1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_athdfs.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 /* 121 * ATH_BCBUF determines the number of vap's that can transmit 122 * beacons and also (currently) the number of vap's that can 123 * have unique mac addresses/bssid. When staggering beacons 124 * 4 is probably a good max as otherwise the beacons become 125 * very closely spaced and there is limited time for cab q traffic 126 * to go out. You can burst beacons instead but that is not good 127 * for stations in power save and at some point you really want 128 * another radio (and channel). 129 * 130 * The limit on the number of mac addresses is tied to our use of 131 * the U/L bit and tracking addresses in a byte; it would be 132 * worthwhile to allow more for applications like proxy sta. 133 */ 134 CTASSERT(ATH_BCBUF <= 8); 135 136 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 137 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 138 const uint8_t [IEEE80211_ADDR_LEN], 139 const uint8_t [IEEE80211_ADDR_LEN]); 140 static void ath_vap_delete(struct ieee80211vap *); 141 static void ath_init(void *); 142 static void ath_stop_locked(struct ifnet *); 143 static void ath_stop(struct ifnet *); 144 static int ath_reset_vap(struct ieee80211vap *, u_long); 145 static int ath_media_change(struct ifnet *); 146 static void ath_watchdog(void *); 147 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 148 static void ath_fatal_proc(void *, int); 149 static void ath_bmiss_vap(struct ieee80211vap *); 150 static void ath_bmiss_proc(void *, int); 151 static void ath_key_update_begin(struct ieee80211vap *); 152 static void ath_key_update_end(struct ieee80211vap *); 153 static void ath_update_mcast(struct ifnet *); 154 static void ath_update_promisc(struct ifnet *); 155 static void ath_updateslot(struct ifnet *); 156 static void ath_bstuck_proc(void *, int); 157 static void ath_reset_proc(void *, int); 158 static int ath_desc_alloc(struct ath_softc *); 159 static void ath_desc_free(struct ath_softc *); 160 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 161 const uint8_t [IEEE80211_ADDR_LEN]); 162 static void ath_node_cleanup(struct ieee80211_node *); 163 static void ath_node_free(struct ieee80211_node *); 164 static void ath_node_getsignal(const struct ieee80211_node *, 165 int8_t *, int8_t *); 166 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 167 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 168 static int ath_tx_setup(struct ath_softc *, int, int); 169 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 170 static void ath_tx_cleanup(struct ath_softc *); 171 static void ath_tx_proc_q0(void *, int); 172 static void ath_tx_proc_q0123(void *, int); 173 static void ath_tx_proc(void *, int); 174 static void ath_txq_sched_tasklet(void *, int); 175 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 176 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 177 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 178 static void ath_scan_start(struct ieee80211com *); 179 static void ath_scan_end(struct ieee80211com *); 180 static void ath_set_channel(struct ieee80211com *); 181 #ifdef ATH_ENABLE_11N 182 static void ath_update_chw(struct ieee80211com *); 183 #endif /* ATH_ENABLE_11N */ 184 static void ath_calibrate(void *); 185 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 186 static void ath_setup_stationkey(struct ieee80211_node *); 187 static void ath_newassoc(struct ieee80211_node *, int); 188 static int ath_setregdomain(struct ieee80211com *, 189 struct ieee80211_regdomain *, int, 190 struct ieee80211_channel []); 191 static void ath_getradiocaps(struct ieee80211com *, int, int *, 192 struct ieee80211_channel []); 193 static int ath_getchannels(struct ath_softc *); 194 195 static int ath_rate_setup(struct ath_softc *, u_int mode); 196 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 197 198 static void ath_announce(struct ath_softc *); 199 200 static void ath_dfs_tasklet(void *, int); 201 202 #ifdef IEEE80211_SUPPORT_TDMA 203 #include <dev/ath/if_ath_tdma.h> 204 #endif 205 206 #if 0 207 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 208 #define TDMA_LPF_LEN 6 209 #define TDMA_DUMMY_MARKER 0x127 210 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 211 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 212 #define TDMA_LPF(x, y, len) \ 213 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 214 #define TDMA_SAMPLE(x, y) do { \ 215 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 216 } while (0) 217 #define TDMA_EP_RND(x,mul) \ 218 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 219 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 220 #endif /* IEEE80211_SUPPORT_TDMA */ 221 222 SYSCTL_DECL(_hw_ath); 223 224 /* XXX validate sysctl values */ 225 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 226 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 227 0, "long chip calibration interval (secs)"); 228 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 230 0, "short chip calibration interval (msecs)"); 231 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 233 0, "reset chip calibration results (secs)"); 234 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 236 0, "ANI calibration (msecs)"); 237 238 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 240 0, "rx buffers allocated"); 241 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 242 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 244 0, "tx buffers allocated"); 245 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 246 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 248 0, "tx (mgmt) buffers allocated"); 249 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 250 251 int ath_bstuck_threshold = 4; /* max missed beacons */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 253 0, "max missed beacon xmits before chip reset"); 254 255 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 256 257 void 258 ath_legacy_attach_comp_func(struct ath_softc *sc) 259 { 260 261 /* 262 * Special case certain configurations. Note the 263 * CAB queue is handled by these specially so don't 264 * include them when checking the txq setup mask. 265 */ 266 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 267 case 0x01: 268 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 269 break; 270 case 0x0f: 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 272 break; 273 default: 274 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 275 break; 276 } 277 } 278 279 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 280 #define HAL_MODE_HT40 \ 281 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 282 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 283 int 284 ath_attach(u_int16_t devid, struct ath_softc *sc) 285 { 286 struct ifnet *ifp; 287 struct ieee80211com *ic; 288 struct ath_hal *ah = NULL; 289 HAL_STATUS status; 290 int error = 0, i; 291 u_int wmodes; 292 uint8_t macaddr[IEEE80211_ADDR_LEN]; 293 int rx_chainmask, tx_chainmask; 294 295 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 296 297 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 298 if (ifp == NULL) { 299 device_printf(sc->sc_dev, "can not if_alloc()\n"); 300 error = ENOSPC; 301 goto bad; 302 } 303 ic = ifp->if_l2com; 304 305 /* set these up early for if_printf use */ 306 if_initname(ifp, device_get_name(sc->sc_dev), 307 device_get_unit(sc->sc_dev)); 308 309 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 310 sc->sc_eepromdata, &status); 311 if (ah == NULL) { 312 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 313 status); 314 error = ENXIO; 315 goto bad; 316 } 317 sc->sc_ah = ah; 318 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 319 #ifdef ATH_DEBUG 320 sc->sc_debug = ath_debug; 321 #endif 322 323 /* 324 * Setup the DMA/EDMA functions based on the current 325 * hardware support. 326 * 327 * This is required before the descriptors are allocated. 328 */ 329 if (ath_hal_hasedma(sc->sc_ah)) { 330 sc->sc_isedma = 1; 331 ath_recv_setup_edma(sc); 332 ath_xmit_setup_edma(sc); 333 } else { 334 ath_recv_setup_legacy(sc); 335 ath_xmit_setup_legacy(sc); 336 } 337 338 /* 339 * Check if the MAC has multi-rate retry support. 340 * We do this by trying to setup a fake extended 341 * descriptor. MAC's that don't have support will 342 * return false w/o doing anything. MAC's that do 343 * support it will return true w/o doing anything. 344 */ 345 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 346 347 /* 348 * Check if the device has hardware counters for PHY 349 * errors. If so we need to enable the MIB interrupt 350 * so we can act on stat triggers. 351 */ 352 if (ath_hal_hwphycounters(ah)) 353 sc->sc_needmib = 1; 354 355 /* 356 * Get the hardware key cache size. 357 */ 358 sc->sc_keymax = ath_hal_keycachesize(ah); 359 if (sc->sc_keymax > ATH_KEYMAX) { 360 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 361 ATH_KEYMAX, sc->sc_keymax); 362 sc->sc_keymax = ATH_KEYMAX; 363 } 364 /* 365 * Reset the key cache since some parts do not 366 * reset the contents on initial power up. 367 */ 368 for (i = 0; i < sc->sc_keymax; i++) 369 ath_hal_keyreset(ah, i); 370 371 /* 372 * Collect the default channel list. 373 */ 374 error = ath_getchannels(sc); 375 if (error != 0) 376 goto bad; 377 378 /* 379 * Setup rate tables for all potential media types. 380 */ 381 ath_rate_setup(sc, IEEE80211_MODE_11A); 382 ath_rate_setup(sc, IEEE80211_MODE_11B); 383 ath_rate_setup(sc, IEEE80211_MODE_11G); 384 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 385 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 386 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 387 ath_rate_setup(sc, IEEE80211_MODE_11NA); 388 ath_rate_setup(sc, IEEE80211_MODE_11NG); 389 ath_rate_setup(sc, IEEE80211_MODE_HALF); 390 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 391 392 /* NB: setup here so ath_rate_update is happy */ 393 ath_setcurmode(sc, IEEE80211_MODE_11A); 394 395 /* 396 * Allocate TX descriptors and populate the lists. 397 */ 398 error = ath_desc_alloc(sc); 399 if (error != 0) { 400 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 401 error); 402 goto bad; 403 } 404 error = ath_txdma_setup(sc); 405 if (error != 0) { 406 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 407 error); 408 goto bad; 409 } 410 411 /* 412 * Allocate RX descriptors and populate the lists. 413 */ 414 error = ath_rxdma_setup(sc); 415 if (error != 0) { 416 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 417 error); 418 goto bad; 419 } 420 421 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 422 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 423 424 ATH_TXBUF_LOCK_INIT(sc); 425 426 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 427 taskqueue_thread_enqueue, &sc->sc_tq); 428 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 429 "%s taskq", ifp->if_xname); 430 431 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 432 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 433 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 434 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 435 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 436 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 437 438 /* 439 * Allocate hardware transmit queues: one queue for 440 * beacon frames and one data queue for each QoS 441 * priority. Note that the hal handles resetting 442 * these queues at the needed time. 443 * 444 * XXX PS-Poll 445 */ 446 sc->sc_bhalq = ath_beaconq_setup(ah); 447 if (sc->sc_bhalq == (u_int) -1) { 448 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 449 error = EIO; 450 goto bad2; 451 } 452 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 453 if (sc->sc_cabq == NULL) { 454 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 455 error = EIO; 456 goto bad2; 457 } 458 /* NB: insure BK queue is the lowest priority h/w queue */ 459 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 460 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 461 ieee80211_wme_acnames[WME_AC_BK]); 462 error = EIO; 463 goto bad2; 464 } 465 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 466 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 467 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 468 /* 469 * Not enough hardware tx queues to properly do WME; 470 * just punt and assign them all to the same h/w queue. 471 * We could do a better job of this if, for example, 472 * we allocate queues when we switch from station to 473 * AP mode. 474 */ 475 if (sc->sc_ac2q[WME_AC_VI] != NULL) 476 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 477 if (sc->sc_ac2q[WME_AC_BE] != NULL) 478 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 479 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 480 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 481 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 482 } 483 484 /* 485 * Attach the TX completion function. 486 * 487 * The non-EDMA chips may have some special case optimisations; 488 * this method gives everyone a chance to attach cleanly. 489 */ 490 sc->sc_tx.xmit_attach_comp_func(sc); 491 492 /* 493 * Setup rate control. Some rate control modules 494 * call back to change the anntena state so expose 495 * the necessary entry points. 496 * XXX maybe belongs in struct ath_ratectrl? 497 */ 498 sc->sc_setdefantenna = ath_setdefantenna; 499 sc->sc_rc = ath_rate_attach(sc); 500 if (sc->sc_rc == NULL) { 501 error = EIO; 502 goto bad2; 503 } 504 505 /* Attach DFS module */ 506 if (! ath_dfs_attach(sc)) { 507 device_printf(sc->sc_dev, 508 "%s: unable to attach DFS\n", __func__); 509 error = EIO; 510 goto bad2; 511 } 512 513 /* Start DFS processing tasklet */ 514 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 515 516 /* Configure LED state */ 517 sc->sc_blinking = 0; 518 sc->sc_ledstate = 1; 519 sc->sc_ledon = 0; /* low true */ 520 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 521 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 522 523 /* 524 * Don't setup hardware-based blinking. 525 * 526 * Although some NICs may have this configured in the 527 * default reset register values, the user may wish 528 * to alter which pins have which function. 529 * 530 * The reference driver attaches the MAC network LED to GPIO1 and 531 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 532 * NIC has these reversed. 533 */ 534 sc->sc_hardled = (1 == 0); 535 sc->sc_led_net_pin = -1; 536 sc->sc_led_pwr_pin = -1; 537 /* 538 * Auto-enable soft led processing for IBM cards and for 539 * 5211 minipci cards. Users can also manually enable/disable 540 * support with a sysctl. 541 */ 542 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 543 ath_led_config(sc); 544 ath_hal_setledstate(ah, HAL_LED_INIT); 545 546 ifp->if_softc = sc; 547 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 548 ifp->if_start = ath_start; 549 ifp->if_ioctl = ath_ioctl; 550 ifp->if_init = ath_init; 551 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 552 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 553 IFQ_SET_READY(&ifp->if_snd); 554 555 ic->ic_ifp = ifp; 556 /* XXX not right but it's not used anywhere important */ 557 ic->ic_phytype = IEEE80211_T_OFDM; 558 ic->ic_opmode = IEEE80211_M_STA; 559 ic->ic_caps = 560 IEEE80211_C_STA /* station mode */ 561 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 562 | IEEE80211_C_HOSTAP /* hostap mode */ 563 | IEEE80211_C_MONITOR /* monitor mode */ 564 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 565 | IEEE80211_C_WDS /* 4-address traffic works */ 566 | IEEE80211_C_MBSS /* mesh point link mode */ 567 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 568 | IEEE80211_C_SHSLOT /* short slot time supported */ 569 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 570 #ifndef ATH_ENABLE_11N 571 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 572 #endif 573 | IEEE80211_C_TXFRAG /* handle tx frags */ 574 #ifdef ATH_ENABLE_DFS 575 | IEEE80211_C_DFS /* Enable radar detection */ 576 #endif 577 ; 578 /* 579 * Query the hal to figure out h/w crypto support. 580 */ 581 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 582 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 583 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 584 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 585 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 586 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 587 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 588 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 589 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 590 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 591 /* 592 * Check if h/w does the MIC and/or whether the 593 * separate key cache entries are required to 594 * handle both tx+rx MIC keys. 595 */ 596 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 597 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 598 /* 599 * If the h/w supports storing tx+rx MIC keys 600 * in one cache slot automatically enable use. 601 */ 602 if (ath_hal_hastkipsplit(ah) || 603 !ath_hal_settkipsplit(ah, AH_FALSE)) 604 sc->sc_splitmic = 1; 605 /* 606 * If the h/w can do TKIP MIC together with WME then 607 * we use it; otherwise we force the MIC to be done 608 * in software by the net80211 layer. 609 */ 610 if (ath_hal_haswmetkipmic(ah)) 611 sc->sc_wmetkipmic = 1; 612 } 613 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 614 /* 615 * Check for multicast key search support. 616 */ 617 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 618 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 619 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 620 } 621 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 622 /* 623 * Mark key cache slots associated with global keys 624 * as in use. If we knew TKIP was not to be used we 625 * could leave the +32, +64, and +32+64 slots free. 626 */ 627 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 628 setbit(sc->sc_keymap, i); 629 setbit(sc->sc_keymap, i+64); 630 if (sc->sc_splitmic) { 631 setbit(sc->sc_keymap, i+32); 632 setbit(sc->sc_keymap, i+32+64); 633 } 634 } 635 /* 636 * TPC support can be done either with a global cap or 637 * per-packet support. The latter is not available on 638 * all parts. We're a bit pedantic here as all parts 639 * support a global cap. 640 */ 641 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 642 ic->ic_caps |= IEEE80211_C_TXPMGT; 643 644 /* 645 * Mark WME capability only if we have sufficient 646 * hardware queues to do proper priority scheduling. 647 */ 648 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 649 ic->ic_caps |= IEEE80211_C_WME; 650 /* 651 * Check for misc other capabilities. 652 */ 653 if (ath_hal_hasbursting(ah)) 654 ic->ic_caps |= IEEE80211_C_BURST; 655 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 656 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 657 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 658 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 659 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 660 if (ath_hal_hasfastframes(ah)) 661 ic->ic_caps |= IEEE80211_C_FF; 662 wmodes = ath_hal_getwirelessmodes(ah); 663 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 664 ic->ic_caps |= IEEE80211_C_TURBOP; 665 #ifdef IEEE80211_SUPPORT_TDMA 666 if (ath_hal_macversion(ah) > 0x78) { 667 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 668 ic->ic_tdma_update = ath_tdma_update; 669 } 670 #endif 671 672 /* 673 * TODO: enforce that at least this many frames are available 674 * in the txbuf list before allowing data frames (raw or 675 * otherwise) to be transmitted. 676 */ 677 sc->sc_txq_data_minfree = 10; 678 /* 679 * Leave this as default to maintain legacy behaviour. 680 * Shortening the cabq/mcastq may end up causing some 681 * undesirable behaviour. 682 */ 683 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 684 685 /* 686 * Allow the TX and RX chainmasks to be overridden by 687 * environment variables and/or device.hints. 688 * 689 * This must be done early - before the hardware is 690 * calibrated or before the 802.11n stream calculation 691 * is done. 692 */ 693 if (resource_int_value(device_get_name(sc->sc_dev), 694 device_get_unit(sc->sc_dev), "rx_chainmask", 695 &rx_chainmask) == 0) { 696 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 697 rx_chainmask); 698 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 699 } 700 if (resource_int_value(device_get_name(sc->sc_dev), 701 device_get_unit(sc->sc_dev), "tx_chainmask", 702 &tx_chainmask) == 0) { 703 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 704 tx_chainmask); 705 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 706 } 707 708 #ifdef ATH_ENABLE_11N 709 /* 710 * Query HT capabilities 711 */ 712 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 713 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 714 int rxs, txs; 715 716 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 717 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 718 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 719 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 720 | IEEE80211_HTCAP_MAXAMSDU_3839 721 /* max A-MSDU length */ 722 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 723 ; 724 725 /* 726 * Enable short-GI for HT20 only if the hardware 727 * advertises support. 728 * Notably, anything earlier than the AR9287 doesn't. 729 */ 730 if ((ath_hal_getcapability(ah, 731 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 732 (wmodes & HAL_MODE_HT20)) { 733 device_printf(sc->sc_dev, 734 "[HT] enabling short-GI in 20MHz mode\n"); 735 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 736 } 737 738 if (wmodes & HAL_MODE_HT40) 739 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 740 | IEEE80211_HTCAP_SHORTGI40; 741 742 /* 743 * TX/RX streams need to be taken into account when 744 * negotiating which MCS rates it'll receive and 745 * what MCS rates are available for TX. 746 */ 747 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 748 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 749 750 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 751 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 752 753 ic->ic_txstream = txs; 754 ic->ic_rxstream = rxs; 755 756 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 757 &sc->sc_rts_aggr_limit); 758 if (sc->sc_rts_aggr_limit != (64 * 1024)) 759 device_printf(sc->sc_dev, 760 "[HT] RTS aggregates limited to %d KiB\n", 761 sc->sc_rts_aggr_limit / 1024); 762 763 device_printf(sc->sc_dev, 764 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 765 } 766 #endif 767 768 /* 769 * Initial aggregation settings. 770 */ 771 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 772 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 773 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 774 775 /* 776 * Check if the hardware requires PCI register serialisation. 777 * Some of the Owl based MACs require this. 778 */ 779 if (mp_ncpus > 1 && 780 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 781 0, NULL) == HAL_OK) { 782 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 783 device_printf(sc->sc_dev, 784 "Enabling register serialisation\n"); 785 } 786 787 /* 788 * Indicate we need the 802.11 header padded to a 789 * 32-bit boundary for 4-address and QoS frames. 790 */ 791 ic->ic_flags |= IEEE80211_F_DATAPAD; 792 793 /* 794 * Query the hal about antenna support. 795 */ 796 sc->sc_defant = ath_hal_getdefantenna(ah); 797 798 /* 799 * Not all chips have the VEOL support we want to 800 * use with IBSS beacons; check here for it. 801 */ 802 sc->sc_hasveol = ath_hal_hasveol(ah); 803 804 /* get mac address from hardware */ 805 ath_hal_getmac(ah, macaddr); 806 if (sc->sc_hasbmask) 807 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 808 809 /* NB: used to size node table key mapping array */ 810 ic->ic_max_keyix = sc->sc_keymax; 811 /* call MI attach routine. */ 812 ieee80211_ifattach(ic, macaddr); 813 ic->ic_setregdomain = ath_setregdomain; 814 ic->ic_getradiocaps = ath_getradiocaps; 815 sc->sc_opmode = HAL_M_STA; 816 817 /* override default methods */ 818 ic->ic_newassoc = ath_newassoc; 819 ic->ic_updateslot = ath_updateslot; 820 ic->ic_wme.wme_update = ath_wme_update; 821 ic->ic_vap_create = ath_vap_create; 822 ic->ic_vap_delete = ath_vap_delete; 823 ic->ic_raw_xmit = ath_raw_xmit; 824 ic->ic_update_mcast = ath_update_mcast; 825 ic->ic_update_promisc = ath_update_promisc; 826 ic->ic_node_alloc = ath_node_alloc; 827 sc->sc_node_free = ic->ic_node_free; 828 ic->ic_node_free = ath_node_free; 829 sc->sc_node_cleanup = ic->ic_node_cleanup; 830 ic->ic_node_cleanup = ath_node_cleanup; 831 ic->ic_node_getsignal = ath_node_getsignal; 832 ic->ic_scan_start = ath_scan_start; 833 ic->ic_scan_end = ath_scan_end; 834 ic->ic_set_channel = ath_set_channel; 835 #ifdef ATH_ENABLE_11N 836 /* 802.11n specific - but just override anyway */ 837 sc->sc_addba_request = ic->ic_addba_request; 838 sc->sc_addba_response = ic->ic_addba_response; 839 sc->sc_addba_stop = ic->ic_addba_stop; 840 sc->sc_bar_response = ic->ic_bar_response; 841 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 842 843 ic->ic_addba_request = ath_addba_request; 844 ic->ic_addba_response = ath_addba_response; 845 ic->ic_addba_response_timeout = ath_addba_response_timeout; 846 ic->ic_addba_stop = ath_addba_stop; 847 ic->ic_bar_response = ath_bar_response; 848 849 ic->ic_update_chw = ath_update_chw; 850 #endif /* ATH_ENABLE_11N */ 851 852 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 853 /* 854 * There's one vendor bitmap entry in the RX radiotap 855 * header; make sure that's taken into account. 856 */ 857 ieee80211_radiotap_attachv(ic, 858 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 859 ATH_TX_RADIOTAP_PRESENT, 860 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 861 ATH_RX_RADIOTAP_PRESENT); 862 #else 863 /* 864 * No vendor bitmap/extensions are present. 865 */ 866 ieee80211_radiotap_attach(ic, 867 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 868 ATH_TX_RADIOTAP_PRESENT, 869 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 870 ATH_RX_RADIOTAP_PRESENT); 871 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 872 873 /* 874 * Setup dynamic sysctl's now that country code and 875 * regdomain are available from the hal. 876 */ 877 ath_sysctlattach(sc); 878 ath_sysctl_stats_attach(sc); 879 ath_sysctl_hal_attach(sc); 880 881 if (bootverbose) 882 ieee80211_announce(ic); 883 ath_announce(sc); 884 return 0; 885 bad2: 886 ath_tx_cleanup(sc); 887 ath_desc_free(sc); 888 ath_txdma_teardown(sc); 889 ath_rxdma_teardown(sc); 890 bad: 891 if (ah) 892 ath_hal_detach(ah); 893 if (ifp != NULL) 894 if_free(ifp); 895 sc->sc_invalid = 1; 896 return error; 897 } 898 899 int 900 ath_detach(struct ath_softc *sc) 901 { 902 struct ifnet *ifp = sc->sc_ifp; 903 904 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 905 __func__, ifp->if_flags); 906 907 /* 908 * NB: the order of these is important: 909 * o stop the chip so no more interrupts will fire 910 * o call the 802.11 layer before detaching the hal to 911 * insure callbacks into the driver to delete global 912 * key cache entries can be handled 913 * o free the taskqueue which drains any pending tasks 914 * o reclaim the tx queue data structures after calling 915 * the 802.11 layer as we'll get called back to reclaim 916 * node state and potentially want to use them 917 * o to cleanup the tx queues the hal is called, so detach 918 * it last 919 * Other than that, it's straightforward... 920 */ 921 ath_stop(ifp); 922 ieee80211_ifdetach(ifp->if_l2com); 923 taskqueue_free(sc->sc_tq); 924 #ifdef ATH_TX99_DIAG 925 if (sc->sc_tx99 != NULL) 926 sc->sc_tx99->detach(sc->sc_tx99); 927 #endif 928 ath_rate_detach(sc->sc_rc); 929 930 ath_dfs_detach(sc); 931 ath_desc_free(sc); 932 ath_txdma_teardown(sc); 933 ath_rxdma_teardown(sc); 934 ath_tx_cleanup(sc); 935 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 936 if_free(ifp); 937 938 return 0; 939 } 940 941 /* 942 * MAC address handling for multiple BSS on the same radio. 943 * The first vap uses the MAC address from the EEPROM. For 944 * subsequent vap's we set the U/L bit (bit 1) in the MAC 945 * address and use the next six bits as an index. 946 */ 947 static void 948 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 949 { 950 int i; 951 952 if (clone && sc->sc_hasbmask) { 953 /* NB: we only do this if h/w supports multiple bssid */ 954 for (i = 0; i < 8; i++) 955 if ((sc->sc_bssidmask & (1<<i)) == 0) 956 break; 957 if (i != 0) 958 mac[0] |= (i << 2)|0x2; 959 } else 960 i = 0; 961 sc->sc_bssidmask |= 1<<i; 962 sc->sc_hwbssidmask[0] &= ~mac[0]; 963 if (i == 0) 964 sc->sc_nbssid0++; 965 } 966 967 static void 968 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 969 { 970 int i = mac[0] >> 2; 971 uint8_t mask; 972 973 if (i != 0 || --sc->sc_nbssid0 == 0) { 974 sc->sc_bssidmask &= ~(1<<i); 975 /* recalculate bssid mask from remaining addresses */ 976 mask = 0xff; 977 for (i = 1; i < 8; i++) 978 if (sc->sc_bssidmask & (1<<i)) 979 mask &= ~((i<<2)|0x2); 980 sc->sc_hwbssidmask[0] |= mask; 981 } 982 } 983 984 /* 985 * Assign a beacon xmit slot. We try to space out 986 * assignments so when beacons are staggered the 987 * traffic coming out of the cab q has maximal time 988 * to go out before the next beacon is scheduled. 989 */ 990 static int 991 assign_bslot(struct ath_softc *sc) 992 { 993 u_int slot, free; 994 995 free = 0; 996 for (slot = 0; slot < ATH_BCBUF; slot++) 997 if (sc->sc_bslot[slot] == NULL) { 998 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 999 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1000 return slot; 1001 free = slot; 1002 /* NB: keep looking for a double slot */ 1003 } 1004 return free; 1005 } 1006 1007 static struct ieee80211vap * 1008 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1009 enum ieee80211_opmode opmode, int flags, 1010 const uint8_t bssid[IEEE80211_ADDR_LEN], 1011 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1012 { 1013 struct ath_softc *sc = ic->ic_ifp->if_softc; 1014 struct ath_vap *avp; 1015 struct ieee80211vap *vap; 1016 uint8_t mac[IEEE80211_ADDR_LEN]; 1017 int needbeacon, error; 1018 enum ieee80211_opmode ic_opmode; 1019 1020 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1021 M_80211_VAP, M_WAITOK | M_ZERO); 1022 needbeacon = 0; 1023 IEEE80211_ADDR_COPY(mac, mac0); 1024 1025 ATH_LOCK(sc); 1026 ic_opmode = opmode; /* default to opmode of new vap */ 1027 switch (opmode) { 1028 case IEEE80211_M_STA: 1029 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1030 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1031 goto bad; 1032 } 1033 if (sc->sc_nvaps) { 1034 /* 1035 * With multiple vaps we must fall back 1036 * to s/w beacon miss handling. 1037 */ 1038 flags |= IEEE80211_CLONE_NOBEACONS; 1039 } 1040 if (flags & IEEE80211_CLONE_NOBEACONS) { 1041 /* 1042 * Station mode w/o beacons are implemented w/ AP mode. 1043 */ 1044 ic_opmode = IEEE80211_M_HOSTAP; 1045 } 1046 break; 1047 case IEEE80211_M_IBSS: 1048 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1049 device_printf(sc->sc_dev, 1050 "only 1 ibss vap supported\n"); 1051 goto bad; 1052 } 1053 needbeacon = 1; 1054 break; 1055 case IEEE80211_M_AHDEMO: 1056 #ifdef IEEE80211_SUPPORT_TDMA 1057 if (flags & IEEE80211_CLONE_TDMA) { 1058 if (sc->sc_nvaps != 0) { 1059 device_printf(sc->sc_dev, 1060 "only 1 tdma vap supported\n"); 1061 goto bad; 1062 } 1063 needbeacon = 1; 1064 flags |= IEEE80211_CLONE_NOBEACONS; 1065 } 1066 /* fall thru... */ 1067 #endif 1068 case IEEE80211_M_MONITOR: 1069 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1070 /* 1071 * Adopt existing mode. Adding a monitor or ahdemo 1072 * vap to an existing configuration is of dubious 1073 * value but should be ok. 1074 */ 1075 /* XXX not right for monitor mode */ 1076 ic_opmode = ic->ic_opmode; 1077 } 1078 break; 1079 case IEEE80211_M_HOSTAP: 1080 case IEEE80211_M_MBSS: 1081 needbeacon = 1; 1082 break; 1083 case IEEE80211_M_WDS: 1084 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1085 device_printf(sc->sc_dev, 1086 "wds not supported in sta mode\n"); 1087 goto bad; 1088 } 1089 /* 1090 * Silently remove any request for a unique 1091 * bssid; WDS vap's always share the local 1092 * mac address. 1093 */ 1094 flags &= ~IEEE80211_CLONE_BSSID; 1095 if (sc->sc_nvaps == 0) 1096 ic_opmode = IEEE80211_M_HOSTAP; 1097 else 1098 ic_opmode = ic->ic_opmode; 1099 break; 1100 default: 1101 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1102 goto bad; 1103 } 1104 /* 1105 * Check that a beacon buffer is available; the code below assumes it. 1106 */ 1107 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1108 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1109 goto bad; 1110 } 1111 1112 /* STA, AHDEMO? */ 1113 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1114 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1115 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1116 } 1117 1118 vap = &avp->av_vap; 1119 /* XXX can't hold mutex across if_alloc */ 1120 ATH_UNLOCK(sc); 1121 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1122 bssid, mac); 1123 ATH_LOCK(sc); 1124 if (error != 0) { 1125 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1126 __func__, error); 1127 goto bad2; 1128 } 1129 1130 /* h/w crypto support */ 1131 vap->iv_key_alloc = ath_key_alloc; 1132 vap->iv_key_delete = ath_key_delete; 1133 vap->iv_key_set = ath_key_set; 1134 vap->iv_key_update_begin = ath_key_update_begin; 1135 vap->iv_key_update_end = ath_key_update_end; 1136 1137 /* override various methods */ 1138 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1139 vap->iv_recv_mgmt = ath_recv_mgmt; 1140 vap->iv_reset = ath_reset_vap; 1141 vap->iv_update_beacon = ath_beacon_update; 1142 avp->av_newstate = vap->iv_newstate; 1143 vap->iv_newstate = ath_newstate; 1144 avp->av_bmiss = vap->iv_bmiss; 1145 vap->iv_bmiss = ath_bmiss_vap; 1146 1147 /* Set default parameters */ 1148 1149 /* 1150 * Anything earlier than some AR9300 series MACs don't 1151 * support a smaller MPDU density. 1152 */ 1153 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1154 /* 1155 * All NICs can handle the maximum size, however 1156 * AR5416 based MACs can only TX aggregates w/ RTS 1157 * protection when the total aggregate size is <= 8k. 1158 * However, for now that's enforced by the TX path. 1159 */ 1160 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1161 1162 avp->av_bslot = -1; 1163 if (needbeacon) { 1164 /* 1165 * Allocate beacon state and setup the q for buffered 1166 * multicast frames. We know a beacon buffer is 1167 * available because we checked above. 1168 */ 1169 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1170 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1171 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1172 /* 1173 * Assign the vap to a beacon xmit slot. As above 1174 * this cannot fail to find a free one. 1175 */ 1176 avp->av_bslot = assign_bslot(sc); 1177 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1178 ("beacon slot %u not empty", avp->av_bslot)); 1179 sc->sc_bslot[avp->av_bslot] = vap; 1180 sc->sc_nbcnvaps++; 1181 } 1182 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1183 /* 1184 * Multple vaps are to transmit beacons and we 1185 * have h/w support for TSF adjusting; enable 1186 * use of staggered beacons. 1187 */ 1188 sc->sc_stagbeacons = 1; 1189 } 1190 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1191 } 1192 1193 ic->ic_opmode = ic_opmode; 1194 if (opmode != IEEE80211_M_WDS) { 1195 sc->sc_nvaps++; 1196 if (opmode == IEEE80211_M_STA) 1197 sc->sc_nstavaps++; 1198 if (opmode == IEEE80211_M_MBSS) 1199 sc->sc_nmeshvaps++; 1200 } 1201 switch (ic_opmode) { 1202 case IEEE80211_M_IBSS: 1203 sc->sc_opmode = HAL_M_IBSS; 1204 break; 1205 case IEEE80211_M_STA: 1206 sc->sc_opmode = HAL_M_STA; 1207 break; 1208 case IEEE80211_M_AHDEMO: 1209 #ifdef IEEE80211_SUPPORT_TDMA 1210 if (vap->iv_caps & IEEE80211_C_TDMA) { 1211 sc->sc_tdma = 1; 1212 /* NB: disable tsf adjust */ 1213 sc->sc_stagbeacons = 0; 1214 } 1215 /* 1216 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1217 * just ap mode. 1218 */ 1219 /* fall thru... */ 1220 #endif 1221 case IEEE80211_M_HOSTAP: 1222 case IEEE80211_M_MBSS: 1223 sc->sc_opmode = HAL_M_HOSTAP; 1224 break; 1225 case IEEE80211_M_MONITOR: 1226 sc->sc_opmode = HAL_M_MONITOR; 1227 break; 1228 default: 1229 /* XXX should not happen */ 1230 break; 1231 } 1232 if (sc->sc_hastsfadd) { 1233 /* 1234 * Configure whether or not TSF adjust should be done. 1235 */ 1236 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1237 } 1238 if (flags & IEEE80211_CLONE_NOBEACONS) { 1239 /* 1240 * Enable s/w beacon miss handling. 1241 */ 1242 sc->sc_swbmiss = 1; 1243 } 1244 ATH_UNLOCK(sc); 1245 1246 /* complete setup */ 1247 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1248 return vap; 1249 bad2: 1250 reclaim_address(sc, mac); 1251 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1252 bad: 1253 free(avp, M_80211_VAP); 1254 ATH_UNLOCK(sc); 1255 return NULL; 1256 } 1257 1258 static void 1259 ath_vap_delete(struct ieee80211vap *vap) 1260 { 1261 struct ieee80211com *ic = vap->iv_ic; 1262 struct ifnet *ifp = ic->ic_ifp; 1263 struct ath_softc *sc = ifp->if_softc; 1264 struct ath_hal *ah = sc->sc_ah; 1265 struct ath_vap *avp = ATH_VAP(vap); 1266 1267 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1268 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1269 /* 1270 * Quiesce the hardware while we remove the vap. In 1271 * particular we need to reclaim all references to 1272 * the vap state by any frames pending on the tx queues. 1273 */ 1274 ath_hal_intrset(ah, 0); /* disable interrupts */ 1275 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1276 /* XXX Do all frames from all vaps/nodes need draining here? */ 1277 ath_stoprecv(sc, 1); /* stop recv side */ 1278 } 1279 1280 ieee80211_vap_detach(vap); 1281 1282 /* 1283 * XXX Danger Will Robinson! Danger! 1284 * 1285 * Because ieee80211_vap_detach() can queue a frame (the station 1286 * diassociate message?) after we've drained the TXQ and 1287 * flushed the software TXQ, we will end up with a frame queued 1288 * to a node whose vap is about to be freed. 1289 * 1290 * To work around this, flush the hardware/software again. 1291 * This may be racy - the ath task may be running and the packet 1292 * may be being scheduled between sw->hw txq. Tsk. 1293 * 1294 * TODO: figure out why a new node gets allocated somewhere around 1295 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1296 * call!) 1297 */ 1298 1299 ath_draintxq(sc, ATH_RESET_DEFAULT); 1300 1301 ATH_LOCK(sc); 1302 /* 1303 * Reclaim beacon state. Note this must be done before 1304 * the vap instance is reclaimed as we may have a reference 1305 * to it in the buffer for the beacon frame. 1306 */ 1307 if (avp->av_bcbuf != NULL) { 1308 if (avp->av_bslot != -1) { 1309 sc->sc_bslot[avp->av_bslot] = NULL; 1310 sc->sc_nbcnvaps--; 1311 } 1312 ath_beacon_return(sc, avp->av_bcbuf); 1313 avp->av_bcbuf = NULL; 1314 if (sc->sc_nbcnvaps == 0) { 1315 sc->sc_stagbeacons = 0; 1316 if (sc->sc_hastsfadd) 1317 ath_hal_settsfadjust(sc->sc_ah, 0); 1318 } 1319 /* 1320 * Reclaim any pending mcast frames for the vap. 1321 */ 1322 ath_tx_draintxq(sc, &avp->av_mcastq); 1323 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1324 } 1325 /* 1326 * Update bookkeeping. 1327 */ 1328 if (vap->iv_opmode == IEEE80211_M_STA) { 1329 sc->sc_nstavaps--; 1330 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1331 sc->sc_swbmiss = 0; 1332 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1333 vap->iv_opmode == IEEE80211_M_MBSS) { 1334 reclaim_address(sc, vap->iv_myaddr); 1335 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1336 if (vap->iv_opmode == IEEE80211_M_MBSS) 1337 sc->sc_nmeshvaps--; 1338 } 1339 if (vap->iv_opmode != IEEE80211_M_WDS) 1340 sc->sc_nvaps--; 1341 #ifdef IEEE80211_SUPPORT_TDMA 1342 /* TDMA operation ceases when the last vap is destroyed */ 1343 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1344 sc->sc_tdma = 0; 1345 sc->sc_swbmiss = 0; 1346 } 1347 #endif 1348 free(avp, M_80211_VAP); 1349 1350 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1351 /* 1352 * Restart rx+tx machines if still running (RUNNING will 1353 * be reset if we just destroyed the last vap). 1354 */ 1355 if (ath_startrecv(sc) != 0) 1356 if_printf(ifp, "%s: unable to restart recv logic\n", 1357 __func__); 1358 if (sc->sc_beacons) { /* restart beacons */ 1359 #ifdef IEEE80211_SUPPORT_TDMA 1360 if (sc->sc_tdma) 1361 ath_tdma_config(sc, NULL); 1362 else 1363 #endif 1364 ath_beacon_config(sc, NULL); 1365 } 1366 ath_hal_intrset(ah, sc->sc_imask); 1367 } 1368 ATH_UNLOCK(sc); 1369 } 1370 1371 void 1372 ath_suspend(struct ath_softc *sc) 1373 { 1374 struct ifnet *ifp = sc->sc_ifp; 1375 struct ieee80211com *ic = ifp->if_l2com; 1376 1377 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1378 __func__, ifp->if_flags); 1379 1380 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1381 1382 ieee80211_suspend_all(ic); 1383 /* 1384 * NB: don't worry about putting the chip in low power 1385 * mode; pci will power off our socket on suspend and 1386 * CardBus detaches the device. 1387 */ 1388 1389 /* 1390 * XXX ensure none of the taskqueues are running 1391 * XXX ensure sc_invalid is 1 1392 * XXX ensure the calibration callout is disabled 1393 */ 1394 1395 /* Disable the PCIe PHY, complete with workarounds */ 1396 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1397 } 1398 1399 /* 1400 * Reset the key cache since some parts do not reset the 1401 * contents on resume. First we clear all entries, then 1402 * re-load keys that the 802.11 layer assumes are setup 1403 * in h/w. 1404 */ 1405 static void 1406 ath_reset_keycache(struct ath_softc *sc) 1407 { 1408 struct ifnet *ifp = sc->sc_ifp; 1409 struct ieee80211com *ic = ifp->if_l2com; 1410 struct ath_hal *ah = sc->sc_ah; 1411 int i; 1412 1413 for (i = 0; i < sc->sc_keymax; i++) 1414 ath_hal_keyreset(ah, i); 1415 ieee80211_crypto_reload_keys(ic); 1416 } 1417 1418 void 1419 ath_resume(struct ath_softc *sc) 1420 { 1421 struct ifnet *ifp = sc->sc_ifp; 1422 struct ieee80211com *ic = ifp->if_l2com; 1423 struct ath_hal *ah = sc->sc_ah; 1424 HAL_STATUS status; 1425 1426 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1427 __func__, ifp->if_flags); 1428 1429 /* Re-enable PCIe, re-enable the PCIe bus */ 1430 ath_hal_enablepcie(ah, 0, 0); 1431 1432 /* 1433 * Must reset the chip before we reload the 1434 * keycache as we were powered down on suspend. 1435 */ 1436 ath_hal_reset(ah, sc->sc_opmode, 1437 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1438 AH_FALSE, &status); 1439 ath_reset_keycache(sc); 1440 1441 /* Let DFS at it in case it's a DFS channel */ 1442 ath_dfs_radar_enable(sc, ic->ic_curchan); 1443 1444 /* Restore the LED configuration */ 1445 ath_led_config(sc); 1446 ath_hal_setledstate(ah, HAL_LED_INIT); 1447 1448 if (sc->sc_resume_up) 1449 ieee80211_resume_all(ic); 1450 1451 /* XXX beacons ? */ 1452 } 1453 1454 void 1455 ath_shutdown(struct ath_softc *sc) 1456 { 1457 struct ifnet *ifp = sc->sc_ifp; 1458 1459 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1460 __func__, ifp->if_flags); 1461 1462 ath_stop(ifp); 1463 /* NB: no point powering down chip as we're about to reboot */ 1464 } 1465 1466 /* 1467 * Interrupt handler. Most of the actual processing is deferred. 1468 */ 1469 void 1470 ath_intr(void *arg) 1471 { 1472 struct ath_softc *sc = arg; 1473 struct ifnet *ifp = sc->sc_ifp; 1474 struct ath_hal *ah = sc->sc_ah; 1475 HAL_INT status = 0; 1476 uint32_t txqs; 1477 1478 /* 1479 * If we're inside a reset path, just print a warning and 1480 * clear the ISR. The reset routine will finish it for us. 1481 */ 1482 ATH_PCU_LOCK(sc); 1483 if (sc->sc_inreset_cnt) { 1484 HAL_INT status; 1485 ath_hal_getisr(ah, &status); /* clear ISR */ 1486 ath_hal_intrset(ah, 0); /* disable further intr's */ 1487 DPRINTF(sc, ATH_DEBUG_ANY, 1488 "%s: in reset, ignoring: status=0x%x\n", 1489 __func__, status); 1490 ATH_PCU_UNLOCK(sc); 1491 return; 1492 } 1493 1494 if (sc->sc_invalid) { 1495 /* 1496 * The hardware is not ready/present, don't touch anything. 1497 * Note this can happen early on if the IRQ is shared. 1498 */ 1499 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1500 ATH_PCU_UNLOCK(sc); 1501 return; 1502 } 1503 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1504 ATH_PCU_UNLOCK(sc); 1505 return; 1506 } 1507 1508 if ((ifp->if_flags & IFF_UP) == 0 || 1509 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1510 HAL_INT status; 1511 1512 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1513 __func__, ifp->if_flags); 1514 ath_hal_getisr(ah, &status); /* clear ISR */ 1515 ath_hal_intrset(ah, 0); /* disable further intr's */ 1516 ATH_PCU_UNLOCK(sc); 1517 return; 1518 } 1519 1520 /* 1521 * Figure out the reason(s) for the interrupt. Note 1522 * that the hal returns a pseudo-ISR that may include 1523 * bits we haven't explicitly enabled so we mask the 1524 * value to insure we only process bits we requested. 1525 */ 1526 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1527 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1528 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1529 #ifdef ATH_KTR_INTR_DEBUG 1530 CTR5(ATH_KTR_INTR, 1531 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1532 ah->ah_intrstate[0], 1533 ah->ah_intrstate[1], 1534 ah->ah_intrstate[2], 1535 ah->ah_intrstate[3], 1536 ah->ah_intrstate[6]); 1537 #endif 1538 1539 /* Squirrel away SYNC interrupt debugging */ 1540 if (ah->ah_syncstate != 0) { 1541 int i; 1542 for (i = 0; i < 32; i++) 1543 if (ah->ah_syncstate & (i << i)) 1544 sc->sc_intr_stats.sync_intr[i]++; 1545 } 1546 1547 status &= sc->sc_imask; /* discard unasked for bits */ 1548 1549 /* Short-circuit un-handled interrupts */ 1550 if (status == 0x0) { 1551 ATH_PCU_UNLOCK(sc); 1552 return; 1553 } 1554 1555 /* 1556 * Take a note that we're inside the interrupt handler, so 1557 * the reset routines know to wait. 1558 */ 1559 sc->sc_intr_cnt++; 1560 ATH_PCU_UNLOCK(sc); 1561 1562 /* 1563 * Handle the interrupt. We won't run concurrent with the reset 1564 * or channel change routines as they'll wait for sc_intr_cnt 1565 * to be 0 before continuing. 1566 */ 1567 if (status & HAL_INT_FATAL) { 1568 sc->sc_stats.ast_hardware++; 1569 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1570 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1571 } else { 1572 if (status & HAL_INT_SWBA) { 1573 /* 1574 * Software beacon alert--time to send a beacon. 1575 * Handle beacon transmission directly; deferring 1576 * this is too slow to meet timing constraints 1577 * under load. 1578 */ 1579 #ifdef IEEE80211_SUPPORT_TDMA 1580 if (sc->sc_tdma) { 1581 if (sc->sc_tdmaswba == 0) { 1582 struct ieee80211com *ic = ifp->if_l2com; 1583 struct ieee80211vap *vap = 1584 TAILQ_FIRST(&ic->ic_vaps); 1585 ath_tdma_beacon_send(sc, vap); 1586 sc->sc_tdmaswba = 1587 vap->iv_tdma->tdma_bintval; 1588 } else 1589 sc->sc_tdmaswba--; 1590 } else 1591 #endif 1592 { 1593 ath_beacon_proc(sc, 0); 1594 #ifdef IEEE80211_SUPPORT_SUPERG 1595 /* 1596 * Schedule the rx taskq in case there's no 1597 * traffic so any frames held on the staging 1598 * queue are aged and potentially flushed. 1599 */ 1600 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1601 #endif 1602 } 1603 } 1604 if (status & HAL_INT_RXEOL) { 1605 int imask; 1606 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1607 ATH_PCU_LOCK(sc); 1608 /* 1609 * NB: the hardware should re-read the link when 1610 * RXE bit is written, but it doesn't work at 1611 * least on older hardware revs. 1612 */ 1613 sc->sc_stats.ast_rxeol++; 1614 /* 1615 * Disable RXEOL/RXORN - prevent an interrupt 1616 * storm until the PCU logic can be reset. 1617 * In case the interface is reset some other 1618 * way before "sc_kickpcu" is called, don't 1619 * modify sc_imask - that way if it is reset 1620 * by a call to ath_reset() somehow, the 1621 * interrupt mask will be correctly reprogrammed. 1622 */ 1623 imask = sc->sc_imask; 1624 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1625 ath_hal_intrset(ah, imask); 1626 /* 1627 * Only blank sc_rxlink if we've not yet kicked 1628 * the PCU. 1629 * 1630 * This isn't entirely correct - the correct solution 1631 * would be to have a PCU lock and engage that for 1632 * the duration of the PCU fiddling; which would include 1633 * running the RX process. Otherwise we could end up 1634 * messing up the RX descriptor chain and making the 1635 * RX desc list much shorter. 1636 */ 1637 if (! sc->sc_kickpcu) 1638 sc->sc_rxlink = NULL; 1639 sc->sc_kickpcu = 1; 1640 /* 1641 * Enqueue an RX proc, to handled whatever 1642 * is in the RX queue. 1643 * This will then kick the PCU. 1644 */ 1645 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1646 ATH_PCU_UNLOCK(sc); 1647 } 1648 if (status & HAL_INT_TXURN) { 1649 sc->sc_stats.ast_txurn++; 1650 /* bump tx trigger level */ 1651 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1652 } 1653 /* 1654 * Handle both the legacy and RX EDMA interrupt bits. 1655 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1656 */ 1657 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1658 sc->sc_stats.ast_rx_intr++; 1659 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1660 } 1661 if (status & HAL_INT_TX) { 1662 sc->sc_stats.ast_tx_intr++; 1663 /* 1664 * Grab all the currently set bits in the HAL txq bitmap 1665 * and blank them. This is the only place we should be 1666 * doing this. 1667 */ 1668 ATH_PCU_LOCK(sc); 1669 txqs = 0xffffffff; 1670 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1671 sc->sc_txq_active |= txqs; 1672 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1673 ATH_PCU_UNLOCK(sc); 1674 } 1675 if (status & HAL_INT_BMISS) { 1676 sc->sc_stats.ast_bmiss++; 1677 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1678 } 1679 if (status & HAL_INT_GTT) 1680 sc->sc_stats.ast_tx_timeout++; 1681 if (status & HAL_INT_CST) 1682 sc->sc_stats.ast_tx_cst++; 1683 if (status & HAL_INT_MIB) { 1684 sc->sc_stats.ast_mib++; 1685 ATH_PCU_LOCK(sc); 1686 /* 1687 * Disable interrupts until we service the MIB 1688 * interrupt; otherwise it will continue to fire. 1689 */ 1690 ath_hal_intrset(ah, 0); 1691 /* 1692 * Let the hal handle the event. We assume it will 1693 * clear whatever condition caused the interrupt. 1694 */ 1695 ath_hal_mibevent(ah, &sc->sc_halstats); 1696 /* 1697 * Don't reset the interrupt if we've just 1698 * kicked the PCU, or we may get a nested 1699 * RXEOL before the rxproc has had a chance 1700 * to run. 1701 */ 1702 if (sc->sc_kickpcu == 0) 1703 ath_hal_intrset(ah, sc->sc_imask); 1704 ATH_PCU_UNLOCK(sc); 1705 } 1706 if (status & HAL_INT_RXORN) { 1707 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1708 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1709 sc->sc_stats.ast_rxorn++; 1710 } 1711 } 1712 ATH_PCU_LOCK(sc); 1713 sc->sc_intr_cnt--; 1714 ATH_PCU_UNLOCK(sc); 1715 } 1716 1717 static void 1718 ath_fatal_proc(void *arg, int pending) 1719 { 1720 struct ath_softc *sc = arg; 1721 struct ifnet *ifp = sc->sc_ifp; 1722 u_int32_t *state; 1723 u_int32_t len; 1724 void *sp; 1725 1726 if_printf(ifp, "hardware error; resetting\n"); 1727 /* 1728 * Fatal errors are unrecoverable. Typically these 1729 * are caused by DMA errors. Collect h/w state from 1730 * the hal so we can diagnose what's going on. 1731 */ 1732 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1733 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1734 state = sp; 1735 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1736 state[0], state[1] , state[2], state[3], 1737 state[4], state[5]); 1738 } 1739 ath_reset(ifp, ATH_RESET_NOLOSS); 1740 } 1741 1742 static void 1743 ath_bmiss_vap(struct ieee80211vap *vap) 1744 { 1745 /* 1746 * Workaround phantom bmiss interrupts by sanity-checking 1747 * the time of our last rx'd frame. If it is within the 1748 * beacon miss interval then ignore the interrupt. If it's 1749 * truly a bmiss we'll get another interrupt soon and that'll 1750 * be dispatched up for processing. Note this applies only 1751 * for h/w beacon miss events. 1752 */ 1753 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1754 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1755 struct ath_softc *sc = ifp->if_softc; 1756 u_int64_t lastrx = sc->sc_lastrx; 1757 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1758 /* XXX should take a locked ref to iv_bss */ 1759 u_int bmisstimeout = 1760 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1761 1762 DPRINTF(sc, ATH_DEBUG_BEACON, 1763 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1764 __func__, (unsigned long long) tsf, 1765 (unsigned long long)(tsf - lastrx), 1766 (unsigned long long) lastrx, bmisstimeout); 1767 1768 if (tsf - lastrx <= bmisstimeout) { 1769 sc->sc_stats.ast_bmiss_phantom++; 1770 return; 1771 } 1772 } 1773 ATH_VAP(vap)->av_bmiss(vap); 1774 } 1775 1776 static int 1777 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1778 { 1779 uint32_t rsize; 1780 void *sp; 1781 1782 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1783 return 0; 1784 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1785 *hangs = *(uint32_t *)sp; 1786 return 1; 1787 } 1788 1789 static void 1790 ath_bmiss_proc(void *arg, int pending) 1791 { 1792 struct ath_softc *sc = arg; 1793 struct ifnet *ifp = sc->sc_ifp; 1794 uint32_t hangs; 1795 1796 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1797 1798 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1799 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1800 ath_reset(ifp, ATH_RESET_NOLOSS); 1801 } else 1802 ieee80211_beacon_miss(ifp->if_l2com); 1803 } 1804 1805 /* 1806 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1807 * calcs together with WME. If necessary disable the crypto 1808 * hardware and mark the 802.11 state so keys will be setup 1809 * with the MIC work done in software. 1810 */ 1811 static void 1812 ath_settkipmic(struct ath_softc *sc) 1813 { 1814 struct ifnet *ifp = sc->sc_ifp; 1815 struct ieee80211com *ic = ifp->if_l2com; 1816 1817 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1818 if (ic->ic_flags & IEEE80211_F_WME) { 1819 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1820 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1821 } else { 1822 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1823 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1824 } 1825 } 1826 } 1827 1828 static void 1829 ath_init(void *arg) 1830 { 1831 struct ath_softc *sc = (struct ath_softc *) arg; 1832 struct ifnet *ifp = sc->sc_ifp; 1833 struct ieee80211com *ic = ifp->if_l2com; 1834 struct ath_hal *ah = sc->sc_ah; 1835 HAL_STATUS status; 1836 1837 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1838 __func__, ifp->if_flags); 1839 1840 ATH_LOCK(sc); 1841 /* 1842 * Stop anything previously setup. This is safe 1843 * whether this is the first time through or not. 1844 */ 1845 ath_stop_locked(ifp); 1846 1847 /* 1848 * The basic interface to setting the hardware in a good 1849 * state is ``reset''. On return the hardware is known to 1850 * be powered up and with interrupts disabled. This must 1851 * be followed by initialization of the appropriate bits 1852 * and then setup of the interrupt mask. 1853 */ 1854 ath_settkipmic(sc); 1855 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1856 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1857 status); 1858 ATH_UNLOCK(sc); 1859 return; 1860 } 1861 ath_chan_change(sc, ic->ic_curchan); 1862 1863 /* Let DFS at it in case it's a DFS channel */ 1864 ath_dfs_radar_enable(sc, ic->ic_curchan); 1865 1866 /* 1867 * Likewise this is set during reset so update 1868 * state cached in the driver. 1869 */ 1870 sc->sc_diversity = ath_hal_getdiversity(ah); 1871 sc->sc_lastlongcal = 0; 1872 sc->sc_resetcal = 1; 1873 sc->sc_lastcalreset = 0; 1874 sc->sc_lastani = 0; 1875 sc->sc_lastshortcal = 0; 1876 sc->sc_doresetcal = AH_FALSE; 1877 /* 1878 * Beacon timers were cleared here; give ath_newstate() 1879 * a hint that the beacon timers should be poked when 1880 * things transition to the RUN state. 1881 */ 1882 sc->sc_beacons = 0; 1883 1884 /* 1885 * Setup the hardware after reset: the key cache 1886 * is filled as needed and the receive engine is 1887 * set going. Frame transmit is handled entirely 1888 * in the frame output path; there's nothing to do 1889 * here except setup the interrupt mask. 1890 */ 1891 if (ath_startrecv(sc) != 0) { 1892 if_printf(ifp, "unable to start recv logic\n"); 1893 ATH_UNLOCK(sc); 1894 return; 1895 } 1896 1897 /* 1898 * Enable interrupts. 1899 */ 1900 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1901 | HAL_INT_RXEOL | HAL_INT_RXORN 1902 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1903 1904 /* 1905 * Enable RX EDMA bits. Note these overlap with 1906 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1907 */ 1908 if (sc->sc_isedma) 1909 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1910 1911 /* 1912 * Enable MIB interrupts when there are hardware phy counters. 1913 * Note we only do this (at the moment) for station mode. 1914 */ 1915 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1916 sc->sc_imask |= HAL_INT_MIB; 1917 1918 /* Enable global TX timeout and carrier sense timeout if available */ 1919 if (ath_hal_gtxto_supported(ah)) 1920 sc->sc_imask |= HAL_INT_GTT; 1921 1922 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1923 __func__, sc->sc_imask); 1924 1925 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1926 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1927 ath_hal_intrset(ah, sc->sc_imask); 1928 1929 ATH_UNLOCK(sc); 1930 1931 #ifdef ATH_TX99_DIAG 1932 if (sc->sc_tx99 != NULL) 1933 sc->sc_tx99->start(sc->sc_tx99); 1934 else 1935 #endif 1936 ieee80211_start_all(ic); /* start all vap's */ 1937 } 1938 1939 static void 1940 ath_stop_locked(struct ifnet *ifp) 1941 { 1942 struct ath_softc *sc = ifp->if_softc; 1943 struct ath_hal *ah = sc->sc_ah; 1944 1945 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1946 __func__, sc->sc_invalid, ifp->if_flags); 1947 1948 ATH_LOCK_ASSERT(sc); 1949 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1950 /* 1951 * Shutdown the hardware and driver: 1952 * reset 802.11 state machine 1953 * turn off timers 1954 * disable interrupts 1955 * turn off the radio 1956 * clear transmit machinery 1957 * clear receive machinery 1958 * drain and release tx queues 1959 * reclaim beacon resources 1960 * power down hardware 1961 * 1962 * Note that some of this work is not possible if the 1963 * hardware is gone (invalid). 1964 */ 1965 #ifdef ATH_TX99_DIAG 1966 if (sc->sc_tx99 != NULL) 1967 sc->sc_tx99->stop(sc->sc_tx99); 1968 #endif 1969 callout_stop(&sc->sc_wd_ch); 1970 sc->sc_wd_timer = 0; 1971 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1972 if (!sc->sc_invalid) { 1973 if (sc->sc_softled) { 1974 callout_stop(&sc->sc_ledtimer); 1975 ath_hal_gpioset(ah, sc->sc_ledpin, 1976 !sc->sc_ledon); 1977 sc->sc_blinking = 0; 1978 } 1979 ath_hal_intrset(ah, 0); 1980 } 1981 ath_draintxq(sc, ATH_RESET_DEFAULT); 1982 if (!sc->sc_invalid) { 1983 ath_stoprecv(sc, 1); 1984 ath_hal_phydisable(ah); 1985 } else 1986 sc->sc_rxlink = NULL; 1987 ath_beacon_free(sc); /* XXX not needed */ 1988 } 1989 } 1990 1991 #define MAX_TXRX_ITERATIONS 1000 1992 static void 1993 ath_txrx_stop_locked(struct ath_softc *sc) 1994 { 1995 int i = MAX_TXRX_ITERATIONS; 1996 1997 ATH_UNLOCK_ASSERT(sc); 1998 ATH_PCU_LOCK_ASSERT(sc); 1999 2000 /* 2001 * Sleep until all the pending operations have completed. 2002 * 2003 * The caller must ensure that reset has been incremented 2004 * or the pending operations may continue being queued. 2005 */ 2006 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2007 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2008 if (i <= 0) 2009 break; 2010 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2011 i--; 2012 } 2013 2014 if (i <= 0) 2015 device_printf(sc->sc_dev, 2016 "%s: didn't finish after %d iterations\n", 2017 __func__, MAX_TXRX_ITERATIONS); 2018 } 2019 #undef MAX_TXRX_ITERATIONS 2020 2021 #if 0 2022 static void 2023 ath_txrx_stop(struct ath_softc *sc) 2024 { 2025 ATH_UNLOCK_ASSERT(sc); 2026 ATH_PCU_UNLOCK_ASSERT(sc); 2027 2028 ATH_PCU_LOCK(sc); 2029 ath_txrx_stop_locked(sc); 2030 ATH_PCU_UNLOCK(sc); 2031 } 2032 #endif 2033 2034 static void 2035 ath_txrx_start(struct ath_softc *sc) 2036 { 2037 2038 taskqueue_unblock(sc->sc_tq); 2039 } 2040 2041 /* 2042 * Grab the reset lock, and wait around until noone else 2043 * is trying to do anything with it. 2044 * 2045 * This is totally horrible but we can't hold this lock for 2046 * long enough to do TX/RX or we end up with net80211/ip stack 2047 * LORs and eventual deadlock. 2048 * 2049 * "dowait" signals whether to spin, waiting for the reset 2050 * lock count to reach 0. This should (for now) only be used 2051 * during the reset path, as the rest of the code may not 2052 * be locking-reentrant enough to behave correctly. 2053 * 2054 * Another, cleaner way should be found to serialise all of 2055 * these operations. 2056 */ 2057 #define MAX_RESET_ITERATIONS 10 2058 static int 2059 ath_reset_grablock(struct ath_softc *sc, int dowait) 2060 { 2061 int w = 0; 2062 int i = MAX_RESET_ITERATIONS; 2063 2064 ATH_PCU_LOCK_ASSERT(sc); 2065 do { 2066 if (sc->sc_inreset_cnt == 0) { 2067 w = 1; 2068 break; 2069 } 2070 if (dowait == 0) { 2071 w = 0; 2072 break; 2073 } 2074 ATH_PCU_UNLOCK(sc); 2075 pause("ath_reset_grablock", 1); 2076 i--; 2077 ATH_PCU_LOCK(sc); 2078 } while (i > 0); 2079 2080 /* 2081 * We always increment the refcounter, regardless 2082 * of whether we succeeded to get it in an exclusive 2083 * way. 2084 */ 2085 sc->sc_inreset_cnt++; 2086 2087 if (i <= 0) 2088 device_printf(sc->sc_dev, 2089 "%s: didn't finish after %d iterations\n", 2090 __func__, MAX_RESET_ITERATIONS); 2091 2092 if (w == 0) 2093 device_printf(sc->sc_dev, 2094 "%s: warning, recursive reset path!\n", 2095 __func__); 2096 2097 return w; 2098 } 2099 #undef MAX_RESET_ITERATIONS 2100 2101 /* 2102 * XXX TODO: write ath_reset_releaselock 2103 */ 2104 2105 static void 2106 ath_stop(struct ifnet *ifp) 2107 { 2108 struct ath_softc *sc = ifp->if_softc; 2109 2110 ATH_LOCK(sc); 2111 ath_stop_locked(ifp); 2112 ATH_UNLOCK(sc); 2113 } 2114 2115 /* 2116 * Reset the hardware w/o losing operational state. This is 2117 * basically a more efficient way of doing ath_stop, ath_init, 2118 * followed by state transitions to the current 802.11 2119 * operational state. Used to recover from various errors and 2120 * to reset or reload hardware state. 2121 */ 2122 int 2123 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2124 { 2125 struct ath_softc *sc = ifp->if_softc; 2126 struct ieee80211com *ic = ifp->if_l2com; 2127 struct ath_hal *ah = sc->sc_ah; 2128 HAL_STATUS status; 2129 int i; 2130 2131 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2132 2133 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2134 ATH_PCU_UNLOCK_ASSERT(sc); 2135 ATH_UNLOCK_ASSERT(sc); 2136 2137 /* Try to (stop any further TX/RX from occuring */ 2138 taskqueue_block(sc->sc_tq); 2139 2140 ATH_PCU_LOCK(sc); 2141 ath_hal_intrset(ah, 0); /* disable interrupts */ 2142 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2143 if (ath_reset_grablock(sc, 1) == 0) { 2144 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2145 __func__); 2146 } 2147 ATH_PCU_UNLOCK(sc); 2148 2149 /* 2150 * Should now wait for pending TX/RX to complete 2151 * and block future ones from occuring. This needs to be 2152 * done before the TX queue is drained. 2153 */ 2154 ath_draintxq(sc, reset_type); /* stop xmit side */ 2155 2156 /* 2157 * Regardless of whether we're doing a no-loss flush or 2158 * not, stop the PCU and handle what's in the RX queue. 2159 * That way frames aren't dropped which shouldn't be. 2160 */ 2161 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2162 ath_rx_flush(sc); 2163 2164 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2165 /* NB: indicate channel change so we do a full reset */ 2166 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2167 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2168 __func__, status); 2169 sc->sc_diversity = ath_hal_getdiversity(ah); 2170 2171 /* Let DFS at it in case it's a DFS channel */ 2172 ath_dfs_radar_enable(sc, ic->ic_curchan); 2173 2174 if (ath_startrecv(sc) != 0) /* restart recv */ 2175 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2176 /* 2177 * We may be doing a reset in response to an ioctl 2178 * that changes the channel so update any state that 2179 * might change as a result. 2180 */ 2181 ath_chan_change(sc, ic->ic_curchan); 2182 if (sc->sc_beacons) { /* restart beacons */ 2183 #ifdef IEEE80211_SUPPORT_TDMA 2184 if (sc->sc_tdma) 2185 ath_tdma_config(sc, NULL); 2186 else 2187 #endif 2188 ath_beacon_config(sc, NULL); 2189 } 2190 2191 /* 2192 * Release the reset lock and re-enable interrupts here. 2193 * If an interrupt was being processed in ath_intr(), 2194 * it would disable interrupts at this point. So we have 2195 * to atomically enable interrupts and decrement the 2196 * reset counter - this way ath_intr() doesn't end up 2197 * disabling interrupts without a corresponding enable 2198 * in the rest or channel change path. 2199 */ 2200 ATH_PCU_LOCK(sc); 2201 sc->sc_inreset_cnt--; 2202 /* XXX only do this if sc_inreset_cnt == 0? */ 2203 ath_hal_intrset(ah, sc->sc_imask); 2204 ATH_PCU_UNLOCK(sc); 2205 2206 /* 2207 * TX and RX can be started here. If it were started with 2208 * sc_inreset_cnt > 0, the TX and RX path would abort. 2209 * Thus if this is a nested call through the reset or 2210 * channel change code, TX completion will occur but 2211 * RX completion and ath_start / ath_tx_start will not 2212 * run. 2213 */ 2214 2215 /* Restart TX/RX as needed */ 2216 ath_txrx_start(sc); 2217 2218 /* XXX Restart TX completion and pending TX */ 2219 if (reset_type == ATH_RESET_NOLOSS) { 2220 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2221 if (ATH_TXQ_SETUP(sc, i)) { 2222 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2223 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2224 ath_txq_sched(sc, &sc->sc_txq[i]); 2225 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2226 } 2227 } 2228 } 2229 2230 /* 2231 * This may have been set during an ath_start() call which 2232 * set this once it detected a concurrent TX was going on. 2233 * So, clear it. 2234 */ 2235 IF_LOCK(&ifp->if_snd); 2236 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2237 IF_UNLOCK(&ifp->if_snd); 2238 2239 /* Handle any frames in the TX queue */ 2240 /* 2241 * XXX should this be done by the caller, rather than 2242 * ath_reset() ? 2243 */ 2244 ath_start(ifp); /* restart xmit */ 2245 return 0; 2246 } 2247 2248 static int 2249 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2250 { 2251 struct ieee80211com *ic = vap->iv_ic; 2252 struct ifnet *ifp = ic->ic_ifp; 2253 struct ath_softc *sc = ifp->if_softc; 2254 struct ath_hal *ah = sc->sc_ah; 2255 2256 switch (cmd) { 2257 case IEEE80211_IOC_TXPOWER: 2258 /* 2259 * If per-packet TPC is enabled, then we have nothing 2260 * to do; otherwise we need to force the global limit. 2261 * All this can happen directly; no need to reset. 2262 */ 2263 if (!ath_hal_gettpc(ah)) 2264 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2265 return 0; 2266 } 2267 /* XXX? Full or NOLOSS? */ 2268 return ath_reset(ifp, ATH_RESET_FULL); 2269 } 2270 2271 struct ath_buf * 2272 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2273 { 2274 struct ath_buf *bf; 2275 2276 ATH_TXBUF_LOCK_ASSERT(sc); 2277 2278 if (btype == ATH_BUFTYPE_MGMT) 2279 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2280 else 2281 bf = TAILQ_FIRST(&sc->sc_txbuf); 2282 2283 if (bf == NULL) { 2284 sc->sc_stats.ast_tx_getnobuf++; 2285 } else { 2286 if (bf->bf_flags & ATH_BUF_BUSY) { 2287 sc->sc_stats.ast_tx_getbusybuf++; 2288 bf = NULL; 2289 } 2290 } 2291 2292 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2293 if (btype == ATH_BUFTYPE_MGMT) 2294 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2295 else { 2296 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2297 sc->sc_txbuf_cnt--; 2298 2299 /* 2300 * This shuldn't happen; however just to be 2301 * safe print a warning and fudge the txbuf 2302 * count. 2303 */ 2304 if (sc->sc_txbuf_cnt < 0) { 2305 device_printf(sc->sc_dev, 2306 "%s: sc_txbuf_cnt < 0?\n", 2307 __func__); 2308 sc->sc_txbuf_cnt = 0; 2309 } 2310 } 2311 } else 2312 bf = NULL; 2313 2314 if (bf == NULL) { 2315 /* XXX should check which list, mgmt or otherwise */ 2316 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2317 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2318 "out of xmit buffers" : "xmit buffer busy"); 2319 return NULL; 2320 } 2321 2322 /* XXX TODO: should do this at buffer list initialisation */ 2323 /* XXX (then, ensure the buffer has the right flag set) */ 2324 if (btype == ATH_BUFTYPE_MGMT) 2325 bf->bf_flags |= ATH_BUF_MGMT; 2326 else 2327 bf->bf_flags &= (~ATH_BUF_MGMT); 2328 2329 /* Valid bf here; clear some basic fields */ 2330 bf->bf_next = NULL; /* XXX just to be sure */ 2331 bf->bf_last = NULL; /* XXX again, just to be sure */ 2332 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2333 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2334 2335 return bf; 2336 } 2337 2338 /* 2339 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2340 * can't be thrown back on the queue as they could still be 2341 * in use by the hardware. 2342 * 2343 * This duplicates the buffer, or returns NULL. 2344 * 2345 * The descriptor is also copied but the link pointers and 2346 * the DMA segments aren't copied; this frame should thus 2347 * be again passed through the descriptor setup/chain routines 2348 * so the link is correct. 2349 * 2350 * The caller must free the buffer using ath_freebuf(). 2351 * 2352 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2353 * XXX in the TX pathway when retries are needed. 2354 * XXX Figure out how to keep some buffers free, or factor the 2355 * XXX number of busy buffers into the xmit path (ath_start()) 2356 * XXX so we don't over-commit. 2357 */ 2358 struct ath_buf * 2359 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2360 { 2361 struct ath_buf *tbf; 2362 2363 tbf = ath_getbuf(sc, 2364 (bf->bf_flags & ATH_BUF_MGMT) ? 2365 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2366 if (tbf == NULL) 2367 return NULL; /* XXX failure? Why? */ 2368 2369 /* Copy basics */ 2370 tbf->bf_next = NULL; 2371 tbf->bf_nseg = bf->bf_nseg; 2372 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2373 tbf->bf_status = bf->bf_status; 2374 tbf->bf_m = bf->bf_m; 2375 tbf->bf_node = bf->bf_node; 2376 /* will be setup by the chain/setup function */ 2377 tbf->bf_lastds = NULL; 2378 /* for now, last == self */ 2379 tbf->bf_last = tbf; 2380 tbf->bf_comp = bf->bf_comp; 2381 2382 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2383 2384 /* The caller has to re-init the descriptor + links */ 2385 2386 /* Copy state */ 2387 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2388 2389 return tbf; 2390 } 2391 2392 struct ath_buf * 2393 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2394 { 2395 struct ath_buf *bf; 2396 2397 ATH_TXBUF_LOCK(sc); 2398 bf = _ath_getbuf_locked(sc, btype); 2399 /* 2400 * If a mgmt buffer was requested but we're out of those, 2401 * try requesting a normal one. 2402 */ 2403 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2404 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2405 ATH_TXBUF_UNLOCK(sc); 2406 if (bf == NULL) { 2407 struct ifnet *ifp = sc->sc_ifp; 2408 2409 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2410 sc->sc_stats.ast_tx_qstop++; 2411 IF_LOCK(&ifp->if_snd); 2412 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2413 IF_UNLOCK(&ifp->if_snd); 2414 } 2415 return bf; 2416 } 2417 2418 void 2419 ath_start(struct ifnet *ifp) 2420 { 2421 struct ath_softc *sc = ifp->if_softc; 2422 struct ieee80211_node *ni; 2423 struct ath_buf *bf; 2424 struct mbuf *m, *next; 2425 ath_bufhead frags; 2426 2427 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2428 return; 2429 2430 /* XXX is it ok to hold the ATH_LOCK here? */ 2431 ATH_PCU_LOCK(sc); 2432 if (sc->sc_inreset_cnt > 0) { 2433 device_printf(sc->sc_dev, 2434 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2435 ATH_PCU_UNLOCK(sc); 2436 IF_LOCK(&ifp->if_snd); 2437 sc->sc_stats.ast_tx_qstop++; 2438 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2439 IF_UNLOCK(&ifp->if_snd); 2440 return; 2441 } 2442 sc->sc_txstart_cnt++; 2443 ATH_PCU_UNLOCK(sc); 2444 2445 for (;;) { 2446 ATH_TXBUF_LOCK(sc); 2447 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2448 /* XXX increment counter? */ 2449 ATH_TXBUF_UNLOCK(sc); 2450 IF_LOCK(&ifp->if_snd); 2451 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2452 IF_UNLOCK(&ifp->if_snd); 2453 break; 2454 } 2455 ATH_TXBUF_UNLOCK(sc); 2456 2457 /* 2458 * Grab a TX buffer and associated resources. 2459 */ 2460 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2461 if (bf == NULL) 2462 break; 2463 2464 IFQ_DEQUEUE(&ifp->if_snd, m); 2465 if (m == NULL) { 2466 ATH_TXBUF_LOCK(sc); 2467 ath_returnbuf_head(sc, bf); 2468 ATH_TXBUF_UNLOCK(sc); 2469 break; 2470 } 2471 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2472 /* 2473 * Check for fragmentation. If this frame 2474 * has been broken up verify we have enough 2475 * buffers to send all the fragments so all 2476 * go out or none... 2477 */ 2478 TAILQ_INIT(&frags); 2479 if ((m->m_flags & M_FRAG) && 2480 !ath_txfrag_setup(sc, &frags, m, ni)) { 2481 DPRINTF(sc, ATH_DEBUG_XMIT, 2482 "%s: out of txfrag buffers\n", __func__); 2483 sc->sc_stats.ast_tx_nofrag++; 2484 ifp->if_oerrors++; 2485 ath_freetx(m); 2486 goto bad; 2487 } 2488 ifp->if_opackets++; 2489 nextfrag: 2490 /* 2491 * Pass the frame to the h/w for transmission. 2492 * Fragmented frames have each frag chained together 2493 * with m_nextpkt. We know there are sufficient ath_buf's 2494 * to send all the frags because of work done by 2495 * ath_txfrag_setup. We leave m_nextpkt set while 2496 * calling ath_tx_start so it can use it to extend the 2497 * the tx duration to cover the subsequent frag and 2498 * so it can reclaim all the mbufs in case of an error; 2499 * ath_tx_start clears m_nextpkt once it commits to 2500 * handing the frame to the hardware. 2501 */ 2502 next = m->m_nextpkt; 2503 if (ath_tx_start(sc, ni, bf, m)) { 2504 bad: 2505 ifp->if_oerrors++; 2506 reclaim: 2507 bf->bf_m = NULL; 2508 bf->bf_node = NULL; 2509 ATH_TXBUF_LOCK(sc); 2510 ath_returnbuf_head(sc, bf); 2511 ath_txfrag_cleanup(sc, &frags, ni); 2512 ATH_TXBUF_UNLOCK(sc); 2513 if (ni != NULL) 2514 ieee80211_free_node(ni); 2515 continue; 2516 } 2517 if (next != NULL) { 2518 /* 2519 * Beware of state changing between frags. 2520 * XXX check sta power-save state? 2521 */ 2522 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2523 DPRINTF(sc, ATH_DEBUG_XMIT, 2524 "%s: flush fragmented packet, state %s\n", 2525 __func__, 2526 ieee80211_state_name[ni->ni_vap->iv_state]); 2527 ath_freetx(next); 2528 goto reclaim; 2529 } 2530 m = next; 2531 bf = TAILQ_FIRST(&frags); 2532 KASSERT(bf != NULL, ("no buf for txfrag")); 2533 TAILQ_REMOVE(&frags, bf, bf_list); 2534 goto nextfrag; 2535 } 2536 2537 sc->sc_wd_timer = 5; 2538 } 2539 2540 ATH_PCU_LOCK(sc); 2541 sc->sc_txstart_cnt--; 2542 ATH_PCU_UNLOCK(sc); 2543 } 2544 2545 static int 2546 ath_media_change(struct ifnet *ifp) 2547 { 2548 int error = ieee80211_media_change(ifp); 2549 /* NB: only the fixed rate can change and that doesn't need a reset */ 2550 return (error == ENETRESET ? 0 : error); 2551 } 2552 2553 /* 2554 * Block/unblock tx+rx processing while a key change is done. 2555 * We assume the caller serializes key management operations 2556 * so we only need to worry about synchronization with other 2557 * uses that originate in the driver. 2558 */ 2559 static void 2560 ath_key_update_begin(struct ieee80211vap *vap) 2561 { 2562 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2563 struct ath_softc *sc = ifp->if_softc; 2564 2565 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2566 taskqueue_block(sc->sc_tq); 2567 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2568 } 2569 2570 static void 2571 ath_key_update_end(struct ieee80211vap *vap) 2572 { 2573 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2574 struct ath_softc *sc = ifp->if_softc; 2575 2576 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2577 IF_UNLOCK(&ifp->if_snd); 2578 taskqueue_unblock(sc->sc_tq); 2579 } 2580 2581 static void 2582 ath_update_promisc(struct ifnet *ifp) 2583 { 2584 struct ath_softc *sc = ifp->if_softc; 2585 u_int32_t rfilt; 2586 2587 /* configure rx filter */ 2588 rfilt = ath_calcrxfilter(sc); 2589 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2590 2591 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2592 } 2593 2594 static void 2595 ath_update_mcast(struct ifnet *ifp) 2596 { 2597 struct ath_softc *sc = ifp->if_softc; 2598 u_int32_t mfilt[2]; 2599 2600 /* calculate and install multicast filter */ 2601 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2602 struct ifmultiaddr *ifma; 2603 /* 2604 * Merge multicast addresses to form the hardware filter. 2605 */ 2606 mfilt[0] = mfilt[1] = 0; 2607 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2608 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2609 caddr_t dl; 2610 u_int32_t val; 2611 u_int8_t pos; 2612 2613 /* calculate XOR of eight 6bit values */ 2614 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2615 val = LE_READ_4(dl + 0); 2616 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2617 val = LE_READ_4(dl + 3); 2618 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2619 pos &= 0x3f; 2620 mfilt[pos / 32] |= (1 << (pos % 32)); 2621 } 2622 if_maddr_runlock(ifp); 2623 } else 2624 mfilt[0] = mfilt[1] = ~0; 2625 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2626 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2627 __func__, mfilt[0], mfilt[1]); 2628 } 2629 2630 void 2631 ath_mode_init(struct ath_softc *sc) 2632 { 2633 struct ifnet *ifp = sc->sc_ifp; 2634 struct ath_hal *ah = sc->sc_ah; 2635 u_int32_t rfilt; 2636 2637 /* configure rx filter */ 2638 rfilt = ath_calcrxfilter(sc); 2639 ath_hal_setrxfilter(ah, rfilt); 2640 2641 /* configure operational mode */ 2642 ath_hal_setopmode(ah); 2643 2644 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2645 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2646 __func__, 2647 ah, 2648 ifp, 2649 (ifp == NULL) ? NULL : ifp->if_addr); 2650 2651 /* handle any link-level address change */ 2652 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2653 2654 /* calculate and install multicast filter */ 2655 ath_update_mcast(ifp); 2656 } 2657 2658 /* 2659 * Set the slot time based on the current setting. 2660 */ 2661 void 2662 ath_setslottime(struct ath_softc *sc) 2663 { 2664 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2665 struct ath_hal *ah = sc->sc_ah; 2666 u_int usec; 2667 2668 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2669 usec = 13; 2670 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2671 usec = 21; 2672 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2673 /* honor short/long slot time only in 11g */ 2674 /* XXX shouldn't honor on pure g or turbo g channel */ 2675 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2676 usec = HAL_SLOT_TIME_9; 2677 else 2678 usec = HAL_SLOT_TIME_20; 2679 } else 2680 usec = HAL_SLOT_TIME_9; 2681 2682 DPRINTF(sc, ATH_DEBUG_RESET, 2683 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2684 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2685 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2686 2687 ath_hal_setslottime(ah, usec); 2688 sc->sc_updateslot = OK; 2689 } 2690 2691 /* 2692 * Callback from the 802.11 layer to update the 2693 * slot time based on the current setting. 2694 */ 2695 static void 2696 ath_updateslot(struct ifnet *ifp) 2697 { 2698 struct ath_softc *sc = ifp->if_softc; 2699 struct ieee80211com *ic = ifp->if_l2com; 2700 2701 /* 2702 * When not coordinating the BSS, change the hardware 2703 * immediately. For other operation we defer the change 2704 * until beacon updates have propagated to the stations. 2705 */ 2706 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2707 ic->ic_opmode == IEEE80211_M_MBSS) 2708 sc->sc_updateslot = UPDATE; 2709 else 2710 ath_setslottime(sc); 2711 } 2712 2713 /* 2714 * Append the contents of src to dst; both queues 2715 * are assumed to be locked. 2716 */ 2717 void 2718 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2719 { 2720 2721 ATH_TXQ_LOCK_ASSERT(dst); 2722 ATH_TXQ_LOCK_ASSERT(src); 2723 2724 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2725 dst->axq_link = src->axq_link; 2726 src->axq_link = NULL; 2727 dst->axq_depth += src->axq_depth; 2728 dst->axq_aggr_depth += src->axq_aggr_depth; 2729 src->axq_depth = 0; 2730 src->axq_aggr_depth = 0; 2731 } 2732 2733 /* 2734 * Reset the hardware, with no loss. 2735 * 2736 * This can't be used for a general case reset. 2737 */ 2738 static void 2739 ath_reset_proc(void *arg, int pending) 2740 { 2741 struct ath_softc *sc = arg; 2742 struct ifnet *ifp = sc->sc_ifp; 2743 2744 #if 0 2745 if_printf(ifp, "%s: resetting\n", __func__); 2746 #endif 2747 ath_reset(ifp, ATH_RESET_NOLOSS); 2748 } 2749 2750 /* 2751 * Reset the hardware after detecting beacons have stopped. 2752 */ 2753 static void 2754 ath_bstuck_proc(void *arg, int pending) 2755 { 2756 struct ath_softc *sc = arg; 2757 struct ifnet *ifp = sc->sc_ifp; 2758 uint32_t hangs = 0; 2759 2760 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2761 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2762 2763 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2764 sc->sc_bmisscount); 2765 sc->sc_stats.ast_bstuck++; 2766 /* 2767 * This assumes that there's no simultaneous channel mode change 2768 * occuring. 2769 */ 2770 ath_reset(ifp, ATH_RESET_NOLOSS); 2771 } 2772 2773 static void 2774 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2775 { 2776 bus_addr_t *paddr = (bus_addr_t*) arg; 2777 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2778 *paddr = segs->ds_addr; 2779 } 2780 2781 /* 2782 * Allocate the descriptors and appropriate DMA tag/setup. 2783 * 2784 * For some situations (eg EDMA TX completion), there isn't a requirement 2785 * for the ath_buf entries to be allocated. 2786 */ 2787 int 2788 ath_descdma_alloc_desc(struct ath_softc *sc, 2789 struct ath_descdma *dd, ath_bufhead *head, 2790 const char *name, int ds_size, int ndesc) 2791 { 2792 #define DS2PHYS(_dd, _ds) \ 2793 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2794 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2795 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2796 struct ifnet *ifp = sc->sc_ifp; 2797 int error; 2798 2799 dd->dd_descsize = ds_size; 2800 2801 DPRINTF(sc, ATH_DEBUG_RESET, 2802 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2803 __func__, name, ndesc, dd->dd_descsize); 2804 2805 dd->dd_name = name; 2806 dd->dd_desc_len = dd->dd_descsize * ndesc; 2807 2808 /* 2809 * Merlin work-around: 2810 * Descriptors that cross the 4KB boundary can't be used. 2811 * Assume one skipped descriptor per 4KB page. 2812 */ 2813 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2814 int numpages = dd->dd_desc_len / 4096; 2815 dd->dd_desc_len += ds_size * numpages; 2816 } 2817 2818 /* 2819 * Setup DMA descriptor area. 2820 */ 2821 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2822 PAGE_SIZE, 0, /* alignment, bounds */ 2823 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2824 BUS_SPACE_MAXADDR, /* highaddr */ 2825 NULL, NULL, /* filter, filterarg */ 2826 dd->dd_desc_len, /* maxsize */ 2827 1, /* nsegments */ 2828 dd->dd_desc_len, /* maxsegsize */ 2829 BUS_DMA_ALLOCNOW, /* flags */ 2830 NULL, /* lockfunc */ 2831 NULL, /* lockarg */ 2832 &dd->dd_dmat); 2833 if (error != 0) { 2834 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2835 return error; 2836 } 2837 2838 /* allocate descriptors */ 2839 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2840 if (error != 0) { 2841 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2842 "error %u\n", dd->dd_name, error); 2843 goto fail0; 2844 } 2845 2846 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2847 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2848 &dd->dd_dmamap); 2849 if (error != 0) { 2850 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2851 "error %u\n", ndesc, dd->dd_name, error); 2852 goto fail1; 2853 } 2854 2855 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2856 dd->dd_desc, dd->dd_desc_len, 2857 ath_load_cb, &dd->dd_desc_paddr, 2858 BUS_DMA_NOWAIT); 2859 if (error != 0) { 2860 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2861 dd->dd_name, error); 2862 goto fail2; 2863 } 2864 2865 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2866 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 2867 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 2868 /*XXX*/ (u_long) dd->dd_desc_len); 2869 2870 return (0); 2871 2872 fail2: 2873 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2874 fail1: 2875 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2876 fail0: 2877 bus_dma_tag_destroy(dd->dd_dmat); 2878 memset(dd, 0, sizeof(*dd)); 2879 return error; 2880 #undef DS2PHYS 2881 #undef ATH_DESC_4KB_BOUND_CHECK 2882 } 2883 2884 int 2885 ath_descdma_setup(struct ath_softc *sc, 2886 struct ath_descdma *dd, ath_bufhead *head, 2887 const char *name, int ds_size, int nbuf, int ndesc) 2888 { 2889 #define DS2PHYS(_dd, _ds) \ 2890 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2891 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2892 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2893 struct ifnet *ifp = sc->sc_ifp; 2894 uint8_t *ds; 2895 struct ath_buf *bf; 2896 int i, bsize, error; 2897 2898 /* Allocate descriptors */ 2899 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 2900 nbuf * ndesc); 2901 2902 /* Assume any errors during allocation were dealt with */ 2903 if (error != 0) { 2904 return (error); 2905 } 2906 2907 ds = (uint8_t *) dd->dd_desc; 2908 2909 /* allocate rx buffers */ 2910 bsize = sizeof(struct ath_buf) * nbuf; 2911 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2912 if (bf == NULL) { 2913 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2914 dd->dd_name, bsize); 2915 goto fail3; 2916 } 2917 dd->dd_bufptr = bf; 2918 2919 TAILQ_INIT(head); 2920 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 2921 bf->bf_desc = (struct ath_desc *) ds; 2922 bf->bf_daddr = DS2PHYS(dd, ds); 2923 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2924 /* 2925 * Merlin WAR: Skip descriptor addresses which 2926 * cause 4KB boundary crossing along any point 2927 * in the descriptor. 2928 */ 2929 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2930 dd->dd_descsize)) { 2931 /* Start at the next page */ 2932 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2933 bf->bf_desc = (struct ath_desc *) ds; 2934 bf->bf_daddr = DS2PHYS(dd, ds); 2935 } 2936 } 2937 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2938 &bf->bf_dmamap); 2939 if (error != 0) { 2940 if_printf(ifp, "unable to create dmamap for %s " 2941 "buffer %u, error %u\n", dd->dd_name, i, error); 2942 ath_descdma_cleanup(sc, dd, head); 2943 return error; 2944 } 2945 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2946 TAILQ_INSERT_TAIL(head, bf, bf_list); 2947 } 2948 2949 /* 2950 * XXX TODO: ensure that ds doesn't overflow the descriptor 2951 * allocation otherwise weird stuff will occur and crash your 2952 * machine. 2953 */ 2954 return 0; 2955 /* XXX this should likely just call ath_descdma_cleanup() */ 2956 fail3: 2957 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2958 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2959 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2960 bus_dma_tag_destroy(dd->dd_dmat); 2961 memset(dd, 0, sizeof(*dd)); 2962 return error; 2963 #undef DS2PHYS 2964 #undef ATH_DESC_4KB_BOUND_CHECK 2965 } 2966 2967 /* 2968 * Allocate ath_buf entries but no descriptor contents. 2969 * 2970 * This is for RX EDMA where the descriptors are the header part of 2971 * the RX buffer. 2972 */ 2973 int 2974 ath_descdma_setup_rx_edma(struct ath_softc *sc, 2975 struct ath_descdma *dd, ath_bufhead *head, 2976 const char *name, int nbuf, int rx_status_len) 2977 { 2978 struct ifnet *ifp = sc->sc_ifp; 2979 struct ath_buf *bf; 2980 int i, bsize, error; 2981 2982 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 2983 __func__, name, nbuf); 2984 2985 dd->dd_name = name; 2986 /* 2987 * This is (mostly) purely for show. We're not allocating any actual 2988 * descriptors here as EDMA RX has the descriptor be part 2989 * of the RX buffer. 2990 * 2991 * However, dd_desc_len is used by ath_descdma_free() to determine 2992 * whether we have already freed this DMA mapping. 2993 */ 2994 dd->dd_desc_len = rx_status_len * nbuf; 2995 dd->dd_descsize = rx_status_len; 2996 2997 /* allocate rx buffers */ 2998 bsize = sizeof(struct ath_buf) * nbuf; 2999 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3000 if (bf == NULL) { 3001 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3002 dd->dd_name, bsize); 3003 error = ENOMEM; 3004 goto fail3; 3005 } 3006 dd->dd_bufptr = bf; 3007 3008 TAILQ_INIT(head); 3009 for (i = 0; i < nbuf; i++, bf++) { 3010 bf->bf_desc = NULL; 3011 bf->bf_daddr = 0; 3012 bf->bf_lastds = NULL; /* Just an initial value */ 3013 3014 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3015 &bf->bf_dmamap); 3016 if (error != 0) { 3017 if_printf(ifp, "unable to create dmamap for %s " 3018 "buffer %u, error %u\n", dd->dd_name, i, error); 3019 ath_descdma_cleanup(sc, dd, head); 3020 return error; 3021 } 3022 TAILQ_INSERT_TAIL(head, bf, bf_list); 3023 } 3024 return 0; 3025 fail3: 3026 memset(dd, 0, sizeof(*dd)); 3027 return error; 3028 } 3029 3030 void 3031 ath_descdma_cleanup(struct ath_softc *sc, 3032 struct ath_descdma *dd, ath_bufhead *head) 3033 { 3034 struct ath_buf *bf; 3035 struct ieee80211_node *ni; 3036 3037 if (dd->dd_dmamap != 0) { 3038 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3039 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3040 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3041 bus_dma_tag_destroy(dd->dd_dmat); 3042 } 3043 3044 if (head != NULL) { 3045 TAILQ_FOREACH(bf, head, bf_list) { 3046 if (bf->bf_m) { 3047 m_freem(bf->bf_m); 3048 bf->bf_m = NULL; 3049 } 3050 if (bf->bf_dmamap != NULL) { 3051 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3052 bf->bf_dmamap = NULL; 3053 } 3054 ni = bf->bf_node; 3055 bf->bf_node = NULL; 3056 if (ni != NULL) { 3057 /* 3058 * Reclaim node reference. 3059 */ 3060 ieee80211_free_node(ni); 3061 } 3062 } 3063 } 3064 3065 if (head != NULL) 3066 TAILQ_INIT(head); 3067 3068 if (dd->dd_bufptr != NULL) 3069 free(dd->dd_bufptr, M_ATHDEV); 3070 memset(dd, 0, sizeof(*dd)); 3071 } 3072 3073 static int 3074 ath_desc_alloc(struct ath_softc *sc) 3075 { 3076 int error; 3077 3078 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3079 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3080 if (error != 0) { 3081 return error; 3082 } 3083 sc->sc_txbuf_cnt = ath_txbuf; 3084 3085 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3086 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3087 ATH_TXDESC); 3088 if (error != 0) { 3089 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3090 return error; 3091 } 3092 3093 /* 3094 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3095 * flag doesn't have to be set in ath_getbuf_locked(). 3096 */ 3097 3098 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3099 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3100 if (error != 0) { 3101 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3102 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3103 &sc->sc_txbuf_mgmt); 3104 return error; 3105 } 3106 return 0; 3107 } 3108 3109 static void 3110 ath_desc_free(struct ath_softc *sc) 3111 { 3112 3113 if (sc->sc_bdma.dd_desc_len != 0) 3114 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3115 if (sc->sc_txdma.dd_desc_len != 0) 3116 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3117 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3118 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3119 &sc->sc_txbuf_mgmt); 3120 } 3121 3122 static struct ieee80211_node * 3123 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3124 { 3125 struct ieee80211com *ic = vap->iv_ic; 3126 struct ath_softc *sc = ic->ic_ifp->if_softc; 3127 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3128 struct ath_node *an; 3129 3130 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3131 if (an == NULL) { 3132 /* XXX stat+msg */ 3133 return NULL; 3134 } 3135 ath_rate_node_init(sc, an); 3136 3137 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3138 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3139 device_get_nameunit(sc->sc_dev), an); 3140 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3141 3142 /* XXX setup ath_tid */ 3143 ath_tx_tid_init(sc, an); 3144 3145 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3146 return &an->an_node; 3147 } 3148 3149 static void 3150 ath_node_cleanup(struct ieee80211_node *ni) 3151 { 3152 struct ieee80211com *ic = ni->ni_ic; 3153 struct ath_softc *sc = ic->ic_ifp->if_softc; 3154 3155 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3156 ath_tx_node_flush(sc, ATH_NODE(ni)); 3157 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3158 sc->sc_node_cleanup(ni); 3159 } 3160 3161 static void 3162 ath_node_free(struct ieee80211_node *ni) 3163 { 3164 struct ieee80211com *ic = ni->ni_ic; 3165 struct ath_softc *sc = ic->ic_ifp->if_softc; 3166 3167 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3168 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3169 sc->sc_node_free(ni); 3170 } 3171 3172 static void 3173 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3174 { 3175 struct ieee80211com *ic = ni->ni_ic; 3176 struct ath_softc *sc = ic->ic_ifp->if_softc; 3177 struct ath_hal *ah = sc->sc_ah; 3178 3179 *rssi = ic->ic_node_getrssi(ni); 3180 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3181 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3182 else 3183 *noise = -95; /* nominally correct */ 3184 } 3185 3186 /* 3187 * Set the default antenna. 3188 */ 3189 void 3190 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3191 { 3192 struct ath_hal *ah = sc->sc_ah; 3193 3194 /* XXX block beacon interrupts */ 3195 ath_hal_setdefantenna(ah, antenna); 3196 if (sc->sc_defant != antenna) 3197 sc->sc_stats.ast_ant_defswitch++; 3198 sc->sc_defant = antenna; 3199 sc->sc_rxotherant = 0; 3200 } 3201 3202 static void 3203 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3204 { 3205 txq->axq_qnum = qnum; 3206 txq->axq_ac = 0; 3207 txq->axq_depth = 0; 3208 txq->axq_aggr_depth = 0; 3209 txq->axq_intrcnt = 0; 3210 txq->axq_link = NULL; 3211 txq->axq_softc = sc; 3212 TAILQ_INIT(&txq->axq_q); 3213 TAILQ_INIT(&txq->axq_tidq); 3214 ATH_TXQ_LOCK_INIT(sc, txq); 3215 } 3216 3217 /* 3218 * Setup a h/w transmit queue. 3219 */ 3220 static struct ath_txq * 3221 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3222 { 3223 #define N(a) (sizeof(a)/sizeof(a[0])) 3224 struct ath_hal *ah = sc->sc_ah; 3225 HAL_TXQ_INFO qi; 3226 int qnum; 3227 3228 memset(&qi, 0, sizeof(qi)); 3229 qi.tqi_subtype = subtype; 3230 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3231 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3232 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3233 /* 3234 * Enable interrupts only for EOL and DESC conditions. 3235 * We mark tx descriptors to receive a DESC interrupt 3236 * when a tx queue gets deep; otherwise waiting for the 3237 * EOL to reap descriptors. Note that this is done to 3238 * reduce interrupt load and this only defers reaping 3239 * descriptors, never transmitting frames. Aside from 3240 * reducing interrupts this also permits more concurrency. 3241 * The only potential downside is if the tx queue backs 3242 * up in which case the top half of the kernel may backup 3243 * due to a lack of tx descriptors. 3244 */ 3245 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3246 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3247 if (qnum == -1) { 3248 /* 3249 * NB: don't print a message, this happens 3250 * normally on parts with too few tx queues 3251 */ 3252 return NULL; 3253 } 3254 if (qnum >= N(sc->sc_txq)) { 3255 device_printf(sc->sc_dev, 3256 "hal qnum %u out of range, max %zu!\n", 3257 qnum, N(sc->sc_txq)); 3258 ath_hal_releasetxqueue(ah, qnum); 3259 return NULL; 3260 } 3261 if (!ATH_TXQ_SETUP(sc, qnum)) { 3262 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3263 sc->sc_txqsetup |= 1<<qnum; 3264 } 3265 return &sc->sc_txq[qnum]; 3266 #undef N 3267 } 3268 3269 /* 3270 * Setup a hardware data transmit queue for the specified 3271 * access control. The hal may not support all requested 3272 * queues in which case it will return a reference to a 3273 * previously setup queue. We record the mapping from ac's 3274 * to h/w queues for use by ath_tx_start and also track 3275 * the set of h/w queues being used to optimize work in the 3276 * transmit interrupt handler and related routines. 3277 */ 3278 static int 3279 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3280 { 3281 #define N(a) (sizeof(a)/sizeof(a[0])) 3282 struct ath_txq *txq; 3283 3284 if (ac >= N(sc->sc_ac2q)) { 3285 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3286 ac, N(sc->sc_ac2q)); 3287 return 0; 3288 } 3289 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3290 if (txq != NULL) { 3291 txq->axq_ac = ac; 3292 sc->sc_ac2q[ac] = txq; 3293 return 1; 3294 } else 3295 return 0; 3296 #undef N 3297 } 3298 3299 /* 3300 * Update WME parameters for a transmit queue. 3301 */ 3302 static int 3303 ath_txq_update(struct ath_softc *sc, int ac) 3304 { 3305 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3306 #define ATH_TXOP_TO_US(v) (v<<5) 3307 struct ifnet *ifp = sc->sc_ifp; 3308 struct ieee80211com *ic = ifp->if_l2com; 3309 struct ath_txq *txq = sc->sc_ac2q[ac]; 3310 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3311 struct ath_hal *ah = sc->sc_ah; 3312 HAL_TXQ_INFO qi; 3313 3314 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3315 #ifdef IEEE80211_SUPPORT_TDMA 3316 if (sc->sc_tdma) { 3317 /* 3318 * AIFS is zero so there's no pre-transmit wait. The 3319 * burst time defines the slot duration and is configured 3320 * through net80211. The QCU is setup to not do post-xmit 3321 * back off, lockout all lower-priority QCU's, and fire 3322 * off the DMA beacon alert timer which is setup based 3323 * on the slot configuration. 3324 */ 3325 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3326 | HAL_TXQ_TXERRINT_ENABLE 3327 | HAL_TXQ_TXURNINT_ENABLE 3328 | HAL_TXQ_TXEOLINT_ENABLE 3329 | HAL_TXQ_DBA_GATED 3330 | HAL_TXQ_BACKOFF_DISABLE 3331 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3332 ; 3333 qi.tqi_aifs = 0; 3334 /* XXX +dbaprep? */ 3335 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3336 qi.tqi_burstTime = qi.tqi_readyTime; 3337 } else { 3338 #endif 3339 /* 3340 * XXX shouldn't this just use the default flags 3341 * used in the previous queue setup? 3342 */ 3343 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3344 | HAL_TXQ_TXERRINT_ENABLE 3345 | HAL_TXQ_TXDESCINT_ENABLE 3346 | HAL_TXQ_TXURNINT_ENABLE 3347 | HAL_TXQ_TXEOLINT_ENABLE 3348 ; 3349 qi.tqi_aifs = wmep->wmep_aifsn; 3350 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3351 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3352 qi.tqi_readyTime = 0; 3353 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3354 #ifdef IEEE80211_SUPPORT_TDMA 3355 } 3356 #endif 3357 3358 DPRINTF(sc, ATH_DEBUG_RESET, 3359 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3360 __func__, txq->axq_qnum, qi.tqi_qflags, 3361 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3362 3363 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3364 if_printf(ifp, "unable to update hardware queue " 3365 "parameters for %s traffic!\n", 3366 ieee80211_wme_acnames[ac]); 3367 return 0; 3368 } else { 3369 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3370 return 1; 3371 } 3372 #undef ATH_TXOP_TO_US 3373 #undef ATH_EXPONENT_TO_VALUE 3374 } 3375 3376 /* 3377 * Callback from the 802.11 layer to update WME parameters. 3378 */ 3379 int 3380 ath_wme_update(struct ieee80211com *ic) 3381 { 3382 struct ath_softc *sc = ic->ic_ifp->if_softc; 3383 3384 return !ath_txq_update(sc, WME_AC_BE) || 3385 !ath_txq_update(sc, WME_AC_BK) || 3386 !ath_txq_update(sc, WME_AC_VI) || 3387 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3388 } 3389 3390 /* 3391 * Reclaim resources for a setup queue. 3392 */ 3393 static void 3394 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3395 { 3396 3397 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3398 ATH_TXQ_LOCK_DESTROY(txq); 3399 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3400 } 3401 3402 /* 3403 * Reclaim all tx queue resources. 3404 */ 3405 static void 3406 ath_tx_cleanup(struct ath_softc *sc) 3407 { 3408 int i; 3409 3410 ATH_TXBUF_LOCK_DESTROY(sc); 3411 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3412 if (ATH_TXQ_SETUP(sc, i)) 3413 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3414 } 3415 3416 /* 3417 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3418 * using the current rates in sc_rixmap. 3419 */ 3420 int 3421 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3422 { 3423 int rix = sc->sc_rixmap[rate]; 3424 /* NB: return lowest rix for invalid rate */ 3425 return (rix == 0xff ? 0 : rix); 3426 } 3427 3428 static void 3429 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3430 struct ath_buf *bf) 3431 { 3432 struct ieee80211_node *ni = bf->bf_node; 3433 struct ifnet *ifp = sc->sc_ifp; 3434 struct ieee80211com *ic = ifp->if_l2com; 3435 int sr, lr, pri; 3436 3437 if (ts->ts_status == 0) { 3438 u_int8_t txant = ts->ts_antenna; 3439 sc->sc_stats.ast_ant_tx[txant]++; 3440 sc->sc_ant_tx[txant]++; 3441 if (ts->ts_finaltsi != 0) 3442 sc->sc_stats.ast_tx_altrate++; 3443 pri = M_WME_GETAC(bf->bf_m); 3444 if (pri >= WME_AC_VO) 3445 ic->ic_wme.wme_hipri_traffic++; 3446 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3447 ni->ni_inact = ni->ni_inact_reload; 3448 } else { 3449 if (ts->ts_status & HAL_TXERR_XRETRY) 3450 sc->sc_stats.ast_tx_xretries++; 3451 if (ts->ts_status & HAL_TXERR_FIFO) 3452 sc->sc_stats.ast_tx_fifoerr++; 3453 if (ts->ts_status & HAL_TXERR_FILT) 3454 sc->sc_stats.ast_tx_filtered++; 3455 if (ts->ts_status & HAL_TXERR_XTXOP) 3456 sc->sc_stats.ast_tx_xtxop++; 3457 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3458 sc->sc_stats.ast_tx_timerexpired++; 3459 3460 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3461 sc->sc_stats.ast_tx_data_underrun++; 3462 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3463 sc->sc_stats.ast_tx_delim_underrun++; 3464 3465 if (bf->bf_m->m_flags & M_FF) 3466 sc->sc_stats.ast_ff_txerr++; 3467 } 3468 /* XXX when is this valid? */ 3469 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3470 sc->sc_stats.ast_tx_desccfgerr++; 3471 3472 sr = ts->ts_shortretry; 3473 lr = ts->ts_longretry; 3474 sc->sc_stats.ast_tx_shortretry += sr; 3475 sc->sc_stats.ast_tx_longretry += lr; 3476 3477 } 3478 3479 /* 3480 * The default completion. If fail is 1, this means 3481 * "please don't retry the frame, and just return -1 status 3482 * to the net80211 stack. 3483 */ 3484 void 3485 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3486 { 3487 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3488 int st; 3489 3490 if (fail == 1) 3491 st = -1; 3492 else 3493 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3494 ts->ts_status : HAL_TXERR_XRETRY; 3495 3496 if (bf->bf_state.bfs_dobaw) 3497 device_printf(sc->sc_dev, 3498 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3499 __func__, 3500 bf, 3501 SEQNO(bf->bf_state.bfs_seqno)); 3502 if (bf->bf_next != NULL) 3503 device_printf(sc->sc_dev, 3504 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3505 __func__, 3506 bf, 3507 SEQNO(bf->bf_state.bfs_seqno)); 3508 3509 /* 3510 * Do any tx complete callback. Note this must 3511 * be done before releasing the node reference. 3512 * This will free the mbuf, release the net80211 3513 * node and recycle the ath_buf. 3514 */ 3515 ath_tx_freebuf(sc, bf, st); 3516 } 3517 3518 /* 3519 * Update rate control with the given completion status. 3520 */ 3521 void 3522 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3523 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3524 int nframes, int nbad) 3525 { 3526 struct ath_node *an; 3527 3528 /* Only for unicast frames */ 3529 if (ni == NULL) 3530 return; 3531 3532 an = ATH_NODE(ni); 3533 3534 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3535 ATH_NODE_LOCK(an); 3536 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3537 ATH_NODE_UNLOCK(an); 3538 } 3539 } 3540 3541 /* 3542 * Update the busy status of the last frame on the free list. 3543 * When doing TDMA, the busy flag tracks whether the hardware 3544 * currently points to this buffer or not, and thus gated DMA 3545 * may restart by re-reading the last descriptor in this 3546 * buffer. 3547 * 3548 * This should be called in the completion function once one 3549 * of the buffers has been used. 3550 */ 3551 static void 3552 ath_tx_update_busy(struct ath_softc *sc) 3553 { 3554 struct ath_buf *last; 3555 3556 /* 3557 * Since the last frame may still be marked 3558 * as ATH_BUF_BUSY, unmark it here before 3559 * finishing the frame processing. 3560 * Since we've completed a frame (aggregate 3561 * or otherwise), the hardware has moved on 3562 * and is no longer referencing the previous 3563 * descriptor. 3564 */ 3565 ATH_TXBUF_LOCK_ASSERT(sc); 3566 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3567 if (last != NULL) 3568 last->bf_flags &= ~ATH_BUF_BUSY; 3569 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3570 if (last != NULL) 3571 last->bf_flags &= ~ATH_BUF_BUSY; 3572 } 3573 3574 /* 3575 * Process completed xmit descriptors from the specified queue. 3576 * Kick the packet scheduler if needed. This can occur from this 3577 * particular task. 3578 */ 3579 int 3580 ath_legacy_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3581 { 3582 struct ath_hal *ah = sc->sc_ah; 3583 struct ath_buf *bf; 3584 struct ath_desc *ds; 3585 struct ath_tx_status *ts; 3586 struct ieee80211_node *ni; 3587 struct ath_node *an; 3588 #ifdef IEEE80211_SUPPORT_SUPERG 3589 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3590 #endif /* IEEE80211_SUPPORT_SUPERG */ 3591 int nacked; 3592 HAL_STATUS status; 3593 3594 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3595 __func__, txq->axq_qnum, 3596 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3597 txq->axq_link); 3598 nacked = 0; 3599 for (;;) { 3600 ATH_TXQ_LOCK(txq); 3601 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3602 bf = TAILQ_FIRST(&txq->axq_q); 3603 if (bf == NULL) { 3604 ATH_TXQ_UNLOCK(txq); 3605 break; 3606 } 3607 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3608 ts = &bf->bf_status.ds_txstat; 3609 status = ath_hal_txprocdesc(ah, ds, ts); 3610 #ifdef ATH_DEBUG 3611 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3612 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3613 status == HAL_OK); 3614 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) { 3615 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3616 status == HAL_OK); 3617 } 3618 #endif 3619 if (status == HAL_EINPROGRESS) { 3620 ATH_TXQ_UNLOCK(txq); 3621 break; 3622 } 3623 ATH_TXQ_REMOVE(txq, bf, bf_list); 3624 #ifdef IEEE80211_SUPPORT_TDMA 3625 if (txq->axq_depth > 0) { 3626 /* 3627 * More frames follow. Mark the buffer busy 3628 * so it's not re-used while the hardware may 3629 * still re-read the link field in the descriptor. 3630 * 3631 * Use the last buffer in an aggregate as that 3632 * is where the hardware may be - intermediate 3633 * descriptors won't be "busy". 3634 */ 3635 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3636 } else 3637 #else 3638 if (txq->axq_depth == 0) 3639 #endif 3640 txq->axq_link = NULL; 3641 if (bf->bf_state.bfs_aggr) 3642 txq->axq_aggr_depth--; 3643 3644 ni = bf->bf_node; 3645 /* 3646 * If unicast frame was ack'd update RSSI, 3647 * including the last rx time used to 3648 * workaround phantom bmiss interrupts. 3649 */ 3650 if (ni != NULL && ts->ts_status == 0 && 3651 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3652 nacked++; 3653 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3654 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3655 ts->ts_rssi); 3656 } 3657 ATH_TXQ_UNLOCK(txq); 3658 3659 /* If unicast frame, update general statistics */ 3660 if (ni != NULL) { 3661 an = ATH_NODE(ni); 3662 /* update statistics */ 3663 ath_tx_update_stats(sc, ts, bf); 3664 } 3665 3666 /* 3667 * Call the completion handler. 3668 * The completion handler is responsible for 3669 * calling the rate control code. 3670 * 3671 * Frames with no completion handler get the 3672 * rate control code called here. 3673 */ 3674 if (bf->bf_comp == NULL) { 3675 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3676 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3677 /* 3678 * XXX assume this isn't an aggregate 3679 * frame. 3680 */ 3681 ath_tx_update_ratectrl(sc, ni, 3682 bf->bf_state.bfs_rc, ts, 3683 bf->bf_state.bfs_pktlen, 1, 3684 (ts->ts_status == 0 ? 0 : 1)); 3685 } 3686 ath_tx_default_comp(sc, bf, 0); 3687 } else 3688 bf->bf_comp(sc, bf, 0); 3689 } 3690 #ifdef IEEE80211_SUPPORT_SUPERG 3691 /* 3692 * Flush fast-frame staging queue when traffic slows. 3693 */ 3694 if (txq->axq_depth <= 1) 3695 ieee80211_ff_flush(ic, txq->axq_ac); 3696 #endif 3697 3698 /* Kick the TXQ scheduler */ 3699 if (dosched) { 3700 ATH_TXQ_LOCK(txq); 3701 ath_txq_sched(sc, txq); 3702 ATH_TXQ_UNLOCK(txq); 3703 } 3704 3705 return nacked; 3706 } 3707 3708 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3709 3710 /* 3711 * Deferred processing of transmit interrupt; special-cased 3712 * for a single hardware transmit queue (e.g. 5210 and 5211). 3713 */ 3714 static void 3715 ath_tx_proc_q0(void *arg, int npending) 3716 { 3717 struct ath_softc *sc = arg; 3718 struct ifnet *ifp = sc->sc_ifp; 3719 uint32_t txqs; 3720 3721 ATH_PCU_LOCK(sc); 3722 sc->sc_txproc_cnt++; 3723 txqs = sc->sc_txq_active; 3724 sc->sc_txq_active &= ~txqs; 3725 ATH_PCU_UNLOCK(sc); 3726 3727 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3728 /* XXX why is lastrx updated in tx code? */ 3729 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3730 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3731 ath_tx_processq(sc, sc->sc_cabq, 1); 3732 IF_LOCK(&ifp->if_snd); 3733 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3734 IF_UNLOCK(&ifp->if_snd); 3735 sc->sc_wd_timer = 0; 3736 3737 if (sc->sc_softled) 3738 ath_led_event(sc, sc->sc_txrix); 3739 3740 ATH_PCU_LOCK(sc); 3741 sc->sc_txproc_cnt--; 3742 ATH_PCU_UNLOCK(sc); 3743 3744 ath_tx_kick(sc); 3745 } 3746 3747 /* 3748 * Deferred processing of transmit interrupt; special-cased 3749 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3750 */ 3751 static void 3752 ath_tx_proc_q0123(void *arg, int npending) 3753 { 3754 struct ath_softc *sc = arg; 3755 struct ifnet *ifp = sc->sc_ifp; 3756 int nacked; 3757 uint32_t txqs; 3758 3759 ATH_PCU_LOCK(sc); 3760 sc->sc_txproc_cnt++; 3761 txqs = sc->sc_txq_active; 3762 sc->sc_txq_active &= ~txqs; 3763 ATH_PCU_UNLOCK(sc); 3764 3765 /* 3766 * Process each active queue. 3767 */ 3768 nacked = 0; 3769 if (TXQACTIVE(txqs, 0)) 3770 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3771 if (TXQACTIVE(txqs, 1)) 3772 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3773 if (TXQACTIVE(txqs, 2)) 3774 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3775 if (TXQACTIVE(txqs, 3)) 3776 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3777 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3778 ath_tx_processq(sc, sc->sc_cabq, 1); 3779 if (nacked) 3780 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3781 3782 IF_LOCK(&ifp->if_snd); 3783 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3784 IF_UNLOCK(&ifp->if_snd); 3785 sc->sc_wd_timer = 0; 3786 3787 if (sc->sc_softled) 3788 ath_led_event(sc, sc->sc_txrix); 3789 3790 ATH_PCU_LOCK(sc); 3791 sc->sc_txproc_cnt--; 3792 ATH_PCU_UNLOCK(sc); 3793 3794 ath_tx_kick(sc); 3795 } 3796 3797 /* 3798 * Deferred processing of transmit interrupt. 3799 */ 3800 static void 3801 ath_tx_proc(void *arg, int npending) 3802 { 3803 struct ath_softc *sc = arg; 3804 struct ifnet *ifp = sc->sc_ifp; 3805 int i, nacked; 3806 uint32_t txqs; 3807 3808 ATH_PCU_LOCK(sc); 3809 sc->sc_txproc_cnt++; 3810 txqs = sc->sc_txq_active; 3811 sc->sc_txq_active &= ~txqs; 3812 ATH_PCU_UNLOCK(sc); 3813 3814 /* 3815 * Process each active queue. 3816 */ 3817 nacked = 0; 3818 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3819 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3820 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3821 if (nacked) 3822 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3823 3824 /* XXX check this inside of IF_LOCK? */ 3825 IF_LOCK(&ifp->if_snd); 3826 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3827 IF_UNLOCK(&ifp->if_snd); 3828 sc->sc_wd_timer = 0; 3829 3830 if (sc->sc_softled) 3831 ath_led_event(sc, sc->sc_txrix); 3832 3833 ATH_PCU_LOCK(sc); 3834 sc->sc_txproc_cnt--; 3835 ATH_PCU_UNLOCK(sc); 3836 3837 ath_tx_kick(sc); 3838 } 3839 #undef TXQACTIVE 3840 3841 /* 3842 * Deferred processing of TXQ rescheduling. 3843 */ 3844 static void 3845 ath_txq_sched_tasklet(void *arg, int npending) 3846 { 3847 struct ath_softc *sc = arg; 3848 int i; 3849 3850 /* XXX is skipping ok? */ 3851 ATH_PCU_LOCK(sc); 3852 #if 0 3853 if (sc->sc_inreset_cnt > 0) { 3854 device_printf(sc->sc_dev, 3855 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3856 ATH_PCU_UNLOCK(sc); 3857 return; 3858 } 3859 #endif 3860 sc->sc_txproc_cnt++; 3861 ATH_PCU_UNLOCK(sc); 3862 3863 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3864 if (ATH_TXQ_SETUP(sc, i)) { 3865 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3866 ath_txq_sched(sc, &sc->sc_txq[i]); 3867 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3868 } 3869 } 3870 3871 ATH_PCU_LOCK(sc); 3872 sc->sc_txproc_cnt--; 3873 ATH_PCU_UNLOCK(sc); 3874 } 3875 3876 void 3877 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 3878 { 3879 3880 ATH_TXBUF_LOCK_ASSERT(sc); 3881 3882 if (bf->bf_flags & ATH_BUF_MGMT) 3883 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 3884 else { 3885 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3886 sc->sc_txbuf_cnt++; 3887 if (sc->sc_txbuf_cnt > ath_txbuf) { 3888 device_printf(sc->sc_dev, 3889 "%s: sc_txbuf_cnt > %d?\n", 3890 __func__, 3891 ath_txbuf); 3892 sc->sc_txbuf_cnt = ath_txbuf; 3893 } 3894 } 3895 } 3896 3897 void 3898 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 3899 { 3900 3901 ATH_TXBUF_LOCK_ASSERT(sc); 3902 3903 if (bf->bf_flags & ATH_BUF_MGMT) 3904 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 3905 else { 3906 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 3907 sc->sc_txbuf_cnt++; 3908 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 3909 device_printf(sc->sc_dev, 3910 "%s: sc_txbuf_cnt > %d?\n", 3911 __func__, 3912 ATH_TXBUF); 3913 sc->sc_txbuf_cnt = ATH_TXBUF; 3914 } 3915 } 3916 } 3917 3918 /* 3919 * Return a buffer to the pool and update the 'busy' flag on the 3920 * previous 'tail' entry. 3921 * 3922 * This _must_ only be called when the buffer is involved in a completed 3923 * TX. The logic is that if it was part of an active TX, the previous 3924 * buffer on the list is now not involved in a halted TX DMA queue, waiting 3925 * for restart (eg for TDMA.) 3926 * 3927 * The caller must free the mbuf and recycle the node reference. 3928 */ 3929 void 3930 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 3931 { 3932 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3933 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 3934 3935 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 3936 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 3937 3938 ATH_TXBUF_LOCK(sc); 3939 ath_tx_update_busy(sc); 3940 ath_returnbuf_tail(sc, bf); 3941 ATH_TXBUF_UNLOCK(sc); 3942 } 3943 3944 /* 3945 * This is currently used by ath_tx_draintxq() and 3946 * ath_tx_tid_free_pkts(). 3947 * 3948 * It recycles a single ath_buf. 3949 */ 3950 void 3951 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 3952 { 3953 struct ieee80211_node *ni = bf->bf_node; 3954 struct mbuf *m0 = bf->bf_m; 3955 3956 bf->bf_node = NULL; 3957 bf->bf_m = NULL; 3958 3959 /* Free the buffer, it's not needed any longer */ 3960 ath_freebuf(sc, bf); 3961 3962 if (ni != NULL) { 3963 /* 3964 * Do any callback and reclaim the node reference. 3965 */ 3966 if (m0->m_flags & M_TXCB) 3967 ieee80211_process_callback(ni, m0, status); 3968 ieee80211_free_node(ni); 3969 } 3970 m_freem(m0); 3971 3972 /* 3973 * XXX the buffer used to be freed -after-, but the DMA map was 3974 * freed where ath_freebuf() now is. I've no idea what this 3975 * will do. 3976 */ 3977 } 3978 3979 void 3980 ath_legacy_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3981 { 3982 #ifdef ATH_DEBUG 3983 struct ath_hal *ah = sc->sc_ah; 3984 #endif 3985 struct ath_buf *bf; 3986 u_int ix; 3987 3988 /* 3989 * NB: this assumes output has been stopped and 3990 * we do not need to block ath_tx_proc 3991 */ 3992 ATH_TXBUF_LOCK(sc); 3993 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3994 if (bf != NULL) 3995 bf->bf_flags &= ~ATH_BUF_BUSY; 3996 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3997 if (bf != NULL) 3998 bf->bf_flags &= ~ATH_BUF_BUSY; 3999 ATH_TXBUF_UNLOCK(sc); 4000 4001 for (ix = 0;; ix++) { 4002 ATH_TXQ_LOCK(txq); 4003 bf = TAILQ_FIRST(&txq->axq_q); 4004 if (bf == NULL) { 4005 txq->axq_link = NULL; 4006 ATH_TXQ_UNLOCK(txq); 4007 break; 4008 } 4009 ATH_TXQ_REMOVE(txq, bf, bf_list); 4010 if (bf->bf_state.bfs_aggr) 4011 txq->axq_aggr_depth--; 4012 #ifdef ATH_DEBUG 4013 if (sc->sc_debug & ATH_DEBUG_RESET) { 4014 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4015 4016 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 4017 ath_hal_txprocdesc(ah, bf->bf_lastds, 4018 &bf->bf_status.ds_txstat) == HAL_OK); 4019 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4020 bf->bf_m->m_len, 0, -1); 4021 } 4022 #endif /* ATH_DEBUG */ 4023 /* 4024 * Since we're now doing magic in the completion 4025 * functions, we -must- call it for aggregation 4026 * destinations or BAW tracking will get upset. 4027 */ 4028 /* 4029 * Clear ATH_BUF_BUSY; the completion handler 4030 * will free the buffer. 4031 */ 4032 ATH_TXQ_UNLOCK(txq); 4033 bf->bf_flags &= ~ATH_BUF_BUSY; 4034 if (bf->bf_comp) 4035 bf->bf_comp(sc, bf, 1); 4036 else 4037 ath_tx_default_comp(sc, bf, 1); 4038 } 4039 4040 /* 4041 * Drain software queued frames which are on 4042 * active TIDs. 4043 */ 4044 ath_tx_txq_drain(sc, txq); 4045 } 4046 4047 static void 4048 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4049 { 4050 struct ath_hal *ah = sc->sc_ah; 4051 4052 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4053 __func__, txq->axq_qnum, 4054 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4055 txq->axq_link); 4056 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4057 } 4058 4059 static int 4060 ath_stoptxdma(struct ath_softc *sc) 4061 { 4062 struct ath_hal *ah = sc->sc_ah; 4063 int i; 4064 4065 /* XXX return value */ 4066 if (sc->sc_invalid) 4067 return 0; 4068 4069 if (!sc->sc_invalid) { 4070 /* don't touch the hardware if marked invalid */ 4071 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4072 __func__, sc->sc_bhalq, 4073 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4074 NULL); 4075 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4076 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4077 if (ATH_TXQ_SETUP(sc, i)) 4078 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4079 } 4080 4081 return 1; 4082 } 4083 4084 /* 4085 * Drain the transmit queues and reclaim resources. 4086 */ 4087 static void 4088 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4089 { 4090 #ifdef ATH_DEBUG 4091 struct ath_hal *ah = sc->sc_ah; 4092 #endif 4093 struct ifnet *ifp = sc->sc_ifp; 4094 int i; 4095 4096 (void) ath_stoptxdma(sc); 4097 4098 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4099 /* 4100 * XXX TODO: should we just handle the completed TX frames 4101 * here, whether or not the reset is a full one or not? 4102 */ 4103 if (ATH_TXQ_SETUP(sc, i)) { 4104 if (reset_type == ATH_RESET_NOLOSS) 4105 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4106 else 4107 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4108 } 4109 } 4110 #ifdef ATH_DEBUG 4111 if (sc->sc_debug & ATH_DEBUG_RESET) { 4112 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4113 if (bf != NULL && bf->bf_m != NULL) { 4114 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4115 ath_hal_txprocdesc(ah, bf->bf_lastds, 4116 &bf->bf_status.ds_txstat) == HAL_OK); 4117 ieee80211_dump_pkt(ifp->if_l2com, 4118 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4119 0, -1); 4120 } 4121 } 4122 #endif /* ATH_DEBUG */ 4123 IF_LOCK(&ifp->if_snd); 4124 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4125 IF_UNLOCK(&ifp->if_snd); 4126 sc->sc_wd_timer = 0; 4127 } 4128 4129 /* 4130 * Update internal state after a channel change. 4131 */ 4132 static void 4133 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4134 { 4135 enum ieee80211_phymode mode; 4136 4137 /* 4138 * Change channels and update the h/w rate map 4139 * if we're switching; e.g. 11a to 11b/g. 4140 */ 4141 mode = ieee80211_chan2mode(chan); 4142 if (mode != sc->sc_curmode) 4143 ath_setcurmode(sc, mode); 4144 sc->sc_curchan = chan; 4145 } 4146 4147 /* 4148 * Set/change channels. If the channel is really being changed, 4149 * it's done by resetting the chip. To accomplish this we must 4150 * first cleanup any pending DMA, then restart stuff after a la 4151 * ath_init. 4152 */ 4153 static int 4154 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4155 { 4156 struct ifnet *ifp = sc->sc_ifp; 4157 struct ieee80211com *ic = ifp->if_l2com; 4158 struct ath_hal *ah = sc->sc_ah; 4159 int ret = 0; 4160 4161 /* Treat this as an interface reset */ 4162 ATH_PCU_UNLOCK_ASSERT(sc); 4163 ATH_UNLOCK_ASSERT(sc); 4164 4165 /* (Try to) stop TX/RX from occuring */ 4166 taskqueue_block(sc->sc_tq); 4167 4168 ATH_PCU_LOCK(sc); 4169 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4170 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4171 if (ath_reset_grablock(sc, 1) == 0) { 4172 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4173 __func__); 4174 } 4175 ATH_PCU_UNLOCK(sc); 4176 4177 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4178 __func__, ieee80211_chan2ieee(ic, chan), 4179 chan->ic_freq, chan->ic_flags); 4180 if (chan != sc->sc_curchan) { 4181 HAL_STATUS status; 4182 /* 4183 * To switch channels clear any pending DMA operations; 4184 * wait long enough for the RX fifo to drain, reset the 4185 * hardware at the new frequency, and then re-enable 4186 * the relevant bits of the h/w. 4187 */ 4188 #if 0 4189 ath_hal_intrset(ah, 0); /* disable interrupts */ 4190 #endif 4191 ath_stoprecv(sc, 1); /* turn off frame recv */ 4192 /* 4193 * First, handle completed TX/RX frames. 4194 */ 4195 ath_rx_flush(sc); 4196 ath_draintxq(sc, ATH_RESET_NOLOSS); 4197 /* 4198 * Next, flush the non-scheduled frames. 4199 */ 4200 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4201 4202 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4203 if_printf(ifp, "%s: unable to reset " 4204 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4205 __func__, ieee80211_chan2ieee(ic, chan), 4206 chan->ic_freq, chan->ic_flags, status); 4207 ret = EIO; 4208 goto finish; 4209 } 4210 sc->sc_diversity = ath_hal_getdiversity(ah); 4211 4212 /* Let DFS at it in case it's a DFS channel */ 4213 ath_dfs_radar_enable(sc, chan); 4214 4215 /* 4216 * Re-enable rx framework. 4217 */ 4218 if (ath_startrecv(sc) != 0) { 4219 if_printf(ifp, "%s: unable to restart recv logic\n", 4220 __func__); 4221 ret = EIO; 4222 goto finish; 4223 } 4224 4225 /* 4226 * Change channels and update the h/w rate map 4227 * if we're switching; e.g. 11a to 11b/g. 4228 */ 4229 ath_chan_change(sc, chan); 4230 4231 /* 4232 * Reset clears the beacon timers; reset them 4233 * here if needed. 4234 */ 4235 if (sc->sc_beacons) { /* restart beacons */ 4236 #ifdef IEEE80211_SUPPORT_TDMA 4237 if (sc->sc_tdma) 4238 ath_tdma_config(sc, NULL); 4239 else 4240 #endif 4241 ath_beacon_config(sc, NULL); 4242 } 4243 4244 /* 4245 * Re-enable interrupts. 4246 */ 4247 #if 0 4248 ath_hal_intrset(ah, sc->sc_imask); 4249 #endif 4250 } 4251 4252 finish: 4253 ATH_PCU_LOCK(sc); 4254 sc->sc_inreset_cnt--; 4255 /* XXX only do this if sc_inreset_cnt == 0? */ 4256 ath_hal_intrset(ah, sc->sc_imask); 4257 ATH_PCU_UNLOCK(sc); 4258 4259 IF_LOCK(&ifp->if_snd); 4260 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4261 IF_UNLOCK(&ifp->if_snd); 4262 ath_txrx_start(sc); 4263 /* XXX ath_start? */ 4264 4265 return ret; 4266 } 4267 4268 /* 4269 * Periodically recalibrate the PHY to account 4270 * for temperature/environment changes. 4271 */ 4272 static void 4273 ath_calibrate(void *arg) 4274 { 4275 struct ath_softc *sc = arg; 4276 struct ath_hal *ah = sc->sc_ah; 4277 struct ifnet *ifp = sc->sc_ifp; 4278 struct ieee80211com *ic = ifp->if_l2com; 4279 HAL_BOOL longCal, isCalDone; 4280 HAL_BOOL aniCal, shortCal = AH_FALSE; 4281 int nextcal; 4282 4283 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4284 goto restart; 4285 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4286 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4287 if (sc->sc_doresetcal) 4288 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4289 4290 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4291 if (aniCal) { 4292 sc->sc_stats.ast_ani_cal++; 4293 sc->sc_lastani = ticks; 4294 ath_hal_ani_poll(ah, sc->sc_curchan); 4295 } 4296 4297 if (longCal) { 4298 sc->sc_stats.ast_per_cal++; 4299 sc->sc_lastlongcal = ticks; 4300 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4301 /* 4302 * Rfgain is out of bounds, reset the chip 4303 * to load new gain values. 4304 */ 4305 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4306 "%s: rfgain change\n", __func__); 4307 sc->sc_stats.ast_per_rfgain++; 4308 sc->sc_resetcal = 0; 4309 sc->sc_doresetcal = AH_TRUE; 4310 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4311 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4312 return; 4313 } 4314 /* 4315 * If this long cal is after an idle period, then 4316 * reset the data collection state so we start fresh. 4317 */ 4318 if (sc->sc_resetcal) { 4319 (void) ath_hal_calreset(ah, sc->sc_curchan); 4320 sc->sc_lastcalreset = ticks; 4321 sc->sc_lastshortcal = ticks; 4322 sc->sc_resetcal = 0; 4323 sc->sc_doresetcal = AH_TRUE; 4324 } 4325 } 4326 4327 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4328 if (shortCal || longCal) { 4329 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4330 if (longCal) { 4331 /* 4332 * Calibrate noise floor data again in case of change. 4333 */ 4334 ath_hal_process_noisefloor(ah); 4335 } 4336 } else { 4337 DPRINTF(sc, ATH_DEBUG_ANY, 4338 "%s: calibration of channel %u failed\n", 4339 __func__, sc->sc_curchan->ic_freq); 4340 sc->sc_stats.ast_per_calfail++; 4341 } 4342 if (shortCal) 4343 sc->sc_lastshortcal = ticks; 4344 } 4345 if (!isCalDone) { 4346 restart: 4347 /* 4348 * Use a shorter interval to potentially collect multiple 4349 * data samples required to complete calibration. Once 4350 * we're told the work is done we drop back to a longer 4351 * interval between requests. We're more aggressive doing 4352 * work when operating as an AP to improve operation right 4353 * after startup. 4354 */ 4355 sc->sc_lastshortcal = ticks; 4356 nextcal = ath_shortcalinterval*hz/1000; 4357 if (sc->sc_opmode != HAL_M_HOSTAP) 4358 nextcal *= 10; 4359 sc->sc_doresetcal = AH_TRUE; 4360 } else { 4361 /* nextcal should be the shortest time for next event */ 4362 nextcal = ath_longcalinterval*hz; 4363 if (sc->sc_lastcalreset == 0) 4364 sc->sc_lastcalreset = sc->sc_lastlongcal; 4365 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4366 sc->sc_resetcal = 1; /* setup reset next trip */ 4367 sc->sc_doresetcal = AH_FALSE; 4368 } 4369 /* ANI calibration may occur more often than short/long/resetcal */ 4370 if (ath_anicalinterval > 0) 4371 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4372 4373 if (nextcal != 0) { 4374 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4375 __func__, nextcal, isCalDone ? "" : "!"); 4376 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4377 } else { 4378 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4379 __func__); 4380 /* NB: don't rearm timer */ 4381 } 4382 } 4383 4384 static void 4385 ath_scan_start(struct ieee80211com *ic) 4386 { 4387 struct ifnet *ifp = ic->ic_ifp; 4388 struct ath_softc *sc = ifp->if_softc; 4389 struct ath_hal *ah = sc->sc_ah; 4390 u_int32_t rfilt; 4391 4392 /* XXX calibration timer? */ 4393 4394 ATH_LOCK(sc); 4395 sc->sc_scanning = 1; 4396 sc->sc_syncbeacon = 0; 4397 rfilt = ath_calcrxfilter(sc); 4398 ATH_UNLOCK(sc); 4399 4400 ATH_PCU_LOCK(sc); 4401 ath_hal_setrxfilter(ah, rfilt); 4402 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4403 ATH_PCU_UNLOCK(sc); 4404 4405 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4406 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4407 } 4408 4409 static void 4410 ath_scan_end(struct ieee80211com *ic) 4411 { 4412 struct ifnet *ifp = ic->ic_ifp; 4413 struct ath_softc *sc = ifp->if_softc; 4414 struct ath_hal *ah = sc->sc_ah; 4415 u_int32_t rfilt; 4416 4417 ATH_LOCK(sc); 4418 sc->sc_scanning = 0; 4419 rfilt = ath_calcrxfilter(sc); 4420 ATH_UNLOCK(sc); 4421 4422 ATH_PCU_LOCK(sc); 4423 ath_hal_setrxfilter(ah, rfilt); 4424 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4425 4426 ath_hal_process_noisefloor(ah); 4427 ATH_PCU_UNLOCK(sc); 4428 4429 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4430 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4431 sc->sc_curaid); 4432 } 4433 4434 #ifdef ATH_ENABLE_11N 4435 /* 4436 * For now, just do a channel change. 4437 * 4438 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4439 * control state and resetting the hardware without dropping frames out 4440 * of the queue. 4441 * 4442 * The unfortunate trouble here is making absolutely sure that the 4443 * channel width change has propagated enough so the hardware 4444 * absolutely isn't handed bogus frames for it's current operating 4445 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4446 * does occur in parallel, we need to make certain we've blocked 4447 * any further ongoing TX (and RX, that can cause raw TX) 4448 * before we do this. 4449 */ 4450 static void 4451 ath_update_chw(struct ieee80211com *ic) 4452 { 4453 struct ifnet *ifp = ic->ic_ifp; 4454 struct ath_softc *sc = ifp->if_softc; 4455 4456 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4457 ath_set_channel(ic); 4458 } 4459 #endif /* ATH_ENABLE_11N */ 4460 4461 static void 4462 ath_set_channel(struct ieee80211com *ic) 4463 { 4464 struct ifnet *ifp = ic->ic_ifp; 4465 struct ath_softc *sc = ifp->if_softc; 4466 4467 (void) ath_chan_set(sc, ic->ic_curchan); 4468 /* 4469 * If we are returning to our bss channel then mark state 4470 * so the next recv'd beacon's tsf will be used to sync the 4471 * beacon timers. Note that since we only hear beacons in 4472 * sta/ibss mode this has no effect in other operating modes. 4473 */ 4474 ATH_LOCK(sc); 4475 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4476 sc->sc_syncbeacon = 1; 4477 ATH_UNLOCK(sc); 4478 } 4479 4480 /* 4481 * Walk the vap list and check if there any vap's in RUN state. 4482 */ 4483 static int 4484 ath_isanyrunningvaps(struct ieee80211vap *this) 4485 { 4486 struct ieee80211com *ic = this->iv_ic; 4487 struct ieee80211vap *vap; 4488 4489 IEEE80211_LOCK_ASSERT(ic); 4490 4491 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4492 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4493 return 1; 4494 } 4495 return 0; 4496 } 4497 4498 static int 4499 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4500 { 4501 struct ieee80211com *ic = vap->iv_ic; 4502 struct ath_softc *sc = ic->ic_ifp->if_softc; 4503 struct ath_vap *avp = ATH_VAP(vap); 4504 struct ath_hal *ah = sc->sc_ah; 4505 struct ieee80211_node *ni = NULL; 4506 int i, error, stamode; 4507 u_int32_t rfilt; 4508 int csa_run_transition = 0; 4509 static const HAL_LED_STATE leds[] = { 4510 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4511 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4512 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4513 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4514 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4515 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4516 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4517 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4518 }; 4519 4520 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4521 ieee80211_state_name[vap->iv_state], 4522 ieee80211_state_name[nstate]); 4523 4524 /* 4525 * net80211 _should_ have the comlock asserted at this point. 4526 * There are some comments around the calls to vap->iv_newstate 4527 * which indicate that it (newstate) may end up dropping the 4528 * lock. This and the subsequent lock assert check after newstate 4529 * are an attempt to catch these and figure out how/why. 4530 */ 4531 IEEE80211_LOCK_ASSERT(ic); 4532 4533 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4534 csa_run_transition = 1; 4535 4536 callout_drain(&sc->sc_cal_ch); 4537 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4538 4539 if (nstate == IEEE80211_S_SCAN) { 4540 /* 4541 * Scanning: turn off beacon miss and don't beacon. 4542 * Mark beacon state so when we reach RUN state we'll 4543 * [re]setup beacons. Unblock the task q thread so 4544 * deferred interrupt processing is done. 4545 */ 4546 ath_hal_intrset(ah, 4547 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4548 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4549 sc->sc_beacons = 0; 4550 taskqueue_unblock(sc->sc_tq); 4551 } 4552 4553 ni = ieee80211_ref_node(vap->iv_bss); 4554 rfilt = ath_calcrxfilter(sc); 4555 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4556 vap->iv_opmode == IEEE80211_M_AHDEMO || 4557 vap->iv_opmode == IEEE80211_M_IBSS); 4558 if (stamode && nstate == IEEE80211_S_RUN) { 4559 sc->sc_curaid = ni->ni_associd; 4560 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4561 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4562 } 4563 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4564 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4565 ath_hal_setrxfilter(ah, rfilt); 4566 4567 /* XXX is this to restore keycache on resume? */ 4568 if (vap->iv_opmode != IEEE80211_M_STA && 4569 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4570 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4571 if (ath_hal_keyisvalid(ah, i)) 4572 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4573 } 4574 4575 /* 4576 * Invoke the parent method to do net80211 work. 4577 */ 4578 error = avp->av_newstate(vap, nstate, arg); 4579 if (error != 0) 4580 goto bad; 4581 4582 /* 4583 * See above: ensure av_newstate() doesn't drop the lock 4584 * on us. 4585 */ 4586 IEEE80211_LOCK_ASSERT(ic); 4587 4588 if (nstate == IEEE80211_S_RUN) { 4589 /* NB: collect bss node again, it may have changed */ 4590 ieee80211_free_node(ni); 4591 ni = ieee80211_ref_node(vap->iv_bss); 4592 4593 DPRINTF(sc, ATH_DEBUG_STATE, 4594 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4595 "capinfo 0x%04x chan %d\n", __func__, 4596 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4597 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4598 4599 switch (vap->iv_opmode) { 4600 #ifdef IEEE80211_SUPPORT_TDMA 4601 case IEEE80211_M_AHDEMO: 4602 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4603 break; 4604 /* fall thru... */ 4605 #endif 4606 case IEEE80211_M_HOSTAP: 4607 case IEEE80211_M_IBSS: 4608 case IEEE80211_M_MBSS: 4609 /* 4610 * Allocate and setup the beacon frame. 4611 * 4612 * Stop any previous beacon DMA. This may be 4613 * necessary, for example, when an ibss merge 4614 * causes reconfiguration; there will be a state 4615 * transition from RUN->RUN that means we may 4616 * be called with beacon transmission active. 4617 */ 4618 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4619 4620 error = ath_beacon_alloc(sc, ni); 4621 if (error != 0) 4622 goto bad; 4623 /* 4624 * If joining an adhoc network defer beacon timer 4625 * configuration to the next beacon frame so we 4626 * have a current TSF to use. Otherwise we're 4627 * starting an ibss/bss so there's no need to delay; 4628 * if this is the first vap moving to RUN state, then 4629 * beacon state needs to be [re]configured. 4630 */ 4631 if (vap->iv_opmode == IEEE80211_M_IBSS && 4632 ni->ni_tstamp.tsf != 0) { 4633 sc->sc_syncbeacon = 1; 4634 } else if (!sc->sc_beacons) { 4635 #ifdef IEEE80211_SUPPORT_TDMA 4636 if (vap->iv_caps & IEEE80211_C_TDMA) 4637 ath_tdma_config(sc, vap); 4638 else 4639 #endif 4640 ath_beacon_config(sc, vap); 4641 sc->sc_beacons = 1; 4642 } 4643 break; 4644 case IEEE80211_M_STA: 4645 /* 4646 * Defer beacon timer configuration to the next 4647 * beacon frame so we have a current TSF to use 4648 * (any TSF collected when scanning is likely old). 4649 * However if it's due to a CSA -> RUN transition, 4650 * force a beacon update so we pick up a lack of 4651 * beacons from an AP in CAC and thus force a 4652 * scan. 4653 */ 4654 sc->sc_syncbeacon = 1; 4655 if (csa_run_transition) 4656 ath_beacon_config(sc, vap); 4657 break; 4658 case IEEE80211_M_MONITOR: 4659 /* 4660 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4661 * transitions so we must re-enable interrupts here to 4662 * handle the case of a single monitor mode vap. 4663 */ 4664 ath_hal_intrset(ah, sc->sc_imask); 4665 break; 4666 case IEEE80211_M_WDS: 4667 break; 4668 default: 4669 break; 4670 } 4671 /* 4672 * Let the hal process statistics collected during a 4673 * scan so it can provide calibrated noise floor data. 4674 */ 4675 ath_hal_process_noisefloor(ah); 4676 /* 4677 * Reset rssi stats; maybe not the best place... 4678 */ 4679 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4680 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4681 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4682 /* 4683 * Finally, start any timers and the task q thread 4684 * (in case we didn't go through SCAN state). 4685 */ 4686 if (ath_longcalinterval != 0) { 4687 /* start periodic recalibration timer */ 4688 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4689 } else { 4690 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4691 "%s: calibration disabled\n", __func__); 4692 } 4693 taskqueue_unblock(sc->sc_tq); 4694 } else if (nstate == IEEE80211_S_INIT) { 4695 /* 4696 * If there are no vaps left in RUN state then 4697 * shutdown host/driver operation: 4698 * o disable interrupts 4699 * o disable the task queue thread 4700 * o mark beacon processing as stopped 4701 */ 4702 if (!ath_isanyrunningvaps(vap)) { 4703 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4704 /* disable interrupts */ 4705 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4706 taskqueue_block(sc->sc_tq); 4707 sc->sc_beacons = 0; 4708 } 4709 #ifdef IEEE80211_SUPPORT_TDMA 4710 ath_hal_setcca(ah, AH_TRUE); 4711 #endif 4712 } 4713 bad: 4714 ieee80211_free_node(ni); 4715 return error; 4716 } 4717 4718 /* 4719 * Allocate a key cache slot to the station so we can 4720 * setup a mapping from key index to node. The key cache 4721 * slot is needed for managing antenna state and for 4722 * compression when stations do not use crypto. We do 4723 * it uniliaterally here; if crypto is employed this slot 4724 * will be reassigned. 4725 */ 4726 static void 4727 ath_setup_stationkey(struct ieee80211_node *ni) 4728 { 4729 struct ieee80211vap *vap = ni->ni_vap; 4730 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4731 ieee80211_keyix keyix, rxkeyix; 4732 4733 /* XXX should take a locked ref to vap->iv_bss */ 4734 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4735 /* 4736 * Key cache is full; we'll fall back to doing 4737 * the more expensive lookup in software. Note 4738 * this also means no h/w compression. 4739 */ 4740 /* XXX msg+statistic */ 4741 } else { 4742 /* XXX locking? */ 4743 ni->ni_ucastkey.wk_keyix = keyix; 4744 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4745 /* NB: must mark device key to get called back on delete */ 4746 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4747 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4748 /* NB: this will create a pass-thru key entry */ 4749 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4750 } 4751 } 4752 4753 /* 4754 * Setup driver-specific state for a newly associated node. 4755 * Note that we're called also on a re-associate, the isnew 4756 * param tells us if this is the first time or not. 4757 */ 4758 static void 4759 ath_newassoc(struct ieee80211_node *ni, int isnew) 4760 { 4761 struct ath_node *an = ATH_NODE(ni); 4762 struct ieee80211vap *vap = ni->ni_vap; 4763 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4764 const struct ieee80211_txparam *tp = ni->ni_txparms; 4765 4766 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4767 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4768 4769 ath_rate_newassoc(sc, an, isnew); 4770 if (isnew && 4771 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4772 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4773 ath_setup_stationkey(ni); 4774 } 4775 4776 static int 4777 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4778 int nchans, struct ieee80211_channel chans[]) 4779 { 4780 struct ath_softc *sc = ic->ic_ifp->if_softc; 4781 struct ath_hal *ah = sc->sc_ah; 4782 HAL_STATUS status; 4783 4784 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4785 "%s: rd %u cc %u location %c%s\n", 4786 __func__, reg->regdomain, reg->country, reg->location, 4787 reg->ecm ? " ecm" : ""); 4788 4789 status = ath_hal_set_channels(ah, chans, nchans, 4790 reg->country, reg->regdomain); 4791 if (status != HAL_OK) { 4792 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4793 __func__, status); 4794 return EINVAL; /* XXX */ 4795 } 4796 4797 return 0; 4798 } 4799 4800 static void 4801 ath_getradiocaps(struct ieee80211com *ic, 4802 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4803 { 4804 struct ath_softc *sc = ic->ic_ifp->if_softc; 4805 struct ath_hal *ah = sc->sc_ah; 4806 4807 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4808 __func__, SKU_DEBUG, CTRY_DEFAULT); 4809 4810 /* XXX check return */ 4811 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4812 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4813 4814 } 4815 4816 static int 4817 ath_getchannels(struct ath_softc *sc) 4818 { 4819 struct ifnet *ifp = sc->sc_ifp; 4820 struct ieee80211com *ic = ifp->if_l2com; 4821 struct ath_hal *ah = sc->sc_ah; 4822 HAL_STATUS status; 4823 4824 /* 4825 * Collect channel set based on EEPROM contents. 4826 */ 4827 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4828 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4829 if (status != HAL_OK) { 4830 if_printf(ifp, "%s: unable to collect channel list from hal, " 4831 "status %d\n", __func__, status); 4832 return EINVAL; 4833 } 4834 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4835 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4836 /* XXX map Atheros sku's to net80211 SKU's */ 4837 /* XXX net80211 types too small */ 4838 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4839 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4840 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4841 ic->ic_regdomain.isocc[1] = ' '; 4842 4843 ic->ic_regdomain.ecm = 1; 4844 ic->ic_regdomain.location = 'I'; 4845 4846 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4847 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4848 __func__, sc->sc_eerd, sc->sc_eecc, 4849 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4850 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4851 return 0; 4852 } 4853 4854 static int 4855 ath_rate_setup(struct ath_softc *sc, u_int mode) 4856 { 4857 struct ath_hal *ah = sc->sc_ah; 4858 const HAL_RATE_TABLE *rt; 4859 4860 switch (mode) { 4861 case IEEE80211_MODE_11A: 4862 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4863 break; 4864 case IEEE80211_MODE_HALF: 4865 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 4866 break; 4867 case IEEE80211_MODE_QUARTER: 4868 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 4869 break; 4870 case IEEE80211_MODE_11B: 4871 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4872 break; 4873 case IEEE80211_MODE_11G: 4874 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4875 break; 4876 case IEEE80211_MODE_TURBO_A: 4877 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 4878 break; 4879 case IEEE80211_MODE_TURBO_G: 4880 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4881 break; 4882 case IEEE80211_MODE_STURBO_A: 4883 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4884 break; 4885 case IEEE80211_MODE_11NA: 4886 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 4887 break; 4888 case IEEE80211_MODE_11NG: 4889 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 4890 break; 4891 default: 4892 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4893 __func__, mode); 4894 return 0; 4895 } 4896 sc->sc_rates[mode] = rt; 4897 return (rt != NULL); 4898 } 4899 4900 static void 4901 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4902 { 4903 #define N(a) (sizeof(a)/sizeof(a[0])) 4904 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4905 static const struct { 4906 u_int rate; /* tx/rx 802.11 rate */ 4907 u_int16_t timeOn; /* LED on time (ms) */ 4908 u_int16_t timeOff; /* LED off time (ms) */ 4909 } blinkrates[] = { 4910 { 108, 40, 10 }, 4911 { 96, 44, 11 }, 4912 { 72, 50, 13 }, 4913 { 48, 57, 14 }, 4914 { 36, 67, 16 }, 4915 { 24, 80, 20 }, 4916 { 22, 100, 25 }, 4917 { 18, 133, 34 }, 4918 { 12, 160, 40 }, 4919 { 10, 200, 50 }, 4920 { 6, 240, 58 }, 4921 { 4, 267, 66 }, 4922 { 2, 400, 100 }, 4923 { 0, 500, 130 }, 4924 /* XXX half/quarter rates */ 4925 }; 4926 const HAL_RATE_TABLE *rt; 4927 int i, j; 4928 4929 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4930 rt = sc->sc_rates[mode]; 4931 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4932 for (i = 0; i < rt->rateCount; i++) { 4933 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4934 if (rt->info[i].phy != IEEE80211_T_HT) 4935 sc->sc_rixmap[ieeerate] = i; 4936 else 4937 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 4938 } 4939 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4940 for (i = 0; i < N(sc->sc_hwmap); i++) { 4941 if (i >= rt->rateCount) { 4942 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4943 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4944 continue; 4945 } 4946 sc->sc_hwmap[i].ieeerate = 4947 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4948 if (rt->info[i].phy == IEEE80211_T_HT) 4949 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 4950 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4951 if (rt->info[i].shortPreamble || 4952 rt->info[i].phy == IEEE80211_T_OFDM) 4953 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4954 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 4955 for (j = 0; j < N(blinkrates)-1; j++) 4956 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4957 break; 4958 /* NB: this uses the last entry if the rate isn't found */ 4959 /* XXX beware of overlow */ 4960 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4961 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4962 } 4963 sc->sc_currates = rt; 4964 sc->sc_curmode = mode; 4965 /* 4966 * All protection frames are transmited at 2Mb/s for 4967 * 11g, otherwise at 1Mb/s. 4968 */ 4969 if (mode == IEEE80211_MODE_11G) 4970 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 4971 else 4972 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 4973 /* NB: caller is responsible for resetting rate control state */ 4974 #undef N 4975 } 4976 4977 static void 4978 ath_watchdog(void *arg) 4979 { 4980 struct ath_softc *sc = arg; 4981 int do_reset = 0; 4982 4983 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 4984 struct ifnet *ifp = sc->sc_ifp; 4985 uint32_t hangs; 4986 4987 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 4988 hangs != 0) { 4989 if_printf(ifp, "%s hang detected (0x%x)\n", 4990 hangs & 0xff ? "bb" : "mac", hangs); 4991 } else 4992 if_printf(ifp, "device timeout\n"); 4993 do_reset = 1; 4994 ifp->if_oerrors++; 4995 sc->sc_stats.ast_watchdog++; 4996 } 4997 4998 /* 4999 * We can't hold the lock across the ath_reset() call. 5000 * 5001 * And since this routine can't hold a lock and sleep, 5002 * do the reset deferred. 5003 */ 5004 if (do_reset) { 5005 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5006 } 5007 5008 callout_schedule(&sc->sc_wd_ch, hz); 5009 } 5010 5011 /* 5012 * Fetch the rate control statistics for the given node. 5013 */ 5014 static int 5015 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5016 { 5017 struct ath_node *an; 5018 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5019 struct ieee80211_node *ni; 5020 int error = 0; 5021 5022 /* Perform a lookup on the given node */ 5023 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5024 if (ni == NULL) { 5025 error = EINVAL; 5026 goto bad; 5027 } 5028 5029 /* Lock the ath_node */ 5030 an = ATH_NODE(ni); 5031 ATH_NODE_LOCK(an); 5032 5033 /* Fetch the rate control stats for this node */ 5034 error = ath_rate_fetch_node_stats(sc, an, rs); 5035 5036 /* No matter what happens here, just drop through */ 5037 5038 /* Unlock the ath_node */ 5039 ATH_NODE_UNLOCK(an); 5040 5041 /* Unref the node */ 5042 ieee80211_node_decref(ni); 5043 5044 bad: 5045 return (error); 5046 } 5047 5048 #ifdef ATH_DIAGAPI 5049 /* 5050 * Diagnostic interface to the HAL. This is used by various 5051 * tools to do things like retrieve register contents for 5052 * debugging. The mechanism is intentionally opaque so that 5053 * it can change frequently w/o concern for compatiblity. 5054 */ 5055 static int 5056 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5057 { 5058 struct ath_hal *ah = sc->sc_ah; 5059 u_int id = ad->ad_id & ATH_DIAG_ID; 5060 void *indata = NULL; 5061 void *outdata = NULL; 5062 u_int32_t insize = ad->ad_in_size; 5063 u_int32_t outsize = ad->ad_out_size; 5064 int error = 0; 5065 5066 if (ad->ad_id & ATH_DIAG_IN) { 5067 /* 5068 * Copy in data. 5069 */ 5070 indata = malloc(insize, M_TEMP, M_NOWAIT); 5071 if (indata == NULL) { 5072 error = ENOMEM; 5073 goto bad; 5074 } 5075 error = copyin(ad->ad_in_data, indata, insize); 5076 if (error) 5077 goto bad; 5078 } 5079 if (ad->ad_id & ATH_DIAG_DYN) { 5080 /* 5081 * Allocate a buffer for the results (otherwise the HAL 5082 * returns a pointer to a buffer where we can read the 5083 * results). Note that we depend on the HAL leaving this 5084 * pointer for us to use below in reclaiming the buffer; 5085 * may want to be more defensive. 5086 */ 5087 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5088 if (outdata == NULL) { 5089 error = ENOMEM; 5090 goto bad; 5091 } 5092 } 5093 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5094 if (outsize < ad->ad_out_size) 5095 ad->ad_out_size = outsize; 5096 if (outdata != NULL) 5097 error = copyout(outdata, ad->ad_out_data, 5098 ad->ad_out_size); 5099 } else { 5100 error = EINVAL; 5101 } 5102 bad: 5103 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5104 free(indata, M_TEMP); 5105 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5106 free(outdata, M_TEMP); 5107 return error; 5108 } 5109 #endif /* ATH_DIAGAPI */ 5110 5111 static int 5112 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5113 { 5114 #define IS_RUNNING(ifp) \ 5115 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5116 struct ath_softc *sc = ifp->if_softc; 5117 struct ieee80211com *ic = ifp->if_l2com; 5118 struct ifreq *ifr = (struct ifreq *)data; 5119 const HAL_RATE_TABLE *rt; 5120 int error = 0; 5121 5122 switch (cmd) { 5123 case SIOCSIFFLAGS: 5124 ATH_LOCK(sc); 5125 if (IS_RUNNING(ifp)) { 5126 /* 5127 * To avoid rescanning another access point, 5128 * do not call ath_init() here. Instead, 5129 * only reflect promisc mode settings. 5130 */ 5131 ath_mode_init(sc); 5132 } else if (ifp->if_flags & IFF_UP) { 5133 /* 5134 * Beware of being called during attach/detach 5135 * to reset promiscuous mode. In that case we 5136 * will still be marked UP but not RUNNING. 5137 * However trying to re-init the interface 5138 * is the wrong thing to do as we've already 5139 * torn down much of our state. There's 5140 * probably a better way to deal with this. 5141 */ 5142 if (!sc->sc_invalid) 5143 ath_init(sc); /* XXX lose error */ 5144 } else { 5145 ath_stop_locked(ifp); 5146 #ifdef notyet 5147 /* XXX must wakeup in places like ath_vap_delete */ 5148 if (!sc->sc_invalid) 5149 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5150 #endif 5151 } 5152 ATH_UNLOCK(sc); 5153 break; 5154 case SIOCGIFMEDIA: 5155 case SIOCSIFMEDIA: 5156 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5157 break; 5158 case SIOCGATHSTATS: 5159 /* NB: embed these numbers to get a consistent view */ 5160 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5161 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5162 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5163 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5164 #ifdef IEEE80211_SUPPORT_TDMA 5165 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5166 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5167 #endif 5168 rt = sc->sc_currates; 5169 sc->sc_stats.ast_tx_rate = 5170 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5171 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5172 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5173 return copyout(&sc->sc_stats, 5174 ifr->ifr_data, sizeof (sc->sc_stats)); 5175 case SIOCGATHAGSTATS: 5176 return copyout(&sc->sc_aggr_stats, 5177 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5178 case SIOCZATHSTATS: 5179 error = priv_check(curthread, PRIV_DRIVER); 5180 if (error == 0) { 5181 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5182 memset(&sc->sc_aggr_stats, 0, 5183 sizeof(sc->sc_aggr_stats)); 5184 memset(&sc->sc_intr_stats, 0, 5185 sizeof(sc->sc_intr_stats)); 5186 } 5187 break; 5188 #ifdef ATH_DIAGAPI 5189 case SIOCGATHDIAG: 5190 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5191 break; 5192 case SIOCGATHPHYERR: 5193 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5194 break; 5195 #endif 5196 case SIOCGATHNODERATESTATS: 5197 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5198 break; 5199 case SIOCGIFADDR: 5200 error = ether_ioctl(ifp, cmd, data); 5201 break; 5202 default: 5203 error = EINVAL; 5204 break; 5205 } 5206 return error; 5207 #undef IS_RUNNING 5208 } 5209 5210 /* 5211 * Announce various information on device/driver attach. 5212 */ 5213 static void 5214 ath_announce(struct ath_softc *sc) 5215 { 5216 struct ifnet *ifp = sc->sc_ifp; 5217 struct ath_hal *ah = sc->sc_ah; 5218 5219 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5220 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5221 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5222 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5223 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5224 if (bootverbose) { 5225 int i; 5226 for (i = 0; i <= WME_AC_VO; i++) { 5227 struct ath_txq *txq = sc->sc_ac2q[i]; 5228 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5229 txq->axq_qnum, ieee80211_wme_acnames[i]); 5230 } 5231 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5232 sc->sc_cabq->axq_qnum); 5233 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5234 } 5235 if (ath_rxbuf != ATH_RXBUF) 5236 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5237 if (ath_txbuf != ATH_TXBUF) 5238 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5239 if (sc->sc_mcastkey && bootverbose) 5240 if_printf(ifp, "using multicast key search\n"); 5241 } 5242 5243 static void 5244 ath_dfs_tasklet(void *p, int npending) 5245 { 5246 struct ath_softc *sc = (struct ath_softc *) p; 5247 struct ifnet *ifp = sc->sc_ifp; 5248 struct ieee80211com *ic = ifp->if_l2com; 5249 5250 /* 5251 * If previous processing has found a radar event, 5252 * signal this to the net80211 layer to begin DFS 5253 * processing. 5254 */ 5255 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5256 /* DFS event found, initiate channel change */ 5257 /* 5258 * XXX doesn't currently tell us whether the event 5259 * XXX was found in the primary or extension 5260 * XXX channel! 5261 */ 5262 IEEE80211_LOCK(ic); 5263 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5264 IEEE80211_UNLOCK(ic); 5265 } 5266 } 5267 5268 MODULE_VERSION(if_ath, 1); 5269 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5270 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5271 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5272 #endif 5273