status == ATH_AGGR_8K_LIMITED)
5551 			sc->sc_aggr_stats.aggr_rts_aggr_limited++;
5552 
5553 		/*
5554 		 * If it's the only frame send as non-aggregate
5555 		 * assume that ath_tx_form_aggr() has checked
5556 		 * whether it's in the BAW and added it appropriately.
5557 		 */
5558 		if (bf->bf_state.bfs_nframes == 1) {
5559 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5560 			    "%s: single-frame aggregate\n", __func__);
5561 
5562 			/* Update CLRDMASK just before this frame is queued */
5563 			ath_tx_update_clrdmask(sc, tid, bf);
5564 
5565 			bf->bf_state.bfs_aggr = 0;
5566 			bf->bf_state.bfs_ndelim = 0;
5567 			ath_tx_setds(sc, bf);
5568 			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
5569 			if (status == ATH_AGGR_BAW_CLOSED)
5570 				sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
5571 			else
5572 				sc->sc_aggr_stats.aggr_single_pkt++;
5573 		} else {
5574 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
5575 			    "%s: multi-frame aggregate: %d frames, "
5576 			    "length %d\n",
5577 			     __func__, bf->bf_state.bfs_nframes,
5578 			    bf->bf_state.bfs_al);
5579 			bf->bf_state.bfs_aggr = 1;
5580 			sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
5581 			sc->sc_aggr_stats.aggr_aggr_pkt++;
5582 
5583 			/* Update CLRDMASK just before this frame is queued */
5584 			ath_tx_update_clrdmask(sc, tid, bf);
5585 
5586 			/*
5587 			 * Calculate the duration/protection as required.
5588 			 */
5589 			ath_tx_calc_duration(sc, bf);
5590 			ath_tx_calc_protection(sc, bf);
5591 
5592 			/*
5593 			 * Update the rate and rtscts information based on the
5594 			 * rate decision made by the rate control code;
5595 			 * the first frame in the aggregate needs it.
5596 			 */
5597 			ath_tx_set_rtscts(sc, bf);
5598 
5599 			/*
5600 			 * Setup the relevant descriptor fields
5601 			 * for aggregation. The first descriptor
5602 			 * already points to the rest in the chain.
5603 			 */
5604 			ath_tx_setds_11n(sc, bf);
5605 		}
5606 	queuepkt:
5607 		/* Set completion handler, multi-frame aggregate or not */
5608 		bf->bf_comp = ath_tx_aggr_comp;
5609 
5610 		if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
5611 			DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16?\n", __func__);
5612 
5613 		/*
5614 		 * Update leak count and frame config if were leaking frames.
5615 		 *
5616 		 * XXX TODO: it should update all frames in an aggregate
5617 		 * correctly!
5618 		 */
5619 		ath_tx_leak_count_update(sc, tid, bf);
5620 
5621 		/* Punt to txq */
5622 		ath_tx_handoff(sc, txq, bf);
5623 
5624 		/* Track outstanding buffer count to hardware */
5625 		/* aggregates are "one" buffer */
5626 		tid->hwq_depth++;
5627 
5628 		/*
5629 		 * Break out if ath_tx_form_aggr() indicated
5630 		 * there can't be any further progress (eg BAW is full.)
5631 		 * Checking for an empty txq is done above.
5632 		 *
5633 		 * XXX locking on txq here?
5634 		 */
5635 		/* XXX TXQ locking */
5636 		if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr ||
5637 		    (status == ATH_AGGR_BAW_CLOSED ||
5638 		     status == ATH_AGGR_LEAK_CLOSED))
5639 			break;
5640 	}
5641 }
5642 
5643 /*
5644  * Schedule some packets from the given node/TID to the hardware.
5645  *
5646  * XXX TODO: this routine doesn't enforce the maximum TXQ depth.
5647  * It just dumps frames into the TXQ.  We should limit how deep
5648  * the transmit queue can grow for frames dispatched to the given
5649  * TXQ.
5650  *
5651  * To avoid locking issues, either we need to own the TXQ lock
5652  * at this point, or we need to pass in the maximum frame count
5653  * from the caller.
5654  */
5655 void
5656 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
5657     struct ath_tid *tid)
5658 {
5659 	struct ath_buf *bf;
5660 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
5661 
5662 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
5663 	    __func__, an, tid->tid);
5664 
5665 	ATH_TX_LOCK_ASSERT(sc);
5666 
5667 	/* Check - is AMPDU pending or running? then print out something */
5668 	if (ath_tx_ampdu_pending(sc, an, tid->tid))
5669 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu pending?\n",
5670 		    __func__, tid->tid);
5671 	if (ath_tx_ampdu_running(sc, an, tid->tid))
5672 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu running?\n",
5673 		    __func__, tid->tid);
5674 
5675 	for (;;) {
5676 		/*
5677 		 * If the upper layers have paused the TID, don't
5678 		 * queue any further packets.
5679 		 *
5680 		 * XXX if we are leaking frames, make sure we decrement
5681 		 * that counter _and_ we continue here.
5682 		 */
5683 		if (! ath_tx_tid_can_tx_or_sched(sc, tid))
5684 			break;
5685 
5686 		bf = ATH_TID_FIRST(tid);
5687 		if (bf == NULL) {
5688 			break;
5689 		}
5690 
5691 		ATH_TID_REMOVE(tid, bf, bf_list);
5692 
5693 		/* Sanity check! */
5694 		if (tid->tid != bf->bf_state.bfs_tid) {
5695 			DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bfs_tid %d !="
5696 			    " tid %d\n", __func__, bf->bf_state.bfs_tid,
5697 			    tid->tid);
5698 		}
5699 		/* Normal completion handler */
5700 		bf->bf_comp = ath_tx_normal_comp;
5701 
5702 		/*
5703 		 * Override this for now, until the non-aggregate
5704 		 * completion handler correctly handles software retransmits.
5705 		 */
5706 		bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
5707 
5708 		/* Update CLRDMASK just before this frame is queued */
5709 		ath_tx_update_clrdmask(sc, tid, bf);
5710 
5711 		/* Program descriptors + rate control */
5712 		ath_tx_do_ratelookup(sc, bf, tid->tid,
5713 		    bf->bf_state.bfs_pktlen, false);
5714 		ath_tx_calc_duration(sc, bf);
5715 		ath_tx_calc_protection(sc, bf);
5716 		ath_tx_set_rtscts(sc, bf);
5717 		ath_tx_rate_fill_rcflags(sc, bf);
5718 		ath_tx_setds(sc, bf);
5719 
5720 		/*
5721 		 * Update the current leak count if
5722 		 * we're leaking frames; and set the
5723 		 * MORE flag as appropriate.
5724 		 */
5725 		ath_tx_leak_count_update(sc, tid, bf);
5726 
5727 		/* Track outstanding buffer count to hardware */
5728 		/* aggregates are "one" buffer */
5729 		tid->hwq_depth++;
5730 
5731 		/* Punt to hardware or software txq */
5732 		ath_tx_handoff(sc, txq, bf);
5733 	}
5734 }
5735 
5736 /*
5737  * Schedule some packets to the given hardware queue.
5738  *
5739  * This function walks the list of TIDs (ie, ath_node TIDs
5740  * with queued traffic) and attempts to schedule traffic
5741  * from them.
5742  *
5743  * TID scheduling is implemented as a FIFO, with TIDs being
5744  * added to the end of the queue after some frames have been
5745  * scheduled.
5746  */
5747 void
5748 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
5749 {
5750 	struct ath_tid *tid, *next, *last;
5751 
5752 	ATH_TX_LOCK_ASSERT(sc);
5753 
5754 	/*
5755 	 * For non-EDMA chips, aggr frames that have been built are
5756 	 * in axq_aggr_depth, whether they've been scheduled or not.
5757 	 * There's no FIFO, so txq->axq_depth is what's been scheduled
5758 	 * to the hardware.
5759 	 *
5760 	 * For EDMA chips, we do it in two stages.  The existing code
5761 	 * builds a list of frames to go to the hardware and the EDMA
5762 	 * code turns it into a single entry to push into the FIFO.
5763 	 * That way we don't take up one packet per FIFO slot.
5764 	 * We do push one aggregate per FIFO slot though, just to keep
5765 	 * things simple.
5766 	 *
5767 	 * The FIFO depth is what's in the hardware; the txq->axq_depth
5768 	 * is what's been scheduled to the FIFO.
5769 	 *
5770 	 * fifo.axq_depth is the number of frames (or aggregates) pushed
5771 	 *  into the EDMA FIFO.  For multi-frame lists, this is the number
5772 	 *  of frames pushed in.
5773 	 * axq_fifo_depth is the number of FIFO slots currently busy.
5774 	 */
5775 
5776 	/* For EDMA and non-EDMA, check built/scheduled against aggr limit */
5777 	if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr) {
5778 		sc->sc_aggr_stats.aggr_sched_nopkt++;
5779 		return;
5780 	}
5781 
5782 	/*
5783 	 * For non-EDMA chips, axq_depth is the "what's scheduled to
5784 	 * the hardware list".  For EDMA it's "What's built for the hardware"
5785 	 * and fifo.axq_depth is how many frames have been dispatched
5786 	 * already to the hardware.
5787 	 */
5788 	if (txq->axq_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_nonaggr) {
5789 		sc->sc_aggr_stats.aggr_sched_nopkt++;
5790 		return;
5791 	}
5792 
5793 	last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
5794 
5795 	TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
5796 		/*
5797 		 * Suspend paused queues here; they'll be resumed
5798 		 * once the addba completes or times out.
5799 		 */
5800 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
5801 		    __func__, tid->tid, tid->paused);
5802 		ath_tx_tid_unsched(sc, tid);
5803 		/*
5804 		 * This node may be in power-save and we're leaking
5805 		 * a frame; be careful.
5806 		 */
5807 		if (! ath_tx_tid_can_tx_or_sched(sc, tid)) {
5808 			goto loop_done;
5809 		}
5810 		if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
5811 			ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
5812 		else
5813 			ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
5814 
5815 		/* Not empty? Re-schedule */
5816 		if (tid->axq_depth != 0)
5817 			ath_tx_tid_sched(sc, tid);
5818 
5819 		/*
5820 		 * Give the software queue time to aggregate more
5821 		 * packets.  If we aren't running aggregation then
5822 		 * we should still limit the hardware queue depth.
5823 		 */
5824 		/* XXX TXQ locking */
5825 		if (txq->axq_aggr_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_aggr) {
5826 			break;
5827 		}
5828 		if (txq->axq_depth >= sc->sc_hwq_limit_nonaggr) {
5829 			break;
5830 		}
5831 loop_done:
5832 		/*
5833 		 * If this was the last entry on the original list, stop.
5834 		 * Otherwise nodes that have been rescheduled onto the end
5835 		 * of the TID FIFO list will just keep being rescheduled.
5836 		 *
5837 		 * XXX What should we do about nodes that were paused
5838 		 * but are pending a leaking frame in response to a ps-poll?
5839 		 * They'll be put at the front of the list; so they'll
5840 		 * prematurely trigger this condition! Ew.
5841 		 */
5842 		if (tid == last)
5843 			break;
5844 	}
5845 }
5846 
5847 /*
5848  * TX addba handling
5849  */
5850 
5851 /*
5852  * Return net80211 TID struct pointer, or NULL for none
5853  */
5854 struct ieee80211_tx_ampdu *
5855 ath_tx_get_tx_tid(struct ath_node *an, int tid)
5856 {
5857 	struct ieee80211_node *ni = &an->an_node;
5858 	struct ieee80211_tx_ampdu *tap;
5859 
5860 	if (tid == IEEE80211_NONQOS_TID)
5861 		return NULL;
5862 
5863 	tap = &ni->ni_tx_ampdu[tid];
5864 	return tap;
5865 }
5866 
5867 /*
5868  * Is AMPDU-TX running?
5869  */
5870 static int
5871 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
5872 {
5873 	struct ieee80211_tx_ampdu *tap;
5874 
5875 	if (tid == IEEE80211_NONQOS_TID)
5876 		return 0;
5877 
5878 	tap = ath_tx_get_tx_tid(an, tid);
5879 	if (tap == NULL)
5880 		return 0;	/* Not valid; default to not running */
5881 
5882 	return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
5883 }
5884 
5885 /*
5886  * Is AMPDU-TX negotiation pending?
5887  */
5888 static int
5889 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
5890 {
5891 	struct ieee80211_tx_ampdu *tap;
5892 
5893 	if (tid == IEEE80211_NONQOS_TID)
5894 		return 0;
5895 
5896 	tap = ath_tx_get_tx_tid(an, tid);
5897 	if (tap == NULL)
5898 		return 0;	/* Not valid; default to not pending */
5899 
5900 	return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
5901 }
5902 
5903 /*
5904  * Is AMPDU-TX pending for the given TID?
5905  */
5906 
5907 /*
5908  * Method to handle sending an ADDBA request.
5909  *
5910  * We tap this so the relevant flags can be set to pause the TID
5911  * whilst waiting for the response.
5912  *
5913  * XXX there's no timeout handler we can override?
5914  */
5915 int
5916 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5917     int dialogtoken, int baparamset, int batimeout)
5918 {
5919 	struct ath_softc *sc = ni->ni_ic->ic_softc;
5920 	int tid = tap->txa_tid;
5921 	struct ath_node *an = ATH_NODE(ni);
5922 	struct ath_tid *atid = &an->an_tid[tid];
5923 
5924 	/*
5925 	 * XXX danger Will Robinson!
5926 	 *
5927 	 * Although the taskqueue may be running and scheduling some more
5928 	 * packets, these should all be _before_ the addba sequence number.
5929 	 * However, net80211 will keep self-assigning sequence numbers
5930 	 * until addba has been negotiated.
5931 	 *
5932 	 * In the past, these packets would be "paused" (which still works
5933 	 * fine, as they're being scheduled to the driver in the same
5934 	 * serialised method which is calling the addba request routine)
5935 	 * and when the aggregation session begins, they'll be dequeued
5936 	 * as aggregate packets and added to the BAW. However, now there's
5937 	 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
5938 	 * packets. Thus they never get included in the BAW tracking and
5939 	 * this can cause the initial burst of packets after the addba
5940 	 * negotiation to "hang", as they quickly fall outside the BAW.
5941 	 *
5942 	 * The "eventual" solution should be to tag these packets with
5943 	 * dobaw. Although net80211 has given us a sequence number,
5944 	 * it'll be "after" the left edge of the BAW and thus it'll
5945 	 * fall within it.
5946 	 */
5947 	ATH_TX_LOCK(sc);
5948 	/*
5949 	 * This is a bit annoying.  Until net80211 HT code inherits some
5950 	 * (any) locking, we may have this called in parallel BUT only
5951 	 * one response/timeout will be called.  Grr.
5952 	 */
5953 	if (atid->addba_tx_pending == 0) {
5954 		ath_tx_tid_pause(sc, atid);
5955 		atid->addba_tx_pending = 1;
5956 	}
5957 	ATH_TX_UNLOCK(sc);
5958 
5959 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5960 	    "%s: %6D: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
5961 	    __func__,
5962 	    ni->ni_macaddr,
5963 	    ":",
5964 	    dialogtoken, baparamset, batimeout);
5965 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
5966 	    "%s: txa_start=%d, ni_txseqs=%d\n",
5967 	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
5968 
5969 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5970 	    batimeout);
5971 }
5972 
5973 /*
5974  * Handle an ADDBA response.
5975  *
5976  * We unpause the queue so TX'ing can resume.
5977  *
5978  * Any packets TX'ed from this point should be "aggregate" (whether
5979  * aggregate or not) so the BAW is updated.
5980  *
5981  * Note! net80211 keeps self-assigning sequence numbers until
5982  * ampdu is negotiated. This means the initially-negotiated BAW left
5983  * edge won't match the ni->ni_txseq.
5984  *
5985  * So, being very dirty, the BAW left edge is "slid" here to match
5986  * ni->ni_txseq.
5987  *
5988  * What likely SHOULD happen is that all packets subsequent to the
5989  * addba request should be tagged as aggregate and queued as non-aggregate
5990  * frames; thus updating the BAW. For now though, I'll just slide the
5991  * window.
5992  */
5993 int
5994 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5995     int status, int code, int batimeout)
5996 {
5997 	struct ath_softc *sc = ni->ni_ic->ic_softc;
5998 	int tid = tap->txa_tid;
5999 	struct ath_node *an = ATH_NODE(ni);
6000 	struct ath_tid *atid = &an->an_tid[tid];
6001 	int r;
6002 
6003 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
6004 	    "%s: %6D: called; status=%d, code=%d, batimeout=%d\n", __func__,
6005 	    ni->ni_macaddr,
6006 	    ":",
6007 	    status, code, batimeout);
6008 
6009 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
6010 	    "%s: txa_start=%d, ni_txseqs=%d\n",
6011 	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
6012 
6013 	/*
6014 	 * Call this first, so the interface flags get updated
6015 	 * before the TID is unpaused. Otherwise a race condition
6016 	 * exists where the unpaused TID still doesn't yet have
6017 	 * IEEE80211_AGGR_RUNNING set.
6018 	 */
6019 	r = sc->sc_addba_response(ni, tap, status, code, batimeout);
6020 
6021 	ATH_TX_LOCK(sc);
6022 	atid->addba_tx_pending = 0;
6023 	/*
6024 	 * XXX dirty!
6025 	 * Slide the BAW left edge to wherever net80211 left it for us.
6026 	 * Read above for more information.
6027 	 */
6028 	tap->txa_start = ni->ni_txseqs[tid];
6029 	ath_tx_tid_resume(sc, atid);
6030 	ATH_TX_UNLOCK(sc);
6031 	return r;
6032 }
6033 
6034 /*
6035  * Stop ADDBA on a queue.
6036  *
6037  * This can be called whilst BAR TX is currently active on the queue,
6038  * so make sure this is unblocked before continuing.
6039  */
6040 void
6041 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
6042 {
6043 	struct ath_softc *sc = ni->ni_ic->ic_softc;
6044 	int tid = tap->txa_tid;
6045 	struct ath_node *an = ATH_NODE(ni);
6046 	struct ath_tid *atid = &an->an_tid[tid];
6047 	ath_bufhead bf_cq;
6048 	struct ath_buf *bf;
6049 
6050 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: called\n",
6051 	    __func__,
6052 	    ni->ni_macaddr,
6053 	    ":");
6054 
6055 	/*
6056 	 * Pause TID traffic early, so there aren't any races
6057 	 * Unblock the pending BAR held traffic, if it's currently paused.
6058 	 */
6059 	ATH_TX_LOCK(sc);
6060 	ath_tx_tid_pause(sc, atid);
6061 	if (atid->bar_wait) {
6062 		/*
6063 		 * bar_unsuspend() expects bar_tx == 1, as it should be
6064 		 * called from the TX completion path.  This quietens
6065 		 * the warning.  It's cleared for us anyway.
6066 		 */
6067 		atid->bar_tx = 1;
6068 		ath_tx_tid_bar_unsuspend(sc, atid);
6069 	}
6070 	ATH_TX_UNLOCK(sc);
6071 
6072 	/* There's no need to hold the TXQ lock here */
6073 	sc->sc_addba_stop(ni, tap);
6074 
6075 	/*
6076 	 * ath_tx_tid_cleanup will resume the TID if possible, otherwise
6077 	 * it'll set the cleanup flag, and it'll be unpaused once
6078 	 * things have been cleaned up.
6079 	 */
6080 	TAILQ_INIT(&bf_cq);
6081 	ATH_TX_LOCK(sc);
6082 
6083 	/*
6084 	 * In case there's a followup call to this, only call it
6085 	 * if we don't have a cleanup in progress.
6086 	 *
6087 	 * Since we've paused the queue above, we need to make
6088 	 * sure we unpause if there's already a cleanup in
6089 	 * progress - it means something else is also doing
6090 	 * this stuff, so we don't need to also keep it paused.
6091 	 */
6092 	if (atid->cleanup_inprogress) {
6093 		ath_tx_tid_resume(sc, atid);
6094 	} else {
6095 		ath_tx_tid_cleanup(sc, an, tid, &bf_cq);
6096 		/*
6097 		 * Unpause the TID if no cleanup is required.
6098 		 */
6099 		if (! atid->cleanup_inprogress)
6100 			ath_tx_tid_resume(sc, atid);
6101 	}
6102 	ATH_TX_UNLOCK(sc);
6103 
6104 	/* Handle completing frames and fail them */
6105 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
6106 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
6107 		ath_tx_default_comp(sc, bf, 1);
6108 	}
6109 
6110 }
6111 
6112 /*
6113  * Handle a node reassociation.
6114  *
6115  * We may have a bunch of frames queued to the hardware; those need
6116  * to be marked as cleanup.
6117  */
6118 void
6119 ath_tx_node_reassoc(struct ath_softc *sc, struct ath_node *an)
6120 {
6121 	struct ath_tid *tid;
6122 	int i;
6123 	ath_bufhead bf_cq;
6124 	struct ath_buf *bf;
6125 
6126 	TAILQ_INIT(&bf_cq);
6127 
6128 	ATH_TX_UNLOCK_ASSERT(sc);
6129 
6130 	ATH_TX_LOCK(sc);
6131 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
6132 		tid = &an->an_tid[i];
6133 		if (tid->hwq_depth == 0)
6134 			continue;
6135 		DPRINTF(sc, ATH_DEBUG_NODE,
6136 		    "%s: %6D: TID %d: cleaning up TID\n",
6137 		    __func__,
6138 		    an->an_node.ni_macaddr,
6139 		    ":",
6140 		    i);
6141 		/*
6142 		 * In case there's a followup call to this, only call it
6143 		 * if we don't have a cleanup in progress.
6144 		 */
6145 		if (! tid->cleanup_inprogress) {
6146 			ath_tx_tid_pause(sc, tid);
6147 			ath_tx_tid_cleanup(sc, an, i, &bf_cq);
6148 			/*
6149 			 * Unpause the TID if no cleanup is required.
6150 			 */
6151 			if (! tid->cleanup_inprogress)
6152 				ath_tx_tid_resume(sc, tid);
6153 		}
6154 	}
6155 	ATH_TX_UNLOCK(sc);
6156 
6157 	/* Handle completing frames and fail them */
6158 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
6159 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
6160 		ath_tx_default_comp(sc, bf, 1);
6161 	}
6162 }
6163 
6164 /*
6165  * Note: net80211 bar_timeout() doesn't call this function on BAR failure;
6166  * it simply tears down the aggregation session. Ew.
6167  *
6168  * It however will call ieee80211_ampdu_stop() which will call
6169  * ic->ic_addba_stop().
6170  *
6171  * XXX This uses a hard-coded max BAR count value; the whole
6172  * XXX BAR TX success or failure should be better handled!
6173  */
6174 void
6175 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
6176     int status)
6177 {
6178 	struct ath_softc *sc = ni->ni_ic->ic_softc;
6179 	int tid = tap->txa_tid;
6180 	struct ath_node *an = ATH_NODE(ni);
6181 	struct ath_tid *atid = &an->an_tid[tid];
6182 	int attempts = tap->txa_attempts;
6183 	int old_txa_start;
6184 
6185 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
6186 	    "%s: %6D: called; txa_tid=%d, atid->tid=%d, status=%d, attempts=%d, txa_start=%d, txa_seqpending=%d\n",
6187 	    __func__,
6188 	    ni->ni_macaddr,
6189 	    ":",
6190 	    tap->txa_tid,
6191 	    atid->tid,
6192 	    status,
6193 	    attempts,
6194 	    tap->txa_start,
6195 	    tap->txa_seqpending);
6196 
6197 	/* Note: This may update the BAW details */
6198 	/*
6199 	 * XXX What if this does slide the BAW along? We need to somehow
6200 	 * XXX either fix things when it does happen, or prevent the
6201 	 * XXX seqpending value to be anything other than exactly what
6202 	 * XXX the hell we want!
6203 	 *
6204 	 * XXX So for now, how I do this inside the TX lock for now
6205 	 * XXX and just correct it afterwards? The below condition should
6206 	 * XXX never happen and if it does I need to fix all kinds of things.
6207 	 */
6208 	ATH_TX_LOCK(sc);
6209 	old_txa_start = tap->txa_start;
6210 	sc->sc_bar_response(ni, tap, status);
6211 	if (tap->txa_start != old_txa_start) {
6212 		device_printf(sc->sc_dev, "%s: tid=%d; txa_start=%d, old=%d, adjusting\n",
6213 		    __func__,
6214 		    tid,
6215 		    tap->txa_start,
6216 		    old_txa_start);
6217 	}
6218 	tap->txa_start = old_txa_start;
6219 	ATH_TX_UNLOCK(sc);
6220 
6221 	/* Unpause the TID */
6222 	/*
6223 	 * XXX if this is attempt=50, the TID will be downgraded
6224 	 * XXX to a non-aggregate session. So we must unpause the
6225 	 * XXX TID here or it'll never be done.
6226 	 *
6227 	 * Also, don't call it if bar_tx/bar_wait are 0; something
6228 	 * has beaten us to the punch? (XXX figure out what?)
6229 	 */
6230 	if (status == 0 || attempts == 50) {
6231 		ATH_TX_LOCK(sc);
6232 		if (atid->bar_tx == 0 || atid->bar_wait == 0)
6233 			DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
6234 			    "%s: huh? bar_tx=%d, bar_wait=%d\n",
6235 			    __func__,
6236 			    atid->bar_tx, atid->bar_wait);
6237 		else
6238 			ath_tx_tid_bar_unsuspend(sc, atid);
6239 		ATH_TX_UNLOCK(sc);
6240 	}
6241 }
6242 
6243 /*
6244  * This is called whenever the pending ADDBA request times out.
6245  * Unpause and reschedule the TID.
6246  */
6247 void
6248 ath_addba_response_timeout(struct ieee80211_node *ni,
6249     struct ieee80211_tx_ampdu *tap)
6250 {
6251 	struct ath_softc *sc = ni->ni_ic->ic_softc;
6252 	int tid = tap->txa_tid;
6253 	struct ath_node *an = ATH_NODE(ni);
6254 	struct ath_tid *atid = &an->an_tid[tid];
6255 
6256 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
6257 	    "%s: %6D: TID=%d, called; resuming\n",
6258 	    __func__,
6259 	    ni->ni_macaddr,
6260 	    ":",
6261 	    tid);
6262 
6263 	ATH_TX_LOCK(sc);
6264 	atid->addba_tx_pending = 0;
6265 	ATH_TX_UNLOCK(sc);
6266 
6267 	/* Note: This updates the aggregate state to (again) pending */
6268 	sc->sc_addba_response_timeout(ni, tap);
6269 
6270 	/* Unpause the TID; which reschedules it */
6271 	ATH_TX_LOCK(sc);
6272 	ath_tx_tid_resume(sc, atid);
6273 	ATH_TX_UNLOCK(sc);
6274 }
6275 
6276 /*
6277  * Check if a node is asleep or not.
6278  */
6279 int
6280 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an)
6281 {
6282 
6283 	ATH_TX_LOCK_ASSERT(sc);
6284 
6285 	return (an->an_is_powersave);
6286 }
6287 
6288 /*
6289  * Mark a node as currently "in powersaving."
6290  * This suspends all traffic on the node.
6291  *
6292  * This must be called with the node/tx locks free.
6293  *
6294  * XXX TODO: the locking silliness below is due to how the node
6295  * locking currently works.  Right now, the node lock is grabbed
6296  * to do rate control lookups and these are done with the TX
6297  * queue lock held.  This means the node lock can't be grabbed
6298  * first here or a LOR will occur.
6299  *
6300  * Eventually (hopefully!) the TX path code will only grab
6301  * the TXQ lock when transmitting and the ath_node lock when
6302  * doing node/TID operations.  There are other complications -
6303  * the sched/unsched operations involve walking the per-txq
6304  * 'active tid' list and this requires both locks to be held.
6305  */
6306 void
6307 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an)
6308 {
6309 	struct ath_tid *atid;
6310 	struct ath_txq *txq;
6311 	int tid;
6312 
6313 	ATH_TX_UNLOCK_ASSERT(sc);
6314 
6315 	/* Suspend all traffic on the node */
6316 	ATH_TX_LOCK(sc);
6317 
6318 	if (an->an_is_powersave) {
6319 		DPRINTF(sc, ATH_DEBUG_XMIT,
6320 		    "%s: %6D: node was already asleep!\n",
6321 		    __func__, an->an_node.ni_macaddr, ":");
6322 		ATH_TX_UNLOCK(sc);
6323 		return;
6324 	}
6325 
6326 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
6327 		atid = &an->an_tid[tid];
6328 		txq = sc->sc_ac2q[atid->ac];
6329 
6330 		ath_tx_tid_pause(sc, atid);
6331 	}
6332 
6333 	/* Mark node as in powersaving */
6334 	an->an_is_powersave = 1;
6335 
6336 	ATH_TX_UNLOCK(sc);
6337 }
6338 
6339 /*
6340  * Mark a node as currently "awake."
6341  * This resumes all traffic to the node.
6342  */
6343 void
6344 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an)
6345 {
6346 	struct ath_tid *atid;
6347 	struct ath_txq *txq;
6348 	int tid;
6349 
6350 	ATH_TX_UNLOCK_ASSERT(sc);
6351 
6352 	ATH_TX_LOCK(sc);
6353 
6354 	/* !? */
6355 	if (an->an_is_powersave == 0) {
6356 		ATH_TX_UNLOCK(sc);
6357 		DPRINTF(sc, ATH_DEBUG_XMIT,
6358 		    "%s: an=%p: node was already awake\n",
6359 		    __func__, an);
6360 		return;
6361 	}
6362 
6363 	/* Mark node as awake */
6364 	an->an_is_powersave = 0;
6365 	/*
6366 	 * Clear any pending leaked frame requests
6367 	 */
6368 	an->an_leak_count = 0;
6369 
6370 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
6371 		atid = &an->an_tid[tid];
6372 		txq = sc->sc_ac2q[atid->ac];
6373 
6374 		ath_tx_tid_resume(sc, atid);
6375 	}
6376 	ATH_TX_UNLOCK(sc);
6377 }
6378 
6379 static int
6380 ath_legacy_dma_txsetup(struct ath_softc *sc)
6381 {
6382 
6383 	/* nothing new needed */
6384 	return (0);
6385 }
6386 
6387 static int
6388 ath_legacy_dma_txteardown(struct ath_softc *sc)
6389 {
6390 
6391 	/* nothing new needed */
6392 	return (0);
6393 }
6394 
6395 void
6396 ath_xmit_setup_legacy(struct ath_softc *sc)
6397 {
6398 	/*
6399 	 * For now, just set the descriptor length to sizeof(ath_desc);
6400 	 * worry about extracting the real length out of the HAL later.
6401 	 */
6402 	sc->sc_tx_desclen = sizeof(struct ath_desc);
6403 	sc->sc_tx_statuslen = sizeof(struct ath_desc);
6404 	sc->sc_tx_nmaps = 1;	/* only one buffer per TX desc */
6405 
6406 	sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup;
6407 	sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown;
6408 	sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func;
6409 
6410 	sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart;
6411 	sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff;
6412 
6413 	sc->sc_tx.xmit_drain = ath_legacy_tx_drain;
6414 }
6415