1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 #include "opt_wlan.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysctl.h> 47 #include <sys/mbuf.h> 48 #include <sys/malloc.h> 49 #include <sys/lock.h> 50 #include <sys/mutex.h> 51 #include <sys/kernel.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/errno.h> 55 #include <sys/callout.h> 56 #include <sys/bus.h> 57 #include <sys/endian.h> 58 #include <sys/kthread.h> 59 #include <sys/taskqueue.h> 60 #include <sys/priv.h> 61 62 #include <machine/bus.h> 63 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 75 #include <net/bpf.h> 76 77 #include <dev/ath/if_athvar.h> 78 79 #include <dev/ath/if_ath_debug.h> 80 #include <dev/ath/if_ath_keycache.h> 81 #include <dev/ath/if_ath_misc.h> 82 83 #ifdef ATH_DEBUG 84 static void 85 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix, 86 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 87 { 88 static const char *ciphers[] = { 89 "WEP", 90 "AES-OCB", 91 "AES-CCM", 92 "CKIP", 93 "TKIP", 94 "CLR", 95 }; 96 int i, n; 97 98 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 99 for (i = 0, n = hk->kv_len; i < n; i++) 100 printf("%02x", hk->kv_val[i]); 101 printf(" mac %s", ether_sprintf(mac)); 102 if (hk->kv_type == HAL_CIPHER_TKIP) { 103 printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic"); 104 for (i = 0; i < sizeof(hk->kv_mic); i++) 105 printf("%02x", hk->kv_mic[i]); 106 if (!sc->sc_splitmic) { 107 printf(" txmic "); 108 for (i = 0; i < sizeof(hk->kv_txmic); i++) 109 printf("%02x", hk->kv_txmic[i]); 110 } 111 } 112 printf("\n"); 113 } 114 #endif 115 116 /* 117 * Set a TKIP key into the hardware. This handles the 118 * potential distribution of key state to multiple key 119 * cache slots for TKIP. 120 */ 121 static int 122 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 123 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 124 { 125 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 126 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 127 struct ath_hal *ah = sc->sc_ah; 128 129 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 130 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 131 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 132 if (sc->sc_splitmic) { 133 /* 134 * TX key goes at first index, RX key at the rx index. 135 * The hal handles the MIC keys at index+64. 136 */ 137 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 138 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 139 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 140 return 0; 141 142 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 143 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 144 /* XXX delete tx key on failure? */ 145 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 146 } else { 147 /* 148 * Room for both TX+RX MIC keys in one key cache 149 * slot, just set key at the first index; the hal 150 * will handle the rest. 151 */ 152 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 153 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 154 KEYPRINTF(sc, k->wk_keyix, hk, mac); 155 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 156 } 157 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 158 if (sc->sc_splitmic) { 159 /* 160 * NB: must pass MIC key in expected location when 161 * the keycache only holds one MIC key per entry. 162 */ 163 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 164 } else 165 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 166 KEYPRINTF(sc, k->wk_keyix, hk, mac); 167 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 168 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 169 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 170 KEYPRINTF(sc, k->wk_keyix, hk, mac); 171 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 172 } 173 return 0; 174 #undef IEEE80211_KEY_XR 175 } 176 177 /* 178 * Set a net80211 key into the hardware. This handles the 179 * potential distribution of key state to multiple key 180 * cache slots for TKIP with hardware MIC support. 181 */ 182 int 183 ath_keyset(struct ath_softc *sc, struct ieee80211vap *vap, 184 const struct ieee80211_key *k, 185 struct ieee80211_node *bss) 186 { 187 static const u_int8_t ciphermap[] = { 188 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 189 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 190 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 191 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 192 (u_int8_t) -1, /* 4 is not allocated */ 193 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 194 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 195 }; 196 struct ath_hal *ah = sc->sc_ah; 197 const struct ieee80211_cipher *cip = k->wk_cipher; 198 u_int8_t gmac[IEEE80211_ADDR_LEN]; 199 const u_int8_t *mac; 200 HAL_KEYVAL hk; 201 int ret; 202 203 memset(&hk, 0, sizeof(hk)); 204 /* 205 * Software crypto uses a "clear key" so non-crypto 206 * state kept in the key cache are maintained and 207 * so that rx frames have an entry to match. 208 */ 209 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 210 KASSERT(cip->ic_cipher < nitems(ciphermap), 211 ("invalid cipher type %u", cip->ic_cipher)); 212 hk.kv_type = ciphermap[cip->ic_cipher]; 213 hk.kv_len = k->wk_keylen; 214 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 215 } else 216 hk.kv_type = HAL_CIPHER_CLR; 217 218 /* 219 * If we're installing a clear cipher key and 220 * the hardware doesn't support that, just succeed. 221 * Leave it up to the net80211 layer to figure it out. 222 */ 223 if (hk.kv_type == HAL_CIPHER_CLR && sc->sc_hasclrkey == 0) { 224 return (1); 225 } 226 227 /* 228 * XXX TODO: check this: 229 * 230 * Group keys on hardware that supports multicast frame 231 * key search should only be done in adhoc/hostap mode, 232 * not STA mode. 233 * 234 * XXX TODO: what about mesh, tdma? 235 */ 236 #if 0 237 if ((vap->iv_opmode == IEEE80211_M_HOSTAP || 238 vap->iv_opmode == IEEE80211_M_IBSS) && 239 #else 240 if ( 241 #endif 242 (k->wk_flags & IEEE80211_KEY_GROUP) && 243 sc->sc_mcastkey) { 244 /* 245 * Group keys on hardware that supports multicast frame 246 * key search use a MAC that is the sender's address with 247 * the multicast bit set instead of the app-specified address. 248 */ 249 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 250 gmac[0] |= 0x01; 251 mac = gmac; 252 } else 253 mac = k->wk_macaddr; 254 255 ATH_LOCK(sc); 256 ath_power_set_power_state(sc, HAL_PM_AWAKE); 257 if (hk.kv_type == HAL_CIPHER_TKIP && 258 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 259 ret = ath_keyset_tkip(sc, k, &hk, mac); 260 } else { 261 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 262 ret = ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 263 } 264 ath_power_restore_power_state(sc); 265 ATH_UNLOCK(sc); 266 267 return (ret); 268 } 269 270 /* 271 * Allocate tx/rx key slots for TKIP. We allocate two slots for 272 * each key, one for decrypt/encrypt and the other for the MIC. 273 */ 274 static u_int16_t 275 key_alloc_2pair(struct ath_softc *sc, 276 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 277 { 278 u_int i, keyix; 279 280 KASSERT(sc->sc_splitmic, ("key cache !split")); 281 /* XXX could optimize */ 282 for (i = 0; i < nitems(sc->sc_keymap)/4; i++) { 283 u_int8_t b = sc->sc_keymap[i]; 284 if (b != 0xff) { 285 /* 286 * One or more slots in this byte are free. 287 */ 288 keyix = i*NBBY; 289 while (b & 1) { 290 again: 291 keyix++; 292 b >>= 1; 293 } 294 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 295 if (isset(sc->sc_keymap, keyix+32) || 296 isset(sc->sc_keymap, keyix+64) || 297 isset(sc->sc_keymap, keyix+32+64)) { 298 /* full pair unavailable */ 299 /* XXX statistic */ 300 if (keyix == (i+1)*NBBY) { 301 /* no slots were appropriate, advance */ 302 continue; 303 } 304 goto again; 305 } 306 setbit(sc->sc_keymap, keyix); 307 setbit(sc->sc_keymap, keyix+64); 308 setbit(sc->sc_keymap, keyix+32); 309 setbit(sc->sc_keymap, keyix+32+64); 310 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 311 "%s: key pair %u,%u %u,%u\n", 312 __func__, keyix, keyix+64, 313 keyix+32, keyix+32+64); 314 *txkeyix = keyix; 315 *rxkeyix = keyix+32; 316 return 1; 317 } 318 } 319 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 320 return 0; 321 } 322 323 /* 324 * Allocate tx/rx key slots for TKIP. We allocate two slots for 325 * each key, one for decrypt/encrypt and the other for the MIC. 326 */ 327 static u_int16_t 328 key_alloc_pair(struct ath_softc *sc, 329 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 330 { 331 u_int i, keyix; 332 333 KASSERT(!sc->sc_splitmic, ("key cache split")); 334 /* XXX could optimize */ 335 for (i = 0; i < nitems(sc->sc_keymap)/4; i++) { 336 u_int8_t b = sc->sc_keymap[i]; 337 if (b != 0xff) { 338 /* 339 * One or more slots in this byte are free. 340 */ 341 keyix = i*NBBY; 342 while (b & 1) { 343 again: 344 keyix++; 345 b >>= 1; 346 } 347 if (isset(sc->sc_keymap, keyix+64)) { 348 /* full pair unavailable */ 349 /* XXX statistic */ 350 if (keyix == (i+1)*NBBY) { 351 /* no slots were appropriate, advance */ 352 continue; 353 } 354 goto again; 355 } 356 setbit(sc->sc_keymap, keyix); 357 setbit(sc->sc_keymap, keyix+64); 358 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 359 "%s: key pair %u,%u\n", 360 __func__, keyix, keyix+64); 361 *txkeyix = *rxkeyix = keyix; 362 return 1; 363 } 364 } 365 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 366 return 0; 367 } 368 369 /* 370 * Allocate a single key cache slot. 371 */ 372 static int 373 key_alloc_single(struct ath_softc *sc, 374 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 375 { 376 u_int i, keyix; 377 378 if (sc->sc_hasclrkey == 0) { 379 /* 380 * Map to slot 0 for the AR5210. 381 */ 382 *txkeyix = *rxkeyix = 0; 383 return (1); 384 } 385 386 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 387 for (i = 0; i < nitems(sc->sc_keymap); i++) { 388 u_int8_t b = sc->sc_keymap[i]; 389 if (b != 0xff) { 390 /* 391 * One or more slots are free. 392 */ 393 keyix = i*NBBY; 394 while (b & 1) 395 keyix++, b >>= 1; 396 setbit(sc->sc_keymap, keyix); 397 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 398 __func__, keyix); 399 *txkeyix = *rxkeyix = keyix; 400 return 1; 401 } 402 } 403 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 404 return 0; 405 } 406 407 /* 408 * Allocate one or more key cache slots for a uniacst key. The 409 * key itself is needed only to identify the cipher. For hardware 410 * TKIP with split cipher+MIC keys we allocate two key cache slot 411 * pairs so that we can setup separate TX and RX MIC keys. Note 412 * that the MIC key for a TKIP key at slot i is assumed by the 413 * hardware to be at slot i+64. This limits TKIP keys to the first 414 * 64 entries. 415 */ 416 int 417 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 418 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 419 { 420 struct ath_softc *sc = vap->iv_ic->ic_softc; 421 422 /* 423 * Group key allocation must be handled specially for 424 * parts that do not support multicast key cache search 425 * functionality. For those parts the key id must match 426 * the h/w key index so lookups find the right key. On 427 * parts w/ the key search facility we install the sender's 428 * mac address (with the high bit set) and let the hardware 429 * find the key w/o using the key id. This is preferred as 430 * it permits us to support multiple users for adhoc and/or 431 * multi-station operation. 432 */ 433 if (k->wk_keyix != IEEE80211_KEYIX_NONE) { 434 /* 435 * Only global keys should have key index assigned. 436 */ 437 if (!(&vap->iv_nw_keys[0] <= k && 438 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 439 /* should not happen */ 440 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 441 "%s: bogus group key\n", __func__); 442 return 0; 443 } 444 if (vap->iv_opmode != IEEE80211_M_HOSTAP || 445 !(k->wk_flags & IEEE80211_KEY_GROUP) || 446 !sc->sc_mcastkey) { 447 /* 448 * XXX we pre-allocate the global keys so 449 * have no way to check if they've already 450 * been allocated. 451 */ 452 *keyix = *rxkeyix = k - vap->iv_nw_keys; 453 return 1; 454 } 455 /* 456 * Group key and device supports multicast key search. 457 */ 458 k->wk_keyix = IEEE80211_KEYIX_NONE; 459 } 460 461 /* 462 * We allocate two pair for TKIP when using the h/w to do 463 * the MIC. For everything else, including software crypto, 464 * we allocate a single entry. Note that s/w crypto requires 465 * a pass-through slot on the 5211 and 5212. The 5210 does 466 * not support pass-through cache entries and we map all 467 * those requests to slot 0. 468 */ 469 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 470 return key_alloc_single(sc, keyix, rxkeyix); 471 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 472 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 473 if (sc->sc_splitmic) 474 return key_alloc_2pair(sc, keyix, rxkeyix); 475 else 476 return key_alloc_pair(sc, keyix, rxkeyix); 477 } else { 478 return key_alloc_single(sc, keyix, rxkeyix); 479 } 480 } 481 482 /* 483 * Delete an entry in the key cache allocated by ath_key_alloc. 484 */ 485 int 486 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 487 { 488 struct ath_softc *sc = vap->iv_ic->ic_softc; 489 struct ath_hal *ah = sc->sc_ah; 490 const struct ieee80211_cipher *cip = k->wk_cipher; 491 u_int keyix = k->wk_keyix; 492 493 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 494 495 ATH_LOCK(sc); 496 ath_power_set_power_state(sc, HAL_PM_AWAKE); 497 ath_hal_keyreset(ah, keyix); 498 /* 499 * Handle split tx/rx keying required for TKIP with h/w MIC. 500 */ 501 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 502 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 503 ath_hal_keyreset(ah, keyix+32); /* RX key */ 504 if (keyix >= IEEE80211_WEP_NKID) { 505 /* 506 * Don't touch keymap entries for global keys so 507 * they are never considered for dynamic allocation. 508 */ 509 clrbit(sc->sc_keymap, keyix); 510 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 511 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 512 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 513 if (sc->sc_splitmic) { 514 /* +32 for RX key, +32+64 for RX key MIC */ 515 clrbit(sc->sc_keymap, keyix+32); 516 clrbit(sc->sc_keymap, keyix+32+64); 517 } 518 } 519 } 520 ath_power_restore_power_state(sc); 521 ATH_UNLOCK(sc); 522 return 1; 523 } 524 525 /* 526 * Set the key cache contents for the specified key. Key cache 527 * slot(s) must already have been allocated by ath_key_alloc. 528 */ 529 int 530 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k, 531 const u_int8_t mac[IEEE80211_ADDR_LEN]) 532 { 533 struct ath_softc *sc = vap->iv_ic->ic_softc; 534 535 return ath_keyset(sc, vap, k, vap->iv_bss); 536 } 537