xref: /freebsd/sys/dev/ath/if_ath_rx.c (revision 1acd7ad907c388d72ce6bf1da9e4473ccfd16a01)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/ethernet.h>
82 #include <net/if_llc.h>
83 
84 #include <net80211/ieee80211_var.h>
85 #include <net80211/ieee80211_regdomain.h>
86 #ifdef IEEE80211_SUPPORT_SUPERG
87 #include <net80211/ieee80211_superg.h>
88 #endif
89 #ifdef IEEE80211_SUPPORT_TDMA
90 #include <net80211/ieee80211_tdma.h>
91 #endif
92 
93 #include <net/bpf.h>
94 
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #include <dev/ath/if_athvar.h>
101 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102 #include <dev/ath/ath_hal/ah_diagcodes.h>
103 
104 #include <dev/ath/if_ath_debug.h>
105 #include <dev/ath/if_ath_misc.h>
106 #include <dev/ath/if_ath_tsf.h>
107 #include <dev/ath/if_ath_tx.h>
108 #include <dev/ath/if_ath_sysctl.h>
109 #include <dev/ath/if_ath_led.h>
110 #include <dev/ath/if_ath_keycache.h>
111 #include <dev/ath/if_ath_rx.h>
112 #include <dev/ath/if_ath_beacon.h>
113 #include <dev/ath/if_athdfs.h>
114 #include <dev/ath/if_ath_descdma.h>
115 
116 #ifdef ATH_TX99_DIAG
117 #include <dev/ath/ath_tx99/ath_tx99.h>
118 #endif
119 
120 #ifdef	ATH_DEBUG_ALQ
121 #include <dev/ath/if_ath_alq.h>
122 #endif
123 
124 #include <dev/ath/if_ath_lna_div.h>
125 
126 /*
127  * Calculate the receive filter according to the
128  * operating mode and state:
129  *
130  * o always accept unicast, broadcast, and multicast traffic
131  * o accept PHY error frames when hardware doesn't have MIB support
132  *   to count and we need them for ANI (sta mode only until recently)
133  *   and we are not scanning (ANI is disabled)
134  *   NB: older hal's add rx filter bits out of sight and we need to
135  *	 blindly preserve them
136  * o probe request frames are accepted only when operating in
137  *   hostap, adhoc, mesh, or monitor modes
138  * o enable promiscuous mode
139  *   - when in monitor mode
140  *   - if interface marked PROMISC (assumes bridge setting is filtered)
141  * o accept beacons:
142  *   - when operating in station mode for collecting rssi data when
143  *     the station is otherwise quiet, or
144  *   - when operating in adhoc mode so the 802.11 layer creates
145  *     node table entries for peers,
146  *   - when scanning
147  *   - when doing s/w beacon miss (e.g. for ap+sta)
148  *   - when operating in ap mode in 11g to detect overlapping bss that
149  *     require protection
150  *   - when operating in mesh mode to detect neighbors
151  * o accept control frames:
152  *   - when in monitor mode
153  * XXX HT protection for 11n
154  */
155 u_int32_t
156 ath_calcrxfilter(struct ath_softc *sc)
157 {
158 	struct ieee80211com *ic = &sc->sc_ic;
159 	u_int32_t rfilt;
160 
161 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
162 	if (!sc->sc_needmib && !sc->sc_scanning)
163 		rfilt |= HAL_RX_FILTER_PHYERR;
164 	if (ic->ic_opmode != IEEE80211_M_STA)
165 		rfilt |= HAL_RX_FILTER_PROBEREQ;
166 	/* XXX ic->ic_monvaps != 0? */
167 	if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0)
168 		rfilt |= HAL_RX_FILTER_PROM;
169 
170 	/*
171 	 * Only listen to all beacons if we're scanning.
172 	 *
173 	 * Otherwise we only really need to hear beacons from
174 	 * our own BSSID.
175 	 *
176 	 * IBSS? software beacon miss? Just receive all beacons.
177 	 * We need to hear beacons/probe requests from everyone so
178 	 * we can merge ibss.
179 	 */
180 	if (ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
181 		rfilt |= HAL_RX_FILTER_BEACON;
182 	} else if (ic->ic_opmode == IEEE80211_M_STA) {
183 		if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
184 			rfilt |= HAL_RX_FILTER_MYBEACON;
185 		} else { /* scanning, non-mybeacon chips */
186 			rfilt |= HAL_RX_FILTER_BEACON;
187 		}
188 	}
189 
190 	/*
191 	 * NB: We don't recalculate the rx filter when
192 	 * ic_protmode changes; otherwise we could do
193 	 * this only when ic_protmode != NONE.
194 	 */
195 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
196 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
197 		rfilt |= HAL_RX_FILTER_BEACON;
198 
199 	/*
200 	 * Enable hardware PS-POLL RX only for hostap mode;
201 	 * STA mode sends PS-POLL frames but never
202 	 * receives them.
203 	 */
204 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
205 	    0, NULL) == HAL_OK &&
206 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
207 		rfilt |= HAL_RX_FILTER_PSPOLL;
208 
209 	if (sc->sc_nmeshvaps) {
210 		rfilt |= HAL_RX_FILTER_BEACON;
211 		if (sc->sc_hasbmatch)
212 			rfilt |= HAL_RX_FILTER_BSSID;
213 		else
214 			rfilt |= HAL_RX_FILTER_PROM;
215 	}
216 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
217 		rfilt |= HAL_RX_FILTER_CONTROL;
218 
219 	/*
220 	 * Enable RX of compressed BAR frames only when doing
221 	 * 802.11n. Required for A-MPDU.
222 	 */
223 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
224 		rfilt |= HAL_RX_FILTER_COMPBAR;
225 
226 	/*
227 	 * Enable radar PHY errors if requested by the
228 	 * DFS module.
229 	 */
230 	if (sc->sc_dodfs)
231 		rfilt |= HAL_RX_FILTER_PHYRADAR;
232 
233 	/*
234 	 * Enable spectral PHY errors if requested by the
235 	 * spectral module.
236 	 */
237 	if (sc->sc_dospectral)
238 		rfilt |= HAL_RX_FILTER_PHYRADAR;
239 
240 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s\n",
241 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode]);
242 	return rfilt;
243 }
244 
245 static int
246 ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
247 {
248 	struct ath_hal *ah = sc->sc_ah;
249 	int error;
250 	struct mbuf *m;
251 	struct ath_desc *ds;
252 
253 	/* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
254 
255 	m = bf->bf_m;
256 	if (m == NULL) {
257 		/*
258 		 * NB: by assigning a page to the rx dma buffer we
259 		 * implicitly satisfy the Atheros requirement that
260 		 * this buffer be cache-line-aligned and sized to be
261 		 * multiple of the cache line size.  Not doing this
262 		 * causes weird stuff to happen (for the 5210 at least).
263 		 */
264 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
265 		if (m == NULL) {
266 			DPRINTF(sc, ATH_DEBUG_ANY,
267 				"%s: no mbuf/cluster\n", __func__);
268 			sc->sc_stats.ast_rx_nombuf++;
269 			return ENOMEM;
270 		}
271 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
272 
273 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
274 					     bf->bf_dmamap, m,
275 					     bf->bf_segs, &bf->bf_nseg,
276 					     BUS_DMA_NOWAIT);
277 		if (error != 0) {
278 			DPRINTF(sc, ATH_DEBUG_ANY,
279 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
280 			    __func__, error);
281 			sc->sc_stats.ast_rx_busdma++;
282 			m_freem(m);
283 			return error;
284 		}
285 		KASSERT(bf->bf_nseg == 1,
286 			("multi-segment packet; nseg %u", bf->bf_nseg));
287 		bf->bf_m = m;
288 	}
289 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
290 
291 	/*
292 	 * Setup descriptors.  For receive we always terminate
293 	 * the descriptor list with a self-linked entry so we'll
294 	 * not get overrun under high load (as can happen with a
295 	 * 5212 when ANI processing enables PHY error frames).
296 	 *
297 	 * To insure the last descriptor is self-linked we create
298 	 * each descriptor as self-linked and add it to the end.  As
299 	 * each additional descriptor is added the previous self-linked
300 	 * entry is ``fixed'' naturally.  This should be safe even
301 	 * if DMA is happening.  When processing RX interrupts we
302 	 * never remove/process the last, self-linked, entry on the
303 	 * descriptor list.  This insures the hardware always has
304 	 * someplace to write a new frame.
305 	 */
306 	/*
307 	 * 11N: we can no longer afford to self link the last descriptor.
308 	 * MAC acknowledges BA status as long as it copies frames to host
309 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
310 	 * to a sender if last desc is self-linked.
311 	 */
312 	ds = bf->bf_desc;
313 	if (sc->sc_rxslink)
314 		ds->ds_link = bf->bf_daddr;	/* link to self */
315 	else
316 		ds->ds_link = 0;		/* terminate the list */
317 	ds->ds_data = bf->bf_segs[0].ds_addr;
318 	ath_hal_setuprxdesc(ah, ds
319 		, m->m_len		/* buffer size */
320 		, 0
321 	);
322 
323 	if (sc->sc_rxlink != NULL)
324 		*sc->sc_rxlink = bf->bf_daddr;
325 	sc->sc_rxlink = &ds->ds_link;
326 	return 0;
327 }
328 
329 /*
330  * Intercept management frames to collect beacon rssi data
331  * and to do ibss merges.
332  */
333 void
334 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
335 	int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
336 {
337 	struct ieee80211vap *vap = ni->ni_vap;
338 	struct ath_softc *sc = vap->iv_ic->ic_softc;
339 	uint64_t tsf_beacon_old, tsf_beacon;
340 	uint64_t nexttbtt;
341 	int64_t tsf_delta;
342 	int32_t tsf_delta_bmiss;
343 	int32_t tsf_remainder;
344 	uint64_t tsf_beacon_target;
345 	int tsf_intval;
346 
347 	tsf_beacon_old = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
348 	tsf_beacon_old |= le32dec(ni->ni_tstamp.data);
349 
350 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
351 	tsf_intval = 1;
352 	if (ni->ni_intval > 0) {
353 		tsf_intval = TU_TO_TSF(ni->ni_intval);
354 	}
355 #undef	TU_TO_TSF
356 
357 	/*
358 	 * Call up first so subsequent work can use information
359 	 * potentially stored in the node (e.g. for ibss merge).
360 	 */
361 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
362 	switch (subtype) {
363 	case IEEE80211_FC0_SUBTYPE_BEACON:
364 
365 		/*
366 		 * Only do the following processing if it's for
367 		 * the current BSS.
368 		 *
369 		 * In scan and IBSS mode we receive all beacons,
370 		 * which means we need to filter out stuff
371 		 * that isn't for us or we'll end up constantly
372 		 * trying to sync / merge to BSSes that aren't
373 		 * actually us.
374 		 */
375 		if (IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) {
376 			/* update rssi statistics for use by the hal */
377 			/* XXX unlocked check against vap->iv_bss? */
378 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
379 
380 
381 			tsf_beacon = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
382 			tsf_beacon |= le32dec(ni->ni_tstamp.data);
383 
384 			nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
385 
386 			/*
387 			 * Let's calculate the delta and remainder, so we can see
388 			 * if the beacon timer from the AP is varying by more than
389 			 * a few TU.  (Which would be a huge, huge problem.)
390 			 */
391 			tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
392 
393 			tsf_delta_bmiss = tsf_delta / tsf_intval;
394 
395 			/*
396 			 * If our delta is greater than half the beacon interval,
397 			 * let's round the bmiss value up to the next beacon
398 			 * interval.  Ie, we're running really, really early
399 			 * on the next beacon.
400 			 */
401 			if (tsf_delta % tsf_intval > (tsf_intval / 2))
402 				tsf_delta_bmiss ++;
403 
404 			tsf_beacon_target = tsf_beacon_old +
405 			    (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
406 
407 			/*
408 			 * The remainder using '%' is between 0 .. intval-1.
409 			 * If we're actually running too fast, then the remainder
410 			 * will be some large number just under intval-1.
411 			 * So we need to look at whether we're running
412 			 * before or after the target beacon interval
413 			 * and if we are, modify how we do the remainder
414 			 * calculation.
415 			 */
416 			if (tsf_beacon < tsf_beacon_target) {
417 				tsf_remainder =
418 				    -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
419 			} else {
420 				tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
421 			}
422 
423 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: old_tsf=%llu, new_tsf=%llu, target_tsf=%llu, delta=%lld, bmiss=%d, remainder=%d\n",
424 			    __func__,
425 			    (unsigned long long) tsf_beacon_old,
426 			    (unsigned long long) tsf_beacon,
427 			    (unsigned long long) tsf_beacon_target,
428 			    (long long) tsf_delta,
429 			    tsf_delta_bmiss,
430 			    tsf_remainder);
431 
432 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: tsf=%llu, nexttbtt=%llu, delta=%d\n",
433 			    __func__,
434 			    (unsigned long long) tsf_beacon,
435 			    (unsigned long long) nexttbtt,
436 			    (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
437 
438 			/* We only do syncbeacon on STA VAPs; not on IBSS */
439 			if (vap->iv_opmode == IEEE80211_M_STA &&
440 			    sc->sc_syncbeacon &&
441 			    ni == vap->iv_bss &&
442 			    (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
443 				DPRINTF(sc, ATH_DEBUG_BEACON,
444 				    "%s: syncbeacon=1; syncing\n",
445 				    __func__);
446 				/*
447 				 * Resync beacon timers using the tsf of the beacon
448 				 * frame we just received.
449 				 */
450 				ath_beacon_config(sc, vap);
451 				sc->sc_syncbeacon = 0;
452 			}
453 		}
454 
455 		/* fall thru... */
456 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
457 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
458 		    vap->iv_state == IEEE80211_S_RUN &&
459 		    ieee80211_ibss_merge_check(ni)) {
460 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
461 			uint64_t tsf = ath_extend_tsf(sc, rstamp,
462 				ath_hal_gettsf64(sc->sc_ah));
463 			/*
464 			 * Handle ibss merge as needed; check the tsf on the
465 			 * frame before attempting the merge.  The 802.11 spec
466 			 * says the station should change it's bssid to match
467 			 * the oldest station with the same ssid, where oldest
468 			 * is determined by the tsf.  Note that hardware
469 			 * reconfiguration happens through callback to
470 			 * ath_newstate as the state machine will go from
471 			 * RUN -> RUN when this happens.
472 			 */
473 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
474 				DPRINTF(sc, ATH_DEBUG_STATE,
475 				    "ibss merge, rstamp %u tsf %ju "
476 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
477 				    (uintmax_t)ni->ni_tstamp.tsf);
478 				(void) ieee80211_ibss_merge(ni);
479 			}
480 		}
481 		break;
482 	}
483 }
484 
485 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
486 static void
487 ath_rx_tap_vendor(struct ath_softc *sc, struct mbuf *m,
488     const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
489 {
490 
491 	/* Fill in the extension bitmap */
492 	sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
493 
494 	/* Fill in the vendor header */
495 	sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
496 	sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
497 	sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
498 
499 	/* XXX what should this be? */
500 	sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
501 	sc->sc_rx_th.wr_vh.vh_skip_len =
502 	    htole16(sizeof(struct ath_radiotap_vendor_hdr));
503 
504 	/* General version info */
505 	sc->sc_rx_th.wr_v.vh_version = 1;
506 
507 	sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
508 
509 	/* rssi */
510 	sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
511 	sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
512 	sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
513 	sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
514 	sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
515 	sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
516 
517 	/* evm */
518 	sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
519 	sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
520 	sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
521 	/* These are only populated from the AR9300 or later */
522 	sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
523 	sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
524 
525 	/* direction */
526 	sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
527 
528 	/* RX rate */
529 	sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
530 
531 	/* RX flags */
532 	sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
533 
534 	if (rs->rs_isaggr)
535 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
536 	if (rs->rs_moreaggr)
537 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
538 
539 	/* phyerr info */
540 	if (rs->rs_status & HAL_RXERR_PHY) {
541 		sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
542 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
543 	} else {
544 		sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
545 	}
546 	sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
547 	sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
548 }
549 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
550 
551 static void
552 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
553 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
554 {
555 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
556 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
557 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
558 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
559 	const HAL_RATE_TABLE *rt;
560 	uint8_t rix;
561 
562 	rt = sc->sc_currates;
563 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
564 	rix = rt->rateCodeToIndex[rs->rs_rate];
565 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
566 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
567 #ifdef AH_SUPPORT_AR5416
568 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
569 	if (rs->rs_status & HAL_RXERR_PHY) {
570 		/*
571 		 * PHY error - make sure the channel flags
572 		 * reflect the actual channel configuration,
573 		 * not the received frame.
574 		 */
575 		if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
576 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
577 		else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
578 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
579 		else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
580 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
581 	} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
582 		struct ieee80211com *ic = &sc->sc_ic;
583 
584 		if ((rs->rs_flags & HAL_RX_2040) == 0)
585 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
586 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
587 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
588 		else
589 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
590 		if ((rs->rs_flags & HAL_RX_GI) == 0)
591 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
592 	}
593 
594 #endif
595 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
596 	if (rs->rs_status & HAL_RXERR_CRC)
597 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
598 	/* XXX propagate other error flags from descriptor */
599 	sc->sc_rx_th.wr_antnoise = nf;
600 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
601 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
602 #undef CHAN_HT
603 #undef CHAN_HT20
604 #undef CHAN_HT40U
605 #undef CHAN_HT40D
606 }
607 
608 static void
609 ath_handle_micerror(struct ieee80211com *ic,
610 	struct ieee80211_frame *wh, int keyix)
611 {
612 	struct ieee80211_node *ni;
613 
614 	/* XXX recheck MIC to deal w/ chips that lie */
615 	/* XXX discard MIC errors on !data frames */
616 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
617 	if (ni != NULL) {
618 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
619 		ieee80211_free_node(ni);
620 	}
621 }
622 
623 /*
624  * Process a single packet.
625  *
626  * The mbuf must already be synced, unmapped and removed from bf->bf_m
627  * by this stage.
628  *
629  * The mbuf must be consumed by this routine - either passed up the
630  * net80211 stack, put on the holding queue, or freed.
631  */
632 int
633 ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
634     uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
635     struct mbuf *m)
636 {
637 	uint64_t rstamp;
638 	/* XXX TODO: make this an mbuf tag? */
639 	struct ieee80211_rx_stats rxs;
640 	int len, type, i;
641 	struct ieee80211com *ic = &sc->sc_ic;
642 	struct ieee80211_node *ni;
643 	int is_good = 0;
644 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
645 
646 	/*
647 	 * Calculate the correct 64 bit TSF given
648 	 * the TSF64 register value and rs_tstamp.
649 	 */
650 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
651 
652 	/* These aren't specifically errors */
653 #ifdef	AH_SUPPORT_AR5416
654 	if (rs->rs_flags & HAL_RX_GI)
655 		sc->sc_stats.ast_rx_halfgi++;
656 	if (rs->rs_flags & HAL_RX_2040)
657 		sc->sc_stats.ast_rx_2040++;
658 	if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
659 		sc->sc_stats.ast_rx_pre_crc_err++;
660 	if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
661 		sc->sc_stats.ast_rx_post_crc_err++;
662 	if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
663 		sc->sc_stats.ast_rx_decrypt_busy_err++;
664 	if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
665 		sc->sc_stats.ast_rx_hi_rx_chain++;
666 	if (rs->rs_flags & HAL_RX_STBC)
667 		sc->sc_stats.ast_rx_stbc++;
668 #endif /* AH_SUPPORT_AR5416 */
669 
670 	if (rs->rs_status != 0) {
671 		if (rs->rs_status & HAL_RXERR_CRC)
672 			sc->sc_stats.ast_rx_crcerr++;
673 		if (rs->rs_status & HAL_RXERR_FIFO)
674 			sc->sc_stats.ast_rx_fifoerr++;
675 		if (rs->rs_status & HAL_RXERR_PHY) {
676 			sc->sc_stats.ast_rx_phyerr++;
677 			/* Process DFS radar events */
678 			if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
679 			    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
680 				/* Now pass it to the radar processing code */
681 				ath_dfs_process_phy_err(sc, m, rstamp, rs);
682 			}
683 
684 			/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
685 			if (rs->rs_phyerr < 64)
686 				sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
687 			goto rx_error;	/* NB: don't count in ierrors */
688 		}
689 		if (rs->rs_status & HAL_RXERR_DECRYPT) {
690 			/*
691 			 * Decrypt error.  If the error occurred
692 			 * because there was no hardware key, then
693 			 * let the frame through so the upper layers
694 			 * can process it.  This is necessary for 5210
695 			 * parts which have no way to setup a ``clear''
696 			 * key cache entry.
697 			 *
698 			 * XXX do key cache faulting
699 			 */
700 			if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
701 				goto rx_accept;
702 			sc->sc_stats.ast_rx_badcrypt++;
703 		}
704 		/*
705 		 * Similar as above - if the failure was a keymiss
706 		 * just punt it up to the upper layers for now.
707 		 */
708 		if (rs->rs_status & HAL_RXERR_KEYMISS) {
709 			sc->sc_stats.ast_rx_keymiss++;
710 			goto rx_accept;
711 		}
712 		if (rs->rs_status & HAL_RXERR_MIC) {
713 			sc->sc_stats.ast_rx_badmic++;
714 			/*
715 			 * Do minimal work required to hand off
716 			 * the 802.11 header for notification.
717 			 */
718 			/* XXX frag's and qos frames */
719 			len = rs->rs_datalen;
720 			if (len >= sizeof (struct ieee80211_frame)) {
721 				ath_handle_micerror(ic,
722 				    mtod(m, struct ieee80211_frame *),
723 				    sc->sc_splitmic ?
724 					rs->rs_keyix-32 : rs->rs_keyix);
725 			}
726 		}
727 		counter_u64_add(ic->ic_ierrors, 1);
728 rx_error:
729 		/*
730 		 * Cleanup any pending partial frame.
731 		 */
732 		if (re->m_rxpending != NULL) {
733 			m_freem(re->m_rxpending);
734 			re->m_rxpending = NULL;
735 		}
736 		/*
737 		 * When a tap is present pass error frames
738 		 * that have been requested.  By default we
739 		 * pass decrypt+mic errors but others may be
740 		 * interesting (e.g. crc).
741 		 */
742 		if (ieee80211_radiotap_active(ic) &&
743 		    (rs->rs_status & sc->sc_monpass)) {
744 			/* NB: bpf needs the mbuf length setup */
745 			len = rs->rs_datalen;
746 			m->m_pkthdr.len = m->m_len = len;
747 			ath_rx_tap(sc, m, rs, rstamp, nf);
748 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
749 			ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
750 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
751 			ieee80211_radiotap_rx_all(ic, m);
752 		}
753 		/* XXX pass MIC errors up for s/w reclaculation */
754 		m_freem(m); m = NULL;
755 		goto rx_next;
756 	}
757 rx_accept:
758 	len = rs->rs_datalen;
759 	m->m_len = len;
760 
761 	if (rs->rs_more) {
762 		/*
763 		 * Frame spans multiple descriptors; save
764 		 * it for the next completed descriptor, it
765 		 * will be used to construct a jumbogram.
766 		 */
767 		if (re->m_rxpending != NULL) {
768 			/* NB: max frame size is currently 2 clusters */
769 			sc->sc_stats.ast_rx_toobig++;
770 			m_freem(re->m_rxpending);
771 		}
772 		m->m_pkthdr.len = len;
773 		re->m_rxpending = m;
774 		m = NULL;
775 		goto rx_next;
776 	} else if (re->m_rxpending != NULL) {
777 		/*
778 		 * This is the second part of a jumbogram,
779 		 * chain it to the first mbuf, adjust the
780 		 * frame length, and clear the rxpending state.
781 		 */
782 		re->m_rxpending->m_next = m;
783 		re->m_rxpending->m_pkthdr.len += len;
784 		m = re->m_rxpending;
785 		re->m_rxpending = NULL;
786 	} else {
787 		/*
788 		 * Normal single-descriptor receive; setup packet length.
789 		 */
790 		m->m_pkthdr.len = len;
791 	}
792 
793 	/*
794 	 * Validate rs->rs_antenna.
795 	 *
796 	 * Some users w/ AR9285 NICs have reported crashes
797 	 * here because rs_antenna field is bogusly large.
798 	 * Let's enforce the maximum antenna limit of 8
799 	 * (and it shouldn't be hard coded, but that's a
800 	 * separate problem) and if there's an issue, print
801 	 * out an error and adjust rs_antenna to something
802 	 * sensible.
803 	 *
804 	 * This code should be removed once the actual
805 	 * root cause of the issue has been identified.
806 	 * For example, it may be that the rs_antenna
807 	 * field is only valid for the last frame of
808 	 * an aggregate and it just happens that it is
809 	 * "mostly" right. (This is a general statement -
810 	 * the majority of the statistics are only valid
811 	 * for the last frame in an aggregate.
812 	 */
813 	if (rs->rs_antenna > 7) {
814 		device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
815 		    __func__, rs->rs_antenna);
816 #ifdef	ATH_DEBUG
817 		ath_printrxbuf(sc, bf, 0, status == HAL_OK);
818 #endif /* ATH_DEBUG */
819 		rs->rs_antenna = 0;	/* XXX better than nothing */
820 	}
821 
822 	/*
823 	 * If this is an AR9285/AR9485, then the receive and LNA
824 	 * configuration is stored in RSSI[2] / EXTRSSI[2].
825 	 * We can extract this out to build a much better
826 	 * receive antenna profile.
827 	 *
828 	 * Yes, this just blurts over the above RX antenna field
829 	 * for now.  It's fine, the AR9285 doesn't really use
830 	 * that.
831 	 *
832 	 * Later on we should store away the fine grained LNA
833 	 * information and keep separate counters just for
834 	 * that.  It'll help when debugging the AR9285/AR9485
835 	 * combined diversity code.
836 	 */
837 	if (sc->sc_rx_lnamixer) {
838 		rs->rs_antenna = 0;
839 
840 		/* Bits 0:1 - the LNA configuration used */
841 		rs->rs_antenna |=
842 		    ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
843 		      >> HAL_RX_LNA_CFG_USED_S);
844 
845 		/* Bit 2 - the external RX antenna switch */
846 		if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
847 			rs->rs_antenna |= 0x4;
848 	}
849 
850 	sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
851 
852 	/*
853 	 * Populate the rx status block.  When there are bpf
854 	 * listeners we do the additional work to provide
855 	 * complete status.  Otherwise we fill in only the
856 	 * material required by ieee80211_input.  Note that
857 	 * noise setting is filled in above.
858 	 */
859 	if (ieee80211_radiotap_active(ic)) {
860 		ath_rx_tap(sc, m, rs, rstamp, nf);
861 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
862 		ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
863 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
864 	}
865 
866 	/*
867 	 * From this point on we assume the frame is at least
868 	 * as large as ieee80211_frame_min; verify that.
869 	 */
870 	if (len < IEEE80211_MIN_LEN) {
871 		if (!ieee80211_radiotap_active(ic)) {
872 			DPRINTF(sc, ATH_DEBUG_RECV,
873 			    "%s: short packet %d\n", __func__, len);
874 			sc->sc_stats.ast_rx_tooshort++;
875 		} else {
876 			/* NB: in particular this captures ack's */
877 			ieee80211_radiotap_rx_all(ic, m);
878 		}
879 		m_freem(m); m = NULL;
880 		goto rx_next;
881 	}
882 
883 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
884 		const HAL_RATE_TABLE *rt = sc->sc_currates;
885 		uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
886 
887 		ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
888 		    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
889 	}
890 
891 	m_adj(m, -IEEE80211_CRC_LEN);
892 
893 	/*
894 	 * Locate the node for sender, track state, and then
895 	 * pass the (referenced) node up to the 802.11 layer
896 	 * for its use.
897 	 */
898 	ni = ieee80211_find_rxnode_withkey(ic,
899 		mtod(m, const struct ieee80211_frame_min *),
900 		rs->rs_keyix == HAL_RXKEYIX_INVALID ?
901 			IEEE80211_KEYIX_NONE : rs->rs_keyix);
902 	sc->sc_lastrs = rs;
903 
904 #ifdef	AH_SUPPORT_AR5416
905 	if (rs->rs_isaggr)
906 		sc->sc_stats.ast_rx_agg++;
907 #endif /* AH_SUPPORT_AR5416 */
908 
909 
910 	/*
911 	 * Populate the per-chain RSSI values where appropriate.
912 	 */
913 	bzero(&rxs, sizeof(rxs));
914 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI |
915 	    IEEE80211_R_C_CHAIN |
916 	    IEEE80211_R_C_NF |
917 	    IEEE80211_R_C_RSSI |
918 	    IEEE80211_R_TSF64 |
919 	    IEEE80211_R_TSF_START;	/* XXX TODO: validate */
920 	rxs.c_rssi = rs->rs_rssi;
921 	rxs.c_nf = nf;
922 	rxs.c_chain = 3;	/* XXX TODO: check */
923 	rxs.c_rx_tsf = rstamp;
924 
925 	for (i = 0; i < 3; i++) {
926 		rxs.c_rssi_ctl[i] = rs->rs_rssi_ctl[i];
927 		rxs.c_rssi_ext[i] = rs->rs_rssi_ext[i];
928 		/*
929 		 * XXX note: we currently don't track
930 		 * per-chain noisefloor.
931 		 */
932 		rxs.c_nf_ctl[i] = nf;
933 		rxs.c_nf_ext[i] = nf;
934 	}
935 
936 	if (ni != NULL) {
937 		/*
938 		 * Only punt packets for ampdu reorder processing for
939 		 * 11n nodes; net80211 enforces that M_AMPDU is only
940 		 * set for 11n nodes.
941 		 */
942 		if (ni->ni_flags & IEEE80211_NODE_HT)
943 			m->m_flags |= M_AMPDU;
944 
945 		/*
946 		 * Sending station is known, dispatch directly.
947 		 */
948 		(void) ieee80211_add_rx_params(m, &rxs);
949 		type = ieee80211_input_mimo(ni, m);
950 		ieee80211_free_node(ni);
951 		m = NULL;
952 		/*
953 		 * Arrange to update the last rx timestamp only for
954 		 * frames from our ap when operating in station mode.
955 		 * This assumes the rx key is always setup when
956 		 * associated.
957 		 */
958 		if (ic->ic_opmode == IEEE80211_M_STA &&
959 		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
960 			is_good = 1;
961 	} else {
962 		(void) ieee80211_add_rx_params(m, &rxs);
963 		type = ieee80211_input_mimo_all(ic, m);
964 		m = NULL;
965 	}
966 
967 	/*
968 	 * At this point we have passed the frame up the stack; thus
969 	 * the mbuf is no longer ours.
970 	 */
971 
972 	/*
973 	 * Track rx rssi and do any rx antenna management.
974 	 */
975 	ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
976 	if (sc->sc_diversity) {
977 		/*
978 		 * When using fast diversity, change the default rx
979 		 * antenna if diversity chooses the other antenna 3
980 		 * times in a row.
981 		 */
982 		if (sc->sc_defant != rs->rs_antenna) {
983 			if (++sc->sc_rxotherant >= 3)
984 				ath_setdefantenna(sc, rs->rs_antenna);
985 		} else
986 			sc->sc_rxotherant = 0;
987 	}
988 
989 	/* Handle slow diversity if enabled */
990 	if (sc->sc_dolnadiv) {
991 		ath_lna_rx_comb_scan(sc, rs, ticks, hz);
992 	}
993 
994 	if (sc->sc_softled) {
995 		/*
996 		 * Blink for any data frame.  Otherwise do a
997 		 * heartbeat-style blink when idle.  The latter
998 		 * is mainly for station mode where we depend on
999 		 * periodic beacon frames to trigger the poll event.
1000 		 */
1001 		if (type == IEEE80211_FC0_TYPE_DATA) {
1002 			const HAL_RATE_TABLE *rt = sc->sc_currates;
1003 			ath_led_event(sc,
1004 			    rt->rateCodeToIndex[rs->rs_rate]);
1005 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1006 			ath_led_event(sc, 0);
1007 		}
1008 rx_next:
1009 	/*
1010 	 * Debugging - complain if we didn't NULL the mbuf pointer
1011 	 * here.
1012 	 */
1013 	if (m != NULL) {
1014 		device_printf(sc->sc_dev,
1015 		    "%s: mbuf %p should've been freed!\n",
1016 		    __func__,
1017 		    m);
1018 	}
1019 	return (is_good);
1020 }
1021 
1022 #define	ATH_RX_MAX		128
1023 
1024 /*
1025  * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
1026  * the EDMA code does.
1027  *
1028  * XXX TODO: then, do all of the RX list management stuff inside
1029  * ATH_RX_LOCK() so we don't end up potentially racing.  The EDMA
1030  * code is doing it right.
1031  */
1032 static void
1033 ath_rx_proc(struct ath_softc *sc, int resched)
1034 {
1035 #define	PA2DESC(_sc, _pa) \
1036 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1037 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1038 	struct ath_buf *bf;
1039 	struct ath_hal *ah = sc->sc_ah;
1040 #ifdef IEEE80211_SUPPORT_SUPERG
1041 	struct ieee80211com *ic = &sc->sc_ic;
1042 #endif
1043 	struct ath_desc *ds;
1044 	struct ath_rx_status *rs;
1045 	struct mbuf *m;
1046 	int ngood;
1047 	HAL_STATUS status;
1048 	int16_t nf;
1049 	u_int64_t tsf;
1050 	int npkts = 0;
1051 	int kickpcu = 0;
1052 	int ret;
1053 
1054 	/* XXX we must not hold the ATH_LOCK here */
1055 	ATH_UNLOCK_ASSERT(sc);
1056 	ATH_PCU_UNLOCK_ASSERT(sc);
1057 
1058 	ATH_PCU_LOCK(sc);
1059 	sc->sc_rxproc_cnt++;
1060 	kickpcu = sc->sc_kickpcu;
1061 	ATH_PCU_UNLOCK(sc);
1062 
1063 	ATH_LOCK(sc);
1064 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1065 	ATH_UNLOCK(sc);
1066 
1067 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
1068 	ngood = 0;
1069 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
1070 	sc->sc_stats.ast_rx_noise = nf;
1071 	tsf = ath_hal_gettsf64(ah);
1072 	do {
1073 		/*
1074 		 * Don't process too many packets at a time; give the
1075 		 * TX thread time to also run - otherwise the TX
1076 		 * latency can jump by quite a bit, causing throughput
1077 		 * degredation.
1078 		 */
1079 		if (!kickpcu && npkts >= ATH_RX_MAX)
1080 			break;
1081 
1082 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1083 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
1084 			device_printf(sc->sc_dev, "%s: no buffer!\n", __func__);
1085 			break;
1086 		} else if (bf == NULL) {
1087 			/*
1088 			 * End of List:
1089 			 * this can happen for non-self-linked RX chains
1090 			 */
1091 			sc->sc_stats.ast_rx_hitqueueend++;
1092 			break;
1093 		}
1094 		m = bf->bf_m;
1095 		if (m == NULL) {		/* NB: shouldn't happen */
1096 			/*
1097 			 * If mbuf allocation failed previously there
1098 			 * will be no mbuf; try again to re-populate it.
1099 			 */
1100 			/* XXX make debug msg */
1101 			device_printf(sc->sc_dev, "%s: no mbuf!\n", __func__);
1102 			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1103 			goto rx_proc_next;
1104 		}
1105 		ds = bf->bf_desc;
1106 		if (ds->ds_link == bf->bf_daddr) {
1107 			/* NB: never process the self-linked entry at the end */
1108 			sc->sc_stats.ast_rx_hitqueueend++;
1109 			break;
1110 		}
1111 		/* XXX sync descriptor memory */
1112 		/*
1113 		 * Must provide the virtual address of the current
1114 		 * descriptor, the physical address, and the virtual
1115 		 * address of the next descriptor in the h/w chain.
1116 		 * This allows the HAL to look ahead to see if the
1117 		 * hardware is done with a descriptor by checking the
1118 		 * done bit in the following descriptor and the address
1119 		 * of the current descriptor the DMA engine is working
1120 		 * on.  All this is necessary because of our use of
1121 		 * a self-linked list to avoid rx overruns.
1122 		 */
1123 		rs = &bf->bf_status.ds_rxstat;
1124 		status = ath_hal_rxprocdesc(ah, ds,
1125 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1126 #ifdef ATH_DEBUG
1127 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
1128 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
1129 #endif
1130 
1131 #ifdef	ATH_DEBUG_ALQ
1132 		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
1133 		    if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
1134 		    sc->sc_rx_statuslen, (char *) ds);
1135 #endif	/* ATH_DEBUG_ALQ */
1136 
1137 		if (status == HAL_EINPROGRESS)
1138 			break;
1139 
1140 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1141 		npkts++;
1142 
1143 		/*
1144 		 * Process a single frame.
1145 		 */
1146 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
1147 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1148 		bf->bf_m = NULL;
1149 		if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
1150 			ngood++;
1151 rx_proc_next:
1152 		/*
1153 		 * If there's a holding buffer, insert that onto
1154 		 * the RX list; the hardware is now definitely not pointing
1155 		 * to it now.
1156 		 */
1157 		ret = 0;
1158 		if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
1159 			TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
1160 			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
1161 			    bf_list);
1162 			ret = ath_rxbuf_init(sc,
1163 			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
1164 		}
1165 		/*
1166 		 * Next, throw our buffer into the holding entry.  The hardware
1167 		 * may use the descriptor to read the link pointer before
1168 		 * DMAing the next descriptor in to write out a packet.
1169 		 */
1170 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
1171 	} while (ret == 0);
1172 
1173 	/* rx signal state monitoring */
1174 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
1175 	if (ngood)
1176 		sc->sc_lastrx = tsf;
1177 
1178 	ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
1179 	/* Queue DFS tasklet if needed */
1180 	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
1181 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
1182 
1183 	/*
1184 	 * Now that all the RX frames were handled that
1185 	 * need to be handled, kick the PCU if there's
1186 	 * been an RXEOL condition.
1187 	 */
1188 	if (resched && kickpcu) {
1189 		ATH_PCU_LOCK(sc);
1190 		ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
1191 		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
1192 		    __func__, npkts);
1193 
1194 		/*
1195 		 * Go through the process of fully tearing down
1196 		 * the RX buffers and reinitialising them.
1197 		 *
1198 		 * There's a hardware bug that causes the RX FIFO
1199 		 * to get confused under certain conditions and
1200 		 * constantly write over the same frame, leading
1201 		 * the RX driver code here to get heavily confused.
1202 		 */
1203 		/*
1204 		 * XXX Has RX DMA stopped enough here to just call
1205 		 *     ath_startrecv()?
1206 		 * XXX Do we need to use the holding buffer to restart
1207 		 *     RX DMA by appending entries to the final
1208 		 *     descriptor?  Quite likely.
1209 		 */
1210 #if 1
1211 		ath_startrecv(sc);
1212 #else
1213 		/*
1214 		 * Disabled for now - it'd be nice to be able to do
1215 		 * this in order to limit the amount of CPU time spent
1216 		 * reinitialising the RX side (and thus minimise RX
1217 		 * drops) however there's a hardware issue that
1218 		 * causes things to get too far out of whack.
1219 		 */
1220 		/*
1221 		 * XXX can we hold the PCU lock here?
1222 		 * Are there any net80211 buffer calls involved?
1223 		 */
1224 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1225 		ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1226 		ath_hal_rxena(ah);		/* enable recv descriptors */
1227 		ath_mode_init(sc);		/* set filters, etc. */
1228 		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1229 #endif
1230 
1231 		ath_hal_intrset(ah, sc->sc_imask);
1232 		sc->sc_kickpcu = 0;
1233 		ATH_PCU_UNLOCK(sc);
1234 	}
1235 
1236 #ifdef IEEE80211_SUPPORT_SUPERG
1237 	if (resched)
1238 		ieee80211_ff_age_all(ic, 100);
1239 #endif
1240 
1241 	/*
1242 	 * Put the hardware to sleep again if we're done with it.
1243 	 */
1244 	ATH_LOCK(sc);
1245 	ath_power_restore_power_state(sc);
1246 	ATH_UNLOCK(sc);
1247 
1248 	/*
1249 	 * If we hit the maximum number of frames in this round,
1250 	 * reschedule for another immediate pass.  This gives
1251 	 * the TX and TX completion routines time to run, which
1252 	 * will reduce latency.
1253 	 */
1254 	if (npkts >= ATH_RX_MAX)
1255 		sc->sc_rx.recv_sched(sc, resched);
1256 
1257 	ATH_PCU_LOCK(sc);
1258 	sc->sc_rxproc_cnt--;
1259 	ATH_PCU_UNLOCK(sc);
1260 }
1261 #undef	PA2DESC
1262 #undef	ATH_RX_MAX
1263 
1264 /*
1265  * Only run the RX proc if it's not already running.
1266  * Since this may get run as part of the reset/flush path,
1267  * the task can't clash with an existing, running tasklet.
1268  */
1269 static void
1270 ath_legacy_rx_tasklet(void *arg, int npending)
1271 {
1272 	struct ath_softc *sc = arg;
1273 
1274 	ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
1275 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
1276 	ATH_PCU_LOCK(sc);
1277 	if (sc->sc_inreset_cnt > 0) {
1278 		device_printf(sc->sc_dev,
1279 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
1280 		ATH_PCU_UNLOCK(sc);
1281 		return;
1282 	}
1283 	ATH_PCU_UNLOCK(sc);
1284 
1285 	ath_rx_proc(sc, 1);
1286 }
1287 
1288 static void
1289 ath_legacy_flushrecv(struct ath_softc *sc)
1290 {
1291 
1292 	ath_rx_proc(sc, 0);
1293 }
1294 
1295 static void
1296 ath_legacy_flush_rxpending(struct ath_softc *sc)
1297 {
1298 
1299 	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1300 
1301 	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
1302 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
1303 		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1304 	}
1305 	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
1306 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
1307 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1308 	}
1309 }
1310 
1311 static int
1312 ath_legacy_flush_rxholdbf(struct ath_softc *sc)
1313 {
1314 	struct ath_buf *bf;
1315 
1316 	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1317 	/*
1318 	 * If there are RX holding buffers, free them here and return
1319 	 * them to the list.
1320 	 *
1321 	 * XXX should just verify that bf->bf_m is NULL, as it must
1322 	 * be at this point!
1323 	 */
1324 	bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
1325 	if (bf != NULL) {
1326 		if (bf->bf_m != NULL)
1327 			m_freem(bf->bf_m);
1328 		bf->bf_m = NULL;
1329 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1330 		(void) ath_rxbuf_init(sc, bf);
1331 	}
1332 	sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
1333 
1334 	bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
1335 	if (bf != NULL) {
1336 		if (bf->bf_m != NULL)
1337 			m_freem(bf->bf_m);
1338 		bf->bf_m = NULL;
1339 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1340 		(void) ath_rxbuf_init(sc, bf);
1341 	}
1342 	sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
1343 
1344 	return (0);
1345 }
1346 
1347 /*
1348  * Disable the receive h/w in preparation for a reset.
1349  */
1350 static void
1351 ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
1352 {
1353 #define	PA2DESC(_sc, _pa) \
1354 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1355 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1356 	struct ath_hal *ah = sc->sc_ah;
1357 
1358 	ATH_RX_LOCK(sc);
1359 
1360 	ath_hal_stoppcurecv(ah);	/* disable PCU */
1361 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
1362 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
1363 	/*
1364 	 * TODO: see if this particular DELAY() is required; it may be
1365 	 * masking some missing FIFO flush or DMA sync.
1366 	 */
1367 #if 0
1368 	if (dodelay)
1369 #endif
1370 		DELAY(3000);		/* 3ms is long enough for 1 frame */
1371 #ifdef ATH_DEBUG
1372 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
1373 		struct ath_buf *bf;
1374 		u_int ix;
1375 
1376 		device_printf(sc->sc_dev,
1377 		    "%s: rx queue %p, link %p\n",
1378 		    __func__,
1379 		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
1380 		    sc->sc_rxlink);
1381 		ix = 0;
1382 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1383 			struct ath_desc *ds = bf->bf_desc;
1384 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
1385 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
1386 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1387 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
1388 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
1389 			ix++;
1390 		}
1391 	}
1392 #endif
1393 
1394 	(void) ath_legacy_flush_rxpending(sc);
1395 	(void) ath_legacy_flush_rxholdbf(sc);
1396 
1397 	sc->sc_rxlink = NULL;		/* just in case */
1398 
1399 	ATH_RX_UNLOCK(sc);
1400 #undef PA2DESC
1401 }
1402 
1403 /*
1404  * XXX TODO: something was calling startrecv without calling
1405  * stoprecv.  Let's figure out what/why.  It was showing up
1406  * as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
1407  */
1408 
1409 /*
1410  * Enable the receive h/w following a reset.
1411  */
1412 static int
1413 ath_legacy_startrecv(struct ath_softc *sc)
1414 {
1415 	struct ath_hal *ah = sc->sc_ah;
1416 	struct ath_buf *bf;
1417 
1418 	ATH_RX_LOCK(sc);
1419 
1420 	/*
1421 	 * XXX should verify these are already all NULL!
1422 	 */
1423 	sc->sc_rxlink = NULL;
1424 	(void) ath_legacy_flush_rxpending(sc);
1425 	(void) ath_legacy_flush_rxholdbf(sc);
1426 
1427 	/*
1428 	 * Re-chain all of the buffers in the RX buffer list.
1429 	 */
1430 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1431 		int error = ath_rxbuf_init(sc, bf);
1432 		if (error != 0) {
1433 			DPRINTF(sc, ATH_DEBUG_RECV,
1434 				"%s: ath_rxbuf_init failed %d\n",
1435 				__func__, error);
1436 			return error;
1437 		}
1438 	}
1439 
1440 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
1441 	ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1442 	ath_hal_rxena(ah);		/* enable recv descriptors */
1443 	ath_mode_init(sc);		/* set filters, etc. */
1444 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1445 
1446 	ATH_RX_UNLOCK(sc);
1447 	return 0;
1448 }
1449 
1450 static int
1451 ath_legacy_dma_rxsetup(struct ath_softc *sc)
1452 {
1453 	int error;
1454 
1455 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
1456 	    "rx", sizeof(struct ath_desc), ath_rxbuf, 1);
1457 	if (error != 0)
1458 		return (error);
1459 
1460 	return (0);
1461 }
1462 
1463 static int
1464 ath_legacy_dma_rxteardown(struct ath_softc *sc)
1465 {
1466 
1467 	if (sc->sc_rxdma.dd_desc_len != 0)
1468 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1469 	return (0);
1470 }
1471 
1472 static void
1473 ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
1474 {
1475 
1476 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1477 }
1478 
1479 static void
1480 ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
1481     int dosched)
1482 {
1483 
1484 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1485 }
1486 
1487 void
1488 ath_recv_setup_legacy(struct ath_softc *sc)
1489 {
1490 
1491 	/* Sensible legacy defaults */
1492 	/*
1493 	 * XXX this should be changed to properly support the
1494 	 * exact RX descriptor size for each HAL.
1495 	 */
1496 	sc->sc_rx_statuslen = sizeof(struct ath_desc);
1497 
1498 	sc->sc_rx.recv_start = ath_legacy_startrecv;
1499 	sc->sc_rx.recv_stop = ath_legacy_stoprecv;
1500 	sc->sc_rx.recv_flush = ath_legacy_flushrecv;
1501 	sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
1502 	sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
1503 
1504 	sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
1505 	sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
1506 	sc->sc_rx.recv_sched = ath_legacy_recv_sched;
1507 	sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
1508 }
1509