1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * Driver for the Atheros Wireless LAN controller. 36 * 37 * This software is derived from work of Atsushi Onoe; his contribution 38 * is greatly appreciated. 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_ath.h" 43 #include "opt_wlan.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/mbuf.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/kernel.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/errno.h> 56 #include <sys/callout.h> 57 #include <sys/bus.h> 58 #include <sys/endian.h> 59 #include <sys/kthread.h> 60 #include <sys/taskqueue.h> 61 #include <sys/priv.h> 62 63 #include <machine/bus.h> 64 65 #include <net/if.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 #include <net80211/ieee80211_regdomain.h> 75 #ifdef IEEE80211_SUPPORT_SUPERG 76 #include <net80211/ieee80211_superg.h> 77 #endif 78 #ifdef IEEE80211_SUPPORT_TDMA 79 #include <net80211/ieee80211_tdma.h> 80 #endif 81 #include <net80211/ieee80211_ht.h> 82 83 #include <net/bpf.h> 84 85 #ifdef INET 86 #include <netinet/in.h> 87 #include <netinet/if_ether.h> 88 #endif 89 90 #include <dev/ath/if_athvar.h> 91 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 92 #include <dev/ath/ath_hal/ah_diagcodes.h> 93 94 #include <dev/ath/if_ath_debug.h> 95 96 #ifdef ATH_TX99_DIAG 97 #include <dev/ath/ath_tx99/ath_tx99.h> 98 #endif 99 100 #include <dev/ath/if_ath_misc.h> 101 #include <dev/ath/if_ath_tx.h> 102 #include <dev/ath/if_ath_tx_ht.h> 103 104 #ifdef ATH_DEBUG_ALQ 105 #include <dev/ath/if_ath_alq.h> 106 #endif 107 108 /* 109 * How many retries to perform in software 110 */ 111 #define SWMAX_RETRIES 10 112 113 /* 114 * What queue to throw the non-QoS TID traffic into 115 */ 116 #define ATH_NONQOS_TID_AC WME_AC_VO 117 118 #if 0 119 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an); 120 #endif 121 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, 122 int tid); 123 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, 124 int tid); 125 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, 126 struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0); 127 static int ath_tx_action_frame_override_queue(struct ath_softc *sc, 128 struct ieee80211_node *ni, struct mbuf *m0, int *tid); 129 static struct ath_buf * 130 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 131 struct ath_tid *tid, struct ath_buf *bf); 132 133 #ifdef ATH_DEBUG_ALQ 134 void 135 ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first) 136 { 137 struct ath_buf *bf; 138 int i, n; 139 const char *ds; 140 141 /* XXX we should skip out early if debugging isn't enabled! */ 142 bf = bf_first; 143 144 while (bf != NULL) { 145 /* XXX should ensure bf_nseg > 0! */ 146 if (bf->bf_nseg == 0) 147 break; 148 n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1; 149 for (i = 0, ds = (const char *) bf->bf_desc; 150 i < n; 151 i++, ds += sc->sc_tx_desclen) { 152 if_ath_alq_post(&sc->sc_alq, 153 ATH_ALQ_EDMA_TXDESC, 154 sc->sc_tx_desclen, 155 ds); 156 } 157 bf = bf->bf_next; 158 } 159 } 160 #endif /* ATH_DEBUG_ALQ */ 161 162 /* 163 * Whether to use the 11n rate scenario functions or not 164 */ 165 static inline int 166 ath_tx_is_11n(struct ath_softc *sc) 167 { 168 return ((sc->sc_ah->ah_magic == 0x20065416) || 169 (sc->sc_ah->ah_magic == 0x19741014)); 170 } 171 172 /* 173 * Obtain the current TID from the given frame. 174 * 175 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.) 176 * This has implications for which AC/priority the packet is placed 177 * in. 178 */ 179 static int 180 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0) 181 { 182 const struct ieee80211_frame *wh; 183 int pri = M_WME_GETAC(m0); 184 185 wh = mtod(m0, const struct ieee80211_frame *); 186 if (! IEEE80211_QOS_HAS_SEQ(wh)) 187 return IEEE80211_NONQOS_TID; 188 else 189 return WME_AC_TO_TID(pri); 190 } 191 192 static void 193 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) 194 { 195 struct ieee80211_frame *wh; 196 197 wh = mtod(bf->bf_m, struct ieee80211_frame *); 198 /* Only update/resync if needed */ 199 if (bf->bf_state.bfs_isretried == 0) { 200 wh->i_fc[1] |= IEEE80211_FC1_RETRY; 201 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 202 BUS_DMASYNC_PREWRITE); 203 } 204 bf->bf_state.bfs_isretried = 1; 205 bf->bf_state.bfs_retries ++; 206 } 207 208 /* 209 * Determine what the correct AC queue for the given frame 210 * should be. 211 * 212 * This code assumes that the TIDs map consistently to 213 * the underlying hardware (or software) ath_txq. 214 * Since the sender may try to set an AC which is 215 * arbitrary, non-QoS TIDs may end up being put on 216 * completely different ACs. There's no way to put a 217 * TID into multiple ath_txq's for scheduling, so 218 * for now we override the AC/TXQ selection and set 219 * non-QOS TID frames into the BE queue. 220 * 221 * This may be completely incorrect - specifically, 222 * some management frames may end up out of order 223 * compared to the QoS traffic they're controlling. 224 * I'll look into this later. 225 */ 226 static int 227 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0) 228 { 229 const struct ieee80211_frame *wh; 230 int pri = M_WME_GETAC(m0); 231 wh = mtod(m0, const struct ieee80211_frame *); 232 if (IEEE80211_QOS_HAS_SEQ(wh)) 233 return pri; 234 235 return ATH_NONQOS_TID_AC; 236 } 237 238 void 239 ath_txfrag_cleanup(struct ath_softc *sc, 240 ath_bufhead *frags, struct ieee80211_node *ni) 241 { 242 struct ath_buf *bf, *next; 243 244 ATH_TXBUF_LOCK_ASSERT(sc); 245 246 TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { 247 /* NB: bf assumed clean */ 248 TAILQ_REMOVE(frags, bf, bf_list); 249 ath_returnbuf_head(sc, bf); 250 ieee80211_node_decref(ni); 251 } 252 } 253 254 /* 255 * Setup xmit of a fragmented frame. Allocate a buffer 256 * for each frag and bump the node reference count to 257 * reflect the held reference to be setup by ath_tx_start. 258 */ 259 int 260 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 261 struct mbuf *m0, struct ieee80211_node *ni) 262 { 263 struct mbuf *m; 264 struct ath_buf *bf; 265 266 ATH_TXBUF_LOCK(sc); 267 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 268 /* XXX non-management? */ 269 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 270 if (bf == NULL) { /* out of buffers, cleanup */ 271 device_printf(sc->sc_dev, "%s: no buffer?\n", 272 __func__); 273 ath_txfrag_cleanup(sc, frags, ni); 274 break; 275 } 276 ieee80211_node_incref(ni); 277 TAILQ_INSERT_TAIL(frags, bf, bf_list); 278 } 279 ATH_TXBUF_UNLOCK(sc); 280 281 return !TAILQ_EMPTY(frags); 282 } 283 284 /* 285 * Reclaim mbuf resources. For fragmented frames we 286 * need to claim each frag chained with m_nextpkt. 287 */ 288 void 289 ath_freetx(struct mbuf *m) 290 { 291 struct mbuf *next; 292 293 do { 294 next = m->m_nextpkt; 295 m->m_nextpkt = NULL; 296 m_freem(m); 297 } while ((m = next) != NULL); 298 } 299 300 static int 301 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) 302 { 303 struct mbuf *m; 304 int error; 305 306 /* 307 * Load the DMA map so any coalescing is done. This 308 * also calculates the number of descriptors we need. 309 */ 310 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 311 bf->bf_segs, &bf->bf_nseg, 312 BUS_DMA_NOWAIT); 313 if (error == EFBIG) { 314 /* XXX packet requires too many descriptors */ 315 bf->bf_nseg = ATH_MAX_SCATTER + 1; 316 } else if (error != 0) { 317 sc->sc_stats.ast_tx_busdma++; 318 ath_freetx(m0); 319 return error; 320 } 321 /* 322 * Discard null packets and check for packets that 323 * require too many TX descriptors. We try to convert 324 * the latter to a cluster. 325 */ 326 if (bf->bf_nseg > ATH_MAX_SCATTER) { /* too many desc's, linearize */ 327 sc->sc_stats.ast_tx_linear++; 328 m = m_collapse(m0, M_NOWAIT, ATH_MAX_SCATTER); 329 if (m == NULL) { 330 ath_freetx(m0); 331 sc->sc_stats.ast_tx_nombuf++; 332 return ENOMEM; 333 } 334 m0 = m; 335 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 336 bf->bf_segs, &bf->bf_nseg, 337 BUS_DMA_NOWAIT); 338 if (error != 0) { 339 sc->sc_stats.ast_tx_busdma++; 340 ath_freetx(m0); 341 return error; 342 } 343 KASSERT(bf->bf_nseg <= ATH_MAX_SCATTER, 344 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 345 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 346 sc->sc_stats.ast_tx_nodata++; 347 ath_freetx(m0); 348 return EIO; 349 } 350 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", 351 __func__, m0, m0->m_pkthdr.len); 352 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 353 bf->bf_m = m0; 354 355 return 0; 356 } 357 358 /* 359 * Chain together segments+descriptors for a frame - 11n or otherwise. 360 * 361 * For aggregates, this is called on each frame in the aggregate. 362 */ 363 static void 364 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0, 365 struct ath_buf *bf, int is_aggr, int is_first_subframe, 366 int is_last_subframe) 367 { 368 struct ath_hal *ah = sc->sc_ah; 369 char *ds; 370 int i, bp, dsp; 371 HAL_DMA_ADDR bufAddrList[4]; 372 uint32_t segLenList[4]; 373 int numTxMaps = 1; 374 int isFirstDesc = 1; 375 376 /* 377 * XXX There's txdma and txdma_mgmt; the descriptor 378 * sizes must match. 379 */ 380 struct ath_descdma *dd = &sc->sc_txdma; 381 382 /* 383 * Fillin the remainder of the descriptor info. 384 */ 385 386 /* 387 * We need the number of TX data pointers in each descriptor. 388 * EDMA and later chips support 4 TX buffers per descriptor; 389 * previous chips just support one. 390 */ 391 numTxMaps = sc->sc_tx_nmaps; 392 393 /* 394 * For EDMA and later chips ensure the TX map is fully populated 395 * before advancing to the next descriptor. 396 */ 397 ds = (char *) bf->bf_desc; 398 bp = dsp = 0; 399 bzero(bufAddrList, sizeof(bufAddrList)); 400 bzero(segLenList, sizeof(segLenList)); 401 for (i = 0; i < bf->bf_nseg; i++) { 402 bufAddrList[bp] = bf->bf_segs[i].ds_addr; 403 segLenList[bp] = bf->bf_segs[i].ds_len; 404 bp++; 405 406 /* 407 * Go to the next segment if this isn't the last segment 408 * and there's space in the current TX map. 409 */ 410 if ((i != bf->bf_nseg - 1) && (bp < numTxMaps)) 411 continue; 412 413 /* 414 * Last segment or we're out of buffer pointers. 415 */ 416 bp = 0; 417 418 if (i == bf->bf_nseg - 1) 419 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0); 420 else 421 ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 422 bf->bf_daddr + dd->dd_descsize * (dsp + 1)); 423 424 /* 425 * XXX This assumes that bfs_txq is the actual destination 426 * hardware queue at this point. It may not have been 427 * assigned, it may actually be pointing to the multicast 428 * software TXQ id. These must be fixed! 429 */ 430 ath_hal_filltxdesc(ah, (struct ath_desc *) ds 431 , bufAddrList 432 , segLenList 433 , bf->bf_descid /* XXX desc id */ 434 , bf->bf_state.bfs_tx_queue 435 , isFirstDesc /* first segment */ 436 , i == bf->bf_nseg - 1 /* last segment */ 437 , (struct ath_desc *) ds0 /* first descriptor */ 438 ); 439 440 /* 441 * Make sure the 11n aggregate fields are cleared. 442 * 443 * XXX TODO: this doesn't need to be called for 444 * aggregate frames; as it'll be called on all 445 * sub-frames. Since the descriptors are in 446 * non-cacheable memory, this leads to some 447 * rather slow writes on MIPS/ARM platforms. 448 */ 449 if (ath_tx_is_11n(sc)) 450 ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds); 451 452 /* 453 * If 11n is enabled, set it up as if it's an aggregate 454 * frame. 455 */ 456 if (is_last_subframe) { 457 ath_hal_set11n_aggr_last(sc->sc_ah, 458 (struct ath_desc *) ds); 459 } else if (is_aggr) { 460 /* 461 * This clears the aggrlen field; so 462 * the caller needs to call set_aggr_first()! 463 * 464 * XXX TODO: don't call this for the first 465 * descriptor in the first frame in an 466 * aggregate! 467 */ 468 ath_hal_set11n_aggr_middle(sc->sc_ah, 469 (struct ath_desc *) ds, 470 bf->bf_state.bfs_ndelim); 471 } 472 isFirstDesc = 0; 473 bf->bf_lastds = (struct ath_desc *) ds; 474 475 /* 476 * Don't forget to skip to the next descriptor. 477 */ 478 ds += sc->sc_tx_desclen; 479 dsp++; 480 481 /* 482 * .. and don't forget to blank these out! 483 */ 484 bzero(bufAddrList, sizeof(bufAddrList)); 485 bzero(segLenList, sizeof(segLenList)); 486 } 487 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 488 } 489 490 /* 491 * Set the rate control fields in the given descriptor based on 492 * the bf_state fields and node state. 493 * 494 * The bfs fields should already be set with the relevant rate 495 * control information, including whether MRR is to be enabled. 496 * 497 * Since the FreeBSD HAL currently sets up the first TX rate 498 * in ath_hal_setuptxdesc(), this will setup the MRR 499 * conditionally for the pre-11n chips, and call ath_buf_set_rate 500 * unconditionally for 11n chips. These require the 11n rate 501 * scenario to be set if MCS rates are enabled, so it's easier 502 * to just always call it. The caller can then only set rates 2, 3 503 * and 4 if multi-rate retry is needed. 504 */ 505 static void 506 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 507 struct ath_buf *bf) 508 { 509 struct ath_rc_series *rc = bf->bf_state.bfs_rc; 510 511 /* If mrr is disabled, blank tries 1, 2, 3 */ 512 if (! bf->bf_state.bfs_ismrr) 513 rc[1].tries = rc[2].tries = rc[3].tries = 0; 514 515 #if 0 516 /* 517 * If NOACK is set, just set ntries=1. 518 */ 519 else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) { 520 rc[1].tries = rc[2].tries = rc[3].tries = 0; 521 rc[0].tries = 1; 522 } 523 #endif 524 525 /* 526 * Always call - that way a retried descriptor will 527 * have the MRR fields overwritten. 528 * 529 * XXX TODO: see if this is really needed - setting up 530 * the first descriptor should set the MRR fields to 0 531 * for us anyway. 532 */ 533 if (ath_tx_is_11n(sc)) { 534 ath_buf_set_rate(sc, ni, bf); 535 } else { 536 ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc 537 , rc[1].ratecode, rc[1].tries 538 , rc[2].ratecode, rc[2].tries 539 , rc[3].ratecode, rc[3].tries 540 ); 541 } 542 } 543 544 /* 545 * Setup segments+descriptors for an 11n aggregate. 546 * bf_first is the first buffer in the aggregate. 547 * The descriptor list must already been linked together using 548 * bf->bf_next. 549 */ 550 static void 551 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first) 552 { 553 struct ath_buf *bf, *bf_prev = NULL; 554 struct ath_desc *ds0 = bf_first->bf_desc; 555 556 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n", 557 __func__, bf_first->bf_state.bfs_nframes, 558 bf_first->bf_state.bfs_al); 559 560 bf = bf_first; 561 562 if (bf->bf_state.bfs_txrate0 == 0) 563 device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n", 564 __func__, bf, 0); 565 if (bf->bf_state.bfs_rc[0].ratecode == 0) 566 device_printf(sc->sc_dev, "%s: bf=%p, rix0=%d\n", 567 __func__, bf, 0); 568 569 /* 570 * Setup all descriptors of all subframes - this will 571 * call ath_hal_set11naggrmiddle() on every frame. 572 */ 573 while (bf != NULL) { 574 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 575 "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n", 576 __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen, 577 SEQNO(bf->bf_state.bfs_seqno)); 578 579 /* 580 * Setup the initial fields for the first descriptor - all 581 * the non-11n specific stuff. 582 */ 583 ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc 584 , bf->bf_state.bfs_pktlen /* packet length */ 585 , bf->bf_state.bfs_hdrlen /* header length */ 586 , bf->bf_state.bfs_atype /* Atheros packet type */ 587 , bf->bf_state.bfs_txpower /* txpower */ 588 , bf->bf_state.bfs_txrate0 589 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 590 , bf->bf_state.bfs_keyix /* key cache index */ 591 , bf->bf_state.bfs_txantenna /* antenna mode */ 592 , bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ /* flags */ 593 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 594 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 595 ); 596 597 /* 598 * First descriptor? Setup the rate control and initial 599 * aggregate header information. 600 */ 601 if (bf == bf_first) { 602 /* 603 * setup first desc with rate and aggr info 604 */ 605 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 606 } 607 608 /* 609 * Setup the descriptors for a multi-descriptor frame. 610 * This is both aggregate and non-aggregate aware. 611 */ 612 ath_tx_chaindesclist(sc, ds0, bf, 613 1, /* is_aggr */ 614 !! (bf == bf_first), /* is_first_subframe */ 615 !! (bf->bf_next == NULL) /* is_last_subframe */ 616 ); 617 618 if (bf == bf_first) { 619 /* 620 * Initialise the first 11n aggregate with the 621 * aggregate length and aggregate enable bits. 622 */ 623 ath_hal_set11n_aggr_first(sc->sc_ah, 624 ds0, 625 bf->bf_state.bfs_al, 626 bf->bf_state.bfs_ndelim); 627 } 628 629 /* 630 * Link the last descriptor of the previous frame 631 * to the beginning descriptor of this frame. 632 */ 633 if (bf_prev != NULL) 634 ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds, 635 bf->bf_daddr); 636 637 /* Save a copy so we can link the next descriptor in */ 638 bf_prev = bf; 639 bf = bf->bf_next; 640 } 641 642 /* 643 * Set the first descriptor bf_lastds field to point to 644 * the last descriptor in the last subframe, that's where 645 * the status update will occur. 646 */ 647 bf_first->bf_lastds = bf_prev->bf_lastds; 648 649 /* 650 * And bf_last in the first descriptor points to the end of 651 * the aggregate list. 652 */ 653 bf_first->bf_last = bf_prev; 654 655 /* 656 * For non-AR9300 NICs, which require the rate control 657 * in the final descriptor - let's set that up now. 658 * 659 * This is because the filltxdesc() HAL call doesn't 660 * populate the last segment with rate control information 661 * if firstSeg is also true. For non-aggregate frames 662 * that is fine, as the first frame already has rate control 663 * info. But if the last frame in an aggregate has one 664 * descriptor, both firstseg and lastseg will be true and 665 * the rate info isn't copied. 666 * 667 * This is inefficient on MIPS/ARM platforms that have 668 * non-cachable memory for TX descriptors, but we'll just 669 * make do for now. 670 * 671 * As to why the rate table is stashed in the last descriptor 672 * rather than the first descriptor? Because proctxdesc() 673 * is called on the final descriptor in an MPDU or A-MPDU - 674 * ie, the one that gets updated by the hardware upon 675 * completion. That way proctxdesc() doesn't need to know 676 * about the first _and_ last TX descriptor. 677 */ 678 ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0); 679 680 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__); 681 } 682 683 /* 684 * Hand-off a frame to the multicast TX queue. 685 * 686 * This is a software TXQ which will be appended to the CAB queue 687 * during the beacon setup code. 688 * 689 * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID 690 * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated 691 * with the actual hardware txq, or all of this will fall apart. 692 * 693 * XXX It may not be a bad idea to just stuff the QCU ID into bf_state 694 * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated 695 * correctly. 696 */ 697 static void 698 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, 699 struct ath_buf *bf) 700 { 701 ATH_TX_LOCK_ASSERT(sc); 702 703 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 704 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 705 706 ATH_TXQ_LOCK(txq); 707 if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) { 708 struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s); 709 struct ieee80211_frame *wh; 710 711 /* mark previous frame */ 712 wh = mtod(bf_last->bf_m, struct ieee80211_frame *); 713 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 714 bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap, 715 BUS_DMASYNC_PREWRITE); 716 717 /* link descriptor */ 718 ath_hal_settxdesclink(sc->sc_ah, 719 bf_last->bf_lastds, 720 bf->bf_daddr); 721 } 722 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 723 ATH_TXQ_UNLOCK(txq); 724 } 725 726 /* 727 * Hand-off packet to a hardware queue. 728 */ 729 static void 730 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, 731 struct ath_buf *bf) 732 { 733 struct ath_hal *ah = sc->sc_ah; 734 735 /* 736 * Insert the frame on the outbound list and pass it on 737 * to the hardware. Multicast frames buffered for power 738 * save stations and transmit from the CAB queue are stored 739 * on a s/w only queue and loaded on to the CAB queue in 740 * the SWBA handler since frames only go out on DTIM and 741 * to avoid possible races. 742 */ 743 ATH_TX_LOCK_ASSERT(sc); 744 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 745 ("%s: busy status 0x%x", __func__, bf->bf_flags)); 746 KASSERT(txq->axq_qnum != ATH_TXQ_SWQ, 747 ("ath_tx_handoff_hw called for mcast queue")); 748 749 #if 0 750 /* 751 * This causes a LOR. Find out where the PCU lock is being 752 * held whilst the TXQ lock is grabbed - that shouldn't 753 * be occuring. 754 */ 755 ATH_PCU_LOCK(sc); 756 if (sc->sc_inreset_cnt) { 757 ATH_PCU_UNLOCK(sc); 758 DPRINTF(sc, ATH_DEBUG_RESET, 759 "%s: called with sc_in_reset != 0\n", 760 __func__); 761 DPRINTF(sc, ATH_DEBUG_XMIT, 762 "%s: queued: TXDP[%u] = %p (%p) depth %d\n", 763 __func__, txq->axq_qnum, 764 (caddr_t)bf->bf_daddr, bf->bf_desc, 765 txq->axq_depth); 766 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 767 if (bf->bf_state.bfs_aggr) 768 txq->axq_aggr_depth++; 769 /* 770 * There's no need to update axq_link; the hardware 771 * is in reset and once the reset is complete, any 772 * non-empty queues will simply have DMA restarted. 773 */ 774 return; 775 } 776 ATH_PCU_UNLOCK(sc); 777 #endif 778 779 /* For now, so not to generate whitespace diffs */ 780 if (1) { 781 ATH_TXQ_LOCK(txq); 782 #ifdef IEEE80211_SUPPORT_TDMA 783 int qbusy; 784 785 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 786 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum); 787 788 ATH_KTR(sc, ATH_KTR_TX, 4, 789 "ath_tx_handoff: txq=%u, add bf=%p, qbusy=%d, depth=%d", 790 txq->axq_qnum, bf, qbusy, txq->axq_depth); 791 if (txq->axq_link == NULL) { 792 /* 793 * Be careful writing the address to TXDP. If 794 * the tx q is enabled then this write will be 795 * ignored. Normally this is not an issue but 796 * when tdma is in use and the q is beacon gated 797 * this race can occur. If the q is busy then 798 * defer the work to later--either when another 799 * packet comes along or when we prepare a beacon 800 * frame at SWBA. 801 */ 802 if (!qbusy) { 803 ath_hal_puttxbuf(ah, txq->axq_qnum, 804 bf->bf_daddr); 805 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 806 DPRINTF(sc, ATH_DEBUG_XMIT, 807 "%s: TXDP[%u] = %p (%p) lastds=%p depth %d\n", 808 __func__, txq->axq_qnum, 809 (caddr_t)bf->bf_daddr, bf->bf_desc, 810 bf->bf_lastds, 811 txq->axq_depth); 812 ATH_KTR(sc, ATH_KTR_TX, 5, 813 "ath_tx_handoff: TXDP[%u] = %p (%p) " 814 "lastds=%p depth %d", 815 txq->axq_qnum, 816 (caddr_t)bf->bf_daddr, bf->bf_desc, 817 bf->bf_lastds, 818 txq->axq_depth); 819 } else { 820 txq->axq_flags |= ATH_TXQ_PUTPENDING; 821 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 822 "%s: Q%u busy, defer enable\n", __func__, 823 txq->axq_qnum); 824 ATH_KTR(sc, ATH_KTR_TX, 0, "defer enable"); 825 } 826 } else { 827 *txq->axq_link = bf->bf_daddr; 828 DPRINTF(sc, ATH_DEBUG_XMIT, 829 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 830 txq->axq_qnum, txq->axq_link, 831 (caddr_t)bf->bf_daddr, bf->bf_desc, 832 txq->axq_depth); 833 ATH_KTR(sc, ATH_KTR_TX, 5, 834 "ath_tx_handoff: link[%u](%p)=%p (%p) lastds=%p", 835 txq->axq_qnum, txq->axq_link, 836 (caddr_t)bf->bf_daddr, bf->bf_desc, 837 bf->bf_lastds); 838 839 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) { 840 /* 841 * The q was busy when we previously tried 842 * to write the address of the first buffer 843 * in the chain. Since it's not busy now 844 * handle this chore. We are certain the 845 * buffer at the front is the right one since 846 * axq_link is NULL only when the buffer list 847 * is/was empty. 848 */ 849 ath_hal_puttxbuf(ah, txq->axq_qnum, 850 TAILQ_FIRST(&txq->axq_q)->bf_daddr); 851 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 852 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 853 "%s: Q%u restarted\n", __func__, 854 txq->axq_qnum); 855 ATH_KTR(sc, ATH_KTR_TX, 4, 856 "ath_tx_handoff: txq[%d] restarted, bf=%p " 857 "daddr=%p ds=%p", 858 txq->axq_qnum, 859 bf, 860 (caddr_t)bf->bf_daddr, 861 bf->bf_desc); 862 } 863 } 864 #else 865 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 866 ATH_KTR(sc, ATH_KTR_TX, 3, 867 "ath_tx_handoff: non-tdma: txq=%u, add bf=%p " 868 "depth=%d", 869 txq->axq_qnum, 870 bf, 871 txq->axq_depth); 872 if (txq->axq_link == NULL) { 873 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 874 DPRINTF(sc, ATH_DEBUG_XMIT, 875 "%s: TXDP[%u] = %p (%p) depth %d\n", 876 __func__, txq->axq_qnum, 877 (caddr_t)bf->bf_daddr, bf->bf_desc, 878 txq->axq_depth); 879 ATH_KTR(sc, ATH_KTR_TX, 5, 880 "ath_tx_handoff: non-tdma: TXDP[%u] = %p (%p) " 881 "lastds=%p depth %d", 882 txq->axq_qnum, 883 (caddr_t)bf->bf_daddr, bf->bf_desc, 884 bf->bf_lastds, 885 txq->axq_depth); 886 887 } else { 888 *txq->axq_link = bf->bf_daddr; 889 DPRINTF(sc, ATH_DEBUG_XMIT, 890 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 891 txq->axq_qnum, txq->axq_link, 892 (caddr_t)bf->bf_daddr, bf->bf_desc, 893 txq->axq_depth); 894 ATH_KTR(sc, ATH_KTR_TX, 5, 895 "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) " 896 "lastds=%d", 897 txq->axq_qnum, txq->axq_link, 898 (caddr_t)bf->bf_daddr, bf->bf_desc, 899 bf->bf_lastds); 900 901 } 902 #endif /* IEEE80211_SUPPORT_TDMA */ 903 if (bf->bf_state.bfs_aggr) 904 txq->axq_aggr_depth++; 905 ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link); 906 ath_hal_txstart(ah, txq->axq_qnum); 907 ATH_TXQ_UNLOCK(txq); 908 ATH_KTR(sc, ATH_KTR_TX, 1, 909 "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum); 910 } 911 } 912 913 /* 914 * Restart TX DMA for the given TXQ. 915 * 916 * This must be called whether the queue is empty or not. 917 */ 918 static void 919 ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq) 920 { 921 struct ath_hal *ah = sc->sc_ah; 922 struct ath_buf *bf, *bf_last; 923 924 ATH_TXQ_LOCK_ASSERT(txq); 925 /* This is always going to be cleared, empty or not */ 926 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 927 928 /* XXX make this ATH_TXQ_FIRST */ 929 bf = TAILQ_FIRST(&txq->axq_q); 930 bf_last = ATH_TXQ_LAST(txq, axq_q_s); 931 932 if (bf == NULL) 933 return; 934 935 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 936 ath_hal_gettxdesclinkptr(ah, bf_last->bf_lastds, &txq->axq_link); 937 ath_hal_txstart(ah, txq->axq_qnum); 938 } 939 940 /* 941 * Hand off a packet to the hardware (or mcast queue.) 942 * 943 * The relevant hardware txq should be locked. 944 */ 945 static void 946 ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, 947 struct ath_buf *bf) 948 { 949 ATH_TX_LOCK_ASSERT(sc); 950 951 #ifdef ATH_DEBUG_ALQ 952 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC)) 953 ath_tx_alq_post(sc, bf); 954 #endif 955 956 if (txq->axq_qnum == ATH_TXQ_SWQ) 957 ath_tx_handoff_mcast(sc, txq, bf); 958 else 959 ath_tx_handoff_hw(sc, txq, bf); 960 } 961 962 static int 963 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni, 964 struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, 965 int *keyix) 966 { 967 DPRINTF(sc, ATH_DEBUG_XMIT, 968 "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n", 969 __func__, 970 *hdrlen, 971 *pktlen, 972 isfrag, 973 iswep, 974 m0); 975 976 if (iswep) { 977 const struct ieee80211_cipher *cip; 978 struct ieee80211_key *k; 979 980 /* 981 * Construct the 802.11 header+trailer for an encrypted 982 * frame. The only reason this can fail is because of an 983 * unknown or unsupported cipher/key type. 984 */ 985 k = ieee80211_crypto_encap(ni, m0); 986 if (k == NULL) { 987 /* 988 * This can happen when the key is yanked after the 989 * frame was queued. Just discard the frame; the 990 * 802.11 layer counts failures and provides 991 * debugging/diagnostics. 992 */ 993 return (0); 994 } 995 /* 996 * Adjust the packet + header lengths for the crypto 997 * additions and calculate the h/w key index. When 998 * a s/w mic is done the frame will have had any mic 999 * added to it prior to entry so m0->m_pkthdr.len will 1000 * account for it. Otherwise we need to add it to the 1001 * packet length. 1002 */ 1003 cip = k->wk_cipher; 1004 (*hdrlen) += cip->ic_header; 1005 (*pktlen) += cip->ic_header + cip->ic_trailer; 1006 /* NB: frags always have any TKIP MIC done in s/w */ 1007 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 1008 (*pktlen) += cip->ic_miclen; 1009 (*keyix) = k->wk_keyix; 1010 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 1011 /* 1012 * Use station key cache slot, if assigned. 1013 */ 1014 (*keyix) = ni->ni_ucastkey.wk_keyix; 1015 if ((*keyix) == IEEE80211_KEYIX_NONE) 1016 (*keyix) = HAL_TXKEYIX_INVALID; 1017 } else 1018 (*keyix) = HAL_TXKEYIX_INVALID; 1019 1020 return (1); 1021 } 1022 1023 /* 1024 * Calculate whether interoperability protection is required for 1025 * this frame. 1026 * 1027 * This requires the rate control information be filled in, 1028 * as the protection requirement depends upon the current 1029 * operating mode / PHY. 1030 */ 1031 static void 1032 ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf) 1033 { 1034 struct ieee80211_frame *wh; 1035 uint8_t rix; 1036 uint16_t flags; 1037 int shortPreamble; 1038 const HAL_RATE_TABLE *rt = sc->sc_currates; 1039 struct ifnet *ifp = sc->sc_ifp; 1040 struct ieee80211com *ic = ifp->if_l2com; 1041 1042 flags = bf->bf_state.bfs_txflags; 1043 rix = bf->bf_state.bfs_rc[0].rix; 1044 shortPreamble = bf->bf_state.bfs_shpream; 1045 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1046 1047 /* 1048 * If 802.11g protection is enabled, determine whether 1049 * to use RTS/CTS or just CTS. Note that this is only 1050 * done for OFDM unicast frames. 1051 */ 1052 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1053 rt->info[rix].phy == IEEE80211_T_OFDM && 1054 (flags & HAL_TXDESC_NOACK) == 0) { 1055 bf->bf_state.bfs_doprot = 1; 1056 /* XXX fragments must use CCK rates w/ protection */ 1057 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { 1058 flags |= HAL_TXDESC_RTSENA; 1059 } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { 1060 flags |= HAL_TXDESC_CTSENA; 1061 } 1062 /* 1063 * For frags it would be desirable to use the 1064 * highest CCK rate for RTS/CTS. But stations 1065 * farther away may detect it at a lower CCK rate 1066 * so use the configured protection rate instead 1067 * (for now). 1068 */ 1069 sc->sc_stats.ast_tx_protect++; 1070 } 1071 1072 /* 1073 * If 11n protection is enabled and it's a HT frame, 1074 * enable RTS. 1075 * 1076 * XXX ic_htprotmode or ic_curhtprotmode? 1077 * XXX should it_htprotmode only matter if ic_curhtprotmode 1078 * XXX indicates it's not a HT pure environment? 1079 */ 1080 if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) && 1081 rt->info[rix].phy == IEEE80211_T_HT && 1082 (flags & HAL_TXDESC_NOACK) == 0) { 1083 flags |= HAL_TXDESC_RTSENA; 1084 sc->sc_stats.ast_tx_htprotect++; 1085 } 1086 bf->bf_state.bfs_txflags = flags; 1087 } 1088 1089 /* 1090 * Update the frame duration given the currently selected rate. 1091 * 1092 * This also updates the frame duration value, so it will require 1093 * a DMA flush. 1094 */ 1095 static void 1096 ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf) 1097 { 1098 struct ieee80211_frame *wh; 1099 uint8_t rix; 1100 uint16_t flags; 1101 int shortPreamble; 1102 struct ath_hal *ah = sc->sc_ah; 1103 const HAL_RATE_TABLE *rt = sc->sc_currates; 1104 int isfrag = bf->bf_m->m_flags & M_FRAG; 1105 1106 flags = bf->bf_state.bfs_txflags; 1107 rix = bf->bf_state.bfs_rc[0].rix; 1108 shortPreamble = bf->bf_state.bfs_shpream; 1109 wh = mtod(bf->bf_m, struct ieee80211_frame *); 1110 1111 /* 1112 * Calculate duration. This logically belongs in the 802.11 1113 * layer but it lacks sufficient information to calculate it. 1114 */ 1115 if ((flags & HAL_TXDESC_NOACK) == 0 && 1116 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 1117 u_int16_t dur; 1118 if (shortPreamble) 1119 dur = rt->info[rix].spAckDuration; 1120 else 1121 dur = rt->info[rix].lpAckDuration; 1122 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 1123 dur += dur; /* additional SIFS+ACK */ 1124 KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment")); 1125 /* 1126 * Include the size of next fragment so NAV is 1127 * updated properly. The last fragment uses only 1128 * the ACK duration 1129 * 1130 * XXX TODO: ensure that the rate lookup for each 1131 * fragment is the same as the rate used by the 1132 * first fragment! 1133 */ 1134 dur += ath_hal_computetxtime(ah, rt, 1135 bf->bf_m->m_nextpkt->m_pkthdr.len, 1136 rix, shortPreamble); 1137 } 1138 if (isfrag) { 1139 /* 1140 * Force hardware to use computed duration for next 1141 * fragment by disabling multi-rate retry which updates 1142 * duration based on the multi-rate duration table. 1143 */ 1144 bf->bf_state.bfs_ismrr = 0; 1145 bf->bf_state.bfs_try0 = ATH_TXMGTTRY; 1146 /* XXX update bfs_rc[0].try? */ 1147 } 1148 1149 /* Update the duration field itself */ 1150 *(u_int16_t *)wh->i_dur = htole16(dur); 1151 } 1152 } 1153 1154 static uint8_t 1155 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt, 1156 int cix, int shortPreamble) 1157 { 1158 uint8_t ctsrate; 1159 1160 /* 1161 * CTS transmit rate is derived from the transmit rate 1162 * by looking in the h/w rate table. We must also factor 1163 * in whether or not a short preamble is to be used. 1164 */ 1165 /* NB: cix is set above where RTS/CTS is enabled */ 1166 KASSERT(cix != 0xff, ("cix not setup")); 1167 ctsrate = rt->info[cix].rateCode; 1168 1169 /* XXX this should only matter for legacy rates */ 1170 if (shortPreamble) 1171 ctsrate |= rt->info[cix].shortPreamble; 1172 1173 return (ctsrate); 1174 } 1175 1176 /* 1177 * Calculate the RTS/CTS duration for legacy frames. 1178 */ 1179 static int 1180 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix, 1181 int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt, 1182 int flags) 1183 { 1184 int ctsduration = 0; 1185 1186 /* This mustn't be called for HT modes */ 1187 if (rt->info[cix].phy == IEEE80211_T_HT) { 1188 printf("%s: HT rate where it shouldn't be (0x%x)\n", 1189 __func__, rt->info[cix].rateCode); 1190 return (-1); 1191 } 1192 1193 /* 1194 * Compute the transmit duration based on the frame 1195 * size and the size of an ACK frame. We call into the 1196 * HAL to do the computation since it depends on the 1197 * characteristics of the actual PHY being used. 1198 * 1199 * NB: CTS is assumed the same size as an ACK so we can 1200 * use the precalculated ACK durations. 1201 */ 1202 if (shortPreamble) { 1203 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1204 ctsduration += rt->info[cix].spAckDuration; 1205 ctsduration += ath_hal_computetxtime(ah, 1206 rt, pktlen, rix, AH_TRUE); 1207 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1208 ctsduration += rt->info[rix].spAckDuration; 1209 } else { 1210 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 1211 ctsduration += rt->info[cix].lpAckDuration; 1212 ctsduration += ath_hal_computetxtime(ah, 1213 rt, pktlen, rix, AH_FALSE); 1214 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 1215 ctsduration += rt->info[rix].lpAckDuration; 1216 } 1217 1218 return (ctsduration); 1219 } 1220 1221 /* 1222 * Update the given ath_buf with updated rts/cts setup and duration 1223 * values. 1224 * 1225 * To support rate lookups for each software retry, the rts/cts rate 1226 * and cts duration must be re-calculated. 1227 * 1228 * This function assumes the RTS/CTS flags have been set as needed; 1229 * mrr has been disabled; and the rate control lookup has been done. 1230 * 1231 * XXX TODO: MRR need only be disabled for the pre-11n NICs. 1232 * XXX The 11n NICs support per-rate RTS/CTS configuration. 1233 */ 1234 static void 1235 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf) 1236 { 1237 uint16_t ctsduration = 0; 1238 uint8_t ctsrate = 0; 1239 uint8_t rix = bf->bf_state.bfs_rc[0].rix; 1240 uint8_t cix = 0; 1241 const HAL_RATE_TABLE *rt = sc->sc_currates; 1242 1243 /* 1244 * No RTS/CTS enabled? Don't bother. 1245 */ 1246 if ((bf->bf_state.bfs_txflags & 1247 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) { 1248 /* XXX is this really needed? */ 1249 bf->bf_state.bfs_ctsrate = 0; 1250 bf->bf_state.bfs_ctsduration = 0; 1251 return; 1252 } 1253 1254 /* 1255 * If protection is enabled, use the protection rix control 1256 * rate. Otherwise use the rate0 control rate. 1257 */ 1258 if (bf->bf_state.bfs_doprot) 1259 rix = sc->sc_protrix; 1260 else 1261 rix = bf->bf_state.bfs_rc[0].rix; 1262 1263 /* 1264 * If the raw path has hard-coded ctsrate0 to something, 1265 * use it. 1266 */ 1267 if (bf->bf_state.bfs_ctsrate0 != 0) 1268 cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0); 1269 else 1270 /* Control rate from above */ 1271 cix = rt->info[rix].controlRate; 1272 1273 /* Calculate the rtscts rate for the given cix */ 1274 ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix, 1275 bf->bf_state.bfs_shpream); 1276 1277 /* The 11n chipsets do ctsduration calculations for you */ 1278 if (! ath_tx_is_11n(sc)) 1279 ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix, 1280 bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, 1281 rt, bf->bf_state.bfs_txflags); 1282 1283 /* Squirrel away in ath_buf */ 1284 bf->bf_state.bfs_ctsrate = ctsrate; 1285 bf->bf_state.bfs_ctsduration = ctsduration; 1286 1287 /* 1288 * Must disable multi-rate retry when using RTS/CTS. 1289 */ 1290 if (!sc->sc_mrrprot) { 1291 bf->bf_state.bfs_ismrr = 0; 1292 bf->bf_state.bfs_try0 = 1293 bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */ 1294 } 1295 } 1296 1297 /* 1298 * Setup the descriptor chain for a normal or fast-frame 1299 * frame. 1300 * 1301 * XXX TODO: extend to include the destination hardware QCU ID. 1302 * Make sure that is correct. Make sure that when being added 1303 * to the mcastq, the CABQ QCUID is set or things will get a bit 1304 * odd. 1305 */ 1306 static void 1307 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf) 1308 { 1309 struct ath_desc *ds = bf->bf_desc; 1310 struct ath_hal *ah = sc->sc_ah; 1311 1312 if (bf->bf_state.bfs_txrate0 == 0) 1313 device_printf(sc->sc_dev, "%s: bf=%p, txrate0=%d\n", 1314 __func__, bf, 0); 1315 1316 ath_hal_setuptxdesc(ah, ds 1317 , bf->bf_state.bfs_pktlen /* packet length */ 1318 , bf->bf_state.bfs_hdrlen /* header length */ 1319 , bf->bf_state.bfs_atype /* Atheros packet type */ 1320 , bf->bf_state.bfs_txpower /* txpower */ 1321 , bf->bf_state.bfs_txrate0 1322 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ 1323 , bf->bf_state.bfs_keyix /* key cache index */ 1324 , bf->bf_state.bfs_txantenna /* antenna mode */ 1325 , bf->bf_state.bfs_txflags /* flags */ 1326 , bf->bf_state.bfs_ctsrate /* rts/cts rate */ 1327 , bf->bf_state.bfs_ctsduration /* rts/cts duration */ 1328 ); 1329 1330 /* 1331 * This will be overriden when the descriptor chain is written. 1332 */ 1333 bf->bf_lastds = ds; 1334 bf->bf_last = bf; 1335 1336 /* Set rate control and descriptor chain for this frame */ 1337 ath_tx_set_ratectrl(sc, bf->bf_node, bf); 1338 ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0); 1339 } 1340 1341 /* 1342 * Do a rate lookup. 1343 * 1344 * This performs a rate lookup for the given ath_buf only if it's required. 1345 * Non-data frames and raw frames don't require it. 1346 * 1347 * This populates the primary and MRR entries; MRR values are 1348 * then disabled later on if something requires it (eg RTS/CTS on 1349 * pre-11n chipsets. 1350 * 1351 * This needs to be done before the RTS/CTS fields are calculated 1352 * as they may depend upon the rate chosen. 1353 */ 1354 static void 1355 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf) 1356 { 1357 uint8_t rate, rix; 1358 int try0; 1359 1360 if (! bf->bf_state.bfs_doratelookup) 1361 return; 1362 1363 /* Get rid of any previous state */ 1364 bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1365 1366 ATH_NODE_LOCK(ATH_NODE(bf->bf_node)); 1367 ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream, 1368 bf->bf_state.bfs_pktlen, &rix, &try0, &rate); 1369 1370 /* In case MRR is disabled, make sure rc[0] is setup correctly */ 1371 bf->bf_state.bfs_rc[0].rix = rix; 1372 bf->bf_state.bfs_rc[0].ratecode = rate; 1373 bf->bf_state.bfs_rc[0].tries = try0; 1374 1375 if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY) 1376 ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix, 1377 bf->bf_state.bfs_rc); 1378 ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node)); 1379 1380 sc->sc_txrix = rix; /* for LED blinking */ 1381 sc->sc_lastdatarix = rix; /* for fast frames */ 1382 bf->bf_state.bfs_try0 = try0; 1383 bf->bf_state.bfs_txrate0 = rate; 1384 } 1385 1386 /* 1387 * Update the CLRDMASK bit in the ath_buf if it needs to be set. 1388 */ 1389 static void 1390 ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid, 1391 struct ath_buf *bf) 1392 { 1393 struct ath_node *an = ATH_NODE(bf->bf_node); 1394 1395 ATH_TX_LOCK_ASSERT(sc); 1396 1397 if (an->clrdmask == 1) { 1398 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1399 an->clrdmask = 0; 1400 } 1401 } 1402 1403 /* 1404 * Transmit the given frame to the hardware. 1405 * 1406 * The frame must already be setup; rate control must already have 1407 * been done. 1408 * 1409 * XXX since the TXQ lock is being held here (and I dislike holding 1410 * it for this long when not doing software aggregation), later on 1411 * break this function into "setup_normal" and "xmit_normal". The 1412 * lock only needs to be held for the ath_tx_handoff call. 1413 */ 1414 static void 1415 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq, 1416 struct ath_buf *bf) 1417 { 1418 struct ath_node *an = ATH_NODE(bf->bf_node); 1419 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 1420 1421 ATH_TX_LOCK_ASSERT(sc); 1422 1423 /* 1424 * For now, just enable CLRDMASK. ath_tx_xmit_normal() does 1425 * set a completion handler however it doesn't (yet) properly 1426 * handle the strict ordering requirements needed for normal, 1427 * non-aggregate session frames. 1428 * 1429 * Once this is implemented, only set CLRDMASK like this for 1430 * frames that must go out - eg management/raw frames. 1431 */ 1432 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1433 1434 /* Setup the descriptor before handoff */ 1435 ath_tx_do_ratelookup(sc, bf); 1436 ath_tx_calc_duration(sc, bf); 1437 ath_tx_calc_protection(sc, bf); 1438 ath_tx_set_rtscts(sc, bf); 1439 ath_tx_rate_fill_rcflags(sc, bf); 1440 ath_tx_setds(sc, bf); 1441 1442 /* Track per-TID hardware queue depth correctly */ 1443 tid->hwq_depth++; 1444 1445 /* Assign the completion handler */ 1446 bf->bf_comp = ath_tx_normal_comp; 1447 1448 /* Hand off to hardware */ 1449 ath_tx_handoff(sc, txq, bf); 1450 } 1451 1452 /* 1453 * Do the basic frame setup stuff that's required before the frame 1454 * is added to a software queue. 1455 * 1456 * All frames get mostly the same treatment and it's done once. 1457 * Retransmits fiddle with things like the rate control setup, 1458 * setting the retransmit bit in the packet; doing relevant DMA/bus 1459 * syncing and relinking it (back) into the hardware TX queue. 1460 * 1461 * Note that this may cause the mbuf to be reallocated, so 1462 * m0 may not be valid. 1463 */ 1464 static int 1465 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni, 1466 struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq) 1467 { 1468 struct ieee80211vap *vap = ni->ni_vap; 1469 struct ath_hal *ah = sc->sc_ah; 1470 struct ifnet *ifp = sc->sc_ifp; 1471 struct ieee80211com *ic = ifp->if_l2com; 1472 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1473 int error, iswep, ismcast, isfrag, ismrr; 1474 int keyix, hdrlen, pktlen, try0 = 0; 1475 u_int8_t rix = 0, txrate = 0; 1476 struct ath_desc *ds; 1477 struct ieee80211_frame *wh; 1478 u_int subtype, flags; 1479 HAL_PKT_TYPE atype; 1480 const HAL_RATE_TABLE *rt; 1481 HAL_BOOL shortPreamble; 1482 struct ath_node *an; 1483 u_int pri; 1484 1485 /* 1486 * To ensure that both sequence numbers and the CCMP PN handling 1487 * is "correct", make sure that the relevant TID queue is locked. 1488 * Otherwise the CCMP PN and seqno may appear out of order, causing 1489 * re-ordered frames to have out of order CCMP PN's, resulting 1490 * in many, many frame drops. 1491 */ 1492 ATH_TX_LOCK_ASSERT(sc); 1493 1494 wh = mtod(m0, struct ieee80211_frame *); 1495 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 1496 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1497 isfrag = m0->m_flags & M_FRAG; 1498 hdrlen = ieee80211_anyhdrsize(wh); 1499 /* 1500 * Packet length must not include any 1501 * pad bytes; deduct them here. 1502 */ 1503 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 1504 1505 /* Handle encryption twiddling if needed */ 1506 if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen, 1507 &pktlen, &keyix)) { 1508 ath_freetx(m0); 1509 return EIO; 1510 } 1511 1512 /* packet header may have moved, reset our local pointer */ 1513 wh = mtod(m0, struct ieee80211_frame *); 1514 1515 pktlen += IEEE80211_CRC_LEN; 1516 1517 /* 1518 * Load the DMA map so any coalescing is done. This 1519 * also calculates the number of descriptors we need. 1520 */ 1521 error = ath_tx_dmasetup(sc, bf, m0); 1522 if (error != 0) 1523 return error; 1524 bf->bf_node = ni; /* NB: held reference */ 1525 m0 = bf->bf_m; /* NB: may have changed */ 1526 wh = mtod(m0, struct ieee80211_frame *); 1527 1528 /* setup descriptors */ 1529 ds = bf->bf_desc; 1530 rt = sc->sc_currates; 1531 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1532 1533 /* 1534 * NB: the 802.11 layer marks whether or not we should 1535 * use short preamble based on the current mode and 1536 * negotiated parameters. 1537 */ 1538 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1539 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 1540 shortPreamble = AH_TRUE; 1541 sc->sc_stats.ast_tx_shortpre++; 1542 } else { 1543 shortPreamble = AH_FALSE; 1544 } 1545 1546 an = ATH_NODE(ni); 1547 //flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 1548 flags = 0; 1549 ismrr = 0; /* default no multi-rate retry*/ 1550 pri = M_WME_GETAC(m0); /* honor classification */ 1551 /* XXX use txparams instead of fixed values */ 1552 /* 1553 * Calculate Atheros packet type from IEEE80211 packet header, 1554 * setup for rate calculations, and select h/w transmit queue. 1555 */ 1556 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1557 case IEEE80211_FC0_TYPE_MGT: 1558 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1559 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 1560 atype = HAL_PKT_TYPE_BEACON; 1561 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1562 atype = HAL_PKT_TYPE_PROBE_RESP; 1563 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 1564 atype = HAL_PKT_TYPE_ATIM; 1565 else 1566 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 1567 rix = an->an_mgmtrix; 1568 txrate = rt->info[rix].rateCode; 1569 if (shortPreamble) 1570 txrate |= rt->info[rix].shortPreamble; 1571 try0 = ATH_TXMGTTRY; 1572 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1573 break; 1574 case IEEE80211_FC0_TYPE_CTL: 1575 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 1576 rix = an->an_mgmtrix; 1577 txrate = rt->info[rix].rateCode; 1578 if (shortPreamble) 1579 txrate |= rt->info[rix].shortPreamble; 1580 try0 = ATH_TXMGTTRY; 1581 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 1582 break; 1583 case IEEE80211_FC0_TYPE_DATA: 1584 atype = HAL_PKT_TYPE_NORMAL; /* default */ 1585 /* 1586 * Data frames: multicast frames go out at a fixed rate, 1587 * EAPOL frames use the mgmt frame rate; otherwise consult 1588 * the rate control module for the rate to use. 1589 */ 1590 if (ismcast) { 1591 rix = an->an_mcastrix; 1592 txrate = rt->info[rix].rateCode; 1593 if (shortPreamble) 1594 txrate |= rt->info[rix].shortPreamble; 1595 try0 = 1; 1596 } else if (m0->m_flags & M_EAPOL) { 1597 /* XXX? maybe always use long preamble? */ 1598 rix = an->an_mgmtrix; 1599 txrate = rt->info[rix].rateCode; 1600 if (shortPreamble) 1601 txrate |= rt->info[rix].shortPreamble; 1602 try0 = ATH_TXMAXTRY; /* XXX?too many? */ 1603 } else { 1604 /* 1605 * Do rate lookup on each TX, rather than using 1606 * the hard-coded TX information decided here. 1607 */ 1608 ismrr = 1; 1609 bf->bf_state.bfs_doratelookup = 1; 1610 } 1611 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 1612 flags |= HAL_TXDESC_NOACK; 1613 break; 1614 default: 1615 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 1616 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1617 /* XXX statistic */ 1618 /* XXX free tx dmamap */ 1619 ath_freetx(m0); 1620 return EIO; 1621 } 1622 1623 /* 1624 * There are two known scenarios where the frame AC doesn't match 1625 * what the destination TXQ is. 1626 * 1627 * + non-QoS frames (eg management?) that the net80211 stack has 1628 * assigned a higher AC to, but since it's a non-QoS TID, it's 1629 * being thrown into TID 16. TID 16 gets the AC_BE queue. 1630 * It's quite possible that management frames should just be 1631 * direct dispatched to hardware rather than go via the software 1632 * queue; that should be investigated in the future. There are 1633 * some specific scenarios where this doesn't make sense, mostly 1634 * surrounding ADDBA request/response - hence why that is special 1635 * cased. 1636 * 1637 * + Multicast frames going into the VAP mcast queue. That shows up 1638 * as "TXQ 11". 1639 * 1640 * This driver should eventually support separate TID and TXQ locking, 1641 * allowing for arbitrary AC frames to appear on arbitrary software 1642 * queues, being queued to the "correct" hardware queue when needed. 1643 */ 1644 #if 0 1645 if (txq != sc->sc_ac2q[pri]) { 1646 device_printf(sc->sc_dev, 1647 "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n", 1648 __func__, 1649 txq, 1650 txq->axq_qnum, 1651 pri, 1652 sc->sc_ac2q[pri], 1653 sc->sc_ac2q[pri]->axq_qnum); 1654 } 1655 #endif 1656 1657 /* 1658 * Calculate miscellaneous flags. 1659 */ 1660 if (ismcast) { 1661 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 1662 } else if (pktlen > vap->iv_rtsthreshold && 1663 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { 1664 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 1665 sc->sc_stats.ast_tx_rts++; 1666 } 1667 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 1668 sc->sc_stats.ast_tx_noack++; 1669 #ifdef IEEE80211_SUPPORT_TDMA 1670 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { 1671 DPRINTF(sc, ATH_DEBUG_TDMA, 1672 "%s: discard frame, ACK required w/ TDMA\n", __func__); 1673 sc->sc_stats.ast_tdma_ack++; 1674 /* XXX free tx dmamap */ 1675 ath_freetx(m0); 1676 return EIO; 1677 } 1678 #endif 1679 1680 /* 1681 * Determine if a tx interrupt should be generated for 1682 * this descriptor. We take a tx interrupt to reap 1683 * descriptors when the h/w hits an EOL condition or 1684 * when the descriptor is specifically marked to generate 1685 * an interrupt. We periodically mark descriptors in this 1686 * way to insure timely replenishing of the supply needed 1687 * for sending frames. Defering interrupts reduces system 1688 * load and potentially allows more concurrent work to be 1689 * done but if done to aggressively can cause senders to 1690 * backup. 1691 * 1692 * NB: use >= to deal with sc_txintrperiod changing 1693 * dynamically through sysctl. 1694 */ 1695 if (flags & HAL_TXDESC_INTREQ) { 1696 txq->axq_intrcnt = 0; 1697 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 1698 flags |= HAL_TXDESC_INTREQ; 1699 txq->axq_intrcnt = 0; 1700 } 1701 1702 /* This point forward is actual TX bits */ 1703 1704 /* 1705 * At this point we are committed to sending the frame 1706 * and we don't need to look at m_nextpkt; clear it in 1707 * case this frame is part of frag chain. 1708 */ 1709 m0->m_nextpkt = NULL; 1710 1711 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 1712 ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 1713 sc->sc_hwmap[rix].ieeerate, -1); 1714 1715 if (ieee80211_radiotap_active_vap(vap)) { 1716 u_int64_t tsf = ath_hal_gettsf64(ah); 1717 1718 sc->sc_tx_th.wt_tsf = htole64(tsf); 1719 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 1720 if (iswep) 1721 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1722 if (isfrag) 1723 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1724 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 1725 sc->sc_tx_th.wt_txpower = ieee80211_get_node_txpower(ni); 1726 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 1727 1728 ieee80211_radiotap_tx(vap, m0); 1729 } 1730 1731 /* Blank the legacy rate array */ 1732 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 1733 1734 /* 1735 * ath_buf_set_rate needs at least one rate/try to setup 1736 * the rate scenario. 1737 */ 1738 bf->bf_state.bfs_rc[0].rix = rix; 1739 bf->bf_state.bfs_rc[0].tries = try0; 1740 bf->bf_state.bfs_rc[0].ratecode = txrate; 1741 1742 /* Store the decided rate index values away */ 1743 bf->bf_state.bfs_pktlen = pktlen; 1744 bf->bf_state.bfs_hdrlen = hdrlen; 1745 bf->bf_state.bfs_atype = atype; 1746 bf->bf_state.bfs_txpower = ieee80211_get_node_txpower(ni); 1747 bf->bf_state.bfs_txrate0 = txrate; 1748 bf->bf_state.bfs_try0 = try0; 1749 bf->bf_state.bfs_keyix = keyix; 1750 bf->bf_state.bfs_txantenna = sc->sc_txantenna; 1751 bf->bf_state.bfs_txflags = flags; 1752 bf->bf_state.bfs_shpream = shortPreamble; 1753 1754 /* XXX this should be done in ath_tx_setrate() */ 1755 bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */ 1756 bf->bf_state.bfs_ctsrate = 0; /* calculated later */ 1757 bf->bf_state.bfs_ctsduration = 0; 1758 bf->bf_state.bfs_ismrr = ismrr; 1759 1760 return 0; 1761 } 1762 1763 /* 1764 * Queue a frame to the hardware or software queue. 1765 * 1766 * This can be called by the net80211 code. 1767 * 1768 * XXX what about locking? Or, push the seqno assign into the 1769 * XXX aggregate scheduler so its serialised? 1770 * 1771 * XXX When sending management frames via ath_raw_xmit(), 1772 * should CLRDMASK be set unconditionally? 1773 */ 1774 int 1775 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, 1776 struct ath_buf *bf, struct mbuf *m0) 1777 { 1778 struct ieee80211vap *vap = ni->ni_vap; 1779 struct ath_vap *avp = ATH_VAP(vap); 1780 int r = 0; 1781 u_int pri; 1782 int tid; 1783 struct ath_txq *txq; 1784 int ismcast; 1785 const struct ieee80211_frame *wh; 1786 int is_ampdu, is_ampdu_tx, is_ampdu_pending; 1787 ieee80211_seq seqno; 1788 uint8_t type, subtype; 1789 1790 ATH_TX_LOCK_ASSERT(sc); 1791 1792 /* 1793 * Determine the target hardware queue. 1794 * 1795 * For multicast frames, the txq gets overridden appropriately 1796 * depending upon the state of PS. 1797 * 1798 * For any other frame, we do a TID/QoS lookup inside the frame 1799 * to see what the TID should be. If it's a non-QoS frame, the 1800 * AC and TID are overridden. The TID/TXQ code assumes the 1801 * TID is on a predictable hardware TXQ, so we don't support 1802 * having a node TID queued to multiple hardware TXQs. 1803 * This may change in the future but would require some locking 1804 * fudgery. 1805 */ 1806 pri = ath_tx_getac(sc, m0); 1807 tid = ath_tx_gettid(sc, m0); 1808 1809 txq = sc->sc_ac2q[pri]; 1810 wh = mtod(m0, struct ieee80211_frame *); 1811 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1812 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1813 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1814 1815 /* 1816 * Enforce how deep the multicast queue can grow. 1817 * 1818 * XXX duplicated in ath_raw_xmit(). 1819 */ 1820 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1821 if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth 1822 > sc->sc_txq_mcastq_maxdepth) { 1823 sc->sc_stats.ast_tx_mcastq_overflow++; 1824 m_freem(m0); 1825 return (ENOBUFS); 1826 } 1827 } 1828 1829 /* A-MPDU TX */ 1830 is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid); 1831 is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid); 1832 is_ampdu = is_ampdu_tx | is_ampdu_pending; 1833 1834 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n", 1835 __func__, tid, pri, is_ampdu); 1836 1837 /* Set local packet state, used to queue packets to hardware */ 1838 bf->bf_state.bfs_tid = tid; 1839 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 1840 bf->bf_state.bfs_pri = pri; 1841 1842 #if 1 1843 /* 1844 * When servicing one or more stations in power-save mode 1845 * (or) if there is some mcast data waiting on the mcast 1846 * queue (to prevent out of order delivery) multicast frames 1847 * must be bufferd until after the beacon. 1848 * 1849 * TODO: we should lock the mcastq before we check the length. 1850 */ 1851 if (sc->sc_cabq_enable && ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) { 1852 txq = &avp->av_mcastq; 1853 /* 1854 * Mark the frame as eventually belonging on the CAB 1855 * queue, so the descriptor setup functions will 1856 * correctly initialise the descriptor 'qcuId' field. 1857 */ 1858 bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum; 1859 } 1860 #endif 1861 1862 /* Do the generic frame setup */ 1863 /* XXX should just bzero the bf_state? */ 1864 bf->bf_state.bfs_dobaw = 0; 1865 1866 /* A-MPDU TX? Manually set sequence number */ 1867 /* 1868 * Don't do it whilst pending; the net80211 layer still 1869 * assigns them. 1870 */ 1871 if (is_ampdu_tx) { 1872 /* 1873 * Always call; this function will 1874 * handle making sure that null data frames 1875 * don't get a sequence number from the current 1876 * TID and thus mess with the BAW. 1877 */ 1878 seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0); 1879 1880 /* 1881 * Don't add QoS NULL frames to the BAW. 1882 */ 1883 if (IEEE80211_QOS_HAS_SEQ(wh) && 1884 subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) { 1885 bf->bf_state.bfs_dobaw = 1; 1886 } 1887 } 1888 1889 /* 1890 * If needed, the sequence number has been assigned. 1891 * Squirrel it away somewhere easy to get to. 1892 */ 1893 bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT; 1894 1895 /* Is ampdu pending? fetch the seqno and print it out */ 1896 if (is_ampdu_pending) 1897 DPRINTF(sc, ATH_DEBUG_SW_TX, 1898 "%s: tid %d: ampdu pending, seqno %d\n", 1899 __func__, tid, M_SEQNO_GET(m0)); 1900 1901 /* This also sets up the DMA map */ 1902 r = ath_tx_normal_setup(sc, ni, bf, m0, txq); 1903 1904 if (r != 0) 1905 goto done; 1906 1907 /* At this point m0 could have changed! */ 1908 m0 = bf->bf_m; 1909 1910 #if 1 1911 /* 1912 * If it's a multicast frame, do a direct-dispatch to the 1913 * destination hardware queue. Don't bother software 1914 * queuing it. 1915 */ 1916 /* 1917 * If it's a BAR frame, do a direct dispatch to the 1918 * destination hardware queue. Don't bother software 1919 * queuing it, as the TID will now be paused. 1920 * Sending a BAR frame can occur from the net80211 txa timer 1921 * (ie, retries) or from the ath txtask (completion call.) 1922 * It queues directly to hardware because the TID is paused 1923 * at this point (and won't be unpaused until the BAR has 1924 * either been TXed successfully or max retries has been 1925 * reached.) 1926 */ 1927 if (txq == &avp->av_mcastq) { 1928 DPRINTF(sc, ATH_DEBUG_SW_TX, 1929 "%s: bf=%p: mcastq: TX'ing\n", __func__, bf); 1930 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1931 ath_tx_xmit_normal(sc, txq, bf); 1932 } else if (type == IEEE80211_FC0_TYPE_CTL && 1933 subtype == IEEE80211_FC0_SUBTYPE_BAR) { 1934 DPRINTF(sc, ATH_DEBUG_SW_TX, 1935 "%s: BAR: TX'ing direct\n", __func__); 1936 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1937 ath_tx_xmit_normal(sc, txq, bf); 1938 } else { 1939 /* add to software queue */ 1940 DPRINTF(sc, ATH_DEBUG_SW_TX, 1941 "%s: bf=%p: swq: TX'ing\n", __func__, bf); 1942 ath_tx_swq(sc, ni, txq, bf); 1943 } 1944 #else 1945 /* 1946 * For now, since there's no software queue, 1947 * direct-dispatch to the hardware. 1948 */ 1949 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 1950 ath_tx_xmit_normal(sc, txq, bf); 1951 #endif 1952 done: 1953 return 0; 1954 } 1955 1956 static int 1957 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, 1958 struct ath_buf *bf, struct mbuf *m0, 1959 const struct ieee80211_bpf_params *params) 1960 { 1961 struct ifnet *ifp = sc->sc_ifp; 1962 struct ieee80211com *ic = ifp->if_l2com; 1963 struct ath_hal *ah = sc->sc_ah; 1964 struct ieee80211vap *vap = ni->ni_vap; 1965 int error, ismcast, ismrr; 1966 int keyix, hdrlen, pktlen, try0, txantenna; 1967 u_int8_t rix, txrate; 1968 struct ieee80211_frame *wh; 1969 u_int flags; 1970 HAL_PKT_TYPE atype; 1971 const HAL_RATE_TABLE *rt; 1972 struct ath_desc *ds; 1973 u_int pri; 1974 int o_tid = -1; 1975 int do_override; 1976 1977 ATH_TX_LOCK_ASSERT(sc); 1978 1979 wh = mtod(m0, struct ieee80211_frame *); 1980 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1981 hdrlen = ieee80211_anyhdrsize(wh); 1982 /* 1983 * Packet length must not include any 1984 * pad bytes; deduct them here. 1985 */ 1986 /* XXX honor IEEE80211_BPF_DATAPAD */ 1987 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; 1988 1989 ATH_KTR(sc, ATH_KTR_TX, 2, 1990 "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf); 1991 1992 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n", 1993 __func__, ismcast); 1994 1995 pri = params->ibp_pri & 3; 1996 /* Override pri if the frame isn't a QoS one */ 1997 if (! IEEE80211_QOS_HAS_SEQ(wh)) 1998 pri = ath_tx_getac(sc, m0); 1999 2000 /* XXX If it's an ADDBA, override the correct queue */ 2001 do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid); 2002 2003 /* Map ADDBA to the correct priority */ 2004 if (do_override) { 2005 #if 0 2006 device_printf(sc->sc_dev, 2007 "%s: overriding tid %d pri %d -> %d\n", 2008 __func__, o_tid, pri, TID_TO_WME_AC(o_tid)); 2009 #endif 2010 pri = TID_TO_WME_AC(o_tid); 2011 } 2012 2013 /* Handle encryption twiddling if needed */ 2014 if (! ath_tx_tag_crypto(sc, ni, 2015 m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0, 2016 &hdrlen, &pktlen, &keyix)) { 2017 ath_freetx(m0); 2018 return EIO; 2019 } 2020 /* packet header may have moved, reset our local pointer */ 2021 wh = mtod(m0, struct ieee80211_frame *); 2022 2023 /* Do the generic frame setup */ 2024 /* XXX should just bzero the bf_state? */ 2025 bf->bf_state.bfs_dobaw = 0; 2026 2027 error = ath_tx_dmasetup(sc, bf, m0); 2028 if (error != 0) 2029 return error; 2030 m0 = bf->bf_m; /* NB: may have changed */ 2031 wh = mtod(m0, struct ieee80211_frame *); 2032 bf->bf_node = ni; /* NB: held reference */ 2033 2034 /* Always enable CLRDMASK for raw frames for now.. */ 2035 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 2036 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 2037 if (params->ibp_flags & IEEE80211_BPF_RTS) 2038 flags |= HAL_TXDESC_RTSENA; 2039 else if (params->ibp_flags & IEEE80211_BPF_CTS) { 2040 /* XXX assume 11g/11n protection? */ 2041 bf->bf_state.bfs_doprot = 1; 2042 flags |= HAL_TXDESC_CTSENA; 2043 } 2044 /* XXX leave ismcast to injector? */ 2045 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) 2046 flags |= HAL_TXDESC_NOACK; 2047 2048 rt = sc->sc_currates; 2049 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 2050 rix = ath_tx_findrix(sc, params->ibp_rate0); 2051 txrate = rt->info[rix].rateCode; 2052 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 2053 txrate |= rt->info[rix].shortPreamble; 2054 sc->sc_txrix = rix; 2055 try0 = params->ibp_try0; 2056 ismrr = (params->ibp_try1 != 0); 2057 txantenna = params->ibp_pri >> 2; 2058 if (txantenna == 0) /* XXX? */ 2059 txantenna = sc->sc_txantenna; 2060 2061 /* 2062 * Since ctsrate is fixed, store it away for later 2063 * use when the descriptor fields are being set. 2064 */ 2065 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) 2066 bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate; 2067 2068 /* 2069 * NB: we mark all packets as type PSPOLL so the h/w won't 2070 * set the sequence number, duration, etc. 2071 */ 2072 atype = HAL_PKT_TYPE_PSPOLL; 2073 2074 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 2075 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 2076 sc->sc_hwmap[rix].ieeerate, -1); 2077 2078 if (ieee80211_radiotap_active_vap(vap)) { 2079 u_int64_t tsf = ath_hal_gettsf64(ah); 2080 2081 sc->sc_tx_th.wt_tsf = htole64(tsf); 2082 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 2083 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2084 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2085 if (m0->m_flags & M_FRAG) 2086 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2087 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 2088 sc->sc_tx_th.wt_txpower = MIN(params->ibp_power, 2089 ieee80211_get_node_txpower(ni)); 2090 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 2091 2092 ieee80211_radiotap_tx(vap, m0); 2093 } 2094 2095 /* 2096 * Formulate first tx descriptor with tx controls. 2097 */ 2098 ds = bf->bf_desc; 2099 /* XXX check return value? */ 2100 2101 /* Store the decided rate index values away */ 2102 bf->bf_state.bfs_pktlen = pktlen; 2103 bf->bf_state.bfs_hdrlen = hdrlen; 2104 bf->bf_state.bfs_atype = atype; 2105 bf->bf_state.bfs_txpower = MIN(params->ibp_power, 2106 ieee80211_get_node_txpower(ni)); 2107 bf->bf_state.bfs_txrate0 = txrate; 2108 bf->bf_state.bfs_try0 = try0; 2109 bf->bf_state.bfs_keyix = keyix; 2110 bf->bf_state.bfs_txantenna = txantenna; 2111 bf->bf_state.bfs_txflags = flags; 2112 bf->bf_state.bfs_shpream = 2113 !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE); 2114 2115 /* Set local packet state, used to queue packets to hardware */ 2116 bf->bf_state.bfs_tid = WME_AC_TO_TID(pri); 2117 bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum; 2118 bf->bf_state.bfs_pri = pri; 2119 2120 /* XXX this should be done in ath_tx_setrate() */ 2121 bf->bf_state.bfs_ctsrate = 0; 2122 bf->bf_state.bfs_ctsduration = 0; 2123 bf->bf_state.bfs_ismrr = ismrr; 2124 2125 /* Blank the legacy rate array */ 2126 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); 2127 2128 bf->bf_state.bfs_rc[0].rix = 2129 ath_tx_findrix(sc, params->ibp_rate0); 2130 bf->bf_state.bfs_rc[0].tries = try0; 2131 bf->bf_state.bfs_rc[0].ratecode = txrate; 2132 2133 if (ismrr) { 2134 int rix; 2135 2136 rix = ath_tx_findrix(sc, params->ibp_rate1); 2137 bf->bf_state.bfs_rc[1].rix = rix; 2138 bf->bf_state.bfs_rc[1].tries = params->ibp_try1; 2139 2140 rix = ath_tx_findrix(sc, params->ibp_rate2); 2141 bf->bf_state.bfs_rc[2].rix = rix; 2142 bf->bf_state.bfs_rc[2].tries = params->ibp_try2; 2143 2144 rix = ath_tx_findrix(sc, params->ibp_rate3); 2145 bf->bf_state.bfs_rc[3].rix = rix; 2146 bf->bf_state.bfs_rc[3].tries = params->ibp_try3; 2147 } 2148 /* 2149 * All the required rate control decisions have been made; 2150 * fill in the rc flags. 2151 */ 2152 ath_tx_rate_fill_rcflags(sc, bf); 2153 2154 /* NB: no buffered multicast in power save support */ 2155 2156 /* 2157 * If we're overiding the ADDBA destination, dump directly 2158 * into the hardware queue, right after any pending 2159 * frames to that node are. 2160 */ 2161 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n", 2162 __func__, do_override); 2163 2164 #if 1 2165 if (do_override) { 2166 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2167 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2168 } else { 2169 /* Queue to software queue */ 2170 ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf); 2171 } 2172 #else 2173 /* Direct-dispatch to the hardware */ 2174 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 2175 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); 2176 #endif 2177 return 0; 2178 } 2179 2180 /* 2181 * Send a raw frame. 2182 * 2183 * This can be called by net80211. 2184 */ 2185 int 2186 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2187 const struct ieee80211_bpf_params *params) 2188 { 2189 struct ieee80211com *ic = ni->ni_ic; 2190 struct ifnet *ifp = ic->ic_ifp; 2191 struct ath_softc *sc = ifp->if_softc; 2192 struct ath_buf *bf; 2193 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 2194 int error = 0; 2195 2196 ATH_PCU_LOCK(sc); 2197 if (sc->sc_inreset_cnt > 0) { 2198 device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n", 2199 __func__); 2200 error = EIO; 2201 ATH_PCU_UNLOCK(sc); 2202 goto bad0; 2203 } 2204 sc->sc_txstart_cnt++; 2205 ATH_PCU_UNLOCK(sc); 2206 2207 ATH_TX_LOCK(sc); 2208 2209 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) { 2210 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__, 2211 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ? 2212 "!running" : "invalid"); 2213 m_freem(m); 2214 error = ENETDOWN; 2215 goto bad; 2216 } 2217 2218 /* 2219 * Enforce how deep the multicast queue can grow. 2220 * 2221 * XXX duplicated in ath_tx_start(). 2222 */ 2223 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2224 if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth 2225 > sc->sc_txq_mcastq_maxdepth) { 2226 sc->sc_stats.ast_tx_mcastq_overflow++; 2227 error = ENOBUFS; 2228 } 2229 2230 if (error != 0) { 2231 m_freem(m); 2232 goto bad; 2233 } 2234 } 2235 2236 /* 2237 * Grab a TX buffer and associated resources. 2238 */ 2239 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 2240 if (bf == NULL) { 2241 sc->sc_stats.ast_tx_nobuf++; 2242 m_freem(m); 2243 error = ENOBUFS; 2244 goto bad; 2245 } 2246 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n", 2247 m, params, bf); 2248 2249 if (params == NULL) { 2250 /* 2251 * Legacy path; interpret frame contents to decide 2252 * precisely how to send the frame. 2253 */ 2254 if (ath_tx_start(sc, ni, bf, m)) { 2255 error = EIO; /* XXX */ 2256 goto bad2; 2257 } 2258 } else { 2259 /* 2260 * Caller supplied explicit parameters to use in 2261 * sending the frame. 2262 */ 2263 if (ath_tx_raw_start(sc, ni, bf, m, params)) { 2264 error = EIO; /* XXX */ 2265 goto bad2; 2266 } 2267 } 2268 sc->sc_wd_timer = 5; 2269 ifp->if_opackets++; 2270 sc->sc_stats.ast_tx_raw++; 2271 2272 /* 2273 * Update the TIM - if there's anything queued to the 2274 * software queue and power save is enabled, we should 2275 * set the TIM. 2276 */ 2277 ath_tx_update_tim(sc, ni, 1); 2278 2279 ATH_TX_UNLOCK(sc); 2280 2281 ATH_PCU_LOCK(sc); 2282 sc->sc_txstart_cnt--; 2283 ATH_PCU_UNLOCK(sc); 2284 2285 return 0; 2286 bad2: 2287 ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, " 2288 "bf=%p", 2289 m, 2290 params, 2291 bf); 2292 ATH_TXBUF_LOCK(sc); 2293 ath_returnbuf_head(sc, bf); 2294 ATH_TXBUF_UNLOCK(sc); 2295 bad: 2296 2297 ATH_TX_UNLOCK(sc); 2298 2299 ATH_PCU_LOCK(sc); 2300 sc->sc_txstart_cnt--; 2301 ATH_PCU_UNLOCK(sc); 2302 bad0: 2303 ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p", 2304 m, params); 2305 ifp->if_oerrors++; 2306 sc->sc_stats.ast_tx_raw_fail++; 2307 ieee80211_free_node(ni); 2308 2309 return error; 2310 } 2311 2312 /* Some helper functions */ 2313 2314 /* 2315 * ADDBA (and potentially others) need to be placed in the same 2316 * hardware queue as the TID/node it's relating to. This is so 2317 * it goes out after any pending non-aggregate frames to the 2318 * same node/TID. 2319 * 2320 * If this isn't done, the ADDBA can go out before the frames 2321 * queued in hardware. Even though these frames have a sequence 2322 * number -earlier- than the ADDBA can be transmitted (but 2323 * no frames whose sequence numbers are after the ADDBA should 2324 * be!) they'll arrive after the ADDBA - and the receiving end 2325 * will simply drop them as being out of the BAW. 2326 * 2327 * The frames can't be appended to the TID software queue - it'll 2328 * never be sent out. So these frames have to be directly 2329 * dispatched to the hardware, rather than queued in software. 2330 * So if this function returns true, the TXQ has to be 2331 * overridden and it has to be directly dispatched. 2332 * 2333 * It's a dirty hack, but someone's gotta do it. 2334 */ 2335 2336 /* 2337 * XXX doesn't belong here! 2338 */ 2339 static int 2340 ieee80211_is_action(struct ieee80211_frame *wh) 2341 { 2342 /* Type: Management frame? */ 2343 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 2344 IEEE80211_FC0_TYPE_MGT) 2345 return 0; 2346 2347 /* Subtype: Action frame? */ 2348 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) != 2349 IEEE80211_FC0_SUBTYPE_ACTION) 2350 return 0; 2351 2352 return 1; 2353 } 2354 2355 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2356 /* 2357 * Return an alternate TID for ADDBA request frames. 2358 * 2359 * Yes, this likely should be done in the net80211 layer. 2360 */ 2361 static int 2362 ath_tx_action_frame_override_queue(struct ath_softc *sc, 2363 struct ieee80211_node *ni, 2364 struct mbuf *m0, int *tid) 2365 { 2366 struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); 2367 struct ieee80211_action_ba_addbarequest *ia; 2368 uint8_t *frm; 2369 uint16_t baparamset; 2370 2371 /* Not action frame? Bail */ 2372 if (! ieee80211_is_action(wh)) 2373 return 0; 2374 2375 /* XXX Not needed for frames we send? */ 2376 #if 0 2377 /* Correct length? */ 2378 if (! ieee80211_parse_action(ni, m)) 2379 return 0; 2380 #endif 2381 2382 /* Extract out action frame */ 2383 frm = (u_int8_t *)&wh[1]; 2384 ia = (struct ieee80211_action_ba_addbarequest *) frm; 2385 2386 /* Not ADDBA? Bail */ 2387 if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA) 2388 return 0; 2389 if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST) 2390 return 0; 2391 2392 /* Extract TID, return it */ 2393 baparamset = le16toh(ia->rq_baparamset); 2394 *tid = (int) MS(baparamset, IEEE80211_BAPS_TID); 2395 2396 return 1; 2397 } 2398 #undef MS 2399 2400 /* Per-node software queue operations */ 2401 2402 /* 2403 * Add the current packet to the given BAW. 2404 * It is assumed that the current packet 2405 * 2406 * + fits inside the BAW; 2407 * + already has had a sequence number allocated. 2408 * 2409 * Since the BAW status may be modified by both the ath task and 2410 * the net80211/ifnet contexts, the TID must be locked. 2411 */ 2412 void 2413 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an, 2414 struct ath_tid *tid, struct ath_buf *bf) 2415 { 2416 int index, cindex; 2417 struct ieee80211_tx_ampdu *tap; 2418 2419 ATH_TX_LOCK_ASSERT(sc); 2420 2421 if (bf->bf_state.bfs_isretried) 2422 return; 2423 2424 tap = ath_tx_get_tx_tid(an, tid->tid); 2425 2426 if (! bf->bf_state.bfs_dobaw) { 2427 device_printf(sc->sc_dev, 2428 "%s: dobaw=0, seqno=%d, window %d:%d\n", 2429 __func__, 2430 SEQNO(bf->bf_state.bfs_seqno), 2431 tap->txa_start, 2432 tap->txa_wnd); 2433 } 2434 2435 if (bf->bf_state.bfs_addedbaw) 2436 device_printf(sc->sc_dev, 2437 "%s: re-added? tid=%d, seqno %d; window %d:%d; " 2438 "baw head=%d tail=%d\n", 2439 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2440 tap->txa_start, tap->txa_wnd, tid->baw_head, 2441 tid->baw_tail); 2442 2443 /* 2444 * Verify that the given sequence number is not outside of the 2445 * BAW. Complain loudly if that's the case. 2446 */ 2447 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2448 SEQNO(bf->bf_state.bfs_seqno))) { 2449 device_printf(sc->sc_dev, 2450 "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; " 2451 "baw head=%d tail=%d\n", 2452 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2453 tap->txa_start, tap->txa_wnd, tid->baw_head, 2454 tid->baw_tail); 2455 } 2456 2457 /* 2458 * ni->ni_txseqs[] is the currently allocated seqno. 2459 * the txa state contains the current baw start. 2460 */ 2461 index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno)); 2462 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2463 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2464 "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d " 2465 "baw head=%d tail=%d\n", 2466 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), 2467 tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, 2468 tid->baw_tail); 2469 2470 2471 #if 0 2472 assert(tid->tx_buf[cindex] == NULL); 2473 #endif 2474 if (tid->tx_buf[cindex] != NULL) { 2475 device_printf(sc->sc_dev, 2476 "%s: ba packet dup (index=%d, cindex=%d, " 2477 "head=%d, tail=%d)\n", 2478 __func__, index, cindex, tid->baw_head, tid->baw_tail); 2479 device_printf(sc->sc_dev, 2480 "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n", 2481 __func__, 2482 tid->tx_buf[cindex], 2483 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno), 2484 bf, 2485 SEQNO(bf->bf_state.bfs_seqno) 2486 ); 2487 } 2488 tid->tx_buf[cindex] = bf; 2489 2490 if (index >= ((tid->baw_tail - tid->baw_head) & 2491 (ATH_TID_MAX_BUFS - 1))) { 2492 tid->baw_tail = cindex; 2493 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 2494 } 2495 } 2496 2497 /* 2498 * Flip the BAW buffer entry over from the existing one to the new one. 2499 * 2500 * When software retransmitting a (sub-)frame, it is entirely possible that 2501 * the frame ath_buf is marked as BUSY and can't be immediately reused. 2502 * In that instance the buffer is cloned and the new buffer is used for 2503 * retransmit. We thus need to update the ath_buf slot in the BAW buf 2504 * tracking array to maintain consistency. 2505 */ 2506 static void 2507 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an, 2508 struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf) 2509 { 2510 int index, cindex; 2511 struct ieee80211_tx_ampdu *tap; 2512 int seqno = SEQNO(old_bf->bf_state.bfs_seqno); 2513 2514 ATH_TX_LOCK_ASSERT(sc); 2515 2516 tap = ath_tx_get_tx_tid(an, tid->tid); 2517 index = ATH_BA_INDEX(tap->txa_start, seqno); 2518 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2519 2520 /* 2521 * Just warn for now; if it happens then we should find out 2522 * about it. It's highly likely the aggregation session will 2523 * soon hang. 2524 */ 2525 if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) { 2526 device_printf(sc->sc_dev, "%s: retransmitted buffer" 2527 " has mismatching seqno's, BA session may hang.\n", 2528 __func__); 2529 device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n", 2530 __func__, 2531 old_bf->bf_state.bfs_seqno, 2532 new_bf->bf_state.bfs_seqno); 2533 } 2534 2535 if (tid->tx_buf[cindex] != old_bf) { 2536 device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; " 2537 " has m BA session may hang.\n", 2538 __func__); 2539 device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n", 2540 __func__, 2541 old_bf, new_bf); 2542 } 2543 2544 tid->tx_buf[cindex] = new_bf; 2545 } 2546 2547 /* 2548 * seq_start - left edge of BAW 2549 * seq_next - current/next sequence number to allocate 2550 * 2551 * Since the BAW status may be modified by both the ath task and 2552 * the net80211/ifnet contexts, the TID must be locked. 2553 */ 2554 static void 2555 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an, 2556 struct ath_tid *tid, const struct ath_buf *bf) 2557 { 2558 int index, cindex; 2559 struct ieee80211_tx_ampdu *tap; 2560 int seqno = SEQNO(bf->bf_state.bfs_seqno); 2561 2562 ATH_TX_LOCK_ASSERT(sc); 2563 2564 tap = ath_tx_get_tx_tid(an, tid->tid); 2565 index = ATH_BA_INDEX(tap->txa_start, seqno); 2566 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 2567 2568 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2569 "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, " 2570 "baw head=%d, tail=%d\n", 2571 __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index, 2572 cindex, tid->baw_head, tid->baw_tail); 2573 2574 /* 2575 * If this occurs then we have a big problem - something else 2576 * has slid tap->txa_start along without updating the BAW 2577 * tracking start/end pointers. Thus the TX BAW state is now 2578 * completely busted. 2579 * 2580 * But for now, since I haven't yet fixed TDMA and buffer cloning, 2581 * it's quite possible that a cloned buffer is making its way 2582 * here and causing it to fire off. Disable TDMA for now. 2583 */ 2584 if (tid->tx_buf[cindex] != bf) { 2585 device_printf(sc->sc_dev, 2586 "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n", 2587 __func__, 2588 bf, SEQNO(bf->bf_state.bfs_seqno), 2589 tid->tx_buf[cindex], 2590 (tid->tx_buf[cindex] != NULL) ? 2591 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno) : -1); 2592 } 2593 2594 tid->tx_buf[cindex] = NULL; 2595 2596 while (tid->baw_head != tid->baw_tail && 2597 !tid->tx_buf[tid->baw_head]) { 2598 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 2599 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 2600 } 2601 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 2602 "%s: baw is now %d:%d, baw head=%d\n", 2603 __func__, tap->txa_start, tap->txa_wnd, tid->baw_head); 2604 } 2605 2606 /* 2607 * Mark the current node/TID as ready to TX. 2608 * 2609 * This is done to make it easy for the software scheduler to 2610 * find which nodes have data to send. 2611 * 2612 * The TXQ lock must be held. 2613 */ 2614 static void 2615 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid) 2616 { 2617 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2618 2619 ATH_TX_LOCK_ASSERT(sc); 2620 2621 if (tid->paused) 2622 return; /* paused, can't schedule yet */ 2623 2624 if (tid->sched) 2625 return; /* already scheduled */ 2626 2627 tid->sched = 1; 2628 2629 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); 2630 } 2631 2632 /* 2633 * Mark the current node as no longer needing to be polled for 2634 * TX packets. 2635 * 2636 * The TXQ lock must be held. 2637 */ 2638 static void 2639 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid) 2640 { 2641 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 2642 2643 ATH_TX_LOCK_ASSERT(sc); 2644 2645 if (tid->sched == 0) 2646 return; 2647 2648 tid->sched = 0; 2649 TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem); 2650 } 2651 2652 /* 2653 * Assign a sequence number manually to the given frame. 2654 * 2655 * This should only be called for A-MPDU TX frames. 2656 */ 2657 static ieee80211_seq 2658 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, 2659 struct ath_buf *bf, struct mbuf *m0) 2660 { 2661 struct ieee80211_frame *wh; 2662 int tid, pri; 2663 ieee80211_seq seqno; 2664 uint8_t subtype; 2665 2666 /* TID lookup */ 2667 wh = mtod(m0, struct ieee80211_frame *); 2668 pri = M_WME_GETAC(m0); /* honor classification */ 2669 tid = WME_AC_TO_TID(pri); 2670 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n", 2671 __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2672 2673 /* XXX Is it a control frame? Ignore */ 2674 2675 /* Does the packet require a sequence number? */ 2676 if (! IEEE80211_QOS_HAS_SEQ(wh)) 2677 return -1; 2678 2679 ATH_TX_LOCK_ASSERT(sc); 2680 2681 /* 2682 * Is it a QOS NULL Data frame? Give it a sequence number from 2683 * the default TID (IEEE80211_NONQOS_TID.) 2684 * 2685 * The RX path of everything I've looked at doesn't include the NULL 2686 * data frame sequence number in the aggregation state updates, so 2687 * assigning it a sequence number there will cause a BAW hole on the 2688 * RX side. 2689 */ 2690 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2691 if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) { 2692 /* XXX no locking for this TID? This is a bit of a problem. */ 2693 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; 2694 INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); 2695 } else { 2696 /* Manually assign sequence number */ 2697 seqno = ni->ni_txseqs[tid]; 2698 INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE); 2699 } 2700 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 2701 M_SEQNO_SET(m0, seqno); 2702 2703 /* Return so caller can do something with it if needed */ 2704 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno); 2705 return seqno; 2706 } 2707 2708 /* 2709 * Attempt to direct dispatch an aggregate frame to hardware. 2710 * If the frame is out of BAW, queue. 2711 * Otherwise, schedule it as a single frame. 2712 */ 2713 static void 2714 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, 2715 struct ath_txq *txq, struct ath_buf *bf) 2716 { 2717 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; 2718 struct ieee80211_tx_ampdu *tap; 2719 2720 ATH_TX_LOCK_ASSERT(sc); 2721 2722 tap = ath_tx_get_tx_tid(an, tid->tid); 2723 2724 /* paused? queue */ 2725 if (tid->paused) { 2726 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2727 /* XXX don't sched - we're paused! */ 2728 return; 2729 } 2730 2731 /* outside baw? queue */ 2732 if (bf->bf_state.bfs_dobaw && 2733 (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, 2734 SEQNO(bf->bf_state.bfs_seqno)))) { 2735 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 2736 ath_tx_tid_sched(sc, tid); 2737 return; 2738 } 2739 2740 /* 2741 * This is a temporary check and should be removed once 2742 * all the relevant code paths have been fixed. 2743 * 2744 * During aggregate retries, it's possible that the head 2745 * frame will fail (which has the bfs_aggr and bfs_nframes 2746 * fields set for said aggregate) and will be retried as 2747 * a single frame. In this instance, the values should 2748 * be reset or the completion code will get upset with you. 2749 */ 2750 if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) { 2751 device_printf(sc->sc_dev, "%s: bfs_aggr=%d, bfs_nframes=%d\n", 2752 __func__, 2753 bf->bf_state.bfs_aggr, 2754 bf->bf_state.bfs_nframes); 2755 bf->bf_state.bfs_aggr = 0; 2756 bf->bf_state.bfs_nframes = 1; 2757 } 2758 2759 /* Update CLRDMASK just before this frame is queued */ 2760 ath_tx_update_clrdmask(sc, tid, bf); 2761 2762 /* Direct dispatch to hardware */ 2763 ath_tx_do_ratelookup(sc, bf); 2764 ath_tx_calc_duration(sc, bf); 2765 ath_tx_calc_protection(sc, bf); 2766 ath_tx_set_rtscts(sc, bf); 2767 ath_tx_rate_fill_rcflags(sc, bf); 2768 ath_tx_setds(sc, bf); 2769 2770 /* Statistics */ 2771 sc->sc_aggr_stats.aggr_low_hwq_single_pkt++; 2772 2773 /* Track per-TID hardware queue depth correctly */ 2774 tid->hwq_depth++; 2775 2776 /* Add to BAW */ 2777 if (bf->bf_state.bfs_dobaw) { 2778 ath_tx_addto_baw(sc, an, tid, bf); 2779 bf->bf_state.bfs_addedbaw = 1; 2780 } 2781 2782 /* Set completion handler, multi-frame aggregate or not */ 2783 bf->bf_comp = ath_tx_aggr_comp; 2784 2785 /* Hand off to hardware */ 2786 ath_tx_handoff(sc, txq, bf); 2787 } 2788 2789 /* 2790 * Attempt to send the packet. 2791 * If the queue isn't busy, direct-dispatch. 2792 * If the queue is busy enough, queue the given packet on the 2793 * relevant software queue. 2794 */ 2795 void 2796 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq, 2797 struct ath_buf *bf) 2798 { 2799 struct ath_node *an = ATH_NODE(ni); 2800 struct ieee80211_frame *wh; 2801 struct ath_tid *atid; 2802 int pri, tid; 2803 struct mbuf *m0 = bf->bf_m; 2804 2805 ATH_TX_LOCK_ASSERT(sc); 2806 2807 /* Fetch the TID - non-QoS frames get assigned to TID 16 */ 2808 wh = mtod(m0, struct ieee80211_frame *); 2809 pri = ath_tx_getac(sc, m0); 2810 tid = ath_tx_gettid(sc, m0); 2811 atid = &an->an_tid[tid]; 2812 2813 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n", 2814 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); 2815 2816 /* Set local packet state, used to queue packets to hardware */ 2817 /* XXX potentially duplicate info, re-check */ 2818 bf->bf_state.bfs_tid = tid; 2819 bf->bf_state.bfs_tx_queue = txq->axq_qnum; 2820 bf->bf_state.bfs_pri = pri; 2821 2822 /* 2823 * If the hardware queue isn't busy, queue it directly. 2824 * If the hardware queue is busy, queue it. 2825 * If the TID is paused or the traffic it outside BAW, software 2826 * queue it. 2827 */ 2828 if (atid->paused) { 2829 /* TID is paused, queue */ 2830 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__); 2831 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2832 } else if (ath_tx_ampdu_pending(sc, an, tid)) { 2833 /* AMPDU pending; queue */ 2834 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__); 2835 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2836 /* XXX sched? */ 2837 } else if (ath_tx_ampdu_running(sc, an, tid)) { 2838 /* AMPDU running, attempt direct dispatch if possible */ 2839 2840 /* 2841 * Always queue the frame to the tail of the list. 2842 */ 2843 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2844 2845 /* 2846 * If the hardware queue isn't busy, direct dispatch 2847 * the head frame in the list. Don't schedule the 2848 * TID - let it build some more frames first? 2849 * 2850 * Otherwise, schedule the TID. 2851 */ 2852 if (txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit) { 2853 bf = ATH_TID_FIRST(atid); 2854 ATH_TID_REMOVE(atid, bf, bf_list); 2855 2856 /* 2857 * Ensure it's definitely treated as a non-AMPDU 2858 * frame - this information may have been left 2859 * over from a previous attempt. 2860 */ 2861 bf->bf_state.bfs_aggr = 0; 2862 bf->bf_state.bfs_nframes = 1; 2863 2864 /* Queue to the hardware */ 2865 ath_tx_xmit_aggr(sc, an, txq, bf); 2866 DPRINTF(sc, ATH_DEBUG_SW_TX, 2867 "%s: xmit_aggr\n", 2868 __func__); 2869 } else { 2870 DPRINTF(sc, ATH_DEBUG_SW_TX, 2871 "%s: ampdu; swq'ing\n", 2872 __func__); 2873 2874 ath_tx_tid_sched(sc, atid); 2875 } 2876 } else if (txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit) { 2877 /* AMPDU not running, attempt direct dispatch */ 2878 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__); 2879 /* See if clrdmask needs to be set */ 2880 ath_tx_update_clrdmask(sc, atid, bf); 2881 ath_tx_xmit_normal(sc, txq, bf); 2882 } else { 2883 /* Busy; queue */ 2884 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__); 2885 ATH_TID_INSERT_TAIL(atid, bf, bf_list); 2886 ath_tx_tid_sched(sc, atid); 2887 } 2888 } 2889 2890 /* 2891 * Only set the clrdmask bit if none of the nodes are currently 2892 * filtered. 2893 * 2894 * XXX TODO: go through all the callers and check to see 2895 * which are being called in the context of looping over all 2896 * TIDs (eg, if all tids are being paused, resumed, etc.) 2897 * That'll avoid O(n^2) complexity here. 2898 */ 2899 static void 2900 ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an) 2901 { 2902 int i; 2903 2904 ATH_TX_LOCK_ASSERT(sc); 2905 2906 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2907 if (an->an_tid[i].isfiltered == 1) 2908 return; 2909 } 2910 an->clrdmask = 1; 2911 } 2912 2913 /* 2914 * Configure the per-TID node state. 2915 * 2916 * This likely belongs in if_ath_node.c but I can't think of anywhere 2917 * else to put it just yet. 2918 * 2919 * This sets up the SLISTs and the mutex as appropriate. 2920 */ 2921 void 2922 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an) 2923 { 2924 int i, j; 2925 struct ath_tid *atid; 2926 2927 for (i = 0; i < IEEE80211_TID_SIZE; i++) { 2928 atid = &an->an_tid[i]; 2929 2930 /* XXX now with this bzer(), is the field 0'ing needed? */ 2931 bzero(atid, sizeof(*atid)); 2932 2933 TAILQ_INIT(&atid->tid_q); 2934 TAILQ_INIT(&atid->filtq.tid_q); 2935 atid->tid = i; 2936 atid->an = an; 2937 for (j = 0; j < ATH_TID_MAX_BUFS; j++) 2938 atid->tx_buf[j] = NULL; 2939 atid->baw_head = atid->baw_tail = 0; 2940 atid->paused = 0; 2941 atid->sched = 0; 2942 atid->hwq_depth = 0; 2943 atid->cleanup_inprogress = 0; 2944 if (i == IEEE80211_NONQOS_TID) 2945 atid->ac = ATH_NONQOS_TID_AC; 2946 else 2947 atid->ac = TID_TO_WME_AC(i); 2948 } 2949 an->clrdmask = 1; /* Always start by setting this bit */ 2950 } 2951 2952 /* 2953 * Pause the current TID. This stops packets from being transmitted 2954 * on it. 2955 * 2956 * Since this is also called from upper layers as well as the driver, 2957 * it will get the TID lock. 2958 */ 2959 static void 2960 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid) 2961 { 2962 2963 ATH_TX_LOCK_ASSERT(sc); 2964 tid->paused++; 2965 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n", 2966 __func__, tid->paused); 2967 } 2968 2969 /* 2970 * Unpause the current TID, and schedule it if needed. 2971 */ 2972 static void 2973 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid) 2974 { 2975 ATH_TX_LOCK_ASSERT(sc); 2976 2977 /* 2978 * There's some odd places where ath_tx_tid_resume() is called 2979 * when it shouldn't be; this works around that particular issue 2980 * until it's actually resolved. 2981 */ 2982 if (tid->paused == 0) { 2983 device_printf(sc->sc_dev, "%s: %6D: paused=0?\n", 2984 __func__, 2985 tid->an->an_node.ni_macaddr, 2986 ":"); 2987 } else { 2988 tid->paused--; 2989 } 2990 2991 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n", 2992 __func__, tid->paused); 2993 2994 if (tid->paused) 2995 return; 2996 2997 /* 2998 * Override the clrdmask configuration for the next frame 2999 * from this TID, just to get the ball rolling. 3000 */ 3001 ath_tx_set_clrdmask(sc, tid->an); 3002 3003 if (tid->axq_depth == 0) 3004 return; 3005 3006 /* XXX isfiltered shouldn't ever be 0 at this point */ 3007 if (tid->isfiltered == 1) { 3008 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 3009 return; 3010 } 3011 3012 ath_tx_tid_sched(sc, tid); 3013 3014 /* 3015 * Queue the software TX scheduler. 3016 */ 3017 ath_tx_swq_kick(sc); 3018 } 3019 3020 /* 3021 * Add the given ath_buf to the TID filtered frame list. 3022 * This requires the TID be filtered. 3023 */ 3024 static void 3025 ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid, 3026 struct ath_buf *bf) 3027 { 3028 3029 ATH_TX_LOCK_ASSERT(sc); 3030 3031 if (! tid->isfiltered) 3032 device_printf(sc->sc_dev, "%s: not filtered?!\n", __func__); 3033 3034 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf); 3035 3036 /* Set the retry bit and bump the retry counter */ 3037 ath_tx_set_retry(sc, bf); 3038 sc->sc_stats.ast_tx_swfiltered++; 3039 3040 ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list); 3041 } 3042 3043 /* 3044 * Handle a completed filtered frame from the given TID. 3045 * This just enables/pauses the filtered frame state if required 3046 * and appends the filtered frame to the filtered queue. 3047 */ 3048 static void 3049 ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid, 3050 struct ath_buf *bf) 3051 { 3052 3053 ATH_TX_LOCK_ASSERT(sc); 3054 3055 if (! tid->isfiltered) { 3056 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: filter transition\n", 3057 __func__); 3058 tid->isfiltered = 1; 3059 ath_tx_tid_pause(sc, tid); 3060 } 3061 3062 /* Add the frame to the filter queue */ 3063 ath_tx_tid_filt_addbuf(sc, tid, bf); 3064 } 3065 3066 /* 3067 * Complete the filtered frame TX completion. 3068 * 3069 * If there are no more frames in the hardware queue, unpause/unfilter 3070 * the TID if applicable. Otherwise we will wait for a node PS transition 3071 * to unfilter. 3072 */ 3073 static void 3074 ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid) 3075 { 3076 struct ath_buf *bf; 3077 3078 ATH_TX_LOCK_ASSERT(sc); 3079 3080 if (tid->hwq_depth != 0) 3081 return; 3082 3083 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: hwq=0, transition back\n", 3084 __func__); 3085 tid->isfiltered = 0; 3086 /* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */ 3087 ath_tx_set_clrdmask(sc, tid->an); 3088 3089 /* XXX this is really quite inefficient */ 3090 while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) { 3091 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3092 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 3093 } 3094 3095 ath_tx_tid_resume(sc, tid); 3096 } 3097 3098 /* 3099 * Called when a single (aggregate or otherwise) frame is completed. 3100 * 3101 * Returns 1 if the buffer could be added to the filtered list 3102 * (cloned or otherwise), 0 if the buffer couldn't be added to the 3103 * filtered list (failed clone; expired retry) and the caller should 3104 * free it and handle it like a failure (eg by sending a BAR.) 3105 */ 3106 static int 3107 ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid, 3108 struct ath_buf *bf) 3109 { 3110 struct ath_buf *nbf; 3111 int retval; 3112 3113 ATH_TX_LOCK_ASSERT(sc); 3114 3115 /* 3116 * Don't allow a filtered frame to live forever. 3117 */ 3118 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3119 sc->sc_stats.ast_tx_swretrymax++; 3120 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3121 "%s: bf=%p, seqno=%d, exceeded retries\n", 3122 __func__, 3123 bf, 3124 bf->bf_state.bfs_seqno); 3125 return (0); 3126 } 3127 3128 /* 3129 * A busy buffer can't be added to the retry list. 3130 * It needs to be cloned. 3131 */ 3132 if (bf->bf_flags & ATH_BUF_BUSY) { 3133 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3134 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3135 "%s: busy buffer clone: %p -> %p\n", 3136 __func__, bf, nbf); 3137 } else { 3138 nbf = bf; 3139 } 3140 3141 if (nbf == NULL) { 3142 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3143 "%s: busy buffer couldn't be cloned (%p)!\n", 3144 __func__, bf); 3145 retval = 1; 3146 } else { 3147 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3148 retval = 0; 3149 } 3150 ath_tx_tid_filt_comp_complete(sc, tid); 3151 3152 return (retval); 3153 } 3154 3155 static void 3156 ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid, 3157 struct ath_buf *bf_first, ath_bufhead *bf_q) 3158 { 3159 struct ath_buf *bf, *bf_next, *nbf; 3160 3161 ATH_TX_LOCK_ASSERT(sc); 3162 3163 bf = bf_first; 3164 while (bf) { 3165 bf_next = bf->bf_next; 3166 bf->bf_next = NULL; /* Remove it from the aggr list */ 3167 3168 /* 3169 * Don't allow a filtered frame to live forever. 3170 */ 3171 if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { 3172 sc->sc_stats.ast_tx_swretrymax++; 3173 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3174 "%s: bf=%p, seqno=%d, exceeded retries\n", 3175 __func__, 3176 bf, 3177 bf->bf_state.bfs_seqno); 3178 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3179 goto next; 3180 } 3181 3182 if (bf->bf_flags & ATH_BUF_BUSY) { 3183 nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); 3184 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3185 "%s: busy buffer cloned: %p -> %p", 3186 __func__, bf, nbf); 3187 } else { 3188 nbf = bf; 3189 } 3190 3191 /* 3192 * If the buffer couldn't be cloned, add it to bf_q; 3193 * the caller will free the buffer(s) as required. 3194 */ 3195 if (nbf == NULL) { 3196 DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, 3197 "%s: buffer couldn't be cloned! (%p)\n", 3198 __func__, bf); 3199 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 3200 } else { 3201 ath_tx_tid_filt_comp_buf(sc, tid, nbf); 3202 } 3203 next: 3204 bf = bf_next; 3205 } 3206 3207 ath_tx_tid_filt_comp_complete(sc, tid); 3208 } 3209 3210 /* 3211 * Suspend the queue because we need to TX a BAR. 3212 */ 3213 static void 3214 ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid) 3215 { 3216 3217 ATH_TX_LOCK_ASSERT(sc); 3218 3219 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3220 "%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n", 3221 __func__, 3222 tid, 3223 tid->bar_wait, 3224 tid->bar_tx); 3225 3226 /* We shouldn't be called when bar_tx is 1 */ 3227 if (tid->bar_tx) { 3228 device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n", 3229 __func__); 3230 } 3231 3232 /* If we've already been called, just be patient. */ 3233 if (tid->bar_wait) 3234 return; 3235 3236 /* Wait! */ 3237 tid->bar_wait = 1; 3238 3239 /* Only one pause, no matter how many frames fail */ 3240 ath_tx_tid_pause(sc, tid); 3241 } 3242 3243 /* 3244 * We've finished with BAR handling - either we succeeded or 3245 * failed. Either way, unsuspend TX. 3246 */ 3247 static void 3248 ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid) 3249 { 3250 3251 ATH_TX_LOCK_ASSERT(sc); 3252 3253 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3254 "%s: tid=%p, called\n", 3255 __func__, 3256 tid); 3257 3258 if (tid->bar_tx == 0 || tid->bar_wait == 0) { 3259 device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n", 3260 __func__, tid->bar_tx, tid->bar_wait); 3261 } 3262 3263 tid->bar_tx = tid->bar_wait = 0; 3264 ath_tx_tid_resume(sc, tid); 3265 } 3266 3267 /* 3268 * Return whether we're ready to TX a BAR frame. 3269 * 3270 * Requires the TID lock be held. 3271 */ 3272 static int 3273 ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid) 3274 { 3275 3276 ATH_TX_LOCK_ASSERT(sc); 3277 3278 if (tid->bar_wait == 0 || tid->hwq_depth > 0) 3279 return (0); 3280 3281 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n", 3282 __func__, tid, tid->tid); 3283 3284 return (1); 3285 } 3286 3287 /* 3288 * Check whether the current TID is ready to have a BAR 3289 * TXed and if so, do the TX. 3290 * 3291 * Since the TID/TXQ lock can't be held during a call to 3292 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it, 3293 * sending the BAR and locking it again. 3294 * 3295 * Eventually, the code to send the BAR should be broken out 3296 * from this routine so the lock doesn't have to be reacquired 3297 * just to be immediately dropped by the caller. 3298 */ 3299 static void 3300 ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid) 3301 { 3302 struct ieee80211_tx_ampdu *tap; 3303 3304 ATH_TX_LOCK_ASSERT(sc); 3305 3306 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3307 "%s: tid=%p, called\n", 3308 __func__, 3309 tid); 3310 3311 tap = ath_tx_get_tx_tid(tid->an, tid->tid); 3312 3313 /* 3314 * This is an error condition! 3315 */ 3316 if (tid->bar_wait == 0 || tid->bar_tx == 1) { 3317 device_printf(sc->sc_dev, 3318 "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n", 3319 __func__, 3320 tid, 3321 tid->bar_tx, 3322 tid->bar_wait); 3323 return; 3324 } 3325 3326 /* Don't do anything if we still have pending frames */ 3327 if (tid->hwq_depth > 0) { 3328 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3329 "%s: tid=%p, hwq_depth=%d, waiting\n", 3330 __func__, 3331 tid, 3332 tid->hwq_depth); 3333 return; 3334 } 3335 3336 /* We're now about to TX */ 3337 tid->bar_tx = 1; 3338 3339 /* 3340 * Override the clrdmask configuration for the next frame, 3341 * just to get the ball rolling. 3342 */ 3343 ath_tx_set_clrdmask(sc, tid->an); 3344 3345 /* 3346 * Calculate new BAW left edge, now that all frames have either 3347 * succeeded or failed. 3348 * 3349 * XXX verify this is _actually_ the valid value to begin at! 3350 */ 3351 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 3352 "%s: tid=%p, new BAW left edge=%d\n", 3353 __func__, 3354 tid, 3355 tap->txa_start); 3356 3357 /* Try sending the BAR frame */ 3358 /* We can't hold the lock here! */ 3359 3360 ATH_TX_UNLOCK(sc); 3361 if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) { 3362 /* Success? Now we wait for notification that it's done */ 3363 ATH_TX_LOCK(sc); 3364 return; 3365 } 3366 3367 /* Failure? For now, warn loudly and continue */ 3368 ATH_TX_LOCK(sc); 3369 device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n", 3370 __func__, tid); 3371 ath_tx_tid_bar_unsuspend(sc, tid); 3372 } 3373 3374 static void 3375 ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an, 3376 struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf) 3377 { 3378 3379 ATH_TX_LOCK_ASSERT(sc); 3380 3381 /* 3382 * If the current TID is running AMPDU, update 3383 * the BAW. 3384 */ 3385 if (ath_tx_ampdu_running(sc, an, tid->tid) && 3386 bf->bf_state.bfs_dobaw) { 3387 /* 3388 * Only remove the frame from the BAW if it's 3389 * been transmitted at least once; this means 3390 * the frame was in the BAW to begin with. 3391 */ 3392 if (bf->bf_state.bfs_retries > 0) { 3393 ath_tx_update_baw(sc, an, tid, bf); 3394 bf->bf_state.bfs_dobaw = 0; 3395 } 3396 #if 0 3397 /* 3398 * This has become a non-fatal error now 3399 */ 3400 if (! bf->bf_state.bfs_addedbaw) 3401 device_printf(sc->sc_dev, 3402 "%s: wasn't added: seqno %d\n", 3403 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3404 #endif 3405 } 3406 3407 /* Strip it out of an aggregate list if it was in one */ 3408 bf->bf_next = NULL; 3409 3410 /* Insert on the free queue to be freed by the caller */ 3411 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); 3412 } 3413 3414 static void 3415 ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an, 3416 const char *pfx, struct ath_tid *tid, struct ath_buf *bf) 3417 { 3418 struct ieee80211_node *ni = &an->an_node; 3419 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 3420 struct ieee80211_tx_ampdu *tap; 3421 3422 tap = ath_tx_get_tx_tid(an, tid->tid); 3423 3424 device_printf(sc->sc_dev, 3425 "%s: %s: node %p: bf=%p: addbaw=%d, dobaw=%d, " 3426 "seqno=%d, retry=%d\n", 3427 __func__, pfx, ni, bf, 3428 bf->bf_state.bfs_addedbaw, 3429 bf->bf_state.bfs_dobaw, 3430 SEQNO(bf->bf_state.bfs_seqno), 3431 bf->bf_state.bfs_retries); 3432 device_printf(sc->sc_dev, 3433 "%s: node %p: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n", 3434 __func__, ni, bf, 3435 txq->axq_qnum, 3436 txq->axq_depth, 3437 txq->axq_aggr_depth); 3438 3439 device_printf(sc->sc_dev, 3440 "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, isfiltered=%d\n", 3441 __func__, ni, bf, 3442 tid->axq_depth, 3443 tid->hwq_depth, 3444 tid->bar_wait, 3445 tid->isfiltered); 3446 device_printf(sc->sc_dev, 3447 "%s: node %p: tid %d: " 3448 "sched=%d, paused=%d, " 3449 "incomp=%d, baw_head=%d, " 3450 "baw_tail=%d txa_start=%d, ni_txseqs=%d\n", 3451 __func__, ni, tid->tid, 3452 tid->sched, tid->paused, 3453 tid->incomp, tid->baw_head, 3454 tid->baw_tail, tap == NULL ? -1 : tap->txa_start, 3455 ni->ni_txseqs[tid->tid]); 3456 3457 /* XXX Dump the frame, see what it is? */ 3458 ieee80211_dump_pkt(ni->ni_ic, 3459 mtod(bf->bf_m, const uint8_t *), 3460 bf->bf_m->m_len, 0, -1); 3461 } 3462 3463 /* 3464 * Free any packets currently pending in the software TX queue. 3465 * 3466 * This will be called when a node is being deleted. 3467 * 3468 * It can also be called on an active node during an interface 3469 * reset or state transition. 3470 * 3471 * (From Linux/reference): 3472 * 3473 * TODO: For frame(s) that are in the retry state, we will reuse the 3474 * sequence number(s) without setting the retry bit. The 3475 * alternative is to give up on these and BAR the receiver's window 3476 * forward. 3477 */ 3478 static void 3479 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, 3480 struct ath_tid *tid, ath_bufhead *bf_cq) 3481 { 3482 struct ath_buf *bf; 3483 struct ieee80211_tx_ampdu *tap; 3484 struct ieee80211_node *ni = &an->an_node; 3485 int t; 3486 3487 tap = ath_tx_get_tx_tid(an, tid->tid); 3488 3489 ATH_TX_LOCK_ASSERT(sc); 3490 3491 /* Walk the queue, free frames */ 3492 t = 0; 3493 for (;;) { 3494 bf = ATH_TID_FIRST(tid); 3495 if (bf == NULL) { 3496 break; 3497 } 3498 3499 if (t == 0) { 3500 ath_tx_tid_drain_print(sc, an, "norm", tid, bf); 3501 t = 1; 3502 } 3503 3504 ATH_TID_REMOVE(tid, bf, bf_list); 3505 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3506 } 3507 3508 /* And now, drain the filtered frame queue */ 3509 t = 0; 3510 for (;;) { 3511 bf = ATH_TID_FILT_FIRST(tid); 3512 if (bf == NULL) 3513 break; 3514 3515 if (t == 0) { 3516 ath_tx_tid_drain_print(sc, an, "filt", tid, bf); 3517 t = 1; 3518 } 3519 3520 ATH_TID_FILT_REMOVE(tid, bf, bf_list); 3521 ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); 3522 } 3523 3524 /* 3525 * Override the clrdmask configuration for the next frame 3526 * in case there is some future transmission, just to get 3527 * the ball rolling. 3528 * 3529 * This won't hurt things if the TID is about to be freed. 3530 */ 3531 ath_tx_set_clrdmask(sc, tid->an); 3532 3533 /* 3534 * Now that it's completed, grab the TID lock and update 3535 * the sequence number and BAW window. 3536 * Because sequence numbers have been assigned to frames 3537 * that haven't been sent yet, it's entirely possible 3538 * we'll be called with some pending frames that have not 3539 * been transmitted. 3540 * 3541 * The cleaner solution is to do the sequence number allocation 3542 * when the packet is first transmitted - and thus the "retries" 3543 * check above would be enough to update the BAW/seqno. 3544 */ 3545 3546 /* But don't do it for non-QoS TIDs */ 3547 if (tap) { 3548 #if 0 3549 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3550 "%s: node %p: TID %d: sliding BAW left edge to %d\n", 3551 __func__, an, tid->tid, tap->txa_start); 3552 #endif 3553 ni->ni_txseqs[tid->tid] = tap->txa_start; 3554 tid->baw_tail = tid->baw_head; 3555 } 3556 } 3557 3558 /* 3559 * Flush all software queued packets for the given node. 3560 * 3561 * This occurs when a completion handler frees the last buffer 3562 * for a node, and the node is thus freed. This causes the node 3563 * to be cleaned up, which ends up calling ath_tx_node_flush. 3564 */ 3565 void 3566 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an) 3567 { 3568 int tid; 3569 ath_bufhead bf_cq; 3570 struct ath_buf *bf; 3571 3572 TAILQ_INIT(&bf_cq); 3573 3574 ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p", 3575 &an->an_node); 3576 3577 ATH_TX_LOCK(sc); 3578 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 3579 struct ath_tid *atid = &an->an_tid[tid]; 3580 3581 /* Free packets */ 3582 ath_tx_tid_drain(sc, an, atid, &bf_cq); 3583 /* Remove this tid from the list of active tids */ 3584 ath_tx_tid_unsched(sc, atid); 3585 } 3586 ATH_TX_UNLOCK(sc); 3587 3588 /* Handle completed frames */ 3589 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3590 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3591 ath_tx_default_comp(sc, bf, 0); 3592 } 3593 } 3594 3595 /* 3596 * Drain all the software TXQs currently with traffic queued. 3597 */ 3598 void 3599 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq) 3600 { 3601 struct ath_tid *tid; 3602 ath_bufhead bf_cq; 3603 struct ath_buf *bf; 3604 3605 TAILQ_INIT(&bf_cq); 3606 ATH_TX_LOCK(sc); 3607 3608 /* 3609 * Iterate over all active tids for the given txq, 3610 * flushing and unsched'ing them 3611 */ 3612 while (! TAILQ_EMPTY(&txq->axq_tidq)) { 3613 tid = TAILQ_FIRST(&txq->axq_tidq); 3614 ath_tx_tid_drain(sc, tid->an, tid, &bf_cq); 3615 ath_tx_tid_unsched(sc, tid); 3616 } 3617 3618 ATH_TX_UNLOCK(sc); 3619 3620 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3621 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3622 ath_tx_default_comp(sc, bf, 0); 3623 } 3624 } 3625 3626 /* 3627 * Handle completion of non-aggregate session frames. 3628 * 3629 * This (currently) doesn't implement software retransmission of 3630 * non-aggregate frames! 3631 * 3632 * Software retransmission of non-aggregate frames needs to obey 3633 * the strict sequence number ordering, and drop any frames that 3634 * will fail this. 3635 * 3636 * For now, filtered frames and frame transmission will cause 3637 * all kinds of issues. So we don't support them. 3638 * 3639 * So anyone queuing frames via ath_tx_normal_xmit() or 3640 * ath_tx_hw_queue_norm() must override and set CLRDMASK. 3641 */ 3642 void 3643 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3644 { 3645 struct ieee80211_node *ni = bf->bf_node; 3646 struct ath_node *an = ATH_NODE(ni); 3647 int tid = bf->bf_state.bfs_tid; 3648 struct ath_tid *atid = &an->an_tid[tid]; 3649 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3650 3651 /* The TID state is protected behind the TXQ lock */ 3652 ATH_TX_LOCK(sc); 3653 3654 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n", 3655 __func__, bf, fail, atid->hwq_depth - 1); 3656 3657 atid->hwq_depth--; 3658 3659 #if 0 3660 /* 3661 * If the frame was filtered, stick it on the filter frame 3662 * queue and complain about it. It shouldn't happen! 3663 */ 3664 if ((ts->ts_status & HAL_TXERR_FILT) || 3665 (ts->ts_status != 0 && atid->isfiltered)) { 3666 device_printf(sc->sc_dev, 3667 "%s: isfiltered=%d, ts_status=%d: huh?\n", 3668 __func__, 3669 atid->isfiltered, 3670 ts->ts_status); 3671 ath_tx_tid_filt_comp_buf(sc, atid, bf); 3672 } 3673 #endif 3674 if (atid->isfiltered) 3675 device_printf(sc->sc_dev, "%s: filtered?!\n", __func__); 3676 if (atid->hwq_depth < 0) 3677 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 3678 __func__, atid->hwq_depth); 3679 3680 /* 3681 * If the queue is filtered, potentially mark it as complete 3682 * and reschedule it as needed. 3683 * 3684 * This is required as there may be a subsequent TX descriptor 3685 * for this end-node that has CLRDMASK set, so it's quite possible 3686 * that a filtered frame will be followed by a non-filtered 3687 * (complete or otherwise) frame. 3688 * 3689 * XXX should we do this before we complete the frame? 3690 */ 3691 if (atid->isfiltered) 3692 ath_tx_tid_filt_comp_complete(sc, atid); 3693 ATH_TX_UNLOCK(sc); 3694 3695 /* 3696 * punt to rate control if we're not being cleaned up 3697 * during a hw queue drain and the frame wanted an ACK. 3698 */ 3699 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 3700 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 3701 ts, bf->bf_state.bfs_pktlen, 3702 1, (ts->ts_status == 0) ? 0 : 1); 3703 3704 ath_tx_default_comp(sc, bf, fail); 3705 } 3706 3707 /* 3708 * Handle cleanup of aggregate session packets that aren't 3709 * an A-MPDU. 3710 * 3711 * There's no need to update the BAW here - the session is being 3712 * torn down. 3713 */ 3714 static void 3715 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3716 { 3717 struct ieee80211_node *ni = bf->bf_node; 3718 struct ath_node *an = ATH_NODE(ni); 3719 int tid = bf->bf_state.bfs_tid; 3720 struct ath_tid *atid = &an->an_tid[tid]; 3721 3722 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n", 3723 __func__, tid, atid->incomp); 3724 3725 ATH_TX_LOCK(sc); 3726 atid->incomp--; 3727 if (atid->incomp == 0) { 3728 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3729 "%s: TID %d: cleaned up! resume!\n", 3730 __func__, tid); 3731 atid->cleanup_inprogress = 0; 3732 ath_tx_tid_resume(sc, atid); 3733 } 3734 ATH_TX_UNLOCK(sc); 3735 3736 ath_tx_default_comp(sc, bf, 0); 3737 } 3738 3739 /* 3740 * Performs transmit side cleanup when TID changes from aggregated to 3741 * unaggregated. 3742 * 3743 * - Discard all retry frames from the s/w queue. 3744 * - Fix the tx completion function for all buffers in s/w queue. 3745 * - Count the number of unacked frames, and let transmit completion 3746 * handle it later. 3747 * 3748 * The caller is responsible for pausing the TID. 3749 */ 3750 static void 3751 ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid) 3752 { 3753 struct ath_tid *atid = &an->an_tid[tid]; 3754 struct ieee80211_tx_ampdu *tap; 3755 struct ath_buf *bf, *bf_next; 3756 ath_bufhead bf_cq; 3757 3758 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, 3759 "%s: TID %d: called\n", __func__, tid); 3760 3761 TAILQ_INIT(&bf_cq); 3762 ATH_TX_LOCK(sc); 3763 3764 /* 3765 * Move the filtered frames to the TX queue, before 3766 * we run off and discard/process things. 3767 */ 3768 /* XXX this is really quite inefficient */ 3769 while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) { 3770 ATH_TID_FILT_REMOVE(atid, bf, bf_list); 3771 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3772 } 3773 3774 /* 3775 * Update the frames in the software TX queue: 3776 * 3777 * + Discard retry frames in the queue 3778 * + Fix the completion function to be non-aggregate 3779 */ 3780 bf = ATH_TID_FIRST(atid); 3781 while (bf) { 3782 if (bf->bf_state.bfs_isretried) { 3783 bf_next = TAILQ_NEXT(bf, bf_list); 3784 ATH_TID_REMOVE(atid, bf, bf_list); 3785 if (bf->bf_state.bfs_dobaw) { 3786 ath_tx_update_baw(sc, an, atid, bf); 3787 if (! bf->bf_state.bfs_addedbaw) 3788 device_printf(sc->sc_dev, 3789 "%s: wasn't added: seqno %d\n", 3790 __func__, 3791 SEQNO(bf->bf_state.bfs_seqno)); 3792 } 3793 bf->bf_state.bfs_dobaw = 0; 3794 /* 3795 * Call the default completion handler with "fail" just 3796 * so upper levels are suitably notified about this. 3797 */ 3798 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 3799 bf = bf_next; 3800 continue; 3801 } 3802 /* Give these the default completion handler */ 3803 bf->bf_comp = ath_tx_normal_comp; 3804 bf = TAILQ_NEXT(bf, bf_list); 3805 } 3806 3807 /* The caller is required to pause the TID */ 3808 #if 0 3809 /* Pause the TID */ 3810 ath_tx_tid_pause(sc, atid); 3811 #endif 3812 3813 /* 3814 * Calculate what hardware-queued frames exist based 3815 * on the current BAW size. Ie, what frames have been 3816 * added to the TX hardware queue for this TID but 3817 * not yet ACKed. 3818 */ 3819 tap = ath_tx_get_tx_tid(an, tid); 3820 /* Need the lock - fiddling with BAW */ 3821 while (atid->baw_head != atid->baw_tail) { 3822 if (atid->tx_buf[atid->baw_head]) { 3823 atid->incomp++; 3824 atid->cleanup_inprogress = 1; 3825 atid->tx_buf[atid->baw_head] = NULL; 3826 } 3827 INCR(atid->baw_head, ATH_TID_MAX_BUFS); 3828 INCR(tap->txa_start, IEEE80211_SEQ_RANGE); 3829 } 3830 3831 /* 3832 * If cleanup is required, defer TID scheduling 3833 * until all the HW queued packets have been 3834 * sent. 3835 */ 3836 if (! atid->cleanup_inprogress) 3837 ath_tx_tid_resume(sc, atid); 3838 3839 if (atid->cleanup_inprogress) 3840 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 3841 "%s: TID %d: cleanup needed: %d packets\n", 3842 __func__, tid, atid->incomp); 3843 ATH_TX_UNLOCK(sc); 3844 3845 /* Handle completing frames and fail them */ 3846 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 3847 TAILQ_REMOVE(&bf_cq, bf, bf_list); 3848 ath_tx_default_comp(sc, bf, 1); 3849 } 3850 } 3851 3852 static struct ath_buf * 3853 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, 3854 struct ath_tid *tid, struct ath_buf *bf) 3855 { 3856 struct ath_buf *nbf; 3857 int error; 3858 3859 /* 3860 * Clone the buffer. This will handle the dma unmap and 3861 * copy the node reference to the new buffer. If this 3862 * works out, 'bf' will have no DMA mapping, no mbuf 3863 * pointer and no node reference. 3864 */ 3865 nbf = ath_buf_clone(sc, bf); 3866 3867 #if 0 3868 device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n", 3869 __func__); 3870 #endif 3871 3872 if (nbf == NULL) { 3873 /* Failed to clone */ 3874 device_printf(sc->sc_dev, 3875 "%s: failed to clone a busy buffer\n", 3876 __func__); 3877 return NULL; 3878 } 3879 3880 /* Setup the dma for the new buffer */ 3881 error = ath_tx_dmasetup(sc, nbf, nbf->bf_m); 3882 if (error != 0) { 3883 device_printf(sc->sc_dev, 3884 "%s: failed to setup dma for clone\n", 3885 __func__); 3886 /* 3887 * Put this at the head of the list, not tail; 3888 * that way it doesn't interfere with the 3889 * busy buffer logic (which uses the tail of 3890 * the list.) 3891 */ 3892 ATH_TXBUF_LOCK(sc); 3893 ath_returnbuf_head(sc, nbf); 3894 ATH_TXBUF_UNLOCK(sc); 3895 return NULL; 3896 } 3897 3898 /* Update BAW if required, before we free the original buf */ 3899 if (bf->bf_state.bfs_dobaw) 3900 ath_tx_switch_baw_buf(sc, an, tid, bf, nbf); 3901 3902 /* Free original buffer; return new buffer */ 3903 ath_freebuf(sc, bf); 3904 3905 return nbf; 3906 } 3907 3908 /* 3909 * Handle retrying an unaggregate frame in an aggregate 3910 * session. 3911 * 3912 * If too many retries occur, pause the TID, wait for 3913 * any further retransmits (as there's no reason why 3914 * non-aggregate frames in an aggregate session are 3915 * transmitted in-order; they just have to be in-BAW) 3916 * and then queue a BAR. 3917 */ 3918 static void 3919 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf) 3920 { 3921 struct ieee80211_node *ni = bf->bf_node; 3922 struct ath_node *an = ATH_NODE(ni); 3923 int tid = bf->bf_state.bfs_tid; 3924 struct ath_tid *atid = &an->an_tid[tid]; 3925 struct ieee80211_tx_ampdu *tap; 3926 3927 ATH_TX_LOCK(sc); 3928 3929 tap = ath_tx_get_tx_tid(an, tid); 3930 3931 /* 3932 * If the buffer is marked as busy, we can't directly 3933 * reuse it. Instead, try to clone the buffer. 3934 * If the clone is successful, recycle the old buffer. 3935 * If the clone is unsuccessful, set bfs_retries to max 3936 * to force the next bit of code to free the buffer 3937 * for us. 3938 */ 3939 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 3940 (bf->bf_flags & ATH_BUF_BUSY)) { 3941 struct ath_buf *nbf; 3942 nbf = ath_tx_retry_clone(sc, an, atid, bf); 3943 if (nbf) 3944 /* bf has been freed at this point */ 3945 bf = nbf; 3946 else 3947 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 3948 } 3949 3950 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 3951 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 3952 "%s: exceeded retries; seqno %d\n", 3953 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3954 sc->sc_stats.ast_tx_swretrymax++; 3955 3956 /* Update BAW anyway */ 3957 if (bf->bf_state.bfs_dobaw) { 3958 ath_tx_update_baw(sc, an, atid, bf); 3959 if (! bf->bf_state.bfs_addedbaw) 3960 device_printf(sc->sc_dev, 3961 "%s: wasn't added: seqno %d\n", 3962 __func__, SEQNO(bf->bf_state.bfs_seqno)); 3963 } 3964 bf->bf_state.bfs_dobaw = 0; 3965 3966 /* Suspend the TX queue and get ready to send the BAR */ 3967 ath_tx_tid_bar_suspend(sc, atid); 3968 3969 /* Send the BAR if there are no other frames waiting */ 3970 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3971 ath_tx_tid_bar_tx(sc, atid); 3972 3973 ATH_TX_UNLOCK(sc); 3974 3975 /* Free buffer, bf is free after this call */ 3976 ath_tx_default_comp(sc, bf, 0); 3977 return; 3978 } 3979 3980 /* 3981 * This increments the retry counter as well as 3982 * sets the retry flag in the ath_buf and packet 3983 * body. 3984 */ 3985 ath_tx_set_retry(sc, bf); 3986 sc->sc_stats.ast_tx_swretries++; 3987 3988 /* 3989 * Insert this at the head of the queue, so it's 3990 * retried before any current/subsequent frames. 3991 */ 3992 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 3993 ath_tx_tid_sched(sc, atid); 3994 /* Send the BAR if there are no other frames waiting */ 3995 if (ath_tx_tid_bar_tx_ready(sc, atid)) 3996 ath_tx_tid_bar_tx(sc, atid); 3997 3998 ATH_TX_UNLOCK(sc); 3999 } 4000 4001 /* 4002 * Common code for aggregate excessive retry/subframe retry. 4003 * If retrying, queues buffers to bf_q. If not, frees the 4004 * buffers. 4005 * 4006 * XXX should unify this with ath_tx_aggr_retry_unaggr() 4007 */ 4008 static int 4009 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf, 4010 ath_bufhead *bf_q) 4011 { 4012 struct ieee80211_node *ni = bf->bf_node; 4013 struct ath_node *an = ATH_NODE(ni); 4014 int tid = bf->bf_state.bfs_tid; 4015 struct ath_tid *atid = &an->an_tid[tid]; 4016 4017 ATH_TX_LOCK_ASSERT(sc); 4018 4019 /* XXX clr11naggr should be done for all subframes */ 4020 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4021 ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0); 4022 4023 /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */ 4024 4025 /* 4026 * If the buffer is marked as busy, we can't directly 4027 * reuse it. Instead, try to clone the buffer. 4028 * If the clone is successful, recycle the old buffer. 4029 * If the clone is unsuccessful, set bfs_retries to max 4030 * to force the next bit of code to free the buffer 4031 * for us. 4032 */ 4033 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && 4034 (bf->bf_flags & ATH_BUF_BUSY)) { 4035 struct ath_buf *nbf; 4036 nbf = ath_tx_retry_clone(sc, an, atid, bf); 4037 if (nbf) 4038 /* bf has been freed at this point */ 4039 bf = nbf; 4040 else 4041 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; 4042 } 4043 4044 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { 4045 sc->sc_stats.ast_tx_swretrymax++; 4046 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, 4047 "%s: max retries: seqno %d\n", 4048 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4049 ath_tx_update_baw(sc, an, atid, bf); 4050 if (! bf->bf_state.bfs_addedbaw) 4051 device_printf(sc->sc_dev, 4052 "%s: wasn't added: seqno %d\n", 4053 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4054 bf->bf_state.bfs_dobaw = 0; 4055 return 1; 4056 } 4057 4058 ath_tx_set_retry(sc, bf); 4059 sc->sc_stats.ast_tx_swretries++; 4060 bf->bf_next = NULL; /* Just to make sure */ 4061 4062 /* Clear the aggregate state */ 4063 bf->bf_state.bfs_aggr = 0; 4064 bf->bf_state.bfs_ndelim = 0; /* ??? needed? */ 4065 bf->bf_state.bfs_nframes = 1; 4066 4067 TAILQ_INSERT_TAIL(bf_q, bf, bf_list); 4068 return 0; 4069 } 4070 4071 /* 4072 * error pkt completion for an aggregate destination 4073 */ 4074 static void 4075 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first, 4076 struct ath_tid *tid) 4077 { 4078 struct ieee80211_node *ni = bf_first->bf_node; 4079 struct ath_node *an = ATH_NODE(ni); 4080 struct ath_buf *bf_next, *bf; 4081 ath_bufhead bf_q; 4082 int drops = 0; 4083 struct ieee80211_tx_ampdu *tap; 4084 ath_bufhead bf_cq; 4085 4086 TAILQ_INIT(&bf_q); 4087 TAILQ_INIT(&bf_cq); 4088 4089 /* 4090 * Update rate control - all frames have failed. 4091 * 4092 * XXX use the length in the first frame in the series; 4093 * XXX just so things are consistent for now. 4094 */ 4095 ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc, 4096 &bf_first->bf_status.ds_txstat, 4097 bf_first->bf_state.bfs_pktlen, 4098 bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes); 4099 4100 ATH_TX_LOCK(sc); 4101 tap = ath_tx_get_tx_tid(an, tid->tid); 4102 sc->sc_stats.ast_tx_aggr_failall++; 4103 4104 /* Retry all subframes */ 4105 bf = bf_first; 4106 while (bf) { 4107 bf_next = bf->bf_next; 4108 bf->bf_next = NULL; /* Remove it from the aggr list */ 4109 sc->sc_stats.ast_tx_aggr_fail++; 4110 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4111 drops++; 4112 bf->bf_next = NULL; 4113 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4114 } 4115 bf = bf_next; 4116 } 4117 4118 /* Prepend all frames to the beginning of the queue */ 4119 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4120 TAILQ_REMOVE(&bf_q, bf, bf_list); 4121 ATH_TID_INSERT_HEAD(tid, bf, bf_list); 4122 } 4123 4124 /* 4125 * Schedule the TID to be re-tried. 4126 */ 4127 ath_tx_tid_sched(sc, tid); 4128 4129 /* 4130 * send bar if we dropped any frames 4131 * 4132 * Keep the txq lock held for now, as we need to ensure 4133 * that ni_txseqs[] is consistent (as it's being updated 4134 * in the ifnet TX context or raw TX context.) 4135 */ 4136 if (drops) { 4137 /* Suspend the TX queue and get ready to send the BAR */ 4138 ath_tx_tid_bar_suspend(sc, tid); 4139 } 4140 4141 /* 4142 * Send BAR if required 4143 */ 4144 if (ath_tx_tid_bar_tx_ready(sc, tid)) 4145 ath_tx_tid_bar_tx(sc, tid); 4146 4147 ATH_TX_UNLOCK(sc); 4148 4149 /* Complete frames which errored out */ 4150 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4151 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4152 ath_tx_default_comp(sc, bf, 0); 4153 } 4154 } 4155 4156 /* 4157 * Handle clean-up of packets from an aggregate list. 4158 * 4159 * There's no need to update the BAW here - the session is being 4160 * torn down. 4161 */ 4162 static void 4163 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first) 4164 { 4165 struct ath_buf *bf, *bf_next; 4166 struct ieee80211_node *ni = bf_first->bf_node; 4167 struct ath_node *an = ATH_NODE(ni); 4168 int tid = bf_first->bf_state.bfs_tid; 4169 struct ath_tid *atid = &an->an_tid[tid]; 4170 4171 ATH_TX_LOCK(sc); 4172 4173 /* update incomp */ 4174 bf = bf_first; 4175 while (bf) { 4176 atid->incomp--; 4177 bf = bf->bf_next; 4178 } 4179 4180 if (atid->incomp == 0) { 4181 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 4182 "%s: TID %d: cleaned up! resume!\n", 4183 __func__, tid); 4184 atid->cleanup_inprogress = 0; 4185 ath_tx_tid_resume(sc, atid); 4186 } 4187 4188 /* Send BAR if required */ 4189 /* XXX why would we send a BAR when transitioning to non-aggregation? */ 4190 /* 4191 * XXX TODO: we should likely just tear down the BAR state here, 4192 * rather than sending a BAR. 4193 */ 4194 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4195 ath_tx_tid_bar_tx(sc, atid); 4196 4197 ATH_TX_UNLOCK(sc); 4198 4199 /* Handle frame completion */ 4200 bf = bf_first; 4201 while (bf) { 4202 bf_next = bf->bf_next; 4203 ath_tx_default_comp(sc, bf, 1); 4204 bf = bf_next; 4205 } 4206 } 4207 4208 /* 4209 * Handle completion of an set of aggregate frames. 4210 * 4211 * Note: the completion handler is the last descriptor in the aggregate, 4212 * not the last descriptor in the first frame. 4213 */ 4214 static void 4215 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, 4216 int fail) 4217 { 4218 //struct ath_desc *ds = bf->bf_lastds; 4219 struct ieee80211_node *ni = bf_first->bf_node; 4220 struct ath_node *an = ATH_NODE(ni); 4221 int tid = bf_first->bf_state.bfs_tid; 4222 struct ath_tid *atid = &an->an_tid[tid]; 4223 struct ath_tx_status ts; 4224 struct ieee80211_tx_ampdu *tap; 4225 ath_bufhead bf_q; 4226 ath_bufhead bf_cq; 4227 int seq_st, tx_ok; 4228 int hasba, isaggr; 4229 uint32_t ba[2]; 4230 struct ath_buf *bf, *bf_next; 4231 int ba_index; 4232 int drops = 0; 4233 int nframes = 0, nbad = 0, nf; 4234 int pktlen; 4235 /* XXX there's too much on the stack? */ 4236 struct ath_rc_series rc[ATH_RC_NUM]; 4237 int txseq; 4238 4239 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n", 4240 __func__, atid->hwq_depth); 4241 4242 /* 4243 * Take a copy; this may be needed -after- bf_first 4244 * has been completed and freed. 4245 */ 4246 ts = bf_first->bf_status.ds_txstat; 4247 4248 TAILQ_INIT(&bf_q); 4249 TAILQ_INIT(&bf_cq); 4250 4251 /* The TID state is kept behind the TXQ lock */ 4252 ATH_TX_LOCK(sc); 4253 4254 atid->hwq_depth--; 4255 if (atid->hwq_depth < 0) 4256 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4257 __func__, atid->hwq_depth); 4258 4259 /* 4260 * If the TID is filtered, handle completing the filter 4261 * transition before potentially kicking it to the cleanup 4262 * function. 4263 * 4264 * XXX this is duplicate work, ew. 4265 */ 4266 if (atid->isfiltered) 4267 ath_tx_tid_filt_comp_complete(sc, atid); 4268 4269 /* 4270 * Punt cleanup to the relevant function, not our problem now 4271 */ 4272 if (atid->cleanup_inprogress) { 4273 if (atid->isfiltered) 4274 device_printf(sc->sc_dev, 4275 "%s: isfiltered=1, normal_comp?\n", 4276 __func__); 4277 ATH_TX_UNLOCK(sc); 4278 ath_tx_comp_cleanup_aggr(sc, bf_first); 4279 return; 4280 } 4281 4282 /* 4283 * If the frame is filtered, transition to filtered frame 4284 * mode and add this to the filtered frame list. 4285 * 4286 * XXX TODO: figure out how this interoperates with 4287 * BAR, pause and cleanup states. 4288 */ 4289 if ((ts.ts_status & HAL_TXERR_FILT) || 4290 (ts.ts_status != 0 && atid->isfiltered)) { 4291 if (fail != 0) 4292 device_printf(sc->sc_dev, 4293 "%s: isfiltered=1, fail=%d\n", __func__, fail); 4294 ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq); 4295 4296 /* Remove from BAW */ 4297 TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) { 4298 if (bf->bf_state.bfs_addedbaw) 4299 drops++; 4300 if (bf->bf_state.bfs_dobaw) { 4301 ath_tx_update_baw(sc, an, atid, bf); 4302 if (! bf->bf_state.bfs_addedbaw) 4303 device_printf(sc->sc_dev, 4304 "%s: wasn't added: seqno %d\n", 4305 __func__, 4306 SEQNO(bf->bf_state.bfs_seqno)); 4307 } 4308 bf->bf_state.bfs_dobaw = 0; 4309 } 4310 /* 4311 * If any intermediate frames in the BAW were dropped when 4312 * handling filtering things, send a BAR. 4313 */ 4314 if (drops) 4315 ath_tx_tid_bar_suspend(sc, atid); 4316 4317 /* 4318 * Finish up by sending a BAR if required and freeing 4319 * the frames outside of the TX lock. 4320 */ 4321 goto finish_send_bar; 4322 } 4323 4324 /* 4325 * XXX for now, use the first frame in the aggregate for 4326 * XXX rate control completion; it's at least consistent. 4327 */ 4328 pktlen = bf_first->bf_state.bfs_pktlen; 4329 4330 /* 4331 * Handle errors first! 4332 * 4333 * Here, handle _any_ error as a "exceeded retries" error. 4334 * Later on (when filtered frames are to be specially handled) 4335 * it'll have to be expanded. 4336 */ 4337 #if 0 4338 if (ts.ts_status & HAL_TXERR_XRETRY) { 4339 #endif 4340 if (ts.ts_status != 0) { 4341 ATH_TX_UNLOCK(sc); 4342 ath_tx_comp_aggr_error(sc, bf_first, atid); 4343 return; 4344 } 4345 4346 tap = ath_tx_get_tx_tid(an, tid); 4347 4348 /* 4349 * extract starting sequence and block-ack bitmap 4350 */ 4351 /* XXX endian-ness of seq_st, ba? */ 4352 seq_st = ts.ts_seqnum; 4353 hasba = !! (ts.ts_flags & HAL_TX_BA); 4354 tx_ok = (ts.ts_status == 0); 4355 isaggr = bf_first->bf_state.bfs_aggr; 4356 ba[0] = ts.ts_ba_low; 4357 ba[1] = ts.ts_ba_high; 4358 4359 /* 4360 * Copy the TX completion status and the rate control 4361 * series from the first descriptor, as it may be freed 4362 * before the rate control code can get its grubby fingers 4363 * into things. 4364 */ 4365 memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc)); 4366 4367 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4368 "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, " 4369 "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n", 4370 __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags, 4371 isaggr, seq_st, hasba, ba[0], ba[1]); 4372 4373 /* 4374 * The reference driver doesn't do this; it simply ignores 4375 * this check in its entirety. 4376 * 4377 * I've seen this occur when using iperf to send traffic 4378 * out tid 1 - the aggregate frames are all marked as TID 1, 4379 * but the TXSTATUS has TID=0. So, let's just ignore this 4380 * check. 4381 */ 4382 #if 0 4383 /* Occasionally, the MAC sends a tx status for the wrong TID. */ 4384 if (tid != ts.ts_tid) { 4385 device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n", 4386 __func__, tid, ts.ts_tid); 4387 tx_ok = 0; 4388 } 4389 #endif 4390 4391 /* AR5416 BA bug; this requires an interface reset */ 4392 if (isaggr && tx_ok && (! hasba)) { 4393 device_printf(sc->sc_dev, 4394 "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, " 4395 "seq_st=%d\n", 4396 __func__, hasba, tx_ok, isaggr, seq_st); 4397 /* XXX TODO: schedule an interface reset */ 4398 #ifdef ATH_DEBUG 4399 ath_printtxbuf(sc, bf_first, 4400 sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0); 4401 #endif 4402 } 4403 4404 /* 4405 * Walk the list of frames, figure out which ones were correctly 4406 * sent and which weren't. 4407 */ 4408 bf = bf_first; 4409 nf = bf_first->bf_state.bfs_nframes; 4410 4411 /* bf_first is going to be invalid once this list is walked */ 4412 bf_first = NULL; 4413 4414 /* 4415 * Walk the list of completed frames and determine 4416 * which need to be completed and which need to be 4417 * retransmitted. 4418 * 4419 * For completed frames, the completion functions need 4420 * to be called at the end of this function as the last 4421 * node reference may free the node. 4422 * 4423 * Finally, since the TXQ lock can't be held during the 4424 * completion callback (to avoid lock recursion), 4425 * the completion calls have to be done outside of the 4426 * lock. 4427 */ 4428 while (bf) { 4429 nframes++; 4430 ba_index = ATH_BA_INDEX(seq_st, 4431 SEQNO(bf->bf_state.bfs_seqno)); 4432 bf_next = bf->bf_next; 4433 bf->bf_next = NULL; /* Remove it from the aggr list */ 4434 4435 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4436 "%s: checking bf=%p seqno=%d; ack=%d\n", 4437 __func__, bf, SEQNO(bf->bf_state.bfs_seqno), 4438 ATH_BA_ISSET(ba, ba_index)); 4439 4440 if (tx_ok && ATH_BA_ISSET(ba, ba_index)) { 4441 sc->sc_stats.ast_tx_aggr_ok++; 4442 ath_tx_update_baw(sc, an, atid, bf); 4443 bf->bf_state.bfs_dobaw = 0; 4444 if (! bf->bf_state.bfs_addedbaw) 4445 device_printf(sc->sc_dev, 4446 "%s: wasn't added: seqno %d\n", 4447 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4448 bf->bf_next = NULL; 4449 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4450 } else { 4451 sc->sc_stats.ast_tx_aggr_fail++; 4452 if (ath_tx_retry_subframe(sc, bf, &bf_q)) { 4453 drops++; 4454 bf->bf_next = NULL; 4455 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); 4456 } 4457 nbad++; 4458 } 4459 bf = bf_next; 4460 } 4461 4462 /* 4463 * Now that the BAW updates have been done, unlock 4464 * 4465 * txseq is grabbed before the lock is released so we 4466 * have a consistent view of what -was- in the BAW. 4467 * Anything after this point will not yet have been 4468 * TXed. 4469 */ 4470 txseq = tap->txa_start; 4471 ATH_TX_UNLOCK(sc); 4472 4473 if (nframes != nf) 4474 device_printf(sc->sc_dev, 4475 "%s: num frames seen=%d; bf nframes=%d\n", 4476 __func__, nframes, nf); 4477 4478 /* 4479 * Now we know how many frames were bad, call the rate 4480 * control code. 4481 */ 4482 if (fail == 0) 4483 ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, 4484 nbad); 4485 4486 /* 4487 * send bar if we dropped any frames 4488 */ 4489 if (drops) { 4490 /* Suspend the TX queue and get ready to send the BAR */ 4491 ATH_TX_LOCK(sc); 4492 ath_tx_tid_bar_suspend(sc, atid); 4493 ATH_TX_UNLOCK(sc); 4494 } 4495 4496 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4497 "%s: txa_start now %d\n", __func__, tap->txa_start); 4498 4499 ATH_TX_LOCK(sc); 4500 4501 /* Prepend all frames to the beginning of the queue */ 4502 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { 4503 TAILQ_REMOVE(&bf_q, bf, bf_list); 4504 ATH_TID_INSERT_HEAD(atid, bf, bf_list); 4505 } 4506 4507 /* 4508 * Reschedule to grab some further frames. 4509 */ 4510 ath_tx_tid_sched(sc, atid); 4511 4512 /* 4513 * If the queue is filtered, re-schedule as required. 4514 * 4515 * This is required as there may be a subsequent TX descriptor 4516 * for this end-node that has CLRDMASK set, so it's quite possible 4517 * that a filtered frame will be followed by a non-filtered 4518 * (complete or otherwise) frame. 4519 * 4520 * XXX should we do this before we complete the frame? 4521 */ 4522 if (atid->isfiltered) 4523 ath_tx_tid_filt_comp_complete(sc, atid); 4524 4525 finish_send_bar: 4526 4527 /* 4528 * Send BAR if required 4529 */ 4530 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4531 ath_tx_tid_bar_tx(sc, atid); 4532 4533 ATH_TX_UNLOCK(sc); 4534 4535 /* Do deferred completion */ 4536 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { 4537 TAILQ_REMOVE(&bf_cq, bf, bf_list); 4538 ath_tx_default_comp(sc, bf, 0); 4539 } 4540 } 4541 4542 /* 4543 * Handle completion of unaggregated frames in an ADDBA 4544 * session. 4545 * 4546 * Fail is set to 1 if the entry is being freed via a call to 4547 * ath_tx_draintxq(). 4548 */ 4549 static void 4550 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail) 4551 { 4552 struct ieee80211_node *ni = bf->bf_node; 4553 struct ath_node *an = ATH_NODE(ni); 4554 int tid = bf->bf_state.bfs_tid; 4555 struct ath_tid *atid = &an->an_tid[tid]; 4556 struct ath_tx_status ts; 4557 int drops = 0; 4558 4559 /* 4560 * Take a copy of this; filtering/cloning the frame may free the 4561 * bf pointer. 4562 */ 4563 ts = bf->bf_status.ds_txstat; 4564 4565 /* 4566 * Update rate control status here, before we possibly 4567 * punt to retry or cleanup. 4568 * 4569 * Do it outside of the TXQ lock. 4570 */ 4571 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) 4572 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, 4573 &bf->bf_status.ds_txstat, 4574 bf->bf_state.bfs_pktlen, 4575 1, (ts.ts_status == 0) ? 0 : 1); 4576 4577 /* 4578 * This is called early so atid->hwq_depth can be tracked. 4579 * This unfortunately means that it's released and regrabbed 4580 * during retry and cleanup. That's rather inefficient. 4581 */ 4582 ATH_TX_LOCK(sc); 4583 4584 if (tid == IEEE80211_NONQOS_TID) 4585 device_printf(sc->sc_dev, "%s: TID=16!\n", __func__); 4586 4587 DPRINTF(sc, ATH_DEBUG_SW_TX, 4588 "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n", 4589 __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth, 4590 SEQNO(bf->bf_state.bfs_seqno)); 4591 4592 atid->hwq_depth--; 4593 if (atid->hwq_depth < 0) 4594 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", 4595 __func__, atid->hwq_depth); 4596 4597 /* 4598 * If the TID is filtered, handle completing the filter 4599 * transition before potentially kicking it to the cleanup 4600 * function. 4601 */ 4602 if (atid->isfiltered) 4603 ath_tx_tid_filt_comp_complete(sc, atid); 4604 4605 /* 4606 * If a cleanup is in progress, punt to comp_cleanup; 4607 * rather than handling it here. It's thus their 4608 * responsibility to clean up, call the completion 4609 * function in net80211, etc. 4610 */ 4611 if (atid->cleanup_inprogress) { 4612 if (atid->isfiltered) 4613 device_printf(sc->sc_dev, 4614 "%s: isfiltered=1, normal_comp?\n", 4615 __func__); 4616 ATH_TX_UNLOCK(sc); 4617 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n", 4618 __func__); 4619 ath_tx_comp_cleanup_unaggr(sc, bf); 4620 return; 4621 } 4622 4623 /* 4624 * XXX TODO: how does cleanup, BAR and filtered frame handling 4625 * overlap? 4626 * 4627 * If the frame is filtered OR if it's any failure but 4628 * the TID is filtered, the frame must be added to the 4629 * filtered frame list. 4630 * 4631 * However - a busy buffer can't be added to the filtered 4632 * list as it will end up being recycled without having 4633 * been made available for the hardware. 4634 */ 4635 if ((ts.ts_status & HAL_TXERR_FILT) || 4636 (ts.ts_status != 0 && atid->isfiltered)) { 4637 int freeframe; 4638 4639 if (fail != 0) 4640 device_printf(sc->sc_dev, 4641 "%s: isfiltered=1, fail=%d\n", 4642 __func__, 4643 fail); 4644 freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf); 4645 if (freeframe) { 4646 /* Remove from BAW */ 4647 if (bf->bf_state.bfs_addedbaw) 4648 drops++; 4649 if (bf->bf_state.bfs_dobaw) { 4650 ath_tx_update_baw(sc, an, atid, bf); 4651 if (! bf->bf_state.bfs_addedbaw) 4652 device_printf(sc->sc_dev, 4653 "%s: wasn't added: seqno %d\n", 4654 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4655 } 4656 bf->bf_state.bfs_dobaw = 0; 4657 } 4658 4659 /* 4660 * If the frame couldn't be filtered, treat it as a drop and 4661 * prepare to send a BAR. 4662 */ 4663 if (freeframe && drops) 4664 ath_tx_tid_bar_suspend(sc, atid); 4665 4666 /* 4667 * Send BAR if required 4668 */ 4669 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4670 ath_tx_tid_bar_tx(sc, atid); 4671 4672 ATH_TX_UNLOCK(sc); 4673 /* 4674 * If freeframe is set, then the frame couldn't be 4675 * cloned and bf is still valid. Just complete/free it. 4676 */ 4677 if (freeframe) 4678 ath_tx_default_comp(sc, bf, fail); 4679 4680 4681 return; 4682 } 4683 /* 4684 * Don't bother with the retry check if all frames 4685 * are being failed (eg during queue deletion.) 4686 */ 4687 #if 0 4688 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) { 4689 #endif 4690 if (fail == 0 && ts.ts_status != 0) { 4691 ATH_TX_UNLOCK(sc); 4692 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n", 4693 __func__); 4694 ath_tx_aggr_retry_unaggr(sc, bf); 4695 return; 4696 } 4697 4698 /* Success? Complete */ 4699 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n", 4700 __func__, tid, SEQNO(bf->bf_state.bfs_seqno)); 4701 if (bf->bf_state.bfs_dobaw) { 4702 ath_tx_update_baw(sc, an, atid, bf); 4703 bf->bf_state.bfs_dobaw = 0; 4704 if (! bf->bf_state.bfs_addedbaw) 4705 device_printf(sc->sc_dev, 4706 "%s: wasn't added: seqno %d\n", 4707 __func__, SEQNO(bf->bf_state.bfs_seqno)); 4708 } 4709 4710 /* 4711 * If the queue is filtered, re-schedule as required. 4712 * 4713 * This is required as there may be a subsequent TX descriptor 4714 * for this end-node that has CLRDMASK set, so it's quite possible 4715 * that a filtered frame will be followed by a non-filtered 4716 * (complete or otherwise) frame. 4717 * 4718 * XXX should we do this before we complete the frame? 4719 */ 4720 if (atid->isfiltered) 4721 ath_tx_tid_filt_comp_complete(sc, atid); 4722 4723 /* 4724 * Send BAR if required 4725 */ 4726 if (ath_tx_tid_bar_tx_ready(sc, atid)) 4727 ath_tx_tid_bar_tx(sc, atid); 4728 4729 ATH_TX_UNLOCK(sc); 4730 4731 ath_tx_default_comp(sc, bf, fail); 4732 /* bf is freed at this point */ 4733 } 4734 4735 void 4736 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4737 { 4738 if (bf->bf_state.bfs_aggr) 4739 ath_tx_aggr_comp_aggr(sc, bf, fail); 4740 else 4741 ath_tx_aggr_comp_unaggr(sc, bf, fail); 4742 } 4743 4744 /* 4745 * Schedule some packets from the given node/TID to the hardware. 4746 * 4747 * This is the aggregate version. 4748 */ 4749 void 4750 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an, 4751 struct ath_tid *tid) 4752 { 4753 struct ath_buf *bf; 4754 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4755 struct ieee80211_tx_ampdu *tap; 4756 ATH_AGGR_STATUS status; 4757 ath_bufhead bf_q; 4758 4759 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid); 4760 ATH_TX_LOCK_ASSERT(sc); 4761 4762 tap = ath_tx_get_tx_tid(an, tid->tid); 4763 4764 if (tid->tid == IEEE80211_NONQOS_TID) 4765 device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n", 4766 __func__); 4767 4768 for (;;) { 4769 status = ATH_AGGR_DONE; 4770 4771 /* 4772 * If the upper layer has paused the TID, don't 4773 * queue any further packets. 4774 * 4775 * This can also occur from the completion task because 4776 * of packet loss; but as its serialised with this code, 4777 * it won't "appear" half way through queuing packets. 4778 */ 4779 if (tid->paused) 4780 break; 4781 4782 bf = ATH_TID_FIRST(tid); 4783 if (bf == NULL) { 4784 break; 4785 } 4786 4787 /* 4788 * If the packet doesn't fall within the BAW (eg a NULL 4789 * data frame), schedule it directly; continue. 4790 */ 4791 if (! bf->bf_state.bfs_dobaw) { 4792 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4793 "%s: non-baw packet\n", 4794 __func__); 4795 ATH_TID_REMOVE(tid, bf, bf_list); 4796 4797 if (bf->bf_state.bfs_nframes > 1) 4798 device_printf(sc->sc_dev, 4799 "%s: aggr=%d, nframes=%d\n", 4800 __func__, 4801 bf->bf_state.bfs_aggr, 4802 bf->bf_state.bfs_nframes); 4803 4804 /* 4805 * This shouldn't happen - such frames shouldn't 4806 * ever have been queued as an aggregate in the 4807 * first place. However, make sure the fields 4808 * are correctly setup just to be totally sure. 4809 */ 4810 bf->bf_state.bfs_aggr = 0; 4811 bf->bf_state.bfs_nframes = 1; 4812 4813 /* Update CLRDMASK just before this frame is queued */ 4814 ath_tx_update_clrdmask(sc, tid, bf); 4815 4816 ath_tx_do_ratelookup(sc, bf); 4817 ath_tx_calc_duration(sc, bf); 4818 ath_tx_calc_protection(sc, bf); 4819 ath_tx_set_rtscts(sc, bf); 4820 ath_tx_rate_fill_rcflags(sc, bf); 4821 ath_tx_setds(sc, bf); 4822 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4823 4824 sc->sc_aggr_stats.aggr_nonbaw_pkt++; 4825 4826 /* Queue the packet; continue */ 4827 goto queuepkt; 4828 } 4829 4830 TAILQ_INIT(&bf_q); 4831 4832 /* 4833 * Do a rate control lookup on the first frame in the 4834 * list. The rate control code needs that to occur 4835 * before it can determine whether to TX. 4836 * It's inaccurate because the rate control code doesn't 4837 * really "do" aggregate lookups, so it only considers 4838 * the size of the first frame. 4839 */ 4840 ath_tx_do_ratelookup(sc, bf); 4841 bf->bf_state.bfs_rc[3].rix = 0; 4842 bf->bf_state.bfs_rc[3].tries = 0; 4843 4844 ath_tx_calc_duration(sc, bf); 4845 ath_tx_calc_protection(sc, bf); 4846 4847 ath_tx_set_rtscts(sc, bf); 4848 ath_tx_rate_fill_rcflags(sc, bf); 4849 4850 status = ath_tx_form_aggr(sc, an, tid, &bf_q); 4851 4852 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4853 "%s: ath_tx_form_aggr() status=%d\n", __func__, status); 4854 4855 /* 4856 * No frames to be picked up - out of BAW 4857 */ 4858 if (TAILQ_EMPTY(&bf_q)) 4859 break; 4860 4861 /* 4862 * This assumes that the descriptor list in the ath_bufhead 4863 * are already linked together via bf_next pointers. 4864 */ 4865 bf = TAILQ_FIRST(&bf_q); 4866 4867 if (status == ATH_AGGR_8K_LIMITED) 4868 sc->sc_aggr_stats.aggr_rts_aggr_limited++; 4869 4870 /* 4871 * If it's the only frame send as non-aggregate 4872 * assume that ath_tx_form_aggr() has checked 4873 * whether it's in the BAW and added it appropriately. 4874 */ 4875 if (bf->bf_state.bfs_nframes == 1) { 4876 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4877 "%s: single-frame aggregate\n", __func__); 4878 4879 /* Update CLRDMASK just before this frame is queued */ 4880 ath_tx_update_clrdmask(sc, tid, bf); 4881 4882 bf->bf_state.bfs_aggr = 0; 4883 bf->bf_state.bfs_ndelim = 0; 4884 ath_tx_setds(sc, bf); 4885 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); 4886 if (status == ATH_AGGR_BAW_CLOSED) 4887 sc->sc_aggr_stats.aggr_baw_closed_single_pkt++; 4888 else 4889 sc->sc_aggr_stats.aggr_single_pkt++; 4890 } else { 4891 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, 4892 "%s: multi-frame aggregate: %d frames, " 4893 "length %d\n", 4894 __func__, bf->bf_state.bfs_nframes, 4895 bf->bf_state.bfs_al); 4896 bf->bf_state.bfs_aggr = 1; 4897 sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++; 4898 sc->sc_aggr_stats.aggr_aggr_pkt++; 4899 4900 /* Update CLRDMASK just before this frame is queued */ 4901 ath_tx_update_clrdmask(sc, tid, bf); 4902 4903 /* 4904 * Calculate the duration/protection as required. 4905 */ 4906 ath_tx_calc_duration(sc, bf); 4907 ath_tx_calc_protection(sc, bf); 4908 4909 /* 4910 * Update the rate and rtscts information based on the 4911 * rate decision made by the rate control code; 4912 * the first frame in the aggregate needs it. 4913 */ 4914 ath_tx_set_rtscts(sc, bf); 4915 4916 /* 4917 * Setup the relevant descriptor fields 4918 * for aggregation. The first descriptor 4919 * already points to the rest in the chain. 4920 */ 4921 ath_tx_setds_11n(sc, bf); 4922 4923 } 4924 queuepkt: 4925 /* Set completion handler, multi-frame aggregate or not */ 4926 bf->bf_comp = ath_tx_aggr_comp; 4927 4928 if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID) 4929 device_printf(sc->sc_dev, "%s: TID=16?\n", __func__); 4930 4931 /* Punt to txq */ 4932 ath_tx_handoff(sc, txq, bf); 4933 4934 /* Track outstanding buffer count to hardware */ 4935 /* aggregates are "one" buffer */ 4936 tid->hwq_depth++; 4937 4938 /* 4939 * Break out if ath_tx_form_aggr() indicated 4940 * there can't be any further progress (eg BAW is full.) 4941 * Checking for an empty txq is done above. 4942 * 4943 * XXX locking on txq here? 4944 */ 4945 if (txq->axq_aggr_depth >= sc->sc_hwq_limit || 4946 status == ATH_AGGR_BAW_CLOSED) 4947 break; 4948 } 4949 } 4950 4951 /* 4952 * Schedule some packets from the given node/TID to the hardware. 4953 */ 4954 void 4955 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an, 4956 struct ath_tid *tid) 4957 { 4958 struct ath_buf *bf; 4959 struct ath_txq *txq = sc->sc_ac2q[tid->ac]; 4960 4961 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n", 4962 __func__, an, tid->tid); 4963 4964 ATH_TX_LOCK_ASSERT(sc); 4965 4966 /* Check - is AMPDU pending or running? then print out something */ 4967 if (ath_tx_ampdu_pending(sc, an, tid->tid)) 4968 device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n", 4969 __func__, tid->tid); 4970 if (ath_tx_ampdu_running(sc, an, tid->tid)) 4971 device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n", 4972 __func__, tid->tid); 4973 4974 for (;;) { 4975 4976 /* 4977 * If the upper layers have paused the TID, don't 4978 * queue any further packets. 4979 */ 4980 if (tid->paused) 4981 break; 4982 4983 bf = ATH_TID_FIRST(tid); 4984 if (bf == NULL) { 4985 break; 4986 } 4987 4988 ATH_TID_REMOVE(tid, bf, bf_list); 4989 4990 /* Sanity check! */ 4991 if (tid->tid != bf->bf_state.bfs_tid) { 4992 device_printf(sc->sc_dev, "%s: bfs_tid %d !=" 4993 " tid %d\n", 4994 __func__, bf->bf_state.bfs_tid, tid->tid); 4995 } 4996 /* Normal completion handler */ 4997 bf->bf_comp = ath_tx_normal_comp; 4998 4999 /* 5000 * Override this for now, until the non-aggregate 5001 * completion handler correctly handles software retransmits. 5002 */ 5003 bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; 5004 5005 /* Update CLRDMASK just before this frame is queued */ 5006 ath_tx_update_clrdmask(sc, tid, bf); 5007 5008 /* Program descriptors + rate control */ 5009 ath_tx_do_ratelookup(sc, bf); 5010 ath_tx_calc_duration(sc, bf); 5011 ath_tx_calc_protection(sc, bf); 5012 ath_tx_set_rtscts(sc, bf); 5013 ath_tx_rate_fill_rcflags(sc, bf); 5014 ath_tx_setds(sc, bf); 5015 5016 /* Track outstanding buffer count to hardware */ 5017 /* aggregates are "one" buffer */ 5018 tid->hwq_depth++; 5019 5020 /* Punt to hardware or software txq */ 5021 ath_tx_handoff(sc, txq, bf); 5022 } 5023 } 5024 5025 /* 5026 * Schedule some packets to the given hardware queue. 5027 * 5028 * This function walks the list of TIDs (ie, ath_node TIDs 5029 * with queued traffic) and attempts to schedule traffic 5030 * from them. 5031 * 5032 * TID scheduling is implemented as a FIFO, with TIDs being 5033 * added to the end of the queue after some frames have been 5034 * scheduled. 5035 */ 5036 void 5037 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq) 5038 { 5039 struct ath_tid *tid, *next, *last; 5040 5041 ATH_TX_LOCK_ASSERT(sc); 5042 5043 /* 5044 * Don't schedule if the hardware queue is busy. 5045 * This (hopefully) gives some more time to aggregate 5046 * some packets in the aggregation queue. 5047 */ 5048 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 5049 sc->sc_aggr_stats.aggr_sched_nopkt++; 5050 return; 5051 } 5052 5053 last = TAILQ_LAST(&txq->axq_tidq, axq_t_s); 5054 5055 TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) { 5056 /* 5057 * Suspend paused queues here; they'll be resumed 5058 * once the addba completes or times out. 5059 */ 5060 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n", 5061 __func__, tid->tid, tid->paused); 5062 ath_tx_tid_unsched(sc, tid); 5063 if (tid->paused) { 5064 continue; 5065 } 5066 if (ath_tx_ampdu_running(sc, tid->an, tid->tid)) 5067 ath_tx_tid_hw_queue_aggr(sc, tid->an, tid); 5068 else 5069 ath_tx_tid_hw_queue_norm(sc, tid->an, tid); 5070 5071 /* Not empty? Re-schedule */ 5072 if (tid->axq_depth != 0) 5073 ath_tx_tid_sched(sc, tid); 5074 5075 /* Give the software queue time to aggregate more packets */ 5076 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { 5077 break; 5078 } 5079 5080 /* 5081 * If this was the last entry on the original list, stop. 5082 * Otherwise nodes that have been rescheduled onto the end 5083 * of the TID FIFO list will just keep being rescheduled. 5084 */ 5085 if (tid == last) 5086 break; 5087 } 5088 } 5089 5090 /* 5091 * TX addba handling 5092 */ 5093 5094 /* 5095 * Return net80211 TID struct pointer, or NULL for none 5096 */ 5097 struct ieee80211_tx_ampdu * 5098 ath_tx_get_tx_tid(struct ath_node *an, int tid) 5099 { 5100 struct ieee80211_node *ni = &an->an_node; 5101 struct ieee80211_tx_ampdu *tap; 5102 5103 if (tid == IEEE80211_NONQOS_TID) 5104 return NULL; 5105 5106 tap = &ni->ni_tx_ampdu[tid]; 5107 return tap; 5108 } 5109 5110 /* 5111 * Is AMPDU-TX running? 5112 */ 5113 static int 5114 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid) 5115 { 5116 struct ieee80211_tx_ampdu *tap; 5117 5118 if (tid == IEEE80211_NONQOS_TID) 5119 return 0; 5120 5121 tap = ath_tx_get_tx_tid(an, tid); 5122 if (tap == NULL) 5123 return 0; /* Not valid; default to not running */ 5124 5125 return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING); 5126 } 5127 5128 /* 5129 * Is AMPDU-TX negotiation pending? 5130 */ 5131 static int 5132 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid) 5133 { 5134 struct ieee80211_tx_ampdu *tap; 5135 5136 if (tid == IEEE80211_NONQOS_TID) 5137 return 0; 5138 5139 tap = ath_tx_get_tx_tid(an, tid); 5140 if (tap == NULL) 5141 return 0; /* Not valid; default to not pending */ 5142 5143 return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND); 5144 } 5145 5146 /* 5147 * Is AMPDU-TX pending for the given TID? 5148 */ 5149 5150 5151 /* 5152 * Method to handle sending an ADDBA request. 5153 * 5154 * We tap this so the relevant flags can be set to pause the TID 5155 * whilst waiting for the response. 5156 * 5157 * XXX there's no timeout handler we can override? 5158 */ 5159 int 5160 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5161 int dialogtoken, int baparamset, int batimeout) 5162 { 5163 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5164 int tid = tap->txa_tid; 5165 struct ath_node *an = ATH_NODE(ni); 5166 struct ath_tid *atid = &an->an_tid[tid]; 5167 5168 /* 5169 * XXX danger Will Robinson! 5170 * 5171 * Although the taskqueue may be running and scheduling some more 5172 * packets, these should all be _before_ the addba sequence number. 5173 * However, net80211 will keep self-assigning sequence numbers 5174 * until addba has been negotiated. 5175 * 5176 * In the past, these packets would be "paused" (which still works 5177 * fine, as they're being scheduled to the driver in the same 5178 * serialised method which is calling the addba request routine) 5179 * and when the aggregation session begins, they'll be dequeued 5180 * as aggregate packets and added to the BAW. However, now there's 5181 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these 5182 * packets. Thus they never get included in the BAW tracking and 5183 * this can cause the initial burst of packets after the addba 5184 * negotiation to "hang", as they quickly fall outside the BAW. 5185 * 5186 * The "eventual" solution should be to tag these packets with 5187 * dobaw. Although net80211 has given us a sequence number, 5188 * it'll be "after" the left edge of the BAW and thus it'll 5189 * fall within it. 5190 */ 5191 ATH_TX_LOCK(sc); 5192 /* 5193 * This is a bit annoying. Until net80211 HT code inherits some 5194 * (any) locking, we may have this called in parallel BUT only 5195 * one response/timeout will be called. Grr. 5196 */ 5197 if (atid->addba_tx_pending == 0) { 5198 ath_tx_tid_pause(sc, atid); 5199 atid->addba_tx_pending = 1; 5200 } 5201 ATH_TX_UNLOCK(sc); 5202 5203 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5204 "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n", 5205 __func__, dialogtoken, baparamset, batimeout); 5206 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5207 "%s: txa_start=%d, ni_txseqs=%d\n", 5208 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5209 5210 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 5211 batimeout); 5212 } 5213 5214 /* 5215 * Handle an ADDBA response. 5216 * 5217 * We unpause the queue so TX'ing can resume. 5218 * 5219 * Any packets TX'ed from this point should be "aggregate" (whether 5220 * aggregate or not) so the BAW is updated. 5221 * 5222 * Note! net80211 keeps self-assigning sequence numbers until 5223 * ampdu is negotiated. This means the initially-negotiated BAW left 5224 * edge won't match the ni->ni_txseq. 5225 * 5226 * So, being very dirty, the BAW left edge is "slid" here to match 5227 * ni->ni_txseq. 5228 * 5229 * What likely SHOULD happen is that all packets subsequent to the 5230 * addba request should be tagged as aggregate and queued as non-aggregate 5231 * frames; thus updating the BAW. For now though, I'll just slide the 5232 * window. 5233 */ 5234 int 5235 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5236 int status, int code, int batimeout) 5237 { 5238 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5239 int tid = tap->txa_tid; 5240 struct ath_node *an = ATH_NODE(ni); 5241 struct ath_tid *atid = &an->an_tid[tid]; 5242 int r; 5243 5244 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5245 "%s: called; status=%d, code=%d, batimeout=%d\n", __func__, 5246 status, code, batimeout); 5247 5248 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5249 "%s: txa_start=%d, ni_txseqs=%d\n", 5250 __func__, tap->txa_start, ni->ni_txseqs[tid]); 5251 5252 /* 5253 * Call this first, so the interface flags get updated 5254 * before the TID is unpaused. Otherwise a race condition 5255 * exists where the unpaused TID still doesn't yet have 5256 * IEEE80211_AGGR_RUNNING set. 5257 */ 5258 r = sc->sc_addba_response(ni, tap, status, code, batimeout); 5259 5260 ATH_TX_LOCK(sc); 5261 atid->addba_tx_pending = 0; 5262 /* 5263 * XXX dirty! 5264 * Slide the BAW left edge to wherever net80211 left it for us. 5265 * Read above for more information. 5266 */ 5267 tap->txa_start = ni->ni_txseqs[tid]; 5268 ath_tx_tid_resume(sc, atid); 5269 ATH_TX_UNLOCK(sc); 5270 return r; 5271 } 5272 5273 5274 /* 5275 * Stop ADDBA on a queue. 5276 * 5277 * This can be called whilst BAR TX is currently active on the queue, 5278 * so make sure this is unblocked before continuing. 5279 */ 5280 void 5281 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 5282 { 5283 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5284 int tid = tap->txa_tid; 5285 struct ath_node *an = ATH_NODE(ni); 5286 struct ath_tid *atid = &an->an_tid[tid]; 5287 5288 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__); 5289 5290 /* 5291 * Pause TID traffic early, so there aren't any races 5292 * Unblock the pending BAR held traffic, if it's currently paused. 5293 */ 5294 ATH_TX_LOCK(sc); 5295 ath_tx_tid_pause(sc, atid); 5296 if (atid->bar_wait) { 5297 /* 5298 * bar_unsuspend() expects bar_tx == 1, as it should be 5299 * called from the TX completion path. This quietens 5300 * the warning. It's cleared for us anyway. 5301 */ 5302 atid->bar_tx = 1; 5303 ath_tx_tid_bar_unsuspend(sc, atid); 5304 } 5305 ATH_TX_UNLOCK(sc); 5306 5307 /* There's no need to hold the TXQ lock here */ 5308 sc->sc_addba_stop(ni, tap); 5309 5310 /* 5311 * ath_tx_tid_cleanup will resume the TID if possible, otherwise 5312 * it'll set the cleanup flag, and it'll be unpaused once 5313 * things have been cleaned up. 5314 */ 5315 ath_tx_tid_cleanup(sc, an, tid); 5316 } 5317 5318 /* 5319 * Note: net80211 bar_timeout() doesn't call this function on BAR failure; 5320 * it simply tears down the aggregation session. Ew. 5321 * 5322 * It however will call ieee80211_ampdu_stop() which will call 5323 * ic->ic_addba_stop(). 5324 * 5325 * XXX This uses a hard-coded max BAR count value; the whole 5326 * XXX BAR TX success or failure should be better handled! 5327 */ 5328 void 5329 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5330 int status) 5331 { 5332 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5333 int tid = tap->txa_tid; 5334 struct ath_node *an = ATH_NODE(ni); 5335 struct ath_tid *atid = &an->an_tid[tid]; 5336 int attempts = tap->txa_attempts; 5337 5338 DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, 5339 "%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n", 5340 __func__, 5341 tap, 5342 atid, 5343 tap->txa_tid, 5344 atid->tid, 5345 status, 5346 attempts); 5347 5348 /* Note: This may update the BAW details */ 5349 sc->sc_bar_response(ni, tap, status); 5350 5351 /* Unpause the TID */ 5352 /* 5353 * XXX if this is attempt=50, the TID will be downgraded 5354 * XXX to a non-aggregate session. So we must unpause the 5355 * XXX TID here or it'll never be done. 5356 * 5357 * Also, don't call it if bar_tx/bar_wait are 0; something 5358 * has beaten us to the punch? (XXX figure out what?) 5359 */ 5360 if (status == 0 || attempts == 50) { 5361 ATH_TX_LOCK(sc); 5362 if (atid->bar_tx == 0 || atid->bar_wait == 0) 5363 device_printf(sc->sc_dev, 5364 "%s: huh? bar_tx=%d, bar_wait=%d\n", 5365 __func__, 5366 atid->bar_tx, atid->bar_wait); 5367 else 5368 ath_tx_tid_bar_unsuspend(sc, atid); 5369 ATH_TX_UNLOCK(sc); 5370 } 5371 } 5372 5373 /* 5374 * This is called whenever the pending ADDBA request times out. 5375 * Unpause and reschedule the TID. 5376 */ 5377 void 5378 ath_addba_response_timeout(struct ieee80211_node *ni, 5379 struct ieee80211_tx_ampdu *tap) 5380 { 5381 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5382 int tid = tap->txa_tid; 5383 struct ath_node *an = ATH_NODE(ni); 5384 struct ath_tid *atid = &an->an_tid[tid]; 5385 5386 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, 5387 "%s: called; resuming\n", __func__); 5388 5389 ATH_TX_LOCK(sc); 5390 atid->addba_tx_pending = 0; 5391 ATH_TX_UNLOCK(sc); 5392 5393 /* Note: This updates the aggregate state to (again) pending */ 5394 sc->sc_addba_response_timeout(ni, tap); 5395 5396 /* Unpause the TID; which reschedules it */ 5397 ATH_TX_LOCK(sc); 5398 ath_tx_tid_resume(sc, atid); 5399 ATH_TX_UNLOCK(sc); 5400 } 5401 5402 /* 5403 * Check if a node is asleep or not. 5404 */ 5405 int 5406 ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an) 5407 { 5408 5409 ATH_NODE_LOCK_ASSERT(an); 5410 5411 return (an->an_is_powersave); 5412 } 5413 5414 /* 5415 * Mark a node as currently "in powersaving." 5416 * This suspends all traffic on the node. 5417 * 5418 * This must be called with the node/tx locks free. 5419 * 5420 * XXX TODO: the locking silliness below is due to how the node 5421 * locking currently works. Right now, the node lock is grabbed 5422 * to do rate control lookups and these are done with the TX 5423 * queue lock held. This means the node lock can't be grabbed 5424 * first here or a LOR will occur. 5425 * 5426 * Eventually (hopefully!) the TX path code will only grab 5427 * the TXQ lock when transmitting and the ath_node lock when 5428 * doing node/TID operations. There are other complications - 5429 * the sched/unsched operations involve walking the per-txq 5430 * 'active tid' list and this requires both locks to be held. 5431 */ 5432 void 5433 ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an) 5434 { 5435 struct ath_tid *atid; 5436 struct ath_txq *txq; 5437 int tid; 5438 5439 ATH_NODE_UNLOCK_ASSERT(an); 5440 5441 /* 5442 * It's possible that a parallel call to ath_tx_node_wakeup() 5443 * will unpause these queues. 5444 * 5445 * The node lock can't just be grabbed here, as there's places 5446 * in the driver where the node lock is grabbed _within_ a 5447 * TXQ lock. 5448 * So, we do this delicately and unwind state if needed. 5449 * 5450 * + Pause all the queues 5451 * + Grab the node lock 5452 * + If the queue is already asleep, unpause and quit 5453 * + else just mark as asleep. 5454 * 5455 * A parallel sleep() call will just pause and then 5456 * find they're already paused, so undo it. 5457 * 5458 * A parallel wakeup() call will check if asleep is 1 5459 * and if it's not (ie, it's 0), it'll treat it as already 5460 * being awake. If it's 1, it'll mark it as 0 and then 5461 * unpause everything. 5462 * 5463 * (Talk about a delicate hack.) 5464 */ 5465 5466 /* Suspend all traffic on the node */ 5467 ATH_TX_LOCK(sc); 5468 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5469 atid = &an->an_tid[tid]; 5470 txq = sc->sc_ac2q[atid->ac]; 5471 5472 ath_tx_tid_pause(sc, atid); 5473 } 5474 ATH_TX_UNLOCK(sc); 5475 5476 ATH_NODE_LOCK(an); 5477 5478 /* In case of concurrency races from net80211.. */ 5479 if (an->an_is_powersave == 1) { 5480 ATH_NODE_UNLOCK(an); 5481 device_printf(sc->sc_dev, 5482 "%s: an=%p: node was already asleep\n", 5483 __func__, an); 5484 ATH_TX_LOCK(sc); 5485 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5486 atid = &an->an_tid[tid]; 5487 txq = sc->sc_ac2q[atid->ac]; 5488 5489 ath_tx_tid_resume(sc, atid); 5490 } 5491 ATH_TX_UNLOCK(sc); 5492 return; 5493 } 5494 5495 /* Mark node as in powersaving */ 5496 an->an_is_powersave = 1; 5497 5498 ATH_NODE_UNLOCK(an); 5499 } 5500 5501 /* 5502 * Mark a node as currently "awake." 5503 * This resumes all traffic to the node. 5504 */ 5505 void 5506 ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an) 5507 { 5508 struct ath_tid *atid; 5509 struct ath_txq *txq; 5510 int tid; 5511 5512 ATH_NODE_UNLOCK_ASSERT(an); 5513 ATH_NODE_LOCK(an); 5514 5515 /* In case of concurrency races from net80211.. */ 5516 if (an->an_is_powersave == 0) { 5517 ATH_NODE_UNLOCK(an); 5518 device_printf(sc->sc_dev, 5519 "%s: an=%p: node was already awake\n", 5520 __func__, an); 5521 return; 5522 } 5523 5524 /* Mark node as awake */ 5525 an->an_is_powersave = 0; 5526 5527 ATH_NODE_UNLOCK(an); 5528 5529 ATH_TX_LOCK(sc); 5530 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { 5531 atid = &an->an_tid[tid]; 5532 txq = sc->sc_ac2q[atid->ac]; 5533 5534 ath_tx_tid_resume(sc, atid); 5535 } 5536 ATH_TX_UNLOCK(sc); 5537 } 5538 5539 static int 5540 ath_legacy_dma_txsetup(struct ath_softc *sc) 5541 { 5542 5543 /* nothing new needed */ 5544 return (0); 5545 } 5546 5547 static int 5548 ath_legacy_dma_txteardown(struct ath_softc *sc) 5549 { 5550 5551 /* nothing new needed */ 5552 return (0); 5553 } 5554 5555 void 5556 ath_xmit_setup_legacy(struct ath_softc *sc) 5557 { 5558 /* 5559 * For now, just set the descriptor length to sizeof(ath_desc); 5560 * worry about extracting the real length out of the HAL later. 5561 */ 5562 sc->sc_tx_desclen = sizeof(struct ath_desc); 5563 sc->sc_tx_statuslen = sizeof(struct ath_desc); 5564 sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */ 5565 5566 sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup; 5567 sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown; 5568 sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func; 5569 5570 sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart; 5571 sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff; 5572 5573 sc->sc_tx.xmit_drain = ath_legacy_tx_drain; 5574 } 5575