xref: /freebsd/sys/dev/ath/if_ath_tx.c (revision 10b59a9b4add0320d52c15ce057dd697261e7dfc)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/errno.h>
55 #include <sys/callout.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kthread.h>
59 #include <sys/taskqueue.h>
60 #include <sys/priv.h>
61 
62 #include <machine/bus.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_llc.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_regdomain.h>
74 #ifdef IEEE80211_SUPPORT_SUPERG
75 #include <net80211/ieee80211_superg.h>
76 #endif
77 #ifdef IEEE80211_SUPPORT_TDMA
78 #include <net80211/ieee80211_tdma.h>
79 #endif
80 #include <net80211/ieee80211_ht.h>
81 
82 #include <net/bpf.h>
83 
84 #ifdef INET
85 #include <netinet/in.h>
86 #include <netinet/if_ether.h>
87 #endif
88 
89 #include <dev/ath/if_athvar.h>
90 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
91 #include <dev/ath/ath_hal/ah_diagcodes.h>
92 
93 #include <dev/ath/if_ath_debug.h>
94 
95 #ifdef ATH_TX99_DIAG
96 #include <dev/ath/ath_tx99/ath_tx99.h>
97 #endif
98 
99 #include <dev/ath/if_ath_misc.h>
100 #include <dev/ath/if_ath_tx.h>
101 #include <dev/ath/if_ath_tx_ht.h>
102 
103 /*
104  * How many retries to perform in software
105  */
106 #define	SWMAX_RETRIES		10
107 
108 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
109     int tid);
110 static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
111     int tid);
112 static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
113     struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
114 static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
115     struct ieee80211_node *ni, struct mbuf *m0, int *tid);
116 
117 /*
118  * Whether to use the 11n rate scenario functions or not
119  */
120 static inline int
121 ath_tx_is_11n(struct ath_softc *sc)
122 {
123 	return (sc->sc_ah->ah_magic == 0x20065416);
124 }
125 
126 /*
127  * Obtain the current TID from the given frame.
128  *
129  * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.)
130  * This has implications for which AC/priority the packet is placed
131  * in.
132  */
133 static int
134 ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
135 {
136 	const struct ieee80211_frame *wh;
137 	int pri = M_WME_GETAC(m0);
138 
139 	wh = mtod(m0, const struct ieee80211_frame *);
140 	if (! IEEE80211_QOS_HAS_SEQ(wh))
141 		return IEEE80211_NONQOS_TID;
142 	else
143 		return WME_AC_TO_TID(pri);
144 }
145 
146 /*
147  * Determine what the correct AC queue for the given frame
148  * should be.
149  *
150  * This code assumes that the TIDs map consistently to
151  * the underlying hardware (or software) ath_txq.
152  * Since the sender may try to set an AC which is
153  * arbitrary, non-QoS TIDs may end up being put on
154  * completely different ACs. There's no way to put a
155  * TID into multiple ath_txq's for scheduling, so
156  * for now we override the AC/TXQ selection and set
157  * non-QOS TID frames into the BE queue.
158  *
159  * This may be completely incorrect - specifically,
160  * some management frames may end up out of order
161  * compared to the QoS traffic they're controlling.
162  * I'll look into this later.
163  */
164 static int
165 ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
166 {
167 	const struct ieee80211_frame *wh;
168 	int pri = M_WME_GETAC(m0);
169 	wh = mtod(m0, const struct ieee80211_frame *);
170 	if (IEEE80211_QOS_HAS_SEQ(wh))
171 		return pri;
172 
173 	return WME_AC_BE;
174 }
175 
176 void
177 ath_txfrag_cleanup(struct ath_softc *sc,
178 	ath_bufhead *frags, struct ieee80211_node *ni)
179 {
180 	struct ath_buf *bf, *next;
181 
182 	ATH_TXBUF_LOCK_ASSERT(sc);
183 
184 	TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
185 		/* NB: bf assumed clean */
186 		TAILQ_REMOVE(frags, bf, bf_list);
187 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
188 		ieee80211_node_decref(ni);
189 	}
190 }
191 
192 /*
193  * Setup xmit of a fragmented frame.  Allocate a buffer
194  * for each frag and bump the node reference count to
195  * reflect the held reference to be setup by ath_tx_start.
196  */
197 int
198 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
199 	struct mbuf *m0, struct ieee80211_node *ni)
200 {
201 	struct mbuf *m;
202 	struct ath_buf *bf;
203 
204 	ATH_TXBUF_LOCK(sc);
205 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
206 		bf = _ath_getbuf_locked(sc);
207 		if (bf == NULL) {	/* out of buffers, cleanup */
208 			ath_txfrag_cleanup(sc, frags, ni);
209 			break;
210 		}
211 		ieee80211_node_incref(ni);
212 		TAILQ_INSERT_TAIL(frags, bf, bf_list);
213 	}
214 	ATH_TXBUF_UNLOCK(sc);
215 
216 	return !TAILQ_EMPTY(frags);
217 }
218 
219 /*
220  * Reclaim mbuf resources.  For fragmented frames we
221  * need to claim each frag chained with m_nextpkt.
222  */
223 void
224 ath_freetx(struct mbuf *m)
225 {
226 	struct mbuf *next;
227 
228 	do {
229 		next = m->m_nextpkt;
230 		m->m_nextpkt = NULL;
231 		m_freem(m);
232 	} while ((m = next) != NULL);
233 }
234 
235 static int
236 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
237 {
238 	struct mbuf *m;
239 	int error;
240 
241 	/*
242 	 * Load the DMA map so any coalescing is done.  This
243 	 * also calculates the number of descriptors we need.
244 	 */
245 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
246 				     bf->bf_segs, &bf->bf_nseg,
247 				     BUS_DMA_NOWAIT);
248 	if (error == EFBIG) {
249 		/* XXX packet requires too many descriptors */
250 		bf->bf_nseg = ATH_TXDESC+1;
251 	} else if (error != 0) {
252 		sc->sc_stats.ast_tx_busdma++;
253 		ath_freetx(m0);
254 		return error;
255 	}
256 	/*
257 	 * Discard null packets and check for packets that
258 	 * require too many TX descriptors.  We try to convert
259 	 * the latter to a cluster.
260 	 */
261 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
262 		sc->sc_stats.ast_tx_linear++;
263 		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
264 		if (m == NULL) {
265 			ath_freetx(m0);
266 			sc->sc_stats.ast_tx_nombuf++;
267 			return ENOMEM;
268 		}
269 		m0 = m;
270 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
271 					     bf->bf_segs, &bf->bf_nseg,
272 					     BUS_DMA_NOWAIT);
273 		if (error != 0) {
274 			sc->sc_stats.ast_tx_busdma++;
275 			ath_freetx(m0);
276 			return error;
277 		}
278 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
279 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
280 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
281 		sc->sc_stats.ast_tx_nodata++;
282 		ath_freetx(m0);
283 		return EIO;
284 	}
285 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
286 		__func__, m0, m0->m_pkthdr.len);
287 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
288 	bf->bf_m = m0;
289 
290 	return 0;
291 }
292 
293 /*
294  * Chain together segments+descriptors for a non-11n frame.
295  */
296 static void
297 ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf)
298 {
299 	struct ath_hal *ah = sc->sc_ah;
300 	struct ath_desc *ds, *ds0;
301 	int i;
302 
303 	/*
304 	 * Fillin the remainder of the descriptor info.
305 	 */
306 	ds0 = ds = bf->bf_desc;
307 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
308 		ds->ds_data = bf->bf_segs[i].ds_addr;
309 		if (i == bf->bf_nseg - 1)
310 			ds->ds_link = 0;
311 		else
312 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
313 		ath_hal_filltxdesc(ah, ds
314 			, bf->bf_segs[i].ds_len	/* segment length */
315 			, i == 0		/* first segment */
316 			, i == bf->bf_nseg - 1	/* last segment */
317 			, ds0			/* first descriptor */
318 		);
319 		DPRINTF(sc, ATH_DEBUG_XMIT,
320 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
321 			__func__, i, ds->ds_link, ds->ds_data,
322 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
323 		bf->bf_lastds = ds;
324 	}
325 }
326 
327 /*
328  * Fill in the descriptor list for a aggregate subframe.
329  *
330  * The subframe is returned with the ds_link field in the last subframe
331  * pointing to 0.
332  */
333 static void
334 ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf)
335 {
336 	struct ath_hal *ah = sc->sc_ah;
337 	struct ath_desc *ds, *ds0;
338 	int i;
339 
340 	ds0 = ds = bf->bf_desc;
341 
342 	/*
343 	 * There's no need to call ath_hal_setupfirsttxdesc here;
344 	 * That's only going to occur for the first frame in an aggregate.
345 	 */
346 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
347 		ds->ds_data = bf->bf_segs[i].ds_addr;
348 		if (i == bf->bf_nseg - 1)
349 			ds->ds_link = 0;
350 		else
351 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
352 
353 		/*
354 		 * This performs the setup for an aggregate frame.
355 		 * This includes enabling the aggregate flags if needed.
356 		 */
357 		ath_hal_chaintxdesc(ah, ds,
358 		    bf->bf_state.bfs_pktlen,
359 		    bf->bf_state.bfs_hdrlen,
360 		    HAL_PKT_TYPE_AMPDU,	/* forces aggregate bits to be set */
361 		    bf->bf_state.bfs_keyix,
362 		    0,			/* cipher, calculated from keyix */
363 		    bf->bf_state.bfs_ndelim,
364 		    bf->bf_segs[i].ds_len,	/* segment length */
365 		    i == 0,		/* first segment */
366 		    i == bf->bf_nseg - 1	/* last segment */
367 		);
368 
369 		DPRINTF(sc, ATH_DEBUG_XMIT,
370 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
371 			__func__, i, ds->ds_link, ds->ds_data,
372 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
373 		bf->bf_lastds = ds;
374 	}
375 }
376 
377 /*
378  * Setup segments+descriptors for an 11n aggregate.
379  * bf_first is the first buffer in the aggregate.
380  * The descriptor list must already been linked together using
381  * bf->bf_next.
382  */
383 static void
384 ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
385 {
386 	struct ath_buf *bf, *bf_prev = NULL;
387 
388 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
389 	    __func__, bf_first->bf_state.bfs_nframes,
390 	    bf_first->bf_state.bfs_al);
391 
392 	/*
393 	 * Setup all descriptors of all subframes.
394 	 */
395 	bf = bf_first;
396 	while (bf != NULL) {
397 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
398 		    "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
399 		    __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
400 		    SEQNO(bf->bf_state.bfs_seqno));
401 
402 		/* Sub-frame setup */
403 		ath_tx_chaindesclist_subframe(sc, bf);
404 
405 		/*
406 		 * Link the last descriptor of the previous frame
407 		 * to the beginning descriptor of this frame.
408 		 */
409 		if (bf_prev != NULL)
410 			bf_prev->bf_lastds->ds_link = bf->bf_daddr;
411 
412 		/* Save a copy so we can link the next descriptor in */
413 		bf_prev = bf;
414 		bf = bf->bf_next;
415 	}
416 
417 	/*
418 	 * Setup first descriptor of first frame.
419 	 * chaintxdesc() overwrites the descriptor entries;
420 	 * setupfirsttxdesc() merges in things.
421 	 * Otherwise various fields aren't set correctly (eg flags).
422 	 */
423 	ath_hal_setupfirsttxdesc(sc->sc_ah,
424 	    bf_first->bf_desc,
425 	    bf_first->bf_state.bfs_al,
426 	    bf_first->bf_state.bfs_flags | HAL_TXDESC_INTREQ,
427 	    bf_first->bf_state.bfs_txpower,
428 	    bf_first->bf_state.bfs_txrate0,
429 	    bf_first->bf_state.bfs_try0,
430 	    bf_first->bf_state.bfs_txantenna,
431 	    bf_first->bf_state.bfs_ctsrate,
432 	    bf_first->bf_state.bfs_ctsduration);
433 
434 	/*
435 	 * Setup the last descriptor in the list.
436 	 * bf_prev points to the last; bf is NULL here.
437 	 */
438 	ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_desc, bf_first->bf_desc);
439 
440 	/*
441 	 * Set the first descriptor bf_lastds field to point to
442 	 * the last descriptor in the last subframe, that's where
443 	 * the status update will occur.
444 	 */
445 	bf_first->bf_lastds = bf_prev->bf_lastds;
446 
447 	/*
448 	 * And bf_last in the first descriptor points to the end of
449 	 * the aggregate list.
450 	 */
451 	bf_first->bf_last = bf_prev;
452 
453 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
454 }
455 
456 static void
457 ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
458     struct ath_buf *bf)
459 {
460 	ATH_TXQ_LOCK_ASSERT(txq);
461 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
462 	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
463 	if (txq->axq_link != NULL) {
464 		struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s);
465 		struct ieee80211_frame *wh;
466 
467 		/* mark previous frame */
468 		wh = mtod(last->bf_m, struct ieee80211_frame *);
469 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
470 		bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
471 		    BUS_DMASYNC_PREWRITE);
472 
473 		/* link descriptor */
474 		*txq->axq_link = bf->bf_daddr;
475 	}
476 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
477 	txq->axq_link = &bf->bf_lastds->ds_link;
478 }
479 
480 /*
481  * Hand-off packet to a hardware queue.
482  */
483 static void
484 ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
485 {
486 	struct ath_hal *ah = sc->sc_ah;
487 
488 	/*
489 	 * Insert the frame on the outbound list and pass it on
490 	 * to the hardware.  Multicast frames buffered for power
491 	 * save stations and transmit from the CAB queue are stored
492 	 * on a s/w only queue and loaded on to the CAB queue in
493 	 * the SWBA handler since frames only go out on DTIM and
494 	 * to avoid possible races.
495 	 */
496 	ATH_TXQ_LOCK_ASSERT(txq);
497 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
498 	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
499 	KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
500 	     ("ath_tx_handoff_hw called for mcast queue"));
501 
502 #if 0
503 	/*
504 	 * This causes a LOR. Find out where the PCU lock is being
505 	 * held whilst the TXQ lock is grabbed - that shouldn't
506 	 * be occuring.
507 	 */
508 	ATH_PCU_LOCK(sc);
509 	if (sc->sc_inreset_cnt) {
510 		ATH_PCU_UNLOCK(sc);
511 		DPRINTF(sc, ATH_DEBUG_RESET,
512 		    "%s: called with sc_in_reset != 0\n",
513 		    __func__);
514 		DPRINTF(sc, ATH_DEBUG_XMIT,
515 		    "%s: queued: TXDP[%u] = %p (%p) depth %d\n",
516 		    __func__, txq->axq_qnum,
517 		    (caddr_t)bf->bf_daddr, bf->bf_desc,
518 		    txq->axq_depth);
519 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
520 		if (bf->bf_state.bfs_aggr)
521 			txq->axq_aggr_depth++;
522 		/*
523 		 * There's no need to update axq_link; the hardware
524 		 * is in reset and once the reset is complete, any
525 		 * non-empty queues will simply have DMA restarted.
526 		 */
527 		return;
528 		}
529 	ATH_PCU_UNLOCK(sc);
530 #endif
531 
532 	/* For now, so not to generate whitespace diffs */
533 	if (1) {
534 #ifdef IEEE80211_SUPPORT_TDMA
535 		int qbusy;
536 
537 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
538 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
539 		if (txq->axq_link == NULL) {
540 			/*
541 			 * Be careful writing the address to TXDP.  If
542 			 * the tx q is enabled then this write will be
543 			 * ignored.  Normally this is not an issue but
544 			 * when tdma is in use and the q is beacon gated
545 			 * this race can occur.  If the q is busy then
546 			 * defer the work to later--either when another
547 			 * packet comes along or when we prepare a beacon
548 			 * frame at SWBA.
549 			 */
550 			if (!qbusy) {
551 				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
552 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
553 				DPRINTF(sc, ATH_DEBUG_XMIT,
554 				    "%s: TXDP[%u] = %p (%p) depth %d\n",
555 				    __func__, txq->axq_qnum,
556 				    (caddr_t)bf->bf_daddr, bf->bf_desc,
557 				    txq->axq_depth);
558 			} else {
559 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
560 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
561 				    "%s: Q%u busy, defer enable\n", __func__,
562 				    txq->axq_qnum);
563 			}
564 		} else {
565 			*txq->axq_link = bf->bf_daddr;
566 			DPRINTF(sc, ATH_DEBUG_XMIT,
567 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
568 			    txq->axq_qnum, txq->axq_link,
569 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
570 			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
571 				/*
572 				 * The q was busy when we previously tried
573 				 * to write the address of the first buffer
574 				 * in the chain.  Since it's not busy now
575 				 * handle this chore.  We are certain the
576 				 * buffer at the front is the right one since
577 				 * axq_link is NULL only when the buffer list
578 				 * is/was empty.
579 				 */
580 				ath_hal_puttxbuf(ah, txq->axq_qnum,
581 					TAILQ_FIRST(&txq->axq_q)->bf_daddr);
582 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
583 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
584 				    "%s: Q%u restarted\n", __func__,
585 				    txq->axq_qnum);
586 			}
587 		}
588 #else
589 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
590 		if (txq->axq_link == NULL) {
591 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
592 			DPRINTF(sc, ATH_DEBUG_XMIT,
593 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
594 			    __func__, txq->axq_qnum,
595 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
596 			    txq->axq_depth);
597 		} else {
598 			*txq->axq_link = bf->bf_daddr;
599 			DPRINTF(sc, ATH_DEBUG_XMIT,
600 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
601 			    txq->axq_qnum, txq->axq_link,
602 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
603 		}
604 #endif /* IEEE80211_SUPPORT_TDMA */
605 		if (bf->bf_state.bfs_aggr)
606 			txq->axq_aggr_depth++;
607 		txq->axq_link = &bf->bf_lastds->ds_link;
608 		ath_hal_txstart(ah, txq->axq_qnum);
609 	}
610 }
611 
612 /*
613  * Restart TX DMA for the given TXQ.
614  *
615  * This must be called whether the queue is empty or not.
616  */
617 void
618 ath_txq_restart_dma(struct ath_softc *sc, struct ath_txq *txq)
619 {
620 	struct ath_hal *ah = sc->sc_ah;
621 	struct ath_buf *bf;
622 
623 	ATH_TXQ_LOCK_ASSERT(txq);
624 
625 	/* This is always going to be cleared, empty or not */
626 	txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
627 
628 	bf = TAILQ_FIRST(&txq->axq_q);
629 	if (bf == NULL)
630 		return;
631 
632 	ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
633 	txq->axq_link = &bf->bf_lastds->ds_link;
634 	ath_hal_txstart(ah, txq->axq_qnum);
635 }
636 
637 /*
638  * Hand off a packet to the hardware (or mcast queue.)
639  *
640  * The relevant hardware txq should be locked.
641  */
642 static void
643 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
644 {
645 	ATH_TXQ_LOCK_ASSERT(txq);
646 
647 	if (txq->axq_qnum == ATH_TXQ_SWQ)
648 		ath_tx_handoff_mcast(sc, txq, bf);
649 	else
650 		ath_tx_handoff_hw(sc, txq, bf);
651 }
652 
653 static int
654 ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
655     struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, int *keyix)
656 {
657 	if (iswep) {
658 		const struct ieee80211_cipher *cip;
659 		struct ieee80211_key *k;
660 
661 		/*
662 		 * Construct the 802.11 header+trailer for an encrypted
663 		 * frame. The only reason this can fail is because of an
664 		 * unknown or unsupported cipher/key type.
665 		 */
666 		k = ieee80211_crypto_encap(ni, m0);
667 		if (k == NULL) {
668 			/*
669 			 * This can happen when the key is yanked after the
670 			 * frame was queued.  Just discard the frame; the
671 			 * 802.11 layer counts failures and provides
672 			 * debugging/diagnostics.
673 			 */
674 			return 0;
675 		}
676 		/*
677 		 * Adjust the packet + header lengths for the crypto
678 		 * additions and calculate the h/w key index.  When
679 		 * a s/w mic is done the frame will have had any mic
680 		 * added to it prior to entry so m0->m_pkthdr.len will
681 		 * account for it. Otherwise we need to add it to the
682 		 * packet length.
683 		 */
684 		cip = k->wk_cipher;
685 		(*hdrlen) += cip->ic_header;
686 		(*pktlen) += cip->ic_header + cip->ic_trailer;
687 		/* NB: frags always have any TKIP MIC done in s/w */
688 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
689 			(*pktlen) += cip->ic_miclen;
690 		(*keyix) = k->wk_keyix;
691 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
692 		/*
693 		 * Use station key cache slot, if assigned.
694 		 */
695 		(*keyix) = ni->ni_ucastkey.wk_keyix;
696 		if ((*keyix) == IEEE80211_KEYIX_NONE)
697 			(*keyix) = HAL_TXKEYIX_INVALID;
698 	} else
699 		(*keyix) = HAL_TXKEYIX_INVALID;
700 
701 	return 1;
702 }
703 
704 static uint8_t
705 ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
706     int cix, int shortPreamble)
707 {
708 	uint8_t ctsrate;
709 
710 	/*
711 	 * CTS transmit rate is derived from the transmit rate
712 	 * by looking in the h/w rate table.  We must also factor
713 	 * in whether or not a short preamble is to be used.
714 	 */
715 	/* NB: cix is set above where RTS/CTS is enabled */
716 	KASSERT(cix != 0xff, ("cix not setup"));
717 	ctsrate = rt->info[cix].rateCode;
718 
719 	/* XXX this should only matter for legacy rates */
720 	if (shortPreamble)
721 		ctsrate |= rt->info[cix].shortPreamble;
722 
723 	return ctsrate;
724 }
725 
726 /*
727  * Calculate the RTS/CTS duration for legacy frames.
728  */
729 static int
730 ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
731     int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
732     int flags)
733 {
734 	int ctsduration = 0;
735 
736 	/* This mustn't be called for HT modes */
737 	if (rt->info[cix].phy == IEEE80211_T_HT) {
738 		printf("%s: HT rate where it shouldn't be (0x%x)\n",
739 		    __func__, rt->info[cix].rateCode);
740 		return -1;
741 	}
742 
743 	/*
744 	 * Compute the transmit duration based on the frame
745 	 * size and the size of an ACK frame.  We call into the
746 	 * HAL to do the computation since it depends on the
747 	 * characteristics of the actual PHY being used.
748 	 *
749 	 * NB: CTS is assumed the same size as an ACK so we can
750 	 *     use the precalculated ACK durations.
751 	 */
752 	if (shortPreamble) {
753 		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
754 			ctsduration += rt->info[cix].spAckDuration;
755 		ctsduration += ath_hal_computetxtime(ah,
756 			rt, pktlen, rix, AH_TRUE);
757 		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
758 			ctsduration += rt->info[rix].spAckDuration;
759 	} else {
760 		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
761 			ctsduration += rt->info[cix].lpAckDuration;
762 		ctsduration += ath_hal_computetxtime(ah,
763 			rt, pktlen, rix, AH_FALSE);
764 		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
765 			ctsduration += rt->info[rix].lpAckDuration;
766 	}
767 
768 	return ctsduration;
769 }
770 
771 /*
772  * Update the given ath_buf with updated rts/cts setup and duration
773  * values.
774  *
775  * To support rate lookups for each software retry, the rts/cts rate
776  * and cts duration must be re-calculated.
777  *
778  * This function assumes the RTS/CTS flags have been set as needed;
779  * mrr has been disabled; and the rate control lookup has been done.
780  *
781  * XXX TODO: MRR need only be disabled for the pre-11n NICs.
782  * XXX The 11n NICs support per-rate RTS/CTS configuration.
783  */
784 static void
785 ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
786 {
787 	uint16_t ctsduration = 0;
788 	uint8_t ctsrate = 0;
789 	uint8_t rix = bf->bf_state.bfs_rc[0].rix;
790 	uint8_t cix = 0;
791 	const HAL_RATE_TABLE *rt = sc->sc_currates;
792 
793 	/*
794 	 * No RTS/CTS enabled? Don't bother.
795 	 */
796 	if ((bf->bf_state.bfs_flags &
797 	    (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
798 		/* XXX is this really needed? */
799 		bf->bf_state.bfs_ctsrate = 0;
800 		bf->bf_state.bfs_ctsduration = 0;
801 		return;
802 	}
803 
804 	/*
805 	 * If protection is enabled, use the protection rix control
806 	 * rate. Otherwise use the rate0 control rate.
807 	 */
808 	if (bf->bf_state.bfs_doprot)
809 		rix = sc->sc_protrix;
810 	else
811 		rix = bf->bf_state.bfs_rc[0].rix;
812 
813 	/*
814 	 * If the raw path has hard-coded ctsrate0 to something,
815 	 * use it.
816 	 */
817 	if (bf->bf_state.bfs_ctsrate0 != 0)
818 		cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
819 	else
820 		/* Control rate from above */
821 		cix = rt->info[rix].controlRate;
822 
823 	/* Calculate the rtscts rate for the given cix */
824 	ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
825 	    bf->bf_state.bfs_shpream);
826 
827 	/* The 11n chipsets do ctsduration calculations for you */
828 	if (! ath_tx_is_11n(sc))
829 		ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
830 		    bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
831 		    rt, bf->bf_state.bfs_flags);
832 
833 	/* Squirrel away in ath_buf */
834 	bf->bf_state.bfs_ctsrate = ctsrate;
835 	bf->bf_state.bfs_ctsduration = ctsduration;
836 
837 	/*
838 	 * Must disable multi-rate retry when using RTS/CTS.
839 	 * XXX TODO: only for pre-11n NICs.
840 	 */
841 	bf->bf_state.bfs_ismrr = 0;
842 	bf->bf_state.bfs_try0 =
843 	    bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY;	/* XXX ew */
844 }
845 
846 /*
847  * Setup the descriptor chain for a normal or fast-frame
848  * frame.
849  */
850 static void
851 ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
852 {
853 	struct ath_desc *ds = bf->bf_desc;
854 	struct ath_hal *ah = sc->sc_ah;
855 
856 	ath_hal_setuptxdesc(ah, ds
857 		, bf->bf_state.bfs_pktlen	/* packet length */
858 		, bf->bf_state.bfs_hdrlen	/* header length */
859 		, bf->bf_state.bfs_atype	/* Atheros packet type */
860 		, bf->bf_state.bfs_txpower	/* txpower */
861 		, bf->bf_state.bfs_txrate0
862 		, bf->bf_state.bfs_try0		/* series 0 rate/tries */
863 		, bf->bf_state.bfs_keyix	/* key cache index */
864 		, bf->bf_state.bfs_txantenna	/* antenna mode */
865 		, bf->bf_state.bfs_flags	/* flags */
866 		, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
867 		, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
868 	);
869 
870 	/*
871 	 * This will be overriden when the descriptor chain is written.
872 	 */
873 	bf->bf_lastds = ds;
874 	bf->bf_last = bf;
875 
876 	/* XXX TODO: Setup descriptor chain */
877 }
878 
879 /*
880  * Do a rate lookup.
881  *
882  * This performs a rate lookup for the given ath_buf only if it's required.
883  * Non-data frames and raw frames don't require it.
884  *
885  * This populates the primary and MRR entries; MRR values are
886  * then disabled later on if something requires it (eg RTS/CTS on
887  * pre-11n chipsets.
888  *
889  * This needs to be done before the RTS/CTS fields are calculated
890  * as they may depend upon the rate chosen.
891  */
892 static void
893 ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
894 {
895 	uint8_t rate, rix;
896 	int try0;
897 
898 	if (! bf->bf_state.bfs_doratelookup)
899 		return;
900 
901 	/* Get rid of any previous state */
902 	bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
903 
904 	ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
905 	ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
906 	    bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
907 
908 	/* In case MRR is disabled, make sure rc[0] is setup correctly */
909 	bf->bf_state.bfs_rc[0].rix = rix;
910 	bf->bf_state.bfs_rc[0].ratecode = rate;
911 	bf->bf_state.bfs_rc[0].tries = try0;
912 
913 	if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
914 		ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
915 		    bf->bf_state.bfs_rc);
916 	ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
917 
918 	sc->sc_txrix = rix;	/* for LED blinking */
919 	sc->sc_lastdatarix = rix;	/* for fast frames */
920 	bf->bf_state.bfs_try0 = try0;
921 	bf->bf_state.bfs_txrate0 = rate;
922 }
923 
924 /*
925  * Set the rate control fields in the given descriptor based on
926  * the bf_state fields and node state.
927  *
928  * The bfs fields should already be set with the relevant rate
929  * control information, including whether MRR is to be enabled.
930  *
931  * Since the FreeBSD HAL currently sets up the first TX rate
932  * in ath_hal_setuptxdesc(), this will setup the MRR
933  * conditionally for the pre-11n chips, and call ath_buf_set_rate
934  * unconditionally for 11n chips. These require the 11n rate
935  * scenario to be set if MCS rates are enabled, so it's easier
936  * to just always call it. The caller can then only set rates 2, 3
937  * and 4 if multi-rate retry is needed.
938  */
939 static void
940 ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
941     struct ath_buf *bf)
942 {
943 	struct ath_rc_series *rc = bf->bf_state.bfs_rc;
944 
945 	/* If mrr is disabled, blank tries 1, 2, 3 */
946 	if (! bf->bf_state.bfs_ismrr)
947 		rc[1].tries = rc[2].tries = rc[3].tries = 0;
948 
949 	/*
950 	 * Always call - that way a retried descriptor will
951 	 * have the MRR fields overwritten.
952 	 *
953 	 * XXX TODO: see if this is really needed - setting up
954 	 * the first descriptor should set the MRR fields to 0
955 	 * for us anyway.
956 	 */
957 	if (ath_tx_is_11n(sc)) {
958 		ath_buf_set_rate(sc, ni, bf);
959 	} else {
960 		ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
961 			, rc[1].ratecode, rc[1].tries
962 			, rc[2].ratecode, rc[2].tries
963 			, rc[3].ratecode, rc[3].tries
964 		);
965 	}
966 }
967 
968 /*
969  * Transmit the given frame to the hardware.
970  *
971  * The frame must already be setup; rate control must already have
972  * been done.
973  *
974  * XXX since the TXQ lock is being held here (and I dislike holding
975  * it for this long when not doing software aggregation), later on
976  * break this function into "setup_normal" and "xmit_normal". The
977  * lock only needs to be held for the ath_tx_handoff call.
978  */
979 static void
980 ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
981     struct ath_buf *bf)
982 {
983 
984 	ATH_TXQ_LOCK_ASSERT(txq);
985 
986 	/* Setup the descriptor before handoff */
987 	ath_tx_do_ratelookup(sc, bf);
988 	ath_tx_rate_fill_rcflags(sc, bf);
989 	ath_tx_set_rtscts(sc, bf);
990 	ath_tx_setds(sc, bf);
991 	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
992 	ath_tx_chaindesclist(sc, bf);
993 
994 	/* Hand off to hardware */
995 	ath_tx_handoff(sc, txq, bf);
996 }
997 
998 
999 
1000 static int
1001 ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
1002     struct ath_buf *bf, struct mbuf *m0)
1003 {
1004 	struct ieee80211vap *vap = ni->ni_vap;
1005 	struct ath_vap *avp = ATH_VAP(vap);
1006 	struct ath_hal *ah = sc->sc_ah;
1007 	struct ifnet *ifp = sc->sc_ifp;
1008 	struct ieee80211com *ic = ifp->if_l2com;
1009 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1010 	int error, iswep, ismcast, isfrag, ismrr;
1011 	int keyix, hdrlen, pktlen, try0 = 0;
1012 	u_int8_t rix = 0, txrate = 0;
1013 	struct ath_desc *ds;
1014 	struct ath_txq *txq;
1015 	struct ieee80211_frame *wh;
1016 	u_int subtype, flags;
1017 	HAL_PKT_TYPE atype;
1018 	const HAL_RATE_TABLE *rt;
1019 	HAL_BOOL shortPreamble;
1020 	struct ath_node *an;
1021 	u_int pri;
1022 
1023 	wh = mtod(m0, struct ieee80211_frame *);
1024 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1025 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1026 	isfrag = m0->m_flags & M_FRAG;
1027 	hdrlen = ieee80211_anyhdrsize(wh);
1028 	/*
1029 	 * Packet length must not include any
1030 	 * pad bytes; deduct them here.
1031 	 */
1032 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
1033 
1034 	/* Handle encryption twiddling if needed */
1035 	if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
1036 	    &pktlen, &keyix)) {
1037 		ath_freetx(m0);
1038 		return EIO;
1039 	}
1040 
1041 	/* packet header may have moved, reset our local pointer */
1042 	wh = mtod(m0, struct ieee80211_frame *);
1043 
1044 	pktlen += IEEE80211_CRC_LEN;
1045 
1046 	/*
1047 	 * Load the DMA map so any coalescing is done.  This
1048 	 * also calculates the number of descriptors we need.
1049 	 */
1050 	error = ath_tx_dmasetup(sc, bf, m0);
1051 	if (error != 0)
1052 		return error;
1053 	bf->bf_node = ni;			/* NB: held reference */
1054 	m0 = bf->bf_m;				/* NB: may have changed */
1055 	wh = mtod(m0, struct ieee80211_frame *);
1056 
1057 	/* setup descriptors */
1058 	ds = bf->bf_desc;
1059 	rt = sc->sc_currates;
1060 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1061 
1062 	/*
1063 	 * NB: the 802.11 layer marks whether or not we should
1064 	 * use short preamble based on the current mode and
1065 	 * negotiated parameters.
1066 	 */
1067 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1068 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1069 		shortPreamble = AH_TRUE;
1070 		sc->sc_stats.ast_tx_shortpre++;
1071 	} else {
1072 		shortPreamble = AH_FALSE;
1073 	}
1074 
1075 	an = ATH_NODE(ni);
1076 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1077 	ismrr = 0;				/* default no multi-rate retry*/
1078 	pri = M_WME_GETAC(m0);			/* honor classification */
1079 	/* XXX use txparams instead of fixed values */
1080 	/*
1081 	 * Calculate Atheros packet type from IEEE80211 packet header,
1082 	 * setup for rate calculations, and select h/w transmit queue.
1083 	 */
1084 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1085 	case IEEE80211_FC0_TYPE_MGT:
1086 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1087 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1088 			atype = HAL_PKT_TYPE_BEACON;
1089 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1090 			atype = HAL_PKT_TYPE_PROBE_RESP;
1091 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1092 			atype = HAL_PKT_TYPE_ATIM;
1093 		else
1094 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
1095 		rix = an->an_mgmtrix;
1096 		txrate = rt->info[rix].rateCode;
1097 		if (shortPreamble)
1098 			txrate |= rt->info[rix].shortPreamble;
1099 		try0 = ATH_TXMGTTRY;
1100 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1101 		break;
1102 	case IEEE80211_FC0_TYPE_CTL:
1103 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
1104 		rix = an->an_mgmtrix;
1105 		txrate = rt->info[rix].rateCode;
1106 		if (shortPreamble)
1107 			txrate |= rt->info[rix].shortPreamble;
1108 		try0 = ATH_TXMGTTRY;
1109 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1110 		break;
1111 	case IEEE80211_FC0_TYPE_DATA:
1112 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
1113 		/*
1114 		 * Data frames: multicast frames go out at a fixed rate,
1115 		 * EAPOL frames use the mgmt frame rate; otherwise consult
1116 		 * the rate control module for the rate to use.
1117 		 */
1118 		if (ismcast) {
1119 			rix = an->an_mcastrix;
1120 			txrate = rt->info[rix].rateCode;
1121 			if (shortPreamble)
1122 				txrate |= rt->info[rix].shortPreamble;
1123 			try0 = 1;
1124 		} else if (m0->m_flags & M_EAPOL) {
1125 			/* XXX? maybe always use long preamble? */
1126 			rix = an->an_mgmtrix;
1127 			txrate = rt->info[rix].rateCode;
1128 			if (shortPreamble)
1129 				txrate |= rt->info[rix].shortPreamble;
1130 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
1131 		} else {
1132 			/*
1133 			 * Do rate lookup on each TX, rather than using
1134 			 * the hard-coded TX information decided here.
1135 			 */
1136 			ismrr = 1;
1137 			bf->bf_state.bfs_doratelookup = 1;
1138 		}
1139 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
1140 			flags |= HAL_TXDESC_NOACK;
1141 		break;
1142 	default:
1143 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
1144 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1145 		/* XXX statistic */
1146 		ath_freetx(m0);
1147 		return EIO;
1148 	}
1149 	txq = sc->sc_ac2q[pri];
1150 
1151 	/*
1152 	 * When servicing one or more stations in power-save mode
1153 	 * (or) if there is some mcast data waiting on the mcast
1154 	 * queue (to prevent out of order delivery) multicast
1155 	 * frames must be buffered until after the beacon.
1156 	 */
1157 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
1158 		txq = &avp->av_mcastq;
1159 
1160 	/*
1161 	 * Calculate miscellaneous flags.
1162 	 */
1163 	if (ismcast) {
1164 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
1165 	} else if (pktlen > vap->iv_rtsthreshold &&
1166 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
1167 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
1168 		sc->sc_stats.ast_tx_rts++;
1169 	}
1170 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
1171 		sc->sc_stats.ast_tx_noack++;
1172 #ifdef IEEE80211_SUPPORT_TDMA
1173 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
1174 		DPRINTF(sc, ATH_DEBUG_TDMA,
1175 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
1176 		sc->sc_stats.ast_tdma_ack++;
1177 		ath_freetx(m0);
1178 		return EIO;
1179 	}
1180 #endif
1181 
1182 	/*
1183 	 * If 802.11g protection is enabled, determine whether
1184 	 * to use RTS/CTS or just CTS.  Note that this is only
1185 	 * done for OFDM unicast frames.
1186 	 */
1187 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1188 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
1189 	    (flags & HAL_TXDESC_NOACK) == 0) {
1190 		bf->bf_state.bfs_doprot = 1;
1191 		/* XXX fragments must use CCK rates w/ protection */
1192 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
1193 			flags |= HAL_TXDESC_RTSENA;
1194 		} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
1195 			flags |= HAL_TXDESC_CTSENA;
1196 		}
1197 		/*
1198 		 * For frags it would be desirable to use the
1199 		 * highest CCK rate for RTS/CTS.  But stations
1200 		 * farther away may detect it at a lower CCK rate
1201 		 * so use the configured protection rate instead
1202 		 * (for now).
1203 		 */
1204 		sc->sc_stats.ast_tx_protect++;
1205 	}
1206 
1207 #if 0
1208 	/*
1209 	 * If 11n protection is enabled and it's a HT frame,
1210 	 * enable RTS.
1211 	 *
1212 	 * XXX ic_htprotmode or ic_curhtprotmode?
1213 	 * XXX should it_htprotmode only matter if ic_curhtprotmode
1214 	 * XXX indicates it's not a HT pure environment?
1215 	 */
1216 	if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
1217 	    rt->info[rix].phy == IEEE80211_T_HT &&
1218 	    (flags & HAL_TXDESC_NOACK) == 0) {
1219 		cix = rt->info[sc->sc_protrix].controlRate;
1220 	    	flags |= HAL_TXDESC_RTSENA;
1221 		sc->sc_stats.ast_tx_htprotect++;
1222 	}
1223 #endif
1224 
1225 	/*
1226 	 * Calculate duration.  This logically belongs in the 802.11
1227 	 * layer but it lacks sufficient information to calculate it.
1228 	 */
1229 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
1230 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
1231 		u_int16_t dur;
1232 		if (shortPreamble)
1233 			dur = rt->info[rix].spAckDuration;
1234 		else
1235 			dur = rt->info[rix].lpAckDuration;
1236 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
1237 			dur += dur;		/* additional SIFS+ACK */
1238 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
1239 			/*
1240 			 * Include the size of next fragment so NAV is
1241 			 * updated properly.  The last fragment uses only
1242 			 * the ACK duration
1243 			 */
1244 			dur += ath_hal_computetxtime(ah, rt,
1245 					m0->m_nextpkt->m_pkthdr.len,
1246 					rix, shortPreamble);
1247 		}
1248 		if (isfrag) {
1249 			/*
1250 			 * Force hardware to use computed duration for next
1251 			 * fragment by disabling multi-rate retry which updates
1252 			 * duration based on the multi-rate duration table.
1253 			 */
1254 			ismrr = 0;
1255 			try0 = ATH_TXMGTTRY;	/* XXX? */
1256 		}
1257 		*(u_int16_t *)wh->i_dur = htole16(dur);
1258 	}
1259 
1260 	/*
1261 	 * Determine if a tx interrupt should be generated for
1262 	 * this descriptor.  We take a tx interrupt to reap
1263 	 * descriptors when the h/w hits an EOL condition or
1264 	 * when the descriptor is specifically marked to generate
1265 	 * an interrupt.  We periodically mark descriptors in this
1266 	 * way to insure timely replenishing of the supply needed
1267 	 * for sending frames.  Defering interrupts reduces system
1268 	 * load and potentially allows more concurrent work to be
1269 	 * done but if done to aggressively can cause senders to
1270 	 * backup.
1271 	 *
1272 	 * NB: use >= to deal with sc_txintrperiod changing
1273 	 *     dynamically through sysctl.
1274 	 */
1275 	if (flags & HAL_TXDESC_INTREQ) {
1276 		txq->axq_intrcnt = 0;
1277 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
1278 		flags |= HAL_TXDESC_INTREQ;
1279 		txq->axq_intrcnt = 0;
1280 	}
1281 
1282 	/* This point forward is actual TX bits */
1283 
1284 	/*
1285 	 * At this point we are committed to sending the frame
1286 	 * and we don't need to look at m_nextpkt; clear it in
1287 	 * case this frame is part of frag chain.
1288 	 */
1289 	m0->m_nextpkt = NULL;
1290 
1291 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1292 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
1293 		    sc->sc_hwmap[rix].ieeerate, -1);
1294 
1295 	if (ieee80211_radiotap_active_vap(vap)) {
1296 		u_int64_t tsf = ath_hal_gettsf64(ah);
1297 
1298 		sc->sc_tx_th.wt_tsf = htole64(tsf);
1299 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1300 		if (iswep)
1301 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1302 		if (isfrag)
1303 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1304 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1305 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1306 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1307 
1308 		ieee80211_radiotap_tx(vap, m0);
1309 	}
1310 
1311 	/* Blank the legacy rate array */
1312 	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1313 
1314 	/*
1315 	 * ath_buf_set_rate needs at least one rate/try to setup
1316 	 * the rate scenario.
1317 	 */
1318 	bf->bf_state.bfs_rc[0].rix = rix;
1319 	bf->bf_state.bfs_rc[0].tries = try0;
1320 	bf->bf_state.bfs_rc[0].ratecode = txrate;
1321 
1322 	/* Store the decided rate index values away */
1323 	bf->bf_state.bfs_pktlen = pktlen;
1324 	bf->bf_state.bfs_hdrlen = hdrlen;
1325 	bf->bf_state.bfs_atype = atype;
1326 	bf->bf_state.bfs_txpower = ni->ni_txpower;
1327 	bf->bf_state.bfs_txrate0 = txrate;
1328 	bf->bf_state.bfs_try0 = try0;
1329 	bf->bf_state.bfs_keyix = keyix;
1330 	bf->bf_state.bfs_txantenna = sc->sc_txantenna;
1331 	bf->bf_state.bfs_flags = flags;
1332 	bf->bf_txflags = flags;
1333 	bf->bf_state.bfs_shpream = shortPreamble;
1334 
1335 	/* XXX this should be done in ath_tx_setrate() */
1336 	bf->bf_state.bfs_ctsrate0 = 0;	/* ie, no hard-coded ctsrate */
1337 	bf->bf_state.bfs_ctsrate = 0;	/* calculated later */
1338 	bf->bf_state.bfs_ctsduration = 0;
1339 	bf->bf_state.bfs_ismrr = ismrr;
1340 
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Direct-dispatch the current frame to the hardware.
1346  *
1347  * This can be called by the net80211 code.
1348  *
1349  * XXX what about locking? Or, push the seqno assign into the
1350  * XXX aggregate scheduler so its serialised?
1351  */
1352 int
1353 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
1354     struct ath_buf *bf, struct mbuf *m0)
1355 {
1356 	struct ieee80211vap *vap = ni->ni_vap;
1357 	struct ath_vap *avp = ATH_VAP(vap);
1358 	int r;
1359 	u_int pri;
1360 	int tid;
1361 	struct ath_txq *txq;
1362 	int ismcast;
1363 	const struct ieee80211_frame *wh;
1364 	int is_ampdu, is_ampdu_tx, is_ampdu_pending;
1365 	ieee80211_seq seqno;
1366 	uint8_t type, subtype;
1367 
1368 	/*
1369 	 * Determine the target hardware queue.
1370 	 *
1371 	 * For multicast frames, the txq gets overridden to be the
1372 	 * software TXQ and it's done via direct-dispatch.
1373 	 *
1374 	 * For any other frame, we do a TID/QoS lookup inside the frame
1375 	 * to see what the TID should be. If it's a non-QoS frame, the
1376 	 * AC and TID are overridden. The TID/TXQ code assumes the
1377 	 * TID is on a predictable hardware TXQ, so we don't support
1378 	 * having a node TID queued to multiple hardware TXQs.
1379 	 * This may change in the future but would require some locking
1380 	 * fudgery.
1381 	 */
1382 	pri = ath_tx_getac(sc, m0);
1383 	tid = ath_tx_gettid(sc, m0);
1384 
1385 	txq = sc->sc_ac2q[pri];
1386 	wh = mtod(m0, struct ieee80211_frame *);
1387 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1388 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1389 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1390 
1391 	/* A-MPDU TX */
1392 	is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
1393 	is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
1394 	is_ampdu = is_ampdu_tx | is_ampdu_pending;
1395 
1396 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
1397 	    __func__, tid, pri, is_ampdu);
1398 
1399 	/* Multicast frames go onto the software multicast queue */
1400 	if (ismcast)
1401 		txq = &avp->av_mcastq;
1402 
1403 	if ((! is_ampdu) && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
1404 		txq = &avp->av_mcastq;
1405 
1406 	/* Do the generic frame setup */
1407 	/* XXX should just bzero the bf_state? */
1408 	bf->bf_state.bfs_dobaw = 0;
1409 
1410 	/* A-MPDU TX? Manually set sequence number */
1411 	/* Don't do it whilst pending; the net80211 layer still assigns them */
1412 	/* XXX do we need locking here? */
1413 	if (is_ampdu_tx) {
1414 		ATH_TXQ_LOCK(txq);
1415 		/*
1416 		 * Always call; this function will
1417 		 * handle making sure that null data frames
1418 		 * don't get a sequence number from the current
1419 		 * TID and thus mess with the BAW.
1420 		 */
1421 		seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
1422 		if (IEEE80211_QOS_HAS_SEQ(wh) &&
1423 		    subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) {
1424 			bf->bf_state.bfs_dobaw = 1;
1425 		}
1426 		ATH_TXQ_UNLOCK(txq);
1427 	}
1428 
1429 	/*
1430 	 * If needed, the sequence number has been assigned.
1431 	 * Squirrel it away somewhere easy to get to.
1432 	 */
1433 	bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
1434 
1435 	/* Is ampdu pending? fetch the seqno and print it out */
1436 	if (is_ampdu_pending)
1437 		DPRINTF(sc, ATH_DEBUG_SW_TX,
1438 		    "%s: tid %d: ampdu pending, seqno %d\n",
1439 		    __func__, tid, M_SEQNO_GET(m0));
1440 
1441 	/* This also sets up the DMA map */
1442 	r = ath_tx_normal_setup(sc, ni, bf, m0);
1443 
1444 	if (r != 0)
1445 		return r;
1446 
1447 	/* At this point m0 could have changed! */
1448 	m0 = bf->bf_m;
1449 
1450 #if 1
1451 	/*
1452 	 * If it's a multicast frame, do a direct-dispatch to the
1453 	 * destination hardware queue. Don't bother software
1454 	 * queuing it.
1455 	 */
1456 	/*
1457 	 * If it's a BAR frame, do a direct dispatch to the
1458 	 * destination hardware queue. Don't bother software
1459 	 * queuing it, as the TID will now be paused.
1460 	 * Sending a BAR frame can occur from the net80211 txa timer
1461 	 * (ie, retries) or from the ath txtask (completion call.)
1462 	 * It queues directly to hardware because the TID is paused
1463 	 * at this point (and won't be unpaused until the BAR has
1464 	 * either been TXed successfully or max retries has been
1465 	 * reached.)
1466 	 */
1467 	if (txq == &avp->av_mcastq) {
1468 		ATH_TXQ_LOCK(txq);
1469 		ath_tx_xmit_normal(sc, txq, bf);
1470 		ATH_TXQ_UNLOCK(txq);
1471 	} else if (type == IEEE80211_FC0_TYPE_CTL &&
1472 		    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1473 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
1474 		    "%s: BAR: TX'ing direct\n", __func__);
1475 		ATH_TXQ_LOCK(txq);
1476 		ath_tx_xmit_normal(sc, txq, bf);
1477 		ATH_TXQ_UNLOCK(txq);
1478 	} else {
1479 		/* add to software queue */
1480 		ath_tx_swq(sc, ni, txq, bf);
1481 	}
1482 #else
1483 	/*
1484 	 * For now, since there's no software queue,
1485 	 * direct-dispatch to the hardware.
1486 	 */
1487 	ATH_TXQ_LOCK(txq);
1488 	ath_tx_xmit_normal(sc, txq, bf);
1489 	ATH_TXQ_UNLOCK(txq);
1490 #endif
1491 
1492 	return 0;
1493 }
1494 
1495 static int
1496 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
1497 	struct ath_buf *bf, struct mbuf *m0,
1498 	const struct ieee80211_bpf_params *params)
1499 {
1500 	struct ifnet *ifp = sc->sc_ifp;
1501 	struct ieee80211com *ic = ifp->if_l2com;
1502 	struct ath_hal *ah = sc->sc_ah;
1503 	struct ieee80211vap *vap = ni->ni_vap;
1504 	int error, ismcast, ismrr;
1505 	int keyix, hdrlen, pktlen, try0, txantenna;
1506 	u_int8_t rix, txrate;
1507 	struct ieee80211_frame *wh;
1508 	u_int flags;
1509 	HAL_PKT_TYPE atype;
1510 	const HAL_RATE_TABLE *rt;
1511 	struct ath_desc *ds;
1512 	u_int pri;
1513 	int o_tid = -1;
1514 	int do_override;
1515 
1516 	wh = mtod(m0, struct ieee80211_frame *);
1517 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1518 	hdrlen = ieee80211_anyhdrsize(wh);
1519 	/*
1520 	 * Packet length must not include any
1521 	 * pad bytes; deduct them here.
1522 	 */
1523 	/* XXX honor IEEE80211_BPF_DATAPAD */
1524 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
1525 
1526 
1527 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
1528 	    __func__, ismcast);
1529 
1530 	/* Handle encryption twiddling if needed */
1531 	if (! ath_tx_tag_crypto(sc, ni,
1532 	    m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
1533 	    &hdrlen, &pktlen, &keyix)) {
1534 		ath_freetx(m0);
1535 		return EIO;
1536 	}
1537 	/* packet header may have moved, reset our local pointer */
1538 	wh = mtod(m0, struct ieee80211_frame *);
1539 
1540 	/* Do the generic frame setup */
1541 	/* XXX should just bzero the bf_state? */
1542 	bf->bf_state.bfs_dobaw = 0;
1543 
1544 	error = ath_tx_dmasetup(sc, bf, m0);
1545 	if (error != 0)
1546 		return error;
1547 	m0 = bf->bf_m;				/* NB: may have changed */
1548 	wh = mtod(m0, struct ieee80211_frame *);
1549 	bf->bf_node = ni;			/* NB: held reference */
1550 
1551 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1552 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
1553 	if (params->ibp_flags & IEEE80211_BPF_RTS)
1554 		flags |= HAL_TXDESC_RTSENA;
1555 	else if (params->ibp_flags & IEEE80211_BPF_CTS) {
1556 		/* XXX assume 11g/11n protection? */
1557 		bf->bf_state.bfs_doprot = 1;
1558 		flags |= HAL_TXDESC_CTSENA;
1559 	}
1560 	/* XXX leave ismcast to injector? */
1561 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
1562 		flags |= HAL_TXDESC_NOACK;
1563 
1564 	rt = sc->sc_currates;
1565 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1566 	rix = ath_tx_findrix(sc, params->ibp_rate0);
1567 	txrate = rt->info[rix].rateCode;
1568 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
1569 		txrate |= rt->info[rix].shortPreamble;
1570 	sc->sc_txrix = rix;
1571 	try0 = params->ibp_try0;
1572 	ismrr = (params->ibp_try1 != 0);
1573 	txantenna = params->ibp_pri >> 2;
1574 	if (txantenna == 0)			/* XXX? */
1575 		txantenna = sc->sc_txantenna;
1576 
1577 	/*
1578 	 * Since ctsrate is fixed, store it away for later
1579 	 * use when the descriptor fields are being set.
1580 	 */
1581 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
1582 		bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
1583 
1584 	pri = params->ibp_pri & 3;
1585 	/* Override pri if the frame isn't a QoS one */
1586 	if (! IEEE80211_QOS_HAS_SEQ(wh))
1587 		pri = ath_tx_getac(sc, m0);
1588 
1589 	/*
1590 	 * NB: we mark all packets as type PSPOLL so the h/w won't
1591 	 * set the sequence number, duration, etc.
1592 	 */
1593 	atype = HAL_PKT_TYPE_PSPOLL;
1594 
1595 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1596 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
1597 		    sc->sc_hwmap[rix].ieeerate, -1);
1598 
1599 	if (ieee80211_radiotap_active_vap(vap)) {
1600 		u_int64_t tsf = ath_hal_gettsf64(ah);
1601 
1602 		sc->sc_tx_th.wt_tsf = htole64(tsf);
1603 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1604 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1605 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1606 		if (m0->m_flags & M_FRAG)
1607 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1608 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1609 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1610 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1611 
1612 		ieee80211_radiotap_tx(vap, m0);
1613 	}
1614 
1615 	/*
1616 	 * Formulate first tx descriptor with tx controls.
1617 	 */
1618 	ds = bf->bf_desc;
1619 	/* XXX check return value? */
1620 
1621 	/* Store the decided rate index values away */
1622 	bf->bf_state.bfs_pktlen = pktlen;
1623 	bf->bf_state.bfs_hdrlen = hdrlen;
1624 	bf->bf_state.bfs_atype = atype;
1625 	bf->bf_state.bfs_txpower = params->ibp_power;
1626 	bf->bf_state.bfs_txrate0 = txrate;
1627 	bf->bf_state.bfs_try0 = try0;
1628 	bf->bf_state.bfs_keyix = keyix;
1629 	bf->bf_state.bfs_txantenna = txantenna;
1630 	bf->bf_state.bfs_flags = flags;
1631 	bf->bf_txflags = flags;
1632 	bf->bf_state.bfs_shpream =
1633 	    !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
1634 
1635 	/* XXX this should be done in ath_tx_setrate() */
1636 	bf->bf_state.bfs_ctsrate = 0;
1637 	bf->bf_state.bfs_ctsduration = 0;
1638 	bf->bf_state.bfs_ismrr = ismrr;
1639 
1640 	/* Blank the legacy rate array */
1641 	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1642 
1643 	bf->bf_state.bfs_rc[0].rix =
1644 	    ath_tx_findrix(sc, params->ibp_rate0);
1645 	bf->bf_state.bfs_rc[0].tries = try0;
1646 	bf->bf_state.bfs_rc[0].ratecode = txrate;
1647 
1648 	if (ismrr) {
1649 		int rix;
1650 
1651 		rix = ath_tx_findrix(sc, params->ibp_rate1);
1652 		bf->bf_state.bfs_rc[1].rix = rix;
1653 		bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
1654 
1655 		rix = ath_tx_findrix(sc, params->ibp_rate2);
1656 		bf->bf_state.bfs_rc[2].rix = rix;
1657 		bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
1658 
1659 		rix = ath_tx_findrix(sc, params->ibp_rate3);
1660 		bf->bf_state.bfs_rc[3].rix = rix;
1661 		bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
1662 	}
1663 	/*
1664 	 * All the required rate control decisions have been made;
1665 	 * fill in the rc flags.
1666 	 */
1667 	ath_tx_rate_fill_rcflags(sc, bf);
1668 
1669 	/* NB: no buffered multicast in power save support */
1670 
1671 	/* XXX If it's an ADDBA, override the correct queue */
1672 	do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
1673 
1674 	/* Map ADDBA to the correct priority */
1675 	if (do_override) {
1676 #if 0
1677 		device_printf(sc->sc_dev,
1678 		    "%s: overriding tid %d pri %d -> %d\n",
1679 		    __func__, o_tid, pri, TID_TO_WME_AC(o_tid));
1680 #endif
1681 		pri = TID_TO_WME_AC(o_tid);
1682 	}
1683 
1684 	/*
1685 	 * If we're overiding the ADDBA destination, dump directly
1686 	 * into the hardware queue, right after any pending
1687 	 * frames to that node are.
1688 	 */
1689 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
1690 	    __func__, do_override);
1691 
1692 	if (do_override) {
1693 		ATH_TXQ_LOCK(sc->sc_ac2q[pri]);
1694 		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
1695 		ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]);
1696 	} else {
1697 		/* Queue to software queue */
1698 		ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf);
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 /*
1705  * Send a raw frame.
1706  *
1707  * This can be called by net80211.
1708  */
1709 int
1710 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1711 	const struct ieee80211_bpf_params *params)
1712 {
1713 	struct ieee80211com *ic = ni->ni_ic;
1714 	struct ifnet *ifp = ic->ic_ifp;
1715 	struct ath_softc *sc = ifp->if_softc;
1716 	struct ath_buf *bf;
1717 	int error;
1718 
1719 	ATH_PCU_LOCK(sc);
1720 	if (sc->sc_inreset_cnt > 0) {
1721 		device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n",
1722 		    __func__);
1723 		error = EIO;
1724 		ATH_PCU_UNLOCK(sc);
1725 		goto bad0;
1726 	}
1727 	sc->sc_txstart_cnt++;
1728 	ATH_PCU_UNLOCK(sc);
1729 
1730 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
1731 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
1732 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
1733 			"!running" : "invalid");
1734 		m_freem(m);
1735 		error = ENETDOWN;
1736 		goto bad;
1737 	}
1738 	/*
1739 	 * Grab a TX buffer and associated resources.
1740 	 */
1741 	bf = ath_getbuf(sc);
1742 	if (bf == NULL) {
1743 		sc->sc_stats.ast_tx_nobuf++;
1744 		m_freem(m);
1745 		error = ENOBUFS;
1746 		goto bad;
1747 	}
1748 
1749 	if (params == NULL) {
1750 		/*
1751 		 * Legacy path; interpret frame contents to decide
1752 		 * precisely how to send the frame.
1753 		 */
1754 		if (ath_tx_start(sc, ni, bf, m)) {
1755 			error = EIO;		/* XXX */
1756 			goto bad2;
1757 		}
1758 	} else {
1759 		/*
1760 		 * Caller supplied explicit parameters to use in
1761 		 * sending the frame.
1762 		 */
1763 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
1764 			error = EIO;		/* XXX */
1765 			goto bad2;
1766 		}
1767 	}
1768 	sc->sc_wd_timer = 5;
1769 	ifp->if_opackets++;
1770 	sc->sc_stats.ast_tx_raw++;
1771 
1772 	ATH_PCU_LOCK(sc);
1773 	sc->sc_txstart_cnt--;
1774 	ATH_PCU_UNLOCK(sc);
1775 
1776 	return 0;
1777 bad2:
1778 	ATH_TXBUF_LOCK(sc);
1779 	TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1780 	ATH_TXBUF_UNLOCK(sc);
1781 bad:
1782 	ATH_PCU_LOCK(sc);
1783 	sc->sc_txstart_cnt--;
1784 	ATH_PCU_UNLOCK(sc);
1785 bad0:
1786 	ifp->if_oerrors++;
1787 	sc->sc_stats.ast_tx_raw_fail++;
1788 	ieee80211_free_node(ni);
1789 
1790 	return error;
1791 }
1792 
1793 /* Some helper functions */
1794 
1795 /*
1796  * ADDBA (and potentially others) need to be placed in the same
1797  * hardware queue as the TID/node it's relating to. This is so
1798  * it goes out after any pending non-aggregate frames to the
1799  * same node/TID.
1800  *
1801  * If this isn't done, the ADDBA can go out before the frames
1802  * queued in hardware. Even though these frames have a sequence
1803  * number -earlier- than the ADDBA can be transmitted (but
1804  * no frames whose sequence numbers are after the ADDBA should
1805  * be!) they'll arrive after the ADDBA - and the receiving end
1806  * will simply drop them as being out of the BAW.
1807  *
1808  * The frames can't be appended to the TID software queue - it'll
1809  * never be sent out. So these frames have to be directly
1810  * dispatched to the hardware, rather than queued in software.
1811  * So if this function returns true, the TXQ has to be
1812  * overridden and it has to be directly dispatched.
1813  *
1814  * It's a dirty hack, but someone's gotta do it.
1815  */
1816 
1817 /*
1818  * XXX doesn't belong here!
1819  */
1820 static int
1821 ieee80211_is_action(struct ieee80211_frame *wh)
1822 {
1823 	/* Type: Management frame? */
1824 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1825 	    IEEE80211_FC0_TYPE_MGT)
1826 		return 0;
1827 
1828 	/* Subtype: Action frame? */
1829 	if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
1830 	    IEEE80211_FC0_SUBTYPE_ACTION)
1831 		return 0;
1832 
1833 	return 1;
1834 }
1835 
1836 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
1837 /*
1838  * Return an alternate TID for ADDBA request frames.
1839  *
1840  * Yes, this likely should be done in the net80211 layer.
1841  */
1842 static int
1843 ath_tx_action_frame_override_queue(struct ath_softc *sc,
1844     struct ieee80211_node *ni,
1845     struct mbuf *m0, int *tid)
1846 {
1847 	struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
1848 	struct ieee80211_action_ba_addbarequest *ia;
1849 	uint8_t *frm;
1850 	uint16_t baparamset;
1851 
1852 	/* Not action frame? Bail */
1853 	if (! ieee80211_is_action(wh))
1854 		return 0;
1855 
1856 	/* XXX Not needed for frames we send? */
1857 #if 0
1858 	/* Correct length? */
1859 	if (! ieee80211_parse_action(ni, m))
1860 		return 0;
1861 #endif
1862 
1863 	/* Extract out action frame */
1864 	frm = (u_int8_t *)&wh[1];
1865 	ia = (struct ieee80211_action_ba_addbarequest *) frm;
1866 
1867 	/* Not ADDBA? Bail */
1868 	if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
1869 		return 0;
1870 	if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
1871 		return 0;
1872 
1873 	/* Extract TID, return it */
1874 	baparamset = le16toh(ia->rq_baparamset);
1875 	*tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
1876 
1877 	return 1;
1878 }
1879 #undef	MS
1880 
1881 /* Per-node software queue operations */
1882 
1883 /*
1884  * Add the current packet to the given BAW.
1885  * It is assumed that the current packet
1886  *
1887  * + fits inside the BAW;
1888  * + already has had a sequence number allocated.
1889  *
1890  * Since the BAW status may be modified by both the ath task and
1891  * the net80211/ifnet contexts, the TID must be locked.
1892  */
1893 void
1894 ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
1895     struct ath_tid *tid, struct ath_buf *bf)
1896 {
1897 	int index, cindex;
1898 	struct ieee80211_tx_ampdu *tap;
1899 
1900 	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
1901 
1902 	if (bf->bf_state.bfs_isretried)
1903 		return;
1904 
1905 	tap = ath_tx_get_tx_tid(an, tid->tid);
1906 
1907 	if (bf->bf_state.bfs_addedbaw)
1908 		device_printf(sc->sc_dev,
1909 		    "%s: re-added? tid=%d, seqno %d; window %d:%d; baw head=%d tail=%d\n",
1910 		    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
1911 		    tap->txa_start, tap->txa_wnd, tid->baw_head, tid->baw_tail);
1912 
1913 	/*
1914 	 * ni->ni_txseqs[] is the currently allocated seqno.
1915 	 * the txa state contains the current baw start.
1916 	 */
1917 	index  = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
1918 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1919 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
1920 	    "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d baw head=%d tail=%d\n",
1921 	    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
1922 	    tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, tid->baw_tail);
1923 
1924 
1925 #if 0
1926 	assert(tid->tx_buf[cindex] == NULL);
1927 #endif
1928 	if (tid->tx_buf[cindex] != NULL) {
1929 		device_printf(sc->sc_dev,
1930 		    "%s: ba packet dup (index=%d, cindex=%d, "
1931 		    "head=%d, tail=%d)\n",
1932 		    __func__, index, cindex, tid->baw_head, tid->baw_tail);
1933 		device_printf(sc->sc_dev,
1934 		    "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
1935 		    __func__,
1936 		    tid->tx_buf[cindex],
1937 		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
1938 		    bf,
1939 		    SEQNO(bf->bf_state.bfs_seqno)
1940 		);
1941 	}
1942 	tid->tx_buf[cindex] = bf;
1943 
1944 	if (index >= ((tid->baw_tail - tid->baw_head) & (ATH_TID_MAX_BUFS - 1))) {
1945 		tid->baw_tail = cindex;
1946 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1947 	}
1948 }
1949 
1950 /*
1951  * Flip the BAW buffer entry over from the existing one to the new one.
1952  *
1953  * When software retransmitting a (sub-)frame, it is entirely possible that
1954  * the frame ath_buf is marked as BUSY and can't be immediately reused.
1955  * In that instance the buffer is cloned and the new buffer is used for
1956  * retransmit. We thus need to update the ath_buf slot in the BAW buf
1957  * tracking array to maintain consistency.
1958  */
1959 static void
1960 ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
1961     struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
1962 {
1963 	int index, cindex;
1964 	struct ieee80211_tx_ampdu *tap;
1965 	int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
1966 
1967 	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
1968 
1969 	tap = ath_tx_get_tx_tid(an, tid->tid);
1970 	index  = ATH_BA_INDEX(tap->txa_start, seqno);
1971 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1972 
1973 	/*
1974 	 * Just warn for now; if it happens then we should find out
1975 	 * about it. It's highly likely the aggregation session will
1976 	 * soon hang.
1977 	 */
1978 	if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
1979 		device_printf(sc->sc_dev, "%s: retransmitted buffer"
1980 		    " has mismatching seqno's, BA session may hang.\n",
1981 		    __func__);
1982 		device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n",
1983 		    __func__,
1984 		    old_bf->bf_state.bfs_seqno,
1985 		    new_bf->bf_state.bfs_seqno);
1986 	}
1987 
1988 	if (tid->tx_buf[cindex] != old_bf) {
1989 		device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; "
1990 		    " has m BA session may hang.\n",
1991 		    __func__);
1992 		device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n",
1993 		    __func__,
1994 		    old_bf, new_bf);
1995 	}
1996 
1997 	tid->tx_buf[cindex] = new_bf;
1998 }
1999 
2000 /*
2001  * seq_start - left edge of BAW
2002  * seq_next - current/next sequence number to allocate
2003  *
2004  * Since the BAW status may be modified by both the ath task and
2005  * the net80211/ifnet contexts, the TID must be locked.
2006  */
2007 static void
2008 ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
2009     struct ath_tid *tid, const struct ath_buf *bf)
2010 {
2011 	int index, cindex;
2012 	struct ieee80211_tx_ampdu *tap;
2013 	int seqno = SEQNO(bf->bf_state.bfs_seqno);
2014 
2015 	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2016 
2017 	tap = ath_tx_get_tx_tid(an, tid->tid);
2018 	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2019 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2020 
2021 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2022 	    "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, baw head=%d, tail=%d\n",
2023 	    __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
2024 	    cindex, tid->baw_head, tid->baw_tail);
2025 
2026 	/*
2027 	 * If this occurs then we have a big problem - something else
2028 	 * has slid tap->txa_start along without updating the BAW
2029 	 * tracking start/end pointers. Thus the TX BAW state is now
2030 	 * completely busted.
2031 	 *
2032 	 * But for now, since I haven't yet fixed TDMA and buffer cloning,
2033 	 * it's quite possible that a cloned buffer is making its way
2034 	 * here and causing it to fire off. Disable TDMA for now.
2035 	 */
2036 	if (tid->tx_buf[cindex] != bf) {
2037 		device_printf(sc->sc_dev,
2038 		    "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
2039 		    __func__,
2040 		    bf, SEQNO(bf->bf_state.bfs_seqno),
2041 		    tid->tx_buf[cindex],
2042 		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno));
2043 	}
2044 
2045 	tid->tx_buf[cindex] = NULL;
2046 
2047 	while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
2048 		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2049 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
2050 	}
2051 	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: baw is now %d:%d, baw head=%d\n",
2052 	    __func__, tap->txa_start, tap->txa_wnd, tid->baw_head);
2053 }
2054 
2055 /*
2056  * Mark the current node/TID as ready to TX.
2057  *
2058  * This is done to make it easy for the software scheduler to
2059  * find which nodes have data to send.
2060  *
2061  * The TXQ lock must be held.
2062  */
2063 static void
2064 ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
2065 {
2066 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2067 
2068 	ATH_TXQ_LOCK_ASSERT(txq);
2069 
2070 	if (tid->paused)
2071 		return;		/* paused, can't schedule yet */
2072 
2073 	if (tid->sched)
2074 		return;		/* already scheduled */
2075 
2076 	tid->sched = 1;
2077 
2078 	TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2079 }
2080 
2081 /*
2082  * Mark the current node as no longer needing to be polled for
2083  * TX packets.
2084  *
2085  * The TXQ lock must be held.
2086  */
2087 static void
2088 ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
2089 {
2090 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2091 
2092 	ATH_TXQ_LOCK_ASSERT(txq);
2093 
2094 	if (tid->sched == 0)
2095 		return;
2096 
2097 	tid->sched = 0;
2098 	TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
2099 }
2100 
2101 /*
2102  * Assign a sequence number manually to the given frame.
2103  *
2104  * This should only be called for A-MPDU TX frames.
2105  */
2106 static ieee80211_seq
2107 ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
2108     struct ath_buf *bf, struct mbuf *m0)
2109 {
2110 	struct ieee80211_frame *wh;
2111 	int tid, pri;
2112 	ieee80211_seq seqno;
2113 	uint8_t subtype;
2114 
2115 	/* TID lookup */
2116 	wh = mtod(m0, struct ieee80211_frame *);
2117 	pri = M_WME_GETAC(m0);			/* honor classification */
2118 	tid = WME_AC_TO_TID(pri);
2119 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n",
2120 	    __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2121 
2122 	/* XXX Is it a control frame? Ignore */
2123 
2124 	/* Does the packet require a sequence number? */
2125 	if (! IEEE80211_QOS_HAS_SEQ(wh))
2126 		return -1;
2127 
2128 	/*
2129 	 * Is it a QOS NULL Data frame? Give it a sequence number from
2130 	 * the default TID (IEEE80211_NONQOS_TID.)
2131 	 *
2132 	 * The RX path of everything I've looked at doesn't include the NULL
2133 	 * data frame sequence number in the aggregation state updates, so
2134 	 * assigning it a sequence number there will cause a BAW hole on the
2135 	 * RX side.
2136 	 */
2137 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2138 	if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
2139 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
2140 		INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
2141 	} else {
2142 		/* Manually assign sequence number */
2143 		seqno = ni->ni_txseqs[tid];
2144 		INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
2145 	}
2146 	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2147 	M_SEQNO_SET(m0, seqno);
2148 
2149 	/* Return so caller can do something with it if needed */
2150 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s:  -> seqno=%d\n", __func__, seqno);
2151 	return seqno;
2152 }
2153 
2154 /*
2155  * Attempt to direct dispatch an aggregate frame to hardware.
2156  * If the frame is out of BAW, queue.
2157  * Otherwise, schedule it as a single frame.
2158  */
2159 static void
2160 ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_buf *bf)
2161 {
2162 	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
2163 	struct ath_txq *txq = bf->bf_state.bfs_txq;
2164 	struct ieee80211_tx_ampdu *tap;
2165 
2166 	ATH_TXQ_LOCK_ASSERT(txq);
2167 
2168 	tap = ath_tx_get_tx_tid(an, tid->tid);
2169 
2170 	/* paused? queue */
2171 	if (tid->paused) {
2172 		ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2173 		return;
2174 	}
2175 
2176 	/* outside baw? queue */
2177 	if (bf->bf_state.bfs_dobaw &&
2178 	    (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2179 	    SEQNO(bf->bf_state.bfs_seqno)))) {
2180 		ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2181 		ath_tx_tid_sched(sc, tid);
2182 		return;
2183 	}
2184 
2185 	/* Direct dispatch to hardware */
2186 	ath_tx_do_ratelookup(sc, bf);
2187 	ath_tx_rate_fill_rcflags(sc, bf);
2188 	ath_tx_set_rtscts(sc, bf);
2189 	ath_tx_setds(sc, bf);
2190 	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
2191 	ath_tx_chaindesclist(sc, bf);
2192 
2193 	/* Statistics */
2194 	sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
2195 
2196 	/* Track per-TID hardware queue depth correctly */
2197 	tid->hwq_depth++;
2198 
2199 	/* Add to BAW */
2200 	if (bf->bf_state.bfs_dobaw) {
2201 		ath_tx_addto_baw(sc, an, tid, bf);
2202 		bf->bf_state.bfs_addedbaw = 1;
2203 	}
2204 
2205 	/* Set completion handler, multi-frame aggregate or not */
2206 	bf->bf_comp = ath_tx_aggr_comp;
2207 
2208 	/* Hand off to hardware */
2209 	ath_tx_handoff(sc, txq, bf);
2210 }
2211 
2212 /*
2213  * Attempt to send the packet.
2214  * If the queue isn't busy, direct-dispatch.
2215  * If the queue is busy enough, queue the given packet on the
2216  *  relevant software queue.
2217  */
2218 void
2219 ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq,
2220     struct ath_buf *bf)
2221 {
2222 	struct ath_node *an = ATH_NODE(ni);
2223 	struct ieee80211_frame *wh;
2224 	struct ath_tid *atid;
2225 	int pri, tid;
2226 	struct mbuf *m0 = bf->bf_m;
2227 
2228 	/* Fetch the TID - non-QoS frames get assigned to TID 16 */
2229 	wh = mtod(m0, struct ieee80211_frame *);
2230 	pri = ath_tx_getac(sc, m0);
2231 	tid = ath_tx_gettid(sc, m0);
2232 	atid = &an->an_tid[tid];
2233 
2234 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
2235 	    __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2236 
2237 	/* Set local packet state, used to queue packets to hardware */
2238 	bf->bf_state.bfs_tid = tid;
2239 	bf->bf_state.bfs_txq = txq;
2240 	bf->bf_state.bfs_pri = pri;
2241 
2242 	/*
2243 	 * If the hardware queue isn't busy, queue it directly.
2244 	 * If the hardware queue is busy, queue it.
2245 	 * If the TID is paused or the traffic it outside BAW, software
2246 	 * queue it.
2247 	 */
2248 	ATH_TXQ_LOCK(txq);
2249 	if (atid->paused) {
2250 		/* TID is paused, queue */
2251 		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2252 	} else if (ath_tx_ampdu_pending(sc, an, tid)) {
2253 		/* AMPDU pending; queue */
2254 		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2255 		/* XXX sched? */
2256 	} else if (ath_tx_ampdu_running(sc, an, tid)) {
2257 		/* AMPDU running, attempt direct dispatch if possible */
2258 		if (txq->axq_depth < sc->sc_hwq_limit)
2259 			ath_tx_xmit_aggr(sc, an, bf);
2260 		else {
2261 			ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2262 			ath_tx_tid_sched(sc, atid);
2263 		}
2264 	} else if (txq->axq_depth < sc->sc_hwq_limit) {
2265 		/* AMPDU not running, attempt direct dispatch */
2266 		ath_tx_xmit_normal(sc, txq, bf);
2267 	} else {
2268 		/* Busy; queue */
2269 		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2270 		ath_tx_tid_sched(sc, atid);
2271 	}
2272 	ATH_TXQ_UNLOCK(txq);
2273 }
2274 
2275 /*
2276  * Do the basic frame setup stuff that's required before the frame
2277  * is added to a software queue.
2278  *
2279  * All frames get mostly the same treatment and it's done once.
2280  * Retransmits fiddle with things like the rate control setup,
2281  * setting the retransmit bit in the packet; doing relevant DMA/bus
2282  * syncing and relinking it (back) into the hardware TX queue.
2283  *
2284  * Note that this may cause the mbuf to be reallocated, so
2285  * m0 may not be valid.
2286  */
2287 
2288 
2289 /*
2290  * Configure the per-TID node state.
2291  *
2292  * This likely belongs in if_ath_node.c but I can't think of anywhere
2293  * else to put it just yet.
2294  *
2295  * This sets up the SLISTs and the mutex as appropriate.
2296  */
2297 void
2298 ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
2299 {
2300 	int i, j;
2301 	struct ath_tid *atid;
2302 
2303 	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
2304 		atid = &an->an_tid[i];
2305 		TAILQ_INIT(&atid->axq_q);
2306 		atid->tid = i;
2307 		atid->an = an;
2308 		for (j = 0; j < ATH_TID_MAX_BUFS; j++)
2309 			atid->tx_buf[j] = NULL;
2310 		atid->baw_head = atid->baw_tail = 0;
2311 		atid->paused = 0;
2312 		atid->sched = 0;
2313 		atid->hwq_depth = 0;
2314 		atid->cleanup_inprogress = 0;
2315 		if (i == IEEE80211_NONQOS_TID)
2316 			atid->ac = WME_AC_BE;
2317 		else
2318 			atid->ac = TID_TO_WME_AC(i);
2319 	}
2320 }
2321 
2322 /*
2323  * Pause the current TID. This stops packets from being transmitted
2324  * on it.
2325  *
2326  * Since this is also called from upper layers as well as the driver,
2327  * it will get the TID lock.
2328  */
2329 static void
2330 ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
2331 {
2332 	ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2333 	tid->paused++;
2334 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n",
2335 	    __func__, tid->paused);
2336 	ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2337 }
2338 
2339 /*
2340  * Unpause the current TID, and schedule it if needed.
2341  */
2342 static void
2343 ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
2344 {
2345 	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2346 
2347 	tid->paused--;
2348 
2349 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n",
2350 	    __func__, tid->paused);
2351 
2352 	if (tid->paused || tid->axq_depth == 0) {
2353 		return;
2354 	}
2355 
2356 	ath_tx_tid_sched(sc, tid);
2357 	/* Punt some frames to the hardware if needed */
2358 	ath_txq_sched(sc, sc->sc_ac2q[tid->ac]);
2359 }
2360 
2361 /*
2362  * Free any packets currently pending in the software TX queue.
2363  *
2364  * This will be called when a node is being deleted.
2365  *
2366  * It can also be called on an active node during an interface
2367  * reset or state transition.
2368  *
2369  * (From Linux/reference):
2370  *
2371  * TODO: For frame(s) that are in the retry state, we will reuse the
2372  * sequence number(s) without setting the retry bit. The
2373  * alternative is to give up on these and BAR the receiver's window
2374  * forward.
2375  */
2376 static void
2377 ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid,
2378     ath_bufhead *bf_cq)
2379 {
2380 	struct ath_buf *bf;
2381 	struct ieee80211_tx_ampdu *tap;
2382 	struct ieee80211_node *ni = &an->an_node;
2383 	int t = 0;
2384 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2385 
2386 	tap = ath_tx_get_tx_tid(an, tid->tid);
2387 
2388 	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2389 
2390 	/* Walk the queue, free frames */
2391 	for (;;) {
2392 		bf = TAILQ_FIRST(&tid->axq_q);
2393 		if (bf == NULL) {
2394 			break;
2395 		}
2396 
2397 		if (t == 0) {
2398 			device_printf(sc->sc_dev,
2399 			    "%s: node %p: tid %d: txq_depth=%d, "
2400 			    "txq_aggr_depth=%d, sched=%d, paused=%d, "
2401 			    "hwq_depth=%d, incomp=%d, baw_head=%d, baw_tail=%d "
2402 			    "txa_start=%d, ni_txseqs=%d\n",
2403 			     __func__, ni, tid->tid, txq->axq_depth,
2404 			     txq->axq_aggr_depth, tid->sched, tid->paused,
2405 			     tid->hwq_depth, tid->incomp, tid->baw_head,
2406 			     tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
2407 			     ni->ni_txseqs[tid->tid]);
2408 			t = 1;
2409 		}
2410 
2411 
2412 		/*
2413 		 * If the current TID is running AMPDU, update
2414 		 * the BAW.
2415 		 */
2416 		if (ath_tx_ampdu_running(sc, an, tid->tid) &&
2417 		    bf->bf_state.bfs_dobaw) {
2418 			/*
2419 			 * Only remove the frame from the BAW if it's
2420 			 * been transmitted at least once; this means
2421 			 * the frame was in the BAW to begin with.
2422 			 */
2423 			if (bf->bf_state.bfs_retries > 0) {
2424 				ath_tx_update_baw(sc, an, tid, bf);
2425 				bf->bf_state.bfs_dobaw = 0;
2426 			}
2427 			/*
2428 			 * This has become a non-fatal error now
2429 			 */
2430 			if (! bf->bf_state.bfs_addedbaw)
2431 				device_printf(sc->sc_dev,
2432 				    "%s: wasn't added: seqno %d\n",
2433 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
2434 		}
2435 		ATH_TXQ_REMOVE(tid, bf, bf_list);
2436 		TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
2437 	}
2438 
2439 	/*
2440 	 * Now that it's completed, grab the TID lock and update
2441 	 * the sequence number and BAW window.
2442 	 * Because sequence numbers have been assigned to frames
2443 	 * that haven't been sent yet, it's entirely possible
2444 	 * we'll be called with some pending frames that have not
2445 	 * been transmitted.
2446 	 *
2447 	 * The cleaner solution is to do the sequence number allocation
2448 	 * when the packet is first transmitted - and thus the "retries"
2449 	 * check above would be enough to update the BAW/seqno.
2450 	 */
2451 
2452 	/* But don't do it for non-QoS TIDs */
2453 	if (tap) {
2454 #if 0
2455 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2456 		    "%s: node %p: TID %d: sliding BAW left edge to %d\n",
2457 		    __func__, an, tid->tid, tap->txa_start);
2458 #endif
2459 		ni->ni_txseqs[tid->tid] = tap->txa_start;
2460 		tid->baw_tail = tid->baw_head;
2461 	}
2462 }
2463 
2464 /*
2465  * Flush all software queued packets for the given node.
2466  *
2467  * This occurs when a completion handler frees the last buffer
2468  * for a node, and the node is thus freed. This causes the node
2469  * to be cleaned up, which ends up calling ath_tx_node_flush.
2470  */
2471 void
2472 ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
2473 {
2474 	int tid;
2475 	ath_bufhead bf_cq;
2476 	struct ath_buf *bf;
2477 
2478 	TAILQ_INIT(&bf_cq);
2479 
2480 	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
2481 		struct ath_tid *atid = &an->an_tid[tid];
2482 		struct ath_txq *txq = sc->sc_ac2q[atid->ac];
2483 
2484 		/* Remove this tid from the list of active tids */
2485 		ATH_TXQ_LOCK(txq);
2486 		ath_tx_tid_unsched(sc, atid);
2487 
2488 		/* Free packets */
2489 		ath_tx_tid_drain(sc, an, atid, &bf_cq);
2490 		ATH_TXQ_UNLOCK(txq);
2491 	}
2492 
2493 	/* Handle completed frames */
2494 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2495 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
2496 		ath_tx_default_comp(sc, bf, 0);
2497 	}
2498 }
2499 
2500 /*
2501  * Drain all the software TXQs currently with traffic queued.
2502  */
2503 void
2504 ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
2505 {
2506 	struct ath_tid *tid;
2507 	ath_bufhead bf_cq;
2508 	struct ath_buf *bf;
2509 
2510 	TAILQ_INIT(&bf_cq);
2511 	ATH_TXQ_LOCK(txq);
2512 
2513 	/*
2514 	 * Iterate over all active tids for the given txq,
2515 	 * flushing and unsched'ing them
2516 	 */
2517 	while (! TAILQ_EMPTY(&txq->axq_tidq)) {
2518 		tid = TAILQ_FIRST(&txq->axq_tidq);
2519 		ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
2520 		ath_tx_tid_unsched(sc, tid);
2521 	}
2522 
2523 	ATH_TXQ_UNLOCK(txq);
2524 
2525 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2526 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
2527 		ath_tx_default_comp(sc, bf, 0);
2528 	}
2529 }
2530 
2531 /*
2532  * Handle completion of non-aggregate session frames.
2533  */
2534 void
2535 ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
2536 {
2537 	struct ieee80211_node *ni = bf->bf_node;
2538 	struct ath_node *an = ATH_NODE(ni);
2539 	int tid = bf->bf_state.bfs_tid;
2540 	struct ath_tid *atid = &an->an_tid[tid];
2541 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
2542 
2543 	/* The TID state is protected behind the TXQ lock */
2544 	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2545 
2546 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
2547 	    __func__, bf, fail, atid->hwq_depth - 1);
2548 
2549 	atid->hwq_depth--;
2550 	if (atid->hwq_depth < 0)
2551 		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
2552 		    __func__, atid->hwq_depth);
2553 	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2554 
2555 	/*
2556 	 * punt to rate control if we're not being cleaned up
2557 	 * during a hw queue drain and the frame wanted an ACK.
2558 	 */
2559 	if (fail == 0 && ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0))
2560 		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
2561 		    ts, bf->bf_state.bfs_pktlen,
2562 		    1, (ts->ts_status == 0) ? 0 : 1);
2563 
2564 	ath_tx_default_comp(sc, bf, fail);
2565 }
2566 
2567 /*
2568  * Handle cleanup of aggregate session packets that aren't
2569  * an A-MPDU.
2570  *
2571  * There's no need to update the BAW here - the session is being
2572  * torn down.
2573  */
2574 static void
2575 ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
2576 {
2577 	struct ieee80211_node *ni = bf->bf_node;
2578 	struct ath_node *an = ATH_NODE(ni);
2579 	int tid = bf->bf_state.bfs_tid;
2580 	struct ath_tid *atid = &an->an_tid[tid];
2581 
2582 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
2583 	    __func__, tid, atid->incomp);
2584 
2585 	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2586 	atid->incomp--;
2587 	if (atid->incomp == 0) {
2588 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2589 		    "%s: TID %d: cleaned up! resume!\n",
2590 		    __func__, tid);
2591 		atid->cleanup_inprogress = 0;
2592 		ath_tx_tid_resume(sc, atid);
2593 	}
2594 	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2595 
2596 	ath_tx_default_comp(sc, bf, 0);
2597 }
2598 
2599 /*
2600  * Performs transmit side cleanup when TID changes from aggregated to
2601  * unaggregated.
2602  *
2603  * - Discard all retry frames from the s/w queue.
2604  * - Fix the tx completion function for all buffers in s/w queue.
2605  * - Count the number of unacked frames, and let transmit completion
2606  *   handle it later.
2607  *
2608  * The caller is responsible for pausing the TID.
2609  */
2610 static void
2611 ath_tx_cleanup(struct ath_softc *sc, struct ath_node *an, int tid)
2612 {
2613 	struct ath_tid *atid = &an->an_tid[tid];
2614 	struct ieee80211_tx_ampdu *tap;
2615 	struct ath_buf *bf, *bf_next;
2616 	ath_bufhead bf_cq;
2617 
2618 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2619 	    "%s: TID %d: called\n", __func__, tid);
2620 
2621 	TAILQ_INIT(&bf_cq);
2622 	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2623 
2624 	/*
2625 	 * Update the frames in the software TX queue:
2626 	 *
2627 	 * + Discard retry frames in the queue
2628 	 * + Fix the completion function to be non-aggregate
2629 	 */
2630 	bf = TAILQ_FIRST(&atid->axq_q);
2631 	while (bf) {
2632 		if (bf->bf_state.bfs_isretried) {
2633 			bf_next = TAILQ_NEXT(bf, bf_list);
2634 			TAILQ_REMOVE(&atid->axq_q, bf, bf_list);
2635 			atid->axq_depth--;
2636 			if (bf->bf_state.bfs_dobaw) {
2637 				ath_tx_update_baw(sc, an, atid, bf);
2638 				if (! bf->bf_state.bfs_addedbaw)
2639 					device_printf(sc->sc_dev,
2640 					    "%s: wasn't added: seqno %d\n",
2641 					    __func__, SEQNO(bf->bf_state.bfs_seqno));
2642 			}
2643 			bf->bf_state.bfs_dobaw = 0;
2644 			/*
2645 			 * Call the default completion handler with "fail" just
2646 			 * so upper levels are suitably notified about this.
2647 			 */
2648 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
2649 			bf = bf_next;
2650 			continue;
2651 		}
2652 		/* Give these the default completion handler */
2653 		bf->bf_comp = ath_tx_normal_comp;
2654 		bf = TAILQ_NEXT(bf, bf_list);
2655 	}
2656 
2657 	/* The caller is required to pause the TID */
2658 #if 0
2659 	/* Pause the TID */
2660 	ath_tx_tid_pause(sc, atid);
2661 #endif
2662 
2663 	/*
2664 	 * Calculate what hardware-queued frames exist based
2665 	 * on the current BAW size. Ie, what frames have been
2666 	 * added to the TX hardware queue for this TID but
2667 	 * not yet ACKed.
2668 	 */
2669 	tap = ath_tx_get_tx_tid(an, tid);
2670 	/* Need the lock - fiddling with BAW */
2671 	while (atid->baw_head != atid->baw_tail) {
2672 		if (atid->tx_buf[atid->baw_head]) {
2673 			atid->incomp++;
2674 			atid->cleanup_inprogress = 1;
2675 			atid->tx_buf[atid->baw_head] = NULL;
2676 		}
2677 		INCR(atid->baw_head, ATH_TID_MAX_BUFS);
2678 		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2679 	}
2680 
2681 	/*
2682 	 * If cleanup is required, defer TID scheduling
2683 	 * until all the HW queued packets have been
2684 	 * sent.
2685 	 */
2686 	if (! atid->cleanup_inprogress)
2687 		ath_tx_tid_resume(sc, atid);
2688 
2689 	if (atid->cleanup_inprogress)
2690 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2691 		    "%s: TID %d: cleanup needed: %d packets\n",
2692 		    __func__, tid, atid->incomp);
2693 	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2694 
2695 	/* Handle completing frames and fail them */
2696 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2697 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
2698 		ath_tx_default_comp(sc, bf, 1);
2699 	}
2700 }
2701 
2702 static void
2703 ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
2704 {
2705 	struct ieee80211_frame *wh;
2706 
2707 	wh = mtod(bf->bf_m, struct ieee80211_frame *);
2708 	/* Only update/resync if needed */
2709 	if (bf->bf_state.bfs_isretried == 0) {
2710 		wh->i_fc[1] |= IEEE80211_FC1_RETRY;
2711 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2712 		    BUS_DMASYNC_PREWRITE);
2713 	}
2714 	sc->sc_stats.ast_tx_swretries++;
2715 	bf->bf_state.bfs_isretried = 1;
2716 	bf->bf_state.bfs_retries ++;
2717 }
2718 
2719 static struct ath_buf *
2720 ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
2721     struct ath_tid *tid, struct ath_buf *bf)
2722 {
2723 	struct ath_buf *nbf;
2724 	int error;
2725 
2726 	nbf = ath_buf_clone(sc, bf);
2727 
2728 #if 0
2729 	device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n",
2730 	    __func__);
2731 #endif
2732 
2733 	if (nbf == NULL) {
2734 		/* Failed to clone */
2735 		device_printf(sc->sc_dev,
2736 		    "%s: failed to clone a busy buffer\n",
2737 		    __func__);
2738 		return NULL;
2739 	}
2740 
2741 	/* Setup the dma for the new buffer */
2742 	error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
2743 	if (error != 0) {
2744 		device_printf(sc->sc_dev,
2745 		    "%s: failed to setup dma for clone\n",
2746 		    __func__);
2747 		/*
2748 		 * Put this at the head of the list, not tail;
2749 		 * that way it doesn't interfere with the
2750 		 * busy buffer logic (which uses the tail of
2751 		 * the list.)
2752 		 */
2753 		ATH_TXBUF_LOCK(sc);
2754 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, nbf, bf_list);
2755 		ATH_TXBUF_UNLOCK(sc);
2756 		return NULL;
2757 	}
2758 
2759 	/* Update BAW if required, before we free the original buf */
2760 	if (bf->bf_state.bfs_dobaw)
2761 		ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
2762 
2763 	/* Free current buffer; return the older buffer */
2764 	bf->bf_m = NULL;
2765 	bf->bf_node = NULL;
2766 	ath_freebuf(sc, bf);
2767 	return nbf;
2768 }
2769 
2770 /*
2771  * Handle retrying an unaggregate frame in an aggregate
2772  * session.
2773  *
2774  * If too many retries occur, pause the TID, wait for
2775  * any further retransmits (as there's no reason why
2776  * non-aggregate frames in an aggregate session are
2777  * transmitted in-order; they just have to be in-BAW)
2778  * and then queue a BAR.
2779  */
2780 static void
2781 ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
2782 {
2783 	struct ieee80211_node *ni = bf->bf_node;
2784 	struct ath_node *an = ATH_NODE(ni);
2785 	int tid = bf->bf_state.bfs_tid;
2786 	struct ath_tid *atid = &an->an_tid[tid];
2787 	struct ieee80211_tx_ampdu *tap;
2788 	int txseq;
2789 
2790 	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2791 
2792 	tap = ath_tx_get_tx_tid(an, tid);
2793 
2794 	/*
2795 	 * If the buffer is marked as busy, we can't directly
2796 	 * reuse it. Instead, try to clone the buffer.
2797 	 * If the clone is successful, recycle the old buffer.
2798 	 * If the clone is unsuccessful, set bfs_retries to max
2799 	 * to force the next bit of code to free the buffer
2800 	 * for us.
2801 	 */
2802 	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
2803 	    (bf->bf_flags & ATH_BUF_BUSY)) {
2804 		struct ath_buf *nbf;
2805 		nbf = ath_tx_retry_clone(sc, an, atid, bf);
2806 		if (nbf)
2807 			/* bf has been freed at this point */
2808 			bf = nbf;
2809 		else
2810 			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
2811 	}
2812 
2813 	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
2814 		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
2815 		    "%s: exceeded retries; seqno %d\n",
2816 		    __func__, SEQNO(bf->bf_state.bfs_seqno));
2817 		sc->sc_stats.ast_tx_swretrymax++;
2818 
2819 		/* Update BAW anyway */
2820 		if (bf->bf_state.bfs_dobaw) {
2821 			ath_tx_update_baw(sc, an, atid, bf);
2822 			if (! bf->bf_state.bfs_addedbaw)
2823 				device_printf(sc->sc_dev,
2824 				    "%s: wasn't added: seqno %d\n",
2825 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
2826 		}
2827 		bf->bf_state.bfs_dobaw = 0;
2828 
2829 		/* Send BAR frame */
2830 		/*
2831 		 * This'll end up going into net80211 and back out
2832 		 * again, via ic->ic_raw_xmit().
2833 		 */
2834 		txseq = tap->txa_start;
2835 		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2836 
2837 		device_printf(sc->sc_dev,
2838 		    "%s: TID %d: send BAR; seq %d\n", __func__, tid, txseq);
2839 
2840 		/* XXX TODO: send BAR */
2841 
2842 		/* Free buffer, bf is free after this call */
2843 		ath_tx_default_comp(sc, bf, 0);
2844 		return;
2845 	}
2846 
2847 	/*
2848 	 * This increments the retry counter as well as
2849 	 * sets the retry flag in the ath_buf and packet
2850 	 * body.
2851 	 */
2852 	ath_tx_set_retry(sc, bf);
2853 
2854 	/*
2855 	 * Insert this at the head of the queue, so it's
2856 	 * retried before any current/subsequent frames.
2857 	 */
2858 	ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
2859 	ath_tx_tid_sched(sc, atid);
2860 
2861 	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2862 }
2863 
2864 /*
2865  * Common code for aggregate excessive retry/subframe retry.
2866  * If retrying, queues buffers to bf_q. If not, frees the
2867  * buffers.
2868  *
2869  * XXX should unify this with ath_tx_aggr_retry_unaggr()
2870  */
2871 static int
2872 ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
2873     ath_bufhead *bf_q)
2874 {
2875 	struct ieee80211_node *ni = bf->bf_node;
2876 	struct ath_node *an = ATH_NODE(ni);
2877 	int tid = bf->bf_state.bfs_tid;
2878 	struct ath_tid *atid = &an->an_tid[tid];
2879 
2880 	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]);
2881 
2882 	ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
2883 	ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
2884 	/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
2885 
2886 	/*
2887 	 * If the buffer is marked as busy, we can't directly
2888 	 * reuse it. Instead, try to clone the buffer.
2889 	 * If the clone is successful, recycle the old buffer.
2890 	 * If the clone is unsuccessful, set bfs_retries to max
2891 	 * to force the next bit of code to free the buffer
2892 	 * for us.
2893 	 */
2894 	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
2895 	    (bf->bf_flags & ATH_BUF_BUSY)) {
2896 		struct ath_buf *nbf;
2897 		nbf = ath_tx_retry_clone(sc, an, atid, bf);
2898 		if (nbf)
2899 			/* bf has been freed at this point */
2900 			bf = nbf;
2901 		else
2902 			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
2903 	}
2904 
2905 	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
2906 		sc->sc_stats.ast_tx_swretrymax++;
2907 		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
2908 		    "%s: max retries: seqno %d\n",
2909 		    __func__, SEQNO(bf->bf_state.bfs_seqno));
2910 		ath_tx_update_baw(sc, an, atid, bf);
2911 		if (! bf->bf_state.bfs_addedbaw)
2912 			device_printf(sc->sc_dev,
2913 			    "%s: wasn't added: seqno %d\n",
2914 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
2915 		bf->bf_state.bfs_dobaw = 0;
2916 		return 1;
2917 	}
2918 
2919 	ath_tx_set_retry(sc, bf);
2920 	bf->bf_next = NULL;		/* Just to make sure */
2921 
2922 	TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
2923 	return 0;
2924 }
2925 
2926 /*
2927  * error pkt completion for an aggregate destination
2928  */
2929 static void
2930 ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
2931     struct ath_tid *tid)
2932 {
2933 	struct ieee80211_node *ni = bf_first->bf_node;
2934 	struct ath_node *an = ATH_NODE(ni);
2935 	struct ath_buf *bf_next, *bf;
2936 	ath_bufhead bf_q;
2937 	int drops = 0;
2938 	struct ieee80211_tx_ampdu *tap;
2939 	ath_bufhead bf_cq;
2940 
2941 	TAILQ_INIT(&bf_q);
2942 	TAILQ_INIT(&bf_cq);
2943 	sc->sc_stats.ast_tx_aggrfail++;
2944 
2945 	/*
2946 	 * Update rate control - all frames have failed.
2947 	 *
2948 	 * XXX use the length in the first frame in the series;
2949 	 * XXX just so things are consistent for now.
2950 	 */
2951 	ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
2952 	    &bf_first->bf_status.ds_txstat,
2953 	    bf_first->bf_state.bfs_pktlen,
2954 	    bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
2955 
2956 	ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2957 	tap = ath_tx_get_tx_tid(an, tid->tid);
2958 
2959 	/* Retry all subframes */
2960 	bf = bf_first;
2961 	while (bf) {
2962 		bf_next = bf->bf_next;
2963 		bf->bf_next = NULL;	/* Remove it from the aggr list */
2964 		if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
2965 			drops++;
2966 			bf->bf_next = NULL;
2967 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
2968 		}
2969 		bf = bf_next;
2970 	}
2971 
2972 	/* Prepend all frames to the beginning of the queue */
2973 	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
2974 		TAILQ_REMOVE(&bf_q, bf, bf_list);
2975 		ATH_TXQ_INSERT_HEAD(tid, bf, bf_list);
2976 	}
2977 
2978 	ath_tx_tid_sched(sc, tid);
2979 
2980 	/*
2981 	 * send bar if we dropped any frames
2982 	 *
2983 	 * Keep the txq lock held for now, as we need to ensure
2984 	 * that ni_txseqs[] is consistent (as it's being updated
2985 	 * in the ifnet TX context or raw TX context.)
2986 	 */
2987 	if (drops) {
2988 		int txseq = tap->txa_start;
2989 		ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2990 		device_printf(sc->sc_dev,
2991 		    "%s: TID %d: send BAR; seq %d\n",
2992 		    __func__, tid->tid, txseq);
2993 
2994 		/* XXX TODO: send BAR */
2995 	} else {
2996 		ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2997 	}
2998 
2999 	/* Complete frames which errored out */
3000 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3001 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3002 		ath_tx_default_comp(sc, bf, 0);
3003 	}
3004 }
3005 
3006 /*
3007  * Handle clean-up of packets from an aggregate list.
3008  *
3009  * There's no need to update the BAW here - the session is being
3010  * torn down.
3011  */
3012 static void
3013 ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
3014 {
3015 	struct ath_buf *bf, *bf_next;
3016 	struct ieee80211_node *ni = bf_first->bf_node;
3017 	struct ath_node *an = ATH_NODE(ni);
3018 	int tid = bf_first->bf_state.bfs_tid;
3019 	struct ath_tid *atid = &an->an_tid[tid];
3020 
3021 	bf = bf_first;
3022 
3023 	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3024 
3025 	/* update incomp */
3026 	while (bf) {
3027 		atid->incomp--;
3028 		bf = bf->bf_next;
3029 	}
3030 
3031 	if (atid->incomp == 0) {
3032 		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3033 		    "%s: TID %d: cleaned up! resume!\n",
3034 		    __func__, tid);
3035 		atid->cleanup_inprogress = 0;
3036 		ath_tx_tid_resume(sc, atid);
3037 	}
3038 	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3039 
3040 	/* Handle frame completion */
3041 	while (bf) {
3042 		bf_next = bf->bf_next;
3043 		ath_tx_default_comp(sc, bf, 1);
3044 		bf = bf_next;
3045 	}
3046 }
3047 
3048 /*
3049  * Handle completion of an set of aggregate frames.
3050  *
3051  * XXX for now, simply complete each sub-frame.
3052  *
3053  * Note: the completion handler is the last descriptor in the aggregate,
3054  * not the last descriptor in the first frame.
3055  */
3056 static void
3057 ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, int fail)
3058 {
3059 	//struct ath_desc *ds = bf->bf_lastds;
3060 	struct ieee80211_node *ni = bf_first->bf_node;
3061 	struct ath_node *an = ATH_NODE(ni);
3062 	int tid = bf_first->bf_state.bfs_tid;
3063 	struct ath_tid *atid = &an->an_tid[tid];
3064 	struct ath_tx_status ts;
3065 	struct ieee80211_tx_ampdu *tap;
3066 	ath_bufhead bf_q;
3067 	ath_bufhead bf_cq;
3068 	int seq_st, tx_ok;
3069 	int hasba, isaggr;
3070 	uint32_t ba[2];
3071 	struct ath_buf *bf, *bf_next;
3072 	int ba_index;
3073 	int drops = 0;
3074 	int nframes = 0, nbad = 0, nf;
3075 	int pktlen;
3076 	/* XXX there's too much on the stack? */
3077 	struct ath_rc_series rc[4];
3078 	int txseq;
3079 
3080 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
3081 	    __func__, atid->hwq_depth);
3082 
3083 	/* The TID state is kept behind the TXQ lock */
3084 	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3085 
3086 	atid->hwq_depth--;
3087 	if (atid->hwq_depth < 0)
3088 		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3089 		    __func__, atid->hwq_depth);
3090 
3091 	/*
3092 	 * Punt cleanup to the relevant function, not our problem now
3093 	 */
3094 	if (atid->cleanup_inprogress) {
3095 		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3096 		ath_tx_comp_cleanup_aggr(sc, bf_first);
3097 		return;
3098 	}
3099 
3100 	/*
3101 	 * Take a copy; this may be needed -after- bf_first
3102 	 * has been completed and freed.
3103 	 */
3104 	ts = bf_first->bf_status.ds_txstat;
3105 	/*
3106 	 * XXX for now, use the first frame in the aggregate for
3107 	 * XXX rate control completion; it's at least consistent.
3108 	 */
3109 	pktlen = bf_first->bf_state.bfs_pktlen;
3110 
3111 	/*
3112 	 * handle errors first
3113 	 */
3114 	if (ts.ts_status & HAL_TXERR_XRETRY) {
3115 		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3116 		ath_tx_comp_aggr_error(sc, bf_first, atid);
3117 		return;
3118 	}
3119 
3120 	TAILQ_INIT(&bf_q);
3121 	TAILQ_INIT(&bf_cq);
3122 	tap = ath_tx_get_tx_tid(an, tid);
3123 
3124 	/*
3125 	 * extract starting sequence and block-ack bitmap
3126 	 */
3127 	/* XXX endian-ness of seq_st, ba? */
3128 	seq_st = ts.ts_seqnum;
3129 	hasba = !! (ts.ts_flags & HAL_TX_BA);
3130 	tx_ok = (ts.ts_status == 0);
3131 	isaggr = bf_first->bf_state.bfs_aggr;
3132 	ba[0] = ts.ts_ba_low;
3133 	ba[1] = ts.ts_ba_high;
3134 
3135 	/*
3136 	 * Copy the TX completion status and the rate control
3137 	 * series from the first descriptor, as it may be freed
3138 	 * before the rate control code can get its grubby fingers
3139 	 * into things.
3140 	 */
3141 	memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
3142 
3143 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3144 	    "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
3145 	    __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
3146 	    isaggr, seq_st, hasba, ba[0], ba[1]);
3147 
3148 	/* Occasionally, the MAC sends a tx status for the wrong TID. */
3149 	if (tid != ts.ts_tid) {
3150 		device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n",
3151 		    __func__, tid, ts.ts_tid);
3152 		tx_ok = 0;
3153 	}
3154 
3155 	/* AR5416 BA bug; this requires an interface reset */
3156 	if (isaggr && tx_ok && (! hasba)) {
3157 		device_printf(sc->sc_dev,
3158 		    "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, seq_st=%d\n",
3159 		    __func__, hasba, tx_ok, isaggr, seq_st);
3160 		/* XXX TODO: schedule an interface reset */
3161 	}
3162 
3163 	/*
3164 	 * Walk the list of frames, figure out which ones were correctly
3165 	 * sent and which weren't.
3166 	 */
3167 	bf = bf_first;
3168 	nf = bf_first->bf_state.bfs_nframes;
3169 
3170 	/* bf_first is going to be invalid once this list is walked */
3171 	bf_first = NULL;
3172 
3173 	/*
3174 	 * Walk the list of completed frames and determine
3175 	 * which need to be completed and which need to be
3176 	 * retransmitted.
3177 	 *
3178 	 * For completed frames, the completion functions need
3179 	 * to be called at the end of this function as the last
3180 	 * node reference may free the node.
3181 	 *
3182 	 * Finally, since the TXQ lock can't be held during the
3183 	 * completion callback (to avoid lock recursion),
3184 	 * the completion calls have to be done outside of the
3185 	 * lock.
3186 	 */
3187 	while (bf) {
3188 		nframes++;
3189 		ba_index = ATH_BA_INDEX(seq_st, SEQNO(bf->bf_state.bfs_seqno));
3190 		bf_next = bf->bf_next;
3191 		bf->bf_next = NULL;	/* Remove it from the aggr list */
3192 
3193 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3194 		    "%s: checking bf=%p seqno=%d; ack=%d\n",
3195 		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
3196 		    ATH_BA_ISSET(ba, ba_index));
3197 
3198 		if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
3199 			ath_tx_update_baw(sc, an, atid, bf);
3200 			bf->bf_state.bfs_dobaw = 0;
3201 			if (! bf->bf_state.bfs_addedbaw)
3202 				device_printf(sc->sc_dev,
3203 				    "%s: wasn't added: seqno %d\n",
3204 				    __func__, SEQNO(bf->bf_state.bfs_seqno));
3205 			bf->bf_next = NULL;
3206 			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3207 		} else {
3208 			if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
3209 				drops++;
3210 				bf->bf_next = NULL;
3211 				TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3212 			}
3213 			nbad++;
3214 		}
3215 		bf = bf_next;
3216 	}
3217 
3218 	/*
3219 	 * Now that the BAW updates have been done, unlock
3220 	 *
3221 	 * txseq is grabbed before the lock is released so we
3222 	 * have a consistent view of what -was- in the BAW.
3223 	 * Anything after this point will not yet have been
3224 	 * TXed.
3225 	 */
3226 	txseq = tap->txa_start;
3227 	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3228 
3229 	if (nframes != nf)
3230 		device_printf(sc->sc_dev,
3231 		    "%s: num frames seen=%d; bf nframes=%d\n",
3232 		    __func__, nframes, nf);
3233 
3234 	/*
3235 	 * Now we know how many frames were bad, call the rate
3236 	 * control code.
3237 	 */
3238 	if (fail == 0)
3239 		ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, nbad);
3240 
3241 	/*
3242 	 * send bar if we dropped any frames
3243 	 */
3244 	if (drops) {
3245 		device_printf(sc->sc_dev,
3246 		    "%s: TID %d: send BAR; seq %d\n", __func__, tid, txseq);
3247 		/* XXX TODO: send BAR */
3248 	}
3249 
3250 	/* Prepend all frames to the beginning of the queue */
3251 	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3252 	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
3253 		TAILQ_REMOVE(&bf_q, bf, bf_list);
3254 		ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
3255 	}
3256 	ath_tx_tid_sched(sc, atid);
3257 	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3258 
3259 	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3260 	    "%s: txa_start now %d\n", __func__, tap->txa_start);
3261 
3262 	/* Do deferred completion */
3263 	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3264 		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3265 		ath_tx_default_comp(sc, bf, 0);
3266 	}
3267 }
3268 
3269 /*
3270  * Handle completion of unaggregated frames in an ADDBA
3271  * session.
3272  *
3273  * Fail is set to 1 if the entry is being freed via a call to
3274  * ath_tx_draintxq().
3275  */
3276 static void
3277 ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
3278 {
3279 	struct ieee80211_node *ni = bf->bf_node;
3280 	struct ath_node *an = ATH_NODE(ni);
3281 	int tid = bf->bf_state.bfs_tid;
3282 	struct ath_tid *atid = &an->an_tid[tid];
3283 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3284 
3285 	/*
3286 	 * Update rate control status here, before we possibly
3287 	 * punt to retry or cleanup.
3288 	 *
3289 	 * Do it outside of the TXQ lock.
3290 	 */
3291 	if (fail == 0 && ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0))
3292 		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
3293 		    &bf->bf_status.ds_txstat,
3294 		    bf->bf_state.bfs_pktlen,
3295 		    1, (ts->ts_status == 0) ? 0 : 1);
3296 
3297 	/*
3298 	 * This is called early so atid->hwq_depth can be tracked.
3299 	 * This unfortunately means that it's released and regrabbed
3300 	 * during retry and cleanup. That's rather inefficient.
3301 	 */
3302 	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3303 
3304 	if (tid == IEEE80211_NONQOS_TID)
3305 		device_printf(sc->sc_dev, "%s: TID=16!\n", __func__);
3306 
3307 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: tid=%d, hwq_depth=%d\n",
3308 	    __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth);
3309 
3310 	atid->hwq_depth--;
3311 	if (atid->hwq_depth < 0)
3312 		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3313 		    __func__, atid->hwq_depth);
3314 
3315 	/*
3316 	 * If a cleanup is in progress, punt to comp_cleanup;
3317 	 * rather than handling it here. It's thus their
3318 	 * responsibility to clean up, call the completion
3319 	 * function in net80211, etc.
3320 	 */
3321 	if (atid->cleanup_inprogress) {
3322 		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3323 		ath_tx_comp_cleanup_unaggr(sc, bf);
3324 		return;
3325 	}
3326 
3327 	/*
3328 	 * Don't bother with the retry check if all frames
3329 	 * are being failed (eg during queue deletion.)
3330 	 */
3331 	if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
3332 		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3333 		ath_tx_aggr_retry_unaggr(sc, bf);
3334 		return;
3335 	}
3336 
3337 	/* Success? Complete */
3338 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
3339 	    __func__, tid, SEQNO(bf->bf_state.bfs_seqno));
3340 	if (bf->bf_state.bfs_dobaw) {
3341 		ath_tx_update_baw(sc, an, atid, bf);
3342 		bf->bf_state.bfs_dobaw = 0;
3343 		if (! bf->bf_state.bfs_addedbaw)
3344 			device_printf(sc->sc_dev,
3345 			    "%s: wasn't added: seqno %d\n",
3346 			    __func__, SEQNO(bf->bf_state.bfs_seqno));
3347 	}
3348 
3349 	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3350 
3351 	ath_tx_default_comp(sc, bf, fail);
3352 	/* bf is freed at this point */
3353 }
3354 
3355 void
3356 ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3357 {
3358 	if (bf->bf_state.bfs_aggr)
3359 		ath_tx_aggr_comp_aggr(sc, bf, fail);
3360 	else
3361 		ath_tx_aggr_comp_unaggr(sc, bf, fail);
3362 }
3363 
3364 /*
3365  * Schedule some packets from the given node/TID to the hardware.
3366  *
3367  * This is the aggregate version.
3368  */
3369 void
3370 ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
3371     struct ath_tid *tid)
3372 {
3373 	struct ath_buf *bf;
3374 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3375 	struct ieee80211_tx_ampdu *tap;
3376 	struct ieee80211_node *ni = &an->an_node;
3377 	ATH_AGGR_STATUS status;
3378 	ath_bufhead bf_q;
3379 
3380 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
3381 	ATH_TXQ_LOCK_ASSERT(txq);
3382 
3383 	tap = ath_tx_get_tx_tid(an, tid->tid);
3384 
3385 	if (tid->tid == IEEE80211_NONQOS_TID)
3386 		device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n",
3387 		    __func__);
3388 
3389 	for (;;) {
3390 		status = ATH_AGGR_DONE;
3391 
3392 		/*
3393 		 * If the upper layer has paused the TID, don't
3394 		 * queue any further packets.
3395 		 *
3396 		 * This can also occur from the completion task because
3397 		 * of packet loss; but as its serialised with this code,
3398 		 * it won't "appear" half way through queuing packets.
3399 		 */
3400 		if (tid->paused)
3401 			break;
3402 
3403 		bf = TAILQ_FIRST(&tid->axq_q);
3404 		if (bf == NULL) {
3405 			break;
3406 		}
3407 
3408 		/*
3409 		 * If the packet doesn't fall within the BAW (eg a NULL
3410 		 * data frame), schedule it directly; continue.
3411 		 */
3412 		if (! bf->bf_state.bfs_dobaw) {
3413 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: non-baw packet\n",
3414 			    __func__);
3415 			ATH_TXQ_REMOVE(tid, bf, bf_list);
3416 			bf->bf_state.bfs_aggr = 0;
3417 			ath_tx_do_ratelookup(sc, bf);
3418 			ath_tx_rate_fill_rcflags(sc, bf);
3419 			ath_tx_set_rtscts(sc, bf);
3420 			ath_tx_setds(sc, bf);
3421 			ath_tx_chaindesclist(sc, bf);
3422 			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3423 			ath_tx_set_ratectrl(sc, ni, bf);
3424 
3425 			sc->sc_aggr_stats.aggr_nonbaw_pkt++;
3426 
3427 			/* Queue the packet; continue */
3428 			goto queuepkt;
3429 		}
3430 
3431 		TAILQ_INIT(&bf_q);
3432 
3433 		/*
3434 		 * Do a rate control lookup on the first frame in the
3435 		 * list. The rate control code needs that to occur
3436 		 * before it can determine whether to TX.
3437 		 * It's inaccurate because the rate control code doesn't
3438 		 * really "do" aggregate lookups, so it only considers
3439 		 * the size of the first frame.
3440 		 */
3441 		ath_tx_do_ratelookup(sc, bf);
3442 		bf->bf_state.bfs_rc[3].rix = 0;
3443 		bf->bf_state.bfs_rc[3].tries = 0;
3444 		ath_tx_rate_fill_rcflags(sc, bf);
3445 
3446 		status = ath_tx_form_aggr(sc, an, tid, &bf_q);
3447 
3448 		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3449 		    "%s: ath_tx_form_aggr() status=%d\n", __func__, status);
3450 
3451 		/*
3452 		 * No frames to be picked up - out of BAW
3453 		 */
3454 		if (TAILQ_EMPTY(&bf_q))
3455 			break;
3456 
3457 		/*
3458 		 * This assumes that the descriptor list in the ath_bufhead
3459 		 * are already linked together via bf_next pointers.
3460 		 */
3461 		bf = TAILQ_FIRST(&bf_q);
3462 
3463 		/*
3464 		 * If it's the only frame send as non-aggregate
3465 		 * assume that ath_tx_form_aggr() has checked
3466 		 * whether it's in the BAW and added it appropriately.
3467 		 */
3468 		if (bf->bf_state.bfs_nframes == 1) {
3469 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3470 			    "%s: single-frame aggregate\n", __func__);
3471 			bf->bf_state.bfs_aggr = 0;
3472 			ath_tx_set_rtscts(sc, bf);
3473 			ath_tx_setds(sc, bf);
3474 			ath_tx_chaindesclist(sc, bf);
3475 			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3476 			ath_tx_set_ratectrl(sc, ni, bf);
3477 			if (status == ATH_AGGR_BAW_CLOSED)
3478 				sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
3479 			else
3480 				sc->sc_aggr_stats.aggr_single_pkt++;
3481 		} else {
3482 			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3483 			    "%s: multi-frame aggregate: %d frames, length %d\n",
3484 			     __func__, bf->bf_state.bfs_nframes,
3485 			    bf->bf_state.bfs_al);
3486 			bf->bf_state.bfs_aggr = 1;
3487 			sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
3488 			sc->sc_aggr_stats.aggr_aggr_pkt++;
3489 
3490 			/*
3491 			 * Update the rate and rtscts information based on the
3492 			 * rate decision made by the rate control code;
3493 			 * the first frame in the aggregate needs it.
3494 			 */
3495 			ath_tx_set_rtscts(sc, bf);
3496 
3497 			/*
3498 			 * Setup the relevant descriptor fields
3499 			 * for aggregation. The first descriptor
3500 			 * already points to the rest in the chain.
3501 			 */
3502 			ath_tx_setds_11n(sc, bf);
3503 
3504 			/*
3505 			 * setup first desc with rate and aggr info
3506 			 */
3507 			ath_tx_set_ratectrl(sc, ni, bf);
3508 		}
3509 	queuepkt:
3510 		//txq = bf->bf_state.bfs_txq;
3511 
3512 		/* Set completion handler, multi-frame aggregate or not */
3513 		bf->bf_comp = ath_tx_aggr_comp;
3514 
3515 		if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
3516 		    device_printf(sc->sc_dev, "%s: TID=16?\n", __func__);
3517 
3518 		/* Punt to txq */
3519 		ath_tx_handoff(sc, txq, bf);
3520 
3521 		/* Track outstanding buffer count to hardware */
3522 		/* aggregates are "one" buffer */
3523 		tid->hwq_depth++;
3524 
3525 		/*
3526 		 * Break out if ath_tx_form_aggr() indicated
3527 		 * there can't be any further progress (eg BAW is full.)
3528 		 * Checking for an empty txq is done above.
3529 		 *
3530 		 * XXX locking on txq here?
3531 		 */
3532 		if (txq->axq_aggr_depth >= sc->sc_hwq_limit ||
3533 		    status == ATH_AGGR_BAW_CLOSED)
3534 			break;
3535 	}
3536 }
3537 
3538 /*
3539  * Schedule some packets from the given node/TID to the hardware.
3540  */
3541 void
3542 ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
3543     struct ath_tid *tid)
3544 {
3545 	struct ath_buf *bf;
3546 	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3547 	struct ieee80211_node *ni = &an->an_node;
3548 
3549 	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
3550 	    __func__, an, tid->tid);
3551 
3552 	ATH_TXQ_LOCK_ASSERT(txq);
3553 
3554 	/* Check - is AMPDU pending or running? then print out something */
3555 	if (ath_tx_ampdu_pending(sc, an, tid->tid))
3556 		device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n",
3557 		    __func__, tid->tid);
3558 	if (ath_tx_ampdu_running(sc, an, tid->tid))
3559 		device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n",
3560 		    __func__, tid->tid);
3561 
3562 	for (;;) {
3563 
3564 		/*
3565 		 * If the upper layers have paused the TID, don't
3566 		 * queue any further packets.
3567 		 */
3568 		if (tid->paused)
3569 			break;
3570 
3571 		bf = TAILQ_FIRST(&tid->axq_q);
3572 		if (bf == NULL) {
3573 			break;
3574 		}
3575 
3576 		ATH_TXQ_REMOVE(tid, bf, bf_list);
3577 
3578 		KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n"));
3579 
3580 		/* Sanity check! */
3581 		if (tid->tid != bf->bf_state.bfs_tid) {
3582 			device_printf(sc->sc_dev, "%s: bfs_tid %d !="
3583 			    " tid %d\n",
3584 			    __func__, bf->bf_state.bfs_tid, tid->tid);
3585 		}
3586 		/* Normal completion handler */
3587 		bf->bf_comp = ath_tx_normal_comp;
3588 
3589 		/* Program descriptors + rate control */
3590 		ath_tx_do_ratelookup(sc, bf);
3591 		ath_tx_rate_fill_rcflags(sc, bf);
3592 		ath_tx_set_rtscts(sc, bf);
3593 		ath_tx_setds(sc, bf);
3594 		ath_tx_chaindesclist(sc, bf);
3595 		ath_tx_set_ratectrl(sc, ni, bf);
3596 
3597 		/* Track outstanding buffer count to hardware */
3598 		/* aggregates are "one" buffer */
3599 		tid->hwq_depth++;
3600 
3601 		/* Punt to hardware or software txq */
3602 		ath_tx_handoff(sc, txq, bf);
3603 	}
3604 }
3605 
3606 /*
3607  * Schedule some packets to the given hardware queue.
3608  *
3609  * This function walks the list of TIDs (ie, ath_node TIDs
3610  * with queued traffic) and attempts to schedule traffic
3611  * from them.
3612  *
3613  * TID scheduling is implemented as a FIFO, with TIDs being
3614  * added to the end of the queue after some frames have been
3615  * scheduled.
3616  */
3617 void
3618 ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
3619 {
3620 	struct ath_tid *tid, *next, *last;
3621 
3622 	ATH_TXQ_LOCK_ASSERT(txq);
3623 
3624 	/*
3625 	 * Don't schedule if the hardware queue is busy.
3626 	 * This (hopefully) gives some more time to aggregate
3627 	 * some packets in the aggregation queue.
3628 	 */
3629 	if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
3630 		sc->sc_aggr_stats.aggr_sched_nopkt++;
3631 		return;
3632 	}
3633 
3634 	last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
3635 
3636 	TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
3637 		/*
3638 		 * Suspend paused queues here; they'll be resumed
3639 		 * once the addba completes or times out.
3640 		 */
3641 		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
3642 		    __func__, tid->tid, tid->paused);
3643 		ath_tx_tid_unsched(sc, tid);
3644 		if (tid->paused) {
3645 			continue;
3646 		}
3647 		if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
3648 			ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
3649 		else
3650 			ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
3651 
3652 		/* Not empty? Re-schedule */
3653 		if (tid->axq_depth != 0)
3654 			ath_tx_tid_sched(sc, tid);
3655 
3656 		/* Give the software queue time to aggregate more packets */
3657 		if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
3658 			break;
3659 		}
3660 
3661 		/*
3662 		 * If this was the last entry on the original list, stop.
3663 		 * Otherwise nodes that have been rescheduled onto the end
3664 		 * of the TID FIFO list will just keep being rescheduled.
3665 		 */
3666 		if (tid == last)
3667 			break;
3668 	}
3669 }
3670 
3671 /*
3672  * TX addba handling
3673  */
3674 
3675 /*
3676  * Return net80211 TID struct pointer, or NULL for none
3677  */
3678 struct ieee80211_tx_ampdu *
3679 ath_tx_get_tx_tid(struct ath_node *an, int tid)
3680 {
3681 	struct ieee80211_node *ni = &an->an_node;
3682 	struct ieee80211_tx_ampdu *tap;
3683 	int ac;
3684 
3685 	if (tid == IEEE80211_NONQOS_TID)
3686 		return NULL;
3687 
3688 	ac = TID_TO_WME_AC(tid);
3689 
3690 	tap = &ni->ni_tx_ampdu[ac];
3691 	return tap;
3692 }
3693 
3694 /*
3695  * Is AMPDU-TX running?
3696  */
3697 static int
3698 ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
3699 {
3700 	struct ieee80211_tx_ampdu *tap;
3701 
3702 	if (tid == IEEE80211_NONQOS_TID)
3703 		return 0;
3704 
3705 	tap = ath_tx_get_tx_tid(an, tid);
3706 	if (tap == NULL)
3707 		return 0;	/* Not valid; default to not running */
3708 
3709 	return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
3710 }
3711 
3712 /*
3713  * Is AMPDU-TX negotiation pending?
3714  */
3715 static int
3716 ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
3717 {
3718 	struct ieee80211_tx_ampdu *tap;
3719 
3720 	if (tid == IEEE80211_NONQOS_TID)
3721 		return 0;
3722 
3723 	tap = ath_tx_get_tx_tid(an, tid);
3724 	if (tap == NULL)
3725 		return 0;	/* Not valid; default to not pending */
3726 
3727 	return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
3728 }
3729 
3730 /*
3731  * Is AMPDU-TX pending for the given TID?
3732  */
3733 
3734 
3735 /*
3736  * Method to handle sending an ADDBA request.
3737  *
3738  * We tap this so the relevant flags can be set to pause the TID
3739  * whilst waiting for the response.
3740  *
3741  * XXX there's no timeout handler we can override?
3742  */
3743 int
3744 ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3745     int dialogtoken, int baparamset, int batimeout)
3746 {
3747 	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3748 	int tid = WME_AC_TO_TID(tap->txa_ac);
3749 	struct ath_node *an = ATH_NODE(ni);
3750 	struct ath_tid *atid = &an->an_tid[tid];
3751 
3752 	/*
3753 	 * XXX danger Will Robinson!
3754 	 *
3755 	 * Although the taskqueue may be running and scheduling some more
3756 	 * packets, these should all be _before_ the addba sequence number.
3757 	 * However, net80211 will keep self-assigning sequence numbers
3758 	 * until addba has been negotiated.
3759 	 *
3760 	 * In the past, these packets would be "paused" (which still works
3761 	 * fine, as they're being scheduled to the driver in the same
3762 	 * serialised method which is calling the addba request routine)
3763 	 * and when the aggregation session begins, they'll be dequeued
3764 	 * as aggregate packets and added to the BAW. However, now there's
3765 	 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
3766 	 * packets. Thus they never get included in the BAW tracking and
3767 	 * this can cause the initial burst of packets after the addba
3768 	 * negotiation to "hang", as they quickly fall outside the BAW.
3769 	 *
3770 	 * The "eventual" solution should be to tag these packets with
3771 	 * dobaw. Although net80211 has given us a sequence number,
3772 	 * it'll be "after" the left edge of the BAW and thus it'll
3773 	 * fall within it.
3774 	 */
3775 	ath_tx_tid_pause(sc, atid);
3776 
3777 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3778 	    "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
3779 	    __func__, dialogtoken, baparamset, batimeout);
3780 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3781 	    "%s: txa_start=%d, ni_txseqs=%d\n",
3782 	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
3783 
3784 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
3785 	    batimeout);
3786 }
3787 
3788 /*
3789  * Handle an ADDBA response.
3790  *
3791  * We unpause the queue so TX'ing can resume.
3792  *
3793  * Any packets TX'ed from this point should be "aggregate" (whether
3794  * aggregate or not) so the BAW is updated.
3795  *
3796  * Note! net80211 keeps self-assigning sequence numbers until
3797  * ampdu is negotiated. This means the initially-negotiated BAW left
3798  * edge won't match the ni->ni_txseq.
3799  *
3800  * So, being very dirty, the BAW left edge is "slid" here to match
3801  * ni->ni_txseq.
3802  *
3803  * What likely SHOULD happen is that all packets subsequent to the
3804  * addba request should be tagged as aggregate and queued as non-aggregate
3805  * frames; thus updating the BAW. For now though, I'll just slide the
3806  * window.
3807  */
3808 int
3809 ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3810     int status, int code, int batimeout)
3811 {
3812 	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3813 	int tid = WME_AC_TO_TID(tap->txa_ac);
3814 	struct ath_node *an = ATH_NODE(ni);
3815 	struct ath_tid *atid = &an->an_tid[tid];
3816 	int r;
3817 
3818 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3819 	    "%s: called; status=%d, code=%d, batimeout=%d\n", __func__,
3820 	    status, code, batimeout);
3821 
3822 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3823 	    "%s: txa_start=%d, ni_txseqs=%d\n",
3824 	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
3825 
3826 	/*
3827 	 * Call this first, so the interface flags get updated
3828 	 * before the TID is unpaused. Otherwise a race condition
3829 	 * exists where the unpaused TID still doesn't yet have
3830 	 * IEEE80211_AGGR_RUNNING set.
3831 	 */
3832 	r = sc->sc_addba_response(ni, tap, status, code, batimeout);
3833 
3834 	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3835 	/*
3836 	 * XXX dirty!
3837 	 * Slide the BAW left edge to wherever net80211 left it for us.
3838 	 * Read above for more information.
3839 	 */
3840 	tap->txa_start = ni->ni_txseqs[tid];
3841 	ath_tx_tid_resume(sc, atid);
3842 	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3843 	return r;
3844 }
3845 
3846 
3847 /*
3848  * Stop ADDBA on a queue.
3849  */
3850 void
3851 ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
3852 {
3853 	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3854 	int tid = WME_AC_TO_TID(tap->txa_ac);
3855 	struct ath_node *an = ATH_NODE(ni);
3856 	struct ath_tid *atid = &an->an_tid[tid];
3857 
3858 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__);
3859 
3860 	/* Pause TID traffic early, so there aren't any races */
3861 	ath_tx_tid_pause(sc, atid);
3862 
3863 	/* There's no need to hold the TXQ lock here */
3864 	sc->sc_addba_stop(ni, tap);
3865 
3866 	/*
3867 	 * ath_tx_cleanup will resume the TID if possible, otherwise
3868 	 * it'll set the cleanup flag, and it'll be unpaused once
3869 	 * things have been cleaned up.
3870 	 */
3871 	ath_tx_cleanup(sc, an, tid);
3872 }
3873 
3874 /*
3875  * Note: net80211 bar_timeout() doesn't call this function on BAR failure;
3876  * it simply tears down the aggregation session. Ew.
3877  *
3878  * It however will call ieee80211_ampdu_stop() which will call
3879  * ic->ic_addba_stop().
3880  *
3881  * XXX This uses a hard-coded max BAR count value; the whole
3882  * XXX BAR TX success or failure should be better handled!
3883  */
3884 void
3885 ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3886     int status)
3887 {
3888 	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3889 	int tid = WME_AC_TO_TID(tap->txa_ac);
3890 	struct ath_node *an = ATH_NODE(ni);
3891 	struct ath_tid *atid = &an->an_tid[tid];
3892 	int attempts = tap->txa_attempts;
3893 
3894 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3895 	    "%s: called; status=%d\n", __func__, status);
3896 
3897 	/* Note: This may update the BAW details */
3898 	sc->sc_bar_response(ni, tap, status);
3899 
3900 	/* Unpause the TID */
3901 	/*
3902 	 * XXX if this is attempt=50, the TID will be downgraded
3903 	 * XXX to a non-aggregate session. So we must unpause the
3904 	 * XXX TID here or it'll never be done.
3905 	 */
3906 	if (status == 0 || attempts == 50) {
3907 		ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3908 		ath_tx_tid_resume(sc, atid);
3909 		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3910 	}
3911 }
3912 
3913 /*
3914  * This is called whenever the pending ADDBA request times out.
3915  * Unpause and reschedule the TID.
3916  */
3917 void
3918 ath_addba_response_timeout(struct ieee80211_node *ni,
3919     struct ieee80211_tx_ampdu *tap)
3920 {
3921 	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3922 	int tid = WME_AC_TO_TID(tap->txa_ac);
3923 	struct ath_node *an = ATH_NODE(ni);
3924 	struct ath_tid *atid = &an->an_tid[tid];
3925 
3926 	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3927 	    "%s: called; resuming\n", __func__);
3928 
3929 	/* Note: This updates the aggregate state to (again) pending */
3930 	sc->sc_addba_response_timeout(ni, tap);
3931 
3932 	/* Unpause the TID; which reschedules it */
3933 	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3934 	ath_tx_tid_resume(sc, atid);
3935 	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3936 }
3937