1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 #include "opt_wlan.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysctl.h> 47 #include <sys/mbuf.h> 48 #include <sys/malloc.h> 49 #include <sys/lock.h> 50 #include <sys/mutex.h> 51 #include <sys/kernel.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/errno.h> 55 #include <sys/callout.h> 56 #include <sys/bus.h> 57 #include <sys/endian.h> 58 #include <sys/kthread.h> 59 #include <sys/taskqueue.h> 60 #include <sys/priv.h> 61 62 #include <machine/bus.h> 63 64 #include <net/if.h> 65 #include <net/if_dl.h> 66 #include <net/if_media.h> 67 #include <net/if_types.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_llc.h> 71 72 #include <net80211/ieee80211_var.h> 73 74 #include <net/bpf.h> 75 76 #include <dev/ath/if_athvar.h> 77 78 #include <dev/ath/if_ath_debug.h> 79 #include <dev/ath/if_ath_keycache.h> 80 81 #ifdef ATH_DEBUG 82 static void 83 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix, 84 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 85 { 86 static const char *ciphers[] = { 87 "WEP", 88 "AES-OCB", 89 "AES-CCM", 90 "CKIP", 91 "TKIP", 92 "CLR", 93 }; 94 int i, n; 95 96 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 97 for (i = 0, n = hk->kv_len; i < n; i++) 98 printf("%02x", hk->kv_val[i]); 99 printf(" mac %s", ether_sprintf(mac)); 100 if (hk->kv_type == HAL_CIPHER_TKIP) { 101 printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic"); 102 for (i = 0; i < sizeof(hk->kv_mic); i++) 103 printf("%02x", hk->kv_mic[i]); 104 if (!sc->sc_splitmic) { 105 printf(" txmic "); 106 for (i = 0; i < sizeof(hk->kv_txmic); i++) 107 printf("%02x", hk->kv_txmic[i]); 108 } 109 } 110 printf("\n"); 111 } 112 #endif 113 114 /* 115 * Set a TKIP key into the hardware. This handles the 116 * potential distribution of key state to multiple key 117 * cache slots for TKIP. 118 */ 119 static int 120 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 121 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 122 { 123 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 124 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 125 struct ath_hal *ah = sc->sc_ah; 126 127 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 128 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 129 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 130 if (sc->sc_splitmic) { 131 /* 132 * TX key goes at first index, RX key at the rx index. 133 * The hal handles the MIC keys at index+64. 134 */ 135 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 136 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 137 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 138 return 0; 139 140 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 141 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 142 /* XXX delete tx key on failure? */ 143 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 144 } else { 145 /* 146 * Room for both TX+RX MIC keys in one key cache 147 * slot, just set key at the first index; the hal 148 * will handle the rest. 149 */ 150 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 151 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 152 KEYPRINTF(sc, k->wk_keyix, hk, mac); 153 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 154 } 155 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 156 if (sc->sc_splitmic) { 157 /* 158 * NB: must pass MIC key in expected location when 159 * the keycache only holds one MIC key per entry. 160 */ 161 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 162 } else 163 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 164 KEYPRINTF(sc, k->wk_keyix, hk, mac); 165 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 166 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 167 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 168 KEYPRINTF(sc, k->wk_keyix, hk, mac); 169 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 170 } 171 return 0; 172 #undef IEEE80211_KEY_XR 173 } 174 175 /* 176 * Set a net80211 key into the hardware. This handles the 177 * potential distribution of key state to multiple key 178 * cache slots for TKIP with hardware MIC support. 179 */ 180 int 181 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 182 struct ieee80211_node *bss) 183 { 184 #define N(a) (sizeof(a)/sizeof(a[0])) 185 static const u_int8_t ciphermap[] = { 186 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 187 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 188 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 189 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 190 (u_int8_t) -1, /* 4 is not allocated */ 191 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 192 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 193 }; 194 struct ath_hal *ah = sc->sc_ah; 195 const struct ieee80211_cipher *cip = k->wk_cipher; 196 u_int8_t gmac[IEEE80211_ADDR_LEN]; 197 const u_int8_t *mac; 198 HAL_KEYVAL hk; 199 200 memset(&hk, 0, sizeof(hk)); 201 /* 202 * Software crypto uses a "clear key" so non-crypto 203 * state kept in the key cache are maintained and 204 * so that rx frames have an entry to match. 205 */ 206 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 207 KASSERT(cip->ic_cipher < N(ciphermap), 208 ("invalid cipher type %u", cip->ic_cipher)); 209 hk.kv_type = ciphermap[cip->ic_cipher]; 210 hk.kv_len = k->wk_keylen; 211 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 212 } else 213 hk.kv_type = HAL_CIPHER_CLR; 214 215 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 216 /* 217 * Group keys on hardware that supports multicast frame 218 * key search use a MAC that is the sender's address with 219 * the multicast bit set instead of the app-specified address. 220 */ 221 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 222 gmac[0] |= 0x01; 223 mac = gmac; 224 } else 225 mac = k->wk_macaddr; 226 227 if (hk.kv_type == HAL_CIPHER_TKIP && 228 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 229 return ath_keyset_tkip(sc, k, &hk, mac); 230 } else { 231 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 232 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 233 } 234 #undef N 235 } 236 237 /* 238 * Allocate tx/rx key slots for TKIP. We allocate two slots for 239 * each key, one for decrypt/encrypt and the other for the MIC. 240 */ 241 static u_int16_t 242 key_alloc_2pair(struct ath_softc *sc, 243 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 244 { 245 #define N(a) (sizeof(a)/sizeof(a[0])) 246 u_int i, keyix; 247 248 KASSERT(sc->sc_splitmic, ("key cache !split")); 249 /* XXX could optimize */ 250 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 251 u_int8_t b = sc->sc_keymap[i]; 252 if (b != 0xff) { 253 /* 254 * One or more slots in this byte are free. 255 */ 256 keyix = i*NBBY; 257 while (b & 1) { 258 again: 259 keyix++; 260 b >>= 1; 261 } 262 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 263 if (isset(sc->sc_keymap, keyix+32) || 264 isset(sc->sc_keymap, keyix+64) || 265 isset(sc->sc_keymap, keyix+32+64)) { 266 /* full pair unavailable */ 267 /* XXX statistic */ 268 if (keyix == (i+1)*NBBY) { 269 /* no slots were appropriate, advance */ 270 continue; 271 } 272 goto again; 273 } 274 setbit(sc->sc_keymap, keyix); 275 setbit(sc->sc_keymap, keyix+64); 276 setbit(sc->sc_keymap, keyix+32); 277 setbit(sc->sc_keymap, keyix+32+64); 278 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 279 "%s: key pair %u,%u %u,%u\n", 280 __func__, keyix, keyix+64, 281 keyix+32, keyix+32+64); 282 *txkeyix = keyix; 283 *rxkeyix = keyix+32; 284 return 1; 285 } 286 } 287 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 288 return 0; 289 #undef N 290 } 291 292 /* 293 * Allocate tx/rx key slots for TKIP. We allocate two slots for 294 * each key, one for decrypt/encrypt and the other for the MIC. 295 */ 296 static u_int16_t 297 key_alloc_pair(struct ath_softc *sc, 298 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 299 { 300 #define N(a) (sizeof(a)/sizeof(a[0])) 301 u_int i, keyix; 302 303 KASSERT(!sc->sc_splitmic, ("key cache split")); 304 /* XXX could optimize */ 305 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 306 u_int8_t b = sc->sc_keymap[i]; 307 if (b != 0xff) { 308 /* 309 * One or more slots in this byte are free. 310 */ 311 keyix = i*NBBY; 312 while (b & 1) { 313 again: 314 keyix++; 315 b >>= 1; 316 } 317 if (isset(sc->sc_keymap, keyix+64)) { 318 /* full pair unavailable */ 319 /* XXX statistic */ 320 if (keyix == (i+1)*NBBY) { 321 /* no slots were appropriate, advance */ 322 continue; 323 } 324 goto again; 325 } 326 setbit(sc->sc_keymap, keyix); 327 setbit(sc->sc_keymap, keyix+64); 328 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 329 "%s: key pair %u,%u\n", 330 __func__, keyix, keyix+64); 331 *txkeyix = *rxkeyix = keyix; 332 return 1; 333 } 334 } 335 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 336 return 0; 337 #undef N 338 } 339 340 /* 341 * Allocate a single key cache slot. 342 */ 343 static int 344 key_alloc_single(struct ath_softc *sc, 345 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 346 { 347 #define N(a) (sizeof(a)/sizeof(a[0])) 348 u_int i, keyix; 349 350 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 351 for (i = 0; i < N(sc->sc_keymap); i++) { 352 u_int8_t b = sc->sc_keymap[i]; 353 if (b != 0xff) { 354 /* 355 * One or more slots are free. 356 */ 357 keyix = i*NBBY; 358 while (b & 1) 359 keyix++, b >>= 1; 360 setbit(sc->sc_keymap, keyix); 361 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 362 __func__, keyix); 363 *txkeyix = *rxkeyix = keyix; 364 return 1; 365 } 366 } 367 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 368 return 0; 369 #undef N 370 } 371 372 /* 373 * Allocate one or more key cache slots for a uniacst key. The 374 * key itself is needed only to identify the cipher. For hardware 375 * TKIP with split cipher+MIC keys we allocate two key cache slot 376 * pairs so that we can setup separate TX and RX MIC keys. Note 377 * that the MIC key for a TKIP key at slot i is assumed by the 378 * hardware to be at slot i+64. This limits TKIP keys to the first 379 * 64 entries. 380 */ 381 int 382 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 383 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 384 { 385 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 386 387 /* 388 * Group key allocation must be handled specially for 389 * parts that do not support multicast key cache search 390 * functionality. For those parts the key id must match 391 * the h/w key index so lookups find the right key. On 392 * parts w/ the key search facility we install the sender's 393 * mac address (with the high bit set) and let the hardware 394 * find the key w/o using the key id. This is preferred as 395 * it permits us to support multiple users for adhoc and/or 396 * multi-station operation. 397 */ 398 if (k->wk_keyix != IEEE80211_KEYIX_NONE) { 399 /* 400 * Only global keys should have key index assigned. 401 */ 402 if (!(&vap->iv_nw_keys[0] <= k && 403 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 404 /* should not happen */ 405 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 406 "%s: bogus group key\n", __func__); 407 return 0; 408 } 409 if (vap->iv_opmode != IEEE80211_M_HOSTAP || 410 !(k->wk_flags & IEEE80211_KEY_GROUP) || 411 !sc->sc_mcastkey) { 412 /* 413 * XXX we pre-allocate the global keys so 414 * have no way to check if they've already 415 * been allocated. 416 */ 417 *keyix = *rxkeyix = k - vap->iv_nw_keys; 418 return 1; 419 } 420 /* 421 * Group key and device supports multicast key search. 422 */ 423 k->wk_keyix = IEEE80211_KEYIX_NONE; 424 } 425 426 /* 427 * We allocate two pair for TKIP when using the h/w to do 428 * the MIC. For everything else, including software crypto, 429 * we allocate a single entry. Note that s/w crypto requires 430 * a pass-through slot on the 5211 and 5212. The 5210 does 431 * not support pass-through cache entries and we map all 432 * those requests to slot 0. 433 */ 434 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 435 return key_alloc_single(sc, keyix, rxkeyix); 436 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 437 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 438 if (sc->sc_splitmic) 439 return key_alloc_2pair(sc, keyix, rxkeyix); 440 else 441 return key_alloc_pair(sc, keyix, rxkeyix); 442 } else { 443 return key_alloc_single(sc, keyix, rxkeyix); 444 } 445 } 446 447 /* 448 * Delete an entry in the key cache allocated by ath_key_alloc. 449 */ 450 int 451 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 452 { 453 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 454 struct ath_hal *ah = sc->sc_ah; 455 const struct ieee80211_cipher *cip = k->wk_cipher; 456 u_int keyix = k->wk_keyix; 457 458 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 459 460 ath_hal_keyreset(ah, keyix); 461 /* 462 * Handle split tx/rx keying required for TKIP with h/w MIC. 463 */ 464 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 465 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 466 ath_hal_keyreset(ah, keyix+32); /* RX key */ 467 if (keyix >= IEEE80211_WEP_NKID) { 468 /* 469 * Don't touch keymap entries for global keys so 470 * they are never considered for dynamic allocation. 471 */ 472 clrbit(sc->sc_keymap, keyix); 473 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 474 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 475 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 476 if (sc->sc_splitmic) { 477 /* +32 for RX key, +32+64 for RX key MIC */ 478 clrbit(sc->sc_keymap, keyix+32); 479 clrbit(sc->sc_keymap, keyix+32+64); 480 } 481 } 482 } 483 return 1; 484 } 485 486 /* 487 * Set the key cache contents for the specified key. Key cache 488 * slot(s) must already have been allocated by ath_key_alloc. 489 */ 490 int 491 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k, 492 const u_int8_t mac[IEEE80211_ADDR_LEN]) 493 { 494 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 495 496 return ath_keyset(sc, k, vap->iv_bss); 497 } 498