1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_beacon.h> 113 #include <dev/ath/if_athdfs.h> 114 #include <dev/ath/if_ath_descdma.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 #ifdef ATH_DEBUG_ALQ 121 #include <dev/ath/if_ath_alq.h> 122 #endif 123 124 #include <dev/ath/if_ath_lna_div.h> 125 126 /* 127 * Calculate the receive filter according to the 128 * operating mode and state: 129 * 130 * o always accept unicast, broadcast, and multicast traffic 131 * o accept PHY error frames when hardware doesn't have MIB support 132 * to count and we need them for ANI (sta mode only until recently) 133 * and we are not scanning (ANI is disabled) 134 * NB: older hal's add rx filter bits out of sight and we need to 135 * blindly preserve them 136 * o probe request frames are accepted only when operating in 137 * hostap, adhoc, mesh, or monitor modes 138 * o enable promiscuous mode 139 * - when in monitor mode 140 * - if interface marked PROMISC (assumes bridge setting is filtered) 141 * o accept beacons: 142 * - when operating in station mode for collecting rssi data when 143 * the station is otherwise quiet, or 144 * - when operating in adhoc mode so the 802.11 layer creates 145 * node table entries for peers, 146 * - when scanning 147 * - when doing s/w beacon miss (e.g. for ap+sta) 148 * - when operating in ap mode in 11g to detect overlapping bss that 149 * require protection 150 * - when operating in mesh mode to detect neighbors 151 * o accept control frames: 152 * - when in monitor mode 153 * XXX HT protection for 11n 154 */ 155 u_int32_t 156 ath_calcrxfilter(struct ath_softc *sc) 157 { 158 struct ieee80211com *ic = &sc->sc_ic; 159 u_int32_t rfilt; 160 161 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 162 if (!sc->sc_needmib && !sc->sc_scanning) 163 rfilt |= HAL_RX_FILTER_PHYERR; 164 if (ic->ic_opmode != IEEE80211_M_STA) 165 rfilt |= HAL_RX_FILTER_PROBEREQ; 166 /* XXX ic->ic_monvaps != 0? */ 167 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0) 168 rfilt |= HAL_RX_FILTER_PROM; 169 170 /* 171 * Only listen to all beacons if we're scanning. 172 * 173 * Otherwise we only really need to hear beacons from 174 * our own BSSID. 175 * 176 * IBSS? software beacon miss? Just receive all beacons. 177 * We need to hear beacons/probe requests from everyone so 178 * we can merge ibss. 179 */ 180 if (ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) { 181 rfilt |= HAL_RX_FILTER_BEACON; 182 } else if (ic->ic_opmode == IEEE80211_M_STA) { 183 if (sc->sc_do_mybeacon && ! sc->sc_scanning) { 184 rfilt |= HAL_RX_FILTER_MYBEACON; 185 } else { /* scanning, non-mybeacon chips */ 186 rfilt |= HAL_RX_FILTER_BEACON; 187 } 188 } 189 190 /* 191 * NB: We don't recalculate the rx filter when 192 * ic_protmode changes; otherwise we could do 193 * this only when ic_protmode != NONE. 194 */ 195 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 196 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 197 rfilt |= HAL_RX_FILTER_BEACON; 198 199 /* 200 * Enable hardware PS-POLL RX only for hostap mode; 201 * STA mode sends PS-POLL frames but never 202 * receives them. 203 */ 204 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 205 0, NULL) == HAL_OK && 206 ic->ic_opmode == IEEE80211_M_HOSTAP) 207 rfilt |= HAL_RX_FILTER_PSPOLL; 208 209 if (sc->sc_nmeshvaps) { 210 rfilt |= HAL_RX_FILTER_BEACON; 211 if (sc->sc_hasbmatch) 212 rfilt |= HAL_RX_FILTER_BSSID; 213 else 214 rfilt |= HAL_RX_FILTER_PROM; 215 } 216 if (ic->ic_opmode == IEEE80211_M_MONITOR) 217 rfilt |= HAL_RX_FILTER_CONTROL; 218 219 /* 220 * Enable RX of compressed BAR frames only when doing 221 * 802.11n. Required for A-MPDU. 222 */ 223 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 224 rfilt |= HAL_RX_FILTER_COMPBAR; 225 226 /* 227 * Enable radar PHY errors if requested by the 228 * DFS module. 229 */ 230 if (sc->sc_dodfs) 231 rfilt |= HAL_RX_FILTER_PHYRADAR; 232 233 /* 234 * Enable spectral PHY errors if requested by the 235 * spectral module. 236 */ 237 if (sc->sc_dospectral) 238 rfilt |= HAL_RX_FILTER_PHYRADAR; 239 240 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s\n", 241 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode]); 242 return rfilt; 243 } 244 245 static int 246 ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 247 { 248 struct ath_hal *ah = sc->sc_ah; 249 int error; 250 struct mbuf *m; 251 struct ath_desc *ds; 252 253 /* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */ 254 255 m = bf->bf_m; 256 if (m == NULL) { 257 /* 258 * NB: by assigning a page to the rx dma buffer we 259 * implicitly satisfy the Atheros requirement that 260 * this buffer be cache-line-aligned and sized to be 261 * multiple of the cache line size. Not doing this 262 * causes weird stuff to happen (for the 5210 at least). 263 */ 264 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 265 if (m == NULL) { 266 DPRINTF(sc, ATH_DEBUG_ANY, 267 "%s: no mbuf/cluster\n", __func__); 268 sc->sc_stats.ast_rx_nombuf++; 269 return ENOMEM; 270 } 271 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 272 273 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 274 bf->bf_dmamap, m, 275 bf->bf_segs, &bf->bf_nseg, 276 BUS_DMA_NOWAIT); 277 if (error != 0) { 278 DPRINTF(sc, ATH_DEBUG_ANY, 279 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 280 __func__, error); 281 sc->sc_stats.ast_rx_busdma++; 282 m_freem(m); 283 return error; 284 } 285 KASSERT(bf->bf_nseg == 1, 286 ("multi-segment packet; nseg %u", bf->bf_nseg)); 287 bf->bf_m = m; 288 } 289 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 290 291 /* 292 * Setup descriptors. For receive we always terminate 293 * the descriptor list with a self-linked entry so we'll 294 * not get overrun under high load (as can happen with a 295 * 5212 when ANI processing enables PHY error frames). 296 * 297 * To insure the last descriptor is self-linked we create 298 * each descriptor as self-linked and add it to the end. As 299 * each additional descriptor is added the previous self-linked 300 * entry is ``fixed'' naturally. This should be safe even 301 * if DMA is happening. When processing RX interrupts we 302 * never remove/process the last, self-linked, entry on the 303 * descriptor list. This insures the hardware always has 304 * someplace to write a new frame. 305 */ 306 /* 307 * 11N: we can no longer afford to self link the last descriptor. 308 * MAC acknowledges BA status as long as it copies frames to host 309 * buffer (or rx fifo). This can incorrectly acknowledge packets 310 * to a sender if last desc is self-linked. 311 */ 312 ds = bf->bf_desc; 313 if (sc->sc_rxslink) 314 ds->ds_link = bf->bf_daddr; /* link to self */ 315 else 316 ds->ds_link = 0; /* terminate the list */ 317 ds->ds_data = bf->bf_segs[0].ds_addr; 318 ath_hal_setuprxdesc(ah, ds 319 , m->m_len /* buffer size */ 320 , 0 321 ); 322 323 if (sc->sc_rxlink != NULL) 324 *sc->sc_rxlink = bf->bf_daddr; 325 sc->sc_rxlink = &ds->ds_link; 326 return 0; 327 } 328 329 /* 330 * Intercept management frames to collect beacon rssi data 331 * and to do ibss merges. 332 */ 333 void 334 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 335 int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf) 336 { 337 struct ieee80211vap *vap = ni->ni_vap; 338 struct ath_softc *sc = vap->iv_ic->ic_softc; 339 uint64_t tsf_beacon_old, tsf_beacon; 340 uint64_t nexttbtt; 341 int64_t tsf_delta; 342 int32_t tsf_delta_bmiss; 343 int32_t tsf_remainder; 344 uint64_t tsf_beacon_target; 345 int tsf_intval; 346 347 tsf_beacon_old = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32; 348 tsf_beacon_old |= le32dec(ni->ni_tstamp.data); 349 350 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 351 tsf_intval = 1; 352 if (ni->ni_intval > 0) { 353 tsf_intval = TU_TO_TSF(ni->ni_intval); 354 } 355 #undef TU_TO_TSF 356 357 /* 358 * Call up first so subsequent work can use information 359 * potentially stored in the node (e.g. for ibss merge). 360 */ 361 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rxs, rssi, nf); 362 switch (subtype) { 363 case IEEE80211_FC0_SUBTYPE_BEACON: 364 365 /* 366 * Only do the following processing if it's for 367 * the current BSS. 368 * 369 * In scan and IBSS mode we receive all beacons, 370 * which means we need to filter out stuff 371 * that isn't for us or we'll end up constantly 372 * trying to sync / merge to BSSes that aren't 373 * actually us. 374 */ 375 if (IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) { 376 /* update rssi statistics for use by the hal */ 377 /* XXX unlocked check against vap->iv_bss? */ 378 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 379 380 381 tsf_beacon = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32; 382 tsf_beacon |= le32dec(ni->ni_tstamp.data); 383 384 nexttbtt = ath_hal_getnexttbtt(sc->sc_ah); 385 386 /* 387 * Let's calculate the delta and remainder, so we can see 388 * if the beacon timer from the AP is varying by more than 389 * a few TU. (Which would be a huge, huge problem.) 390 */ 391 tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old; 392 393 tsf_delta_bmiss = tsf_delta / tsf_intval; 394 395 /* 396 * If our delta is greater than half the beacon interval, 397 * let's round the bmiss value up to the next beacon 398 * interval. Ie, we're running really, really early 399 * on the next beacon. 400 */ 401 if (tsf_delta % tsf_intval > (tsf_intval / 2)) 402 tsf_delta_bmiss ++; 403 404 tsf_beacon_target = tsf_beacon_old + 405 (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval); 406 407 /* 408 * The remainder using '%' is between 0 .. intval-1. 409 * If we're actually running too fast, then the remainder 410 * will be some large number just under intval-1. 411 * So we need to look at whether we're running 412 * before or after the target beacon interval 413 * and if we are, modify how we do the remainder 414 * calculation. 415 */ 416 if (tsf_beacon < tsf_beacon_target) { 417 tsf_remainder = 418 -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval)); 419 } else { 420 tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval; 421 } 422 423 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: old_tsf=%llu, new_tsf=%llu, target_tsf=%llu, delta=%lld, bmiss=%d, remainder=%d\n", 424 __func__, 425 (unsigned long long) tsf_beacon_old, 426 (unsigned long long) tsf_beacon, 427 (unsigned long long) tsf_beacon_target, 428 (long long) tsf_delta, 429 tsf_delta_bmiss, 430 tsf_remainder); 431 432 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: tsf=%llu, nexttbtt=%llu, delta=%d\n", 433 __func__, 434 (unsigned long long) tsf_beacon, 435 (unsigned long long) nexttbtt, 436 (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval); 437 438 /* We only do syncbeacon on STA VAPs; not on IBSS */ 439 if (vap->iv_opmode == IEEE80211_M_STA && 440 sc->sc_syncbeacon && 441 ni == vap->iv_bss && 442 (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) { 443 DPRINTF(sc, ATH_DEBUG_BEACON, 444 "%s: syncbeacon=1; syncing\n", 445 __func__); 446 /* 447 * Resync beacon timers using the tsf of the beacon 448 * frame we just received. 449 */ 450 ath_beacon_config(sc, vap); 451 sc->sc_syncbeacon = 0; 452 } 453 } 454 455 /* fall thru... */ 456 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 457 if (vap->iv_opmode == IEEE80211_M_IBSS && 458 vap->iv_state == IEEE80211_S_RUN && 459 ieee80211_ibss_merge_check(ni)) { 460 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 461 uint64_t tsf = ath_extend_tsf(sc, rstamp, 462 ath_hal_gettsf64(sc->sc_ah)); 463 /* 464 * Handle ibss merge as needed; check the tsf on the 465 * frame before attempting the merge. The 802.11 spec 466 * says the station should change it's bssid to match 467 * the oldest station with the same ssid, where oldest 468 * is determined by the tsf. Note that hardware 469 * reconfiguration happens through callback to 470 * ath_newstate as the state machine will go from 471 * RUN -> RUN when this happens. 472 */ 473 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 474 DPRINTF(sc, ATH_DEBUG_STATE, 475 "ibss merge, rstamp %u tsf %ju " 476 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 477 (uintmax_t)ni->ni_tstamp.tsf); 478 (void) ieee80211_ibss_merge(ni); 479 } 480 } 481 break; 482 } 483 } 484 485 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 486 static void 487 ath_rx_tap_vendor(struct ath_softc *sc, struct mbuf *m, 488 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 489 { 490 491 /* Fill in the extension bitmap */ 492 sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER); 493 494 /* Fill in the vendor header */ 495 sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f; 496 sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03; 497 sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00; 498 499 /* XXX what should this be? */ 500 sc->sc_rx_th.wr_vh.vh_sub_ns = 0; 501 sc->sc_rx_th.wr_vh.vh_skip_len = 502 htole16(sizeof(struct ath_radiotap_vendor_hdr)); 503 504 /* General version info */ 505 sc->sc_rx_th.wr_v.vh_version = 1; 506 507 sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask; 508 509 /* rssi */ 510 sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0]; 511 sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1]; 512 sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2]; 513 sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0]; 514 sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1]; 515 sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2]; 516 517 /* evm */ 518 sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0; 519 sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1; 520 sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2; 521 /* These are only populated from the AR9300 or later */ 522 sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3; 523 sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4; 524 525 /* direction */ 526 sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX; 527 528 /* RX rate */ 529 sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate; 530 531 /* RX flags */ 532 sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags; 533 534 if (rs->rs_isaggr) 535 sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR; 536 if (rs->rs_moreaggr) 537 sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR; 538 539 /* phyerr info */ 540 if (rs->rs_status & HAL_RXERR_PHY) { 541 sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr; 542 sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR; 543 } else { 544 sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff; 545 } 546 sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status; 547 sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi; 548 } 549 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 550 551 static void 552 ath_rx_tap(struct ath_softc *sc, struct mbuf *m, 553 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 554 { 555 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 556 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 557 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 558 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 559 const HAL_RATE_TABLE *rt; 560 uint8_t rix; 561 562 rt = sc->sc_currates; 563 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 564 rix = rt->rateCodeToIndex[rs->rs_rate]; 565 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 566 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 567 #ifdef AH_SUPPORT_AR5416 568 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 569 if (rs->rs_status & HAL_RXERR_PHY) { 570 /* 571 * PHY error - make sure the channel flags 572 * reflect the actual channel configuration, 573 * not the received frame. 574 */ 575 if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan)) 576 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 577 else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan)) 578 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 579 else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan)) 580 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 581 } else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 582 struct ieee80211com *ic = &sc->sc_ic; 583 584 if ((rs->rs_flags & HAL_RX_2040) == 0) 585 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 586 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 587 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 588 else 589 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 590 if ((rs->rs_flags & HAL_RX_GI) == 0) 591 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 592 } 593 594 #endif 595 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 596 if (rs->rs_status & HAL_RXERR_CRC) 597 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 598 /* XXX propagate other error flags from descriptor */ 599 sc->sc_rx_th.wr_antnoise = nf; 600 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 601 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 602 #undef CHAN_HT 603 #undef CHAN_HT20 604 #undef CHAN_HT40U 605 #undef CHAN_HT40D 606 } 607 608 static void 609 ath_handle_micerror(struct ieee80211com *ic, 610 struct ieee80211_frame *wh, int keyix) 611 { 612 struct ieee80211_node *ni; 613 614 /* XXX recheck MIC to deal w/ chips that lie */ 615 /* XXX discard MIC errors on !data frames */ 616 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 617 if (ni != NULL) { 618 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 619 ieee80211_free_node(ni); 620 } 621 } 622 623 /* 624 * Process a single packet. 625 * 626 * The mbuf must already be synced, unmapped and removed from bf->bf_m 627 * by this stage. 628 * 629 * The mbuf must be consumed by this routine - either passed up the 630 * net80211 stack, put on the holding queue, or freed. 631 */ 632 int 633 ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status, 634 uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf, 635 struct mbuf *m) 636 { 637 uint64_t rstamp; 638 int len, type; 639 struct ieee80211com *ic = &sc->sc_ic; 640 struct ieee80211_node *ni; 641 int is_good = 0; 642 struct ath_rx_edma *re = &sc->sc_rxedma[qtype]; 643 644 /* 645 * Calculate the correct 64 bit TSF given 646 * the TSF64 register value and rs_tstamp. 647 */ 648 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 649 650 /* These aren't specifically errors */ 651 #ifdef AH_SUPPORT_AR5416 652 if (rs->rs_flags & HAL_RX_GI) 653 sc->sc_stats.ast_rx_halfgi++; 654 if (rs->rs_flags & HAL_RX_2040) 655 sc->sc_stats.ast_rx_2040++; 656 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 657 sc->sc_stats.ast_rx_pre_crc_err++; 658 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 659 sc->sc_stats.ast_rx_post_crc_err++; 660 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 661 sc->sc_stats.ast_rx_decrypt_busy_err++; 662 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 663 sc->sc_stats.ast_rx_hi_rx_chain++; 664 if (rs->rs_flags & HAL_RX_STBC) 665 sc->sc_stats.ast_rx_stbc++; 666 #endif /* AH_SUPPORT_AR5416 */ 667 668 if (rs->rs_status != 0) { 669 if (rs->rs_status & HAL_RXERR_CRC) 670 sc->sc_stats.ast_rx_crcerr++; 671 if (rs->rs_status & HAL_RXERR_FIFO) 672 sc->sc_stats.ast_rx_fifoerr++; 673 if (rs->rs_status & HAL_RXERR_PHY) { 674 sc->sc_stats.ast_rx_phyerr++; 675 /* Process DFS radar events */ 676 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 677 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 678 /* Now pass it to the radar processing code */ 679 ath_dfs_process_phy_err(sc, m, rstamp, rs); 680 } 681 682 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 683 if (rs->rs_phyerr < 64) 684 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 685 goto rx_error; /* NB: don't count in ierrors */ 686 } 687 if (rs->rs_status & HAL_RXERR_DECRYPT) { 688 /* 689 * Decrypt error. If the error occurred 690 * because there was no hardware key, then 691 * let the frame through so the upper layers 692 * can process it. This is necessary for 5210 693 * parts which have no way to setup a ``clear'' 694 * key cache entry. 695 * 696 * XXX do key cache faulting 697 */ 698 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 699 goto rx_accept; 700 sc->sc_stats.ast_rx_badcrypt++; 701 } 702 /* 703 * Similar as above - if the failure was a keymiss 704 * just punt it up to the upper layers for now. 705 */ 706 if (rs->rs_status & HAL_RXERR_KEYMISS) { 707 sc->sc_stats.ast_rx_keymiss++; 708 goto rx_accept; 709 } 710 if (rs->rs_status & HAL_RXERR_MIC) { 711 sc->sc_stats.ast_rx_badmic++; 712 /* 713 * Do minimal work required to hand off 714 * the 802.11 header for notification. 715 */ 716 /* XXX frag's and qos frames */ 717 len = rs->rs_datalen; 718 if (len >= sizeof (struct ieee80211_frame)) { 719 ath_handle_micerror(ic, 720 mtod(m, struct ieee80211_frame *), 721 sc->sc_splitmic ? 722 rs->rs_keyix-32 : rs->rs_keyix); 723 } 724 } 725 counter_u64_add(ic->ic_ierrors, 1); 726 rx_error: 727 /* 728 * Cleanup any pending partial frame. 729 */ 730 if (re->m_rxpending != NULL) { 731 m_freem(re->m_rxpending); 732 re->m_rxpending = NULL; 733 } 734 /* 735 * When a tap is present pass error frames 736 * that have been requested. By default we 737 * pass decrypt+mic errors but others may be 738 * interesting (e.g. crc). 739 */ 740 if (ieee80211_radiotap_active(ic) && 741 (rs->rs_status & sc->sc_monpass)) { 742 /* NB: bpf needs the mbuf length setup */ 743 len = rs->rs_datalen; 744 m->m_pkthdr.len = m->m_len = len; 745 ath_rx_tap(sc, m, rs, rstamp, nf); 746 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 747 ath_rx_tap_vendor(sc, m, rs, rstamp, nf); 748 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 749 ieee80211_radiotap_rx_all(ic, m); 750 } 751 /* XXX pass MIC errors up for s/w reclaculation */ 752 m_freem(m); m = NULL; 753 goto rx_next; 754 } 755 rx_accept: 756 len = rs->rs_datalen; 757 m->m_len = len; 758 759 if (rs->rs_more) { 760 /* 761 * Frame spans multiple descriptors; save 762 * it for the next completed descriptor, it 763 * will be used to construct a jumbogram. 764 */ 765 if (re->m_rxpending != NULL) { 766 /* NB: max frame size is currently 2 clusters */ 767 sc->sc_stats.ast_rx_toobig++; 768 m_freem(re->m_rxpending); 769 } 770 m->m_pkthdr.len = len; 771 re->m_rxpending = m; 772 m = NULL; 773 goto rx_next; 774 } else if (re->m_rxpending != NULL) { 775 /* 776 * This is the second part of a jumbogram, 777 * chain it to the first mbuf, adjust the 778 * frame length, and clear the rxpending state. 779 */ 780 re->m_rxpending->m_next = m; 781 re->m_rxpending->m_pkthdr.len += len; 782 m = re->m_rxpending; 783 re->m_rxpending = NULL; 784 } else { 785 /* 786 * Normal single-descriptor receive; setup packet length. 787 */ 788 m->m_pkthdr.len = len; 789 } 790 791 /* 792 * Validate rs->rs_antenna. 793 * 794 * Some users w/ AR9285 NICs have reported crashes 795 * here because rs_antenna field is bogusly large. 796 * Let's enforce the maximum antenna limit of 8 797 * (and it shouldn't be hard coded, but that's a 798 * separate problem) and if there's an issue, print 799 * out an error and adjust rs_antenna to something 800 * sensible. 801 * 802 * This code should be removed once the actual 803 * root cause of the issue has been identified. 804 * For example, it may be that the rs_antenna 805 * field is only valid for the last frame of 806 * an aggregate and it just happens that it is 807 * "mostly" right. (This is a general statement - 808 * the majority of the statistics are only valid 809 * for the last frame in an aggregate. 810 */ 811 if (rs->rs_antenna > 7) { 812 device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n", 813 __func__, rs->rs_antenna); 814 #ifdef ATH_DEBUG 815 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 816 #endif /* ATH_DEBUG */ 817 rs->rs_antenna = 0; /* XXX better than nothing */ 818 } 819 820 /* 821 * If this is an AR9285/AR9485, then the receive and LNA 822 * configuration is stored in RSSI[2] / EXTRSSI[2]. 823 * We can extract this out to build a much better 824 * receive antenna profile. 825 * 826 * Yes, this just blurts over the above RX antenna field 827 * for now. It's fine, the AR9285 doesn't really use 828 * that. 829 * 830 * Later on we should store away the fine grained LNA 831 * information and keep separate counters just for 832 * that. It'll help when debugging the AR9285/AR9485 833 * combined diversity code. 834 */ 835 if (sc->sc_rx_lnamixer) { 836 rs->rs_antenna = 0; 837 838 /* Bits 0:1 - the LNA configuration used */ 839 rs->rs_antenna |= 840 ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED) 841 >> HAL_RX_LNA_CFG_USED_S); 842 843 /* Bit 2 - the external RX antenna switch */ 844 if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG) 845 rs->rs_antenna |= 0x4; 846 } 847 848 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 849 850 /* 851 * Populate the rx status block. When there are bpf 852 * listeners we do the additional work to provide 853 * complete status. Otherwise we fill in only the 854 * material required by ieee80211_input. Note that 855 * noise setting is filled in above. 856 */ 857 if (ieee80211_radiotap_active(ic)) { 858 ath_rx_tap(sc, m, rs, rstamp, nf); 859 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 860 ath_rx_tap_vendor(sc, m, rs, rstamp, nf); 861 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 862 } 863 864 /* 865 * From this point on we assume the frame is at least 866 * as large as ieee80211_frame_min; verify that. 867 */ 868 if (len < IEEE80211_MIN_LEN) { 869 if (!ieee80211_radiotap_active(ic)) { 870 DPRINTF(sc, ATH_DEBUG_RECV, 871 "%s: short packet %d\n", __func__, len); 872 sc->sc_stats.ast_rx_tooshort++; 873 } else { 874 /* NB: in particular this captures ack's */ 875 ieee80211_radiotap_rx_all(ic, m); 876 } 877 m_freem(m); m = NULL; 878 goto rx_next; 879 } 880 881 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 882 const HAL_RATE_TABLE *rt = sc->sc_currates; 883 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 884 885 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 886 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 887 } 888 889 m_adj(m, -IEEE80211_CRC_LEN); 890 891 /* 892 * Locate the node for sender, track state, and then 893 * pass the (referenced) node up to the 802.11 layer 894 * for its use. 895 */ 896 ni = ieee80211_find_rxnode_withkey(ic, 897 mtod(m, const struct ieee80211_frame_min *), 898 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 899 IEEE80211_KEYIX_NONE : rs->rs_keyix); 900 sc->sc_lastrs = rs; 901 902 #ifdef AH_SUPPORT_AR5416 903 if (rs->rs_isaggr) 904 sc->sc_stats.ast_rx_agg++; 905 #endif /* AH_SUPPORT_AR5416 */ 906 907 if (ni != NULL) { 908 /* 909 * Only punt packets for ampdu reorder processing for 910 * 11n nodes; net80211 enforces that M_AMPDU is only 911 * set for 11n nodes. 912 */ 913 if (ni->ni_flags & IEEE80211_NODE_HT) 914 m->m_flags |= M_AMPDU; 915 916 /* 917 * Sending station is known, dispatch directly. 918 */ 919 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 920 ieee80211_free_node(ni); 921 m = NULL; 922 /* 923 * Arrange to update the last rx timestamp only for 924 * frames from our ap when operating in station mode. 925 * This assumes the rx key is always setup when 926 * associated. 927 */ 928 if (ic->ic_opmode == IEEE80211_M_STA && 929 rs->rs_keyix != HAL_RXKEYIX_INVALID) 930 is_good = 1; 931 } else { 932 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 933 m = NULL; 934 } 935 936 /* 937 * At this point we have passed the frame up the stack; thus 938 * the mbuf is no longer ours. 939 */ 940 941 /* 942 * Track rx rssi and do any rx antenna management. 943 */ 944 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 945 if (sc->sc_diversity) { 946 /* 947 * When using fast diversity, change the default rx 948 * antenna if diversity chooses the other antenna 3 949 * times in a row. 950 */ 951 if (sc->sc_defant != rs->rs_antenna) { 952 if (++sc->sc_rxotherant >= 3) 953 ath_setdefantenna(sc, rs->rs_antenna); 954 } else 955 sc->sc_rxotherant = 0; 956 } 957 958 /* Handle slow diversity if enabled */ 959 if (sc->sc_dolnadiv) { 960 ath_lna_rx_comb_scan(sc, rs, ticks, hz); 961 } 962 963 if (sc->sc_softled) { 964 /* 965 * Blink for any data frame. Otherwise do a 966 * heartbeat-style blink when idle. The latter 967 * is mainly for station mode where we depend on 968 * periodic beacon frames to trigger the poll event. 969 */ 970 if (type == IEEE80211_FC0_TYPE_DATA) { 971 const HAL_RATE_TABLE *rt = sc->sc_currates; 972 ath_led_event(sc, 973 rt->rateCodeToIndex[rs->rs_rate]); 974 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 975 ath_led_event(sc, 0); 976 } 977 rx_next: 978 /* 979 * Debugging - complain if we didn't NULL the mbuf pointer 980 * here. 981 */ 982 if (m != NULL) { 983 device_printf(sc->sc_dev, 984 "%s: mbuf %p should've been freed!\n", 985 __func__, 986 m); 987 } 988 return (is_good); 989 } 990 991 #define ATH_RX_MAX 128 992 993 /* 994 * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like 995 * the EDMA code does. 996 * 997 * XXX TODO: then, do all of the RX list management stuff inside 998 * ATH_RX_LOCK() so we don't end up potentially racing. The EDMA 999 * code is doing it right. 1000 */ 1001 static void 1002 ath_rx_proc(struct ath_softc *sc, int resched) 1003 { 1004 #define PA2DESC(_sc, _pa) \ 1005 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 1006 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 1007 struct ath_buf *bf; 1008 struct ath_hal *ah = sc->sc_ah; 1009 #ifdef IEEE80211_SUPPORT_SUPERG 1010 struct ieee80211com *ic = &sc->sc_ic; 1011 #endif 1012 struct ath_desc *ds; 1013 struct ath_rx_status *rs; 1014 struct mbuf *m; 1015 int ngood; 1016 HAL_STATUS status; 1017 int16_t nf; 1018 u_int64_t tsf; 1019 int npkts = 0; 1020 int kickpcu = 0; 1021 int ret; 1022 1023 /* XXX we must not hold the ATH_LOCK here */ 1024 ATH_UNLOCK_ASSERT(sc); 1025 ATH_PCU_UNLOCK_ASSERT(sc); 1026 1027 ATH_PCU_LOCK(sc); 1028 sc->sc_rxproc_cnt++; 1029 kickpcu = sc->sc_kickpcu; 1030 ATH_PCU_UNLOCK(sc); 1031 1032 ATH_LOCK(sc); 1033 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1034 ATH_UNLOCK(sc); 1035 1036 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 1037 ngood = 0; 1038 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 1039 sc->sc_stats.ast_rx_noise = nf; 1040 tsf = ath_hal_gettsf64(ah); 1041 do { 1042 /* 1043 * Don't process too many packets at a time; give the 1044 * TX thread time to also run - otherwise the TX 1045 * latency can jump by quite a bit, causing throughput 1046 * degredation. 1047 */ 1048 if (!kickpcu && npkts >= ATH_RX_MAX) 1049 break; 1050 1051 bf = TAILQ_FIRST(&sc->sc_rxbuf); 1052 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 1053 device_printf(sc->sc_dev, "%s: no buffer!\n", __func__); 1054 break; 1055 } else if (bf == NULL) { 1056 /* 1057 * End of List: 1058 * this can happen for non-self-linked RX chains 1059 */ 1060 sc->sc_stats.ast_rx_hitqueueend++; 1061 break; 1062 } 1063 m = bf->bf_m; 1064 if (m == NULL) { /* NB: shouldn't happen */ 1065 /* 1066 * If mbuf allocation failed previously there 1067 * will be no mbuf; try again to re-populate it. 1068 */ 1069 /* XXX make debug msg */ 1070 device_printf(sc->sc_dev, "%s: no mbuf!\n", __func__); 1071 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 1072 goto rx_proc_next; 1073 } 1074 ds = bf->bf_desc; 1075 if (ds->ds_link == bf->bf_daddr) { 1076 /* NB: never process the self-linked entry at the end */ 1077 sc->sc_stats.ast_rx_hitqueueend++; 1078 break; 1079 } 1080 /* XXX sync descriptor memory */ 1081 /* 1082 * Must provide the virtual address of the current 1083 * descriptor, the physical address, and the virtual 1084 * address of the next descriptor in the h/w chain. 1085 * This allows the HAL to look ahead to see if the 1086 * hardware is done with a descriptor by checking the 1087 * done bit in the following descriptor and the address 1088 * of the current descriptor the DMA engine is working 1089 * on. All this is necessary because of our use of 1090 * a self-linked list to avoid rx overruns. 1091 */ 1092 rs = &bf->bf_status.ds_rxstat; 1093 status = ath_hal_rxprocdesc(ah, ds, 1094 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 1095 #ifdef ATH_DEBUG 1096 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 1097 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 1098 #endif 1099 1100 #ifdef ATH_DEBUG_ALQ 1101 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS)) 1102 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS, 1103 sc->sc_rx_statuslen, (char *) ds); 1104 #endif /* ATH_DEBUG_ALQ */ 1105 1106 if (status == HAL_EINPROGRESS) 1107 break; 1108 1109 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 1110 npkts++; 1111 1112 /* 1113 * Process a single frame. 1114 */ 1115 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD); 1116 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1117 bf->bf_m = NULL; 1118 if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m)) 1119 ngood++; 1120 rx_proc_next: 1121 /* 1122 * If there's a holding buffer, insert that onto 1123 * the RX list; the hardware is now definitely not pointing 1124 * to it now. 1125 */ 1126 ret = 0; 1127 if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) { 1128 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, 1129 sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf, 1130 bf_list); 1131 ret = ath_rxbuf_init(sc, 1132 sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf); 1133 } 1134 /* 1135 * Next, throw our buffer into the holding entry. The hardware 1136 * may use the descriptor to read the link pointer before 1137 * DMAing the next descriptor in to write out a packet. 1138 */ 1139 sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf; 1140 } while (ret == 0); 1141 1142 /* rx signal state monitoring */ 1143 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 1144 if (ngood) 1145 sc->sc_lastrx = tsf; 1146 1147 ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 1148 /* Queue DFS tasklet if needed */ 1149 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 1150 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 1151 1152 /* 1153 * Now that all the RX frames were handled that 1154 * need to be handled, kick the PCU if there's 1155 * been an RXEOL condition. 1156 */ 1157 if (resched && kickpcu) { 1158 ATH_PCU_LOCK(sc); 1159 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu"); 1160 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 1161 __func__, npkts); 1162 1163 /* 1164 * Go through the process of fully tearing down 1165 * the RX buffers and reinitialising them. 1166 * 1167 * There's a hardware bug that causes the RX FIFO 1168 * to get confused under certain conditions and 1169 * constantly write over the same frame, leading 1170 * the RX driver code here to get heavily confused. 1171 */ 1172 /* 1173 * XXX Has RX DMA stopped enough here to just call 1174 * ath_startrecv()? 1175 * XXX Do we need to use the holding buffer to restart 1176 * RX DMA by appending entries to the final 1177 * descriptor? Quite likely. 1178 */ 1179 #if 1 1180 ath_startrecv(sc); 1181 #else 1182 /* 1183 * Disabled for now - it'd be nice to be able to do 1184 * this in order to limit the amount of CPU time spent 1185 * reinitialising the RX side (and thus minimise RX 1186 * drops) however there's a hardware issue that 1187 * causes things to get too far out of whack. 1188 */ 1189 /* 1190 * XXX can we hold the PCU lock here? 1191 * Are there any net80211 buffer calls involved? 1192 */ 1193 bf = TAILQ_FIRST(&sc->sc_rxbuf); 1194 ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP); 1195 ath_hal_rxena(ah); /* enable recv descriptors */ 1196 ath_mode_init(sc); /* set filters, etc. */ 1197 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 1198 #endif 1199 1200 ath_hal_intrset(ah, sc->sc_imask); 1201 sc->sc_kickpcu = 0; 1202 ATH_PCU_UNLOCK(sc); 1203 } 1204 1205 #ifdef IEEE80211_SUPPORT_SUPERG 1206 if (resched) 1207 ieee80211_ff_age_all(ic, 100); 1208 #endif 1209 1210 /* 1211 * Put the hardware to sleep again if we're done with it. 1212 */ 1213 ATH_LOCK(sc); 1214 ath_power_restore_power_state(sc); 1215 ATH_UNLOCK(sc); 1216 1217 /* 1218 * If we hit the maximum number of frames in this round, 1219 * reschedule for another immediate pass. This gives 1220 * the TX and TX completion routines time to run, which 1221 * will reduce latency. 1222 */ 1223 if (npkts >= ATH_RX_MAX) 1224 sc->sc_rx.recv_sched(sc, resched); 1225 1226 ATH_PCU_LOCK(sc); 1227 sc->sc_rxproc_cnt--; 1228 ATH_PCU_UNLOCK(sc); 1229 } 1230 #undef PA2DESC 1231 #undef ATH_RX_MAX 1232 1233 /* 1234 * Only run the RX proc if it's not already running. 1235 * Since this may get run as part of the reset/flush path, 1236 * the task can't clash with an existing, running tasklet. 1237 */ 1238 static void 1239 ath_legacy_rx_tasklet(void *arg, int npending) 1240 { 1241 struct ath_softc *sc = arg; 1242 1243 ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending); 1244 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 1245 ATH_PCU_LOCK(sc); 1246 if (sc->sc_inreset_cnt > 0) { 1247 device_printf(sc->sc_dev, 1248 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 1249 ATH_PCU_UNLOCK(sc); 1250 return; 1251 } 1252 ATH_PCU_UNLOCK(sc); 1253 1254 ath_rx_proc(sc, 1); 1255 } 1256 1257 static void 1258 ath_legacy_flushrecv(struct ath_softc *sc) 1259 { 1260 1261 ath_rx_proc(sc, 0); 1262 } 1263 1264 static void 1265 ath_legacy_flush_rxpending(struct ath_softc *sc) 1266 { 1267 1268 /* XXX ATH_RX_LOCK_ASSERT(sc); */ 1269 1270 if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) { 1271 m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending); 1272 sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL; 1273 } 1274 if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) { 1275 m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending); 1276 sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL; 1277 } 1278 } 1279 1280 static int 1281 ath_legacy_flush_rxholdbf(struct ath_softc *sc) 1282 { 1283 struct ath_buf *bf; 1284 1285 /* XXX ATH_RX_LOCK_ASSERT(sc); */ 1286 /* 1287 * If there are RX holding buffers, free them here and return 1288 * them to the list. 1289 * 1290 * XXX should just verify that bf->bf_m is NULL, as it must 1291 * be at this point! 1292 */ 1293 bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf; 1294 if (bf != NULL) { 1295 if (bf->bf_m != NULL) 1296 m_freem(bf->bf_m); 1297 bf->bf_m = NULL; 1298 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 1299 (void) ath_rxbuf_init(sc, bf); 1300 } 1301 sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL; 1302 1303 bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf; 1304 if (bf != NULL) { 1305 if (bf->bf_m != NULL) 1306 m_freem(bf->bf_m); 1307 bf->bf_m = NULL; 1308 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 1309 (void) ath_rxbuf_init(sc, bf); 1310 } 1311 sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL; 1312 1313 return (0); 1314 } 1315 1316 /* 1317 * Disable the receive h/w in preparation for a reset. 1318 */ 1319 static void 1320 ath_legacy_stoprecv(struct ath_softc *sc, int dodelay) 1321 { 1322 #define PA2DESC(_sc, _pa) \ 1323 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 1324 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 1325 struct ath_hal *ah = sc->sc_ah; 1326 1327 ATH_RX_LOCK(sc); 1328 1329 ath_hal_stoppcurecv(ah); /* disable PCU */ 1330 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 1331 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 1332 /* 1333 * TODO: see if this particular DELAY() is required; it may be 1334 * masking some missing FIFO flush or DMA sync. 1335 */ 1336 #if 0 1337 if (dodelay) 1338 #endif 1339 DELAY(3000); /* 3ms is long enough for 1 frame */ 1340 #ifdef ATH_DEBUG 1341 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 1342 struct ath_buf *bf; 1343 u_int ix; 1344 1345 device_printf(sc->sc_dev, 1346 "%s: rx queue %p, link %p\n", 1347 __func__, 1348 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP), 1349 sc->sc_rxlink); 1350 ix = 0; 1351 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 1352 struct ath_desc *ds = bf->bf_desc; 1353 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 1354 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 1355 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 1356 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 1357 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 1358 ix++; 1359 } 1360 } 1361 #endif 1362 1363 (void) ath_legacy_flush_rxpending(sc); 1364 (void) ath_legacy_flush_rxholdbf(sc); 1365 1366 sc->sc_rxlink = NULL; /* just in case */ 1367 1368 ATH_RX_UNLOCK(sc); 1369 #undef PA2DESC 1370 } 1371 1372 /* 1373 * XXX TODO: something was calling startrecv without calling 1374 * stoprecv. Let's figure out what/why. It was showing up 1375 * as a mbuf leak (rxpending) and ath_buf leak (holdbf.) 1376 */ 1377 1378 /* 1379 * Enable the receive h/w following a reset. 1380 */ 1381 static int 1382 ath_legacy_startrecv(struct ath_softc *sc) 1383 { 1384 struct ath_hal *ah = sc->sc_ah; 1385 struct ath_buf *bf; 1386 1387 ATH_RX_LOCK(sc); 1388 1389 /* 1390 * XXX should verify these are already all NULL! 1391 */ 1392 sc->sc_rxlink = NULL; 1393 (void) ath_legacy_flush_rxpending(sc); 1394 (void) ath_legacy_flush_rxholdbf(sc); 1395 1396 /* 1397 * Re-chain all of the buffers in the RX buffer list. 1398 */ 1399 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 1400 int error = ath_rxbuf_init(sc, bf); 1401 if (error != 0) { 1402 DPRINTF(sc, ATH_DEBUG_RECV, 1403 "%s: ath_rxbuf_init failed %d\n", 1404 __func__, error); 1405 return error; 1406 } 1407 } 1408 1409 bf = TAILQ_FIRST(&sc->sc_rxbuf); 1410 ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP); 1411 ath_hal_rxena(ah); /* enable recv descriptors */ 1412 ath_mode_init(sc); /* set filters, etc. */ 1413 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 1414 1415 ATH_RX_UNLOCK(sc); 1416 return 0; 1417 } 1418 1419 static int 1420 ath_legacy_dma_rxsetup(struct ath_softc *sc) 1421 { 1422 int error; 1423 1424 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 1425 "rx", sizeof(struct ath_desc), ath_rxbuf, 1); 1426 if (error != 0) 1427 return (error); 1428 1429 return (0); 1430 } 1431 1432 static int 1433 ath_legacy_dma_rxteardown(struct ath_softc *sc) 1434 { 1435 1436 if (sc->sc_rxdma.dd_desc_len != 0) 1437 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 1438 return (0); 1439 } 1440 1441 static void 1442 ath_legacy_recv_sched(struct ath_softc *sc, int dosched) 1443 { 1444 1445 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1446 } 1447 1448 static void 1449 ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q, 1450 int dosched) 1451 { 1452 1453 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1454 } 1455 1456 void 1457 ath_recv_setup_legacy(struct ath_softc *sc) 1458 { 1459 1460 /* Sensible legacy defaults */ 1461 /* 1462 * XXX this should be changed to properly support the 1463 * exact RX descriptor size for each HAL. 1464 */ 1465 sc->sc_rx_statuslen = sizeof(struct ath_desc); 1466 1467 sc->sc_rx.recv_start = ath_legacy_startrecv; 1468 sc->sc_rx.recv_stop = ath_legacy_stoprecv; 1469 sc->sc_rx.recv_flush = ath_legacy_flushrecv; 1470 sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet; 1471 sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init; 1472 1473 sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup; 1474 sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown; 1475 sc->sc_rx.recv_sched = ath_legacy_recv_sched; 1476 sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue; 1477 } 1478