1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_beacon.h> 113 #include <dev/ath/if_athdfs.h> 114 115 #ifdef ATH_TX99_DIAG 116 #include <dev/ath/ath_tx99/ath_tx99.h> 117 #endif 118 119 #ifdef ATH_DEBUG_ALQ 120 #include <dev/ath/if_ath_alq.h> 121 #endif 122 123 #ifdef IEEE80211_SUPPORT_TDMA 124 #include <dev/ath/if_ath_tdma.h> 125 126 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 127 u_int32_t bintval); 128 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 129 const struct ieee80211_tdma_state *tdma); 130 #endif /* IEEE80211_SUPPORT_TDMA */ 131 132 #ifdef IEEE80211_SUPPORT_TDMA 133 static void 134 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 135 { 136 struct ath_hal *ah = sc->sc_ah; 137 HAL_BEACON_TIMERS bt; 138 139 bt.bt_intval = bintval | HAL_BEACON_ENA; 140 bt.bt_nexttbtt = nexttbtt; 141 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 142 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 143 bt.bt_nextatim = nexttbtt+1; 144 /* Enables TBTT, DBA, SWBA timers by default */ 145 bt.bt_flags = 0; 146 #if 0 147 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 148 "%s: intval=%d (0x%08x) nexttbtt=%u (0x%08x), nextdba=%u (0x%08x), nextswba=%u (0x%08x),nextatim=%u (0x%08x)\n", 149 __func__, 150 bt.bt_intval, 151 bt.bt_intval, 152 bt.bt_nexttbtt, 153 bt.bt_nexttbtt, 154 bt.bt_nextdba, 155 bt.bt_nextdba, 156 bt.bt_nextswba, 157 bt.bt_nextswba, 158 bt.bt_nextatim, 159 bt.bt_nextatim); 160 #endif 161 162 #ifdef ATH_DEBUG_ALQ 163 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_SET)) { 164 struct if_ath_alq_tdma_timer_set t; 165 t.bt_intval = htobe32(bt.bt_intval); 166 t.bt_nexttbtt = htobe32(bt.bt_nexttbtt); 167 t.bt_nextdba = htobe32(bt.bt_nextdba); 168 t.bt_nextswba = htobe32(bt.bt_nextswba); 169 t.bt_nextatim = htobe32(bt.bt_nextatim); 170 t.bt_flags = htobe32(bt.bt_flags); 171 t.sc_tdmadbaprep = htobe32(sc->sc_tdmadbaprep); 172 t.sc_tdmaswbaprep = htobe32(sc->sc_tdmaswbaprep); 173 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_SET, 174 sizeof(t), (char *) &t); 175 } 176 #endif 177 178 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 179 "%s: nexttbtt=%u (0x%08x), nexttbtt tsf=%lld (0x%08llx)\n", 180 __func__, 181 bt.bt_nexttbtt, 182 bt.bt_nexttbtt, 183 (long long) ( ((u_int64_t) (bt.bt_nexttbtt)) << 10), 184 (long long) ( ((u_int64_t) (bt.bt_nexttbtt)) << 10)); 185 ath_hal_beaconsettimers(ah, &bt); 186 } 187 188 /* 189 * Calculate the beacon interval. This is periodic in the 190 * superframe for the bss. We assume each station is configured 191 * identically wrt transmit rate so the guard time we calculate 192 * above will be the same on all stations. Note we need to 193 * factor in the xmit time because the hardware will schedule 194 * a frame for transmit if the start of the frame is within 195 * the burst time. When we get hardware that properly kills 196 * frames in the PCU we can reduce/eliminate the guard time. 197 * 198 * Roundup to 1024 is so we have 1 TU buffer in the guard time 199 * to deal with the granularity of the nexttbtt timer. 11n MAC's 200 * with 1us timer granularity should allow us to reduce/eliminate 201 * this. 202 */ 203 static void 204 ath_tdma_bintvalsetup(struct ath_softc *sc, 205 const struct ieee80211_tdma_state *tdma) 206 { 207 /* copy from vap state (XXX check all vaps have same value?) */ 208 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 209 210 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 211 tdma->tdma_slotcnt, 1024); 212 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 213 if (sc->sc_tdmabintval & 1) 214 sc->sc_tdmabintval++; 215 216 if (tdma->tdma_slot == 0) { 217 /* 218 * Only slot 0 beacons; other slots respond. 219 */ 220 sc->sc_imask |= HAL_INT_SWBA; 221 sc->sc_tdmaswba = 0; /* beacon immediately */ 222 } else { 223 /* XXX all vaps must be slot 0 or slot !0 */ 224 sc->sc_imask &= ~HAL_INT_SWBA; 225 } 226 } 227 228 /* 229 * Max 802.11 overhead. This assumes no 4-address frames and 230 * the encapsulation done by ieee80211_encap (llc). We also 231 * include potential crypto overhead. 232 */ 233 #define IEEE80211_MAXOVERHEAD \ 234 (sizeof(struct ieee80211_qosframe) \ 235 + sizeof(struct llc) \ 236 + IEEE80211_ADDR_LEN \ 237 + IEEE80211_WEP_IVLEN \ 238 + IEEE80211_WEP_KIDLEN \ 239 + IEEE80211_WEP_CRCLEN \ 240 + IEEE80211_WEP_MICLEN \ 241 + IEEE80211_CRC_LEN) 242 243 /* 244 * Setup initially for tdma operation. Start the beacon 245 * timers and enable SWBA if we are slot 0. Otherwise 246 * we wait for slot 0 to arrive so we can sync up before 247 * starting to transmit. 248 */ 249 void 250 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 251 { 252 struct ath_hal *ah = sc->sc_ah; 253 struct ieee80211com *ic = &sc->sc_ic; 254 const struct ieee80211_txparam *tp; 255 const struct ieee80211_tdma_state *tdma = NULL; 256 int rix; 257 258 if (vap == NULL) { 259 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 260 if (vap == NULL) { 261 device_printf(sc->sc_dev, "%s: no vaps?\n", __func__); 262 return; 263 } 264 } 265 /* XXX should take a locked ref to iv_bss */ 266 tp = vap->iv_bss->ni_txparms; 267 /* 268 * Calculate the guard time for each slot. This is the 269 * time to send a maximal-size frame according to the 270 * fixed/lowest transmit rate. Note that the interface 271 * mtu does not include the 802.11 overhead so we must 272 * tack that on (ath_hal_computetxtime includes the 273 * preamble and plcp in it's calculation). 274 */ 275 tdma = vap->iv_tdma; 276 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 277 rix = ath_tx_findrix(sc, tp->ucastrate); 278 else 279 rix = ath_tx_findrix(sc, tp->mcastrate); 280 281 /* 282 * If the chip supports enforcing TxOP on transmission, 283 * we can just delete the guard window. It isn't at all required. 284 */ 285 if (sc->sc_hasenforcetxop) { 286 sc->sc_tdmaguard = 0; 287 } else { 288 /* XXX short preamble assumed */ 289 /* XXX non-11n rate assumed */ 290 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 291 vap->iv_ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 292 } 293 294 ath_hal_intrset(ah, 0); 295 296 ath_beaconq_config(sc); /* setup h/w beacon q */ 297 if (sc->sc_setcca) 298 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 299 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 300 ath_tdma_settimers(sc, sc->sc_tdmabintval, 301 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 302 sc->sc_syncbeacon = 0; 303 304 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 305 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 306 307 ath_hal_intrset(ah, sc->sc_imask); 308 309 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 310 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 311 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 312 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 313 sc->sc_tdmadbaprep); 314 315 #ifdef ATH_DEBUG_ALQ 316 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_CONFIG)) { 317 struct if_ath_alq_tdma_timer_config t; 318 319 t.tdma_slot = htobe32(tdma->tdma_slot); 320 t.tdma_slotlen = htobe32(tdma->tdma_slotlen); 321 t.tdma_slotcnt = htobe32(tdma->tdma_slotcnt); 322 t.tdma_bintval = htobe32(tdma->tdma_bintval); 323 t.tdma_guard = htobe32(sc->sc_tdmaguard); 324 t.tdma_scbintval = htobe32(sc->sc_tdmabintval); 325 t.tdma_dbaprep = htobe32(sc->sc_tdmadbaprep); 326 327 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_CONFIG, 328 sizeof(t), (char *) &t); 329 } 330 #endif /* ATH_DEBUG_ALQ */ 331 } 332 333 /* 334 * Update tdma operation. Called from the 802.11 layer 335 * when a beacon is received from the TDMA station operating 336 * in the slot immediately preceding us in the bss. Use 337 * the rx timestamp for the beacon frame to update our 338 * beacon timers so we follow their schedule. Note that 339 * by using the rx timestamp we implicitly include the 340 * propagation delay in our schedule. 341 * 342 * XXX TODO: since the changes for the AR5416 and later chips 343 * involved changing the TSF/TU calculations, we need to make 344 * sure that various calculations wrap consistently. 345 * 346 * A lot of the problems stemmed from the calculations wrapping 347 * at 65,535 TU. Since a lot of the math is still being done in 348 * TU, please audit it to ensure that when the TU values programmed 349 * into the timers wrap at (2^31)-1 TSF, all the various terms 350 * wrap consistently. 351 */ 352 void 353 ath_tdma_update(struct ieee80211_node *ni, 354 const struct ieee80211_tdma_param *tdma, int changed) 355 { 356 #define TSF_TO_TU(_h,_l) \ 357 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 358 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 359 struct ieee80211vap *vap = ni->ni_vap; 360 struct ieee80211com *ic = ni->ni_ic; 361 struct ath_softc *sc = ic->ic_softc; 362 struct ath_hal *ah = sc->sc_ah; 363 const HAL_RATE_TABLE *rt = sc->sc_currates; 364 u_int64_t tsf, rstamp, nextslot, nexttbtt, nexttbtt_full; 365 u_int32_t txtime, nextslottu; 366 int32_t tudelta, tsfdelta; 367 const struct ath_rx_status *rs; 368 int rix; 369 370 sc->sc_stats.ast_tdma_update++; 371 372 /* 373 * Check for and adopt configuration changes. 374 */ 375 if (changed != 0) { 376 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 377 378 ath_tdma_bintvalsetup(sc, ts); 379 if (changed & TDMA_UPDATE_SLOTLEN) 380 ath_wme_update(ic); 381 382 DPRINTF(sc, ATH_DEBUG_TDMA, 383 "%s: adopt slot %u slotcnt %u slotlen %u us " 384 "bintval %u TU\n", __func__, 385 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 386 sc->sc_tdmabintval); 387 388 /* XXX right? */ 389 ath_hal_intrset(ah, sc->sc_imask); 390 /* NB: beacon timers programmed below */ 391 } 392 393 /* extend rx timestamp to 64 bits */ 394 rs = sc->sc_lastrs; 395 tsf = ath_hal_gettsf64(ah); 396 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 397 /* 398 * The rx timestamp is set by the hardware on completing 399 * reception (at the point where the rx descriptor is DMA'd 400 * to the host). To find the start of our next slot we 401 * must adjust this time by the time required to send 402 * the packet just received. 403 */ 404 rix = rt->rateCodeToIndex[rs->rs_rate]; 405 406 /* 407 * To calculate the packet duration for legacy rates, we 408 * only need the rix and preamble. 409 * 410 * For 11n non-aggregate frames, we also need the channel 411 * width and short/long guard interval. 412 * 413 * For 11n aggregate frames, the required hacks are a little 414 * more subtle. You need to figure out the frame duration 415 * for each frame, including the delimiters. However, when 416 * a frame isn't received successfully, we won't hear it 417 * (unless you enable reception of CRC errored frames), so 418 * your duration calculation is going to be off. 419 * 420 * However, we can assume that the beacon frames won't be 421 * transmitted as aggregate frames, so we should be okay. 422 * Just add a check to ensure that we aren't handed something 423 * bad. 424 * 425 * For ath_hal_pkt_txtime() - for 11n rates, shortPreamble is 426 * actually short guard interval. For legacy rates, 427 * it's short preamble. 428 */ 429 txtime = ath_hal_pkt_txtime(ah, rt, rs->rs_datalen, 430 rix, 431 !! (rs->rs_flags & HAL_RX_2040), 432 (rix & 0x80) ? 433 (! (rs->rs_flags & HAL_RX_GI)) : rt->info[rix].shortPreamble); 434 /* NB: << 9 is to cvt to TU and /2 */ 435 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 436 437 /* 438 * For 802.11n chips: nextslottu needs to be the full TSF space, 439 * not just 0..65535 TU. 440 */ 441 nextslottu = TSF_TO_TU(nextslot>>32, nextslot); 442 /* 443 * Retrieve the hardware NextTBTT in usecs 444 * and calculate the difference between what the 445 * other station thinks and what we have programmed. This 446 * lets us figure how to adjust our timers to match. The 447 * adjustments are done by pulling the TSF forward and possibly 448 * rewriting the beacon timers. 449 */ 450 /* 451 * The logic here assumes the nexttbtt counter is in TSF 452 * but the prr-11n NICs are in TU. The HAL shifts them 453 * to TSF but there's two important differences: 454 * 455 * + The TU->TSF values have 0's for the low 9 bits, and 456 * + The counter wraps at TU_TO_TSF(HAL_BEACON_PERIOD + 1) for 457 * the pre-11n NICs, but not for the 11n NICs. 458 * 459 * So for now, just make sure the nexttbtt value we get 460 * matches the second issue or once nexttbtt exceeds this 461 * value, tsfdelta ends up becoming very negative and all 462 * of the adjustments get very messed up. 463 */ 464 465 /* 466 * We need to track the full nexttbtt rather than having it 467 * truncated at HAL_BEACON_PERIOD, as programming the 468 * nexttbtt (and related) registers for the 11n chips is 469 * actually going to take the full 32 bit space, rather than 470 * just 0..65535 TU. 471 */ 472 nexttbtt_full = ath_hal_getnexttbtt(ah); 473 nexttbtt = nexttbtt_full % (TU_TO_TSF(HAL_BEACON_PERIOD + 1)); 474 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 475 476 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 477 "rs->rstamp %llu rstamp %llu tsf %llu txtime %d, nextslot %llu, " 478 "nextslottu %d, nextslottume %d\n", 479 (unsigned long long) rs->rs_tstamp, 480 (unsigned long long) rstamp, 481 (unsigned long long) tsf, txtime, 482 (unsigned long long) nextslot, 483 nextslottu, TSF_TO_TU(nextslot >> 32, nextslot)); 484 DPRINTF(sc, ATH_DEBUG_TDMA, 485 " beacon tstamp: %llu (0x%016llx)\n", 486 (unsigned long long) le64toh(ni->ni_tstamp.tsf), 487 (unsigned long long) le64toh(ni->ni_tstamp.tsf)); 488 489 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 490 "nexttbtt %llu (0x%08llx) tsfdelta %d avg +%d/-%d\n", 491 (unsigned long long) nexttbtt, 492 (long long) nexttbtt, 493 tsfdelta, 494 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 495 496 if (tsfdelta < 0) { 497 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 498 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 499 tsfdelta = -tsfdelta % 1024; 500 nextslottu++; 501 } else if (tsfdelta > 0) { 502 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 503 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 504 tsfdelta = 1024 - (tsfdelta % 1024); 505 nextslottu++; 506 } else { 507 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 508 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 509 } 510 tudelta = nextslottu - TSF_TO_TU(nexttbtt_full >> 32, nexttbtt_full); 511 512 #ifdef ATH_DEBUG_ALQ 513 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_BEACON_STATE)) { 514 struct if_ath_alq_tdma_beacon_state t; 515 t.rx_tsf = htobe64(rstamp); 516 t.beacon_tsf = htobe64(le64toh(ni->ni_tstamp.tsf)); 517 t.tsf64 = htobe64(tsf); 518 t.nextslot_tsf = htobe64(nextslot); 519 t.nextslot_tu = htobe32(nextslottu); 520 t.txtime = htobe32(txtime); 521 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_BEACON_STATE, 522 sizeof(t), (char *) &t); 523 } 524 525 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_SLOT_CALC)) { 526 struct if_ath_alq_tdma_slot_calc t; 527 528 t.nexttbtt = htobe64(nexttbtt_full); 529 t.next_slot = htobe64(nextslot); 530 t.tsfdelta = htobe32(tsfdelta); 531 t.avg_plus = htobe32(TDMA_AVG(sc->sc_avgtsfdeltap)); 532 t.avg_minus = htobe32(TDMA_AVG(sc->sc_avgtsfdeltam)); 533 534 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_SLOT_CALC, 535 sizeof(t), (char *) &t); 536 } 537 #endif 538 539 /* 540 * Copy sender's timetstamp into tdma ie so they can 541 * calculate roundtrip time. We submit a beacon frame 542 * below after any timer adjustment. The frame goes out 543 * at the next TBTT so the sender can calculate the 544 * roundtrip by inspecting the tdma ie in our beacon frame. 545 * 546 * NB: This tstamp is subtlely preserved when 547 * IEEE80211_BEACON_TDMA is marked (e.g. when the 548 * slot position changes) because ieee80211_add_tdma 549 * skips over the data. 550 */ 551 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 552 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 553 &ni->ni_tstamp.data, 8); 554 #if 0 555 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 556 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 557 (unsigned long long) tsf, (unsigned long long) nextslot, 558 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 559 #endif 560 /* 561 * Adjust the beacon timers only when pulling them forward 562 * or when going back by less than the beacon interval. 563 * Negative jumps larger than the beacon interval seem to 564 * cause the timers to stop and generally cause instability. 565 * This basically filters out jumps due to missed beacons. 566 */ 567 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 568 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 569 "%s: calling ath_tdma_settimers; nextslottu=%d, bintval=%d\n", 570 __func__, 571 nextslottu, 572 sc->sc_tdmabintval); 573 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 574 sc->sc_stats.ast_tdma_timers++; 575 } 576 if (tsfdelta > 0) { 577 uint64_t tsf; 578 579 /* XXX should just teach ath_hal_adjusttsf() to do this */ 580 tsf = ath_hal_gettsf64(ah); 581 ath_hal_settsf64(ah, tsf + tsfdelta); 582 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 583 "%s: calling ath_hal_adjusttsf: TSF=%llu, tsfdelta=%d\n", 584 __func__, 585 (unsigned long long) tsf, 586 tsfdelta); 587 588 #ifdef ATH_DEBUG_ALQ 589 if (if_ath_alq_checkdebug(&sc->sc_alq, 590 ATH_ALQ_TDMA_TSF_ADJUST)) { 591 struct if_ath_alq_tdma_tsf_adjust t; 592 593 t.tsfdelta = htobe32(tsfdelta); 594 t.tsf64_old = htobe64(tsf); 595 t.tsf64_new = htobe64(tsf + tsfdelta); 596 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TSF_ADJUST, 597 sizeof(t), (char *) &t); 598 } 599 #endif /* ATH_DEBUG_ALQ */ 600 sc->sc_stats.ast_tdma_tsf++; 601 } 602 ath_tdma_beacon_send(sc, vap); /* prepare response */ 603 #undef TU_TO_TSF 604 #undef TSF_TO_TU 605 } 606 607 /* 608 * Transmit a beacon frame at SWBA. Dynamic updates 609 * to the frame contents are done as needed. 610 */ 611 void 612 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 613 { 614 struct ath_hal *ah = sc->sc_ah; 615 struct ath_buf *bf; 616 int otherant; 617 618 /* 619 * Check if the previous beacon has gone out. If 620 * not don't try to post another, skip this period 621 * and wait for the next. Missed beacons indicate 622 * a problem and should not occur. If we miss too 623 * many consecutive beacons reset the device. 624 */ 625 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 626 sc->sc_bmisscount++; 627 DPRINTF(sc, ATH_DEBUG_BEACON, 628 "%s: missed %u consecutive beacons\n", 629 __func__, sc->sc_bmisscount); 630 if (sc->sc_bmisscount >= ath_bstuck_threshold) 631 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 632 return; 633 } 634 if (sc->sc_bmisscount != 0) { 635 DPRINTF(sc, ATH_DEBUG_BEACON, 636 "%s: resume beacon xmit after %u misses\n", 637 __func__, sc->sc_bmisscount); 638 sc->sc_bmisscount = 0; 639 } 640 641 /* 642 * Check recent per-antenna transmit statistics and flip 643 * the default antenna if noticeably more frames went out 644 * on the non-default antenna. 645 * XXX assumes 2 anntenae 646 */ 647 if (!sc->sc_diversity) { 648 otherant = sc->sc_defant & 1 ? 2 : 1; 649 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 650 ath_setdefantenna(sc, otherant); 651 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 652 } 653 654 bf = ath_beacon_generate(sc, vap); 655 /* XXX We don't do cabq traffic, but just for completeness .. */ 656 ATH_TXQ_LOCK(sc->sc_cabq); 657 ath_beacon_cabq_start(sc); 658 ATH_TXQ_UNLOCK(sc->sc_cabq); 659 660 if (bf != NULL) { 661 /* 662 * Stop any current dma and put the new frame on the queue. 663 * This should never fail since we check above that no frames 664 * are still pending on the queue. 665 */ 666 if ((! sc->sc_isedma) && 667 (! ath_hal_stoptxdma(ah, sc->sc_bhalq))) { 668 DPRINTF(sc, ATH_DEBUG_ANY, 669 "%s: beacon queue %u did not stop?\n", 670 __func__, sc->sc_bhalq); 671 /* NB: the HAL still stops DMA, so proceed */ 672 } 673 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 674 ath_hal_txstart(ah, sc->sc_bhalq); 675 676 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 677 678 /* 679 * Record local TSF for our last send for use 680 * in arbitrating slot collisions. 681 */ 682 /* XXX should take a locked ref to iv_bss */ 683 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 684 } 685 } 686 #endif /* IEEE80211_SUPPORT_TDMA */ 687