xref: /freebsd/sys/dev/ath/if_ath.c (revision f6ad8b0985f51b5cf21f81b7389ca445ba8775fc)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 #include "opt_ath.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/sysctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/malloc.h>
55 #include <sys/lock.h>
56 #include <sys/mutex.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/errno.h>
61 #include <sys/callout.h>
62 #include <sys/bus.h>
63 #include <sys/endian.h>
64 #include <sys/kthread.h>
65 #include <sys/taskqueue.h>
66 
67 #include <machine/bus.h>
68 
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 #include <net/if_arp.h>
74 #include <net/ethernet.h>
75 #include <net/if_llc.h>
76 
77 #include <net80211/ieee80211_var.h>
78 
79 #include <net/bpf.h>
80 
81 #ifdef INET
82 #include <netinet/in.h>
83 #include <netinet/if_ether.h>
84 #endif
85 
86 #include <dev/ath/if_athvar.h>
87 #include <contrib/dev/ath/ah_desc.h>
88 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
89 
90 #ifdef ATH_TX99_DIAG
91 #include <dev/ath/ath_tx99/ath_tx99.h>
92 #endif
93 
94 /* unaligned little endian access */
95 #define LE_READ_2(p)							\
96 	((u_int16_t)							\
97 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
98 #define LE_READ_4(p)							\
99 	((u_int32_t)							\
100 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
101 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
102 
103 enum {
104 	ATH_LED_TX,
105 	ATH_LED_RX,
106 	ATH_LED_POLL,
107 };
108 
109 static void	ath_init(void *);
110 static void	ath_stop_locked(struct ifnet *);
111 static void	ath_stop(struct ifnet *);
112 static void	ath_start(struct ifnet *);
113 static int	ath_reset(struct ifnet *);
114 static int	ath_media_change(struct ifnet *);
115 static void	ath_watchdog(struct ifnet *);
116 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
117 static void	ath_fatal_proc(void *, int);
118 static void	ath_rxorn_proc(void *, int);
119 static void	ath_bmiss_proc(void *, int);
120 static void	ath_radar_proc(void *, int);
121 static int	ath_key_alloc(struct ieee80211com *,
122 			const struct ieee80211_key *,
123 			ieee80211_keyix *, ieee80211_keyix *);
124 static int	ath_key_delete(struct ieee80211com *,
125 			const struct ieee80211_key *);
126 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
127 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
128 static void	ath_key_update_begin(struct ieee80211com *);
129 static void	ath_key_update_end(struct ieee80211com *);
130 static void	ath_mode_init(struct ath_softc *);
131 static void	ath_setslottime(struct ath_softc *);
132 static void	ath_updateslot(struct ifnet *);
133 static int	ath_beaconq_setup(struct ath_hal *);
134 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
135 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
136 static void	ath_beacon_proc(void *, int);
137 static void	ath_bstuck_proc(void *, int);
138 static void	ath_beacon_free(struct ath_softc *);
139 static void	ath_beacon_config(struct ath_softc *);
140 static void	ath_descdma_cleanup(struct ath_softc *sc,
141 			struct ath_descdma *, ath_bufhead *);
142 static int	ath_desc_alloc(struct ath_softc *);
143 static void	ath_desc_free(struct ath_softc *);
144 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
145 static void	ath_node_free(struct ieee80211_node *);
146 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
147 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
148 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
149 			struct ieee80211_node *ni,
150 			int subtype, int rssi, u_int32_t rstamp);
151 static void	ath_setdefantenna(struct ath_softc *, u_int);
152 static void	ath_rx_proc(void *, int);
153 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
154 static int	ath_tx_setup(struct ath_softc *, int, int);
155 static int	ath_wme_update(struct ieee80211com *);
156 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
157 static void	ath_tx_cleanup(struct ath_softc *);
158 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 			     struct ath_buf *, struct mbuf *);
160 static void	ath_tx_proc_q0(void *, int);
161 static void	ath_tx_proc_q0123(void *, int);
162 static void	ath_tx_proc(void *, int);
163 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
164 static void	ath_draintxq(struct ath_softc *);
165 static void	ath_stoprecv(struct ath_softc *);
166 static int	ath_startrecv(struct ath_softc *);
167 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
168 static void	ath_next_scan(void *);
169 static void	ath_calibrate(void *);
170 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
171 static void	ath_setup_stationkey(struct ieee80211_node *);
172 static void	ath_newassoc(struct ieee80211_node *, int);
173 static int	ath_getchannels(struct ath_softc *, u_int cc,
174 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
175 static void	ath_led_event(struct ath_softc *, int);
176 static void	ath_update_txpow(struct ath_softc *);
177 
178 static int	ath_rate_setup(struct ath_softc *, u_int mode);
179 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
180 
181 static void	ath_sysctlattach(struct ath_softc *);
182 static void	ath_bpfattach(struct ath_softc *);
183 static void	ath_announce(struct ath_softc *);
184 
185 SYSCTL_DECL(_hw_ath);
186 
187 /* XXX validate sysctl values */
188 static	int ath_dwelltime = 200;		/* 5 channels/second */
189 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
190 	    0, "channel dwell time (ms) for AP/station scanning");
191 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
192 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
193 	    0, "chip calibration interval (secs)");
194 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
195 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
196 	    0, "outdoor operation");
197 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
198 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
199 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
200 	    0, "extended channel mode");
201 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
202 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
203 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
204 	    0, "country code");
205 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
206 static	int ath_regdomain = 0;			/* regulatory domain */
207 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
208 	    0, "regulatory domain");
209 
210 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
211 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RD, &ath_rxbuf,
212 	    0, "rx buffers allocated");
213 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
214 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
215 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RD, &ath_txbuf,
216 	    0, "tx buffers allocated");
217 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
218 
219 #ifdef ATH_DEBUG
220 static	int ath_debug = 0;
221 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
222 	    0, "control debugging printfs");
223 TUNABLE_INT("hw.ath.debug", &ath_debug);
224 enum {
225 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
226 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
227 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
228 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
229 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
230 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
231 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
232 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
233 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
234 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
235 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
236 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
237 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
238 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
239 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
240 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
241 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
242 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
243 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
244 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
245 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
246 	ATH_DEBUG_ANY		= 0xffffffff
247 };
248 #define	IFF_DUMPPKTS(sc, m) \
249 	((sc->sc_debug & (m)) || \
250 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
251 #define	DPRINTF(sc, m, fmt, ...) do {				\
252 	if (sc->sc_debug & (m))					\
253 		printf(fmt, __VA_ARGS__);			\
254 } while (0)
255 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
256 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
257 		ath_keyprint(__func__, ix, hk, mac);		\
258 } while (0)
259 static	void ath_printrxbuf(struct ath_buf *bf, u_int ix, int);
260 static	void ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done);
261 #else
262 #define	IFF_DUMPPKTS(sc, m) \
263 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264 #define	DPRINTF(sc, m, fmt, ...) do {				\
265 	(void) sc;						\
266 } while (0)
267 #define	KEYPRINTF(sc, k, ix, mac) do {				\
268 	(void) sc;						\
269 } while (0)
270 #endif
271 
272 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
273 
274 int
275 ath_attach(u_int16_t devid, struct ath_softc *sc)
276 {
277 	struct ifnet *ifp;
278 	struct ieee80211com *ic = &sc->sc_ic;
279 	struct ath_hal *ah = NULL;
280 	HAL_STATUS status;
281 	int error = 0, i;
282 
283 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
284 
285 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
286 	if (ifp == NULL) {
287 		device_printf(sc->sc_dev, "can not if_alloc()\n");
288 		error = ENOSPC;
289 		goto bad;
290 	}
291 
292 	/* set these up early for if_printf use */
293 	if_initname(ifp, device_get_name(sc->sc_dev),
294 		device_get_unit(sc->sc_dev));
295 
296 	ah = ath_hal_attach(devid, sc, (HAL_BUS_TAG) sc->sc_st,
297 		(HAL_BUS_HANDLE) sc->sc_sh, &status);
298 	if (ah == NULL) {
299 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
300 			status);
301 		error = ENXIO;
302 		goto bad;
303 	}
304 	if (ah->ah_abi != HAL_ABI_VERSION) {
305 		if_printf(ifp, "HAL ABI mismatch detected "
306 			"(HAL:0x%x != driver:0x%x)\n",
307 			ah->ah_abi, HAL_ABI_VERSION);
308 		error = ENXIO;
309 		goto bad;
310 	}
311 	sc->sc_ah = ah;
312 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
313 
314 	/*
315 	 * Check if the MAC has multi-rate retry support.
316 	 * We do this by trying to setup a fake extended
317 	 * descriptor.  MAC's that don't have support will
318 	 * return false w/o doing anything.  MAC's that do
319 	 * support it will return true w/o doing anything.
320 	 */
321 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
322 
323 	/*
324 	 * Check if the device has hardware counters for PHY
325 	 * errors.  If so we need to enable the MIB interrupt
326 	 * so we can act on stat triggers.
327 	 */
328 	if (ath_hal_hwphycounters(ah))
329 		sc->sc_needmib = 1;
330 
331 	/*
332 	 * Get the hardware key cache size.
333 	 */
334 	sc->sc_keymax = ath_hal_keycachesize(ah);
335 	if (sc->sc_keymax > ATH_KEYMAX) {
336 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
337 			ATH_KEYMAX, sc->sc_keymax);
338 		sc->sc_keymax = ATH_KEYMAX;
339 	}
340 	/*
341 	 * Reset the key cache since some parts do not
342 	 * reset the contents on initial power up.
343 	 */
344 	for (i = 0; i < sc->sc_keymax; i++)
345 		ath_hal_keyreset(ah, i);
346 	/*
347 	 * Mark key cache slots associated with global keys
348 	 * as in use.  If we knew TKIP was not to be used we
349 	 * could leave the +32, +64, and +32+64 slots free.
350 	 * XXX only for splitmic.
351 	 */
352 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
353 		setbit(sc->sc_keymap, i);
354 		setbit(sc->sc_keymap, i+32);
355 		setbit(sc->sc_keymap, i+64);
356 		setbit(sc->sc_keymap, i+32+64);
357 	}
358 
359 	/*
360 	 * Collect the channel list using the default country
361 	 * code and including outdoor channels.  The 802.11 layer
362 	 * is resposible for filtering this list based on settings
363 	 * like the phy mode.
364 	 */
365 	error = ath_getchannels(sc, ath_countrycode,
366 			ath_outdoor, ath_xchanmode);
367 	if (error != 0)
368 		goto bad;
369 
370 	/*
371 	 * Setup rate tables for all potential media types.
372 	 */
373 	ath_rate_setup(sc, IEEE80211_MODE_11A);
374 	ath_rate_setup(sc, IEEE80211_MODE_11B);
375 	ath_rate_setup(sc, IEEE80211_MODE_11G);
376 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
377 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
378 	/* NB: setup here so ath_rate_update is happy */
379 	ath_setcurmode(sc, IEEE80211_MODE_11A);
380 
381 	/*
382 	 * Allocate tx+rx descriptors and populate the lists.
383 	 */
384 	error = ath_desc_alloc(sc);
385 	if (error != 0) {
386 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
387 		goto bad;
388 	}
389 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
390 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
391 	callout_init(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
392 
393 	ATH_TXBUF_LOCK_INIT(sc);
394 
395 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
396 		taskqueue_thread_enqueue, &sc->sc_tq);
397 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
398 		"%s taskq", ifp->if_xname);
399 
400 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
401 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
402 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
403 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
404 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
405 
406 	/*
407 	 * Allocate hardware transmit queues: one queue for
408 	 * beacon frames and one data queue for each QoS
409 	 * priority.  Note that the hal handles reseting
410 	 * these queues at the needed time.
411 	 *
412 	 * XXX PS-Poll
413 	 */
414 	sc->sc_bhalq = ath_beaconq_setup(ah);
415 	if (sc->sc_bhalq == (u_int) -1) {
416 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
417 		error = EIO;
418 		goto bad2;
419 	}
420 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
421 	if (sc->sc_cabq == NULL) {
422 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
423 		error = EIO;
424 		goto bad2;
425 	}
426 	/* NB: insure BK queue is the lowest priority h/w queue */
427 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
428 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
429 			ieee80211_wme_acnames[WME_AC_BK]);
430 		error = EIO;
431 		goto bad2;
432 	}
433 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
434 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
435 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
436 		/*
437 		 * Not enough hardware tx queues to properly do WME;
438 		 * just punt and assign them all to the same h/w queue.
439 		 * We could do a better job of this if, for example,
440 		 * we allocate queues when we switch from station to
441 		 * AP mode.
442 		 */
443 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
444 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
445 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
446 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
447 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
448 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
449 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
450 	}
451 
452 	/*
453 	 * Special case certain configurations.  Note the
454 	 * CAB queue is handled by these specially so don't
455 	 * include them when checking the txq setup mask.
456 	 */
457 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
458 	case 0x01:
459 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
460 		break;
461 	case 0x0f:
462 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
463 		break;
464 	default:
465 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
466 		break;
467 	}
468 
469 	/*
470 	 * Setup rate control.  Some rate control modules
471 	 * call back to change the anntena state so expose
472 	 * the necessary entry points.
473 	 * XXX maybe belongs in struct ath_ratectrl?
474 	 */
475 	sc->sc_setdefantenna = ath_setdefantenna;
476 	sc->sc_rc = ath_rate_attach(sc);
477 	if (sc->sc_rc == NULL) {
478 		error = EIO;
479 		goto bad2;
480 	}
481 
482 	sc->sc_blinking = 0;
483 	sc->sc_ledstate = 1;
484 	sc->sc_ledon = 0;			/* low true */
485 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
486 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
487 	/*
488 	 * Auto-enable soft led processing for IBM cards and for
489 	 * 5211 minipci cards.  Users can also manually enable/disable
490 	 * support with a sysctl.
491 	 */
492 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
493 	if (sc->sc_softled) {
494 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
495 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
496 	}
497 
498 	ifp->if_softc = sc;
499 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
500 	ifp->if_start = ath_start;
501 	ifp->if_watchdog = ath_watchdog;
502 	ifp->if_ioctl = ath_ioctl;
503 	ifp->if_init = ath_init;
504 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
505 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
506 	IFQ_SET_READY(&ifp->if_snd);
507 
508 	ic->ic_ifp = ifp;
509 	ic->ic_reset = ath_reset;
510 	ic->ic_newassoc = ath_newassoc;
511 	ic->ic_updateslot = ath_updateslot;
512 	ic->ic_wme.wme_update = ath_wme_update;
513 	/* XXX not right but it's not used anywhere important */
514 	ic->ic_phytype = IEEE80211_T_OFDM;
515 	ic->ic_opmode = IEEE80211_M_STA;
516 	ic->ic_caps =
517 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
518 		| IEEE80211_C_HOSTAP		/* hostap mode */
519 		| IEEE80211_C_MONITOR		/* monitor mode */
520 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
521 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
522 		| IEEE80211_C_SHSLOT		/* short slot time supported */
523 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
524 		;
525 	/*
526 	 * Query the hal to figure out h/w crypto support.
527 	 */
528 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
529 		ic->ic_caps |= IEEE80211_C_WEP;
530 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
531 		ic->ic_caps |= IEEE80211_C_AES;
532 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
533 		ic->ic_caps |= IEEE80211_C_AES_CCM;
534 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
535 		ic->ic_caps |= IEEE80211_C_CKIP;
536 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
537 		ic->ic_caps |= IEEE80211_C_TKIP;
538 		/*
539 		 * Check if h/w does the MIC and/or whether the
540 		 * separate key cache entries are required to
541 		 * handle both tx+rx MIC keys.
542 		 */
543 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
544 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
545 		if (ath_hal_tkipsplit(ah))
546 			sc->sc_splitmic = 1;
547 	}
548 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
549 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
550 	/*
551 	 * TPC support can be done either with a global cap or
552 	 * per-packet support.  The latter is not available on
553 	 * all parts.  We're a bit pedantic here as all parts
554 	 * support a global cap.
555 	 */
556 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
557 		ic->ic_caps |= IEEE80211_C_TXPMGT;
558 
559 	/*
560 	 * Mark WME capability only if we have sufficient
561 	 * hardware queues to do proper priority scheduling.
562 	 */
563 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
564 		ic->ic_caps |= IEEE80211_C_WME;
565 	/*
566 	 * Check for misc other capabilities.
567 	 */
568 	if (ath_hal_hasbursting(ah))
569 		ic->ic_caps |= IEEE80211_C_BURST;
570 
571 	/*
572 	 * Indicate we need the 802.11 header padded to a
573 	 * 32-bit boundary for 4-address and QoS frames.
574 	 */
575 	ic->ic_flags |= IEEE80211_F_DATAPAD;
576 
577 	/*
578 	 * Query the hal about antenna support.
579 	 */
580 	sc->sc_defant = ath_hal_getdefantenna(ah);
581 
582 	/*
583 	 * Not all chips have the VEOL support we want to
584 	 * use with IBSS beacons; check here for it.
585 	 */
586 	sc->sc_hasveol = ath_hal_hasveol(ah);
587 
588 	/* get mac address from hardware */
589 	ath_hal_getmac(ah, ic->ic_myaddr);
590 
591 	/* call MI attach routine. */
592 	ieee80211_ifattach(ic);
593 	sc->sc_opmode = ic->ic_opmode;
594 	/* override default methods */
595 	ic->ic_node_alloc = ath_node_alloc;
596 	sc->sc_node_free = ic->ic_node_free;
597 	ic->ic_node_free = ath_node_free;
598 	ic->ic_node_getrssi = ath_node_getrssi;
599 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
600 	ic->ic_recv_mgmt = ath_recv_mgmt;
601 	sc->sc_newstate = ic->ic_newstate;
602 	ic->ic_newstate = ath_newstate;
603 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
604 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
605 	ic->ic_crypto.cs_key_delete = ath_key_delete;
606 	ic->ic_crypto.cs_key_set = ath_key_set;
607 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
608 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
609 	/* complete initialization */
610 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
611 
612 	ath_bpfattach(sc);
613 	/*
614 	 * Setup dynamic sysctl's now that country code and
615 	 * regdomain are available from the hal.
616 	 */
617 	ath_sysctlattach(sc);
618 
619 	if (bootverbose)
620 		ieee80211_announce(ic);
621 	ath_announce(sc);
622 	return 0;
623 bad2:
624 	ath_tx_cleanup(sc);
625 	ath_desc_free(sc);
626 bad:
627 	if (ah)
628 		ath_hal_detach(ah);
629 	if (ifp != NULL)
630 		if_free(ifp);
631 	sc->sc_invalid = 1;
632 	return error;
633 }
634 
635 int
636 ath_detach(struct ath_softc *sc)
637 {
638 	struct ifnet *ifp = sc->sc_ifp;
639 
640 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
641 		__func__, ifp->if_flags);
642 
643 	ath_stop(ifp);
644 	bpfdetach(ifp);
645 	/*
646 	 * NB: the order of these is important:
647 	 * o call the 802.11 layer before detaching the hal to
648 	 *   insure callbacks into the driver to delete global
649 	 *   key cache entries can be handled
650 	 * o reclaim the tx queue data structures after calling
651 	 *   the 802.11 layer as we'll get called back to reclaim
652 	 *   node state and potentially want to use them
653 	 * o to cleanup the tx queues the hal is called, so detach
654 	 *   it last
655 	 * Other than that, it's straightforward...
656 	 */
657 	ieee80211_ifdetach(&sc->sc_ic);
658 #ifdef ATH_TX99_DIAG
659 	if (sc->sc_tx99 != NULL)
660 		sc->sc_tx99->detach(sc->sc_tx99);
661 #endif
662 	taskqueue_free(sc->sc_tq);
663 	ath_rate_detach(sc->sc_rc);
664 	ath_desc_free(sc);
665 	ath_tx_cleanup(sc);
666 	ath_hal_detach(sc->sc_ah);
667 	if_free(ifp);
668 
669 	return 0;
670 }
671 
672 void
673 ath_suspend(struct ath_softc *sc)
674 {
675 	struct ifnet *ifp = sc->sc_ifp;
676 
677 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
678 		__func__, ifp->if_flags);
679 
680 	ath_stop(ifp);
681 }
682 
683 void
684 ath_resume(struct ath_softc *sc)
685 {
686 	struct ifnet *ifp = sc->sc_ifp;
687 
688 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
689 		__func__, ifp->if_flags);
690 
691 	if (ifp->if_flags & IFF_UP) {
692 		ath_init(sc);
693 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
694 			ath_start(ifp);
695 	}
696 	if (sc->sc_softled) {
697 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
698 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
699 	}
700 }
701 
702 void
703 ath_shutdown(struct ath_softc *sc)
704 {
705 	struct ifnet *ifp = sc->sc_ifp;
706 
707 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
708 		__func__, ifp->if_flags);
709 
710 	ath_stop(ifp);
711 }
712 
713 /*
714  * Interrupt handler.  Most of the actual processing is deferred.
715  */
716 void
717 ath_intr(void *arg)
718 {
719 	struct ath_softc *sc = arg;
720 	struct ifnet *ifp = sc->sc_ifp;
721 	struct ath_hal *ah = sc->sc_ah;
722 	HAL_INT status;
723 
724 	if (sc->sc_invalid) {
725 		/*
726 		 * The hardware is not ready/present, don't touch anything.
727 		 * Note this can happen early on if the IRQ is shared.
728 		 */
729 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
730 		return;
731 	}
732 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
733 		return;
734 	if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
735 	    IFF_DRV_RUNNING))) {
736 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
737 			__func__, ifp->if_flags);
738 		ath_hal_getisr(ah, &status);	/* clear ISR */
739 		ath_hal_intrset(ah, 0);		/* disable further intr's */
740 		return;
741 	}
742 	/*
743 	 * Figure out the reason(s) for the interrupt.  Note
744 	 * that the hal returns a pseudo-ISR that may include
745 	 * bits we haven't explicitly enabled so we mask the
746 	 * value to insure we only process bits we requested.
747 	 */
748 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
749 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
750 	status &= sc->sc_imask;			/* discard unasked for bits */
751 	if (status & HAL_INT_FATAL) {
752 		sc->sc_stats.ast_hardware++;
753 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
754 		ath_fatal_proc(sc, 0);
755 	} else if (status & HAL_INT_RXORN) {
756 		sc->sc_stats.ast_rxorn++;
757 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
758 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
759 	} else {
760 		if (status & HAL_INT_SWBA) {
761 			/*
762 			 * Software beacon alert--time to send a beacon.
763 			 * Handle beacon transmission directly; deferring
764 			 * this is too slow to meet timing constraints
765 			 * under load.
766 			 */
767 			ath_beacon_proc(sc, 0);
768 		}
769 		if (status & HAL_INT_RXEOL) {
770 			/*
771 			 * NB: the hardware should re-read the link when
772 			 *     RXE bit is written, but it doesn't work at
773 			 *     least on older hardware revs.
774 			 */
775 			sc->sc_stats.ast_rxeol++;
776 			sc->sc_rxlink = NULL;
777 		}
778 		if (status & HAL_INT_TXURN) {
779 			sc->sc_stats.ast_txurn++;
780 			/* bump tx trigger level */
781 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
782 		}
783 		if (status & HAL_INT_RX)
784 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
785 		if (status & HAL_INT_TX)
786 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
787 		if (status & HAL_INT_BMISS) {
788 			sc->sc_stats.ast_bmiss++;
789 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
790 		}
791 		if (status & HAL_INT_MIB) {
792 			sc->sc_stats.ast_mib++;
793 			/*
794 			 * Disable interrupts until we service the MIB
795 			 * interrupt; otherwise it will continue to fire.
796 			 */
797 			ath_hal_intrset(ah, 0);
798 			/*
799 			 * Let the hal handle the event.  We assume it will
800 			 * clear whatever condition caused the interrupt.
801 			 */
802 			ath_hal_mibevent(ah, &sc->sc_halstats);
803 			ath_hal_intrset(ah, sc->sc_imask);
804 		}
805 	}
806 }
807 
808 static void
809 ath_fatal_proc(void *arg, int pending)
810 {
811 	struct ath_softc *sc = arg;
812 	struct ifnet *ifp = sc->sc_ifp;
813 	u_int32_t *state;
814 	u_int32_t len;
815 
816 	if_printf(ifp, "hardware error; resetting\n");
817 	/*
818 	 * Fatal errors are unrecoverable.  Typically these
819 	 * are caused by DMA errors.  Collect h/w state from
820 	 * the hal so we can diagnose what's going on.
821 	 */
822 	if (ath_hal_getfatalstate(sc->sc_ah, &state, &len)) {
823 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
824 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
825 		    state[0], state[1] , state[2], state[3],
826 		    state[4], state[5]);
827 	}
828 	ath_reset(ifp);
829 }
830 
831 static void
832 ath_rxorn_proc(void *arg, int pending)
833 {
834 	struct ath_softc *sc = arg;
835 	struct ifnet *ifp = sc->sc_ifp;
836 
837 	if_printf(ifp, "rx FIFO overrun; resetting\n");
838 	ath_reset(ifp);
839 }
840 
841 static void
842 ath_bmiss_proc(void *arg, int pending)
843 {
844 	struct ath_softc *sc = arg;
845 	struct ieee80211com *ic = &sc->sc_ic;
846 
847 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
848 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
849 		("unexpect operating mode %u", ic->ic_opmode));
850 	if (ic->ic_state == IEEE80211_S_RUN) {
851 		u_int64_t lastrx = sc->sc_lastrx;
852 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
853 		u_int bmisstimeout =
854 			ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
855 
856 		DPRINTF(sc, ATH_DEBUG_BEACON,
857 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
858 		    __func__, (unsigned long long) tsf,
859 		    (unsigned long long)(tsf - lastrx),
860 		    (unsigned long long) lastrx, bmisstimeout);
861 		/*
862 		 * Workaround phantom bmiss interrupts by sanity-checking
863 		 * the time of our last rx'd frame.  If it is within the
864 		 * beacon miss interval then ignore the interrupt.  If it's
865 		 * truly a bmiss we'll get another interrupt soon and that'll
866 		 * be dispatched up for processing.
867 		 */
868 		if (tsf - lastrx > bmisstimeout) {
869 			NET_LOCK_GIANT();
870 			ieee80211_beacon_miss(ic);
871 			NET_UNLOCK_GIANT();
872 		} else
873 			sc->sc_stats.ast_bmiss_phantom++;
874 	}
875 }
876 
877 static void
878 ath_radar_proc(void *arg, int pending)
879 {
880 	struct ath_softc *sc = arg;
881 	struct ifnet *ifp = sc->sc_ifp;
882 	struct ath_hal *ah = sc->sc_ah;
883 	HAL_CHANNEL hchan;
884 
885 	if (ath_hal_procdfs(ah, &hchan)) {
886 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
887 			hchan.channel, hchan.channelFlags, hchan.privFlags);
888 		/*
889 		 * Initiate channel change.
890 		 */
891 		/* XXX not yet */
892 	}
893 }
894 
895 static u_int
896 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
897 {
898 #define	N(a)	(sizeof(a) / sizeof(a[0]))
899 	static const u_int modeflags[] = {
900 		0,			/* IEEE80211_MODE_AUTO */
901 		CHANNEL_A,		/* IEEE80211_MODE_11A */
902 		CHANNEL_B,		/* IEEE80211_MODE_11B */
903 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
904 		0,			/* IEEE80211_MODE_FH */
905 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
906 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
907 	};
908 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
909 
910 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
911 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
912 	return modeflags[mode];
913 #undef N
914 }
915 
916 static void
917 ath_init(void *arg)
918 {
919 	struct ath_softc *sc = (struct ath_softc *) arg;
920 	struct ieee80211com *ic = &sc->sc_ic;
921 	struct ifnet *ifp = sc->sc_ifp;
922 	struct ath_hal *ah = sc->sc_ah;
923 	HAL_STATUS status;
924 
925 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
926 		__func__, ifp->if_flags);
927 
928 	ATH_LOCK(sc);
929 	/*
930 	 * Stop anything previously setup.  This is safe
931 	 * whether this is the first time through or not.
932 	 */
933 	ath_stop_locked(ifp);
934 
935 	/*
936 	 * The basic interface to setting the hardware in a good
937 	 * state is ``reset''.  On return the hardware is known to
938 	 * be powered up and with interrupts disabled.  This must
939 	 * be followed by initialization of the appropriate bits
940 	 * and then setup of the interrupt mask.
941 	 */
942 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
943 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
944 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
945 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
946 			status);
947 		goto done;
948 	}
949 
950 	/*
951 	 * This is needed only to setup initial state
952 	 * but it's best done after a reset.
953 	 */
954 	ath_update_txpow(sc);
955 	/*
956 	 * Likewise this is set during reset so update
957 	 * state cached in the driver.
958 	 */
959 	sc->sc_diversity = ath_hal_getdiversity(ah);
960 	sc->sc_calinterval = 1;
961 	sc->sc_caltries = 0;
962 
963 	/*
964 	 * Setup the hardware after reset: the key cache
965 	 * is filled as needed and the receive engine is
966 	 * set going.  Frame transmit is handled entirely
967 	 * in the frame output path; there's nothing to do
968 	 * here except setup the interrupt mask.
969 	 */
970 	if (ath_startrecv(sc) != 0) {
971 		if_printf(ifp, "unable to start recv logic\n");
972 		goto done;
973 	}
974 
975 	/*
976 	 * Enable interrupts.
977 	 */
978 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
979 		  | HAL_INT_RXEOL | HAL_INT_RXORN
980 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
981 	/*
982 	 * Enable MIB interrupts when there are hardware phy counters.
983 	 * Note we only do this (at the moment) for station mode.
984 	 */
985 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
986 		sc->sc_imask |= HAL_INT_MIB;
987 	ath_hal_intrset(ah, sc->sc_imask);
988 
989 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
990 	ic->ic_state = IEEE80211_S_INIT;
991 
992 	/*
993 	 * The hardware should be ready to go now so it's safe
994 	 * to kick the 802.11 state machine as it's likely to
995 	 * immediately call back to us to send mgmt frames.
996 	 */
997 	ath_chan_change(sc, ic->ic_curchan);
998 #ifdef ATH_TX99_DIAG
999 	if (sc->sc_tx99 != NULL)
1000 		sc->sc_tx99->start(sc->sc_tx99);
1001 	else
1002 #endif
1003 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1004 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1005 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1006 	} else
1007 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1008 done:
1009 	ATH_UNLOCK(sc);
1010 }
1011 
1012 static void
1013 ath_stop_locked(struct ifnet *ifp)
1014 {
1015 	struct ath_softc *sc = ifp->if_softc;
1016 	struct ieee80211com *ic = &sc->sc_ic;
1017 	struct ath_hal *ah = sc->sc_ah;
1018 
1019 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1020 		__func__, sc->sc_invalid, ifp->if_flags);
1021 
1022 	ATH_LOCK_ASSERT(sc);
1023 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1024 		/*
1025 		 * Shutdown the hardware and driver:
1026 		 *    reset 802.11 state machine
1027 		 *    turn off timers
1028 		 *    disable interrupts
1029 		 *    turn off the radio
1030 		 *    clear transmit machinery
1031 		 *    clear receive machinery
1032 		 *    drain and release tx queues
1033 		 *    reclaim beacon resources
1034 		 *    power down hardware
1035 		 *
1036 		 * Note that some of this work is not possible if the
1037 		 * hardware is gone (invalid).
1038 		 */
1039 #ifdef ATH_TX99_DIAG
1040 		if (sc->sc_tx99 != NULL)
1041 			sc->sc_tx99->stop(sc->sc_tx99);
1042 #endif
1043 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1044 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1045 		ifp->if_timer = 0;
1046 		if (!sc->sc_invalid) {
1047 			if (sc->sc_softled) {
1048 				callout_stop(&sc->sc_ledtimer);
1049 				ath_hal_gpioset(ah, sc->sc_ledpin,
1050 					!sc->sc_ledon);
1051 				sc->sc_blinking = 0;
1052 			}
1053 			ath_hal_intrset(ah, 0);
1054 		}
1055 		ath_draintxq(sc);
1056 		if (!sc->sc_invalid) {
1057 			ath_stoprecv(sc);
1058 			ath_hal_phydisable(ah);
1059 		} else
1060 			sc->sc_rxlink = NULL;
1061 		IFQ_DRV_PURGE(&ifp->if_snd);
1062 		ath_beacon_free(sc);
1063 	}
1064 }
1065 
1066 static void
1067 ath_stop(struct ifnet *ifp)
1068 {
1069 	struct ath_softc *sc = ifp->if_softc;
1070 
1071 	ATH_LOCK(sc);
1072 	ath_stop_locked(ifp);
1073 	if (!sc->sc_invalid) {
1074 		/*
1075 		 * Set the chip in full sleep mode.  Note that we are
1076 		 * careful to do this only when bringing the interface
1077 		 * completely to a stop.  When the chip is in this state
1078 		 * it must be carefully woken up or references to
1079 		 * registers in the PCI clock domain may freeze the bus
1080 		 * (and system).  This varies by chip and is mostly an
1081 		 * issue with newer parts that go to sleep more quickly.
1082 		 */
1083 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1084 	}
1085 	ATH_UNLOCK(sc);
1086 }
1087 
1088 /*
1089  * Reset the hardware w/o losing operational state.  This is
1090  * basically a more efficient way of doing ath_stop, ath_init,
1091  * followed by state transitions to the current 802.11
1092  * operational state.  Used to recover from various errors and
1093  * to reset or reload hardware state.
1094  */
1095 static int
1096 ath_reset(struct ifnet *ifp)
1097 {
1098 	struct ath_softc *sc = ifp->if_softc;
1099 	struct ieee80211com *ic = &sc->sc_ic;
1100 	struct ath_hal *ah = sc->sc_ah;
1101 	struct ieee80211_channel *c;
1102 	HAL_STATUS status;
1103 
1104 	/*
1105 	 * Convert to a HAL channel description with the flags
1106 	 * constrained to reflect the current operating mode.
1107 	 */
1108 	c = ic->ic_curchan;
1109 	sc->sc_curchan.channel = c->ic_freq;
1110 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1111 
1112 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1113 	ath_draintxq(sc);		/* stop xmit side */
1114 	ath_stoprecv(sc);		/* stop recv side */
1115 	/* NB: indicate channel change so we do a full reset */
1116 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1117 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1118 			__func__, status);
1119 	ath_update_txpow(sc);		/* update tx power state */
1120 	sc->sc_diversity = ath_hal_getdiversity(ah);
1121 	sc->sc_calinterval = 1;
1122 	sc->sc_caltries = 0;
1123 	/*
1124 	 * We may be doing a reset in response to an ioctl
1125 	 * that changes the channel so update any state that
1126 	 * might change as a result.
1127 	 */
1128 	ath_chan_change(sc, c);
1129 	if (ath_startrecv(sc) != 0)	/* restart recv */
1130 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1131 	if (ic->ic_state == IEEE80211_S_RUN)
1132 		ath_beacon_config(sc);	/* restart beacons */
1133 	ath_hal_intrset(ah, sc->sc_imask);
1134 
1135 	ath_start(ifp);			/* restart xmit */
1136 	return 0;
1137 }
1138 
1139 static void
1140 ath_start(struct ifnet *ifp)
1141 {
1142 	struct ath_softc *sc = ifp->if_softc;
1143 	struct ath_hal *ah = sc->sc_ah;
1144 	struct ieee80211com *ic = &sc->sc_ic;
1145 	struct ieee80211_node *ni;
1146 	struct ath_buf *bf;
1147 	struct mbuf *m;
1148 	struct ieee80211_frame *wh;
1149 	struct ether_header *eh;
1150 
1151 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1152 		return;
1153 	for (;;) {
1154 		/*
1155 		 * Grab a TX buffer and associated resources.
1156 		 */
1157 		ATH_TXBUF_LOCK(sc);
1158 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1159 		if (bf != NULL)
1160 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1161 		ATH_TXBUF_UNLOCK(sc);
1162 		if (bf == NULL) {
1163 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1164 				__func__);
1165 			sc->sc_stats.ast_tx_qstop++;
1166 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1167 			break;
1168 		}
1169 		/*
1170 		 * Poll the management queue for frames; they
1171 		 * have priority over normal data frames.
1172 		 */
1173 		IF_DEQUEUE(&ic->ic_mgtq, m);
1174 		if (m == NULL) {
1175 			/*
1176 			 * No data frames go out unless we're associated.
1177 			 */
1178 			if (ic->ic_state != IEEE80211_S_RUN) {
1179 				DPRINTF(sc, ATH_DEBUG_XMIT,
1180 				    "%s: discard data packet, state %s\n",
1181 				    __func__,
1182 				    ieee80211_state_name[ic->ic_state]);
1183 				sc->sc_stats.ast_tx_discard++;
1184 				ATH_TXBUF_LOCK(sc);
1185 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1186 				ATH_TXBUF_UNLOCK(sc);
1187 				break;
1188 			}
1189 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1190 			if (m == NULL) {
1191 				ATH_TXBUF_LOCK(sc);
1192 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1193 				ATH_TXBUF_UNLOCK(sc);
1194 				break;
1195 			}
1196 			/*
1197 			 * Find the node for the destination so we can do
1198 			 * things like power save and fast frames aggregation.
1199 			 */
1200 			if (m->m_len < sizeof(struct ether_header) &&
1201 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1202 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1203 				ni = NULL;
1204 				goto bad;
1205 			}
1206 			eh = mtod(m, struct ether_header *);
1207 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1208 			if (ni == NULL) {
1209 				/* NB: ieee80211_find_txnode does stat+msg */
1210 				m_freem(m);
1211 				goto bad;
1212 			}
1213 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1214 			    (m->m_flags & M_PWR_SAV) == 0) {
1215 				/*
1216 				 * Station in power save mode; pass the frame
1217 				 * to the 802.11 layer and continue.  We'll get
1218 				 * the frame back when the time is right.
1219 				 */
1220 				ieee80211_pwrsave(ic, ni, m);
1221 				goto reclaim;
1222 			}
1223 			/* calculate priority so we can find the tx queue */
1224 			if (ieee80211_classify(ic, m, ni)) {
1225 				DPRINTF(sc, ATH_DEBUG_XMIT,
1226 					"%s: discard, classification failure\n",
1227 					__func__);
1228 				m_freem(m);
1229 				goto bad;
1230 			}
1231 			ifp->if_opackets++;
1232 			BPF_MTAP(ifp, m);
1233 			/*
1234 			 * Encapsulate the packet in prep for transmission.
1235 			 */
1236 			m = ieee80211_encap(ic, m, ni);
1237 			if (m == NULL) {
1238 				DPRINTF(sc, ATH_DEBUG_XMIT,
1239 					"%s: encapsulation failure\n",
1240 					__func__);
1241 				sc->sc_stats.ast_tx_encap++;
1242 				goto bad;
1243 			}
1244 		} else {
1245 			/*
1246 			 * Hack!  The referenced node pointer is in the
1247 			 * rcvif field of the packet header.  This is
1248 			 * placed there by ieee80211_mgmt_output because
1249 			 * we need to hold the reference with the frame
1250 			 * and there's no other way (other than packet
1251 			 * tags which we consider too expensive to use)
1252 			 * to pass it along.
1253 			 */
1254 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1255 			m->m_pkthdr.rcvif = NULL;
1256 
1257 			wh = mtod(m, struct ieee80211_frame *);
1258 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1259 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1260 				/* fill time stamp */
1261 				u_int64_t tsf;
1262 				u_int32_t *tstamp;
1263 
1264 				tsf = ath_hal_gettsf64(ah);
1265 				/* XXX: adjust 100us delay to xmit */
1266 				tsf += 100;
1267 				tstamp = (u_int32_t *)&wh[1];
1268 				tstamp[0] = htole32(tsf & 0xffffffff);
1269 				tstamp[1] = htole32(tsf >> 32);
1270 			}
1271 			sc->sc_stats.ast_tx_mgmt++;
1272 		}
1273 
1274 		if (ath_tx_start(sc, ni, bf, m)) {
1275 	bad:
1276 			ifp->if_oerrors++;
1277 	reclaim:
1278 			ATH_TXBUF_LOCK(sc);
1279 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1280 			ATH_TXBUF_UNLOCK(sc);
1281 			if (ni != NULL)
1282 				ieee80211_free_node(ni);
1283 			continue;
1284 		}
1285 
1286 		sc->sc_tx_timer = 5;
1287 		ifp->if_timer = 1;
1288 	}
1289 }
1290 
1291 static int
1292 ath_media_change(struct ifnet *ifp)
1293 {
1294 #define	IS_UP(ifp) \
1295 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1296 	int error;
1297 
1298 	error = ieee80211_media_change(ifp);
1299 	if (error == ENETRESET) {
1300 		struct ath_softc *sc = ifp->if_softc;
1301 		struct ieee80211com *ic = &sc->sc_ic;
1302 
1303 		if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
1304 			/*
1305 			 * Adhoc demo mode is just ibss mode w/o beacons
1306 			 * (mostly).  The hal knows nothing about it;
1307 			 * tell it we're operating in ibss mode.
1308 			 */
1309 			sc->sc_opmode = HAL_M_IBSS;
1310 		} else
1311 			sc->sc_opmode = ic->ic_opmode;
1312 		if (IS_UP(ifp))
1313 			ath_init(ifp->if_softc);	/* XXX lose error */
1314 		error = 0;
1315 	}
1316 	return error;
1317 #undef IS_UP
1318 }
1319 
1320 #ifdef ATH_DEBUG
1321 static void
1322 ath_keyprint(const char *tag, u_int ix,
1323 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1324 {
1325 	static const char *ciphers[] = {
1326 		"WEP",
1327 		"AES-OCB",
1328 		"AES-CCM",
1329 		"CKIP",
1330 		"TKIP",
1331 		"CLR",
1332 	};
1333 	int i, n;
1334 
1335 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1336 	for (i = 0, n = hk->kv_len; i < n; i++)
1337 		printf("%02x", hk->kv_val[i]);
1338 	printf(" mac %s", ether_sprintf(mac));
1339 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1340 		printf(" mic ");
1341 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1342 			printf("%02x", hk->kv_mic[i]);
1343 	}
1344 	printf("\n");
1345 }
1346 #endif
1347 
1348 /*
1349  * Set a TKIP key into the hardware.  This handles the
1350  * potential distribution of key state to multiple key
1351  * cache slots for TKIP.
1352  */
1353 static int
1354 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1355 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1356 {
1357 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1358 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1359 	struct ath_hal *ah = sc->sc_ah;
1360 
1361 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1362 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1363 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1364 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1365 		/*
1366 		 * TX key goes at first index, RX key at the rx index.
1367 		 * The hal handles the MIC keys at index+64.
1368 		 */
1369 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1370 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1371 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1372 			return 0;
1373 
1374 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1375 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1376 		/* XXX delete tx key on failure? */
1377 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1378 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1379 		/*
1380 		 * TX/RX key goes at first index.
1381 		 * The hal handles the MIC keys are index+64.
1382 		 */
1383 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1384 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1385 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1386 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1387 	}
1388 	return 0;
1389 #undef IEEE80211_KEY_XR
1390 }
1391 
1392 /*
1393  * Set a net80211 key into the hardware.  This handles the
1394  * potential distribution of key state to multiple key
1395  * cache slots for TKIP with hardware MIC support.
1396  */
1397 static int
1398 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1399 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1400 	struct ieee80211_node *bss)
1401 {
1402 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1403 	static const u_int8_t ciphermap[] = {
1404 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1405 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1406 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1407 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1408 		(u_int8_t) -1,		/* 4 is not allocated */
1409 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1410 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1411 	};
1412 	struct ath_hal *ah = sc->sc_ah;
1413 	const struct ieee80211_cipher *cip = k->wk_cipher;
1414 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1415 	const u_int8_t *mac;
1416 	HAL_KEYVAL hk;
1417 
1418 	memset(&hk, 0, sizeof(hk));
1419 	/*
1420 	 * Software crypto uses a "clear key" so non-crypto
1421 	 * state kept in the key cache are maintained and
1422 	 * so that rx frames have an entry to match.
1423 	 */
1424 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1425 		KASSERT(cip->ic_cipher < N(ciphermap),
1426 			("invalid cipher type %u", cip->ic_cipher));
1427 		hk.kv_type = ciphermap[cip->ic_cipher];
1428 		hk.kv_len = k->wk_keylen;
1429 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1430 	} else
1431 		hk.kv_type = HAL_CIPHER_CLR;
1432 
1433 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1434 		/*
1435 		 * Group keys on hardware that supports multicast frame
1436 		 * key search use a mac that is the sender's address with
1437 		 * the high bit set instead of the app-specified address.
1438 		 */
1439 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1440 		gmac[0] |= 0x80;
1441 		mac = gmac;
1442 	} else
1443 		mac = mac0;
1444 
1445 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1446 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1447 	    sc->sc_splitmic) {
1448 		return ath_keyset_tkip(sc, k, &hk, mac);
1449 	} else {
1450 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1451 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1452 	}
1453 #undef N
1454 }
1455 
1456 /*
1457  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1458  * each key, one for decrypt/encrypt and the other for the MIC.
1459  */
1460 static u_int16_t
1461 key_alloc_2pair(struct ath_softc *sc,
1462 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1463 {
1464 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1465 	u_int i, keyix;
1466 
1467 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1468 	/* XXX could optimize */
1469 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1470 		u_int8_t b = sc->sc_keymap[i];
1471 		if (b != 0xff) {
1472 			/*
1473 			 * One or more slots in this byte are free.
1474 			 */
1475 			keyix = i*NBBY;
1476 			while (b & 1) {
1477 		again:
1478 				keyix++;
1479 				b >>= 1;
1480 			}
1481 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1482 			if (isset(sc->sc_keymap, keyix+32) ||
1483 			    isset(sc->sc_keymap, keyix+64) ||
1484 			    isset(sc->sc_keymap, keyix+32+64)) {
1485 				/* full pair unavailable */
1486 				/* XXX statistic */
1487 				if (keyix == (i+1)*NBBY) {
1488 					/* no slots were appropriate, advance */
1489 					continue;
1490 				}
1491 				goto again;
1492 			}
1493 			setbit(sc->sc_keymap, keyix);
1494 			setbit(sc->sc_keymap, keyix+64);
1495 			setbit(sc->sc_keymap, keyix+32);
1496 			setbit(sc->sc_keymap, keyix+32+64);
1497 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1498 				"%s: key pair %u,%u %u,%u\n",
1499 				__func__, keyix, keyix+64,
1500 				keyix+32, keyix+32+64);
1501 			*txkeyix = keyix;
1502 			*rxkeyix = keyix+32;
1503 			return 1;
1504 		}
1505 	}
1506 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1507 	return 0;
1508 #undef N
1509 }
1510 
1511 /*
1512  * Allocate a single key cache slot.
1513  */
1514 static int
1515 key_alloc_single(struct ath_softc *sc,
1516 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1517 {
1518 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1519 	u_int i, keyix;
1520 
1521 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1522 	for (i = 0; i < N(sc->sc_keymap); i++) {
1523 		u_int8_t b = sc->sc_keymap[i];
1524 		if (b != 0xff) {
1525 			/*
1526 			 * One or more slots are free.
1527 			 */
1528 			keyix = i*NBBY;
1529 			while (b & 1)
1530 				keyix++, b >>= 1;
1531 			setbit(sc->sc_keymap, keyix);
1532 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1533 				__func__, keyix);
1534 			*txkeyix = *rxkeyix = keyix;
1535 			return 1;
1536 		}
1537 	}
1538 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1539 	return 0;
1540 #undef N
1541 }
1542 
1543 /*
1544  * Allocate one or more key cache slots for a uniacst key.  The
1545  * key itself is needed only to identify the cipher.  For hardware
1546  * TKIP with split cipher+MIC keys we allocate two key cache slot
1547  * pairs so that we can setup separate TX and RX MIC keys.  Note
1548  * that the MIC key for a TKIP key at slot i is assumed by the
1549  * hardware to be at slot i+64.  This limits TKIP keys to the first
1550  * 64 entries.
1551  */
1552 static int
1553 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1554 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1555 {
1556 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1557 
1558 	/*
1559 	 * Group key allocation must be handled specially for
1560 	 * parts that do not support multicast key cache search
1561 	 * functionality.  For those parts the key id must match
1562 	 * the h/w key index so lookups find the right key.  On
1563 	 * parts w/ the key search facility we install the sender's
1564 	 * mac address (with the high bit set) and let the hardware
1565 	 * find the key w/o using the key id.  This is preferred as
1566 	 * it permits us to support multiple users for adhoc and/or
1567 	 * multi-station operation.
1568 	 */
1569 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1570 		if (!(&ic->ic_nw_keys[0] <= k &&
1571 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1572 			/* should not happen */
1573 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1574 				"%s: bogus group key\n", __func__);
1575 			return 0;
1576 		}
1577 		/*
1578 		 * XXX we pre-allocate the global keys so
1579 		 * have no way to check if they've already been allocated.
1580 		 */
1581 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1582 		return 1;
1583 	}
1584 
1585 	/*
1586 	 * We allocate two pair for TKIP when using the h/w to do
1587 	 * the MIC.  For everything else, including software crypto,
1588 	 * we allocate a single entry.  Note that s/w crypto requires
1589 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1590 	 * not support pass-through cache entries and we map all
1591 	 * those requests to slot 0.
1592 	 */
1593 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1594 		return key_alloc_single(sc, keyix, rxkeyix);
1595 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1596 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1597 		return key_alloc_2pair(sc, keyix, rxkeyix);
1598 	} else {
1599 		return key_alloc_single(sc, keyix, rxkeyix);
1600 	}
1601 }
1602 
1603 /*
1604  * Delete an entry in the key cache allocated by ath_key_alloc.
1605  */
1606 static int
1607 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1608 {
1609 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1610 	struct ath_hal *ah = sc->sc_ah;
1611 	const struct ieee80211_cipher *cip = k->wk_cipher;
1612 	u_int keyix = k->wk_keyix;
1613 
1614 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1615 
1616 	ath_hal_keyreset(ah, keyix);
1617 	/*
1618 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1619 	 */
1620 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1621 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1622 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1623 	if (keyix >= IEEE80211_WEP_NKID) {
1624 		/*
1625 		 * Don't touch keymap entries for global keys so
1626 		 * they are never considered for dynamic allocation.
1627 		 */
1628 		clrbit(sc->sc_keymap, keyix);
1629 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1630 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1631 		    sc->sc_splitmic) {
1632 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1633 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1634 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1635 		}
1636 	}
1637 	return 1;
1638 }
1639 
1640 /*
1641  * Set the key cache contents for the specified key.  Key cache
1642  * slot(s) must already have been allocated by ath_key_alloc.
1643  */
1644 static int
1645 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1646 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1647 {
1648 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1649 
1650 	return ath_keyset(sc, k, mac, ic->ic_bss);
1651 }
1652 
1653 /*
1654  * Block/unblock tx+rx processing while a key change is done.
1655  * We assume the caller serializes key management operations
1656  * so we only need to worry about synchronization with other
1657  * uses that originate in the driver.
1658  */
1659 static void
1660 ath_key_update_begin(struct ieee80211com *ic)
1661 {
1662 	struct ifnet *ifp = ic->ic_ifp;
1663 	struct ath_softc *sc = ifp->if_softc;
1664 
1665 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1666 #if 0
1667 	tasklet_disable(&sc->sc_rxtq);
1668 #endif
1669 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1670 }
1671 
1672 static void
1673 ath_key_update_end(struct ieee80211com *ic)
1674 {
1675 	struct ifnet *ifp = ic->ic_ifp;
1676 	struct ath_softc *sc = ifp->if_softc;
1677 
1678 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1679 	IF_UNLOCK(&ifp->if_snd);
1680 #if 0
1681 	tasklet_enable(&sc->sc_rxtq);
1682 #endif
1683 }
1684 
1685 /*
1686  * Calculate the receive filter according to the
1687  * operating mode and state:
1688  *
1689  * o always accept unicast, broadcast, and multicast traffic
1690  * o maintain current state of phy error reception (the hal
1691  *   may enable phy error frames for noise immunity work)
1692  * o probe request frames are accepted only when operating in
1693  *   hostap, adhoc, or monitor modes
1694  * o enable promiscuous mode according to the interface state
1695  * o accept beacons:
1696  *   - when operating in adhoc mode so the 802.11 layer creates
1697  *     node table entries for peers,
1698  *   - when operating in station mode for collecting rssi data when
1699  *     the station is otherwise quiet, or
1700  *   - when scanning
1701  */
1702 static u_int32_t
1703 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1704 {
1705 #define	RX_FILTER_PRESERVE	(HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
1706 	struct ieee80211com *ic = &sc->sc_ic;
1707 	struct ath_hal *ah = sc->sc_ah;
1708 	struct ifnet *ifp = sc->sc_ifp;
1709 	u_int32_t rfilt;
1710 
1711 	rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE)
1712 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1713 	if (ic->ic_opmode != IEEE80211_M_STA)
1714 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1715 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1716 	    (ifp->if_flags & IFF_PROMISC))
1717 		rfilt |= HAL_RX_FILTER_PROM;
1718 	if (ic->ic_opmode == IEEE80211_M_STA ||
1719 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1720 	    state == IEEE80211_S_SCAN)
1721 		rfilt |= HAL_RX_FILTER_BEACON;
1722 	return rfilt;
1723 #undef RX_FILTER_PRESERVE
1724 }
1725 
1726 static void
1727 ath_mode_init(struct ath_softc *sc)
1728 {
1729 	struct ieee80211com *ic = &sc->sc_ic;
1730 	struct ath_hal *ah = sc->sc_ah;
1731 	struct ifnet *ifp = sc->sc_ifp;
1732 	u_int32_t rfilt, mfilt[2], val;
1733 	u_int8_t pos;
1734 	struct ifmultiaddr *ifma;
1735 
1736 	/* configure rx filter */
1737 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1738 	ath_hal_setrxfilter(ah, rfilt);
1739 
1740 	/* configure operational mode */
1741 	ath_hal_setopmode(ah);
1742 
1743 	/*
1744 	 * Handle any link-level address change.  Note that we only
1745 	 * need to force ic_myaddr; any other addresses are handled
1746 	 * as a byproduct of the ifnet code marking the interface
1747 	 * down then up.
1748 	 *
1749 	 * XXX should get from lladdr instead of arpcom but that's more work
1750 	 */
1751 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1752 	ath_hal_setmac(ah, ic->ic_myaddr);
1753 
1754 	/* calculate and install multicast filter */
1755 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1756 		mfilt[0] = mfilt[1] = 0;
1757 		IF_ADDR_LOCK(ifp);
1758 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1759 			caddr_t dl;
1760 
1761 			/* calculate XOR of eight 6bit values */
1762 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1763 			val = LE_READ_4(dl + 0);
1764 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1765 			val = LE_READ_4(dl + 3);
1766 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1767 			pos &= 0x3f;
1768 			mfilt[pos / 32] |= (1 << (pos % 32));
1769 		}
1770 		IF_ADDR_UNLOCK(ifp);
1771 	} else {
1772 		mfilt[0] = mfilt[1] = ~0;
1773 	}
1774 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1775 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1776 		__func__, rfilt, mfilt[0], mfilt[1]);
1777 }
1778 
1779 /*
1780  * Set the slot time based on the current setting.
1781  */
1782 static void
1783 ath_setslottime(struct ath_softc *sc)
1784 {
1785 	struct ieee80211com *ic = &sc->sc_ic;
1786 	struct ath_hal *ah = sc->sc_ah;
1787 
1788 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1789 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1790 	else
1791 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1792 	sc->sc_updateslot = OK;
1793 }
1794 
1795 /*
1796  * Callback from the 802.11 layer to update the
1797  * slot time based on the current setting.
1798  */
1799 static void
1800 ath_updateslot(struct ifnet *ifp)
1801 {
1802 	struct ath_softc *sc = ifp->if_softc;
1803 	struct ieee80211com *ic = &sc->sc_ic;
1804 
1805 	/*
1806 	 * When not coordinating the BSS, change the hardware
1807 	 * immediately.  For other operation we defer the change
1808 	 * until beacon updates have propagated to the stations.
1809 	 */
1810 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1811 		sc->sc_updateslot = UPDATE;
1812 	else
1813 		ath_setslottime(sc);
1814 }
1815 
1816 /*
1817  * Setup a h/w transmit queue for beacons.
1818  */
1819 static int
1820 ath_beaconq_setup(struct ath_hal *ah)
1821 {
1822 	HAL_TXQ_INFO qi;
1823 
1824 	memset(&qi, 0, sizeof(qi));
1825 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1826 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1827 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1828 	/* NB: for dynamic turbo, don't enable any other interrupts */
1829 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1830 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1831 }
1832 
1833 /*
1834  * Setup the transmit queue parameters for the beacon queue.
1835  */
1836 static int
1837 ath_beaconq_config(struct ath_softc *sc)
1838 {
1839 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1840 	struct ieee80211com *ic = &sc->sc_ic;
1841 	struct ath_hal *ah = sc->sc_ah;
1842 	HAL_TXQ_INFO qi;
1843 
1844 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1845 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1846 		/*
1847 		 * Always burst out beacon and CAB traffic.
1848 		 */
1849 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1850 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1851 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1852 	} else {
1853 		struct wmeParams *wmep =
1854 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1855 		/*
1856 		 * Adhoc mode; important thing is to use 2x cwmin.
1857 		 */
1858 		qi.tqi_aifs = wmep->wmep_aifsn;
1859 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1860 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1861 	}
1862 
1863 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1864 		device_printf(sc->sc_dev, "unable to update parameters for "
1865 			"beacon hardware queue!\n");
1866 		return 0;
1867 	} else {
1868 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1869 		return 1;
1870 	}
1871 #undef ATH_EXPONENT_TO_VALUE
1872 }
1873 
1874 /*
1875  * Allocate and setup an initial beacon frame.
1876  */
1877 static int
1878 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1879 {
1880 	struct ieee80211com *ic = ni->ni_ic;
1881 	struct ath_buf *bf;
1882 	struct mbuf *m;
1883 	int error;
1884 
1885 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1886 	if (bf == NULL) {
1887 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1888 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1889 		return ENOMEM;			/* XXX */
1890 	}
1891 	/*
1892 	 * NB: the beacon data buffer must be 32-bit aligned;
1893 	 * we assume the mbuf routines will return us something
1894 	 * with this alignment (perhaps should assert).
1895 	 */
1896 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1897 	if (m == NULL) {
1898 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1899 			__func__);
1900 		sc->sc_stats.ast_be_nombuf++;
1901 		return ENOMEM;
1902 	}
1903 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1904 				     bf->bf_segs, &bf->bf_nseg,
1905 				     BUS_DMA_NOWAIT);
1906 	if (error == 0) {
1907 		bf->bf_m = m;
1908 		bf->bf_node = ieee80211_ref_node(ni);
1909 	} else {
1910 		m_freem(m);
1911 	}
1912 	return error;
1913 }
1914 
1915 /*
1916  * Setup the beacon frame for transmit.
1917  */
1918 static void
1919 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1920 {
1921 #define	USE_SHPREAMBLE(_ic) \
1922 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1923 		== IEEE80211_F_SHPREAMBLE)
1924 	struct ieee80211_node *ni = bf->bf_node;
1925 	struct ieee80211com *ic = ni->ni_ic;
1926 	struct mbuf *m = bf->bf_m;
1927 	struct ath_hal *ah = sc->sc_ah;
1928 	struct ath_desc *ds;
1929 	int flags, antenna;
1930 	const HAL_RATE_TABLE *rt;
1931 	u_int8_t rix, rate;
1932 
1933 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
1934 		__func__, m, m->m_len);
1935 
1936 	/* setup descriptors */
1937 	ds = bf->bf_desc;
1938 
1939 	flags = HAL_TXDESC_NOACK;
1940 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1941 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1942 		flags |= HAL_TXDESC_VEOL;
1943 		/*
1944 		 * Let hardware handle antenna switching.
1945 		 */
1946 		antenna = sc->sc_txantenna;
1947 	} else {
1948 		ds->ds_link = 0;
1949 		/*
1950 		 * Switch antenna every 4 beacons.
1951 		 * XXX assumes two antenna
1952 		 */
1953 		antenna = sc->sc_txantenna != 0 ? sc->sc_txantenna
1954 			: (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1955 	}
1956 
1957 	KASSERT(bf->bf_nseg == 1,
1958 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1959 	ds->ds_data = bf->bf_segs[0].ds_addr;
1960 	/*
1961 	 * Calculate rate code.
1962 	 * XXX everything at min xmit rate
1963 	 */
1964 	rix = sc->sc_minrateix;
1965 	rt = sc->sc_currates;
1966 	rate = rt->info[rix].rateCode;
1967 	if (USE_SHPREAMBLE(ic))
1968 		rate |= rt->info[rix].shortPreamble;
1969 	ath_hal_setuptxdesc(ah, ds
1970 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1971 		, sizeof(struct ieee80211_frame)/* header length */
1972 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1973 		, ni->ni_txpower		/* txpower XXX */
1974 		, rate, 1			/* series 0 rate/tries */
1975 		, HAL_TXKEYIX_INVALID		/* no encryption */
1976 		, antenna			/* antenna mode */
1977 		, flags				/* no ack, veol for beacons */
1978 		, 0				/* rts/cts rate */
1979 		, 0				/* rts/cts duration */
1980 	);
1981 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1982 	ath_hal_filltxdesc(ah, ds
1983 		, roundup(m->m_len, 4)		/* buffer length */
1984 		, AH_TRUE			/* first segment */
1985 		, AH_TRUE			/* last segment */
1986 		, ds				/* first descriptor */
1987 	);
1988 #undef USE_SHPREAMBLE
1989 }
1990 
1991 /*
1992  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1993  * frame contents are done as needed and the slot time is
1994  * also adjusted based on current state.
1995  */
1996 static void
1997 ath_beacon_proc(void *arg, int pending)
1998 {
1999 	struct ath_softc *sc = arg;
2000 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2001 	struct ieee80211_node *ni = bf->bf_node;
2002 	struct ieee80211com *ic = ni->ni_ic;
2003 	struct ath_hal *ah = sc->sc_ah;
2004 	struct mbuf *m;
2005 	int ncabq, error, otherant;
2006 
2007 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2008 		__func__, pending);
2009 
2010 	if (ic->ic_opmode == IEEE80211_M_STA ||
2011 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2012 	    bf == NULL || bf->bf_m == NULL) {
2013 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2014 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2015 		return;
2016 	}
2017 	/*
2018 	 * Check if the previous beacon has gone out.  If
2019 	 * not don't try to post another, skip this period
2020 	 * and wait for the next.  Missed beacons indicate
2021 	 * a problem and should not occur.  If we miss too
2022 	 * many consecutive beacons reset the device.
2023 	 */
2024 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2025 		sc->sc_bmisscount++;
2026 		DPRINTF(sc, ATH_DEBUG_BEACON,
2027 			"%s: missed %u consecutive beacons\n",
2028 			__func__, sc->sc_bmisscount);
2029 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2030 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2031 		return;
2032 	}
2033 	if (sc->sc_bmisscount != 0) {
2034 		DPRINTF(sc, ATH_DEBUG_BEACON,
2035 			"%s: resume beacon xmit after %u misses\n",
2036 			__func__, sc->sc_bmisscount);
2037 		sc->sc_bmisscount = 0;
2038 	}
2039 
2040 	/*
2041 	 * Update dynamic beacon contents.  If this returns
2042 	 * non-zero then we need to remap the memory because
2043 	 * the beacon frame changed size (probably because
2044 	 * of the TIM bitmap).
2045 	 */
2046 	m = bf->bf_m;
2047 	ncabq = sc->sc_cabq->axq_depth;
2048 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2049 		/* XXX too conservative? */
2050 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2051 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2052 					     bf->bf_segs, &bf->bf_nseg,
2053 					     BUS_DMA_NOWAIT);
2054 		if (error != 0) {
2055 			if_printf(ic->ic_ifp,
2056 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2057 			    __func__, error);
2058 			return;
2059 		}
2060 	}
2061 
2062 	/*
2063 	 * Handle slot time change when a non-ERP station joins/leaves
2064 	 * an 11g network.  The 802.11 layer notifies us via callback,
2065 	 * we mark updateslot, then wait one beacon before effecting
2066 	 * the change.  This gives associated stations at least one
2067 	 * beacon interval to note the state change.
2068 	 */
2069 	/* XXX locking */
2070 	if (sc->sc_updateslot == UPDATE)
2071 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2072 	else if (sc->sc_updateslot == COMMIT)
2073 		ath_setslottime(sc);		/* commit change to h/w */
2074 
2075 	/*
2076 	 * Check recent per-antenna transmit statistics and flip
2077 	 * the default antenna if noticeably more frames went out
2078 	 * on the non-default antenna.
2079 	 * XXX assumes 2 anntenae
2080 	 */
2081 	otherant = sc->sc_defant & 1 ? 2 : 1;
2082 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2083 		ath_setdefantenna(sc, otherant);
2084 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2085 
2086 	/*
2087 	 * Construct tx descriptor.
2088 	 */
2089 	ath_beacon_setup(sc, bf);
2090 
2091 	/*
2092 	 * Stop any current dma and put the new frame on the queue.
2093 	 * This should never fail since we check above that no frames
2094 	 * are still pending on the queue.
2095 	 */
2096 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2097 		DPRINTF(sc, ATH_DEBUG_ANY,
2098 			"%s: beacon queue %u did not stop?\n",
2099 			__func__, sc->sc_bhalq);
2100 	}
2101 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2102 
2103 	/*
2104 	 * Enable the CAB queue before the beacon queue to
2105 	 * insure cab frames are triggered by this beacon.
2106 	 */
2107 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
2108 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2109 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2110 	ath_hal_txstart(ah, sc->sc_bhalq);
2111 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2112 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2113 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2114 
2115 	sc->sc_stats.ast_be_xmit++;
2116 }
2117 
2118 /*
2119  * Reset the hardware after detecting beacons have stopped.
2120  */
2121 static void
2122 ath_bstuck_proc(void *arg, int pending)
2123 {
2124 	struct ath_softc *sc = arg;
2125 	struct ifnet *ifp = sc->sc_ifp;
2126 
2127 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2128 		sc->sc_bmisscount);
2129 	ath_reset(ifp);
2130 }
2131 
2132 /*
2133  * Reclaim beacon resources.
2134  */
2135 static void
2136 ath_beacon_free(struct ath_softc *sc)
2137 {
2138 	struct ath_buf *bf;
2139 
2140 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2141 		if (bf->bf_m != NULL) {
2142 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2143 			m_freem(bf->bf_m);
2144 			bf->bf_m = NULL;
2145 		}
2146 		if (bf->bf_node != NULL) {
2147 			ieee80211_free_node(bf->bf_node);
2148 			bf->bf_node = NULL;
2149 		}
2150 	}
2151 }
2152 
2153 /*
2154  * Configure the beacon and sleep timers.
2155  *
2156  * When operating as an AP this resets the TSF and sets
2157  * up the hardware to notify us when we need to issue beacons.
2158  *
2159  * When operating in station mode this sets up the beacon
2160  * timers according to the timestamp of the last received
2161  * beacon and the current TSF, configures PCF and DTIM
2162  * handling, programs the sleep registers so the hardware
2163  * will wakeup in time to receive beacons, and configures
2164  * the beacon miss handling so we'll receive a BMISS
2165  * interrupt when we stop seeing beacons from the AP
2166  * we've associated with.
2167  */
2168 static void
2169 ath_beacon_config(struct ath_softc *sc)
2170 {
2171 #define	TSF_TO_TU(_h,_l) \
2172 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2173 #define	FUDGE	2
2174 	struct ath_hal *ah = sc->sc_ah;
2175 	struct ieee80211com *ic = &sc->sc_ic;
2176 	struct ieee80211_node *ni = ic->ic_bss;
2177 	u_int32_t nexttbtt, intval, tsftu;
2178 	u_int64_t tsf;
2179 
2180 	/* extract tstamp from last beacon and convert to TU */
2181 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2182 			     LE_READ_4(ni->ni_tstamp.data));
2183 	/* NB: the beacon interval is kept internally in TU's */
2184 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2185 	if (nexttbtt == 0)		/* e.g. for ap mode */
2186 		nexttbtt = intval;
2187 	else if (intval)		/* NB: can be 0 for monitor mode */
2188 		nexttbtt = roundup(nexttbtt, intval);
2189 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2190 		__func__, nexttbtt, intval, ni->ni_intval);
2191 	if (ic->ic_opmode == IEEE80211_M_STA) {
2192 		HAL_BEACON_STATE bs;
2193 		int dtimperiod, dtimcount;
2194 		int cfpperiod, cfpcount;
2195 
2196 		/*
2197 		 * Setup dtim and cfp parameters according to
2198 		 * last beacon we received (which may be none).
2199 		 */
2200 		dtimperiod = ni->ni_dtim_period;
2201 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2202 			dtimperiod = 1;
2203 		dtimcount = ni->ni_dtim_count;
2204 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2205 			dtimcount = 0;		/* XXX? */
2206 		cfpperiod = 1;			/* NB: no PCF support yet */
2207 		cfpcount = 0;
2208 		/*
2209 		 * Pull nexttbtt forward to reflect the current
2210 		 * TSF and calculate dtim+cfp state for the result.
2211 		 */
2212 		tsf = ath_hal_gettsf64(ah);
2213 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2214 		do {
2215 			nexttbtt += intval;
2216 			if (--dtimcount < 0) {
2217 				dtimcount = dtimperiod - 1;
2218 				if (--cfpcount < 0)
2219 					cfpcount = cfpperiod - 1;
2220 			}
2221 		} while (nexttbtt < tsftu);
2222 		memset(&bs, 0, sizeof(bs));
2223 		bs.bs_intval = intval;
2224 		bs.bs_nexttbtt = nexttbtt;
2225 		bs.bs_dtimperiod = dtimperiod*intval;
2226 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2227 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2228 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2229 		bs.bs_cfpmaxduration = 0;
2230 #if 0
2231 		/*
2232 		 * The 802.11 layer records the offset to the DTIM
2233 		 * bitmap while receiving beacons; use it here to
2234 		 * enable h/w detection of our AID being marked in
2235 		 * the bitmap vector (to indicate frames for us are
2236 		 * pending at the AP).
2237 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2238 		 * XXX enable based on h/w rev for newer chips
2239 		 */
2240 		bs.bs_timoffset = ni->ni_timoff;
2241 #endif
2242 		/*
2243 		 * Calculate the number of consecutive beacons to miss
2244 		 * before taking a BMISS interrupt.  The configuration
2245 		 * is specified in ms, so we need to convert that to
2246 		 * TU's and then calculate based on the beacon interval.
2247 		 * Note that we clamp the result to at most 10 beacons.
2248 		 */
2249 		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2250 		if (bs.bs_bmissthreshold > 10)
2251 			bs.bs_bmissthreshold = 10;
2252 		else if (bs.bs_bmissthreshold <= 0)
2253 			bs.bs_bmissthreshold = 1;
2254 
2255 		/*
2256 		 * Calculate sleep duration.  The configuration is
2257 		 * given in ms.  We insure a multiple of the beacon
2258 		 * period is used.  Also, if the sleep duration is
2259 		 * greater than the DTIM period then it makes senses
2260 		 * to make it a multiple of that.
2261 		 *
2262 		 * XXX fixed at 100ms
2263 		 */
2264 		bs.bs_sleepduration =
2265 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2266 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2267 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2268 
2269 		DPRINTF(sc, ATH_DEBUG_BEACON,
2270 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2271 			, __func__
2272 			, tsf, tsftu
2273 			, bs.bs_intval
2274 			, bs.bs_nexttbtt
2275 			, bs.bs_dtimperiod
2276 			, bs.bs_nextdtim
2277 			, bs.bs_bmissthreshold
2278 			, bs.bs_sleepduration
2279 			, bs.bs_cfpperiod
2280 			, bs.bs_cfpmaxduration
2281 			, bs.bs_cfpnext
2282 			, bs.bs_timoffset
2283 		);
2284 		ath_hal_intrset(ah, 0);
2285 		ath_hal_beacontimers(ah, &bs);
2286 		sc->sc_imask |= HAL_INT_BMISS;
2287 		ath_hal_intrset(ah, sc->sc_imask);
2288 	} else {
2289 		ath_hal_intrset(ah, 0);
2290 		if (nexttbtt == intval)
2291 			intval |= HAL_BEACON_RESET_TSF;
2292 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2293 			/*
2294 			 * In IBSS mode enable the beacon timers but only
2295 			 * enable SWBA interrupts if we need to manually
2296 			 * prepare beacon frames.  Otherwise we use a
2297 			 * self-linked tx descriptor and let the hardware
2298 			 * deal with things.
2299 			 */
2300 			intval |= HAL_BEACON_ENA;
2301 			if (!sc->sc_hasveol)
2302 				sc->sc_imask |= HAL_INT_SWBA;
2303 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2304 				/*
2305 				 * Pull nexttbtt forward to reflect
2306 				 * the current TSF.
2307 				 */
2308 				tsf = ath_hal_gettsf64(ah);
2309 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2310 				do {
2311 					nexttbtt += intval;
2312 				} while (nexttbtt < tsftu);
2313 			}
2314 			ath_beaconq_config(sc);
2315 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2316 			/*
2317 			 * In AP mode we enable the beacon timers and
2318 			 * SWBA interrupts to prepare beacon frames.
2319 			 */
2320 			intval |= HAL_BEACON_ENA;
2321 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2322 			ath_beaconq_config(sc);
2323 		}
2324 		ath_hal_beaconinit(ah, nexttbtt, intval);
2325 		sc->sc_bmisscount = 0;
2326 		ath_hal_intrset(ah, sc->sc_imask);
2327 		/*
2328 		 * When using a self-linked beacon descriptor in
2329 		 * ibss mode load it once here.
2330 		 */
2331 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2332 			ath_beacon_proc(sc, 0);
2333 	}
2334 	sc->sc_syncbeacon = 0;
2335 #undef FUDGE
2336 #undef TSF_TO_TU
2337 }
2338 
2339 static void
2340 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2341 {
2342 	bus_addr_t *paddr = (bus_addr_t*) arg;
2343 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2344 	*paddr = segs->ds_addr;
2345 }
2346 
2347 static int
2348 ath_descdma_setup(struct ath_softc *sc,
2349 	struct ath_descdma *dd, ath_bufhead *head,
2350 	const char *name, int nbuf, int ndesc)
2351 {
2352 #define	DS2PHYS(_dd, _ds) \
2353 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2354 	struct ifnet *ifp = sc->sc_ifp;
2355 	struct ath_desc *ds;
2356 	struct ath_buf *bf;
2357 	int i, bsize, error;
2358 
2359 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2360 	    __func__, name, nbuf, ndesc);
2361 
2362 	dd->dd_name = name;
2363 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2364 
2365 	/*
2366 	 * Setup DMA descriptor area.
2367 	 */
2368 	error = bus_dma_tag_create(NULL,	/* parent */
2369 		       PAGE_SIZE, 0,		/* alignment, bounds */
2370 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2371 		       BUS_SPACE_MAXADDR,	/* highaddr */
2372 		       NULL, NULL,		/* filter, filterarg */
2373 		       dd->dd_desc_len,		/* maxsize */
2374 		       1,			/* nsegments */
2375 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2376 		       BUS_DMA_ALLOCNOW,	/* flags */
2377 		       NULL,			/* lockfunc */
2378 		       NULL,			/* lockarg */
2379 		       &dd->dd_dmat);
2380 	if (error != 0) {
2381 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2382 		return error;
2383 	}
2384 
2385 	/* allocate descriptors */
2386 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2387 	if (error != 0) {
2388 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2389 			"error %u\n", dd->dd_name, error);
2390 		goto fail0;
2391 	}
2392 
2393 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2394 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2395 	if (error != 0) {
2396 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2397 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2398 		goto fail1;
2399 	}
2400 
2401 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2402 				dd->dd_desc, dd->dd_desc_len,
2403 				ath_load_cb, &dd->dd_desc_paddr,
2404 				BUS_DMA_NOWAIT);
2405 	if (error != 0) {
2406 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2407 			dd->dd_name, error);
2408 		goto fail2;
2409 	}
2410 
2411 	ds = dd->dd_desc;
2412 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2413 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2414 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2415 
2416 	/* allocate rx buffers */
2417 	bsize = sizeof(struct ath_buf) * nbuf;
2418 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2419 	if (bf == NULL) {
2420 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2421 			dd->dd_name, bsize);
2422 		goto fail3;
2423 	}
2424 	dd->dd_bufptr = bf;
2425 
2426 	STAILQ_INIT(head);
2427 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2428 		bf->bf_desc = ds;
2429 		bf->bf_daddr = DS2PHYS(dd, ds);
2430 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2431 				&bf->bf_dmamap);
2432 		if (error != 0) {
2433 			if_printf(ifp, "unable to create dmamap for %s "
2434 				"buffer %u, error %u\n", dd->dd_name, i, error);
2435 			ath_descdma_cleanup(sc, dd, head);
2436 			return error;
2437 		}
2438 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2439 	}
2440 	return 0;
2441 fail3:
2442 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2443 fail2:
2444 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2445 fail1:
2446 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2447 fail0:
2448 	bus_dma_tag_destroy(dd->dd_dmat);
2449 	memset(dd, 0, sizeof(*dd));
2450 	return error;
2451 #undef DS2PHYS
2452 }
2453 
2454 static void
2455 ath_descdma_cleanup(struct ath_softc *sc,
2456 	struct ath_descdma *dd, ath_bufhead *head)
2457 {
2458 	struct ath_buf *bf;
2459 	struct ieee80211_node *ni;
2460 
2461 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2462 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2463 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2464 	bus_dma_tag_destroy(dd->dd_dmat);
2465 
2466 	STAILQ_FOREACH(bf, head, bf_list) {
2467 		if (bf->bf_m) {
2468 			m_freem(bf->bf_m);
2469 			bf->bf_m = NULL;
2470 		}
2471 		if (bf->bf_dmamap != NULL) {
2472 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2473 			bf->bf_dmamap = NULL;
2474 		}
2475 		ni = bf->bf_node;
2476 		bf->bf_node = NULL;
2477 		if (ni != NULL) {
2478 			/*
2479 			 * Reclaim node reference.
2480 			 */
2481 			ieee80211_free_node(ni);
2482 		}
2483 	}
2484 
2485 	STAILQ_INIT(head);
2486 	free(dd->dd_bufptr, M_ATHDEV);
2487 	memset(dd, 0, sizeof(*dd));
2488 }
2489 
2490 static int
2491 ath_desc_alloc(struct ath_softc *sc)
2492 {
2493 	int error;
2494 
2495 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2496 			"rx", ath_rxbuf, 1);
2497 	if (error != 0)
2498 		return error;
2499 
2500 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2501 			"tx", ath_txbuf, ATH_TXDESC);
2502 	if (error != 0) {
2503 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2504 		return error;
2505 	}
2506 
2507 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2508 			"beacon", 1, 1);
2509 	if (error != 0) {
2510 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2511 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2512 		return error;
2513 	}
2514 	return 0;
2515 }
2516 
2517 static void
2518 ath_desc_free(struct ath_softc *sc)
2519 {
2520 
2521 	if (sc->sc_bdma.dd_desc_len != 0)
2522 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2523 	if (sc->sc_txdma.dd_desc_len != 0)
2524 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2525 	if (sc->sc_rxdma.dd_desc_len != 0)
2526 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2527 }
2528 
2529 static struct ieee80211_node *
2530 ath_node_alloc(struct ieee80211_node_table *nt)
2531 {
2532 	struct ieee80211com *ic = nt->nt_ic;
2533 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2534 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2535 	struct ath_node *an;
2536 
2537 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2538 	if (an == NULL) {
2539 		/* XXX stat+msg */
2540 		return NULL;
2541 	}
2542 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2543 	ath_rate_node_init(sc, an);
2544 
2545 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2546 	return &an->an_node;
2547 }
2548 
2549 static void
2550 ath_node_free(struct ieee80211_node *ni)
2551 {
2552 	struct ieee80211com *ic = ni->ni_ic;
2553         struct ath_softc *sc = ic->ic_ifp->if_softc;
2554 
2555 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2556 
2557 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2558 	sc->sc_node_free(ni);
2559 }
2560 
2561 static u_int8_t
2562 ath_node_getrssi(const struct ieee80211_node *ni)
2563 {
2564 #define	HAL_EP_RND(x, mul) \
2565 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2566 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2567 	int32_t rssi;
2568 
2569 	/*
2570 	 * When only one frame is received there will be no state in
2571 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2572 	 */
2573 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2574 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2575 	else
2576 		rssi = ni->ni_rssi;
2577 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2578 #undef HAL_EP_RND
2579 }
2580 
2581 static int
2582 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2583 {
2584 	struct ath_hal *ah = sc->sc_ah;
2585 	int error;
2586 	struct mbuf *m;
2587 	struct ath_desc *ds;
2588 
2589 	m = bf->bf_m;
2590 	if (m == NULL) {
2591 		/*
2592 		 * NB: by assigning a page to the rx dma buffer we
2593 		 * implicitly satisfy the Atheros requirement that
2594 		 * this buffer be cache-line-aligned and sized to be
2595 		 * multiple of the cache line size.  Not doing this
2596 		 * causes weird stuff to happen (for the 5210 at least).
2597 		 */
2598 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2599 		if (m == NULL) {
2600 			DPRINTF(sc, ATH_DEBUG_ANY,
2601 				"%s: no mbuf/cluster\n", __func__);
2602 			sc->sc_stats.ast_rx_nombuf++;
2603 			return ENOMEM;
2604 		}
2605 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2606 
2607 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2608 					     bf->bf_dmamap, m,
2609 					     bf->bf_segs, &bf->bf_nseg,
2610 					     BUS_DMA_NOWAIT);
2611 		if (error != 0) {
2612 			DPRINTF(sc, ATH_DEBUG_ANY,
2613 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2614 			    __func__, error);
2615 			sc->sc_stats.ast_rx_busdma++;
2616 			m_freem(m);
2617 			return error;
2618 		}
2619 		KASSERT(bf->bf_nseg == 1,
2620 			("multi-segment packet; nseg %u", bf->bf_nseg));
2621 		bf->bf_m = m;
2622 	}
2623 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2624 
2625 	/*
2626 	 * Setup descriptors.  For receive we always terminate
2627 	 * the descriptor list with a self-linked entry so we'll
2628 	 * not get overrun under high load (as can happen with a
2629 	 * 5212 when ANI processing enables PHY error frames).
2630 	 *
2631 	 * To insure the last descriptor is self-linked we create
2632 	 * each descriptor as self-linked and add it to the end.  As
2633 	 * each additional descriptor is added the previous self-linked
2634 	 * entry is ``fixed'' naturally.  This should be safe even
2635 	 * if DMA is happening.  When processing RX interrupts we
2636 	 * never remove/process the last, self-linked, entry on the
2637 	 * descriptor list.  This insures the hardware always has
2638 	 * someplace to write a new frame.
2639 	 */
2640 	ds = bf->bf_desc;
2641 	ds->ds_link = bf->bf_daddr;	/* link to self */
2642 	ds->ds_data = bf->bf_segs[0].ds_addr;
2643 	ds->ds_vdata = mtod(m, void *);	/* for radar */
2644 	ath_hal_setuprxdesc(ah, ds
2645 		, m->m_len		/* buffer size */
2646 		, 0
2647 	);
2648 
2649 	if (sc->sc_rxlink != NULL)
2650 		*sc->sc_rxlink = bf->bf_daddr;
2651 	sc->sc_rxlink = &ds->ds_link;
2652 	return 0;
2653 }
2654 
2655 /*
2656  * Extend 15-bit time stamp from rx descriptor to
2657  * a full 64-bit TSF using the specified TSF.
2658  */
2659 static __inline u_int64_t
2660 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2661 {
2662 	if ((tsf & 0x7fff) < rstamp)
2663 		tsf -= 0x8000;
2664 	return ((tsf &~ 0x7fff) | rstamp);
2665 }
2666 
2667 /*
2668  * Intercept management frames to collect beacon rssi data
2669  * and to do ibss merges.
2670  */
2671 static void
2672 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2673 	struct ieee80211_node *ni,
2674 	int subtype, int rssi, u_int32_t rstamp)
2675 {
2676 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2677 
2678 	/*
2679 	 * Call up first so subsequent work can use information
2680 	 * potentially stored in the node (e.g. for ibss merge).
2681 	 */
2682 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2683 	switch (subtype) {
2684 	case IEEE80211_FC0_SUBTYPE_BEACON:
2685 		/* update rssi statistics for use by the hal */
2686 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2687 		if (sc->sc_syncbeacon &&
2688 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2689 			/*
2690 			 * Resync beacon timers using the tsf of the beacon
2691 			 * frame we just received.
2692 			 */
2693 			ath_beacon_config(sc);
2694 		}
2695 		/* fall thru... */
2696 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2697 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2698 		    ic->ic_state == IEEE80211_S_RUN) {
2699 			u_int64_t tsf = ath_extend_tsf(rstamp,
2700 				ath_hal_gettsf64(sc->sc_ah));
2701 			/*
2702 			 * Handle ibss merge as needed; check the tsf on the
2703 			 * frame before attempting the merge.  The 802.11 spec
2704 			 * says the station should change it's bssid to match
2705 			 * the oldest station with the same ssid, where oldest
2706 			 * is determined by the tsf.  Note that hardware
2707 			 * reconfiguration happens through callback to
2708 			 * ath_newstate as the state machine will go from
2709 			 * RUN -> RUN when this happens.
2710 			 */
2711 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2712 				DPRINTF(sc, ATH_DEBUG_STATE,
2713 				    "ibss merge, rstamp %u tsf %ju "
2714 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2715 				    (uintmax_t)ni->ni_tstamp.tsf);
2716 				(void) ieee80211_ibss_merge(ni);
2717 			}
2718 		}
2719 		break;
2720 	}
2721 }
2722 
2723 /*
2724  * Set the default antenna.
2725  */
2726 static void
2727 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2728 {
2729 	struct ath_hal *ah = sc->sc_ah;
2730 
2731 	/* XXX block beacon interrupts */
2732 	ath_hal_setdefantenna(ah, antenna);
2733 	if (sc->sc_defant != antenna)
2734 		sc->sc_stats.ast_ant_defswitch++;
2735 	sc->sc_defant = antenna;
2736 	sc->sc_rxotherant = 0;
2737 }
2738 
2739 static int
2740 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
2741 	const struct ath_desc *ds, u_int64_t tsf, int16_t nf)
2742 {
2743 	u_int8_t rix;
2744 
2745 	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
2746 
2747 	/*
2748 	 * Discard anything shorter than an ack or cts.
2749 	 */
2750 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
2751 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
2752 			__func__, m->m_pkthdr.len);
2753 		sc->sc_stats.ast_rx_tooshort++;
2754 		return 0;
2755 	}
2756 	sc->sc_rx_th.wr_tsf = htole64(
2757 		ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
2758 	rix = ds->ds_rxstat.rs_rate;
2759 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2760 	if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2761 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2762 	/* XXX propagate other error flags from descriptor */
2763 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2764 	sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
2765 	sc->sc_rx_th.wr_antnoise = nf;
2766 	sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2767 
2768 	bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
2769 
2770 	return 1;
2771 }
2772 
2773 static void
2774 ath_rx_proc(void *arg, int npending)
2775 {
2776 #define	PA2DESC(_sc, _pa) \
2777 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2778 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2779 	struct ath_softc *sc = arg;
2780 	struct ath_buf *bf;
2781 	struct ieee80211com *ic = &sc->sc_ic;
2782 	struct ifnet *ifp = sc->sc_ifp;
2783 	struct ath_hal *ah = sc->sc_ah;
2784 	struct ath_desc *ds;
2785 	struct mbuf *m;
2786 	struct ieee80211_node *ni;
2787 	struct ath_node *an;
2788 	int len, type, ngood;
2789 	u_int phyerr;
2790 	HAL_STATUS status;
2791 	int16_t nf;
2792 	u_int64_t tsf;
2793 
2794 	NET_LOCK_GIANT();		/* XXX */
2795 
2796 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2797 	ngood = 0;
2798 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2799 	tsf = ath_hal_gettsf64(ah);
2800 	do {
2801 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2802 		if (bf == NULL) {		/* NB: shouldn't happen */
2803 			if_printf(ifp, "%s: no buffer!\n", __func__);
2804 			break;
2805 		}
2806 		m = bf->bf_m;
2807 		if (m == NULL) {		/* NB: shouldn't happen */
2808 			/*
2809 			 * If mbuf allocation failed previously there
2810 			 * will be no mbuf; try again to re-populate it.
2811 			 */
2812 			/* XXX make debug msg */
2813 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2814 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2815 			goto rx_next;
2816 		}
2817 		ds = bf->bf_desc;
2818 		if (ds->ds_link == bf->bf_daddr) {
2819 			/* NB: never process the self-linked entry at the end */
2820 			break;
2821 		}
2822 		/* XXX sync descriptor memory */
2823 		/*
2824 		 * Must provide the virtual address of the current
2825 		 * descriptor, the physical address, and the virtual
2826 		 * address of the next descriptor in the h/w chain.
2827 		 * This allows the HAL to look ahead to see if the
2828 		 * hardware is done with a descriptor by checking the
2829 		 * done bit in the following descriptor and the address
2830 		 * of the current descriptor the DMA engine is working
2831 		 * on.  All this is necessary because of our use of
2832 		 * a self-linked list to avoid rx overruns.
2833 		 */
2834 		status = ath_hal_rxprocdesc(ah, ds,
2835 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2836 #ifdef ATH_DEBUG
2837 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2838 			ath_printrxbuf(bf, 0, status == HAL_OK);
2839 #endif
2840 		if (status == HAL_EINPROGRESS)
2841 			break;
2842 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2843 		if (ds->ds_rxstat.rs_more) {
2844 			/*
2845 			 * Frame spans multiple descriptors; this
2846 			 * cannot happen yet as we don't support
2847 			 * jumbograms.  If not in monitor mode,
2848 			 * discard the frame.
2849 			 */
2850 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2851 				sc->sc_stats.ast_rx_toobig++;
2852 				goto rx_next;
2853 			}
2854 			/* fall thru for monitor mode handling... */
2855 		} else if (ds->ds_rxstat.rs_status != 0) {
2856 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2857 				sc->sc_stats.ast_rx_crcerr++;
2858 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2859 				sc->sc_stats.ast_rx_fifoerr++;
2860 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2861 				sc->sc_stats.ast_rx_phyerr++;
2862 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2863 				sc->sc_stats.ast_rx_phy[phyerr]++;
2864 				goto rx_next;
2865 			}
2866 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2867 				/*
2868 				 * Decrypt error.  If the error occurred
2869 				 * because there was no hardware key, then
2870 				 * let the frame through so the upper layers
2871 				 * can process it.  This is necessary for 5210
2872 				 * parts which have no way to setup a ``clear''
2873 				 * key cache entry.
2874 				 *
2875 				 * XXX do key cache faulting
2876 				 */
2877 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2878 					goto rx_accept;
2879 				sc->sc_stats.ast_rx_badcrypt++;
2880 			}
2881 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2882 				sc->sc_stats.ast_rx_badmic++;
2883 				/*
2884 				 * Do minimal work required to hand off
2885 				 * the 802.11 header for notifcation.
2886 				 */
2887 				/* XXX frag's and qos frames */
2888 				len = ds->ds_rxstat.rs_datalen;
2889 				if (len >= sizeof (struct ieee80211_frame)) {
2890 					bus_dmamap_sync(sc->sc_dmat,
2891 					    bf->bf_dmamap,
2892 					    BUS_DMASYNC_POSTREAD);
2893 					ieee80211_notify_michael_failure(ic,
2894 					    mtod(m, struct ieee80211_frame *),
2895 					    sc->sc_splitmic ?
2896 					        ds->ds_rxstat.rs_keyix-32 :
2897 					        ds->ds_rxstat.rs_keyix
2898 					);
2899 				}
2900 			}
2901 			ifp->if_ierrors++;
2902 			/*
2903 			 * When a tap is present pass error frames
2904 			 * that have been requested.  By default we
2905 			 * pass decrypt+mic errors but others may be
2906 			 * interesting (e.g. crc).
2907 			 */
2908 			if (sc->sc_drvbpf != NULL &&
2909 			    (ds->ds_rxstat.rs_status & sc->sc_monpass)) {
2910 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2911 				    BUS_DMASYNC_POSTREAD);
2912 				/* NB: bpf needs the mbuf length setup */
2913 				len = ds->ds_rxstat.rs_datalen;
2914 				m->m_pkthdr.len = m->m_len = len;
2915 				(void) ath_rx_tap(sc, m, ds, tsf, nf);
2916 			}
2917 			/* XXX pass MIC errors up for s/w reclaculation */
2918 			goto rx_next;
2919 		}
2920 rx_accept:
2921 		/*
2922 		 * Sync and unmap the frame.  At this point we're
2923 		 * committed to passing the mbuf somewhere so clear
2924 		 * bf_m; this means a new mbuf must be allocated
2925 		 * when the rx descriptor is setup again to receive
2926 		 * another frame.
2927 		 */
2928 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2929 		    BUS_DMASYNC_POSTREAD);
2930 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2931 		bf->bf_m = NULL;
2932 
2933 		m->m_pkthdr.rcvif = ifp;
2934 		len = ds->ds_rxstat.rs_datalen;
2935 		m->m_pkthdr.len = m->m_len = len;
2936 
2937 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2938 
2939 		if (sc->sc_drvbpf != NULL && !ath_rx_tap(sc, m, ds, tsf, nf)) {
2940 			m_freem(m);		/* XXX reclaim */
2941 			goto rx_next;
2942 		}
2943 
2944 		/*
2945 		 * From this point on we assume the frame is at least
2946 		 * as large as ieee80211_frame_min; verify that.
2947 		 */
2948 		if (len < IEEE80211_MIN_LEN) {
2949 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2950 				__func__, len);
2951 			sc->sc_stats.ast_rx_tooshort++;
2952 			m_freem(m);
2953 			goto rx_next;
2954 		}
2955 
2956 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2957 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2958 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2959 				   ds->ds_rxstat.rs_rssi);
2960 		}
2961 
2962 		m_adj(m, -IEEE80211_CRC_LEN);
2963 
2964 		/*
2965 		 * Locate the node for sender, track state, and then
2966 		 * pass the (referenced) node up to the 802.11 layer
2967 		 * for its use.
2968 		 */
2969 		ni = ieee80211_find_rxnode_withkey(ic,
2970 			mtod(m, const struct ieee80211_frame_min *),
2971 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2972 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2973 		/*
2974 		 * Track rx rssi and do any rx antenna management.
2975 		 */
2976 		an = ATH_NODE(ni);
2977 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2978 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
2979 		/*
2980 		 * Send frame up for processing.
2981 		 */
2982 		type = ieee80211_input(ic, m, ni,
2983 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2984 		ieee80211_free_node(ni);
2985 		if (sc->sc_diversity) {
2986 			/*
2987 			 * When using fast diversity, change the default rx
2988 			 * antenna if diversity chooses the other antenna 3
2989 			 * times in a row.
2990 			 */
2991 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2992 				if (++sc->sc_rxotherant >= 3)
2993 					ath_setdefantenna(sc,
2994 						ds->ds_rxstat.rs_antenna);
2995 			} else
2996 				sc->sc_rxotherant = 0;
2997 		}
2998 		if (sc->sc_softled) {
2999 			/*
3000 			 * Blink for any data frame.  Otherwise do a
3001 			 * heartbeat-style blink when idle.  The latter
3002 			 * is mainly for station mode where we depend on
3003 			 * periodic beacon frames to trigger the poll event.
3004 			 */
3005 			if (type == IEEE80211_FC0_TYPE_DATA) {
3006 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3007 				ath_led_event(sc, ATH_LED_RX);
3008 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3009 				ath_led_event(sc, ATH_LED_POLL);
3010 		}
3011 		/*
3012 		 * Arrange to update the last rx timestamp only for
3013 		 * frames from our ap when operating in station mode.
3014 		 * This assumes the rx key is always setup when associated.
3015 		 */
3016 		if (ic->ic_opmode == IEEE80211_M_STA &&
3017 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3018 			ngood++;
3019 rx_next:
3020 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3021 	} while (ath_rxbuf_init(sc, bf) == 0);
3022 
3023 	/* rx signal state monitoring */
3024 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3025 	if (ath_hal_radar_event(ah))
3026 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
3027 	if (ngood)
3028 		sc->sc_lastrx = tsf;
3029 
3030 	NET_UNLOCK_GIANT();		/* XXX */
3031 #undef PA2DESC
3032 }
3033 
3034 /*
3035  * Setup a h/w transmit queue.
3036  */
3037 static struct ath_txq *
3038 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3039 {
3040 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3041 	struct ath_hal *ah = sc->sc_ah;
3042 	HAL_TXQ_INFO qi;
3043 	int qnum;
3044 
3045 	memset(&qi, 0, sizeof(qi));
3046 	qi.tqi_subtype = subtype;
3047 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3048 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3049 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3050 	/*
3051 	 * Enable interrupts only for EOL and DESC conditions.
3052 	 * We mark tx descriptors to receive a DESC interrupt
3053 	 * when a tx queue gets deep; otherwise waiting for the
3054 	 * EOL to reap descriptors.  Note that this is done to
3055 	 * reduce interrupt load and this only defers reaping
3056 	 * descriptors, never transmitting frames.  Aside from
3057 	 * reducing interrupts this also permits more concurrency.
3058 	 * The only potential downside is if the tx queue backs
3059 	 * up in which case the top half of the kernel may backup
3060 	 * due to a lack of tx descriptors.
3061 	 */
3062 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3063 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3064 	if (qnum == -1) {
3065 		/*
3066 		 * NB: don't print a message, this happens
3067 		 * normally on parts with too few tx queues
3068 		 */
3069 		return NULL;
3070 	}
3071 	if (qnum >= N(sc->sc_txq)) {
3072 		device_printf(sc->sc_dev,
3073 			"hal qnum %u out of range, max %zu!\n",
3074 			qnum, N(sc->sc_txq));
3075 		ath_hal_releasetxqueue(ah, qnum);
3076 		return NULL;
3077 	}
3078 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3079 		struct ath_txq *txq = &sc->sc_txq[qnum];
3080 
3081 		txq->axq_qnum = qnum;
3082 		txq->axq_depth = 0;
3083 		txq->axq_intrcnt = 0;
3084 		txq->axq_link = NULL;
3085 		STAILQ_INIT(&txq->axq_q);
3086 		ATH_TXQ_LOCK_INIT(sc, txq);
3087 		sc->sc_txqsetup |= 1<<qnum;
3088 	}
3089 	return &sc->sc_txq[qnum];
3090 #undef N
3091 }
3092 
3093 /*
3094  * Setup a hardware data transmit queue for the specified
3095  * access control.  The hal may not support all requested
3096  * queues in which case it will return a reference to a
3097  * previously setup queue.  We record the mapping from ac's
3098  * to h/w queues for use by ath_tx_start and also track
3099  * the set of h/w queues being used to optimize work in the
3100  * transmit interrupt handler and related routines.
3101  */
3102 static int
3103 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3104 {
3105 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3106 	struct ath_txq *txq;
3107 
3108 	if (ac >= N(sc->sc_ac2q)) {
3109 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3110 			ac, N(sc->sc_ac2q));
3111 		return 0;
3112 	}
3113 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3114 	if (txq != NULL) {
3115 		sc->sc_ac2q[ac] = txq;
3116 		return 1;
3117 	} else
3118 		return 0;
3119 #undef N
3120 }
3121 
3122 /*
3123  * Update WME parameters for a transmit queue.
3124  */
3125 static int
3126 ath_txq_update(struct ath_softc *sc, int ac)
3127 {
3128 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3129 #define	ATH_TXOP_TO_US(v)		(v<<5)
3130 	struct ieee80211com *ic = &sc->sc_ic;
3131 	struct ath_txq *txq = sc->sc_ac2q[ac];
3132 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3133 	struct ath_hal *ah = sc->sc_ah;
3134 	HAL_TXQ_INFO qi;
3135 
3136 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3137 	qi.tqi_aifs = wmep->wmep_aifsn;
3138 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3139 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3140 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3141 
3142 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3143 		device_printf(sc->sc_dev, "unable to update hardware queue "
3144 			"parameters for %s traffic!\n",
3145 			ieee80211_wme_acnames[ac]);
3146 		return 0;
3147 	} else {
3148 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3149 		return 1;
3150 	}
3151 #undef ATH_TXOP_TO_US
3152 #undef ATH_EXPONENT_TO_VALUE
3153 }
3154 
3155 /*
3156  * Callback from the 802.11 layer to update WME parameters.
3157  */
3158 static int
3159 ath_wme_update(struct ieee80211com *ic)
3160 {
3161 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3162 
3163 	return !ath_txq_update(sc, WME_AC_BE) ||
3164 	    !ath_txq_update(sc, WME_AC_BK) ||
3165 	    !ath_txq_update(sc, WME_AC_VI) ||
3166 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3167 }
3168 
3169 /*
3170  * Reclaim resources for a setup queue.
3171  */
3172 static void
3173 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3174 {
3175 
3176 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3177 	ATH_TXQ_LOCK_DESTROY(txq);
3178 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3179 }
3180 
3181 /*
3182  * Reclaim all tx queue resources.
3183  */
3184 static void
3185 ath_tx_cleanup(struct ath_softc *sc)
3186 {
3187 	int i;
3188 
3189 	ATH_TXBUF_LOCK_DESTROY(sc);
3190 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3191 		if (ATH_TXQ_SETUP(sc, i))
3192 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3193 }
3194 
3195 /*
3196  * Defragment an mbuf chain, returning at most maxfrags separate
3197  * mbufs+clusters.  If this is not possible NULL is returned and
3198  * the original mbuf chain is left in it's present (potentially
3199  * modified) state.  We use two techniques: collapsing consecutive
3200  * mbufs and replacing consecutive mbufs by a cluster.
3201  */
3202 static struct mbuf *
3203 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3204 {
3205 	struct mbuf *m, *n, *n2, **prev;
3206 	u_int curfrags;
3207 
3208 	/*
3209 	 * Calculate the current number of frags.
3210 	 */
3211 	curfrags = 0;
3212 	for (m = m0; m != NULL; m = m->m_next)
3213 		curfrags++;
3214 	/*
3215 	 * First, try to collapse mbufs.  Note that we always collapse
3216 	 * towards the front so we don't need to deal with moving the
3217 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3218 	 * less data than the following.
3219 	 */
3220 	m = m0;
3221 again:
3222 	for (;;) {
3223 		n = m->m_next;
3224 		if (n == NULL)
3225 			break;
3226 		if ((m->m_flags & M_RDONLY) == 0 &&
3227 		    n->m_len < M_TRAILINGSPACE(m)) {
3228 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3229 				n->m_len);
3230 			m->m_len += n->m_len;
3231 			m->m_next = n->m_next;
3232 			m_free(n);
3233 			if (--curfrags <= maxfrags)
3234 				return m0;
3235 		} else
3236 			m = n;
3237 	}
3238 	KASSERT(maxfrags > 1,
3239 		("maxfrags %u, but normal collapse failed", maxfrags));
3240 	/*
3241 	 * Collapse consecutive mbufs to a cluster.
3242 	 */
3243 	prev = &m0->m_next;		/* NB: not the first mbuf */
3244 	while ((n = *prev) != NULL) {
3245 		if ((n2 = n->m_next) != NULL &&
3246 		    n->m_len + n2->m_len < MCLBYTES) {
3247 			m = m_getcl(how, MT_DATA, 0);
3248 			if (m == NULL)
3249 				goto bad;
3250 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3251 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3252 				n2->m_len);
3253 			m->m_len = n->m_len + n2->m_len;
3254 			m->m_next = n2->m_next;
3255 			*prev = m;
3256 			m_free(n);
3257 			m_free(n2);
3258 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3259 				return m0;
3260 			/*
3261 			 * Still not there, try the normal collapse
3262 			 * again before we allocate another cluster.
3263 			 */
3264 			goto again;
3265 		}
3266 		prev = &n->m_next;
3267 	}
3268 	/*
3269 	 * No place where we can collapse to a cluster; punt.
3270 	 * This can occur if, for example, you request 2 frags
3271 	 * but the packet requires that both be clusters (we
3272 	 * never reallocate the first mbuf to avoid moving the
3273 	 * packet header).
3274 	 */
3275 bad:
3276 	return NULL;
3277 }
3278 
3279 /*
3280  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3281  */
3282 static int
3283 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3284 {
3285 	int i;
3286 
3287 	for (i = 0; i < rt->rateCount; i++)
3288 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3289 			return i;
3290 	return 0;		/* NB: lowest rate */
3291 }
3292 
3293 static int
3294 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3295     struct mbuf *m0)
3296 {
3297 	struct ieee80211com *ic = &sc->sc_ic;
3298 	struct ath_hal *ah = sc->sc_ah;
3299 	struct ifnet *ifp = sc->sc_ifp;
3300 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3301 	int i, error, iswep, ismcast, ismrr;
3302 	int keyix, hdrlen, pktlen, try0;
3303 	u_int8_t rix, txrate, ctsrate;
3304 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3305 	struct ath_desc *ds, *ds0;
3306 	struct ath_txq *txq;
3307 	struct ieee80211_frame *wh;
3308 	u_int subtype, flags, ctsduration;
3309 	HAL_PKT_TYPE atype;
3310 	const HAL_RATE_TABLE *rt;
3311 	HAL_BOOL shortPreamble;
3312 	struct ath_node *an;
3313 	struct mbuf *m;
3314 	u_int pri;
3315 
3316 	wh = mtod(m0, struct ieee80211_frame *);
3317 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3318 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3319 	hdrlen = ieee80211_anyhdrsize(wh);
3320 	/*
3321 	 * Packet length must not include any
3322 	 * pad bytes; deduct them here.
3323 	 */
3324 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3325 
3326 	if (iswep) {
3327 		const struct ieee80211_cipher *cip;
3328 		struct ieee80211_key *k;
3329 
3330 		/*
3331 		 * Construct the 802.11 header+trailer for an encrypted
3332 		 * frame. The only reason this can fail is because of an
3333 		 * unknown or unsupported cipher/key type.
3334 		 */
3335 		k = ieee80211_crypto_encap(ic, ni, m0);
3336 		if (k == NULL) {
3337 			/*
3338 			 * This can happen when the key is yanked after the
3339 			 * frame was queued.  Just discard the frame; the
3340 			 * 802.11 layer counts failures and provides
3341 			 * debugging/diagnostics.
3342 			 */
3343 			m_freem(m0);
3344 			return EIO;
3345 		}
3346 		/*
3347 		 * Adjust the packet + header lengths for the crypto
3348 		 * additions and calculate the h/w key index.  When
3349 		 * a s/w mic is done the frame will have had any mic
3350 		 * added to it prior to entry so m0->m_pkthdr.len above will
3351 		 * account for it. Otherwise we need to add it to the
3352 		 * packet length.
3353 		 */
3354 		cip = k->wk_cipher;
3355 		hdrlen += cip->ic_header;
3356 		pktlen += cip->ic_header + cip->ic_trailer;
3357 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3358 			pktlen += cip->ic_miclen;
3359 		keyix = k->wk_keyix;
3360 
3361 		/* packet header may have moved, reset our local pointer */
3362 		wh = mtod(m0, struct ieee80211_frame *);
3363 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3364 		/*
3365 		 * Use station key cache slot, if assigned.
3366 		 */
3367 		keyix = ni->ni_ucastkey.wk_keyix;
3368 		if (keyix == IEEE80211_KEYIX_NONE)
3369 			keyix = HAL_TXKEYIX_INVALID;
3370 	} else
3371 		keyix = HAL_TXKEYIX_INVALID;
3372 
3373 	pktlen += IEEE80211_CRC_LEN;
3374 
3375 	/*
3376 	 * Load the DMA map so any coalescing is done.  This
3377 	 * also calculates the number of descriptors we need.
3378 	 */
3379 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3380 				     bf->bf_segs, &bf->bf_nseg,
3381 				     BUS_DMA_NOWAIT);
3382 	if (error == EFBIG) {
3383 		/* XXX packet requires too many descriptors */
3384 		bf->bf_nseg = ATH_TXDESC+1;
3385 	} else if (error != 0) {
3386 		sc->sc_stats.ast_tx_busdma++;
3387 		m_freem(m0);
3388 		return error;
3389 	}
3390 	/*
3391 	 * Discard null packets and check for packets that
3392 	 * require too many TX descriptors.  We try to convert
3393 	 * the latter to a cluster.
3394 	 */
3395 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3396 		sc->sc_stats.ast_tx_linear++;
3397 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3398 		if (m == NULL) {
3399 			m_freem(m0);
3400 			sc->sc_stats.ast_tx_nombuf++;
3401 			return ENOMEM;
3402 		}
3403 		m0 = m;
3404 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3405 					     bf->bf_segs, &bf->bf_nseg,
3406 					     BUS_DMA_NOWAIT);
3407 		if (error != 0) {
3408 			sc->sc_stats.ast_tx_busdma++;
3409 			m_freem(m0);
3410 			return error;
3411 		}
3412 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3413 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3414 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3415 		sc->sc_stats.ast_tx_nodata++;
3416 		m_freem(m0);
3417 		return EIO;
3418 	}
3419 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3420 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3421 	bf->bf_m = m0;
3422 	bf->bf_node = ni;			/* NB: held reference */
3423 
3424 	/* setup descriptors */
3425 	ds = bf->bf_desc;
3426 	rt = sc->sc_currates;
3427 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3428 
3429 	/*
3430 	 * NB: the 802.11 layer marks whether or not we should
3431 	 * use short preamble based on the current mode and
3432 	 * negotiated parameters.
3433 	 */
3434 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3435 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3436 		shortPreamble = AH_TRUE;
3437 		sc->sc_stats.ast_tx_shortpre++;
3438 	} else {
3439 		shortPreamble = AH_FALSE;
3440 	}
3441 
3442 	an = ATH_NODE(ni);
3443 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3444 	ismrr = 0;				/* default no multi-rate retry*/
3445 	/*
3446 	 * Calculate Atheros packet type from IEEE80211 packet header,
3447 	 * setup for rate calculations, and select h/w transmit queue.
3448 	 */
3449 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3450 	case IEEE80211_FC0_TYPE_MGT:
3451 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3452 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3453 			atype = HAL_PKT_TYPE_BEACON;
3454 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3455 			atype = HAL_PKT_TYPE_PROBE_RESP;
3456 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3457 			atype = HAL_PKT_TYPE_ATIM;
3458 		else
3459 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3460 		rix = sc->sc_minrateix;
3461 		txrate = rt->info[rix].rateCode;
3462 		if (shortPreamble)
3463 			txrate |= rt->info[rix].shortPreamble;
3464 		try0 = ATH_TXMGTTRY;
3465 		/* NB: force all management frames to highest queue */
3466 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3467 			/* NB: force all management frames to highest queue */
3468 			pri = WME_AC_VO;
3469 		} else
3470 			pri = WME_AC_BE;
3471 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3472 		break;
3473 	case IEEE80211_FC0_TYPE_CTL:
3474 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3475 		rix = sc->sc_minrateix;
3476 		txrate = rt->info[rix].rateCode;
3477 		if (shortPreamble)
3478 			txrate |= rt->info[rix].shortPreamble;
3479 		try0 = ATH_TXMGTTRY;
3480 		/* NB: force all ctl frames to highest queue */
3481 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3482 			/* NB: force all ctl frames to highest queue */
3483 			pri = WME_AC_VO;
3484 		} else
3485 			pri = WME_AC_BE;
3486 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3487 		break;
3488 	case IEEE80211_FC0_TYPE_DATA:
3489 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3490 		/*
3491 		 * Data frames: multicast frames go out at a fixed rate,
3492 		 * otherwise consult the rate control module for the
3493 		 * rate to use.
3494 		 */
3495 		if (ismcast) {
3496 			/*
3497 			 * Check mcast rate setting in case it's changed.
3498 			 * XXX move out of fastpath
3499 			 */
3500 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3501 				sc->sc_mcastrix =
3502 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3503 				sc->sc_mcastrate = ic->ic_mcast_rate;
3504 			}
3505 			rix = sc->sc_mcastrix;
3506 			txrate = rt->info[rix].rateCode;
3507 			if (shortPreamble)
3508 				txrate |= rt->info[rix].shortPreamble;
3509 			try0 = 1;
3510 		} else {
3511 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3512 				&rix, &try0, &txrate);
3513 			sc->sc_txrate = txrate;		/* for LED blinking */
3514 			if (try0 != ATH_TXMAXTRY)
3515 				ismrr = 1;
3516 		}
3517 		pri = M_WME_GETAC(m0);
3518 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3519 			flags |= HAL_TXDESC_NOACK;
3520 		break;
3521 	default:
3522 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3523 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3524 		/* XXX statistic */
3525 		m_freem(m0);
3526 		return EIO;
3527 	}
3528 	txq = sc->sc_ac2q[pri];
3529 
3530 	/*
3531 	 * When servicing one or more stations in power-save mode
3532 	 * multicast frames must be buffered until after the beacon.
3533 	 * We use the CAB queue for that.
3534 	 */
3535 	if (ismcast && ic->ic_ps_sta) {
3536 		txq = sc->sc_cabq;
3537 		/* XXX? more bit in 802.11 frame header */
3538 	}
3539 
3540 	/*
3541 	 * Calculate miscellaneous flags.
3542 	 */
3543 	if (ismcast) {
3544 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3545 	} else if (pktlen > ic->ic_rtsthreshold) {
3546 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3547 		cix = rt->info[rix].controlRate;
3548 		sc->sc_stats.ast_tx_rts++;
3549 	}
3550 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3551 		sc->sc_stats.ast_tx_noack++;
3552 
3553 	/*
3554 	 * If 802.11g protection is enabled, determine whether
3555 	 * to use RTS/CTS or just CTS.  Note that this is only
3556 	 * done for OFDM unicast frames.
3557 	 */
3558 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3559 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3560 	    (flags & HAL_TXDESC_NOACK) == 0) {
3561 		/* XXX fragments must use CCK rates w/ protection */
3562 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3563 			flags |= HAL_TXDESC_RTSENA;
3564 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3565 			flags |= HAL_TXDESC_CTSENA;
3566 		cix = rt->info[sc->sc_protrix].controlRate;
3567 		sc->sc_stats.ast_tx_protect++;
3568 	}
3569 
3570 	/*
3571 	 * Calculate duration.  This logically belongs in the 802.11
3572 	 * layer but it lacks sufficient information to calculate it.
3573 	 */
3574 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3575 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3576 		u_int16_t dur;
3577 		/*
3578 		 * XXX not right with fragmentation.
3579 		 */
3580 		if (shortPreamble)
3581 			dur = rt->info[rix].spAckDuration;
3582 		else
3583 			dur = rt->info[rix].lpAckDuration;
3584 		*(u_int16_t *)wh->i_dur = htole16(dur);
3585 	}
3586 
3587 	/*
3588 	 * Calculate RTS/CTS rate and duration if needed.
3589 	 */
3590 	ctsduration = 0;
3591 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3592 		/*
3593 		 * CTS transmit rate is derived from the transmit rate
3594 		 * by looking in the h/w rate table.  We must also factor
3595 		 * in whether or not a short preamble is to be used.
3596 		 */
3597 		/* NB: cix is set above where RTS/CTS is enabled */
3598 		KASSERT(cix != 0xff, ("cix not setup"));
3599 		ctsrate = rt->info[cix].rateCode;
3600 		/*
3601 		 * Compute the transmit duration based on the frame
3602 		 * size and the size of an ACK frame.  We call into the
3603 		 * HAL to do the computation since it depends on the
3604 		 * characteristics of the actual PHY being used.
3605 		 *
3606 		 * NB: CTS is assumed the same size as an ACK so we can
3607 		 *     use the precalculated ACK durations.
3608 		 */
3609 		if (shortPreamble) {
3610 			ctsrate |= rt->info[cix].shortPreamble;
3611 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3612 				ctsduration += rt->info[cix].spAckDuration;
3613 			ctsduration += ath_hal_computetxtime(ah,
3614 				rt, pktlen, rix, AH_TRUE);
3615 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3616 				ctsduration += rt->info[rix].spAckDuration;
3617 		} else {
3618 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3619 				ctsduration += rt->info[cix].lpAckDuration;
3620 			ctsduration += ath_hal_computetxtime(ah,
3621 				rt, pktlen, rix, AH_FALSE);
3622 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3623 				ctsduration += rt->info[rix].lpAckDuration;
3624 		}
3625 		/*
3626 		 * Must disable multi-rate retry when using RTS/CTS.
3627 		 */
3628 		ismrr = 0;
3629 		try0 = ATH_TXMGTTRY;		/* XXX */
3630 	} else
3631 		ctsrate = 0;
3632 
3633 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3634 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3635 			sc->sc_hwmap[txrate].ieeerate, -1);
3636 
3637 	if (ic->ic_rawbpf)
3638 		bpf_mtap(ic->ic_rawbpf, m0);
3639 	if (sc->sc_drvbpf) {
3640 		u_int64_t tsf = ath_hal_gettsf64(ah);
3641 
3642 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3643 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3644 		if (iswep)
3645 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3646 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3647 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3648 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3649 
3650 		bpf_mtap2(sc->sc_drvbpf,
3651 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3652 	}
3653 
3654 	/*
3655 	 * Determine if a tx interrupt should be generated for
3656 	 * this descriptor.  We take a tx interrupt to reap
3657 	 * descriptors when the h/w hits an EOL condition or
3658 	 * when the descriptor is specifically marked to generate
3659 	 * an interrupt.  We periodically mark descriptors in this
3660 	 * way to insure timely replenishing of the supply needed
3661 	 * for sending frames.  Defering interrupts reduces system
3662 	 * load and potentially allows more concurrent work to be
3663 	 * done but if done to aggressively can cause senders to
3664 	 * backup.
3665 	 *
3666 	 * NB: use >= to deal with sc_txintrperiod changing
3667 	 *     dynamically through sysctl.
3668 	 */
3669 	if (flags & HAL_TXDESC_INTREQ) {
3670 		txq->axq_intrcnt = 0;
3671 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3672 		flags |= HAL_TXDESC_INTREQ;
3673 		txq->axq_intrcnt = 0;
3674 	}
3675 
3676 	/*
3677 	 * Formulate first tx descriptor with tx controls.
3678 	 */
3679 	/* XXX check return value? */
3680 	ath_hal_setuptxdesc(ah, ds
3681 		, pktlen		/* packet length */
3682 		, hdrlen		/* header length */
3683 		, atype			/* Atheros packet type */
3684 		, ni->ni_txpower	/* txpower */
3685 		, txrate, try0		/* series 0 rate/tries */
3686 		, keyix			/* key cache index */
3687 		, sc->sc_txantenna	/* antenna mode */
3688 		, flags			/* flags */
3689 		, ctsrate		/* rts/cts rate */
3690 		, ctsduration		/* rts/cts duration */
3691 	);
3692 	bf->bf_flags = flags;
3693 	/*
3694 	 * Setup the multi-rate retry state only when we're
3695 	 * going to use it.  This assumes ath_hal_setuptxdesc
3696 	 * initializes the descriptors (so we don't have to)
3697 	 * when the hardware supports multi-rate retry and
3698 	 * we don't use it.
3699 	 */
3700 	if (ismrr)
3701 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3702 
3703 	/*
3704 	 * Fillin the remainder of the descriptor info.
3705 	 */
3706 	ds0 = ds;
3707 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3708 		ds->ds_data = bf->bf_segs[i].ds_addr;
3709 		if (i == bf->bf_nseg - 1)
3710 			ds->ds_link = 0;
3711 		else
3712 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3713 		ath_hal_filltxdesc(ah, ds
3714 			, bf->bf_segs[i].ds_len	/* segment length */
3715 			, i == 0		/* first segment */
3716 			, i == bf->bf_nseg - 1	/* last segment */
3717 			, ds0			/* first descriptor */
3718 		);
3719 		DPRINTF(sc, ATH_DEBUG_XMIT,
3720 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3721 			__func__, i, ds->ds_link, ds->ds_data,
3722 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3723 	}
3724 	/*
3725 	 * Insert the frame on the outbound list and
3726 	 * pass it on to the hardware.
3727 	 */
3728 	ATH_TXQ_LOCK(txq);
3729 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3730 	if (txq->axq_link == NULL) {
3731 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3732 		DPRINTF(sc, ATH_DEBUG_XMIT,
3733 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3734 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3735 			txq->axq_depth);
3736 	} else {
3737 		*txq->axq_link = bf->bf_daddr;
3738 		DPRINTF(sc, ATH_DEBUG_XMIT,
3739 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3740 			txq->axq_qnum, txq->axq_link,
3741 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3742 	}
3743 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3744 	/*
3745 	 * The CAB queue is started from the SWBA handler since
3746 	 * frames only go out on DTIM and to avoid possible races.
3747 	 */
3748 	if (txq != sc->sc_cabq)
3749 		ath_hal_txstart(ah, txq->axq_qnum);
3750 	ATH_TXQ_UNLOCK(txq);
3751 
3752 	return 0;
3753 }
3754 
3755 /*
3756  * Process completed xmit descriptors from the specified queue.
3757  */
3758 static int
3759 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3760 {
3761 	struct ath_hal *ah = sc->sc_ah;
3762 	struct ieee80211com *ic = &sc->sc_ic;
3763 	struct ath_buf *bf;
3764 	struct ath_desc *ds, *ds0;
3765 	struct ieee80211_node *ni;
3766 	struct ath_node *an;
3767 	int sr, lr, pri, nacked;
3768 	HAL_STATUS status;
3769 
3770 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3771 		__func__, txq->axq_qnum,
3772 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3773 		txq->axq_link);
3774 	nacked = 0;
3775 	for (;;) {
3776 		ATH_TXQ_LOCK(txq);
3777 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3778 		bf = STAILQ_FIRST(&txq->axq_q);
3779 		if (bf == NULL) {
3780 			ATH_TXQ_UNLOCK(txq);
3781 			break;
3782 		}
3783 		ds0 = &bf->bf_desc[0];
3784 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3785 		status = ath_hal_txprocdesc(ah, ds);
3786 #ifdef ATH_DEBUG
3787 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3788 			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
3789 #endif
3790 		if (status == HAL_EINPROGRESS) {
3791 			ATH_TXQ_UNLOCK(txq);
3792 			break;
3793 		}
3794 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3795 		if (txq->axq_depth == 0)
3796 			txq->axq_link = NULL;
3797 		ATH_TXQ_UNLOCK(txq);
3798 
3799 		ni = bf->bf_node;
3800 		if (ni != NULL) {
3801 			an = ATH_NODE(ni);
3802 			if (ds->ds_txstat.ts_status == 0) {
3803 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3804 				sc->sc_stats.ast_ant_tx[txant]++;
3805 				sc->sc_ant_tx[txant]++;
3806 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3807 					sc->sc_stats.ast_tx_altrate++;
3808 				sc->sc_stats.ast_tx_rssi =
3809 					ds->ds_txstat.ts_rssi;
3810 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3811 					ds->ds_txstat.ts_rssi);
3812 				pri = M_WME_GETAC(bf->bf_m);
3813 				if (pri >= WME_AC_VO)
3814 					ic->ic_wme.wme_hipri_traffic++;
3815 				ni->ni_inact = ni->ni_inact_reload;
3816 			} else {
3817 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3818 					sc->sc_stats.ast_tx_xretries++;
3819 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3820 					sc->sc_stats.ast_tx_fifoerr++;
3821 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3822 					sc->sc_stats.ast_tx_filtered++;
3823 			}
3824 			sr = ds->ds_txstat.ts_shortretry;
3825 			lr = ds->ds_txstat.ts_longretry;
3826 			sc->sc_stats.ast_tx_shortretry += sr;
3827 			sc->sc_stats.ast_tx_longretry += lr;
3828 			/*
3829 			 * Hand the descriptor to the rate control algorithm.
3830 			 */
3831 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3832 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3833 				/*
3834 				 * If frame was ack'd update the last rx time
3835 				 * used to workaround phantom bmiss interrupts.
3836 				 */
3837 				if (ds->ds_txstat.ts_status == 0)
3838 					nacked++;
3839 				ath_rate_tx_complete(sc, an, ds, ds0);
3840 			}
3841 			/*
3842 			 * Reclaim reference to node.
3843 			 *
3844 			 * NB: the node may be reclaimed here if, for example
3845 			 *     this is a DEAUTH message that was sent and the
3846 			 *     node was timed out due to inactivity.
3847 			 */
3848 			ieee80211_free_node(ni);
3849 		}
3850 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3851 		    BUS_DMASYNC_POSTWRITE);
3852 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3853 		m_freem(bf->bf_m);
3854 		bf->bf_m = NULL;
3855 		bf->bf_node = NULL;
3856 
3857 		ATH_TXBUF_LOCK(sc);
3858 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3859 		ATH_TXBUF_UNLOCK(sc);
3860 	}
3861 	return nacked;
3862 }
3863 
3864 static __inline int
3865 txqactive(struct ath_hal *ah, int qnum)
3866 {
3867 	u_int32_t txqs = 1<<qnum;
3868 	ath_hal_gettxintrtxqs(ah, &txqs);
3869 	return (txqs & (1<<qnum));
3870 }
3871 
3872 /*
3873  * Deferred processing of transmit interrupt; special-cased
3874  * for a single hardware transmit queue (e.g. 5210 and 5211).
3875  */
3876 static void
3877 ath_tx_proc_q0(void *arg, int npending)
3878 {
3879 	struct ath_softc *sc = arg;
3880 	struct ifnet *ifp = sc->sc_ifp;
3881 
3882 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
3883 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3884 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3885 		ath_tx_processq(sc, sc->sc_cabq);
3886 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3887 	sc->sc_tx_timer = 0;
3888 
3889 	if (sc->sc_softled)
3890 		ath_led_event(sc, ATH_LED_TX);
3891 
3892 	ath_start(ifp);
3893 }
3894 
3895 /*
3896  * Deferred processing of transmit interrupt; special-cased
3897  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3898  */
3899 static void
3900 ath_tx_proc_q0123(void *arg, int npending)
3901 {
3902 	struct ath_softc *sc = arg;
3903 	struct ifnet *ifp = sc->sc_ifp;
3904 	int nacked;
3905 
3906 	/*
3907 	 * Process each active queue.
3908 	 */
3909 	nacked = 0;
3910 	if (txqactive(sc->sc_ah, 0))
3911 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
3912 	if (txqactive(sc->sc_ah, 1))
3913 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
3914 	if (txqactive(sc->sc_ah, 2))
3915 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
3916 	if (txqactive(sc->sc_ah, 3))
3917 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
3918 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3919 		ath_tx_processq(sc, sc->sc_cabq);
3920 	if (nacked)
3921 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3922 
3923 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3924 	sc->sc_tx_timer = 0;
3925 
3926 	if (sc->sc_softled)
3927 		ath_led_event(sc, ATH_LED_TX);
3928 
3929 	ath_start(ifp);
3930 }
3931 
3932 /*
3933  * Deferred processing of transmit interrupt.
3934  */
3935 static void
3936 ath_tx_proc(void *arg, int npending)
3937 {
3938 	struct ath_softc *sc = arg;
3939 	struct ifnet *ifp = sc->sc_ifp;
3940 	int i, nacked;
3941 
3942 	/*
3943 	 * Process each active queue.
3944 	 */
3945 	nacked = 0;
3946 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3947 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
3948 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
3949 	if (nacked)
3950 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3951 
3952 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3953 	sc->sc_tx_timer = 0;
3954 
3955 	if (sc->sc_softled)
3956 		ath_led_event(sc, ATH_LED_TX);
3957 
3958 	ath_start(ifp);
3959 }
3960 
3961 static void
3962 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3963 {
3964 #ifdef ATH_DEBUG
3965 	struct ath_hal *ah = sc->sc_ah;
3966 #endif
3967 	struct ieee80211_node *ni;
3968 	struct ath_buf *bf;
3969 	u_int ix;
3970 
3971 	/*
3972 	 * NB: this assumes output has been stopped and
3973 	 *     we do not need to block ath_tx_tasklet
3974 	 */
3975 	for (ix = 0;; ix++) {
3976 		ATH_TXQ_LOCK(txq);
3977 		bf = STAILQ_FIRST(&txq->axq_q);
3978 		if (bf == NULL) {
3979 			txq->axq_link = NULL;
3980 			ATH_TXQ_UNLOCK(txq);
3981 			break;
3982 		}
3983 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3984 		ATH_TXQ_UNLOCK(txq);
3985 #ifdef ATH_DEBUG
3986 		if (sc->sc_debug & ATH_DEBUG_RESET) {
3987 			ath_printtxbuf(bf, txq->axq_qnum, ix,
3988 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3989 			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
3990 				bf->bf_m->m_len, 0, -1);
3991 		}
3992 #endif /* ATH_DEBUG */
3993 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3994 		m_freem(bf->bf_m);
3995 		bf->bf_m = NULL;
3996 		ni = bf->bf_node;
3997 		bf->bf_node = NULL;
3998 		if (ni != NULL) {
3999 			/*
4000 			 * Reclaim node reference.
4001 			 */
4002 			ieee80211_free_node(ni);
4003 		}
4004 		ATH_TXBUF_LOCK(sc);
4005 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4006 		ATH_TXBUF_UNLOCK(sc);
4007 	}
4008 }
4009 
4010 static void
4011 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4012 {
4013 	struct ath_hal *ah = sc->sc_ah;
4014 
4015 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4016 	    __func__, txq->axq_qnum,
4017 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4018 	    txq->axq_link);
4019 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4020 }
4021 
4022 /*
4023  * Drain the transmit queues and reclaim resources.
4024  */
4025 static void
4026 ath_draintxq(struct ath_softc *sc)
4027 {
4028 	struct ath_hal *ah = sc->sc_ah;
4029 	struct ifnet *ifp = sc->sc_ifp;
4030 	int i;
4031 
4032 	/* XXX return value */
4033 	if (!sc->sc_invalid) {
4034 		/* don't touch the hardware if marked invalid */
4035 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4036 		    __func__, sc->sc_bhalq,
4037 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4038 		    NULL);
4039 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4040 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4041 			if (ATH_TXQ_SETUP(sc, i))
4042 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4043 	}
4044 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4045 		if (ATH_TXQ_SETUP(sc, i))
4046 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4047 #ifdef ATH_DEBUG
4048 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4049 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4050 		if (bf != NULL && bf->bf_m != NULL) {
4051 			ath_printtxbuf(bf, sc->sc_bhalq, 0,
4052 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4053 			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
4054 				bf->bf_m->m_len, 0, -1);
4055 		}
4056 	}
4057 #endif /* ATH_DEBUG */
4058 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4059 	sc->sc_tx_timer = 0;
4060 }
4061 
4062 /*
4063  * Disable the receive h/w in preparation for a reset.
4064  */
4065 static void
4066 ath_stoprecv(struct ath_softc *sc)
4067 {
4068 #define	PA2DESC(_sc, _pa) \
4069 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4070 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4071 	struct ath_hal *ah = sc->sc_ah;
4072 
4073 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4074 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4075 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4076 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4077 #ifdef ATH_DEBUG
4078 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4079 		struct ath_buf *bf;
4080 		u_int ix;
4081 
4082 		printf("%s: rx queue %p, link %p\n", __func__,
4083 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4084 		ix = 0;
4085 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4086 			struct ath_desc *ds = bf->bf_desc;
4087 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4088 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4089 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4090 				ath_printrxbuf(bf, ix, status == HAL_OK);
4091 			ix++;
4092 		}
4093 	}
4094 #endif
4095 	sc->sc_rxlink = NULL;		/* just in case */
4096 #undef PA2DESC
4097 }
4098 
4099 /*
4100  * Enable the receive h/w following a reset.
4101  */
4102 static int
4103 ath_startrecv(struct ath_softc *sc)
4104 {
4105 	struct ath_hal *ah = sc->sc_ah;
4106 	struct ath_buf *bf;
4107 
4108 	sc->sc_rxlink = NULL;
4109 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4110 		int error = ath_rxbuf_init(sc, bf);
4111 		if (error != 0) {
4112 			DPRINTF(sc, ATH_DEBUG_RECV,
4113 				"%s: ath_rxbuf_init failed %d\n",
4114 				__func__, error);
4115 			return error;
4116 		}
4117 	}
4118 
4119 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4120 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4121 	ath_hal_rxena(ah);		/* enable recv descriptors */
4122 	ath_mode_init(sc);		/* set filters, etc. */
4123 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4124 	return 0;
4125 }
4126 
4127 /*
4128  * Update internal state after a channel change.
4129  */
4130 static void
4131 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4132 {
4133 	struct ieee80211com *ic = &sc->sc_ic;
4134 	enum ieee80211_phymode mode;
4135 	u_int16_t flags;
4136 
4137 	/*
4138 	 * Change channels and update the h/w rate map
4139 	 * if we're switching; e.g. 11a to 11b/g.
4140 	 */
4141 	mode = ieee80211_chan2mode(ic, chan);
4142 	if (mode != sc->sc_curmode)
4143 		ath_setcurmode(sc, mode);
4144 	/*
4145 	 * Update BPF state.  NB: ethereal et. al. don't handle
4146 	 * merged flags well so pick a unique mode for their use.
4147 	 */
4148 	if (IEEE80211_IS_CHAN_A(chan))
4149 		flags = IEEE80211_CHAN_A;
4150 	/* XXX 11g schizophrenia */
4151 	else if (IEEE80211_IS_CHAN_G(chan) ||
4152 	    IEEE80211_IS_CHAN_PUREG(chan))
4153 		flags = IEEE80211_CHAN_G;
4154 	else
4155 		flags = IEEE80211_CHAN_B;
4156 	if (IEEE80211_IS_CHAN_T(chan))
4157 		flags |= IEEE80211_CHAN_TURBO;
4158 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4159 		htole16(chan->ic_freq);
4160 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4161 		htole16(flags);
4162 }
4163 
4164 /*
4165  * Poll for a channel clear indication; this is required
4166  * for channels requiring DFS and not previously visited
4167  * and/or with a recent radar detection.
4168  */
4169 static void
4170 ath_dfswait(void *arg)
4171 {
4172 	struct ath_softc *sc = arg;
4173 	struct ath_hal *ah = sc->sc_ah;
4174 	HAL_CHANNEL hchan;
4175 
4176 	ath_hal_radar_wait(ah, &hchan);
4177 	DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n",
4178 	    __func__, hchan.channel, hchan.channelFlags, hchan.privFlags);
4179 
4180 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4181 		if_printf(sc->sc_ifp,
4182 		    "channel %u/0x%x/0x%x has interference\n",
4183 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4184 		return;
4185 	}
4186 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4187 		/* XXX should not happen */
4188 		return;
4189 	}
4190 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4191 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4192 		sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4193 		if_printf(sc->sc_ifp,
4194 		    "channel %u/0x%x/0x%x marked clear\n",
4195 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4196 	} else
4197 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4198 }
4199 
4200 /*
4201  * Set/change channels.  If the channel is really being changed,
4202  * it's done by reseting the chip.  To accomplish this we must
4203  * first cleanup any pending DMA, then restart stuff after a la
4204  * ath_init.
4205  */
4206 static int
4207 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4208 {
4209 	struct ath_hal *ah = sc->sc_ah;
4210 	struct ieee80211com *ic = &sc->sc_ic;
4211 	HAL_CHANNEL hchan;
4212 
4213 	/*
4214 	 * Convert to a HAL channel description with
4215 	 * the flags constrained to reflect the current
4216 	 * operating mode.
4217 	 */
4218 	hchan.channel = chan->ic_freq;
4219 	hchan.channelFlags = ath_chan2flags(ic, chan);
4220 
4221 	DPRINTF(sc, ATH_DEBUG_RESET,
4222 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4223 	    __func__,
4224 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4225 		sc->sc_curchan.channelFlags),
4226 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4227 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4228 	        hchan.channel, hchan.channelFlags);
4229 	if (hchan.channel != sc->sc_curchan.channel ||
4230 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4231 		HAL_STATUS status;
4232 
4233 		/*
4234 		 * To switch channels clear any pending DMA operations;
4235 		 * wait long enough for the RX fifo to drain, reset the
4236 		 * hardware at the new frequency, and then re-enable
4237 		 * the relevant bits of the h/w.
4238 		 */
4239 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4240 		ath_draintxq(sc);		/* clear pending tx frames */
4241 		ath_stoprecv(sc);		/* turn off frame recv */
4242 		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
4243 			if_printf(ic->ic_ifp, "%s: unable to reset "
4244 			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n",
4245 			    __func__, ieee80211_chan2ieee(ic, chan),
4246 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4247 			return EIO;
4248 		}
4249 		sc->sc_curchan = hchan;
4250 		ath_update_txpow(sc);		/* update tx power state */
4251 		sc->sc_diversity = ath_hal_getdiversity(ah);
4252 		sc->sc_calinterval = 1;
4253 		sc->sc_caltries = 0;
4254 
4255 		/*
4256 		 * Re-enable rx framework.
4257 		 */
4258 		if (ath_startrecv(sc) != 0) {
4259 			if_printf(ic->ic_ifp,
4260 				"%s: unable to restart recv logic\n", __func__);
4261 			return EIO;
4262 		}
4263 
4264 		/*
4265 		 * Change channels and update the h/w rate map
4266 		 * if we're switching; e.g. 11a to 11b/g.
4267 		 */
4268 		ic->ic_ibss_chan = chan;
4269 		ath_chan_change(sc, chan);
4270 
4271 		/*
4272 		 * Handle DFS required waiting period to determine
4273 		 * if channel is clear of radar traffic.
4274 		 */
4275 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4276 #define	DFS_AND_NOT_CLEAR(_c) \
4277 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4278 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4279 				if_printf(sc->sc_ifp,
4280 					"wait for DFS clear channel signal\n");
4281 				/* XXX stop sndq */
4282 				sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4283 				callout_reset(&sc->sc_dfs_ch,
4284 					2 * hz, ath_dfswait, sc);
4285 			} else
4286 				callout_stop(&sc->sc_dfs_ch);
4287 #undef DFS_NOT_CLEAR
4288 		}
4289 
4290 		/*
4291 		 * Re-enable interrupts.
4292 		 */
4293 		ath_hal_intrset(ah, sc->sc_imask);
4294 	}
4295 	return 0;
4296 }
4297 
4298 static void
4299 ath_next_scan(void *arg)
4300 {
4301 	struct ath_softc *sc = arg;
4302 	struct ieee80211com *ic = &sc->sc_ic;
4303 
4304 	if (ic->ic_state == IEEE80211_S_SCAN)
4305 		ieee80211_next_scan(ic);
4306 }
4307 
4308 /*
4309  * Periodically recalibrate the PHY to account
4310  * for temperature/environment changes.
4311  */
4312 static void
4313 ath_calibrate(void *arg)
4314 {
4315 	struct ath_softc *sc = arg;
4316 	struct ath_hal *ah = sc->sc_ah;
4317 	HAL_BOOL iqCalDone;
4318 
4319 	sc->sc_stats.ast_per_cal++;
4320 
4321 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4322 		/*
4323 		 * Rfgain is out of bounds, reset the chip
4324 		 * to load new gain values.
4325 		 */
4326 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4327 			"%s: rfgain change\n", __func__);
4328 		sc->sc_stats.ast_per_rfgain++;
4329 		ath_reset(sc->sc_ifp);
4330 	}
4331 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4332 		DPRINTF(sc, ATH_DEBUG_ANY,
4333 			"%s: calibration of channel %u failed\n",
4334 			__func__, sc->sc_curchan.channel);
4335 		sc->sc_stats.ast_per_calfail++;
4336 	}
4337 	/*
4338 	 * Calibrate noise floor data again in case of change.
4339 	 */
4340 	ath_hal_process_noisefloor(ah);
4341 	/*
4342 	 * Poll more frequently when the IQ calibration is in
4343 	 * progress to speedup loading the final settings.
4344 	 * We temper this aggressive polling with an exponential
4345 	 * back off after 4 tries up to ath_calinterval.
4346 	 */
4347 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4348 		sc->sc_caltries = 0;
4349 		sc->sc_calinterval = ath_calinterval;
4350 	} else if (sc->sc_caltries > 4) {
4351 		sc->sc_caltries = 0;
4352 		sc->sc_calinterval <<= 1;
4353 		if (sc->sc_calinterval > ath_calinterval)
4354 			sc->sc_calinterval = ath_calinterval;
4355 	}
4356 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4357 		("bad calibration interval %u", sc->sc_calinterval));
4358 
4359 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4360 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4361 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4362 	sc->sc_caltries++;
4363 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4364 		ath_calibrate, sc);
4365 }
4366 
4367 static int
4368 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4369 {
4370 	struct ifnet *ifp = ic->ic_ifp;
4371 	struct ath_softc *sc = ifp->if_softc;
4372 	struct ath_hal *ah = sc->sc_ah;
4373 	struct ieee80211_node *ni;
4374 	int i, error;
4375 	const u_int8_t *bssid;
4376 	u_int32_t rfilt;
4377 	static const HAL_LED_STATE leds[] = {
4378 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4379 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4380 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4381 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4382 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4383 	};
4384 
4385 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4386 		ieee80211_state_name[ic->ic_state],
4387 		ieee80211_state_name[nstate]);
4388 
4389 	callout_stop(&sc->sc_scan_ch);
4390 	callout_stop(&sc->sc_cal_ch);
4391 	callout_stop(&sc->sc_dfs_ch);
4392 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4393 
4394 	if (nstate == IEEE80211_S_INIT) {
4395 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4396 		/*
4397 		 * NB: disable interrupts so we don't rx frames.
4398 		 */
4399 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4400 		/*
4401 		 * Notify the rate control algorithm.
4402 		 */
4403 		ath_rate_newstate(sc, nstate);
4404 		goto done;
4405 	}
4406 	ni = ic->ic_bss;
4407 	error = ath_chan_set(sc, ic->ic_curchan);
4408 	if (error != 0)
4409 		goto bad;
4410 	rfilt = ath_calcrxfilter(sc, nstate);
4411 	if (nstate == IEEE80211_S_SCAN)
4412 		bssid = ifp->if_broadcastaddr;
4413 	else
4414 		bssid = ni->ni_bssid;
4415 	ath_hal_setrxfilter(ah, rfilt);
4416 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4417 		 __func__, rfilt, ether_sprintf(bssid));
4418 
4419 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4420 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4421 	else
4422 		ath_hal_setassocid(ah, bssid, 0);
4423 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4424 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4425 			if (ath_hal_keyisvalid(ah, i))
4426 				ath_hal_keysetmac(ah, i, bssid);
4427 	}
4428 
4429 	/*
4430 	 * Notify the rate control algorithm so rates
4431 	 * are setup should ath_beacon_alloc be called.
4432 	 */
4433 	ath_rate_newstate(sc, nstate);
4434 
4435 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4436 		/* nothing to do */;
4437 	} else if (nstate == IEEE80211_S_RUN) {
4438 		DPRINTF(sc, ATH_DEBUG_STATE,
4439 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4440 			"capinfo=0x%04x chan=%d\n"
4441 			 , __func__
4442 			 , ic->ic_flags
4443 			 , ni->ni_intval
4444 			 , ether_sprintf(ni->ni_bssid)
4445 			 , ni->ni_capinfo
4446 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4447 
4448 		switch (ic->ic_opmode) {
4449 		case IEEE80211_M_HOSTAP:
4450 		case IEEE80211_M_IBSS:
4451 			/*
4452 			 * Allocate and setup the beacon frame.
4453 			 *
4454 			 * Stop any previous beacon DMA.  This may be
4455 			 * necessary, for example, when an ibss merge
4456 			 * causes reconfiguration; there will be a state
4457 			 * transition from RUN->RUN that means we may
4458 			 * be called with beacon transmission active.
4459 			 */
4460 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4461 			ath_beacon_free(sc);
4462 			error = ath_beacon_alloc(sc, ni);
4463 			if (error != 0)
4464 				goto bad;
4465 			/*
4466 			 * If joining an adhoc network defer beacon timer
4467 			 * configuration to the next beacon frame so we
4468 			 * have a current TSF to use.  Otherwise we're
4469 			 * starting an ibss/bss so there's no need to delay.
4470 			 */
4471 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4472 			    ic->ic_bss->ni_tstamp.tsf != 0)
4473 				sc->sc_syncbeacon = 1;
4474 			else
4475 				ath_beacon_config(sc);
4476 			break;
4477 		case IEEE80211_M_STA:
4478 			/*
4479 			 * Allocate a key cache slot to the station.
4480 			 */
4481 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4482 			    sc->sc_hasclrkey &&
4483 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4484 				ath_setup_stationkey(ni);
4485 			/*
4486 			 * Defer beacon timer configuration to the next
4487 			 * beacon frame so we have a current TSF to use
4488 			 * (any TSF collected when scanning is likely old).
4489 			 */
4490 			sc->sc_syncbeacon = 1;
4491 			break;
4492 		default:
4493 			break;
4494 		}
4495 
4496 		/*
4497 		 * Let the hal process statistics collected during a
4498 		 * scan so it can provide calibrated noise floor data.
4499 		 */
4500 		ath_hal_process_noisefloor(ah);
4501 		/*
4502 		 * Reset rssi stats; maybe not the best place...
4503 		 */
4504 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4505 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4506 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4507 	} else {
4508 		ath_hal_intrset(ah,
4509 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4510 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4511 	}
4512 done:
4513 	/*
4514 	 * Invoke the parent method to complete the work.
4515 	 */
4516 	error = sc->sc_newstate(ic, nstate, arg);
4517 	/*
4518 	 * Finally, start any timers.
4519 	 */
4520 	if (nstate == IEEE80211_S_RUN) {
4521 		/* start periodic recalibration timer */
4522 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4523 			ath_calibrate, sc);
4524 	} else if (nstate == IEEE80211_S_SCAN) {
4525 		/* start ap/neighbor scan timer */
4526 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4527 			ath_next_scan, sc);
4528 	}
4529 bad:
4530 	return error;
4531 }
4532 
4533 /*
4534  * Allocate a key cache slot to the station so we can
4535  * setup a mapping from key index to node. The key cache
4536  * slot is needed for managing antenna state and for
4537  * compression when stations do not use crypto.  We do
4538  * it uniliaterally here; if crypto is employed this slot
4539  * will be reassigned.
4540  */
4541 static void
4542 ath_setup_stationkey(struct ieee80211_node *ni)
4543 {
4544 	struct ieee80211com *ic = ni->ni_ic;
4545 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4546 	ieee80211_keyix keyix, rxkeyix;
4547 
4548 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4549 		/*
4550 		 * Key cache is full; we'll fall back to doing
4551 		 * the more expensive lookup in software.  Note
4552 		 * this also means no h/w compression.
4553 		 */
4554 		/* XXX msg+statistic */
4555 	} else {
4556 		/* XXX locking? */
4557 		ni->ni_ucastkey.wk_keyix = keyix;
4558 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4559 		/* NB: this will create a pass-thru key entry */
4560 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4561 	}
4562 }
4563 
4564 /*
4565  * Setup driver-specific state for a newly associated node.
4566  * Note that we're called also on a re-associate, the isnew
4567  * param tells us if this is the first time or not.
4568  */
4569 static void
4570 ath_newassoc(struct ieee80211_node *ni, int isnew)
4571 {
4572 	struct ieee80211com *ic = ni->ni_ic;
4573 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4574 
4575 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4576 	if (isnew &&
4577 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4578 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4579 		    ("new assoc with a unicast key already setup (keyix %u)",
4580 		    ni->ni_ucastkey.wk_keyix));
4581 		ath_setup_stationkey(ni);
4582 	}
4583 }
4584 
4585 static int
4586 ath_getchannels(struct ath_softc *sc, u_int cc,
4587 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4588 {
4589 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4590 #define IS_CHAN_PUBLIC_SAFETY(_c) \
4591 	(((_c)->channelFlags & CHANNEL_5GHZ) && \
4592 	 ((_c)->channel > 4940 && (_c)->channel < 4990))
4593 	struct ieee80211com *ic = &sc->sc_ic;
4594 	struct ifnet *ifp = sc->sc_ifp;
4595 	struct ath_hal *ah = sc->sc_ah;
4596 	HAL_CHANNEL *chans;
4597 	int i, ix, nchan;
4598 
4599 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4600 			M_TEMP, M_NOWAIT);
4601 	if (chans == NULL) {
4602 		if_printf(ifp, "unable to allocate channel table\n");
4603 		return ENOMEM;
4604 	}
4605 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4606 	    NULL, 0, NULL,
4607 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4608 		u_int32_t rd;
4609 
4610 		ath_hal_getregdomain(ah, &rd);
4611 		if_printf(ifp, "unable to collect channel list from hal; "
4612 			"regdomain likely %u country code %u\n", rd, cc);
4613 		free(chans, M_TEMP);
4614 		return EINVAL;
4615 	}
4616 
4617 	/*
4618 	 * Convert HAL channels to ieee80211 ones and insert
4619 	 * them in the table according to their channel number.
4620 	 */
4621 	for (i = 0; i < nchan; i++) {
4622 		HAL_CHANNEL *c = &chans[i];
4623 		u_int16_t flags;
4624 
4625 		/*
4626 		 * XXX we're not ready to handle the ieee number mapping
4627 		 * for public safety channels as they overlap with any
4628 		 * 2GHz channels; for now use the non-public safety
4629 		 * numbering which is non-overlapping.
4630 		 */
4631 		if (IS_CHAN_PUBLIC_SAFETY(c))
4632 			ix = (c->channel - 4000) / 5;
4633 		else
4634 			ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4635 		if (ix > IEEE80211_CHAN_MAX) {
4636 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4637 				ix, c->channel, c->channelFlags);
4638 			continue;
4639 		}
4640 		if (ix < 0) {
4641 			/* XXX can't handle stuff <2400 right now */
4642 			if (bootverbose)
4643 				if_printf(ifp, "hal channel %d (%u/%x) "
4644 				    "cannot be handled; ignored\n",
4645 				    ix, c->channel, c->channelFlags);
4646 			continue;
4647 		}
4648 		/*
4649 		 * Calculate net80211 flags; most are compatible
4650 		 * but some need massaging.  Note the static turbo
4651 		 * conversion can be removed once net80211 is updated
4652 		 * to understand static vs. dynamic turbo.
4653 		 */
4654 		flags = c->channelFlags & COMPAT;
4655 		if (c->channelFlags & CHANNEL_STURBO)
4656 			flags |= IEEE80211_CHAN_TURBO;
4657 		if (ic->ic_channels[ix].ic_freq == 0) {
4658 			ic->ic_channels[ix].ic_freq = c->channel;
4659 			ic->ic_channels[ix].ic_flags = flags;
4660 		} else {
4661 			/* channels overlap; e.g. 11g and 11b */
4662 			ic->ic_channels[ix].ic_flags |= flags;
4663 		}
4664 	}
4665 	free(chans, M_TEMP);
4666 	return 0;
4667 #undef IS_CHAN_PUBLIC_SAFETY
4668 #undef COMPAT
4669 }
4670 
4671 static void
4672 ath_led_done(void *arg)
4673 {
4674 	struct ath_softc *sc = arg;
4675 
4676 	sc->sc_blinking = 0;
4677 }
4678 
4679 /*
4680  * Turn the LED off: flip the pin and then set a timer so no
4681  * update will happen for the specified duration.
4682  */
4683 static void
4684 ath_led_off(void *arg)
4685 {
4686 	struct ath_softc *sc = arg;
4687 
4688 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4689 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4690 }
4691 
4692 /*
4693  * Blink the LED according to the specified on/off times.
4694  */
4695 static void
4696 ath_led_blink(struct ath_softc *sc, int on, int off)
4697 {
4698 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4699 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4700 	sc->sc_blinking = 1;
4701 	sc->sc_ledoff = off;
4702 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4703 }
4704 
4705 static void
4706 ath_led_event(struct ath_softc *sc, int event)
4707 {
4708 
4709 	sc->sc_ledevent = ticks;	/* time of last event */
4710 	if (sc->sc_blinking)		/* don't interrupt active blink */
4711 		return;
4712 	switch (event) {
4713 	case ATH_LED_POLL:
4714 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4715 			sc->sc_hwmap[0].ledoff);
4716 		break;
4717 	case ATH_LED_TX:
4718 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4719 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4720 		break;
4721 	case ATH_LED_RX:
4722 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4723 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4724 		break;
4725 	}
4726 }
4727 
4728 static void
4729 ath_update_txpow(struct ath_softc *sc)
4730 {
4731 	struct ieee80211com *ic = &sc->sc_ic;
4732 	struct ath_hal *ah = sc->sc_ah;
4733 	u_int32_t txpow;
4734 
4735 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4736 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4737 		/* read back in case value is clamped */
4738 		ath_hal_gettxpowlimit(ah, &txpow);
4739 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4740 	}
4741 	/*
4742 	 * Fetch max tx power level for status requests.
4743 	 */
4744 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4745 	ic->ic_bss->ni_txpower = txpow;
4746 }
4747 
4748 static void
4749 rate_setup(struct ath_softc *sc,
4750 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4751 {
4752 	int i, maxrates;
4753 
4754 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4755 		DPRINTF(sc, ATH_DEBUG_ANY,
4756 			"%s: rate table too small (%u > %u)\n",
4757 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4758 		maxrates = IEEE80211_RATE_MAXSIZE;
4759 	} else
4760 		maxrates = rt->rateCount;
4761 	for (i = 0; i < maxrates; i++)
4762 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4763 	rs->rs_nrates = maxrates;
4764 }
4765 
4766 static int
4767 ath_rate_setup(struct ath_softc *sc, u_int mode)
4768 {
4769 	struct ath_hal *ah = sc->sc_ah;
4770 	struct ieee80211com *ic = &sc->sc_ic;
4771 	const HAL_RATE_TABLE *rt;
4772 
4773 	switch (mode) {
4774 	case IEEE80211_MODE_11A:
4775 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4776 		break;
4777 	case IEEE80211_MODE_11B:
4778 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4779 		break;
4780 	case IEEE80211_MODE_11G:
4781 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4782 		break;
4783 	case IEEE80211_MODE_TURBO_A:
4784 		/* XXX until static/dynamic turbo is fixed */
4785 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4786 		break;
4787 	case IEEE80211_MODE_TURBO_G:
4788 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4789 		break;
4790 	default:
4791 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4792 			__func__, mode);
4793 		return 0;
4794 	}
4795 	sc->sc_rates[mode] = rt;
4796 	if (rt != NULL) {
4797 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4798 		return 1;
4799 	} else
4800 		return 0;
4801 }
4802 
4803 static void
4804 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4805 {
4806 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4807 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4808 	static const struct {
4809 		u_int		rate;		/* tx/rx 802.11 rate */
4810 		u_int16_t	timeOn;		/* LED on time (ms) */
4811 		u_int16_t	timeOff;	/* LED off time (ms) */
4812 	} blinkrates[] = {
4813 		{ 108,  40,  10 },
4814 		{  96,  44,  11 },
4815 		{  72,  50,  13 },
4816 		{  48,  57,  14 },
4817 		{  36,  67,  16 },
4818 		{  24,  80,  20 },
4819 		{  22, 100,  25 },
4820 		{  18, 133,  34 },
4821 		{  12, 160,  40 },
4822 		{  10, 200,  50 },
4823 		{   6, 240,  58 },
4824 		{   4, 267,  66 },
4825 		{   2, 400, 100 },
4826 		{   0, 500, 130 },
4827 	};
4828 	const HAL_RATE_TABLE *rt;
4829 	int i, j;
4830 
4831 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4832 	rt = sc->sc_rates[mode];
4833 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4834 	for (i = 0; i < rt->rateCount; i++)
4835 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4836 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4837 	for (i = 0; i < 32; i++) {
4838 		u_int8_t ix = rt->rateCodeToIndex[i];
4839 		if (ix == 0xff) {
4840 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4841 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4842 			continue;
4843 		}
4844 		sc->sc_hwmap[i].ieeerate =
4845 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4846 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4847 		if (rt->info[ix].shortPreamble ||
4848 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4849 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4850 		/* NB: receive frames include FCS */
4851 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4852 			IEEE80211_RADIOTAP_F_FCS;
4853 		/* setup blink rate table to avoid per-packet lookup */
4854 		for (j = 0; j < N(blinkrates)-1; j++)
4855 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4856 				break;
4857 		/* NB: this uses the last entry if the rate isn't found */
4858 		/* XXX beware of overlow */
4859 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4860 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4861 	}
4862 	sc->sc_currates = rt;
4863 	sc->sc_curmode = mode;
4864 	/*
4865 	 * All protection frames are transmited at 2Mb/s for
4866 	 * 11g, otherwise at 1Mb/s.
4867 	 */
4868 	if (mode == IEEE80211_MODE_11G)
4869 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4870 	else
4871 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4872 	/* rate index used to send management frames */
4873 	sc->sc_minrateix = 0;
4874 	/*
4875 	 * Setup multicast rate state.
4876 	 */
4877 	/* XXX layering violation */
4878 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4879 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4880 	/* NB: caller is responsible for reseting rate control state */
4881 #undef N
4882 }
4883 
4884 #ifdef ATH_DEBUG
4885 static void
4886 ath_printrxbuf(struct ath_buf *bf, u_int ix, int done)
4887 {
4888 	struct ath_desc *ds;
4889 	int i;
4890 
4891 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4892 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
4893 		       "      %08x %08x %08x %08x\n",
4894 		    ix, ds, (struct ath_desc *)bf->bf_daddr + i,
4895 		    ds->ds_link, ds->ds_data,
4896 		    !done ? "" : (ds->ds_rxstat.rs_status == 0) ? " *" : " !",
4897 		    ds->ds_ctl0, ds->ds_ctl1,
4898 		    ds->ds_hw[0], ds->ds_hw[1]);
4899 	}
4900 }
4901 
4902 static void
4903 ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done)
4904 {
4905 	struct ath_desc *ds;
4906 	int i;
4907 
4908 	printf("Q%u[%3u]", qnum, ix);
4909 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4910 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
4911 		       "        %08x %08x %08x %08x %08x %08x\n",
4912 		    ds, (struct ath_desc *)bf->bf_daddr + i,
4913 		    ds->ds_link, ds->ds_data, bf->bf_flags,
4914 		    !done ? "" : (ds->ds_txstat.ts_status == 0) ? " *" : " !",
4915 		    ds->ds_ctl0, ds->ds_ctl1,
4916 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
4917 	}
4918 }
4919 #endif /* ATH_DEBUG */
4920 
4921 static void
4922 ath_watchdog(struct ifnet *ifp)
4923 {
4924 	struct ath_softc *sc = ifp->if_softc;
4925 	struct ieee80211com *ic = &sc->sc_ic;
4926 
4927 	ifp->if_timer = 0;
4928 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
4929 		return;
4930 	if (sc->sc_tx_timer) {
4931 		if (--sc->sc_tx_timer == 0) {
4932 			if_printf(ifp, "device timeout\n");
4933 			ath_reset(ifp);
4934 			ifp->if_oerrors++;
4935 			sc->sc_stats.ast_watchdog++;
4936 		} else
4937 			ifp->if_timer = 1;
4938 	}
4939 	ieee80211_watchdog(ic);
4940 }
4941 
4942 #ifdef ATH_DIAGAPI
4943 /*
4944  * Diagnostic interface to the HAL.  This is used by various
4945  * tools to do things like retrieve register contents for
4946  * debugging.  The mechanism is intentionally opaque so that
4947  * it can change frequently w/o concern for compatiblity.
4948  */
4949 static int
4950 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4951 {
4952 	struct ath_hal *ah = sc->sc_ah;
4953 	u_int id = ad->ad_id & ATH_DIAG_ID;
4954 	void *indata = NULL;
4955 	void *outdata = NULL;
4956 	u_int32_t insize = ad->ad_in_size;
4957 	u_int32_t outsize = ad->ad_out_size;
4958 	int error = 0;
4959 
4960 	if (ad->ad_id & ATH_DIAG_IN) {
4961 		/*
4962 		 * Copy in data.
4963 		 */
4964 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4965 		if (indata == NULL) {
4966 			error = ENOMEM;
4967 			goto bad;
4968 		}
4969 		error = copyin(ad->ad_in_data, indata, insize);
4970 		if (error)
4971 			goto bad;
4972 	}
4973 	if (ad->ad_id & ATH_DIAG_DYN) {
4974 		/*
4975 		 * Allocate a buffer for the results (otherwise the HAL
4976 		 * returns a pointer to a buffer where we can read the
4977 		 * results).  Note that we depend on the HAL leaving this
4978 		 * pointer for us to use below in reclaiming the buffer;
4979 		 * may want to be more defensive.
4980 		 */
4981 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4982 		if (outdata == NULL) {
4983 			error = ENOMEM;
4984 			goto bad;
4985 		}
4986 	}
4987 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4988 		if (outsize < ad->ad_out_size)
4989 			ad->ad_out_size = outsize;
4990 		if (outdata != NULL)
4991 			error = copyout(outdata, ad->ad_out_data,
4992 					ad->ad_out_size);
4993 	} else {
4994 		error = EINVAL;
4995 	}
4996 bad:
4997 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4998 		free(indata, M_TEMP);
4999 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5000 		free(outdata, M_TEMP);
5001 	return error;
5002 }
5003 #endif /* ATH_DIAGAPI */
5004 
5005 static int
5006 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5007 {
5008 #define	IS_RUNNING(ifp) \
5009 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5010 	struct ath_softc *sc = ifp->if_softc;
5011 	struct ieee80211com *ic = &sc->sc_ic;
5012 	struct ifreq *ifr = (struct ifreq *)data;
5013 	int error = 0;
5014 
5015 	ATH_LOCK(sc);
5016 	switch (cmd) {
5017 	case SIOCSIFFLAGS:
5018 		if (IS_RUNNING(ifp)) {
5019 			/*
5020 			 * To avoid rescanning another access point,
5021 			 * do not call ath_init() here.  Instead,
5022 			 * only reflect promisc mode settings.
5023 			 */
5024 			ath_mode_init(sc);
5025 		} else if (ifp->if_flags & IFF_UP) {
5026 			/*
5027 			 * Beware of being called during attach/detach
5028 			 * to reset promiscuous mode.  In that case we
5029 			 * will still be marked UP but not RUNNING.
5030 			 * However trying to re-init the interface
5031 			 * is the wrong thing to do as we've already
5032 			 * torn down much of our state.  There's
5033 			 * probably a better way to deal with this.
5034 			 */
5035 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5036 				ath_init(sc);	/* XXX lose error */
5037 		} else
5038 			ath_stop_locked(ifp);
5039 		break;
5040 	case SIOCADDMULTI:
5041 	case SIOCDELMULTI:
5042 		/*
5043 		 * The upper layer has already installed/removed
5044 		 * the multicast address(es), just recalculate the
5045 		 * multicast filter for the card.
5046 		 */
5047 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5048 			ath_mode_init(sc);
5049 		break;
5050 	case SIOCGATHSTATS:
5051 		/* NB: embed these numbers to get a consistent view */
5052 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5053 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5054 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5055 		ATH_UNLOCK(sc);
5056 		/*
5057 		 * NB: Drop the softc lock in case of a page fault;
5058 		 * we'll accept any potential inconsisentcy in the
5059 		 * statistics.  The alternative is to copy the data
5060 		 * to a local structure.
5061 		 */
5062 		return copyout(&sc->sc_stats,
5063 				ifr->ifr_data, sizeof (sc->sc_stats));
5064 #ifdef ATH_DIAGAPI
5065 	case SIOCGATHDIAG:
5066 		ATH_UNLOCK(sc);
5067 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5068 		ATH_LOCK(sc);
5069 		break;
5070 #endif
5071 	default:
5072 		error = ieee80211_ioctl(ic, cmd, data);
5073 		if (error == ENETRESET) {
5074 			if (IS_RUNNING(ifp) &&
5075 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5076 				ath_init(sc);	/* XXX lose error */
5077 			error = 0;
5078 		}
5079 		if (error == ERESTART)
5080 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5081 		break;
5082 	}
5083 	ATH_UNLOCK(sc);
5084 	return error;
5085 #undef IS_RUNNING
5086 }
5087 
5088 static int
5089 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
5090 {
5091 	struct ath_softc *sc = arg1;
5092 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
5093 	int error;
5094 
5095 	error = sysctl_handle_int(oidp, &slottime, 0, req);
5096 	if (error || !req->newptr)
5097 		return error;
5098 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
5099 }
5100 
5101 static int
5102 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
5103 {
5104 	struct ath_softc *sc = arg1;
5105 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
5106 	int error;
5107 
5108 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
5109 	if (error || !req->newptr)
5110 		return error;
5111 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
5112 }
5113 
5114 static int
5115 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
5116 {
5117 	struct ath_softc *sc = arg1;
5118 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
5119 	int error;
5120 
5121 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
5122 	if (error || !req->newptr)
5123 		return error;
5124 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
5125 }
5126 
5127 static int
5128 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
5129 {
5130 	struct ath_softc *sc = arg1;
5131 	int softled = sc->sc_softled;
5132 	int error;
5133 
5134 	error = sysctl_handle_int(oidp, &softled, 0, req);
5135 	if (error || !req->newptr)
5136 		return error;
5137 	softled = (softled != 0);
5138 	if (softled != sc->sc_softled) {
5139 		if (softled) {
5140 			/* NB: handle any sc_ledpin change */
5141 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
5142 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
5143 				!sc->sc_ledon);
5144 		}
5145 		sc->sc_softled = softled;
5146 	}
5147 	return 0;
5148 }
5149 
5150 static int
5151 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
5152 {
5153 	struct ath_softc *sc = arg1;
5154 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
5155 	int error;
5156 
5157 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
5158 	if (!error && req->newptr)
5159 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
5160 	return error;
5161 }
5162 
5163 static int
5164 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
5165 {
5166 	struct ath_softc *sc = arg1;
5167 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
5168 	int error;
5169 
5170 	error = sysctl_handle_int(oidp, &diversity, 0, req);
5171 	if (error || !req->newptr)
5172 		return error;
5173 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
5174 		return EINVAL;
5175 	sc->sc_diversity = diversity;
5176 	return 0;
5177 }
5178 
5179 static int
5180 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
5181 {
5182 	struct ath_softc *sc = arg1;
5183 	u_int32_t diag;
5184 	int error;
5185 
5186 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
5187 		return EINVAL;
5188 	error = sysctl_handle_int(oidp, &diag, 0, req);
5189 	if (error || !req->newptr)
5190 		return error;
5191 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
5192 }
5193 
5194 static int
5195 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
5196 {
5197 	struct ath_softc *sc = arg1;
5198 	struct ifnet *ifp = sc->sc_ifp;
5199 	u_int32_t scale;
5200 	int error;
5201 
5202 	ath_hal_gettpscale(sc->sc_ah, &scale);
5203 	error = sysctl_handle_int(oidp, &scale, 0, req);
5204 	if (error || !req->newptr)
5205 		return error;
5206 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
5207 }
5208 
5209 static int
5210 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
5211 {
5212 	struct ath_softc *sc = arg1;
5213 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
5214 	int error;
5215 
5216 	error = sysctl_handle_int(oidp, &tpc, 0, req);
5217 	if (error || !req->newptr)
5218 		return error;
5219 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
5220 }
5221 
5222 static int
5223 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
5224 {
5225 	struct ath_softc *sc = arg1;
5226 	struct ath_hal *ah = sc->sc_ah;
5227 	u_int rfkill = ath_hal_getrfkill(ah);
5228 	int error;
5229 
5230 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
5231 	if (error || !req->newptr)
5232 		return error;
5233 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
5234 		return 0;
5235 	if (!ath_hal_setrfkill(ah, rfkill) || ath_reset(sc->sc_ifp) != 0)
5236 		return EINVAL;
5237 	else
5238 		return 0;
5239 }
5240 
5241 static int
5242 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
5243 {
5244 	struct ath_softc *sc = arg1;
5245 	u_int rfsilent;
5246 	int error;
5247 
5248 	ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
5249 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
5250 	if (error || !req->newptr)
5251 		return error;
5252 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
5253 		return EINVAL;
5254 	sc->sc_rfsilentpin = rfsilent & 0x1c;
5255 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
5256 	return 0;
5257 }
5258 
5259 static int
5260 ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
5261 {
5262 	struct ath_softc *sc = arg1;
5263 	u_int32_t rd;
5264 	int error;
5265 
5266 	if (!ath_hal_getregdomain(sc->sc_ah, &rd))
5267 		return EINVAL;
5268 	error = sysctl_handle_int(oidp, &rd, 0, req);
5269 	if (error || !req->newptr)
5270 		return error;
5271 	return !ath_hal_setregdomain(sc->sc_ah, rd) ? EINVAL : 0;
5272 }
5273 
5274 static int
5275 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
5276 {
5277 	struct ath_softc *sc = arg1;
5278 	u_int32_t tpack;
5279 	int error;
5280 
5281 	ath_hal_gettpack(sc->sc_ah, &tpack);
5282 	error = sysctl_handle_int(oidp, &tpack, 0, req);
5283 	if (error || !req->newptr)
5284 		return error;
5285 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
5286 }
5287 
5288 static int
5289 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
5290 {
5291 	struct ath_softc *sc = arg1;
5292 	u_int32_t tpcts;
5293 	int error;
5294 
5295 	ath_hal_gettpcts(sc->sc_ah, &tpcts);
5296 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
5297 	if (error || !req->newptr)
5298 		return error;
5299 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
5300 }
5301 
5302 static void
5303 ath_sysctlattach(struct ath_softc *sc)
5304 {
5305 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
5306 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
5307 	struct ath_hal *ah = sc->sc_ah;
5308 
5309 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
5310 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5311 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
5312 		"EEPROM country code");
5313 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5314 		"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5315 		ath_sysctl_regdomain, "I", "EEPROM regdomain code");
5316 #ifdef	ATH_DEBUG
5317 	sc->sc_debug = ath_debug;
5318 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5319 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
5320 		"control debugging printfs");
5321 #endif
5322 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5323 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5324 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
5325 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5326 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5327 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
5328 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5329 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5330 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
5331 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5332 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5333 		ath_sysctl_softled, "I", "enable/disable software LED support");
5334 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5335 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
5336 		"GPIO pin connected to LED");
5337 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5338 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
5339 		"setting to turn LED on");
5340 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5341 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
5342 		"idle time for inactivity LED (ticks)");
5343 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5344 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
5345 		"tx antenna (0=auto)");
5346 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5347 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5348 		ath_sysctl_rxantenna, "I", "default/rx antenna");
5349 	if (ath_hal_hasdiversity(ah))
5350 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5351 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5352 			ath_sysctl_diversity, "I", "antenna diversity");
5353 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
5354 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5355 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
5356 		"tx descriptor batching");
5357 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5358 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5359 		ath_sysctl_diag, "I", "h/w diagnostic control");
5360 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5361 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5362 		ath_sysctl_tpscale, "I", "tx power scaling");
5363 	if (ath_hal_hastpc(ah)) {
5364 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5365 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5366 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
5367 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5368 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5369 			ath_sysctl_tpack, "I", "tx power for ack frames");
5370 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5371 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5372 			ath_sysctl_tpcts, "I", "tx power for cts frames");
5373 	}
5374 	if (ath_hal_hasrfsilent(ah)) {
5375 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5376 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5377 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
5378 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5379 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5380 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
5381 	}
5382 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
5383 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5384 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
5385 		"mask of error frames to pass when monitoring");
5386 }
5387 
5388 static void
5389 ath_bpfattach(struct ath_softc *sc)
5390 {
5391 	struct ifnet *ifp = sc->sc_ifp;
5392 
5393 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5394 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5395 		&sc->sc_drvbpf);
5396 	/*
5397 	 * Initialize constant fields.
5398 	 * XXX make header lengths a multiple of 32-bits so subsequent
5399 	 *     headers are properly aligned; this is a kludge to keep
5400 	 *     certain applications happy.
5401 	 *
5402 	 * NB: the channel is setup each time we transition to the
5403 	 *     RUN state to avoid filling it in for each frame.
5404 	 */
5405 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5406 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5407 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5408 
5409 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5410 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5411 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5412 }
5413 
5414 /*
5415  * Announce various information on device/driver attach.
5416  */
5417 static void
5418 ath_announce(struct ath_softc *sc)
5419 {
5420 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5421 	struct ifnet *ifp = sc->sc_ifp;
5422 	struct ath_hal *ah = sc->sc_ah;
5423 	u_int modes, cc;
5424 
5425 	if_printf(ifp, "mac %d.%d phy %d.%d",
5426 		ah->ah_macVersion, ah->ah_macRev,
5427 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5428 	/*
5429 	 * Print radio revision(s).  We check the wireless modes
5430 	 * to avoid falsely printing revs for inoperable parts.
5431 	 * Dual-band radio revs are returned in the 5Ghz rev number.
5432 	 */
5433 	ath_hal_getcountrycode(ah, &cc);
5434 	modes = ath_hal_getwirelessmodes(ah, cc);
5435 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5436 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5437 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
5438 				ah->ah_analog5GhzRev >> 4,
5439 				ah->ah_analog5GhzRev & 0xf,
5440 				ah->ah_analog2GhzRev >> 4,
5441 				ah->ah_analog2GhzRev & 0xf);
5442 		else
5443 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5444 				ah->ah_analog5GhzRev & 0xf);
5445 	} else
5446 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5447 			ah->ah_analog5GhzRev & 0xf);
5448 	printf("\n");
5449 	if (bootverbose) {
5450 		int i;
5451 		for (i = 0; i <= WME_AC_VO; i++) {
5452 			struct ath_txq *txq = sc->sc_ac2q[i];
5453 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5454 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5455 		}
5456 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5457 			sc->sc_cabq->axq_qnum);
5458 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5459 	}
5460 	if (ath_rxbuf != ATH_RXBUF)
5461 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5462 	if (ath_txbuf != ATH_TXBUF)
5463 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5464 #undef HAL_MODE_DUALBAND
5465 }
5466