xref: /freebsd/sys/dev/ath/if_ath_rx.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/ethernet.h>
82 #include <net/if_llc.h>
83 
84 #include <net80211/ieee80211_var.h>
85 #include <net80211/ieee80211_regdomain.h>
86 #ifdef IEEE80211_SUPPORT_SUPERG
87 #include <net80211/ieee80211_superg.h>
88 #endif
89 #ifdef IEEE80211_SUPPORT_TDMA
90 #include <net80211/ieee80211_tdma.h>
91 #endif
92 
93 #include <net/bpf.h>
94 
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #include <dev/ath/if_athvar.h>
101 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102 #include <dev/ath/ath_hal/ah_diagcodes.h>
103 
104 #include <dev/ath/if_ath_debug.h>
105 #include <dev/ath/if_ath_misc.h>
106 #include <dev/ath/if_ath_tsf.h>
107 #include <dev/ath/if_ath_tx.h>
108 #include <dev/ath/if_ath_sysctl.h>
109 #include <dev/ath/if_ath_led.h>
110 #include <dev/ath/if_ath_keycache.h>
111 #include <dev/ath/if_ath_rx.h>
112 #include <dev/ath/if_ath_beacon.h>
113 #include <dev/ath/if_athdfs.h>
114 
115 #ifdef ATH_TX99_DIAG
116 #include <dev/ath/ath_tx99/ath_tx99.h>
117 #endif
118 
119 #ifdef	ATH_DEBUG_ALQ
120 #include <dev/ath/if_ath_alq.h>
121 #endif
122 
123 #include <dev/ath/if_ath_lna_div.h>
124 
125 /*
126  * Calculate the receive filter according to the
127  * operating mode and state:
128  *
129  * o always accept unicast, broadcast, and multicast traffic
130  * o accept PHY error frames when hardware doesn't have MIB support
131  *   to count and we need them for ANI (sta mode only until recently)
132  *   and we are not scanning (ANI is disabled)
133  *   NB: older hal's add rx filter bits out of sight and we need to
134  *	 blindly preserve them
135  * o probe request frames are accepted only when operating in
136  *   hostap, adhoc, mesh, or monitor modes
137  * o enable promiscuous mode
138  *   - when in monitor mode
139  *   - if interface marked PROMISC (assumes bridge setting is filtered)
140  * o accept beacons:
141  *   - when operating in station mode for collecting rssi data when
142  *     the station is otherwise quiet, or
143  *   - when operating in adhoc mode so the 802.11 layer creates
144  *     node table entries for peers,
145  *   - when scanning
146  *   - when doing s/w beacon miss (e.g. for ap+sta)
147  *   - when operating in ap mode in 11g to detect overlapping bss that
148  *     require protection
149  *   - when operating in mesh mode to detect neighbors
150  * o accept control frames:
151  *   - when in monitor mode
152  * XXX HT protection for 11n
153  */
154 u_int32_t
155 ath_calcrxfilter(struct ath_softc *sc)
156 {
157 	struct ifnet *ifp = sc->sc_ifp;
158 	struct ieee80211com *ic = ifp->if_l2com;
159 	u_int32_t rfilt;
160 
161 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
162 	if (!sc->sc_needmib && !sc->sc_scanning)
163 		rfilt |= HAL_RX_FILTER_PHYERR;
164 	if (ic->ic_opmode != IEEE80211_M_STA)
165 		rfilt |= HAL_RX_FILTER_PROBEREQ;
166 	/* XXX ic->ic_monvaps != 0? */
167 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
168 		rfilt |= HAL_RX_FILTER_PROM;
169 
170 	/*
171 	 * Only listen to all beacons if we're scanning.
172 	 *
173 	 * Otherwise we only really need to hear beacons from
174 	 * our own BSSID.
175 	 */
176 	if (ic->ic_opmode == IEEE80211_M_STA ||
177 	    ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
178 		if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
179 			rfilt |= HAL_RX_FILTER_MYBEACON;
180 		} else { /* scanning, non-mybeacon chips */
181 			rfilt |= HAL_RX_FILTER_BEACON;
182 		}
183 	}
184 
185 	/*
186 	 * NB: We don't recalculate the rx filter when
187 	 * ic_protmode changes; otherwise we could do
188 	 * this only when ic_protmode != NONE.
189 	 */
190 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
191 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
192 		rfilt |= HAL_RX_FILTER_BEACON;
193 
194 	/*
195 	 * Enable hardware PS-POLL RX only for hostap mode;
196 	 * STA mode sends PS-POLL frames but never
197 	 * receives them.
198 	 */
199 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
200 	    0, NULL) == HAL_OK &&
201 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
202 		rfilt |= HAL_RX_FILTER_PSPOLL;
203 
204 	if (sc->sc_nmeshvaps) {
205 		rfilt |= HAL_RX_FILTER_BEACON;
206 		if (sc->sc_hasbmatch)
207 			rfilt |= HAL_RX_FILTER_BSSID;
208 		else
209 			rfilt |= HAL_RX_FILTER_PROM;
210 	}
211 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
212 		rfilt |= HAL_RX_FILTER_CONTROL;
213 
214 	/*
215 	 * Enable RX of compressed BAR frames only when doing
216 	 * 802.11n. Required for A-MPDU.
217 	 */
218 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
219 		rfilt |= HAL_RX_FILTER_COMPBAR;
220 
221 	/*
222 	 * Enable radar PHY errors if requested by the
223 	 * DFS module.
224 	 */
225 	if (sc->sc_dodfs)
226 		rfilt |= HAL_RX_FILTER_PHYRADAR;
227 
228 	/*
229 	 * Enable spectral PHY errors if requested by the
230 	 * spectral module.
231 	 */
232 	if (sc->sc_dospectral)
233 		rfilt |= HAL_RX_FILTER_PHYRADAR;
234 
235 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
236 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
237 	return rfilt;
238 }
239 
240 static int
241 ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
242 {
243 	struct ath_hal *ah = sc->sc_ah;
244 	int error;
245 	struct mbuf *m;
246 	struct ath_desc *ds;
247 
248 	/* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
249 
250 	m = bf->bf_m;
251 	if (m == NULL) {
252 		/*
253 		 * NB: by assigning a page to the rx dma buffer we
254 		 * implicitly satisfy the Atheros requirement that
255 		 * this buffer be cache-line-aligned and sized to be
256 		 * multiple of the cache line size.  Not doing this
257 		 * causes weird stuff to happen (for the 5210 at least).
258 		 */
259 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
260 		if (m == NULL) {
261 			DPRINTF(sc, ATH_DEBUG_ANY,
262 				"%s: no mbuf/cluster\n", __func__);
263 			sc->sc_stats.ast_rx_nombuf++;
264 			return ENOMEM;
265 		}
266 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
267 
268 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
269 					     bf->bf_dmamap, m,
270 					     bf->bf_segs, &bf->bf_nseg,
271 					     BUS_DMA_NOWAIT);
272 		if (error != 0) {
273 			DPRINTF(sc, ATH_DEBUG_ANY,
274 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
275 			    __func__, error);
276 			sc->sc_stats.ast_rx_busdma++;
277 			m_freem(m);
278 			return error;
279 		}
280 		KASSERT(bf->bf_nseg == 1,
281 			("multi-segment packet; nseg %u", bf->bf_nseg));
282 		bf->bf_m = m;
283 	}
284 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
285 
286 	/*
287 	 * Setup descriptors.  For receive we always terminate
288 	 * the descriptor list with a self-linked entry so we'll
289 	 * not get overrun under high load (as can happen with a
290 	 * 5212 when ANI processing enables PHY error frames).
291 	 *
292 	 * To insure the last descriptor is self-linked we create
293 	 * each descriptor as self-linked and add it to the end.  As
294 	 * each additional descriptor is added the previous self-linked
295 	 * entry is ``fixed'' naturally.  This should be safe even
296 	 * if DMA is happening.  When processing RX interrupts we
297 	 * never remove/process the last, self-linked, entry on the
298 	 * descriptor list.  This insures the hardware always has
299 	 * someplace to write a new frame.
300 	 */
301 	/*
302 	 * 11N: we can no longer afford to self link the last descriptor.
303 	 * MAC acknowledges BA status as long as it copies frames to host
304 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
305 	 * to a sender if last desc is self-linked.
306 	 */
307 	ds = bf->bf_desc;
308 	if (sc->sc_rxslink)
309 		ds->ds_link = bf->bf_daddr;	/* link to self */
310 	else
311 		ds->ds_link = 0;		/* terminate the list */
312 	ds->ds_data = bf->bf_segs[0].ds_addr;
313 	ath_hal_setuprxdesc(ah, ds
314 		, m->m_len		/* buffer size */
315 		, 0
316 	);
317 
318 	if (sc->sc_rxlink != NULL)
319 		*sc->sc_rxlink = bf->bf_daddr;
320 	sc->sc_rxlink = &ds->ds_link;
321 	return 0;
322 }
323 
324 /*
325  * Intercept management frames to collect beacon rssi data
326  * and to do ibss merges.
327  */
328 void
329 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
330 	int subtype, int rssi, int nf)
331 {
332 	struct ieee80211vap *vap = ni->ni_vap;
333 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
334 	uint64_t tsf_beacon_old, tsf_beacon;
335 	uint64_t nexttbtt;
336 	int64_t tsf_delta;
337 	int32_t tsf_delta_bmiss;
338 	int32_t tsf_remainder;
339 	uint64_t tsf_beacon_target;
340 	int tsf_intval;
341 
342 	tsf_beacon_old = ((uint64_t) LE_READ_4(ni->ni_tstamp.data + 4)) << 32;
343 	tsf_beacon_old |= LE_READ_4(ni->ni_tstamp.data);
344 
345 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
346 	tsf_intval = 1;
347 	if (ni->ni_intval > 0) {
348 		tsf_intval = TU_TO_TSF(ni->ni_intval);
349 	}
350 #undef	TU_TO_TSF
351 
352 	/*
353 	 * Call up first so subsequent work can use information
354 	 * potentially stored in the node (e.g. for ibss merge).
355 	 */
356 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
357 	switch (subtype) {
358 	case IEEE80211_FC0_SUBTYPE_BEACON:
359 		/* update rssi statistics for use by the hal */
360 		/* XXX unlocked check against vap->iv_bss? */
361 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
362 
363 		tsf_beacon = ((uint64_t) LE_READ_4(ni->ni_tstamp.data + 4)) << 32;
364 		tsf_beacon |= LE_READ_4(ni->ni_tstamp.data);
365 
366 		nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
367 
368 		/*
369 		 * Let's calculate the delta and remainder, so we can see
370 		 * if the beacon timer from the AP is varying by more than
371 		 * a few TU.  (Which would be a huge, huge problem.)
372 		 */
373 		tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
374 
375 		tsf_delta_bmiss = tsf_delta / tsf_intval;
376 
377 		/*
378 		 * If our delta is greater than half the beacon interval,
379 		 * let's round the bmiss value up to the next beacon
380 		 * interval.  Ie, we're running really, really early
381 		 * on the next beacon.
382 		 */
383 		if (tsf_delta % tsf_intval > (tsf_intval / 2))
384 			tsf_delta_bmiss ++;
385 
386 		tsf_beacon_target = tsf_beacon_old +
387 		    (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
388 
389 		/*
390 		 * The remainder using '%' is between 0 .. intval-1.
391 		 * If we're actually running too fast, then the remainder
392 		 * will be some large number just under intval-1.
393 		 * So we need to look at whether we're running
394 		 * before or after the target beacon interval
395 		 * and if we are, modify how we do the remainder
396 		 * calculation.
397 		 */
398 		if (tsf_beacon < tsf_beacon_target) {
399 			tsf_remainder =
400 			    -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
401 		} else {
402 			tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
403 		}
404 
405 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: old_tsf=%llu, new_tsf=%llu, target_tsf=%llu, delta=%lld, bmiss=%d, remainder=%d\n",
406 		    __func__,
407 		    (unsigned long long) tsf_beacon_old,
408 		    (unsigned long long) tsf_beacon,
409 		    (unsigned long long) tsf_beacon_target,
410 		    (long long) tsf_delta,
411 		    tsf_delta_bmiss,
412 		    tsf_remainder);
413 
414 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: tsf=%llu, nexttbtt=%llu, delta=%d\n",
415 		    __func__,
416 		    (unsigned long long) tsf_beacon,
417 		    (unsigned long long) nexttbtt,
418 		    (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
419 
420 		if (sc->sc_syncbeacon &&
421 		    ni == vap->iv_bss &&
422 		    (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
423 			DPRINTF(sc, ATH_DEBUG_BEACON,
424 			    "%s: syncbeacon=1; syncing\n",
425 			    __func__);
426 			/*
427 			 * Resync beacon timers using the tsf of the beacon
428 			 * frame we just received.
429 			 */
430 			ath_beacon_config(sc, vap);
431 			sc->sc_syncbeacon = 0;
432 		}
433 
434 
435 		/* fall thru... */
436 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
437 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
438 		    vap->iv_state == IEEE80211_S_RUN) {
439 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
440 			uint64_t tsf = ath_extend_tsf(sc, rstamp,
441 				ath_hal_gettsf64(sc->sc_ah));
442 			/*
443 			 * Handle ibss merge as needed; check the tsf on the
444 			 * frame before attempting the merge.  The 802.11 spec
445 			 * says the station should change it's bssid to match
446 			 * the oldest station with the same ssid, where oldest
447 			 * is determined by the tsf.  Note that hardware
448 			 * reconfiguration happens through callback to
449 			 * ath_newstate as the state machine will go from
450 			 * RUN -> RUN when this happens.
451 			 */
452 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
453 				DPRINTF(sc, ATH_DEBUG_STATE,
454 				    "ibss merge, rstamp %u tsf %ju "
455 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
456 				    (uintmax_t)ni->ni_tstamp.tsf);
457 				(void) ieee80211_ibss_merge(ni);
458 			}
459 		}
460 		break;
461 	}
462 }
463 
464 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
465 static void
466 ath_rx_tap_vendor(struct ifnet *ifp, struct mbuf *m,
467     const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
468 {
469 	struct ath_softc *sc = ifp->if_softc;
470 
471 	/* Fill in the extension bitmap */
472 	sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
473 
474 	/* Fill in the vendor header */
475 	sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
476 	sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
477 	sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
478 
479 	/* XXX what should this be? */
480 	sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
481 	sc->sc_rx_th.wr_vh.vh_skip_len =
482 	    htole16(sizeof(struct ath_radiotap_vendor_hdr));
483 
484 	/* General version info */
485 	sc->sc_rx_th.wr_v.vh_version = 1;
486 
487 	sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
488 
489 	/* rssi */
490 	sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
491 	sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
492 	sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
493 	sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
494 	sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
495 	sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
496 
497 	/* evm */
498 	sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
499 	sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
500 	sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
501 	/* These are only populated from the AR9300 or later */
502 	sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
503 	sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
504 
505 	/* direction */
506 	sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
507 
508 	/* RX rate */
509 	sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
510 
511 	/* RX flags */
512 	sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
513 
514 	if (rs->rs_isaggr)
515 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
516 	if (rs->rs_moreaggr)
517 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
518 
519 	/* phyerr info */
520 	if (rs->rs_status & HAL_RXERR_PHY) {
521 		sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
522 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
523 	} else {
524 		sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
525 	}
526 	sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
527 	sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
528 }
529 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
530 
531 static void
532 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
533 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
534 {
535 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
536 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
537 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
538 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
539 	struct ath_softc *sc = ifp->if_softc;
540 	const HAL_RATE_TABLE *rt;
541 	uint8_t rix;
542 
543 	rt = sc->sc_currates;
544 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
545 	rix = rt->rateCodeToIndex[rs->rs_rate];
546 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
547 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
548 #ifdef AH_SUPPORT_AR5416
549 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
550 	if (rs->rs_status & HAL_RXERR_PHY) {
551 		/*
552 		 * PHY error - make sure the channel flags
553 		 * reflect the actual channel configuration,
554 		 * not the received frame.
555 		 */
556 		if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
557 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
558 		else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
559 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
560 		else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
561 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
562 	} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
563 		struct ieee80211com *ic = ifp->if_l2com;
564 
565 		if ((rs->rs_flags & HAL_RX_2040) == 0)
566 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
567 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
568 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
569 		else
570 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
571 		if ((rs->rs_flags & HAL_RX_GI) == 0)
572 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
573 	}
574 
575 #endif
576 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
577 	if (rs->rs_status & HAL_RXERR_CRC)
578 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
579 	/* XXX propagate other error flags from descriptor */
580 	sc->sc_rx_th.wr_antnoise = nf;
581 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
582 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
583 #undef CHAN_HT
584 #undef CHAN_HT20
585 #undef CHAN_HT40U
586 #undef CHAN_HT40D
587 }
588 
589 static void
590 ath_handle_micerror(struct ieee80211com *ic,
591 	struct ieee80211_frame *wh, int keyix)
592 {
593 	struct ieee80211_node *ni;
594 
595 	/* XXX recheck MIC to deal w/ chips that lie */
596 	/* XXX discard MIC errors on !data frames */
597 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
598 	if (ni != NULL) {
599 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
600 		ieee80211_free_node(ni);
601 	}
602 }
603 
604 /*
605  * Process a single packet.
606  *
607  * The mbuf must already be synced, unmapped and removed from bf->bf_m
608  * by this stage.
609  *
610  * The mbuf must be consumed by this routine - either passed up the
611  * net80211 stack, put on the holding queue, or freed.
612  */
613 int
614 ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
615     uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
616     struct mbuf *m)
617 {
618 	uint64_t rstamp;
619 	int len, type;
620 	struct ifnet *ifp = sc->sc_ifp;
621 	struct ieee80211com *ic = ifp->if_l2com;
622 	struct ieee80211_node *ni;
623 	int is_good = 0;
624 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
625 
626 	/*
627 	 * Calculate the correct 64 bit TSF given
628 	 * the TSF64 register value and rs_tstamp.
629 	 */
630 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
631 
632 	/* These aren't specifically errors */
633 #ifdef	AH_SUPPORT_AR5416
634 	if (rs->rs_flags & HAL_RX_GI)
635 		sc->sc_stats.ast_rx_halfgi++;
636 	if (rs->rs_flags & HAL_RX_2040)
637 		sc->sc_stats.ast_rx_2040++;
638 	if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
639 		sc->sc_stats.ast_rx_pre_crc_err++;
640 	if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
641 		sc->sc_stats.ast_rx_post_crc_err++;
642 	if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
643 		sc->sc_stats.ast_rx_decrypt_busy_err++;
644 	if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
645 		sc->sc_stats.ast_rx_hi_rx_chain++;
646 	if (rs->rs_flags & HAL_RX_STBC)
647 		sc->sc_stats.ast_rx_stbc++;
648 #endif /* AH_SUPPORT_AR5416 */
649 
650 	if (rs->rs_status != 0) {
651 		if (rs->rs_status & HAL_RXERR_CRC)
652 			sc->sc_stats.ast_rx_crcerr++;
653 		if (rs->rs_status & HAL_RXERR_FIFO)
654 			sc->sc_stats.ast_rx_fifoerr++;
655 		if (rs->rs_status & HAL_RXERR_PHY) {
656 			sc->sc_stats.ast_rx_phyerr++;
657 			/* Process DFS radar events */
658 			if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
659 			    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
660 				/* Now pass it to the radar processing code */
661 				ath_dfs_process_phy_err(sc, m, rstamp, rs);
662 			}
663 
664 			/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
665 			if (rs->rs_phyerr < 64)
666 				sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
667 			goto rx_error;	/* NB: don't count in ierrors */
668 		}
669 		if (rs->rs_status & HAL_RXERR_DECRYPT) {
670 			/*
671 			 * Decrypt error.  If the error occurred
672 			 * because there was no hardware key, then
673 			 * let the frame through so the upper layers
674 			 * can process it.  This is necessary for 5210
675 			 * parts which have no way to setup a ``clear''
676 			 * key cache entry.
677 			 *
678 			 * XXX do key cache faulting
679 			 */
680 			if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
681 				goto rx_accept;
682 			sc->sc_stats.ast_rx_badcrypt++;
683 		}
684 		/*
685 		 * Similar as above - if the failure was a keymiss
686 		 * just punt it up to the upper layers for now.
687 		 */
688 		if (rs->rs_status & HAL_RXERR_KEYMISS) {
689 			sc->sc_stats.ast_rx_keymiss++;
690 			goto rx_accept;
691 		}
692 		if (rs->rs_status & HAL_RXERR_MIC) {
693 			sc->sc_stats.ast_rx_badmic++;
694 			/*
695 			 * Do minimal work required to hand off
696 			 * the 802.11 header for notification.
697 			 */
698 			/* XXX frag's and qos frames */
699 			len = rs->rs_datalen;
700 			if (len >= sizeof (struct ieee80211_frame)) {
701 				ath_handle_micerror(ic,
702 				    mtod(m, struct ieee80211_frame *),
703 				    sc->sc_splitmic ?
704 					rs->rs_keyix-32 : rs->rs_keyix);
705 			}
706 		}
707 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
708 rx_error:
709 		/*
710 		 * Cleanup any pending partial frame.
711 		 */
712 		if (re->m_rxpending != NULL) {
713 			m_freem(re->m_rxpending);
714 			re->m_rxpending = NULL;
715 		}
716 		/*
717 		 * When a tap is present pass error frames
718 		 * that have been requested.  By default we
719 		 * pass decrypt+mic errors but others may be
720 		 * interesting (e.g. crc).
721 		 */
722 		if (ieee80211_radiotap_active(ic) &&
723 		    (rs->rs_status & sc->sc_monpass)) {
724 			/* NB: bpf needs the mbuf length setup */
725 			len = rs->rs_datalen;
726 			m->m_pkthdr.len = m->m_len = len;
727 			ath_rx_tap(ifp, m, rs, rstamp, nf);
728 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
729 			ath_rx_tap_vendor(ifp, m, rs, rstamp, nf);
730 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
731 			ieee80211_radiotap_rx_all(ic, m);
732 		}
733 		/* XXX pass MIC errors up for s/w reclaculation */
734 		m_freem(m); m = NULL;
735 		goto rx_next;
736 	}
737 rx_accept:
738 	len = rs->rs_datalen;
739 	m->m_len = len;
740 
741 	if (rs->rs_more) {
742 		/*
743 		 * Frame spans multiple descriptors; save
744 		 * it for the next completed descriptor, it
745 		 * will be used to construct a jumbogram.
746 		 */
747 		if (re->m_rxpending != NULL) {
748 			/* NB: max frame size is currently 2 clusters */
749 			sc->sc_stats.ast_rx_toobig++;
750 			m_freem(re->m_rxpending);
751 		}
752 		m->m_pkthdr.rcvif = ifp;
753 		m->m_pkthdr.len = len;
754 		re->m_rxpending = m;
755 		m = NULL;
756 		goto rx_next;
757 	} else if (re->m_rxpending != NULL) {
758 		/*
759 		 * This is the second part of a jumbogram,
760 		 * chain it to the first mbuf, adjust the
761 		 * frame length, and clear the rxpending state.
762 		 */
763 		re->m_rxpending->m_next = m;
764 		re->m_rxpending->m_pkthdr.len += len;
765 		m = re->m_rxpending;
766 		re->m_rxpending = NULL;
767 	} else {
768 		/*
769 		 * Normal single-descriptor receive; setup
770 		 * the rcvif and packet length.
771 		 */
772 		m->m_pkthdr.rcvif = ifp;
773 		m->m_pkthdr.len = len;
774 	}
775 
776 	/*
777 	 * Validate rs->rs_antenna.
778 	 *
779 	 * Some users w/ AR9285 NICs have reported crashes
780 	 * here because rs_antenna field is bogusly large.
781 	 * Let's enforce the maximum antenna limit of 8
782 	 * (and it shouldn't be hard coded, but that's a
783 	 * separate problem) and if there's an issue, print
784 	 * out an error and adjust rs_antenna to something
785 	 * sensible.
786 	 *
787 	 * This code should be removed once the actual
788 	 * root cause of the issue has been identified.
789 	 * For example, it may be that the rs_antenna
790 	 * field is only valid for the lsat frame of
791 	 * an aggregate and it just happens that it is
792 	 * "mostly" right. (This is a general statement -
793 	 * the majority of the statistics are only valid
794 	 * for the last frame in an aggregate.
795 	 */
796 	if (rs->rs_antenna > 7) {
797 		device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
798 		    __func__, rs->rs_antenna);
799 #ifdef	ATH_DEBUG
800 		ath_printrxbuf(sc, bf, 0, status == HAL_OK);
801 #endif /* ATH_DEBUG */
802 		rs->rs_antenna = 0;	/* XXX better than nothing */
803 	}
804 
805 	/*
806 	 * If this is an AR9285/AR9485, then the receive and LNA
807 	 * configuration is stored in RSSI[2] / EXTRSSI[2].
808 	 * We can extract this out to build a much better
809 	 * receive antenna profile.
810 	 *
811 	 * Yes, this just blurts over the above RX antenna field
812 	 * for now.  It's fine, the AR9285 doesn't really use
813 	 * that.
814 	 *
815 	 * Later on we should store away the fine grained LNA
816 	 * information and keep separate counters just for
817 	 * that.  It'll help when debugging the AR9285/AR9485
818 	 * combined diversity code.
819 	 */
820 	if (sc->sc_rx_lnamixer) {
821 		rs->rs_antenna = 0;
822 
823 		/* Bits 0:1 - the LNA configuration used */
824 		rs->rs_antenna |=
825 		    ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
826 		      >> HAL_RX_LNA_CFG_USED_S);
827 
828 		/* Bit 2 - the external RX antenna switch */
829 		if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
830 			rs->rs_antenna |= 0x4;
831 	}
832 
833 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
834 	sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
835 
836 	/*
837 	 * Populate the rx status block.  When there are bpf
838 	 * listeners we do the additional work to provide
839 	 * complete status.  Otherwise we fill in only the
840 	 * material required by ieee80211_input.  Note that
841 	 * noise setting is filled in above.
842 	 */
843 	if (ieee80211_radiotap_active(ic)) {
844 		ath_rx_tap(ifp, m, rs, rstamp, nf);
845 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
846 		ath_rx_tap_vendor(ifp, m, rs, rstamp, nf);
847 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
848 	}
849 
850 	/*
851 	 * From this point on we assume the frame is at least
852 	 * as large as ieee80211_frame_min; verify that.
853 	 */
854 	if (len < IEEE80211_MIN_LEN) {
855 		if (!ieee80211_radiotap_active(ic)) {
856 			DPRINTF(sc, ATH_DEBUG_RECV,
857 			    "%s: short packet %d\n", __func__, len);
858 			sc->sc_stats.ast_rx_tooshort++;
859 		} else {
860 			/* NB: in particular this captures ack's */
861 			ieee80211_radiotap_rx_all(ic, m);
862 		}
863 		m_freem(m); m = NULL;
864 		goto rx_next;
865 	}
866 
867 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
868 		const HAL_RATE_TABLE *rt = sc->sc_currates;
869 		uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
870 
871 		ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
872 		    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
873 	}
874 
875 	m_adj(m, -IEEE80211_CRC_LEN);
876 
877 	/*
878 	 * Locate the node for sender, track state, and then
879 	 * pass the (referenced) node up to the 802.11 layer
880 	 * for its use.
881 	 */
882 	ni = ieee80211_find_rxnode_withkey(ic,
883 		mtod(m, const struct ieee80211_frame_min *),
884 		rs->rs_keyix == HAL_RXKEYIX_INVALID ?
885 			IEEE80211_KEYIX_NONE : rs->rs_keyix);
886 	sc->sc_lastrs = rs;
887 
888 #ifdef	AH_SUPPORT_AR5416
889 	if (rs->rs_isaggr)
890 		sc->sc_stats.ast_rx_agg++;
891 #endif /* AH_SUPPORT_AR5416 */
892 
893 	if (ni != NULL) {
894 		/*
895 		 * Only punt packets for ampdu reorder processing for
896 		 * 11n nodes; net80211 enforces that M_AMPDU is only
897 		 * set for 11n nodes.
898 		 */
899 		if (ni->ni_flags & IEEE80211_NODE_HT)
900 			m->m_flags |= M_AMPDU;
901 
902 		/*
903 		 * Sending station is known, dispatch directly.
904 		 */
905 		type = ieee80211_input(ni, m, rs->rs_rssi, nf);
906 		ieee80211_free_node(ni);
907 		m = NULL;
908 		/*
909 		 * Arrange to update the last rx timestamp only for
910 		 * frames from our ap when operating in station mode.
911 		 * This assumes the rx key is always setup when
912 		 * associated.
913 		 */
914 		if (ic->ic_opmode == IEEE80211_M_STA &&
915 		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
916 			is_good = 1;
917 	} else {
918 		type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
919 		m = NULL;
920 	}
921 
922 	/*
923 	 * At this point we have passed the frame up the stack; thus
924 	 * the mbuf is no longer ours.
925 	 */
926 
927 	/*
928 	 * Track rx rssi and do any rx antenna management.
929 	 */
930 	ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
931 	if (sc->sc_diversity) {
932 		/*
933 		 * When using fast diversity, change the default rx
934 		 * antenna if diversity chooses the other antenna 3
935 		 * times in a row.
936 		 */
937 		if (sc->sc_defant != rs->rs_antenna) {
938 			if (++sc->sc_rxotherant >= 3)
939 				ath_setdefantenna(sc, rs->rs_antenna);
940 		} else
941 			sc->sc_rxotherant = 0;
942 	}
943 
944 	/* Handle slow diversity if enabled */
945 	if (sc->sc_dolnadiv) {
946 		ath_lna_rx_comb_scan(sc, rs, ticks, hz);
947 	}
948 
949 	if (sc->sc_softled) {
950 		/*
951 		 * Blink for any data frame.  Otherwise do a
952 		 * heartbeat-style blink when idle.  The latter
953 		 * is mainly for station mode where we depend on
954 		 * periodic beacon frames to trigger the poll event.
955 		 */
956 		if (type == IEEE80211_FC0_TYPE_DATA) {
957 			const HAL_RATE_TABLE *rt = sc->sc_currates;
958 			ath_led_event(sc,
959 			    rt->rateCodeToIndex[rs->rs_rate]);
960 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
961 			ath_led_event(sc, 0);
962 		}
963 rx_next:
964 	/*
965 	 * Debugging - complain if we didn't NULL the mbuf pointer
966 	 * here.
967 	 */
968 	if (m != NULL) {
969 		device_printf(sc->sc_dev,
970 		    "%s: mbuf %p should've been freed!\n",
971 		    __func__,
972 		    m);
973 	}
974 	return (is_good);
975 }
976 
977 #define	ATH_RX_MAX		128
978 
979 /*
980  * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
981  * the EDMA code does.
982  *
983  * XXX TODO: then, do all of the RX list management stuff inside
984  * ATH_RX_LOCK() so we don't end up potentially racing.  The EDMA
985  * code is doing it right.
986  */
987 static void
988 ath_rx_proc(struct ath_softc *sc, int resched)
989 {
990 #define	PA2DESC(_sc, _pa) \
991 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
992 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
993 	struct ath_buf *bf;
994 	struct ifnet *ifp = sc->sc_ifp;
995 	struct ath_hal *ah = sc->sc_ah;
996 #ifdef IEEE80211_SUPPORT_SUPERG
997 	struct ieee80211com *ic = ifp->if_l2com;
998 #endif
999 	struct ath_desc *ds;
1000 	struct ath_rx_status *rs;
1001 	struct mbuf *m;
1002 	int ngood;
1003 	HAL_STATUS status;
1004 	int16_t nf;
1005 	u_int64_t tsf;
1006 	int npkts = 0;
1007 	int kickpcu = 0;
1008 	int ret;
1009 
1010 	/* XXX we must not hold the ATH_LOCK here */
1011 	ATH_UNLOCK_ASSERT(sc);
1012 	ATH_PCU_UNLOCK_ASSERT(sc);
1013 
1014 	ATH_PCU_LOCK(sc);
1015 	sc->sc_rxproc_cnt++;
1016 	kickpcu = sc->sc_kickpcu;
1017 	ATH_PCU_UNLOCK(sc);
1018 
1019 	ATH_LOCK(sc);
1020 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1021 	ATH_UNLOCK(sc);
1022 
1023 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
1024 	ngood = 0;
1025 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
1026 	sc->sc_stats.ast_rx_noise = nf;
1027 	tsf = ath_hal_gettsf64(ah);
1028 	do {
1029 		/*
1030 		 * Don't process too many packets at a time; give the
1031 		 * TX thread time to also run - otherwise the TX
1032 		 * latency can jump by quite a bit, causing throughput
1033 		 * degredation.
1034 		 */
1035 		if (!kickpcu && npkts >= ATH_RX_MAX)
1036 			break;
1037 
1038 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1039 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
1040 			if_printf(ifp, "%s: no buffer!\n", __func__);
1041 			break;
1042 		} else if (bf == NULL) {
1043 			/*
1044 			 * End of List:
1045 			 * this can happen for non-self-linked RX chains
1046 			 */
1047 			sc->sc_stats.ast_rx_hitqueueend++;
1048 			break;
1049 		}
1050 		m = bf->bf_m;
1051 		if (m == NULL) {		/* NB: shouldn't happen */
1052 			/*
1053 			 * If mbuf allocation failed previously there
1054 			 * will be no mbuf; try again to re-populate it.
1055 			 */
1056 			/* XXX make debug msg */
1057 			if_printf(ifp, "%s: no mbuf!\n", __func__);
1058 			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1059 			goto rx_proc_next;
1060 		}
1061 		ds = bf->bf_desc;
1062 		if (ds->ds_link == bf->bf_daddr) {
1063 			/* NB: never process the self-linked entry at the end */
1064 			sc->sc_stats.ast_rx_hitqueueend++;
1065 			break;
1066 		}
1067 		/* XXX sync descriptor memory */
1068 		/*
1069 		 * Must provide the virtual address of the current
1070 		 * descriptor, the physical address, and the virtual
1071 		 * address of the next descriptor in the h/w chain.
1072 		 * This allows the HAL to look ahead to see if the
1073 		 * hardware is done with a descriptor by checking the
1074 		 * done bit in the following descriptor and the address
1075 		 * of the current descriptor the DMA engine is working
1076 		 * on.  All this is necessary because of our use of
1077 		 * a self-linked list to avoid rx overruns.
1078 		 */
1079 		rs = &bf->bf_status.ds_rxstat;
1080 		status = ath_hal_rxprocdesc(ah, ds,
1081 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1082 #ifdef ATH_DEBUG
1083 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
1084 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
1085 #endif
1086 
1087 #ifdef	ATH_DEBUG_ALQ
1088 		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
1089 		    if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
1090 		    sc->sc_rx_statuslen, (char *) ds);
1091 #endif	/* ATH_DEBUG_ALQ */
1092 
1093 		if (status == HAL_EINPROGRESS)
1094 			break;
1095 
1096 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1097 		npkts++;
1098 
1099 		/*
1100 		 * Process a single frame.
1101 		 */
1102 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
1103 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1104 		bf->bf_m = NULL;
1105 		if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
1106 			ngood++;
1107 rx_proc_next:
1108 		/*
1109 		 * If there's a holding buffer, insert that onto
1110 		 * the RX list; the hardware is now definitely not pointing
1111 		 * to it now.
1112 		 */
1113 		ret = 0;
1114 		if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
1115 			TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
1116 			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
1117 			    bf_list);
1118 			ret = ath_rxbuf_init(sc,
1119 			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
1120 		}
1121 		/*
1122 		 * Next, throw our buffer into the holding entry.  The hardware
1123 		 * may use the descriptor to read the link pointer before
1124 		 * DMAing the next descriptor in to write out a packet.
1125 		 */
1126 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
1127 	} while (ret == 0);
1128 
1129 	/* rx signal state monitoring */
1130 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
1131 	if (ngood)
1132 		sc->sc_lastrx = tsf;
1133 
1134 	ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
1135 	/* Queue DFS tasklet if needed */
1136 	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
1137 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
1138 
1139 	/*
1140 	 * Now that all the RX frames were handled that
1141 	 * need to be handled, kick the PCU if there's
1142 	 * been an RXEOL condition.
1143 	 */
1144 	if (resched && kickpcu) {
1145 		ATH_PCU_LOCK(sc);
1146 		ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
1147 		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
1148 		    __func__, npkts);
1149 
1150 		/*
1151 		 * Go through the process of fully tearing down
1152 		 * the RX buffers and reinitialising them.
1153 		 *
1154 		 * There's a hardware bug that causes the RX FIFO
1155 		 * to get confused under certain conditions and
1156 		 * constantly write over the same frame, leading
1157 		 * the RX driver code here to get heavily confused.
1158 		 */
1159 		/*
1160 		 * XXX Has RX DMA stopped enough here to just call
1161 		 *     ath_startrecv()?
1162 		 * XXX Do we need to use the holding buffer to restart
1163 		 *     RX DMA by appending entries to the final
1164 		 *     descriptor?  Quite likely.
1165 		 */
1166 #if 1
1167 		ath_startrecv(sc);
1168 #else
1169 		/*
1170 		 * Disabled for now - it'd be nice to be able to do
1171 		 * this in order to limit the amount of CPU time spent
1172 		 * reinitialising the RX side (and thus minimise RX
1173 		 * drops) however there's a hardware issue that
1174 		 * causes things to get too far out of whack.
1175 		 */
1176 		/*
1177 		 * XXX can we hold the PCU lock here?
1178 		 * Are there any net80211 buffer calls involved?
1179 		 */
1180 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1181 		ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1182 		ath_hal_rxena(ah);		/* enable recv descriptors */
1183 		ath_mode_init(sc);		/* set filters, etc. */
1184 		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1185 #endif
1186 
1187 		ath_hal_intrset(ah, sc->sc_imask);
1188 		sc->sc_kickpcu = 0;
1189 		ATH_PCU_UNLOCK(sc);
1190 	}
1191 
1192 	/* XXX check this inside of IF_LOCK? */
1193 	if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
1194 #ifdef IEEE80211_SUPPORT_SUPERG
1195 		ieee80211_ff_age_all(ic, 100);
1196 #endif
1197 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1198 			ath_tx_kick(sc);
1199 	}
1200 #undef PA2DESC
1201 
1202 	/*
1203 	 * Put the hardware to sleep again if we're done with it.
1204 	 */
1205 	ATH_LOCK(sc);
1206 	ath_power_restore_power_state(sc);
1207 	ATH_UNLOCK(sc);
1208 
1209 	/*
1210 	 * If we hit the maximum number of frames in this round,
1211 	 * reschedule for another immediate pass.  This gives
1212 	 * the TX and TX completion routines time to run, which
1213 	 * will reduce latency.
1214 	 */
1215 	if (npkts >= ATH_RX_MAX)
1216 		sc->sc_rx.recv_sched(sc, resched);
1217 
1218 	ATH_PCU_LOCK(sc);
1219 	sc->sc_rxproc_cnt--;
1220 	ATH_PCU_UNLOCK(sc);
1221 }
1222 
1223 #undef	ATH_RX_MAX
1224 
1225 /*
1226  * Only run the RX proc if it's not already running.
1227  * Since this may get run as part of the reset/flush path,
1228  * the task can't clash with an existing, running tasklet.
1229  */
1230 static void
1231 ath_legacy_rx_tasklet(void *arg, int npending)
1232 {
1233 	struct ath_softc *sc = arg;
1234 
1235 	ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
1236 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
1237 	ATH_PCU_LOCK(sc);
1238 	if (sc->sc_inreset_cnt > 0) {
1239 		device_printf(sc->sc_dev,
1240 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
1241 		ATH_PCU_UNLOCK(sc);
1242 		return;
1243 	}
1244 	ATH_PCU_UNLOCK(sc);
1245 
1246 	ath_rx_proc(sc, 1);
1247 }
1248 
1249 static void
1250 ath_legacy_flushrecv(struct ath_softc *sc)
1251 {
1252 
1253 	ath_rx_proc(sc, 0);
1254 }
1255 
1256 static void
1257 ath_legacy_flush_rxpending(struct ath_softc *sc)
1258 {
1259 
1260 	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1261 
1262 	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
1263 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
1264 		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1265 	}
1266 	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
1267 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
1268 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1269 	}
1270 }
1271 
1272 static int
1273 ath_legacy_flush_rxholdbf(struct ath_softc *sc)
1274 {
1275 	struct ath_buf *bf;
1276 
1277 	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1278 	/*
1279 	 * If there are RX holding buffers, free them here and return
1280 	 * them to the list.
1281 	 *
1282 	 * XXX should just verify that bf->bf_m is NULL, as it must
1283 	 * be at this point!
1284 	 */
1285 	bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
1286 	if (bf != NULL) {
1287 		if (bf->bf_m != NULL)
1288 			m_freem(bf->bf_m);
1289 		bf->bf_m = NULL;
1290 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1291 		(void) ath_rxbuf_init(sc, bf);
1292 	}
1293 	sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
1294 
1295 	bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
1296 	if (bf != NULL) {
1297 		if (bf->bf_m != NULL)
1298 			m_freem(bf->bf_m);
1299 		bf->bf_m = NULL;
1300 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1301 		(void) ath_rxbuf_init(sc, bf);
1302 	}
1303 	sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
1304 
1305 	return (0);
1306 }
1307 
1308 /*
1309  * Disable the receive h/w in preparation for a reset.
1310  */
1311 static void
1312 ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
1313 {
1314 #define	PA2DESC(_sc, _pa) \
1315 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1316 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1317 	struct ath_hal *ah = sc->sc_ah;
1318 
1319 	ATH_RX_LOCK(sc);
1320 
1321 	ath_hal_stoppcurecv(ah);	/* disable PCU */
1322 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
1323 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
1324 	/*
1325 	 * TODO: see if this particular DELAY() is required; it may be
1326 	 * masking some missing FIFO flush or DMA sync.
1327 	 */
1328 #if 0
1329 	if (dodelay)
1330 #endif
1331 		DELAY(3000);		/* 3ms is long enough for 1 frame */
1332 #ifdef ATH_DEBUG
1333 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
1334 		struct ath_buf *bf;
1335 		u_int ix;
1336 
1337 		device_printf(sc->sc_dev,
1338 		    "%s: rx queue %p, link %p\n",
1339 		    __func__,
1340 		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
1341 		    sc->sc_rxlink);
1342 		ix = 0;
1343 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1344 			struct ath_desc *ds = bf->bf_desc;
1345 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
1346 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
1347 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1348 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
1349 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
1350 			ix++;
1351 		}
1352 	}
1353 #endif
1354 
1355 	(void) ath_legacy_flush_rxpending(sc);
1356 	(void) ath_legacy_flush_rxholdbf(sc);
1357 
1358 	sc->sc_rxlink = NULL;		/* just in case */
1359 
1360 	ATH_RX_UNLOCK(sc);
1361 #undef PA2DESC
1362 }
1363 
1364 /*
1365  * XXX TODO: something was calling startrecv without calling
1366  * stoprecv.  Let's figure out what/why.  It was showing up
1367  * as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
1368  */
1369 
1370 /*
1371  * Enable the receive h/w following a reset.
1372  */
1373 static int
1374 ath_legacy_startrecv(struct ath_softc *sc)
1375 {
1376 	struct ath_hal *ah = sc->sc_ah;
1377 	struct ath_buf *bf;
1378 
1379 	ATH_RX_LOCK(sc);
1380 
1381 	/*
1382 	 * XXX should verify these are already all NULL!
1383 	 */
1384 	sc->sc_rxlink = NULL;
1385 	(void) ath_legacy_flush_rxpending(sc);
1386 	(void) ath_legacy_flush_rxholdbf(sc);
1387 
1388 	/*
1389 	 * Re-chain all of the buffers in the RX buffer list.
1390 	 */
1391 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1392 		int error = ath_rxbuf_init(sc, bf);
1393 		if (error != 0) {
1394 			DPRINTF(sc, ATH_DEBUG_RECV,
1395 				"%s: ath_rxbuf_init failed %d\n",
1396 				__func__, error);
1397 			return error;
1398 		}
1399 	}
1400 
1401 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
1402 	ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1403 	ath_hal_rxena(ah);		/* enable recv descriptors */
1404 	ath_mode_init(sc);		/* set filters, etc. */
1405 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1406 
1407 	ATH_RX_UNLOCK(sc);
1408 	return 0;
1409 }
1410 
1411 static int
1412 ath_legacy_dma_rxsetup(struct ath_softc *sc)
1413 {
1414 	int error;
1415 
1416 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
1417 	    "rx", sizeof(struct ath_desc), ath_rxbuf, 1);
1418 	if (error != 0)
1419 		return (error);
1420 
1421 	return (0);
1422 }
1423 
1424 static int
1425 ath_legacy_dma_rxteardown(struct ath_softc *sc)
1426 {
1427 
1428 	if (sc->sc_rxdma.dd_desc_len != 0)
1429 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1430 	return (0);
1431 }
1432 
1433 static void
1434 ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
1435 {
1436 
1437 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1438 }
1439 
1440 static void
1441 ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
1442     int dosched)
1443 {
1444 
1445 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1446 }
1447 
1448 void
1449 ath_recv_setup_legacy(struct ath_softc *sc)
1450 {
1451 
1452 	/* Sensible legacy defaults */
1453 	/*
1454 	 * XXX this should be changed to properly support the
1455 	 * exact RX descriptor size for each HAL.
1456 	 */
1457 	sc->sc_rx_statuslen = sizeof(struct ath_desc);
1458 
1459 	sc->sc_rx.recv_start = ath_legacy_startrecv;
1460 	sc->sc_rx.recv_stop = ath_legacy_stoprecv;
1461 	sc->sc_rx.recv_flush = ath_legacy_flushrecv;
1462 	sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
1463 	sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
1464 
1465 	sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
1466 	sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
1467 	sc->sc_rx.recv_sched = ath_legacy_recv_sched;
1468 	sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
1469 }
1470