xref: /freebsd/sys/dev/ath/if_ath.c (revision f07a6d989f5df28037f3c223f89dbe009b8171c8)
1 /*-
2  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72 
73 #include <net80211/ieee80211_var.h>
74 
75 #include <net/bpf.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #define	AR_DEBUG
83 #include <dev/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85 
86 /* unalligned little endian access */
87 #define LE_READ_2(p)							\
88 	((u_int16_t)							\
89 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
90 #define LE_READ_4(p)							\
91 	((u_int32_t)							\
92 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
93 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
94 
95 static void	ath_init(void *);
96 static void	ath_stop(struct ifnet *);
97 static void	ath_start(struct ifnet *);
98 static void	ath_reset(struct ath_softc *);
99 static int	ath_media_change(struct ifnet *);
100 static void	ath_watchdog(struct ifnet *);
101 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
102 static void	ath_fatal_proc(void *, int);
103 static void	ath_rxorn_proc(void *, int);
104 static void	ath_bmiss_proc(void *, int);
105 static void	ath_initkeytable(struct ath_softc *);
106 static void	ath_mode_init(struct ath_softc *);
107 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
108 static void	ath_beacon_proc(void *, int);
109 static void	ath_beacon_free(struct ath_softc *);
110 static void	ath_beacon_config(struct ath_softc *);
111 static int	ath_desc_alloc(struct ath_softc *);
112 static void	ath_desc_free(struct ath_softc *);
113 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
114 static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
115 static void	ath_node_copy(struct ieee80211com *,
116 			struct ieee80211_node *, const struct ieee80211_node *);
117 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
118 static void	ath_rx_proc(void *, int);
119 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
120 			     struct ath_buf *, struct mbuf *);
121 static void	ath_tx_proc(void *, int);
122 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
123 static void	ath_draintxq(struct ath_softc *);
124 static void	ath_stoprecv(struct ath_softc *);
125 static int	ath_startrecv(struct ath_softc *);
126 static void	ath_next_scan(void *);
127 static void	ath_calibrate(void *);
128 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
129 static void	ath_newassoc(struct ieee80211com *,
130 			struct ieee80211_node *, int);
131 static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
132 
133 static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
134 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
135 static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
136 static void	ath_rate_ctl(void *, struct ieee80211_node *);
137 
138 SYSCTL_DECL(_hw_ath);
139 
140 /* XXX validate sysctl values */
141 static	int ath_dwelltime = 200;		/* 5 channels/second */
142 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
143 	    0, "channel dwell time (ms) for AP/station scanning");
144 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
145 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
146 	    0, "chip calibration interval (secs)");
147 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
148 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
149 	    0, "enable/disable outdoor operation");
150 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
151 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
152 	    0, "country code");
153 static	int ath_regdomain = 0;			/* regulatory domain */
154 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
155 	    0, "regulatory domain");
156 
157 #ifdef AR_DEBUG
158 int	ath_debug = 0;
159 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
160 	    0, "control debugging printfs");
161 #define	IFF_DUMPPKTS(_ifp) \
162 	(ath_debug || \
163 	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
164 static	void ath_printrxbuf(struct ath_buf *bf, int);
165 static	void ath_printtxbuf(struct ath_buf *bf, int);
166 #define	DPRINTF(X)	if (ath_debug) printf X
167 #define	DPRINTF2(X)	if (ath_debug > 1) printf X
168 #else
169 #define	IFF_DUMPPKTS(_ifp) \
170 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
171 #define	DPRINTF(X)
172 #define	DPRINTF2(X)
173 #endif
174 
175 int
176 ath_attach(u_int16_t devid, struct ath_softc *sc)
177 {
178 	struct ieee80211com *ic = &sc->sc_ic;
179 	struct ifnet *ifp = &ic->ic_if;
180 	struct ath_hal *ah;
181 	HAL_STATUS status;
182 	int error = 0;
183 
184 	DPRINTF(("ath_attach: devid 0x%x\n", devid));
185 
186 	/* set these up early for if_printf use */
187 	ifp->if_unit = device_get_unit(sc->sc_dev);
188 	ifp->if_name = "ath";
189 
190 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
191 	if (ah == NULL) {
192 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
193 			status);
194 		error = ENXIO;
195 		goto bad;
196 	}
197 	sc->sc_ah = ah;
198 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
199 
200 	/*
201 	 * Collect the channel list using the default country
202 	 * code and including outdoor channels.  The 802.11 layer
203 	 * is resposible for filtering this list based on settings
204 	 * like the phy mode.
205 	 */
206 	error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
207 	if (error != 0)
208 		goto bad;
209 	/*
210 	 * Copy these back; they are set as a side effect
211 	 * of constructing the channel list.
212 	 */
213 	ath_regdomain = ath_hal_getregdomain(ah);
214 	ath_countrycode = ath_hal_getcountrycode(ah);
215 
216 	/*
217 	 * Setup rate tables for all potential media types.
218 	 */
219 	ath_rate_setup(sc, IEEE80211_MODE_11A);
220 	ath_rate_setup(sc, IEEE80211_MODE_11B);
221 	ath_rate_setup(sc, IEEE80211_MODE_11G);
222 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
223 
224 	error = ath_desc_alloc(sc);
225 	if (error != 0) {
226 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
227 		goto bad;
228 	}
229 	callout_init(&sc->sc_scan_ch, CALLOUT_MPSAFE);
230 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
231 
232 	mtx_init(&sc->sc_txbuflock,
233 		device_get_nameunit(sc->sc_dev), "xmit buf q", MTX_DEF);
234 	mtx_init(&sc->sc_txqlock,
235 		device_get_nameunit(sc->sc_dev), "xmit q", MTX_DEF);
236 
237 	TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
238 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
239 	TASK_INIT(&sc->sc_swbatask, 0, ath_beacon_proc, sc);
240 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
241 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
242 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
243 
244 	/*
245 	 * For now just pre-allocate one data queue and one
246 	 * beacon queue.  Note that the HAL handles resetting
247 	 * them at the needed time.  Eventually we'll want to
248 	 * allocate more tx queues for splitting management
249 	 * frames and for QOS support.
250 	 */
251 	sc->sc_txhalq = ath_hal_setuptxqueue(ah,
252 		HAL_TX_QUEUE_DATA,
253 		AH_TRUE			/* enable interrupts */
254 	);
255 	if (sc->sc_txhalq == (u_int) -1) {
256 		if_printf(ifp, "unable to setup a data xmit queue!\n");
257 		goto bad;
258 	}
259 	sc->sc_bhalq = ath_hal_setuptxqueue(ah,
260 		HAL_TX_QUEUE_BEACON,
261 		AH_TRUE			/* enable interrupts */
262 	);
263 	if (sc->sc_bhalq == (u_int) -1) {
264 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
265 		goto bad;
266 	}
267 
268 	ifp->if_softc = sc;
269 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
270 	ifp->if_start = ath_start;
271 	ifp->if_watchdog = ath_watchdog;
272 	ifp->if_ioctl = ath_ioctl;
273 	ifp->if_init = ath_init;
274 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
275 
276 	ic->ic_softc = sc;
277 	ic->ic_newassoc = ath_newassoc;
278 	/* XXX not right but it's not used anywhere important */
279 	ic->ic_phytype = IEEE80211_T_OFDM;
280 	ic->ic_opmode = IEEE80211_M_STA;
281 	ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP
282 		| IEEE80211_C_MONITOR;
283 	/* NB: 11g support is identified when we fetch the channel set */
284 	if (sc->sc_have11g)
285 		ic->ic_caps |= IEEE80211_C_SHPREAMBLE;
286 
287 	/* get mac address from hardware */
288 	ath_hal_getmac(ah, ic->ic_myaddr);
289 
290 	/* call MI attach routine. */
291 	ieee80211_ifattach(ifp);
292 	/* override default methods */
293 	ic->ic_node_alloc = ath_node_alloc;
294 	ic->ic_node_free = ath_node_free;
295 	ic->ic_node_copy = ath_node_copy;
296 	sc->sc_newstate = ic->ic_newstate;
297 	ic->ic_newstate = ath_newstate;
298 	/* complete initialization */
299 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
300 
301 	if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
302 
303 	return 0;
304 bad:
305 	if (ah)
306 		ath_hal_detach(ah);
307 	sc->sc_invalid = 1;
308 	return error;
309 }
310 
311 int
312 ath_detach(struct ath_softc *sc)
313 {
314 	struct ifnet *ifp = &sc->sc_ic.ic_if;
315 
316 	DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
317 
318 	mtx_lock(&sc->sc_mtx);
319 	ath_stop(ifp);
320 	ath_desc_free(sc);
321 	ath_hal_detach(sc->sc_ah);
322 	ieee80211_ifdetach(ifp);
323 	mtx_unlock(&sc->sc_mtx);
324 	return 0;
325 }
326 
327 void
328 ath_suspend(struct ath_softc *sc)
329 {
330 	struct ifnet *ifp = &sc->sc_ic.ic_if;
331 
332 	DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
333 
334 	ath_stop(ifp);
335 }
336 
337 void
338 ath_resume(struct ath_softc *sc)
339 {
340 	struct ifnet *ifp = &sc->sc_ic.ic_if;
341 
342 	DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
343 
344 	if (ifp->if_flags & IFF_UP) {
345 		ath_init(ifp);
346 		if (ifp->if_flags & IFF_RUNNING)
347 			ath_start(ifp);
348 	}
349 }
350 
351 void
352 ath_shutdown(struct ath_softc *sc)
353 {
354 	struct ifnet *ifp = &sc->sc_ic.ic_if;
355 
356 	DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
357 
358 	ath_stop(ifp);
359 }
360 
361 void
362 ath_intr(void *arg)
363 {
364 	struct ath_softc *sc = arg;
365 	struct ieee80211com *ic = &sc->sc_ic;
366 	struct ifnet *ifp = &ic->ic_if;
367 	struct ath_hal *ah = sc->sc_ah;
368 	HAL_INT status;
369 
370 	if (sc->sc_invalid) {
371 		/*
372 		 * The hardware is not ready/present, don't touch anything.
373 		 * Note this can happen early on if the IRQ is shared.
374 		 */
375 		DPRINTF(("ath_intr: invalid; ignored\n"));
376 		return;
377 	}
378 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
379 		DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
380 		ath_hal_getisr(ah, &status);	/* clear ISR */
381 		ath_hal_intrset(ah, 0);		/* disable further intr's */
382 		return;
383 	}
384 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
385 	DPRINTF2(("ath_intr: status 0x%x\n", status));
386 #ifdef AR_DEBUG
387 	if (ath_debug &&
388 	    (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
389 		if_printf(ifp, "ath_intr: status 0x%x\n", status);
390 		ath_hal_dumpstate(ah);
391 	}
392 #endif /* AR_DEBUG */
393 	if (status & HAL_INT_FATAL) {
394 		sc->sc_stats.ast_hardware++;
395 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
396 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
397 	} else if (status & HAL_INT_RXORN) {
398 		sc->sc_stats.ast_rxorn++;
399 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
400 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
401 	} else {
402 		if (status & HAL_INT_RXEOL) {
403 			/*
404 			 * NB: the hardware should re-read the link when
405 			 *     RXE bit is written, but it doesn't work at
406 			 *     least on older hardware revs.
407 			 */
408 			sc->sc_stats.ast_rxeol++;
409 			sc->sc_rxlink = NULL;
410 		}
411 		if (status & HAL_INT_TXURN) {
412 			sc->sc_stats.ast_txurn++;
413 			/* bump tx trigger level */
414 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
415 		}
416 		if (status & HAL_INT_RX)
417 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
418 		if (status & HAL_INT_TX)
419 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
420 		if (status & HAL_INT_SWBA)
421 			taskqueue_enqueue(taskqueue_swi, &sc->sc_swbatask);
422 		if (status & HAL_INT_BMISS) {
423 			sc->sc_stats.ast_bmiss++;
424 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
425 		}
426 	}
427 }
428 
429 static void
430 ath_fatal_proc(void *arg, int pending)
431 {
432 	struct ath_softc *sc = arg;
433 
434 	device_printf(sc->sc_dev, "hardware error; resetting\n");
435 	ath_reset(sc);
436 }
437 
438 static void
439 ath_rxorn_proc(void *arg, int pending)
440 {
441 	struct ath_softc *sc = arg;
442 
443 	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
444 	ath_reset(sc);
445 }
446 
447 static void
448 ath_bmiss_proc(void *arg, int pending)
449 {
450 	struct ath_softc *sc = arg;
451 	struct ieee80211com *ic = &sc->sc_ic;
452 
453 	DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
454 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
455 		("unexpect operating mode %u", ic->ic_opmode));
456 	if (ic->ic_state == IEEE80211_S_RUN)
457 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
458 }
459 
460 static u_int
461 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
462 {
463 	static const u_int modeflags[] = {
464 		0,			/* IEEE80211_MODE_AUTO */
465 		CHANNEL_A,		/* IEEE80211_MODE_11A */
466 		CHANNEL_B,		/* IEEE80211_MODE_11B */
467 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
468 		CHANNEL_T		/* IEEE80211_MODE_TURBO */
469 	};
470 	return modeflags[ieee80211_chan2mode(ic, chan)];
471 }
472 
473 static void
474 ath_init(void *arg)
475 {
476 	struct ath_softc *sc = (struct ath_softc *) arg;
477 	struct ieee80211com *ic = &sc->sc_ic;
478 	struct ifnet *ifp = &ic->ic_if;
479 	struct ieee80211_node *ni;
480 	enum ieee80211_phymode mode;
481 	struct ath_hal *ah = sc->sc_ah;
482 	HAL_STATUS status;
483 	HAL_CHANNEL hchan;
484 
485 	DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
486 
487 	mtx_lock(&sc->sc_mtx);
488 	/*
489 	 * Stop anything previously setup.  This is safe
490 	 * whether this is the first time through or not.
491 	 */
492 	ath_stop(ifp);
493 
494 	/*
495 	 * The basic interface to setting the hardware in a good
496 	 * state is ``reset''.  On return the hardware is known to
497 	 * be powered up and with interrupts disabled.  This must
498 	 * be followed by initialization of the appropriate bits
499 	 * and then setup of the interrupt mask.
500 	 */
501 	hchan.channel = ic->ic_ibss_chan->ic_freq;
502 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
503 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
504 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
505 			status);
506 		goto done;
507 	}
508 
509 	/*
510 	 * Setup the hardware after reset: the key cache
511 	 * is filled as needed and the receive engine is
512 	 * set going.  Frame transmit is handled entirely
513 	 * in the frame output path; there's nothing to do
514 	 * here except setup the interrupt mask.
515 	 */
516 	if (ic->ic_flags & IEEE80211_F_WEPON)
517 		ath_initkeytable(sc);
518 	if (ath_startrecv(sc) != 0) {
519 		if_printf(ifp, "unable to start recv logic\n");
520 		goto done;
521 	}
522 
523 	/*
524 	 * Enable interrupts.
525 	 */
526 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
527 		  | HAL_INT_RXEOL | HAL_INT_RXORN
528 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
529 	ath_hal_intrset(ah, sc->sc_imask);
530 
531 	ifp->if_flags |= IFF_RUNNING;
532 	ic->ic_state = IEEE80211_S_INIT;
533 
534 	/*
535 	 * The hardware should be ready to go now so it's safe
536 	 * to kick the 802.11 state machine as it's likely to
537 	 * immediately call back to us to send mgmt frames.
538 	 */
539 	ni = ic->ic_bss;
540 	ni->ni_chan = ic->ic_ibss_chan;
541 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
542 	if (mode != sc->sc_curmode)
543 		ath_setcurmode(sc, mode);
544 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
545 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
546 	else
547 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
548 done:
549 	mtx_unlock(&sc->sc_mtx);
550 }
551 
552 static void
553 ath_stop(struct ifnet *ifp)
554 {
555 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
556 	struct ath_softc *sc = ifp->if_softc;
557 	struct ath_hal *ah = sc->sc_ah;
558 
559 	DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
560 		sc->sc_invalid, ifp->if_flags));
561 
562 	mtx_lock(&sc->sc_mtx);
563 	if (ifp->if_flags & IFF_RUNNING) {
564 		/*
565 		 * Shutdown the hardware and driver:
566 		 *    disable interrupts
567 		 *    turn off timers
568 		 *    clear transmit machinery
569 		 *    clear receive machinery
570 		 *    drain and release tx queues
571 		 *    reclaim beacon resources
572 		 *    reset 802.11 state machine
573 		 *    power down hardware
574 		 *
575 		 * Note that some of this work is not possible if the
576 		 * hardware is gone (invalid).
577 		 */
578 		ifp->if_flags &= ~IFF_RUNNING;
579 		ifp->if_timer = 0;
580 		if (!sc->sc_invalid)
581 			ath_hal_intrset(ah, 0);
582 		ath_draintxq(sc);
583 		if (!sc->sc_invalid)
584 			ath_stoprecv(sc);
585 		else
586 			sc->sc_rxlink = NULL;
587 		IF_DRAIN(&ifp->if_snd);
588 		ath_beacon_free(sc);
589 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
590 		if (!sc->sc_invalid)
591 			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
592 	}
593 	mtx_unlock(&sc->sc_mtx);
594 }
595 
596 /*
597  * Reset the hardware w/o losing operational state.  This is
598  * basically a more efficient way of doing ath_stop, ath_init,
599  * followed by state transitions to the current 802.11
600  * operational state.  Used to recover from errors rx overrun
601  * and to reset the hardware when rf gain settings must be reset.
602  */
603 static void
604 ath_reset(struct ath_softc *sc)
605 {
606 	struct ieee80211com *ic = &sc->sc_ic;
607 	struct ifnet *ifp = &ic->ic_if;
608 	struct ath_hal *ah = sc->sc_ah;
609 	struct ieee80211_channel *c;
610 	HAL_STATUS status;
611 	HAL_CHANNEL hchan;
612 
613 	/*
614 	 * Convert to a HAL channel description with the flags
615 	 * constrained to reflect the current operating mode.
616 	 */
617 	c = ic->ic_ibss_chan;
618 	hchan.channel = c->ic_freq;
619 	hchan.channelFlags = ath_chan2flags(ic, c);
620 
621 	ath_hal_intrset(ah, 0);		/* disable interrupts */
622 	ath_draintxq(sc);		/* stop xmit side */
623 	ath_stoprecv(sc);		/* stop recv side */
624 	/* NB: indicate channel change so we do a full reset */
625 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
626 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
627 			__func__, status);
628 	ath_hal_intrset(ah, sc->sc_imask);
629 	if (ath_startrecv(sc) != 0)	/* restart recv */
630 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
631 	ath_start(ifp);			/* restart xmit */
632 	if (ic->ic_state == IEEE80211_S_RUN)
633 		ath_beacon_config(sc);	/* restart beacons */
634 }
635 
636 static void
637 ath_start(struct ifnet *ifp)
638 {
639 	struct ath_softc *sc = ifp->if_softc;
640 	struct ath_hal *ah = sc->sc_ah;
641 	struct ieee80211com *ic = &sc->sc_ic;
642 	struct ieee80211_node *ni;
643 	struct ath_buf *bf;
644 	struct mbuf *m;
645 	struct ieee80211_frame *wh;
646 
647 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
648 		return;
649 	for (;;) {
650 		/*
651 		 * Grab a TX buffer and associated resources.
652 		 */
653 		mtx_lock(&sc->sc_txbuflock);
654 		bf = TAILQ_FIRST(&sc->sc_txbuf);
655 		if (bf != NULL)
656 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
657 		mtx_unlock(&sc->sc_txbuflock);
658 		if (bf == NULL) {
659 			DPRINTF(("ath_start: out of xmit buffers\n"));
660 			sc->sc_stats.ast_tx_qstop++;
661 			ifp->if_flags |= IFF_OACTIVE;
662 			break;
663 		}
664 		/*
665 		 * Poll the management queue for frames; they
666 		 * have priority over normal data frames.
667 		 */
668 		IF_DEQUEUE(&ic->ic_mgtq, m);
669 		if (m == NULL) {
670 			/*
671 			 * No data frames go out unless we're associated.
672 			 */
673 			if (ic->ic_state != IEEE80211_S_RUN) {
674 				DPRINTF(("ath_start: ignore data packet, "
675 					"state %u\n", ic->ic_state));
676 				sc->sc_stats.ast_tx_discard++;
677 				mtx_lock(&sc->sc_txbuflock);
678 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
679 				mtx_unlock(&sc->sc_txbuflock);
680 				break;
681 			}
682 			IF_DEQUEUE(&ifp->if_snd, m);
683 			if (m == NULL) {
684 				mtx_lock(&sc->sc_txbuflock);
685 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
686 				mtx_unlock(&sc->sc_txbuflock);
687 				break;
688 			}
689 			ifp->if_opackets++;
690 			BPF_MTAP(ifp, m);
691 			/*
692 			 * Encapsulate the packet in prep for transmission.
693 			 */
694 			m = ieee80211_encap(ifp, m, &ni);
695 			if (m == NULL) {
696 				DPRINTF(("ath_start: encapsulation failure\n"));
697 				sc->sc_stats.ast_tx_encap++;
698 				goto bad;
699 			}
700 			wh = mtod(m, struct ieee80211_frame *);
701 			if (ic->ic_flags & IEEE80211_F_WEPON)
702 				wh->i_fc[1] |= IEEE80211_FC1_WEP;
703 		} else {
704 			/*
705 			 * Hack!  The referenced node pointer is in the
706 			 * rcvif field of the packet header.  This is
707 			 * placed there by ieee80211_mgmt_output because
708 			 * we need to hold the reference with the frame
709 			 * and there's no other way (other than packet
710 			 * tags which we consider too expensive to use)
711 			 * to pass it along.
712 			 */
713 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
714 			m->m_pkthdr.rcvif = NULL;
715 
716 			wh = mtod(m, struct ieee80211_frame *);
717 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
718 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
719 				/* fill time stamp */
720 				u_int64_t tsf;
721 				u_int32_t *tstamp;
722 
723 				tsf = ath_hal_gettsf64(ah);
724 				/* XXX: adjust 100us delay to xmit */
725 				tsf += 100;
726 				tstamp = (u_int32_t *)&wh[1];
727 				tstamp[0] = htole32(tsf & 0xffffffff);
728 				tstamp[1] = htole32(tsf >> 32);
729 			}
730 			sc->sc_stats.ast_tx_mgmt++;
731 		}
732 		if (ic->ic_rawbpf)
733 			bpf_mtap(ic->ic_rawbpf, m);
734 
735 		/*
736 		 * TODO:
737 		 * The duration field of 802.11 header should be filled.
738 		 * XXX This may be done in the ieee80211 layer, but the upper
739 		 *     doesn't know the detail of parameters such as IFS
740 		 *     for now..
741 		 */
742 
743 		if (IFF_DUMPPKTS(ifp))
744 			ieee80211_dump_pkt(mtod(m, u_int8_t *), m->m_len,
745 			    ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL,
746 			    -1);
747 
748 		if (ath_tx_start(sc, ni, bf, m)) {
749 	bad:
750 			mtx_lock(&sc->sc_txbuflock);
751 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
752 			mtx_unlock(&sc->sc_txbuflock);
753 			ifp->if_oerrors++;
754 			if (ni && ni != ic->ic_bss)
755 				ieee80211_free_node(ic, ni);
756 			continue;
757 		}
758 
759 		sc->sc_tx_timer = 5;
760 		ifp->if_timer = 1;
761 	}
762 }
763 
764 static int
765 ath_media_change(struct ifnet *ifp)
766 {
767 	int error;
768 
769 	error = ieee80211_media_change(ifp);
770 	if (error == ENETRESET) {
771 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
772 		    (IFF_RUNNING|IFF_UP))
773 			ath_init(ifp);		/* XXX lose error */
774 		error = 0;
775 	}
776 	return error;
777 }
778 
779 static void
780 ath_watchdog(struct ifnet *ifp)
781 {
782 	struct ath_softc *sc = ifp->if_softc;
783 	struct ieee80211com *ic = &sc->sc_ic;
784 
785 	ifp->if_timer = 0;
786 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
787 		return;
788 	if (sc->sc_tx_timer) {
789 		if (--sc->sc_tx_timer == 0) {
790 			if_printf(ifp, "device timeout\n");
791 #ifdef AR_DEBUG
792 			if (ath_debug)
793 				ath_hal_dumpstate(sc->sc_ah);
794 #endif /* AR_DEBUG */
795 			ath_init(ifp);		/* XXX ath_reset??? */
796 			ifp->if_oerrors++;
797 			sc->sc_stats.ast_watchdog++;
798 			return;
799 		}
800 		ifp->if_timer = 1;
801 	}
802 	if (ic->ic_fixed_rate == -1) {
803 		/*
804 		 * Run the rate control algorithm if we're not
805 		 * locked at a fixed rate.
806 		 */
807 		if (ic->ic_opmode == IEEE80211_M_STA)
808 			ath_rate_ctl(sc, ic->ic_bss);
809 		else
810 			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
811 	}
812 	ieee80211_watchdog(ifp);
813 }
814 
815 static int
816 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
817 {
818 	struct ath_softc *sc = ifp->if_softc;
819 	struct ifreq *ifr = (struct ifreq *)data;
820 	int error = 0;
821 
822 	mtx_lock(&sc->sc_mtx);
823 	switch (cmd) {
824 	case SIOCSIFFLAGS:
825 		if (ifp->if_flags & IFF_UP) {
826 			if (ifp->if_flags & IFF_RUNNING) {
827 				/*
828 				 * To avoid rescanning another access point,
829 				 * do not call ath_init() here.  Instead,
830 				 * only reflect promisc mode settings.
831 				 */
832 				ath_mode_init(sc);
833 			} else
834 				ath_init(ifp);		/* XXX lose error */
835 		} else
836 			ath_stop(ifp);
837 		break;
838 	case SIOCADDMULTI:
839 	case SIOCDELMULTI:
840 		/*
841 		 * The upper layer has already installed/removed
842 		 * the multicast address(es), just recalculate the
843 		 * multicast filter for the card.
844 		 */
845 		if (ifp->if_flags & IFF_RUNNING)
846 			ath_mode_init(sc);
847 		break;
848 	case SIOCGATHSTATS:
849 		copyout(&sc->sc_stats, ifr->ifr_data, sizeof (sc->sc_stats));
850 		break;
851 	default:
852 		error = ieee80211_ioctl(ifp, cmd, data);
853 		if (error == ENETRESET) {
854 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
855 			    (IFF_RUNNING|IFF_UP))
856 				ath_init(ifp);		/* XXX lose error */
857 			error = 0;
858 		}
859 		break;
860 	}
861 	mtx_unlock(&sc->sc_mtx);
862 	return error;
863 }
864 
865 /*
866  * Fill the hardware key cache with key entries.
867  */
868 static void
869 ath_initkeytable(struct ath_softc *sc)
870 {
871 	struct ieee80211com *ic = &sc->sc_ic;
872 	struct ath_hal *ah = sc->sc_ah;
873 	int i;
874 
875 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
876 		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
877 		if (k->wk_len == 0)
878 			ath_hal_keyreset(ah, i);
879 		else
880 			/* XXX return value */
881 			/* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
882 			ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
883 	}
884 }
885 
886 static void
887 ath_mode_init(struct ath_softc *sc)
888 {
889 	struct ieee80211com *ic = &sc->sc_ic;
890 	struct ath_hal *ah = sc->sc_ah;
891 	struct ifnet *ifp = &ic->ic_if;
892 	u_int32_t rfilt, mfilt[2], val;
893 	u_int8_t pos;
894 	struct ifmultiaddr *ifma;
895 
896 	/* configure operational mode */
897 	ath_hal_setopmode(ah, ic->ic_opmode);
898 
899 	/* receive filter */
900 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
901 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
902 	if (ic->ic_opmode != IEEE80211_M_STA)
903 		rfilt |= HAL_RX_FILTER_PROBEREQ;
904 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
905 	    (ifp->if_flags & IFF_PROMISC))
906 		rfilt |= HAL_RX_FILTER_PROM;
907 	if (ic->ic_state == IEEE80211_S_SCAN)
908 		rfilt |= HAL_RX_FILTER_BEACON;
909 	ath_hal_setrxfilter(ah, rfilt);
910 
911 	/* calculate and install multicast filter */
912 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
913 		mfilt[0] = mfilt[1] = 0;
914 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
915 			caddr_t dl;
916 
917 			/* calculate XOR of eight 6bit values */
918 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
919 			val = LE_READ_4(dl + 0);
920 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
921 			val = LE_READ_4(dl + 3);
922 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
923 			pos &= 0x3f;
924 			mfilt[pos / 32] |= (1 << (pos % 32));
925 		}
926 	} else {
927 		mfilt[0] = mfilt[1] = ~0;
928 	}
929 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
930 	DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
931 		rfilt, mfilt[0], mfilt[1]));
932 }
933 
934 static void
935 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
936 {
937 	struct ath_buf *bf = arg;
938 
939 	KASSERT(nseg <= ATH_MAX_SCATTER,
940 		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
941 	bf->bf_mapsize = mapsize;
942 	bf->bf_nseg = nseg;
943 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
944 }
945 
946 static int
947 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
948 {
949 	struct ieee80211com *ic = &sc->sc_ic;
950 	struct ifnet *ifp = &ic->ic_if;
951 	struct ath_hal *ah = sc->sc_ah;
952 	struct ieee80211_frame *wh;
953 	struct ath_buf *bf;
954 	struct ath_desc *ds;
955 	struct mbuf *m;
956 	int error, pktlen;
957 	u_int8_t *frm, rate;
958 	u_int16_t capinfo;
959 	struct ieee80211_rateset *rs;
960 	const HAL_RATE_TABLE *rt;
961 
962 	bf = sc->sc_bcbuf;
963 	if (bf->bf_m != NULL) {
964 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
965 		m_freem(bf->bf_m);
966 		bf->bf_m = NULL;
967 		bf->bf_node = NULL;
968 	}
969 	/*
970 	 * NB: the beacon data buffer must be 32-bit aligned;
971 	 * we assume the mbuf routines will return us something
972 	 * with this alignment (perhaps should assert).
973 	 */
974 	rs = &ni->ni_rates;
975 	pktlen = sizeof (struct ieee80211_frame)
976 	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 6;
977 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
978 		pktlen += 2;
979 	if (pktlen <= MHLEN)
980 		MGETHDR(m, M_DONTWAIT, MT_DATA);
981 	else
982 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
983 	if (m == NULL) {
984 		DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
985 			pktlen));
986 		sc->sc_stats.ast_be_nombuf++;
987 		return ENOMEM;
988 	}
989 
990 	wh = mtod(m, struct ieee80211_frame *);
991 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
992 	    IEEE80211_FC0_SUBTYPE_BEACON;
993 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
994 	*(u_int16_t *)wh->i_dur = 0;
995 	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
996 	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
997 	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
998 	*(u_int16_t *)wh->i_seq = 0;
999 
1000 	/*
1001 	 * beacon frame format
1002 	 *	[8] time stamp
1003 	 *	[2] beacon interval
1004 	 *	[2] cabability information
1005 	 *	[tlv] ssid
1006 	 *	[tlv] supported rates
1007 	 *	[tlv] parameter set (IBSS)
1008 	 *	[tlv] extended supported rates
1009 	 */
1010 	frm = (u_int8_t *)&wh[1];
1011 	memset(frm, 0, 8);	/* timestamp is set by hardware */
1012 	frm += 8;
1013 	*(u_int16_t *)frm = htole16(ni->ni_intval);
1014 	frm += 2;
1015 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1016 		capinfo = IEEE80211_CAPINFO_IBSS;
1017 	else
1018 		capinfo = IEEE80211_CAPINFO_ESS;
1019 	if (ic->ic_flags & IEEE80211_F_WEPON)
1020 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1021 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1022 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1023 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1024 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1025 	*(u_int16_t *)frm = htole16(capinfo);
1026 	frm += 2;
1027 	*frm++ = IEEE80211_ELEMID_SSID;
1028 	*frm++ = ni->ni_esslen;
1029 	memcpy(frm, ni->ni_essid, ni->ni_esslen);
1030 	frm += ni->ni_esslen;
1031 	frm = ieee80211_add_rates(frm, rs);
1032 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1033 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1034 		*frm++ = 2;
1035 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1036 	} else {
1037 		/* TODO: TIM */
1038 		*frm++ = IEEE80211_ELEMID_TIM;
1039 		*frm++ = 4;	/* length */
1040 		*frm++ = 0;	/* DTIM count */
1041 		*frm++ = 1;	/* DTIM period */
1042 		*frm++ = 0;	/* bitmap control */
1043 		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
1044 	}
1045 	frm = ieee80211_add_xrates(frm, rs);
1046 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1047 	KASSERT(m->m_pkthdr.len <= pktlen,
1048 		("beacon bigger than expected, len %u calculated %u",
1049 		m->m_pkthdr.len, pktlen));
1050 
1051 	DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1052 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1053 				     ath_mbuf_load_cb, bf,
1054 				     BUS_DMA_NOWAIT);
1055 	if (error != 0) {
1056 		m_freem(m);
1057 		return error;
1058 	}
1059 	KASSERT(bf->bf_nseg == 1,
1060 		("ath_beacon_alloc: multi-segment packet; nseg %u",
1061 		bf->bf_nseg));
1062 	bf->bf_m = m;
1063 
1064 	/* setup descriptors */
1065 	ds = bf->bf_desc;
1066 
1067 	ds->ds_link = 0;
1068 	ds->ds_data = bf->bf_segs[0].ds_addr;
1069 	/*
1070 	 * Calculate rate code.
1071 	 * XXX everything at min xmit rate
1072 	 */
1073 	rt = sc->sc_currates;
1074 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1075 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1076 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1077 	else
1078 		rate = rt->info[0].rateCode;
1079 	ath_hal_setuptxdesc(ah, ds
1080 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
1081 		, sizeof(struct ieee80211_frame)	/* header length */
1082 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1083 		, 0x20				/* txpower XXX */
1084 		, rate, 1			/* series 0 rate/tries */
1085 		, HAL_TXKEYIX_INVALID		/* no encryption */
1086 		, 0				/* antenna mode */
1087 		, HAL_TXDESC_NOACK		/* no ack for beacons */
1088 		, 0				/* rts/cts rate */
1089 		, 0				/* rts/cts duration */
1090 	);
1091 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1092 	/* XXX verify mbuf data area covers this roundup */
1093 	ath_hal_filltxdesc(ah, ds
1094 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
1095 		, AH_TRUE				/* first segment */
1096 		, AH_TRUE				/* last segment */
1097 	);
1098 
1099 	return 0;
1100 }
1101 
1102 static void
1103 ath_beacon_proc(void *arg, int pending)
1104 {
1105 	struct ath_softc *sc = arg;
1106 	struct ieee80211com *ic = &sc->sc_ic;
1107 	struct ath_buf *bf = sc->sc_bcbuf;
1108 	struct ath_hal *ah = sc->sc_ah;
1109 
1110 	DPRINTF2(("%s: pending %u\n", __func__, pending));
1111 	if (ic->ic_opmode == IEEE80211_M_STA ||
1112 	    bf == NULL || bf->bf_m == NULL) {
1113 		DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1114 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1115 		return;
1116 	}
1117 	/* TODO: update beacon to reflect PS poll state */
1118 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1119 		DPRINTF(("%s: beacon queue %u did not stop?",
1120 			__func__, sc->sc_bhalq));
1121 		return;			/* busy, XXX is this right? */
1122 	}
1123 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1124 
1125 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1126 	ath_hal_txstart(ah, sc->sc_bhalq);
1127 	DPRINTF2(("%s: TXDP%u = %p (%p)\n", __func__,
1128 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1129 }
1130 
1131 static void
1132 ath_beacon_free(struct ath_softc *sc)
1133 {
1134 	struct ath_buf *bf = sc->sc_bcbuf;
1135 
1136 	if (bf->bf_m != NULL) {
1137 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1138 		m_freem(bf->bf_m);
1139 		bf->bf_m = NULL;
1140 		bf->bf_node = NULL;
1141 	}
1142 }
1143 
1144 /*
1145  * Configure the beacon and sleep timers.
1146  *
1147  * When operating as an AP this resets the TSF and sets
1148  * up the hardware to notify us when we need to issue beacons.
1149  *
1150  * When operating in station mode this sets up the beacon
1151  * timers according to the timestamp of the last received
1152  * beacon and the current TSF, configures PCF and DTIM
1153  * handling, programs the sleep registers so the hardware
1154  * will wakeup in time to receive beacons, and configures
1155  * the beacon miss handling so we'll receive a BMISS
1156  * interrupt when we stop seeing beacons from the AP
1157  * we've associated with.
1158  */
1159 static void
1160 ath_beacon_config(struct ath_softc *sc)
1161 {
1162 	struct ath_hal *ah = sc->sc_ah;
1163 	struct ieee80211com *ic = &sc->sc_ic;
1164 	struct ieee80211_node *ni = ic->ic_bss;
1165 	u_int32_t nexttbtt;
1166 
1167 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1168 	    (LE_READ_4(ni->ni_tstamp) >> 10);
1169 	DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1170 	nexttbtt += ni->ni_intval;
1171 	if (ic->ic_opmode == IEEE80211_M_STA) {
1172 		HAL_BEACON_STATE bs;
1173 		u_int32_t bmisstime;
1174 
1175 		/* NB: no PCF support right now */
1176 		memset(&bs, 0, sizeof(bs));
1177 		bs.bs_intval = ni->ni_intval;
1178 		bs.bs_nexttbtt = nexttbtt;
1179 		bs.bs_dtimperiod = bs.bs_intval;
1180 		bs.bs_nextdtim = nexttbtt;
1181 		/*
1182 		 * Calculate the number of consecutive beacons to miss
1183 		 * before taking a BMISS interrupt.  The configuration
1184 		 * is specified in ms, so we need to convert that to
1185 		 * TU's and then calculate based on the beacon interval.
1186 		 * Note that we clamp the result to at most 10 beacons.
1187 		 */
1188 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1189 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1190 		if (bs.bs_bmissthreshold > 10)
1191 			bs.bs_bmissthreshold = 10;
1192 		else if (bs.bs_bmissthreshold <= 0)
1193 			bs.bs_bmissthreshold = 1;
1194 
1195 		/*
1196 		 * Calculate sleep duration.  The configuration is
1197 		 * given in ms.  We insure a multiple of the beacon
1198 		 * period is used.  Also, if the sleep duration is
1199 		 * greater than the DTIM period then it makes senses
1200 		 * to make it a multiple of that.
1201 		 *
1202 		 * XXX fixed at 100ms
1203 		 */
1204 		bs.bs_sleepduration =
1205 			roundup((100 * 1000) / 1024, bs.bs_intval);
1206 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
1207 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1208 
1209 		DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1210 			, __func__
1211 			, bs.bs_intval
1212 			, bs.bs_nexttbtt
1213 			, bs.bs_dtimperiod
1214 			, bs.bs_nextdtim
1215 			, bs.bs_bmissthreshold
1216 			, bs.bs_sleepduration
1217 		));
1218 		ath_hal_intrset(ah, 0);
1219 		/*
1220 		 * Reset our tsf so the hardware will update the
1221 		 * tsf register to reflect timestamps found in
1222 		 * received beacons.
1223 		 */
1224 		ath_hal_resettsf(ah);
1225 		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1226 		sc->sc_imask |= HAL_INT_BMISS;
1227 		ath_hal_intrset(ah, sc->sc_imask);
1228 	} else {
1229 		DPRINTF(("%s: intval %u nexttbtt %u\n",
1230 			__func__, ni->ni_intval, nexttbtt));
1231 		ath_hal_intrset(ah, 0);
1232 		ath_hal_beaconinit(ah, ic->ic_opmode,
1233 			nexttbtt, ni->ni_intval);
1234 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1235 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
1236 		ath_hal_intrset(ah, sc->sc_imask);
1237 	}
1238 }
1239 
1240 static void
1241 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1242 {
1243 	bus_addr_t *paddr = (bus_addr_t*) arg;
1244 	*paddr = segs->ds_addr;
1245 }
1246 
1247 static int
1248 ath_desc_alloc(struct ath_softc *sc)
1249 {
1250 	int i, bsize, error;
1251 	struct ath_desc *ds;
1252 	struct ath_buf *bf;
1253 
1254 	/* allocate descriptors */
1255 	sc->sc_desc_len = sizeof(struct ath_desc) *
1256 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1257 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1258 	if (error != 0)
1259 		return error;
1260 
1261 	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1262 				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1263 	if (error != 0)
1264 		goto fail0;
1265 
1266 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1267 				sc->sc_desc, sc->sc_desc_len,
1268 				ath_load_cb, &sc->sc_desc_paddr,
1269 				BUS_DMA_NOWAIT);
1270 	if (error != 0)
1271 		goto fail1;
1272 
1273 	ds = sc->sc_desc;
1274 	DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1275 	    ds, sc->sc_desc_len,
1276 	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1277 
1278 	/* allocate buffers */
1279 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1280 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1281 	if (bf == NULL)
1282 		goto fail2;
1283 	sc->sc_bufptr = bf;
1284 
1285 	TAILQ_INIT(&sc->sc_rxbuf);
1286 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1287 		bf->bf_desc = ds;
1288 		bf->bf_daddr = sc->sc_desc_paddr +
1289 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1290 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1291 					  &bf->bf_dmamap);
1292 		if (error != 0)
1293 			break;
1294 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1295 	}
1296 
1297 	TAILQ_INIT(&sc->sc_txbuf);
1298 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1299 		bf->bf_desc = ds;
1300 		bf->bf_daddr = sc->sc_desc_paddr +
1301 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1302 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1303 					  &bf->bf_dmamap);
1304 		if (error != 0)
1305 			break;
1306 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1307 	}
1308 	TAILQ_INIT(&sc->sc_txq);
1309 
1310 	/* beacon buffer */
1311 	bf->bf_desc = ds;
1312 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1313 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1314 	if (error != 0)
1315 		return error;
1316 	sc->sc_bcbuf = bf;
1317 	return 0;
1318 
1319 fail2:
1320 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1321 fail1:
1322 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1323 fail0:
1324 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1325 	sc->sc_ddmamap = NULL;
1326 	return error;
1327 }
1328 
1329 static void
1330 ath_desc_free(struct ath_softc *sc)
1331 {
1332 	struct ath_buf *bf;
1333 
1334 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1335 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1336 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1337 
1338 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1339 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1340 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1341 		m_freem(bf->bf_m);
1342 	}
1343 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1344 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1345 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1346 		if (bf->bf_m) {
1347 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1348 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1349 			m_freem(bf->bf_m);
1350 			bf->bf_m = NULL;
1351 		}
1352 	}
1353 	if (sc->sc_bcbuf != NULL) {
1354 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1355 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1356 		sc->sc_bcbuf = NULL;
1357 	}
1358 
1359 	TAILQ_INIT(&sc->sc_rxbuf);
1360 	TAILQ_INIT(&sc->sc_txbuf);
1361 	TAILQ_INIT(&sc->sc_txq);
1362 	free(sc->sc_bufptr, M_DEVBUF);
1363 	sc->sc_bufptr = NULL;
1364 }
1365 
1366 static struct ieee80211_node *
1367 ath_node_alloc(struct ieee80211com *ic)
1368 {
1369 	struct ath_node *an =
1370 		malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1371 	return an ? &an->an_node : NULL;
1372 }
1373 
1374 static void
1375 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1376 {
1377         struct ath_softc *sc = ic->ic_if.if_softc;
1378 	struct ath_buf *bf;
1379 
1380 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1381 		if (bf->bf_node == ni)
1382 			bf->bf_node = NULL;
1383 	}
1384 	free(ni, M_DEVBUF);
1385 }
1386 
1387 static void
1388 ath_node_copy(struct ieee80211com *ic,
1389 	struct ieee80211_node *dst, const struct ieee80211_node *src)
1390 {
1391 	*(struct ath_node *)dst = *(const struct ath_node *)src;
1392 }
1393 
1394 static int
1395 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1396 {
1397 	struct ath_hal *ah = sc->sc_ah;
1398 	int error;
1399 	struct mbuf *m;
1400 	struct ath_desc *ds;
1401 
1402 	m = bf->bf_m;
1403 	if (m == NULL) {
1404 		/*
1405 		 * NB: by assigning a page to the rx dma buffer we
1406 		 * implicitly satisfy the Atheros requirement that
1407 		 * this buffer be cache-line-aligned and sized to be
1408 		 * multiple of the cache line size.  Not doing this
1409 		 * causes weird stuff to happen (for the 5210 at least).
1410 		 */
1411 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1412 		if (m == NULL) {
1413 			DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
1414 			sc->sc_stats.ast_rx_nombuf++;
1415 			return ENOMEM;
1416 		}
1417 		bf->bf_m = m;
1418 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1419 
1420 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1421 					     ath_mbuf_load_cb, bf,
1422 					     BUS_DMA_NOWAIT);
1423 		if (error != 0) {
1424 			DPRINTF(("ath_rxbuf_init: bus_dmamap_load_mbuf failed;"
1425 				" error %d\n", error));
1426 			sc->sc_stats.ast_rx_busdma++;
1427 			return error;
1428 		}
1429 		KASSERT(bf->bf_nseg == 1,
1430 			("ath_rxbuf_init: multi-segment packet; nseg %u",
1431 			bf->bf_nseg));
1432 	}
1433 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
1434 
1435 	/* setup descriptors */
1436 	ds = bf->bf_desc;
1437 	ds->ds_link = 0;
1438 	ds->ds_data = bf->bf_segs[0].ds_addr;
1439 	ath_hal_setuprxdesc(ah, ds
1440 		, m->m_len		/* buffer size */
1441 		, 0
1442 	);
1443 
1444 	if (sc->sc_rxlink != NULL)
1445 		*sc->sc_rxlink = bf->bf_daddr;
1446 	sc->sc_rxlink = &ds->ds_link;
1447 	return 0;
1448 }
1449 
1450 static void
1451 ath_rx_proc(void *arg, int npending)
1452 {
1453 	struct ath_softc *sc = arg;
1454 	struct ath_buf *bf;
1455 	struct ieee80211com *ic = &sc->sc_ic;
1456 	struct ifnet *ifp = &ic->ic_if;
1457 	struct ath_hal *ah = sc->sc_ah;
1458 	struct ath_desc *ds;
1459 	struct mbuf *m;
1460 	struct ieee80211_frame *wh, whbuf;
1461 	struct ieee80211_node *ni;
1462 	int len;
1463 	u_int phyerr;
1464 	HAL_STATUS status;
1465 
1466 	DPRINTF2(("ath_rx_proc: pending %u\n", npending));
1467 	do {
1468 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1469 		if (bf == NULL) {		/* NB: shouldn't happen */
1470 			if_printf(ifp, "ath_rx_proc: no buffer!\n");
1471 			break;
1472 		}
1473 		m = bf->bf_m;
1474 		if (m == NULL) {		/* NB: shouldn't happen */
1475 			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1476 			continue;
1477 		}
1478 		ds = bf->bf_desc;
1479 		status = ath_hal_rxprocdesc(ah, ds);
1480 #ifdef AR_DEBUG
1481 		if (ath_debug > 1)
1482 			ath_printrxbuf(bf, status == HAL_OK);
1483 #endif
1484 		if (status == HAL_EINPROGRESS)
1485 			break;
1486 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1487 		if (ds->ds_rxstat.rs_status != 0) {
1488 			ifp->if_ierrors++;
1489 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1490 				sc->sc_stats.ast_rx_crcerr++;
1491 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1492 				sc->sc_stats.ast_rx_fifoerr++;
1493 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1494 				sc->sc_stats.ast_rx_badcrypt++;
1495 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1496 				sc->sc_stats.ast_rx_phyerr++;
1497 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1498 				sc->sc_stats.ast_rx_phy[phyerr]++;
1499 			}
1500 			goto rx_next;
1501 		}
1502 
1503 		len = ds->ds_rxstat.rs_datalen;
1504 		if (len < sizeof(struct ieee80211_frame)) {
1505 			DPRINTF(("ath_rx_proc: short packet %d\n", len));
1506 			sc->sc_stats.ast_rx_tooshort++;
1507 			goto rx_next;
1508 		}
1509 
1510 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
1511 		    BUS_DMASYNC_POSTREAD);
1512 
1513 		wh = mtod(m, struct ieee80211_frame *);
1514 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1515 		    IEEE80211_FC0_TYPE_CTL &&
1516 		    ic->ic_opmode != IEEE80211_M_MONITOR) {
1517 			/*
1518 			 * Discard control frame when not in monitor mode.
1519 			 */
1520 			DPRINTF(("ath_rx_proc: control frame\n"));
1521 			sc->sc_stats.ast_rx_ctl++;
1522 			goto rx_next;
1523 		}
1524 
1525 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1526 		bf->bf_m = NULL;
1527 		m->m_pkthdr.rcvif = ifp;
1528 		m->m_pkthdr.len = m->m_len = len;
1529 		if (IFF_DUMPPKTS(ifp)) {
1530 			ieee80211_dump_pkt(mtod(m, u_int8_t *), len,
1531 				sc->sc_hwmap[ds->ds_rxstat.rs_rate] &
1532 					IEEE80211_RATE_VAL,
1533 				ds->ds_rxstat.rs_rssi);
1534 		}
1535 
1536 		m_adj(m, -IEEE80211_CRC_LEN);
1537 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1538 			/*
1539 			 * WEP is decrypted by hardware. Clear WEP bit
1540 			 * and trim WEP header for ieee80211_input().
1541 			 */
1542 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1543 			memcpy(&whbuf, wh, sizeof(whbuf));
1544 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1545 			memcpy(mtod(m, caddr_t), &whbuf, sizeof(whbuf));
1546 			/*
1547 			 * Also trim WEP ICV from the tail.
1548 			 */
1549 			m_adj(m, -IEEE80211_WEP_CRCLEN);
1550 		}
1551 
1552 		/*
1553 		 * Locate the node for sender, track state, and
1554 		 * then pass this node (referenced) up to the 802.11
1555 		 * layer for its use.  We are required to pass
1556 		 * something so we fall back to ic_bss when this frame
1557 		 * is from an unknown sender.
1558 		 */
1559 		if (ic->ic_opmode != IEEE80211_M_STA) {
1560 			ni = ieee80211_find_node(ic, wh->i_addr2);
1561 			if (ni == NULL)
1562 				ni = ieee80211_ref_node(ic->ic_bss);
1563 		} else
1564 			ni = ieee80211_ref_node(ic->ic_bss);
1565 		ATH_NODE(ni)->an_rx_antenna = ds->ds_rxstat.rs_antenna;
1566 		/*
1567 		 * Send frame up for processing.
1568 		 */
1569 		ieee80211_input(ifp, m, ni,
1570 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
1571 		/*
1572 		 * The frame may have caused the node to be marked for
1573 		 * reclamation (e.g. in response to a DEAUTH message)
1574 		 * so use free_node here instead of unref_node.
1575 		 */
1576 		if (ni == ic->ic_bss)
1577 			ieee80211_unref_node(&ni);
1578 		else
1579 			ieee80211_free_node(ic, ni);
1580   rx_next:
1581 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1582 	} while (ath_rxbuf_init(sc, bf) == 0);
1583 
1584 	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
1585 	ath_hal_rxena(ah);			/* in case of RXEOL */
1586 }
1587 
1588 /*
1589  * XXX Size of an ACK control frame in bytes.
1590  */
1591 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
1592 
1593 static int
1594 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
1595     struct mbuf *m0)
1596 {
1597 	struct ieee80211com *ic = &sc->sc_ic;
1598 	struct ath_hal *ah = sc->sc_ah;
1599 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1600 	int i, error, iswep, hdrlen, pktlen;
1601 	u_int8_t rix, cix, txrate, ctsrate;
1602 	struct ath_desc *ds;
1603 	struct mbuf *m;
1604 	struct ieee80211_frame *wh;
1605 	u_int32_t iv;
1606 	u_int8_t *ivp;
1607 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
1608 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
1609 	u_int subtype, flags, ctsduration, antenna;
1610 	HAL_PKT_TYPE atype;
1611 	const HAL_RATE_TABLE *rt;
1612 	HAL_BOOL shortPreamble;
1613 	struct ath_node *an;
1614 
1615 	wh = mtod(m0, struct ieee80211_frame *);
1616 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1617 	hdrlen = sizeof(struct ieee80211_frame);
1618 	pktlen = m0->m_pkthdr.len;
1619 
1620 	if (iswep) {
1621 		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
1622 		m_adj(m0, hdrlen);
1623 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
1624 		if (m0 == NULL) {
1625 			sc->sc_stats.ast_tx_nombuf++;
1626 			return ENOMEM;
1627 		}
1628 		ivp = hdrbuf + hdrlen;
1629 		/*
1630 		 * XXX
1631 		 * IV must not duplicate during the lifetime of the key.
1632 		 * But no mechanism to renew keys is defined in IEEE 802.11
1633 		 * WEP.  And IV may be duplicated between other stations
1634 		 * because of the session key itself is shared.
1635 		 * So we use pseudo random IV for now, though it is not the
1636 		 * right way.
1637 		 */
1638 		iv = arc4random();
1639 		for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
1640 			ivp[i] = iv;
1641 			iv >>= 8;
1642 		}
1643 		ivp[i] = sc->sc_ic.ic_wep_txkey << 6;	/* Key ID and pad */
1644 		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
1645 		/*
1646 		 * The ICV length must be included into hdrlen and pktlen.
1647 		 */
1648 		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
1649 		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
1650 	}
1651 	pktlen += IEEE80211_CRC_LEN;
1652 
1653 	/*
1654 	 * Load the DMA map so any coalescing is done.  This
1655 	 * also calculates the number of descriptors we need.
1656 	 */
1657 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1658 				     ath_mbuf_load_cb, bf,
1659 				     BUS_DMA_NOWAIT);
1660 	if (error != 0) {
1661 		sc->sc_stats.ast_tx_busdma++;
1662 		m_freem(m0);
1663 		return error;
1664 	}
1665 	/*
1666 	 * Discard null packets and check for packets that
1667 	 * require too many TX descriptors.  We try to convert
1668 	 * the latter to a cluster.
1669 	 */
1670 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
1671 		sc->sc_stats.ast_tx_linear++;
1672 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1673 		if (m == NULL) {
1674 			sc->sc_stats.ast_tx_nombuf++;
1675 			m_freem(m0);
1676 			return ENOMEM;
1677 		}
1678 		M_MOVE_PKTHDR(m, m0);
1679 		MCLGET(m, M_DONTWAIT);
1680 		if ((m->m_flags & M_EXT) == 0) {
1681 			sc->sc_stats.ast_tx_nomcl++;
1682 			m_freem(m0);
1683 			m_free(m);
1684 			return ENOMEM;
1685 		}
1686 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1687 		m_freem(m0);
1688 		m->m_len = m->m_pkthdr.len;
1689 		m0 = m;
1690 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1691 					     ath_mbuf_load_cb, bf,
1692 					     BUS_DMA_NOWAIT);
1693 		if (error != 0) {
1694 			sc->sc_stats.ast_tx_busdma++;
1695 			m_freem(m0);
1696 			return error;
1697 		}
1698 		KASSERT(bf->bf_nseg == 1,
1699 			("ath_tx_start: packet not one segment; nseg %u",
1700 			bf->bf_nseg));
1701 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
1702 		sc->sc_stats.ast_tx_nodata++;
1703 		m_freem(m0);
1704 		return EIO;
1705 	}
1706 	DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
1707 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1708 	bf->bf_m = m0;
1709 	bf->bf_node = ni;			/* NB: held reference */
1710 
1711 	/* setup descriptors */
1712 	ds = bf->bf_desc;
1713 	rt = sc->sc_currates;
1714 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1715 
1716 	/*
1717 	 * Calculate Atheros packet type from IEEE80211 packet header
1718 	 * and setup for rate calculations.
1719 	 */
1720 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
1721 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1722 	case IEEE80211_FC0_TYPE_MGT:
1723 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1724 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1725 			atype = HAL_PKT_TYPE_BEACON;
1726 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1727 			atype = HAL_PKT_TYPE_PROBE_RESP;
1728 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1729 			atype = HAL_PKT_TYPE_ATIM;
1730 		rix = 0;			/* XXX lowest rate */
1731 		break;
1732 	case IEEE80211_FC0_TYPE_CTL:
1733 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1734 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
1735 			atype = HAL_PKT_TYPE_PSPOLL;
1736 		rix = 0;			/* XXX lowest rate */
1737 		break;
1738 	default:
1739 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
1740 				IEEE80211_RATE_VAL];
1741 		if (rix == 0xff) {
1742 			if_printf(ifp, "bogus xmit rate 0x%x\n",
1743 				ni->ni_rates.rs_rates[ni->ni_txrate]);
1744 			sc->sc_stats.ast_tx_badrate++;
1745 			m_freem(m0);
1746 			return EIO;
1747 		}
1748 		break;
1749 	}
1750 	/*
1751 	 * NB: the 802.11 layer marks whether or not we should
1752 	 * use short preamble based on the current mode and
1753 	 * negotiated parameters.
1754 	 */
1755 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
1756 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
1757 		shortPreamble = AH_TRUE;
1758 		sc->sc_stats.ast_tx_shortpre++;
1759 	} else {
1760 		txrate = rt->info[rix].rateCode;
1761 		shortPreamble = AH_FALSE;
1762 	}
1763 
1764 	/*
1765 	 * Calculate miscellaneous flags.
1766 	 */
1767 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
1768 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1769 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
1770 		sc->sc_stats.ast_tx_noack++;
1771 	} else if (pktlen > ic->ic_rtsthreshold) {
1772 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
1773 		sc->sc_stats.ast_tx_rts++;
1774 	}
1775 
1776 	/*
1777 	 * Calculate RTS/CTS rate and duration if needed.
1778 	 */
1779 	ctsduration = 0;
1780 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
1781 		/*
1782 		 * CTS transmit rate is derived from the transmit rate
1783 		 * by looking in the h/w rate table.  We must also factor
1784 		 * in whether or not a short preamble is to be used.
1785 		 */
1786 		cix = rt->info[rix].controlRate;
1787 		ctsrate = rt->info[cix].rateCode;
1788 		if (shortPreamble)
1789 			ctsrate |= rt->info[cix].shortPreamble;
1790 		/*
1791 		 * Compute the transmit duration based on the size
1792 		 * of an ACK frame.  We call into the HAL to do the
1793 		 * computation since it depends on the characteristics
1794 		 * of the actual PHY being used.
1795 		 */
1796 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
1797 			ctsduration += ath_hal_computetxtime(ah,
1798 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
1799 		}
1800 		/* SIFS + data */
1801 		ctsduration += ath_hal_computetxtime(ah,
1802 			rt, pktlen, rix, shortPreamble);
1803 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
1804 			ctsduration += ath_hal_computetxtime(ah,
1805 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
1806 		}
1807 	} else
1808 		ctsrate = 0;
1809 
1810 	/*
1811 	 * For now use the antenna on which the last good
1812 	 * frame was received on.  We assume this field is
1813 	 * initialized to 0 which gives us ``auto'' or the
1814 	 * ``default'' antenna.
1815 	 */
1816 	an = (struct ath_node *) ni;
1817 	if (an->an_tx_antenna)
1818 		antenna = an->an_tx_antenna;
1819 	else
1820 		antenna = an->an_rx_antenna;
1821 
1822 	/*
1823 	 * Formulate first tx descriptor with tx controls.
1824 	 */
1825 	/* XXX check return value? */
1826 	ath_hal_setuptxdesc(ah, ds
1827 		, pktlen		/* packet length */
1828 		, hdrlen		/* header length */
1829 		, atype			/* Atheros packet type */
1830 		, 60			/* txpower XXX */
1831 		, txrate, 1+10		/* series 0 rate/tries */
1832 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
1833 		, antenna		/* antenna mode */
1834 		, flags			/* flags */
1835 		, ctsrate		/* rts/cts rate */
1836 		, ctsduration		/* rts/cts duration */
1837 	);
1838 #ifdef notyet
1839 	ath_hal_setupxtxdesc(ah, ds
1840 		, AH_FALSE		/* short preamble */
1841 		, 0, 0			/* series 1 rate/tries */
1842 		, 0, 0			/* series 2 rate/tries */
1843 		, 0, 0			/* series 3 rate/tries */
1844 	);
1845 #endif
1846 	/*
1847 	 * Fillin the remainder of the descriptor info.
1848 	 */
1849 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
1850 		ds->ds_data = bf->bf_segs[i].ds_addr;
1851 		if (i == bf->bf_nseg - 1)
1852 			ds->ds_link = 0;
1853 		else
1854 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
1855 		ath_hal_filltxdesc(ah, ds
1856 			, bf->bf_segs[i].ds_len	/* segment length */
1857 			, i == 0		/* first segment */
1858 			, i == bf->bf_nseg - 1	/* last segment */
1859 		);
1860 		DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
1861 		    i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
1862 		    ds->ds_hw[0], ds->ds_hw[1]));
1863 	}
1864 
1865 	/*
1866 	 * Insert the frame on the outbound list and
1867 	 * pass it on to the hardware.
1868 	 */
1869 	mtx_lock(&sc->sc_txqlock);
1870 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
1871 	if (sc->sc_txlink == NULL) {
1872 		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
1873 		DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
1874 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
1875 	} else {
1876 		*sc->sc_txlink = bf->bf_daddr;
1877 		DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
1878 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
1879 	}
1880 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
1881 	mtx_unlock(&sc->sc_txqlock);
1882 
1883 	ath_hal_txstart(ah, sc->sc_txhalq);
1884 	return 0;
1885 }
1886 
1887 static void
1888 ath_tx_proc(void *arg, int npending)
1889 {
1890 	struct ath_softc *sc = arg;
1891 	struct ath_hal *ah = sc->sc_ah;
1892 	struct ath_buf *bf;
1893 	struct ieee80211com *ic = &sc->sc_ic;
1894 	struct ifnet *ifp = &ic->ic_if;
1895 	struct ath_desc *ds;
1896 	struct ieee80211_node *ni;
1897 	struct ath_node *an;
1898 	int sr, lr;
1899 	HAL_STATUS status;
1900 
1901 	DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
1902 		npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
1903 		sc->sc_txlink));
1904 	for (;;) {
1905 		mtx_lock(&sc->sc_txqlock);
1906 		bf = TAILQ_FIRST(&sc->sc_txq);
1907 		if (bf == NULL) {
1908 			sc->sc_txlink = NULL;
1909 			mtx_unlock(&sc->sc_txqlock);
1910 			break;
1911 		}
1912 		/* only the last descriptor is needed */
1913 		ds = &bf->bf_desc[bf->bf_nseg - 1];
1914 		status = ath_hal_txprocdesc(ah, ds);
1915 #ifdef AR_DEBUG
1916 		if (ath_debug > 1)
1917 			ath_printtxbuf(bf, status == HAL_OK);
1918 #endif
1919 		if (status == HAL_EINPROGRESS) {
1920 			mtx_unlock(&sc->sc_txqlock);
1921 			break;
1922 		}
1923 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
1924 		mtx_unlock(&sc->sc_txqlock);
1925 
1926 		ni = bf->bf_node;
1927 		if (ni != NULL) {
1928 			an = (struct ath_node *) ni;
1929 			if (ds->ds_txstat.ts_status == 0) {
1930 				an->an_tx_ok++;
1931 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
1932 			} else {
1933 				an->an_tx_err++;
1934 				ifp->if_oerrors++;
1935 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
1936 					sc->sc_stats.ast_tx_xretries++;
1937 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
1938 					sc->sc_stats.ast_tx_fifoerr++;
1939 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
1940 					sc->sc_stats.ast_tx_filtered++;
1941 				an->an_tx_antenna = 0;	/* invalidate */
1942 			}
1943 			sr = ds->ds_txstat.ts_shortretry;
1944 			lr = ds->ds_txstat.ts_longretry;
1945 			sc->sc_stats.ast_tx_shortretry += sr;
1946 			sc->sc_stats.ast_tx_longretry += lr;
1947 			if (sr + lr)
1948 				an->an_tx_retr++;
1949 			/*
1950 			 * Reclaim reference to node.
1951 			 *
1952 			 * NB: the node may be reclaimed here if, for example
1953 			 *     this is a DEAUTH message that was sent and the
1954 			 *     node was timed out due to inactivity.
1955 			 */
1956 			if (ni != ic->ic_bss)
1957 				ieee80211_free_node(ic, ni);
1958 		}
1959 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
1960 		    BUS_DMASYNC_POSTWRITE);
1961 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1962 		m_freem(bf->bf_m);
1963 		bf->bf_m = NULL;
1964 		bf->bf_node = NULL;
1965 
1966 		mtx_lock(&sc->sc_txbuflock);
1967 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1968 		mtx_unlock(&sc->sc_txbuflock);
1969 	}
1970 	ifp->if_flags &= ~IFF_OACTIVE;
1971 	sc->sc_tx_timer = 0;
1972 
1973 	ath_start(ifp);
1974 }
1975 
1976 /*
1977  * Drain the transmit queue and reclaim resources.
1978  */
1979 static void
1980 ath_draintxq(struct ath_softc *sc)
1981 {
1982 	struct ath_hal *ah = sc->sc_ah;
1983 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1984 	struct ath_buf *bf;
1985 
1986 	/* XXX return value */
1987 	if (!sc->sc_invalid) {
1988 		/* don't touch the hardware if marked invalid */
1989 		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
1990 		DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
1991 		    (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
1992 		    sc->sc_txlink));
1993 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
1994 		DPRINTF(("ath_draintxq: beacon queue %p\n",
1995 		    (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
1996 	}
1997 	for (;;) {
1998 		mtx_lock(&sc->sc_txqlock);
1999 		bf = TAILQ_FIRST(&sc->sc_txq);
2000 		if (bf == NULL) {
2001 			sc->sc_txlink = NULL;
2002 			mtx_unlock(&sc->sc_txqlock);
2003 			break;
2004 		}
2005 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2006 		mtx_unlock(&sc->sc_txqlock);
2007 #ifdef AR_DEBUG
2008 		if (ath_debug)
2009 			ath_printtxbuf(bf,
2010 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2011 #endif /* AR_DEBUG */
2012 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2013 		m_freem(bf->bf_m);
2014 		bf->bf_m = NULL;
2015 		bf->bf_node = NULL;
2016 		mtx_lock(&sc->sc_txbuflock);
2017 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2018 		mtx_unlock(&sc->sc_txbuflock);
2019 	}
2020 	ifp->if_flags &= ~IFF_OACTIVE;
2021 	sc->sc_tx_timer = 0;
2022 }
2023 
2024 /*
2025  * Disable the receive h/w in preparation for a reset.
2026  */
2027 static void
2028 ath_stoprecv(struct ath_softc *sc)
2029 {
2030 	struct ath_hal *ah = sc->sc_ah;
2031 
2032 	ath_hal_stoppcurecv(ah);	/* disable PCU */
2033 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
2034 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
2035 	DELAY(3000);			/* long enough for 1 frame */
2036 #ifdef AR_DEBUG
2037 	if (ath_debug) {
2038 		struct ath_buf *bf;
2039 
2040 		DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2041 		    (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2042 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2043 			if (ath_hal_rxprocdesc(ah, bf->bf_desc) == HAL_OK)
2044 				ath_printrxbuf(bf, 1);
2045 		}
2046 	}
2047 #endif
2048 	sc->sc_rxlink = NULL;		/* just in case */
2049 }
2050 
2051 /*
2052  * Enable the receive h/w following a reset.
2053  */
2054 static int
2055 ath_startrecv(struct ath_softc *sc)
2056 {
2057 	struct ath_hal *ah = sc->sc_ah;
2058 	struct ath_buf *bf;
2059 
2060 	sc->sc_rxlink = NULL;
2061 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2062 		int error = ath_rxbuf_init(sc, bf);
2063 		if (error != 0) {
2064 			DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2065 				error));
2066 			return error;
2067 		}
2068 	}
2069 
2070 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
2071 	ath_hal_putrxbuf(ah, bf->bf_daddr);
2072 	ath_hal_rxena(ah);		/* enable recv descriptors */
2073 	ath_mode_init(sc);		/* set filters, etc. */
2074 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
2075 	return 0;
2076 }
2077 
2078 /*
2079  * Set/change channels.  If the channel is really being changed,
2080  * it's done by resetting the chip.  To accomplish this we must
2081  * first cleanup any pending DMA, then restart stuff after a la
2082  * ath_init.
2083  */
2084 static int
2085 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2086 {
2087 	struct ath_hal *ah = sc->sc_ah;
2088 	struct ieee80211com *ic = &sc->sc_ic;
2089 
2090 	DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2091 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2092 		ic->ic_ibss_chan->ic_freq,
2093 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2094 	if (chan != ic->ic_ibss_chan) {
2095 		HAL_STATUS status;
2096 		HAL_CHANNEL hchan;
2097 		enum ieee80211_phymode mode;
2098 
2099 		/*
2100 		 * To switch channels clear any pending DMA operations;
2101 		 * wait long enough for the RX fifo to drain, reset the
2102 		 * hardware at the new frequency, and then re-enable
2103 		 * the relevant bits of the h/w.
2104 		 */
2105 		ath_hal_intrset(ah, 0);		/* disable interrupts */
2106 		ath_draintxq(sc);		/* clear pending tx frames */
2107 		ath_stoprecv(sc);		/* turn off frame recv */
2108 		/*
2109 		 * Convert to a HAL channel description with
2110 		 * the flags constrained to reflect the current
2111 		 * operating mode.
2112 		 */
2113 		hchan.channel = chan->ic_freq;
2114 		hchan.channelFlags = ath_chan2flags(ic, chan);
2115 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2116 			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2117 				"channel %u (%u Mhz)\n",
2118 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2119 			return EIO;
2120 		}
2121 		/*
2122 		 * Re-enable rx framework.
2123 		 */
2124 		if (ath_startrecv(sc) != 0) {
2125 			if_printf(&ic->ic_if,
2126 				"ath_chan_set: unable to restart recv logic\n");
2127 			return EIO;
2128 		}
2129 
2130 		/*
2131 		 * Change channels and update the h/w rate map
2132 		 * if we're switching; e.g. 11a to 11b/g.
2133 		 */
2134 		ic->ic_ibss_chan = chan;
2135 		mode = ieee80211_chan2mode(ic, chan);
2136 		if (mode != sc->sc_curmode)
2137 			ath_setcurmode(sc, mode);
2138 
2139 		/*
2140 		 * Re-enable interrupts.
2141 		 */
2142 		ath_hal_intrset(ah, sc->sc_imask);
2143 	}
2144 	return 0;
2145 }
2146 
2147 static void
2148 ath_next_scan(void *arg)
2149 {
2150 	struct ath_softc *sc = arg;
2151 	struct ieee80211com *ic = &sc->sc_ic;
2152 	struct ifnet *ifp = &ic->ic_if;
2153 
2154 	if (ic->ic_state == IEEE80211_S_SCAN)
2155 		ieee80211_next_scan(ifp);
2156 }
2157 
2158 /*
2159  * Periodically recalibrate the PHY to account
2160  * for temperature/environment changes.
2161  */
2162 static void
2163 ath_calibrate(void *arg)
2164 {
2165 	struct ath_softc *sc = arg;
2166 	struct ath_hal *ah = sc->sc_ah;
2167 	struct ieee80211com *ic = &sc->sc_ic;
2168 	struct ieee80211_channel *c;
2169 	HAL_CHANNEL hchan;
2170 
2171 	sc->sc_stats.ast_per_cal++;
2172 
2173 	/*
2174 	 * Convert to a HAL channel description with the flags
2175 	 * constrained to reflect the current operating mode.
2176 	 */
2177 	c = ic->ic_ibss_chan;
2178 	hchan.channel = c->ic_freq;
2179 	hchan.channelFlags = ath_chan2flags(ic, c);
2180 
2181 	DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2182 
2183 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2184 		/*
2185 		 * Rfgain is out of bounds, reset the chip
2186 		 * to load new gain values.
2187 		 */
2188 		sc->sc_stats.ast_per_rfgain++;
2189 		ath_reset(sc);
2190 	}
2191 	if (!ath_hal_calibrate(ah, &hchan)) {
2192 		DPRINTF(("%s: calibration of channel %u failed\n",
2193 			__func__, c->ic_freq));
2194 		sc->sc_stats.ast_per_calfail++;
2195 	}
2196 	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2197 }
2198 
2199 static int
2200 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2201 {
2202 	struct ifnet *ifp = &ic->ic_if;
2203 	struct ath_softc *sc = ifp->if_softc;
2204 	struct ath_hal *ah = sc->sc_ah;
2205 	struct ieee80211_node *ni;
2206 	int i, error;
2207 	u_int8_t *bssid;
2208 	u_int32_t rfilt;
2209 	static const HAL_LED_STATE leds[] = {
2210 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
2211 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
2212 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
2213 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
2214 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
2215 	};
2216 
2217 	DPRINTF(("%s: %s -> %s\n", __func__,
2218 		ieee80211_state_name[ic->ic_state],
2219 		ieee80211_state_name[nstate]));
2220 
2221 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
2222 
2223 	if (nstate == IEEE80211_S_INIT) {
2224 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2225 		ath_hal_intrset(ah, sc->sc_imask);
2226 		callout_stop(&sc->sc_scan_ch);
2227 		callout_stop(&sc->sc_cal_ch);
2228 		return (*sc->sc_newstate)(ic, nstate, arg);
2229 	}
2230 	ni = ic->ic_bss;
2231 	error = ath_chan_set(sc, ni->ni_chan);
2232 	if (error != 0)
2233 		goto bad;
2234 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
2235 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2236 	if (ic->ic_opmode != IEEE80211_M_STA)
2237 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2238 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
2239 	    (ifp->if_flags & IFF_PROMISC))
2240 		rfilt |= HAL_RX_FILTER_PROM;
2241 	if (nstate == IEEE80211_S_SCAN) {
2242 		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2243 			ath_next_scan, sc);
2244 		bssid = ifp->if_broadcastaddr;
2245 		rfilt |= HAL_RX_FILTER_BEACON;
2246 	} else {
2247 		callout_stop(&sc->sc_scan_ch);
2248 		bssid = ni->ni_bssid;
2249 	}
2250 	ath_hal_setrxfilter(ah, rfilt);
2251 	DPRINTF(("%s: RX filter 0x%x bssid %s\n",
2252 		 __func__, rfilt, ether_sprintf(bssid)));
2253 
2254 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2255 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
2256 	else
2257 		ath_hal_setassocid(ah, bssid, 0);
2258 	if (ic->ic_flags & IEEE80211_F_WEPON) {
2259 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2260 			if (ath_hal_keyisvalid(ah, i))
2261 				ath_hal_keysetmac(ah, i, bssid);
2262 	}
2263 
2264 	if (nstate == IEEE80211_S_RUN) {
2265 		DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2266 			"capinfo=0x%04x chan=%d\n"
2267 			 , __func__
2268 			 , ic->ic_flags
2269 			 , ni->ni_intval
2270 			 , ether_sprintf(ni->ni_bssid)
2271 			 , ni->ni_capinfo
2272 			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2273 
2274 		/*
2275 		 * Allocate and setup the beacon frame for AP or adhoc mode.
2276 		 */
2277 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2278 		    ic->ic_opmode == IEEE80211_M_IBSS) {
2279 			error = ath_beacon_alloc(sc, ni);
2280 			if (error != 0)
2281 				goto bad;
2282 		}
2283 
2284 		/*
2285 		 * Configure the beacon and sleep timers.
2286 		 */
2287 		ath_beacon_config(sc);
2288 
2289 		/* start periodic recalibration timer */
2290 		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2291 			ath_calibrate, sc);
2292 	} else {
2293 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2294 		ath_hal_intrset(ah, sc->sc_imask);
2295 		callout_stop(&sc->sc_cal_ch);		/* no calibration */
2296 	}
2297 	/*
2298 	 * Reset the rate control state.
2299 	 */
2300 	ath_rate_ctl_reset(sc, nstate);
2301 	/*
2302 	 * Invoke the parent method to complete the work.
2303 	 */
2304 	return (*sc->sc_newstate)(ic, nstate, arg);
2305 bad:
2306 	callout_stop(&sc->sc_scan_ch);
2307 	callout_stop(&sc->sc_cal_ch);
2308 	/* NB: do not invoke the parent */
2309 	return error;
2310 }
2311 
2312 /*
2313  * Setup driver-specific state for a newly associated node.
2314  * Note that we're called also on a re-associate, the isnew
2315  * param tells us if this is the first time or not.
2316  */
2317 static void
2318 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2319 {
2320 	if (isnew) {
2321 		struct ath_node *an = (struct ath_node *) ni;
2322 
2323 		an->an_tx_ok = an->an_tx_err =
2324 			an->an_tx_retr = an->an_tx_upper = 0;
2325 		/* start with highest negotiated rate */
2326 		/*
2327 		 * XXX should do otherwise but only when
2328 		 * the rate control algorithm is better.
2329 		 */
2330 		KASSERT(ni->ni_rates.rs_nrates > 0,
2331 			("new association w/ no rates!"));
2332 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2333 	}
2334 }
2335 
2336 static int
2337 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2338 {
2339 	struct ieee80211com *ic = &sc->sc_ic;
2340 	struct ifnet *ifp = &ic->ic_if;
2341 	struct ath_hal *ah = sc->sc_ah;
2342 	HAL_CHANNEL *chans;
2343 	int i, ix, nchan;
2344 
2345 	sc->sc_have11g = 0;
2346 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2347 			M_TEMP, M_NOWAIT);
2348 	if (chans == NULL) {
2349 		if_printf(ifp, "unable to allocate channel table\n");
2350 		return ENOMEM;
2351 	}
2352 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2353 	    cc, HAL_MODE_ALL, outdoor)) {
2354 		if_printf(ifp, "unable to collect channel list from hal\n");
2355 		free(chans, M_TEMP);
2356 		return EINVAL;
2357 	}
2358 
2359 	/*
2360 	 * Convert HAL channels to ieee80211 ones and insert
2361 	 * them in the table according to their channel number.
2362 	 */
2363 	for (i = 0; i < nchan; i++) {
2364 		HAL_CHANNEL *c = &chans[i];
2365 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2366 		if (ix > IEEE80211_CHAN_MAX) {
2367 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2368 				ix, c->channel, c->channelFlags);
2369 			continue;
2370 		}
2371 		/* NB: flags are known to be compatible */
2372 		if (ic->ic_channels[ix].ic_freq == 0) {
2373 			ic->ic_channels[ix].ic_freq = c->channel;
2374 			ic->ic_channels[ix].ic_flags = c->channelFlags;
2375 		} else {
2376 			/* channels overlap; e.g. 11g and 11b */
2377 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
2378 		}
2379 		if ((c->channelFlags & CHANNEL_G) == CHANNEL_G)
2380 			sc->sc_have11g = 1;
2381 	}
2382 	free(chans, M_TEMP);
2383 	return 0;
2384 }
2385 
2386 static int
2387 ath_rate_setup(struct ath_softc *sc, u_int mode)
2388 {
2389 	struct ath_hal *ah = sc->sc_ah;
2390 	struct ieee80211com *ic = &sc->sc_ic;
2391 	const HAL_RATE_TABLE *rt;
2392 	struct ieee80211_rateset *rs;
2393 	int i, maxrates;
2394 
2395 	switch (mode) {
2396 	case IEEE80211_MODE_11A:
2397 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2398 		break;
2399 	case IEEE80211_MODE_11B:
2400 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2401 		break;
2402 	case IEEE80211_MODE_11G:
2403 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2404 		break;
2405 	case IEEE80211_MODE_TURBO:
2406 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2407 		break;
2408 	default:
2409 		DPRINTF(("%s: invalid mode %u\n", __func__, mode));
2410 		return 0;
2411 	}
2412 	rt = sc->sc_rates[mode];
2413 	if (rt == NULL)
2414 		return 0;
2415 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2416 		DPRINTF(("%s: rate table too small (%u > %u)\n",
2417 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2418 		maxrates = IEEE80211_RATE_MAXSIZE;
2419 	} else
2420 		maxrates = rt->rateCount;
2421 	rs = &ic->ic_sup_rates[mode];
2422 	for (i = 0; i < maxrates; i++)
2423 		rs->rs_rates[i] = rt->info[i].dot11Rate;
2424 	rs->rs_nrates = maxrates;
2425 	return 1;
2426 }
2427 
2428 static void
2429 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
2430 {
2431 	const HAL_RATE_TABLE *rt;
2432 	int i;
2433 
2434 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
2435 	rt = sc->sc_rates[mode];
2436 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
2437 	for (i = 0; i < rt->rateCount; i++)
2438 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
2439 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
2440 	for (i = 0; i < 32; i++)
2441 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
2442 	sc->sc_currates = rt;
2443 	sc->sc_curmode = mode;
2444 }
2445 
2446 /*
2447  * Reset the rate control state for each 802.11 state transition.
2448  */
2449 static void
2450 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
2451 {
2452 	struct ieee80211com *ic = &sc->sc_ic;
2453 	struct ieee80211_node *ni;
2454 	struct ath_node *an;
2455 
2456 	an = (struct ath_node *) ic->ic_bss;
2457 	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
2458 	if (ic->ic_opmode == IEEE80211_M_STA) {
2459 		ni = ic->ic_bss;
2460 		if (state == IEEE80211_S_RUN) {
2461 			/* start with highest negotiated rate */
2462 			KASSERT(ni->ni_rates.rs_nrates > 0,
2463 				("transition to RUN state w/ no rates!"));
2464 			ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2465 		} else {
2466 			/* use lowest rate */
2467 			ni->ni_txrate = 0;
2468 		}
2469 	} else {
2470 		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
2471 			ni->ni_txrate = 0;		/* use lowest rate */
2472 			an = (struct ath_node *) ni;
2473 			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
2474 			    an->an_tx_upper = 0;
2475 		}
2476 	}
2477 }
2478 
2479 /*
2480  * Examine and potentially adjust the transmit rate.
2481  */
2482 static void
2483 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
2484 {
2485 	struct ath_softc *sc = arg;
2486 	struct ath_node *an = (struct ath_node *) ni;
2487 	struct ieee80211_rateset *rs = &ni->ni_rates;
2488 	int mod = 0, orate, enough;
2489 
2490 	/*
2491 	 * Rate control
2492 	 * XXX: very primitive version.
2493 	 */
2494 	sc->sc_stats.ast_rate_calls++;
2495 
2496 	enough = (an->an_tx_ok + an->an_tx_err >= 10);
2497 
2498 	/* no packet reached -> down */
2499 	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
2500 		mod = -1;
2501 
2502 	/* all packets needs retry in average -> down */
2503 	if (enough && an->an_tx_ok < an->an_tx_retr)
2504 		mod = -1;
2505 
2506 	/* no error and less than 10% of packets needs retry -> up */
2507 	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
2508 		mod = 1;
2509 
2510 	orate = ni->ni_txrate;
2511 	switch (mod) {
2512 	case 0:
2513 		if (enough && an->an_tx_upper > 0)
2514 			an->an_tx_upper--;
2515 		break;
2516 	case -1:
2517 		if (ni->ni_txrate > 0) {
2518 			ni->ni_txrate--;
2519 			sc->sc_stats.ast_rate_drop++;
2520 		}
2521 		an->an_tx_upper = 0;
2522 		break;
2523 	case 1:
2524 		if (++an->an_tx_upper < 2)
2525 			break;
2526 		an->an_tx_upper = 0;
2527 		if (ni->ni_txrate + 1 < rs->rs_nrates) {
2528 			ni->ni_txrate++;
2529 			sc->sc_stats.ast_rate_raise++;
2530 		}
2531 		break;
2532 	}
2533 
2534 	if (ni->ni_txrate != orate) {
2535 		printf("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
2536 		    __func__,
2537 		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
2538 		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
2539 		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr);
2540 	}
2541 	if (ni->ni_txrate != orate || enough)
2542 		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
2543 }
2544 
2545 #ifdef AR_DEBUG
2546 static int
2547 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
2548 {
2549 	char dmode[64];
2550 	int error;
2551 
2552 	strncpy(dmode, "", sizeof(dmode) - 1);
2553 	dmode[sizeof(dmode) - 1] = '\0';
2554 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2555 
2556 	if (error == 0 && req->newptr != NULL) {
2557 		struct ifnet *ifp;
2558 		struct ath_softc *sc;
2559 
2560 		ifp = ifunit("ath0");		/* XXX */
2561 		if (!ifp)
2562 			return EINVAL;
2563 		sc = ifp->if_softc;
2564 		if (strcmp(dmode, "hal") == 0)
2565 			ath_hal_dumpstate(sc->sc_ah);
2566 		else if (strcmp(dmode, "eeprom") == 0)
2567 			ath_hal_dumpeeprom(sc->sc_ah);
2568 		else if (strcmp(dmode, "rfgain") == 0)
2569 			ath_hal_dumprfgain(sc->sc_ah);
2570 		else if (strcmp(dmode, "ani") == 0)
2571 			ath_hal_dumpani(sc->sc_ah);
2572 		else
2573 			return EINVAL;
2574 	}
2575 	return error;
2576 }
2577 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2578 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
2579 
2580 static void
2581 ath_printrxbuf(struct ath_buf *bf, int done)
2582 {
2583 	struct ath_desc *ds;
2584 	int i;
2585 
2586 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2587 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
2588 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
2589 		    ds->ds_link, ds->ds_data,
2590 		    ds->ds_ctl0, ds->ds_ctl1,
2591 		    ds->ds_hw[0], ds->ds_hw[1],
2592 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
2593 	}
2594 }
2595 
2596 static void
2597 ath_printtxbuf(struct ath_buf *bf, int done)
2598 {
2599 	struct ath_desc *ds;
2600 	int i;
2601 
2602 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2603 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
2604 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
2605 		    ds->ds_link, ds->ds_data,
2606 		    ds->ds_ctl0, ds->ds_ctl1,
2607 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
2608 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
2609 	}
2610 }
2611 #endif /* AR_DEBUG */
2612