xref: /freebsd/sys/dev/ath/if_ath_rx.c (revision 2938ecc85c29202824e83d65af5c3a4fb7b3e5fb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  *
18  * NO WARRANTY
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29  * THE POSSIBILITY OF SUCH DAMAGES.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*
36  * Driver for the Atheros Wireless LAN controller.
37  *
38  * This software is derived from work of Atsushi Onoe; his contribution
39  * is greatly appreciated.
40  */
41 
42 #include "opt_inet.h"
43 #include "opt_ath.h"
44 /*
45  * This is needed for register operations which are performed
46  * by the driver - eg, calls to ath_hal_gettsf32().
47  *
48  * It's also required for any AH_DEBUG checks in here, eg the
49  * module dependencies.
50  */
51 #include "opt_ah.h"
52 #include "opt_wlan.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysctl.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/lock.h>
60 #include <sys/mutex.h>
61 #include <sys/kernel.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/errno.h>
65 #include <sys/callout.h>
66 #include <sys/bus.h>
67 #include <sys/endian.h>
68 #include <sys/kthread.h>
69 #include <sys/taskqueue.h>
70 #include <sys/priv.h>
71 #include <sys/module.h>
72 #include <sys/ktr.h>
73 #include <sys/smp.h>	/* for mp_ncpus */
74 
75 #include <machine/bus.h>
76 
77 #include <net/if.h>
78 #include <net/if_var.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/ethernet.h>
84 #include <net/if_llc.h>
85 
86 #include <net80211/ieee80211_var.h>
87 #include <net80211/ieee80211_regdomain.h>
88 #ifdef IEEE80211_SUPPORT_SUPERG
89 #include <net80211/ieee80211_superg.h>
90 #endif
91 #ifdef IEEE80211_SUPPORT_TDMA
92 #include <net80211/ieee80211_tdma.h>
93 #endif
94 
95 #include <net/bpf.h>
96 
97 #ifdef INET
98 #include <netinet/in.h>
99 #include <netinet/if_ether.h>
100 #endif
101 
102 #include <dev/ath/if_athvar.h>
103 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
104 #include <dev/ath/ath_hal/ah_diagcodes.h>
105 
106 #include <dev/ath/if_ath_debug.h>
107 #include <dev/ath/if_ath_misc.h>
108 #include <dev/ath/if_ath_tsf.h>
109 #include <dev/ath/if_ath_tx.h>
110 #include <dev/ath/if_ath_sysctl.h>
111 #include <dev/ath/if_ath_led.h>
112 #include <dev/ath/if_ath_keycache.h>
113 #include <dev/ath/if_ath_rx.h>
114 #include <dev/ath/if_ath_beacon.h>
115 #include <dev/ath/if_athdfs.h>
116 #include <dev/ath/if_ath_descdma.h>
117 
118 #ifdef ATH_TX99_DIAG
119 #include <dev/ath/ath_tx99/ath_tx99.h>
120 #endif
121 
122 #ifdef	ATH_DEBUG_ALQ
123 #include <dev/ath/if_ath_alq.h>
124 #endif
125 
126 #include <dev/ath/if_ath_lna_div.h>
127 
128 /*
129  * Calculate the receive filter according to the
130  * operating mode and state:
131  *
132  * o always accept unicast, broadcast, and multicast traffic
133  * o accept PHY error frames when hardware doesn't have MIB support
134  *   to count and we need them for ANI (sta mode only until recently)
135  *   and we are not scanning (ANI is disabled)
136  *   NB: older hal's add rx filter bits out of sight and we need to
137  *	 blindly preserve them
138  * o probe request frames are accepted only when operating in
139  *   hostap, adhoc, mesh, or monitor modes
140  * o enable promiscuous mode
141  *   - when in monitor mode
142  *   - if interface marked PROMISC (assumes bridge setting is filtered)
143  * o accept beacons:
144  *   - when operating in station mode for collecting rssi data when
145  *     the station is otherwise quiet, or
146  *   - when operating in adhoc mode so the 802.11 layer creates
147  *     node table entries for peers,
148  *   - when scanning
149  *   - when doing s/w beacon miss (e.g. for ap+sta)
150  *   - when operating in ap mode in 11g to detect overlapping bss that
151  *     require protection
152  *   - when operating in mesh mode to detect neighbors
153  * o accept control frames:
154  *   - when in monitor mode
155  * XXX HT protection for 11n
156  */
157 u_int32_t
158 ath_calcrxfilter(struct ath_softc *sc)
159 {
160 	struct ieee80211com *ic = &sc->sc_ic;
161 	u_int32_t rfilt;
162 
163 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
164 	if (!sc->sc_needmib && !sc->sc_scanning)
165 		rfilt |= HAL_RX_FILTER_PHYERR;
166 	if (ic->ic_opmode != IEEE80211_M_STA)
167 		rfilt |= HAL_RX_FILTER_PROBEREQ;
168 	/* XXX ic->ic_monvaps != 0? */
169 	if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0)
170 		rfilt |= HAL_RX_FILTER_PROM;
171 
172 	/*
173 	 * Only listen to all beacons if we're scanning.
174 	 *
175 	 * Otherwise we only really need to hear beacons from
176 	 * our own BSSID.
177 	 *
178 	 * IBSS? software beacon miss? Just receive all beacons.
179 	 * We need to hear beacons/probe requests from everyone so
180 	 * we can merge ibss.
181 	 */
182 	if (ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
183 		rfilt |= HAL_RX_FILTER_BEACON;
184 	} else if (ic->ic_opmode == IEEE80211_M_STA) {
185 		if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
186 			rfilt |= HAL_RX_FILTER_MYBEACON;
187 		} else { /* scanning, non-mybeacon chips */
188 			rfilt |= HAL_RX_FILTER_BEACON;
189 		}
190 	}
191 
192 	/*
193 	 * NB: We don't recalculate the rx filter when
194 	 * ic_protmode changes; otherwise we could do
195 	 * this only when ic_protmode != NONE.
196 	 */
197 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
198 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
199 		rfilt |= HAL_RX_FILTER_BEACON;
200 
201 	/*
202 	 * Enable hardware PS-POLL RX only for hostap mode;
203 	 * STA mode sends PS-POLL frames but never
204 	 * receives them.
205 	 */
206 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
207 	    0, NULL) == HAL_OK &&
208 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
209 		rfilt |= HAL_RX_FILTER_PSPOLL;
210 
211 	if (sc->sc_nmeshvaps) {
212 		rfilt |= HAL_RX_FILTER_BEACON;
213 		if (sc->sc_hasbmatch)
214 			rfilt |= HAL_RX_FILTER_BSSID;
215 		else
216 			rfilt |= HAL_RX_FILTER_PROM;
217 	}
218 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
219 		rfilt |= HAL_RX_FILTER_CONTROL;
220 
221 	/*
222 	 * Enable RX of compressed BAR frames only when doing
223 	 * 802.11n. Required for A-MPDU.
224 	 */
225 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
226 		rfilt |= HAL_RX_FILTER_COMPBAR;
227 
228 	/*
229 	 * Enable radar PHY errors if requested by the
230 	 * DFS module.
231 	 */
232 	if (sc->sc_dodfs)
233 		rfilt |= HAL_RX_FILTER_PHYRADAR;
234 
235 	/*
236 	 * Enable spectral PHY errors if requested by the
237 	 * spectral module.
238 	 */
239 	if (sc->sc_dospectral)
240 		rfilt |= HAL_RX_FILTER_PHYRADAR;
241 
242 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s\n",
243 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode]);
244 	return rfilt;
245 }
246 
247 static int
248 ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
249 {
250 	struct ath_hal *ah = sc->sc_ah;
251 	int error;
252 	struct mbuf *m;
253 	struct ath_desc *ds;
254 
255 	/* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
256 
257 	m = bf->bf_m;
258 	if (m == NULL) {
259 		/*
260 		 * NB: by assigning a page to the rx dma buffer we
261 		 * implicitly satisfy the Atheros requirement that
262 		 * this buffer be cache-line-aligned and sized to be
263 		 * multiple of the cache line size.  Not doing this
264 		 * causes weird stuff to happen (for the 5210 at least).
265 		 */
266 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
267 		if (m == NULL) {
268 			DPRINTF(sc, ATH_DEBUG_ANY,
269 				"%s: no mbuf/cluster\n", __func__);
270 			sc->sc_stats.ast_rx_nombuf++;
271 			return ENOMEM;
272 		}
273 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
274 
275 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
276 					     bf->bf_dmamap, m,
277 					     bf->bf_segs, &bf->bf_nseg,
278 					     BUS_DMA_NOWAIT);
279 		if (error != 0) {
280 			DPRINTF(sc, ATH_DEBUG_ANY,
281 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
282 			    __func__, error);
283 			sc->sc_stats.ast_rx_busdma++;
284 			m_freem(m);
285 			return error;
286 		}
287 		KASSERT(bf->bf_nseg == 1,
288 			("multi-segment packet; nseg %u", bf->bf_nseg));
289 		bf->bf_m = m;
290 	}
291 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
292 
293 	/*
294 	 * Setup descriptors.  For receive we always terminate
295 	 * the descriptor list with a self-linked entry so we'll
296 	 * not get overrun under high load (as can happen with a
297 	 * 5212 when ANI processing enables PHY error frames).
298 	 *
299 	 * To insure the last descriptor is self-linked we create
300 	 * each descriptor as self-linked and add it to the end.  As
301 	 * each additional descriptor is added the previous self-linked
302 	 * entry is ``fixed'' naturally.  This should be safe even
303 	 * if DMA is happening.  When processing RX interrupts we
304 	 * never remove/process the last, self-linked, entry on the
305 	 * descriptor list.  This insures the hardware always has
306 	 * someplace to write a new frame.
307 	 */
308 	/*
309 	 * 11N: we can no longer afford to self link the last descriptor.
310 	 * MAC acknowledges BA status as long as it copies frames to host
311 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
312 	 * to a sender if last desc is self-linked.
313 	 */
314 	ds = bf->bf_desc;
315 	if (sc->sc_rxslink)
316 		ds->ds_link = bf->bf_daddr;	/* link to self */
317 	else
318 		ds->ds_link = 0;		/* terminate the list */
319 	ds->ds_data = bf->bf_segs[0].ds_addr;
320 	ath_hal_setuprxdesc(ah, ds
321 		, m->m_len		/* buffer size */
322 		, 0
323 	);
324 
325 	if (sc->sc_rxlink != NULL)
326 		*sc->sc_rxlink = bf->bf_daddr;
327 	sc->sc_rxlink = &ds->ds_link;
328 	return 0;
329 }
330 
331 /*
332  * Intercept management frames to collect beacon rssi data
333  * and to do ibss merges.
334  */
335 void
336 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
337 	int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
338 {
339 	struct ieee80211vap *vap = ni->ni_vap;
340 	struct ath_softc *sc = vap->iv_ic->ic_softc;
341 	uint64_t tsf_beacon_old, tsf_beacon;
342 	uint64_t nexttbtt;
343 	int64_t tsf_delta;
344 	int32_t tsf_delta_bmiss;
345 	int32_t tsf_remainder;
346 	uint64_t tsf_beacon_target;
347 	int tsf_intval;
348 
349 	tsf_beacon_old = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
350 	tsf_beacon_old |= le32dec(ni->ni_tstamp.data);
351 
352 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
353 	tsf_intval = 1;
354 	if (ni->ni_intval > 0) {
355 		tsf_intval = TU_TO_TSF(ni->ni_intval);
356 	}
357 #undef	TU_TO_TSF
358 
359 	/*
360 	 * Call up first so subsequent work can use information
361 	 * potentially stored in the node (e.g. for ibss merge).
362 	 */
363 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
364 	switch (subtype) {
365 	case IEEE80211_FC0_SUBTYPE_BEACON:
366 		/*
367 		 * Always update the per-node beacon RSSI if we're hearing
368 		 * beacons from that node.
369 		 */
370 		ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgbrssi, rssi);
371 
372 		/*
373 		 * Only do the following processing if it's for
374 		 * the current BSS.
375 		 *
376 		 * In scan and IBSS mode we receive all beacons,
377 		 * which means we need to filter out stuff
378 		 * that isn't for us or we'll end up constantly
379 		 * trying to sync / merge to BSSes that aren't
380 		 * actually us.
381 		 */
382 		if ((vap->iv_opmode != IEEE80211_M_HOSTAP) &&
383 		    IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) {
384 			/* update rssi statistics for use by the hal */
385 			/* XXX unlocked check against vap->iv_bss? */
386 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
387 
388 			tsf_beacon = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
389 			tsf_beacon |= le32dec(ni->ni_tstamp.data);
390 
391 			nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
392 
393 			/*
394 			 * Let's calculate the delta and remainder, so we can see
395 			 * if the beacon timer from the AP is varying by more than
396 			 * a few TU.  (Which would be a huge, huge problem.)
397 			 */
398 			tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
399 
400 			tsf_delta_bmiss = tsf_delta / tsf_intval;
401 
402 			/*
403 			 * If our delta is greater than half the beacon interval,
404 			 * let's round the bmiss value up to the next beacon
405 			 * interval.  Ie, we're running really, really early
406 			 * on the next beacon.
407 			 */
408 			if (tsf_delta % tsf_intval > (tsf_intval / 2))
409 				tsf_delta_bmiss ++;
410 
411 			tsf_beacon_target = tsf_beacon_old +
412 			    (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
413 
414 			/*
415 			 * The remainder using '%' is between 0 .. intval-1.
416 			 * If we're actually running too fast, then the remainder
417 			 * will be some large number just under intval-1.
418 			 * So we need to look at whether we're running
419 			 * before or after the target beacon interval
420 			 * and if we are, modify how we do the remainder
421 			 * calculation.
422 			 */
423 			if (tsf_beacon < tsf_beacon_target) {
424 				tsf_remainder =
425 				    -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
426 			} else {
427 				tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
428 			}
429 
430 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: %s: old_tsf=%llu (%u), new_tsf=%llu (%u), target_tsf=%llu (%u), delta=%lld, bmiss=%d, remainder=%d\n",
431 			    __func__,
432 			    ieee80211_get_vap_ifname(vap),
433 			    (unsigned long long) tsf_beacon_old,
434 			    (unsigned int) (tsf_beacon_old >> 10),
435 			    (unsigned long long) tsf_beacon,
436 			    (unsigned int ) (tsf_beacon >> 10),
437 			    (unsigned long long) tsf_beacon_target,
438 			    (unsigned int) (tsf_beacon_target >> 10),
439 			    (long long) tsf_delta,
440 			    tsf_delta_bmiss,
441 			    tsf_remainder);
442 
443 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: %s: ni=%6D bssid=%6D tsf=%llu (%u), nexttbtt=%llu (%u), delta=%d\n",
444 			    __func__,
445 			    ieee80211_get_vap_ifname(vap),
446 			    ni->ni_bssid, ":",
447 			    vap->iv_bss->ni_bssid, ":",
448 			    (unsigned long long) tsf_beacon,
449 			    (unsigned int) (tsf_beacon >> 10),
450 			    (unsigned long long) nexttbtt,
451 			    (unsigned int) (nexttbtt >> 10),
452 			    (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
453 
454 			/*
455 			 * We only do syncbeacon on STA VAPs; not on IBSS;
456 			 * but don't do it with swbmiss enabled or we
457 			 * may end up overwriting AP mode beacon config.
458 			 *
459 			 * The driver (and net80211) should be smarter about
460 			 * this..
461 			 */
462 			if (vap->iv_opmode == IEEE80211_M_STA &&
463 			    sc->sc_syncbeacon &&
464 			    (!sc->sc_swbmiss) &&
465 			    ni == vap->iv_bss &&
466 			    (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
467 				DPRINTF(sc, ATH_DEBUG_BEACON,
468 				    "%s: syncbeacon=1; syncing\n",
469 				    __func__);
470 				/*
471 				 * Resync beacon timers using the tsf of the beacon
472 				 * frame we just received.
473 				 */
474 				ath_beacon_config(sc, vap);
475 				sc->sc_syncbeacon = 0;
476 			}
477 		}
478 
479 		/* fall thru... */
480 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
481 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
482 		    vap->iv_state == IEEE80211_S_RUN &&
483 		    ieee80211_ibss_merge_check(ni)) {
484 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
485 			uint64_t tsf = ath_extend_tsf(sc, rstamp,
486 				ath_hal_gettsf64(sc->sc_ah));
487 			/*
488 			 * Handle ibss merge as needed; check the tsf on the
489 			 * frame before attempting the merge.  The 802.11 spec
490 			 * says the station should change it's bssid to match
491 			 * the oldest station with the same ssid, where oldest
492 			 * is determined by the tsf.  Note that hardware
493 			 * reconfiguration happens through callback to
494 			 * ath_newstate as the state machine will go from
495 			 * RUN -> RUN when this happens.
496 			 */
497 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
498 				DPRINTF(sc, ATH_DEBUG_STATE,
499 				    "ibss merge, rstamp %u tsf %ju "
500 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
501 				    (uintmax_t)ni->ni_tstamp.tsf);
502 				(void) ieee80211_ibss_merge(ni);
503 			}
504 		}
505 		break;
506 	}
507 }
508 
509 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
510 static void
511 ath_rx_tap_vendor(struct ath_softc *sc, struct mbuf *m,
512     const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
513 {
514 
515 	/* Fill in the extension bitmap */
516 	sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
517 
518 	/* Fill in the vendor header */
519 	sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
520 	sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
521 	sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
522 
523 	/* XXX what should this be? */
524 	sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
525 	sc->sc_rx_th.wr_vh.vh_skip_len =
526 	    htole16(sizeof(struct ath_radiotap_vendor_hdr));
527 
528 	/* General version info */
529 	sc->sc_rx_th.wr_v.vh_version = 1;
530 
531 	sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
532 
533 	/* rssi */
534 	sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
535 	sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
536 	sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
537 	sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
538 	sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
539 	sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
540 
541 	/* evm */
542 	sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
543 	sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
544 	sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
545 	/* These are only populated from the AR9300 or later */
546 	sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
547 	sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
548 
549 	/* direction */
550 	sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
551 
552 	/* RX rate */
553 	sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
554 
555 	/* RX flags */
556 	sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
557 
558 	if (rs->rs_isaggr)
559 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
560 	if (rs->rs_moreaggr)
561 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
562 
563 	/* phyerr info */
564 	if (rs->rs_status & HAL_RXERR_PHY) {
565 		sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
566 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
567 	} else {
568 		sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
569 	}
570 	sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
571 	sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
572 }
573 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
574 
575 static void
576 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
577 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
578 {
579 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
580 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
581 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
582 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
583 	const HAL_RATE_TABLE *rt;
584 	uint8_t rix;
585 
586 	rt = sc->sc_currates;
587 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
588 	rix = rt->rateCodeToIndex[rs->rs_rate];
589 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
590 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
591 
592 	/* 802.11 specific flags */
593 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
594 	if (rs->rs_status & HAL_RXERR_PHY) {
595 		/*
596 		 * PHY error - make sure the channel flags
597 		 * reflect the actual channel configuration,
598 		 * not the received frame.
599 		 */
600 		if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
601 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
602 		else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
603 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
604 		else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
605 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
606 	} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
607 		struct ieee80211com *ic = &sc->sc_ic;
608 
609 		if ((rs->rs_flags & HAL_RX_2040) == 0)
610 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
611 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
612 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
613 		else
614 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
615 
616 		if (rs->rs_flags & HAL_RX_GI)
617 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
618 	}
619 
620 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
621 	if (rs->rs_status & HAL_RXERR_CRC)
622 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
623 	/* XXX propagate other error flags from descriptor */
624 	sc->sc_rx_th.wr_antnoise = nf;
625 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
626 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
627 #undef CHAN_HT
628 #undef CHAN_HT20
629 #undef CHAN_HT40U
630 #undef CHAN_HT40D
631 }
632 
633 static void
634 ath_handle_micerror(struct ieee80211com *ic,
635 	struct ieee80211_frame *wh, int keyix)
636 {
637 	struct ieee80211_node *ni;
638 
639 	/* XXX recheck MIC to deal w/ chips that lie */
640 	/* XXX discard MIC errors on !data frames */
641 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
642 	if (ni != NULL) {
643 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
644 		ieee80211_free_node(ni);
645 	}
646 }
647 
648 /*
649  * Process a single packet.
650  *
651  * The mbuf must already be synced, unmapped and removed from bf->bf_m
652  * by this stage.
653  *
654  * The mbuf must be consumed by this routine - either passed up the
655  * net80211 stack, put on the holding queue, or freed.
656  */
657 int
658 ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
659     uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
660     struct mbuf *m)
661 {
662 	uint64_t rstamp;
663 	/* XXX TODO: make this an mbuf tag? */
664 	struct ieee80211_rx_stats rxs;
665 	int len, type, i;
666 	struct ieee80211com *ic = &sc->sc_ic;
667 	struct ieee80211_node *ni;
668 	int is_good = 0;
669 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
670 
671 	NET_EPOCH_ASSERT();
672 
673 	/*
674 	 * Calculate the correct 64 bit TSF given
675 	 * the TSF64 register value and rs_tstamp.
676 	 */
677 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
678 
679 	/* 802.11 return codes - These aren't specifically errors */
680 	if (rs->rs_flags & HAL_RX_GI)
681 		sc->sc_stats.ast_rx_halfgi++;
682 	if (rs->rs_flags & HAL_RX_2040)
683 		sc->sc_stats.ast_rx_2040++;
684 	if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
685 		sc->sc_stats.ast_rx_pre_crc_err++;
686 	if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
687 		sc->sc_stats.ast_rx_post_crc_err++;
688 	if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
689 		sc->sc_stats.ast_rx_decrypt_busy_err++;
690 	if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
691 		sc->sc_stats.ast_rx_hi_rx_chain++;
692 	if (rs->rs_flags & HAL_RX_STBC)
693 		sc->sc_stats.ast_rx_stbc++;
694 
695 	if (rs->rs_status != 0) {
696 		if (rs->rs_status & HAL_RXERR_CRC)
697 			sc->sc_stats.ast_rx_crcerr++;
698 		if (rs->rs_status & HAL_RXERR_FIFO)
699 			sc->sc_stats.ast_rx_fifoerr++;
700 		if (rs->rs_status & HAL_RXERR_PHY) {
701 			sc->sc_stats.ast_rx_phyerr++;
702 			/* Process DFS radar events */
703 			if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
704 			    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
705 				/* Now pass it to the radar processing code */
706 				ath_dfs_process_phy_err(sc, m, rstamp, rs);
707 			}
708 
709 			/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
710 			if (rs->rs_phyerr < 64)
711 				sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
712 			goto rx_error;	/* NB: don't count in ierrors */
713 		}
714 		if (rs->rs_status & HAL_RXERR_DECRYPT) {
715 			/*
716 			 * Decrypt error.  If the error occurred
717 			 * because there was no hardware key, then
718 			 * let the frame through so the upper layers
719 			 * can process it.  This is necessary for 5210
720 			 * parts which have no way to setup a ``clear''
721 			 * key cache entry.
722 			 *
723 			 * XXX do key cache faulting
724 			 */
725 			if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
726 				goto rx_accept;
727 			sc->sc_stats.ast_rx_badcrypt++;
728 		}
729 		/*
730 		 * Similar as above - if the failure was a keymiss
731 		 * just punt it up to the upper layers for now.
732 		 */
733 		if (rs->rs_status & HAL_RXERR_KEYMISS) {
734 			sc->sc_stats.ast_rx_keymiss++;
735 			goto rx_accept;
736 		}
737 		if (rs->rs_status & HAL_RXERR_MIC) {
738 			sc->sc_stats.ast_rx_badmic++;
739 			/*
740 			 * Do minimal work required to hand off
741 			 * the 802.11 header for notification.
742 			 */
743 			/* XXX frag's and qos frames */
744 			len = rs->rs_datalen;
745 			if (len >= sizeof (struct ieee80211_frame)) {
746 				ath_handle_micerror(ic,
747 				    mtod(m, struct ieee80211_frame *),
748 				    sc->sc_splitmic ?
749 					rs->rs_keyix-32 : rs->rs_keyix);
750 			}
751 		}
752 		counter_u64_add(ic->ic_ierrors, 1);
753 rx_error:
754 		/*
755 		 * Cleanup any pending partial frame.
756 		 */
757 		if (re->m_rxpending != NULL) {
758 			m_freem(re->m_rxpending);
759 			re->m_rxpending = NULL;
760 		}
761 		/*
762 		 * When a tap is present pass error frames
763 		 * that have been requested.  By default we
764 		 * pass decrypt+mic errors but others may be
765 		 * interesting (e.g. crc).
766 		 */
767 		if (ieee80211_radiotap_active(ic) &&
768 		    (rs->rs_status & sc->sc_monpass)) {
769 			/* NB: bpf needs the mbuf length setup */
770 			len = rs->rs_datalen;
771 			m->m_pkthdr.len = m->m_len = len;
772 			ath_rx_tap(sc, m, rs, rstamp, nf);
773 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
774 			ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
775 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
776 			ieee80211_radiotap_rx_all(ic, m);
777 		}
778 		/* XXX pass MIC errors up for s/w reclaculation */
779 		m_freem(m); m = NULL;
780 		goto rx_next;
781 	}
782 rx_accept:
783 	len = rs->rs_datalen;
784 	m->m_len = len;
785 
786 	if (rs->rs_more) {
787 		/*
788 		 * Frame spans multiple descriptors; save
789 		 * it for the next completed descriptor, it
790 		 * will be used to construct a jumbogram.
791 		 */
792 		if (re->m_rxpending != NULL) {
793 			/* NB: max frame size is currently 2 clusters */
794 			sc->sc_stats.ast_rx_toobig++;
795 			m_freem(re->m_rxpending);
796 		}
797 		m->m_pkthdr.len = len;
798 		re->m_rxpending = m;
799 		m = NULL;
800 		goto rx_next;
801 	} else if (re->m_rxpending != NULL) {
802 		/*
803 		 * This is the second part of a jumbogram,
804 		 * chain it to the first mbuf, adjust the
805 		 * frame length, and clear the rxpending state.
806 		 */
807 		re->m_rxpending->m_next = m;
808 		re->m_rxpending->m_pkthdr.len += len;
809 		m = re->m_rxpending;
810 		re->m_rxpending = NULL;
811 	} else {
812 		/*
813 		 * Normal single-descriptor receive; setup packet length.
814 		 */
815 		m->m_pkthdr.len = len;
816 	}
817 
818 	/*
819 	 * Validate rs->rs_antenna.
820 	 *
821 	 * Some users w/ AR9285 NICs have reported crashes
822 	 * here because rs_antenna field is bogusly large.
823 	 * Let's enforce the maximum antenna limit of 8
824 	 * (and it shouldn't be hard coded, but that's a
825 	 * separate problem) and if there's an issue, print
826 	 * out an error and adjust rs_antenna to something
827 	 * sensible.
828 	 *
829 	 * This code should be removed once the actual
830 	 * root cause of the issue has been identified.
831 	 * For example, it may be that the rs_antenna
832 	 * field is only valid for the last frame of
833 	 * an aggregate and it just happens that it is
834 	 * "mostly" right. (This is a general statement -
835 	 * the majority of the statistics are only valid
836 	 * for the last frame in an aggregate.
837 	 */
838 	if (rs->rs_antenna > 7) {
839 		device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
840 		    __func__, rs->rs_antenna);
841 #ifdef	ATH_DEBUG
842 		ath_printrxbuf(sc, bf, 0, status == HAL_OK);
843 #endif /* ATH_DEBUG */
844 		rs->rs_antenna = 0;	/* XXX better than nothing */
845 	}
846 
847 	/*
848 	 * If this is an AR9285/AR9485, then the receive and LNA
849 	 * configuration is stored in RSSI[2] / EXTRSSI[2].
850 	 * We can extract this out to build a much better
851 	 * receive antenna profile.
852 	 *
853 	 * Yes, this just blurts over the above RX antenna field
854 	 * for now.  It's fine, the AR9285 doesn't really use
855 	 * that.
856 	 *
857 	 * Later on we should store away the fine grained LNA
858 	 * information and keep separate counters just for
859 	 * that.  It'll help when debugging the AR9285/AR9485
860 	 * combined diversity code.
861 	 */
862 	if (sc->sc_rx_lnamixer) {
863 		rs->rs_antenna = 0;
864 
865 		/* Bits 0:1 - the LNA configuration used */
866 		rs->rs_antenna |=
867 		    ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
868 		      >> HAL_RX_LNA_CFG_USED_S);
869 
870 		/* Bit 2 - the external RX antenna switch */
871 		if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
872 			rs->rs_antenna |= 0x4;
873 	}
874 
875 	sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
876 
877 	/*
878 	 * Populate the rx status block.  When there are bpf
879 	 * listeners we do the additional work to provide
880 	 * complete status.  Otherwise we fill in only the
881 	 * material required by ieee80211_input.  Note that
882 	 * noise setting is filled in above.
883 	 */
884 	if (ieee80211_radiotap_active(ic)) {
885 		ath_rx_tap(sc, m, rs, rstamp, nf);
886 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
887 		ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
888 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
889 	}
890 
891 	/*
892 	 * From this point on we assume the frame is at least
893 	 * as large as ieee80211_frame_min; verify that.
894 	 */
895 	if (len < IEEE80211_MIN_LEN) {
896 		if (!ieee80211_radiotap_active(ic)) {
897 			DPRINTF(sc, ATH_DEBUG_RECV,
898 			    "%s: short packet %d\n", __func__, len);
899 			sc->sc_stats.ast_rx_tooshort++;
900 		} else {
901 			/* NB: in particular this captures ack's */
902 			ieee80211_radiotap_rx_all(ic, m);
903 		}
904 		m_freem(m); m = NULL;
905 		goto rx_next;
906 	}
907 
908 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
909 		const HAL_RATE_TABLE *rt = sc->sc_currates;
910 		uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
911 
912 		ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
913 		    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
914 	}
915 
916 	m_adj(m, -IEEE80211_CRC_LEN);
917 
918 	/*
919 	 * Locate the node for sender, track state, and then
920 	 * pass the (referenced) node up to the 802.11 layer
921 	 * for its use.
922 	 */
923 	ni = ieee80211_find_rxnode_withkey(ic,
924 		mtod(m, const struct ieee80211_frame_min *),
925 		rs->rs_keyix == HAL_RXKEYIX_INVALID ?
926 			IEEE80211_KEYIX_NONE : rs->rs_keyix);
927 	sc->sc_lastrs = rs;
928 
929 	if (rs->rs_isaggr)
930 		sc->sc_stats.ast_rx_agg++;
931 
932 	/*
933 	 * Populate the per-chain RSSI values where appropriate.
934 	 */
935 	bzero(&rxs, sizeof(rxs));
936 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI |
937 	    IEEE80211_R_C_CHAIN |
938 	    IEEE80211_R_C_NF |
939 	    IEEE80211_R_C_RSSI |
940 	    IEEE80211_R_TSF64 |
941 	    IEEE80211_R_TSF_START;	/* XXX TODO: validate */
942 	rxs.c_rssi = rs->rs_rssi;
943 	rxs.c_nf = nf;
944 	rxs.c_chain = 3;	/* XXX TODO: check */
945 	rxs.c_rx_tsf = rstamp;
946 
947 	for (i = 0; i < 3; i++) {
948 		rxs.c_rssi_ctl[i] = rs->rs_rssi_ctl[i];
949 		rxs.c_rssi_ext[i] = rs->rs_rssi_ext[i];
950 		/*
951 		 * XXX note: we currently don't track
952 		 * per-chain noisefloor.
953 		 */
954 		rxs.c_nf_ctl[i] = nf;
955 		rxs.c_nf_ext[i] = nf;
956 	}
957 
958 	if (ni != NULL) {
959 		/*
960 		 * Only punt packets for ampdu reorder processing for
961 		 * 11n nodes; net80211 enforces that M_AMPDU is only
962 		 * set for 11n nodes.
963 		 */
964 		if (ni->ni_flags & IEEE80211_NODE_HT)
965 			m->m_flags |= M_AMPDU;
966 
967 		/*
968 		 * Inform rate control about the received RSSI.
969 		 * It can then use this information to potentially drastically
970 		 * alter the available rate based on the RSSI estimate.
971 		 *
972 		 * This is super important when associating to a far away station;
973 		 * you don't want to waste time trying higher rates at some low
974 		 * packet exchange rate (like during DHCP) just to establish
975 		 * that higher MCS rates aren't available.
976 		 */
977 		ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgrssi,
978 		    rs->rs_rssi);
979 		ath_rate_update_rx_rssi(sc, ATH_NODE(ni),
980 		    ATH_RSSI(ATH_NODE(ni)->an_node_stats.ns_avgrssi));
981 
982 		/*
983 		 * Sending station is known, dispatch directly.
984 		 */
985 		(void) ieee80211_add_rx_params(m, &rxs);
986 		type = ieee80211_input_mimo(ni, m);
987 		ieee80211_free_node(ni);
988 		m = NULL;
989 		/*
990 		 * Arrange to update the last rx timestamp only for
991 		 * frames from our ap when operating in station mode.
992 		 * This assumes the rx key is always setup when
993 		 * associated.
994 		 */
995 		if (ic->ic_opmode == IEEE80211_M_STA &&
996 		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
997 			is_good = 1;
998 	} else {
999 		(void) ieee80211_add_rx_params(m, &rxs);
1000 		type = ieee80211_input_mimo_all(ic, m);
1001 		m = NULL;
1002 	}
1003 
1004 	/*
1005 	 * At this point we have passed the frame up the stack; thus
1006 	 * the mbuf is no longer ours.
1007 	 */
1008 
1009 	/*
1010 	 * Track legacy station RX rssi and do any rx antenna management.
1011 	 */
1012 	ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
1013 	if (sc->sc_diversity) {
1014 		/*
1015 		 * When using fast diversity, change the default rx
1016 		 * antenna if diversity chooses the other antenna 3
1017 		 * times in a row.
1018 		 */
1019 		if (sc->sc_defant != rs->rs_antenna) {
1020 			if (++sc->sc_rxotherant >= 3)
1021 				ath_setdefantenna(sc, rs->rs_antenna);
1022 		} else
1023 			sc->sc_rxotherant = 0;
1024 	}
1025 
1026 	/* Handle slow diversity if enabled */
1027 	if (sc->sc_dolnadiv) {
1028 		ath_lna_rx_comb_scan(sc, rs, ticks, hz);
1029 	}
1030 
1031 	if (sc->sc_softled) {
1032 		/*
1033 		 * Blink for any data frame.  Otherwise do a
1034 		 * heartbeat-style blink when idle.  The latter
1035 		 * is mainly for station mode where we depend on
1036 		 * periodic beacon frames to trigger the poll event.
1037 		 */
1038 		if (type == IEEE80211_FC0_TYPE_DATA) {
1039 			const HAL_RATE_TABLE *rt = sc->sc_currates;
1040 			ath_led_event(sc,
1041 			    rt->rateCodeToIndex[rs->rs_rate]);
1042 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1043 			ath_led_event(sc, 0);
1044 		}
1045 rx_next:
1046 	/*
1047 	 * Debugging - complain if we didn't NULL the mbuf pointer
1048 	 * here.
1049 	 */
1050 	if (m != NULL) {
1051 		device_printf(sc->sc_dev,
1052 		    "%s: mbuf %p should've been freed!\n",
1053 		    __func__,
1054 		    m);
1055 	}
1056 	return (is_good);
1057 }
1058 
1059 #define	ATH_RX_MAX		128
1060 
1061 /*
1062  * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
1063  * the EDMA code does.
1064  *
1065  * XXX TODO: then, do all of the RX list management stuff inside
1066  * ATH_RX_LOCK() so we don't end up potentially racing.  The EDMA
1067  * code is doing it right.
1068  */
1069 static void
1070 ath_rx_proc(struct ath_softc *sc, int resched)
1071 {
1072 #define	PA2DESC(_sc, _pa) \
1073 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1074 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1075 	struct ath_buf *bf;
1076 	struct ath_hal *ah = sc->sc_ah;
1077 #ifdef IEEE80211_SUPPORT_SUPERG
1078 	struct ieee80211com *ic = &sc->sc_ic;
1079 #endif
1080 	struct ath_desc *ds;
1081 	struct ath_rx_status *rs;
1082 	struct mbuf *m;
1083 	int ngood;
1084 	HAL_STATUS status;
1085 	int16_t nf;
1086 	u_int64_t tsf;
1087 	int npkts = 0;
1088 	int kickpcu = 0;
1089 	int ret;
1090 
1091 	NET_EPOCH_ASSERT();
1092 
1093 	/* XXX we must not hold the ATH_LOCK here */
1094 	ATH_UNLOCK_ASSERT(sc);
1095 	ATH_PCU_UNLOCK_ASSERT(sc);
1096 
1097 	ATH_PCU_LOCK(sc);
1098 	sc->sc_rxproc_cnt++;
1099 	kickpcu = sc->sc_kickpcu;
1100 	ATH_PCU_UNLOCK(sc);
1101 
1102 	ATH_LOCK(sc);
1103 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1104 	ATH_UNLOCK(sc);
1105 
1106 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
1107 	ngood = 0;
1108 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
1109 	sc->sc_stats.ast_rx_noise = nf;
1110 	tsf = ath_hal_gettsf64(ah);
1111 	do {
1112 		/*
1113 		 * Don't process too many packets at a time; give the
1114 		 * TX thread time to also run - otherwise the TX
1115 		 * latency can jump by quite a bit, causing throughput
1116 		 * degredation.
1117 		 */
1118 		if (!kickpcu && npkts >= ATH_RX_MAX)
1119 			break;
1120 
1121 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1122 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
1123 			device_printf(sc->sc_dev, "%s: no buffer!\n", __func__);
1124 			break;
1125 		} else if (bf == NULL) {
1126 			/*
1127 			 * End of List:
1128 			 * this can happen for non-self-linked RX chains
1129 			 */
1130 			sc->sc_stats.ast_rx_hitqueueend++;
1131 			break;
1132 		}
1133 		m = bf->bf_m;
1134 		if (m == NULL) {		/* NB: shouldn't happen */
1135 			/*
1136 			 * If mbuf allocation failed previously there
1137 			 * will be no mbuf; try again to re-populate it.
1138 			 */
1139 			/* XXX make debug msg */
1140 			device_printf(sc->sc_dev, "%s: no mbuf!\n", __func__);
1141 			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1142 			goto rx_proc_next;
1143 		}
1144 		ds = bf->bf_desc;
1145 		if (ds->ds_link == bf->bf_daddr) {
1146 			/* NB: never process the self-linked entry at the end */
1147 			sc->sc_stats.ast_rx_hitqueueend++;
1148 			break;
1149 		}
1150 		/* XXX sync descriptor memory */
1151 		/*
1152 		 * Must provide the virtual address of the current
1153 		 * descriptor, the physical address, and the virtual
1154 		 * address of the next descriptor in the h/w chain.
1155 		 * This allows the HAL to look ahead to see if the
1156 		 * hardware is done with a descriptor by checking the
1157 		 * done bit in the following descriptor and the address
1158 		 * of the current descriptor the DMA engine is working
1159 		 * on.  All this is necessary because of our use of
1160 		 * a self-linked list to avoid rx overruns.
1161 		 */
1162 		rs = &bf->bf_status.ds_rxstat;
1163 		status = ath_hal_rxprocdesc(ah, ds,
1164 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1165 #ifdef ATH_DEBUG
1166 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
1167 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
1168 #endif
1169 
1170 #ifdef	ATH_DEBUG_ALQ
1171 		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
1172 		    if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
1173 		    sc->sc_rx_statuslen, (char *) ds);
1174 #endif	/* ATH_DEBUG_ALQ */
1175 
1176 		if (status == HAL_EINPROGRESS)
1177 			break;
1178 
1179 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1180 		npkts++;
1181 
1182 		/*
1183 		 * Process a single frame.
1184 		 */
1185 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
1186 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1187 		bf->bf_m = NULL;
1188 		if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
1189 			ngood++;
1190 rx_proc_next:
1191 		/*
1192 		 * If there's a holding buffer, insert that onto
1193 		 * the RX list; the hardware is now definitely not pointing
1194 		 * to it now.
1195 		 */
1196 		ret = 0;
1197 		if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
1198 			TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
1199 			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
1200 			    bf_list);
1201 			ret = ath_rxbuf_init(sc,
1202 			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
1203 		}
1204 		/*
1205 		 * Next, throw our buffer into the holding entry.  The hardware
1206 		 * may use the descriptor to read the link pointer before
1207 		 * DMAing the next descriptor in to write out a packet.
1208 		 */
1209 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
1210 	} while (ret == 0);
1211 
1212 	/* rx signal state monitoring */
1213 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
1214 	if (ngood)
1215 		sc->sc_lastrx = tsf;
1216 
1217 	ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
1218 	/* Queue DFS tasklet if needed */
1219 	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
1220 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
1221 
1222 	/*
1223 	 * Now that all the RX frames were handled that
1224 	 * need to be handled, kick the PCU if there's
1225 	 * been an RXEOL condition.
1226 	 */
1227 	if (resched && kickpcu) {
1228 		ATH_PCU_LOCK(sc);
1229 		ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
1230 		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
1231 		    __func__, npkts);
1232 
1233 		/*
1234 		 * Go through the process of fully tearing down
1235 		 * the RX buffers and reinitialising them.
1236 		 *
1237 		 * There's a hardware bug that causes the RX FIFO
1238 		 * to get confused under certain conditions and
1239 		 * constantly write over the same frame, leading
1240 		 * the RX driver code here to get heavily confused.
1241 		 */
1242 		/*
1243 		 * XXX Has RX DMA stopped enough here to just call
1244 		 *     ath_startrecv()?
1245 		 * XXX Do we need to use the holding buffer to restart
1246 		 *     RX DMA by appending entries to the final
1247 		 *     descriptor?  Quite likely.
1248 		 */
1249 #if 1
1250 		ath_startrecv(sc);
1251 #else
1252 		/*
1253 		 * Disabled for now - it'd be nice to be able to do
1254 		 * this in order to limit the amount of CPU time spent
1255 		 * reinitialising the RX side (and thus minimise RX
1256 		 * drops) however there's a hardware issue that
1257 		 * causes things to get too far out of whack.
1258 		 */
1259 		/*
1260 		 * XXX can we hold the PCU lock here?
1261 		 * Are there any net80211 buffer calls involved?
1262 		 */
1263 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1264 		ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1265 		ath_hal_rxena(ah);		/* enable recv descriptors */
1266 		ath_mode_init(sc);		/* set filters, etc. */
1267 		ath_hal_startpcurecv(ah, (!! sc->sc_scanning));	/* re-enable PCU/DMA engine */
1268 #endif
1269 
1270 		ath_hal_intrset(ah, sc->sc_imask);
1271 		sc->sc_kickpcu = 0;
1272 		ATH_PCU_UNLOCK(sc);
1273 	}
1274 
1275 #ifdef IEEE80211_SUPPORT_SUPERG
1276 	if (resched)
1277 		ieee80211_ff_age_all(ic, 100);
1278 #endif
1279 
1280 	/*
1281 	 * Put the hardware to sleep again if we're done with it.
1282 	 */
1283 	ATH_LOCK(sc);
1284 	ath_power_restore_power_state(sc);
1285 	ATH_UNLOCK(sc);
1286 
1287 	/*
1288 	 * If we hit the maximum number of frames in this round,
1289 	 * reschedule for another immediate pass.  This gives
1290 	 * the TX and TX completion routines time to run, which
1291 	 * will reduce latency.
1292 	 */
1293 	if (npkts >= ATH_RX_MAX)
1294 		sc->sc_rx.recv_sched(sc, resched);
1295 
1296 	ATH_PCU_LOCK(sc);
1297 	sc->sc_rxproc_cnt--;
1298 	ATH_PCU_UNLOCK(sc);
1299 }
1300 #undef	PA2DESC
1301 #undef	ATH_RX_MAX
1302 
1303 /*
1304  * Only run the RX proc if it's not already running.
1305  * Since this may get run as part of the reset/flush path,
1306  * the task can't clash with an existing, running tasklet.
1307  */
1308 static void
1309 ath_legacy_rx_tasklet(void *arg, int npending)
1310 {
1311 	struct ath_softc *sc = arg;
1312 	struct epoch_tracker et;
1313 
1314 	ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
1315 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
1316 	ATH_PCU_LOCK(sc);
1317 	if (sc->sc_inreset_cnt > 0) {
1318 		device_printf(sc->sc_dev,
1319 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
1320 		ATH_PCU_UNLOCK(sc);
1321 		return;
1322 	}
1323 	ATH_PCU_UNLOCK(sc);
1324 
1325 	NET_EPOCH_ENTER(et);
1326 	ath_rx_proc(sc, 1);
1327 	NET_EPOCH_EXIT(et);
1328 }
1329 
1330 static void
1331 ath_legacy_flushrecv(struct ath_softc *sc)
1332 {
1333 	struct epoch_tracker et;
1334 	NET_EPOCH_ENTER(et);
1335 	ath_rx_proc(sc, 0);
1336 	NET_EPOCH_EXIT(et);
1337 }
1338 
1339 static void
1340 ath_legacy_flush_rxpending(struct ath_softc *sc)
1341 {
1342 
1343 	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1344 
1345 	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
1346 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
1347 		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1348 	}
1349 	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
1350 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
1351 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1352 	}
1353 }
1354 
1355 static int
1356 ath_legacy_flush_rxholdbf(struct ath_softc *sc)
1357 {
1358 	struct ath_buf *bf;
1359 
1360 	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1361 	/*
1362 	 * If there are RX holding buffers, free them here and return
1363 	 * them to the list.
1364 	 *
1365 	 * XXX should just verify that bf->bf_m is NULL, as it must
1366 	 * be at this point!
1367 	 */
1368 	bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
1369 	if (bf != NULL) {
1370 		if (bf->bf_m != NULL)
1371 			m_freem(bf->bf_m);
1372 		bf->bf_m = NULL;
1373 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1374 		(void) ath_rxbuf_init(sc, bf);
1375 	}
1376 	sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
1377 
1378 	bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
1379 	if (bf != NULL) {
1380 		if (bf->bf_m != NULL)
1381 			m_freem(bf->bf_m);
1382 		bf->bf_m = NULL;
1383 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1384 		(void) ath_rxbuf_init(sc, bf);
1385 	}
1386 	sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
1387 
1388 	return (0);
1389 }
1390 
1391 /*
1392  * Disable the receive h/w in preparation for a reset.
1393  */
1394 static void
1395 ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
1396 {
1397 #define	PA2DESC(_sc, _pa) \
1398 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1399 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1400 	struct ath_hal *ah = sc->sc_ah;
1401 
1402 	ATH_RX_LOCK(sc);
1403 
1404 	ath_hal_stoppcurecv(ah);	/* disable PCU */
1405 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
1406 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
1407 	/*
1408 	 * TODO: see if this particular DELAY() is required; it may be
1409 	 * masking some missing FIFO flush or DMA sync.
1410 	 */
1411 #if 0
1412 	if (dodelay)
1413 #endif
1414 		DELAY(3000);		/* 3ms is long enough for 1 frame */
1415 #ifdef ATH_DEBUG
1416 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
1417 		struct ath_buf *bf;
1418 		u_int ix;
1419 
1420 		device_printf(sc->sc_dev,
1421 		    "%s: rx queue %p, link %p\n",
1422 		    __func__,
1423 		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
1424 		    sc->sc_rxlink);
1425 		ix = 0;
1426 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1427 			struct ath_desc *ds = bf->bf_desc;
1428 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
1429 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
1430 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1431 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
1432 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
1433 			ix++;
1434 		}
1435 	}
1436 #endif
1437 
1438 	(void) ath_legacy_flush_rxpending(sc);
1439 	(void) ath_legacy_flush_rxholdbf(sc);
1440 
1441 	sc->sc_rxlink = NULL;		/* just in case */
1442 
1443 	ATH_RX_UNLOCK(sc);
1444 #undef PA2DESC
1445 }
1446 
1447 /*
1448  * XXX TODO: something was calling startrecv without calling
1449  * stoprecv.  Let's figure out what/why.  It was showing up
1450  * as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
1451  */
1452 
1453 /*
1454  * Enable the receive h/w following a reset.
1455  */
1456 static int
1457 ath_legacy_startrecv(struct ath_softc *sc)
1458 {
1459 	struct ath_hal *ah = sc->sc_ah;
1460 	struct ath_buf *bf;
1461 
1462 	ATH_RX_LOCK(sc);
1463 
1464 	/*
1465 	 * XXX should verify these are already all NULL!
1466 	 */
1467 	sc->sc_rxlink = NULL;
1468 	(void) ath_legacy_flush_rxpending(sc);
1469 	(void) ath_legacy_flush_rxholdbf(sc);
1470 
1471 	/*
1472 	 * Re-chain all of the buffers in the RX buffer list.
1473 	 */
1474 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1475 		int error = ath_rxbuf_init(sc, bf);
1476 		if (error != 0) {
1477 			DPRINTF(sc, ATH_DEBUG_RECV,
1478 				"%s: ath_rxbuf_init failed %d\n",
1479 				__func__, error);
1480 			return error;
1481 		}
1482 	}
1483 
1484 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
1485 	ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1486 	ath_hal_rxena(ah);		/* enable recv descriptors */
1487 	ath_mode_init(sc);		/* set filters, etc. */
1488 	ath_hal_startpcurecv(ah, (!! sc->sc_scanning));	/* re-enable PCU/DMA engine */
1489 
1490 	ATH_RX_UNLOCK(sc);
1491 	return 0;
1492 }
1493 
1494 static int
1495 ath_legacy_dma_rxsetup(struct ath_softc *sc)
1496 {
1497 	int error;
1498 
1499 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
1500 	    "rx", sizeof(struct ath_desc), ath_rxbuf, 1);
1501 	if (error != 0)
1502 		return (error);
1503 
1504 	return (0);
1505 }
1506 
1507 static int
1508 ath_legacy_dma_rxteardown(struct ath_softc *sc)
1509 {
1510 
1511 	if (sc->sc_rxdma.dd_desc_len != 0)
1512 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1513 	return (0);
1514 }
1515 
1516 static void
1517 ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
1518 {
1519 
1520 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1521 }
1522 
1523 static void
1524 ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
1525     int dosched)
1526 {
1527 
1528 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1529 }
1530 
1531 void
1532 ath_recv_setup_legacy(struct ath_softc *sc)
1533 {
1534 
1535 	/* Sensible legacy defaults */
1536 	/*
1537 	 * XXX this should be changed to properly support the
1538 	 * exact RX descriptor size for each HAL.
1539 	 */
1540 	sc->sc_rx_statuslen = sizeof(struct ath_desc);
1541 
1542 	sc->sc_rx.recv_start = ath_legacy_startrecv;
1543 	sc->sc_rx.recv_stop = ath_legacy_stoprecv;
1544 	sc->sc_rx.recv_flush = ath_legacy_flushrecv;
1545 	sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
1546 	sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
1547 
1548 	sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
1549 	sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
1550 	sc->sc_rx.recv_sched = ath_legacy_recv_sched;
1551 	sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
1552 }
1553