1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 120 #ifdef ATH_TX99_DIAG 121 #include <dev/ath/ath_tx99/ath_tx99.h> 122 #endif 123 124 #ifdef ATH_DEBUG_ALQ 125 #include <dev/ath/if_ath_alq.h> 126 #endif 127 128 /* 129 * Only enable this if you're working on PS-POLL support. 130 */ 131 #define ATH_SW_PSQ 132 133 /* 134 * ATH_BCBUF determines the number of vap's that can transmit 135 * beacons and also (currently) the number of vap's that can 136 * have unique mac addresses/bssid. When staggering beacons 137 * 4 is probably a good max as otherwise the beacons become 138 * very closely spaced and there is limited time for cab q traffic 139 * to go out. You can burst beacons instead but that is not good 140 * for stations in power save and at some point you really want 141 * another radio (and channel). 142 * 143 * The limit on the number of mac addresses is tied to our use of 144 * the U/L bit and tracking addresses in a byte; it would be 145 * worthwhile to allow more for applications like proxy sta. 146 */ 147 CTASSERT(ATH_BCBUF <= 8); 148 149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 150 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 151 const uint8_t [IEEE80211_ADDR_LEN], 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void ath_vap_delete(struct ieee80211vap *); 154 static void ath_init(void *); 155 static void ath_stop_locked(struct ifnet *); 156 static void ath_stop(struct ifnet *); 157 static int ath_reset_vap(struct ieee80211vap *, u_long); 158 static int ath_transmit(struct ifnet *ifp, struct mbuf *m); 159 static void ath_qflush(struct ifnet *ifp); 160 static int ath_media_change(struct ifnet *); 161 static void ath_watchdog(void *); 162 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_key_update_begin(struct ieee80211vap *); 167 static void ath_key_update_end(struct ieee80211vap *); 168 static void ath_update_mcast_hw(struct ath_softc *); 169 static void ath_update_mcast(struct ifnet *); 170 static void ath_update_promisc(struct ifnet *); 171 static void ath_updateslot(struct ifnet *); 172 static void ath_bstuck_proc(void *, int); 173 static void ath_reset_proc(void *, int); 174 static int ath_desc_alloc(struct ath_softc *); 175 static void ath_desc_free(struct ath_softc *); 176 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 177 const uint8_t [IEEE80211_ADDR_LEN]); 178 static void ath_node_cleanup(struct ieee80211_node *); 179 static void ath_node_free(struct ieee80211_node *); 180 static void ath_node_getsignal(const struct ieee80211_node *, 181 int8_t *, int8_t *); 182 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 184 static int ath_tx_setup(struct ath_softc *, int, int); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 188 int dosched); 189 static void ath_tx_proc_q0(void *, int); 190 static void ath_tx_proc_q0123(void *, int); 191 static void ath_tx_proc(void *, int); 192 static void ath_txq_sched_tasklet(void *, int); 193 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 #ifdef ATH_ENABLE_11N 199 static void ath_update_chw(struct ieee80211com *); 200 #endif /* ATH_ENABLE_11N */ 201 static void ath_calibrate(void *); 202 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 203 static void ath_setup_stationkey(struct ieee80211_node *); 204 static void ath_newassoc(struct ieee80211_node *, int); 205 static int ath_setregdomain(struct ieee80211com *, 206 struct ieee80211_regdomain *, int, 207 struct ieee80211_channel []); 208 static void ath_getradiocaps(struct ieee80211com *, int, int *, 209 struct ieee80211_channel []); 210 static int ath_getchannels(struct ath_softc *); 211 212 static int ath_rate_setup(struct ath_softc *, u_int mode); 213 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 214 215 static void ath_announce(struct ath_softc *); 216 217 static void ath_dfs_tasklet(void *, int); 218 static void ath_node_powersave(struct ieee80211_node *, int); 219 static int ath_node_set_tim(struct ieee80211_node *, int); 220 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 221 222 #ifdef IEEE80211_SUPPORT_TDMA 223 #include <dev/ath/if_ath_tdma.h> 224 #endif 225 226 SYSCTL_DECL(_hw_ath); 227 228 /* XXX validate sysctl values */ 229 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 231 0, "long chip calibration interval (secs)"); 232 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 234 0, "short chip calibration interval (msecs)"); 235 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 237 0, "reset chip calibration results (secs)"); 238 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 240 0, "ANI calibration (msecs)"); 241 242 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 244 0, "rx buffers allocated"); 245 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 247 0, "tx buffers allocated"); 248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 250 0, "tx (mgmt) buffers allocated"); 251 252 int ath_bstuck_threshold = 4; /* max missed beacons */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 254 0, "max missed beacon xmits before chip reset"); 255 256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 257 258 void 259 ath_legacy_attach_comp_func(struct ath_softc *sc) 260 { 261 262 /* 263 * Special case certain configurations. Note the 264 * CAB queue is handled by these specially so don't 265 * include them when checking the txq setup mask. 266 */ 267 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 268 case 0x01: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 270 break; 271 case 0x0f: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 273 break; 274 default: 275 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 276 break; 277 } 278 } 279 280 /* 281 * Set the target power mode. 282 * 283 * If this is called during a point in time where 284 * the hardware is being programmed elsewhere, it will 285 * simply store it away and update it when all current 286 * uses of the hardware are completed. 287 */ 288 void 289 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 290 { 291 ATH_LOCK_ASSERT(sc); 292 293 sc->sc_target_powerstate = power_state; 294 295 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 296 __func__, 297 file, 298 line, 299 power_state, 300 sc->sc_powersave_refcnt); 301 302 if (sc->sc_powersave_refcnt == 0 && 303 power_state != sc->sc_cur_powerstate) { 304 sc->sc_cur_powerstate = power_state; 305 ath_hal_setpower(sc->sc_ah, power_state); 306 307 /* 308 * If the NIC is force-awake, then set the 309 * self-gen frame state appropriately. 310 * 311 * If the nic is in network sleep or full-sleep, 312 * we let the above call leave the self-gen 313 * state as "sleep". 314 */ 315 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 316 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 317 ath_hal_setselfgenpower(sc->sc_ah, 318 sc->sc_target_selfgen_state); 319 } 320 } 321 } 322 323 /* 324 * Set the current self-generated frames state. 325 * 326 * This is separate from the target power mode. The chip may be 327 * awake but the desired state is "sleep", so frames sent to the 328 * destination has PWRMGT=1 in the 802.11 header. The NIC also 329 * needs to know to set PWRMGT=1 in self-generated frames. 330 */ 331 void 332 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 333 { 334 335 ATH_LOCK_ASSERT(sc); 336 337 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 338 __func__, 339 file, 340 line, 341 power_state, 342 sc->sc_target_selfgen_state); 343 344 sc->sc_target_selfgen_state = power_state; 345 346 /* 347 * If the NIC is force-awake, then set the power state. 348 * Network-state and full-sleep will already transition it to 349 * mark self-gen frames as sleeping - and we can't 350 * guarantee the NIC is awake to program the self-gen frame 351 * setting anyway. 352 */ 353 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 354 ath_hal_setselfgenpower(sc->sc_ah, power_state); 355 } 356 } 357 358 /* 359 * Set the hardware power mode and take a reference. 360 * 361 * This doesn't update the target power mode in the driver; 362 * it just updates the hardware power state. 363 * 364 * XXX it should only ever force the hardware awake; it should 365 * never be called to set it asleep. 366 */ 367 void 368 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 369 { 370 ATH_LOCK_ASSERT(sc); 371 372 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 373 __func__, 374 file, 375 line, 376 power_state, 377 sc->sc_powersave_refcnt); 378 379 sc->sc_powersave_refcnt++; 380 381 if (power_state != sc->sc_cur_powerstate) { 382 ath_hal_setpower(sc->sc_ah, power_state); 383 sc->sc_cur_powerstate = power_state; 384 385 /* 386 * Adjust the self-gen powerstate if appropriate. 387 */ 388 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 389 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 390 ath_hal_setselfgenpower(sc->sc_ah, 391 sc->sc_target_selfgen_state); 392 } 393 394 } 395 } 396 397 /* 398 * Restore the power save mode to what it once was. 399 * 400 * This will decrement the reference counter and once it hits 401 * zero, it'll restore the powersave state. 402 */ 403 void 404 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 405 { 406 407 ATH_LOCK_ASSERT(sc); 408 409 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 410 __func__, 411 file, 412 line, 413 sc->sc_powersave_refcnt, 414 sc->sc_target_powerstate); 415 416 if (sc->sc_powersave_refcnt == 0) 417 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 418 else 419 sc->sc_powersave_refcnt--; 420 421 if (sc->sc_powersave_refcnt == 0 && 422 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 423 sc->sc_cur_powerstate = sc->sc_target_powerstate; 424 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 425 } 426 427 /* 428 * Adjust the self-gen powerstate if appropriate. 429 */ 430 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 431 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 432 ath_hal_setselfgenpower(sc->sc_ah, 433 sc->sc_target_selfgen_state); 434 } 435 436 } 437 438 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 439 #define HAL_MODE_HT40 \ 440 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 441 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 442 int 443 ath_attach(u_int16_t devid, struct ath_softc *sc) 444 { 445 struct ifnet *ifp; 446 struct ieee80211com *ic; 447 struct ath_hal *ah = NULL; 448 HAL_STATUS status; 449 int error = 0, i; 450 u_int wmodes; 451 uint8_t macaddr[IEEE80211_ADDR_LEN]; 452 int rx_chainmask, tx_chainmask; 453 454 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 455 456 CURVNET_SET(vnet0); 457 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 458 if (ifp == NULL) { 459 device_printf(sc->sc_dev, "can not if_alloc()\n"); 460 error = ENOSPC; 461 CURVNET_RESTORE(); 462 goto bad; 463 } 464 ic = ifp->if_l2com; 465 466 /* set these up early for if_printf use */ 467 if_initname(ifp, device_get_name(sc->sc_dev), 468 device_get_unit(sc->sc_dev)); 469 CURVNET_RESTORE(); 470 471 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 472 sc->sc_eepromdata, &status); 473 if (ah == NULL) { 474 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 475 status); 476 error = ENXIO; 477 goto bad; 478 } 479 sc->sc_ah = ah; 480 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 481 #ifdef ATH_DEBUG 482 sc->sc_debug = ath_debug; 483 #endif 484 485 /* 486 * Setup the DMA/EDMA functions based on the current 487 * hardware support. 488 * 489 * This is required before the descriptors are allocated. 490 */ 491 if (ath_hal_hasedma(sc->sc_ah)) { 492 sc->sc_isedma = 1; 493 ath_recv_setup_edma(sc); 494 ath_xmit_setup_edma(sc); 495 } else { 496 ath_recv_setup_legacy(sc); 497 ath_xmit_setup_legacy(sc); 498 } 499 500 if (ath_hal_hasmybeacon(sc->sc_ah)) { 501 sc->sc_do_mybeacon = 1; 502 } 503 504 /* 505 * Check if the MAC has multi-rate retry support. 506 * We do this by trying to setup a fake extended 507 * descriptor. MAC's that don't have support will 508 * return false w/o doing anything. MAC's that do 509 * support it will return true w/o doing anything. 510 */ 511 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 512 513 /* 514 * Check if the device has hardware counters for PHY 515 * errors. If so we need to enable the MIB interrupt 516 * so we can act on stat triggers. 517 */ 518 if (ath_hal_hwphycounters(ah)) 519 sc->sc_needmib = 1; 520 521 /* 522 * Get the hardware key cache size. 523 */ 524 sc->sc_keymax = ath_hal_keycachesize(ah); 525 if (sc->sc_keymax > ATH_KEYMAX) { 526 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 527 ATH_KEYMAX, sc->sc_keymax); 528 sc->sc_keymax = ATH_KEYMAX; 529 } 530 /* 531 * Reset the key cache since some parts do not 532 * reset the contents on initial power up. 533 */ 534 for (i = 0; i < sc->sc_keymax; i++) 535 ath_hal_keyreset(ah, i); 536 537 /* 538 * Collect the default channel list. 539 */ 540 error = ath_getchannels(sc); 541 if (error != 0) 542 goto bad; 543 544 /* 545 * Setup rate tables for all potential media types. 546 */ 547 ath_rate_setup(sc, IEEE80211_MODE_11A); 548 ath_rate_setup(sc, IEEE80211_MODE_11B); 549 ath_rate_setup(sc, IEEE80211_MODE_11G); 550 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 551 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 552 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 553 ath_rate_setup(sc, IEEE80211_MODE_11NA); 554 ath_rate_setup(sc, IEEE80211_MODE_11NG); 555 ath_rate_setup(sc, IEEE80211_MODE_HALF); 556 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 557 558 /* NB: setup here so ath_rate_update is happy */ 559 ath_setcurmode(sc, IEEE80211_MODE_11A); 560 561 /* 562 * Allocate TX descriptors and populate the lists. 563 */ 564 error = ath_desc_alloc(sc); 565 if (error != 0) { 566 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 567 error); 568 goto bad; 569 } 570 error = ath_txdma_setup(sc); 571 if (error != 0) { 572 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 573 error); 574 goto bad; 575 } 576 577 /* 578 * Allocate RX descriptors and populate the lists. 579 */ 580 error = ath_rxdma_setup(sc); 581 if (error != 0) { 582 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 583 error); 584 goto bad; 585 } 586 587 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 588 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 589 590 ATH_TXBUF_LOCK_INIT(sc); 591 592 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 593 taskqueue_thread_enqueue, &sc->sc_tq); 594 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 595 "%s taskq", ifp->if_xname); 596 597 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 598 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 599 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 600 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 601 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 602 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 603 604 /* 605 * Allocate hardware transmit queues: one queue for 606 * beacon frames and one data queue for each QoS 607 * priority. Note that the hal handles resetting 608 * these queues at the needed time. 609 * 610 * XXX PS-Poll 611 */ 612 sc->sc_bhalq = ath_beaconq_setup(sc); 613 if (sc->sc_bhalq == (u_int) -1) { 614 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 615 error = EIO; 616 goto bad2; 617 } 618 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 619 if (sc->sc_cabq == NULL) { 620 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 621 error = EIO; 622 goto bad2; 623 } 624 /* NB: insure BK queue is the lowest priority h/w queue */ 625 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 626 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 627 ieee80211_wme_acnames[WME_AC_BK]); 628 error = EIO; 629 goto bad2; 630 } 631 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 632 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 633 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 634 /* 635 * Not enough hardware tx queues to properly do WME; 636 * just punt and assign them all to the same h/w queue. 637 * We could do a better job of this if, for example, 638 * we allocate queues when we switch from station to 639 * AP mode. 640 */ 641 if (sc->sc_ac2q[WME_AC_VI] != NULL) 642 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 643 if (sc->sc_ac2q[WME_AC_BE] != NULL) 644 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 645 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 646 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 647 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 648 } 649 650 /* 651 * Attach the TX completion function. 652 * 653 * The non-EDMA chips may have some special case optimisations; 654 * this method gives everyone a chance to attach cleanly. 655 */ 656 sc->sc_tx.xmit_attach_comp_func(sc); 657 658 /* 659 * Setup rate control. Some rate control modules 660 * call back to change the anntena state so expose 661 * the necessary entry points. 662 * XXX maybe belongs in struct ath_ratectrl? 663 */ 664 sc->sc_setdefantenna = ath_setdefantenna; 665 sc->sc_rc = ath_rate_attach(sc); 666 if (sc->sc_rc == NULL) { 667 error = EIO; 668 goto bad2; 669 } 670 671 /* Attach DFS module */ 672 if (! ath_dfs_attach(sc)) { 673 device_printf(sc->sc_dev, 674 "%s: unable to attach DFS\n", __func__); 675 error = EIO; 676 goto bad2; 677 } 678 679 /* Attach spectral module */ 680 if (ath_spectral_attach(sc) < 0) { 681 device_printf(sc->sc_dev, 682 "%s: unable to attach spectral\n", __func__); 683 error = EIO; 684 goto bad2; 685 } 686 687 /* Attach bluetooth coexistence module */ 688 if (ath_btcoex_attach(sc) < 0) { 689 device_printf(sc->sc_dev, 690 "%s: unable to attach bluetooth coexistence\n", __func__); 691 error = EIO; 692 goto bad2; 693 } 694 695 /* Attach LNA diversity module */ 696 if (ath_lna_div_attach(sc) < 0) { 697 device_printf(sc->sc_dev, 698 "%s: unable to attach LNA diversity\n", __func__); 699 error = EIO; 700 goto bad2; 701 } 702 703 /* Start DFS processing tasklet */ 704 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 705 706 /* Configure LED state */ 707 sc->sc_blinking = 0; 708 sc->sc_ledstate = 1; 709 sc->sc_ledon = 0; /* low true */ 710 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 711 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 712 713 /* 714 * Don't setup hardware-based blinking. 715 * 716 * Although some NICs may have this configured in the 717 * default reset register values, the user may wish 718 * to alter which pins have which function. 719 * 720 * The reference driver attaches the MAC network LED to GPIO1 and 721 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 722 * NIC has these reversed. 723 */ 724 sc->sc_hardled = (1 == 0); 725 sc->sc_led_net_pin = -1; 726 sc->sc_led_pwr_pin = -1; 727 /* 728 * Auto-enable soft led processing for IBM cards and for 729 * 5211 minipci cards. Users can also manually enable/disable 730 * support with a sysctl. 731 */ 732 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 733 ath_led_config(sc); 734 ath_hal_setledstate(ah, HAL_LED_INIT); 735 736 ifp->if_softc = sc; 737 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 738 ifp->if_transmit = ath_transmit; 739 ifp->if_qflush = ath_qflush; 740 ifp->if_ioctl = ath_ioctl; 741 ifp->if_init = ath_init; 742 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 743 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 744 IFQ_SET_READY(&ifp->if_snd); 745 746 ic->ic_ifp = ifp; 747 /* XXX not right but it's not used anywhere important */ 748 ic->ic_phytype = IEEE80211_T_OFDM; 749 ic->ic_opmode = IEEE80211_M_STA; 750 ic->ic_caps = 751 IEEE80211_C_STA /* station mode */ 752 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 753 | IEEE80211_C_HOSTAP /* hostap mode */ 754 | IEEE80211_C_MONITOR /* monitor mode */ 755 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 756 | IEEE80211_C_WDS /* 4-address traffic works */ 757 | IEEE80211_C_MBSS /* mesh point link mode */ 758 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 759 | IEEE80211_C_SHSLOT /* short slot time supported */ 760 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 761 #ifndef ATH_ENABLE_11N 762 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 763 #endif 764 | IEEE80211_C_TXFRAG /* handle tx frags */ 765 #ifdef ATH_ENABLE_DFS 766 | IEEE80211_C_DFS /* Enable radar detection */ 767 #endif 768 | IEEE80211_C_PMGT /* Station side power mgmt */ 769 | IEEE80211_C_SWSLEEP 770 ; 771 /* 772 * Query the hal to figure out h/w crypto support. 773 */ 774 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 775 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 776 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 777 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 778 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 779 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 780 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 781 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 782 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 783 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 784 /* 785 * Check if h/w does the MIC and/or whether the 786 * separate key cache entries are required to 787 * handle both tx+rx MIC keys. 788 */ 789 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 790 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 791 /* 792 * If the h/w supports storing tx+rx MIC keys 793 * in one cache slot automatically enable use. 794 */ 795 if (ath_hal_hastkipsplit(ah) || 796 !ath_hal_settkipsplit(ah, AH_FALSE)) 797 sc->sc_splitmic = 1; 798 /* 799 * If the h/w can do TKIP MIC together with WME then 800 * we use it; otherwise we force the MIC to be done 801 * in software by the net80211 layer. 802 */ 803 if (ath_hal_haswmetkipmic(ah)) 804 sc->sc_wmetkipmic = 1; 805 } 806 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 807 /* 808 * Check for multicast key search support. 809 */ 810 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 811 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 812 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 813 } 814 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 815 /* 816 * Mark key cache slots associated with global keys 817 * as in use. If we knew TKIP was not to be used we 818 * could leave the +32, +64, and +32+64 slots free. 819 */ 820 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 821 setbit(sc->sc_keymap, i); 822 setbit(sc->sc_keymap, i+64); 823 if (sc->sc_splitmic) { 824 setbit(sc->sc_keymap, i+32); 825 setbit(sc->sc_keymap, i+32+64); 826 } 827 } 828 /* 829 * TPC support can be done either with a global cap or 830 * per-packet support. The latter is not available on 831 * all parts. We're a bit pedantic here as all parts 832 * support a global cap. 833 */ 834 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 835 ic->ic_caps |= IEEE80211_C_TXPMGT; 836 837 /* 838 * Mark WME capability only if we have sufficient 839 * hardware queues to do proper priority scheduling. 840 */ 841 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 842 ic->ic_caps |= IEEE80211_C_WME; 843 /* 844 * Check for misc other capabilities. 845 */ 846 if (ath_hal_hasbursting(ah)) 847 ic->ic_caps |= IEEE80211_C_BURST; 848 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 849 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 850 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 851 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 852 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 853 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 854 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 855 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 856 857 if (ath_hal_hasfastframes(ah)) 858 ic->ic_caps |= IEEE80211_C_FF; 859 wmodes = ath_hal_getwirelessmodes(ah); 860 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 861 ic->ic_caps |= IEEE80211_C_TURBOP; 862 #ifdef IEEE80211_SUPPORT_TDMA 863 if (ath_hal_macversion(ah) > 0x78) { 864 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 865 ic->ic_tdma_update = ath_tdma_update; 866 } 867 #endif 868 869 /* 870 * TODO: enforce that at least this many frames are available 871 * in the txbuf list before allowing data frames (raw or 872 * otherwise) to be transmitted. 873 */ 874 sc->sc_txq_data_minfree = 10; 875 /* 876 * Leave this as default to maintain legacy behaviour. 877 * Shortening the cabq/mcastq may end up causing some 878 * undesirable behaviour. 879 */ 880 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 881 882 /* 883 * How deep can the node software TX queue get whilst it's asleep. 884 */ 885 sc->sc_txq_node_psq_maxdepth = 16; 886 887 /* 888 * Default the maximum queue depth for a given node 889 * to 1/4'th the TX buffers, or 64, whichever 890 * is larger. 891 */ 892 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 893 894 /* Enable CABQ by default */ 895 sc->sc_cabq_enable = 1; 896 897 /* 898 * Allow the TX and RX chainmasks to be overridden by 899 * environment variables and/or device.hints. 900 * 901 * This must be done early - before the hardware is 902 * calibrated or before the 802.11n stream calculation 903 * is done. 904 */ 905 if (resource_int_value(device_get_name(sc->sc_dev), 906 device_get_unit(sc->sc_dev), "rx_chainmask", 907 &rx_chainmask) == 0) { 908 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 909 rx_chainmask); 910 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 911 } 912 if (resource_int_value(device_get_name(sc->sc_dev), 913 device_get_unit(sc->sc_dev), "tx_chainmask", 914 &tx_chainmask) == 0) { 915 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 916 tx_chainmask); 917 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 918 } 919 920 /* 921 * Query the TX/RX chainmask configuration. 922 * 923 * This is only relevant for 11n devices. 924 */ 925 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 926 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 927 928 /* 929 * Disable MRR with protected frames by default. 930 * Only 802.11n series NICs can handle this. 931 */ 932 sc->sc_mrrprot = 0; /* XXX should be a capability */ 933 934 /* 935 * Query the enterprise mode information the HAL. 936 */ 937 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 938 &sc->sc_ent_cfg) == HAL_OK) 939 sc->sc_use_ent = 1; 940 941 #ifdef ATH_ENABLE_11N 942 /* 943 * Query HT capabilities 944 */ 945 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 946 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 947 uint32_t rxs, txs; 948 949 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 950 951 sc->sc_mrrprot = 1; /* XXX should be a capability */ 952 953 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 954 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 955 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 956 | IEEE80211_HTCAP_MAXAMSDU_3839 957 /* max A-MSDU length */ 958 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 959 ; 960 961 /* 962 * Enable short-GI for HT20 only if the hardware 963 * advertises support. 964 * Notably, anything earlier than the AR9287 doesn't. 965 */ 966 if ((ath_hal_getcapability(ah, 967 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 968 (wmodes & HAL_MODE_HT20)) { 969 device_printf(sc->sc_dev, 970 "[HT] enabling short-GI in 20MHz mode\n"); 971 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 972 } 973 974 if (wmodes & HAL_MODE_HT40) 975 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 976 | IEEE80211_HTCAP_SHORTGI40; 977 978 /* 979 * TX/RX streams need to be taken into account when 980 * negotiating which MCS rates it'll receive and 981 * what MCS rates are available for TX. 982 */ 983 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 984 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 985 ic->ic_txstream = txs; 986 ic->ic_rxstream = rxs; 987 988 /* 989 * Setup TX and RX STBC based on what the HAL allows and 990 * the currently configured chainmask set. 991 * Ie - don't enable STBC TX if only one chain is enabled. 992 * STBC RX is fine on a single RX chain; it just won't 993 * provide any real benefit. 994 */ 995 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 996 NULL) == HAL_OK) { 997 sc->sc_rx_stbc = 1; 998 device_printf(sc->sc_dev, 999 "[HT] 1 stream STBC receive enabled\n"); 1000 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1001 } 1002 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1003 NULL) == HAL_OK) { 1004 sc->sc_tx_stbc = 1; 1005 device_printf(sc->sc_dev, 1006 "[HT] 1 stream STBC transmit enabled\n"); 1007 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1008 } 1009 1010 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1011 &sc->sc_rts_aggr_limit); 1012 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1013 device_printf(sc->sc_dev, 1014 "[HT] RTS aggregates limited to %d KiB\n", 1015 sc->sc_rts_aggr_limit / 1024); 1016 1017 device_printf(sc->sc_dev, 1018 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1019 } 1020 #endif 1021 1022 /* 1023 * Initial aggregation settings. 1024 */ 1025 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1026 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1027 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1028 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1029 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1030 sc->sc_delim_min_pad = 0; 1031 1032 /* 1033 * Check if the hardware requires PCI register serialisation. 1034 * Some of the Owl based MACs require this. 1035 */ 1036 if (mp_ncpus > 1 && 1037 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1038 0, NULL) == HAL_OK) { 1039 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1040 device_printf(sc->sc_dev, 1041 "Enabling register serialisation\n"); 1042 } 1043 1044 /* 1045 * Initialise the deferred completed RX buffer list. 1046 */ 1047 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1048 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1049 1050 /* 1051 * Indicate we need the 802.11 header padded to a 1052 * 32-bit boundary for 4-address and QoS frames. 1053 */ 1054 ic->ic_flags |= IEEE80211_F_DATAPAD; 1055 1056 /* 1057 * Query the hal about antenna support. 1058 */ 1059 sc->sc_defant = ath_hal_getdefantenna(ah); 1060 1061 /* 1062 * Not all chips have the VEOL support we want to 1063 * use with IBSS beacons; check here for it. 1064 */ 1065 sc->sc_hasveol = ath_hal_hasveol(ah); 1066 1067 /* get mac address from hardware */ 1068 ath_hal_getmac(ah, macaddr); 1069 if (sc->sc_hasbmask) 1070 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1071 1072 /* NB: used to size node table key mapping array */ 1073 ic->ic_max_keyix = sc->sc_keymax; 1074 /* call MI attach routine. */ 1075 ieee80211_ifattach(ic, macaddr); 1076 ic->ic_setregdomain = ath_setregdomain; 1077 ic->ic_getradiocaps = ath_getradiocaps; 1078 sc->sc_opmode = HAL_M_STA; 1079 1080 /* override default methods */ 1081 ic->ic_newassoc = ath_newassoc; 1082 ic->ic_updateslot = ath_updateslot; 1083 ic->ic_wme.wme_update = ath_wme_update; 1084 ic->ic_vap_create = ath_vap_create; 1085 ic->ic_vap_delete = ath_vap_delete; 1086 ic->ic_raw_xmit = ath_raw_xmit; 1087 ic->ic_update_mcast = ath_update_mcast; 1088 ic->ic_update_promisc = ath_update_promisc; 1089 ic->ic_node_alloc = ath_node_alloc; 1090 sc->sc_node_free = ic->ic_node_free; 1091 ic->ic_node_free = ath_node_free; 1092 sc->sc_node_cleanup = ic->ic_node_cleanup; 1093 ic->ic_node_cleanup = ath_node_cleanup; 1094 ic->ic_node_getsignal = ath_node_getsignal; 1095 ic->ic_scan_start = ath_scan_start; 1096 ic->ic_scan_end = ath_scan_end; 1097 ic->ic_set_channel = ath_set_channel; 1098 #ifdef ATH_ENABLE_11N 1099 /* 802.11n specific - but just override anyway */ 1100 sc->sc_addba_request = ic->ic_addba_request; 1101 sc->sc_addba_response = ic->ic_addba_response; 1102 sc->sc_addba_stop = ic->ic_addba_stop; 1103 sc->sc_bar_response = ic->ic_bar_response; 1104 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1105 1106 ic->ic_addba_request = ath_addba_request; 1107 ic->ic_addba_response = ath_addba_response; 1108 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1109 ic->ic_addba_stop = ath_addba_stop; 1110 ic->ic_bar_response = ath_bar_response; 1111 1112 ic->ic_update_chw = ath_update_chw; 1113 #endif /* ATH_ENABLE_11N */ 1114 1115 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1116 /* 1117 * There's one vendor bitmap entry in the RX radiotap 1118 * header; make sure that's taken into account. 1119 */ 1120 ieee80211_radiotap_attachv(ic, 1121 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1122 ATH_TX_RADIOTAP_PRESENT, 1123 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1124 ATH_RX_RADIOTAP_PRESENT); 1125 #else 1126 /* 1127 * No vendor bitmap/extensions are present. 1128 */ 1129 ieee80211_radiotap_attach(ic, 1130 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1131 ATH_TX_RADIOTAP_PRESENT, 1132 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1133 ATH_RX_RADIOTAP_PRESENT); 1134 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1135 1136 /* 1137 * Setup the ALQ logging if required 1138 */ 1139 #ifdef ATH_DEBUG_ALQ 1140 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1141 if_ath_alq_setcfg(&sc->sc_alq, 1142 sc->sc_ah->ah_macVersion, 1143 sc->sc_ah->ah_macRev, 1144 sc->sc_ah->ah_phyRev, 1145 sc->sc_ah->ah_magic); 1146 #endif 1147 1148 /* 1149 * Setup dynamic sysctl's now that country code and 1150 * regdomain are available from the hal. 1151 */ 1152 ath_sysctlattach(sc); 1153 ath_sysctl_stats_attach(sc); 1154 ath_sysctl_hal_attach(sc); 1155 1156 if (bootverbose) 1157 ieee80211_announce(ic); 1158 ath_announce(sc); 1159 1160 /* 1161 * Put it to sleep for now. 1162 */ 1163 ATH_LOCK(sc); 1164 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1165 ATH_UNLOCK(sc); 1166 1167 return 0; 1168 bad2: 1169 ath_tx_cleanup(sc); 1170 ath_desc_free(sc); 1171 ath_txdma_teardown(sc); 1172 ath_rxdma_teardown(sc); 1173 bad: 1174 if (ah) 1175 ath_hal_detach(ah); 1176 1177 /* 1178 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 1179 */ 1180 if (ifp != NULL && ifp->if_vnet) { 1181 CURVNET_SET(ifp->if_vnet); 1182 if_free(ifp); 1183 CURVNET_RESTORE(); 1184 } else if (ifp != NULL) 1185 if_free(ifp); 1186 sc->sc_invalid = 1; 1187 return error; 1188 } 1189 1190 int 1191 ath_detach(struct ath_softc *sc) 1192 { 1193 struct ifnet *ifp = sc->sc_ifp; 1194 1195 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1196 __func__, ifp->if_flags); 1197 1198 /* 1199 * NB: the order of these is important: 1200 * o stop the chip so no more interrupts will fire 1201 * o call the 802.11 layer before detaching the hal to 1202 * insure callbacks into the driver to delete global 1203 * key cache entries can be handled 1204 * o free the taskqueue which drains any pending tasks 1205 * o reclaim the tx queue data structures after calling 1206 * the 802.11 layer as we'll get called back to reclaim 1207 * node state and potentially want to use them 1208 * o to cleanup the tx queues the hal is called, so detach 1209 * it last 1210 * Other than that, it's straightforward... 1211 */ 1212 1213 /* 1214 * XXX Wake the hardware up first. ath_stop() will still 1215 * wake it up first, but I'd rather do it here just to 1216 * ensure it's awake. 1217 */ 1218 ATH_LOCK(sc); 1219 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1220 ath_power_setpower(sc, HAL_PM_AWAKE); 1221 ATH_UNLOCK(sc); 1222 1223 /* 1224 * Stop things cleanly. 1225 */ 1226 ath_stop(ifp); 1227 1228 ieee80211_ifdetach(ifp->if_l2com); 1229 taskqueue_free(sc->sc_tq); 1230 #ifdef ATH_TX99_DIAG 1231 if (sc->sc_tx99 != NULL) 1232 sc->sc_tx99->detach(sc->sc_tx99); 1233 #endif 1234 ath_rate_detach(sc->sc_rc); 1235 #ifdef ATH_DEBUG_ALQ 1236 if_ath_alq_tidyup(&sc->sc_alq); 1237 #endif 1238 ath_lna_div_detach(sc); 1239 ath_btcoex_detach(sc); 1240 ath_spectral_detach(sc); 1241 ath_dfs_detach(sc); 1242 ath_desc_free(sc); 1243 ath_txdma_teardown(sc); 1244 ath_rxdma_teardown(sc); 1245 ath_tx_cleanup(sc); 1246 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1247 1248 CURVNET_SET(ifp->if_vnet); 1249 if_free(ifp); 1250 CURVNET_RESTORE(); 1251 1252 return 0; 1253 } 1254 1255 /* 1256 * MAC address handling for multiple BSS on the same radio. 1257 * The first vap uses the MAC address from the EEPROM. For 1258 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1259 * address and use the next six bits as an index. 1260 */ 1261 static void 1262 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1263 { 1264 int i; 1265 1266 if (clone && sc->sc_hasbmask) { 1267 /* NB: we only do this if h/w supports multiple bssid */ 1268 for (i = 0; i < 8; i++) 1269 if ((sc->sc_bssidmask & (1<<i)) == 0) 1270 break; 1271 if (i != 0) 1272 mac[0] |= (i << 2)|0x2; 1273 } else 1274 i = 0; 1275 sc->sc_bssidmask |= 1<<i; 1276 sc->sc_hwbssidmask[0] &= ~mac[0]; 1277 if (i == 0) 1278 sc->sc_nbssid0++; 1279 } 1280 1281 static void 1282 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1283 { 1284 int i = mac[0] >> 2; 1285 uint8_t mask; 1286 1287 if (i != 0 || --sc->sc_nbssid0 == 0) { 1288 sc->sc_bssidmask &= ~(1<<i); 1289 /* recalculate bssid mask from remaining addresses */ 1290 mask = 0xff; 1291 for (i = 1; i < 8; i++) 1292 if (sc->sc_bssidmask & (1<<i)) 1293 mask &= ~((i<<2)|0x2); 1294 sc->sc_hwbssidmask[0] |= mask; 1295 } 1296 } 1297 1298 /* 1299 * Assign a beacon xmit slot. We try to space out 1300 * assignments so when beacons are staggered the 1301 * traffic coming out of the cab q has maximal time 1302 * to go out before the next beacon is scheduled. 1303 */ 1304 static int 1305 assign_bslot(struct ath_softc *sc) 1306 { 1307 u_int slot, free; 1308 1309 free = 0; 1310 for (slot = 0; slot < ATH_BCBUF; slot++) 1311 if (sc->sc_bslot[slot] == NULL) { 1312 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1313 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1314 return slot; 1315 free = slot; 1316 /* NB: keep looking for a double slot */ 1317 } 1318 return free; 1319 } 1320 1321 static struct ieee80211vap * 1322 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1323 enum ieee80211_opmode opmode, int flags, 1324 const uint8_t bssid[IEEE80211_ADDR_LEN], 1325 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1326 { 1327 struct ath_softc *sc = ic->ic_ifp->if_softc; 1328 struct ath_vap *avp; 1329 struct ieee80211vap *vap; 1330 uint8_t mac[IEEE80211_ADDR_LEN]; 1331 int needbeacon, error; 1332 enum ieee80211_opmode ic_opmode; 1333 1334 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1335 M_80211_VAP, M_WAITOK | M_ZERO); 1336 needbeacon = 0; 1337 IEEE80211_ADDR_COPY(mac, mac0); 1338 1339 ATH_LOCK(sc); 1340 ic_opmode = opmode; /* default to opmode of new vap */ 1341 switch (opmode) { 1342 case IEEE80211_M_STA: 1343 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1344 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1345 goto bad; 1346 } 1347 if (sc->sc_nvaps) { 1348 /* 1349 * With multiple vaps we must fall back 1350 * to s/w beacon miss handling. 1351 */ 1352 flags |= IEEE80211_CLONE_NOBEACONS; 1353 } 1354 if (flags & IEEE80211_CLONE_NOBEACONS) { 1355 /* 1356 * Station mode w/o beacons are implemented w/ AP mode. 1357 */ 1358 ic_opmode = IEEE80211_M_HOSTAP; 1359 } 1360 break; 1361 case IEEE80211_M_IBSS: 1362 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1363 device_printf(sc->sc_dev, 1364 "only 1 ibss vap supported\n"); 1365 goto bad; 1366 } 1367 needbeacon = 1; 1368 break; 1369 case IEEE80211_M_AHDEMO: 1370 #ifdef IEEE80211_SUPPORT_TDMA 1371 if (flags & IEEE80211_CLONE_TDMA) { 1372 if (sc->sc_nvaps != 0) { 1373 device_printf(sc->sc_dev, 1374 "only 1 tdma vap supported\n"); 1375 goto bad; 1376 } 1377 needbeacon = 1; 1378 flags |= IEEE80211_CLONE_NOBEACONS; 1379 } 1380 /* fall thru... */ 1381 #endif 1382 case IEEE80211_M_MONITOR: 1383 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1384 /* 1385 * Adopt existing mode. Adding a monitor or ahdemo 1386 * vap to an existing configuration is of dubious 1387 * value but should be ok. 1388 */ 1389 /* XXX not right for monitor mode */ 1390 ic_opmode = ic->ic_opmode; 1391 } 1392 break; 1393 case IEEE80211_M_HOSTAP: 1394 case IEEE80211_M_MBSS: 1395 needbeacon = 1; 1396 break; 1397 case IEEE80211_M_WDS: 1398 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1399 device_printf(sc->sc_dev, 1400 "wds not supported in sta mode\n"); 1401 goto bad; 1402 } 1403 /* 1404 * Silently remove any request for a unique 1405 * bssid; WDS vap's always share the local 1406 * mac address. 1407 */ 1408 flags &= ~IEEE80211_CLONE_BSSID; 1409 if (sc->sc_nvaps == 0) 1410 ic_opmode = IEEE80211_M_HOSTAP; 1411 else 1412 ic_opmode = ic->ic_opmode; 1413 break; 1414 default: 1415 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1416 goto bad; 1417 } 1418 /* 1419 * Check that a beacon buffer is available; the code below assumes it. 1420 */ 1421 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1422 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1423 goto bad; 1424 } 1425 1426 /* STA, AHDEMO? */ 1427 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1428 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1429 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1430 } 1431 1432 vap = &avp->av_vap; 1433 /* XXX can't hold mutex across if_alloc */ 1434 ATH_UNLOCK(sc); 1435 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1436 bssid, mac); 1437 ATH_LOCK(sc); 1438 if (error != 0) { 1439 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1440 __func__, error); 1441 goto bad2; 1442 } 1443 1444 /* h/w crypto support */ 1445 vap->iv_key_alloc = ath_key_alloc; 1446 vap->iv_key_delete = ath_key_delete; 1447 vap->iv_key_set = ath_key_set; 1448 vap->iv_key_update_begin = ath_key_update_begin; 1449 vap->iv_key_update_end = ath_key_update_end; 1450 1451 /* override various methods */ 1452 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1453 vap->iv_recv_mgmt = ath_recv_mgmt; 1454 vap->iv_reset = ath_reset_vap; 1455 vap->iv_update_beacon = ath_beacon_update; 1456 avp->av_newstate = vap->iv_newstate; 1457 vap->iv_newstate = ath_newstate; 1458 avp->av_bmiss = vap->iv_bmiss; 1459 vap->iv_bmiss = ath_bmiss_vap; 1460 1461 avp->av_node_ps = vap->iv_node_ps; 1462 vap->iv_node_ps = ath_node_powersave; 1463 1464 avp->av_set_tim = vap->iv_set_tim; 1465 vap->iv_set_tim = ath_node_set_tim; 1466 1467 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1468 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1469 1470 /* Set default parameters */ 1471 1472 /* 1473 * Anything earlier than some AR9300 series MACs don't 1474 * support a smaller MPDU density. 1475 */ 1476 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1477 /* 1478 * All NICs can handle the maximum size, however 1479 * AR5416 based MACs can only TX aggregates w/ RTS 1480 * protection when the total aggregate size is <= 8k. 1481 * However, for now that's enforced by the TX path. 1482 */ 1483 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1484 1485 avp->av_bslot = -1; 1486 if (needbeacon) { 1487 /* 1488 * Allocate beacon state and setup the q for buffered 1489 * multicast frames. We know a beacon buffer is 1490 * available because we checked above. 1491 */ 1492 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1493 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1494 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1495 /* 1496 * Assign the vap to a beacon xmit slot. As above 1497 * this cannot fail to find a free one. 1498 */ 1499 avp->av_bslot = assign_bslot(sc); 1500 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1501 ("beacon slot %u not empty", avp->av_bslot)); 1502 sc->sc_bslot[avp->av_bslot] = vap; 1503 sc->sc_nbcnvaps++; 1504 } 1505 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1506 /* 1507 * Multple vaps are to transmit beacons and we 1508 * have h/w support for TSF adjusting; enable 1509 * use of staggered beacons. 1510 */ 1511 sc->sc_stagbeacons = 1; 1512 } 1513 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1514 } 1515 1516 ic->ic_opmode = ic_opmode; 1517 if (opmode != IEEE80211_M_WDS) { 1518 sc->sc_nvaps++; 1519 if (opmode == IEEE80211_M_STA) 1520 sc->sc_nstavaps++; 1521 if (opmode == IEEE80211_M_MBSS) 1522 sc->sc_nmeshvaps++; 1523 } 1524 switch (ic_opmode) { 1525 case IEEE80211_M_IBSS: 1526 sc->sc_opmode = HAL_M_IBSS; 1527 break; 1528 case IEEE80211_M_STA: 1529 sc->sc_opmode = HAL_M_STA; 1530 break; 1531 case IEEE80211_M_AHDEMO: 1532 #ifdef IEEE80211_SUPPORT_TDMA 1533 if (vap->iv_caps & IEEE80211_C_TDMA) { 1534 sc->sc_tdma = 1; 1535 /* NB: disable tsf adjust */ 1536 sc->sc_stagbeacons = 0; 1537 } 1538 /* 1539 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1540 * just ap mode. 1541 */ 1542 /* fall thru... */ 1543 #endif 1544 case IEEE80211_M_HOSTAP: 1545 case IEEE80211_M_MBSS: 1546 sc->sc_opmode = HAL_M_HOSTAP; 1547 break; 1548 case IEEE80211_M_MONITOR: 1549 sc->sc_opmode = HAL_M_MONITOR; 1550 break; 1551 default: 1552 /* XXX should not happen */ 1553 break; 1554 } 1555 if (sc->sc_hastsfadd) { 1556 /* 1557 * Configure whether or not TSF adjust should be done. 1558 */ 1559 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1560 } 1561 if (flags & IEEE80211_CLONE_NOBEACONS) { 1562 /* 1563 * Enable s/w beacon miss handling. 1564 */ 1565 sc->sc_swbmiss = 1; 1566 } 1567 ATH_UNLOCK(sc); 1568 1569 /* complete setup */ 1570 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1571 return vap; 1572 bad2: 1573 reclaim_address(sc, mac); 1574 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1575 bad: 1576 free(avp, M_80211_VAP); 1577 ATH_UNLOCK(sc); 1578 return NULL; 1579 } 1580 1581 static void 1582 ath_vap_delete(struct ieee80211vap *vap) 1583 { 1584 struct ieee80211com *ic = vap->iv_ic; 1585 struct ifnet *ifp = ic->ic_ifp; 1586 struct ath_softc *sc = ifp->if_softc; 1587 struct ath_hal *ah = sc->sc_ah; 1588 struct ath_vap *avp = ATH_VAP(vap); 1589 1590 ATH_LOCK(sc); 1591 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1592 ATH_UNLOCK(sc); 1593 1594 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1595 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1596 /* 1597 * Quiesce the hardware while we remove the vap. In 1598 * particular we need to reclaim all references to 1599 * the vap state by any frames pending on the tx queues. 1600 */ 1601 ath_hal_intrset(ah, 0); /* disable interrupts */ 1602 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1603 /* XXX Do all frames from all vaps/nodes need draining here? */ 1604 ath_stoprecv(sc, 1); /* stop recv side */ 1605 } 1606 1607 /* .. leave the hardware awake for now. */ 1608 1609 ieee80211_vap_detach(vap); 1610 1611 /* 1612 * XXX Danger Will Robinson! Danger! 1613 * 1614 * Because ieee80211_vap_detach() can queue a frame (the station 1615 * diassociate message?) after we've drained the TXQ and 1616 * flushed the software TXQ, we will end up with a frame queued 1617 * to a node whose vap is about to be freed. 1618 * 1619 * To work around this, flush the hardware/software again. 1620 * This may be racy - the ath task may be running and the packet 1621 * may be being scheduled between sw->hw txq. Tsk. 1622 * 1623 * TODO: figure out why a new node gets allocated somewhere around 1624 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1625 * call!) 1626 */ 1627 1628 ath_draintxq(sc, ATH_RESET_DEFAULT); 1629 1630 ATH_LOCK(sc); 1631 /* 1632 * Reclaim beacon state. Note this must be done before 1633 * the vap instance is reclaimed as we may have a reference 1634 * to it in the buffer for the beacon frame. 1635 */ 1636 if (avp->av_bcbuf != NULL) { 1637 if (avp->av_bslot != -1) { 1638 sc->sc_bslot[avp->av_bslot] = NULL; 1639 sc->sc_nbcnvaps--; 1640 } 1641 ath_beacon_return(sc, avp->av_bcbuf); 1642 avp->av_bcbuf = NULL; 1643 if (sc->sc_nbcnvaps == 0) { 1644 sc->sc_stagbeacons = 0; 1645 if (sc->sc_hastsfadd) 1646 ath_hal_settsfadjust(sc->sc_ah, 0); 1647 } 1648 /* 1649 * Reclaim any pending mcast frames for the vap. 1650 */ 1651 ath_tx_draintxq(sc, &avp->av_mcastq); 1652 } 1653 /* 1654 * Update bookkeeping. 1655 */ 1656 if (vap->iv_opmode == IEEE80211_M_STA) { 1657 sc->sc_nstavaps--; 1658 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1659 sc->sc_swbmiss = 0; 1660 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1661 vap->iv_opmode == IEEE80211_M_MBSS) { 1662 reclaim_address(sc, vap->iv_myaddr); 1663 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1664 if (vap->iv_opmode == IEEE80211_M_MBSS) 1665 sc->sc_nmeshvaps--; 1666 } 1667 if (vap->iv_opmode != IEEE80211_M_WDS) 1668 sc->sc_nvaps--; 1669 #ifdef IEEE80211_SUPPORT_TDMA 1670 /* TDMA operation ceases when the last vap is destroyed */ 1671 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1672 sc->sc_tdma = 0; 1673 sc->sc_swbmiss = 0; 1674 } 1675 #endif 1676 free(avp, M_80211_VAP); 1677 1678 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1679 /* 1680 * Restart rx+tx machines if still running (RUNNING will 1681 * be reset if we just destroyed the last vap). 1682 */ 1683 if (ath_startrecv(sc) != 0) 1684 if_printf(ifp, "%s: unable to restart recv logic\n", 1685 __func__); 1686 if (sc->sc_beacons) { /* restart beacons */ 1687 #ifdef IEEE80211_SUPPORT_TDMA 1688 if (sc->sc_tdma) 1689 ath_tdma_config(sc, NULL); 1690 else 1691 #endif 1692 ath_beacon_config(sc, NULL); 1693 } 1694 ath_hal_intrset(ah, sc->sc_imask); 1695 } 1696 1697 /* Ok, let the hardware asleep. */ 1698 ath_power_restore_power_state(sc); 1699 ATH_UNLOCK(sc); 1700 } 1701 1702 void 1703 ath_suspend(struct ath_softc *sc) 1704 { 1705 struct ifnet *ifp = sc->sc_ifp; 1706 struct ieee80211com *ic = ifp->if_l2com; 1707 1708 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1709 __func__, ifp->if_flags); 1710 1711 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1712 1713 ieee80211_suspend_all(ic); 1714 /* 1715 * NB: don't worry about putting the chip in low power 1716 * mode; pci will power off our socket on suspend and 1717 * CardBus detaches the device. 1718 */ 1719 1720 /* 1721 * XXX ensure none of the taskqueues are running 1722 * XXX ensure sc_invalid is 1 1723 * XXX ensure the calibration callout is disabled 1724 */ 1725 1726 /* Disable the PCIe PHY, complete with workarounds */ 1727 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1728 } 1729 1730 /* 1731 * Reset the key cache since some parts do not reset the 1732 * contents on resume. First we clear all entries, then 1733 * re-load keys that the 802.11 layer assumes are setup 1734 * in h/w. 1735 */ 1736 static void 1737 ath_reset_keycache(struct ath_softc *sc) 1738 { 1739 struct ifnet *ifp = sc->sc_ifp; 1740 struct ieee80211com *ic = ifp->if_l2com; 1741 struct ath_hal *ah = sc->sc_ah; 1742 int i; 1743 1744 ATH_LOCK(sc); 1745 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1746 for (i = 0; i < sc->sc_keymax; i++) 1747 ath_hal_keyreset(ah, i); 1748 ath_power_restore_power_state(sc); 1749 ATH_UNLOCK(sc); 1750 ieee80211_crypto_reload_keys(ic); 1751 } 1752 1753 /* 1754 * Fetch the current chainmask configuration based on the current 1755 * operating channel and options. 1756 */ 1757 static void 1758 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1759 { 1760 1761 /* 1762 * Set TX chainmask to the currently configured chainmask; 1763 * the TX chainmask depends upon the current operating mode. 1764 */ 1765 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1766 if (IEEE80211_IS_CHAN_HT(chan)) { 1767 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1768 } else { 1769 sc->sc_cur_txchainmask = 1; 1770 } 1771 1772 DPRINTF(sc, ATH_DEBUG_RESET, 1773 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1774 __func__, 1775 sc->sc_cur_txchainmask, 1776 sc->sc_cur_rxchainmask); 1777 } 1778 1779 void 1780 ath_resume(struct ath_softc *sc) 1781 { 1782 struct ifnet *ifp = sc->sc_ifp; 1783 struct ieee80211com *ic = ifp->if_l2com; 1784 struct ath_hal *ah = sc->sc_ah; 1785 HAL_STATUS status; 1786 1787 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1788 __func__, ifp->if_flags); 1789 1790 /* Re-enable PCIe, re-enable the PCIe bus */ 1791 ath_hal_enablepcie(ah, 0, 0); 1792 1793 /* 1794 * Must reset the chip before we reload the 1795 * keycache as we were powered down on suspend. 1796 */ 1797 ath_update_chainmasks(sc, 1798 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1799 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1800 sc->sc_cur_rxchainmask); 1801 1802 /* Ensure we set the current power state to on */ 1803 ATH_LOCK(sc); 1804 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1805 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1806 ath_power_setpower(sc, HAL_PM_AWAKE); 1807 ATH_UNLOCK(sc); 1808 1809 ath_hal_reset(ah, sc->sc_opmode, 1810 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1811 AH_FALSE, &status); 1812 ath_reset_keycache(sc); 1813 1814 /* Let DFS at it in case it's a DFS channel */ 1815 ath_dfs_radar_enable(sc, ic->ic_curchan); 1816 1817 /* Let spectral at in case spectral is enabled */ 1818 ath_spectral_enable(sc, ic->ic_curchan); 1819 1820 /* 1821 * Let bluetooth coexistence at in case it's needed for this channel 1822 */ 1823 ath_btcoex_enable(sc, ic->ic_curchan); 1824 1825 /* 1826 * If we're doing TDMA, enforce the TXOP limitation for chips that 1827 * support it. 1828 */ 1829 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1830 ath_hal_setenforcetxop(sc->sc_ah, 1); 1831 else 1832 ath_hal_setenforcetxop(sc->sc_ah, 0); 1833 1834 /* Restore the LED configuration */ 1835 ath_led_config(sc); 1836 ath_hal_setledstate(ah, HAL_LED_INIT); 1837 1838 if (sc->sc_resume_up) 1839 ieee80211_resume_all(ic); 1840 1841 ATH_LOCK(sc); 1842 ath_power_restore_power_state(sc); 1843 ATH_UNLOCK(sc); 1844 1845 /* XXX beacons ? */ 1846 } 1847 1848 void 1849 ath_shutdown(struct ath_softc *sc) 1850 { 1851 struct ifnet *ifp = sc->sc_ifp; 1852 1853 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1854 __func__, ifp->if_flags); 1855 1856 ath_stop(ifp); 1857 /* NB: no point powering down chip as we're about to reboot */ 1858 } 1859 1860 /* 1861 * Interrupt handler. Most of the actual processing is deferred. 1862 */ 1863 void 1864 ath_intr(void *arg) 1865 { 1866 struct ath_softc *sc = arg; 1867 struct ifnet *ifp = sc->sc_ifp; 1868 struct ath_hal *ah = sc->sc_ah; 1869 HAL_INT status = 0; 1870 uint32_t txqs; 1871 1872 /* 1873 * If we're inside a reset path, just print a warning and 1874 * clear the ISR. The reset routine will finish it for us. 1875 */ 1876 ATH_PCU_LOCK(sc); 1877 if (sc->sc_inreset_cnt) { 1878 HAL_INT status; 1879 ath_hal_getisr(ah, &status); /* clear ISR */ 1880 ath_hal_intrset(ah, 0); /* disable further intr's */ 1881 DPRINTF(sc, ATH_DEBUG_ANY, 1882 "%s: in reset, ignoring: status=0x%x\n", 1883 __func__, status); 1884 ATH_PCU_UNLOCK(sc); 1885 return; 1886 } 1887 1888 if (sc->sc_invalid) { 1889 /* 1890 * The hardware is not ready/present, don't touch anything. 1891 * Note this can happen early on if the IRQ is shared. 1892 */ 1893 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1894 ATH_PCU_UNLOCK(sc); 1895 return; 1896 } 1897 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1898 ATH_PCU_UNLOCK(sc); 1899 return; 1900 } 1901 1902 ATH_LOCK(sc); 1903 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1904 ATH_UNLOCK(sc); 1905 1906 if ((ifp->if_flags & IFF_UP) == 0 || 1907 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1908 HAL_INT status; 1909 1910 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1911 __func__, ifp->if_flags); 1912 ath_hal_getisr(ah, &status); /* clear ISR */ 1913 ath_hal_intrset(ah, 0); /* disable further intr's */ 1914 ATH_PCU_UNLOCK(sc); 1915 1916 ATH_LOCK(sc); 1917 ath_power_restore_power_state(sc); 1918 ATH_UNLOCK(sc); 1919 return; 1920 } 1921 1922 /* 1923 * Figure out the reason(s) for the interrupt. Note 1924 * that the hal returns a pseudo-ISR that may include 1925 * bits we haven't explicitly enabled so we mask the 1926 * value to insure we only process bits we requested. 1927 */ 1928 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1929 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1930 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1931 #ifdef ATH_DEBUG_ALQ 1932 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1933 ah->ah_syncstate); 1934 #endif /* ATH_DEBUG_ALQ */ 1935 #ifdef ATH_KTR_INTR_DEBUG 1936 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1937 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1938 ah->ah_intrstate[0], 1939 ah->ah_intrstate[1], 1940 ah->ah_intrstate[2], 1941 ah->ah_intrstate[3], 1942 ah->ah_intrstate[6]); 1943 #endif 1944 1945 /* Squirrel away SYNC interrupt debugging */ 1946 if (ah->ah_syncstate != 0) { 1947 int i; 1948 for (i = 0; i < 32; i++) 1949 if (ah->ah_syncstate & (i << i)) 1950 sc->sc_intr_stats.sync_intr[i]++; 1951 } 1952 1953 status &= sc->sc_imask; /* discard unasked for bits */ 1954 1955 /* Short-circuit un-handled interrupts */ 1956 if (status == 0x0) { 1957 ATH_PCU_UNLOCK(sc); 1958 1959 ATH_LOCK(sc); 1960 ath_power_restore_power_state(sc); 1961 ATH_UNLOCK(sc); 1962 1963 return; 1964 } 1965 1966 /* 1967 * Take a note that we're inside the interrupt handler, so 1968 * the reset routines know to wait. 1969 */ 1970 sc->sc_intr_cnt++; 1971 ATH_PCU_UNLOCK(sc); 1972 1973 /* 1974 * Handle the interrupt. We won't run concurrent with the reset 1975 * or channel change routines as they'll wait for sc_intr_cnt 1976 * to be 0 before continuing. 1977 */ 1978 if (status & HAL_INT_FATAL) { 1979 sc->sc_stats.ast_hardware++; 1980 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1981 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1982 } else { 1983 if (status & HAL_INT_SWBA) { 1984 /* 1985 * Software beacon alert--time to send a beacon. 1986 * Handle beacon transmission directly; deferring 1987 * this is too slow to meet timing constraints 1988 * under load. 1989 */ 1990 #ifdef IEEE80211_SUPPORT_TDMA 1991 if (sc->sc_tdma) { 1992 if (sc->sc_tdmaswba == 0) { 1993 struct ieee80211com *ic = ifp->if_l2com; 1994 struct ieee80211vap *vap = 1995 TAILQ_FIRST(&ic->ic_vaps); 1996 ath_tdma_beacon_send(sc, vap); 1997 sc->sc_tdmaswba = 1998 vap->iv_tdma->tdma_bintval; 1999 } else 2000 sc->sc_tdmaswba--; 2001 } else 2002 #endif 2003 { 2004 ath_beacon_proc(sc, 0); 2005 #ifdef IEEE80211_SUPPORT_SUPERG 2006 /* 2007 * Schedule the rx taskq in case there's no 2008 * traffic so any frames held on the staging 2009 * queue are aged and potentially flushed. 2010 */ 2011 sc->sc_rx.recv_sched(sc, 1); 2012 #endif 2013 } 2014 } 2015 if (status & HAL_INT_RXEOL) { 2016 int imask; 2017 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2018 ATH_PCU_LOCK(sc); 2019 /* 2020 * NB: the hardware should re-read the link when 2021 * RXE bit is written, but it doesn't work at 2022 * least on older hardware revs. 2023 */ 2024 sc->sc_stats.ast_rxeol++; 2025 /* 2026 * Disable RXEOL/RXORN - prevent an interrupt 2027 * storm until the PCU logic can be reset. 2028 * In case the interface is reset some other 2029 * way before "sc_kickpcu" is called, don't 2030 * modify sc_imask - that way if it is reset 2031 * by a call to ath_reset() somehow, the 2032 * interrupt mask will be correctly reprogrammed. 2033 */ 2034 imask = sc->sc_imask; 2035 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2036 ath_hal_intrset(ah, imask); 2037 /* 2038 * Only blank sc_rxlink if we've not yet kicked 2039 * the PCU. 2040 * 2041 * This isn't entirely correct - the correct solution 2042 * would be to have a PCU lock and engage that for 2043 * the duration of the PCU fiddling; which would include 2044 * running the RX process. Otherwise we could end up 2045 * messing up the RX descriptor chain and making the 2046 * RX desc list much shorter. 2047 */ 2048 if (! sc->sc_kickpcu) 2049 sc->sc_rxlink = NULL; 2050 sc->sc_kickpcu = 1; 2051 ATH_PCU_UNLOCK(sc); 2052 /* 2053 * Enqueue an RX proc, to handled whatever 2054 * is in the RX queue. 2055 * This will then kick the PCU. 2056 */ 2057 sc->sc_rx.recv_sched(sc, 1); 2058 } 2059 if (status & HAL_INT_TXURN) { 2060 sc->sc_stats.ast_txurn++; 2061 /* bump tx trigger level */ 2062 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2063 } 2064 /* 2065 * Handle both the legacy and RX EDMA interrupt bits. 2066 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2067 */ 2068 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2069 sc->sc_stats.ast_rx_intr++; 2070 sc->sc_rx.recv_sched(sc, 1); 2071 } 2072 if (status & HAL_INT_TX) { 2073 sc->sc_stats.ast_tx_intr++; 2074 /* 2075 * Grab all the currently set bits in the HAL txq bitmap 2076 * and blank them. This is the only place we should be 2077 * doing this. 2078 */ 2079 if (! sc->sc_isedma) { 2080 ATH_PCU_LOCK(sc); 2081 txqs = 0xffffffff; 2082 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2083 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2084 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2085 txqs, 2086 sc->sc_txq_active, 2087 sc->sc_txq_active | txqs); 2088 sc->sc_txq_active |= txqs; 2089 ATH_PCU_UNLOCK(sc); 2090 } 2091 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2092 } 2093 if (status & HAL_INT_BMISS) { 2094 sc->sc_stats.ast_bmiss++; 2095 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2096 } 2097 if (status & HAL_INT_GTT) 2098 sc->sc_stats.ast_tx_timeout++; 2099 if (status & HAL_INT_CST) 2100 sc->sc_stats.ast_tx_cst++; 2101 if (status & HAL_INT_MIB) { 2102 sc->sc_stats.ast_mib++; 2103 ATH_PCU_LOCK(sc); 2104 /* 2105 * Disable interrupts until we service the MIB 2106 * interrupt; otherwise it will continue to fire. 2107 */ 2108 ath_hal_intrset(ah, 0); 2109 /* 2110 * Let the hal handle the event. We assume it will 2111 * clear whatever condition caused the interrupt. 2112 */ 2113 ath_hal_mibevent(ah, &sc->sc_halstats); 2114 /* 2115 * Don't reset the interrupt if we've just 2116 * kicked the PCU, or we may get a nested 2117 * RXEOL before the rxproc has had a chance 2118 * to run. 2119 */ 2120 if (sc->sc_kickpcu == 0) 2121 ath_hal_intrset(ah, sc->sc_imask); 2122 ATH_PCU_UNLOCK(sc); 2123 } 2124 if (status & HAL_INT_RXORN) { 2125 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2126 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2127 sc->sc_stats.ast_rxorn++; 2128 } 2129 if (status & HAL_INT_TSFOOR) { 2130 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2131 sc->sc_syncbeacon = 1; 2132 } 2133 } 2134 ATH_PCU_LOCK(sc); 2135 sc->sc_intr_cnt--; 2136 ATH_PCU_UNLOCK(sc); 2137 2138 ATH_LOCK(sc); 2139 ath_power_restore_power_state(sc); 2140 ATH_UNLOCK(sc); 2141 } 2142 2143 static void 2144 ath_fatal_proc(void *arg, int pending) 2145 { 2146 struct ath_softc *sc = arg; 2147 struct ifnet *ifp = sc->sc_ifp; 2148 u_int32_t *state; 2149 u_int32_t len; 2150 void *sp; 2151 2152 if_printf(ifp, "hardware error; resetting\n"); 2153 /* 2154 * Fatal errors are unrecoverable. Typically these 2155 * are caused by DMA errors. Collect h/w state from 2156 * the hal so we can diagnose what's going on. 2157 */ 2158 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2159 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2160 state = sp; 2161 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 2162 state[0], state[1] , state[2], state[3], 2163 state[4], state[5]); 2164 } 2165 ath_reset(ifp, ATH_RESET_NOLOSS); 2166 } 2167 2168 static void 2169 ath_bmiss_vap(struct ieee80211vap *vap) 2170 { 2171 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2172 2173 /* 2174 * Workaround phantom bmiss interrupts by sanity-checking 2175 * the time of our last rx'd frame. If it is within the 2176 * beacon miss interval then ignore the interrupt. If it's 2177 * truly a bmiss we'll get another interrupt soon and that'll 2178 * be dispatched up for processing. Note this applies only 2179 * for h/w beacon miss events. 2180 */ 2181 2182 /* 2183 * XXX TODO: Just read the TSF during the interrupt path; 2184 * that way we don't have to wake up again just to read it 2185 * again. 2186 */ 2187 ATH_LOCK(sc); 2188 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2189 ATH_UNLOCK(sc); 2190 2191 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2192 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2193 struct ath_softc *sc = ifp->if_softc; 2194 u_int64_t lastrx = sc->sc_lastrx; 2195 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2196 /* XXX should take a locked ref to iv_bss */ 2197 u_int bmisstimeout = 2198 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2199 2200 DPRINTF(sc, ATH_DEBUG_BEACON, 2201 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2202 __func__, (unsigned long long) tsf, 2203 (unsigned long long)(tsf - lastrx), 2204 (unsigned long long) lastrx, bmisstimeout); 2205 2206 if (tsf - lastrx <= bmisstimeout) { 2207 sc->sc_stats.ast_bmiss_phantom++; 2208 2209 ATH_LOCK(sc); 2210 ath_power_restore_power_state(sc); 2211 ATH_UNLOCK(sc); 2212 2213 return; 2214 } 2215 } 2216 2217 /* 2218 * There's no need to keep the hardware awake during the call 2219 * to av_bmiss(). 2220 */ 2221 ATH_LOCK(sc); 2222 ath_power_restore_power_state(sc); 2223 ATH_UNLOCK(sc); 2224 2225 /* 2226 * Attempt to force a beacon resync. 2227 */ 2228 sc->sc_syncbeacon = 1; 2229 2230 ATH_VAP(vap)->av_bmiss(vap); 2231 } 2232 2233 /* XXX this needs a force wakeup! */ 2234 int 2235 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2236 { 2237 uint32_t rsize; 2238 void *sp; 2239 2240 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2241 return 0; 2242 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2243 *hangs = *(uint32_t *)sp; 2244 return 1; 2245 } 2246 2247 static void 2248 ath_bmiss_proc(void *arg, int pending) 2249 { 2250 struct ath_softc *sc = arg; 2251 struct ifnet *ifp = sc->sc_ifp; 2252 uint32_t hangs; 2253 2254 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2255 2256 ATH_LOCK(sc); 2257 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2258 ATH_UNLOCK(sc); 2259 2260 ath_beacon_miss(sc); 2261 2262 /* 2263 * Do a reset upon any becaon miss event. 2264 * 2265 * It may be a non-recognised RX clear hang which needs a reset 2266 * to clear. 2267 */ 2268 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2269 ath_reset(ifp, ATH_RESET_NOLOSS); 2270 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 2271 } else { 2272 ath_reset(ifp, ATH_RESET_NOLOSS); 2273 ieee80211_beacon_miss(ifp->if_l2com); 2274 } 2275 2276 /* Force a beacon resync, in case they've drifted */ 2277 sc->sc_syncbeacon = 1; 2278 2279 ATH_LOCK(sc); 2280 ath_power_restore_power_state(sc); 2281 ATH_UNLOCK(sc); 2282 } 2283 2284 /* 2285 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2286 * calcs together with WME. If necessary disable the crypto 2287 * hardware and mark the 802.11 state so keys will be setup 2288 * with the MIC work done in software. 2289 */ 2290 static void 2291 ath_settkipmic(struct ath_softc *sc) 2292 { 2293 struct ifnet *ifp = sc->sc_ifp; 2294 struct ieee80211com *ic = ifp->if_l2com; 2295 2296 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2297 if (ic->ic_flags & IEEE80211_F_WME) { 2298 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2299 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2300 } else { 2301 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2302 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2303 } 2304 } 2305 } 2306 2307 static void 2308 ath_init(void *arg) 2309 { 2310 struct ath_softc *sc = (struct ath_softc *) arg; 2311 struct ifnet *ifp = sc->sc_ifp; 2312 struct ieee80211com *ic = ifp->if_l2com; 2313 struct ath_hal *ah = sc->sc_ah; 2314 HAL_STATUS status; 2315 2316 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 2317 __func__, ifp->if_flags); 2318 2319 ATH_LOCK(sc); 2320 /* 2321 * Force the sleep state awake. 2322 */ 2323 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2324 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2325 ath_power_setpower(sc, HAL_PM_AWAKE); 2326 2327 /* 2328 * Stop anything previously setup. This is safe 2329 * whether this is the first time through or not. 2330 */ 2331 ath_stop_locked(ifp); 2332 2333 /* 2334 * The basic interface to setting the hardware in a good 2335 * state is ``reset''. On return the hardware is known to 2336 * be powered up and with interrupts disabled. This must 2337 * be followed by initialization of the appropriate bits 2338 * and then setup of the interrupt mask. 2339 */ 2340 ath_settkipmic(sc); 2341 ath_update_chainmasks(sc, ic->ic_curchan); 2342 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2343 sc->sc_cur_rxchainmask); 2344 2345 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 2346 if_printf(ifp, "unable to reset hardware; hal status %u\n", 2347 status); 2348 ATH_UNLOCK(sc); 2349 return; 2350 } 2351 ath_chan_change(sc, ic->ic_curchan); 2352 2353 /* Let DFS at it in case it's a DFS channel */ 2354 ath_dfs_radar_enable(sc, ic->ic_curchan); 2355 2356 /* Let spectral at in case spectral is enabled */ 2357 ath_spectral_enable(sc, ic->ic_curchan); 2358 2359 /* 2360 * Let bluetooth coexistence at in case it's needed for this channel 2361 */ 2362 ath_btcoex_enable(sc, ic->ic_curchan); 2363 2364 /* 2365 * If we're doing TDMA, enforce the TXOP limitation for chips that 2366 * support it. 2367 */ 2368 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2369 ath_hal_setenforcetxop(sc->sc_ah, 1); 2370 else 2371 ath_hal_setenforcetxop(sc->sc_ah, 0); 2372 2373 /* 2374 * Likewise this is set during reset so update 2375 * state cached in the driver. 2376 */ 2377 sc->sc_diversity = ath_hal_getdiversity(ah); 2378 sc->sc_lastlongcal = 0; 2379 sc->sc_resetcal = 1; 2380 sc->sc_lastcalreset = 0; 2381 sc->sc_lastani = 0; 2382 sc->sc_lastshortcal = 0; 2383 sc->sc_doresetcal = AH_FALSE; 2384 /* 2385 * Beacon timers were cleared here; give ath_newstate() 2386 * a hint that the beacon timers should be poked when 2387 * things transition to the RUN state. 2388 */ 2389 sc->sc_beacons = 0; 2390 2391 /* 2392 * Setup the hardware after reset: the key cache 2393 * is filled as needed and the receive engine is 2394 * set going. Frame transmit is handled entirely 2395 * in the frame output path; there's nothing to do 2396 * here except setup the interrupt mask. 2397 */ 2398 if (ath_startrecv(sc) != 0) { 2399 if_printf(ifp, "unable to start recv logic\n"); 2400 ath_power_restore_power_state(sc); 2401 ATH_UNLOCK(sc); 2402 return; 2403 } 2404 2405 /* 2406 * Enable interrupts. 2407 */ 2408 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2409 | HAL_INT_RXEOL | HAL_INT_RXORN 2410 | HAL_INT_TXURN 2411 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2412 2413 /* 2414 * Enable RX EDMA bits. Note these overlap with 2415 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2416 */ 2417 if (sc->sc_isedma) 2418 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2419 2420 /* 2421 * Enable MIB interrupts when there are hardware phy counters. 2422 * Note we only do this (at the moment) for station mode. 2423 */ 2424 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2425 sc->sc_imask |= HAL_INT_MIB; 2426 2427 /* 2428 * XXX add capability for this. 2429 * 2430 * If we're in STA mode (and maybe IBSS?) then register for 2431 * TSFOOR interrupts. 2432 */ 2433 if (ic->ic_opmode == IEEE80211_M_STA) 2434 sc->sc_imask |= HAL_INT_TSFOOR; 2435 2436 /* Enable global TX timeout and carrier sense timeout if available */ 2437 if (ath_hal_gtxto_supported(ah)) 2438 sc->sc_imask |= HAL_INT_GTT; 2439 2440 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2441 __func__, sc->sc_imask); 2442 2443 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2444 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2445 ath_hal_intrset(ah, sc->sc_imask); 2446 2447 ath_power_restore_power_state(sc); 2448 ATH_UNLOCK(sc); 2449 2450 #ifdef ATH_TX99_DIAG 2451 if (sc->sc_tx99 != NULL) 2452 sc->sc_tx99->start(sc->sc_tx99); 2453 else 2454 #endif 2455 ieee80211_start_all(ic); /* start all vap's */ 2456 } 2457 2458 static void 2459 ath_stop_locked(struct ifnet *ifp) 2460 { 2461 struct ath_softc *sc = ifp->if_softc; 2462 struct ath_hal *ah = sc->sc_ah; 2463 2464 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2465 __func__, sc->sc_invalid, ifp->if_flags); 2466 2467 ATH_LOCK_ASSERT(sc); 2468 2469 /* 2470 * Wake the hardware up before fiddling with it. 2471 */ 2472 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2473 2474 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2475 /* 2476 * Shutdown the hardware and driver: 2477 * reset 802.11 state machine 2478 * turn off timers 2479 * disable interrupts 2480 * turn off the radio 2481 * clear transmit machinery 2482 * clear receive machinery 2483 * drain and release tx queues 2484 * reclaim beacon resources 2485 * power down hardware 2486 * 2487 * Note that some of this work is not possible if the 2488 * hardware is gone (invalid). 2489 */ 2490 #ifdef ATH_TX99_DIAG 2491 if (sc->sc_tx99 != NULL) 2492 sc->sc_tx99->stop(sc->sc_tx99); 2493 #endif 2494 callout_stop(&sc->sc_wd_ch); 2495 sc->sc_wd_timer = 0; 2496 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2497 if (!sc->sc_invalid) { 2498 if (sc->sc_softled) { 2499 callout_stop(&sc->sc_ledtimer); 2500 ath_hal_gpioset(ah, sc->sc_ledpin, 2501 !sc->sc_ledon); 2502 sc->sc_blinking = 0; 2503 } 2504 ath_hal_intrset(ah, 0); 2505 } 2506 ath_draintxq(sc, ATH_RESET_DEFAULT); 2507 if (!sc->sc_invalid) { 2508 ath_stoprecv(sc, 1); 2509 ath_hal_phydisable(ah); 2510 } else 2511 sc->sc_rxlink = NULL; 2512 ath_beacon_free(sc); /* XXX not needed */ 2513 } 2514 2515 /* And now, restore the current power state */ 2516 ath_power_restore_power_state(sc); 2517 } 2518 2519 /* 2520 * Wait until all pending TX/RX has completed. 2521 * 2522 * This waits until all existing transmit, receive and interrupts 2523 * have completed. It's assumed that the caller has first 2524 * grabbed the reset lock so it doesn't try to do overlapping 2525 * chip resets. 2526 */ 2527 #define MAX_TXRX_ITERATIONS 100 2528 static void 2529 ath_txrx_stop_locked(struct ath_softc *sc) 2530 { 2531 int i = MAX_TXRX_ITERATIONS; 2532 2533 ATH_UNLOCK_ASSERT(sc); 2534 ATH_PCU_LOCK_ASSERT(sc); 2535 2536 /* 2537 * Sleep until all the pending operations have completed. 2538 * 2539 * The caller must ensure that reset has been incremented 2540 * or the pending operations may continue being queued. 2541 */ 2542 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2543 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2544 if (i <= 0) 2545 break; 2546 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2547 msecs_to_ticks(10)); 2548 i--; 2549 } 2550 2551 if (i <= 0) 2552 device_printf(sc->sc_dev, 2553 "%s: didn't finish after %d iterations\n", 2554 __func__, MAX_TXRX_ITERATIONS); 2555 } 2556 #undef MAX_TXRX_ITERATIONS 2557 2558 #if 0 2559 static void 2560 ath_txrx_stop(struct ath_softc *sc) 2561 { 2562 ATH_UNLOCK_ASSERT(sc); 2563 ATH_PCU_UNLOCK_ASSERT(sc); 2564 2565 ATH_PCU_LOCK(sc); 2566 ath_txrx_stop_locked(sc); 2567 ATH_PCU_UNLOCK(sc); 2568 } 2569 #endif 2570 2571 static void 2572 ath_txrx_start(struct ath_softc *sc) 2573 { 2574 2575 taskqueue_unblock(sc->sc_tq); 2576 } 2577 2578 /* 2579 * Grab the reset lock, and wait around until noone else 2580 * is trying to do anything with it. 2581 * 2582 * This is totally horrible but we can't hold this lock for 2583 * long enough to do TX/RX or we end up with net80211/ip stack 2584 * LORs and eventual deadlock. 2585 * 2586 * "dowait" signals whether to spin, waiting for the reset 2587 * lock count to reach 0. This should (for now) only be used 2588 * during the reset path, as the rest of the code may not 2589 * be locking-reentrant enough to behave correctly. 2590 * 2591 * Another, cleaner way should be found to serialise all of 2592 * these operations. 2593 */ 2594 #define MAX_RESET_ITERATIONS 25 2595 static int 2596 ath_reset_grablock(struct ath_softc *sc, int dowait) 2597 { 2598 int w = 0; 2599 int i = MAX_RESET_ITERATIONS; 2600 2601 ATH_PCU_LOCK_ASSERT(sc); 2602 do { 2603 if (sc->sc_inreset_cnt == 0) { 2604 w = 1; 2605 break; 2606 } 2607 if (dowait == 0) { 2608 w = 0; 2609 break; 2610 } 2611 ATH_PCU_UNLOCK(sc); 2612 /* 2613 * 1 tick is likely not enough time for long calibrations 2614 * to complete. So we should wait quite a while. 2615 */ 2616 pause("ath_reset_grablock", msecs_to_ticks(100)); 2617 i--; 2618 ATH_PCU_LOCK(sc); 2619 } while (i > 0); 2620 2621 /* 2622 * We always increment the refcounter, regardless 2623 * of whether we succeeded to get it in an exclusive 2624 * way. 2625 */ 2626 sc->sc_inreset_cnt++; 2627 2628 if (i <= 0) 2629 device_printf(sc->sc_dev, 2630 "%s: didn't finish after %d iterations\n", 2631 __func__, MAX_RESET_ITERATIONS); 2632 2633 if (w == 0) 2634 device_printf(sc->sc_dev, 2635 "%s: warning, recursive reset path!\n", 2636 __func__); 2637 2638 return w; 2639 } 2640 #undef MAX_RESET_ITERATIONS 2641 2642 /* 2643 * XXX TODO: write ath_reset_releaselock 2644 */ 2645 2646 static void 2647 ath_stop(struct ifnet *ifp) 2648 { 2649 struct ath_softc *sc = ifp->if_softc; 2650 2651 ATH_LOCK(sc); 2652 ath_stop_locked(ifp); 2653 ATH_UNLOCK(sc); 2654 } 2655 2656 /* 2657 * Reset the hardware w/o losing operational state. This is 2658 * basically a more efficient way of doing ath_stop, ath_init, 2659 * followed by state transitions to the current 802.11 2660 * operational state. Used to recover from various errors and 2661 * to reset or reload hardware state. 2662 */ 2663 int 2664 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2665 { 2666 struct ath_softc *sc = ifp->if_softc; 2667 struct ieee80211com *ic = ifp->if_l2com; 2668 struct ath_hal *ah = sc->sc_ah; 2669 HAL_STATUS status; 2670 int i; 2671 2672 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2673 2674 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2675 ATH_PCU_UNLOCK_ASSERT(sc); 2676 ATH_UNLOCK_ASSERT(sc); 2677 2678 /* Try to (stop any further TX/RX from occuring */ 2679 taskqueue_block(sc->sc_tq); 2680 2681 /* 2682 * Wake the hardware up. 2683 */ 2684 ATH_LOCK(sc); 2685 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2686 ATH_UNLOCK(sc); 2687 2688 ATH_PCU_LOCK(sc); 2689 2690 /* 2691 * Grab the reset lock before TX/RX is stopped. 2692 * 2693 * This is needed to ensure that when the TX/RX actually does finish, 2694 * no further TX/RX/reset runs in parallel with this. 2695 */ 2696 if (ath_reset_grablock(sc, 1) == 0) { 2697 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2698 __func__); 2699 } 2700 2701 /* disable interrupts */ 2702 ath_hal_intrset(ah, 0); 2703 2704 /* 2705 * Now, ensure that any in progress TX/RX completes before we 2706 * continue. 2707 */ 2708 ath_txrx_stop_locked(sc); 2709 2710 ATH_PCU_UNLOCK(sc); 2711 2712 /* 2713 * Should now wait for pending TX/RX to complete 2714 * and block future ones from occuring. This needs to be 2715 * done before the TX queue is drained. 2716 */ 2717 ath_draintxq(sc, reset_type); /* stop xmit side */ 2718 2719 /* 2720 * Regardless of whether we're doing a no-loss flush or 2721 * not, stop the PCU and handle what's in the RX queue. 2722 * That way frames aren't dropped which shouldn't be. 2723 */ 2724 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2725 ath_rx_flush(sc); 2726 2727 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2728 /* NB: indicate channel change so we do a full reset */ 2729 ath_update_chainmasks(sc, ic->ic_curchan); 2730 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2731 sc->sc_cur_rxchainmask); 2732 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2733 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2734 __func__, status); 2735 sc->sc_diversity = ath_hal_getdiversity(ah); 2736 2737 /* Let DFS at it in case it's a DFS channel */ 2738 ath_dfs_radar_enable(sc, ic->ic_curchan); 2739 2740 /* Let spectral at in case spectral is enabled */ 2741 ath_spectral_enable(sc, ic->ic_curchan); 2742 2743 /* 2744 * Let bluetooth coexistence at in case it's needed for this channel 2745 */ 2746 ath_btcoex_enable(sc, ic->ic_curchan); 2747 2748 /* 2749 * If we're doing TDMA, enforce the TXOP limitation for chips that 2750 * support it. 2751 */ 2752 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2753 ath_hal_setenforcetxop(sc->sc_ah, 1); 2754 else 2755 ath_hal_setenforcetxop(sc->sc_ah, 0); 2756 2757 if (ath_startrecv(sc) != 0) /* restart recv */ 2758 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2759 /* 2760 * We may be doing a reset in response to an ioctl 2761 * that changes the channel so update any state that 2762 * might change as a result. 2763 */ 2764 ath_chan_change(sc, ic->ic_curchan); 2765 if (sc->sc_beacons) { /* restart beacons */ 2766 #ifdef IEEE80211_SUPPORT_TDMA 2767 if (sc->sc_tdma) 2768 ath_tdma_config(sc, NULL); 2769 else 2770 #endif 2771 ath_beacon_config(sc, NULL); 2772 } 2773 2774 /* 2775 * Release the reset lock and re-enable interrupts here. 2776 * If an interrupt was being processed in ath_intr(), 2777 * it would disable interrupts at this point. So we have 2778 * to atomically enable interrupts and decrement the 2779 * reset counter - this way ath_intr() doesn't end up 2780 * disabling interrupts without a corresponding enable 2781 * in the rest or channel change path. 2782 * 2783 * Grab the TX reference in case we need to transmit. 2784 * That way a parallel transmit doesn't. 2785 */ 2786 ATH_PCU_LOCK(sc); 2787 sc->sc_inreset_cnt--; 2788 sc->sc_txstart_cnt++; 2789 /* XXX only do this if sc_inreset_cnt == 0? */ 2790 ath_hal_intrset(ah, sc->sc_imask); 2791 ATH_PCU_UNLOCK(sc); 2792 2793 /* 2794 * TX and RX can be started here. If it were started with 2795 * sc_inreset_cnt > 0, the TX and RX path would abort. 2796 * Thus if this is a nested call through the reset or 2797 * channel change code, TX completion will occur but 2798 * RX completion and ath_start / ath_tx_start will not 2799 * run. 2800 */ 2801 2802 /* Restart TX/RX as needed */ 2803 ath_txrx_start(sc); 2804 2805 /* XXX TODO: we need to hold the tx refcount here! */ 2806 2807 /* Restart TX completion and pending TX */ 2808 if (reset_type == ATH_RESET_NOLOSS) { 2809 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2810 if (ATH_TXQ_SETUP(sc, i)) { 2811 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2812 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2813 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2814 2815 ATH_TX_LOCK(sc); 2816 ath_txq_sched(sc, &sc->sc_txq[i]); 2817 ATH_TX_UNLOCK(sc); 2818 } 2819 } 2820 } 2821 2822 /* 2823 * This may have been set during an ath_start() call which 2824 * set this once it detected a concurrent TX was going on. 2825 * So, clear it. 2826 */ 2827 IF_LOCK(&ifp->if_snd); 2828 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2829 IF_UNLOCK(&ifp->if_snd); 2830 2831 ATH_LOCK(sc); 2832 ath_power_restore_power_state(sc); 2833 ATH_UNLOCK(sc); 2834 2835 ATH_PCU_LOCK(sc); 2836 sc->sc_txstart_cnt--; 2837 ATH_PCU_UNLOCK(sc); 2838 2839 /* Handle any frames in the TX queue */ 2840 /* 2841 * XXX should this be done by the caller, rather than 2842 * ath_reset() ? 2843 */ 2844 ath_tx_kick(sc); /* restart xmit */ 2845 return 0; 2846 } 2847 2848 static int 2849 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2850 { 2851 struct ieee80211com *ic = vap->iv_ic; 2852 struct ifnet *ifp = ic->ic_ifp; 2853 struct ath_softc *sc = ifp->if_softc; 2854 struct ath_hal *ah = sc->sc_ah; 2855 2856 switch (cmd) { 2857 case IEEE80211_IOC_TXPOWER: 2858 /* 2859 * If per-packet TPC is enabled, then we have nothing 2860 * to do; otherwise we need to force the global limit. 2861 * All this can happen directly; no need to reset. 2862 */ 2863 if (!ath_hal_gettpc(ah)) 2864 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2865 return 0; 2866 } 2867 /* XXX? Full or NOLOSS? */ 2868 return ath_reset(ifp, ATH_RESET_FULL); 2869 } 2870 2871 struct ath_buf * 2872 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2873 { 2874 struct ath_buf *bf; 2875 2876 ATH_TXBUF_LOCK_ASSERT(sc); 2877 2878 if (btype == ATH_BUFTYPE_MGMT) 2879 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2880 else 2881 bf = TAILQ_FIRST(&sc->sc_txbuf); 2882 2883 if (bf == NULL) { 2884 sc->sc_stats.ast_tx_getnobuf++; 2885 } else { 2886 if (bf->bf_flags & ATH_BUF_BUSY) { 2887 sc->sc_stats.ast_tx_getbusybuf++; 2888 bf = NULL; 2889 } 2890 } 2891 2892 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2893 if (btype == ATH_BUFTYPE_MGMT) 2894 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2895 else { 2896 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2897 sc->sc_txbuf_cnt--; 2898 2899 /* 2900 * This shuldn't happen; however just to be 2901 * safe print a warning and fudge the txbuf 2902 * count. 2903 */ 2904 if (sc->sc_txbuf_cnt < 0) { 2905 device_printf(sc->sc_dev, 2906 "%s: sc_txbuf_cnt < 0?\n", 2907 __func__); 2908 sc->sc_txbuf_cnt = 0; 2909 } 2910 } 2911 } else 2912 bf = NULL; 2913 2914 if (bf == NULL) { 2915 /* XXX should check which list, mgmt or otherwise */ 2916 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2917 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2918 "out of xmit buffers" : "xmit buffer busy"); 2919 return NULL; 2920 } 2921 2922 /* XXX TODO: should do this at buffer list initialisation */ 2923 /* XXX (then, ensure the buffer has the right flag set) */ 2924 bf->bf_flags = 0; 2925 if (btype == ATH_BUFTYPE_MGMT) 2926 bf->bf_flags |= ATH_BUF_MGMT; 2927 else 2928 bf->bf_flags &= (~ATH_BUF_MGMT); 2929 2930 /* Valid bf here; clear some basic fields */ 2931 bf->bf_next = NULL; /* XXX just to be sure */ 2932 bf->bf_last = NULL; /* XXX again, just to be sure */ 2933 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2934 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2935 2936 /* 2937 * Track the descriptor ID only if doing EDMA 2938 */ 2939 if (sc->sc_isedma) { 2940 bf->bf_descid = sc->sc_txbuf_descid; 2941 sc->sc_txbuf_descid++; 2942 } 2943 2944 return bf; 2945 } 2946 2947 /* 2948 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2949 * can't be thrown back on the queue as they could still be 2950 * in use by the hardware. 2951 * 2952 * This duplicates the buffer, or returns NULL. 2953 * 2954 * The descriptor is also copied but the link pointers and 2955 * the DMA segments aren't copied; this frame should thus 2956 * be again passed through the descriptor setup/chain routines 2957 * so the link is correct. 2958 * 2959 * The caller must free the buffer using ath_freebuf(). 2960 */ 2961 struct ath_buf * 2962 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 2963 { 2964 struct ath_buf *tbf; 2965 2966 tbf = ath_getbuf(sc, 2967 (bf->bf_flags & ATH_BUF_MGMT) ? 2968 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2969 if (tbf == NULL) 2970 return NULL; /* XXX failure? Why? */ 2971 2972 /* Copy basics */ 2973 tbf->bf_next = NULL; 2974 tbf->bf_nseg = bf->bf_nseg; 2975 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 2976 tbf->bf_status = bf->bf_status; 2977 tbf->bf_m = bf->bf_m; 2978 tbf->bf_node = bf->bf_node; 2979 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 2980 /* will be setup by the chain/setup function */ 2981 tbf->bf_lastds = NULL; 2982 /* for now, last == self */ 2983 tbf->bf_last = tbf; 2984 tbf->bf_comp = bf->bf_comp; 2985 2986 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2987 2988 /* The caller has to re-init the descriptor + links */ 2989 2990 /* 2991 * Free the DMA mapping here, before we NULL the mbuf. 2992 * We must only call bus_dmamap_unload() once per mbuf chain 2993 * or behaviour is undefined. 2994 */ 2995 if (bf->bf_m != NULL) { 2996 /* 2997 * XXX is this POSTWRITE call required? 2998 */ 2999 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3000 BUS_DMASYNC_POSTWRITE); 3001 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3002 } 3003 3004 bf->bf_m = NULL; 3005 bf->bf_node = NULL; 3006 3007 /* Copy state */ 3008 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3009 3010 return tbf; 3011 } 3012 3013 struct ath_buf * 3014 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3015 { 3016 struct ath_buf *bf; 3017 3018 ATH_TXBUF_LOCK(sc); 3019 bf = _ath_getbuf_locked(sc, btype); 3020 /* 3021 * If a mgmt buffer was requested but we're out of those, 3022 * try requesting a normal one. 3023 */ 3024 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3025 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3026 ATH_TXBUF_UNLOCK(sc); 3027 if (bf == NULL) { 3028 struct ifnet *ifp = sc->sc_ifp; 3029 3030 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3031 sc->sc_stats.ast_tx_qstop++; 3032 IF_LOCK(&ifp->if_snd); 3033 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3034 IF_UNLOCK(&ifp->if_snd); 3035 } 3036 return bf; 3037 } 3038 3039 static void 3040 ath_qflush(struct ifnet *ifp) 3041 { 3042 3043 /* XXX TODO */ 3044 } 3045 3046 /* 3047 * Transmit a single frame. 3048 * 3049 * net80211 will free the node reference if the transmit 3050 * fails, so don't free the node reference here. 3051 */ 3052 static int 3053 ath_transmit(struct ifnet *ifp, struct mbuf *m) 3054 { 3055 struct ieee80211com *ic = ifp->if_l2com; 3056 struct ath_softc *sc = ic->ic_ifp->if_softc; 3057 struct ieee80211_node *ni; 3058 struct mbuf *next; 3059 struct ath_buf *bf; 3060 ath_bufhead frags; 3061 int retval = 0; 3062 3063 /* 3064 * Tell the reset path that we're currently transmitting. 3065 */ 3066 ATH_PCU_LOCK(sc); 3067 if (sc->sc_inreset_cnt > 0) { 3068 DPRINTF(sc, ATH_DEBUG_XMIT, 3069 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3070 ATH_PCU_UNLOCK(sc); 3071 IF_LOCK(&ifp->if_snd); 3072 sc->sc_stats.ast_tx_qstop++; 3073 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3074 IF_UNLOCK(&ifp->if_snd); 3075 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3076 return (ENOBUFS); /* XXX should be EINVAL or? */ 3077 } 3078 sc->sc_txstart_cnt++; 3079 ATH_PCU_UNLOCK(sc); 3080 3081 /* Wake the hardware up already */ 3082 ATH_LOCK(sc); 3083 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3084 ATH_UNLOCK(sc); 3085 3086 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3087 /* 3088 * Grab the TX lock - it's ok to do this here; we haven't 3089 * yet started transmitting. 3090 */ 3091 ATH_TX_LOCK(sc); 3092 3093 /* 3094 * Node reference, if there's one. 3095 */ 3096 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3097 3098 /* 3099 * Enforce how deep a node queue can get. 3100 * 3101 * XXX it would be nicer if we kept an mbuf queue per 3102 * node and only whacked them into ath_bufs when we 3103 * are ready to schedule some traffic from them. 3104 * .. that may come later. 3105 * 3106 * XXX we should also track the per-node hardware queue 3107 * depth so it is easy to limit the _SUM_ of the swq and 3108 * hwq frames. Since we only schedule two HWQ frames 3109 * at a time, this should be OK for now. 3110 */ 3111 if ((!(m->m_flags & M_EAPOL)) && 3112 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3113 sc->sc_stats.ast_tx_nodeq_overflow++; 3114 m_freem(m); 3115 m = NULL; 3116 retval = ENOBUFS; 3117 goto finish; 3118 } 3119 3120 /* 3121 * Check how many TX buffers are available. 3122 * 3123 * If this is for non-EAPOL traffic, just leave some 3124 * space free in order for buffer cloning and raw 3125 * frame transmission to occur. 3126 * 3127 * If it's for EAPOL traffic, ignore this for now. 3128 * Management traffic will be sent via the raw transmit 3129 * method which bypasses this check. 3130 * 3131 * This is needed to ensure that EAPOL frames during 3132 * (re) keying have a chance to go out. 3133 * 3134 * See kern/138379 for more information. 3135 */ 3136 if ((!(m->m_flags & M_EAPOL)) && 3137 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3138 sc->sc_stats.ast_tx_nobuf++; 3139 m_freem(m); 3140 m = NULL; 3141 retval = ENOBUFS; 3142 goto finish; 3143 } 3144 3145 /* 3146 * Grab a TX buffer and associated resources. 3147 * 3148 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3149 * That way even with temporary buffer exhaustion due to 3150 * the data path doesn't leave us without the ability 3151 * to transmit management frames. 3152 * 3153 * Otherwise allocate a normal buffer. 3154 */ 3155 if (m->m_flags & M_EAPOL) 3156 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3157 else 3158 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3159 3160 if (bf == NULL) { 3161 /* 3162 * If we failed to allocate a buffer, fail. 3163 * 3164 * We shouldn't fail normally, due to the check 3165 * above. 3166 */ 3167 sc->sc_stats.ast_tx_nobuf++; 3168 IF_LOCK(&ifp->if_snd); 3169 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3170 IF_UNLOCK(&ifp->if_snd); 3171 m_freem(m); 3172 m = NULL; 3173 retval = ENOBUFS; 3174 goto finish; 3175 } 3176 3177 /* 3178 * At this point we have a buffer; so we need to free it 3179 * if we hit any error conditions. 3180 */ 3181 3182 /* 3183 * Check for fragmentation. If this frame 3184 * has been broken up verify we have enough 3185 * buffers to send all the fragments so all 3186 * go out or none... 3187 */ 3188 TAILQ_INIT(&frags); 3189 if ((m->m_flags & M_FRAG) && 3190 !ath_txfrag_setup(sc, &frags, m, ni)) { 3191 DPRINTF(sc, ATH_DEBUG_XMIT, 3192 "%s: out of txfrag buffers\n", __func__); 3193 sc->sc_stats.ast_tx_nofrag++; 3194 ifp->if_oerrors++; 3195 ath_freetx(m); 3196 goto bad; 3197 } 3198 3199 /* 3200 * At this point if we have any TX fragments, then we will 3201 * have bumped the node reference once for each of those. 3202 */ 3203 3204 /* 3205 * XXX Is there anything actually _enforcing_ that the 3206 * fragments are being transmitted in one hit, rather than 3207 * being interleaved with other transmissions on that 3208 * hardware queue? 3209 * 3210 * The ATH TX output lock is the only thing serialising this 3211 * right now. 3212 */ 3213 3214 /* 3215 * Calculate the "next fragment" length field in ath_buf 3216 * in order to let the transmit path know enough about 3217 * what to next write to the hardware. 3218 */ 3219 if (m->m_flags & M_FRAG) { 3220 struct ath_buf *fbf = bf; 3221 struct ath_buf *n_fbf = NULL; 3222 struct mbuf *fm = m->m_nextpkt; 3223 3224 /* 3225 * We need to walk the list of fragments and set 3226 * the next size to the following buffer. 3227 * However, the first buffer isn't in the frag 3228 * list, so we have to do some gymnastics here. 3229 */ 3230 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3231 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3232 fbf = n_fbf; 3233 fm = fm->m_nextpkt; 3234 } 3235 } 3236 3237 /* 3238 * Bump the ifp output counter. 3239 * 3240 * XXX should use atomics? 3241 */ 3242 ifp->if_opackets++; 3243 nextfrag: 3244 /* 3245 * Pass the frame to the h/w for transmission. 3246 * Fragmented frames have each frag chained together 3247 * with m_nextpkt. We know there are sufficient ath_buf's 3248 * to send all the frags because of work done by 3249 * ath_txfrag_setup. We leave m_nextpkt set while 3250 * calling ath_tx_start so it can use it to extend the 3251 * the tx duration to cover the subsequent frag and 3252 * so it can reclaim all the mbufs in case of an error; 3253 * ath_tx_start clears m_nextpkt once it commits to 3254 * handing the frame to the hardware. 3255 * 3256 * Note: if this fails, then the mbufs are freed but 3257 * not the node reference. 3258 */ 3259 next = m->m_nextpkt; 3260 if (ath_tx_start(sc, ni, bf, m)) { 3261 bad: 3262 ifp->if_oerrors++; 3263 reclaim: 3264 bf->bf_m = NULL; 3265 bf->bf_node = NULL; 3266 ATH_TXBUF_LOCK(sc); 3267 ath_returnbuf_head(sc, bf); 3268 /* 3269 * Free the rest of the node references and 3270 * buffers for the fragment list. 3271 */ 3272 ath_txfrag_cleanup(sc, &frags, ni); 3273 ATH_TXBUF_UNLOCK(sc); 3274 retval = ENOBUFS; 3275 goto finish; 3276 } 3277 3278 /* 3279 * Check here if the node is in power save state. 3280 */ 3281 ath_tx_update_tim(sc, ni, 1); 3282 3283 if (next != NULL) { 3284 /* 3285 * Beware of state changing between frags. 3286 * XXX check sta power-save state? 3287 */ 3288 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3289 DPRINTF(sc, ATH_DEBUG_XMIT, 3290 "%s: flush fragmented packet, state %s\n", 3291 __func__, 3292 ieee80211_state_name[ni->ni_vap->iv_state]); 3293 /* XXX dmamap */ 3294 ath_freetx(next); 3295 goto reclaim; 3296 } 3297 m = next; 3298 bf = TAILQ_FIRST(&frags); 3299 KASSERT(bf != NULL, ("no buf for txfrag")); 3300 TAILQ_REMOVE(&frags, bf, bf_list); 3301 goto nextfrag; 3302 } 3303 3304 /* 3305 * Bump watchdog timer. 3306 */ 3307 sc->sc_wd_timer = 5; 3308 3309 finish: 3310 ATH_TX_UNLOCK(sc); 3311 3312 /* 3313 * Finished transmitting! 3314 */ 3315 ATH_PCU_LOCK(sc); 3316 sc->sc_txstart_cnt--; 3317 ATH_PCU_UNLOCK(sc); 3318 3319 /* Sleep the hardware if required */ 3320 ATH_LOCK(sc); 3321 ath_power_restore_power_state(sc); 3322 ATH_UNLOCK(sc); 3323 3324 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3325 3326 return (retval); 3327 } 3328 3329 static int 3330 ath_media_change(struct ifnet *ifp) 3331 { 3332 int error = ieee80211_media_change(ifp); 3333 /* NB: only the fixed rate can change and that doesn't need a reset */ 3334 return (error == ENETRESET ? 0 : error); 3335 } 3336 3337 /* 3338 * Block/unblock tx+rx processing while a key change is done. 3339 * We assume the caller serializes key management operations 3340 * so we only need to worry about synchronization with other 3341 * uses that originate in the driver. 3342 */ 3343 static void 3344 ath_key_update_begin(struct ieee80211vap *vap) 3345 { 3346 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3347 struct ath_softc *sc = ifp->if_softc; 3348 3349 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3350 taskqueue_block(sc->sc_tq); 3351 } 3352 3353 static void 3354 ath_key_update_end(struct ieee80211vap *vap) 3355 { 3356 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3357 struct ath_softc *sc = ifp->if_softc; 3358 3359 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3360 taskqueue_unblock(sc->sc_tq); 3361 } 3362 3363 static void 3364 ath_update_promisc(struct ifnet *ifp) 3365 { 3366 struct ath_softc *sc = ifp->if_softc; 3367 u_int32_t rfilt; 3368 3369 /* configure rx filter */ 3370 ATH_LOCK(sc); 3371 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3372 rfilt = ath_calcrxfilter(sc); 3373 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3374 ath_power_restore_power_state(sc); 3375 ATH_UNLOCK(sc); 3376 3377 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3378 } 3379 3380 /* 3381 * Driver-internal mcast update call. 3382 * 3383 * Assumes the hardware is already awake. 3384 */ 3385 static void 3386 ath_update_mcast_hw(struct ath_softc *sc) 3387 { 3388 struct ifnet *ifp = sc->sc_ifp; 3389 u_int32_t mfilt[2]; 3390 3391 /* calculate and install multicast filter */ 3392 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3393 struct ifmultiaddr *ifma; 3394 /* 3395 * Merge multicast addresses to form the hardware filter. 3396 */ 3397 mfilt[0] = mfilt[1] = 0; 3398 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 3399 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3400 caddr_t dl; 3401 u_int32_t val; 3402 u_int8_t pos; 3403 3404 /* calculate XOR of eight 6bit values */ 3405 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 3406 val = LE_READ_4(dl + 0); 3407 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3408 val = LE_READ_4(dl + 3); 3409 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3410 pos &= 0x3f; 3411 mfilt[pos / 32] |= (1 << (pos % 32)); 3412 } 3413 if_maddr_runlock(ifp); 3414 } else 3415 mfilt[0] = mfilt[1] = ~0; 3416 3417 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3418 3419 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3420 __func__, mfilt[0], mfilt[1]); 3421 } 3422 3423 /* 3424 * Called from the net80211 layer - force the hardware 3425 * awake before operating. 3426 */ 3427 static void 3428 ath_update_mcast(struct ifnet *ifp) 3429 { 3430 struct ath_softc *sc = ifp->if_softc; 3431 3432 ATH_LOCK(sc); 3433 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3434 ATH_UNLOCK(sc); 3435 3436 ath_update_mcast_hw(sc); 3437 3438 ATH_LOCK(sc); 3439 ath_power_restore_power_state(sc); 3440 ATH_UNLOCK(sc); 3441 } 3442 3443 void 3444 ath_mode_init(struct ath_softc *sc) 3445 { 3446 struct ifnet *ifp = sc->sc_ifp; 3447 struct ath_hal *ah = sc->sc_ah; 3448 u_int32_t rfilt; 3449 3450 /* configure rx filter */ 3451 rfilt = ath_calcrxfilter(sc); 3452 ath_hal_setrxfilter(ah, rfilt); 3453 3454 /* configure operational mode */ 3455 ath_hal_setopmode(ah); 3456 3457 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 3458 "%s: ah=%p, ifp=%p, if_addr=%p\n", 3459 __func__, 3460 ah, 3461 ifp, 3462 (ifp == NULL) ? NULL : ifp->if_addr); 3463 3464 /* handle any link-level address change */ 3465 ath_hal_setmac(ah, IF_LLADDR(ifp)); 3466 3467 /* calculate and install multicast filter */ 3468 ath_update_mcast_hw(sc); 3469 } 3470 3471 /* 3472 * Set the slot time based on the current setting. 3473 */ 3474 void 3475 ath_setslottime(struct ath_softc *sc) 3476 { 3477 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3478 struct ath_hal *ah = sc->sc_ah; 3479 u_int usec; 3480 3481 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3482 usec = 13; 3483 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3484 usec = 21; 3485 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3486 /* honor short/long slot time only in 11g */ 3487 /* XXX shouldn't honor on pure g or turbo g channel */ 3488 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3489 usec = HAL_SLOT_TIME_9; 3490 else 3491 usec = HAL_SLOT_TIME_20; 3492 } else 3493 usec = HAL_SLOT_TIME_9; 3494 3495 DPRINTF(sc, ATH_DEBUG_RESET, 3496 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3497 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3498 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3499 3500 /* Wake up the hardware first before updating the slot time */ 3501 ATH_LOCK(sc); 3502 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3503 ath_hal_setslottime(ah, usec); 3504 ath_power_restore_power_state(sc); 3505 sc->sc_updateslot = OK; 3506 ATH_UNLOCK(sc); 3507 } 3508 3509 /* 3510 * Callback from the 802.11 layer to update the 3511 * slot time based on the current setting. 3512 */ 3513 static void 3514 ath_updateslot(struct ifnet *ifp) 3515 { 3516 struct ath_softc *sc = ifp->if_softc; 3517 struct ieee80211com *ic = ifp->if_l2com; 3518 3519 /* 3520 * When not coordinating the BSS, change the hardware 3521 * immediately. For other operation we defer the change 3522 * until beacon updates have propagated to the stations. 3523 * 3524 * XXX sc_updateslot isn't changed behind a lock? 3525 */ 3526 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3527 ic->ic_opmode == IEEE80211_M_MBSS) 3528 sc->sc_updateslot = UPDATE; 3529 else 3530 ath_setslottime(sc); 3531 } 3532 3533 /* 3534 * Append the contents of src to dst; both queues 3535 * are assumed to be locked. 3536 */ 3537 void 3538 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3539 { 3540 3541 ATH_TXQ_LOCK_ASSERT(src); 3542 ATH_TXQ_LOCK_ASSERT(dst); 3543 3544 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3545 dst->axq_link = src->axq_link; 3546 src->axq_link = NULL; 3547 dst->axq_depth += src->axq_depth; 3548 dst->axq_aggr_depth += src->axq_aggr_depth; 3549 src->axq_depth = 0; 3550 src->axq_aggr_depth = 0; 3551 } 3552 3553 /* 3554 * Reset the hardware, with no loss. 3555 * 3556 * This can't be used for a general case reset. 3557 */ 3558 static void 3559 ath_reset_proc(void *arg, int pending) 3560 { 3561 struct ath_softc *sc = arg; 3562 struct ifnet *ifp = sc->sc_ifp; 3563 3564 #if 0 3565 if_printf(ifp, "%s: resetting\n", __func__); 3566 #endif 3567 ath_reset(ifp, ATH_RESET_NOLOSS); 3568 } 3569 3570 /* 3571 * Reset the hardware after detecting beacons have stopped. 3572 */ 3573 static void 3574 ath_bstuck_proc(void *arg, int pending) 3575 { 3576 struct ath_softc *sc = arg; 3577 struct ifnet *ifp = sc->sc_ifp; 3578 uint32_t hangs = 0; 3579 3580 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3581 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3582 3583 #ifdef ATH_DEBUG_ALQ 3584 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3585 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3586 #endif 3587 3588 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3589 sc->sc_bmisscount); 3590 sc->sc_stats.ast_bstuck++; 3591 /* 3592 * This assumes that there's no simultaneous channel mode change 3593 * occuring. 3594 */ 3595 ath_reset(ifp, ATH_RESET_NOLOSS); 3596 } 3597 3598 static void 3599 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3600 { 3601 bus_addr_t *paddr = (bus_addr_t*) arg; 3602 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3603 *paddr = segs->ds_addr; 3604 } 3605 3606 /* 3607 * Allocate the descriptors and appropriate DMA tag/setup. 3608 * 3609 * For some situations (eg EDMA TX completion), there isn't a requirement 3610 * for the ath_buf entries to be allocated. 3611 */ 3612 int 3613 ath_descdma_alloc_desc(struct ath_softc *sc, 3614 struct ath_descdma *dd, ath_bufhead *head, 3615 const char *name, int ds_size, int ndesc) 3616 { 3617 #define DS2PHYS(_dd, _ds) \ 3618 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3619 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3620 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3621 struct ifnet *ifp = sc->sc_ifp; 3622 int error; 3623 3624 dd->dd_descsize = ds_size; 3625 3626 DPRINTF(sc, ATH_DEBUG_RESET, 3627 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3628 __func__, name, ndesc, dd->dd_descsize); 3629 3630 dd->dd_name = name; 3631 dd->dd_desc_len = dd->dd_descsize * ndesc; 3632 3633 /* 3634 * Merlin work-around: 3635 * Descriptors that cross the 4KB boundary can't be used. 3636 * Assume one skipped descriptor per 4KB page. 3637 */ 3638 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3639 int numpages = dd->dd_desc_len / 4096; 3640 dd->dd_desc_len += ds_size * numpages; 3641 } 3642 3643 /* 3644 * Setup DMA descriptor area. 3645 * 3646 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3647 * buffers for the descriptors themselves. 3648 */ 3649 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3650 PAGE_SIZE, 0, /* alignment, bounds */ 3651 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3652 BUS_SPACE_MAXADDR, /* highaddr */ 3653 NULL, NULL, /* filter, filterarg */ 3654 dd->dd_desc_len, /* maxsize */ 3655 1, /* nsegments */ 3656 dd->dd_desc_len, /* maxsegsize */ 3657 0, /* flags */ 3658 NULL, /* lockfunc */ 3659 NULL, /* lockarg */ 3660 &dd->dd_dmat); 3661 if (error != 0) { 3662 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3663 return error; 3664 } 3665 3666 /* allocate descriptors */ 3667 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3668 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3669 &dd->dd_dmamap); 3670 if (error != 0) { 3671 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3672 "error %u\n", ndesc, dd->dd_name, error); 3673 goto fail1; 3674 } 3675 3676 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3677 dd->dd_desc, dd->dd_desc_len, 3678 ath_load_cb, &dd->dd_desc_paddr, 3679 BUS_DMA_NOWAIT); 3680 if (error != 0) { 3681 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3682 dd->dd_name, error); 3683 goto fail2; 3684 } 3685 3686 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3687 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3688 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3689 /*XXX*/ (u_long) dd->dd_desc_len); 3690 3691 return (0); 3692 3693 fail2: 3694 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3695 fail1: 3696 bus_dma_tag_destroy(dd->dd_dmat); 3697 memset(dd, 0, sizeof(*dd)); 3698 return error; 3699 #undef DS2PHYS 3700 #undef ATH_DESC_4KB_BOUND_CHECK 3701 } 3702 3703 int 3704 ath_descdma_setup(struct ath_softc *sc, 3705 struct ath_descdma *dd, ath_bufhead *head, 3706 const char *name, int ds_size, int nbuf, int ndesc) 3707 { 3708 #define DS2PHYS(_dd, _ds) \ 3709 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3710 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3711 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3712 struct ifnet *ifp = sc->sc_ifp; 3713 uint8_t *ds; 3714 struct ath_buf *bf; 3715 int i, bsize, error; 3716 3717 /* Allocate descriptors */ 3718 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3719 nbuf * ndesc); 3720 3721 /* Assume any errors during allocation were dealt with */ 3722 if (error != 0) { 3723 return (error); 3724 } 3725 3726 ds = (uint8_t *) dd->dd_desc; 3727 3728 /* allocate rx buffers */ 3729 bsize = sizeof(struct ath_buf) * nbuf; 3730 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3731 if (bf == NULL) { 3732 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3733 dd->dd_name, bsize); 3734 goto fail3; 3735 } 3736 dd->dd_bufptr = bf; 3737 3738 TAILQ_INIT(head); 3739 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3740 bf->bf_desc = (struct ath_desc *) ds; 3741 bf->bf_daddr = DS2PHYS(dd, ds); 3742 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3743 /* 3744 * Merlin WAR: Skip descriptor addresses which 3745 * cause 4KB boundary crossing along any point 3746 * in the descriptor. 3747 */ 3748 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3749 dd->dd_descsize)) { 3750 /* Start at the next page */ 3751 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3752 bf->bf_desc = (struct ath_desc *) ds; 3753 bf->bf_daddr = DS2PHYS(dd, ds); 3754 } 3755 } 3756 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3757 &bf->bf_dmamap); 3758 if (error != 0) { 3759 if_printf(ifp, "unable to create dmamap for %s " 3760 "buffer %u, error %u\n", dd->dd_name, i, error); 3761 ath_descdma_cleanup(sc, dd, head); 3762 return error; 3763 } 3764 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3765 TAILQ_INSERT_TAIL(head, bf, bf_list); 3766 } 3767 3768 /* 3769 * XXX TODO: ensure that ds doesn't overflow the descriptor 3770 * allocation otherwise weird stuff will occur and crash your 3771 * machine. 3772 */ 3773 return 0; 3774 /* XXX this should likely just call ath_descdma_cleanup() */ 3775 fail3: 3776 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3777 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3778 bus_dma_tag_destroy(dd->dd_dmat); 3779 memset(dd, 0, sizeof(*dd)); 3780 return error; 3781 #undef DS2PHYS 3782 #undef ATH_DESC_4KB_BOUND_CHECK 3783 } 3784 3785 /* 3786 * Allocate ath_buf entries but no descriptor contents. 3787 * 3788 * This is for RX EDMA where the descriptors are the header part of 3789 * the RX buffer. 3790 */ 3791 int 3792 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3793 struct ath_descdma *dd, ath_bufhead *head, 3794 const char *name, int nbuf, int rx_status_len) 3795 { 3796 struct ifnet *ifp = sc->sc_ifp; 3797 struct ath_buf *bf; 3798 int i, bsize, error; 3799 3800 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3801 __func__, name, nbuf); 3802 3803 dd->dd_name = name; 3804 /* 3805 * This is (mostly) purely for show. We're not allocating any actual 3806 * descriptors here as EDMA RX has the descriptor be part 3807 * of the RX buffer. 3808 * 3809 * However, dd_desc_len is used by ath_descdma_free() to determine 3810 * whether we have already freed this DMA mapping. 3811 */ 3812 dd->dd_desc_len = rx_status_len * nbuf; 3813 dd->dd_descsize = rx_status_len; 3814 3815 /* allocate rx buffers */ 3816 bsize = sizeof(struct ath_buf) * nbuf; 3817 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3818 if (bf == NULL) { 3819 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3820 dd->dd_name, bsize); 3821 error = ENOMEM; 3822 goto fail3; 3823 } 3824 dd->dd_bufptr = bf; 3825 3826 TAILQ_INIT(head); 3827 for (i = 0; i < nbuf; i++, bf++) { 3828 bf->bf_desc = NULL; 3829 bf->bf_daddr = 0; 3830 bf->bf_lastds = NULL; /* Just an initial value */ 3831 3832 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3833 &bf->bf_dmamap); 3834 if (error != 0) { 3835 if_printf(ifp, "unable to create dmamap for %s " 3836 "buffer %u, error %u\n", dd->dd_name, i, error); 3837 ath_descdma_cleanup(sc, dd, head); 3838 return error; 3839 } 3840 TAILQ_INSERT_TAIL(head, bf, bf_list); 3841 } 3842 return 0; 3843 fail3: 3844 memset(dd, 0, sizeof(*dd)); 3845 return error; 3846 } 3847 3848 void 3849 ath_descdma_cleanup(struct ath_softc *sc, 3850 struct ath_descdma *dd, ath_bufhead *head) 3851 { 3852 struct ath_buf *bf; 3853 struct ieee80211_node *ni; 3854 int do_warning = 0; 3855 3856 if (dd->dd_dmamap != 0) { 3857 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3858 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3859 bus_dma_tag_destroy(dd->dd_dmat); 3860 } 3861 3862 if (head != NULL) { 3863 TAILQ_FOREACH(bf, head, bf_list) { 3864 if (bf->bf_m) { 3865 /* 3866 * XXX warn if there's buffers here. 3867 * XXX it should have been freed by the 3868 * owner! 3869 */ 3870 3871 if (do_warning == 0) { 3872 do_warning = 1; 3873 device_printf(sc->sc_dev, 3874 "%s: %s: mbuf should've been" 3875 " unmapped/freed!\n", 3876 __func__, 3877 dd->dd_name); 3878 } 3879 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3880 BUS_DMASYNC_POSTREAD); 3881 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3882 m_freem(bf->bf_m); 3883 bf->bf_m = NULL; 3884 } 3885 if (bf->bf_dmamap != NULL) { 3886 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3887 bf->bf_dmamap = NULL; 3888 } 3889 ni = bf->bf_node; 3890 bf->bf_node = NULL; 3891 if (ni != NULL) { 3892 /* 3893 * Reclaim node reference. 3894 */ 3895 ieee80211_free_node(ni); 3896 } 3897 } 3898 } 3899 3900 if (head != NULL) 3901 TAILQ_INIT(head); 3902 3903 if (dd->dd_bufptr != NULL) 3904 free(dd->dd_bufptr, M_ATHDEV); 3905 memset(dd, 0, sizeof(*dd)); 3906 } 3907 3908 static int 3909 ath_desc_alloc(struct ath_softc *sc) 3910 { 3911 int error; 3912 3913 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3914 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3915 if (error != 0) { 3916 return error; 3917 } 3918 sc->sc_txbuf_cnt = ath_txbuf; 3919 3920 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3921 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3922 ATH_TXDESC); 3923 if (error != 0) { 3924 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3925 return error; 3926 } 3927 3928 /* 3929 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3930 * flag doesn't have to be set in ath_getbuf_locked(). 3931 */ 3932 3933 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3934 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3935 if (error != 0) { 3936 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3937 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3938 &sc->sc_txbuf_mgmt); 3939 return error; 3940 } 3941 return 0; 3942 } 3943 3944 static void 3945 ath_desc_free(struct ath_softc *sc) 3946 { 3947 3948 if (sc->sc_bdma.dd_desc_len != 0) 3949 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3950 if (sc->sc_txdma.dd_desc_len != 0) 3951 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3952 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3953 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3954 &sc->sc_txbuf_mgmt); 3955 } 3956 3957 static struct ieee80211_node * 3958 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3959 { 3960 struct ieee80211com *ic = vap->iv_ic; 3961 struct ath_softc *sc = ic->ic_ifp->if_softc; 3962 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3963 struct ath_node *an; 3964 3965 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3966 if (an == NULL) { 3967 /* XXX stat+msg */ 3968 return NULL; 3969 } 3970 ath_rate_node_init(sc, an); 3971 3972 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3973 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3974 device_get_nameunit(sc->sc_dev), an); 3975 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3976 3977 /* XXX setup ath_tid */ 3978 ath_tx_tid_init(sc, an); 3979 3980 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3981 return &an->an_node; 3982 } 3983 3984 static void 3985 ath_node_cleanup(struct ieee80211_node *ni) 3986 { 3987 struct ieee80211com *ic = ni->ni_ic; 3988 struct ath_softc *sc = ic->ic_ifp->if_softc; 3989 3990 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3991 ni->ni_macaddr, ":", ATH_NODE(ni)); 3992 3993 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3994 ath_tx_node_flush(sc, ATH_NODE(ni)); 3995 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3996 sc->sc_node_cleanup(ni); 3997 } 3998 3999 static void 4000 ath_node_free(struct ieee80211_node *ni) 4001 { 4002 struct ieee80211com *ic = ni->ni_ic; 4003 struct ath_softc *sc = ic->ic_ifp->if_softc; 4004 4005 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4006 ni->ni_macaddr, ":", ATH_NODE(ni)); 4007 mtx_destroy(&ATH_NODE(ni)->an_mtx); 4008 sc->sc_node_free(ni); 4009 } 4010 4011 static void 4012 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 4013 { 4014 struct ieee80211com *ic = ni->ni_ic; 4015 struct ath_softc *sc = ic->ic_ifp->if_softc; 4016 struct ath_hal *ah = sc->sc_ah; 4017 4018 *rssi = ic->ic_node_getrssi(ni); 4019 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 4020 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 4021 else 4022 *noise = -95; /* nominally correct */ 4023 } 4024 4025 /* 4026 * Set the default antenna. 4027 */ 4028 void 4029 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 4030 { 4031 struct ath_hal *ah = sc->sc_ah; 4032 4033 /* XXX block beacon interrupts */ 4034 ath_hal_setdefantenna(ah, antenna); 4035 if (sc->sc_defant != antenna) 4036 sc->sc_stats.ast_ant_defswitch++; 4037 sc->sc_defant = antenna; 4038 sc->sc_rxotherant = 0; 4039 } 4040 4041 static void 4042 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4043 { 4044 txq->axq_qnum = qnum; 4045 txq->axq_ac = 0; 4046 txq->axq_depth = 0; 4047 txq->axq_aggr_depth = 0; 4048 txq->axq_intrcnt = 0; 4049 txq->axq_link = NULL; 4050 txq->axq_softc = sc; 4051 TAILQ_INIT(&txq->axq_q); 4052 TAILQ_INIT(&txq->axq_tidq); 4053 TAILQ_INIT(&txq->fifo.axq_q); 4054 ATH_TXQ_LOCK_INIT(sc, txq); 4055 } 4056 4057 /* 4058 * Setup a h/w transmit queue. 4059 */ 4060 static struct ath_txq * 4061 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4062 { 4063 #define N(a) (sizeof(a)/sizeof(a[0])) 4064 struct ath_hal *ah = sc->sc_ah; 4065 HAL_TXQ_INFO qi; 4066 int qnum; 4067 4068 memset(&qi, 0, sizeof(qi)); 4069 qi.tqi_subtype = subtype; 4070 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4071 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4072 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4073 /* 4074 * Enable interrupts only for EOL and DESC conditions. 4075 * We mark tx descriptors to receive a DESC interrupt 4076 * when a tx queue gets deep; otherwise waiting for the 4077 * EOL to reap descriptors. Note that this is done to 4078 * reduce interrupt load and this only defers reaping 4079 * descriptors, never transmitting frames. Aside from 4080 * reducing interrupts this also permits more concurrency. 4081 * The only potential downside is if the tx queue backs 4082 * up in which case the top half of the kernel may backup 4083 * due to a lack of tx descriptors. 4084 */ 4085 if (sc->sc_isedma) 4086 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4087 HAL_TXQ_TXOKINT_ENABLE; 4088 else 4089 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4090 HAL_TXQ_TXDESCINT_ENABLE; 4091 4092 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4093 if (qnum == -1) { 4094 /* 4095 * NB: don't print a message, this happens 4096 * normally on parts with too few tx queues 4097 */ 4098 return NULL; 4099 } 4100 if (qnum >= N(sc->sc_txq)) { 4101 device_printf(sc->sc_dev, 4102 "hal qnum %u out of range, max %zu!\n", 4103 qnum, N(sc->sc_txq)); 4104 ath_hal_releasetxqueue(ah, qnum); 4105 return NULL; 4106 } 4107 if (!ATH_TXQ_SETUP(sc, qnum)) { 4108 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4109 sc->sc_txqsetup |= 1<<qnum; 4110 } 4111 return &sc->sc_txq[qnum]; 4112 #undef N 4113 } 4114 4115 /* 4116 * Setup a hardware data transmit queue for the specified 4117 * access control. The hal may not support all requested 4118 * queues in which case it will return a reference to a 4119 * previously setup queue. We record the mapping from ac's 4120 * to h/w queues for use by ath_tx_start and also track 4121 * the set of h/w queues being used to optimize work in the 4122 * transmit interrupt handler and related routines. 4123 */ 4124 static int 4125 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4126 { 4127 #define N(a) (sizeof(a)/sizeof(a[0])) 4128 struct ath_txq *txq; 4129 4130 if (ac >= N(sc->sc_ac2q)) { 4131 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4132 ac, N(sc->sc_ac2q)); 4133 return 0; 4134 } 4135 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4136 if (txq != NULL) { 4137 txq->axq_ac = ac; 4138 sc->sc_ac2q[ac] = txq; 4139 return 1; 4140 } else 4141 return 0; 4142 #undef N 4143 } 4144 4145 /* 4146 * Update WME parameters for a transmit queue. 4147 */ 4148 static int 4149 ath_txq_update(struct ath_softc *sc, int ac) 4150 { 4151 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4152 #define ATH_TXOP_TO_US(v) (v<<5) 4153 struct ifnet *ifp = sc->sc_ifp; 4154 struct ieee80211com *ic = ifp->if_l2com; 4155 struct ath_txq *txq = sc->sc_ac2q[ac]; 4156 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4157 struct ath_hal *ah = sc->sc_ah; 4158 HAL_TXQ_INFO qi; 4159 4160 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4161 #ifdef IEEE80211_SUPPORT_TDMA 4162 if (sc->sc_tdma) { 4163 /* 4164 * AIFS is zero so there's no pre-transmit wait. The 4165 * burst time defines the slot duration and is configured 4166 * through net80211. The QCU is setup to not do post-xmit 4167 * back off, lockout all lower-priority QCU's, and fire 4168 * off the DMA beacon alert timer which is setup based 4169 * on the slot configuration. 4170 */ 4171 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4172 | HAL_TXQ_TXERRINT_ENABLE 4173 | HAL_TXQ_TXURNINT_ENABLE 4174 | HAL_TXQ_TXEOLINT_ENABLE 4175 | HAL_TXQ_DBA_GATED 4176 | HAL_TXQ_BACKOFF_DISABLE 4177 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4178 ; 4179 qi.tqi_aifs = 0; 4180 /* XXX +dbaprep? */ 4181 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4182 qi.tqi_burstTime = qi.tqi_readyTime; 4183 } else { 4184 #endif 4185 /* 4186 * XXX shouldn't this just use the default flags 4187 * used in the previous queue setup? 4188 */ 4189 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4190 | HAL_TXQ_TXERRINT_ENABLE 4191 | HAL_TXQ_TXDESCINT_ENABLE 4192 | HAL_TXQ_TXURNINT_ENABLE 4193 | HAL_TXQ_TXEOLINT_ENABLE 4194 ; 4195 qi.tqi_aifs = wmep->wmep_aifsn; 4196 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4197 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4198 qi.tqi_readyTime = 0; 4199 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4200 #ifdef IEEE80211_SUPPORT_TDMA 4201 } 4202 #endif 4203 4204 DPRINTF(sc, ATH_DEBUG_RESET, 4205 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4206 __func__, txq->axq_qnum, qi.tqi_qflags, 4207 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4208 4209 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4210 if_printf(ifp, "unable to update hardware queue " 4211 "parameters for %s traffic!\n", 4212 ieee80211_wme_acnames[ac]); 4213 return 0; 4214 } else { 4215 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4216 return 1; 4217 } 4218 #undef ATH_TXOP_TO_US 4219 #undef ATH_EXPONENT_TO_VALUE 4220 } 4221 4222 /* 4223 * Callback from the 802.11 layer to update WME parameters. 4224 */ 4225 int 4226 ath_wme_update(struct ieee80211com *ic) 4227 { 4228 struct ath_softc *sc = ic->ic_ifp->if_softc; 4229 4230 return !ath_txq_update(sc, WME_AC_BE) || 4231 !ath_txq_update(sc, WME_AC_BK) || 4232 !ath_txq_update(sc, WME_AC_VI) || 4233 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4234 } 4235 4236 /* 4237 * Reclaim resources for a setup queue. 4238 */ 4239 static void 4240 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4241 { 4242 4243 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4244 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4245 ATH_TXQ_LOCK_DESTROY(txq); 4246 } 4247 4248 /* 4249 * Reclaim all tx queue resources. 4250 */ 4251 static void 4252 ath_tx_cleanup(struct ath_softc *sc) 4253 { 4254 int i; 4255 4256 ATH_TXBUF_LOCK_DESTROY(sc); 4257 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4258 if (ATH_TXQ_SETUP(sc, i)) 4259 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4260 } 4261 4262 /* 4263 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4264 * using the current rates in sc_rixmap. 4265 */ 4266 int 4267 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4268 { 4269 int rix = sc->sc_rixmap[rate]; 4270 /* NB: return lowest rix for invalid rate */ 4271 return (rix == 0xff ? 0 : rix); 4272 } 4273 4274 static void 4275 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4276 struct ath_buf *bf) 4277 { 4278 struct ieee80211_node *ni = bf->bf_node; 4279 struct ifnet *ifp = sc->sc_ifp; 4280 struct ieee80211com *ic = ifp->if_l2com; 4281 int sr, lr, pri; 4282 4283 if (ts->ts_status == 0) { 4284 u_int8_t txant = ts->ts_antenna; 4285 sc->sc_stats.ast_ant_tx[txant]++; 4286 sc->sc_ant_tx[txant]++; 4287 if (ts->ts_finaltsi != 0) 4288 sc->sc_stats.ast_tx_altrate++; 4289 pri = M_WME_GETAC(bf->bf_m); 4290 if (pri >= WME_AC_VO) 4291 ic->ic_wme.wme_hipri_traffic++; 4292 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4293 ni->ni_inact = ni->ni_inact_reload; 4294 } else { 4295 if (ts->ts_status & HAL_TXERR_XRETRY) 4296 sc->sc_stats.ast_tx_xretries++; 4297 if (ts->ts_status & HAL_TXERR_FIFO) 4298 sc->sc_stats.ast_tx_fifoerr++; 4299 if (ts->ts_status & HAL_TXERR_FILT) 4300 sc->sc_stats.ast_tx_filtered++; 4301 if (ts->ts_status & HAL_TXERR_XTXOP) 4302 sc->sc_stats.ast_tx_xtxop++; 4303 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4304 sc->sc_stats.ast_tx_timerexpired++; 4305 4306 if (bf->bf_m->m_flags & M_FF) 4307 sc->sc_stats.ast_ff_txerr++; 4308 } 4309 /* XXX when is this valid? */ 4310 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4311 sc->sc_stats.ast_tx_desccfgerr++; 4312 /* 4313 * This can be valid for successful frame transmission! 4314 * If there's a TX FIFO underrun during aggregate transmission, 4315 * the MAC will pad the rest of the aggregate with delimiters. 4316 * If a BA is returned, the frame is marked as "OK" and it's up 4317 * to the TX completion code to notice which frames weren't 4318 * successfully transmitted. 4319 */ 4320 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4321 sc->sc_stats.ast_tx_data_underrun++; 4322 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4323 sc->sc_stats.ast_tx_delim_underrun++; 4324 4325 sr = ts->ts_shortretry; 4326 lr = ts->ts_longretry; 4327 sc->sc_stats.ast_tx_shortretry += sr; 4328 sc->sc_stats.ast_tx_longretry += lr; 4329 4330 } 4331 4332 /* 4333 * The default completion. If fail is 1, this means 4334 * "please don't retry the frame, and just return -1 status 4335 * to the net80211 stack. 4336 */ 4337 void 4338 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4339 { 4340 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4341 int st; 4342 4343 if (fail == 1) 4344 st = -1; 4345 else 4346 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4347 ts->ts_status : HAL_TXERR_XRETRY; 4348 4349 #if 0 4350 if (bf->bf_state.bfs_dobaw) 4351 device_printf(sc->sc_dev, 4352 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4353 __func__, 4354 bf, 4355 SEQNO(bf->bf_state.bfs_seqno)); 4356 #endif 4357 if (bf->bf_next != NULL) 4358 device_printf(sc->sc_dev, 4359 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4360 __func__, 4361 bf, 4362 SEQNO(bf->bf_state.bfs_seqno)); 4363 4364 /* 4365 * Check if the node software queue is empty; if so 4366 * then clear the TIM. 4367 * 4368 * This needs to be done before the buffer is freed as 4369 * otherwise the node reference will have been released 4370 * and the node may not actually exist any longer. 4371 * 4372 * XXX I don't like this belonging here, but it's cleaner 4373 * to do it here right now then all the other places 4374 * where ath_tx_default_comp() is called. 4375 * 4376 * XXX TODO: during drain, ensure that the callback is 4377 * being called so we get a chance to update the TIM. 4378 */ 4379 if (bf->bf_node) { 4380 ATH_TX_LOCK(sc); 4381 ath_tx_update_tim(sc, bf->bf_node, 0); 4382 ATH_TX_UNLOCK(sc); 4383 } 4384 4385 /* 4386 * Do any tx complete callback. Note this must 4387 * be done before releasing the node reference. 4388 * This will free the mbuf, release the net80211 4389 * node and recycle the ath_buf. 4390 */ 4391 ath_tx_freebuf(sc, bf, st); 4392 } 4393 4394 /* 4395 * Update rate control with the given completion status. 4396 */ 4397 void 4398 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4399 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4400 int nframes, int nbad) 4401 { 4402 struct ath_node *an; 4403 4404 /* Only for unicast frames */ 4405 if (ni == NULL) 4406 return; 4407 4408 an = ATH_NODE(ni); 4409 ATH_NODE_UNLOCK_ASSERT(an); 4410 4411 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4412 ATH_NODE_LOCK(an); 4413 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4414 ATH_NODE_UNLOCK(an); 4415 } 4416 } 4417 4418 /* 4419 * Process the completion of the given buffer. 4420 * 4421 * This calls the rate control update and then the buffer completion. 4422 * This will either free the buffer or requeue it. In any case, the 4423 * bf pointer should be treated as invalid after this function is called. 4424 */ 4425 void 4426 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4427 struct ath_tx_status *ts, struct ath_buf *bf) 4428 { 4429 struct ieee80211_node *ni = bf->bf_node; 4430 struct ath_node *an = NULL; 4431 4432 ATH_TX_UNLOCK_ASSERT(sc); 4433 ATH_TXQ_UNLOCK_ASSERT(txq); 4434 4435 /* If unicast frame, update general statistics */ 4436 if (ni != NULL) { 4437 an = ATH_NODE(ni); 4438 /* update statistics */ 4439 ath_tx_update_stats(sc, ts, bf); 4440 } 4441 4442 /* 4443 * Call the completion handler. 4444 * The completion handler is responsible for 4445 * calling the rate control code. 4446 * 4447 * Frames with no completion handler get the 4448 * rate control code called here. 4449 */ 4450 if (bf->bf_comp == NULL) { 4451 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4452 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4453 /* 4454 * XXX assume this isn't an aggregate 4455 * frame. 4456 */ 4457 ath_tx_update_ratectrl(sc, ni, 4458 bf->bf_state.bfs_rc, ts, 4459 bf->bf_state.bfs_pktlen, 1, 4460 (ts->ts_status == 0 ? 0 : 1)); 4461 } 4462 ath_tx_default_comp(sc, bf, 0); 4463 } else 4464 bf->bf_comp(sc, bf, 0); 4465 } 4466 4467 4468 4469 /* 4470 * Process completed xmit descriptors from the specified queue. 4471 * Kick the packet scheduler if needed. This can occur from this 4472 * particular task. 4473 */ 4474 static int 4475 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4476 { 4477 struct ath_hal *ah = sc->sc_ah; 4478 struct ath_buf *bf; 4479 struct ath_desc *ds; 4480 struct ath_tx_status *ts; 4481 struct ieee80211_node *ni; 4482 #ifdef IEEE80211_SUPPORT_SUPERG 4483 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4484 #endif /* IEEE80211_SUPPORT_SUPERG */ 4485 int nacked; 4486 HAL_STATUS status; 4487 4488 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4489 __func__, txq->axq_qnum, 4490 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4491 txq->axq_link); 4492 4493 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4494 "ath_tx_processq: txq=%u head %p link %p depth %p", 4495 txq->axq_qnum, 4496 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4497 txq->axq_link, 4498 txq->axq_depth); 4499 4500 nacked = 0; 4501 for (;;) { 4502 ATH_TXQ_LOCK(txq); 4503 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4504 bf = TAILQ_FIRST(&txq->axq_q); 4505 if (bf == NULL) { 4506 ATH_TXQ_UNLOCK(txq); 4507 break; 4508 } 4509 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4510 ts = &bf->bf_status.ds_txstat; 4511 4512 status = ath_hal_txprocdesc(ah, ds, ts); 4513 #ifdef ATH_DEBUG 4514 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4515 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4516 status == HAL_OK); 4517 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4518 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4519 status == HAL_OK); 4520 #endif 4521 #ifdef ATH_DEBUG_ALQ 4522 if (if_ath_alq_checkdebug(&sc->sc_alq, 4523 ATH_ALQ_EDMA_TXSTATUS)) { 4524 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4525 sc->sc_tx_statuslen, 4526 (char *) ds); 4527 } 4528 #endif 4529 4530 if (status == HAL_EINPROGRESS) { 4531 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4532 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4533 txq->axq_qnum, bf, ds); 4534 ATH_TXQ_UNLOCK(txq); 4535 break; 4536 } 4537 ATH_TXQ_REMOVE(txq, bf, bf_list); 4538 4539 /* 4540 * Sanity check. 4541 */ 4542 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4543 device_printf(sc->sc_dev, 4544 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4545 __func__, 4546 txq->axq_qnum, 4547 bf, 4548 bf->bf_state.bfs_tx_queue); 4549 } 4550 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4551 device_printf(sc->sc_dev, 4552 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4553 __func__, 4554 txq->axq_qnum, 4555 bf->bf_last, 4556 bf->bf_last->bf_state.bfs_tx_queue); 4557 } 4558 4559 #if 0 4560 if (txq->axq_depth > 0) { 4561 /* 4562 * More frames follow. Mark the buffer busy 4563 * so it's not re-used while the hardware may 4564 * still re-read the link field in the descriptor. 4565 * 4566 * Use the last buffer in an aggregate as that 4567 * is where the hardware may be - intermediate 4568 * descriptors won't be "busy". 4569 */ 4570 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4571 } else 4572 txq->axq_link = NULL; 4573 #else 4574 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4575 #endif 4576 if (bf->bf_state.bfs_aggr) 4577 txq->axq_aggr_depth--; 4578 4579 ni = bf->bf_node; 4580 4581 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4582 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4583 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4584 /* 4585 * If unicast frame was ack'd update RSSI, 4586 * including the last rx time used to 4587 * workaround phantom bmiss interrupts. 4588 */ 4589 if (ni != NULL && ts->ts_status == 0 && 4590 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4591 nacked++; 4592 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4593 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4594 ts->ts_rssi); 4595 } 4596 ATH_TXQ_UNLOCK(txq); 4597 4598 /* 4599 * Update statistics and call completion 4600 */ 4601 ath_tx_process_buf_completion(sc, txq, ts, bf); 4602 4603 /* XXX at this point, bf and ni may be totally invalid */ 4604 } 4605 #ifdef IEEE80211_SUPPORT_SUPERG 4606 /* 4607 * Flush fast-frame staging queue when traffic slows. 4608 */ 4609 if (txq->axq_depth <= 1) 4610 ieee80211_ff_flush(ic, txq->axq_ac); 4611 #endif 4612 4613 /* Kick the software TXQ scheduler */ 4614 if (dosched) { 4615 ATH_TX_LOCK(sc); 4616 ath_txq_sched(sc, txq); 4617 ATH_TX_UNLOCK(sc); 4618 } 4619 4620 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4621 "ath_tx_processq: txq=%u: done", 4622 txq->axq_qnum); 4623 4624 return nacked; 4625 } 4626 4627 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4628 4629 /* 4630 * Deferred processing of transmit interrupt; special-cased 4631 * for a single hardware transmit queue (e.g. 5210 and 5211). 4632 */ 4633 static void 4634 ath_tx_proc_q0(void *arg, int npending) 4635 { 4636 struct ath_softc *sc = arg; 4637 struct ifnet *ifp = sc->sc_ifp; 4638 uint32_t txqs; 4639 4640 ATH_PCU_LOCK(sc); 4641 sc->sc_txproc_cnt++; 4642 txqs = sc->sc_txq_active; 4643 sc->sc_txq_active &= ~txqs; 4644 ATH_PCU_UNLOCK(sc); 4645 4646 ATH_LOCK(sc); 4647 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4648 ATH_UNLOCK(sc); 4649 4650 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4651 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4652 4653 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4654 /* XXX why is lastrx updated in tx code? */ 4655 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4656 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4657 ath_tx_processq(sc, sc->sc_cabq, 1); 4658 IF_LOCK(&ifp->if_snd); 4659 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4660 IF_UNLOCK(&ifp->if_snd); 4661 sc->sc_wd_timer = 0; 4662 4663 if (sc->sc_softled) 4664 ath_led_event(sc, sc->sc_txrix); 4665 4666 ATH_PCU_LOCK(sc); 4667 sc->sc_txproc_cnt--; 4668 ATH_PCU_UNLOCK(sc); 4669 4670 ATH_LOCK(sc); 4671 ath_power_restore_power_state(sc); 4672 ATH_UNLOCK(sc); 4673 4674 ath_tx_kick(sc); 4675 } 4676 4677 /* 4678 * Deferred processing of transmit interrupt; special-cased 4679 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4680 */ 4681 static void 4682 ath_tx_proc_q0123(void *arg, int npending) 4683 { 4684 struct ath_softc *sc = arg; 4685 struct ifnet *ifp = sc->sc_ifp; 4686 int nacked; 4687 uint32_t txqs; 4688 4689 ATH_PCU_LOCK(sc); 4690 sc->sc_txproc_cnt++; 4691 txqs = sc->sc_txq_active; 4692 sc->sc_txq_active &= ~txqs; 4693 ATH_PCU_UNLOCK(sc); 4694 4695 ATH_LOCK(sc); 4696 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4697 ATH_UNLOCK(sc); 4698 4699 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4700 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4701 4702 /* 4703 * Process each active queue. 4704 */ 4705 nacked = 0; 4706 if (TXQACTIVE(txqs, 0)) 4707 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4708 if (TXQACTIVE(txqs, 1)) 4709 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4710 if (TXQACTIVE(txqs, 2)) 4711 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4712 if (TXQACTIVE(txqs, 3)) 4713 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4714 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4715 ath_tx_processq(sc, sc->sc_cabq, 1); 4716 if (nacked) 4717 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4718 4719 IF_LOCK(&ifp->if_snd); 4720 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4721 IF_UNLOCK(&ifp->if_snd); 4722 sc->sc_wd_timer = 0; 4723 4724 if (sc->sc_softled) 4725 ath_led_event(sc, sc->sc_txrix); 4726 4727 ATH_PCU_LOCK(sc); 4728 sc->sc_txproc_cnt--; 4729 ATH_PCU_UNLOCK(sc); 4730 4731 ATH_LOCK(sc); 4732 ath_power_restore_power_state(sc); 4733 ATH_UNLOCK(sc); 4734 4735 ath_tx_kick(sc); 4736 } 4737 4738 /* 4739 * Deferred processing of transmit interrupt. 4740 */ 4741 static void 4742 ath_tx_proc(void *arg, int npending) 4743 { 4744 struct ath_softc *sc = arg; 4745 struct ifnet *ifp = sc->sc_ifp; 4746 int i, nacked; 4747 uint32_t txqs; 4748 4749 ATH_PCU_LOCK(sc); 4750 sc->sc_txproc_cnt++; 4751 txqs = sc->sc_txq_active; 4752 sc->sc_txq_active &= ~txqs; 4753 ATH_PCU_UNLOCK(sc); 4754 4755 ATH_LOCK(sc); 4756 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4757 ATH_UNLOCK(sc); 4758 4759 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4760 4761 /* 4762 * Process each active queue. 4763 */ 4764 nacked = 0; 4765 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4766 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4767 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4768 if (nacked) 4769 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4770 4771 /* XXX check this inside of IF_LOCK? */ 4772 IF_LOCK(&ifp->if_snd); 4773 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4774 IF_UNLOCK(&ifp->if_snd); 4775 sc->sc_wd_timer = 0; 4776 4777 if (sc->sc_softled) 4778 ath_led_event(sc, sc->sc_txrix); 4779 4780 ATH_PCU_LOCK(sc); 4781 sc->sc_txproc_cnt--; 4782 ATH_PCU_UNLOCK(sc); 4783 4784 ATH_LOCK(sc); 4785 ath_power_restore_power_state(sc); 4786 ATH_UNLOCK(sc); 4787 4788 ath_tx_kick(sc); 4789 } 4790 #undef TXQACTIVE 4791 4792 /* 4793 * Deferred processing of TXQ rescheduling. 4794 */ 4795 static void 4796 ath_txq_sched_tasklet(void *arg, int npending) 4797 { 4798 struct ath_softc *sc = arg; 4799 int i; 4800 4801 /* XXX is skipping ok? */ 4802 ATH_PCU_LOCK(sc); 4803 #if 0 4804 if (sc->sc_inreset_cnt > 0) { 4805 device_printf(sc->sc_dev, 4806 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4807 ATH_PCU_UNLOCK(sc); 4808 return; 4809 } 4810 #endif 4811 sc->sc_txproc_cnt++; 4812 ATH_PCU_UNLOCK(sc); 4813 4814 ATH_LOCK(sc); 4815 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4816 ATH_UNLOCK(sc); 4817 4818 ATH_TX_LOCK(sc); 4819 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4820 if (ATH_TXQ_SETUP(sc, i)) { 4821 ath_txq_sched(sc, &sc->sc_txq[i]); 4822 } 4823 } 4824 ATH_TX_UNLOCK(sc); 4825 4826 ATH_LOCK(sc); 4827 ath_power_restore_power_state(sc); 4828 ATH_UNLOCK(sc); 4829 4830 ATH_PCU_LOCK(sc); 4831 sc->sc_txproc_cnt--; 4832 ATH_PCU_UNLOCK(sc); 4833 } 4834 4835 void 4836 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4837 { 4838 4839 ATH_TXBUF_LOCK_ASSERT(sc); 4840 4841 if (bf->bf_flags & ATH_BUF_MGMT) 4842 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4843 else { 4844 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4845 sc->sc_txbuf_cnt++; 4846 if (sc->sc_txbuf_cnt > ath_txbuf) { 4847 device_printf(sc->sc_dev, 4848 "%s: sc_txbuf_cnt > %d?\n", 4849 __func__, 4850 ath_txbuf); 4851 sc->sc_txbuf_cnt = ath_txbuf; 4852 } 4853 } 4854 } 4855 4856 void 4857 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4858 { 4859 4860 ATH_TXBUF_LOCK_ASSERT(sc); 4861 4862 if (bf->bf_flags & ATH_BUF_MGMT) 4863 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4864 else { 4865 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4866 sc->sc_txbuf_cnt++; 4867 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4868 device_printf(sc->sc_dev, 4869 "%s: sc_txbuf_cnt > %d?\n", 4870 __func__, 4871 ATH_TXBUF); 4872 sc->sc_txbuf_cnt = ATH_TXBUF; 4873 } 4874 } 4875 } 4876 4877 /* 4878 * Free the holding buffer if it exists 4879 */ 4880 void 4881 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4882 { 4883 ATH_TXBUF_UNLOCK_ASSERT(sc); 4884 ATH_TXQ_LOCK_ASSERT(txq); 4885 4886 if (txq->axq_holdingbf == NULL) 4887 return; 4888 4889 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4890 4891 ATH_TXBUF_LOCK(sc); 4892 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4893 ATH_TXBUF_UNLOCK(sc); 4894 4895 txq->axq_holdingbf = NULL; 4896 } 4897 4898 /* 4899 * Add this buffer to the holding queue, freeing the previous 4900 * one if it exists. 4901 */ 4902 static void 4903 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4904 { 4905 struct ath_txq *txq; 4906 4907 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4908 4909 ATH_TXBUF_UNLOCK_ASSERT(sc); 4910 ATH_TXQ_LOCK_ASSERT(txq); 4911 4912 /* XXX assert ATH_BUF_BUSY is set */ 4913 4914 /* XXX assert the tx queue is under the max number */ 4915 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4916 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4917 __func__, 4918 bf, 4919 bf->bf_state.bfs_tx_queue); 4920 bf->bf_flags &= ~ATH_BUF_BUSY; 4921 ath_returnbuf_tail(sc, bf); 4922 return; 4923 } 4924 ath_txq_freeholdingbuf(sc, txq); 4925 txq->axq_holdingbf = bf; 4926 } 4927 4928 /* 4929 * Return a buffer to the pool and update the 'busy' flag on the 4930 * previous 'tail' entry. 4931 * 4932 * This _must_ only be called when the buffer is involved in a completed 4933 * TX. The logic is that if it was part of an active TX, the previous 4934 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4935 * for restart (eg for TDMA.) 4936 * 4937 * The caller must free the mbuf and recycle the node reference. 4938 * 4939 * XXX This method of handling busy / holding buffers is insanely stupid. 4940 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4941 * be much nicer if buffers in the processq() methods would instead be 4942 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4943 * exactly what hardware queue they came from in the first place. 4944 */ 4945 void 4946 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4947 { 4948 struct ath_txq *txq; 4949 4950 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4951 4952 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4953 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4954 4955 /* 4956 * If this buffer is busy, push it onto the holding queue. 4957 */ 4958 if (bf->bf_flags & ATH_BUF_BUSY) { 4959 ATH_TXQ_LOCK(txq); 4960 ath_txq_addholdingbuf(sc, bf); 4961 ATH_TXQ_UNLOCK(txq); 4962 return; 4963 } 4964 4965 /* 4966 * Not a busy buffer, so free normally 4967 */ 4968 ATH_TXBUF_LOCK(sc); 4969 ath_returnbuf_tail(sc, bf); 4970 ATH_TXBUF_UNLOCK(sc); 4971 } 4972 4973 /* 4974 * This is currently used by ath_tx_draintxq() and 4975 * ath_tx_tid_free_pkts(). 4976 * 4977 * It recycles a single ath_buf. 4978 */ 4979 void 4980 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4981 { 4982 struct ieee80211_node *ni = bf->bf_node; 4983 struct mbuf *m0 = bf->bf_m; 4984 4985 /* 4986 * Make sure that we only sync/unload if there's an mbuf. 4987 * If not (eg we cloned a buffer), the unload will have already 4988 * occured. 4989 */ 4990 if (bf->bf_m != NULL) { 4991 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4992 BUS_DMASYNC_POSTWRITE); 4993 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4994 } 4995 4996 bf->bf_node = NULL; 4997 bf->bf_m = NULL; 4998 4999 /* Free the buffer, it's not needed any longer */ 5000 ath_freebuf(sc, bf); 5001 5002 /* Pass the buffer back to net80211 - completing it */ 5003 ieee80211_tx_complete(ni, m0, status); 5004 } 5005 5006 static struct ath_buf * 5007 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 5008 { 5009 struct ath_buf *bf; 5010 5011 ATH_TXQ_LOCK_ASSERT(txq); 5012 5013 /* 5014 * Drain the FIFO queue first, then if it's 5015 * empty, move to the normal frame queue. 5016 */ 5017 bf = TAILQ_FIRST(&txq->fifo.axq_q); 5018 if (bf != NULL) { 5019 /* 5020 * Is it the last buffer in this set? 5021 * Decrement the FIFO counter. 5022 */ 5023 if (bf->bf_flags & ATH_BUF_FIFOEND) { 5024 if (txq->axq_fifo_depth == 0) { 5025 device_printf(sc->sc_dev, 5026 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 5027 __func__, 5028 txq->axq_qnum, 5029 txq->fifo.axq_depth); 5030 } else 5031 txq->axq_fifo_depth--; 5032 } 5033 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 5034 return (bf); 5035 } 5036 5037 /* 5038 * Debugging! 5039 */ 5040 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 5041 device_printf(sc->sc_dev, 5042 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 5043 __func__, 5044 txq->axq_qnum, 5045 txq->axq_fifo_depth, 5046 txq->fifo.axq_depth); 5047 } 5048 5049 /* 5050 * Now drain the pending queue. 5051 */ 5052 bf = TAILQ_FIRST(&txq->axq_q); 5053 if (bf == NULL) { 5054 txq->axq_link = NULL; 5055 return (NULL); 5056 } 5057 ATH_TXQ_REMOVE(txq, bf, bf_list); 5058 return (bf); 5059 } 5060 5061 void 5062 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5063 { 5064 #ifdef ATH_DEBUG 5065 struct ath_hal *ah = sc->sc_ah; 5066 #endif 5067 struct ath_buf *bf; 5068 u_int ix; 5069 5070 /* 5071 * NB: this assumes output has been stopped and 5072 * we do not need to block ath_tx_proc 5073 */ 5074 for (ix = 0;; ix++) { 5075 ATH_TXQ_LOCK(txq); 5076 bf = ath_tx_draintxq_get_one(sc, txq); 5077 if (bf == NULL) { 5078 ATH_TXQ_UNLOCK(txq); 5079 break; 5080 } 5081 if (bf->bf_state.bfs_aggr) 5082 txq->axq_aggr_depth--; 5083 #ifdef ATH_DEBUG 5084 if (sc->sc_debug & ATH_DEBUG_RESET) { 5085 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5086 int status = 0; 5087 5088 /* 5089 * EDMA operation has a TX completion FIFO 5090 * separate from the TX descriptor, so this 5091 * method of checking the "completion" status 5092 * is wrong. 5093 */ 5094 if (! sc->sc_isedma) { 5095 status = (ath_hal_txprocdesc(ah, 5096 bf->bf_lastds, 5097 &bf->bf_status.ds_txstat) == HAL_OK); 5098 } 5099 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5100 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5101 bf->bf_m->m_len, 0, -1); 5102 } 5103 #endif /* ATH_DEBUG */ 5104 /* 5105 * Since we're now doing magic in the completion 5106 * functions, we -must- call it for aggregation 5107 * destinations or BAW tracking will get upset. 5108 */ 5109 /* 5110 * Clear ATH_BUF_BUSY; the completion handler 5111 * will free the buffer. 5112 */ 5113 ATH_TXQ_UNLOCK(txq); 5114 bf->bf_flags &= ~ATH_BUF_BUSY; 5115 if (bf->bf_comp) 5116 bf->bf_comp(sc, bf, 1); 5117 else 5118 ath_tx_default_comp(sc, bf, 1); 5119 } 5120 5121 /* 5122 * Free the holding buffer if it exists 5123 */ 5124 ATH_TXQ_LOCK(txq); 5125 ath_txq_freeholdingbuf(sc, txq); 5126 ATH_TXQ_UNLOCK(txq); 5127 5128 /* 5129 * Drain software queued frames which are on 5130 * active TIDs. 5131 */ 5132 ath_tx_txq_drain(sc, txq); 5133 } 5134 5135 static void 5136 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5137 { 5138 struct ath_hal *ah = sc->sc_ah; 5139 5140 ATH_TXQ_LOCK_ASSERT(txq); 5141 5142 DPRINTF(sc, ATH_DEBUG_RESET, 5143 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5144 "link %p, holdingbf=%p\n", 5145 __func__, 5146 txq->axq_qnum, 5147 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5148 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5149 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5150 txq->axq_flags, 5151 txq->axq_link, 5152 txq->axq_holdingbf); 5153 5154 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5155 /* We've stopped TX DMA, so mark this as stopped. */ 5156 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5157 5158 #ifdef ATH_DEBUG 5159 if ((sc->sc_debug & ATH_DEBUG_RESET) 5160 && (txq->axq_holdingbf != NULL)) { 5161 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5162 } 5163 #endif 5164 } 5165 5166 int 5167 ath_stoptxdma(struct ath_softc *sc) 5168 { 5169 struct ath_hal *ah = sc->sc_ah; 5170 int i; 5171 5172 /* XXX return value */ 5173 if (sc->sc_invalid) 5174 return 0; 5175 5176 if (!sc->sc_invalid) { 5177 /* don't touch the hardware if marked invalid */ 5178 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5179 __func__, sc->sc_bhalq, 5180 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5181 NULL); 5182 5183 /* stop the beacon queue */ 5184 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5185 5186 /* Stop the data queues */ 5187 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5188 if (ATH_TXQ_SETUP(sc, i)) { 5189 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5190 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5191 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5192 } 5193 } 5194 } 5195 5196 return 1; 5197 } 5198 5199 #ifdef ATH_DEBUG 5200 void 5201 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5202 { 5203 struct ath_hal *ah = sc->sc_ah; 5204 struct ath_buf *bf; 5205 int i = 0; 5206 5207 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5208 return; 5209 5210 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5211 __func__, txq->axq_qnum); 5212 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5213 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5214 ath_hal_txprocdesc(ah, bf->bf_lastds, 5215 &bf->bf_status.ds_txstat) == HAL_OK); 5216 i++; 5217 } 5218 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5219 __func__, txq->axq_qnum); 5220 } 5221 #endif /* ATH_DEBUG */ 5222 5223 /* 5224 * Drain the transmit queues and reclaim resources. 5225 */ 5226 void 5227 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5228 { 5229 struct ath_hal *ah = sc->sc_ah; 5230 struct ifnet *ifp = sc->sc_ifp; 5231 int i; 5232 struct ath_buf *bf_last; 5233 5234 (void) ath_stoptxdma(sc); 5235 5236 /* 5237 * Dump the queue contents 5238 */ 5239 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5240 /* 5241 * XXX TODO: should we just handle the completed TX frames 5242 * here, whether or not the reset is a full one or not? 5243 */ 5244 if (ATH_TXQ_SETUP(sc, i)) { 5245 #ifdef ATH_DEBUG 5246 if (sc->sc_debug & ATH_DEBUG_RESET) 5247 ath_tx_dump(sc, &sc->sc_txq[i]); 5248 #endif /* ATH_DEBUG */ 5249 if (reset_type == ATH_RESET_NOLOSS) { 5250 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5251 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5252 /* 5253 * Free the holding buffer; DMA is now 5254 * stopped. 5255 */ 5256 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5257 /* 5258 * Setup the link pointer to be the 5259 * _last_ buffer/descriptor in the list. 5260 * If there's nothing in the list, set it 5261 * to NULL. 5262 */ 5263 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5264 axq_q_s); 5265 if (bf_last != NULL) { 5266 ath_hal_gettxdesclinkptr(ah, 5267 bf_last->bf_lastds, 5268 &sc->sc_txq[i].axq_link); 5269 } else { 5270 sc->sc_txq[i].axq_link = NULL; 5271 } 5272 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5273 } else 5274 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5275 } 5276 } 5277 #ifdef ATH_DEBUG 5278 if (sc->sc_debug & ATH_DEBUG_RESET) { 5279 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5280 if (bf != NULL && bf->bf_m != NULL) { 5281 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5282 ath_hal_txprocdesc(ah, bf->bf_lastds, 5283 &bf->bf_status.ds_txstat) == HAL_OK); 5284 ieee80211_dump_pkt(ifp->if_l2com, 5285 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5286 0, -1); 5287 } 5288 } 5289 #endif /* ATH_DEBUG */ 5290 IF_LOCK(&ifp->if_snd); 5291 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5292 IF_UNLOCK(&ifp->if_snd); 5293 sc->sc_wd_timer = 0; 5294 } 5295 5296 /* 5297 * Update internal state after a channel change. 5298 */ 5299 static void 5300 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5301 { 5302 enum ieee80211_phymode mode; 5303 5304 /* 5305 * Change channels and update the h/w rate map 5306 * if we're switching; e.g. 11a to 11b/g. 5307 */ 5308 mode = ieee80211_chan2mode(chan); 5309 if (mode != sc->sc_curmode) 5310 ath_setcurmode(sc, mode); 5311 sc->sc_curchan = chan; 5312 } 5313 5314 /* 5315 * Set/change channels. If the channel is really being changed, 5316 * it's done by resetting the chip. To accomplish this we must 5317 * first cleanup any pending DMA, then restart stuff after a la 5318 * ath_init. 5319 */ 5320 static int 5321 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5322 { 5323 struct ifnet *ifp = sc->sc_ifp; 5324 struct ieee80211com *ic = ifp->if_l2com; 5325 struct ath_hal *ah = sc->sc_ah; 5326 int ret = 0; 5327 5328 /* Treat this as an interface reset */ 5329 ATH_PCU_UNLOCK_ASSERT(sc); 5330 ATH_UNLOCK_ASSERT(sc); 5331 5332 /* (Try to) stop TX/RX from occuring */ 5333 taskqueue_block(sc->sc_tq); 5334 5335 ATH_PCU_LOCK(sc); 5336 5337 /* Stop new RX/TX/interrupt completion */ 5338 if (ath_reset_grablock(sc, 1) == 0) { 5339 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5340 __func__); 5341 } 5342 5343 ath_hal_intrset(ah, 0); 5344 5345 /* Stop pending RX/TX completion */ 5346 ath_txrx_stop_locked(sc); 5347 5348 ATH_PCU_UNLOCK(sc); 5349 5350 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5351 __func__, ieee80211_chan2ieee(ic, chan), 5352 chan->ic_freq, chan->ic_flags); 5353 if (chan != sc->sc_curchan) { 5354 HAL_STATUS status; 5355 /* 5356 * To switch channels clear any pending DMA operations; 5357 * wait long enough for the RX fifo to drain, reset the 5358 * hardware at the new frequency, and then re-enable 5359 * the relevant bits of the h/w. 5360 */ 5361 #if 0 5362 ath_hal_intrset(ah, 0); /* disable interrupts */ 5363 #endif 5364 ath_stoprecv(sc, 1); /* turn off frame recv */ 5365 /* 5366 * First, handle completed TX/RX frames. 5367 */ 5368 ath_rx_flush(sc); 5369 ath_draintxq(sc, ATH_RESET_NOLOSS); 5370 /* 5371 * Next, flush the non-scheduled frames. 5372 */ 5373 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5374 5375 ath_update_chainmasks(sc, chan); 5376 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5377 sc->sc_cur_rxchainmask); 5378 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5379 if_printf(ifp, "%s: unable to reset " 5380 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5381 __func__, ieee80211_chan2ieee(ic, chan), 5382 chan->ic_freq, chan->ic_flags, status); 5383 ret = EIO; 5384 goto finish; 5385 } 5386 sc->sc_diversity = ath_hal_getdiversity(ah); 5387 5388 /* Let DFS at it in case it's a DFS channel */ 5389 ath_dfs_radar_enable(sc, chan); 5390 5391 /* Let spectral at in case spectral is enabled */ 5392 ath_spectral_enable(sc, chan); 5393 5394 /* 5395 * Let bluetooth coexistence at in case it's needed for this 5396 * channel 5397 */ 5398 ath_btcoex_enable(sc, ic->ic_curchan); 5399 5400 /* 5401 * If we're doing TDMA, enforce the TXOP limitation for chips 5402 * that support it. 5403 */ 5404 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5405 ath_hal_setenforcetxop(sc->sc_ah, 1); 5406 else 5407 ath_hal_setenforcetxop(sc->sc_ah, 0); 5408 5409 /* 5410 * Re-enable rx framework. 5411 */ 5412 if (ath_startrecv(sc) != 0) { 5413 if_printf(ifp, "%s: unable to restart recv logic\n", 5414 __func__); 5415 ret = EIO; 5416 goto finish; 5417 } 5418 5419 /* 5420 * Change channels and update the h/w rate map 5421 * if we're switching; e.g. 11a to 11b/g. 5422 */ 5423 ath_chan_change(sc, chan); 5424 5425 /* 5426 * Reset clears the beacon timers; reset them 5427 * here if needed. 5428 */ 5429 if (sc->sc_beacons) { /* restart beacons */ 5430 #ifdef IEEE80211_SUPPORT_TDMA 5431 if (sc->sc_tdma) 5432 ath_tdma_config(sc, NULL); 5433 else 5434 #endif 5435 ath_beacon_config(sc, NULL); 5436 } 5437 5438 /* 5439 * Re-enable interrupts. 5440 */ 5441 #if 0 5442 ath_hal_intrset(ah, sc->sc_imask); 5443 #endif 5444 } 5445 5446 finish: 5447 ATH_PCU_LOCK(sc); 5448 sc->sc_inreset_cnt--; 5449 /* XXX only do this if sc_inreset_cnt == 0? */ 5450 ath_hal_intrset(ah, sc->sc_imask); 5451 ATH_PCU_UNLOCK(sc); 5452 5453 IF_LOCK(&ifp->if_snd); 5454 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5455 IF_UNLOCK(&ifp->if_snd); 5456 ath_txrx_start(sc); 5457 /* XXX ath_start? */ 5458 5459 return ret; 5460 } 5461 5462 /* 5463 * Periodically recalibrate the PHY to account 5464 * for temperature/environment changes. 5465 */ 5466 static void 5467 ath_calibrate(void *arg) 5468 { 5469 struct ath_softc *sc = arg; 5470 struct ath_hal *ah = sc->sc_ah; 5471 struct ifnet *ifp = sc->sc_ifp; 5472 struct ieee80211com *ic = ifp->if_l2com; 5473 HAL_BOOL longCal, isCalDone = AH_TRUE; 5474 HAL_BOOL aniCal, shortCal = AH_FALSE; 5475 int nextcal; 5476 5477 /* 5478 * Force the hardware awake for ANI work. 5479 */ 5480 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5481 5482 /* Skip trying to do this if we're in reset */ 5483 if (sc->sc_inreset_cnt) 5484 goto restart; 5485 5486 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5487 goto restart; 5488 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5489 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5490 if (sc->sc_doresetcal) 5491 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5492 5493 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5494 if (aniCal) { 5495 sc->sc_stats.ast_ani_cal++; 5496 sc->sc_lastani = ticks; 5497 ath_hal_ani_poll(ah, sc->sc_curchan); 5498 } 5499 5500 if (longCal) { 5501 sc->sc_stats.ast_per_cal++; 5502 sc->sc_lastlongcal = ticks; 5503 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5504 /* 5505 * Rfgain is out of bounds, reset the chip 5506 * to load new gain values. 5507 */ 5508 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5509 "%s: rfgain change\n", __func__); 5510 sc->sc_stats.ast_per_rfgain++; 5511 sc->sc_resetcal = 0; 5512 sc->sc_doresetcal = AH_TRUE; 5513 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5514 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5515 ath_power_restore_power_state(sc); 5516 return; 5517 } 5518 /* 5519 * If this long cal is after an idle period, then 5520 * reset the data collection state so we start fresh. 5521 */ 5522 if (sc->sc_resetcal) { 5523 (void) ath_hal_calreset(ah, sc->sc_curchan); 5524 sc->sc_lastcalreset = ticks; 5525 sc->sc_lastshortcal = ticks; 5526 sc->sc_resetcal = 0; 5527 sc->sc_doresetcal = AH_TRUE; 5528 } 5529 } 5530 5531 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5532 if (shortCal || longCal) { 5533 isCalDone = AH_FALSE; 5534 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5535 if (longCal) { 5536 /* 5537 * Calibrate noise floor data again in case of change. 5538 */ 5539 ath_hal_process_noisefloor(ah); 5540 } 5541 } else { 5542 DPRINTF(sc, ATH_DEBUG_ANY, 5543 "%s: calibration of channel %u failed\n", 5544 __func__, sc->sc_curchan->ic_freq); 5545 sc->sc_stats.ast_per_calfail++; 5546 } 5547 if (shortCal) 5548 sc->sc_lastshortcal = ticks; 5549 } 5550 if (!isCalDone) { 5551 restart: 5552 /* 5553 * Use a shorter interval to potentially collect multiple 5554 * data samples required to complete calibration. Once 5555 * we're told the work is done we drop back to a longer 5556 * interval between requests. We're more aggressive doing 5557 * work when operating as an AP to improve operation right 5558 * after startup. 5559 */ 5560 sc->sc_lastshortcal = ticks; 5561 nextcal = ath_shortcalinterval*hz/1000; 5562 if (sc->sc_opmode != HAL_M_HOSTAP) 5563 nextcal *= 10; 5564 sc->sc_doresetcal = AH_TRUE; 5565 } else { 5566 /* nextcal should be the shortest time for next event */ 5567 nextcal = ath_longcalinterval*hz; 5568 if (sc->sc_lastcalreset == 0) 5569 sc->sc_lastcalreset = sc->sc_lastlongcal; 5570 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5571 sc->sc_resetcal = 1; /* setup reset next trip */ 5572 sc->sc_doresetcal = AH_FALSE; 5573 } 5574 /* ANI calibration may occur more often than short/long/resetcal */ 5575 if (ath_anicalinterval > 0) 5576 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5577 5578 if (nextcal != 0) { 5579 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5580 __func__, nextcal, isCalDone ? "" : "!"); 5581 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5582 } else { 5583 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5584 __func__); 5585 /* NB: don't rearm timer */ 5586 } 5587 /* 5588 * Restore power state now that we're done. 5589 */ 5590 ath_power_restore_power_state(sc); 5591 } 5592 5593 static void 5594 ath_scan_start(struct ieee80211com *ic) 5595 { 5596 struct ifnet *ifp = ic->ic_ifp; 5597 struct ath_softc *sc = ifp->if_softc; 5598 struct ath_hal *ah = sc->sc_ah; 5599 u_int32_t rfilt; 5600 5601 /* XXX calibration timer? */ 5602 5603 ATH_LOCK(sc); 5604 sc->sc_scanning = 1; 5605 sc->sc_syncbeacon = 0; 5606 rfilt = ath_calcrxfilter(sc); 5607 ATH_UNLOCK(sc); 5608 5609 ATH_PCU_LOCK(sc); 5610 ath_hal_setrxfilter(ah, rfilt); 5611 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5612 ATH_PCU_UNLOCK(sc); 5613 5614 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5615 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5616 } 5617 5618 static void 5619 ath_scan_end(struct ieee80211com *ic) 5620 { 5621 struct ifnet *ifp = ic->ic_ifp; 5622 struct ath_softc *sc = ifp->if_softc; 5623 struct ath_hal *ah = sc->sc_ah; 5624 u_int32_t rfilt; 5625 5626 ATH_LOCK(sc); 5627 sc->sc_scanning = 0; 5628 rfilt = ath_calcrxfilter(sc); 5629 ATH_UNLOCK(sc); 5630 5631 ATH_PCU_LOCK(sc); 5632 ath_hal_setrxfilter(ah, rfilt); 5633 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5634 5635 ath_hal_process_noisefloor(ah); 5636 ATH_PCU_UNLOCK(sc); 5637 5638 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5639 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5640 sc->sc_curaid); 5641 } 5642 5643 #ifdef ATH_ENABLE_11N 5644 /* 5645 * For now, just do a channel change. 5646 * 5647 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5648 * control state and resetting the hardware without dropping frames out 5649 * of the queue. 5650 * 5651 * The unfortunate trouble here is making absolutely sure that the 5652 * channel width change has propagated enough so the hardware 5653 * absolutely isn't handed bogus frames for it's current operating 5654 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5655 * does occur in parallel, we need to make certain we've blocked 5656 * any further ongoing TX (and RX, that can cause raw TX) 5657 * before we do this. 5658 */ 5659 static void 5660 ath_update_chw(struct ieee80211com *ic) 5661 { 5662 struct ifnet *ifp = ic->ic_ifp; 5663 struct ath_softc *sc = ifp->if_softc; 5664 5665 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5666 ath_set_channel(ic); 5667 } 5668 #endif /* ATH_ENABLE_11N */ 5669 5670 static void 5671 ath_set_channel(struct ieee80211com *ic) 5672 { 5673 struct ifnet *ifp = ic->ic_ifp; 5674 struct ath_softc *sc = ifp->if_softc; 5675 5676 ATH_LOCK(sc); 5677 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5678 ATH_UNLOCK(sc); 5679 5680 (void) ath_chan_set(sc, ic->ic_curchan); 5681 /* 5682 * If we are returning to our bss channel then mark state 5683 * so the next recv'd beacon's tsf will be used to sync the 5684 * beacon timers. Note that since we only hear beacons in 5685 * sta/ibss mode this has no effect in other operating modes. 5686 */ 5687 ATH_LOCK(sc); 5688 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5689 sc->sc_syncbeacon = 1; 5690 ath_power_restore_power_state(sc); 5691 ATH_UNLOCK(sc); 5692 } 5693 5694 /* 5695 * Walk the vap list and check if there any vap's in RUN state. 5696 */ 5697 static int 5698 ath_isanyrunningvaps(struct ieee80211vap *this) 5699 { 5700 struct ieee80211com *ic = this->iv_ic; 5701 struct ieee80211vap *vap; 5702 5703 IEEE80211_LOCK_ASSERT(ic); 5704 5705 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5706 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5707 return 1; 5708 } 5709 return 0; 5710 } 5711 5712 static int 5713 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5714 { 5715 struct ieee80211com *ic = vap->iv_ic; 5716 struct ath_softc *sc = ic->ic_ifp->if_softc; 5717 struct ath_vap *avp = ATH_VAP(vap); 5718 struct ath_hal *ah = sc->sc_ah; 5719 struct ieee80211_node *ni = NULL; 5720 int i, error, stamode; 5721 u_int32_t rfilt; 5722 int csa_run_transition = 0; 5723 enum ieee80211_state ostate = vap->iv_state; 5724 5725 static const HAL_LED_STATE leds[] = { 5726 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5727 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5728 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5729 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5730 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5731 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5732 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5733 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5734 }; 5735 5736 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5737 ieee80211_state_name[ostate], 5738 ieee80211_state_name[nstate]); 5739 5740 /* 5741 * net80211 _should_ have the comlock asserted at this point. 5742 * There are some comments around the calls to vap->iv_newstate 5743 * which indicate that it (newstate) may end up dropping the 5744 * lock. This and the subsequent lock assert check after newstate 5745 * are an attempt to catch these and figure out how/why. 5746 */ 5747 IEEE80211_LOCK_ASSERT(ic); 5748 5749 /* Before we touch the hardware - wake it up */ 5750 ATH_LOCK(sc); 5751 /* 5752 * If the NIC is in anything other than SLEEP state, 5753 * we need to ensure that self-generated frames are 5754 * set for PWRMGT=0. Otherwise we may end up with 5755 * strange situations. 5756 * 5757 * XXX TODO: is this actually the case? :-) 5758 */ 5759 if (nstate != IEEE80211_S_SLEEP) 5760 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5761 5762 /* 5763 * Now, wake the thing up. 5764 */ 5765 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5766 ATH_UNLOCK(sc); 5767 5768 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5769 csa_run_transition = 1; 5770 5771 callout_drain(&sc->sc_cal_ch); 5772 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5773 5774 if (nstate == IEEE80211_S_SCAN) { 5775 /* 5776 * Scanning: turn off beacon miss and don't beacon. 5777 * Mark beacon state so when we reach RUN state we'll 5778 * [re]setup beacons. Unblock the task q thread so 5779 * deferred interrupt processing is done. 5780 */ 5781 5782 /* Ensure we stay awake during scan */ 5783 ATH_LOCK(sc); 5784 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5785 ath_power_setpower(sc, HAL_PM_AWAKE); 5786 ATH_UNLOCK(sc); 5787 5788 ath_hal_intrset(ah, 5789 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5790 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5791 sc->sc_beacons = 0; 5792 taskqueue_unblock(sc->sc_tq); 5793 } 5794 5795 ni = ieee80211_ref_node(vap->iv_bss); 5796 rfilt = ath_calcrxfilter(sc); 5797 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5798 vap->iv_opmode == IEEE80211_M_AHDEMO || 5799 vap->iv_opmode == IEEE80211_M_IBSS); 5800 5801 /* 5802 * XXX Dont need to do this (and others) if we've transitioned 5803 * from SLEEP->RUN. 5804 */ 5805 if (stamode && nstate == IEEE80211_S_RUN) { 5806 sc->sc_curaid = ni->ni_associd; 5807 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5808 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5809 } 5810 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5811 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5812 ath_hal_setrxfilter(ah, rfilt); 5813 5814 /* XXX is this to restore keycache on resume? */ 5815 if (vap->iv_opmode != IEEE80211_M_STA && 5816 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5817 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5818 if (ath_hal_keyisvalid(ah, i)) 5819 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5820 } 5821 5822 /* 5823 * Invoke the parent method to do net80211 work. 5824 */ 5825 error = avp->av_newstate(vap, nstate, arg); 5826 if (error != 0) 5827 goto bad; 5828 5829 /* 5830 * See above: ensure av_newstate() doesn't drop the lock 5831 * on us. 5832 */ 5833 IEEE80211_LOCK_ASSERT(ic); 5834 5835 if (nstate == IEEE80211_S_RUN) { 5836 /* NB: collect bss node again, it may have changed */ 5837 ieee80211_free_node(ni); 5838 ni = ieee80211_ref_node(vap->iv_bss); 5839 5840 DPRINTF(sc, ATH_DEBUG_STATE, 5841 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5842 "capinfo 0x%04x chan %d\n", __func__, 5843 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5844 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5845 5846 switch (vap->iv_opmode) { 5847 #ifdef IEEE80211_SUPPORT_TDMA 5848 case IEEE80211_M_AHDEMO: 5849 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5850 break; 5851 /* fall thru... */ 5852 #endif 5853 case IEEE80211_M_HOSTAP: 5854 case IEEE80211_M_IBSS: 5855 case IEEE80211_M_MBSS: 5856 /* 5857 * Allocate and setup the beacon frame. 5858 * 5859 * Stop any previous beacon DMA. This may be 5860 * necessary, for example, when an ibss merge 5861 * causes reconfiguration; there will be a state 5862 * transition from RUN->RUN that means we may 5863 * be called with beacon transmission active. 5864 */ 5865 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5866 5867 error = ath_beacon_alloc(sc, ni); 5868 if (error != 0) 5869 goto bad; 5870 /* 5871 * If joining an adhoc network defer beacon timer 5872 * configuration to the next beacon frame so we 5873 * have a current TSF to use. Otherwise we're 5874 * starting an ibss/bss so there's no need to delay; 5875 * if this is the first vap moving to RUN state, then 5876 * beacon state needs to be [re]configured. 5877 */ 5878 if (vap->iv_opmode == IEEE80211_M_IBSS && 5879 ni->ni_tstamp.tsf != 0) { 5880 sc->sc_syncbeacon = 1; 5881 } else if (!sc->sc_beacons) { 5882 #ifdef IEEE80211_SUPPORT_TDMA 5883 if (vap->iv_caps & IEEE80211_C_TDMA) 5884 ath_tdma_config(sc, vap); 5885 else 5886 #endif 5887 ath_beacon_config(sc, vap); 5888 sc->sc_beacons = 1; 5889 } 5890 break; 5891 case IEEE80211_M_STA: 5892 /* 5893 * Defer beacon timer configuration to the next 5894 * beacon frame so we have a current TSF to use 5895 * (any TSF collected when scanning is likely old). 5896 * However if it's due to a CSA -> RUN transition, 5897 * force a beacon update so we pick up a lack of 5898 * beacons from an AP in CAC and thus force a 5899 * scan. 5900 * 5901 * And, there's also corner cases here where 5902 * after a scan, the AP may have disappeared. 5903 * In that case, we may not receive an actual 5904 * beacon to update the beacon timer and thus we 5905 * won't get notified of the missing beacons. 5906 */ 5907 if (ostate != IEEE80211_S_RUN && 5908 ostate != IEEE80211_S_SLEEP) { 5909 DPRINTF(sc, ATH_DEBUG_BEACON, 5910 "%s: STA; syncbeacon=1\n", __func__); 5911 sc->sc_syncbeacon = 1; 5912 5913 if (csa_run_transition) 5914 ath_beacon_config(sc, vap); 5915 5916 /* 5917 * PR: kern/175227 5918 * 5919 * Reconfigure beacons during reset; as otherwise 5920 * we won't get the beacon timers reprogrammed 5921 * after a reset and thus we won't pick up a 5922 * beacon miss interrupt. 5923 * 5924 * Hopefully we'll see a beacon before the BMISS 5925 * timer fires (too often), leading to a STA 5926 * disassociation. 5927 */ 5928 sc->sc_beacons = 1; 5929 } 5930 break; 5931 case IEEE80211_M_MONITOR: 5932 /* 5933 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5934 * transitions so we must re-enable interrupts here to 5935 * handle the case of a single monitor mode vap. 5936 */ 5937 ath_hal_intrset(ah, sc->sc_imask); 5938 break; 5939 case IEEE80211_M_WDS: 5940 break; 5941 default: 5942 break; 5943 } 5944 /* 5945 * Let the hal process statistics collected during a 5946 * scan so it can provide calibrated noise floor data. 5947 */ 5948 ath_hal_process_noisefloor(ah); 5949 /* 5950 * Reset rssi stats; maybe not the best place... 5951 */ 5952 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5953 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5954 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5955 5956 /* 5957 * Force awake for RUN mode. 5958 */ 5959 ATH_LOCK(sc); 5960 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5961 ath_power_setpower(sc, HAL_PM_AWAKE); 5962 ATH_UNLOCK(sc); 5963 5964 /* 5965 * Finally, start any timers and the task q thread 5966 * (in case we didn't go through SCAN state). 5967 */ 5968 if (ath_longcalinterval != 0) { 5969 /* start periodic recalibration timer */ 5970 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5971 } else { 5972 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5973 "%s: calibration disabled\n", __func__); 5974 } 5975 5976 taskqueue_unblock(sc->sc_tq); 5977 } else if (nstate == IEEE80211_S_INIT) { 5978 /* 5979 * If there are no vaps left in RUN state then 5980 * shutdown host/driver operation: 5981 * o disable interrupts 5982 * o disable the task queue thread 5983 * o mark beacon processing as stopped 5984 */ 5985 if (!ath_isanyrunningvaps(vap)) { 5986 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5987 /* disable interrupts */ 5988 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5989 taskqueue_block(sc->sc_tq); 5990 sc->sc_beacons = 0; 5991 } 5992 #ifdef IEEE80211_SUPPORT_TDMA 5993 ath_hal_setcca(ah, AH_TRUE); 5994 #endif 5995 } else if (nstate == IEEE80211_S_SLEEP) { 5996 /* We're going to sleep, so transition appropriately */ 5997 /* For now, only do this if we're a single STA vap */ 5998 if (sc->sc_nvaps == 1 && 5999 vap->iv_opmode == IEEE80211_M_STA) { 6000 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6001 ATH_LOCK(sc); 6002 /* 6003 * Always at least set the self-generated 6004 * frame config to set PWRMGT=1. 6005 */ 6006 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6007 6008 /* 6009 * If we're not syncing beacons, transition 6010 * to NETWORK_SLEEP. 6011 * 6012 * We stay awake if syncbeacon > 0 in case 6013 * we need to listen for some beacons otherwise 6014 * our beacon timer config may be wrong. 6015 */ 6016 if (sc->sc_syncbeacon == 0) { 6017 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 6018 } 6019 ATH_UNLOCK(sc); 6020 } 6021 } 6022 bad: 6023 ieee80211_free_node(ni); 6024 6025 /* 6026 * Restore the power state - either to what it was, or 6027 * to network_sleep if it's alright. 6028 */ 6029 ATH_LOCK(sc); 6030 ath_power_restore_power_state(sc); 6031 ATH_UNLOCK(sc); 6032 return error; 6033 } 6034 6035 /* 6036 * Allocate a key cache slot to the station so we can 6037 * setup a mapping from key index to node. The key cache 6038 * slot is needed for managing antenna state and for 6039 * compression when stations do not use crypto. We do 6040 * it uniliaterally here; if crypto is employed this slot 6041 * will be reassigned. 6042 */ 6043 static void 6044 ath_setup_stationkey(struct ieee80211_node *ni) 6045 { 6046 struct ieee80211vap *vap = ni->ni_vap; 6047 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6048 ieee80211_keyix keyix, rxkeyix; 6049 6050 /* XXX should take a locked ref to vap->iv_bss */ 6051 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6052 /* 6053 * Key cache is full; we'll fall back to doing 6054 * the more expensive lookup in software. Note 6055 * this also means no h/w compression. 6056 */ 6057 /* XXX msg+statistic */ 6058 } else { 6059 /* XXX locking? */ 6060 ni->ni_ucastkey.wk_keyix = keyix; 6061 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6062 /* NB: must mark device key to get called back on delete */ 6063 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6064 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6065 /* NB: this will create a pass-thru key entry */ 6066 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6067 } 6068 } 6069 6070 /* 6071 * Setup driver-specific state for a newly associated node. 6072 * Note that we're called also on a re-associate, the isnew 6073 * param tells us if this is the first time or not. 6074 */ 6075 static void 6076 ath_newassoc(struct ieee80211_node *ni, int isnew) 6077 { 6078 struct ath_node *an = ATH_NODE(ni); 6079 struct ieee80211vap *vap = ni->ni_vap; 6080 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6081 const struct ieee80211_txparam *tp = ni->ni_txparms; 6082 6083 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6084 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6085 6086 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6087 __func__, 6088 ni->ni_macaddr, 6089 ":", 6090 isnew, 6091 an->an_is_powersave); 6092 6093 ATH_NODE_LOCK(an); 6094 ath_rate_newassoc(sc, an, isnew); 6095 ATH_NODE_UNLOCK(an); 6096 6097 if (isnew && 6098 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6099 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6100 ath_setup_stationkey(ni); 6101 6102 /* 6103 * If we're reassociating, make sure that any paused queues 6104 * get unpaused. 6105 * 6106 * Now, we may hvae frames in the hardware queue for this node. 6107 * So if we are reassociating and there are frames in the queue, 6108 * we need to go through the cleanup path to ensure that they're 6109 * marked as non-aggregate. 6110 */ 6111 if (! isnew) { 6112 DPRINTF(sc, ATH_DEBUG_NODE, 6113 "%s: %6D: reassoc; is_powersave=%d\n", 6114 __func__, 6115 ni->ni_macaddr, 6116 ":", 6117 an->an_is_powersave); 6118 6119 /* XXX for now, we can't hold the lock across assoc */ 6120 ath_tx_node_reassoc(sc, an); 6121 6122 /* XXX for now, we can't hold the lock across wakeup */ 6123 if (an->an_is_powersave) 6124 ath_tx_node_wakeup(sc, an); 6125 } 6126 } 6127 6128 static int 6129 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6130 int nchans, struct ieee80211_channel chans[]) 6131 { 6132 struct ath_softc *sc = ic->ic_ifp->if_softc; 6133 struct ath_hal *ah = sc->sc_ah; 6134 HAL_STATUS status; 6135 6136 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6137 "%s: rd %u cc %u location %c%s\n", 6138 __func__, reg->regdomain, reg->country, reg->location, 6139 reg->ecm ? " ecm" : ""); 6140 6141 status = ath_hal_set_channels(ah, chans, nchans, 6142 reg->country, reg->regdomain); 6143 if (status != HAL_OK) { 6144 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6145 __func__, status); 6146 return EINVAL; /* XXX */ 6147 } 6148 6149 return 0; 6150 } 6151 6152 static void 6153 ath_getradiocaps(struct ieee80211com *ic, 6154 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6155 { 6156 struct ath_softc *sc = ic->ic_ifp->if_softc; 6157 struct ath_hal *ah = sc->sc_ah; 6158 6159 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6160 __func__, SKU_DEBUG, CTRY_DEFAULT); 6161 6162 /* XXX check return */ 6163 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6164 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6165 6166 } 6167 6168 static int 6169 ath_getchannels(struct ath_softc *sc) 6170 { 6171 struct ifnet *ifp = sc->sc_ifp; 6172 struct ieee80211com *ic = ifp->if_l2com; 6173 struct ath_hal *ah = sc->sc_ah; 6174 HAL_STATUS status; 6175 6176 /* 6177 * Collect channel set based on EEPROM contents. 6178 */ 6179 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6180 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6181 if (status != HAL_OK) { 6182 if_printf(ifp, "%s: unable to collect channel list from hal, " 6183 "status %d\n", __func__, status); 6184 return EINVAL; 6185 } 6186 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6187 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6188 /* XXX map Atheros sku's to net80211 SKU's */ 6189 /* XXX net80211 types too small */ 6190 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6191 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6192 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6193 ic->ic_regdomain.isocc[1] = ' '; 6194 6195 ic->ic_regdomain.ecm = 1; 6196 ic->ic_regdomain.location = 'I'; 6197 6198 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6199 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6200 __func__, sc->sc_eerd, sc->sc_eecc, 6201 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6202 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6203 return 0; 6204 } 6205 6206 static int 6207 ath_rate_setup(struct ath_softc *sc, u_int mode) 6208 { 6209 struct ath_hal *ah = sc->sc_ah; 6210 const HAL_RATE_TABLE *rt; 6211 6212 switch (mode) { 6213 case IEEE80211_MODE_11A: 6214 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6215 break; 6216 case IEEE80211_MODE_HALF: 6217 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6218 break; 6219 case IEEE80211_MODE_QUARTER: 6220 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6221 break; 6222 case IEEE80211_MODE_11B: 6223 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6224 break; 6225 case IEEE80211_MODE_11G: 6226 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6227 break; 6228 case IEEE80211_MODE_TURBO_A: 6229 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6230 break; 6231 case IEEE80211_MODE_TURBO_G: 6232 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6233 break; 6234 case IEEE80211_MODE_STURBO_A: 6235 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6236 break; 6237 case IEEE80211_MODE_11NA: 6238 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6239 break; 6240 case IEEE80211_MODE_11NG: 6241 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6242 break; 6243 default: 6244 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6245 __func__, mode); 6246 return 0; 6247 } 6248 sc->sc_rates[mode] = rt; 6249 return (rt != NULL); 6250 } 6251 6252 static void 6253 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6254 { 6255 #define N(a) (sizeof(a)/sizeof(a[0])) 6256 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6257 static const struct { 6258 u_int rate; /* tx/rx 802.11 rate */ 6259 u_int16_t timeOn; /* LED on time (ms) */ 6260 u_int16_t timeOff; /* LED off time (ms) */ 6261 } blinkrates[] = { 6262 { 108, 40, 10 }, 6263 { 96, 44, 11 }, 6264 { 72, 50, 13 }, 6265 { 48, 57, 14 }, 6266 { 36, 67, 16 }, 6267 { 24, 80, 20 }, 6268 { 22, 100, 25 }, 6269 { 18, 133, 34 }, 6270 { 12, 160, 40 }, 6271 { 10, 200, 50 }, 6272 { 6, 240, 58 }, 6273 { 4, 267, 66 }, 6274 { 2, 400, 100 }, 6275 { 0, 500, 130 }, 6276 /* XXX half/quarter rates */ 6277 }; 6278 const HAL_RATE_TABLE *rt; 6279 int i, j; 6280 6281 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6282 rt = sc->sc_rates[mode]; 6283 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6284 for (i = 0; i < rt->rateCount; i++) { 6285 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6286 if (rt->info[i].phy != IEEE80211_T_HT) 6287 sc->sc_rixmap[ieeerate] = i; 6288 else 6289 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6290 } 6291 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6292 for (i = 0; i < N(sc->sc_hwmap); i++) { 6293 if (i >= rt->rateCount) { 6294 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6295 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6296 continue; 6297 } 6298 sc->sc_hwmap[i].ieeerate = 6299 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6300 if (rt->info[i].phy == IEEE80211_T_HT) 6301 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6302 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6303 if (rt->info[i].shortPreamble || 6304 rt->info[i].phy == IEEE80211_T_OFDM) 6305 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6306 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6307 for (j = 0; j < N(blinkrates)-1; j++) 6308 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6309 break; 6310 /* NB: this uses the last entry if the rate isn't found */ 6311 /* XXX beware of overlow */ 6312 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6313 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6314 } 6315 sc->sc_currates = rt; 6316 sc->sc_curmode = mode; 6317 /* 6318 * All protection frames are transmited at 2Mb/s for 6319 * 11g, otherwise at 1Mb/s. 6320 */ 6321 if (mode == IEEE80211_MODE_11G) 6322 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6323 else 6324 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6325 /* NB: caller is responsible for resetting rate control state */ 6326 #undef N 6327 } 6328 6329 static void 6330 ath_watchdog(void *arg) 6331 { 6332 struct ath_softc *sc = arg; 6333 int do_reset = 0; 6334 6335 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6336 struct ifnet *ifp = sc->sc_ifp; 6337 uint32_t hangs; 6338 6339 ATH_LOCK(sc); 6340 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6341 ATH_UNLOCK(sc); 6342 6343 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6344 hangs != 0) { 6345 if_printf(ifp, "%s hang detected (0x%x)\n", 6346 hangs & 0xff ? "bb" : "mac", hangs); 6347 } else 6348 if_printf(ifp, "device timeout\n"); 6349 do_reset = 1; 6350 ifp->if_oerrors++; 6351 sc->sc_stats.ast_watchdog++; 6352 6353 ATH_LOCK(sc); 6354 ath_power_restore_power_state(sc); 6355 ATH_UNLOCK(sc); 6356 } 6357 6358 /* 6359 * We can't hold the lock across the ath_reset() call. 6360 * 6361 * And since this routine can't hold a lock and sleep, 6362 * do the reset deferred. 6363 */ 6364 if (do_reset) { 6365 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6366 } 6367 6368 callout_schedule(&sc->sc_wd_ch, hz); 6369 } 6370 6371 /* 6372 * Fetch the rate control statistics for the given node. 6373 */ 6374 static int 6375 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 6376 { 6377 struct ath_node *an; 6378 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 6379 struct ieee80211_node *ni; 6380 int error = 0; 6381 6382 /* Perform a lookup on the given node */ 6383 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 6384 if (ni == NULL) { 6385 error = EINVAL; 6386 goto bad; 6387 } 6388 6389 /* Lock the ath_node */ 6390 an = ATH_NODE(ni); 6391 ATH_NODE_LOCK(an); 6392 6393 /* Fetch the rate control stats for this node */ 6394 error = ath_rate_fetch_node_stats(sc, an, rs); 6395 6396 /* No matter what happens here, just drop through */ 6397 6398 /* Unlock the ath_node */ 6399 ATH_NODE_UNLOCK(an); 6400 6401 /* Unref the node */ 6402 ieee80211_node_decref(ni); 6403 6404 bad: 6405 return (error); 6406 } 6407 6408 #ifdef ATH_DIAGAPI 6409 /* 6410 * Diagnostic interface to the HAL. This is used by various 6411 * tools to do things like retrieve register contents for 6412 * debugging. The mechanism is intentionally opaque so that 6413 * it can change frequently w/o concern for compatiblity. 6414 */ 6415 static int 6416 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6417 { 6418 struct ath_hal *ah = sc->sc_ah; 6419 u_int id = ad->ad_id & ATH_DIAG_ID; 6420 void *indata = NULL; 6421 void *outdata = NULL; 6422 u_int32_t insize = ad->ad_in_size; 6423 u_int32_t outsize = ad->ad_out_size; 6424 int error = 0; 6425 6426 if (ad->ad_id & ATH_DIAG_IN) { 6427 /* 6428 * Copy in data. 6429 */ 6430 indata = malloc(insize, M_TEMP, M_NOWAIT); 6431 if (indata == NULL) { 6432 error = ENOMEM; 6433 goto bad; 6434 } 6435 error = copyin(ad->ad_in_data, indata, insize); 6436 if (error) 6437 goto bad; 6438 } 6439 if (ad->ad_id & ATH_DIAG_DYN) { 6440 /* 6441 * Allocate a buffer for the results (otherwise the HAL 6442 * returns a pointer to a buffer where we can read the 6443 * results). Note that we depend on the HAL leaving this 6444 * pointer for us to use below in reclaiming the buffer; 6445 * may want to be more defensive. 6446 */ 6447 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6448 if (outdata == NULL) { 6449 error = ENOMEM; 6450 goto bad; 6451 } 6452 } 6453 6454 6455 ATH_LOCK(sc); 6456 if (id != HAL_DIAG_REGS) 6457 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6458 ATH_UNLOCK(sc); 6459 6460 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6461 if (outsize < ad->ad_out_size) 6462 ad->ad_out_size = outsize; 6463 if (outdata != NULL) 6464 error = copyout(outdata, ad->ad_out_data, 6465 ad->ad_out_size); 6466 } else { 6467 error = EINVAL; 6468 } 6469 6470 ATH_LOCK(sc); 6471 if (id != HAL_DIAG_REGS) 6472 ath_power_restore_power_state(sc); 6473 ATH_UNLOCK(sc); 6474 6475 bad: 6476 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6477 free(indata, M_TEMP); 6478 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6479 free(outdata, M_TEMP); 6480 return error; 6481 } 6482 #endif /* ATH_DIAGAPI */ 6483 6484 static int 6485 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6486 { 6487 #define IS_RUNNING(ifp) \ 6488 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6489 struct ath_softc *sc = ifp->if_softc; 6490 struct ieee80211com *ic = ifp->if_l2com; 6491 struct ifreq *ifr = (struct ifreq *)data; 6492 const HAL_RATE_TABLE *rt; 6493 int error = 0; 6494 6495 switch (cmd) { 6496 case SIOCSIFFLAGS: 6497 if (IS_RUNNING(ifp)) { 6498 /* 6499 * To avoid rescanning another access point, 6500 * do not call ath_init() here. Instead, 6501 * only reflect promisc mode settings. 6502 */ 6503 ATH_LOCK(sc); 6504 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6505 ath_mode_init(sc); 6506 ath_power_restore_power_state(sc); 6507 ATH_UNLOCK(sc); 6508 } else if (ifp->if_flags & IFF_UP) { 6509 /* 6510 * Beware of being called during attach/detach 6511 * to reset promiscuous mode. In that case we 6512 * will still be marked UP but not RUNNING. 6513 * However trying to re-init the interface 6514 * is the wrong thing to do as we've already 6515 * torn down much of our state. There's 6516 * probably a better way to deal with this. 6517 */ 6518 if (!sc->sc_invalid) 6519 ath_init(sc); /* XXX lose error */ 6520 } else { 6521 ATH_LOCK(sc); 6522 ath_stop_locked(ifp); 6523 if (!sc->sc_invalid) 6524 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6525 ATH_UNLOCK(sc); 6526 } 6527 break; 6528 case SIOCGIFMEDIA: 6529 case SIOCSIFMEDIA: 6530 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6531 break; 6532 case SIOCGATHSTATS: 6533 /* NB: embed these numbers to get a consistent view */ 6534 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6535 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6536 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6537 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6538 #ifdef IEEE80211_SUPPORT_TDMA 6539 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6540 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6541 #endif 6542 rt = sc->sc_currates; 6543 sc->sc_stats.ast_tx_rate = 6544 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6545 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6546 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6547 return copyout(&sc->sc_stats, 6548 ifr->ifr_data, sizeof (sc->sc_stats)); 6549 case SIOCGATHAGSTATS: 6550 return copyout(&sc->sc_aggr_stats, 6551 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 6552 case SIOCZATHSTATS: 6553 error = priv_check(curthread, PRIV_DRIVER); 6554 if (error == 0) { 6555 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6556 memset(&sc->sc_aggr_stats, 0, 6557 sizeof(sc->sc_aggr_stats)); 6558 memset(&sc->sc_intr_stats, 0, 6559 sizeof(sc->sc_intr_stats)); 6560 } 6561 break; 6562 #ifdef ATH_DIAGAPI 6563 case SIOCGATHDIAG: 6564 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6565 break; 6566 case SIOCGATHPHYERR: 6567 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6568 break; 6569 #endif 6570 case SIOCGATHSPECTRAL: 6571 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 6572 break; 6573 case SIOCGATHNODERATESTATS: 6574 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 6575 break; 6576 case SIOCGIFADDR: 6577 error = ether_ioctl(ifp, cmd, data); 6578 break; 6579 default: 6580 error = EINVAL; 6581 break; 6582 } 6583 return error; 6584 #undef IS_RUNNING 6585 } 6586 6587 /* 6588 * Announce various information on device/driver attach. 6589 */ 6590 static void 6591 ath_announce(struct ath_softc *sc) 6592 { 6593 struct ifnet *ifp = sc->sc_ifp; 6594 struct ath_hal *ah = sc->sc_ah; 6595 6596 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6597 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6598 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6599 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6600 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6601 if (bootverbose) { 6602 int i; 6603 for (i = 0; i <= WME_AC_VO; i++) { 6604 struct ath_txq *txq = sc->sc_ac2q[i]; 6605 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6606 txq->axq_qnum, ieee80211_wme_acnames[i]); 6607 } 6608 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6609 sc->sc_cabq->axq_qnum); 6610 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6611 } 6612 if (ath_rxbuf != ATH_RXBUF) 6613 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6614 if (ath_txbuf != ATH_TXBUF) 6615 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6616 if (sc->sc_mcastkey && bootverbose) 6617 if_printf(ifp, "using multicast key search\n"); 6618 } 6619 6620 static void 6621 ath_dfs_tasklet(void *p, int npending) 6622 { 6623 struct ath_softc *sc = (struct ath_softc *) p; 6624 struct ifnet *ifp = sc->sc_ifp; 6625 struct ieee80211com *ic = ifp->if_l2com; 6626 6627 /* 6628 * If previous processing has found a radar event, 6629 * signal this to the net80211 layer to begin DFS 6630 * processing. 6631 */ 6632 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6633 /* DFS event found, initiate channel change */ 6634 /* 6635 * XXX doesn't currently tell us whether the event 6636 * XXX was found in the primary or extension 6637 * XXX channel! 6638 */ 6639 IEEE80211_LOCK(ic); 6640 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6641 IEEE80211_UNLOCK(ic); 6642 } 6643 } 6644 6645 /* 6646 * Enable/disable power save. This must be called with 6647 * no TX driver locks currently held, so it should only 6648 * be called from the RX path (which doesn't hold any 6649 * TX driver locks.) 6650 */ 6651 static void 6652 ath_node_powersave(struct ieee80211_node *ni, int enable) 6653 { 6654 #ifdef ATH_SW_PSQ 6655 struct ath_node *an = ATH_NODE(ni); 6656 struct ieee80211com *ic = ni->ni_ic; 6657 struct ath_softc *sc = ic->ic_ifp->if_softc; 6658 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6659 6660 /* XXX and no TXQ locks should be held here */ 6661 6662 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6663 __func__, 6664 ni->ni_macaddr, 6665 ":", 6666 !! enable); 6667 6668 /* Suspend or resume software queue handling */ 6669 if (enable) 6670 ath_tx_node_sleep(sc, an); 6671 else 6672 ath_tx_node_wakeup(sc, an); 6673 6674 /* Update net80211 state */ 6675 avp->av_node_ps(ni, enable); 6676 #else 6677 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6678 6679 /* Update net80211 state */ 6680 avp->av_node_ps(ni, enable); 6681 #endif/* ATH_SW_PSQ */ 6682 } 6683 6684 /* 6685 * Notification from net80211 that the powersave queue state has 6686 * changed. 6687 * 6688 * Since the software queue also may have some frames: 6689 * 6690 * + if the node software queue has frames and the TID state 6691 * is 0, we set the TIM; 6692 * + if the node and the stack are both empty, we clear the TIM bit. 6693 * + If the stack tries to set the bit, always set it. 6694 * + If the stack tries to clear the bit, only clear it if the 6695 * software queue in question is also cleared. 6696 * 6697 * TODO: this is called during node teardown; so let's ensure this 6698 * is all correctly handled and that the TIM bit is cleared. 6699 * It may be that the node flush is called _AFTER_ the net80211 6700 * stack clears the TIM. 6701 * 6702 * Here is the racy part. Since it's possible >1 concurrent, 6703 * overlapping TXes will appear complete with a TX completion in 6704 * another thread, it's possible that the concurrent TIM calls will 6705 * clash. We can't hold the node lock here because setting the 6706 * TIM grabs the net80211 comlock and this may cause a LOR. 6707 * The solution is either to totally serialise _everything_ at 6708 * this point (ie, all TX, completion and any reset/flush go into 6709 * one taskqueue) or a new "ath TIM lock" needs to be created that 6710 * just wraps the driver state change and this call to avp->av_set_tim(). 6711 * 6712 * The same race exists in the net80211 power save queue handling 6713 * as well. Since multiple transmitting threads may queue frames 6714 * into the driver, as well as ps-poll and the driver transmitting 6715 * frames (and thus clearing the psq), it's quite possible that 6716 * a packet entering the PSQ and a ps-poll being handled will 6717 * race, causing the TIM to be cleared and not re-set. 6718 */ 6719 static int 6720 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6721 { 6722 #ifdef ATH_SW_PSQ 6723 struct ieee80211com *ic = ni->ni_ic; 6724 struct ath_softc *sc = ic->ic_ifp->if_softc; 6725 struct ath_node *an = ATH_NODE(ni); 6726 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6727 int changed = 0; 6728 6729 ATH_TX_LOCK(sc); 6730 an->an_stack_psq = enable; 6731 6732 /* 6733 * This will get called for all operating modes, 6734 * even if avp->av_set_tim is unset. 6735 * It's currently set for hostap/ibss modes; but 6736 * the same infrastructure is used for both STA 6737 * and AP/IBSS node power save. 6738 */ 6739 if (avp->av_set_tim == NULL) { 6740 ATH_TX_UNLOCK(sc); 6741 return (0); 6742 } 6743 6744 /* 6745 * If setting the bit, always set it here. 6746 * If clearing the bit, only clear it if the 6747 * software queue is also empty. 6748 * 6749 * If the node has left power save, just clear the TIM 6750 * bit regardless of the state of the power save queue. 6751 * 6752 * XXX TODO: although atomics are used, it's quite possible 6753 * that a race will occur between this and setting/clearing 6754 * in another thread. TX completion will occur always in 6755 * one thread, however setting/clearing the TIM bit can come 6756 * from a variety of different process contexts! 6757 */ 6758 if (enable && an->an_tim_set == 1) { 6759 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6760 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6761 __func__, 6762 ni->ni_macaddr, 6763 ":", 6764 enable); 6765 ATH_TX_UNLOCK(sc); 6766 } else if (enable) { 6767 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6768 "%s: %6D: enable=%d, enabling TIM\n", 6769 __func__, 6770 ni->ni_macaddr, 6771 ":", 6772 enable); 6773 an->an_tim_set = 1; 6774 ATH_TX_UNLOCK(sc); 6775 changed = avp->av_set_tim(ni, enable); 6776 } else if (an->an_swq_depth == 0) { 6777 /* disable */ 6778 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6779 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6780 __func__, 6781 ni->ni_macaddr, 6782 ":", 6783 enable); 6784 an->an_tim_set = 0; 6785 ATH_TX_UNLOCK(sc); 6786 changed = avp->av_set_tim(ni, enable); 6787 } else if (! an->an_is_powersave) { 6788 /* 6789 * disable regardless; the node isn't in powersave now 6790 */ 6791 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6792 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6793 __func__, 6794 ni->ni_macaddr, 6795 ":", 6796 enable); 6797 an->an_tim_set = 0; 6798 ATH_TX_UNLOCK(sc); 6799 changed = avp->av_set_tim(ni, enable); 6800 } else { 6801 /* 6802 * psq disable, node is currently in powersave, node 6803 * software queue isn't empty, so don't clear the TIM bit 6804 * for now. 6805 */ 6806 ATH_TX_UNLOCK(sc); 6807 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6808 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6809 __func__, 6810 ni->ni_macaddr, 6811 ":", 6812 enable); 6813 changed = 0; 6814 } 6815 6816 return (changed); 6817 #else 6818 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6819 6820 /* 6821 * Some operating modes don't set av_set_tim(), so don't 6822 * update it here. 6823 */ 6824 if (avp->av_set_tim == NULL) 6825 return (0); 6826 6827 return (avp->av_set_tim(ni, enable)); 6828 #endif /* ATH_SW_PSQ */ 6829 } 6830 6831 /* 6832 * Set or update the TIM from the software queue. 6833 * 6834 * Check the software queue depth before attempting to do lock 6835 * anything; that avoids trying to obtain the lock. Then, 6836 * re-check afterwards to ensure nothing has changed in the 6837 * meantime. 6838 * 6839 * set: This is designed to be called from the TX path, after 6840 * a frame has been queued; to see if the swq > 0. 6841 * 6842 * clear: This is designed to be called from the buffer completion point 6843 * (right now it's ath_tx_default_comp()) where the state of 6844 * a software queue has changed. 6845 * 6846 * It makes sense to place it at buffer free / completion rather 6847 * than after each software queue operation, as there's no real 6848 * point in churning the TIM bit as the last frames in the software 6849 * queue are transmitted. If they fail and we retry them, we'd 6850 * just be setting the TIM bit again anyway. 6851 */ 6852 void 6853 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6854 int enable) 6855 { 6856 #ifdef ATH_SW_PSQ 6857 struct ath_node *an; 6858 struct ath_vap *avp; 6859 6860 /* Don't do this for broadcast/etc frames */ 6861 if (ni == NULL) 6862 return; 6863 6864 an = ATH_NODE(ni); 6865 avp = ATH_VAP(ni->ni_vap); 6866 6867 /* 6868 * And for operating modes without the TIM handler set, let's 6869 * just skip those. 6870 */ 6871 if (avp->av_set_tim == NULL) 6872 return; 6873 6874 ATH_TX_LOCK_ASSERT(sc); 6875 6876 if (enable) { 6877 if (an->an_is_powersave && 6878 an->an_tim_set == 0 && 6879 an->an_swq_depth != 0) { 6880 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6881 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6882 __func__, 6883 ni->ni_macaddr, 6884 ":"); 6885 an->an_tim_set = 1; 6886 (void) avp->av_set_tim(ni, 1); 6887 } 6888 } else { 6889 /* 6890 * Don't bother grabbing the lock unless the queue is empty. 6891 */ 6892 if (&an->an_swq_depth != 0) 6893 return; 6894 6895 if (an->an_is_powersave && 6896 an->an_stack_psq == 0 && 6897 an->an_tim_set == 1 && 6898 an->an_swq_depth == 0) { 6899 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6900 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6901 " clear!\n", 6902 __func__, 6903 ni->ni_macaddr, 6904 ":"); 6905 an->an_tim_set = 0; 6906 (void) avp->av_set_tim(ni, 0); 6907 } 6908 } 6909 #else 6910 return; 6911 #endif /* ATH_SW_PSQ */ 6912 } 6913 6914 /* 6915 * Received a ps-poll frame from net80211. 6916 * 6917 * Here we get a chance to serve out a software-queued frame ourselves 6918 * before we punt it to net80211 to transmit us one itself - either 6919 * because there's traffic in the net80211 psq, or a NULL frame to 6920 * indicate there's nothing else. 6921 */ 6922 static void 6923 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6924 { 6925 #ifdef ATH_SW_PSQ 6926 struct ath_node *an; 6927 struct ath_vap *avp; 6928 struct ieee80211com *ic = ni->ni_ic; 6929 struct ath_softc *sc = ic->ic_ifp->if_softc; 6930 int tid; 6931 6932 /* Just paranoia */ 6933 if (ni == NULL) 6934 return; 6935 6936 /* 6937 * Unassociated (temporary node) station. 6938 */ 6939 if (ni->ni_associd == 0) 6940 return; 6941 6942 /* 6943 * We do have an active node, so let's begin looking into it. 6944 */ 6945 an = ATH_NODE(ni); 6946 avp = ATH_VAP(ni->ni_vap); 6947 6948 /* 6949 * For now, we just call the original ps-poll method. 6950 * Once we're ready to flip this on: 6951 * 6952 * + Set leak to 1, as no matter what we're going to have 6953 * to send a frame; 6954 * + Check the software queue and if there's something in it, 6955 * schedule the highest TID thas has traffic from this node. 6956 * Then make sure we schedule the software scheduler to 6957 * run so it picks up said frame. 6958 * 6959 * That way whatever happens, we'll at least send _a_ frame 6960 * to the given node. 6961 * 6962 * Again, yes, it's crappy QoS if the node has multiple 6963 * TIDs worth of traffic - but let's get it working first 6964 * before we optimise it. 6965 * 6966 * Also yes, there's definitely latency here - we're not 6967 * direct dispatching to the hardware in this path (and 6968 * we're likely being called from the packet receive path, 6969 * so going back into TX may be a little hairy!) but again 6970 * I'd like to get this working first before optimising 6971 * turn-around time. 6972 */ 6973 6974 ATH_TX_LOCK(sc); 6975 6976 /* 6977 * Legacy - we're called and the node isn't asleep. 6978 * Immediately punt. 6979 */ 6980 if (! an->an_is_powersave) { 6981 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6982 "%s: %6D: not in powersave?\n", 6983 __func__, 6984 ni->ni_macaddr, 6985 ":"); 6986 ATH_TX_UNLOCK(sc); 6987 avp->av_recv_pspoll(ni, m); 6988 return; 6989 } 6990 6991 /* 6992 * We're in powersave. 6993 * 6994 * Leak a frame. 6995 */ 6996 an->an_leak_count = 1; 6997 6998 /* 6999 * Now, if there's no frames in the node, just punt to 7000 * recv_pspoll. 7001 * 7002 * Don't bother checking if the TIM bit is set, we really 7003 * only care if there are any frames here! 7004 */ 7005 if (an->an_swq_depth == 0) { 7006 ATH_TX_UNLOCK(sc); 7007 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7008 "%s: %6D: SWQ empty; punting to net80211\n", 7009 __func__, 7010 ni->ni_macaddr, 7011 ":"); 7012 avp->av_recv_pspoll(ni, m); 7013 return; 7014 } 7015 7016 /* 7017 * Ok, let's schedule the highest TID that has traffic 7018 * and then schedule something. 7019 */ 7020 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7021 struct ath_tid *atid = &an->an_tid[tid]; 7022 /* 7023 * No frames? Skip. 7024 */ 7025 if (atid->axq_depth == 0) 7026 continue; 7027 ath_tx_tid_sched(sc, atid); 7028 /* 7029 * XXX we could do a direct call to the TXQ 7030 * scheduler code here to optimise latency 7031 * at the expense of a REALLY deep callstack. 7032 */ 7033 ATH_TX_UNLOCK(sc); 7034 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7035 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7036 "%s: %6D: leaking frame to TID %d\n", 7037 __func__, 7038 ni->ni_macaddr, 7039 ":", 7040 tid); 7041 return; 7042 } 7043 7044 ATH_TX_UNLOCK(sc); 7045 7046 /* 7047 * XXX nothing in the TIDs at this point? Eek. 7048 */ 7049 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7050 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7051 __func__, 7052 ni->ni_macaddr, 7053 ":"); 7054 avp->av_recv_pspoll(ni, m); 7055 #else 7056 avp->av_recv_pspoll(ni, m); 7057 #endif /* ATH_SW_PSQ */ 7058 } 7059 7060 MODULE_VERSION(if_ath, 1); 7061 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 7062 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 7063 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 7064 #endif 7065