1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_ath_spectral.h> 115 #include <dev/ath/if_athdfs.h> 116 117 #ifdef ATH_TX99_DIAG 118 #include <dev/ath/ath_tx99/ath_tx99.h> 119 #endif 120 121 #ifdef ATH_DEBUG_ALQ 122 #include <dev/ath/if_ath_alq.h> 123 #endif 124 125 /* 126 * Only enable this if you're working on PS-POLL support. 127 */ 128 #undef ATH_SW_PSQ 129 130 /* 131 * ATH_BCBUF determines the number of vap's that can transmit 132 * beacons and also (currently) the number of vap's that can 133 * have unique mac addresses/bssid. When staggering beacons 134 * 4 is probably a good max as otherwise the beacons become 135 * very closely spaced and there is limited time for cab q traffic 136 * to go out. You can burst beacons instead but that is not good 137 * for stations in power save and at some point you really want 138 * another radio (and channel). 139 * 140 * The limit on the number of mac addresses is tied to our use of 141 * the U/L bit and tracking addresses in a byte; it would be 142 * worthwhile to allow more for applications like proxy sta. 143 */ 144 CTASSERT(ATH_BCBUF <= 8); 145 146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 147 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 148 const uint8_t [IEEE80211_ADDR_LEN], 149 const uint8_t [IEEE80211_ADDR_LEN]); 150 static void ath_vap_delete(struct ieee80211vap *); 151 static void ath_init(void *); 152 static void ath_stop_locked(struct ifnet *); 153 static void ath_stop(struct ifnet *); 154 static int ath_reset_vap(struct ieee80211vap *, u_long); 155 static int ath_media_change(struct ifnet *); 156 static void ath_watchdog(void *); 157 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 158 static void ath_fatal_proc(void *, int); 159 static void ath_bmiss_vap(struct ieee80211vap *); 160 static void ath_bmiss_proc(void *, int); 161 static void ath_key_update_begin(struct ieee80211vap *); 162 static void ath_key_update_end(struct ieee80211vap *); 163 static void ath_update_mcast(struct ifnet *); 164 static void ath_update_promisc(struct ifnet *); 165 static void ath_updateslot(struct ifnet *); 166 static void ath_bstuck_proc(void *, int); 167 static void ath_reset_proc(void *, int); 168 static int ath_desc_alloc(struct ath_softc *); 169 static void ath_desc_free(struct ath_softc *); 170 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 171 const uint8_t [IEEE80211_ADDR_LEN]); 172 static void ath_node_cleanup(struct ieee80211_node *); 173 static void ath_node_free(struct ieee80211_node *); 174 static void ath_node_getsignal(const struct ieee80211_node *, 175 int8_t *, int8_t *); 176 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 177 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 178 static int ath_tx_setup(struct ath_softc *, int, int); 179 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 180 static void ath_tx_cleanup(struct ath_softc *); 181 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 182 int dosched); 183 static void ath_tx_proc_q0(void *, int); 184 static void ath_tx_proc_q0123(void *, int); 185 static void ath_tx_proc(void *, int); 186 static void ath_txq_sched_tasklet(void *, int); 187 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 188 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 189 static void ath_scan_start(struct ieee80211com *); 190 static void ath_scan_end(struct ieee80211com *); 191 static void ath_set_channel(struct ieee80211com *); 192 #ifdef ATH_ENABLE_11N 193 static void ath_update_chw(struct ieee80211com *); 194 #endif /* ATH_ENABLE_11N */ 195 static void ath_calibrate(void *); 196 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 197 static void ath_setup_stationkey(struct ieee80211_node *); 198 static void ath_newassoc(struct ieee80211_node *, int); 199 static int ath_setregdomain(struct ieee80211com *, 200 struct ieee80211_regdomain *, int, 201 struct ieee80211_channel []); 202 static void ath_getradiocaps(struct ieee80211com *, int, int *, 203 struct ieee80211_channel []); 204 static int ath_getchannels(struct ath_softc *); 205 206 static int ath_rate_setup(struct ath_softc *, u_int mode); 207 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 208 209 static void ath_announce(struct ath_softc *); 210 211 static void ath_dfs_tasklet(void *, int); 212 static void ath_node_powersave(struct ieee80211_node *, int); 213 static int ath_node_set_tim(struct ieee80211_node *, int); 214 215 static int ath_transmit(struct ifnet *ifp, struct mbuf *m); 216 static void ath_qflush(struct ifnet *ifp); 217 218 static void ath_txq_qinit(struct ifnet *ifp); 219 static void ath_txq_qflush(struct ifnet *ifp); 220 static int ath_txq_qadd(struct ifnet *ifp, struct mbuf *m0); 221 static void ath_txq_qrun(struct ifnet *ifp); 222 223 #ifdef IEEE80211_SUPPORT_TDMA 224 #include <dev/ath/if_ath_tdma.h> 225 #endif 226 227 SYSCTL_DECL(_hw_ath); 228 229 /* XXX validate sysctl values */ 230 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 231 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 232 0, "long chip calibration interval (secs)"); 233 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 235 0, "short chip calibration interval (msecs)"); 236 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 238 0, "reset chip calibration results (secs)"); 239 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 241 0, "ANI calibration (msecs)"); 242 243 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 244 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 245 0, "rx buffers allocated"); 246 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 247 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 248 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 249 0, "tx buffers allocated"); 250 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 251 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 253 0, "tx (mgmt) buffers allocated"); 254 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 255 256 int ath_bstuck_threshold = 4; /* max missed beacons */ 257 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 258 0, "max missed beacon xmits before chip reset"); 259 260 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 261 262 void 263 ath_legacy_attach_comp_func(struct ath_softc *sc) 264 { 265 266 /* 267 * Special case certain configurations. Note the 268 * CAB queue is handled by these specially so don't 269 * include them when checking the txq setup mask. 270 */ 271 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 272 case 0x01: 273 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 274 break; 275 case 0x0f: 276 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 277 break; 278 default: 279 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 280 break; 281 } 282 } 283 284 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 285 #define HAL_MODE_HT40 \ 286 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 287 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 288 int 289 ath_attach(u_int16_t devid, struct ath_softc *sc) 290 { 291 struct ifnet *ifp; 292 struct ieee80211com *ic; 293 struct ath_hal *ah = NULL; 294 HAL_STATUS status; 295 int error = 0, i; 296 u_int wmodes; 297 uint8_t macaddr[IEEE80211_ADDR_LEN]; 298 int rx_chainmask, tx_chainmask; 299 300 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 301 302 CURVNET_SET(vnet0); 303 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 304 if (ifp == NULL) { 305 device_printf(sc->sc_dev, "can not if_alloc()\n"); 306 error = ENOSPC; 307 CURVNET_RESTORE(); 308 goto bad; 309 } 310 ic = ifp->if_l2com; 311 312 /* set these up early for if_printf use */ 313 if_initname(ifp, device_get_name(sc->sc_dev), 314 device_get_unit(sc->sc_dev)); 315 CURVNET_RESTORE(); 316 317 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 318 sc->sc_eepromdata, &status); 319 if (ah == NULL) { 320 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 321 status); 322 error = ENXIO; 323 goto bad; 324 } 325 sc->sc_ah = ah; 326 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 327 #ifdef ATH_DEBUG 328 sc->sc_debug = ath_debug; 329 #endif 330 331 /* 332 * Setup the DMA/EDMA functions based on the current 333 * hardware support. 334 * 335 * This is required before the descriptors are allocated. 336 */ 337 if (ath_hal_hasedma(sc->sc_ah)) { 338 sc->sc_isedma = 1; 339 ath_recv_setup_edma(sc); 340 ath_xmit_setup_edma(sc); 341 } else { 342 ath_recv_setup_legacy(sc); 343 ath_xmit_setup_legacy(sc); 344 } 345 346 /* 347 * Check if the MAC has multi-rate retry support. 348 * We do this by trying to setup a fake extended 349 * descriptor. MAC's that don't have support will 350 * return false w/o doing anything. MAC's that do 351 * support it will return true w/o doing anything. 352 */ 353 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 354 355 /* 356 * Check if the device has hardware counters for PHY 357 * errors. If so we need to enable the MIB interrupt 358 * so we can act on stat triggers. 359 */ 360 if (ath_hal_hwphycounters(ah)) 361 sc->sc_needmib = 1; 362 363 /* 364 * Get the hardware key cache size. 365 */ 366 sc->sc_keymax = ath_hal_keycachesize(ah); 367 if (sc->sc_keymax > ATH_KEYMAX) { 368 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 369 ATH_KEYMAX, sc->sc_keymax); 370 sc->sc_keymax = ATH_KEYMAX; 371 } 372 /* 373 * Reset the key cache since some parts do not 374 * reset the contents on initial power up. 375 */ 376 for (i = 0; i < sc->sc_keymax; i++) 377 ath_hal_keyreset(ah, i); 378 379 /* 380 * Collect the default channel list. 381 */ 382 error = ath_getchannels(sc); 383 if (error != 0) 384 goto bad; 385 386 /* 387 * Setup rate tables for all potential media types. 388 */ 389 ath_rate_setup(sc, IEEE80211_MODE_11A); 390 ath_rate_setup(sc, IEEE80211_MODE_11B); 391 ath_rate_setup(sc, IEEE80211_MODE_11G); 392 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 393 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 394 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 395 ath_rate_setup(sc, IEEE80211_MODE_11NA); 396 ath_rate_setup(sc, IEEE80211_MODE_11NG); 397 ath_rate_setup(sc, IEEE80211_MODE_HALF); 398 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 399 400 /* NB: setup here so ath_rate_update is happy */ 401 ath_setcurmode(sc, IEEE80211_MODE_11A); 402 403 /* 404 * Allocate TX descriptors and populate the lists. 405 */ 406 error = ath_desc_alloc(sc); 407 if (error != 0) { 408 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 409 error); 410 goto bad; 411 } 412 error = ath_txdma_setup(sc); 413 if (error != 0) { 414 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 415 error); 416 goto bad; 417 } 418 419 /* 420 * Allocate RX descriptors and populate the lists. 421 */ 422 error = ath_rxdma_setup(sc); 423 if (error != 0) { 424 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 425 error); 426 goto bad; 427 } 428 429 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 430 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 431 432 ATH_TXBUF_LOCK_INIT(sc); 433 434 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 435 taskqueue_thread_enqueue, &sc->sc_tq); 436 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 437 "%s taskq", ifp->if_xname); 438 439 /* 440 * This taskqueue doesn't get any higher priority 441 * than the ath(4) taskqueue (PI_NET) so TX won't 442 * pre-empt RX and other task priorities. 443 * 444 * This may not be optimal - the previous behaviour 445 * was to direct-dispatch frames via the sending 446 * task context, rather than (always) software 447 * queuing. 448 */ 449 sc->sc_tx_tq = taskqueue_create("ath_tx_taskq", M_NOWAIT, 450 taskqueue_thread_enqueue, &sc->sc_tx_tq); 451 taskqueue_start_threads(&sc->sc_tx_tq, 1, PI_NET, 452 "%s TX taskq", ifp->if_xname); 453 454 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 455 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 456 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 457 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 458 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 459 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 460 461 /* XXX make this a higher priority taskqueue? */ 462 TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc); 463 464 /* 465 * Allocate hardware transmit queues: one queue for 466 * beacon frames and one data queue for each QoS 467 * priority. Note that the hal handles resetting 468 * these queues at the needed time. 469 * 470 * XXX PS-Poll 471 */ 472 sc->sc_bhalq = ath_beaconq_setup(sc); 473 if (sc->sc_bhalq == (u_int) -1) { 474 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 475 error = EIO; 476 goto bad2; 477 } 478 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 479 if (sc->sc_cabq == NULL) { 480 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 481 error = EIO; 482 goto bad2; 483 } 484 /* NB: insure BK queue is the lowest priority h/w queue */ 485 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 486 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 487 ieee80211_wme_acnames[WME_AC_BK]); 488 error = EIO; 489 goto bad2; 490 } 491 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 492 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 493 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 494 /* 495 * Not enough hardware tx queues to properly do WME; 496 * just punt and assign them all to the same h/w queue. 497 * We could do a better job of this if, for example, 498 * we allocate queues when we switch from station to 499 * AP mode. 500 */ 501 if (sc->sc_ac2q[WME_AC_VI] != NULL) 502 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 503 if (sc->sc_ac2q[WME_AC_BE] != NULL) 504 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 505 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 506 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 507 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 508 } 509 510 /* 511 * Attach the TX completion function. 512 * 513 * The non-EDMA chips may have some special case optimisations; 514 * this method gives everyone a chance to attach cleanly. 515 */ 516 sc->sc_tx.xmit_attach_comp_func(sc); 517 518 /* 519 * Setup rate control. Some rate control modules 520 * call back to change the anntena state so expose 521 * the necessary entry points. 522 * XXX maybe belongs in struct ath_ratectrl? 523 */ 524 sc->sc_setdefantenna = ath_setdefantenna; 525 sc->sc_rc = ath_rate_attach(sc); 526 if (sc->sc_rc == NULL) { 527 error = EIO; 528 goto bad2; 529 } 530 531 /* Attach DFS module */ 532 if (! ath_dfs_attach(sc)) { 533 device_printf(sc->sc_dev, 534 "%s: unable to attach DFS\n", __func__); 535 error = EIO; 536 goto bad2; 537 } 538 539 /* Attach spectral module */ 540 if (ath_spectral_attach(sc) < 0) { 541 device_printf(sc->sc_dev, 542 "%s: unable to attach spectral\n", __func__); 543 error = EIO; 544 goto bad2; 545 } 546 547 /* Start DFS processing tasklet */ 548 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 549 550 /* Configure LED state */ 551 sc->sc_blinking = 0; 552 sc->sc_ledstate = 1; 553 sc->sc_ledon = 0; /* low true */ 554 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 555 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 556 557 /* 558 * Don't setup hardware-based blinking. 559 * 560 * Although some NICs may have this configured in the 561 * default reset register values, the user may wish 562 * to alter which pins have which function. 563 * 564 * The reference driver attaches the MAC network LED to GPIO1 and 565 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 566 * NIC has these reversed. 567 */ 568 sc->sc_hardled = (1 == 0); 569 sc->sc_led_net_pin = -1; 570 sc->sc_led_pwr_pin = -1; 571 /* 572 * Auto-enable soft led processing for IBM cards and for 573 * 5211 minipci cards. Users can also manually enable/disable 574 * support with a sysctl. 575 */ 576 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 577 ath_led_config(sc); 578 ath_hal_setledstate(ah, HAL_LED_INIT); 579 580 ifp->if_softc = sc; 581 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 582 /* XXX net80211 uses if_start to re-start ifnet processing */ 583 ifp->if_start = ath_start; 584 ifp->if_transmit = ath_transmit; 585 ifp->if_qflush = ath_qflush; 586 ifp->if_ioctl = ath_ioctl; 587 ifp->if_init = ath_init; 588 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 589 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 590 IFQ_SET_READY(&ifp->if_snd); 591 592 ath_txq_qinit(ifp); 593 594 ic->ic_ifp = ifp; 595 /* XXX not right but it's not used anywhere important */ 596 ic->ic_phytype = IEEE80211_T_OFDM; 597 ic->ic_opmode = IEEE80211_M_STA; 598 ic->ic_caps = 599 IEEE80211_C_STA /* station mode */ 600 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 601 | IEEE80211_C_HOSTAP /* hostap mode */ 602 | IEEE80211_C_MONITOR /* monitor mode */ 603 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 604 | IEEE80211_C_WDS /* 4-address traffic works */ 605 | IEEE80211_C_MBSS /* mesh point link mode */ 606 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 607 | IEEE80211_C_SHSLOT /* short slot time supported */ 608 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 609 #ifndef ATH_ENABLE_11N 610 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 611 #endif 612 | IEEE80211_C_TXFRAG /* handle tx frags */ 613 #ifdef ATH_ENABLE_DFS 614 | IEEE80211_C_DFS /* Enable radar detection */ 615 #endif 616 ; 617 /* 618 * Query the hal to figure out h/w crypto support. 619 */ 620 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 621 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 622 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 623 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 624 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 625 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 626 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 627 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 628 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 629 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 630 /* 631 * Check if h/w does the MIC and/or whether the 632 * separate key cache entries are required to 633 * handle both tx+rx MIC keys. 634 */ 635 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 636 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 637 /* 638 * If the h/w supports storing tx+rx MIC keys 639 * in one cache slot automatically enable use. 640 */ 641 if (ath_hal_hastkipsplit(ah) || 642 !ath_hal_settkipsplit(ah, AH_FALSE)) 643 sc->sc_splitmic = 1; 644 /* 645 * If the h/w can do TKIP MIC together with WME then 646 * we use it; otherwise we force the MIC to be done 647 * in software by the net80211 layer. 648 */ 649 if (ath_hal_haswmetkipmic(ah)) 650 sc->sc_wmetkipmic = 1; 651 } 652 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 653 /* 654 * Check for multicast key search support. 655 */ 656 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 657 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 658 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 659 } 660 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 661 /* 662 * Mark key cache slots associated with global keys 663 * as in use. If we knew TKIP was not to be used we 664 * could leave the +32, +64, and +32+64 slots free. 665 */ 666 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 667 setbit(sc->sc_keymap, i); 668 setbit(sc->sc_keymap, i+64); 669 if (sc->sc_splitmic) { 670 setbit(sc->sc_keymap, i+32); 671 setbit(sc->sc_keymap, i+32+64); 672 } 673 } 674 /* 675 * TPC support can be done either with a global cap or 676 * per-packet support. The latter is not available on 677 * all parts. We're a bit pedantic here as all parts 678 * support a global cap. 679 */ 680 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 681 ic->ic_caps |= IEEE80211_C_TXPMGT; 682 683 /* 684 * Mark WME capability only if we have sufficient 685 * hardware queues to do proper priority scheduling. 686 */ 687 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 688 ic->ic_caps |= IEEE80211_C_WME; 689 /* 690 * Check for misc other capabilities. 691 */ 692 if (ath_hal_hasbursting(ah)) 693 ic->ic_caps |= IEEE80211_C_BURST; 694 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 695 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 696 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 697 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 698 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 699 if (ath_hal_hasfastframes(ah)) 700 ic->ic_caps |= IEEE80211_C_FF; 701 wmodes = ath_hal_getwirelessmodes(ah); 702 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 703 ic->ic_caps |= IEEE80211_C_TURBOP; 704 #ifdef IEEE80211_SUPPORT_TDMA 705 if (ath_hal_macversion(ah) > 0x78) { 706 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 707 ic->ic_tdma_update = ath_tdma_update; 708 } 709 #endif 710 711 /* 712 * TODO: enforce that at least this many frames are available 713 * in the txbuf list before allowing data frames (raw or 714 * otherwise) to be transmitted. 715 */ 716 sc->sc_txq_data_minfree = 10; 717 /* 718 * Leave this as default to maintain legacy behaviour. 719 * Shortening the cabq/mcastq may end up causing some 720 * undesirable behaviour. 721 */ 722 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 723 724 /* 725 * Allow the TX and RX chainmasks to be overridden by 726 * environment variables and/or device.hints. 727 * 728 * This must be done early - before the hardware is 729 * calibrated or before the 802.11n stream calculation 730 * is done. 731 */ 732 if (resource_int_value(device_get_name(sc->sc_dev), 733 device_get_unit(sc->sc_dev), "rx_chainmask", 734 &rx_chainmask) == 0) { 735 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 736 rx_chainmask); 737 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 738 } 739 if (resource_int_value(device_get_name(sc->sc_dev), 740 device_get_unit(sc->sc_dev), "tx_chainmask", 741 &tx_chainmask) == 0) { 742 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 743 tx_chainmask); 744 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 745 } 746 747 /* 748 * Disable MRR with protected frames by default. 749 * Only 802.11n series NICs can handle this. 750 */ 751 sc->sc_mrrprot = 0; /* XXX should be a capability */ 752 753 /* 754 * Query the enterprise mode information the HAL. 755 */ 756 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 757 &sc->sc_ent_cfg) == HAL_OK) 758 sc->sc_use_ent = 1; 759 760 #ifdef ATH_ENABLE_11N 761 /* 762 * Query HT capabilities 763 */ 764 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 765 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 766 int rxs, txs; 767 768 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 769 770 sc->sc_mrrprot = 1; /* XXX should be a capability */ 771 772 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 773 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 774 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 775 | IEEE80211_HTCAP_MAXAMSDU_3839 776 /* max A-MSDU length */ 777 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 778 ; 779 780 /* 781 * Enable short-GI for HT20 only if the hardware 782 * advertises support. 783 * Notably, anything earlier than the AR9287 doesn't. 784 */ 785 if ((ath_hal_getcapability(ah, 786 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 787 (wmodes & HAL_MODE_HT20)) { 788 device_printf(sc->sc_dev, 789 "[HT] enabling short-GI in 20MHz mode\n"); 790 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 791 } 792 793 if (wmodes & HAL_MODE_HT40) 794 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 795 | IEEE80211_HTCAP_SHORTGI40; 796 797 /* 798 * TX/RX streams need to be taken into account when 799 * negotiating which MCS rates it'll receive and 800 * what MCS rates are available for TX. 801 */ 802 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 803 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 804 805 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 806 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 807 808 ic->ic_txstream = txs; 809 ic->ic_rxstream = rxs; 810 811 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 812 &sc->sc_rts_aggr_limit); 813 if (sc->sc_rts_aggr_limit != (64 * 1024)) 814 device_printf(sc->sc_dev, 815 "[HT] RTS aggregates limited to %d KiB\n", 816 sc->sc_rts_aggr_limit / 1024); 817 818 device_printf(sc->sc_dev, 819 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 820 } 821 #endif 822 823 /* 824 * Initial aggregation settings. 825 */ 826 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 827 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 828 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 829 830 /* 831 * Check if the hardware requires PCI register serialisation. 832 * Some of the Owl based MACs require this. 833 */ 834 if (mp_ncpus > 1 && 835 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 836 0, NULL) == HAL_OK) { 837 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 838 device_printf(sc->sc_dev, 839 "Enabling register serialisation\n"); 840 } 841 842 /* 843 * Indicate we need the 802.11 header padded to a 844 * 32-bit boundary for 4-address and QoS frames. 845 */ 846 ic->ic_flags |= IEEE80211_F_DATAPAD; 847 848 /* 849 * Query the hal about antenna support. 850 */ 851 sc->sc_defant = ath_hal_getdefantenna(ah); 852 853 /* 854 * Not all chips have the VEOL support we want to 855 * use with IBSS beacons; check here for it. 856 */ 857 sc->sc_hasveol = ath_hal_hasveol(ah); 858 859 /* get mac address from hardware */ 860 ath_hal_getmac(ah, macaddr); 861 if (sc->sc_hasbmask) 862 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 863 864 /* NB: used to size node table key mapping array */ 865 ic->ic_max_keyix = sc->sc_keymax; 866 /* call MI attach routine. */ 867 ieee80211_ifattach(ic, macaddr); 868 ic->ic_setregdomain = ath_setregdomain; 869 ic->ic_getradiocaps = ath_getradiocaps; 870 sc->sc_opmode = HAL_M_STA; 871 872 /* override default methods */ 873 ic->ic_newassoc = ath_newassoc; 874 ic->ic_updateslot = ath_updateslot; 875 ic->ic_wme.wme_update = ath_wme_update; 876 ic->ic_vap_create = ath_vap_create; 877 ic->ic_vap_delete = ath_vap_delete; 878 ic->ic_raw_xmit = ath_raw_xmit; 879 ic->ic_update_mcast = ath_update_mcast; 880 ic->ic_update_promisc = ath_update_promisc; 881 ic->ic_node_alloc = ath_node_alloc; 882 sc->sc_node_free = ic->ic_node_free; 883 ic->ic_node_free = ath_node_free; 884 sc->sc_node_cleanup = ic->ic_node_cleanup; 885 ic->ic_node_cleanup = ath_node_cleanup; 886 ic->ic_node_getsignal = ath_node_getsignal; 887 ic->ic_scan_start = ath_scan_start; 888 ic->ic_scan_end = ath_scan_end; 889 ic->ic_set_channel = ath_set_channel; 890 #ifdef ATH_ENABLE_11N 891 /* 802.11n specific - but just override anyway */ 892 sc->sc_addba_request = ic->ic_addba_request; 893 sc->sc_addba_response = ic->ic_addba_response; 894 sc->sc_addba_stop = ic->ic_addba_stop; 895 sc->sc_bar_response = ic->ic_bar_response; 896 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 897 898 ic->ic_addba_request = ath_addba_request; 899 ic->ic_addba_response = ath_addba_response; 900 ic->ic_addba_response_timeout = ath_addba_response_timeout; 901 ic->ic_addba_stop = ath_addba_stop; 902 ic->ic_bar_response = ath_bar_response; 903 904 ic->ic_update_chw = ath_update_chw; 905 #endif /* ATH_ENABLE_11N */ 906 907 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 908 /* 909 * There's one vendor bitmap entry in the RX radiotap 910 * header; make sure that's taken into account. 911 */ 912 ieee80211_radiotap_attachv(ic, 913 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 914 ATH_TX_RADIOTAP_PRESENT, 915 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 916 ATH_RX_RADIOTAP_PRESENT); 917 #else 918 /* 919 * No vendor bitmap/extensions are present. 920 */ 921 ieee80211_radiotap_attach(ic, 922 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 923 ATH_TX_RADIOTAP_PRESENT, 924 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 925 ATH_RX_RADIOTAP_PRESENT); 926 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 927 928 /* 929 * Setup the ALQ logging if required 930 */ 931 #ifdef ATH_DEBUG_ALQ 932 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 933 if_ath_alq_setcfg(&sc->sc_alq, 934 sc->sc_ah->ah_macVersion, 935 sc->sc_ah->ah_macRev, 936 sc->sc_ah->ah_phyRev, 937 sc->sc_ah->ah_magic); 938 #endif 939 940 /* 941 * Setup dynamic sysctl's now that country code and 942 * regdomain are available from the hal. 943 */ 944 ath_sysctlattach(sc); 945 ath_sysctl_stats_attach(sc); 946 ath_sysctl_hal_attach(sc); 947 948 if (bootverbose) 949 ieee80211_announce(ic); 950 ath_announce(sc); 951 return 0; 952 bad2: 953 ath_tx_cleanup(sc); 954 ath_desc_free(sc); 955 ath_txdma_teardown(sc); 956 ath_rxdma_teardown(sc); 957 bad: 958 if (ah) 959 ath_hal_detach(ah); 960 961 /* 962 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 963 */ 964 if (ifp != NULL && ifp->if_vnet) { 965 CURVNET_SET(ifp->if_vnet); 966 if_free(ifp); 967 CURVNET_RESTORE(); 968 } else if (ifp != NULL) 969 if_free(ifp); 970 sc->sc_invalid = 1; 971 return error; 972 } 973 974 int 975 ath_detach(struct ath_softc *sc) 976 { 977 struct ifnet *ifp = sc->sc_ifp; 978 979 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 980 __func__, ifp->if_flags); 981 982 /* 983 * NB: the order of these is important: 984 * o stop the chip so no more interrupts will fire 985 * o call the 802.11 layer before detaching the hal to 986 * insure callbacks into the driver to delete global 987 * key cache entries can be handled 988 * o free the taskqueue which drains any pending tasks 989 * o reclaim the tx queue data structures after calling 990 * the 802.11 layer as we'll get called back to reclaim 991 * node state and potentially want to use them 992 * o to cleanup the tx queues the hal is called, so detach 993 * it last 994 * Other than that, it's straightforward... 995 */ 996 ath_stop(ifp); 997 ieee80211_ifdetach(ifp->if_l2com); 998 taskqueue_free(sc->sc_tq); 999 taskqueue_free(sc->sc_tx_tq); 1000 #ifdef ATH_TX99_DIAG 1001 if (sc->sc_tx99 != NULL) 1002 sc->sc_tx99->detach(sc->sc_tx99); 1003 #endif 1004 ath_rate_detach(sc->sc_rc); 1005 #ifdef ATH_DEBUG_ALQ 1006 if_ath_alq_tidyup(&sc->sc_alq); 1007 #endif 1008 ath_txq_qflush(ifp); 1009 ath_spectral_detach(sc); 1010 ath_dfs_detach(sc); 1011 ath_desc_free(sc); 1012 ath_txdma_teardown(sc); 1013 ath_rxdma_teardown(sc); 1014 ath_tx_cleanup(sc); 1015 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1016 1017 CURVNET_SET(ifp->if_vnet); 1018 if_free(ifp); 1019 CURVNET_RESTORE(); 1020 1021 return 0; 1022 } 1023 1024 /* 1025 * MAC address handling for multiple BSS on the same radio. 1026 * The first vap uses the MAC address from the EEPROM. For 1027 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1028 * address and use the next six bits as an index. 1029 */ 1030 static void 1031 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1032 { 1033 int i; 1034 1035 if (clone && sc->sc_hasbmask) { 1036 /* NB: we only do this if h/w supports multiple bssid */ 1037 for (i = 0; i < 8; i++) 1038 if ((sc->sc_bssidmask & (1<<i)) == 0) 1039 break; 1040 if (i != 0) 1041 mac[0] |= (i << 2)|0x2; 1042 } else 1043 i = 0; 1044 sc->sc_bssidmask |= 1<<i; 1045 sc->sc_hwbssidmask[0] &= ~mac[0]; 1046 if (i == 0) 1047 sc->sc_nbssid0++; 1048 } 1049 1050 static void 1051 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1052 { 1053 int i = mac[0] >> 2; 1054 uint8_t mask; 1055 1056 if (i != 0 || --sc->sc_nbssid0 == 0) { 1057 sc->sc_bssidmask &= ~(1<<i); 1058 /* recalculate bssid mask from remaining addresses */ 1059 mask = 0xff; 1060 for (i = 1; i < 8; i++) 1061 if (sc->sc_bssidmask & (1<<i)) 1062 mask &= ~((i<<2)|0x2); 1063 sc->sc_hwbssidmask[0] |= mask; 1064 } 1065 } 1066 1067 /* 1068 * Assign a beacon xmit slot. We try to space out 1069 * assignments so when beacons are staggered the 1070 * traffic coming out of the cab q has maximal time 1071 * to go out before the next beacon is scheduled. 1072 */ 1073 static int 1074 assign_bslot(struct ath_softc *sc) 1075 { 1076 u_int slot, free; 1077 1078 free = 0; 1079 for (slot = 0; slot < ATH_BCBUF; slot++) 1080 if (sc->sc_bslot[slot] == NULL) { 1081 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1082 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1083 return slot; 1084 free = slot; 1085 /* NB: keep looking for a double slot */ 1086 } 1087 return free; 1088 } 1089 1090 static struct ieee80211vap * 1091 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1092 enum ieee80211_opmode opmode, int flags, 1093 const uint8_t bssid[IEEE80211_ADDR_LEN], 1094 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1095 { 1096 struct ath_softc *sc = ic->ic_ifp->if_softc; 1097 struct ath_vap *avp; 1098 struct ieee80211vap *vap; 1099 uint8_t mac[IEEE80211_ADDR_LEN]; 1100 int needbeacon, error; 1101 enum ieee80211_opmode ic_opmode; 1102 1103 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1104 M_80211_VAP, M_WAITOK | M_ZERO); 1105 needbeacon = 0; 1106 IEEE80211_ADDR_COPY(mac, mac0); 1107 1108 ATH_LOCK(sc); 1109 ic_opmode = opmode; /* default to opmode of new vap */ 1110 switch (opmode) { 1111 case IEEE80211_M_STA: 1112 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1113 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1114 goto bad; 1115 } 1116 if (sc->sc_nvaps) { 1117 /* 1118 * With multiple vaps we must fall back 1119 * to s/w beacon miss handling. 1120 */ 1121 flags |= IEEE80211_CLONE_NOBEACONS; 1122 } 1123 if (flags & IEEE80211_CLONE_NOBEACONS) { 1124 /* 1125 * Station mode w/o beacons are implemented w/ AP mode. 1126 */ 1127 ic_opmode = IEEE80211_M_HOSTAP; 1128 } 1129 break; 1130 case IEEE80211_M_IBSS: 1131 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1132 device_printf(sc->sc_dev, 1133 "only 1 ibss vap supported\n"); 1134 goto bad; 1135 } 1136 needbeacon = 1; 1137 break; 1138 case IEEE80211_M_AHDEMO: 1139 #ifdef IEEE80211_SUPPORT_TDMA 1140 if (flags & IEEE80211_CLONE_TDMA) { 1141 if (sc->sc_nvaps != 0) { 1142 device_printf(sc->sc_dev, 1143 "only 1 tdma vap supported\n"); 1144 goto bad; 1145 } 1146 needbeacon = 1; 1147 flags |= IEEE80211_CLONE_NOBEACONS; 1148 } 1149 /* fall thru... */ 1150 #endif 1151 case IEEE80211_M_MONITOR: 1152 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1153 /* 1154 * Adopt existing mode. Adding a monitor or ahdemo 1155 * vap to an existing configuration is of dubious 1156 * value but should be ok. 1157 */ 1158 /* XXX not right for monitor mode */ 1159 ic_opmode = ic->ic_opmode; 1160 } 1161 break; 1162 case IEEE80211_M_HOSTAP: 1163 case IEEE80211_M_MBSS: 1164 needbeacon = 1; 1165 break; 1166 case IEEE80211_M_WDS: 1167 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1168 device_printf(sc->sc_dev, 1169 "wds not supported in sta mode\n"); 1170 goto bad; 1171 } 1172 /* 1173 * Silently remove any request for a unique 1174 * bssid; WDS vap's always share the local 1175 * mac address. 1176 */ 1177 flags &= ~IEEE80211_CLONE_BSSID; 1178 if (sc->sc_nvaps == 0) 1179 ic_opmode = IEEE80211_M_HOSTAP; 1180 else 1181 ic_opmode = ic->ic_opmode; 1182 break; 1183 default: 1184 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1185 goto bad; 1186 } 1187 /* 1188 * Check that a beacon buffer is available; the code below assumes it. 1189 */ 1190 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1191 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1192 goto bad; 1193 } 1194 1195 /* STA, AHDEMO? */ 1196 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1197 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1198 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1199 } 1200 1201 vap = &avp->av_vap; 1202 /* XXX can't hold mutex across if_alloc */ 1203 ATH_UNLOCK(sc); 1204 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1205 bssid, mac); 1206 ATH_LOCK(sc); 1207 if (error != 0) { 1208 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1209 __func__, error); 1210 goto bad2; 1211 } 1212 1213 /* h/w crypto support */ 1214 vap->iv_key_alloc = ath_key_alloc; 1215 vap->iv_key_delete = ath_key_delete; 1216 vap->iv_key_set = ath_key_set; 1217 vap->iv_key_update_begin = ath_key_update_begin; 1218 vap->iv_key_update_end = ath_key_update_end; 1219 1220 /* override various methods */ 1221 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1222 vap->iv_recv_mgmt = ath_recv_mgmt; 1223 vap->iv_reset = ath_reset_vap; 1224 vap->iv_update_beacon = ath_beacon_update; 1225 avp->av_newstate = vap->iv_newstate; 1226 vap->iv_newstate = ath_newstate; 1227 avp->av_bmiss = vap->iv_bmiss; 1228 vap->iv_bmiss = ath_bmiss_vap; 1229 1230 avp->av_node_ps = vap->iv_node_ps; 1231 vap->iv_node_ps = ath_node_powersave; 1232 1233 avp->av_set_tim = vap->iv_set_tim; 1234 vap->iv_set_tim = ath_node_set_tim; 1235 1236 /* Set default parameters */ 1237 1238 /* 1239 * Anything earlier than some AR9300 series MACs don't 1240 * support a smaller MPDU density. 1241 */ 1242 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1243 /* 1244 * All NICs can handle the maximum size, however 1245 * AR5416 based MACs can only TX aggregates w/ RTS 1246 * protection when the total aggregate size is <= 8k. 1247 * However, for now that's enforced by the TX path. 1248 */ 1249 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1250 1251 avp->av_bslot = -1; 1252 if (needbeacon) { 1253 /* 1254 * Allocate beacon state and setup the q for buffered 1255 * multicast frames. We know a beacon buffer is 1256 * available because we checked above. 1257 */ 1258 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1259 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1260 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1261 /* 1262 * Assign the vap to a beacon xmit slot. As above 1263 * this cannot fail to find a free one. 1264 */ 1265 avp->av_bslot = assign_bslot(sc); 1266 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1267 ("beacon slot %u not empty", avp->av_bslot)); 1268 sc->sc_bslot[avp->av_bslot] = vap; 1269 sc->sc_nbcnvaps++; 1270 } 1271 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1272 /* 1273 * Multple vaps are to transmit beacons and we 1274 * have h/w support for TSF adjusting; enable 1275 * use of staggered beacons. 1276 */ 1277 sc->sc_stagbeacons = 1; 1278 } 1279 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1280 } 1281 1282 ic->ic_opmode = ic_opmode; 1283 if (opmode != IEEE80211_M_WDS) { 1284 sc->sc_nvaps++; 1285 if (opmode == IEEE80211_M_STA) 1286 sc->sc_nstavaps++; 1287 if (opmode == IEEE80211_M_MBSS) 1288 sc->sc_nmeshvaps++; 1289 } 1290 switch (ic_opmode) { 1291 case IEEE80211_M_IBSS: 1292 sc->sc_opmode = HAL_M_IBSS; 1293 break; 1294 case IEEE80211_M_STA: 1295 sc->sc_opmode = HAL_M_STA; 1296 break; 1297 case IEEE80211_M_AHDEMO: 1298 #ifdef IEEE80211_SUPPORT_TDMA 1299 if (vap->iv_caps & IEEE80211_C_TDMA) { 1300 sc->sc_tdma = 1; 1301 /* NB: disable tsf adjust */ 1302 sc->sc_stagbeacons = 0; 1303 } 1304 /* 1305 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1306 * just ap mode. 1307 */ 1308 /* fall thru... */ 1309 #endif 1310 case IEEE80211_M_HOSTAP: 1311 case IEEE80211_M_MBSS: 1312 sc->sc_opmode = HAL_M_HOSTAP; 1313 break; 1314 case IEEE80211_M_MONITOR: 1315 sc->sc_opmode = HAL_M_MONITOR; 1316 break; 1317 default: 1318 /* XXX should not happen */ 1319 break; 1320 } 1321 if (sc->sc_hastsfadd) { 1322 /* 1323 * Configure whether or not TSF adjust should be done. 1324 */ 1325 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1326 } 1327 if (flags & IEEE80211_CLONE_NOBEACONS) { 1328 /* 1329 * Enable s/w beacon miss handling. 1330 */ 1331 sc->sc_swbmiss = 1; 1332 } 1333 ATH_UNLOCK(sc); 1334 1335 /* complete setup */ 1336 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1337 return vap; 1338 bad2: 1339 reclaim_address(sc, mac); 1340 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1341 bad: 1342 free(avp, M_80211_VAP); 1343 ATH_UNLOCK(sc); 1344 return NULL; 1345 } 1346 1347 static void 1348 ath_vap_delete(struct ieee80211vap *vap) 1349 { 1350 struct ieee80211com *ic = vap->iv_ic; 1351 struct ifnet *ifp = ic->ic_ifp; 1352 struct ath_softc *sc = ifp->if_softc; 1353 struct ath_hal *ah = sc->sc_ah; 1354 struct ath_vap *avp = ATH_VAP(vap); 1355 1356 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1357 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1358 /* 1359 * Quiesce the hardware while we remove the vap. In 1360 * particular we need to reclaim all references to 1361 * the vap state by any frames pending on the tx queues. 1362 */ 1363 ath_hal_intrset(ah, 0); /* disable interrupts */ 1364 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1365 /* XXX Do all frames from all vaps/nodes need draining here? */ 1366 ath_stoprecv(sc, 1); /* stop recv side */ 1367 } 1368 1369 ieee80211_vap_detach(vap); 1370 1371 /* 1372 * XXX Danger Will Robinson! Danger! 1373 * 1374 * Because ieee80211_vap_detach() can queue a frame (the station 1375 * diassociate message?) after we've drained the TXQ and 1376 * flushed the software TXQ, we will end up with a frame queued 1377 * to a node whose vap is about to be freed. 1378 * 1379 * To work around this, flush the hardware/software again. 1380 * This may be racy - the ath task may be running and the packet 1381 * may be being scheduled between sw->hw txq. Tsk. 1382 * 1383 * TODO: figure out why a new node gets allocated somewhere around 1384 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1385 * call!) 1386 */ 1387 1388 ath_draintxq(sc, ATH_RESET_DEFAULT); 1389 1390 ATH_LOCK(sc); 1391 /* 1392 * Reclaim beacon state. Note this must be done before 1393 * the vap instance is reclaimed as we may have a reference 1394 * to it in the buffer for the beacon frame. 1395 */ 1396 if (avp->av_bcbuf != NULL) { 1397 if (avp->av_bslot != -1) { 1398 sc->sc_bslot[avp->av_bslot] = NULL; 1399 sc->sc_nbcnvaps--; 1400 } 1401 ath_beacon_return(sc, avp->av_bcbuf); 1402 avp->av_bcbuf = NULL; 1403 if (sc->sc_nbcnvaps == 0) { 1404 sc->sc_stagbeacons = 0; 1405 if (sc->sc_hastsfadd) 1406 ath_hal_settsfadjust(sc->sc_ah, 0); 1407 } 1408 /* 1409 * Reclaim any pending mcast frames for the vap. 1410 */ 1411 ath_tx_draintxq(sc, &avp->av_mcastq); 1412 } 1413 /* 1414 * Update bookkeeping. 1415 */ 1416 if (vap->iv_opmode == IEEE80211_M_STA) { 1417 sc->sc_nstavaps--; 1418 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1419 sc->sc_swbmiss = 0; 1420 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1421 vap->iv_opmode == IEEE80211_M_MBSS) { 1422 reclaim_address(sc, vap->iv_myaddr); 1423 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1424 if (vap->iv_opmode == IEEE80211_M_MBSS) 1425 sc->sc_nmeshvaps--; 1426 } 1427 if (vap->iv_opmode != IEEE80211_M_WDS) 1428 sc->sc_nvaps--; 1429 #ifdef IEEE80211_SUPPORT_TDMA 1430 /* TDMA operation ceases when the last vap is destroyed */ 1431 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1432 sc->sc_tdma = 0; 1433 sc->sc_swbmiss = 0; 1434 } 1435 #endif 1436 free(avp, M_80211_VAP); 1437 1438 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1439 /* 1440 * Restart rx+tx machines if still running (RUNNING will 1441 * be reset if we just destroyed the last vap). 1442 */ 1443 if (ath_startrecv(sc) != 0) 1444 if_printf(ifp, "%s: unable to restart recv logic\n", 1445 __func__); 1446 if (sc->sc_beacons) { /* restart beacons */ 1447 #ifdef IEEE80211_SUPPORT_TDMA 1448 if (sc->sc_tdma) 1449 ath_tdma_config(sc, NULL); 1450 else 1451 #endif 1452 ath_beacon_config(sc, NULL); 1453 } 1454 ath_hal_intrset(ah, sc->sc_imask); 1455 } 1456 ATH_UNLOCK(sc); 1457 } 1458 1459 void 1460 ath_suspend(struct ath_softc *sc) 1461 { 1462 struct ifnet *ifp = sc->sc_ifp; 1463 struct ieee80211com *ic = ifp->if_l2com; 1464 1465 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1466 __func__, ifp->if_flags); 1467 1468 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1469 1470 ieee80211_suspend_all(ic); 1471 /* 1472 * NB: don't worry about putting the chip in low power 1473 * mode; pci will power off our socket on suspend and 1474 * CardBus detaches the device. 1475 */ 1476 1477 /* 1478 * XXX ensure none of the taskqueues are running 1479 * XXX ensure sc_invalid is 1 1480 * XXX ensure the calibration callout is disabled 1481 */ 1482 1483 /* Disable the PCIe PHY, complete with workarounds */ 1484 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1485 } 1486 1487 /* 1488 * Reset the key cache since some parts do not reset the 1489 * contents on resume. First we clear all entries, then 1490 * re-load keys that the 802.11 layer assumes are setup 1491 * in h/w. 1492 */ 1493 static void 1494 ath_reset_keycache(struct ath_softc *sc) 1495 { 1496 struct ifnet *ifp = sc->sc_ifp; 1497 struct ieee80211com *ic = ifp->if_l2com; 1498 struct ath_hal *ah = sc->sc_ah; 1499 int i; 1500 1501 for (i = 0; i < sc->sc_keymax; i++) 1502 ath_hal_keyreset(ah, i); 1503 ieee80211_crypto_reload_keys(ic); 1504 } 1505 1506 void 1507 ath_resume(struct ath_softc *sc) 1508 { 1509 struct ifnet *ifp = sc->sc_ifp; 1510 struct ieee80211com *ic = ifp->if_l2com; 1511 struct ath_hal *ah = sc->sc_ah; 1512 HAL_STATUS status; 1513 1514 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1515 __func__, ifp->if_flags); 1516 1517 /* Re-enable PCIe, re-enable the PCIe bus */ 1518 ath_hal_enablepcie(ah, 0, 0); 1519 1520 /* 1521 * Must reset the chip before we reload the 1522 * keycache as we were powered down on suspend. 1523 */ 1524 ath_hal_reset(ah, sc->sc_opmode, 1525 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1526 AH_FALSE, &status); 1527 ath_reset_keycache(sc); 1528 1529 /* Let DFS at it in case it's a DFS channel */ 1530 ath_dfs_radar_enable(sc, ic->ic_curchan); 1531 1532 /* Let spectral at in case spectral is enabled */ 1533 ath_spectral_enable(sc, ic->ic_curchan); 1534 1535 /* Restore the LED configuration */ 1536 ath_led_config(sc); 1537 ath_hal_setledstate(ah, HAL_LED_INIT); 1538 1539 if (sc->sc_resume_up) 1540 ieee80211_resume_all(ic); 1541 1542 /* XXX beacons ? */ 1543 } 1544 1545 void 1546 ath_shutdown(struct ath_softc *sc) 1547 { 1548 struct ifnet *ifp = sc->sc_ifp; 1549 1550 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1551 __func__, ifp->if_flags); 1552 1553 ath_stop(ifp); 1554 /* NB: no point powering down chip as we're about to reboot */ 1555 } 1556 1557 /* 1558 * Interrupt handler. Most of the actual processing is deferred. 1559 */ 1560 void 1561 ath_intr(void *arg) 1562 { 1563 struct ath_softc *sc = arg; 1564 struct ifnet *ifp = sc->sc_ifp; 1565 struct ath_hal *ah = sc->sc_ah; 1566 HAL_INT status = 0; 1567 uint32_t txqs; 1568 1569 /* 1570 * If we're inside a reset path, just print a warning and 1571 * clear the ISR. The reset routine will finish it for us. 1572 */ 1573 ATH_PCU_LOCK(sc); 1574 if (sc->sc_inreset_cnt) { 1575 HAL_INT status; 1576 ath_hal_getisr(ah, &status); /* clear ISR */ 1577 ath_hal_intrset(ah, 0); /* disable further intr's */ 1578 DPRINTF(sc, ATH_DEBUG_ANY, 1579 "%s: in reset, ignoring: status=0x%x\n", 1580 __func__, status); 1581 ATH_PCU_UNLOCK(sc); 1582 return; 1583 } 1584 1585 if (sc->sc_invalid) { 1586 /* 1587 * The hardware is not ready/present, don't touch anything. 1588 * Note this can happen early on if the IRQ is shared. 1589 */ 1590 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1591 ATH_PCU_UNLOCK(sc); 1592 return; 1593 } 1594 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1595 ATH_PCU_UNLOCK(sc); 1596 return; 1597 } 1598 1599 if ((ifp->if_flags & IFF_UP) == 0 || 1600 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1601 HAL_INT status; 1602 1603 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1604 __func__, ifp->if_flags); 1605 ath_hal_getisr(ah, &status); /* clear ISR */ 1606 ath_hal_intrset(ah, 0); /* disable further intr's */ 1607 ATH_PCU_UNLOCK(sc); 1608 return; 1609 } 1610 1611 /* 1612 * Figure out the reason(s) for the interrupt. Note 1613 * that the hal returns a pseudo-ISR that may include 1614 * bits we haven't explicitly enabled so we mask the 1615 * value to insure we only process bits we requested. 1616 */ 1617 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1618 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1619 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1620 #ifdef ATH_KTR_INTR_DEBUG 1621 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1622 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1623 ah->ah_intrstate[0], 1624 ah->ah_intrstate[1], 1625 ah->ah_intrstate[2], 1626 ah->ah_intrstate[3], 1627 ah->ah_intrstate[6]); 1628 #endif 1629 1630 /* Squirrel away SYNC interrupt debugging */ 1631 if (ah->ah_syncstate != 0) { 1632 int i; 1633 for (i = 0; i < 32; i++) 1634 if (ah->ah_syncstate & (i << i)) 1635 sc->sc_intr_stats.sync_intr[i]++; 1636 } 1637 1638 status &= sc->sc_imask; /* discard unasked for bits */ 1639 1640 /* Short-circuit un-handled interrupts */ 1641 if (status == 0x0) { 1642 ATH_PCU_UNLOCK(sc); 1643 return; 1644 } 1645 1646 /* 1647 * Take a note that we're inside the interrupt handler, so 1648 * the reset routines know to wait. 1649 */ 1650 sc->sc_intr_cnt++; 1651 ATH_PCU_UNLOCK(sc); 1652 1653 /* 1654 * Handle the interrupt. We won't run concurrent with the reset 1655 * or channel change routines as they'll wait for sc_intr_cnt 1656 * to be 0 before continuing. 1657 */ 1658 if (status & HAL_INT_FATAL) { 1659 sc->sc_stats.ast_hardware++; 1660 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1661 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1662 } else { 1663 if (status & HAL_INT_SWBA) { 1664 /* 1665 * Software beacon alert--time to send a beacon. 1666 * Handle beacon transmission directly; deferring 1667 * this is too slow to meet timing constraints 1668 * under load. 1669 */ 1670 #ifdef IEEE80211_SUPPORT_TDMA 1671 if (sc->sc_tdma) { 1672 if (sc->sc_tdmaswba == 0) { 1673 struct ieee80211com *ic = ifp->if_l2com; 1674 struct ieee80211vap *vap = 1675 TAILQ_FIRST(&ic->ic_vaps); 1676 ath_tdma_beacon_send(sc, vap); 1677 sc->sc_tdmaswba = 1678 vap->iv_tdma->tdma_bintval; 1679 } else 1680 sc->sc_tdmaswba--; 1681 } else 1682 #endif 1683 { 1684 ath_beacon_proc(sc, 0); 1685 #ifdef IEEE80211_SUPPORT_SUPERG 1686 /* 1687 * Schedule the rx taskq in case there's no 1688 * traffic so any frames held on the staging 1689 * queue are aged and potentially flushed. 1690 */ 1691 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1692 #endif 1693 } 1694 } 1695 if (status & HAL_INT_RXEOL) { 1696 int imask; 1697 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1698 ATH_PCU_LOCK(sc); 1699 /* 1700 * NB: the hardware should re-read the link when 1701 * RXE bit is written, but it doesn't work at 1702 * least on older hardware revs. 1703 */ 1704 sc->sc_stats.ast_rxeol++; 1705 /* 1706 * Disable RXEOL/RXORN - prevent an interrupt 1707 * storm until the PCU logic can be reset. 1708 * In case the interface is reset some other 1709 * way before "sc_kickpcu" is called, don't 1710 * modify sc_imask - that way if it is reset 1711 * by a call to ath_reset() somehow, the 1712 * interrupt mask will be correctly reprogrammed. 1713 */ 1714 imask = sc->sc_imask; 1715 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1716 ath_hal_intrset(ah, imask); 1717 /* 1718 * Only blank sc_rxlink if we've not yet kicked 1719 * the PCU. 1720 * 1721 * This isn't entirely correct - the correct solution 1722 * would be to have a PCU lock and engage that for 1723 * the duration of the PCU fiddling; which would include 1724 * running the RX process. Otherwise we could end up 1725 * messing up the RX descriptor chain and making the 1726 * RX desc list much shorter. 1727 */ 1728 if (! sc->sc_kickpcu) 1729 sc->sc_rxlink = NULL; 1730 sc->sc_kickpcu = 1; 1731 /* 1732 * Enqueue an RX proc, to handled whatever 1733 * is in the RX queue. 1734 * This will then kick the PCU. 1735 */ 1736 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1737 ATH_PCU_UNLOCK(sc); 1738 } 1739 if (status & HAL_INT_TXURN) { 1740 sc->sc_stats.ast_txurn++; 1741 /* bump tx trigger level */ 1742 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1743 } 1744 /* 1745 * Handle both the legacy and RX EDMA interrupt bits. 1746 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1747 */ 1748 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1749 sc->sc_stats.ast_rx_intr++; 1750 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1751 } 1752 if (status & HAL_INT_TX) { 1753 sc->sc_stats.ast_tx_intr++; 1754 /* 1755 * Grab all the currently set bits in the HAL txq bitmap 1756 * and blank them. This is the only place we should be 1757 * doing this. 1758 */ 1759 if (! sc->sc_isedma) { 1760 ATH_PCU_LOCK(sc); 1761 txqs = 0xffffffff; 1762 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1763 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1764 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1765 txqs, 1766 sc->sc_txq_active, 1767 sc->sc_txq_active | txqs); 1768 sc->sc_txq_active |= txqs; 1769 ATH_PCU_UNLOCK(sc); 1770 } 1771 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1772 } 1773 if (status & HAL_INT_BMISS) { 1774 sc->sc_stats.ast_bmiss++; 1775 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1776 } 1777 if (status & HAL_INT_GTT) 1778 sc->sc_stats.ast_tx_timeout++; 1779 if (status & HAL_INT_CST) 1780 sc->sc_stats.ast_tx_cst++; 1781 if (status & HAL_INT_MIB) { 1782 sc->sc_stats.ast_mib++; 1783 ATH_PCU_LOCK(sc); 1784 /* 1785 * Disable interrupts until we service the MIB 1786 * interrupt; otherwise it will continue to fire. 1787 */ 1788 ath_hal_intrset(ah, 0); 1789 /* 1790 * Let the hal handle the event. We assume it will 1791 * clear whatever condition caused the interrupt. 1792 */ 1793 ath_hal_mibevent(ah, &sc->sc_halstats); 1794 /* 1795 * Don't reset the interrupt if we've just 1796 * kicked the PCU, or we may get a nested 1797 * RXEOL before the rxproc has had a chance 1798 * to run. 1799 */ 1800 if (sc->sc_kickpcu == 0) 1801 ath_hal_intrset(ah, sc->sc_imask); 1802 ATH_PCU_UNLOCK(sc); 1803 } 1804 if (status & HAL_INT_RXORN) { 1805 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1806 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1807 sc->sc_stats.ast_rxorn++; 1808 } 1809 } 1810 ATH_PCU_LOCK(sc); 1811 sc->sc_intr_cnt--; 1812 ATH_PCU_UNLOCK(sc); 1813 } 1814 1815 static void 1816 ath_fatal_proc(void *arg, int pending) 1817 { 1818 struct ath_softc *sc = arg; 1819 struct ifnet *ifp = sc->sc_ifp; 1820 u_int32_t *state; 1821 u_int32_t len; 1822 void *sp; 1823 1824 if_printf(ifp, "hardware error; resetting\n"); 1825 /* 1826 * Fatal errors are unrecoverable. Typically these 1827 * are caused by DMA errors. Collect h/w state from 1828 * the hal so we can diagnose what's going on. 1829 */ 1830 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1831 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1832 state = sp; 1833 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1834 state[0], state[1] , state[2], state[3], 1835 state[4], state[5]); 1836 } 1837 ath_reset(ifp, ATH_RESET_NOLOSS); 1838 } 1839 1840 static void 1841 ath_bmiss_vap(struct ieee80211vap *vap) 1842 { 1843 /* 1844 * Workaround phantom bmiss interrupts by sanity-checking 1845 * the time of our last rx'd frame. If it is within the 1846 * beacon miss interval then ignore the interrupt. If it's 1847 * truly a bmiss we'll get another interrupt soon and that'll 1848 * be dispatched up for processing. Note this applies only 1849 * for h/w beacon miss events. 1850 */ 1851 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1852 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1853 struct ath_softc *sc = ifp->if_softc; 1854 u_int64_t lastrx = sc->sc_lastrx; 1855 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1856 /* XXX should take a locked ref to iv_bss */ 1857 u_int bmisstimeout = 1858 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1859 1860 DPRINTF(sc, ATH_DEBUG_BEACON, 1861 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1862 __func__, (unsigned long long) tsf, 1863 (unsigned long long)(tsf - lastrx), 1864 (unsigned long long) lastrx, bmisstimeout); 1865 1866 if (tsf - lastrx <= bmisstimeout) { 1867 sc->sc_stats.ast_bmiss_phantom++; 1868 return; 1869 } 1870 } 1871 ATH_VAP(vap)->av_bmiss(vap); 1872 } 1873 1874 static int 1875 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1876 { 1877 uint32_t rsize; 1878 void *sp; 1879 1880 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1881 return 0; 1882 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1883 *hangs = *(uint32_t *)sp; 1884 return 1; 1885 } 1886 1887 static void 1888 ath_bmiss_proc(void *arg, int pending) 1889 { 1890 struct ath_softc *sc = arg; 1891 struct ifnet *ifp = sc->sc_ifp; 1892 uint32_t hangs; 1893 1894 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1895 1896 /* 1897 * Do a reset upon any becaon miss event. 1898 * 1899 * It may be a non-recognised RX clear hang which needs a reset 1900 * to clear. 1901 */ 1902 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1903 ath_reset(ifp, ATH_RESET_NOLOSS); 1904 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1905 } else { 1906 ath_reset(ifp, ATH_RESET_NOLOSS); 1907 ieee80211_beacon_miss(ifp->if_l2com); 1908 } 1909 } 1910 1911 /* 1912 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1913 * calcs together with WME. If necessary disable the crypto 1914 * hardware and mark the 802.11 state so keys will be setup 1915 * with the MIC work done in software. 1916 */ 1917 static void 1918 ath_settkipmic(struct ath_softc *sc) 1919 { 1920 struct ifnet *ifp = sc->sc_ifp; 1921 struct ieee80211com *ic = ifp->if_l2com; 1922 1923 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1924 if (ic->ic_flags & IEEE80211_F_WME) { 1925 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1926 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1927 } else { 1928 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1929 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1930 } 1931 } 1932 } 1933 1934 static void 1935 ath_init(void *arg) 1936 { 1937 struct ath_softc *sc = (struct ath_softc *) arg; 1938 struct ifnet *ifp = sc->sc_ifp; 1939 struct ieee80211com *ic = ifp->if_l2com; 1940 struct ath_hal *ah = sc->sc_ah; 1941 HAL_STATUS status; 1942 1943 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1944 __func__, ifp->if_flags); 1945 1946 ATH_LOCK(sc); 1947 /* 1948 * Stop anything previously setup. This is safe 1949 * whether this is the first time through or not. 1950 */ 1951 ath_stop_locked(ifp); 1952 1953 /* 1954 * The basic interface to setting the hardware in a good 1955 * state is ``reset''. On return the hardware is known to 1956 * be powered up and with interrupts disabled. This must 1957 * be followed by initialization of the appropriate bits 1958 * and then setup of the interrupt mask. 1959 */ 1960 ath_settkipmic(sc); 1961 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1962 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1963 status); 1964 ATH_UNLOCK(sc); 1965 return; 1966 } 1967 ath_chan_change(sc, ic->ic_curchan); 1968 1969 /* Let DFS at it in case it's a DFS channel */ 1970 ath_dfs_radar_enable(sc, ic->ic_curchan); 1971 1972 /* Let spectral at in case spectral is enabled */ 1973 ath_spectral_enable(sc, ic->ic_curchan); 1974 1975 /* 1976 * Likewise this is set during reset so update 1977 * state cached in the driver. 1978 */ 1979 sc->sc_diversity = ath_hal_getdiversity(ah); 1980 sc->sc_lastlongcal = 0; 1981 sc->sc_resetcal = 1; 1982 sc->sc_lastcalreset = 0; 1983 sc->sc_lastani = 0; 1984 sc->sc_lastshortcal = 0; 1985 sc->sc_doresetcal = AH_FALSE; 1986 /* 1987 * Beacon timers were cleared here; give ath_newstate() 1988 * a hint that the beacon timers should be poked when 1989 * things transition to the RUN state. 1990 */ 1991 sc->sc_beacons = 0; 1992 1993 /* 1994 * Setup the hardware after reset: the key cache 1995 * is filled as needed and the receive engine is 1996 * set going. Frame transmit is handled entirely 1997 * in the frame output path; there's nothing to do 1998 * here except setup the interrupt mask. 1999 */ 2000 if (ath_startrecv(sc) != 0) { 2001 if_printf(ifp, "unable to start recv logic\n"); 2002 ATH_UNLOCK(sc); 2003 return; 2004 } 2005 2006 /* 2007 * Enable interrupts. 2008 */ 2009 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2010 | HAL_INT_RXEOL | HAL_INT_RXORN 2011 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2012 2013 /* 2014 * Enable RX EDMA bits. Note these overlap with 2015 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2016 */ 2017 if (sc->sc_isedma) 2018 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2019 2020 /* 2021 * Enable MIB interrupts when there are hardware phy counters. 2022 * Note we only do this (at the moment) for station mode. 2023 */ 2024 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2025 sc->sc_imask |= HAL_INT_MIB; 2026 2027 /* Enable global TX timeout and carrier sense timeout if available */ 2028 if (ath_hal_gtxto_supported(ah)) 2029 sc->sc_imask |= HAL_INT_GTT; 2030 2031 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2032 __func__, sc->sc_imask); 2033 2034 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2035 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2036 ath_hal_intrset(ah, sc->sc_imask); 2037 2038 ATH_UNLOCK(sc); 2039 2040 #ifdef ATH_TX99_DIAG 2041 if (sc->sc_tx99 != NULL) 2042 sc->sc_tx99->start(sc->sc_tx99); 2043 else 2044 #endif 2045 ieee80211_start_all(ic); /* start all vap's */ 2046 } 2047 2048 static void 2049 ath_stop_locked(struct ifnet *ifp) 2050 { 2051 struct ath_softc *sc = ifp->if_softc; 2052 struct ath_hal *ah = sc->sc_ah; 2053 2054 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2055 __func__, sc->sc_invalid, ifp->if_flags); 2056 2057 ATH_LOCK_ASSERT(sc); 2058 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2059 /* 2060 * Shutdown the hardware and driver: 2061 * reset 802.11 state machine 2062 * turn off timers 2063 * disable interrupts 2064 * turn off the radio 2065 * clear transmit machinery 2066 * clear receive machinery 2067 * drain and release tx queues 2068 * reclaim beacon resources 2069 * power down hardware 2070 * 2071 * Note that some of this work is not possible if the 2072 * hardware is gone (invalid). 2073 */ 2074 #ifdef ATH_TX99_DIAG 2075 if (sc->sc_tx99 != NULL) 2076 sc->sc_tx99->stop(sc->sc_tx99); 2077 #endif 2078 callout_stop(&sc->sc_wd_ch); 2079 sc->sc_wd_timer = 0; 2080 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2081 if (!sc->sc_invalid) { 2082 if (sc->sc_softled) { 2083 callout_stop(&sc->sc_ledtimer); 2084 ath_hal_gpioset(ah, sc->sc_ledpin, 2085 !sc->sc_ledon); 2086 sc->sc_blinking = 0; 2087 } 2088 ath_hal_intrset(ah, 0); 2089 } 2090 ath_draintxq(sc, ATH_RESET_DEFAULT); 2091 if (!sc->sc_invalid) { 2092 ath_stoprecv(sc, 1); 2093 ath_hal_phydisable(ah); 2094 } else 2095 sc->sc_rxlink = NULL; 2096 ath_beacon_free(sc); /* XXX not needed */ 2097 } 2098 } 2099 2100 #define MAX_TXRX_ITERATIONS 1000 2101 static void 2102 ath_txrx_stop_locked(struct ath_softc *sc) 2103 { 2104 int i = MAX_TXRX_ITERATIONS; 2105 2106 ATH_UNLOCK_ASSERT(sc); 2107 ATH_PCU_LOCK_ASSERT(sc); 2108 2109 /* 2110 * Sleep until all the pending operations have completed. 2111 * 2112 * The caller must ensure that reset has been incremented 2113 * or the pending operations may continue being queued. 2114 */ 2115 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2116 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2117 if (i <= 0) 2118 break; 2119 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2120 i--; 2121 } 2122 2123 if (i <= 0) 2124 device_printf(sc->sc_dev, 2125 "%s: didn't finish after %d iterations\n", 2126 __func__, MAX_TXRX_ITERATIONS); 2127 } 2128 #undef MAX_TXRX_ITERATIONS 2129 2130 #if 0 2131 static void 2132 ath_txrx_stop(struct ath_softc *sc) 2133 { 2134 ATH_UNLOCK_ASSERT(sc); 2135 ATH_PCU_UNLOCK_ASSERT(sc); 2136 2137 ATH_PCU_LOCK(sc); 2138 ath_txrx_stop_locked(sc); 2139 ATH_PCU_UNLOCK(sc); 2140 } 2141 #endif 2142 2143 static void 2144 ath_txrx_start(struct ath_softc *sc) 2145 { 2146 2147 taskqueue_unblock(sc->sc_tq); 2148 taskqueue_unblock(sc->sc_tx_tq); 2149 } 2150 2151 /* 2152 * Grab the reset lock, and wait around until noone else 2153 * is trying to do anything with it. 2154 * 2155 * This is totally horrible but we can't hold this lock for 2156 * long enough to do TX/RX or we end up with net80211/ip stack 2157 * LORs and eventual deadlock. 2158 * 2159 * "dowait" signals whether to spin, waiting for the reset 2160 * lock count to reach 0. This should (for now) only be used 2161 * during the reset path, as the rest of the code may not 2162 * be locking-reentrant enough to behave correctly. 2163 * 2164 * Another, cleaner way should be found to serialise all of 2165 * these operations. 2166 */ 2167 #define MAX_RESET_ITERATIONS 10 2168 static int 2169 ath_reset_grablock(struct ath_softc *sc, int dowait) 2170 { 2171 int w = 0; 2172 int i = MAX_RESET_ITERATIONS; 2173 2174 ATH_PCU_LOCK_ASSERT(sc); 2175 do { 2176 if (sc->sc_inreset_cnt == 0) { 2177 w = 1; 2178 break; 2179 } 2180 if (dowait == 0) { 2181 w = 0; 2182 break; 2183 } 2184 ATH_PCU_UNLOCK(sc); 2185 pause("ath_reset_grablock", 1); 2186 i--; 2187 ATH_PCU_LOCK(sc); 2188 } while (i > 0); 2189 2190 /* 2191 * We always increment the refcounter, regardless 2192 * of whether we succeeded to get it in an exclusive 2193 * way. 2194 */ 2195 sc->sc_inreset_cnt++; 2196 2197 if (i <= 0) 2198 device_printf(sc->sc_dev, 2199 "%s: didn't finish after %d iterations\n", 2200 __func__, MAX_RESET_ITERATIONS); 2201 2202 if (w == 0) 2203 device_printf(sc->sc_dev, 2204 "%s: warning, recursive reset path!\n", 2205 __func__); 2206 2207 return w; 2208 } 2209 #undef MAX_RESET_ITERATIONS 2210 2211 /* 2212 * XXX TODO: write ath_reset_releaselock 2213 */ 2214 2215 static void 2216 ath_stop(struct ifnet *ifp) 2217 { 2218 struct ath_softc *sc = ifp->if_softc; 2219 2220 ATH_LOCK(sc); 2221 ath_stop_locked(ifp); 2222 ATH_UNLOCK(sc); 2223 } 2224 2225 /* 2226 * Reset the hardware w/o losing operational state. This is 2227 * basically a more efficient way of doing ath_stop, ath_init, 2228 * followed by state transitions to the current 802.11 2229 * operational state. Used to recover from various errors and 2230 * to reset or reload hardware state. 2231 */ 2232 int 2233 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2234 { 2235 struct ath_softc *sc = ifp->if_softc; 2236 struct ieee80211com *ic = ifp->if_l2com; 2237 struct ath_hal *ah = sc->sc_ah; 2238 HAL_STATUS status; 2239 int i; 2240 2241 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2242 2243 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2244 ATH_PCU_UNLOCK_ASSERT(sc); 2245 ATH_UNLOCK_ASSERT(sc); 2246 2247 /* Try to (stop any further TX/RX from occuring */ 2248 taskqueue_block(sc->sc_tq); 2249 taskqueue_block(sc->sc_tx_tq); 2250 2251 ATH_PCU_LOCK(sc); 2252 ath_hal_intrset(ah, 0); /* disable interrupts */ 2253 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2254 if (ath_reset_grablock(sc, 1) == 0) { 2255 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2256 __func__); 2257 } 2258 ATH_PCU_UNLOCK(sc); 2259 2260 /* 2261 * Should now wait for pending TX/RX to complete 2262 * and block future ones from occuring. This needs to be 2263 * done before the TX queue is drained. 2264 */ 2265 ath_draintxq(sc, reset_type); /* stop xmit side */ 2266 2267 /* 2268 * Regardless of whether we're doing a no-loss flush or 2269 * not, stop the PCU and handle what's in the RX queue. 2270 * That way frames aren't dropped which shouldn't be. 2271 */ 2272 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2273 ath_rx_flush(sc); 2274 2275 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2276 /* NB: indicate channel change so we do a full reset */ 2277 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2278 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2279 __func__, status); 2280 sc->sc_diversity = ath_hal_getdiversity(ah); 2281 2282 /* Let DFS at it in case it's a DFS channel */ 2283 ath_dfs_radar_enable(sc, ic->ic_curchan); 2284 2285 /* Let spectral at in case spectral is enabled */ 2286 ath_spectral_enable(sc, ic->ic_curchan); 2287 2288 if (ath_startrecv(sc) != 0) /* restart recv */ 2289 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2290 /* 2291 * We may be doing a reset in response to an ioctl 2292 * that changes the channel so update any state that 2293 * might change as a result. 2294 */ 2295 ath_chan_change(sc, ic->ic_curchan); 2296 if (sc->sc_beacons) { /* restart beacons */ 2297 #ifdef IEEE80211_SUPPORT_TDMA 2298 if (sc->sc_tdma) 2299 ath_tdma_config(sc, NULL); 2300 else 2301 #endif 2302 ath_beacon_config(sc, NULL); 2303 } 2304 2305 /* 2306 * Release the reset lock and re-enable interrupts here. 2307 * If an interrupt was being processed in ath_intr(), 2308 * it would disable interrupts at this point. So we have 2309 * to atomically enable interrupts and decrement the 2310 * reset counter - this way ath_intr() doesn't end up 2311 * disabling interrupts without a corresponding enable 2312 * in the rest or channel change path. 2313 */ 2314 ATH_PCU_LOCK(sc); 2315 sc->sc_inreset_cnt--; 2316 /* XXX only do this if sc_inreset_cnt == 0? */ 2317 ath_hal_intrset(ah, sc->sc_imask); 2318 ATH_PCU_UNLOCK(sc); 2319 2320 /* 2321 * TX and RX can be started here. If it were started with 2322 * sc_inreset_cnt > 0, the TX and RX path would abort. 2323 * Thus if this is a nested call through the reset or 2324 * channel change code, TX completion will occur but 2325 * RX completion and ath_start / ath_tx_start will not 2326 * run. 2327 */ 2328 2329 /* Restart TX/RX as needed */ 2330 ath_txrx_start(sc); 2331 2332 /* Restart TX completion and pending TX */ 2333 if (reset_type == ATH_RESET_NOLOSS) { 2334 ATH_TX_LOCK(sc); 2335 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2336 if (ATH_TXQ_SETUP(sc, i)) { 2337 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2338 ath_txq_sched(sc, &sc->sc_txq[i]); 2339 } 2340 } 2341 ATH_TX_UNLOCK(sc); 2342 } 2343 2344 /* 2345 * This may have been set during an ath_start() call which 2346 * set this once it detected a concurrent TX was going on. 2347 * So, clear it. 2348 */ 2349 IF_LOCK(&ifp->if_snd); 2350 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2351 IF_UNLOCK(&ifp->if_snd); 2352 2353 /* Handle any frames in the TX queue */ 2354 /* 2355 * XXX should this be done by the caller, rather than 2356 * ath_reset() ? 2357 */ 2358 ath_tx_kick(sc); /* restart xmit */ 2359 return 0; 2360 } 2361 2362 static int 2363 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2364 { 2365 struct ieee80211com *ic = vap->iv_ic; 2366 struct ifnet *ifp = ic->ic_ifp; 2367 struct ath_softc *sc = ifp->if_softc; 2368 struct ath_hal *ah = sc->sc_ah; 2369 2370 switch (cmd) { 2371 case IEEE80211_IOC_TXPOWER: 2372 /* 2373 * If per-packet TPC is enabled, then we have nothing 2374 * to do; otherwise we need to force the global limit. 2375 * All this can happen directly; no need to reset. 2376 */ 2377 if (!ath_hal_gettpc(ah)) 2378 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2379 return 0; 2380 } 2381 /* XXX? Full or NOLOSS? */ 2382 return ath_reset(ifp, ATH_RESET_FULL); 2383 } 2384 2385 struct ath_buf * 2386 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2387 { 2388 struct ath_buf *bf; 2389 2390 ATH_TXBUF_LOCK_ASSERT(sc); 2391 2392 if (btype == ATH_BUFTYPE_MGMT) 2393 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2394 else 2395 bf = TAILQ_FIRST(&sc->sc_txbuf); 2396 2397 if (bf == NULL) { 2398 sc->sc_stats.ast_tx_getnobuf++; 2399 } else { 2400 if (bf->bf_flags & ATH_BUF_BUSY) { 2401 sc->sc_stats.ast_tx_getbusybuf++; 2402 bf = NULL; 2403 } 2404 } 2405 2406 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2407 if (btype == ATH_BUFTYPE_MGMT) 2408 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2409 else { 2410 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2411 sc->sc_txbuf_cnt--; 2412 2413 /* 2414 * This shuldn't happen; however just to be 2415 * safe print a warning and fudge the txbuf 2416 * count. 2417 */ 2418 if (sc->sc_txbuf_cnt < 0) { 2419 device_printf(sc->sc_dev, 2420 "%s: sc_txbuf_cnt < 0?\n", 2421 __func__); 2422 sc->sc_txbuf_cnt = 0; 2423 } 2424 } 2425 } else 2426 bf = NULL; 2427 2428 if (bf == NULL) { 2429 /* XXX should check which list, mgmt or otherwise */ 2430 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2431 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2432 "out of xmit buffers" : "xmit buffer busy"); 2433 return NULL; 2434 } 2435 2436 /* XXX TODO: should do this at buffer list initialisation */ 2437 /* XXX (then, ensure the buffer has the right flag set) */ 2438 if (btype == ATH_BUFTYPE_MGMT) 2439 bf->bf_flags |= ATH_BUF_MGMT; 2440 else 2441 bf->bf_flags &= (~ATH_BUF_MGMT); 2442 2443 /* Valid bf here; clear some basic fields */ 2444 bf->bf_next = NULL; /* XXX just to be sure */ 2445 bf->bf_last = NULL; /* XXX again, just to be sure */ 2446 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2447 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2448 2449 /* 2450 * Track the descriptor ID only if doing EDMA 2451 */ 2452 if (sc->sc_isedma) { 2453 bf->bf_descid = sc->sc_txbuf_descid; 2454 sc->sc_txbuf_descid++; 2455 } 2456 2457 return bf; 2458 } 2459 2460 /* 2461 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2462 * can't be thrown back on the queue as they could still be 2463 * in use by the hardware. 2464 * 2465 * This duplicates the buffer, or returns NULL. 2466 * 2467 * The descriptor is also copied but the link pointers and 2468 * the DMA segments aren't copied; this frame should thus 2469 * be again passed through the descriptor setup/chain routines 2470 * so the link is correct. 2471 * 2472 * The caller must free the buffer using ath_freebuf(). 2473 * 2474 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2475 * XXX in the TX pathway when retries are needed. 2476 * XXX Figure out how to keep some buffers free, or factor the 2477 * XXX number of busy buffers into the xmit path (ath_start()) 2478 * XXX so we don't over-commit. 2479 */ 2480 struct ath_buf * 2481 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2482 { 2483 struct ath_buf *tbf; 2484 2485 tbf = ath_getbuf(sc, 2486 (bf->bf_flags & ATH_BUF_MGMT) ? 2487 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2488 if (tbf == NULL) 2489 return NULL; /* XXX failure? Why? */ 2490 2491 /* Copy basics */ 2492 tbf->bf_next = NULL; 2493 tbf->bf_nseg = bf->bf_nseg; 2494 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2495 tbf->bf_status = bf->bf_status; 2496 tbf->bf_m = bf->bf_m; 2497 /* 2498 * XXX Copy the node reference, the caller is responsible 2499 * for deleting the node reference before it frees its 2500 * buffer. 2501 * 2502 * XXX It's done like this so we don't call the net80211 2503 * code whilst having active TX queue locks held. 2504 */ 2505 tbf->bf_node = bf->bf_node; 2506 /* will be setup by the chain/setup function */ 2507 tbf->bf_lastds = NULL; 2508 /* for now, last == self */ 2509 tbf->bf_last = tbf; 2510 tbf->bf_comp = bf->bf_comp; 2511 2512 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2513 2514 /* The caller has to re-init the descriptor + links */ 2515 2516 /* Copy state */ 2517 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2518 2519 return tbf; 2520 } 2521 2522 struct ath_buf * 2523 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2524 { 2525 struct ath_buf *bf; 2526 2527 ATH_TXBUF_LOCK(sc); 2528 bf = _ath_getbuf_locked(sc, btype); 2529 /* 2530 * If a mgmt buffer was requested but we're out of those, 2531 * try requesting a normal one. 2532 */ 2533 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2534 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2535 ATH_TXBUF_UNLOCK(sc); 2536 if (bf == NULL) { 2537 struct ifnet *ifp = sc->sc_ifp; 2538 2539 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2540 sc->sc_stats.ast_tx_qstop++; 2541 IF_LOCK(&ifp->if_snd); 2542 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2543 IF_UNLOCK(&ifp->if_snd); 2544 } 2545 return bf; 2546 } 2547 2548 static void 2549 ath_qflush(struct ifnet *ifp) 2550 { 2551 2552 /* XXX complete/suspend TX */ 2553 ath_txq_qflush(ifp); 2554 2555 /* Unsuspend TX? */ 2556 } 2557 2558 /* 2559 * Transmit a frame from net80211. 2560 */ 2561 static int 2562 ath_transmit(struct ifnet *ifp, struct mbuf *m) 2563 { 2564 struct ieee80211_node *ni; 2565 struct ath_softc *sc = (struct ath_softc *) ifp->if_softc; 2566 2567 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2568 2569 if (ath_txq_qadd(ifp, m) < 0) { 2570 /* 2571 * If queuing fails, the if_transmit() API makes the 2572 * callee responsible for freeing the mbuf (rather than 2573 * the caller, who just assumes the mbuf has been dealt 2574 * with somehow). 2575 * 2576 * BUT, net80211 will free node references if if_transmit() 2577 * fails _on encapsulated buffers_. Since drivers 2578 * only get fully encapsulated frames from net80211 (via 2579 * raw or otherwise APIs), we must be absolutely careful 2580 * to not free the node ref or things will get loopy 2581 * down the track. 2582 * 2583 * For tx fragments, the TX code must free whatever 2584 * new references it created, but NOT the original 2585 * TX node ref that was passed in. 2586 */ 2587 ath_freetx(m); 2588 return (ENOBUFS); 2589 } 2590 2591 /* 2592 * Unconditionally kick the taskqueue. 2593 * 2594 * Now, there's a subtle race condition possible here if we 2595 * went down the path of only kicking the taskqueue if it 2596 * wasn't running. If we're not absolutely, positively 2597 * careful, we could have a small race window between 2598 * finishing the taskqueue and clearing the TX flag, which 2599 * would be interpreted in _this_ context as "we don't need 2600 * to kick the TX taskqueue, as said taskqueue is already 2601 * running." 2602 * 2603 * It's a problem in some of the 1GE/10GE NIC drivers. 2604 * So until a _correct_ method for implementing this is 2605 * drafted up and written, which avoids (potentially) 2606 * large amounts of locking contention per-frame, let's 2607 * just do the inefficient "kick taskqueue each time" 2608 * method. 2609 */ 2610 ath_tx_kick(sc); 2611 2612 return (0); 2613 } 2614 2615 void 2616 ath_start_task(void *arg, int npending) 2617 { 2618 struct ath_softc *sc = (struct ath_softc *) arg; 2619 struct ifnet *ifp = sc->sc_ifp; 2620 2621 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2622 2623 /* XXX is it ok to hold the ATH_LOCK here? */ 2624 ATH_PCU_LOCK(sc); 2625 if (sc->sc_inreset_cnt > 0) { 2626 device_printf(sc->sc_dev, 2627 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2628 ATH_PCU_UNLOCK(sc); 2629 IF_LOCK(&ifp->if_snd); 2630 sc->sc_stats.ast_tx_qstop++; 2631 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2632 IF_UNLOCK(&ifp->if_snd); 2633 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2634 return; 2635 } 2636 sc->sc_txstart_cnt++; 2637 ATH_PCU_UNLOCK(sc); 2638 2639 ath_txq_qrun(ifp); 2640 2641 ATH_PCU_LOCK(sc); 2642 sc->sc_txstart_cnt--; 2643 ATH_PCU_UNLOCK(sc); 2644 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2645 } 2646 2647 /* 2648 * Pending TX buffer chain management routines. 2649 */ 2650 2651 2652 /* 2653 * Initialise the TX queue! 2654 */ 2655 static void 2656 ath_txq_qinit(struct ifnet *ifp) 2657 { 2658 struct ath_softc *sc = ifp->if_softc; 2659 2660 TAILQ_INIT(&sc->sc_txbuf_list); 2661 } 2662 2663 /* 2664 * Add this mbuf to the TX buffer chain. 2665 * 2666 * This allocates an ath_buf, links the mbuf into it, and 2667 * appends it to the end of the TX buffer chain. 2668 * It doesn't fill out the ath_buf in any way besides 2669 * that. 2670 * 2671 * Since the mbuf may be a list of mbufs representing 2672 * 802.11 fragments, handle allocating ath_bufs for each 2673 * of the mbuf fragments. 2674 * 2675 * If we queued it, 0 is returned. Else, < 0 is returned. 2676 * 2677 * If <0 is returned, the sender is responsible for 2678 * freeing the mbuf if appropriate. 2679 */ 2680 static int 2681 ath_txq_qadd(struct ifnet *ifp, struct mbuf *m0) 2682 { 2683 struct ath_softc *sc = ifp->if_softc; 2684 struct ath_buf *bf; 2685 ath_bufhead frags; 2686 struct ieee80211_node *ni; 2687 struct mbuf *m; 2688 2689 /* XXX recursive TX completion -> TX? */ 2690 ATH_TX_IC_UNLOCK_ASSERT(sc); 2691 2692 /* 2693 * We grab the node pointer, but we don't deref 2694 * the node. The caller must be responsible for 2695 * freeing the node reference if it decides to 2696 * free the mbuf. 2697 */ 2698 ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif; 2699 2700 ATH_TXBUF_LOCK(sc); 2701 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2702 /* XXX increment counter? */ 2703 ATH_TXBUF_UNLOCK(sc); 2704 IF_LOCK(&ifp->if_snd); 2705 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2706 IF_UNLOCK(&ifp->if_snd); 2707 return (-1); 2708 } 2709 ATH_TXBUF_UNLOCK(sc); 2710 2711 /* 2712 * Grab a TX buffer and associated resources. 2713 */ 2714 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2715 if (bf == NULL) { 2716 device_printf(sc->sc_dev, 2717 "%s: couldn't allocate a buffer\n", 2718 __func__); 2719 return (-1); 2720 } 2721 2722 /* Setup the initial buffer node contents */ 2723 bf->bf_m = m0; 2724 bf->bf_node = ni; 2725 2726 /* 2727 * Check for fragmentation. If this frame 2728 * has been broken up verify we have enough 2729 * buffers to send all the fragments so all 2730 * go out or none... 2731 */ 2732 TAILQ_INIT(&frags); 2733 if (m0->m_flags & M_FRAG) 2734 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: txfrag\n", __func__); 2735 if ((m0->m_flags & M_FRAG) && 2736 !ath_txfrag_setup(sc, &frags, m0, ni)) { 2737 DPRINTF(sc, ATH_DEBUG_XMIT, 2738 "%s: out of txfrag buffers\n", __func__); 2739 sc->sc_stats.ast_tx_nofrag++; 2740 ifp->if_oerrors++; 2741 goto bad; 2742 } 2743 2744 /* 2745 * Don't stuff the non-fragment frame onto the fragment 2746 * queue. ath_txfrag_cleanup() should only be called on fragments - 2747 * ie, the _extra_ ieee80211_node references - and not the single 2748 * node reference already done as part of the net08211 TX call 2749 * into the driver. 2750 */ 2751 2752 ATH_TX_IC_LOCK(sc); 2753 2754 /* 2755 * Throw the single frame onto the queue. 2756 */ 2757 TAILQ_INSERT_TAIL(&sc->sc_txbuf_list, bf, bf_list); 2758 2759 /* 2760 * Update next packet duration length if it's a fragment. 2761 * It's needed for accurate NAV calculations (which for 2762 * fragments include the length of the NEXT fragment.) 2763 */ 2764 if (m0->m_nextpkt != NULL) 2765 bf->bf_state.bfs_nextpktlen = 2766 m0->m_nextpkt->m_pkthdr.len; 2767 2768 /* 2769 * Append the fragments. We have to populate bf and node 2770 * references here as although the txfrag setup code does 2771 * create buffers and increment the node ref, it doesn't 2772 * populate the fields for us. 2773 */ 2774 m = m0->m_nextpkt; 2775 while ( (bf = TAILQ_FIRST(&frags)) != NULL) { 2776 bf->bf_m = m; 2777 bf->bf_node = ni; 2778 device_printf(sc->sc_dev, "%s: adding bf=%p, m=%p, ni=%p\n", 2779 __func__, 2780 bf, 2781 bf->bf_m, 2782 bf->bf_node); 2783 TAILQ_REMOVE(&frags, bf, bf_list); 2784 TAILQ_INSERT_TAIL(&sc->sc_txbuf_list, bf, bf_list); 2785 2786 /* 2787 * For duration (NAV) calculations, we need 2788 * to know the next fragment size. 2789 * 2790 * XXX This isn't entirely accurate as it doesn't 2791 * take pad bytes and such into account, but it'll do 2792 * for fragment length / NAV calculations. 2793 */ 2794 if (m->m_nextpkt != NULL) 2795 bf->bf_state.bfs_nextpktlen = 2796 m->m_nextpkt->m_pkthdr.len; 2797 2798 m = m->m_nextpkt; 2799 } 2800 ATH_TX_IC_UNLOCK(sc); 2801 2802 return (0); 2803 bad: 2804 device_printf(sc->sc_dev, "%s: bad?!\n", __func__); 2805 bf->bf_m = NULL; 2806 bf->bf_node = NULL; 2807 ATH_TXBUF_LOCK(sc); 2808 ath_returnbuf_head(sc, bf); 2809 ath_txfrag_cleanup(sc, &frags, ni); 2810 ATH_TXBUF_UNLOCK(sc); 2811 return (-1); 2812 } 2813 2814 /* 2815 * Flush the pending TX buffer chain. 2816 */ 2817 static void 2818 ath_txq_qflush(struct ifnet *ifp) 2819 { 2820 struct ath_softc *sc = ifp->if_softc; 2821 ath_bufhead txlist; 2822 struct ath_buf *bf; 2823 2824 device_printf(sc->sc_dev, "%s: called\n", __func__); 2825 TAILQ_INIT(&txlist); 2826 2827 /* Grab lock */ 2828 ATH_TX_IC_LOCK(sc); 2829 2830 /* Copy everything out of sc_txbuf_list into txlist */ 2831 TAILQ_CONCAT(&txlist, &sc->sc_txbuf_list, bf_list); 2832 2833 /* Unlock */ 2834 ATH_TX_IC_UNLOCK(sc); 2835 2836 /* Now, walk the list, freeing things */ 2837 while ((bf = TAILQ_FIRST(&txlist)) != NULL) { 2838 TAILQ_REMOVE(&txlist, bf, bf_list); 2839 2840 if (bf->bf_node) 2841 ieee80211_free_node(bf->bf_node); 2842 2843 m_free(bf->bf_m); 2844 2845 /* XXX paranoia! */ 2846 bf->bf_m = NULL; 2847 bf->bf_node = NULL; 2848 2849 /* 2850 * XXX Perhaps do a second pass with the TXBUF lock 2851 * held and free them all at once? 2852 */ 2853 ATH_TXBUF_LOCK(sc); 2854 ath_returnbuf_head(sc, bf); 2855 ATH_TXBUF_UNLOCK(sc); 2856 } 2857 } 2858 2859 /* 2860 * Walk the TX buffer queue and call ath_tx_start() on each 2861 * of them. 2862 */ 2863 static void 2864 ath_txq_qrun(struct ifnet *ifp) 2865 { 2866 struct ath_softc *sc = ifp->if_softc; 2867 ath_bufhead txlist; 2868 struct ath_buf *bf, *bf_next; 2869 struct ieee80211_node *ni; 2870 struct mbuf *m; 2871 2872 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2873 return; 2874 2875 TAILQ_INIT(&txlist); 2876 2877 /* 2878 * Grab the frames to transmit from the tx queue 2879 */ 2880 2881 /* Copy everything out of sc_txbuf_list into txlist */ 2882 ATH_TX_IC_LOCK(sc); 2883 TAILQ_CONCAT(&txlist, &sc->sc_txbuf_list, bf_list); 2884 ATH_TX_IC_UNLOCK(sc); 2885 2886 /* 2887 * Attempt to transmit each frame. 2888 * 2889 * In the old code path - if a TX fragment fails, subsequent 2890 * fragments in that group would be aborted. 2891 * 2892 * It would be nice to chain together TX fragments in this 2893 * way so they can be aborted together. 2894 */ 2895 ATH_TX_LOCK(sc); 2896 TAILQ_FOREACH_SAFE(bf, &txlist, bf_list, bf_next) { 2897 /* 2898 * Clear, because we're going to reuse this 2899 * as a real ath_buf now 2900 */ 2901 ni = bf->bf_node; 2902 m = bf->bf_m; 2903 2904 bf->bf_node = NULL; 2905 bf->bf_m = NULL; 2906 2907 /* 2908 * Remove it from the list. 2909 */ 2910 TAILQ_REMOVE(&txlist, bf, bf_list); 2911 2912 /* 2913 * If we fail, free this buffer and go to the next one; 2914 * ath_tx_start() frees the mbuf but not the node 2915 * reference. 2916 */ 2917 if (ath_tx_start(sc, ni, bf, m)) { 2918 /* 2919 * XXX m is freed by ath_tx_start(); node reference 2920 * is not! 2921 */ 2922 DPRINTF(sc, ATH_DEBUG_XMIT, 2923 "%s: failed; bf=%p, ni=%p, m=%p\n", 2924 __func__, 2925 bf, 2926 ni, 2927 m); 2928 ifp->if_oerrors++; 2929 bf->bf_m = NULL; 2930 bf->bf_node = NULL; 2931 ATH_TXBUF_LOCK(sc); 2932 ath_returnbuf_head(sc, bf); 2933 ATH_TXBUF_UNLOCK(sc); 2934 /* 2935 * XXX todo, free the node outside of 2936 * the TX lock context! 2937 */ 2938 if (ni != NULL) 2939 ieee80211_free_node(ni); 2940 } else { 2941 /* 2942 * Check here if the node is in power save state. 2943 * XXX we should hold a node ref here, and release 2944 * it after the TX has completed. 2945 */ 2946 ath_tx_update_tim(sc, ni, 1); 2947 ifp->if_opackets++; 2948 } 2949 2950 /* 2951 * XXX should check for state change and flip out 2952 * if needed. 2953 */ 2954 } 2955 ATH_TX_UNLOCK(sc); 2956 2957 /* 2958 * If we break out early (eg a state change) we should prepend these 2959 * frames onto the TX queue. 2960 */ 2961 } 2962 2963 /* 2964 * This is now primarily used by the net80211 layer to kick-start 2965 * queue processing. 2966 */ 2967 void 2968 ath_start(struct ifnet *ifp) 2969 { 2970 struct mbuf *m; 2971 struct ath_softc *sc = ifp->if_softc; 2972 struct ieee80211_node *ni; 2973 int npkts = 0; 2974 2975 ATH_TX_UNLOCK_ASSERT(sc); 2976 2977 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2978 return; 2979 2980 /* 2981 * If we're below the free buffer limit, don't dequeue anything. 2982 * The original code would not dequeue anything from the queue 2983 * if allocating an ath_buf failed. 2984 * 2985 * For if_transmit, we have to either queue or drop the frame. 2986 * So we have to try and queue it _somewhere_. 2987 */ 2988 for (;;) { 2989 IFQ_DEQUEUE(&ifp->if_snd, m); 2990 if (m == NULL) { 2991 break; 2992 } 2993 2994 /* 2995 * If we do fail here, just break out for now 2996 * and wait until we've transmitted something 2997 * before we attempt again? 2998 */ 2999 if (ath_txq_qadd(ifp, m) < 0) { 3000 DPRINTF(sc, ATH_DEBUG_XMIT, 3001 "%s: ath_txq_qadd failed\n", 3002 __func__); 3003 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3004 if (ni != NULL) 3005 ieee80211_free_node(ni); 3006 ath_freetx(m); 3007 break; 3008 } 3009 npkts++; 3010 } 3011 3012 /* 3013 * Kick the taskqueue into activity, but only if we 3014 * queued something. 3015 */ 3016 if (npkts > 0) 3017 ath_tx_kick(sc); 3018 } 3019 3020 static int 3021 ath_media_change(struct ifnet *ifp) 3022 { 3023 int error = ieee80211_media_change(ifp); 3024 /* NB: only the fixed rate can change and that doesn't need a reset */ 3025 return (error == ENETRESET ? 0 : error); 3026 } 3027 3028 /* 3029 * Block/unblock tx+rx processing while a key change is done. 3030 * We assume the caller serializes key management operations 3031 * so we only need to worry about synchronization with other 3032 * uses that originate in the driver. 3033 */ 3034 static void 3035 ath_key_update_begin(struct ieee80211vap *vap) 3036 { 3037 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3038 struct ath_softc *sc = ifp->if_softc; 3039 3040 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3041 taskqueue_block(sc->sc_tq); 3042 taskqueue_block(sc->sc_tx_tq); 3043 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 3044 } 3045 3046 static void 3047 ath_key_update_end(struct ieee80211vap *vap) 3048 { 3049 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3050 struct ath_softc *sc = ifp->if_softc; 3051 3052 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3053 IF_UNLOCK(&ifp->if_snd); 3054 taskqueue_unblock(sc->sc_tq); 3055 taskqueue_unblock(sc->sc_tx_tq); 3056 } 3057 3058 static void 3059 ath_update_promisc(struct ifnet *ifp) 3060 { 3061 struct ath_softc *sc = ifp->if_softc; 3062 u_int32_t rfilt; 3063 3064 /* configure rx filter */ 3065 rfilt = ath_calcrxfilter(sc); 3066 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3067 3068 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3069 } 3070 3071 static void 3072 ath_update_mcast(struct ifnet *ifp) 3073 { 3074 struct ath_softc *sc = ifp->if_softc; 3075 u_int32_t mfilt[2]; 3076 3077 /* calculate and install multicast filter */ 3078 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3079 struct ifmultiaddr *ifma; 3080 /* 3081 * Merge multicast addresses to form the hardware filter. 3082 */ 3083 mfilt[0] = mfilt[1] = 0; 3084 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 3085 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3086 caddr_t dl; 3087 u_int32_t val; 3088 u_int8_t pos; 3089 3090 /* calculate XOR of eight 6bit values */ 3091 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 3092 val = LE_READ_4(dl + 0); 3093 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3094 val = LE_READ_4(dl + 3); 3095 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3096 pos &= 0x3f; 3097 mfilt[pos / 32] |= (1 << (pos % 32)); 3098 } 3099 if_maddr_runlock(ifp); 3100 } else 3101 mfilt[0] = mfilt[1] = ~0; 3102 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3103 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3104 __func__, mfilt[0], mfilt[1]); 3105 } 3106 3107 void 3108 ath_mode_init(struct ath_softc *sc) 3109 { 3110 struct ifnet *ifp = sc->sc_ifp; 3111 struct ath_hal *ah = sc->sc_ah; 3112 u_int32_t rfilt; 3113 3114 /* configure rx filter */ 3115 rfilt = ath_calcrxfilter(sc); 3116 ath_hal_setrxfilter(ah, rfilt); 3117 3118 /* configure operational mode */ 3119 ath_hal_setopmode(ah); 3120 3121 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 3122 "%s: ah=%p, ifp=%p, if_addr=%p\n", 3123 __func__, 3124 ah, 3125 ifp, 3126 (ifp == NULL) ? NULL : ifp->if_addr); 3127 3128 /* handle any link-level address change */ 3129 ath_hal_setmac(ah, IF_LLADDR(ifp)); 3130 3131 /* calculate and install multicast filter */ 3132 ath_update_mcast(ifp); 3133 } 3134 3135 /* 3136 * Set the slot time based on the current setting. 3137 */ 3138 void 3139 ath_setslottime(struct ath_softc *sc) 3140 { 3141 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3142 struct ath_hal *ah = sc->sc_ah; 3143 u_int usec; 3144 3145 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3146 usec = 13; 3147 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3148 usec = 21; 3149 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3150 /* honor short/long slot time only in 11g */ 3151 /* XXX shouldn't honor on pure g or turbo g channel */ 3152 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3153 usec = HAL_SLOT_TIME_9; 3154 else 3155 usec = HAL_SLOT_TIME_20; 3156 } else 3157 usec = HAL_SLOT_TIME_9; 3158 3159 DPRINTF(sc, ATH_DEBUG_RESET, 3160 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3161 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3162 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3163 3164 ath_hal_setslottime(ah, usec); 3165 sc->sc_updateslot = OK; 3166 } 3167 3168 /* 3169 * Callback from the 802.11 layer to update the 3170 * slot time based on the current setting. 3171 */ 3172 static void 3173 ath_updateslot(struct ifnet *ifp) 3174 { 3175 struct ath_softc *sc = ifp->if_softc; 3176 struct ieee80211com *ic = ifp->if_l2com; 3177 3178 /* 3179 * When not coordinating the BSS, change the hardware 3180 * immediately. For other operation we defer the change 3181 * until beacon updates have propagated to the stations. 3182 */ 3183 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3184 ic->ic_opmode == IEEE80211_M_MBSS) 3185 sc->sc_updateslot = UPDATE; 3186 else 3187 ath_setslottime(sc); 3188 } 3189 3190 /* 3191 * Append the contents of src to dst; both queues 3192 * are assumed to be locked. 3193 */ 3194 void 3195 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3196 { 3197 3198 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3199 dst->axq_link = src->axq_link; 3200 src->axq_link = NULL; 3201 dst->axq_depth += src->axq_depth; 3202 dst->axq_aggr_depth += src->axq_aggr_depth; 3203 src->axq_depth = 0; 3204 src->axq_aggr_depth = 0; 3205 } 3206 3207 /* 3208 * Reset the hardware, with no loss. 3209 * 3210 * This can't be used for a general case reset. 3211 */ 3212 static void 3213 ath_reset_proc(void *arg, int pending) 3214 { 3215 struct ath_softc *sc = arg; 3216 struct ifnet *ifp = sc->sc_ifp; 3217 3218 #if 0 3219 if_printf(ifp, "%s: resetting\n", __func__); 3220 #endif 3221 ath_reset(ifp, ATH_RESET_NOLOSS); 3222 } 3223 3224 /* 3225 * Reset the hardware after detecting beacons have stopped. 3226 */ 3227 static void 3228 ath_bstuck_proc(void *arg, int pending) 3229 { 3230 struct ath_softc *sc = arg; 3231 struct ifnet *ifp = sc->sc_ifp; 3232 uint32_t hangs = 0; 3233 3234 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3235 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3236 3237 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3238 sc->sc_bmisscount); 3239 sc->sc_stats.ast_bstuck++; 3240 /* 3241 * This assumes that there's no simultaneous channel mode change 3242 * occuring. 3243 */ 3244 ath_reset(ifp, ATH_RESET_NOLOSS); 3245 } 3246 3247 static void 3248 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3249 { 3250 bus_addr_t *paddr = (bus_addr_t*) arg; 3251 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3252 *paddr = segs->ds_addr; 3253 } 3254 3255 /* 3256 * Allocate the descriptors and appropriate DMA tag/setup. 3257 * 3258 * For some situations (eg EDMA TX completion), there isn't a requirement 3259 * for the ath_buf entries to be allocated. 3260 */ 3261 int 3262 ath_descdma_alloc_desc(struct ath_softc *sc, 3263 struct ath_descdma *dd, ath_bufhead *head, 3264 const char *name, int ds_size, int ndesc) 3265 { 3266 #define DS2PHYS(_dd, _ds) \ 3267 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3268 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3269 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3270 struct ifnet *ifp = sc->sc_ifp; 3271 int error; 3272 3273 dd->dd_descsize = ds_size; 3274 3275 DPRINTF(sc, ATH_DEBUG_RESET, 3276 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3277 __func__, name, ndesc, dd->dd_descsize); 3278 3279 dd->dd_name = name; 3280 dd->dd_desc_len = dd->dd_descsize * ndesc; 3281 3282 /* 3283 * Merlin work-around: 3284 * Descriptors that cross the 4KB boundary can't be used. 3285 * Assume one skipped descriptor per 4KB page. 3286 */ 3287 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3288 int numpages = dd->dd_desc_len / 4096; 3289 dd->dd_desc_len += ds_size * numpages; 3290 } 3291 3292 /* 3293 * Setup DMA descriptor area. 3294 */ 3295 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3296 PAGE_SIZE, 0, /* alignment, bounds */ 3297 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3298 BUS_SPACE_MAXADDR, /* highaddr */ 3299 NULL, NULL, /* filter, filterarg */ 3300 dd->dd_desc_len, /* maxsize */ 3301 1, /* nsegments */ 3302 dd->dd_desc_len, /* maxsegsize */ 3303 BUS_DMA_ALLOCNOW, /* flags */ 3304 NULL, /* lockfunc */ 3305 NULL, /* lockarg */ 3306 &dd->dd_dmat); 3307 if (error != 0) { 3308 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3309 return error; 3310 } 3311 3312 /* allocate descriptors */ 3313 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3314 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3315 &dd->dd_dmamap); 3316 if (error != 0) { 3317 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3318 "error %u\n", ndesc, dd->dd_name, error); 3319 goto fail1; 3320 } 3321 3322 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3323 dd->dd_desc, dd->dd_desc_len, 3324 ath_load_cb, &dd->dd_desc_paddr, 3325 BUS_DMA_NOWAIT); 3326 if (error != 0) { 3327 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3328 dd->dd_name, error); 3329 goto fail2; 3330 } 3331 3332 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3333 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3334 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3335 /*XXX*/ (u_long) dd->dd_desc_len); 3336 3337 return (0); 3338 3339 fail2: 3340 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3341 fail1: 3342 bus_dma_tag_destroy(dd->dd_dmat); 3343 memset(dd, 0, sizeof(*dd)); 3344 return error; 3345 #undef DS2PHYS 3346 #undef ATH_DESC_4KB_BOUND_CHECK 3347 } 3348 3349 int 3350 ath_descdma_setup(struct ath_softc *sc, 3351 struct ath_descdma *dd, ath_bufhead *head, 3352 const char *name, int ds_size, int nbuf, int ndesc) 3353 { 3354 #define DS2PHYS(_dd, _ds) \ 3355 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3356 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3357 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3358 struct ifnet *ifp = sc->sc_ifp; 3359 uint8_t *ds; 3360 struct ath_buf *bf; 3361 int i, bsize, error; 3362 3363 /* Allocate descriptors */ 3364 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3365 nbuf * ndesc); 3366 3367 /* Assume any errors during allocation were dealt with */ 3368 if (error != 0) { 3369 return (error); 3370 } 3371 3372 ds = (uint8_t *) dd->dd_desc; 3373 3374 /* allocate rx buffers */ 3375 bsize = sizeof(struct ath_buf) * nbuf; 3376 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3377 if (bf == NULL) { 3378 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3379 dd->dd_name, bsize); 3380 goto fail3; 3381 } 3382 dd->dd_bufptr = bf; 3383 3384 TAILQ_INIT(head); 3385 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3386 bf->bf_desc = (struct ath_desc *) ds; 3387 bf->bf_daddr = DS2PHYS(dd, ds); 3388 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3389 /* 3390 * Merlin WAR: Skip descriptor addresses which 3391 * cause 4KB boundary crossing along any point 3392 * in the descriptor. 3393 */ 3394 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3395 dd->dd_descsize)) { 3396 /* Start at the next page */ 3397 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3398 bf->bf_desc = (struct ath_desc *) ds; 3399 bf->bf_daddr = DS2PHYS(dd, ds); 3400 } 3401 } 3402 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3403 &bf->bf_dmamap); 3404 if (error != 0) { 3405 if_printf(ifp, "unable to create dmamap for %s " 3406 "buffer %u, error %u\n", dd->dd_name, i, error); 3407 ath_descdma_cleanup(sc, dd, head); 3408 return error; 3409 } 3410 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3411 TAILQ_INSERT_TAIL(head, bf, bf_list); 3412 } 3413 3414 /* 3415 * XXX TODO: ensure that ds doesn't overflow the descriptor 3416 * allocation otherwise weird stuff will occur and crash your 3417 * machine. 3418 */ 3419 return 0; 3420 /* XXX this should likely just call ath_descdma_cleanup() */ 3421 fail3: 3422 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3423 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3424 bus_dma_tag_destroy(dd->dd_dmat); 3425 memset(dd, 0, sizeof(*dd)); 3426 return error; 3427 #undef DS2PHYS 3428 #undef ATH_DESC_4KB_BOUND_CHECK 3429 } 3430 3431 /* 3432 * Allocate ath_buf entries but no descriptor contents. 3433 * 3434 * This is for RX EDMA where the descriptors are the header part of 3435 * the RX buffer. 3436 */ 3437 int 3438 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3439 struct ath_descdma *dd, ath_bufhead *head, 3440 const char *name, int nbuf, int rx_status_len) 3441 { 3442 struct ifnet *ifp = sc->sc_ifp; 3443 struct ath_buf *bf; 3444 int i, bsize, error; 3445 3446 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3447 __func__, name, nbuf); 3448 3449 dd->dd_name = name; 3450 /* 3451 * This is (mostly) purely for show. We're not allocating any actual 3452 * descriptors here as EDMA RX has the descriptor be part 3453 * of the RX buffer. 3454 * 3455 * However, dd_desc_len is used by ath_descdma_free() to determine 3456 * whether we have already freed this DMA mapping. 3457 */ 3458 dd->dd_desc_len = rx_status_len * nbuf; 3459 dd->dd_descsize = rx_status_len; 3460 3461 /* allocate rx buffers */ 3462 bsize = sizeof(struct ath_buf) * nbuf; 3463 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3464 if (bf == NULL) { 3465 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3466 dd->dd_name, bsize); 3467 error = ENOMEM; 3468 goto fail3; 3469 } 3470 dd->dd_bufptr = bf; 3471 3472 TAILQ_INIT(head); 3473 for (i = 0; i < nbuf; i++, bf++) { 3474 bf->bf_desc = NULL; 3475 bf->bf_daddr = 0; 3476 bf->bf_lastds = NULL; /* Just an initial value */ 3477 3478 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3479 &bf->bf_dmamap); 3480 if (error != 0) { 3481 if_printf(ifp, "unable to create dmamap for %s " 3482 "buffer %u, error %u\n", dd->dd_name, i, error); 3483 ath_descdma_cleanup(sc, dd, head); 3484 return error; 3485 } 3486 TAILQ_INSERT_TAIL(head, bf, bf_list); 3487 } 3488 return 0; 3489 fail3: 3490 memset(dd, 0, sizeof(*dd)); 3491 return error; 3492 } 3493 3494 void 3495 ath_descdma_cleanup(struct ath_softc *sc, 3496 struct ath_descdma *dd, ath_bufhead *head) 3497 { 3498 struct ath_buf *bf; 3499 struct ieee80211_node *ni; 3500 3501 if (dd->dd_dmamap != 0) { 3502 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3503 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3504 bus_dma_tag_destroy(dd->dd_dmat); 3505 } 3506 3507 if (head != NULL) { 3508 TAILQ_FOREACH(bf, head, bf_list) { 3509 if (bf->bf_m) { 3510 m_freem(bf->bf_m); 3511 bf->bf_m = NULL; 3512 } 3513 if (bf->bf_dmamap != NULL) { 3514 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3515 bf->bf_dmamap = NULL; 3516 } 3517 ni = bf->bf_node; 3518 bf->bf_node = NULL; 3519 if (ni != NULL) { 3520 /* 3521 * Reclaim node reference. 3522 */ 3523 ieee80211_free_node(ni); 3524 } 3525 } 3526 } 3527 3528 if (head != NULL) 3529 TAILQ_INIT(head); 3530 3531 if (dd->dd_bufptr != NULL) 3532 free(dd->dd_bufptr, M_ATHDEV); 3533 memset(dd, 0, sizeof(*dd)); 3534 } 3535 3536 static int 3537 ath_desc_alloc(struct ath_softc *sc) 3538 { 3539 int error; 3540 3541 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3542 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3543 if (error != 0) { 3544 return error; 3545 } 3546 sc->sc_txbuf_cnt = ath_txbuf; 3547 3548 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3549 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3550 ATH_TXDESC); 3551 if (error != 0) { 3552 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3553 return error; 3554 } 3555 3556 /* 3557 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3558 * flag doesn't have to be set in ath_getbuf_locked(). 3559 */ 3560 3561 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3562 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3563 if (error != 0) { 3564 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3565 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3566 &sc->sc_txbuf_mgmt); 3567 return error; 3568 } 3569 return 0; 3570 } 3571 3572 static void 3573 ath_desc_free(struct ath_softc *sc) 3574 { 3575 3576 if (sc->sc_bdma.dd_desc_len != 0) 3577 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3578 if (sc->sc_txdma.dd_desc_len != 0) 3579 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3580 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3581 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3582 &sc->sc_txbuf_mgmt); 3583 } 3584 3585 static struct ieee80211_node * 3586 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3587 { 3588 struct ieee80211com *ic = vap->iv_ic; 3589 struct ath_softc *sc = ic->ic_ifp->if_softc; 3590 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3591 struct ath_node *an; 3592 3593 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3594 if (an == NULL) { 3595 /* XXX stat+msg */ 3596 return NULL; 3597 } 3598 ath_rate_node_init(sc, an); 3599 3600 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3601 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3602 device_get_nameunit(sc->sc_dev), an); 3603 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3604 3605 /* XXX setup ath_tid */ 3606 ath_tx_tid_init(sc, an); 3607 3608 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3609 return &an->an_node; 3610 } 3611 3612 static void 3613 ath_node_cleanup(struct ieee80211_node *ni) 3614 { 3615 struct ieee80211com *ic = ni->ni_ic; 3616 struct ath_softc *sc = ic->ic_ifp->if_softc; 3617 3618 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3619 ath_tx_node_flush(sc, ATH_NODE(ni)); 3620 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3621 sc->sc_node_cleanup(ni); 3622 } 3623 3624 static void 3625 ath_node_free(struct ieee80211_node *ni) 3626 { 3627 struct ieee80211com *ic = ni->ni_ic; 3628 struct ath_softc *sc = ic->ic_ifp->if_softc; 3629 3630 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3631 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3632 sc->sc_node_free(ni); 3633 } 3634 3635 static void 3636 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3637 { 3638 struct ieee80211com *ic = ni->ni_ic; 3639 struct ath_softc *sc = ic->ic_ifp->if_softc; 3640 struct ath_hal *ah = sc->sc_ah; 3641 3642 *rssi = ic->ic_node_getrssi(ni); 3643 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3644 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3645 else 3646 *noise = -95; /* nominally correct */ 3647 } 3648 3649 /* 3650 * Set the default antenna. 3651 */ 3652 void 3653 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3654 { 3655 struct ath_hal *ah = sc->sc_ah; 3656 3657 /* XXX block beacon interrupts */ 3658 ath_hal_setdefantenna(ah, antenna); 3659 if (sc->sc_defant != antenna) 3660 sc->sc_stats.ast_ant_defswitch++; 3661 sc->sc_defant = antenna; 3662 sc->sc_rxotherant = 0; 3663 } 3664 3665 static void 3666 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3667 { 3668 txq->axq_qnum = qnum; 3669 txq->axq_ac = 0; 3670 txq->axq_depth = 0; 3671 txq->axq_aggr_depth = 0; 3672 txq->axq_intrcnt = 0; 3673 txq->axq_link = NULL; 3674 txq->axq_softc = sc; 3675 TAILQ_INIT(&txq->axq_q); 3676 TAILQ_INIT(&txq->axq_tidq); 3677 } 3678 3679 /* 3680 * Setup a h/w transmit queue. 3681 */ 3682 static struct ath_txq * 3683 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3684 { 3685 #define N(a) (sizeof(a)/sizeof(a[0])) 3686 struct ath_hal *ah = sc->sc_ah; 3687 HAL_TXQ_INFO qi; 3688 int qnum; 3689 3690 memset(&qi, 0, sizeof(qi)); 3691 qi.tqi_subtype = subtype; 3692 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3693 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3694 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3695 /* 3696 * Enable interrupts only for EOL and DESC conditions. 3697 * We mark tx descriptors to receive a DESC interrupt 3698 * when a tx queue gets deep; otherwise waiting for the 3699 * EOL to reap descriptors. Note that this is done to 3700 * reduce interrupt load and this only defers reaping 3701 * descriptors, never transmitting frames. Aside from 3702 * reducing interrupts this also permits more concurrency. 3703 * The only potential downside is if the tx queue backs 3704 * up in which case the top half of the kernel may backup 3705 * due to a lack of tx descriptors. 3706 */ 3707 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3708 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3709 if (qnum == -1) { 3710 /* 3711 * NB: don't print a message, this happens 3712 * normally on parts with too few tx queues 3713 */ 3714 return NULL; 3715 } 3716 if (qnum >= N(sc->sc_txq)) { 3717 device_printf(sc->sc_dev, 3718 "hal qnum %u out of range, max %zu!\n", 3719 qnum, N(sc->sc_txq)); 3720 ath_hal_releasetxqueue(ah, qnum); 3721 return NULL; 3722 } 3723 if (!ATH_TXQ_SETUP(sc, qnum)) { 3724 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3725 sc->sc_txqsetup |= 1<<qnum; 3726 } 3727 return &sc->sc_txq[qnum]; 3728 #undef N 3729 } 3730 3731 /* 3732 * Setup a hardware data transmit queue for the specified 3733 * access control. The hal may not support all requested 3734 * queues in which case it will return a reference to a 3735 * previously setup queue. We record the mapping from ac's 3736 * to h/w queues for use by ath_tx_start and also track 3737 * the set of h/w queues being used to optimize work in the 3738 * transmit interrupt handler and related routines. 3739 */ 3740 static int 3741 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3742 { 3743 #define N(a) (sizeof(a)/sizeof(a[0])) 3744 struct ath_txq *txq; 3745 3746 if (ac >= N(sc->sc_ac2q)) { 3747 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3748 ac, N(sc->sc_ac2q)); 3749 return 0; 3750 } 3751 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3752 if (txq != NULL) { 3753 txq->axq_ac = ac; 3754 sc->sc_ac2q[ac] = txq; 3755 return 1; 3756 } else 3757 return 0; 3758 #undef N 3759 } 3760 3761 /* 3762 * Update WME parameters for a transmit queue. 3763 */ 3764 static int 3765 ath_txq_update(struct ath_softc *sc, int ac) 3766 { 3767 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3768 #define ATH_TXOP_TO_US(v) (v<<5) 3769 struct ifnet *ifp = sc->sc_ifp; 3770 struct ieee80211com *ic = ifp->if_l2com; 3771 struct ath_txq *txq = sc->sc_ac2q[ac]; 3772 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3773 struct ath_hal *ah = sc->sc_ah; 3774 HAL_TXQ_INFO qi; 3775 3776 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3777 #ifdef IEEE80211_SUPPORT_TDMA 3778 if (sc->sc_tdma) { 3779 /* 3780 * AIFS is zero so there's no pre-transmit wait. The 3781 * burst time defines the slot duration and is configured 3782 * through net80211. The QCU is setup to not do post-xmit 3783 * back off, lockout all lower-priority QCU's, and fire 3784 * off the DMA beacon alert timer which is setup based 3785 * on the slot configuration. 3786 */ 3787 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3788 | HAL_TXQ_TXERRINT_ENABLE 3789 | HAL_TXQ_TXURNINT_ENABLE 3790 | HAL_TXQ_TXEOLINT_ENABLE 3791 | HAL_TXQ_DBA_GATED 3792 | HAL_TXQ_BACKOFF_DISABLE 3793 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3794 ; 3795 qi.tqi_aifs = 0; 3796 /* XXX +dbaprep? */ 3797 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3798 qi.tqi_burstTime = qi.tqi_readyTime; 3799 } else { 3800 #endif 3801 /* 3802 * XXX shouldn't this just use the default flags 3803 * used in the previous queue setup? 3804 */ 3805 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3806 | HAL_TXQ_TXERRINT_ENABLE 3807 | HAL_TXQ_TXDESCINT_ENABLE 3808 | HAL_TXQ_TXURNINT_ENABLE 3809 | HAL_TXQ_TXEOLINT_ENABLE 3810 ; 3811 qi.tqi_aifs = wmep->wmep_aifsn; 3812 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3813 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3814 qi.tqi_readyTime = 0; 3815 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3816 #ifdef IEEE80211_SUPPORT_TDMA 3817 } 3818 #endif 3819 3820 DPRINTF(sc, ATH_DEBUG_RESET, 3821 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3822 __func__, txq->axq_qnum, qi.tqi_qflags, 3823 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3824 3825 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3826 if_printf(ifp, "unable to update hardware queue " 3827 "parameters for %s traffic!\n", 3828 ieee80211_wme_acnames[ac]); 3829 return 0; 3830 } else { 3831 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3832 return 1; 3833 } 3834 #undef ATH_TXOP_TO_US 3835 #undef ATH_EXPONENT_TO_VALUE 3836 } 3837 3838 /* 3839 * Callback from the 802.11 layer to update WME parameters. 3840 */ 3841 int 3842 ath_wme_update(struct ieee80211com *ic) 3843 { 3844 struct ath_softc *sc = ic->ic_ifp->if_softc; 3845 3846 return !ath_txq_update(sc, WME_AC_BE) || 3847 !ath_txq_update(sc, WME_AC_BK) || 3848 !ath_txq_update(sc, WME_AC_VI) || 3849 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3850 } 3851 3852 /* 3853 * Reclaim resources for a setup queue. 3854 */ 3855 static void 3856 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3857 { 3858 3859 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3860 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3861 } 3862 3863 /* 3864 * Reclaim all tx queue resources. 3865 */ 3866 static void 3867 ath_tx_cleanup(struct ath_softc *sc) 3868 { 3869 int i; 3870 3871 ATH_TXBUF_LOCK_DESTROY(sc); 3872 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3873 if (ATH_TXQ_SETUP(sc, i)) 3874 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3875 } 3876 3877 /* 3878 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3879 * using the current rates in sc_rixmap. 3880 */ 3881 int 3882 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3883 { 3884 int rix = sc->sc_rixmap[rate]; 3885 /* NB: return lowest rix for invalid rate */ 3886 return (rix == 0xff ? 0 : rix); 3887 } 3888 3889 static void 3890 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3891 struct ath_buf *bf) 3892 { 3893 struct ieee80211_node *ni = bf->bf_node; 3894 struct ifnet *ifp = sc->sc_ifp; 3895 struct ieee80211com *ic = ifp->if_l2com; 3896 int sr, lr, pri; 3897 3898 if (ts->ts_status == 0) { 3899 u_int8_t txant = ts->ts_antenna; 3900 sc->sc_stats.ast_ant_tx[txant]++; 3901 sc->sc_ant_tx[txant]++; 3902 if (ts->ts_finaltsi != 0) 3903 sc->sc_stats.ast_tx_altrate++; 3904 pri = M_WME_GETAC(bf->bf_m); 3905 if (pri >= WME_AC_VO) 3906 ic->ic_wme.wme_hipri_traffic++; 3907 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3908 ni->ni_inact = ni->ni_inact_reload; 3909 } else { 3910 if (ts->ts_status & HAL_TXERR_XRETRY) 3911 sc->sc_stats.ast_tx_xretries++; 3912 if (ts->ts_status & HAL_TXERR_FIFO) 3913 sc->sc_stats.ast_tx_fifoerr++; 3914 if (ts->ts_status & HAL_TXERR_FILT) 3915 sc->sc_stats.ast_tx_filtered++; 3916 if (ts->ts_status & HAL_TXERR_XTXOP) 3917 sc->sc_stats.ast_tx_xtxop++; 3918 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3919 sc->sc_stats.ast_tx_timerexpired++; 3920 3921 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3922 sc->sc_stats.ast_tx_data_underrun++; 3923 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3924 sc->sc_stats.ast_tx_delim_underrun++; 3925 3926 if (bf->bf_m->m_flags & M_FF) 3927 sc->sc_stats.ast_ff_txerr++; 3928 } 3929 /* XXX when is this valid? */ 3930 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3931 sc->sc_stats.ast_tx_desccfgerr++; 3932 3933 sr = ts->ts_shortretry; 3934 lr = ts->ts_longretry; 3935 sc->sc_stats.ast_tx_shortretry += sr; 3936 sc->sc_stats.ast_tx_longretry += lr; 3937 3938 } 3939 3940 /* 3941 * The default completion. If fail is 1, this means 3942 * "please don't retry the frame, and just return -1 status 3943 * to the net80211 stack. 3944 */ 3945 void 3946 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3947 { 3948 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3949 int st; 3950 3951 if (fail == 1) 3952 st = -1; 3953 else 3954 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3955 ts->ts_status : HAL_TXERR_XRETRY; 3956 3957 if (bf->bf_state.bfs_dobaw) 3958 device_printf(sc->sc_dev, 3959 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3960 __func__, 3961 bf, 3962 SEQNO(bf->bf_state.bfs_seqno)); 3963 if (bf->bf_next != NULL) 3964 device_printf(sc->sc_dev, 3965 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3966 __func__, 3967 bf, 3968 SEQNO(bf->bf_state.bfs_seqno)); 3969 3970 /* 3971 * Check if the node software queue is empty; if so 3972 * then clear the TIM. 3973 * 3974 * This needs to be done before the buffer is freed as 3975 * otherwise the node reference will have been released 3976 * and the node may not actually exist any longer. 3977 * 3978 * XXX I don't like this belonging here, but it's cleaner 3979 * to do it here right now then all the other places 3980 * where ath_tx_default_comp() is called. 3981 * 3982 * XXX TODO: during drain, ensure that the callback is 3983 * being called so we get a chance to update the TIM. 3984 */ 3985 if (bf->bf_node) 3986 ath_tx_update_tim(sc, bf->bf_node, 0); 3987 3988 /* 3989 * Do any tx complete callback. Note this must 3990 * be done before releasing the node reference. 3991 * This will free the mbuf, release the net80211 3992 * node and recycle the ath_buf. 3993 */ 3994 ath_tx_freebuf(sc, bf, st); 3995 } 3996 3997 /* 3998 * Update rate control with the given completion status. 3999 */ 4000 void 4001 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4002 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4003 int nframes, int nbad) 4004 { 4005 struct ath_node *an; 4006 4007 /* Only for unicast frames */ 4008 if (ni == NULL) 4009 return; 4010 4011 an = ATH_NODE(ni); 4012 ATH_NODE_UNLOCK_ASSERT(an); 4013 4014 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4015 ATH_NODE_LOCK(an); 4016 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4017 ATH_NODE_UNLOCK(an); 4018 } 4019 } 4020 4021 /* 4022 * Update the busy status of the last frame on the free list. 4023 * When doing TDMA, the busy flag tracks whether the hardware 4024 * currently points to this buffer or not, and thus gated DMA 4025 * may restart by re-reading the last descriptor in this 4026 * buffer. 4027 * 4028 * This should be called in the completion function once one 4029 * of the buffers has been used. 4030 */ 4031 static void 4032 ath_tx_update_busy(struct ath_softc *sc) 4033 { 4034 struct ath_buf *last; 4035 4036 /* 4037 * Since the last frame may still be marked 4038 * as ATH_BUF_BUSY, unmark it here before 4039 * finishing the frame processing. 4040 * Since we've completed a frame (aggregate 4041 * or otherwise), the hardware has moved on 4042 * and is no longer referencing the previous 4043 * descriptor. 4044 */ 4045 ATH_TXBUF_LOCK_ASSERT(sc); 4046 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4047 if (last != NULL) 4048 last->bf_flags &= ~ATH_BUF_BUSY; 4049 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4050 if (last != NULL) 4051 last->bf_flags &= ~ATH_BUF_BUSY; 4052 } 4053 4054 /* 4055 * Process the completion of the given buffer. 4056 * 4057 * This calls the rate control update and then the buffer completion. 4058 * This will either free the buffer or requeue it. In any case, the 4059 * bf pointer should be treated as invalid after this function is called. 4060 */ 4061 void 4062 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4063 struct ath_tx_status *ts, struct ath_buf *bf) 4064 { 4065 struct ieee80211_node *ni = bf->bf_node; 4066 struct ath_node *an = NULL; 4067 4068 ATH_TX_UNLOCK_ASSERT(sc); 4069 4070 /* If unicast frame, update general statistics */ 4071 if (ni != NULL) { 4072 an = ATH_NODE(ni); 4073 /* update statistics */ 4074 ath_tx_update_stats(sc, ts, bf); 4075 } 4076 4077 /* 4078 * Call the completion handler. 4079 * The completion handler is responsible for 4080 * calling the rate control code. 4081 * 4082 * Frames with no completion handler get the 4083 * rate control code called here. 4084 */ 4085 if (bf->bf_comp == NULL) { 4086 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4087 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4088 /* 4089 * XXX assume this isn't an aggregate 4090 * frame. 4091 */ 4092 ath_tx_update_ratectrl(sc, ni, 4093 bf->bf_state.bfs_rc, ts, 4094 bf->bf_state.bfs_pktlen, 1, 4095 (ts->ts_status == 0 ? 0 : 1)); 4096 } 4097 ath_tx_default_comp(sc, bf, 0); 4098 } else 4099 bf->bf_comp(sc, bf, 0); 4100 } 4101 4102 4103 4104 /* 4105 * Process completed xmit descriptors from the specified queue. 4106 * Kick the packet scheduler if needed. This can occur from this 4107 * particular task. 4108 */ 4109 static int 4110 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4111 { 4112 struct ath_hal *ah = sc->sc_ah; 4113 struct ath_buf *bf; 4114 struct ath_desc *ds; 4115 struct ath_tx_status *ts; 4116 struct ieee80211_node *ni; 4117 #ifdef IEEE80211_SUPPORT_SUPERG 4118 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4119 #endif /* IEEE80211_SUPPORT_SUPERG */ 4120 int nacked; 4121 HAL_STATUS status; 4122 4123 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4124 __func__, txq->axq_qnum, 4125 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4126 txq->axq_link); 4127 4128 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4129 "ath_tx_processq: txq=%u head %p link %p depth %p", 4130 txq->axq_qnum, 4131 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4132 txq->axq_link, 4133 txq->axq_depth); 4134 4135 nacked = 0; 4136 for (;;) { 4137 ATH_TX_LOCK(sc); 4138 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4139 bf = TAILQ_FIRST(&txq->axq_q); 4140 if (bf == NULL) { 4141 ATH_TX_UNLOCK(sc); 4142 break; 4143 } 4144 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4145 ts = &bf->bf_status.ds_txstat; 4146 4147 status = ath_hal_txprocdesc(ah, ds, ts); 4148 #ifdef ATH_DEBUG 4149 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4150 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4151 status == HAL_OK); 4152 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4153 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4154 status == HAL_OK); 4155 #endif 4156 #ifdef ATH_DEBUG_ALQ 4157 if (if_ath_alq_checkdebug(&sc->sc_alq, 4158 ATH_ALQ_EDMA_TXSTATUS)) { 4159 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4160 sc->sc_tx_statuslen, 4161 (char *) ds); 4162 } 4163 #endif 4164 4165 if (status == HAL_EINPROGRESS) { 4166 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4167 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4168 txq->axq_qnum, bf, ds); 4169 ATH_TX_UNLOCK(sc); 4170 break; 4171 } 4172 ATH_TXQ_REMOVE(txq, bf, bf_list); 4173 #ifdef IEEE80211_SUPPORT_TDMA 4174 if (txq->axq_depth > 0) { 4175 /* 4176 * More frames follow. Mark the buffer busy 4177 * so it's not re-used while the hardware may 4178 * still re-read the link field in the descriptor. 4179 * 4180 * Use the last buffer in an aggregate as that 4181 * is where the hardware may be - intermediate 4182 * descriptors won't be "busy". 4183 */ 4184 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4185 } else 4186 #else 4187 if (txq->axq_depth == 0) 4188 #endif 4189 txq->axq_link = NULL; 4190 if (bf->bf_state.bfs_aggr) 4191 txq->axq_aggr_depth--; 4192 4193 ni = bf->bf_node; 4194 4195 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4196 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4197 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4198 /* 4199 * If unicast frame was ack'd update RSSI, 4200 * including the last rx time used to 4201 * workaround phantom bmiss interrupts. 4202 */ 4203 if (ni != NULL && ts->ts_status == 0 && 4204 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4205 nacked++; 4206 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4207 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4208 ts->ts_rssi); 4209 } 4210 ATH_TX_UNLOCK(sc); 4211 4212 /* 4213 * Update statistics and call completion 4214 */ 4215 ath_tx_process_buf_completion(sc, txq, ts, bf); 4216 4217 /* XXX at this point, bf and ni may be totally invalid */ 4218 } 4219 #ifdef IEEE80211_SUPPORT_SUPERG 4220 /* 4221 * Flush fast-frame staging queue when traffic slows. 4222 */ 4223 if (txq->axq_depth <= 1) 4224 ieee80211_ff_flush(ic, txq->axq_ac); 4225 #endif 4226 4227 /* Kick the software TXQ scheduler */ 4228 if (dosched) { 4229 ath_tx_swq_kick(sc); 4230 } 4231 4232 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4233 "ath_tx_processq: txq=%u: done", 4234 txq->axq_qnum); 4235 4236 return nacked; 4237 } 4238 4239 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4240 4241 /* 4242 * Deferred processing of transmit interrupt; special-cased 4243 * for a single hardware transmit queue (e.g. 5210 and 5211). 4244 */ 4245 static void 4246 ath_tx_proc_q0(void *arg, int npending) 4247 { 4248 struct ath_softc *sc = arg; 4249 struct ifnet *ifp = sc->sc_ifp; 4250 uint32_t txqs; 4251 4252 ATH_PCU_LOCK(sc); 4253 sc->sc_txproc_cnt++; 4254 txqs = sc->sc_txq_active; 4255 sc->sc_txq_active &= ~txqs; 4256 ATH_PCU_UNLOCK(sc); 4257 4258 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4259 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4260 4261 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4262 /* XXX why is lastrx updated in tx code? */ 4263 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4264 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4265 ath_tx_processq(sc, sc->sc_cabq, 1); 4266 IF_LOCK(&ifp->if_snd); 4267 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4268 IF_UNLOCK(&ifp->if_snd); 4269 sc->sc_wd_timer = 0; 4270 4271 if (sc->sc_softled) 4272 ath_led_event(sc, sc->sc_txrix); 4273 4274 ATH_PCU_LOCK(sc); 4275 sc->sc_txproc_cnt--; 4276 ATH_PCU_UNLOCK(sc); 4277 4278 ath_tx_kick(sc); 4279 } 4280 4281 /* 4282 * Deferred processing of transmit interrupt; special-cased 4283 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4284 */ 4285 static void 4286 ath_tx_proc_q0123(void *arg, int npending) 4287 { 4288 struct ath_softc *sc = arg; 4289 struct ifnet *ifp = sc->sc_ifp; 4290 int nacked; 4291 uint32_t txqs; 4292 4293 ATH_PCU_LOCK(sc); 4294 sc->sc_txproc_cnt++; 4295 txqs = sc->sc_txq_active; 4296 sc->sc_txq_active &= ~txqs; 4297 ATH_PCU_UNLOCK(sc); 4298 4299 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4300 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4301 4302 /* 4303 * Process each active queue. 4304 */ 4305 nacked = 0; 4306 if (TXQACTIVE(txqs, 0)) 4307 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4308 if (TXQACTIVE(txqs, 1)) 4309 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4310 if (TXQACTIVE(txqs, 2)) 4311 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4312 if (TXQACTIVE(txqs, 3)) 4313 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4314 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4315 ath_tx_processq(sc, sc->sc_cabq, 1); 4316 if (nacked) 4317 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4318 4319 IF_LOCK(&ifp->if_snd); 4320 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4321 IF_UNLOCK(&ifp->if_snd); 4322 sc->sc_wd_timer = 0; 4323 4324 if (sc->sc_softled) 4325 ath_led_event(sc, sc->sc_txrix); 4326 4327 ATH_PCU_LOCK(sc); 4328 sc->sc_txproc_cnt--; 4329 ATH_PCU_UNLOCK(sc); 4330 4331 ath_tx_kick(sc); 4332 } 4333 4334 /* 4335 * Deferred processing of transmit interrupt. 4336 */ 4337 static void 4338 ath_tx_proc(void *arg, int npending) 4339 { 4340 struct ath_softc *sc = arg; 4341 struct ifnet *ifp = sc->sc_ifp; 4342 int i, nacked; 4343 uint32_t txqs; 4344 4345 ATH_PCU_LOCK(sc); 4346 sc->sc_txproc_cnt++; 4347 txqs = sc->sc_txq_active; 4348 sc->sc_txq_active &= ~txqs; 4349 ATH_PCU_UNLOCK(sc); 4350 4351 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4352 4353 /* 4354 * Process each active queue. 4355 */ 4356 nacked = 0; 4357 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4358 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4359 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4360 if (nacked) 4361 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4362 4363 /* XXX check this inside of IF_LOCK? */ 4364 IF_LOCK(&ifp->if_snd); 4365 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4366 IF_UNLOCK(&ifp->if_snd); 4367 sc->sc_wd_timer = 0; 4368 4369 if (sc->sc_softled) 4370 ath_led_event(sc, sc->sc_txrix); 4371 4372 ATH_PCU_LOCK(sc); 4373 sc->sc_txproc_cnt--; 4374 ATH_PCU_UNLOCK(sc); 4375 4376 ath_tx_kick(sc); 4377 } 4378 #undef TXQACTIVE 4379 4380 /* 4381 * Deferred processing of TXQ rescheduling. 4382 */ 4383 static void 4384 ath_txq_sched_tasklet(void *arg, int npending) 4385 { 4386 struct ath_softc *sc = arg; 4387 int i; 4388 4389 /* XXX is skipping ok? */ 4390 ATH_PCU_LOCK(sc); 4391 #if 0 4392 if (sc->sc_inreset_cnt > 0) { 4393 device_printf(sc->sc_dev, 4394 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4395 ATH_PCU_UNLOCK(sc); 4396 return; 4397 } 4398 #endif 4399 sc->sc_txproc_cnt++; 4400 ATH_PCU_UNLOCK(sc); 4401 4402 ATH_TX_LOCK(sc); 4403 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4404 if (ATH_TXQ_SETUP(sc, i)) { 4405 ath_txq_sched(sc, &sc->sc_txq[i]); 4406 } 4407 } 4408 ATH_TX_UNLOCK(sc); 4409 4410 ATH_PCU_LOCK(sc); 4411 sc->sc_txproc_cnt--; 4412 ATH_PCU_UNLOCK(sc); 4413 } 4414 4415 void 4416 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4417 { 4418 4419 ATH_TXBUF_LOCK_ASSERT(sc); 4420 4421 if (bf->bf_flags & ATH_BUF_MGMT) 4422 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4423 else { 4424 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4425 sc->sc_txbuf_cnt++; 4426 if (sc->sc_txbuf_cnt > ath_txbuf) { 4427 device_printf(sc->sc_dev, 4428 "%s: sc_txbuf_cnt > %d?\n", 4429 __func__, 4430 ath_txbuf); 4431 sc->sc_txbuf_cnt = ath_txbuf; 4432 } 4433 } 4434 } 4435 4436 void 4437 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4438 { 4439 4440 ATH_TXBUF_LOCK_ASSERT(sc); 4441 4442 if (bf->bf_flags & ATH_BUF_MGMT) 4443 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4444 else { 4445 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4446 sc->sc_txbuf_cnt++; 4447 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4448 device_printf(sc->sc_dev, 4449 "%s: sc_txbuf_cnt > %d?\n", 4450 __func__, 4451 ATH_TXBUF); 4452 sc->sc_txbuf_cnt = ATH_TXBUF; 4453 } 4454 } 4455 } 4456 4457 /* 4458 * Return a buffer to the pool and update the 'busy' flag on the 4459 * previous 'tail' entry. 4460 * 4461 * This _must_ only be called when the buffer is involved in a completed 4462 * TX. The logic is that if it was part of an active TX, the previous 4463 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4464 * for restart (eg for TDMA.) 4465 * 4466 * The caller must free the mbuf and recycle the node reference. 4467 */ 4468 void 4469 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4470 { 4471 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4472 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4473 4474 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4475 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4476 4477 ATH_TXBUF_LOCK(sc); 4478 ath_tx_update_busy(sc); 4479 ath_returnbuf_tail(sc, bf); 4480 ATH_TXBUF_UNLOCK(sc); 4481 } 4482 4483 /* 4484 * This is currently used by ath_tx_draintxq() and 4485 * ath_tx_tid_free_pkts(). 4486 * 4487 * It recycles a single ath_buf. 4488 */ 4489 void 4490 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4491 { 4492 struct ieee80211_node *ni = bf->bf_node; 4493 struct mbuf *m0 = bf->bf_m; 4494 4495 bf->bf_node = NULL; 4496 bf->bf_m = NULL; 4497 4498 /* Free the buffer, it's not needed any longer */ 4499 ath_freebuf(sc, bf); 4500 4501 if (ni != NULL) { 4502 /* 4503 * Do any callback and reclaim the node reference. 4504 */ 4505 if (m0->m_flags & M_TXCB) 4506 ieee80211_process_callback(ni, m0, status); 4507 ieee80211_free_node(ni); 4508 } 4509 m_freem(m0); 4510 4511 /* 4512 * XXX the buffer used to be freed -after-, but the DMA map was 4513 * freed where ath_freebuf() now is. I've no idea what this 4514 * will do. 4515 */ 4516 } 4517 4518 void 4519 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4520 { 4521 #ifdef ATH_DEBUG 4522 struct ath_hal *ah = sc->sc_ah; 4523 #endif 4524 struct ath_buf *bf; 4525 u_int ix; 4526 4527 /* 4528 * NB: this assumes output has been stopped and 4529 * we do not need to block ath_tx_proc 4530 */ 4531 ATH_TXBUF_LOCK(sc); 4532 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4533 if (bf != NULL) 4534 bf->bf_flags &= ~ATH_BUF_BUSY; 4535 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4536 if (bf != NULL) 4537 bf->bf_flags &= ~ATH_BUF_BUSY; 4538 ATH_TXBUF_UNLOCK(sc); 4539 4540 for (ix = 0;; ix++) { 4541 ATH_TX_LOCK(sc); 4542 bf = TAILQ_FIRST(&txq->axq_q); 4543 if (bf == NULL) { 4544 txq->axq_link = NULL; 4545 /* 4546 * There's currently no flag that indicates 4547 * a buffer is on the FIFO. So until that 4548 * occurs, just clear the FIFO counter here. 4549 * 4550 * Yes, this means that if something in parallel 4551 * is pushing things onto this TXQ and pushing 4552 * _that_ into the hardware, things will get 4553 * very fruity very quickly. 4554 */ 4555 txq->axq_fifo_depth = 0; 4556 ATH_TX_UNLOCK(sc); 4557 break; 4558 } 4559 ATH_TXQ_REMOVE(txq, bf, bf_list); 4560 if (bf->bf_state.bfs_aggr) 4561 txq->axq_aggr_depth--; 4562 #ifdef ATH_DEBUG 4563 if (sc->sc_debug & ATH_DEBUG_RESET) { 4564 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4565 int status = 0; 4566 4567 /* 4568 * EDMA operation has a TX completion FIFO 4569 * separate from the TX descriptor, so this 4570 * method of checking the "completion" status 4571 * is wrong. 4572 */ 4573 if (! sc->sc_isedma) { 4574 status = (ath_hal_txprocdesc(ah, 4575 bf->bf_lastds, 4576 &bf->bf_status.ds_txstat) == HAL_OK); 4577 } 4578 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4579 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4580 bf->bf_m->m_len, 0, -1); 4581 } 4582 #endif /* ATH_DEBUG */ 4583 /* 4584 * Since we're now doing magic in the completion 4585 * functions, we -must- call it for aggregation 4586 * destinations or BAW tracking will get upset. 4587 */ 4588 /* 4589 * Clear ATH_BUF_BUSY; the completion handler 4590 * will free the buffer. 4591 */ 4592 ATH_TX_UNLOCK(sc); 4593 bf->bf_flags &= ~ATH_BUF_BUSY; 4594 if (bf->bf_comp) 4595 bf->bf_comp(sc, bf, 1); 4596 else 4597 ath_tx_default_comp(sc, bf, 1); 4598 } 4599 4600 /* 4601 * Drain software queued frames which are on 4602 * active TIDs. 4603 */ 4604 ath_tx_txq_drain(sc, txq); 4605 } 4606 4607 static void 4608 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4609 { 4610 struct ath_hal *ah = sc->sc_ah; 4611 4612 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4613 __func__, txq->axq_qnum, 4614 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4615 txq->axq_link); 4616 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4617 } 4618 4619 int 4620 ath_stoptxdma(struct ath_softc *sc) 4621 { 4622 struct ath_hal *ah = sc->sc_ah; 4623 int i; 4624 4625 /* XXX return value */ 4626 if (sc->sc_invalid) 4627 return 0; 4628 4629 if (!sc->sc_invalid) { 4630 /* don't touch the hardware if marked invalid */ 4631 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4632 __func__, sc->sc_bhalq, 4633 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4634 NULL); 4635 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4636 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4637 if (ATH_TXQ_SETUP(sc, i)) 4638 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4639 } 4640 4641 return 1; 4642 } 4643 4644 /* 4645 * Drain the transmit queues and reclaim resources. 4646 */ 4647 void 4648 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4649 { 4650 #ifdef ATH_DEBUG 4651 struct ath_hal *ah = sc->sc_ah; 4652 #endif 4653 struct ifnet *ifp = sc->sc_ifp; 4654 int i; 4655 4656 (void) ath_stoptxdma(sc); 4657 4658 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4659 /* 4660 * XXX TODO: should we just handle the completed TX frames 4661 * here, whether or not the reset is a full one or not? 4662 */ 4663 if (ATH_TXQ_SETUP(sc, i)) { 4664 if (reset_type == ATH_RESET_NOLOSS) 4665 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4666 else 4667 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4668 } 4669 } 4670 #ifdef ATH_DEBUG 4671 if (sc->sc_debug & ATH_DEBUG_RESET) { 4672 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4673 if (bf != NULL && bf->bf_m != NULL) { 4674 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4675 ath_hal_txprocdesc(ah, bf->bf_lastds, 4676 &bf->bf_status.ds_txstat) == HAL_OK); 4677 ieee80211_dump_pkt(ifp->if_l2com, 4678 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4679 0, -1); 4680 } 4681 } 4682 #endif /* ATH_DEBUG */ 4683 IF_LOCK(&ifp->if_snd); 4684 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4685 IF_UNLOCK(&ifp->if_snd); 4686 sc->sc_wd_timer = 0; 4687 } 4688 4689 /* 4690 * Update internal state after a channel change. 4691 */ 4692 static void 4693 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4694 { 4695 enum ieee80211_phymode mode; 4696 4697 /* 4698 * Change channels and update the h/w rate map 4699 * if we're switching; e.g. 11a to 11b/g. 4700 */ 4701 mode = ieee80211_chan2mode(chan); 4702 if (mode != sc->sc_curmode) 4703 ath_setcurmode(sc, mode); 4704 sc->sc_curchan = chan; 4705 } 4706 4707 /* 4708 * Set/change channels. If the channel is really being changed, 4709 * it's done by resetting the chip. To accomplish this we must 4710 * first cleanup any pending DMA, then restart stuff after a la 4711 * ath_init. 4712 */ 4713 static int 4714 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4715 { 4716 struct ifnet *ifp = sc->sc_ifp; 4717 struct ieee80211com *ic = ifp->if_l2com; 4718 struct ath_hal *ah = sc->sc_ah; 4719 int ret = 0; 4720 4721 /* Treat this as an interface reset */ 4722 ATH_PCU_UNLOCK_ASSERT(sc); 4723 ATH_UNLOCK_ASSERT(sc); 4724 4725 /* (Try to) stop TX/RX from occuring */ 4726 taskqueue_block(sc->sc_tq); 4727 taskqueue_block(sc->sc_tx_tq); 4728 4729 ATH_PCU_LOCK(sc); 4730 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4731 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4732 if (ath_reset_grablock(sc, 1) == 0) { 4733 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4734 __func__); 4735 } 4736 ATH_PCU_UNLOCK(sc); 4737 4738 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4739 __func__, ieee80211_chan2ieee(ic, chan), 4740 chan->ic_freq, chan->ic_flags); 4741 if (chan != sc->sc_curchan) { 4742 HAL_STATUS status; 4743 /* 4744 * To switch channels clear any pending DMA operations; 4745 * wait long enough for the RX fifo to drain, reset the 4746 * hardware at the new frequency, and then re-enable 4747 * the relevant bits of the h/w. 4748 */ 4749 #if 0 4750 ath_hal_intrset(ah, 0); /* disable interrupts */ 4751 #endif 4752 ath_stoprecv(sc, 1); /* turn off frame recv */ 4753 /* 4754 * First, handle completed TX/RX frames. 4755 */ 4756 ath_rx_flush(sc); 4757 ath_draintxq(sc, ATH_RESET_NOLOSS); 4758 /* 4759 * Next, flush the non-scheduled frames. 4760 */ 4761 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4762 4763 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4764 if_printf(ifp, "%s: unable to reset " 4765 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4766 __func__, ieee80211_chan2ieee(ic, chan), 4767 chan->ic_freq, chan->ic_flags, status); 4768 ret = EIO; 4769 goto finish; 4770 } 4771 sc->sc_diversity = ath_hal_getdiversity(ah); 4772 4773 /* Let DFS at it in case it's a DFS channel */ 4774 ath_dfs_radar_enable(sc, chan); 4775 4776 /* Let spectral at in case spectral is enabled */ 4777 ath_spectral_enable(sc, chan); 4778 4779 /* 4780 * Re-enable rx framework. 4781 */ 4782 if (ath_startrecv(sc) != 0) { 4783 if_printf(ifp, "%s: unable to restart recv logic\n", 4784 __func__); 4785 ret = EIO; 4786 goto finish; 4787 } 4788 4789 /* 4790 * Change channels and update the h/w rate map 4791 * if we're switching; e.g. 11a to 11b/g. 4792 */ 4793 ath_chan_change(sc, chan); 4794 4795 /* 4796 * Reset clears the beacon timers; reset them 4797 * here if needed. 4798 */ 4799 if (sc->sc_beacons) { /* restart beacons */ 4800 #ifdef IEEE80211_SUPPORT_TDMA 4801 if (sc->sc_tdma) 4802 ath_tdma_config(sc, NULL); 4803 else 4804 #endif 4805 ath_beacon_config(sc, NULL); 4806 } 4807 4808 /* 4809 * Re-enable interrupts. 4810 */ 4811 #if 0 4812 ath_hal_intrset(ah, sc->sc_imask); 4813 #endif 4814 } 4815 4816 finish: 4817 ATH_PCU_LOCK(sc); 4818 sc->sc_inreset_cnt--; 4819 /* XXX only do this if sc_inreset_cnt == 0? */ 4820 ath_hal_intrset(ah, sc->sc_imask); 4821 ATH_PCU_UNLOCK(sc); 4822 4823 IF_LOCK(&ifp->if_snd); 4824 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4825 IF_UNLOCK(&ifp->if_snd); 4826 ath_txrx_start(sc); 4827 /* XXX ath_start? */ 4828 4829 return ret; 4830 } 4831 4832 /* 4833 * Periodically recalibrate the PHY to account 4834 * for temperature/environment changes. 4835 */ 4836 static void 4837 ath_calibrate(void *arg) 4838 { 4839 struct ath_softc *sc = arg; 4840 struct ath_hal *ah = sc->sc_ah; 4841 struct ifnet *ifp = sc->sc_ifp; 4842 struct ieee80211com *ic = ifp->if_l2com; 4843 HAL_BOOL longCal, isCalDone = AH_TRUE; 4844 HAL_BOOL aniCal, shortCal = AH_FALSE; 4845 int nextcal; 4846 4847 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4848 goto restart; 4849 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4850 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4851 if (sc->sc_doresetcal) 4852 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4853 4854 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4855 if (aniCal) { 4856 sc->sc_stats.ast_ani_cal++; 4857 sc->sc_lastani = ticks; 4858 ath_hal_ani_poll(ah, sc->sc_curchan); 4859 } 4860 4861 if (longCal) { 4862 sc->sc_stats.ast_per_cal++; 4863 sc->sc_lastlongcal = ticks; 4864 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4865 /* 4866 * Rfgain is out of bounds, reset the chip 4867 * to load new gain values. 4868 */ 4869 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4870 "%s: rfgain change\n", __func__); 4871 sc->sc_stats.ast_per_rfgain++; 4872 sc->sc_resetcal = 0; 4873 sc->sc_doresetcal = AH_TRUE; 4874 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4875 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4876 return; 4877 } 4878 /* 4879 * If this long cal is after an idle period, then 4880 * reset the data collection state so we start fresh. 4881 */ 4882 if (sc->sc_resetcal) { 4883 (void) ath_hal_calreset(ah, sc->sc_curchan); 4884 sc->sc_lastcalreset = ticks; 4885 sc->sc_lastshortcal = ticks; 4886 sc->sc_resetcal = 0; 4887 sc->sc_doresetcal = AH_TRUE; 4888 } 4889 } 4890 4891 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4892 if (shortCal || longCal) { 4893 isCalDone = AH_FALSE; 4894 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4895 if (longCal) { 4896 /* 4897 * Calibrate noise floor data again in case of change. 4898 */ 4899 ath_hal_process_noisefloor(ah); 4900 } 4901 } else { 4902 DPRINTF(sc, ATH_DEBUG_ANY, 4903 "%s: calibration of channel %u failed\n", 4904 __func__, sc->sc_curchan->ic_freq); 4905 sc->sc_stats.ast_per_calfail++; 4906 } 4907 if (shortCal) 4908 sc->sc_lastshortcal = ticks; 4909 } 4910 if (!isCalDone) { 4911 restart: 4912 /* 4913 * Use a shorter interval to potentially collect multiple 4914 * data samples required to complete calibration. Once 4915 * we're told the work is done we drop back to a longer 4916 * interval between requests. We're more aggressive doing 4917 * work when operating as an AP to improve operation right 4918 * after startup. 4919 */ 4920 sc->sc_lastshortcal = ticks; 4921 nextcal = ath_shortcalinterval*hz/1000; 4922 if (sc->sc_opmode != HAL_M_HOSTAP) 4923 nextcal *= 10; 4924 sc->sc_doresetcal = AH_TRUE; 4925 } else { 4926 /* nextcal should be the shortest time for next event */ 4927 nextcal = ath_longcalinterval*hz; 4928 if (sc->sc_lastcalreset == 0) 4929 sc->sc_lastcalreset = sc->sc_lastlongcal; 4930 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4931 sc->sc_resetcal = 1; /* setup reset next trip */ 4932 sc->sc_doresetcal = AH_FALSE; 4933 } 4934 /* ANI calibration may occur more often than short/long/resetcal */ 4935 if (ath_anicalinterval > 0) 4936 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4937 4938 if (nextcal != 0) { 4939 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4940 __func__, nextcal, isCalDone ? "" : "!"); 4941 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4942 } else { 4943 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4944 __func__); 4945 /* NB: don't rearm timer */ 4946 } 4947 } 4948 4949 static void 4950 ath_scan_start(struct ieee80211com *ic) 4951 { 4952 struct ifnet *ifp = ic->ic_ifp; 4953 struct ath_softc *sc = ifp->if_softc; 4954 struct ath_hal *ah = sc->sc_ah; 4955 u_int32_t rfilt; 4956 4957 /* XXX calibration timer? */ 4958 4959 ATH_LOCK(sc); 4960 sc->sc_scanning = 1; 4961 sc->sc_syncbeacon = 0; 4962 rfilt = ath_calcrxfilter(sc); 4963 ATH_UNLOCK(sc); 4964 4965 ATH_PCU_LOCK(sc); 4966 ath_hal_setrxfilter(ah, rfilt); 4967 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4968 ATH_PCU_UNLOCK(sc); 4969 4970 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4971 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4972 } 4973 4974 static void 4975 ath_scan_end(struct ieee80211com *ic) 4976 { 4977 struct ifnet *ifp = ic->ic_ifp; 4978 struct ath_softc *sc = ifp->if_softc; 4979 struct ath_hal *ah = sc->sc_ah; 4980 u_int32_t rfilt; 4981 4982 ATH_LOCK(sc); 4983 sc->sc_scanning = 0; 4984 rfilt = ath_calcrxfilter(sc); 4985 ATH_UNLOCK(sc); 4986 4987 ATH_PCU_LOCK(sc); 4988 ath_hal_setrxfilter(ah, rfilt); 4989 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4990 4991 ath_hal_process_noisefloor(ah); 4992 ATH_PCU_UNLOCK(sc); 4993 4994 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4995 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4996 sc->sc_curaid); 4997 } 4998 4999 #ifdef ATH_ENABLE_11N 5000 /* 5001 * For now, just do a channel change. 5002 * 5003 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5004 * control state and resetting the hardware without dropping frames out 5005 * of the queue. 5006 * 5007 * The unfortunate trouble here is making absolutely sure that the 5008 * channel width change has propagated enough so the hardware 5009 * absolutely isn't handed bogus frames for it's current operating 5010 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5011 * does occur in parallel, we need to make certain we've blocked 5012 * any further ongoing TX (and RX, that can cause raw TX) 5013 * before we do this. 5014 */ 5015 static void 5016 ath_update_chw(struct ieee80211com *ic) 5017 { 5018 struct ifnet *ifp = ic->ic_ifp; 5019 struct ath_softc *sc = ifp->if_softc; 5020 5021 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5022 ath_set_channel(ic); 5023 } 5024 #endif /* ATH_ENABLE_11N */ 5025 5026 static void 5027 ath_set_channel(struct ieee80211com *ic) 5028 { 5029 struct ifnet *ifp = ic->ic_ifp; 5030 struct ath_softc *sc = ifp->if_softc; 5031 5032 (void) ath_chan_set(sc, ic->ic_curchan); 5033 /* 5034 * If we are returning to our bss channel then mark state 5035 * so the next recv'd beacon's tsf will be used to sync the 5036 * beacon timers. Note that since we only hear beacons in 5037 * sta/ibss mode this has no effect in other operating modes. 5038 */ 5039 ATH_LOCK(sc); 5040 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5041 sc->sc_syncbeacon = 1; 5042 ATH_UNLOCK(sc); 5043 } 5044 5045 /* 5046 * Walk the vap list and check if there any vap's in RUN state. 5047 */ 5048 static int 5049 ath_isanyrunningvaps(struct ieee80211vap *this) 5050 { 5051 struct ieee80211com *ic = this->iv_ic; 5052 struct ieee80211vap *vap; 5053 5054 IEEE80211_LOCK_ASSERT(ic); 5055 5056 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5057 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5058 return 1; 5059 } 5060 return 0; 5061 } 5062 5063 static int 5064 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5065 { 5066 struct ieee80211com *ic = vap->iv_ic; 5067 struct ath_softc *sc = ic->ic_ifp->if_softc; 5068 struct ath_vap *avp = ATH_VAP(vap); 5069 struct ath_hal *ah = sc->sc_ah; 5070 struct ieee80211_node *ni = NULL; 5071 int i, error, stamode; 5072 u_int32_t rfilt; 5073 int csa_run_transition = 0; 5074 5075 static const HAL_LED_STATE leds[] = { 5076 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5077 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5078 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5079 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5080 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5081 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5082 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5083 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5084 }; 5085 5086 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5087 ieee80211_state_name[vap->iv_state], 5088 ieee80211_state_name[nstate]); 5089 5090 /* 5091 * net80211 _should_ have the comlock asserted at this point. 5092 * There are some comments around the calls to vap->iv_newstate 5093 * which indicate that it (newstate) may end up dropping the 5094 * lock. This and the subsequent lock assert check after newstate 5095 * are an attempt to catch these and figure out how/why. 5096 */ 5097 IEEE80211_LOCK_ASSERT(ic); 5098 5099 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5100 csa_run_transition = 1; 5101 5102 callout_drain(&sc->sc_cal_ch); 5103 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5104 5105 if (nstate == IEEE80211_S_SCAN) { 5106 /* 5107 * Scanning: turn off beacon miss and don't beacon. 5108 * Mark beacon state so when we reach RUN state we'll 5109 * [re]setup beacons. Unblock the task q thread so 5110 * deferred interrupt processing is done. 5111 */ 5112 ath_hal_intrset(ah, 5113 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5114 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5115 sc->sc_beacons = 0; 5116 taskqueue_unblock(sc->sc_tq); 5117 taskqueue_unblock(sc->sc_tx_tq); 5118 } 5119 5120 ni = ieee80211_ref_node(vap->iv_bss); 5121 rfilt = ath_calcrxfilter(sc); 5122 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5123 vap->iv_opmode == IEEE80211_M_AHDEMO || 5124 vap->iv_opmode == IEEE80211_M_IBSS); 5125 if (stamode && nstate == IEEE80211_S_RUN) { 5126 sc->sc_curaid = ni->ni_associd; 5127 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5128 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5129 } 5130 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5131 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5132 ath_hal_setrxfilter(ah, rfilt); 5133 5134 /* XXX is this to restore keycache on resume? */ 5135 if (vap->iv_opmode != IEEE80211_M_STA && 5136 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5137 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5138 if (ath_hal_keyisvalid(ah, i)) 5139 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5140 } 5141 5142 /* 5143 * Invoke the parent method to do net80211 work. 5144 */ 5145 error = avp->av_newstate(vap, nstate, arg); 5146 if (error != 0) 5147 goto bad; 5148 5149 /* 5150 * See above: ensure av_newstate() doesn't drop the lock 5151 * on us. 5152 */ 5153 IEEE80211_LOCK_ASSERT(ic); 5154 5155 if (nstate == IEEE80211_S_RUN) { 5156 /* NB: collect bss node again, it may have changed */ 5157 ieee80211_free_node(ni); 5158 ni = ieee80211_ref_node(vap->iv_bss); 5159 5160 DPRINTF(sc, ATH_DEBUG_STATE, 5161 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5162 "capinfo 0x%04x chan %d\n", __func__, 5163 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5164 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5165 5166 switch (vap->iv_opmode) { 5167 #ifdef IEEE80211_SUPPORT_TDMA 5168 case IEEE80211_M_AHDEMO: 5169 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5170 break; 5171 /* fall thru... */ 5172 #endif 5173 case IEEE80211_M_HOSTAP: 5174 case IEEE80211_M_IBSS: 5175 case IEEE80211_M_MBSS: 5176 /* 5177 * Allocate and setup the beacon frame. 5178 * 5179 * Stop any previous beacon DMA. This may be 5180 * necessary, for example, when an ibss merge 5181 * causes reconfiguration; there will be a state 5182 * transition from RUN->RUN that means we may 5183 * be called with beacon transmission active. 5184 */ 5185 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5186 5187 error = ath_beacon_alloc(sc, ni); 5188 if (error != 0) 5189 goto bad; 5190 /* 5191 * If joining an adhoc network defer beacon timer 5192 * configuration to the next beacon frame so we 5193 * have a current TSF to use. Otherwise we're 5194 * starting an ibss/bss so there's no need to delay; 5195 * if this is the first vap moving to RUN state, then 5196 * beacon state needs to be [re]configured. 5197 */ 5198 if (vap->iv_opmode == IEEE80211_M_IBSS && 5199 ni->ni_tstamp.tsf != 0) { 5200 sc->sc_syncbeacon = 1; 5201 } else if (!sc->sc_beacons) { 5202 #ifdef IEEE80211_SUPPORT_TDMA 5203 if (vap->iv_caps & IEEE80211_C_TDMA) 5204 ath_tdma_config(sc, vap); 5205 else 5206 #endif 5207 ath_beacon_config(sc, vap); 5208 sc->sc_beacons = 1; 5209 } 5210 break; 5211 case IEEE80211_M_STA: 5212 /* 5213 * Defer beacon timer configuration to the next 5214 * beacon frame so we have a current TSF to use 5215 * (any TSF collected when scanning is likely old). 5216 * However if it's due to a CSA -> RUN transition, 5217 * force a beacon update so we pick up a lack of 5218 * beacons from an AP in CAC and thus force a 5219 * scan. 5220 * 5221 * And, there's also corner cases here where 5222 * after a scan, the AP may have disappeared. 5223 * In that case, we may not receive an actual 5224 * beacon to update the beacon timer and thus we 5225 * won't get notified of the missing beacons. 5226 */ 5227 sc->sc_syncbeacon = 1; 5228 #if 0 5229 if (csa_run_transition) 5230 #endif 5231 ath_beacon_config(sc, vap); 5232 5233 /* 5234 * PR: kern/175227 5235 * 5236 * Reconfigure beacons during reset; as otherwise 5237 * we won't get the beacon timers reprogrammed 5238 * after a reset and thus we won't pick up a 5239 * beacon miss interrupt. 5240 * 5241 * Hopefully we'll see a beacon before the BMISS 5242 * timer fires (too often), leading to a STA 5243 * disassociation. 5244 */ 5245 sc->sc_beacons = 1; 5246 break; 5247 case IEEE80211_M_MONITOR: 5248 /* 5249 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5250 * transitions so we must re-enable interrupts here to 5251 * handle the case of a single monitor mode vap. 5252 */ 5253 ath_hal_intrset(ah, sc->sc_imask); 5254 break; 5255 case IEEE80211_M_WDS: 5256 break; 5257 default: 5258 break; 5259 } 5260 /* 5261 * Let the hal process statistics collected during a 5262 * scan so it can provide calibrated noise floor data. 5263 */ 5264 ath_hal_process_noisefloor(ah); 5265 /* 5266 * Reset rssi stats; maybe not the best place... 5267 */ 5268 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5269 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5270 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5271 /* 5272 * Finally, start any timers and the task q thread 5273 * (in case we didn't go through SCAN state). 5274 */ 5275 if (ath_longcalinterval != 0) { 5276 /* start periodic recalibration timer */ 5277 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5278 } else { 5279 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5280 "%s: calibration disabled\n", __func__); 5281 } 5282 taskqueue_unblock(sc->sc_tq); 5283 taskqueue_unblock(sc->sc_tx_tq); 5284 } else if (nstate == IEEE80211_S_INIT) { 5285 /* 5286 * If there are no vaps left in RUN state then 5287 * shutdown host/driver operation: 5288 * o disable interrupts 5289 * o disable the task queue thread 5290 * o mark beacon processing as stopped 5291 */ 5292 if (!ath_isanyrunningvaps(vap)) { 5293 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5294 /* disable interrupts */ 5295 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5296 taskqueue_block(sc->sc_tq); 5297 taskqueue_block(sc->sc_tx_tq); 5298 sc->sc_beacons = 0; 5299 } 5300 #ifdef IEEE80211_SUPPORT_TDMA 5301 ath_hal_setcca(ah, AH_TRUE); 5302 #endif 5303 } 5304 bad: 5305 ieee80211_free_node(ni); 5306 return error; 5307 } 5308 5309 /* 5310 * Allocate a key cache slot to the station so we can 5311 * setup a mapping from key index to node. The key cache 5312 * slot is needed for managing antenna state and for 5313 * compression when stations do not use crypto. We do 5314 * it uniliaterally here; if crypto is employed this slot 5315 * will be reassigned. 5316 */ 5317 static void 5318 ath_setup_stationkey(struct ieee80211_node *ni) 5319 { 5320 struct ieee80211vap *vap = ni->ni_vap; 5321 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5322 ieee80211_keyix keyix, rxkeyix; 5323 5324 /* XXX should take a locked ref to vap->iv_bss */ 5325 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5326 /* 5327 * Key cache is full; we'll fall back to doing 5328 * the more expensive lookup in software. Note 5329 * this also means no h/w compression. 5330 */ 5331 /* XXX msg+statistic */ 5332 } else { 5333 /* XXX locking? */ 5334 ni->ni_ucastkey.wk_keyix = keyix; 5335 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5336 /* NB: must mark device key to get called back on delete */ 5337 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5338 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5339 /* NB: this will create a pass-thru key entry */ 5340 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5341 } 5342 } 5343 5344 /* 5345 * Setup driver-specific state for a newly associated node. 5346 * Note that we're called also on a re-associate, the isnew 5347 * param tells us if this is the first time or not. 5348 */ 5349 static void 5350 ath_newassoc(struct ieee80211_node *ni, int isnew) 5351 { 5352 struct ath_node *an = ATH_NODE(ni); 5353 struct ieee80211vap *vap = ni->ni_vap; 5354 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5355 const struct ieee80211_txparam *tp = ni->ni_txparms; 5356 5357 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5358 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5359 5360 ath_rate_newassoc(sc, an, isnew); 5361 if (isnew && 5362 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5363 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5364 ath_setup_stationkey(ni); 5365 } 5366 5367 static int 5368 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5369 int nchans, struct ieee80211_channel chans[]) 5370 { 5371 struct ath_softc *sc = ic->ic_ifp->if_softc; 5372 struct ath_hal *ah = sc->sc_ah; 5373 HAL_STATUS status; 5374 5375 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5376 "%s: rd %u cc %u location %c%s\n", 5377 __func__, reg->regdomain, reg->country, reg->location, 5378 reg->ecm ? " ecm" : ""); 5379 5380 status = ath_hal_set_channels(ah, chans, nchans, 5381 reg->country, reg->regdomain); 5382 if (status != HAL_OK) { 5383 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5384 __func__, status); 5385 return EINVAL; /* XXX */ 5386 } 5387 5388 return 0; 5389 } 5390 5391 static void 5392 ath_getradiocaps(struct ieee80211com *ic, 5393 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5394 { 5395 struct ath_softc *sc = ic->ic_ifp->if_softc; 5396 struct ath_hal *ah = sc->sc_ah; 5397 5398 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5399 __func__, SKU_DEBUG, CTRY_DEFAULT); 5400 5401 /* XXX check return */ 5402 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5403 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5404 5405 } 5406 5407 static int 5408 ath_getchannels(struct ath_softc *sc) 5409 { 5410 struct ifnet *ifp = sc->sc_ifp; 5411 struct ieee80211com *ic = ifp->if_l2com; 5412 struct ath_hal *ah = sc->sc_ah; 5413 HAL_STATUS status; 5414 5415 /* 5416 * Collect channel set based on EEPROM contents. 5417 */ 5418 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5419 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5420 if (status != HAL_OK) { 5421 if_printf(ifp, "%s: unable to collect channel list from hal, " 5422 "status %d\n", __func__, status); 5423 return EINVAL; 5424 } 5425 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5426 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5427 /* XXX map Atheros sku's to net80211 SKU's */ 5428 /* XXX net80211 types too small */ 5429 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5430 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5431 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5432 ic->ic_regdomain.isocc[1] = ' '; 5433 5434 ic->ic_regdomain.ecm = 1; 5435 ic->ic_regdomain.location = 'I'; 5436 5437 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5438 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5439 __func__, sc->sc_eerd, sc->sc_eecc, 5440 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5441 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5442 return 0; 5443 } 5444 5445 static int 5446 ath_rate_setup(struct ath_softc *sc, u_int mode) 5447 { 5448 struct ath_hal *ah = sc->sc_ah; 5449 const HAL_RATE_TABLE *rt; 5450 5451 switch (mode) { 5452 case IEEE80211_MODE_11A: 5453 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5454 break; 5455 case IEEE80211_MODE_HALF: 5456 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5457 break; 5458 case IEEE80211_MODE_QUARTER: 5459 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5460 break; 5461 case IEEE80211_MODE_11B: 5462 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5463 break; 5464 case IEEE80211_MODE_11G: 5465 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5466 break; 5467 case IEEE80211_MODE_TURBO_A: 5468 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5469 break; 5470 case IEEE80211_MODE_TURBO_G: 5471 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5472 break; 5473 case IEEE80211_MODE_STURBO_A: 5474 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5475 break; 5476 case IEEE80211_MODE_11NA: 5477 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5478 break; 5479 case IEEE80211_MODE_11NG: 5480 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5481 break; 5482 default: 5483 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5484 __func__, mode); 5485 return 0; 5486 } 5487 sc->sc_rates[mode] = rt; 5488 return (rt != NULL); 5489 } 5490 5491 static void 5492 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5493 { 5494 #define N(a) (sizeof(a)/sizeof(a[0])) 5495 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5496 static const struct { 5497 u_int rate; /* tx/rx 802.11 rate */ 5498 u_int16_t timeOn; /* LED on time (ms) */ 5499 u_int16_t timeOff; /* LED off time (ms) */ 5500 } blinkrates[] = { 5501 { 108, 40, 10 }, 5502 { 96, 44, 11 }, 5503 { 72, 50, 13 }, 5504 { 48, 57, 14 }, 5505 { 36, 67, 16 }, 5506 { 24, 80, 20 }, 5507 { 22, 100, 25 }, 5508 { 18, 133, 34 }, 5509 { 12, 160, 40 }, 5510 { 10, 200, 50 }, 5511 { 6, 240, 58 }, 5512 { 4, 267, 66 }, 5513 { 2, 400, 100 }, 5514 { 0, 500, 130 }, 5515 /* XXX half/quarter rates */ 5516 }; 5517 const HAL_RATE_TABLE *rt; 5518 int i, j; 5519 5520 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5521 rt = sc->sc_rates[mode]; 5522 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5523 for (i = 0; i < rt->rateCount; i++) { 5524 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5525 if (rt->info[i].phy != IEEE80211_T_HT) 5526 sc->sc_rixmap[ieeerate] = i; 5527 else 5528 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5529 } 5530 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5531 for (i = 0; i < N(sc->sc_hwmap); i++) { 5532 if (i >= rt->rateCount) { 5533 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5534 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5535 continue; 5536 } 5537 sc->sc_hwmap[i].ieeerate = 5538 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5539 if (rt->info[i].phy == IEEE80211_T_HT) 5540 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5541 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5542 if (rt->info[i].shortPreamble || 5543 rt->info[i].phy == IEEE80211_T_OFDM) 5544 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5545 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5546 for (j = 0; j < N(blinkrates)-1; j++) 5547 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5548 break; 5549 /* NB: this uses the last entry if the rate isn't found */ 5550 /* XXX beware of overlow */ 5551 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5552 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5553 } 5554 sc->sc_currates = rt; 5555 sc->sc_curmode = mode; 5556 /* 5557 * All protection frames are transmited at 2Mb/s for 5558 * 11g, otherwise at 1Mb/s. 5559 */ 5560 if (mode == IEEE80211_MODE_11G) 5561 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5562 else 5563 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5564 /* NB: caller is responsible for resetting rate control state */ 5565 #undef N 5566 } 5567 5568 static void 5569 ath_watchdog(void *arg) 5570 { 5571 struct ath_softc *sc = arg; 5572 int do_reset = 0; 5573 5574 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5575 struct ifnet *ifp = sc->sc_ifp; 5576 uint32_t hangs; 5577 5578 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5579 hangs != 0) { 5580 if_printf(ifp, "%s hang detected (0x%x)\n", 5581 hangs & 0xff ? "bb" : "mac", hangs); 5582 } else 5583 if_printf(ifp, "device timeout\n"); 5584 do_reset = 1; 5585 ifp->if_oerrors++; 5586 sc->sc_stats.ast_watchdog++; 5587 } 5588 5589 /* 5590 * We can't hold the lock across the ath_reset() call. 5591 * 5592 * And since this routine can't hold a lock and sleep, 5593 * do the reset deferred. 5594 */ 5595 if (do_reset) { 5596 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5597 } 5598 5599 callout_schedule(&sc->sc_wd_ch, hz); 5600 } 5601 5602 /* 5603 * Fetch the rate control statistics for the given node. 5604 */ 5605 static int 5606 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5607 { 5608 struct ath_node *an; 5609 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5610 struct ieee80211_node *ni; 5611 int error = 0; 5612 5613 /* Perform a lookup on the given node */ 5614 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5615 if (ni == NULL) { 5616 error = EINVAL; 5617 goto bad; 5618 } 5619 5620 /* Lock the ath_node */ 5621 an = ATH_NODE(ni); 5622 ATH_NODE_LOCK(an); 5623 5624 /* Fetch the rate control stats for this node */ 5625 error = ath_rate_fetch_node_stats(sc, an, rs); 5626 5627 /* No matter what happens here, just drop through */ 5628 5629 /* Unlock the ath_node */ 5630 ATH_NODE_UNLOCK(an); 5631 5632 /* Unref the node */ 5633 ieee80211_node_decref(ni); 5634 5635 bad: 5636 return (error); 5637 } 5638 5639 #ifdef ATH_DIAGAPI 5640 /* 5641 * Diagnostic interface to the HAL. This is used by various 5642 * tools to do things like retrieve register contents for 5643 * debugging. The mechanism is intentionally opaque so that 5644 * it can change frequently w/o concern for compatiblity. 5645 */ 5646 static int 5647 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5648 { 5649 struct ath_hal *ah = sc->sc_ah; 5650 u_int id = ad->ad_id & ATH_DIAG_ID; 5651 void *indata = NULL; 5652 void *outdata = NULL; 5653 u_int32_t insize = ad->ad_in_size; 5654 u_int32_t outsize = ad->ad_out_size; 5655 int error = 0; 5656 5657 if (ad->ad_id & ATH_DIAG_IN) { 5658 /* 5659 * Copy in data. 5660 */ 5661 indata = malloc(insize, M_TEMP, M_NOWAIT); 5662 if (indata == NULL) { 5663 error = ENOMEM; 5664 goto bad; 5665 } 5666 error = copyin(ad->ad_in_data, indata, insize); 5667 if (error) 5668 goto bad; 5669 } 5670 if (ad->ad_id & ATH_DIAG_DYN) { 5671 /* 5672 * Allocate a buffer for the results (otherwise the HAL 5673 * returns a pointer to a buffer where we can read the 5674 * results). Note that we depend on the HAL leaving this 5675 * pointer for us to use below in reclaiming the buffer; 5676 * may want to be more defensive. 5677 */ 5678 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5679 if (outdata == NULL) { 5680 error = ENOMEM; 5681 goto bad; 5682 } 5683 } 5684 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5685 if (outsize < ad->ad_out_size) 5686 ad->ad_out_size = outsize; 5687 if (outdata != NULL) 5688 error = copyout(outdata, ad->ad_out_data, 5689 ad->ad_out_size); 5690 } else { 5691 error = EINVAL; 5692 } 5693 bad: 5694 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5695 free(indata, M_TEMP); 5696 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5697 free(outdata, M_TEMP); 5698 return error; 5699 } 5700 #endif /* ATH_DIAGAPI */ 5701 5702 static int 5703 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5704 { 5705 #define IS_RUNNING(ifp) \ 5706 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5707 struct ath_softc *sc = ifp->if_softc; 5708 struct ieee80211com *ic = ifp->if_l2com; 5709 struct ifreq *ifr = (struct ifreq *)data; 5710 const HAL_RATE_TABLE *rt; 5711 int error = 0; 5712 5713 switch (cmd) { 5714 case SIOCSIFFLAGS: 5715 ATH_LOCK(sc); 5716 if (IS_RUNNING(ifp)) { 5717 /* 5718 * To avoid rescanning another access point, 5719 * do not call ath_init() here. Instead, 5720 * only reflect promisc mode settings. 5721 */ 5722 ath_mode_init(sc); 5723 } else if (ifp->if_flags & IFF_UP) { 5724 /* 5725 * Beware of being called during attach/detach 5726 * to reset promiscuous mode. In that case we 5727 * will still be marked UP but not RUNNING. 5728 * However trying to re-init the interface 5729 * is the wrong thing to do as we've already 5730 * torn down much of our state. There's 5731 * probably a better way to deal with this. 5732 */ 5733 if (!sc->sc_invalid) 5734 ath_init(sc); /* XXX lose error */ 5735 } else { 5736 ath_stop_locked(ifp); 5737 #ifdef notyet 5738 /* XXX must wakeup in places like ath_vap_delete */ 5739 if (!sc->sc_invalid) 5740 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5741 #endif 5742 } 5743 ATH_UNLOCK(sc); 5744 break; 5745 case SIOCGIFMEDIA: 5746 case SIOCSIFMEDIA: 5747 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5748 break; 5749 case SIOCGATHSTATS: 5750 /* NB: embed these numbers to get a consistent view */ 5751 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5752 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5753 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5754 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5755 #ifdef IEEE80211_SUPPORT_TDMA 5756 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5757 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5758 #endif 5759 rt = sc->sc_currates; 5760 sc->sc_stats.ast_tx_rate = 5761 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5762 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5763 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5764 return copyout(&sc->sc_stats, 5765 ifr->ifr_data, sizeof (sc->sc_stats)); 5766 case SIOCGATHAGSTATS: 5767 return copyout(&sc->sc_aggr_stats, 5768 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5769 case SIOCZATHSTATS: 5770 error = priv_check(curthread, PRIV_DRIVER); 5771 if (error == 0) { 5772 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5773 memset(&sc->sc_aggr_stats, 0, 5774 sizeof(sc->sc_aggr_stats)); 5775 memset(&sc->sc_intr_stats, 0, 5776 sizeof(sc->sc_intr_stats)); 5777 } 5778 break; 5779 #ifdef ATH_DIAGAPI 5780 case SIOCGATHDIAG: 5781 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5782 break; 5783 case SIOCGATHPHYERR: 5784 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5785 break; 5786 #endif 5787 case SIOCGATHSPECTRAL: 5788 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 5789 break; 5790 case SIOCGATHNODERATESTATS: 5791 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5792 break; 5793 case SIOCGIFADDR: 5794 error = ether_ioctl(ifp, cmd, data); 5795 break; 5796 default: 5797 error = EINVAL; 5798 break; 5799 } 5800 return error; 5801 #undef IS_RUNNING 5802 } 5803 5804 /* 5805 * Announce various information on device/driver attach. 5806 */ 5807 static void 5808 ath_announce(struct ath_softc *sc) 5809 { 5810 struct ifnet *ifp = sc->sc_ifp; 5811 struct ath_hal *ah = sc->sc_ah; 5812 5813 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5814 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5815 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5816 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5817 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5818 if (bootverbose) { 5819 int i; 5820 for (i = 0; i <= WME_AC_VO; i++) { 5821 struct ath_txq *txq = sc->sc_ac2q[i]; 5822 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5823 txq->axq_qnum, ieee80211_wme_acnames[i]); 5824 } 5825 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5826 sc->sc_cabq->axq_qnum); 5827 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5828 } 5829 if (ath_rxbuf != ATH_RXBUF) 5830 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5831 if (ath_txbuf != ATH_TXBUF) 5832 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5833 if (sc->sc_mcastkey && bootverbose) 5834 if_printf(ifp, "using multicast key search\n"); 5835 } 5836 5837 static void 5838 ath_dfs_tasklet(void *p, int npending) 5839 { 5840 struct ath_softc *sc = (struct ath_softc *) p; 5841 struct ifnet *ifp = sc->sc_ifp; 5842 struct ieee80211com *ic = ifp->if_l2com; 5843 5844 /* 5845 * If previous processing has found a radar event, 5846 * signal this to the net80211 layer to begin DFS 5847 * processing. 5848 */ 5849 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5850 /* DFS event found, initiate channel change */ 5851 /* 5852 * XXX doesn't currently tell us whether the event 5853 * XXX was found in the primary or extension 5854 * XXX channel! 5855 */ 5856 IEEE80211_LOCK(ic); 5857 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5858 IEEE80211_UNLOCK(ic); 5859 } 5860 } 5861 5862 /* 5863 * Enable/disable power save. This must be called with 5864 * no TX driver locks currently held, so it should only 5865 * be called from the RX path (which doesn't hold any 5866 * TX driver locks.) 5867 */ 5868 static void 5869 ath_node_powersave(struct ieee80211_node *ni, int enable) 5870 { 5871 #ifdef ATH_SW_PSQ 5872 struct ath_node *an = ATH_NODE(ni); 5873 struct ieee80211com *ic = ni->ni_ic; 5874 struct ath_softc *sc = ic->ic_ifp->if_softc; 5875 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5876 5877 ATH_NODE_UNLOCK_ASSERT(an); 5878 /* XXX and no TXQ locks should be held here */ 5879 5880 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5881 __func__, ni, enable); 5882 5883 /* Suspend or resume software queue handling */ 5884 if (enable) 5885 ath_tx_node_sleep(sc, an); 5886 else 5887 ath_tx_node_wakeup(sc, an); 5888 5889 /* Update net80211 state */ 5890 avp->av_node_ps(ni, enable); 5891 #else 5892 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5893 5894 /* Update net80211 state */ 5895 avp->av_node_ps(ni, enable); 5896 #endif/* ATH_SW_PSQ */ 5897 } 5898 5899 /* 5900 * Notification from net80211 that the powersave queue state has 5901 * changed. 5902 * 5903 * Since the software queue also may have some frames: 5904 * 5905 * + if the node software queue has frames and the TID state 5906 * is 0, we set the TIM; 5907 * + if the node and the stack are both empty, we clear the TIM bit. 5908 * + If the stack tries to set the bit, always set it. 5909 * + If the stack tries to clear the bit, only clear it if the 5910 * software queue in question is also cleared. 5911 * 5912 * TODO: this is called during node teardown; so let's ensure this 5913 * is all correctly handled and that the TIM bit is cleared. 5914 * It may be that the node flush is called _AFTER_ the net80211 5915 * stack clears the TIM. 5916 * 5917 * Here is the racy part. Since it's possible >1 concurrent, 5918 * overlapping TXes will appear complete with a TX completion in 5919 * another thread, it's possible that the concurrent TIM calls will 5920 * clash. We can't hold the node lock here because setting the 5921 * TIM grabs the net80211 comlock and this may cause a LOR. 5922 * The solution is either to totally serialise _everything_ at 5923 * this point (ie, all TX, completion and any reset/flush go into 5924 * one taskqueue) or a new "ath TIM lock" needs to be created that 5925 * just wraps the driver state change and this call to avp->av_set_tim(). 5926 * 5927 * The same race exists in the net80211 power save queue handling 5928 * as well. Since multiple transmitting threads may queue frames 5929 * into the driver, as well as ps-poll and the driver transmitting 5930 * frames (and thus clearing the psq), it's quite possible that 5931 * a packet entering the PSQ and a ps-poll being handled will 5932 * race, causing the TIM to be cleared and not re-set. 5933 */ 5934 static int 5935 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5936 { 5937 #ifdef ATH_SW_PSQ 5938 struct ieee80211com *ic = ni->ni_ic; 5939 struct ath_softc *sc = ic->ic_ifp->if_softc; 5940 struct ath_node *an = ATH_NODE(ni); 5941 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5942 int changed = 0; 5943 5944 ATH_NODE_UNLOCK_ASSERT(an); 5945 5946 /* 5947 * For now, just track and then update the TIM. 5948 */ 5949 ATH_NODE_LOCK(an); 5950 an->an_stack_psq = enable; 5951 5952 /* 5953 * This will get called for all operating modes, 5954 * even if avp->av_set_tim is unset. 5955 * It's currently set for hostap/ibss modes; but 5956 * the same infrastructure is used for both STA 5957 * and AP/IBSS node power save. 5958 */ 5959 if (avp->av_set_tim == NULL) { 5960 ATH_NODE_UNLOCK(an); 5961 return (0); 5962 } 5963 5964 /* 5965 * If setting the bit, always set it here. 5966 * If clearing the bit, only clear it if the 5967 * software queue is also empty. 5968 * 5969 * If the node has left power save, just clear the TIM 5970 * bit regardless of the state of the power save queue. 5971 * 5972 * XXX TODO: although atomics are used, it's quite possible 5973 * that a race will occur between this and setting/clearing 5974 * in another thread. TX completion will occur always in 5975 * one thread, however setting/clearing the TIM bit can come 5976 * from a variety of different process contexts! 5977 */ 5978 if (enable && an->an_tim_set == 1) { 5979 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5980 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5981 __func__, an, enable); 5982 ATH_NODE_UNLOCK(an); 5983 } else if (enable) { 5984 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5985 "%s: an=%p, enable=%d, enabling TIM\n", 5986 __func__, an, enable); 5987 an->an_tim_set = 1; 5988 ATH_NODE_UNLOCK(an); 5989 changed = avp->av_set_tim(ni, enable); 5990 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5991 /* disable */ 5992 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5993 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5994 __func__, an, enable); 5995 an->an_tim_set = 0; 5996 ATH_NODE_UNLOCK(an); 5997 changed = avp->av_set_tim(ni, enable); 5998 } else if (! an->an_is_powersave) { 5999 /* 6000 * disable regardless; the node isn't in powersave now 6001 */ 6002 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6003 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 6004 __func__, an, enable); 6005 an->an_tim_set = 0; 6006 ATH_NODE_UNLOCK(an); 6007 changed = avp->av_set_tim(ni, enable); 6008 } else { 6009 /* 6010 * psq disable, node is currently in powersave, node 6011 * software queue isn't empty, so don't clear the TIM bit 6012 * for now. 6013 */ 6014 ATH_NODE_UNLOCK(an); 6015 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6016 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 6017 __func__, enable); 6018 changed = 0; 6019 } 6020 6021 return (changed); 6022 #else 6023 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6024 6025 /* 6026 * Some operating modes don't set av_set_tim(), so don't 6027 * update it here. 6028 */ 6029 if (avp->av_set_tim == NULL) 6030 return (0); 6031 6032 return (avp->av_set_tim(ni, enable)); 6033 #endif /* ATH_SW_PSQ */ 6034 } 6035 6036 /* 6037 * Set or update the TIM from the software queue. 6038 * 6039 * Check the software queue depth before attempting to do lock 6040 * anything; that avoids trying to obtain the lock. Then, 6041 * re-check afterwards to ensure nothing has changed in the 6042 * meantime. 6043 * 6044 * set: This is designed to be called from the TX path, after 6045 * a frame has been queued; to see if the swq > 0. 6046 * 6047 * clear: This is designed to be called from the buffer completion point 6048 * (right now it's ath_tx_default_comp()) where the state of 6049 * a software queue has changed. 6050 * 6051 * It makes sense to place it at buffer free / completion rather 6052 * than after each software queue operation, as there's no real 6053 * point in churning the TIM bit as the last frames in the software 6054 * queue are transmitted. If they fail and we retry them, we'd 6055 * just be setting the TIM bit again anyway. 6056 */ 6057 void 6058 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6059 int enable) 6060 { 6061 #ifdef ATH_SW_PSQ 6062 struct ath_node *an; 6063 struct ath_vap *avp; 6064 6065 /* Don't do this for broadcast/etc frames */ 6066 if (ni == NULL) 6067 return; 6068 6069 an = ATH_NODE(ni); 6070 avp = ATH_VAP(ni->ni_vap); 6071 6072 /* 6073 * And for operating modes without the TIM handler set, let's 6074 * just skip those. 6075 */ 6076 if (avp->av_set_tim == NULL) 6077 return; 6078 6079 ATH_NODE_UNLOCK_ASSERT(an); 6080 6081 if (enable) { 6082 /* 6083 * Don't bother grabbing the lock unless the queue is not 6084 * empty. 6085 */ 6086 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 6087 return; 6088 6089 ATH_NODE_LOCK(an); 6090 if (an->an_is_powersave && 6091 an->an_tim_set == 0 && 6092 atomic_load_acq_int(&an->an_swq_depth) != 0) { 6093 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6094 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 6095 __func__, an); 6096 an->an_tim_set = 1; 6097 ATH_NODE_UNLOCK(an); 6098 (void) avp->av_set_tim(ni, 1); 6099 } else { 6100 ATH_NODE_UNLOCK(an); 6101 } 6102 } else { 6103 /* 6104 * Don't bother grabbing the lock unless the queue is empty. 6105 */ 6106 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 6107 return; 6108 6109 ATH_NODE_LOCK(an); 6110 if (an->an_is_powersave && 6111 an->an_stack_psq == 0 && 6112 an->an_tim_set == 1 && 6113 atomic_load_acq_int(&an->an_swq_depth) == 0) { 6114 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6115 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 6116 " clear!\n", 6117 __func__, an); 6118 an->an_tim_set = 0; 6119 ATH_NODE_UNLOCK(an); 6120 (void) avp->av_set_tim(ni, 0); 6121 } else { 6122 ATH_NODE_UNLOCK(an); 6123 } 6124 } 6125 #else 6126 return; 6127 #endif /* ATH_SW_PSQ */ 6128 } 6129 6130 MODULE_VERSION(if_ath, 1); 6131 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6132 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 6133 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6134 #endif 6135