xref: /freebsd/sys/dev/ath/if_ath.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 #include "opt_ath.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/sysctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/malloc.h>
55 #include <sys/lock.h>
56 #include <sys/mutex.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/errno.h>
61 #include <sys/callout.h>
62 #include <sys/bus.h>
63 #include <sys/endian.h>
64 #include <sys/kthread.h>
65 #include <sys/taskqueue.h>
66 
67 #include <machine/bus.h>
68 
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 #include <net/if_arp.h>
74 #include <net/ethernet.h>
75 #include <net/if_llc.h>
76 
77 #include <net80211/ieee80211_var.h>
78 
79 #include <net/bpf.h>
80 
81 #ifdef INET
82 #include <netinet/in.h>
83 #include <netinet/if_ether.h>
84 #endif
85 
86 #include <dev/ath/if_athvar.h>
87 #include <contrib/dev/ath/ah_desc.h>
88 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
89 
90 #ifdef ATH_TX99_DIAG
91 #include <dev/ath/ath_tx99/ath_tx99.h>
92 #endif
93 
94 /* unaligned little endian access */
95 #define LE_READ_2(p)							\
96 	((u_int16_t)							\
97 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
98 #define LE_READ_4(p)							\
99 	((u_int32_t)							\
100 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
101 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
102 
103 enum {
104 	ATH_LED_TX,
105 	ATH_LED_RX,
106 	ATH_LED_POLL,
107 };
108 
109 static void	ath_init(void *);
110 static void	ath_stop_locked(struct ifnet *);
111 static void	ath_stop(struct ifnet *);
112 static void	ath_start(struct ifnet *);
113 static int	ath_reset(struct ifnet *);
114 static int	ath_media_change(struct ifnet *);
115 static void	ath_watchdog(struct ifnet *);
116 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
117 static void	ath_fatal_proc(void *, int);
118 static void	ath_rxorn_proc(void *, int);
119 static void	ath_bmiss_proc(void *, int);
120 static int	ath_key_alloc(struct ieee80211com *,
121 			const struct ieee80211_key *,
122 			ieee80211_keyix *, ieee80211_keyix *);
123 static int	ath_key_delete(struct ieee80211com *,
124 			const struct ieee80211_key *);
125 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
126 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
127 static void	ath_key_update_begin(struct ieee80211com *);
128 static void	ath_key_update_end(struct ieee80211com *);
129 static void	ath_mode_init(struct ath_softc *);
130 static void	ath_setslottime(struct ath_softc *);
131 static void	ath_updateslot(struct ifnet *);
132 static int	ath_beaconq_setup(struct ath_hal *);
133 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
134 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
135 static void	ath_beacon_proc(void *, int);
136 static void	ath_bstuck_proc(void *, int);
137 static void	ath_beacon_free(struct ath_softc *);
138 static void	ath_beacon_config(struct ath_softc *);
139 static void	ath_descdma_cleanup(struct ath_softc *sc,
140 			struct ath_descdma *, ath_bufhead *);
141 static int	ath_desc_alloc(struct ath_softc *);
142 static void	ath_desc_free(struct ath_softc *);
143 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
144 static void	ath_node_free(struct ieee80211_node *);
145 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
146 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
147 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
148 			struct ieee80211_node *ni,
149 			int subtype, int rssi, u_int32_t rstamp);
150 static void	ath_setdefantenna(struct ath_softc *, u_int);
151 static void	ath_rx_proc(void *, int);
152 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
153 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
154 static int	ath_tx_setup(struct ath_softc *, int, int);
155 static int	ath_wme_update(struct ieee80211com *);
156 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
157 static void	ath_tx_cleanup(struct ath_softc *);
158 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 			     struct ath_buf *, struct mbuf *);
160 static void	ath_tx_proc_q0(void *, int);
161 static void	ath_tx_proc_q0123(void *, int);
162 static void	ath_tx_proc(void *, int);
163 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
164 static void	ath_draintxq(struct ath_softc *);
165 static void	ath_stoprecv(struct ath_softc *);
166 static int	ath_startrecv(struct ath_softc *);
167 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
168 static void	ath_next_scan(void *);
169 static void	ath_calibrate(void *);
170 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
171 static void	ath_setup_stationkey(struct ieee80211_node *);
172 static void	ath_newassoc(struct ieee80211_node *, int);
173 static int	ath_getchannels(struct ath_softc *,
174 			HAL_REG_DOMAIN, HAL_CTRY_CODE, HAL_BOOL, HAL_BOOL);
175 static void	ath_led_event(struct ath_softc *, int);
176 static void	ath_update_txpow(struct ath_softc *);
177 
178 static int	ath_rate_setup(struct ath_softc *, u_int mode);
179 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
180 
181 static void	ath_sysctlattach(struct ath_softc *);
182 static int	ath_raw_xmit(struct ieee80211_node *,
183 			struct mbuf *, const struct ieee80211_bpf_params *);
184 static void	ath_bpfattach(struct ath_softc *);
185 static void	ath_announce(struct ath_softc *);
186 
187 SYSCTL_DECL(_hw_ath);
188 
189 /* XXX validate sysctl values */
190 static	int ath_dwelltime = 200;		/* 5 channels/second */
191 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
192 	    0, "channel dwell time (ms) for AP/station scanning");
193 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
194 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
195 	    0, "chip calibration interval (secs)");
196 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
197 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RW, &ath_outdoor,
198 	    0, "outdoor operation");
199 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
200 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
201 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RW, &ath_xchanmode,
202 	    0, "extended channel mode");
203 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
204 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
205 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RW, &ath_countrycode,
206 	    0, "country code");
207 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
208 static	int ath_regdomain = 0;			/* regulatory domain */
209 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
210 	    0, "regulatory domain");
211 
212 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
213 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
214 	    0, "rx buffers allocated");
215 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
216 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
217 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
218 	    0, "tx buffers allocated");
219 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
220 
221 #ifdef ATH_DEBUG
222 static	int ath_debug = 0;
223 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
224 	    0, "control debugging printfs");
225 TUNABLE_INT("hw.ath.debug", &ath_debug);
226 enum {
227 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
228 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
229 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
230 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
231 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
232 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
233 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
234 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
235 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
236 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
237 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
238 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
239 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
240 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
241 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
242 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
243 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
244 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
245 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
246 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
247 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
248 	ATH_DEBUG_ANY		= 0xffffffff
249 };
250 #define	IFF_DUMPPKTS(sc, m) \
251 	((sc->sc_debug & (m)) || \
252 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
253 #define	DPRINTF(sc, m, fmt, ...) do {				\
254 	if (sc->sc_debug & (m))					\
255 		printf(fmt, __VA_ARGS__);			\
256 } while (0)
257 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
258 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
259 		ath_keyprint(sc, __func__, ix, hk, mac);	\
260 } while (0)
261 static	void ath_printrxbuf(const struct ath_buf *bf, u_int ix, int);
262 static	void ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done);
263 #else
264 #define	IFF_DUMPPKTS(sc, m) \
265 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
266 #define	DPRINTF(sc, m, fmt, ...) do {				\
267 	(void) sc;						\
268 } while (0)
269 #define	KEYPRINTF(sc, k, ix, mac) do {				\
270 	(void) sc;						\
271 } while (0)
272 #endif
273 
274 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
275 
276 int
277 ath_attach(u_int16_t devid, struct ath_softc *sc)
278 {
279 	struct ifnet *ifp;
280 	struct ieee80211com *ic = &sc->sc_ic;
281 	struct ath_hal *ah = NULL;
282 	HAL_STATUS status;
283 	int error = 0, i;
284 
285 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
286 
287 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
288 	if (ifp == NULL) {
289 		device_printf(sc->sc_dev, "can not if_alloc()\n");
290 		error = ENOSPC;
291 		goto bad;
292 	}
293 
294 	/* set these up early for if_printf use */
295 	if_initname(ifp, device_get_name(sc->sc_dev),
296 		device_get_unit(sc->sc_dev));
297 
298 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
299 	if (ah == NULL) {
300 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
301 			status);
302 		error = ENXIO;
303 		goto bad;
304 	}
305 	if (ah->ah_abi != HAL_ABI_VERSION) {
306 		if_printf(ifp, "HAL ABI mismatch detected "
307 			"(HAL:0x%x != driver:0x%x)\n",
308 			ah->ah_abi, HAL_ABI_VERSION);
309 		error = ENXIO;
310 		goto bad;
311 	}
312 	sc->sc_ah = ah;
313 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
314 
315 	/*
316 	 * Check if the MAC has multi-rate retry support.
317 	 * We do this by trying to setup a fake extended
318 	 * descriptor.  MAC's that don't have support will
319 	 * return false w/o doing anything.  MAC's that do
320 	 * support it will return true w/o doing anything.
321 	 */
322 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
323 
324 	/*
325 	 * Check if the device has hardware counters for PHY
326 	 * errors.  If so we need to enable the MIB interrupt
327 	 * so we can act on stat triggers.
328 	 */
329 	if (ath_hal_hwphycounters(ah))
330 		sc->sc_needmib = 1;
331 
332 	/*
333 	 * Get the hardware key cache size.
334 	 */
335 	sc->sc_keymax = ath_hal_keycachesize(ah);
336 	if (sc->sc_keymax > ATH_KEYMAX) {
337 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
338 			ATH_KEYMAX, sc->sc_keymax);
339 		sc->sc_keymax = ATH_KEYMAX;
340 	}
341 	/*
342 	 * Reset the key cache since some parts do not
343 	 * reset the contents on initial power up.
344 	 */
345 	for (i = 0; i < sc->sc_keymax; i++)
346 		ath_hal_keyreset(ah, i);
347 
348 	/*
349 	 * Collect the channel list using the default country
350 	 * code and including outdoor channels.  The 802.11 layer
351 	 * is resposible for filtering this list based on settings
352 	 * like the phy mode.
353 	 */
354 	error = ath_getchannels(sc, ath_regdomain, ath_countrycode,
355 			ath_xchanmode != 0, ath_outdoor != 0);
356 	if (error != 0)
357 		goto bad;
358 
359 	/*
360 	 * Setup rate tables for all potential media types.
361 	 */
362 	ath_rate_setup(sc, IEEE80211_MODE_11A);
363 	ath_rate_setup(sc, IEEE80211_MODE_11B);
364 	ath_rate_setup(sc, IEEE80211_MODE_11G);
365 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
366 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
367 	ath_rate_setup(sc, IEEE80211_MODE_11A_HALF);
368 	ath_rate_setup(sc, IEEE80211_MODE_11A_QUARTER);
369 
370 	/* NB: setup here so ath_rate_update is happy */
371 	ath_setcurmode(sc, IEEE80211_MODE_11A);
372 
373 	/*
374 	 * Allocate tx+rx descriptors and populate the lists.
375 	 */
376 	error = ath_desc_alloc(sc);
377 	if (error != 0) {
378 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
379 		goto bad;
380 	}
381 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
382 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
383 	callout_init(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
384 
385 	ATH_TXBUF_LOCK_INIT(sc);
386 
387 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
388 		taskqueue_thread_enqueue, &sc->sc_tq);
389 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
390 		"%s taskq", ifp->if_xname);
391 
392 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
393 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
394 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
395 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
396 
397 	/*
398 	 * Allocate hardware transmit queues: one queue for
399 	 * beacon frames and one data queue for each QoS
400 	 * priority.  Note that the hal handles reseting
401 	 * these queues at the needed time.
402 	 *
403 	 * XXX PS-Poll
404 	 */
405 	sc->sc_bhalq = ath_beaconq_setup(ah);
406 	if (sc->sc_bhalq == (u_int) -1) {
407 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
408 		error = EIO;
409 		goto bad2;
410 	}
411 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
412 	if (sc->sc_cabq == NULL) {
413 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
414 		error = EIO;
415 		goto bad2;
416 	}
417 	ath_txq_init(sc, &sc->sc_mcastq, -1);	/* NB: s/w q, qnum not used */
418 	/* NB: insure BK queue is the lowest priority h/w queue */
419 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
420 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
421 			ieee80211_wme_acnames[WME_AC_BK]);
422 		error = EIO;
423 		goto bad2;
424 	}
425 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
426 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
427 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
428 		/*
429 		 * Not enough hardware tx queues to properly do WME;
430 		 * just punt and assign them all to the same h/w queue.
431 		 * We could do a better job of this if, for example,
432 		 * we allocate queues when we switch from station to
433 		 * AP mode.
434 		 */
435 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
436 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
437 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
438 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
439 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
440 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
441 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
442 	}
443 
444 	/*
445 	 * Special case certain configurations.  Note the
446 	 * CAB queue is handled by these specially so don't
447 	 * include them when checking the txq setup mask.
448 	 */
449 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
450 	case 0x01:
451 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
452 		break;
453 	case 0x0f:
454 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
455 		break;
456 	default:
457 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
458 		break;
459 	}
460 
461 	/*
462 	 * Setup rate control.  Some rate control modules
463 	 * call back to change the anntena state so expose
464 	 * the necessary entry points.
465 	 * XXX maybe belongs in struct ath_ratectrl?
466 	 */
467 	sc->sc_setdefantenna = ath_setdefantenna;
468 	sc->sc_rc = ath_rate_attach(sc);
469 	if (sc->sc_rc == NULL) {
470 		error = EIO;
471 		goto bad2;
472 	}
473 
474 	sc->sc_blinking = 0;
475 	sc->sc_ledstate = 1;
476 	sc->sc_ledon = 0;			/* low true */
477 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
478 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
479 	/*
480 	 * Auto-enable soft led processing for IBM cards and for
481 	 * 5211 minipci cards.  Users can also manually enable/disable
482 	 * support with a sysctl.
483 	 */
484 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
485 	if (sc->sc_softled) {
486 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
487 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
488 	}
489 
490 	ifp->if_softc = sc;
491 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
492 	ifp->if_start = ath_start;
493 	ifp->if_watchdog = ath_watchdog;
494 	ifp->if_ioctl = ath_ioctl;
495 	ifp->if_init = ath_init;
496 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
497 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
498 	IFQ_SET_READY(&ifp->if_snd);
499 
500 	ic->ic_ifp = ifp;
501 	ic->ic_reset = ath_reset;
502 	ic->ic_newassoc = ath_newassoc;
503 	ic->ic_updateslot = ath_updateslot;
504 	ic->ic_wme.wme_update = ath_wme_update;
505 	/* XXX not right but it's not used anywhere important */
506 	ic->ic_phytype = IEEE80211_T_OFDM;
507 	ic->ic_opmode = IEEE80211_M_STA;
508 	ic->ic_caps =
509 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
510 		| IEEE80211_C_HOSTAP		/* hostap mode */
511 		| IEEE80211_C_MONITOR		/* monitor mode */
512 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
513 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
514 		| IEEE80211_C_SHSLOT		/* short slot time supported */
515 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
516 		;
517 	/*
518 	 * Query the hal to figure out h/w crypto support.
519 	 */
520 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
521 		ic->ic_caps |= IEEE80211_C_WEP;
522 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
523 		ic->ic_caps |= IEEE80211_C_AES;
524 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
525 		ic->ic_caps |= IEEE80211_C_AES_CCM;
526 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
527 		ic->ic_caps |= IEEE80211_C_CKIP;
528 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
529 		ic->ic_caps |= IEEE80211_C_TKIP;
530 		/*
531 		 * Check if h/w does the MIC and/or whether the
532 		 * separate key cache entries are required to
533 		 * handle both tx+rx MIC keys.
534 		 */
535 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
536 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
537 		/*
538 		 * If the h/w supports storing tx+rx MIC keys
539 		 * in one cache slot automatically enable use.
540 		 */
541 		if (ath_hal_hastkipsplit(ah) ||
542 		    !ath_hal_settkipsplit(ah, AH_FALSE))
543 			sc->sc_splitmic = 1;
544 	}
545 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
546 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
547 	/*
548 	 * Mark key cache slots associated with global keys
549 	 * as in use.  If we knew TKIP was not to be used we
550 	 * could leave the +32, +64, and +32+64 slots free.
551 	 */
552 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
553 		setbit(sc->sc_keymap, i);
554 		setbit(sc->sc_keymap, i+64);
555 		if (sc->sc_splitmic) {
556 			setbit(sc->sc_keymap, i+32);
557 			setbit(sc->sc_keymap, i+32+64);
558 		}
559 	}
560 	/*
561 	 * TPC support can be done either with a global cap or
562 	 * per-packet support.  The latter is not available on
563 	 * all parts.  We're a bit pedantic here as all parts
564 	 * support a global cap.
565 	 */
566 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
567 		ic->ic_caps |= IEEE80211_C_TXPMGT;
568 
569 	/*
570 	 * Mark WME capability only if we have sufficient
571 	 * hardware queues to do proper priority scheduling.
572 	 */
573 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
574 		ic->ic_caps |= IEEE80211_C_WME;
575 	/*
576 	 * Check for misc other capabilities.
577 	 */
578 	if (ath_hal_hasbursting(ah))
579 		ic->ic_caps |= IEEE80211_C_BURST;
580 
581 	/*
582 	 * Indicate we need the 802.11 header padded to a
583 	 * 32-bit boundary for 4-address and QoS frames.
584 	 */
585 	ic->ic_flags |= IEEE80211_F_DATAPAD;
586 
587 	/*
588 	 * Query the hal about antenna support.
589 	 */
590 	sc->sc_defant = ath_hal_getdefantenna(ah);
591 
592 	/*
593 	 * Not all chips have the VEOL support we want to
594 	 * use with IBSS beacons; check here for it.
595 	 */
596 	sc->sc_hasveol = ath_hal_hasveol(ah);
597 
598 	/* get mac address from hardware */
599 	ath_hal_getmac(ah, ic->ic_myaddr);
600 
601 	/* call MI attach routine. */
602 	ieee80211_ifattach(ic);
603 	sc->sc_opmode = ic->ic_opmode;
604 	/* override default methods */
605 	ic->ic_node_alloc = ath_node_alloc;
606 	sc->sc_node_free = ic->ic_node_free;
607 	ic->ic_node_free = ath_node_free;
608 	ic->ic_node_getrssi = ath_node_getrssi;
609 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
610 	ic->ic_recv_mgmt = ath_recv_mgmt;
611 	sc->sc_newstate = ic->ic_newstate;
612 	ic->ic_newstate = ath_newstate;
613 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
614 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
615 	ic->ic_crypto.cs_key_delete = ath_key_delete;
616 	ic->ic_crypto.cs_key_set = ath_key_set;
617 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
618 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
619 	ic->ic_raw_xmit = ath_raw_xmit;
620 	/* complete initialization */
621 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
622 
623 	ath_bpfattach(sc);
624 	/*
625 	 * Setup dynamic sysctl's now that country code and
626 	 * regdomain are available from the hal.
627 	 */
628 	ath_sysctlattach(sc);
629 
630 	if (bootverbose)
631 		ieee80211_announce(ic);
632 	ath_announce(sc);
633 	return 0;
634 bad2:
635 	ath_tx_cleanup(sc);
636 	ath_desc_free(sc);
637 bad:
638 	if (ah)
639 		ath_hal_detach(ah);
640 	if (ifp != NULL)
641 		if_free(ifp);
642 	sc->sc_invalid = 1;
643 	return error;
644 }
645 
646 int
647 ath_detach(struct ath_softc *sc)
648 {
649 	struct ifnet *ifp = sc->sc_ifp;
650 
651 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
652 		__func__, ifp->if_flags);
653 
654 	ath_stop(ifp);
655 	bpfdetach(ifp);
656 	/*
657 	 * NB: the order of these is important:
658 	 * o call the 802.11 layer before detaching the hal to
659 	 *   insure callbacks into the driver to delete global
660 	 *   key cache entries can be handled
661 	 * o reclaim the tx queue data structures after calling
662 	 *   the 802.11 layer as we'll get called back to reclaim
663 	 *   node state and potentially want to use them
664 	 * o to cleanup the tx queues the hal is called, so detach
665 	 *   it last
666 	 * Other than that, it's straightforward...
667 	 */
668 	ieee80211_ifdetach(&sc->sc_ic);
669 #ifdef ATH_TX99_DIAG
670 	if (sc->sc_tx99 != NULL)
671 		sc->sc_tx99->detach(sc->sc_tx99);
672 #endif
673 	taskqueue_free(sc->sc_tq);
674 	ath_rate_detach(sc->sc_rc);
675 	ath_desc_free(sc);
676 	ath_tx_cleanup(sc);
677 	ath_hal_detach(sc->sc_ah);
678 	if_free(ifp);
679 
680 	return 0;
681 }
682 
683 void
684 ath_suspend(struct ath_softc *sc)
685 {
686 	struct ifnet *ifp = sc->sc_ifp;
687 
688 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
689 		__func__, ifp->if_flags);
690 
691 	ath_stop(ifp);
692 }
693 
694 void
695 ath_resume(struct ath_softc *sc)
696 {
697 	struct ifnet *ifp = sc->sc_ifp;
698 
699 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
700 		__func__, ifp->if_flags);
701 
702 	if (ifp->if_flags & IFF_UP) {
703 		ath_init(sc);
704 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
705 			ath_start(ifp);
706 	}
707 	if (sc->sc_softled) {
708 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
709 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
710 	}
711 }
712 
713 void
714 ath_shutdown(struct ath_softc *sc)
715 {
716 	struct ifnet *ifp = sc->sc_ifp;
717 
718 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
719 		__func__, ifp->if_flags);
720 
721 	ath_stop(ifp);
722 }
723 
724 /*
725  * Interrupt handler.  Most of the actual processing is deferred.
726  */
727 void
728 ath_intr(void *arg)
729 {
730 	struct ath_softc *sc = arg;
731 	struct ifnet *ifp = sc->sc_ifp;
732 	struct ath_hal *ah = sc->sc_ah;
733 	HAL_INT status;
734 
735 	if (sc->sc_invalid) {
736 		/*
737 		 * The hardware is not ready/present, don't touch anything.
738 		 * Note this can happen early on if the IRQ is shared.
739 		 */
740 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
741 		return;
742 	}
743 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
744 		return;
745 	if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
746 	    IFF_DRV_RUNNING))) {
747 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
748 			__func__, ifp->if_flags);
749 		ath_hal_getisr(ah, &status);	/* clear ISR */
750 		ath_hal_intrset(ah, 0);		/* disable further intr's */
751 		return;
752 	}
753 	/*
754 	 * Figure out the reason(s) for the interrupt.  Note
755 	 * that the hal returns a pseudo-ISR that may include
756 	 * bits we haven't explicitly enabled so we mask the
757 	 * value to insure we only process bits we requested.
758 	 */
759 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
760 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
761 	status &= sc->sc_imask;			/* discard unasked for bits */
762 	if (status & HAL_INT_FATAL) {
763 		sc->sc_stats.ast_hardware++;
764 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
765 		ath_fatal_proc(sc, 0);
766 	} else if (status & HAL_INT_RXORN) {
767 		sc->sc_stats.ast_rxorn++;
768 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
769 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
770 	} else {
771 		if (status & HAL_INT_SWBA) {
772 			/*
773 			 * Software beacon alert--time to send a beacon.
774 			 * Handle beacon transmission directly; deferring
775 			 * this is too slow to meet timing constraints
776 			 * under load.
777 			 */
778 			ath_beacon_proc(sc, 0);
779 		}
780 		if (status & HAL_INT_RXEOL) {
781 			/*
782 			 * NB: the hardware should re-read the link when
783 			 *     RXE bit is written, but it doesn't work at
784 			 *     least on older hardware revs.
785 			 */
786 			sc->sc_stats.ast_rxeol++;
787 			sc->sc_rxlink = NULL;
788 		}
789 		if (status & HAL_INT_TXURN) {
790 			sc->sc_stats.ast_txurn++;
791 			/* bump tx trigger level */
792 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
793 		}
794 		if (status & HAL_INT_RX)
795 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
796 		if (status & HAL_INT_TX)
797 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
798 		if (status & HAL_INT_BMISS) {
799 			sc->sc_stats.ast_bmiss++;
800 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
801 		}
802 		if (status & HAL_INT_MIB) {
803 			sc->sc_stats.ast_mib++;
804 			/*
805 			 * Disable interrupts until we service the MIB
806 			 * interrupt; otherwise it will continue to fire.
807 			 */
808 			ath_hal_intrset(ah, 0);
809 			/*
810 			 * Let the hal handle the event.  We assume it will
811 			 * clear whatever condition caused the interrupt.
812 			 */
813 			ath_hal_mibevent(ah, &sc->sc_halstats);
814 			ath_hal_intrset(ah, sc->sc_imask);
815 		}
816 	}
817 }
818 
819 static void
820 ath_fatal_proc(void *arg, int pending)
821 {
822 	struct ath_softc *sc = arg;
823 	struct ifnet *ifp = sc->sc_ifp;
824 	u_int32_t *state;
825 	u_int32_t len;
826 
827 	if_printf(ifp, "hardware error; resetting\n");
828 	/*
829 	 * Fatal errors are unrecoverable.  Typically these
830 	 * are caused by DMA errors.  Collect h/w state from
831 	 * the hal so we can diagnose what's going on.
832 	 */
833 	if (ath_hal_getfatalstate(sc->sc_ah, &state, &len)) {
834 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
835 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
836 		    state[0], state[1] , state[2], state[3],
837 		    state[4], state[5]);
838 	}
839 	ath_reset(ifp);
840 }
841 
842 static void
843 ath_rxorn_proc(void *arg, int pending)
844 {
845 	struct ath_softc *sc = arg;
846 	struct ifnet *ifp = sc->sc_ifp;
847 
848 	if_printf(ifp, "rx FIFO overrun; resetting\n");
849 	ath_reset(ifp);
850 }
851 
852 static void
853 ath_bmiss_proc(void *arg, int pending)
854 {
855 	struct ath_softc *sc = arg;
856 	struct ieee80211com *ic = &sc->sc_ic;
857 
858 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
859 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
860 		("unexpect operating mode %u", ic->ic_opmode));
861 	if (ic->ic_state == IEEE80211_S_RUN) {
862 		u_int64_t lastrx = sc->sc_lastrx;
863 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
864 		u_int bmisstimeout =
865 			ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
866 
867 		DPRINTF(sc, ATH_DEBUG_BEACON,
868 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
869 		    __func__, (unsigned long long) tsf,
870 		    (unsigned long long)(tsf - lastrx),
871 		    (unsigned long long) lastrx, bmisstimeout);
872 		/*
873 		 * Workaround phantom bmiss interrupts by sanity-checking
874 		 * the time of our last rx'd frame.  If it is within the
875 		 * beacon miss interval then ignore the interrupt.  If it's
876 		 * truly a bmiss we'll get another interrupt soon and that'll
877 		 * be dispatched up for processing.
878 		 */
879 		if (tsf - lastrx > bmisstimeout) {
880 			NET_LOCK_GIANT();
881 			ieee80211_beacon_miss(ic);
882 			NET_UNLOCK_GIANT();
883 		} else
884 			sc->sc_stats.ast_bmiss_phantom++;
885 	}
886 }
887 
888 static u_int
889 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
890 {
891 #define	N(a)	(sizeof(a) / sizeof(a[0]))
892 	static const u_int modeflags[] = {
893 		0,			/* IEEE80211_MODE_AUTO */
894 		CHANNEL_A,		/* IEEE80211_MODE_11A */
895 		CHANNEL_B,		/* IEEE80211_MODE_11B */
896 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
897 		0,			/* IEEE80211_MODE_FH */
898 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
899 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
900 	};
901 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
902 
903 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
904 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
905 	if (IEEE80211_IS_CHAN_HALF(chan))
906 		return modeflags[mode] | CHANNEL_HALF;
907 	if (IEEE80211_IS_CHAN_QUARTER(chan))
908 		return modeflags[mode] | CHANNEL_QUARTER;
909 	return modeflags[mode];
910 #undef N
911 }
912 
913 static void
914 ath_init(void *arg)
915 {
916 	struct ath_softc *sc = (struct ath_softc *) arg;
917 	struct ieee80211com *ic = &sc->sc_ic;
918 	struct ifnet *ifp = sc->sc_ifp;
919 	struct ath_hal *ah = sc->sc_ah;
920 	HAL_STATUS status;
921 
922 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
923 		__func__, ifp->if_flags);
924 
925 	ATH_LOCK(sc);
926 	/*
927 	 * Stop anything previously setup.  This is safe
928 	 * whether this is the first time through or not.
929 	 */
930 	ath_stop_locked(ifp);
931 
932 	/*
933 	 * The basic interface to setting the hardware in a good
934 	 * state is ``reset''.  On return the hardware is known to
935 	 * be powered up and with interrupts disabled.  This must
936 	 * be followed by initialization of the appropriate bits
937 	 * and then setup of the interrupt mask.
938 	 */
939 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
940 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
941 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
942 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
943 			status);
944 		goto done;
945 	}
946 
947 	/*
948 	 * This is needed only to setup initial state
949 	 * but it's best done after a reset.
950 	 */
951 	ath_update_txpow(sc);
952 	/*
953 	 * Likewise this is set during reset so update
954 	 * state cached in the driver.
955 	 */
956 	sc->sc_diversity = ath_hal_getdiversity(ah);
957 	sc->sc_calinterval = 1;
958 	sc->sc_caltries = 0;
959 
960 	/*
961 	 * Setup the hardware after reset: the key cache
962 	 * is filled as needed and the receive engine is
963 	 * set going.  Frame transmit is handled entirely
964 	 * in the frame output path; there's nothing to do
965 	 * here except setup the interrupt mask.
966 	 */
967 	if (ath_startrecv(sc) != 0) {
968 		if_printf(ifp, "unable to start recv logic\n");
969 		goto done;
970 	}
971 
972 	/*
973 	 * Enable interrupts.
974 	 */
975 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
976 		  | HAL_INT_RXEOL | HAL_INT_RXORN
977 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
978 	/*
979 	 * Enable MIB interrupts when there are hardware phy counters.
980 	 * Note we only do this (at the moment) for station mode.
981 	 */
982 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
983 		sc->sc_imask |= HAL_INT_MIB;
984 	ath_hal_intrset(ah, sc->sc_imask);
985 
986 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
987 	ic->ic_state = IEEE80211_S_INIT;
988 
989 	/*
990 	 * The hardware should be ready to go now so it's safe
991 	 * to kick the 802.11 state machine as it's likely to
992 	 * immediately call back to us to send mgmt frames.
993 	 */
994 	ath_chan_change(sc, ic->ic_curchan);
995 #ifdef ATH_TX99_DIAG
996 	if (sc->sc_tx99 != NULL)
997 		sc->sc_tx99->start(sc->sc_tx99);
998 	else
999 #endif
1000 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1001 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1002 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1003 	} else
1004 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1005 done:
1006 	ATH_UNLOCK(sc);
1007 }
1008 
1009 static void
1010 ath_stop_locked(struct ifnet *ifp)
1011 {
1012 	struct ath_softc *sc = ifp->if_softc;
1013 	struct ieee80211com *ic = &sc->sc_ic;
1014 	struct ath_hal *ah = sc->sc_ah;
1015 
1016 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1017 		__func__, sc->sc_invalid, ifp->if_flags);
1018 
1019 	ATH_LOCK_ASSERT(sc);
1020 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1021 		/*
1022 		 * Shutdown the hardware and driver:
1023 		 *    reset 802.11 state machine
1024 		 *    turn off timers
1025 		 *    disable interrupts
1026 		 *    turn off the radio
1027 		 *    clear transmit machinery
1028 		 *    clear receive machinery
1029 		 *    drain and release tx queues
1030 		 *    reclaim beacon resources
1031 		 *    power down hardware
1032 		 *
1033 		 * Note that some of this work is not possible if the
1034 		 * hardware is gone (invalid).
1035 		 */
1036 #ifdef ATH_TX99_DIAG
1037 		if (sc->sc_tx99 != NULL)
1038 			sc->sc_tx99->stop(sc->sc_tx99);
1039 #endif
1040 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1041 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1042 		ifp->if_timer = 0;
1043 		if (!sc->sc_invalid) {
1044 			if (sc->sc_softled) {
1045 				callout_stop(&sc->sc_ledtimer);
1046 				ath_hal_gpioset(ah, sc->sc_ledpin,
1047 					!sc->sc_ledon);
1048 				sc->sc_blinking = 0;
1049 			}
1050 			ath_hal_intrset(ah, 0);
1051 		}
1052 		ath_draintxq(sc);
1053 		if (!sc->sc_invalid) {
1054 			ath_stoprecv(sc);
1055 			ath_hal_phydisable(ah);
1056 		} else
1057 			sc->sc_rxlink = NULL;
1058 		IFQ_DRV_PURGE(&ifp->if_snd);
1059 		ath_beacon_free(sc);
1060 	}
1061 }
1062 
1063 static void
1064 ath_stop(struct ifnet *ifp)
1065 {
1066 	struct ath_softc *sc = ifp->if_softc;
1067 
1068 	ATH_LOCK(sc);
1069 	ath_stop_locked(ifp);
1070 	if (!sc->sc_invalid) {
1071 		/*
1072 		 * Set the chip in full sleep mode.  Note that we are
1073 		 * careful to do this only when bringing the interface
1074 		 * completely to a stop.  When the chip is in this state
1075 		 * it must be carefully woken up or references to
1076 		 * registers in the PCI clock domain may freeze the bus
1077 		 * (and system).  This varies by chip and is mostly an
1078 		 * issue with newer parts that go to sleep more quickly.
1079 		 */
1080 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1081 	}
1082 	ATH_UNLOCK(sc);
1083 }
1084 
1085 /*
1086  * Reset the hardware w/o losing operational state.  This is
1087  * basically a more efficient way of doing ath_stop, ath_init,
1088  * followed by state transitions to the current 802.11
1089  * operational state.  Used to recover from various errors and
1090  * to reset or reload hardware state.
1091  */
1092 static int
1093 ath_reset(struct ifnet *ifp)
1094 {
1095 	struct ath_softc *sc = ifp->if_softc;
1096 	struct ieee80211com *ic = &sc->sc_ic;
1097 	struct ath_hal *ah = sc->sc_ah;
1098 	struct ieee80211_channel *c;
1099 	HAL_STATUS status;
1100 
1101 	/*
1102 	 * Convert to a HAL channel description with the flags
1103 	 * constrained to reflect the current operating mode.
1104 	 */
1105 	c = ic->ic_curchan;
1106 	sc->sc_curchan.channel = c->ic_freq;
1107 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1108 
1109 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1110 	ath_draintxq(sc);		/* stop xmit side */
1111 	ath_stoprecv(sc);		/* stop recv side */
1112 	/* NB: indicate channel change so we do a full reset */
1113 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1114 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1115 			__func__, status);
1116 	ath_update_txpow(sc);		/* update tx power state */
1117 	sc->sc_diversity = ath_hal_getdiversity(ah);
1118 	sc->sc_calinterval = 1;
1119 	sc->sc_caltries = 0;
1120 	/*
1121 	 * We may be doing a reset in response to an ioctl
1122 	 * that changes the channel so update any state that
1123 	 * might change as a result.
1124 	 */
1125 	ath_chan_change(sc, c);
1126 	if (ath_startrecv(sc) != 0)	/* restart recv */
1127 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1128 	if (ic->ic_state == IEEE80211_S_RUN)
1129 		ath_beacon_config(sc);	/* restart beacons */
1130 	ath_hal_intrset(ah, sc->sc_imask);
1131 
1132 	ath_start(ifp);			/* restart xmit */
1133 	return 0;
1134 }
1135 
1136 static void
1137 ath_start(struct ifnet *ifp)
1138 {
1139 	struct ath_softc *sc = ifp->if_softc;
1140 	struct ath_hal *ah = sc->sc_ah;
1141 	struct ieee80211com *ic = &sc->sc_ic;
1142 	struct ieee80211_node *ni;
1143 	struct ath_buf *bf;
1144 	struct mbuf *m;
1145 	struct ieee80211_frame *wh;
1146 	struct ether_header *eh;
1147 
1148 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1149 		return;
1150 	for (;;) {
1151 		/*
1152 		 * Grab a TX buffer and associated resources.
1153 		 */
1154 		ATH_TXBUF_LOCK(sc);
1155 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1156 		if (bf != NULL)
1157 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1158 		ATH_TXBUF_UNLOCK(sc);
1159 		if (bf == NULL) {
1160 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1161 				__func__);
1162 			sc->sc_stats.ast_tx_qstop++;
1163 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1164 			break;
1165 		}
1166 		/*
1167 		 * Poll the management queue for frames; they
1168 		 * have priority over normal data frames.
1169 		 */
1170 		IF_DEQUEUE(&ic->ic_mgtq, m);
1171 		if (m == NULL) {
1172 			/*
1173 			 * No data frames go out unless we're associated.
1174 			 */
1175 			if (ic->ic_state != IEEE80211_S_RUN) {
1176 				DPRINTF(sc, ATH_DEBUG_XMIT,
1177 				    "%s: discard data packet, state %s\n",
1178 				    __func__,
1179 				    ieee80211_state_name[ic->ic_state]);
1180 				sc->sc_stats.ast_tx_discard++;
1181 				ATH_TXBUF_LOCK(sc);
1182 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1183 				ATH_TXBUF_UNLOCK(sc);
1184 				break;
1185 			}
1186 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1187 			if (m == NULL) {
1188 				ATH_TXBUF_LOCK(sc);
1189 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1190 				ATH_TXBUF_UNLOCK(sc);
1191 				break;
1192 			}
1193 			/*
1194 			 * Find the node for the destination so we can do
1195 			 * things like power save and fast frames aggregation.
1196 			 */
1197 			if (m->m_len < sizeof(struct ether_header) &&
1198 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1199 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1200 				ni = NULL;
1201 				goto bad;
1202 			}
1203 			eh = mtod(m, struct ether_header *);
1204 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1205 			if (ni == NULL) {
1206 				/* NB: ieee80211_find_txnode does stat+msg */
1207 				m_freem(m);
1208 				goto bad;
1209 			}
1210 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1211 			    (m->m_flags & M_PWR_SAV) == 0) {
1212 				/*
1213 				 * Station in power save mode; pass the frame
1214 				 * to the 802.11 layer and continue.  We'll get
1215 				 * the frame back when the time is right.
1216 				 */
1217 				ieee80211_pwrsave(ic, ni, m);
1218 				goto reclaim;
1219 			}
1220 			/* calculate priority so we can find the tx queue */
1221 			if (ieee80211_classify(ic, m, ni)) {
1222 				DPRINTF(sc, ATH_DEBUG_XMIT,
1223 					"%s: discard, classification failure\n",
1224 					__func__);
1225 				m_freem(m);
1226 				goto bad;
1227 			}
1228 			ifp->if_opackets++;
1229 			BPF_MTAP(ifp, m);
1230 			/*
1231 			 * Encapsulate the packet in prep for transmission.
1232 			 */
1233 			m = ieee80211_encap(ic, m, ni);
1234 			if (m == NULL) {
1235 				DPRINTF(sc, ATH_DEBUG_XMIT,
1236 					"%s: encapsulation failure\n",
1237 					__func__);
1238 				sc->sc_stats.ast_tx_encap++;
1239 				goto bad;
1240 			}
1241 		} else {
1242 			/*
1243 			 * Hack!  The referenced node pointer is in the
1244 			 * rcvif field of the packet header.  This is
1245 			 * placed there by ieee80211_mgmt_output because
1246 			 * we need to hold the reference with the frame
1247 			 * and there's no other way (other than packet
1248 			 * tags which we consider too expensive to use)
1249 			 * to pass it along.
1250 			 */
1251 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1252 			m->m_pkthdr.rcvif = NULL;
1253 
1254 			wh = mtod(m, struct ieee80211_frame *);
1255 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1256 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1257 				/* fill time stamp */
1258 				u_int64_t tsf;
1259 				u_int32_t *tstamp;
1260 
1261 				tsf = ath_hal_gettsf64(ah);
1262 				/* XXX: adjust 100us delay to xmit */
1263 				tsf += 100;
1264 				tstamp = (u_int32_t *)&wh[1];
1265 				tstamp[0] = htole32(tsf & 0xffffffff);
1266 				tstamp[1] = htole32(tsf >> 32);
1267 			}
1268 			sc->sc_stats.ast_tx_mgmt++;
1269 		}
1270 
1271 		if (ath_tx_start(sc, ni, bf, m)) {
1272 	bad:
1273 			ifp->if_oerrors++;
1274 	reclaim:
1275 			ATH_TXBUF_LOCK(sc);
1276 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1277 			ATH_TXBUF_UNLOCK(sc);
1278 			if (ni != NULL)
1279 				ieee80211_free_node(ni);
1280 			continue;
1281 		}
1282 
1283 		sc->sc_tx_timer = 5;
1284 		ifp->if_timer = 1;
1285 	}
1286 }
1287 
1288 static int
1289 ath_media_change(struct ifnet *ifp)
1290 {
1291 #define	IS_UP(ifp) \
1292 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1293 	int error;
1294 
1295 	error = ieee80211_media_change(ifp);
1296 	if (error == ENETRESET) {
1297 		struct ath_softc *sc = ifp->if_softc;
1298 		struct ieee80211com *ic = &sc->sc_ic;
1299 
1300 		if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
1301 			/*
1302 			 * Adhoc demo mode is just ibss mode w/o beacons
1303 			 * (mostly).  The hal knows nothing about it;
1304 			 * tell it we're operating in ibss mode.
1305 			 */
1306 			sc->sc_opmode = HAL_M_IBSS;
1307 		} else
1308 			sc->sc_opmode = ic->ic_opmode;
1309 		if (IS_UP(ifp))
1310 			ath_init(ifp->if_softc);	/* XXX lose error */
1311 		error = 0;
1312 	}
1313 	return error;
1314 #undef IS_UP
1315 }
1316 
1317 #ifdef ATH_DEBUG
1318 static void
1319 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1320 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1321 {
1322 	static const char *ciphers[] = {
1323 		"WEP",
1324 		"AES-OCB",
1325 		"AES-CCM",
1326 		"CKIP",
1327 		"TKIP",
1328 		"CLR",
1329 	};
1330 	int i, n;
1331 
1332 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1333 	for (i = 0, n = hk->kv_len; i < n; i++)
1334 		printf("%02x", hk->kv_val[i]);
1335 	printf(" mac %s", ether_sprintf(mac));
1336 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1337 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1338 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1339 			printf("%02x", hk->kv_mic[i]);
1340 #if HAL_ABI_VERSION > 0x06052200
1341 		if (!sc->sc_splitmic) {
1342 			printf(" txmic ");
1343 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1344 				printf("%02x", hk->kv_txmic[i]);
1345 		}
1346 #endif
1347 	}
1348 	printf("\n");
1349 }
1350 #endif
1351 
1352 /*
1353  * Set a TKIP key into the hardware.  This handles the
1354  * potential distribution of key state to multiple key
1355  * cache slots for TKIP.
1356  */
1357 static int
1358 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1359 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1360 {
1361 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1362 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1363 	struct ath_hal *ah = sc->sc_ah;
1364 
1365 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1366 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1367 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1368 		if (sc->sc_splitmic) {
1369 			/*
1370 			 * TX key goes at first index, RX key at the rx index.
1371 			 * The hal handles the MIC keys at index+64.
1372 			 */
1373 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1374 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1375 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1376 				return 0;
1377 
1378 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1379 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1380 			/* XXX delete tx key on failure? */
1381 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1382 		} else {
1383 			/*
1384 			 * Room for both TX+RX MIC keys in one key cache
1385 			 * slot, just set key at the first index; the hal
1386 			 * will handle the reset.
1387 			 */
1388 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1389 #if HAL_ABI_VERSION > 0x06052200
1390 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1391 #endif
1392 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1393 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1394 		}
1395 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1396 		/*
1397 		 * TX/RX key goes at first index.
1398 		 * The hal handles the MIC keys are index+64.
1399 		 */
1400 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1401 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1402 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1403 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1404 	}
1405 	return 0;
1406 #undef IEEE80211_KEY_XR
1407 }
1408 
1409 /*
1410  * Set a net80211 key into the hardware.  This handles the
1411  * potential distribution of key state to multiple key
1412  * cache slots for TKIP with hardware MIC support.
1413  */
1414 static int
1415 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1416 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1417 	struct ieee80211_node *bss)
1418 {
1419 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1420 	static const u_int8_t ciphermap[] = {
1421 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1422 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1423 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1424 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1425 		(u_int8_t) -1,		/* 4 is not allocated */
1426 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1427 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1428 	};
1429 	struct ath_hal *ah = sc->sc_ah;
1430 	const struct ieee80211_cipher *cip = k->wk_cipher;
1431 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1432 	const u_int8_t *mac;
1433 	HAL_KEYVAL hk;
1434 
1435 	memset(&hk, 0, sizeof(hk));
1436 	/*
1437 	 * Software crypto uses a "clear key" so non-crypto
1438 	 * state kept in the key cache are maintained and
1439 	 * so that rx frames have an entry to match.
1440 	 */
1441 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1442 		KASSERT(cip->ic_cipher < N(ciphermap),
1443 			("invalid cipher type %u", cip->ic_cipher));
1444 		hk.kv_type = ciphermap[cip->ic_cipher];
1445 		hk.kv_len = k->wk_keylen;
1446 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1447 	} else
1448 		hk.kv_type = HAL_CIPHER_CLR;
1449 
1450 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1451 		/*
1452 		 * Group keys on hardware that supports multicast frame
1453 		 * key search use a mac that is the sender's address with
1454 		 * the high bit set instead of the app-specified address.
1455 		 */
1456 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1457 		gmac[0] |= 0x80;
1458 		mac = gmac;
1459 	} else
1460 		mac = mac0;
1461 
1462 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1463 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1464 		return ath_keyset_tkip(sc, k, &hk, mac);
1465 	} else {
1466 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1467 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1468 	}
1469 #undef N
1470 }
1471 
1472 /*
1473  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1474  * each key, one for decrypt/encrypt and the other for the MIC.
1475  */
1476 static u_int16_t
1477 key_alloc_2pair(struct ath_softc *sc,
1478 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1479 {
1480 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1481 	u_int i, keyix;
1482 
1483 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1484 	/* XXX could optimize */
1485 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1486 		u_int8_t b = sc->sc_keymap[i];
1487 		if (b != 0xff) {
1488 			/*
1489 			 * One or more slots in this byte are free.
1490 			 */
1491 			keyix = i*NBBY;
1492 			while (b & 1) {
1493 		again:
1494 				keyix++;
1495 				b >>= 1;
1496 			}
1497 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1498 			if (isset(sc->sc_keymap, keyix+32) ||
1499 			    isset(sc->sc_keymap, keyix+64) ||
1500 			    isset(sc->sc_keymap, keyix+32+64)) {
1501 				/* full pair unavailable */
1502 				/* XXX statistic */
1503 				if (keyix == (i+1)*NBBY) {
1504 					/* no slots were appropriate, advance */
1505 					continue;
1506 				}
1507 				goto again;
1508 			}
1509 			setbit(sc->sc_keymap, keyix);
1510 			setbit(sc->sc_keymap, keyix+64);
1511 			setbit(sc->sc_keymap, keyix+32);
1512 			setbit(sc->sc_keymap, keyix+32+64);
1513 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1514 				"%s: key pair %u,%u %u,%u\n",
1515 				__func__, keyix, keyix+64,
1516 				keyix+32, keyix+32+64);
1517 			*txkeyix = keyix;
1518 			*rxkeyix = keyix+32;
1519 			return 1;
1520 		}
1521 	}
1522 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1523 	return 0;
1524 #undef N
1525 }
1526 
1527 /*
1528  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1529  * each key, one for decrypt/encrypt and the other for the MIC.
1530  */
1531 static u_int16_t
1532 key_alloc_pair(struct ath_softc *sc,
1533 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1534 {
1535 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1536 	u_int i, keyix;
1537 
1538 	KASSERT(!sc->sc_splitmic, ("key cache split"));
1539 	/* XXX could optimize */
1540 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1541 		u_int8_t b = sc->sc_keymap[i];
1542 		if (b != 0xff) {
1543 			/*
1544 			 * One or more slots in this byte are free.
1545 			 */
1546 			keyix = i*NBBY;
1547 			while (b & 1) {
1548 		again:
1549 				keyix++;
1550 				b >>= 1;
1551 			}
1552 			if (isset(sc->sc_keymap, keyix+64)) {
1553 				/* full pair unavailable */
1554 				/* XXX statistic */
1555 				if (keyix == (i+1)*NBBY) {
1556 					/* no slots were appropriate, advance */
1557 					continue;
1558 				}
1559 				goto again;
1560 			}
1561 			setbit(sc->sc_keymap, keyix);
1562 			setbit(sc->sc_keymap, keyix+64);
1563 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1564 				"%s: key pair %u,%u\n",
1565 				__func__, keyix, keyix+64);
1566 			*txkeyix = *rxkeyix = keyix;
1567 			return 1;
1568 		}
1569 	}
1570 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1571 	return 0;
1572 #undef N
1573 }
1574 
1575 /*
1576  * Allocate a single key cache slot.
1577  */
1578 static int
1579 key_alloc_single(struct ath_softc *sc,
1580 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1581 {
1582 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1583 	u_int i, keyix;
1584 
1585 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1586 	for (i = 0; i < N(sc->sc_keymap); i++) {
1587 		u_int8_t b = sc->sc_keymap[i];
1588 		if (b != 0xff) {
1589 			/*
1590 			 * One or more slots are free.
1591 			 */
1592 			keyix = i*NBBY;
1593 			while (b & 1)
1594 				keyix++, b >>= 1;
1595 			setbit(sc->sc_keymap, keyix);
1596 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1597 				__func__, keyix);
1598 			*txkeyix = *rxkeyix = keyix;
1599 			return 1;
1600 		}
1601 	}
1602 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1603 	return 0;
1604 #undef N
1605 }
1606 
1607 /*
1608  * Allocate one or more key cache slots for a uniacst key.  The
1609  * key itself is needed only to identify the cipher.  For hardware
1610  * TKIP with split cipher+MIC keys we allocate two key cache slot
1611  * pairs so that we can setup separate TX and RX MIC keys.  Note
1612  * that the MIC key for a TKIP key at slot i is assumed by the
1613  * hardware to be at slot i+64.  This limits TKIP keys to the first
1614  * 64 entries.
1615  */
1616 static int
1617 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1618 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1619 {
1620 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1621 
1622 	/*
1623 	 * Group key allocation must be handled specially for
1624 	 * parts that do not support multicast key cache search
1625 	 * functionality.  For those parts the key id must match
1626 	 * the h/w key index so lookups find the right key.  On
1627 	 * parts w/ the key search facility we install the sender's
1628 	 * mac address (with the high bit set) and let the hardware
1629 	 * find the key w/o using the key id.  This is preferred as
1630 	 * it permits us to support multiple users for adhoc and/or
1631 	 * multi-station operation.
1632 	 */
1633 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1634 		if (!(&ic->ic_nw_keys[0] <= k &&
1635 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1636 			/* should not happen */
1637 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1638 				"%s: bogus group key\n", __func__);
1639 			return 0;
1640 		}
1641 		/*
1642 		 * XXX we pre-allocate the global keys so
1643 		 * have no way to check if they've already been allocated.
1644 		 */
1645 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1646 		return 1;
1647 	}
1648 
1649 	/*
1650 	 * We allocate two pair for TKIP when using the h/w to do
1651 	 * the MIC.  For everything else, including software crypto,
1652 	 * we allocate a single entry.  Note that s/w crypto requires
1653 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1654 	 * not support pass-through cache entries and we map all
1655 	 * those requests to slot 0.
1656 	 */
1657 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1658 		return key_alloc_single(sc, keyix, rxkeyix);
1659 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1660 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1661 		if (sc->sc_splitmic)
1662 			return key_alloc_2pair(sc, keyix, rxkeyix);
1663 		else
1664 			return key_alloc_pair(sc, keyix, rxkeyix);
1665 	} else {
1666 		return key_alloc_single(sc, keyix, rxkeyix);
1667 	}
1668 }
1669 
1670 /*
1671  * Delete an entry in the key cache allocated by ath_key_alloc.
1672  */
1673 static int
1674 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1675 {
1676 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1677 	struct ath_hal *ah = sc->sc_ah;
1678 	const struct ieee80211_cipher *cip = k->wk_cipher;
1679 	u_int keyix = k->wk_keyix;
1680 
1681 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1682 
1683 	ath_hal_keyreset(ah, keyix);
1684 	/*
1685 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1686 	 */
1687 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1688 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1689 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1690 	if (keyix >= IEEE80211_WEP_NKID) {
1691 		/*
1692 		 * Don't touch keymap entries for global keys so
1693 		 * they are never considered for dynamic allocation.
1694 		 */
1695 		clrbit(sc->sc_keymap, keyix);
1696 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1697 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1698 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1699 			if (sc->sc_splitmic) {
1700 				/* +32 for RX key, +32+64 for RX key MIC */
1701 				clrbit(sc->sc_keymap, keyix+32);
1702 				clrbit(sc->sc_keymap, keyix+32+64);
1703 			}
1704 		}
1705 	}
1706 	return 1;
1707 }
1708 
1709 /*
1710  * Set the key cache contents for the specified key.  Key cache
1711  * slot(s) must already have been allocated by ath_key_alloc.
1712  */
1713 static int
1714 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1715 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1716 {
1717 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1718 
1719 	return ath_keyset(sc, k, mac, ic->ic_bss);
1720 }
1721 
1722 /*
1723  * Block/unblock tx+rx processing while a key change is done.
1724  * We assume the caller serializes key management operations
1725  * so we only need to worry about synchronization with other
1726  * uses that originate in the driver.
1727  */
1728 static void
1729 ath_key_update_begin(struct ieee80211com *ic)
1730 {
1731 	struct ifnet *ifp = ic->ic_ifp;
1732 	struct ath_softc *sc = ifp->if_softc;
1733 
1734 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1735 #if 0
1736 	tasklet_disable(&sc->sc_rxtq);
1737 #endif
1738 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1739 }
1740 
1741 static void
1742 ath_key_update_end(struct ieee80211com *ic)
1743 {
1744 	struct ifnet *ifp = ic->ic_ifp;
1745 	struct ath_softc *sc = ifp->if_softc;
1746 
1747 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1748 	IF_UNLOCK(&ifp->if_snd);
1749 #if 0
1750 	tasklet_enable(&sc->sc_rxtq);
1751 #endif
1752 }
1753 
1754 /*
1755  * Calculate the receive filter according to the
1756  * operating mode and state:
1757  *
1758  * o always accept unicast, broadcast, and multicast traffic
1759  * o maintain current state of phy error reception (the hal
1760  *   may enable phy error frames for noise immunity work)
1761  * o probe request frames are accepted only when operating in
1762  *   hostap, adhoc, or monitor modes
1763  * o enable promiscuous mode according to the interface state
1764  * o accept beacons:
1765  *   - when operating in adhoc mode so the 802.11 layer creates
1766  *     node table entries for peers,
1767  *   - when operating in station mode for collecting rssi data when
1768  *     the station is otherwise quiet, or
1769  *   - when scanning
1770  * o accept control frames:
1771  *   - when in monitor mode
1772  */
1773 static u_int32_t
1774 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1775 {
1776 #define	RX_FILTER_PRESERVE	(HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
1777 	struct ieee80211com *ic = &sc->sc_ic;
1778 	struct ath_hal *ah = sc->sc_ah;
1779 	struct ifnet *ifp = sc->sc_ifp;
1780 	u_int32_t rfilt;
1781 
1782 	rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE)
1783 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1784 	if (ic->ic_opmode != IEEE80211_M_STA)
1785 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1786 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1787 	    (ifp->if_flags & IFF_PROMISC))
1788 		rfilt |= HAL_RX_FILTER_PROM;
1789 	if (ic->ic_opmode == IEEE80211_M_STA ||
1790 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1791 	    state == IEEE80211_S_SCAN)
1792 		rfilt |= HAL_RX_FILTER_BEACON;
1793 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1794 		rfilt |= HAL_RX_FILTER_CONTROL;
1795 	return rfilt;
1796 #undef RX_FILTER_PRESERVE
1797 }
1798 
1799 static void
1800 ath_mode_init(struct ath_softc *sc)
1801 {
1802 	struct ieee80211com *ic = &sc->sc_ic;
1803 	struct ath_hal *ah = sc->sc_ah;
1804 	struct ifnet *ifp = sc->sc_ifp;
1805 	u_int32_t rfilt, mfilt[2], val;
1806 	u_int8_t pos;
1807 	struct ifmultiaddr *ifma;
1808 
1809 	/* configure rx filter */
1810 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1811 	ath_hal_setrxfilter(ah, rfilt);
1812 
1813 	/* configure operational mode */
1814 	ath_hal_setopmode(ah);
1815 
1816 	/*
1817 	 * Handle any link-level address change.  Note that we only
1818 	 * need to force ic_myaddr; any other addresses are handled
1819 	 * as a byproduct of the ifnet code marking the interface
1820 	 * down then up.
1821 	 *
1822 	 * XXX should get from lladdr instead of arpcom but that's more work
1823 	 */
1824 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1825 	ath_hal_setmac(ah, ic->ic_myaddr);
1826 
1827 	/* calculate and install multicast filter */
1828 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1829 		mfilt[0] = mfilt[1] = 0;
1830 		IF_ADDR_LOCK(ifp);
1831 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1832 			caddr_t dl;
1833 
1834 			/* calculate XOR of eight 6bit values */
1835 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1836 			val = LE_READ_4(dl + 0);
1837 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1838 			val = LE_READ_4(dl + 3);
1839 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1840 			pos &= 0x3f;
1841 			mfilt[pos / 32] |= (1 << (pos % 32));
1842 		}
1843 		IF_ADDR_UNLOCK(ifp);
1844 	} else {
1845 		mfilt[0] = mfilt[1] = ~0;
1846 	}
1847 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1848 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1849 		__func__, rfilt, mfilt[0], mfilt[1]);
1850 }
1851 
1852 /*
1853  * Set the slot time based on the current setting.
1854  */
1855 static void
1856 ath_setslottime(struct ath_softc *sc)
1857 {
1858 	struct ieee80211com *ic = &sc->sc_ic;
1859 	struct ath_hal *ah = sc->sc_ah;
1860 	u_int usec;
1861 
1862 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
1863 		if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
1864 			usec = 13;
1865 		else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
1866 			usec = 21;
1867 		else
1868 			usec = HAL_SLOT_TIME_9;
1869 	} else if (ic->ic_flags & IEEE80211_F_SHSLOT)
1870 		usec = HAL_SLOT_TIME_9;
1871 	else
1872 		usec = HAL_SLOT_TIME_20;
1873 
1874 	DPRINTF(sc, ATH_DEBUG_RESET,
1875 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
1876 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
1877 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
1878 
1879 	ath_hal_setslottime(ah, usec);
1880 	sc->sc_updateslot = OK;
1881 }
1882 
1883 /*
1884  * Callback from the 802.11 layer to update the
1885  * slot time based on the current setting.
1886  */
1887 static void
1888 ath_updateslot(struct ifnet *ifp)
1889 {
1890 	struct ath_softc *sc = ifp->if_softc;
1891 	struct ieee80211com *ic = &sc->sc_ic;
1892 
1893 	/*
1894 	 * When not coordinating the BSS, change the hardware
1895 	 * immediately.  For other operation we defer the change
1896 	 * until beacon updates have propagated to the stations.
1897 	 */
1898 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1899 		sc->sc_updateslot = UPDATE;
1900 	else
1901 		ath_setslottime(sc);
1902 }
1903 
1904 /*
1905  * Setup a h/w transmit queue for beacons.
1906  */
1907 static int
1908 ath_beaconq_setup(struct ath_hal *ah)
1909 {
1910 	HAL_TXQ_INFO qi;
1911 
1912 	memset(&qi, 0, sizeof(qi));
1913 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1914 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1915 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1916 	/* NB: for dynamic turbo, don't enable any other interrupts */
1917 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1918 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1919 }
1920 
1921 /*
1922  * Setup the transmit queue parameters for the beacon queue.
1923  */
1924 static int
1925 ath_beaconq_config(struct ath_softc *sc)
1926 {
1927 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1928 	struct ieee80211com *ic = &sc->sc_ic;
1929 	struct ath_hal *ah = sc->sc_ah;
1930 	HAL_TXQ_INFO qi;
1931 
1932 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1933 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1934 		/*
1935 		 * Always burst out beacon and CAB traffic.
1936 		 */
1937 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1938 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1939 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1940 	} else {
1941 		struct wmeParams *wmep =
1942 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1943 		/*
1944 		 * Adhoc mode; important thing is to use 2x cwmin.
1945 		 */
1946 		qi.tqi_aifs = wmep->wmep_aifsn;
1947 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1948 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1949 	}
1950 
1951 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1952 		device_printf(sc->sc_dev, "unable to update parameters for "
1953 			"beacon hardware queue!\n");
1954 		return 0;
1955 	} else {
1956 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1957 		return 1;
1958 	}
1959 #undef ATH_EXPONENT_TO_VALUE
1960 }
1961 
1962 /*
1963  * Allocate and setup an initial beacon frame.
1964  */
1965 static int
1966 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1967 {
1968 	struct ieee80211com *ic = ni->ni_ic;
1969 	struct ath_buf *bf;
1970 	struct mbuf *m;
1971 	int error;
1972 
1973 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1974 	if (bf == NULL) {
1975 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1976 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1977 		return ENOMEM;			/* XXX */
1978 	}
1979 	/*
1980 	 * NB: the beacon data buffer must be 32-bit aligned;
1981 	 * we assume the mbuf routines will return us something
1982 	 * with this alignment (perhaps should assert).
1983 	 */
1984 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1985 	if (m == NULL) {
1986 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1987 			__func__);
1988 		sc->sc_stats.ast_be_nombuf++;
1989 		return ENOMEM;
1990 	}
1991 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1992 				     bf->bf_segs, &bf->bf_nseg,
1993 				     BUS_DMA_NOWAIT);
1994 	if (error == 0) {
1995 		bf->bf_m = m;
1996 		bf->bf_node = ieee80211_ref_node(ni);
1997 	} else {
1998 		m_freem(m);
1999 	}
2000 	return error;
2001 }
2002 
2003 /*
2004  * Setup the beacon frame for transmit.
2005  */
2006 static void
2007 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2008 {
2009 #define	USE_SHPREAMBLE(_ic) \
2010 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2011 		== IEEE80211_F_SHPREAMBLE)
2012 	struct ieee80211_node *ni = bf->bf_node;
2013 	struct ieee80211com *ic = ni->ni_ic;
2014 	struct mbuf *m = bf->bf_m;
2015 	struct ath_hal *ah = sc->sc_ah;
2016 	struct ath_desc *ds;
2017 	int flags, antenna;
2018 	const HAL_RATE_TABLE *rt;
2019 	u_int8_t rix, rate;
2020 
2021 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2022 		__func__, m, m->m_len);
2023 
2024 	/* setup descriptors */
2025 	ds = bf->bf_desc;
2026 
2027 	flags = HAL_TXDESC_NOACK;
2028 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2029 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2030 		flags |= HAL_TXDESC_VEOL;
2031 		/*
2032 		 * Let hardware handle antenna switching.
2033 		 */
2034 		antenna = sc->sc_txantenna;
2035 	} else {
2036 		ds->ds_link = 0;
2037 		/*
2038 		 * Switch antenna every 4 beacons.
2039 		 * XXX assumes two antenna
2040 		 */
2041 		antenna = sc->sc_txantenna != 0 ? sc->sc_txantenna
2042 			: (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2043 	}
2044 
2045 	KASSERT(bf->bf_nseg == 1,
2046 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2047 	ds->ds_data = bf->bf_segs[0].ds_addr;
2048 	/*
2049 	 * Calculate rate code.
2050 	 * XXX everything at min xmit rate
2051 	 */
2052 	rix = sc->sc_minrateix;
2053 	rt = sc->sc_currates;
2054 	rate = rt->info[rix].rateCode;
2055 	if (USE_SHPREAMBLE(ic))
2056 		rate |= rt->info[rix].shortPreamble;
2057 	ath_hal_setuptxdesc(ah, ds
2058 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2059 		, sizeof(struct ieee80211_frame)/* header length */
2060 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2061 		, ni->ni_txpower		/* txpower XXX */
2062 		, rate, 1			/* series 0 rate/tries */
2063 		, HAL_TXKEYIX_INVALID		/* no encryption */
2064 		, antenna			/* antenna mode */
2065 		, flags				/* no ack, veol for beacons */
2066 		, 0				/* rts/cts rate */
2067 		, 0				/* rts/cts duration */
2068 	);
2069 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2070 	ath_hal_filltxdesc(ah, ds
2071 		, roundup(m->m_len, 4)		/* buffer length */
2072 		, AH_TRUE			/* first segment */
2073 		, AH_TRUE			/* last segment */
2074 		, ds				/* first descriptor */
2075 	);
2076 #undef USE_SHPREAMBLE
2077 }
2078 
2079 /*
2080  * Append the contents of src to dst; both queues
2081  * are assumed to be locked.
2082  */
2083 static void
2084 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2085 {
2086 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2087 	dst->axq_link = src->axq_link;
2088 	src->axq_link = NULL;
2089 	dst->axq_depth += src->axq_depth;
2090 	src->axq_depth = 0;
2091 }
2092 
2093 /*
2094  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2095  * frame contents are done as needed and the slot time is
2096  * also adjusted based on current state.
2097  */
2098 static void
2099 ath_beacon_proc(void *arg, int pending)
2100 {
2101 	struct ath_softc *sc = arg;
2102 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2103 	struct ieee80211_node *ni = bf->bf_node;
2104 	struct ieee80211com *ic = ni->ni_ic;
2105 	struct ath_hal *ah = sc->sc_ah;
2106 	struct ath_txq *cabq = sc->sc_cabq;
2107 	struct mbuf *m;
2108 	int ncabq, nmcastq, error, otherant;
2109 
2110 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2111 		__func__, pending);
2112 
2113 	if (ic->ic_opmode == IEEE80211_M_STA ||
2114 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2115 	    bf == NULL || bf->bf_m == NULL) {
2116 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2117 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2118 		return;
2119 	}
2120 	/*
2121 	 * Check if the previous beacon has gone out.  If
2122 	 * not don't try to post another, skip this period
2123 	 * and wait for the next.  Missed beacons indicate
2124 	 * a problem and should not occur.  If we miss too
2125 	 * many consecutive beacons reset the device.
2126 	 */
2127 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2128 		sc->sc_bmisscount++;
2129 		DPRINTF(sc, ATH_DEBUG_BEACON,
2130 			"%s: missed %u consecutive beacons\n",
2131 			__func__, sc->sc_bmisscount);
2132 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2133 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2134 		return;
2135 	}
2136 	if (sc->sc_bmisscount != 0) {
2137 		DPRINTF(sc, ATH_DEBUG_BEACON,
2138 			"%s: resume beacon xmit after %u misses\n",
2139 			__func__, sc->sc_bmisscount);
2140 		sc->sc_bmisscount = 0;
2141 	}
2142 
2143 	/*
2144 	 * Update dynamic beacon contents.  If this returns
2145 	 * non-zero then we need to remap the memory because
2146 	 * the beacon frame changed size (probably because
2147 	 * of the TIM bitmap).
2148 	 */
2149 	m = bf->bf_m;
2150 	nmcastq = sc->sc_mcastq.axq_depth;
2151 	ncabq = ath_hal_numtxpending(ah, cabq->axq_qnum);
2152 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq+nmcastq)) {
2153 		/* XXX too conservative? */
2154 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2155 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2156 					     bf->bf_segs, &bf->bf_nseg,
2157 					     BUS_DMA_NOWAIT);
2158 		if (error != 0) {
2159 			if_printf(ic->ic_ifp,
2160 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2161 			    __func__, error);
2162 			return;
2163 		}
2164 	}
2165 	if (ncabq && (sc->sc_boff.bo_tim[4] & 1)) {
2166 		/*
2167 		 * CABQ traffic from the previous DTIM is still pending.
2168 		 * This is ok for now but when there are multiple vap's
2169 		 * and we are using staggered beacons we'll want to drain
2170 		 * the cabq before loading frames for the different vap.
2171 		 */
2172 		DPRINTF(sc, ATH_DEBUG_BEACON,
2173 		    "%s: cabq did not drain, mcastq %u cabq %u/%u\n",
2174 		    __func__, nmcastq, ncabq, cabq->axq_depth);
2175 		sc->sc_stats.ast_cabq_busy++;
2176 	}
2177 
2178 	/*
2179 	 * Handle slot time change when a non-ERP station joins/leaves
2180 	 * an 11g network.  The 802.11 layer notifies us via callback,
2181 	 * we mark updateslot, then wait one beacon before effecting
2182 	 * the change.  This gives associated stations at least one
2183 	 * beacon interval to note the state change.
2184 	 */
2185 	/* XXX locking */
2186 	if (sc->sc_updateslot == UPDATE)
2187 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2188 	else if (sc->sc_updateslot == COMMIT)
2189 		ath_setslottime(sc);		/* commit change to h/w */
2190 
2191 	/*
2192 	 * Check recent per-antenna transmit statistics and flip
2193 	 * the default antenna if noticeably more frames went out
2194 	 * on the non-default antenna.
2195 	 * XXX assumes 2 anntenae
2196 	 */
2197 	otherant = sc->sc_defant & 1 ? 2 : 1;
2198 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2199 		ath_setdefantenna(sc, otherant);
2200 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2201 
2202 	/*
2203 	 * Construct tx descriptor.
2204 	 */
2205 	ath_beacon_setup(sc, bf);
2206 
2207 	/*
2208 	 * Stop any current dma and put the new frame on the queue.
2209 	 * This should never fail since we check above that no frames
2210 	 * are still pending on the queue.
2211 	 */
2212 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2213 		DPRINTF(sc, ATH_DEBUG_ANY,
2214 			"%s: beacon queue %u did not stop?\n",
2215 			__func__, sc->sc_bhalq);
2216 	}
2217 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2218 
2219 	/*
2220 	 * Enable the CAB queue before the beacon queue to
2221 	 * insure cab frames are triggered by this beacon.
2222 	 */
2223 	if (sc->sc_boff.bo_tim_len && (sc->sc_boff.bo_tim[4] & 1)) {
2224 		/* NB: only at DTIM */
2225 		ATH_TXQ_LOCK(cabq);
2226 		ATH_TXQ_LOCK(&sc->sc_mcastq);
2227 		if (nmcastq) {
2228 			struct ath_buf *bfm;
2229 
2230 			/*
2231 			 * Move frames from the s/w mcast q to the h/w cab q.
2232 			 */
2233 			bfm = STAILQ_FIRST(&sc->sc_mcastq.axq_q);
2234 			if (cabq->axq_link != NULL) {
2235 				*cabq->axq_link = bfm->bf_daddr;
2236 			} else
2237 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2238 					bfm->bf_daddr);
2239 			ath_txqmove(cabq, &sc->sc_mcastq);
2240 
2241 			sc->sc_stats.ast_cabq_xmit += nmcastq;
2242 		}
2243 		/* NB: gated by beacon so safe to start here */
2244 		ath_hal_txstart(ah, cabq->axq_qnum);
2245 		ATH_TXQ_UNLOCK(cabq);
2246 		ATH_TXQ_UNLOCK(&sc->sc_mcastq);
2247 	}
2248 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2249 	ath_hal_txstart(ah, sc->sc_bhalq);
2250 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2251 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2252 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2253 
2254 	sc->sc_stats.ast_be_xmit++;
2255 }
2256 
2257 /*
2258  * Reset the hardware after detecting beacons have stopped.
2259  */
2260 static void
2261 ath_bstuck_proc(void *arg, int pending)
2262 {
2263 	struct ath_softc *sc = arg;
2264 	struct ifnet *ifp = sc->sc_ifp;
2265 
2266 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2267 		sc->sc_bmisscount);
2268 	ath_reset(ifp);
2269 }
2270 
2271 /*
2272  * Reclaim beacon resources.
2273  */
2274 static void
2275 ath_beacon_free(struct ath_softc *sc)
2276 {
2277 	struct ath_buf *bf;
2278 
2279 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2280 		if (bf->bf_m != NULL) {
2281 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2282 			m_freem(bf->bf_m);
2283 			bf->bf_m = NULL;
2284 		}
2285 		if (bf->bf_node != NULL) {
2286 			ieee80211_free_node(bf->bf_node);
2287 			bf->bf_node = NULL;
2288 		}
2289 	}
2290 }
2291 
2292 /*
2293  * Configure the beacon and sleep timers.
2294  *
2295  * When operating as an AP this resets the TSF and sets
2296  * up the hardware to notify us when we need to issue beacons.
2297  *
2298  * When operating in station mode this sets up the beacon
2299  * timers according to the timestamp of the last received
2300  * beacon and the current TSF, configures PCF and DTIM
2301  * handling, programs the sleep registers so the hardware
2302  * will wakeup in time to receive beacons, and configures
2303  * the beacon miss handling so we'll receive a BMISS
2304  * interrupt when we stop seeing beacons from the AP
2305  * we've associated with.
2306  */
2307 static void
2308 ath_beacon_config(struct ath_softc *sc)
2309 {
2310 #define	TSF_TO_TU(_h,_l) \
2311 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2312 #define	FUDGE	2
2313 	struct ath_hal *ah = sc->sc_ah;
2314 	struct ieee80211com *ic = &sc->sc_ic;
2315 	struct ieee80211_node *ni = ic->ic_bss;
2316 	u_int32_t nexttbtt, intval, tsftu;
2317 	u_int64_t tsf;
2318 
2319 	/* extract tstamp from last beacon and convert to TU */
2320 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2321 			     LE_READ_4(ni->ni_tstamp.data));
2322 	/* NB: the beacon interval is kept internally in TU's */
2323 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2324 	if (nexttbtt == 0)		/* e.g. for ap mode */
2325 		nexttbtt = intval;
2326 	else if (intval)		/* NB: can be 0 for monitor mode */
2327 		nexttbtt = roundup(nexttbtt, intval);
2328 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2329 		__func__, nexttbtt, intval, ni->ni_intval);
2330 	if (ic->ic_opmode == IEEE80211_M_STA) {
2331 		HAL_BEACON_STATE bs;
2332 		int dtimperiod, dtimcount;
2333 		int cfpperiod, cfpcount;
2334 
2335 		/*
2336 		 * Setup dtim and cfp parameters according to
2337 		 * last beacon we received (which may be none).
2338 		 */
2339 		dtimperiod = ni->ni_dtim_period;
2340 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2341 			dtimperiod = 1;
2342 		dtimcount = ni->ni_dtim_count;
2343 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2344 			dtimcount = 0;		/* XXX? */
2345 		cfpperiod = 1;			/* NB: no PCF support yet */
2346 		cfpcount = 0;
2347 		/*
2348 		 * Pull nexttbtt forward to reflect the current
2349 		 * TSF and calculate dtim+cfp state for the result.
2350 		 */
2351 		tsf = ath_hal_gettsf64(ah);
2352 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2353 		do {
2354 			nexttbtt += intval;
2355 			if (--dtimcount < 0) {
2356 				dtimcount = dtimperiod - 1;
2357 				if (--cfpcount < 0)
2358 					cfpcount = cfpperiod - 1;
2359 			}
2360 		} while (nexttbtt < tsftu);
2361 		memset(&bs, 0, sizeof(bs));
2362 		bs.bs_intval = intval;
2363 		bs.bs_nexttbtt = nexttbtt;
2364 		bs.bs_dtimperiod = dtimperiod*intval;
2365 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2366 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2367 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2368 		bs.bs_cfpmaxduration = 0;
2369 #if 0
2370 		/*
2371 		 * The 802.11 layer records the offset to the DTIM
2372 		 * bitmap while receiving beacons; use it here to
2373 		 * enable h/w detection of our AID being marked in
2374 		 * the bitmap vector (to indicate frames for us are
2375 		 * pending at the AP).
2376 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2377 		 * XXX enable based on h/w rev for newer chips
2378 		 */
2379 		bs.bs_timoffset = ni->ni_timoff;
2380 #endif
2381 		/*
2382 		 * Calculate the number of consecutive beacons to miss
2383 		 * before taking a BMISS interrupt.  The configuration
2384 		 * is specified in ms, so we need to convert that to
2385 		 * TU's and then calculate based on the beacon interval.
2386 		 * Note that we clamp the result to at most 10 beacons.
2387 		 */
2388 		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2389 		if (bs.bs_bmissthreshold > 10)
2390 			bs.bs_bmissthreshold = 10;
2391 		else if (bs.bs_bmissthreshold <= 0)
2392 			bs.bs_bmissthreshold = 1;
2393 
2394 		/*
2395 		 * Calculate sleep duration.  The configuration is
2396 		 * given in ms.  We insure a multiple of the beacon
2397 		 * period is used.  Also, if the sleep duration is
2398 		 * greater than the DTIM period then it makes senses
2399 		 * to make it a multiple of that.
2400 		 *
2401 		 * XXX fixed at 100ms
2402 		 */
2403 		bs.bs_sleepduration =
2404 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2405 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2406 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2407 
2408 		DPRINTF(sc, ATH_DEBUG_BEACON,
2409 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2410 			, __func__
2411 			, tsf, tsftu
2412 			, bs.bs_intval
2413 			, bs.bs_nexttbtt
2414 			, bs.bs_dtimperiod
2415 			, bs.bs_nextdtim
2416 			, bs.bs_bmissthreshold
2417 			, bs.bs_sleepduration
2418 			, bs.bs_cfpperiod
2419 			, bs.bs_cfpmaxduration
2420 			, bs.bs_cfpnext
2421 			, bs.bs_timoffset
2422 		);
2423 		ath_hal_intrset(ah, 0);
2424 		ath_hal_beacontimers(ah, &bs);
2425 		sc->sc_imask |= HAL_INT_BMISS;
2426 		ath_hal_intrset(ah, sc->sc_imask);
2427 	} else {
2428 		ath_hal_intrset(ah, 0);
2429 		if (nexttbtt == intval)
2430 			intval |= HAL_BEACON_RESET_TSF;
2431 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2432 			/*
2433 			 * In IBSS mode enable the beacon timers but only
2434 			 * enable SWBA interrupts if we need to manually
2435 			 * prepare beacon frames.  Otherwise we use a
2436 			 * self-linked tx descriptor and let the hardware
2437 			 * deal with things.
2438 			 */
2439 			intval |= HAL_BEACON_ENA;
2440 			if (!sc->sc_hasveol)
2441 				sc->sc_imask |= HAL_INT_SWBA;
2442 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2443 				/*
2444 				 * Pull nexttbtt forward to reflect
2445 				 * the current TSF.
2446 				 */
2447 				tsf = ath_hal_gettsf64(ah);
2448 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2449 				do {
2450 					nexttbtt += intval;
2451 				} while (nexttbtt < tsftu);
2452 			}
2453 			ath_beaconq_config(sc);
2454 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2455 			/*
2456 			 * In AP mode we enable the beacon timers and
2457 			 * SWBA interrupts to prepare beacon frames.
2458 			 */
2459 			intval |= HAL_BEACON_ENA;
2460 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2461 			ath_beaconq_config(sc);
2462 		}
2463 		ath_hal_beaconinit(ah, nexttbtt, intval);
2464 		sc->sc_bmisscount = 0;
2465 		ath_hal_intrset(ah, sc->sc_imask);
2466 		/*
2467 		 * When using a self-linked beacon descriptor in
2468 		 * ibss mode load it once here.
2469 		 */
2470 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2471 			ath_beacon_proc(sc, 0);
2472 	}
2473 	sc->sc_syncbeacon = 0;
2474 #undef FUDGE
2475 #undef TSF_TO_TU
2476 }
2477 
2478 static void
2479 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2480 {
2481 	bus_addr_t *paddr = (bus_addr_t*) arg;
2482 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2483 	*paddr = segs->ds_addr;
2484 }
2485 
2486 static int
2487 ath_descdma_setup(struct ath_softc *sc,
2488 	struct ath_descdma *dd, ath_bufhead *head,
2489 	const char *name, int nbuf, int ndesc)
2490 {
2491 #define	DS2PHYS(_dd, _ds) \
2492 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2493 	struct ifnet *ifp = sc->sc_ifp;
2494 	struct ath_desc *ds;
2495 	struct ath_buf *bf;
2496 	int i, bsize, error;
2497 
2498 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2499 	    __func__, name, nbuf, ndesc);
2500 
2501 	dd->dd_name = name;
2502 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2503 
2504 	/*
2505 	 * Setup DMA descriptor area.
2506 	 */
2507 	error = bus_dma_tag_create(NULL,	/* parent */
2508 		       PAGE_SIZE, 0,		/* alignment, bounds */
2509 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2510 		       BUS_SPACE_MAXADDR,	/* highaddr */
2511 		       NULL, NULL,		/* filter, filterarg */
2512 		       dd->dd_desc_len,		/* maxsize */
2513 		       1,			/* nsegments */
2514 		       dd->dd_desc_len,		/* maxsegsize */
2515 		       BUS_DMA_ALLOCNOW,	/* flags */
2516 		       NULL,			/* lockfunc */
2517 		       NULL,			/* lockarg */
2518 		       &dd->dd_dmat);
2519 	if (error != 0) {
2520 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2521 		return error;
2522 	}
2523 
2524 	/* allocate descriptors */
2525 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2526 	if (error != 0) {
2527 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2528 			"error %u\n", dd->dd_name, error);
2529 		goto fail0;
2530 	}
2531 
2532 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2533 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2534 				 &dd->dd_dmamap);
2535 	if (error != 0) {
2536 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2537 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2538 		goto fail1;
2539 	}
2540 
2541 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2542 				dd->dd_desc, dd->dd_desc_len,
2543 				ath_load_cb, &dd->dd_desc_paddr,
2544 				BUS_DMA_NOWAIT);
2545 	if (error != 0) {
2546 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2547 			dd->dd_name, error);
2548 		goto fail2;
2549 	}
2550 
2551 	ds = dd->dd_desc;
2552 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2553 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2554 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2555 
2556 	/* allocate rx buffers */
2557 	bsize = sizeof(struct ath_buf) * nbuf;
2558 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2559 	if (bf == NULL) {
2560 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2561 			dd->dd_name, bsize);
2562 		goto fail3;
2563 	}
2564 	dd->dd_bufptr = bf;
2565 
2566 	STAILQ_INIT(head);
2567 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2568 		bf->bf_desc = ds;
2569 		bf->bf_daddr = DS2PHYS(dd, ds);
2570 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2571 				&bf->bf_dmamap);
2572 		if (error != 0) {
2573 			if_printf(ifp, "unable to create dmamap for %s "
2574 				"buffer %u, error %u\n", dd->dd_name, i, error);
2575 			ath_descdma_cleanup(sc, dd, head);
2576 			return error;
2577 		}
2578 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2579 	}
2580 	return 0;
2581 fail3:
2582 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2583 fail2:
2584 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2585 fail1:
2586 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2587 fail0:
2588 	bus_dma_tag_destroy(dd->dd_dmat);
2589 	memset(dd, 0, sizeof(*dd));
2590 	return error;
2591 #undef DS2PHYS
2592 }
2593 
2594 static void
2595 ath_descdma_cleanup(struct ath_softc *sc,
2596 	struct ath_descdma *dd, ath_bufhead *head)
2597 {
2598 	struct ath_buf *bf;
2599 	struct ieee80211_node *ni;
2600 
2601 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2602 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2603 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2604 	bus_dma_tag_destroy(dd->dd_dmat);
2605 
2606 	STAILQ_FOREACH(bf, head, bf_list) {
2607 		if (bf->bf_m) {
2608 			m_freem(bf->bf_m);
2609 			bf->bf_m = NULL;
2610 		}
2611 		if (bf->bf_dmamap != NULL) {
2612 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2613 			bf->bf_dmamap = NULL;
2614 		}
2615 		ni = bf->bf_node;
2616 		bf->bf_node = NULL;
2617 		if (ni != NULL) {
2618 			/*
2619 			 * Reclaim node reference.
2620 			 */
2621 			ieee80211_free_node(ni);
2622 		}
2623 	}
2624 
2625 	STAILQ_INIT(head);
2626 	free(dd->dd_bufptr, M_ATHDEV);
2627 	memset(dd, 0, sizeof(*dd));
2628 }
2629 
2630 static int
2631 ath_desc_alloc(struct ath_softc *sc)
2632 {
2633 	int error;
2634 
2635 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2636 			"rx", ath_rxbuf, 1);
2637 	if (error != 0)
2638 		return error;
2639 
2640 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2641 			"tx", ath_txbuf, ATH_TXDESC);
2642 	if (error != 0) {
2643 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2644 		return error;
2645 	}
2646 
2647 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2648 			"beacon", 1, 1);
2649 	if (error != 0) {
2650 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2651 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2652 		return error;
2653 	}
2654 	return 0;
2655 }
2656 
2657 static void
2658 ath_desc_free(struct ath_softc *sc)
2659 {
2660 
2661 	if (sc->sc_bdma.dd_desc_len != 0)
2662 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2663 	if (sc->sc_txdma.dd_desc_len != 0)
2664 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2665 	if (sc->sc_rxdma.dd_desc_len != 0)
2666 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2667 }
2668 
2669 static struct ieee80211_node *
2670 ath_node_alloc(struct ieee80211_node_table *nt)
2671 {
2672 	struct ieee80211com *ic = nt->nt_ic;
2673 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2674 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2675 	struct ath_node *an;
2676 
2677 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2678 	if (an == NULL) {
2679 		/* XXX stat+msg */
2680 		return NULL;
2681 	}
2682 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2683 	ath_rate_node_init(sc, an);
2684 
2685 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2686 	return &an->an_node;
2687 }
2688 
2689 static void
2690 ath_node_free(struct ieee80211_node *ni)
2691 {
2692 	struct ieee80211com *ic = ni->ni_ic;
2693         struct ath_softc *sc = ic->ic_ifp->if_softc;
2694 
2695 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2696 
2697 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2698 	sc->sc_node_free(ni);
2699 }
2700 
2701 static u_int8_t
2702 ath_node_getrssi(const struct ieee80211_node *ni)
2703 {
2704 #define	HAL_EP_RND(x, mul) \
2705 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2706 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2707 	int32_t rssi;
2708 
2709 	/*
2710 	 * When only one frame is received there will be no state in
2711 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2712 	 */
2713 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2714 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2715 	else
2716 		rssi = ni->ni_rssi;
2717 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2718 #undef HAL_EP_RND
2719 }
2720 
2721 static int
2722 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2723 {
2724 	struct ath_hal *ah = sc->sc_ah;
2725 	int error;
2726 	struct mbuf *m;
2727 	struct ath_desc *ds;
2728 
2729 	m = bf->bf_m;
2730 	if (m == NULL) {
2731 		/*
2732 		 * NB: by assigning a page to the rx dma buffer we
2733 		 * implicitly satisfy the Atheros requirement that
2734 		 * this buffer be cache-line-aligned and sized to be
2735 		 * multiple of the cache line size.  Not doing this
2736 		 * causes weird stuff to happen (for the 5210 at least).
2737 		 */
2738 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2739 		if (m == NULL) {
2740 			DPRINTF(sc, ATH_DEBUG_ANY,
2741 				"%s: no mbuf/cluster\n", __func__);
2742 			sc->sc_stats.ast_rx_nombuf++;
2743 			return ENOMEM;
2744 		}
2745 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2746 
2747 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2748 					     bf->bf_dmamap, m,
2749 					     bf->bf_segs, &bf->bf_nseg,
2750 					     BUS_DMA_NOWAIT);
2751 		if (error != 0) {
2752 			DPRINTF(sc, ATH_DEBUG_ANY,
2753 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2754 			    __func__, error);
2755 			sc->sc_stats.ast_rx_busdma++;
2756 			m_freem(m);
2757 			return error;
2758 		}
2759 		KASSERT(bf->bf_nseg == 1,
2760 			("multi-segment packet; nseg %u", bf->bf_nseg));
2761 		bf->bf_m = m;
2762 	}
2763 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2764 
2765 	/*
2766 	 * Setup descriptors.  For receive we always terminate
2767 	 * the descriptor list with a self-linked entry so we'll
2768 	 * not get overrun under high load (as can happen with a
2769 	 * 5212 when ANI processing enables PHY error frames).
2770 	 *
2771 	 * To insure the last descriptor is self-linked we create
2772 	 * each descriptor as self-linked and add it to the end.  As
2773 	 * each additional descriptor is added the previous self-linked
2774 	 * entry is ``fixed'' naturally.  This should be safe even
2775 	 * if DMA is happening.  When processing RX interrupts we
2776 	 * never remove/process the last, self-linked, entry on the
2777 	 * descriptor list.  This insures the hardware always has
2778 	 * someplace to write a new frame.
2779 	 */
2780 	ds = bf->bf_desc;
2781 	ds->ds_link = bf->bf_daddr;	/* link to self */
2782 	ds->ds_data = bf->bf_segs[0].ds_addr;
2783 	ath_hal_setuprxdesc(ah, ds
2784 		, m->m_len		/* buffer size */
2785 		, 0
2786 	);
2787 
2788 	if (sc->sc_rxlink != NULL)
2789 		*sc->sc_rxlink = bf->bf_daddr;
2790 	sc->sc_rxlink = &ds->ds_link;
2791 	return 0;
2792 }
2793 
2794 /*
2795  * Extend 15-bit time stamp from rx descriptor to
2796  * a full 64-bit TSF using the specified TSF.
2797  */
2798 static __inline u_int64_t
2799 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2800 {
2801 	if ((tsf & 0x7fff) < rstamp)
2802 		tsf -= 0x8000;
2803 	return ((tsf &~ 0x7fff) | rstamp);
2804 }
2805 
2806 /*
2807  * Intercept management frames to collect beacon rssi data
2808  * and to do ibss merges.
2809  */
2810 static void
2811 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2812 	struct ieee80211_node *ni,
2813 	int subtype, int rssi, u_int32_t rstamp)
2814 {
2815 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2816 
2817 	/*
2818 	 * Call up first so subsequent work can use information
2819 	 * potentially stored in the node (e.g. for ibss merge).
2820 	 */
2821 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2822 	switch (subtype) {
2823 	case IEEE80211_FC0_SUBTYPE_BEACON:
2824 		/* update rssi statistics for use by the hal */
2825 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2826 		if (sc->sc_syncbeacon &&
2827 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2828 			/*
2829 			 * Resync beacon timers using the tsf of the beacon
2830 			 * frame we just received.
2831 			 */
2832 			ath_beacon_config(sc);
2833 		}
2834 		/* fall thru... */
2835 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2836 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2837 		    ic->ic_state == IEEE80211_S_RUN) {
2838 			u_int64_t tsf = ath_extend_tsf(rstamp,
2839 				ath_hal_gettsf64(sc->sc_ah));
2840 			/*
2841 			 * Handle ibss merge as needed; check the tsf on the
2842 			 * frame before attempting the merge.  The 802.11 spec
2843 			 * says the station should change it's bssid to match
2844 			 * the oldest station with the same ssid, where oldest
2845 			 * is determined by the tsf.  Note that hardware
2846 			 * reconfiguration happens through callback to
2847 			 * ath_newstate as the state machine will go from
2848 			 * RUN -> RUN when this happens.
2849 			 */
2850 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2851 				DPRINTF(sc, ATH_DEBUG_STATE,
2852 				    "ibss merge, rstamp %u tsf %ju "
2853 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2854 				    (uintmax_t)ni->ni_tstamp.tsf);
2855 				(void) ieee80211_ibss_merge(ni);
2856 			}
2857 		}
2858 		break;
2859 	}
2860 }
2861 
2862 /*
2863  * Set the default antenna.
2864  */
2865 static void
2866 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2867 {
2868 	struct ath_hal *ah = sc->sc_ah;
2869 
2870 	/* XXX block beacon interrupts */
2871 	ath_hal_setdefantenna(ah, antenna);
2872 	if (sc->sc_defant != antenna)
2873 		sc->sc_stats.ast_ant_defswitch++;
2874 	sc->sc_defant = antenna;
2875 	sc->sc_rxotherant = 0;
2876 }
2877 
2878 static int
2879 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
2880 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
2881 {
2882 	u_int8_t rix;
2883 
2884 	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
2885 
2886 	/*
2887 	 * Discard anything shorter than an ack or cts.
2888 	 */
2889 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
2890 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
2891 			__func__, m->m_pkthdr.len);
2892 		sc->sc_stats.ast_rx_tooshort++;
2893 		return 0;
2894 	}
2895 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
2896 	rix = rs->rs_rate;
2897 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2898 	if (rs->rs_status & HAL_RXERR_CRC)
2899 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2900 	/* XXX propagate other error flags from descriptor */
2901 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2902 	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
2903 	sc->sc_rx_th.wr_antnoise = nf;
2904 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
2905 
2906 	bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
2907 
2908 	return 1;
2909 }
2910 
2911 static void
2912 ath_rx_proc(void *arg, int npending)
2913 {
2914 #define	PA2DESC(_sc, _pa) \
2915 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2916 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2917 	struct ath_softc *sc = arg;
2918 	struct ath_buf *bf;
2919 	struct ieee80211com *ic = &sc->sc_ic;
2920 	struct ifnet *ifp = sc->sc_ifp;
2921 	struct ath_hal *ah = sc->sc_ah;
2922 	struct ath_desc *ds;
2923 	struct ath_rx_status *rs;
2924 	struct mbuf *m;
2925 	struct ieee80211_node *ni;
2926 	struct ath_node *an;
2927 	int len, type, ngood;
2928 	u_int phyerr;
2929 	HAL_STATUS status;
2930 	int16_t nf;
2931 	u_int64_t tsf;
2932 
2933 	NET_LOCK_GIANT();		/* XXX */
2934 
2935 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2936 	ngood = 0;
2937 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2938 	tsf = ath_hal_gettsf64(ah);
2939 	do {
2940 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2941 		if (bf == NULL) {		/* NB: shouldn't happen */
2942 			if_printf(ifp, "%s: no buffer!\n", __func__);
2943 			break;
2944 		}
2945 		m = bf->bf_m;
2946 		if (m == NULL) {		/* NB: shouldn't happen */
2947 			/*
2948 			 * If mbuf allocation failed previously there
2949 			 * will be no mbuf; try again to re-populate it.
2950 			 */
2951 			/* XXX make debug msg */
2952 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2953 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2954 			goto rx_next;
2955 		}
2956 		ds = bf->bf_desc;
2957 		if (ds->ds_link == bf->bf_daddr) {
2958 			/* NB: never process the self-linked entry at the end */
2959 			break;
2960 		}
2961 		/* XXX sync descriptor memory */
2962 		/*
2963 		 * Must provide the virtual address of the current
2964 		 * descriptor, the physical address, and the virtual
2965 		 * address of the next descriptor in the h/w chain.
2966 		 * This allows the HAL to look ahead to see if the
2967 		 * hardware is done with a descriptor by checking the
2968 		 * done bit in the following descriptor and the address
2969 		 * of the current descriptor the DMA engine is working
2970 		 * on.  All this is necessary because of our use of
2971 		 * a self-linked list to avoid rx overruns.
2972 		 */
2973 		rs = &bf->bf_status.ds_rxstat;
2974 		status = ath_hal_rxprocdesc(ah, ds,
2975 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
2976 #ifdef ATH_DEBUG
2977 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2978 			ath_printrxbuf(bf, 0, status == HAL_OK);
2979 #endif
2980 		if (status == HAL_EINPROGRESS)
2981 			break;
2982 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2983 		if (rs->rs_more) {
2984 			/*
2985 			 * Frame spans multiple descriptors; this
2986 			 * cannot happen yet as we don't support
2987 			 * jumbograms.  If not in monitor mode,
2988 			 * discard the frame.
2989 			 */
2990 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2991 				sc->sc_stats.ast_rx_toobig++;
2992 				goto rx_next;
2993 			}
2994 			/* fall thru for monitor mode handling... */
2995 		} else if (rs->rs_status != 0) {
2996 			if (rs->rs_status & HAL_RXERR_CRC)
2997 				sc->sc_stats.ast_rx_crcerr++;
2998 			if (rs->rs_status & HAL_RXERR_FIFO)
2999 				sc->sc_stats.ast_rx_fifoerr++;
3000 			if (rs->rs_status & HAL_RXERR_PHY) {
3001 				sc->sc_stats.ast_rx_phyerr++;
3002 				phyerr = rs->rs_phyerr & 0x1f;
3003 				sc->sc_stats.ast_rx_phy[phyerr]++;
3004 				goto rx_next;
3005 			}
3006 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3007 				/*
3008 				 * Decrypt error.  If the error occurred
3009 				 * because there was no hardware key, then
3010 				 * let the frame through so the upper layers
3011 				 * can process it.  This is necessary for 5210
3012 				 * parts which have no way to setup a ``clear''
3013 				 * key cache entry.
3014 				 *
3015 				 * XXX do key cache faulting
3016 				 */
3017 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3018 					goto rx_accept;
3019 				sc->sc_stats.ast_rx_badcrypt++;
3020 			}
3021 			if (rs->rs_status & HAL_RXERR_MIC) {
3022 				sc->sc_stats.ast_rx_badmic++;
3023 				/*
3024 				 * Do minimal work required to hand off
3025 				 * the 802.11 header for notifcation.
3026 				 */
3027 				/* XXX frag's and qos frames */
3028 				len = rs->rs_datalen;
3029 				if (len >= sizeof (struct ieee80211_frame)) {
3030 					bus_dmamap_sync(sc->sc_dmat,
3031 					    bf->bf_dmamap,
3032 					    BUS_DMASYNC_POSTREAD);
3033 					ieee80211_notify_michael_failure(ic,
3034 					    mtod(m, struct ieee80211_frame *),
3035 					    sc->sc_splitmic ?
3036 					        rs->rs_keyix-32 : rs->rs_keyix
3037 					);
3038 				}
3039 			}
3040 			ifp->if_ierrors++;
3041 			/*
3042 			 * When a tap is present pass error frames
3043 			 * that have been requested.  By default we
3044 			 * pass decrypt+mic errors but others may be
3045 			 * interesting (e.g. crc).
3046 			 */
3047 			if (bpf_peers_present(sc->sc_drvbpf) &&
3048 			    (rs->rs_status & sc->sc_monpass)) {
3049 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3050 				    BUS_DMASYNC_POSTREAD);
3051 				/* NB: bpf needs the mbuf length setup */
3052 				len = rs->rs_datalen;
3053 				m->m_pkthdr.len = m->m_len = len;
3054 				(void) ath_rx_tap(sc, m, rs, tsf, nf);
3055 			}
3056 			/* XXX pass MIC errors up for s/w reclaculation */
3057 			goto rx_next;
3058 		}
3059 rx_accept:
3060 		/*
3061 		 * Sync and unmap the frame.  At this point we're
3062 		 * committed to passing the mbuf somewhere so clear
3063 		 * bf_m; this means a new mbuf must be allocated
3064 		 * when the rx descriptor is setup again to receive
3065 		 * another frame.
3066 		 */
3067 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3068 		    BUS_DMASYNC_POSTREAD);
3069 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3070 		bf->bf_m = NULL;
3071 
3072 		m->m_pkthdr.rcvif = ifp;
3073 		len = rs->rs_datalen;
3074 		m->m_pkthdr.len = m->m_len = len;
3075 
3076 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3077 
3078 		if (bpf_peers_present(sc->sc_drvbpf) &&
3079 		    !ath_rx_tap(sc, m, rs, tsf, nf)) {
3080 			m_freem(m);		/* XXX reclaim */
3081 			goto rx_next;
3082 		}
3083 
3084 		/*
3085 		 * From this point on we assume the frame is at least
3086 		 * as large as ieee80211_frame_min; verify that.
3087 		 */
3088 		if (len < IEEE80211_MIN_LEN) {
3089 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3090 				__func__, len);
3091 			sc->sc_stats.ast_rx_tooshort++;
3092 			m_freem(m);
3093 			goto rx_next;
3094 		}
3095 
3096 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3097 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
3098 				   sc->sc_hwmap[rs->rs_rate].ieeerate,
3099 				   rs->rs_rssi);
3100 		}
3101 
3102 		m_adj(m, -IEEE80211_CRC_LEN);
3103 
3104 		/*
3105 		 * Locate the node for sender, track state, and then
3106 		 * pass the (referenced) node up to the 802.11 layer
3107 		 * for its use.
3108 		 */
3109 		ni = ieee80211_find_rxnode_withkey(ic,
3110 			mtod(m, const struct ieee80211_frame_min *),
3111 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3112 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3113 		/*
3114 		 * Track rx rssi and do any rx antenna management.
3115 		 */
3116 		an = ATH_NODE(ni);
3117 		ATH_RSSI_LPF(an->an_avgrssi, rs->rs_rssi);
3118 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
3119 		/*
3120 		 * Send frame up for processing.
3121 		 */
3122 		type = ieee80211_input(ic, m, ni, rs->rs_rssi, rs->rs_tstamp);
3123 		ieee80211_free_node(ni);
3124 		if (sc->sc_diversity) {
3125 			/*
3126 			 * When using fast diversity, change the default rx
3127 			 * antenna if diversity chooses the other antenna 3
3128 			 * times in a row.
3129 			 */
3130 			if (sc->sc_defant != rs->rs_antenna) {
3131 				if (++sc->sc_rxotherant >= 3)
3132 					ath_setdefantenna(sc, rs->rs_antenna);
3133 			} else
3134 				sc->sc_rxotherant = 0;
3135 		}
3136 		if (sc->sc_softled) {
3137 			/*
3138 			 * Blink for any data frame.  Otherwise do a
3139 			 * heartbeat-style blink when idle.  The latter
3140 			 * is mainly for station mode where we depend on
3141 			 * periodic beacon frames to trigger the poll event.
3142 			 */
3143 			if (type == IEEE80211_FC0_TYPE_DATA) {
3144 				sc->sc_rxrate = rs->rs_rate;
3145 				ath_led_event(sc, ATH_LED_RX);
3146 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3147 				ath_led_event(sc, ATH_LED_POLL);
3148 		}
3149 		/*
3150 		 * Arrange to update the last rx timestamp only for
3151 		 * frames from our ap when operating in station mode.
3152 		 * This assumes the rx key is always setup when associated.
3153 		 */
3154 		if (ic->ic_opmode == IEEE80211_M_STA &&
3155 		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3156 			ngood++;
3157 rx_next:
3158 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3159 	} while (ath_rxbuf_init(sc, bf) == 0);
3160 
3161 	/* rx signal state monitoring */
3162 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3163 	if (ngood)
3164 		sc->sc_lastrx = tsf;
3165 
3166 	NET_UNLOCK_GIANT();		/* XXX */
3167 #undef PA2DESC
3168 }
3169 
3170 static void
3171 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3172 {
3173 	txq->axq_qnum = qnum;
3174 	txq->axq_depth = 0;
3175 	txq->axq_intrcnt = 0;
3176 	txq->axq_link = NULL;
3177 	STAILQ_INIT(&txq->axq_q);
3178 	ATH_TXQ_LOCK_INIT(sc, txq);
3179 }
3180 
3181 /*
3182  * Setup a h/w transmit queue.
3183  */
3184 static struct ath_txq *
3185 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3186 {
3187 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3188 	struct ath_hal *ah = sc->sc_ah;
3189 	HAL_TXQ_INFO qi;
3190 	int qnum;
3191 
3192 	memset(&qi, 0, sizeof(qi));
3193 	qi.tqi_subtype = subtype;
3194 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3195 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3196 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3197 	/*
3198 	 * Enable interrupts only for EOL and DESC conditions.
3199 	 * We mark tx descriptors to receive a DESC interrupt
3200 	 * when a tx queue gets deep; otherwise waiting for the
3201 	 * EOL to reap descriptors.  Note that this is done to
3202 	 * reduce interrupt load and this only defers reaping
3203 	 * descriptors, never transmitting frames.  Aside from
3204 	 * reducing interrupts this also permits more concurrency.
3205 	 * The only potential downside is if the tx queue backs
3206 	 * up in which case the top half of the kernel may backup
3207 	 * due to a lack of tx descriptors.
3208 	 */
3209 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3210 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3211 	if (qnum == -1) {
3212 		/*
3213 		 * NB: don't print a message, this happens
3214 		 * normally on parts with too few tx queues
3215 		 */
3216 		return NULL;
3217 	}
3218 	if (qnum >= N(sc->sc_txq)) {
3219 		device_printf(sc->sc_dev,
3220 			"hal qnum %u out of range, max %zu!\n",
3221 			qnum, N(sc->sc_txq));
3222 		ath_hal_releasetxqueue(ah, qnum);
3223 		return NULL;
3224 	}
3225 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3226 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3227 		sc->sc_txqsetup |= 1<<qnum;
3228 	}
3229 	return &sc->sc_txq[qnum];
3230 #undef N
3231 }
3232 
3233 /*
3234  * Setup a hardware data transmit queue for the specified
3235  * access control.  The hal may not support all requested
3236  * queues in which case it will return a reference to a
3237  * previously setup queue.  We record the mapping from ac's
3238  * to h/w queues for use by ath_tx_start and also track
3239  * the set of h/w queues being used to optimize work in the
3240  * transmit interrupt handler and related routines.
3241  */
3242 static int
3243 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3244 {
3245 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3246 	struct ath_txq *txq;
3247 
3248 	if (ac >= N(sc->sc_ac2q)) {
3249 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3250 			ac, N(sc->sc_ac2q));
3251 		return 0;
3252 	}
3253 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3254 	if (txq != NULL) {
3255 		sc->sc_ac2q[ac] = txq;
3256 		return 1;
3257 	} else
3258 		return 0;
3259 #undef N
3260 }
3261 
3262 /*
3263  * Update WME parameters for a transmit queue.
3264  */
3265 static int
3266 ath_txq_update(struct ath_softc *sc, int ac)
3267 {
3268 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3269 #define	ATH_TXOP_TO_US(v)		(v<<5)
3270 	struct ieee80211com *ic = &sc->sc_ic;
3271 	struct ath_txq *txq = sc->sc_ac2q[ac];
3272 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3273 	struct ath_hal *ah = sc->sc_ah;
3274 	HAL_TXQ_INFO qi;
3275 
3276 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3277 	qi.tqi_aifs = wmep->wmep_aifsn;
3278 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3279 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3280 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3281 
3282 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3283 		device_printf(sc->sc_dev, "unable to update hardware queue "
3284 			"parameters for %s traffic!\n",
3285 			ieee80211_wme_acnames[ac]);
3286 		return 0;
3287 	} else {
3288 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3289 		return 1;
3290 	}
3291 #undef ATH_TXOP_TO_US
3292 #undef ATH_EXPONENT_TO_VALUE
3293 }
3294 
3295 /*
3296  * Callback from the 802.11 layer to update WME parameters.
3297  */
3298 static int
3299 ath_wme_update(struct ieee80211com *ic)
3300 {
3301 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3302 
3303 	return !ath_txq_update(sc, WME_AC_BE) ||
3304 	    !ath_txq_update(sc, WME_AC_BK) ||
3305 	    !ath_txq_update(sc, WME_AC_VI) ||
3306 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3307 }
3308 
3309 /*
3310  * Reclaim resources for a setup queue.
3311  */
3312 static void
3313 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3314 {
3315 
3316 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3317 	ATH_TXQ_LOCK_DESTROY(txq);
3318 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3319 }
3320 
3321 /*
3322  * Reclaim all tx queue resources.
3323  */
3324 static void
3325 ath_tx_cleanup(struct ath_softc *sc)
3326 {
3327 	int i;
3328 
3329 	ATH_TXBUF_LOCK_DESTROY(sc);
3330 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3331 		if (ATH_TXQ_SETUP(sc, i))
3332 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3333 	ATH_TXQ_LOCK_DESTROY(&sc->sc_mcastq);
3334 }
3335 
3336 /*
3337  * Defragment an mbuf chain, returning at most maxfrags separate
3338  * mbufs+clusters.  If this is not possible NULL is returned and
3339  * the original mbuf chain is left in it's present (potentially
3340  * modified) state.  We use two techniques: collapsing consecutive
3341  * mbufs and replacing consecutive mbufs by a cluster.
3342  */
3343 static struct mbuf *
3344 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3345 {
3346 	struct mbuf *m, *n, *n2, **prev;
3347 	u_int curfrags;
3348 
3349 	/*
3350 	 * Calculate the current number of frags.
3351 	 */
3352 	curfrags = 0;
3353 	for (m = m0; m != NULL; m = m->m_next)
3354 		curfrags++;
3355 	/*
3356 	 * First, try to collapse mbufs.  Note that we always collapse
3357 	 * towards the front so we don't need to deal with moving the
3358 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3359 	 * less data than the following.
3360 	 */
3361 	m = m0;
3362 again:
3363 	for (;;) {
3364 		n = m->m_next;
3365 		if (n == NULL)
3366 			break;
3367 		if ((m->m_flags & M_RDONLY) == 0 &&
3368 		    n->m_len < M_TRAILINGSPACE(m)) {
3369 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3370 				n->m_len);
3371 			m->m_len += n->m_len;
3372 			m->m_next = n->m_next;
3373 			m_free(n);
3374 			if (--curfrags <= maxfrags)
3375 				return m0;
3376 		} else
3377 			m = n;
3378 	}
3379 	KASSERT(maxfrags > 1,
3380 		("maxfrags %u, but normal collapse failed", maxfrags));
3381 	/*
3382 	 * Collapse consecutive mbufs to a cluster.
3383 	 */
3384 	prev = &m0->m_next;		/* NB: not the first mbuf */
3385 	while ((n = *prev) != NULL) {
3386 		if ((n2 = n->m_next) != NULL &&
3387 		    n->m_len + n2->m_len < MCLBYTES) {
3388 			m = m_getcl(how, MT_DATA, 0);
3389 			if (m == NULL)
3390 				goto bad;
3391 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3392 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3393 				n2->m_len);
3394 			m->m_len = n->m_len + n2->m_len;
3395 			m->m_next = n2->m_next;
3396 			*prev = m;
3397 			m_free(n);
3398 			m_free(n2);
3399 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3400 				return m0;
3401 			/*
3402 			 * Still not there, try the normal collapse
3403 			 * again before we allocate another cluster.
3404 			 */
3405 			goto again;
3406 		}
3407 		prev = &n->m_next;
3408 	}
3409 	/*
3410 	 * No place where we can collapse to a cluster; punt.
3411 	 * This can occur if, for example, you request 2 frags
3412 	 * but the packet requires that both be clusters (we
3413 	 * never reallocate the first mbuf to avoid moving the
3414 	 * packet header).
3415 	 */
3416 bad:
3417 	return NULL;
3418 }
3419 
3420 /*
3421  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3422  */
3423 static int
3424 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3425 {
3426 	int i;
3427 
3428 	for (i = 0; i < rt->rateCount; i++)
3429 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3430 			return i;
3431 	return 0;		/* NB: lowest rate */
3432 }
3433 
3434 static int
3435 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
3436 {
3437 	struct mbuf *m;
3438 	int error;
3439 
3440 	/*
3441 	 * Load the DMA map so any coalescing is done.  This
3442 	 * also calculates the number of descriptors we need.
3443 	 */
3444 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3445 				     bf->bf_segs, &bf->bf_nseg,
3446 				     BUS_DMA_NOWAIT);
3447 	if (error == EFBIG) {
3448 		/* XXX packet requires too many descriptors */
3449 		bf->bf_nseg = ATH_TXDESC+1;
3450 	} else if (error != 0) {
3451 		sc->sc_stats.ast_tx_busdma++;
3452 		m_freem(m0);
3453 		return error;
3454 	}
3455 	/*
3456 	 * Discard null packets and check for packets that
3457 	 * require too many TX descriptors.  We try to convert
3458 	 * the latter to a cluster.
3459 	 */
3460 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3461 		sc->sc_stats.ast_tx_linear++;
3462 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3463 		if (m == NULL) {
3464 			m_freem(m0);
3465 			sc->sc_stats.ast_tx_nombuf++;
3466 			return ENOMEM;
3467 		}
3468 		m0 = m;
3469 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3470 					     bf->bf_segs, &bf->bf_nseg,
3471 					     BUS_DMA_NOWAIT);
3472 		if (error != 0) {
3473 			sc->sc_stats.ast_tx_busdma++;
3474 			m_freem(m0);
3475 			return error;
3476 		}
3477 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3478 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3479 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3480 		sc->sc_stats.ast_tx_nodata++;
3481 		m_freem(m0);
3482 		return EIO;
3483 	}
3484 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
3485 		__func__, m0, m0->m_pkthdr.len);
3486 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3487 	bf->bf_m = m0;
3488 
3489 	return 0;
3490 }
3491 
3492 static void
3493 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
3494 {
3495 	struct ath_hal *ah = sc->sc_ah;
3496 	struct ath_desc *ds, *ds0;
3497 	int i;
3498 
3499 	/*
3500 	 * Fillin the remainder of the descriptor info.
3501 	 */
3502 	ds0 = ds = bf->bf_desc;
3503 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3504 		ds->ds_data = bf->bf_segs[i].ds_addr;
3505 		if (i == bf->bf_nseg - 1)
3506 			ds->ds_link = 0;
3507 		else
3508 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3509 		ath_hal_filltxdesc(ah, ds
3510 			, bf->bf_segs[i].ds_len	/* segment length */
3511 			, i == 0		/* first segment */
3512 			, i == bf->bf_nseg - 1	/* last segment */
3513 			, ds0			/* first descriptor */
3514 		);
3515 		DPRINTF(sc, ATH_DEBUG_XMIT,
3516 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3517 			__func__, i, ds->ds_link, ds->ds_data,
3518 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3519 	}
3520 	/*
3521 	 * Insert the frame on the outbound list and pass it on
3522 	 * to the hardware.  Multicast frames buffered for power
3523 	 * save stations and transmit from the CAB queue are stored
3524 	 * on a s/w only queue and loaded on to the CAB queue in
3525 	 * the SWBA handler since frames only go out on DTIM and
3526 	 * to avoid possible races.
3527 	 */
3528 	ATH_TXQ_LOCK(txq);
3529 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3530 	if (txq != &sc->sc_mcastq) {
3531 		if (txq->axq_link == NULL) {
3532 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3533 			DPRINTF(sc, ATH_DEBUG_XMIT,
3534 			    "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3535 			    txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3536 			    txq->axq_depth);
3537 		} else {
3538 			*txq->axq_link = bf->bf_daddr;
3539 			DPRINTF(sc, ATH_DEBUG_XMIT,
3540 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3541 			    txq->axq_qnum, txq->axq_link,
3542 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3543 		}
3544 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3545 		ath_hal_txstart(ah, txq->axq_qnum);
3546 	} else {
3547 		if (txq->axq_link != NULL)
3548 			*txq->axq_link = bf->bf_daddr;
3549 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3550 	}
3551 	ATH_TXQ_UNLOCK(txq);
3552 }
3553 
3554 static int
3555 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3556     struct mbuf *m0)
3557 {
3558 	struct ieee80211com *ic = &sc->sc_ic;
3559 	struct ath_hal *ah = sc->sc_ah;
3560 	struct ifnet *ifp = sc->sc_ifp;
3561 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3562 	int error, iswep, ismcast, ismrr;
3563 	int keyix, hdrlen, pktlen, try0;
3564 	u_int8_t rix, txrate, ctsrate;
3565 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3566 	struct ath_desc *ds;
3567 	struct ath_txq *txq;
3568 	struct ieee80211_frame *wh;
3569 	u_int subtype, flags, ctsduration;
3570 	HAL_PKT_TYPE atype;
3571 	const HAL_RATE_TABLE *rt;
3572 	HAL_BOOL shortPreamble;
3573 	struct ath_node *an;
3574 	u_int pri;
3575 
3576 	wh = mtod(m0, struct ieee80211_frame *);
3577 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3578 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3579 	hdrlen = ieee80211_anyhdrsize(wh);
3580 	/*
3581 	 * Packet length must not include any
3582 	 * pad bytes; deduct them here.
3583 	 */
3584 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3585 
3586 	if (iswep) {
3587 		const struct ieee80211_cipher *cip;
3588 		struct ieee80211_key *k;
3589 
3590 		/*
3591 		 * Construct the 802.11 header+trailer for an encrypted
3592 		 * frame. The only reason this can fail is because of an
3593 		 * unknown or unsupported cipher/key type.
3594 		 */
3595 		k = ieee80211_crypto_encap(ic, ni, m0);
3596 		if (k == NULL) {
3597 			/*
3598 			 * This can happen when the key is yanked after the
3599 			 * frame was queued.  Just discard the frame; the
3600 			 * 802.11 layer counts failures and provides
3601 			 * debugging/diagnostics.
3602 			 */
3603 			m_freem(m0);
3604 			return EIO;
3605 		}
3606 		/*
3607 		 * Adjust the packet + header lengths for the crypto
3608 		 * additions and calculate the h/w key index.  When
3609 		 * a s/w mic is done the frame will have had any mic
3610 		 * added to it prior to entry so m0->m_pkthdr.len above will
3611 		 * account for it. Otherwise we need to add it to the
3612 		 * packet length.
3613 		 */
3614 		cip = k->wk_cipher;
3615 		hdrlen += cip->ic_header;
3616 		pktlen += cip->ic_header + cip->ic_trailer;
3617 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3618 			pktlen += cip->ic_miclen;
3619 		keyix = k->wk_keyix;
3620 
3621 		/* packet header may have moved, reset our local pointer */
3622 		wh = mtod(m0, struct ieee80211_frame *);
3623 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3624 		/*
3625 		 * Use station key cache slot, if assigned.
3626 		 */
3627 		keyix = ni->ni_ucastkey.wk_keyix;
3628 		if (keyix == IEEE80211_KEYIX_NONE)
3629 			keyix = HAL_TXKEYIX_INVALID;
3630 	} else
3631 		keyix = HAL_TXKEYIX_INVALID;
3632 
3633 	pktlen += IEEE80211_CRC_LEN;
3634 
3635 	/*
3636 	 * Load the DMA map so any coalescing is done.  This
3637 	 * also calculates the number of descriptors we need.
3638 	 */
3639 	error = ath_tx_dmasetup(sc, bf, m0);
3640 	if (error != 0)
3641 		return error;
3642 	bf->bf_node = ni;			/* NB: held reference */
3643 	m0 = bf->bf_m;				/* NB: may have changed */
3644 	wh = mtod(m0, struct ieee80211_frame *);
3645 
3646 	/* setup descriptors */
3647 	ds = bf->bf_desc;
3648 	rt = sc->sc_currates;
3649 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3650 
3651 	/*
3652 	 * NB: the 802.11 layer marks whether or not we should
3653 	 * use short preamble based on the current mode and
3654 	 * negotiated parameters.
3655 	 */
3656 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3657 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3658 		shortPreamble = AH_TRUE;
3659 		sc->sc_stats.ast_tx_shortpre++;
3660 	} else {
3661 		shortPreamble = AH_FALSE;
3662 	}
3663 
3664 	an = ATH_NODE(ni);
3665 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3666 	ismrr = 0;				/* default no multi-rate retry*/
3667 	/*
3668 	 * Calculate Atheros packet type from IEEE80211 packet header,
3669 	 * setup for rate calculations, and select h/w transmit queue.
3670 	 */
3671 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3672 	case IEEE80211_FC0_TYPE_MGT:
3673 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3674 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3675 			atype = HAL_PKT_TYPE_BEACON;
3676 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3677 			atype = HAL_PKT_TYPE_PROBE_RESP;
3678 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3679 			atype = HAL_PKT_TYPE_ATIM;
3680 		else
3681 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3682 		rix = sc->sc_minrateix;
3683 		txrate = rt->info[rix].rateCode;
3684 		if (shortPreamble)
3685 			txrate |= rt->info[rix].shortPreamble;
3686 		try0 = ATH_TXMGTTRY;
3687 		/* NB: force all management frames to highest queue */
3688 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3689 			/* NB: force all management frames to highest queue */
3690 			pri = WME_AC_VO;
3691 		} else
3692 			pri = WME_AC_BE;
3693 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3694 		break;
3695 	case IEEE80211_FC0_TYPE_CTL:
3696 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3697 		rix = sc->sc_minrateix;
3698 		txrate = rt->info[rix].rateCode;
3699 		if (shortPreamble)
3700 			txrate |= rt->info[rix].shortPreamble;
3701 		try0 = ATH_TXMGTTRY;
3702 		/* NB: force all ctl frames to highest queue */
3703 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3704 			/* NB: force all ctl frames to highest queue */
3705 			pri = WME_AC_VO;
3706 		} else
3707 			pri = WME_AC_BE;
3708 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3709 		break;
3710 	case IEEE80211_FC0_TYPE_DATA:
3711 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3712 		/*
3713 		 * Data frames: multicast frames go out at a fixed rate,
3714 		 * otherwise consult the rate control module for the
3715 		 * rate to use.
3716 		 */
3717 		if (ismcast) {
3718 			/*
3719 			 * Check mcast rate setting in case it's changed.
3720 			 * XXX move out of fastpath
3721 			 */
3722 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3723 				sc->sc_mcastrix =
3724 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3725 				sc->sc_mcastrate = ic->ic_mcast_rate;
3726 			}
3727 			rix = sc->sc_mcastrix;
3728 			txrate = rt->info[rix].rateCode;
3729 			if (shortPreamble)
3730 				txrate |= rt->info[rix].shortPreamble;
3731 			try0 = 1;
3732 		} else {
3733 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3734 				&rix, &try0, &txrate);
3735 			sc->sc_txrate = txrate;		/* for LED blinking */
3736 			if (try0 != ATH_TXMAXTRY)
3737 				ismrr = 1;
3738 		}
3739 		pri = M_WME_GETAC(m0);
3740 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3741 			flags |= HAL_TXDESC_NOACK;
3742 		break;
3743 	default:
3744 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3745 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3746 		/* XXX statistic */
3747 		m_freem(m0);
3748 		return EIO;
3749 	}
3750 	txq = sc->sc_ac2q[pri];
3751 
3752 	/*
3753 	 * When servicing one or more stations in power-save mode
3754 	 * (or) if there is some mcast data waiting on the mcast
3755 	 * queue (to prevent out of order delivery) multicast
3756 	 * frames must be buffered until after the beacon.
3757 	 */
3758 	if (ismcast && (ic->ic_ps_sta || sc->sc_mcastq.axq_depth)) {
3759 		txq = &sc->sc_mcastq;
3760 		/* XXX? more bit in 802.11 frame header */
3761 	}
3762 
3763 	/*
3764 	 * Calculate miscellaneous flags.
3765 	 */
3766 	if (ismcast) {
3767 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3768 	} else if (pktlen > ic->ic_rtsthreshold) {
3769 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3770 		cix = rt->info[rix].controlRate;
3771 		sc->sc_stats.ast_tx_rts++;
3772 	}
3773 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3774 		sc->sc_stats.ast_tx_noack++;
3775 
3776 	/*
3777 	 * If 802.11g protection is enabled, determine whether
3778 	 * to use RTS/CTS or just CTS.  Note that this is only
3779 	 * done for OFDM unicast frames.
3780 	 */
3781 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3782 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3783 	    (flags & HAL_TXDESC_NOACK) == 0) {
3784 		/* XXX fragments must use CCK rates w/ protection */
3785 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3786 			flags |= HAL_TXDESC_RTSENA;
3787 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3788 			flags |= HAL_TXDESC_CTSENA;
3789 		cix = rt->info[sc->sc_protrix].controlRate;
3790 		sc->sc_stats.ast_tx_protect++;
3791 	}
3792 
3793 	/*
3794 	 * Calculate duration.  This logically belongs in the 802.11
3795 	 * layer but it lacks sufficient information to calculate it.
3796 	 */
3797 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3798 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3799 		u_int16_t dur;
3800 		/*
3801 		 * XXX not right with fragmentation.
3802 		 */
3803 		if (shortPreamble)
3804 			dur = rt->info[rix].spAckDuration;
3805 		else
3806 			dur = rt->info[rix].lpAckDuration;
3807 		*(u_int16_t *)wh->i_dur = htole16(dur);
3808 	}
3809 
3810 	/*
3811 	 * Calculate RTS/CTS rate and duration if needed.
3812 	 */
3813 	ctsduration = 0;
3814 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3815 		/*
3816 		 * CTS transmit rate is derived from the transmit rate
3817 		 * by looking in the h/w rate table.  We must also factor
3818 		 * in whether or not a short preamble is to be used.
3819 		 */
3820 		/* NB: cix is set above where RTS/CTS is enabled */
3821 		KASSERT(cix != 0xff, ("cix not setup"));
3822 		ctsrate = rt->info[cix].rateCode;
3823 		/*
3824 		 * Compute the transmit duration based on the frame
3825 		 * size and the size of an ACK frame.  We call into the
3826 		 * HAL to do the computation since it depends on the
3827 		 * characteristics of the actual PHY being used.
3828 		 *
3829 		 * NB: CTS is assumed the same size as an ACK so we can
3830 		 *     use the precalculated ACK durations.
3831 		 */
3832 		if (shortPreamble) {
3833 			ctsrate |= rt->info[cix].shortPreamble;
3834 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3835 				ctsduration += rt->info[cix].spAckDuration;
3836 			ctsduration += ath_hal_computetxtime(ah,
3837 				rt, pktlen, rix, AH_TRUE);
3838 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3839 				ctsduration += rt->info[rix].spAckDuration;
3840 		} else {
3841 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3842 				ctsduration += rt->info[cix].lpAckDuration;
3843 			ctsduration += ath_hal_computetxtime(ah,
3844 				rt, pktlen, rix, AH_FALSE);
3845 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3846 				ctsduration += rt->info[rix].lpAckDuration;
3847 		}
3848 		/*
3849 		 * Must disable multi-rate retry when using RTS/CTS.
3850 		 */
3851 		ismrr = 0;
3852 		try0 = ATH_TXMGTTRY;		/* XXX */
3853 	} else
3854 		ctsrate = 0;
3855 
3856 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3857 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3858 			sc->sc_hwmap[txrate].ieeerate, -1);
3859 
3860 	if (bpf_peers_present(ic->ic_rawbpf))
3861 		bpf_mtap(ic->ic_rawbpf, m0);
3862 	if (bpf_peers_present(sc->sc_drvbpf)) {
3863 		u_int64_t tsf = ath_hal_gettsf64(ah);
3864 
3865 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3866 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3867 		if (iswep)
3868 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3869 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3870 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3871 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3872 
3873 		bpf_mtap2(sc->sc_drvbpf,
3874 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3875 	}
3876 
3877 	/*
3878 	 * Determine if a tx interrupt should be generated for
3879 	 * this descriptor.  We take a tx interrupt to reap
3880 	 * descriptors when the h/w hits an EOL condition or
3881 	 * when the descriptor is specifically marked to generate
3882 	 * an interrupt.  We periodically mark descriptors in this
3883 	 * way to insure timely replenishing of the supply needed
3884 	 * for sending frames.  Defering interrupts reduces system
3885 	 * load and potentially allows more concurrent work to be
3886 	 * done but if done to aggressively can cause senders to
3887 	 * backup.
3888 	 *
3889 	 * NB: use >= to deal with sc_txintrperiod changing
3890 	 *     dynamically through sysctl.
3891 	 */
3892 	if (flags & HAL_TXDESC_INTREQ) {
3893 		txq->axq_intrcnt = 0;
3894 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3895 		flags |= HAL_TXDESC_INTREQ;
3896 		txq->axq_intrcnt = 0;
3897 	}
3898 
3899 	/*
3900 	 * Formulate first tx descriptor with tx controls.
3901 	 */
3902 	/* XXX check return value? */
3903 	ath_hal_setuptxdesc(ah, ds
3904 		, pktlen		/* packet length */
3905 		, hdrlen		/* header length */
3906 		, atype			/* Atheros packet type */
3907 		, ni->ni_txpower	/* txpower */
3908 		, txrate, try0		/* series 0 rate/tries */
3909 		, keyix			/* key cache index */
3910 		, sc->sc_txantenna	/* antenna mode */
3911 		, flags			/* flags */
3912 		, ctsrate		/* rts/cts rate */
3913 		, ctsduration		/* rts/cts duration */
3914 	);
3915 	bf->bf_flags = flags;
3916 	/*
3917 	 * Setup the multi-rate retry state only when we're
3918 	 * going to use it.  This assumes ath_hal_setuptxdesc
3919 	 * initializes the descriptors (so we don't have to)
3920 	 * when the hardware supports multi-rate retry and
3921 	 * we don't use it.
3922 	 */
3923 	if (ismrr)
3924 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3925 
3926 	ath_tx_handoff(sc, txq, bf);
3927 	return 0;
3928 }
3929 
3930 /*
3931  * Process completed xmit descriptors from the specified queue.
3932  */
3933 static int
3934 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3935 {
3936 	struct ath_hal *ah = sc->sc_ah;
3937 	struct ieee80211com *ic = &sc->sc_ic;
3938 	struct ath_buf *bf;
3939 	struct ath_desc *ds, *ds0;
3940 	struct ath_tx_status *ts;
3941 	struct ieee80211_node *ni;
3942 	struct ath_node *an;
3943 	int sr, lr, pri, nacked;
3944 	HAL_STATUS status;
3945 
3946 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3947 		__func__, txq->axq_qnum,
3948 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3949 		txq->axq_link);
3950 	nacked = 0;
3951 	for (;;) {
3952 		ATH_TXQ_LOCK(txq);
3953 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3954 		bf = STAILQ_FIRST(&txq->axq_q);
3955 		if (bf == NULL) {
3956 			ATH_TXQ_UNLOCK(txq);
3957 			break;
3958 		}
3959 		ds0 = &bf->bf_desc[0];
3960 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3961 		ts = &bf->bf_status.ds_txstat;
3962 		status = ath_hal_txprocdesc(ah, ds, ts);
3963 #ifdef ATH_DEBUG
3964 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3965 			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
3966 #endif
3967 		if (status == HAL_EINPROGRESS) {
3968 			ATH_TXQ_UNLOCK(txq);
3969 			break;
3970 		}
3971 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3972 		if (txq->axq_depth == 0)
3973 			txq->axq_link = NULL;
3974 		ATH_TXQ_UNLOCK(txq);
3975 
3976 		ni = bf->bf_node;
3977 		if (ni != NULL) {
3978 			an = ATH_NODE(ni);
3979 			if (ts->ts_status == 0) {
3980 				u_int8_t txant = ts->ts_antenna;
3981 				sc->sc_stats.ast_ant_tx[txant]++;
3982 				sc->sc_ant_tx[txant]++;
3983 				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
3984 					sc->sc_stats.ast_tx_altrate++;
3985 				sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3986 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3987 					ts->ts_rssi);
3988 				pri = M_WME_GETAC(bf->bf_m);
3989 				if (pri >= WME_AC_VO)
3990 					ic->ic_wme.wme_hipri_traffic++;
3991 				ni->ni_inact = ni->ni_inact_reload;
3992 			} else {
3993 				if (ts->ts_status & HAL_TXERR_XRETRY)
3994 					sc->sc_stats.ast_tx_xretries++;
3995 				if (ts->ts_status & HAL_TXERR_FIFO)
3996 					sc->sc_stats.ast_tx_fifoerr++;
3997 				if (ts->ts_status & HAL_TXERR_FILT)
3998 					sc->sc_stats.ast_tx_filtered++;
3999 			}
4000 			sr = ts->ts_shortretry;
4001 			lr = ts->ts_longretry;
4002 			sc->sc_stats.ast_tx_shortretry += sr;
4003 			sc->sc_stats.ast_tx_longretry += lr;
4004 			/*
4005 			 * Hand the descriptor to the rate control algorithm.
4006 			 */
4007 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4008 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4009 				/*
4010 				 * If frame was ack'd update the last rx time
4011 				 * used to workaround phantom bmiss interrupts.
4012 				 */
4013 				if (ts->ts_status == 0)
4014 					nacked++;
4015 				ath_rate_tx_complete(sc, an, bf);
4016 			}
4017 			/*
4018 			 * Reclaim reference to node.
4019 			 *
4020 			 * NB: the node may be reclaimed here if, for example
4021 			 *     this is a DEAUTH message that was sent and the
4022 			 *     node was timed out due to inactivity.
4023 			 */
4024 			ieee80211_free_node(ni);
4025 		}
4026 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4027 		    BUS_DMASYNC_POSTWRITE);
4028 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4029 		m_freem(bf->bf_m);
4030 		bf->bf_m = NULL;
4031 		bf->bf_node = NULL;
4032 
4033 		ATH_TXBUF_LOCK(sc);
4034 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4035 		ATH_TXBUF_UNLOCK(sc);
4036 	}
4037 	return nacked;
4038 }
4039 
4040 static __inline int
4041 txqactive(struct ath_hal *ah, int qnum)
4042 {
4043 	u_int32_t txqs = 1<<qnum;
4044 	ath_hal_gettxintrtxqs(ah, &txqs);
4045 	return (txqs & (1<<qnum));
4046 }
4047 
4048 /*
4049  * Deferred processing of transmit interrupt; special-cased
4050  * for a single hardware transmit queue (e.g. 5210 and 5211).
4051  */
4052 static void
4053 ath_tx_proc_q0(void *arg, int npending)
4054 {
4055 	struct ath_softc *sc = arg;
4056 	struct ifnet *ifp = sc->sc_ifp;
4057 
4058 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4059 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4060 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4061 		ath_tx_processq(sc, sc->sc_cabq);
4062 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4063 	sc->sc_tx_timer = 0;
4064 
4065 	if (sc->sc_softled)
4066 		ath_led_event(sc, ATH_LED_TX);
4067 
4068 	ath_start(ifp);
4069 }
4070 
4071 /*
4072  * Deferred processing of transmit interrupt; special-cased
4073  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4074  */
4075 static void
4076 ath_tx_proc_q0123(void *arg, int npending)
4077 {
4078 	struct ath_softc *sc = arg;
4079 	struct ifnet *ifp = sc->sc_ifp;
4080 	int nacked;
4081 
4082 	/*
4083 	 * Process each active queue.
4084 	 */
4085 	nacked = 0;
4086 	if (txqactive(sc->sc_ah, 0))
4087 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4088 	if (txqactive(sc->sc_ah, 1))
4089 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4090 	if (txqactive(sc->sc_ah, 2))
4091 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4092 	if (txqactive(sc->sc_ah, 3))
4093 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4094 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4095 		ath_tx_processq(sc, sc->sc_cabq);
4096 	if (nacked)
4097 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4098 
4099 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4100 	sc->sc_tx_timer = 0;
4101 
4102 	if (sc->sc_softled)
4103 		ath_led_event(sc, ATH_LED_TX);
4104 
4105 	ath_start(ifp);
4106 }
4107 
4108 /*
4109  * Deferred processing of transmit interrupt.
4110  */
4111 static void
4112 ath_tx_proc(void *arg, int npending)
4113 {
4114 	struct ath_softc *sc = arg;
4115 	struct ifnet *ifp = sc->sc_ifp;
4116 	int i, nacked;
4117 
4118 	/*
4119 	 * Process each active queue.
4120 	 */
4121 	nacked = 0;
4122 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4123 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4124 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4125 	if (nacked)
4126 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4127 
4128 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4129 	sc->sc_tx_timer = 0;
4130 
4131 	if (sc->sc_softled)
4132 		ath_led_event(sc, ATH_LED_TX);
4133 
4134 	ath_start(ifp);
4135 }
4136 
4137 static void
4138 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4139 {
4140 #ifdef ATH_DEBUG
4141 	struct ath_hal *ah = sc->sc_ah;
4142 #endif
4143 	struct ieee80211_node *ni;
4144 	struct ath_buf *bf;
4145 	u_int ix;
4146 
4147 	/*
4148 	 * NB: this assumes output has been stopped and
4149 	 *     we do not need to block ath_tx_tasklet
4150 	 */
4151 	for (ix = 0;; ix++) {
4152 		ATH_TXQ_LOCK(txq);
4153 		bf = STAILQ_FIRST(&txq->axq_q);
4154 		if (bf == NULL) {
4155 			txq->axq_link = NULL;
4156 			ATH_TXQ_UNLOCK(txq);
4157 			break;
4158 		}
4159 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4160 		ATH_TXQ_UNLOCK(txq);
4161 #ifdef ATH_DEBUG
4162 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4163 			ath_printtxbuf(bf, txq->axq_qnum, ix,
4164 				ath_hal_txprocdesc(ah, bf->bf_desc,
4165 				    &bf->bf_status.ds_txstat) == HAL_OK);
4166 			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
4167 				bf->bf_m->m_len, 0, -1);
4168 		}
4169 #endif /* ATH_DEBUG */
4170 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4171 		m_freem(bf->bf_m);
4172 		bf->bf_m = NULL;
4173 		ni = bf->bf_node;
4174 		bf->bf_node = NULL;
4175 		if (ni != NULL) {
4176 			/*
4177 			 * Reclaim node reference.
4178 			 */
4179 			ieee80211_free_node(ni);
4180 		}
4181 		ATH_TXBUF_LOCK(sc);
4182 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4183 		ATH_TXBUF_UNLOCK(sc);
4184 	}
4185 }
4186 
4187 static void
4188 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4189 {
4190 	struct ath_hal *ah = sc->sc_ah;
4191 
4192 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4193 	    __func__, txq->axq_qnum,
4194 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4195 	    txq->axq_link);
4196 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4197 }
4198 
4199 /*
4200  * Drain the transmit queues and reclaim resources.
4201  */
4202 static void
4203 ath_draintxq(struct ath_softc *sc)
4204 {
4205 	struct ath_hal *ah = sc->sc_ah;
4206 	struct ifnet *ifp = sc->sc_ifp;
4207 	int i;
4208 
4209 	/* XXX return value */
4210 	if (!sc->sc_invalid) {
4211 		/* don't touch the hardware if marked invalid */
4212 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4213 		    __func__, sc->sc_bhalq,
4214 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4215 		    NULL);
4216 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4217 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4218 			if (ATH_TXQ_SETUP(sc, i))
4219 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4220 	}
4221 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4222 		if (ATH_TXQ_SETUP(sc, i))
4223 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4224 	ath_tx_draintxq(sc, &sc->sc_mcastq);
4225 #ifdef ATH_DEBUG
4226 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4227 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4228 		if (bf != NULL && bf->bf_m != NULL) {
4229 			ath_printtxbuf(bf, sc->sc_bhalq, 0,
4230 				ath_hal_txprocdesc(ah, bf->bf_desc,
4231 				    &bf->bf_status.ds_txstat) == HAL_OK);
4232 			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
4233 				bf->bf_m->m_len, 0, -1);
4234 		}
4235 	}
4236 #endif /* ATH_DEBUG */
4237 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4238 	sc->sc_tx_timer = 0;
4239 }
4240 
4241 /*
4242  * Disable the receive h/w in preparation for a reset.
4243  */
4244 static void
4245 ath_stoprecv(struct ath_softc *sc)
4246 {
4247 #define	PA2DESC(_sc, _pa) \
4248 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4249 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4250 	struct ath_hal *ah = sc->sc_ah;
4251 
4252 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4253 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4254 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4255 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4256 #ifdef ATH_DEBUG
4257 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4258 		struct ath_buf *bf;
4259 		u_int ix;
4260 
4261 		printf("%s: rx queue %p, link %p\n", __func__,
4262 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4263 		ix = 0;
4264 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4265 			struct ath_desc *ds = bf->bf_desc;
4266 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
4267 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4268 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4269 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4270 				ath_printrxbuf(bf, ix, status == HAL_OK);
4271 			ix++;
4272 		}
4273 	}
4274 #endif
4275 	sc->sc_rxlink = NULL;		/* just in case */
4276 #undef PA2DESC
4277 }
4278 
4279 /*
4280  * Enable the receive h/w following a reset.
4281  */
4282 static int
4283 ath_startrecv(struct ath_softc *sc)
4284 {
4285 	struct ath_hal *ah = sc->sc_ah;
4286 	struct ath_buf *bf;
4287 
4288 	sc->sc_rxlink = NULL;
4289 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4290 		int error = ath_rxbuf_init(sc, bf);
4291 		if (error != 0) {
4292 			DPRINTF(sc, ATH_DEBUG_RECV,
4293 				"%s: ath_rxbuf_init failed %d\n",
4294 				__func__, error);
4295 			return error;
4296 		}
4297 	}
4298 
4299 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4300 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4301 	ath_hal_rxena(ah);		/* enable recv descriptors */
4302 	ath_mode_init(sc);		/* set filters, etc. */
4303 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4304 	return 0;
4305 }
4306 
4307 /*
4308  * Update internal state after a channel change.
4309  */
4310 static void
4311 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4312 {
4313 	struct ieee80211com *ic = &sc->sc_ic;
4314 	enum ieee80211_phymode mode;
4315 	u_int16_t flags;
4316 
4317 	/*
4318 	 * Change channels and update the h/w rate map
4319 	 * if we're switching; e.g. 11a to 11b/g.
4320 	 */
4321 	mode = ieee80211_chan2mode(ic, chan);
4322 	if (mode == IEEE80211_MODE_11A) {
4323 		if (IEEE80211_IS_CHAN_HALF(chan))
4324 			mode = IEEE80211_MODE_11A_HALF;
4325 		else if (IEEE80211_IS_CHAN_QUARTER(chan))
4326 			mode = IEEE80211_MODE_11A_QUARTER;
4327 	}
4328 	if (mode != sc->sc_curmode)
4329 		ath_setcurmode(sc, mode);
4330 	/*
4331 	 * Update BPF state.  NB: ethereal et. al. don't handle
4332 	 * merged flags well so pick a unique mode for their use.
4333 	 */
4334 	if (IEEE80211_IS_CHAN_A(chan))
4335 		flags = IEEE80211_CHAN_A;
4336 	/* XXX 11g schizophrenia */
4337 	else if (IEEE80211_IS_CHAN_ANYG(chan))
4338 		flags = IEEE80211_CHAN_G;
4339 	else
4340 		flags = IEEE80211_CHAN_B;
4341 	if (IEEE80211_IS_CHAN_T(chan))
4342 		flags |= IEEE80211_CHAN_TURBO;
4343 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4344 		htole16(chan->ic_freq);
4345 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4346 		htole16(flags);
4347 }
4348 
4349 /*
4350  * Poll for a channel clear indication; this is required
4351  * for channels requiring DFS and not previously visited
4352  * and/or with a recent radar detection.
4353  */
4354 static void
4355 ath_dfswait(void *arg)
4356 {
4357 	struct ath_softc *sc = arg;
4358 	struct ath_hal *ah = sc->sc_ah;
4359 	HAL_CHANNEL hchan;
4360 
4361 	ath_hal_radar_wait(ah, &hchan);
4362 	DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n",
4363 	    __func__, hchan.channel, hchan.channelFlags, hchan.privFlags);
4364 
4365 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4366 		if_printf(sc->sc_ifp,
4367 		    "channel %u/0x%x/0x%x has interference\n",
4368 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4369 		return;
4370 	}
4371 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4372 		/* XXX should not happen */
4373 		return;
4374 	}
4375 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4376 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4377 		sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4378 		if_printf(sc->sc_ifp,
4379 		    "channel %u/0x%x/0x%x marked clear\n",
4380 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4381 	} else
4382 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4383 }
4384 
4385 /*
4386  * Set/change channels.  If the channel is really being changed,
4387  * it's done by reseting the chip.  To accomplish this we must
4388  * first cleanup any pending DMA, then restart stuff after a la
4389  * ath_init.
4390  */
4391 static int
4392 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4393 {
4394 	struct ath_hal *ah = sc->sc_ah;
4395 	struct ieee80211com *ic = &sc->sc_ic;
4396 	HAL_CHANNEL hchan;
4397 
4398 	/*
4399 	 * Convert to a HAL channel description with
4400 	 * the flags constrained to reflect the current
4401 	 * operating mode.
4402 	 */
4403 	hchan.channel = chan->ic_freq;
4404 	hchan.channelFlags = ath_chan2flags(ic, chan);
4405 
4406 	DPRINTF(sc, ATH_DEBUG_RESET,
4407 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4408 	    __func__,
4409 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4410 		sc->sc_curchan.channelFlags),
4411 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4412 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4413 	        hchan.channel, hchan.channelFlags);
4414 	if (hchan.channel != sc->sc_curchan.channel ||
4415 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4416 		HAL_STATUS status;
4417 
4418 		/*
4419 		 * To switch channels clear any pending DMA operations;
4420 		 * wait long enough for the RX fifo to drain, reset the
4421 		 * hardware at the new frequency, and then re-enable
4422 		 * the relevant bits of the h/w.
4423 		 */
4424 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4425 		ath_draintxq(sc);		/* clear pending tx frames */
4426 		ath_stoprecv(sc);		/* turn off frame recv */
4427 		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
4428 			if_printf(ic->ic_ifp, "%s: unable to reset "
4429 			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n",
4430 			    __func__, ieee80211_chan2ieee(ic, chan),
4431 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4432 			return EIO;
4433 		}
4434 		sc->sc_curchan = hchan;
4435 		ath_update_txpow(sc);		/* update tx power state */
4436 		sc->sc_diversity = ath_hal_getdiversity(ah);
4437 		sc->sc_calinterval = 1;
4438 		sc->sc_caltries = 0;
4439 
4440 		/*
4441 		 * Re-enable rx framework.
4442 		 */
4443 		if (ath_startrecv(sc) != 0) {
4444 			if_printf(ic->ic_ifp,
4445 				"%s: unable to restart recv logic\n", __func__);
4446 			return EIO;
4447 		}
4448 
4449 		/*
4450 		 * Change channels and update the h/w rate map
4451 		 * if we're switching; e.g. 11a to 11b/g.
4452 		 */
4453 		ic->ic_ibss_chan = chan;
4454 		ath_chan_change(sc, chan);
4455 
4456 		/*
4457 		 * Handle DFS required waiting period to determine
4458 		 * if channel is clear of radar traffic.
4459 		 */
4460 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4461 #define	DFS_AND_NOT_CLEAR(_c) \
4462 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4463 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4464 				if_printf(sc->sc_ifp,
4465 					"wait for DFS clear channel signal\n");
4466 				/* XXX stop sndq */
4467 				sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4468 				callout_reset(&sc->sc_dfs_ch,
4469 					2 * hz, ath_dfswait, sc);
4470 			} else
4471 				callout_stop(&sc->sc_dfs_ch);
4472 #undef DFS_NOT_CLEAR
4473 		}
4474 
4475 		/*
4476 		 * Re-enable interrupts.
4477 		 */
4478 		ath_hal_intrset(ah, sc->sc_imask);
4479 	}
4480 	return 0;
4481 }
4482 
4483 static void
4484 ath_next_scan(void *arg)
4485 {
4486 	struct ath_softc *sc = arg;
4487 	struct ieee80211com *ic = &sc->sc_ic;
4488 
4489 	if (ic->ic_state == IEEE80211_S_SCAN)
4490 		ieee80211_next_scan(ic);
4491 }
4492 
4493 /*
4494  * Periodically recalibrate the PHY to account
4495  * for temperature/environment changes.
4496  */
4497 static void
4498 ath_calibrate(void *arg)
4499 {
4500 	struct ath_softc *sc = arg;
4501 	struct ath_hal *ah = sc->sc_ah;
4502 	HAL_BOOL iqCalDone;
4503 
4504 	sc->sc_stats.ast_per_cal++;
4505 
4506 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4507 		/*
4508 		 * Rfgain is out of bounds, reset the chip
4509 		 * to load new gain values.
4510 		 */
4511 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4512 			"%s: rfgain change\n", __func__);
4513 		sc->sc_stats.ast_per_rfgain++;
4514 		ath_reset(sc->sc_ifp);
4515 	}
4516 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4517 		DPRINTF(sc, ATH_DEBUG_ANY,
4518 			"%s: calibration of channel %u failed\n",
4519 			__func__, sc->sc_curchan.channel);
4520 		sc->sc_stats.ast_per_calfail++;
4521 	}
4522 	/*
4523 	 * Calibrate noise floor data again in case of change.
4524 	 */
4525 	ath_hal_process_noisefloor(ah);
4526 	/*
4527 	 * Poll more frequently when the IQ calibration is in
4528 	 * progress to speedup loading the final settings.
4529 	 * We temper this aggressive polling with an exponential
4530 	 * back off after 4 tries up to ath_calinterval.
4531 	 */
4532 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4533 		sc->sc_caltries = 0;
4534 		sc->sc_calinterval = ath_calinterval;
4535 	} else if (sc->sc_caltries > 4) {
4536 		sc->sc_caltries = 0;
4537 		sc->sc_calinterval <<= 1;
4538 		if (sc->sc_calinterval > ath_calinterval)
4539 			sc->sc_calinterval = ath_calinterval;
4540 	}
4541 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4542 		("bad calibration interval %u", sc->sc_calinterval));
4543 
4544 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4545 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4546 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4547 	sc->sc_caltries++;
4548 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4549 		ath_calibrate, sc);
4550 }
4551 
4552 static int
4553 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4554 {
4555 	struct ifnet *ifp = ic->ic_ifp;
4556 	struct ath_softc *sc = ifp->if_softc;
4557 	struct ath_hal *ah = sc->sc_ah;
4558 	struct ieee80211_node *ni;
4559 	int i, error;
4560 	const u_int8_t *bssid;
4561 	u_int32_t rfilt;
4562 	static const HAL_LED_STATE leds[] = {
4563 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4564 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4565 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4566 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4567 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4568 	};
4569 
4570 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4571 		ieee80211_state_name[ic->ic_state],
4572 		ieee80211_state_name[nstate]);
4573 
4574 	callout_stop(&sc->sc_scan_ch);
4575 	callout_stop(&sc->sc_cal_ch);
4576 	callout_stop(&sc->sc_dfs_ch);
4577 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4578 
4579 	if (nstate == IEEE80211_S_INIT) {
4580 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4581 		/*
4582 		 * NB: disable interrupts so we don't rx frames.
4583 		 */
4584 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4585 		/*
4586 		 * Notify the rate control algorithm.
4587 		 */
4588 		ath_rate_newstate(sc, nstate);
4589 		goto done;
4590 	}
4591 	ni = ic->ic_bss;
4592 	error = ath_chan_set(sc, ic->ic_curchan);
4593 	if (error != 0)
4594 		goto bad;
4595 	rfilt = ath_calcrxfilter(sc, nstate);
4596 	if (nstate == IEEE80211_S_SCAN)
4597 		bssid = ifp->if_broadcastaddr;
4598 	else
4599 		bssid = ni->ni_bssid;
4600 	ath_hal_setrxfilter(ah, rfilt);
4601 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4602 		 __func__, rfilt, ether_sprintf(bssid));
4603 
4604 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4605 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4606 	else
4607 		ath_hal_setassocid(ah, bssid, 0);
4608 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4609 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4610 			if (ath_hal_keyisvalid(ah, i))
4611 				ath_hal_keysetmac(ah, i, bssid);
4612 	}
4613 
4614 	/*
4615 	 * Notify the rate control algorithm so rates
4616 	 * are setup should ath_beacon_alloc be called.
4617 	 */
4618 	ath_rate_newstate(sc, nstate);
4619 
4620 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4621 		/* nothing to do */;
4622 	} else if (nstate == IEEE80211_S_RUN) {
4623 		DPRINTF(sc, ATH_DEBUG_STATE,
4624 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4625 			"capinfo=0x%04x chan=%d\n"
4626 			 , __func__
4627 			 , ic->ic_flags
4628 			 , ni->ni_intval
4629 			 , ether_sprintf(ni->ni_bssid)
4630 			 , ni->ni_capinfo
4631 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4632 
4633 		switch (ic->ic_opmode) {
4634 		case IEEE80211_M_HOSTAP:
4635 		case IEEE80211_M_IBSS:
4636 			/*
4637 			 * Allocate and setup the beacon frame.
4638 			 *
4639 			 * Stop any previous beacon DMA.  This may be
4640 			 * necessary, for example, when an ibss merge
4641 			 * causes reconfiguration; there will be a state
4642 			 * transition from RUN->RUN that means we may
4643 			 * be called with beacon transmission active.
4644 			 */
4645 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4646 			ath_beacon_free(sc);
4647 			error = ath_beacon_alloc(sc, ni);
4648 			if (error != 0)
4649 				goto bad;
4650 			/*
4651 			 * If joining an adhoc network defer beacon timer
4652 			 * configuration to the next beacon frame so we
4653 			 * have a current TSF to use.  Otherwise we're
4654 			 * starting an ibss/bss so there's no need to delay.
4655 			 */
4656 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4657 			    ic->ic_bss->ni_tstamp.tsf != 0)
4658 				sc->sc_syncbeacon = 1;
4659 			else
4660 				ath_beacon_config(sc);
4661 			break;
4662 		case IEEE80211_M_STA:
4663 			/*
4664 			 * Allocate a key cache slot to the station.
4665 			 */
4666 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4667 			    sc->sc_hasclrkey &&
4668 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4669 				ath_setup_stationkey(ni);
4670 			/*
4671 			 * Defer beacon timer configuration to the next
4672 			 * beacon frame so we have a current TSF to use
4673 			 * (any TSF collected when scanning is likely old).
4674 			 */
4675 			sc->sc_syncbeacon = 1;
4676 			break;
4677 		default:
4678 			break;
4679 		}
4680 
4681 		/*
4682 		 * Let the hal process statistics collected during a
4683 		 * scan so it can provide calibrated noise floor data.
4684 		 */
4685 		ath_hal_process_noisefloor(ah);
4686 		/*
4687 		 * Reset rssi stats; maybe not the best place...
4688 		 */
4689 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4690 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4691 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4692 	} else {
4693 		ath_hal_intrset(ah,
4694 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4695 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4696 	}
4697 done:
4698 	/*
4699 	 * Invoke the parent method to complete the work.
4700 	 */
4701 	error = sc->sc_newstate(ic, nstate, arg);
4702 	/*
4703 	 * Finally, start any timers.
4704 	 */
4705 	if (nstate == IEEE80211_S_RUN) {
4706 		/* start periodic recalibration timer */
4707 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4708 			ath_calibrate, sc);
4709 	} else if (nstate == IEEE80211_S_SCAN) {
4710 		/* start ap/neighbor scan timer */
4711 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4712 			ath_next_scan, sc);
4713 	}
4714 bad:
4715 	return error;
4716 }
4717 
4718 /*
4719  * Allocate a key cache slot to the station so we can
4720  * setup a mapping from key index to node. The key cache
4721  * slot is needed for managing antenna state and for
4722  * compression when stations do not use crypto.  We do
4723  * it uniliaterally here; if crypto is employed this slot
4724  * will be reassigned.
4725  */
4726 static void
4727 ath_setup_stationkey(struct ieee80211_node *ni)
4728 {
4729 	struct ieee80211com *ic = ni->ni_ic;
4730 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4731 	ieee80211_keyix keyix, rxkeyix;
4732 
4733 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4734 		/*
4735 		 * Key cache is full; we'll fall back to doing
4736 		 * the more expensive lookup in software.  Note
4737 		 * this also means no h/w compression.
4738 		 */
4739 		/* XXX msg+statistic */
4740 	} else {
4741 		/* XXX locking? */
4742 		ni->ni_ucastkey.wk_keyix = keyix;
4743 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4744 		/* NB: this will create a pass-thru key entry */
4745 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4746 	}
4747 }
4748 
4749 /*
4750  * Setup driver-specific state for a newly associated node.
4751  * Note that we're called also on a re-associate, the isnew
4752  * param tells us if this is the first time or not.
4753  */
4754 static void
4755 ath_newassoc(struct ieee80211_node *ni, int isnew)
4756 {
4757 	struct ieee80211com *ic = ni->ni_ic;
4758 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4759 
4760 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4761 	if (isnew &&
4762 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4763 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4764 		    ("new assoc with a unicast key already setup (keyix %u)",
4765 		    ni->ni_ucastkey.wk_keyix));
4766 		ath_setup_stationkey(ni);
4767 	}
4768 }
4769 
4770 static int
4771 ath_getchannels(struct ath_softc *sc,
4772     HAL_REG_DOMAIN rd, HAL_CTRY_CODE cc, HAL_BOOL outdoor, HAL_BOOL xchanmode)
4773 {
4774 #define	COMPAT \
4775 	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE|CHANNEL_HALF|CHANNEL_QUARTER)
4776 #define IS_CHAN_PUBLIC_SAFETY(_c) \
4777 	(((_c)->channelFlags & CHANNEL_5GHZ) && \
4778 	 ((_c)->channel > 4940 && (_c)->channel < 4990))
4779 	struct ieee80211com *ic = &sc->sc_ic;
4780 	struct ifnet *ifp = sc->sc_ifp;
4781 	struct ath_hal *ah = sc->sc_ah;
4782 	HAL_CHANNEL *chans;
4783 	int i, ix, nchan;
4784 	u_int32_t regdomain;
4785 
4786 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4787 			M_TEMP, M_NOWAIT);
4788 	if (chans == NULL) {
4789 		if_printf(ifp, "unable to allocate channel table\n");
4790 		return ENOMEM;
4791 	}
4792 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4793 	    NULL, 0, NULL, cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4794 		ath_hal_getregdomain(ah, &regdomain);
4795 		if_printf(ifp, "unable to collect channel list from hal; "
4796 			"regdomain likely %u country code %u\n", regdomain, cc);
4797 		free(chans, M_TEMP);
4798 		return EINVAL;
4799 	}
4800 
4801 	/*
4802 	 * Convert HAL channels to ieee80211 ones and insert
4803 	 * them in the table according to their channel number.
4804 	 */
4805 	memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
4806 	for (i = 0; i < nchan; i++) {
4807 		HAL_CHANNEL *c = &chans[i];
4808 		u_int16_t flags;
4809 
4810 		/*
4811 		 * XXX we're not ready to handle the ieee number mapping
4812 		 * for public safety channels as they overlap with any
4813 		 * 2GHz channels; for now use a non-public safety
4814 		 * numbering that is non-overlapping.
4815 		 */
4816 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4817 		if (IS_CHAN_PUBLIC_SAFETY(c))
4818 			ix += 37;		/* XXX */
4819 		if (ix > IEEE80211_CHAN_MAX) {
4820 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4821 				ix, c->channel, c->channelFlags);
4822 			continue;
4823 		}
4824 		if (ix < 0) {
4825 			/* XXX can't handle stuff <2400 right now */
4826 			if (bootverbose)
4827 				if_printf(ifp, "hal channel %d (%u/%x) "
4828 				    "cannot be handled; ignored\n",
4829 				    ix, c->channel, c->channelFlags);
4830 			continue;
4831 		}
4832 		/*
4833 		 * Calculate net80211 flags; most are compatible
4834 		 * but some need massaging.  Note the static turbo
4835 		 * conversion can be removed once net80211 is updated
4836 		 * to understand static vs. dynamic turbo.
4837 		 */
4838 		flags = c->channelFlags & COMPAT;
4839 		if (c->channelFlags & CHANNEL_STURBO)
4840 			flags |= IEEE80211_CHAN_TURBO;
4841 		if (ic->ic_channels[ix].ic_freq == 0) {
4842 			ic->ic_channels[ix].ic_freq = c->channel;
4843 			ic->ic_channels[ix].ic_flags = flags;
4844 		} else {
4845 			/* channels overlap; e.g. 11g and 11b */
4846 			ic->ic_channels[ix].ic_flags |= flags;
4847 		}
4848 	}
4849 	free(chans, M_TEMP);
4850 	ath_hal_getregdomain(ah, &sc->sc_regdomain);
4851 	ath_hal_getcountrycode(ah, &sc->sc_countrycode);
4852 	sc->sc_xchanmode = xchanmode;
4853 	sc->sc_outdoor = outdoor;
4854 	return 0;
4855 #undef IS_CHAN_PUBLIC_SAFETY
4856 #undef COMPAT
4857 }
4858 
4859 static void
4860 ath_led_done(void *arg)
4861 {
4862 	struct ath_softc *sc = arg;
4863 
4864 	sc->sc_blinking = 0;
4865 }
4866 
4867 /*
4868  * Turn the LED off: flip the pin and then set a timer so no
4869  * update will happen for the specified duration.
4870  */
4871 static void
4872 ath_led_off(void *arg)
4873 {
4874 	struct ath_softc *sc = arg;
4875 
4876 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4877 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4878 }
4879 
4880 /*
4881  * Blink the LED according to the specified on/off times.
4882  */
4883 static void
4884 ath_led_blink(struct ath_softc *sc, int on, int off)
4885 {
4886 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4887 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4888 	sc->sc_blinking = 1;
4889 	sc->sc_ledoff = off;
4890 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4891 }
4892 
4893 static void
4894 ath_led_event(struct ath_softc *sc, int event)
4895 {
4896 
4897 	sc->sc_ledevent = ticks;	/* time of last event */
4898 	if (sc->sc_blinking)		/* don't interrupt active blink */
4899 		return;
4900 	switch (event) {
4901 	case ATH_LED_POLL:
4902 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4903 			sc->sc_hwmap[0].ledoff);
4904 		break;
4905 	case ATH_LED_TX:
4906 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4907 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4908 		break;
4909 	case ATH_LED_RX:
4910 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4911 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4912 		break;
4913 	}
4914 }
4915 
4916 static void
4917 ath_update_txpow(struct ath_softc *sc)
4918 {
4919 	struct ieee80211com *ic = &sc->sc_ic;
4920 	struct ath_hal *ah = sc->sc_ah;
4921 	u_int32_t txpow;
4922 
4923 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4924 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4925 		/* read back in case value is clamped */
4926 		ath_hal_gettxpowlimit(ah, &txpow);
4927 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4928 	}
4929 	/*
4930 	 * Fetch max tx power level for status requests.
4931 	 */
4932 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4933 	ic->ic_bss->ni_txpower = txpow;
4934 }
4935 
4936 static int
4937 ath_rate_setup(struct ath_softc *sc, u_int mode)
4938 {
4939 	struct ath_hal *ah = sc->sc_ah;
4940 	const HAL_RATE_TABLE *rt;
4941 
4942 	switch (mode) {
4943 	case IEEE80211_MODE_11A:
4944 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4945 		break;
4946 	case IEEE80211_MODE_11A_HALF:
4947 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4948 		break;
4949 	case IEEE80211_MODE_11A_QUARTER:
4950 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4951 		break;
4952 	case IEEE80211_MODE_11B:
4953 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4954 		break;
4955 	case IEEE80211_MODE_11G:
4956 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4957 		break;
4958 	case IEEE80211_MODE_TURBO_A:
4959 		/* XXX until static/dynamic turbo is fixed */
4960 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4961 		break;
4962 	case IEEE80211_MODE_TURBO_G:
4963 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4964 		break;
4965 	default:
4966 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4967 			__func__, mode);
4968 		return 0;
4969 	}
4970 	sc->sc_rates[mode] = rt;
4971 	return (rt != NULL);
4972 }
4973 
4974 static void
4975 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4976 {
4977 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4978 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4979 	static const struct {
4980 		u_int		rate;		/* tx/rx 802.11 rate */
4981 		u_int16_t	timeOn;		/* LED on time (ms) */
4982 		u_int16_t	timeOff;	/* LED off time (ms) */
4983 	} blinkrates[] = {
4984 		{ 108,  40,  10 },
4985 		{  96,  44,  11 },
4986 		{  72,  50,  13 },
4987 		{  48,  57,  14 },
4988 		{  36,  67,  16 },
4989 		{  24,  80,  20 },
4990 		{  22, 100,  25 },
4991 		{  18, 133,  34 },
4992 		{  12, 160,  40 },
4993 		{  10, 200,  50 },
4994 		{   6, 240,  58 },
4995 		{   4, 267,  66 },
4996 		{   2, 400, 100 },
4997 		{   0, 500, 130 },
4998 	};
4999 	const HAL_RATE_TABLE *rt;
5000 	int i, j;
5001 
5002 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5003 	rt = sc->sc_rates[mode];
5004 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5005 	for (i = 0; i < rt->rateCount; i++)
5006 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5007 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5008 	for (i = 0; i < 32; i++) {
5009 		u_int8_t ix = rt->rateCodeToIndex[i];
5010 		if (ix == 0xff) {
5011 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5012 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5013 			continue;
5014 		}
5015 		sc->sc_hwmap[i].ieeerate =
5016 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5017 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5018 		if (rt->info[ix].shortPreamble ||
5019 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5020 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5021 		/* NB: receive frames include FCS */
5022 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5023 			IEEE80211_RADIOTAP_F_FCS;
5024 		/* setup blink rate table to avoid per-packet lookup */
5025 		for (j = 0; j < N(blinkrates)-1; j++)
5026 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5027 				break;
5028 		/* NB: this uses the last entry if the rate isn't found */
5029 		/* XXX beware of overlow */
5030 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5031 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5032 	}
5033 	sc->sc_currates = rt;
5034 	sc->sc_curmode = mode;
5035 	/*
5036 	 * All protection frames are transmited at 2Mb/s for
5037 	 * 11g, otherwise at 1Mb/s.
5038 	 */
5039 	if (mode == IEEE80211_MODE_11G)
5040 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5041 	else
5042 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5043 	/* rate index used to send management frames */
5044 	sc->sc_minrateix = 0;
5045 	/*
5046 	 * Setup multicast rate state.
5047 	 */
5048 	/* XXX layering violation */
5049 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5050 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5051 	/* NB: caller is responsible for reseting rate control state */
5052 #undef N
5053 }
5054 
5055 #ifdef ATH_DEBUG
5056 static void
5057 ath_printrxbuf(const struct ath_buf *bf, u_int ix, int done)
5058 {
5059 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5060 	const struct ath_desc *ds;
5061 	int i;
5062 
5063 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5064 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
5065 		       "      %08x %08x %08x %08x\n",
5066 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
5067 		    ds->ds_link, ds->ds_data,
5068 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
5069 		    ds->ds_ctl0, ds->ds_ctl1,
5070 		    ds->ds_hw[0], ds->ds_hw[1]);
5071 	}
5072 }
5073 
5074 static void
5075 ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done)
5076 {
5077 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
5078 	const struct ath_desc *ds;
5079 	int i;
5080 
5081 	printf("Q%u[%3u]", qnum, ix);
5082 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5083 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
5084 		       "        %08x %08x %08x %08x %08x %08x\n",
5085 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
5086 		    ds->ds_link, ds->ds_data, bf->bf_flags,
5087 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
5088 		    ds->ds_ctl0, ds->ds_ctl1,
5089 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
5090 	}
5091 }
5092 #endif /* ATH_DEBUG */
5093 
5094 static void
5095 ath_watchdog(struct ifnet *ifp)
5096 {
5097 	struct ath_softc *sc = ifp->if_softc;
5098 	struct ieee80211com *ic = &sc->sc_ic;
5099 
5100 	ifp->if_timer = 0;
5101 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
5102 		return;
5103 	if (sc->sc_tx_timer) {
5104 		if (--sc->sc_tx_timer == 0) {
5105 			if_printf(ifp, "device timeout\n");
5106 			ath_reset(ifp);
5107 			ifp->if_oerrors++;
5108 			sc->sc_stats.ast_watchdog++;
5109 		} else
5110 			ifp->if_timer = 1;
5111 	}
5112 	ieee80211_watchdog(ic);
5113 }
5114 
5115 #ifdef ATH_DIAGAPI
5116 /*
5117  * Diagnostic interface to the HAL.  This is used by various
5118  * tools to do things like retrieve register contents for
5119  * debugging.  The mechanism is intentionally opaque so that
5120  * it can change frequently w/o concern for compatiblity.
5121  */
5122 static int
5123 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5124 {
5125 	struct ath_hal *ah = sc->sc_ah;
5126 	u_int id = ad->ad_id & ATH_DIAG_ID;
5127 	void *indata = NULL;
5128 	void *outdata = NULL;
5129 	u_int32_t insize = ad->ad_in_size;
5130 	u_int32_t outsize = ad->ad_out_size;
5131 	int error = 0;
5132 
5133 	if (ad->ad_id & ATH_DIAG_IN) {
5134 		/*
5135 		 * Copy in data.
5136 		 */
5137 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5138 		if (indata == NULL) {
5139 			error = ENOMEM;
5140 			goto bad;
5141 		}
5142 		error = copyin(ad->ad_in_data, indata, insize);
5143 		if (error)
5144 			goto bad;
5145 	}
5146 	if (ad->ad_id & ATH_DIAG_DYN) {
5147 		/*
5148 		 * Allocate a buffer for the results (otherwise the HAL
5149 		 * returns a pointer to a buffer where we can read the
5150 		 * results).  Note that we depend on the HAL leaving this
5151 		 * pointer for us to use below in reclaiming the buffer;
5152 		 * may want to be more defensive.
5153 		 */
5154 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5155 		if (outdata == NULL) {
5156 			error = ENOMEM;
5157 			goto bad;
5158 		}
5159 	}
5160 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5161 		if (outsize < ad->ad_out_size)
5162 			ad->ad_out_size = outsize;
5163 		if (outdata != NULL)
5164 			error = copyout(outdata, ad->ad_out_data,
5165 					ad->ad_out_size);
5166 	} else {
5167 		error = EINVAL;
5168 	}
5169 bad:
5170 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5171 		free(indata, M_TEMP);
5172 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5173 		free(outdata, M_TEMP);
5174 	return error;
5175 }
5176 #endif /* ATH_DIAGAPI */
5177 
5178 static int
5179 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5180 {
5181 #define	IS_RUNNING(ifp) \
5182 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5183 	struct ath_softc *sc = ifp->if_softc;
5184 	struct ieee80211com *ic = &sc->sc_ic;
5185 	struct ifreq *ifr = (struct ifreq *)data;
5186 	int error = 0;
5187 
5188 	ATH_LOCK(sc);
5189 	switch (cmd) {
5190 	case SIOCSIFFLAGS:
5191 		if (IS_RUNNING(ifp)) {
5192 			/*
5193 			 * To avoid rescanning another access point,
5194 			 * do not call ath_init() here.  Instead,
5195 			 * only reflect promisc mode settings.
5196 			 */
5197 			ath_mode_init(sc);
5198 		} else if (ifp->if_flags & IFF_UP) {
5199 			/*
5200 			 * Beware of being called during attach/detach
5201 			 * to reset promiscuous mode.  In that case we
5202 			 * will still be marked UP but not RUNNING.
5203 			 * However trying to re-init the interface
5204 			 * is the wrong thing to do as we've already
5205 			 * torn down much of our state.  There's
5206 			 * probably a better way to deal with this.
5207 			 */
5208 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5209 				ath_init(sc);	/* XXX lose error */
5210 		} else
5211 			ath_stop_locked(ifp);
5212 		break;
5213 	case SIOCADDMULTI:
5214 	case SIOCDELMULTI:
5215 		/*
5216 		 * The upper layer has already installed/removed
5217 		 * the multicast address(es), just recalculate the
5218 		 * multicast filter for the card.
5219 		 */
5220 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5221 			ath_mode_init(sc);
5222 		break;
5223 	case SIOCGATHSTATS:
5224 		/* NB: embed these numbers to get a consistent view */
5225 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5226 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5227 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5228 		sc->sc_stats.ast_rx_noise =
5229 			ath_hal_getchannoise(sc->sc_ah, &sc->sc_curchan);
5230 		sc->sc_stats.ast_tx_rate = sc->sc_hwmap[sc->sc_txrate].ieeerate;
5231 		ATH_UNLOCK(sc);
5232 		/*
5233 		 * NB: Drop the softc lock in case of a page fault;
5234 		 * we'll accept any potential inconsisentcy in the
5235 		 * statistics.  The alternative is to copy the data
5236 		 * to a local structure.
5237 		 */
5238 		return copyout(&sc->sc_stats,
5239 				ifr->ifr_data, sizeof (sc->sc_stats));
5240 #ifdef ATH_DIAGAPI
5241 	case SIOCGATHDIAG:
5242 		ATH_UNLOCK(sc);
5243 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5244 		ATH_LOCK(sc);
5245 		break;
5246 #endif
5247 	default:
5248 		error = ieee80211_ioctl(ic, cmd, data);
5249 		if (error == ENETRESET) {
5250 			if (IS_RUNNING(ifp) &&
5251 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5252 				ath_init(sc);	/* XXX lose error */
5253 			error = 0;
5254 		}
5255 		if (error == ERESTART)
5256 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5257 		break;
5258 	}
5259 	ATH_UNLOCK(sc);
5260 	return error;
5261 #undef IS_RUNNING
5262 }
5263 
5264 static int
5265 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
5266 {
5267 	struct ath_softc *sc = arg1;
5268 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
5269 	int error;
5270 
5271 	error = sysctl_handle_int(oidp, &slottime, 0, req);
5272 	if (error || !req->newptr)
5273 		return error;
5274 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
5275 }
5276 
5277 static int
5278 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
5279 {
5280 	struct ath_softc *sc = arg1;
5281 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
5282 	int error;
5283 
5284 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
5285 	if (error || !req->newptr)
5286 		return error;
5287 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
5288 }
5289 
5290 static int
5291 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
5292 {
5293 	struct ath_softc *sc = arg1;
5294 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
5295 	int error;
5296 
5297 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
5298 	if (error || !req->newptr)
5299 		return error;
5300 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
5301 }
5302 
5303 static int
5304 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
5305 {
5306 	struct ath_softc *sc = arg1;
5307 	int softled = sc->sc_softled;
5308 	int error;
5309 
5310 	error = sysctl_handle_int(oidp, &softled, 0, req);
5311 	if (error || !req->newptr)
5312 		return error;
5313 	softled = (softled != 0);
5314 	if (softled != sc->sc_softled) {
5315 		if (softled) {
5316 			/* NB: handle any sc_ledpin change */
5317 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
5318 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
5319 				!sc->sc_ledon);
5320 		}
5321 		sc->sc_softled = softled;
5322 	}
5323 	return 0;
5324 }
5325 
5326 static int
5327 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
5328 {
5329 	struct ath_softc *sc = arg1;
5330 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
5331 	int error;
5332 
5333 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
5334 	if (!error && req->newptr)
5335 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
5336 	return error;
5337 }
5338 
5339 static int
5340 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
5341 {
5342 	struct ath_softc *sc = arg1;
5343 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
5344 	int error;
5345 
5346 	error = sysctl_handle_int(oidp, &diversity, 0, req);
5347 	if (error || !req->newptr)
5348 		return error;
5349 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
5350 		return EINVAL;
5351 	sc->sc_diversity = diversity;
5352 	return 0;
5353 }
5354 
5355 static int
5356 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
5357 {
5358 	struct ath_softc *sc = arg1;
5359 	u_int32_t diag;
5360 	int error;
5361 
5362 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
5363 		return EINVAL;
5364 	error = sysctl_handle_int(oidp, &diag, 0, req);
5365 	if (error || !req->newptr)
5366 		return error;
5367 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
5368 }
5369 
5370 static int
5371 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
5372 {
5373 	struct ath_softc *sc = arg1;
5374 	struct ifnet *ifp = sc->sc_ifp;
5375 	u_int32_t scale;
5376 	int error;
5377 
5378 	ath_hal_gettpscale(sc->sc_ah, &scale);
5379 	error = sysctl_handle_int(oidp, &scale, 0, req);
5380 	if (error || !req->newptr)
5381 		return error;
5382 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
5383 }
5384 
5385 static int
5386 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
5387 {
5388 	struct ath_softc *sc = arg1;
5389 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
5390 	int error;
5391 
5392 	error = sysctl_handle_int(oidp, &tpc, 0, req);
5393 	if (error || !req->newptr)
5394 		return error;
5395 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
5396 }
5397 
5398 static int
5399 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
5400 {
5401 	struct ath_softc *sc = arg1;
5402 	struct ath_hal *ah = sc->sc_ah;
5403 	u_int rfkill = ath_hal_getrfkill(ah);
5404 	int error;
5405 
5406 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
5407 	if (error || !req->newptr)
5408 		return error;
5409 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
5410 		return 0;
5411 	if (!ath_hal_setrfkill(ah, rfkill) || ath_reset(sc->sc_ifp) != 0)
5412 		return EINVAL;
5413 	else
5414 		return 0;
5415 }
5416 
5417 static int
5418 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
5419 {
5420 	struct ath_softc *sc = arg1;
5421 	u_int rfsilent;
5422 	int error;
5423 
5424 	ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
5425 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
5426 	if (error || !req->newptr)
5427 		return error;
5428 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
5429 		return EINVAL;
5430 	sc->sc_rfsilentpin = rfsilent & 0x1c;
5431 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
5432 	return 0;
5433 }
5434 
5435 static int
5436 ath_sysctl_countrycode(SYSCTL_HANDLER_ARGS)
5437 {
5438 	struct ath_softc *sc = arg1;
5439 	u_int32_t cc = sc->sc_countrycode;
5440 	struct ieee80211com *ic = &sc->sc_ic;
5441 	int error;
5442 
5443 	error = sysctl_handle_int(oidp, &cc, 0, req);
5444 	if (error || !req->newptr)
5445 		return error;
5446 	error = ath_getchannels(sc, sc->sc_regdomain, cc,
5447 			sc->sc_outdoor, sc->sc_xchanmode);
5448 	if (error != 0)
5449 		return error;
5450 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
5451 	/* setcurmode? */
5452 	return 0;
5453 }
5454 
5455 static int
5456 ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
5457 {
5458 	struct ath_softc *sc = arg1;
5459 	u_int32_t rd = sc->sc_regdomain;
5460 	struct ieee80211com *ic = &sc->sc_ic;
5461 	int error;
5462 
5463 	error = sysctl_handle_int(oidp, &rd, 0, req);
5464 	if (error || !req->newptr)
5465 		return error;
5466 	if (!ath_hal_setregdomain(sc->sc_ah, rd))
5467 		return EINVAL;
5468 	error = ath_getchannels(sc, rd, sc->sc_countrycode,
5469 			sc->sc_outdoor, sc->sc_xchanmode);
5470 	if (error != 0)
5471 		return error;
5472 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
5473 	/* setcurmode? */
5474 	return 0;
5475 }
5476 
5477 static int
5478 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
5479 {
5480 	struct ath_softc *sc = arg1;
5481 	u_int32_t tpack;
5482 	int error;
5483 
5484 	ath_hal_gettpack(sc->sc_ah, &tpack);
5485 	error = sysctl_handle_int(oidp, &tpack, 0, req);
5486 	if (error || !req->newptr)
5487 		return error;
5488 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
5489 }
5490 
5491 static int
5492 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
5493 {
5494 	struct ath_softc *sc = arg1;
5495 	u_int32_t tpcts;
5496 	int error;
5497 
5498 	ath_hal_gettpcts(sc->sc_ah, &tpcts);
5499 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
5500 	if (error || !req->newptr)
5501 		return error;
5502 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
5503 }
5504 
5505 static void
5506 ath_sysctlattach(struct ath_softc *sc)
5507 {
5508 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
5509 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
5510 	struct ath_hal *ah = sc->sc_ah;
5511 
5512 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5513 		"countrycode", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5514 		ath_sysctl_countrycode, "I", "country code");
5515 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5516 		"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5517 		ath_sysctl_regdomain, "I", "EEPROM regdomain code");
5518 #ifdef	ATH_DEBUG
5519 	sc->sc_debug = ath_debug;
5520 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5521 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
5522 		"control debugging printfs");
5523 #endif
5524 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5525 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5526 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
5527 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5528 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5529 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
5530 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5531 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5532 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
5533 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5534 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5535 		ath_sysctl_softled, "I", "enable/disable software LED support");
5536 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5537 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
5538 		"GPIO pin connected to LED");
5539 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5540 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
5541 		"setting to turn LED on");
5542 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5543 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
5544 		"idle time for inactivity LED (ticks)");
5545 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5546 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
5547 		"tx antenna (0=auto)");
5548 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5549 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5550 		ath_sysctl_rxantenna, "I", "default/rx antenna");
5551 	if (ath_hal_hasdiversity(ah))
5552 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5553 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5554 			ath_sysctl_diversity, "I", "antenna diversity");
5555 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
5556 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5557 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
5558 		"tx descriptor batching");
5559 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5560 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5561 		ath_sysctl_diag, "I", "h/w diagnostic control");
5562 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5563 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5564 		ath_sysctl_tpscale, "I", "tx power scaling");
5565 	if (ath_hal_hastpc(ah)) {
5566 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5567 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5568 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
5569 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5570 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5571 			ath_sysctl_tpack, "I", "tx power for ack frames");
5572 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5573 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5574 			ath_sysctl_tpcts, "I", "tx power for cts frames");
5575 	}
5576 	if (ath_hal_hasrfsilent(ah)) {
5577 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5578 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5579 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
5580 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5581 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5582 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
5583 	}
5584 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
5585 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5586 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
5587 		"mask of error frames to pass when monitoring");
5588 }
5589 
5590 static void
5591 ath_bpfattach(struct ath_softc *sc)
5592 {
5593 	struct ifnet *ifp = sc->sc_ifp;
5594 
5595 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5596 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5597 		&sc->sc_drvbpf);
5598 	/*
5599 	 * Initialize constant fields.
5600 	 * XXX make header lengths a multiple of 32-bits so subsequent
5601 	 *     headers are properly aligned; this is a kludge to keep
5602 	 *     certain applications happy.
5603 	 *
5604 	 * NB: the channel is setup each time we transition to the
5605 	 *     RUN state to avoid filling it in for each frame.
5606 	 */
5607 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5608 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5609 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5610 
5611 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5612 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5613 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5614 }
5615 
5616 static int
5617 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
5618 	struct ath_buf *bf, struct mbuf *m0,
5619 	const struct ieee80211_bpf_params *params)
5620 {
5621 	struct ieee80211com *ic = &sc->sc_ic;
5622 	struct ath_hal *ah = sc->sc_ah;
5623 	int error, ismcast, ismrr;
5624 	int hdrlen, pktlen, try0, txantenna;
5625 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
5626 	struct ath_txq *txq;
5627 	struct ieee80211_frame *wh;
5628 	u_int flags, ctsduration;
5629 	HAL_PKT_TYPE atype;
5630 	const HAL_RATE_TABLE *rt;
5631 	struct ath_desc *ds;
5632 	u_int pri;
5633 
5634 	wh = mtod(m0, struct ieee80211_frame *);
5635 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
5636 	hdrlen = ieee80211_anyhdrsize(wh);
5637 	/*
5638 	 * Packet length must not include any
5639 	 * pad bytes; deduct them here.
5640 	 */
5641 	/* XXX honor IEEE80211_BPF_DATAPAD */
5642 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
5643 
5644 	error = ath_tx_dmasetup(sc, bf, m0);
5645 	if (error != 0)
5646 		return error;
5647 	m0 = bf->bf_m;				/* NB: may have changed */
5648 	wh = mtod(m0, struct ieee80211_frame *);
5649 	bf->bf_node = ni;			/* NB: held reference */
5650 
5651 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
5652 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
5653 	if (params->ibp_flags & IEEE80211_BPF_RTS)
5654 		flags |= HAL_TXDESC_RTSENA;
5655 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
5656 		flags |= HAL_TXDESC_CTSENA;
5657 	/* XXX leave ismcast to injector? */
5658 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
5659 		flags |= HAL_TXDESC_NOACK;
5660 
5661 	rt = sc->sc_currates;
5662 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
5663 	rix = ath_tx_findrix(rt, params->ibp_rate0);
5664 	txrate = rt->info[rix].rateCode;
5665 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
5666 		txrate |= rt->info[rix].shortPreamble;
5667 	sc->sc_txrate = txrate;
5668 	try0 = params->ibp_try0;
5669 	ismrr = (params->ibp_try1 != 0);
5670 	txantenna = params->ibp_pri >> 2;
5671 	if (txantenna == 0)			/* XXX? */
5672 		txantenna = sc->sc_txantenna;
5673 	ctsduration = 0;
5674 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
5675 		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
5676 		ctsrate = rt->info[cix].rateCode;
5677 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
5678 			ctsrate |= rt->info[cix].shortPreamble;
5679 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5680 				ctsduration += rt->info[cix].spAckDuration;
5681 			ctsduration += ath_hal_computetxtime(ah,
5682 				rt, pktlen, rix, AH_TRUE);
5683 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5684 				ctsduration += rt->info[rix].spAckDuration;
5685 		} else {
5686 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5687 				ctsduration += rt->info[cix].lpAckDuration;
5688 			ctsduration += ath_hal_computetxtime(ah,
5689 				rt, pktlen, rix, AH_FALSE);
5690 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5691 				ctsduration += rt->info[rix].lpAckDuration;
5692 		}
5693 		ismrr = 0;			/* XXX */
5694 	} else
5695 		ctsrate = 0;
5696 	pri = params->ibp_pri & 3;
5697 	/*
5698 	 * NB: we mark all packets as type PSPOLL so the h/w won't
5699 	 * set the sequence number, duration, etc.
5700 	 */
5701 	atype = HAL_PKT_TYPE_PSPOLL;
5702 
5703 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
5704 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
5705 			sc->sc_hwmap[txrate].ieeerate, -1);
5706 
5707 	if (bpf_peers_present(ic->ic_rawbpf))
5708 		bpf_mtap(ic->ic_rawbpf, m0);
5709 	if (bpf_peers_present(sc->sc_drvbpf)) {
5710 		u_int64_t tsf = ath_hal_gettsf64(ah);
5711 
5712 		sc->sc_tx_th.wt_tsf = htole64(tsf);
5713 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
5714 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
5715 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
5716 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
5717 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
5718 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
5719 
5720 		bpf_mtap2(sc->sc_drvbpf,
5721 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
5722 	}
5723 
5724 	/*
5725 	 * Formulate first tx descriptor with tx controls.
5726 	 */
5727 	ds = bf->bf_desc;
5728 	/* XXX check return value? */
5729 	ath_hal_setuptxdesc(ah, ds
5730 		, pktlen		/* packet length */
5731 		, hdrlen		/* header length */
5732 		, atype			/* Atheros packet type */
5733 		, params->ibp_power	/* txpower */
5734 		, txrate, try0		/* series 0 rate/tries */
5735 		, HAL_TXKEYIX_INVALID	/* key cache index */
5736 		, txantenna		/* antenna mode */
5737 		, flags			/* flags */
5738 		, ctsrate		/* rts/cts rate */
5739 		, ctsduration		/* rts/cts duration */
5740 	);
5741 	bf->bf_flags = flags;
5742 
5743 	if (ismrr) {
5744 		rix = ath_tx_findrix(rt, params->ibp_rate1);
5745 		rate1 = rt->info[rix].rateCode;
5746 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
5747 			rate1 |= rt->info[rix].shortPreamble;
5748 		if (params->ibp_try2) {
5749 			rix = ath_tx_findrix(rt, params->ibp_rate2);
5750 			rate2 = rt->info[rix].rateCode;
5751 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
5752 				rate2 |= rt->info[rix].shortPreamble;
5753 		} else
5754 			rate2 = 0;
5755 		if (params->ibp_try3) {
5756 			rix = ath_tx_findrix(rt, params->ibp_rate3);
5757 			rate3 = rt->info[rix].rateCode;
5758 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
5759 				rate3 |= rt->info[rix].shortPreamble;
5760 		} else
5761 			rate3 = 0;
5762 		ath_hal_setupxtxdesc(ah, ds
5763 			, rate1, params->ibp_try1	/* series 1 */
5764 			, rate2, params->ibp_try2	/* series 2 */
5765 			, rate3, params->ibp_try3	/* series 3 */
5766 		);
5767 	}
5768 
5769 	/*
5770 	 * When servicing one or more stations in power-save mode
5771 	 * (or) if there is some mcast data waiting on the mcast
5772 	 * queue (to prevent out of order delivery) multicast
5773 	 * frames must be buffered until after the beacon.
5774 	 */
5775 	txq = sc->sc_ac2q[pri];
5776 	if (ismcast && (ic->ic_ps_sta || sc->sc_mcastq.axq_depth))
5777 		txq = &sc->sc_mcastq;
5778 	ath_tx_handoff(sc, txq, bf);
5779 	return 0;
5780 }
5781 
5782 static int
5783 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5784 	const struct ieee80211_bpf_params *params)
5785 {
5786 	struct ieee80211com *ic = ni->ni_ic;
5787 	struct ifnet *ifp = ic->ic_ifp;
5788 	struct ath_softc *sc = ifp->if_softc;
5789 	struct ath_buf *bf;
5790 
5791 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
5792 		m_freem(m);
5793 		return ENETDOWN;
5794 	}
5795 	/*
5796 	 * Grab a TX buffer and associated resources.
5797 	 */
5798 	ATH_TXBUF_LOCK(sc);
5799 	bf = STAILQ_FIRST(&sc->sc_txbuf);
5800 	if (bf != NULL)
5801 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
5802 	ATH_TXBUF_UNLOCK(sc);
5803 	if (bf == NULL) {
5804 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
5805 			__func__);
5806 		sc->sc_stats.ast_tx_qstop++;
5807 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5808 		m_freem(m);
5809 		return ENOBUFS;
5810 	}
5811 
5812 	ifp->if_opackets++;
5813 	sc->sc_stats.ast_tx_raw++;
5814 
5815 	if (params == NULL) {
5816 		/*
5817 		 * Legacy path; interpret frame contents to decide
5818 		 * precisely how to send the frame.
5819 		 */
5820 		if (ath_tx_start(sc, ni, bf, m))
5821 			goto bad;
5822 	} else {
5823 		/*
5824 		 * Caller supplied explicit parameters to use in
5825 		 * sending the frame.
5826 		 */
5827 		if (ath_tx_raw_start(sc, ni, bf, m, params))
5828 			goto bad;
5829 	}
5830 	sc->sc_tx_timer = 5;
5831 	ifp->if_timer = 1;
5832 
5833 	return 0;
5834 bad:
5835 	ifp->if_oerrors++;
5836 	ATH_TXBUF_LOCK(sc);
5837 	STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5838 	ATH_TXBUF_UNLOCK(sc);
5839 	ieee80211_free_node(ni);
5840 	return EIO;		/* XXX */
5841 }
5842 
5843 /*
5844  * Announce various information on device/driver attach.
5845  */
5846 static void
5847 ath_announce(struct ath_softc *sc)
5848 {
5849 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5850 	struct ifnet *ifp = sc->sc_ifp;
5851 	struct ath_hal *ah = sc->sc_ah;
5852 	u_int modes, cc;
5853 
5854 	if_printf(ifp, "mac %d.%d phy %d.%d",
5855 		ah->ah_macVersion, ah->ah_macRev,
5856 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5857 	/*
5858 	 * Print radio revision(s).  We check the wireless modes
5859 	 * to avoid falsely printing revs for inoperable parts.
5860 	 * Dual-band radio revs are returned in the 5Ghz rev number.
5861 	 */
5862 	ath_hal_getcountrycode(ah, &cc);
5863 	modes = ath_hal_getwirelessmodes(ah, cc);
5864 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5865 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5866 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
5867 				ah->ah_analog5GhzRev >> 4,
5868 				ah->ah_analog5GhzRev & 0xf,
5869 				ah->ah_analog2GhzRev >> 4,
5870 				ah->ah_analog2GhzRev & 0xf);
5871 		else
5872 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5873 				ah->ah_analog5GhzRev & 0xf);
5874 	} else
5875 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5876 			ah->ah_analog5GhzRev & 0xf);
5877 	printf("\n");
5878 	if (bootverbose) {
5879 		int i;
5880 		for (i = 0; i <= WME_AC_VO; i++) {
5881 			struct ath_txq *txq = sc->sc_ac2q[i];
5882 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5883 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5884 		}
5885 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5886 			sc->sc_cabq->axq_qnum);
5887 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5888 	}
5889 	if (ath_rxbuf != ATH_RXBUF)
5890 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5891 	if (ath_txbuf != ATH_TXBUF)
5892 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5893 #undef HAL_MODE_DUALBAND
5894 }
5895