1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_ath_spectral.h> 115 #include <dev/ath/if_athdfs.h> 116 117 #ifdef ATH_TX99_DIAG 118 #include <dev/ath/ath_tx99/ath_tx99.h> 119 #endif 120 121 #ifdef ATH_DEBUG_ALQ 122 #include <dev/ath/if_ath_alq.h> 123 #endif 124 125 /* 126 * Only enable this if you're working on PS-POLL support. 127 */ 128 #undef ATH_SW_PSQ 129 130 /* 131 * ATH_BCBUF determines the number of vap's that can transmit 132 * beacons and also (currently) the number of vap's that can 133 * have unique mac addresses/bssid. When staggering beacons 134 * 4 is probably a good max as otherwise the beacons become 135 * very closely spaced and there is limited time for cab q traffic 136 * to go out. You can burst beacons instead but that is not good 137 * for stations in power save and at some point you really want 138 * another radio (and channel). 139 * 140 * The limit on the number of mac addresses is tied to our use of 141 * the U/L bit and tracking addresses in a byte; it would be 142 * worthwhile to allow more for applications like proxy sta. 143 */ 144 CTASSERT(ATH_BCBUF <= 8); 145 146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 147 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 148 const uint8_t [IEEE80211_ADDR_LEN], 149 const uint8_t [IEEE80211_ADDR_LEN]); 150 static void ath_vap_delete(struct ieee80211vap *); 151 static void ath_init(void *); 152 static void ath_stop_locked(struct ifnet *); 153 static void ath_stop(struct ifnet *); 154 static int ath_reset_vap(struct ieee80211vap *, u_long); 155 static void ath_start_queue(struct ifnet *ifp); 156 static int ath_media_change(struct ifnet *); 157 static void ath_watchdog(void *); 158 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 159 static void ath_fatal_proc(void *, int); 160 static void ath_bmiss_vap(struct ieee80211vap *); 161 static void ath_bmiss_proc(void *, int); 162 static void ath_key_update_begin(struct ieee80211vap *); 163 static void ath_key_update_end(struct ieee80211vap *); 164 static void ath_update_mcast(struct ifnet *); 165 static void ath_update_promisc(struct ifnet *); 166 static void ath_updateslot(struct ifnet *); 167 static void ath_bstuck_proc(void *, int); 168 static void ath_reset_proc(void *, int); 169 static int ath_desc_alloc(struct ath_softc *); 170 static void ath_desc_free(struct ath_softc *); 171 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 172 const uint8_t [IEEE80211_ADDR_LEN]); 173 static void ath_node_cleanup(struct ieee80211_node *); 174 static void ath_node_free(struct ieee80211_node *); 175 static void ath_node_getsignal(const struct ieee80211_node *, 176 int8_t *, int8_t *); 177 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 178 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 179 static int ath_tx_setup(struct ath_softc *, int, int); 180 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 181 static void ath_tx_cleanup(struct ath_softc *); 182 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 183 int dosched); 184 static void ath_tx_proc_q0(void *, int); 185 static void ath_tx_proc_q0123(void *, int); 186 static void ath_tx_proc(void *, int); 187 static void ath_txq_sched_tasklet(void *, int); 188 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_scan_start(struct ieee80211com *); 191 static void ath_scan_end(struct ieee80211com *); 192 static void ath_set_channel(struct ieee80211com *); 193 #ifdef ATH_ENABLE_11N 194 static void ath_update_chw(struct ieee80211com *); 195 #endif /* ATH_ENABLE_11N */ 196 static void ath_calibrate(void *); 197 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 198 static void ath_setup_stationkey(struct ieee80211_node *); 199 static void ath_newassoc(struct ieee80211_node *, int); 200 static int ath_setregdomain(struct ieee80211com *, 201 struct ieee80211_regdomain *, int, 202 struct ieee80211_channel []); 203 static void ath_getradiocaps(struct ieee80211com *, int, int *, 204 struct ieee80211_channel []); 205 static int ath_getchannels(struct ath_softc *); 206 207 static int ath_rate_setup(struct ath_softc *, u_int mode); 208 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 209 210 static void ath_announce(struct ath_softc *); 211 212 static void ath_dfs_tasklet(void *, int); 213 static void ath_node_powersave(struct ieee80211_node *, int); 214 static int ath_node_set_tim(struct ieee80211_node *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 #include <dev/ath/if_ath_tdma.h> 218 #endif 219 220 SYSCTL_DECL(_hw_ath); 221 222 /* XXX validate sysctl values */ 223 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 224 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 225 0, "long chip calibration interval (secs)"); 226 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 227 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 228 0, "short chip calibration interval (msecs)"); 229 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 231 0, "reset chip calibration results (secs)"); 232 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 234 0, "ANI calibration (msecs)"); 235 236 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 238 0, "rx buffers allocated"); 239 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 240 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 242 0, "tx buffers allocated"); 243 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 244 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 246 0, "tx (mgmt) buffers allocated"); 247 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 248 249 int ath_bstuck_threshold = 4; /* max missed beacons */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 251 0, "max missed beacon xmits before chip reset"); 252 253 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 254 255 void 256 ath_legacy_attach_comp_func(struct ath_softc *sc) 257 { 258 259 /* 260 * Special case certain configurations. Note the 261 * CAB queue is handled by these specially so don't 262 * include them when checking the txq setup mask. 263 */ 264 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 265 case 0x01: 266 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 267 break; 268 case 0x0f: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 270 break; 271 default: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 273 break; 274 } 275 } 276 277 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 278 #define HAL_MODE_HT40 \ 279 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 280 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 281 int 282 ath_attach(u_int16_t devid, struct ath_softc *sc) 283 { 284 struct ifnet *ifp; 285 struct ieee80211com *ic; 286 struct ath_hal *ah = NULL; 287 HAL_STATUS status; 288 int error = 0, i; 289 u_int wmodes; 290 uint8_t macaddr[IEEE80211_ADDR_LEN]; 291 int rx_chainmask, tx_chainmask; 292 293 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 294 295 CURVNET_SET(vnet0); 296 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 297 if (ifp == NULL) { 298 device_printf(sc->sc_dev, "can not if_alloc()\n"); 299 error = ENOSPC; 300 CURVNET_RESTORE(); 301 goto bad; 302 } 303 ic = ifp->if_l2com; 304 305 /* set these up early for if_printf use */ 306 if_initname(ifp, device_get_name(sc->sc_dev), 307 device_get_unit(sc->sc_dev)); 308 CURVNET_RESTORE(); 309 310 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 311 sc->sc_eepromdata, &status); 312 if (ah == NULL) { 313 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 314 status); 315 error = ENXIO; 316 goto bad; 317 } 318 sc->sc_ah = ah; 319 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 320 #ifdef ATH_DEBUG 321 sc->sc_debug = ath_debug; 322 #endif 323 324 /* 325 * Setup the DMA/EDMA functions based on the current 326 * hardware support. 327 * 328 * This is required before the descriptors are allocated. 329 */ 330 if (ath_hal_hasedma(sc->sc_ah)) { 331 sc->sc_isedma = 1; 332 ath_recv_setup_edma(sc); 333 ath_xmit_setup_edma(sc); 334 } else { 335 ath_recv_setup_legacy(sc); 336 ath_xmit_setup_legacy(sc); 337 } 338 339 /* 340 * Check if the MAC has multi-rate retry support. 341 * We do this by trying to setup a fake extended 342 * descriptor. MAC's that don't have support will 343 * return false w/o doing anything. MAC's that do 344 * support it will return true w/o doing anything. 345 */ 346 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 347 348 /* 349 * Check if the device has hardware counters for PHY 350 * errors. If so we need to enable the MIB interrupt 351 * so we can act on stat triggers. 352 */ 353 if (ath_hal_hwphycounters(ah)) 354 sc->sc_needmib = 1; 355 356 /* 357 * Get the hardware key cache size. 358 */ 359 sc->sc_keymax = ath_hal_keycachesize(ah); 360 if (sc->sc_keymax > ATH_KEYMAX) { 361 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 362 ATH_KEYMAX, sc->sc_keymax); 363 sc->sc_keymax = ATH_KEYMAX; 364 } 365 /* 366 * Reset the key cache since some parts do not 367 * reset the contents on initial power up. 368 */ 369 for (i = 0; i < sc->sc_keymax; i++) 370 ath_hal_keyreset(ah, i); 371 372 /* 373 * Collect the default channel list. 374 */ 375 error = ath_getchannels(sc); 376 if (error != 0) 377 goto bad; 378 379 /* 380 * Setup rate tables for all potential media types. 381 */ 382 ath_rate_setup(sc, IEEE80211_MODE_11A); 383 ath_rate_setup(sc, IEEE80211_MODE_11B); 384 ath_rate_setup(sc, IEEE80211_MODE_11G); 385 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 386 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 387 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 388 ath_rate_setup(sc, IEEE80211_MODE_11NA); 389 ath_rate_setup(sc, IEEE80211_MODE_11NG); 390 ath_rate_setup(sc, IEEE80211_MODE_HALF); 391 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 392 393 /* NB: setup here so ath_rate_update is happy */ 394 ath_setcurmode(sc, IEEE80211_MODE_11A); 395 396 /* 397 * Allocate TX descriptors and populate the lists. 398 */ 399 error = ath_desc_alloc(sc); 400 if (error != 0) { 401 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 402 error); 403 goto bad; 404 } 405 error = ath_txdma_setup(sc); 406 if (error != 0) { 407 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 408 error); 409 goto bad; 410 } 411 412 /* 413 * Allocate RX descriptors and populate the lists. 414 */ 415 error = ath_rxdma_setup(sc); 416 if (error != 0) { 417 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 418 error); 419 goto bad; 420 } 421 422 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 423 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 424 425 ATH_TXBUF_LOCK_INIT(sc); 426 427 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 428 taskqueue_thread_enqueue, &sc->sc_tq); 429 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 430 "%s taskq", ifp->if_xname); 431 432 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 433 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 434 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 435 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 436 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 437 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 438 439 /* XXX make this a higher priority taskqueue? */ 440 TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc); 441 442 /* 443 * Allocate hardware transmit queues: one queue for 444 * beacon frames and one data queue for each QoS 445 * priority. Note that the hal handles resetting 446 * these queues at the needed time. 447 * 448 * XXX PS-Poll 449 */ 450 sc->sc_bhalq = ath_beaconq_setup(sc); 451 if (sc->sc_bhalq == (u_int) -1) { 452 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 453 error = EIO; 454 goto bad2; 455 } 456 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 457 if (sc->sc_cabq == NULL) { 458 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 459 error = EIO; 460 goto bad2; 461 } 462 /* NB: insure BK queue is the lowest priority h/w queue */ 463 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 464 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 465 ieee80211_wme_acnames[WME_AC_BK]); 466 error = EIO; 467 goto bad2; 468 } 469 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 470 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 471 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 472 /* 473 * Not enough hardware tx queues to properly do WME; 474 * just punt and assign them all to the same h/w queue. 475 * We could do a better job of this if, for example, 476 * we allocate queues when we switch from station to 477 * AP mode. 478 */ 479 if (sc->sc_ac2q[WME_AC_VI] != NULL) 480 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 481 if (sc->sc_ac2q[WME_AC_BE] != NULL) 482 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 483 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 484 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 485 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 486 } 487 488 /* 489 * Attach the TX completion function. 490 * 491 * The non-EDMA chips may have some special case optimisations; 492 * this method gives everyone a chance to attach cleanly. 493 */ 494 sc->sc_tx.xmit_attach_comp_func(sc); 495 496 /* 497 * Setup rate control. Some rate control modules 498 * call back to change the anntena state so expose 499 * the necessary entry points. 500 * XXX maybe belongs in struct ath_ratectrl? 501 */ 502 sc->sc_setdefantenna = ath_setdefantenna; 503 sc->sc_rc = ath_rate_attach(sc); 504 if (sc->sc_rc == NULL) { 505 error = EIO; 506 goto bad2; 507 } 508 509 /* Attach DFS module */ 510 if (! ath_dfs_attach(sc)) { 511 device_printf(sc->sc_dev, 512 "%s: unable to attach DFS\n", __func__); 513 error = EIO; 514 goto bad2; 515 } 516 517 /* Attach spectral module */ 518 if (ath_spectral_attach(sc) < 0) { 519 device_printf(sc->sc_dev, 520 "%s: unable to attach spectral\n", __func__); 521 error = EIO; 522 goto bad2; 523 } 524 525 /* Start DFS processing tasklet */ 526 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 527 528 /* Configure LED state */ 529 sc->sc_blinking = 0; 530 sc->sc_ledstate = 1; 531 sc->sc_ledon = 0; /* low true */ 532 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 533 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 534 535 /* 536 * Don't setup hardware-based blinking. 537 * 538 * Although some NICs may have this configured in the 539 * default reset register values, the user may wish 540 * to alter which pins have which function. 541 * 542 * The reference driver attaches the MAC network LED to GPIO1 and 543 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 544 * NIC has these reversed. 545 */ 546 sc->sc_hardled = (1 == 0); 547 sc->sc_led_net_pin = -1; 548 sc->sc_led_pwr_pin = -1; 549 /* 550 * Auto-enable soft led processing for IBM cards and for 551 * 5211 minipci cards. Users can also manually enable/disable 552 * support with a sysctl. 553 */ 554 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 555 ath_led_config(sc); 556 ath_hal_setledstate(ah, HAL_LED_INIT); 557 558 ifp->if_softc = sc; 559 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 560 ifp->if_start = ath_start_queue; 561 ifp->if_ioctl = ath_ioctl; 562 ifp->if_init = ath_init; 563 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 564 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 565 IFQ_SET_READY(&ifp->if_snd); 566 567 ic->ic_ifp = ifp; 568 /* XXX not right but it's not used anywhere important */ 569 ic->ic_phytype = IEEE80211_T_OFDM; 570 ic->ic_opmode = IEEE80211_M_STA; 571 ic->ic_caps = 572 IEEE80211_C_STA /* station mode */ 573 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 574 | IEEE80211_C_HOSTAP /* hostap mode */ 575 | IEEE80211_C_MONITOR /* monitor mode */ 576 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 577 | IEEE80211_C_WDS /* 4-address traffic works */ 578 | IEEE80211_C_MBSS /* mesh point link mode */ 579 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 580 | IEEE80211_C_SHSLOT /* short slot time supported */ 581 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 582 #ifndef ATH_ENABLE_11N 583 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 584 #endif 585 | IEEE80211_C_TXFRAG /* handle tx frags */ 586 #ifdef ATH_ENABLE_DFS 587 | IEEE80211_C_DFS /* Enable radar detection */ 588 #endif 589 ; 590 /* 591 * Query the hal to figure out h/w crypto support. 592 */ 593 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 594 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 595 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 596 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 597 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 598 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 599 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 600 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 601 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 602 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 603 /* 604 * Check if h/w does the MIC and/or whether the 605 * separate key cache entries are required to 606 * handle both tx+rx MIC keys. 607 */ 608 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 609 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 610 /* 611 * If the h/w supports storing tx+rx MIC keys 612 * in one cache slot automatically enable use. 613 */ 614 if (ath_hal_hastkipsplit(ah) || 615 !ath_hal_settkipsplit(ah, AH_FALSE)) 616 sc->sc_splitmic = 1; 617 /* 618 * If the h/w can do TKIP MIC together with WME then 619 * we use it; otherwise we force the MIC to be done 620 * in software by the net80211 layer. 621 */ 622 if (ath_hal_haswmetkipmic(ah)) 623 sc->sc_wmetkipmic = 1; 624 } 625 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 626 /* 627 * Check for multicast key search support. 628 */ 629 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 630 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 631 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 632 } 633 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 634 /* 635 * Mark key cache slots associated with global keys 636 * as in use. If we knew TKIP was not to be used we 637 * could leave the +32, +64, and +32+64 slots free. 638 */ 639 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 640 setbit(sc->sc_keymap, i); 641 setbit(sc->sc_keymap, i+64); 642 if (sc->sc_splitmic) { 643 setbit(sc->sc_keymap, i+32); 644 setbit(sc->sc_keymap, i+32+64); 645 } 646 } 647 /* 648 * TPC support can be done either with a global cap or 649 * per-packet support. The latter is not available on 650 * all parts. We're a bit pedantic here as all parts 651 * support a global cap. 652 */ 653 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 654 ic->ic_caps |= IEEE80211_C_TXPMGT; 655 656 /* 657 * Mark WME capability only if we have sufficient 658 * hardware queues to do proper priority scheduling. 659 */ 660 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 661 ic->ic_caps |= IEEE80211_C_WME; 662 /* 663 * Check for misc other capabilities. 664 */ 665 if (ath_hal_hasbursting(ah)) 666 ic->ic_caps |= IEEE80211_C_BURST; 667 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 668 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 669 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 670 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 671 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 672 if (ath_hal_hasfastframes(ah)) 673 ic->ic_caps |= IEEE80211_C_FF; 674 wmodes = ath_hal_getwirelessmodes(ah); 675 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 676 ic->ic_caps |= IEEE80211_C_TURBOP; 677 #ifdef IEEE80211_SUPPORT_TDMA 678 if (ath_hal_macversion(ah) > 0x78) { 679 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 680 ic->ic_tdma_update = ath_tdma_update; 681 } 682 #endif 683 684 /* 685 * TODO: enforce that at least this many frames are available 686 * in the txbuf list before allowing data frames (raw or 687 * otherwise) to be transmitted. 688 */ 689 sc->sc_txq_data_minfree = 10; 690 /* 691 * Leave this as default to maintain legacy behaviour. 692 * Shortening the cabq/mcastq may end up causing some 693 * undesirable behaviour. 694 */ 695 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 696 697 /* Enable CABQ by default */ 698 sc->sc_cabq_enable = 1; 699 700 /* 701 * Allow the TX and RX chainmasks to be overridden by 702 * environment variables and/or device.hints. 703 * 704 * This must be done early - before the hardware is 705 * calibrated or before the 802.11n stream calculation 706 * is done. 707 */ 708 if (resource_int_value(device_get_name(sc->sc_dev), 709 device_get_unit(sc->sc_dev), "rx_chainmask", 710 &rx_chainmask) == 0) { 711 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 712 rx_chainmask); 713 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 714 } 715 if (resource_int_value(device_get_name(sc->sc_dev), 716 device_get_unit(sc->sc_dev), "tx_chainmask", 717 &tx_chainmask) == 0) { 718 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 719 tx_chainmask); 720 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 721 } 722 723 /* 724 * Disable MRR with protected frames by default. 725 * Only 802.11n series NICs can handle this. 726 */ 727 sc->sc_mrrprot = 0; /* XXX should be a capability */ 728 729 /* 730 * Query the enterprise mode information the HAL. 731 */ 732 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 733 &sc->sc_ent_cfg) == HAL_OK) 734 sc->sc_use_ent = 1; 735 736 #ifdef ATH_ENABLE_11N 737 /* 738 * Query HT capabilities 739 */ 740 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 741 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 742 int rxs, txs; 743 744 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 745 746 sc->sc_mrrprot = 1; /* XXX should be a capability */ 747 748 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 749 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 750 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 751 | IEEE80211_HTCAP_MAXAMSDU_3839 752 /* max A-MSDU length */ 753 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 754 ; 755 756 /* 757 * Enable short-GI for HT20 only if the hardware 758 * advertises support. 759 * Notably, anything earlier than the AR9287 doesn't. 760 */ 761 if ((ath_hal_getcapability(ah, 762 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 763 (wmodes & HAL_MODE_HT20)) { 764 device_printf(sc->sc_dev, 765 "[HT] enabling short-GI in 20MHz mode\n"); 766 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 767 } 768 769 if (wmodes & HAL_MODE_HT40) 770 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 771 | IEEE80211_HTCAP_SHORTGI40; 772 773 /* 774 * TX/RX streams need to be taken into account when 775 * negotiating which MCS rates it'll receive and 776 * what MCS rates are available for TX. 777 */ 778 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 779 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 780 781 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 782 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 783 784 ic->ic_txstream = txs; 785 ic->ic_rxstream = rxs; 786 787 /* 788 * Setup TX and RX STBC based on what the HAL allows and 789 * the currently configured chainmask set. 790 * Ie - don't enable STBC TX if only one chain is enabled. 791 * STBC RX is fine on a single RX chain; it just won't 792 * provide any real benefit. 793 */ 794 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 795 NULL) == HAL_OK) { 796 sc->sc_rx_stbc = 1; 797 device_printf(sc->sc_dev, 798 "[HT] 1 stream STBC receive enabled\n"); 799 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 800 } 801 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 802 NULL) == HAL_OK) { 803 sc->sc_tx_stbc = 1; 804 device_printf(sc->sc_dev, 805 "[HT] 1 stream STBC transmit enabled\n"); 806 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 807 } 808 809 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 810 &sc->sc_rts_aggr_limit); 811 if (sc->sc_rts_aggr_limit != (64 * 1024)) 812 device_printf(sc->sc_dev, 813 "[HT] RTS aggregates limited to %d KiB\n", 814 sc->sc_rts_aggr_limit / 1024); 815 816 device_printf(sc->sc_dev, 817 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 818 } 819 #endif 820 821 /* 822 * Initial aggregation settings. 823 */ 824 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 825 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 826 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 827 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 828 sc->sc_delim_min_pad = 0; 829 830 /* 831 * Check if the hardware requires PCI register serialisation. 832 * Some of the Owl based MACs require this. 833 */ 834 if (mp_ncpus > 1 && 835 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 836 0, NULL) == HAL_OK) { 837 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 838 device_printf(sc->sc_dev, 839 "Enabling register serialisation\n"); 840 } 841 842 /* 843 * Initialise the deferred completed RX buffer list. 844 */ 845 TAILQ_INIT(&sc->sc_rx_rxlist); 846 847 /* 848 * Indicate we need the 802.11 header padded to a 849 * 32-bit boundary for 4-address and QoS frames. 850 */ 851 ic->ic_flags |= IEEE80211_F_DATAPAD; 852 853 /* 854 * Query the hal about antenna support. 855 */ 856 sc->sc_defant = ath_hal_getdefantenna(ah); 857 858 /* 859 * Not all chips have the VEOL support we want to 860 * use with IBSS beacons; check here for it. 861 */ 862 sc->sc_hasveol = ath_hal_hasveol(ah); 863 864 /* get mac address from hardware */ 865 ath_hal_getmac(ah, macaddr); 866 if (sc->sc_hasbmask) 867 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 868 869 /* NB: used to size node table key mapping array */ 870 ic->ic_max_keyix = sc->sc_keymax; 871 /* call MI attach routine. */ 872 ieee80211_ifattach(ic, macaddr); 873 ic->ic_setregdomain = ath_setregdomain; 874 ic->ic_getradiocaps = ath_getradiocaps; 875 sc->sc_opmode = HAL_M_STA; 876 877 /* override default methods */ 878 ic->ic_newassoc = ath_newassoc; 879 ic->ic_updateslot = ath_updateslot; 880 ic->ic_wme.wme_update = ath_wme_update; 881 ic->ic_vap_create = ath_vap_create; 882 ic->ic_vap_delete = ath_vap_delete; 883 ic->ic_raw_xmit = ath_raw_xmit; 884 ic->ic_update_mcast = ath_update_mcast; 885 ic->ic_update_promisc = ath_update_promisc; 886 ic->ic_node_alloc = ath_node_alloc; 887 sc->sc_node_free = ic->ic_node_free; 888 ic->ic_node_free = ath_node_free; 889 sc->sc_node_cleanup = ic->ic_node_cleanup; 890 ic->ic_node_cleanup = ath_node_cleanup; 891 ic->ic_node_getsignal = ath_node_getsignal; 892 ic->ic_scan_start = ath_scan_start; 893 ic->ic_scan_end = ath_scan_end; 894 ic->ic_set_channel = ath_set_channel; 895 #ifdef ATH_ENABLE_11N 896 /* 802.11n specific - but just override anyway */ 897 sc->sc_addba_request = ic->ic_addba_request; 898 sc->sc_addba_response = ic->ic_addba_response; 899 sc->sc_addba_stop = ic->ic_addba_stop; 900 sc->sc_bar_response = ic->ic_bar_response; 901 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 902 903 ic->ic_addba_request = ath_addba_request; 904 ic->ic_addba_response = ath_addba_response; 905 ic->ic_addba_response_timeout = ath_addba_response_timeout; 906 ic->ic_addba_stop = ath_addba_stop; 907 ic->ic_bar_response = ath_bar_response; 908 909 ic->ic_update_chw = ath_update_chw; 910 #endif /* ATH_ENABLE_11N */ 911 912 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 913 /* 914 * There's one vendor bitmap entry in the RX radiotap 915 * header; make sure that's taken into account. 916 */ 917 ieee80211_radiotap_attachv(ic, 918 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 919 ATH_TX_RADIOTAP_PRESENT, 920 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 921 ATH_RX_RADIOTAP_PRESENT); 922 #else 923 /* 924 * No vendor bitmap/extensions are present. 925 */ 926 ieee80211_radiotap_attach(ic, 927 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 928 ATH_TX_RADIOTAP_PRESENT, 929 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 930 ATH_RX_RADIOTAP_PRESENT); 931 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 932 933 /* 934 * Setup the ALQ logging if required 935 */ 936 #ifdef ATH_DEBUG_ALQ 937 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 938 if_ath_alq_setcfg(&sc->sc_alq, 939 sc->sc_ah->ah_macVersion, 940 sc->sc_ah->ah_macRev, 941 sc->sc_ah->ah_phyRev, 942 sc->sc_ah->ah_magic); 943 #endif 944 945 /* 946 * Setup dynamic sysctl's now that country code and 947 * regdomain are available from the hal. 948 */ 949 ath_sysctlattach(sc); 950 ath_sysctl_stats_attach(sc); 951 ath_sysctl_hal_attach(sc); 952 953 if (bootverbose) 954 ieee80211_announce(ic); 955 ath_announce(sc); 956 return 0; 957 bad2: 958 ath_tx_cleanup(sc); 959 ath_desc_free(sc); 960 ath_txdma_teardown(sc); 961 ath_rxdma_teardown(sc); 962 bad: 963 if (ah) 964 ath_hal_detach(ah); 965 966 /* 967 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 968 */ 969 if (ifp != NULL && ifp->if_vnet) { 970 CURVNET_SET(ifp->if_vnet); 971 if_free(ifp); 972 CURVNET_RESTORE(); 973 } else if (ifp != NULL) 974 if_free(ifp); 975 sc->sc_invalid = 1; 976 return error; 977 } 978 979 int 980 ath_detach(struct ath_softc *sc) 981 { 982 struct ifnet *ifp = sc->sc_ifp; 983 984 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 985 __func__, ifp->if_flags); 986 987 /* 988 * NB: the order of these is important: 989 * o stop the chip so no more interrupts will fire 990 * o call the 802.11 layer before detaching the hal to 991 * insure callbacks into the driver to delete global 992 * key cache entries can be handled 993 * o free the taskqueue which drains any pending tasks 994 * o reclaim the tx queue data structures after calling 995 * the 802.11 layer as we'll get called back to reclaim 996 * node state and potentially want to use them 997 * o to cleanup the tx queues the hal is called, so detach 998 * it last 999 * Other than that, it's straightforward... 1000 */ 1001 ath_stop(ifp); 1002 ieee80211_ifdetach(ifp->if_l2com); 1003 taskqueue_free(sc->sc_tq); 1004 #ifdef ATH_TX99_DIAG 1005 if (sc->sc_tx99 != NULL) 1006 sc->sc_tx99->detach(sc->sc_tx99); 1007 #endif 1008 ath_rate_detach(sc->sc_rc); 1009 #ifdef ATH_DEBUG_ALQ 1010 if_ath_alq_tidyup(&sc->sc_alq); 1011 #endif 1012 ath_spectral_detach(sc); 1013 ath_dfs_detach(sc); 1014 ath_desc_free(sc); 1015 ath_txdma_teardown(sc); 1016 ath_rxdma_teardown(sc); 1017 ath_tx_cleanup(sc); 1018 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1019 1020 CURVNET_SET(ifp->if_vnet); 1021 if_free(ifp); 1022 CURVNET_RESTORE(); 1023 1024 return 0; 1025 } 1026 1027 /* 1028 * MAC address handling for multiple BSS on the same radio. 1029 * The first vap uses the MAC address from the EEPROM. For 1030 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1031 * address and use the next six bits as an index. 1032 */ 1033 static void 1034 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1035 { 1036 int i; 1037 1038 if (clone && sc->sc_hasbmask) { 1039 /* NB: we only do this if h/w supports multiple bssid */ 1040 for (i = 0; i < 8; i++) 1041 if ((sc->sc_bssidmask & (1<<i)) == 0) 1042 break; 1043 if (i != 0) 1044 mac[0] |= (i << 2)|0x2; 1045 } else 1046 i = 0; 1047 sc->sc_bssidmask |= 1<<i; 1048 sc->sc_hwbssidmask[0] &= ~mac[0]; 1049 if (i == 0) 1050 sc->sc_nbssid0++; 1051 } 1052 1053 static void 1054 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1055 { 1056 int i = mac[0] >> 2; 1057 uint8_t mask; 1058 1059 if (i != 0 || --sc->sc_nbssid0 == 0) { 1060 sc->sc_bssidmask &= ~(1<<i); 1061 /* recalculate bssid mask from remaining addresses */ 1062 mask = 0xff; 1063 for (i = 1; i < 8; i++) 1064 if (sc->sc_bssidmask & (1<<i)) 1065 mask &= ~((i<<2)|0x2); 1066 sc->sc_hwbssidmask[0] |= mask; 1067 } 1068 } 1069 1070 /* 1071 * Assign a beacon xmit slot. We try to space out 1072 * assignments so when beacons are staggered the 1073 * traffic coming out of the cab q has maximal time 1074 * to go out before the next beacon is scheduled. 1075 */ 1076 static int 1077 assign_bslot(struct ath_softc *sc) 1078 { 1079 u_int slot, free; 1080 1081 free = 0; 1082 for (slot = 0; slot < ATH_BCBUF; slot++) 1083 if (sc->sc_bslot[slot] == NULL) { 1084 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1085 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1086 return slot; 1087 free = slot; 1088 /* NB: keep looking for a double slot */ 1089 } 1090 return free; 1091 } 1092 1093 static struct ieee80211vap * 1094 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1095 enum ieee80211_opmode opmode, int flags, 1096 const uint8_t bssid[IEEE80211_ADDR_LEN], 1097 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1098 { 1099 struct ath_softc *sc = ic->ic_ifp->if_softc; 1100 struct ath_vap *avp; 1101 struct ieee80211vap *vap; 1102 uint8_t mac[IEEE80211_ADDR_LEN]; 1103 int needbeacon, error; 1104 enum ieee80211_opmode ic_opmode; 1105 1106 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1107 M_80211_VAP, M_WAITOK | M_ZERO); 1108 needbeacon = 0; 1109 IEEE80211_ADDR_COPY(mac, mac0); 1110 1111 ATH_LOCK(sc); 1112 ic_opmode = opmode; /* default to opmode of new vap */ 1113 switch (opmode) { 1114 case IEEE80211_M_STA: 1115 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1116 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1117 goto bad; 1118 } 1119 if (sc->sc_nvaps) { 1120 /* 1121 * With multiple vaps we must fall back 1122 * to s/w beacon miss handling. 1123 */ 1124 flags |= IEEE80211_CLONE_NOBEACONS; 1125 } 1126 if (flags & IEEE80211_CLONE_NOBEACONS) { 1127 /* 1128 * Station mode w/o beacons are implemented w/ AP mode. 1129 */ 1130 ic_opmode = IEEE80211_M_HOSTAP; 1131 } 1132 break; 1133 case IEEE80211_M_IBSS: 1134 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1135 device_printf(sc->sc_dev, 1136 "only 1 ibss vap supported\n"); 1137 goto bad; 1138 } 1139 needbeacon = 1; 1140 break; 1141 case IEEE80211_M_AHDEMO: 1142 #ifdef IEEE80211_SUPPORT_TDMA 1143 if (flags & IEEE80211_CLONE_TDMA) { 1144 if (sc->sc_nvaps != 0) { 1145 device_printf(sc->sc_dev, 1146 "only 1 tdma vap supported\n"); 1147 goto bad; 1148 } 1149 needbeacon = 1; 1150 flags |= IEEE80211_CLONE_NOBEACONS; 1151 } 1152 /* fall thru... */ 1153 #endif 1154 case IEEE80211_M_MONITOR: 1155 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1156 /* 1157 * Adopt existing mode. Adding a monitor or ahdemo 1158 * vap to an existing configuration is of dubious 1159 * value but should be ok. 1160 */ 1161 /* XXX not right for monitor mode */ 1162 ic_opmode = ic->ic_opmode; 1163 } 1164 break; 1165 case IEEE80211_M_HOSTAP: 1166 case IEEE80211_M_MBSS: 1167 needbeacon = 1; 1168 break; 1169 case IEEE80211_M_WDS: 1170 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1171 device_printf(sc->sc_dev, 1172 "wds not supported in sta mode\n"); 1173 goto bad; 1174 } 1175 /* 1176 * Silently remove any request for a unique 1177 * bssid; WDS vap's always share the local 1178 * mac address. 1179 */ 1180 flags &= ~IEEE80211_CLONE_BSSID; 1181 if (sc->sc_nvaps == 0) 1182 ic_opmode = IEEE80211_M_HOSTAP; 1183 else 1184 ic_opmode = ic->ic_opmode; 1185 break; 1186 default: 1187 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1188 goto bad; 1189 } 1190 /* 1191 * Check that a beacon buffer is available; the code below assumes it. 1192 */ 1193 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1194 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1195 goto bad; 1196 } 1197 1198 /* STA, AHDEMO? */ 1199 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1200 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1201 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1202 } 1203 1204 vap = &avp->av_vap; 1205 /* XXX can't hold mutex across if_alloc */ 1206 ATH_UNLOCK(sc); 1207 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1208 bssid, mac); 1209 ATH_LOCK(sc); 1210 if (error != 0) { 1211 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1212 __func__, error); 1213 goto bad2; 1214 } 1215 1216 /* h/w crypto support */ 1217 vap->iv_key_alloc = ath_key_alloc; 1218 vap->iv_key_delete = ath_key_delete; 1219 vap->iv_key_set = ath_key_set; 1220 vap->iv_key_update_begin = ath_key_update_begin; 1221 vap->iv_key_update_end = ath_key_update_end; 1222 1223 /* override various methods */ 1224 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1225 vap->iv_recv_mgmt = ath_recv_mgmt; 1226 vap->iv_reset = ath_reset_vap; 1227 vap->iv_update_beacon = ath_beacon_update; 1228 avp->av_newstate = vap->iv_newstate; 1229 vap->iv_newstate = ath_newstate; 1230 avp->av_bmiss = vap->iv_bmiss; 1231 vap->iv_bmiss = ath_bmiss_vap; 1232 1233 avp->av_node_ps = vap->iv_node_ps; 1234 vap->iv_node_ps = ath_node_powersave; 1235 1236 avp->av_set_tim = vap->iv_set_tim; 1237 vap->iv_set_tim = ath_node_set_tim; 1238 1239 /* Set default parameters */ 1240 1241 /* 1242 * Anything earlier than some AR9300 series MACs don't 1243 * support a smaller MPDU density. 1244 */ 1245 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1246 /* 1247 * All NICs can handle the maximum size, however 1248 * AR5416 based MACs can only TX aggregates w/ RTS 1249 * protection when the total aggregate size is <= 8k. 1250 * However, for now that's enforced by the TX path. 1251 */ 1252 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1253 1254 avp->av_bslot = -1; 1255 if (needbeacon) { 1256 /* 1257 * Allocate beacon state and setup the q for buffered 1258 * multicast frames. We know a beacon buffer is 1259 * available because we checked above. 1260 */ 1261 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1262 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1263 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1264 /* 1265 * Assign the vap to a beacon xmit slot. As above 1266 * this cannot fail to find a free one. 1267 */ 1268 avp->av_bslot = assign_bslot(sc); 1269 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1270 ("beacon slot %u not empty", avp->av_bslot)); 1271 sc->sc_bslot[avp->av_bslot] = vap; 1272 sc->sc_nbcnvaps++; 1273 } 1274 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1275 /* 1276 * Multple vaps are to transmit beacons and we 1277 * have h/w support for TSF adjusting; enable 1278 * use of staggered beacons. 1279 */ 1280 sc->sc_stagbeacons = 1; 1281 } 1282 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1283 } 1284 1285 ic->ic_opmode = ic_opmode; 1286 if (opmode != IEEE80211_M_WDS) { 1287 sc->sc_nvaps++; 1288 if (opmode == IEEE80211_M_STA) 1289 sc->sc_nstavaps++; 1290 if (opmode == IEEE80211_M_MBSS) 1291 sc->sc_nmeshvaps++; 1292 } 1293 switch (ic_opmode) { 1294 case IEEE80211_M_IBSS: 1295 sc->sc_opmode = HAL_M_IBSS; 1296 break; 1297 case IEEE80211_M_STA: 1298 sc->sc_opmode = HAL_M_STA; 1299 break; 1300 case IEEE80211_M_AHDEMO: 1301 #ifdef IEEE80211_SUPPORT_TDMA 1302 if (vap->iv_caps & IEEE80211_C_TDMA) { 1303 sc->sc_tdma = 1; 1304 /* NB: disable tsf adjust */ 1305 sc->sc_stagbeacons = 0; 1306 } 1307 /* 1308 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1309 * just ap mode. 1310 */ 1311 /* fall thru... */ 1312 #endif 1313 case IEEE80211_M_HOSTAP: 1314 case IEEE80211_M_MBSS: 1315 sc->sc_opmode = HAL_M_HOSTAP; 1316 break; 1317 case IEEE80211_M_MONITOR: 1318 sc->sc_opmode = HAL_M_MONITOR; 1319 break; 1320 default: 1321 /* XXX should not happen */ 1322 break; 1323 } 1324 if (sc->sc_hastsfadd) { 1325 /* 1326 * Configure whether or not TSF adjust should be done. 1327 */ 1328 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1329 } 1330 if (flags & IEEE80211_CLONE_NOBEACONS) { 1331 /* 1332 * Enable s/w beacon miss handling. 1333 */ 1334 sc->sc_swbmiss = 1; 1335 } 1336 ATH_UNLOCK(sc); 1337 1338 /* complete setup */ 1339 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1340 return vap; 1341 bad2: 1342 reclaim_address(sc, mac); 1343 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1344 bad: 1345 free(avp, M_80211_VAP); 1346 ATH_UNLOCK(sc); 1347 return NULL; 1348 } 1349 1350 static void 1351 ath_vap_delete(struct ieee80211vap *vap) 1352 { 1353 struct ieee80211com *ic = vap->iv_ic; 1354 struct ifnet *ifp = ic->ic_ifp; 1355 struct ath_softc *sc = ifp->if_softc; 1356 struct ath_hal *ah = sc->sc_ah; 1357 struct ath_vap *avp = ATH_VAP(vap); 1358 1359 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1360 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1361 /* 1362 * Quiesce the hardware while we remove the vap. In 1363 * particular we need to reclaim all references to 1364 * the vap state by any frames pending on the tx queues. 1365 */ 1366 ath_hal_intrset(ah, 0); /* disable interrupts */ 1367 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1368 /* XXX Do all frames from all vaps/nodes need draining here? */ 1369 ath_stoprecv(sc, 1); /* stop recv side */ 1370 } 1371 1372 ieee80211_vap_detach(vap); 1373 1374 /* 1375 * XXX Danger Will Robinson! Danger! 1376 * 1377 * Because ieee80211_vap_detach() can queue a frame (the station 1378 * diassociate message?) after we've drained the TXQ and 1379 * flushed the software TXQ, we will end up with a frame queued 1380 * to a node whose vap is about to be freed. 1381 * 1382 * To work around this, flush the hardware/software again. 1383 * This may be racy - the ath task may be running and the packet 1384 * may be being scheduled between sw->hw txq. Tsk. 1385 * 1386 * TODO: figure out why a new node gets allocated somewhere around 1387 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1388 * call!) 1389 */ 1390 1391 ath_draintxq(sc, ATH_RESET_DEFAULT); 1392 1393 ATH_LOCK(sc); 1394 /* 1395 * Reclaim beacon state. Note this must be done before 1396 * the vap instance is reclaimed as we may have a reference 1397 * to it in the buffer for the beacon frame. 1398 */ 1399 if (avp->av_bcbuf != NULL) { 1400 if (avp->av_bslot != -1) { 1401 sc->sc_bslot[avp->av_bslot] = NULL; 1402 sc->sc_nbcnvaps--; 1403 } 1404 ath_beacon_return(sc, avp->av_bcbuf); 1405 avp->av_bcbuf = NULL; 1406 if (sc->sc_nbcnvaps == 0) { 1407 sc->sc_stagbeacons = 0; 1408 if (sc->sc_hastsfadd) 1409 ath_hal_settsfadjust(sc->sc_ah, 0); 1410 } 1411 /* 1412 * Reclaim any pending mcast frames for the vap. 1413 */ 1414 ath_tx_draintxq(sc, &avp->av_mcastq); 1415 } 1416 /* 1417 * Update bookkeeping. 1418 */ 1419 if (vap->iv_opmode == IEEE80211_M_STA) { 1420 sc->sc_nstavaps--; 1421 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1422 sc->sc_swbmiss = 0; 1423 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1424 vap->iv_opmode == IEEE80211_M_MBSS) { 1425 reclaim_address(sc, vap->iv_myaddr); 1426 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1427 if (vap->iv_opmode == IEEE80211_M_MBSS) 1428 sc->sc_nmeshvaps--; 1429 } 1430 if (vap->iv_opmode != IEEE80211_M_WDS) 1431 sc->sc_nvaps--; 1432 #ifdef IEEE80211_SUPPORT_TDMA 1433 /* TDMA operation ceases when the last vap is destroyed */ 1434 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1435 sc->sc_tdma = 0; 1436 sc->sc_swbmiss = 0; 1437 } 1438 #endif 1439 free(avp, M_80211_VAP); 1440 1441 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1442 /* 1443 * Restart rx+tx machines if still running (RUNNING will 1444 * be reset if we just destroyed the last vap). 1445 */ 1446 if (ath_startrecv(sc) != 0) 1447 if_printf(ifp, "%s: unable to restart recv logic\n", 1448 __func__); 1449 if (sc->sc_beacons) { /* restart beacons */ 1450 #ifdef IEEE80211_SUPPORT_TDMA 1451 if (sc->sc_tdma) 1452 ath_tdma_config(sc, NULL); 1453 else 1454 #endif 1455 ath_beacon_config(sc, NULL); 1456 } 1457 ath_hal_intrset(ah, sc->sc_imask); 1458 } 1459 ATH_UNLOCK(sc); 1460 } 1461 1462 void 1463 ath_suspend(struct ath_softc *sc) 1464 { 1465 struct ifnet *ifp = sc->sc_ifp; 1466 struct ieee80211com *ic = ifp->if_l2com; 1467 1468 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1469 __func__, ifp->if_flags); 1470 1471 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1472 1473 ieee80211_suspend_all(ic); 1474 /* 1475 * NB: don't worry about putting the chip in low power 1476 * mode; pci will power off our socket on suspend and 1477 * CardBus detaches the device. 1478 */ 1479 1480 /* 1481 * XXX ensure none of the taskqueues are running 1482 * XXX ensure sc_invalid is 1 1483 * XXX ensure the calibration callout is disabled 1484 */ 1485 1486 /* Disable the PCIe PHY, complete with workarounds */ 1487 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1488 } 1489 1490 /* 1491 * Reset the key cache since some parts do not reset the 1492 * contents on resume. First we clear all entries, then 1493 * re-load keys that the 802.11 layer assumes are setup 1494 * in h/w. 1495 */ 1496 static void 1497 ath_reset_keycache(struct ath_softc *sc) 1498 { 1499 struct ifnet *ifp = sc->sc_ifp; 1500 struct ieee80211com *ic = ifp->if_l2com; 1501 struct ath_hal *ah = sc->sc_ah; 1502 int i; 1503 1504 for (i = 0; i < sc->sc_keymax; i++) 1505 ath_hal_keyreset(ah, i); 1506 ieee80211_crypto_reload_keys(ic); 1507 } 1508 1509 /* 1510 * Fetch the current chainmask configuration based on the current 1511 * operating channel and options. 1512 */ 1513 static void 1514 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1515 { 1516 1517 /* 1518 * Set TX chainmask to the currently configured chainmask; 1519 * the TX chainmask depends upon the current operating mode. 1520 */ 1521 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1522 if (IEEE80211_IS_CHAN_HT(chan)) { 1523 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1524 } else { 1525 sc->sc_cur_txchainmask = 1; 1526 } 1527 } 1528 1529 void 1530 ath_resume(struct ath_softc *sc) 1531 { 1532 struct ifnet *ifp = sc->sc_ifp; 1533 struct ieee80211com *ic = ifp->if_l2com; 1534 struct ath_hal *ah = sc->sc_ah; 1535 HAL_STATUS status; 1536 1537 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1538 __func__, ifp->if_flags); 1539 1540 /* Re-enable PCIe, re-enable the PCIe bus */ 1541 ath_hal_enablepcie(ah, 0, 0); 1542 1543 /* 1544 * Must reset the chip before we reload the 1545 * keycache as we were powered down on suspend. 1546 */ 1547 ath_update_chainmasks(sc, 1548 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1549 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1550 sc->sc_cur_rxchainmask); 1551 ath_hal_reset(ah, sc->sc_opmode, 1552 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1553 AH_FALSE, &status); 1554 ath_reset_keycache(sc); 1555 1556 /* Let DFS at it in case it's a DFS channel */ 1557 ath_dfs_radar_enable(sc, ic->ic_curchan); 1558 1559 /* Let spectral at in case spectral is enabled */ 1560 ath_spectral_enable(sc, ic->ic_curchan); 1561 1562 /* Restore the LED configuration */ 1563 ath_led_config(sc); 1564 ath_hal_setledstate(ah, HAL_LED_INIT); 1565 1566 if (sc->sc_resume_up) 1567 ieee80211_resume_all(ic); 1568 1569 /* XXX beacons ? */ 1570 } 1571 1572 void 1573 ath_shutdown(struct ath_softc *sc) 1574 { 1575 struct ifnet *ifp = sc->sc_ifp; 1576 1577 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1578 __func__, ifp->if_flags); 1579 1580 ath_stop(ifp); 1581 /* NB: no point powering down chip as we're about to reboot */ 1582 } 1583 1584 /* 1585 * Interrupt handler. Most of the actual processing is deferred. 1586 */ 1587 void 1588 ath_intr(void *arg) 1589 { 1590 struct ath_softc *sc = arg; 1591 struct ifnet *ifp = sc->sc_ifp; 1592 struct ath_hal *ah = sc->sc_ah; 1593 HAL_INT status = 0; 1594 uint32_t txqs; 1595 1596 /* 1597 * If we're inside a reset path, just print a warning and 1598 * clear the ISR. The reset routine will finish it for us. 1599 */ 1600 ATH_PCU_LOCK(sc); 1601 if (sc->sc_inreset_cnt) { 1602 HAL_INT status; 1603 ath_hal_getisr(ah, &status); /* clear ISR */ 1604 ath_hal_intrset(ah, 0); /* disable further intr's */ 1605 DPRINTF(sc, ATH_DEBUG_ANY, 1606 "%s: in reset, ignoring: status=0x%x\n", 1607 __func__, status); 1608 ATH_PCU_UNLOCK(sc); 1609 return; 1610 } 1611 1612 if (sc->sc_invalid) { 1613 /* 1614 * The hardware is not ready/present, don't touch anything. 1615 * Note this can happen early on if the IRQ is shared. 1616 */ 1617 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1618 ATH_PCU_UNLOCK(sc); 1619 return; 1620 } 1621 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1622 ATH_PCU_UNLOCK(sc); 1623 return; 1624 } 1625 1626 if ((ifp->if_flags & IFF_UP) == 0 || 1627 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1628 HAL_INT status; 1629 1630 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1631 __func__, ifp->if_flags); 1632 ath_hal_getisr(ah, &status); /* clear ISR */ 1633 ath_hal_intrset(ah, 0); /* disable further intr's */ 1634 ATH_PCU_UNLOCK(sc); 1635 return; 1636 } 1637 1638 /* 1639 * Figure out the reason(s) for the interrupt. Note 1640 * that the hal returns a pseudo-ISR that may include 1641 * bits we haven't explicitly enabled so we mask the 1642 * value to insure we only process bits we requested. 1643 */ 1644 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1645 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1646 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1647 #ifdef ATH_DEBUG_ALQ 1648 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1649 ah->ah_syncstate); 1650 #endif /* ATH_DEBUG_ALQ */ 1651 #ifdef ATH_KTR_INTR_DEBUG 1652 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1653 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1654 ah->ah_intrstate[0], 1655 ah->ah_intrstate[1], 1656 ah->ah_intrstate[2], 1657 ah->ah_intrstate[3], 1658 ah->ah_intrstate[6]); 1659 #endif 1660 1661 /* Squirrel away SYNC interrupt debugging */ 1662 if (ah->ah_syncstate != 0) { 1663 int i; 1664 for (i = 0; i < 32; i++) 1665 if (ah->ah_syncstate & (i << i)) 1666 sc->sc_intr_stats.sync_intr[i]++; 1667 } 1668 1669 status &= sc->sc_imask; /* discard unasked for bits */ 1670 1671 /* Short-circuit un-handled interrupts */ 1672 if (status == 0x0) { 1673 ATH_PCU_UNLOCK(sc); 1674 return; 1675 } 1676 1677 /* 1678 * Take a note that we're inside the interrupt handler, so 1679 * the reset routines know to wait. 1680 */ 1681 sc->sc_intr_cnt++; 1682 ATH_PCU_UNLOCK(sc); 1683 1684 /* 1685 * Handle the interrupt. We won't run concurrent with the reset 1686 * or channel change routines as they'll wait for sc_intr_cnt 1687 * to be 0 before continuing. 1688 */ 1689 if (status & HAL_INT_FATAL) { 1690 sc->sc_stats.ast_hardware++; 1691 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1692 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1693 } else { 1694 if (status & HAL_INT_SWBA) { 1695 /* 1696 * Software beacon alert--time to send a beacon. 1697 * Handle beacon transmission directly; deferring 1698 * this is too slow to meet timing constraints 1699 * under load. 1700 */ 1701 #ifdef IEEE80211_SUPPORT_TDMA 1702 if (sc->sc_tdma) { 1703 if (sc->sc_tdmaswba == 0) { 1704 struct ieee80211com *ic = ifp->if_l2com; 1705 struct ieee80211vap *vap = 1706 TAILQ_FIRST(&ic->ic_vaps); 1707 ath_tdma_beacon_send(sc, vap); 1708 sc->sc_tdmaswba = 1709 vap->iv_tdma->tdma_bintval; 1710 } else 1711 sc->sc_tdmaswba--; 1712 } else 1713 #endif 1714 { 1715 ath_beacon_proc(sc, 0); 1716 #ifdef IEEE80211_SUPPORT_SUPERG 1717 /* 1718 * Schedule the rx taskq in case there's no 1719 * traffic so any frames held on the staging 1720 * queue are aged and potentially flushed. 1721 */ 1722 sc->sc_rx.recv_sched(sc, 1); 1723 #endif 1724 } 1725 } 1726 if (status & HAL_INT_RXEOL) { 1727 int imask; 1728 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1729 ATH_PCU_LOCK(sc); 1730 /* 1731 * NB: the hardware should re-read the link when 1732 * RXE bit is written, but it doesn't work at 1733 * least on older hardware revs. 1734 */ 1735 sc->sc_stats.ast_rxeol++; 1736 /* 1737 * Disable RXEOL/RXORN - prevent an interrupt 1738 * storm until the PCU logic can be reset. 1739 * In case the interface is reset some other 1740 * way before "sc_kickpcu" is called, don't 1741 * modify sc_imask - that way if it is reset 1742 * by a call to ath_reset() somehow, the 1743 * interrupt mask will be correctly reprogrammed. 1744 */ 1745 imask = sc->sc_imask; 1746 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1747 ath_hal_intrset(ah, imask); 1748 /* 1749 * Only blank sc_rxlink if we've not yet kicked 1750 * the PCU. 1751 * 1752 * This isn't entirely correct - the correct solution 1753 * would be to have a PCU lock and engage that for 1754 * the duration of the PCU fiddling; which would include 1755 * running the RX process. Otherwise we could end up 1756 * messing up the RX descriptor chain and making the 1757 * RX desc list much shorter. 1758 */ 1759 if (! sc->sc_kickpcu) 1760 sc->sc_rxlink = NULL; 1761 sc->sc_kickpcu = 1; 1762 ATH_PCU_UNLOCK(sc); 1763 /* 1764 * Enqueue an RX proc, to handled whatever 1765 * is in the RX queue. 1766 * This will then kick the PCU. 1767 */ 1768 sc->sc_rx.recv_sched(sc, 1); 1769 } 1770 if (status & HAL_INT_TXURN) { 1771 sc->sc_stats.ast_txurn++; 1772 /* bump tx trigger level */ 1773 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1774 } 1775 /* 1776 * Handle both the legacy and RX EDMA interrupt bits. 1777 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1778 */ 1779 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1780 sc->sc_stats.ast_rx_intr++; 1781 sc->sc_rx.recv_sched(sc, 1); 1782 } 1783 if (status & HAL_INT_TX) { 1784 sc->sc_stats.ast_tx_intr++; 1785 /* 1786 * Grab all the currently set bits in the HAL txq bitmap 1787 * and blank them. This is the only place we should be 1788 * doing this. 1789 */ 1790 if (! sc->sc_isedma) { 1791 ATH_PCU_LOCK(sc); 1792 txqs = 0xffffffff; 1793 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1794 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1795 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1796 txqs, 1797 sc->sc_txq_active, 1798 sc->sc_txq_active | txqs); 1799 sc->sc_txq_active |= txqs; 1800 ATH_PCU_UNLOCK(sc); 1801 } 1802 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1803 } 1804 if (status & HAL_INT_BMISS) { 1805 sc->sc_stats.ast_bmiss++; 1806 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1807 } 1808 if (status & HAL_INT_GTT) 1809 sc->sc_stats.ast_tx_timeout++; 1810 if (status & HAL_INT_CST) 1811 sc->sc_stats.ast_tx_cst++; 1812 if (status & HAL_INT_MIB) { 1813 sc->sc_stats.ast_mib++; 1814 ATH_PCU_LOCK(sc); 1815 /* 1816 * Disable interrupts until we service the MIB 1817 * interrupt; otherwise it will continue to fire. 1818 */ 1819 ath_hal_intrset(ah, 0); 1820 /* 1821 * Let the hal handle the event. We assume it will 1822 * clear whatever condition caused the interrupt. 1823 */ 1824 ath_hal_mibevent(ah, &sc->sc_halstats); 1825 /* 1826 * Don't reset the interrupt if we've just 1827 * kicked the PCU, or we may get a nested 1828 * RXEOL before the rxproc has had a chance 1829 * to run. 1830 */ 1831 if (sc->sc_kickpcu == 0) 1832 ath_hal_intrset(ah, sc->sc_imask); 1833 ATH_PCU_UNLOCK(sc); 1834 } 1835 if (status & HAL_INT_RXORN) { 1836 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1837 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1838 sc->sc_stats.ast_rxorn++; 1839 } 1840 } 1841 ATH_PCU_LOCK(sc); 1842 sc->sc_intr_cnt--; 1843 ATH_PCU_UNLOCK(sc); 1844 } 1845 1846 static void 1847 ath_fatal_proc(void *arg, int pending) 1848 { 1849 struct ath_softc *sc = arg; 1850 struct ifnet *ifp = sc->sc_ifp; 1851 u_int32_t *state; 1852 u_int32_t len; 1853 void *sp; 1854 1855 if_printf(ifp, "hardware error; resetting\n"); 1856 /* 1857 * Fatal errors are unrecoverable. Typically these 1858 * are caused by DMA errors. Collect h/w state from 1859 * the hal so we can diagnose what's going on. 1860 */ 1861 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1862 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1863 state = sp; 1864 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1865 state[0], state[1] , state[2], state[3], 1866 state[4], state[5]); 1867 } 1868 ath_reset(ifp, ATH_RESET_NOLOSS); 1869 } 1870 1871 static void 1872 ath_bmiss_vap(struct ieee80211vap *vap) 1873 { 1874 /* 1875 * Workaround phantom bmiss interrupts by sanity-checking 1876 * the time of our last rx'd frame. If it is within the 1877 * beacon miss interval then ignore the interrupt. If it's 1878 * truly a bmiss we'll get another interrupt soon and that'll 1879 * be dispatched up for processing. Note this applies only 1880 * for h/w beacon miss events. 1881 */ 1882 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1883 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1884 struct ath_softc *sc = ifp->if_softc; 1885 u_int64_t lastrx = sc->sc_lastrx; 1886 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1887 /* XXX should take a locked ref to iv_bss */ 1888 u_int bmisstimeout = 1889 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1890 1891 DPRINTF(sc, ATH_DEBUG_BEACON, 1892 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1893 __func__, (unsigned long long) tsf, 1894 (unsigned long long)(tsf - lastrx), 1895 (unsigned long long) lastrx, bmisstimeout); 1896 1897 if (tsf - lastrx <= bmisstimeout) { 1898 sc->sc_stats.ast_bmiss_phantom++; 1899 return; 1900 } 1901 } 1902 ATH_VAP(vap)->av_bmiss(vap); 1903 } 1904 1905 int 1906 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1907 { 1908 uint32_t rsize; 1909 void *sp; 1910 1911 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1912 return 0; 1913 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1914 *hangs = *(uint32_t *)sp; 1915 return 1; 1916 } 1917 1918 static void 1919 ath_bmiss_proc(void *arg, int pending) 1920 { 1921 struct ath_softc *sc = arg; 1922 struct ifnet *ifp = sc->sc_ifp; 1923 uint32_t hangs; 1924 1925 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1926 1927 /* 1928 * Do a reset upon any becaon miss event. 1929 * 1930 * It may be a non-recognised RX clear hang which needs a reset 1931 * to clear. 1932 */ 1933 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1934 ath_reset(ifp, ATH_RESET_NOLOSS); 1935 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1936 } else { 1937 ath_reset(ifp, ATH_RESET_NOLOSS); 1938 ieee80211_beacon_miss(ifp->if_l2com); 1939 } 1940 } 1941 1942 /* 1943 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1944 * calcs together with WME. If necessary disable the crypto 1945 * hardware and mark the 802.11 state so keys will be setup 1946 * with the MIC work done in software. 1947 */ 1948 static void 1949 ath_settkipmic(struct ath_softc *sc) 1950 { 1951 struct ifnet *ifp = sc->sc_ifp; 1952 struct ieee80211com *ic = ifp->if_l2com; 1953 1954 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1955 if (ic->ic_flags & IEEE80211_F_WME) { 1956 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1957 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1958 } else { 1959 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1960 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1961 } 1962 } 1963 } 1964 1965 static void 1966 ath_init(void *arg) 1967 { 1968 struct ath_softc *sc = (struct ath_softc *) arg; 1969 struct ifnet *ifp = sc->sc_ifp; 1970 struct ieee80211com *ic = ifp->if_l2com; 1971 struct ath_hal *ah = sc->sc_ah; 1972 HAL_STATUS status; 1973 1974 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1975 __func__, ifp->if_flags); 1976 1977 ATH_LOCK(sc); 1978 /* 1979 * Stop anything previously setup. This is safe 1980 * whether this is the first time through or not. 1981 */ 1982 ath_stop_locked(ifp); 1983 1984 /* 1985 * The basic interface to setting the hardware in a good 1986 * state is ``reset''. On return the hardware is known to 1987 * be powered up and with interrupts disabled. This must 1988 * be followed by initialization of the appropriate bits 1989 * and then setup of the interrupt mask. 1990 */ 1991 ath_settkipmic(sc); 1992 ath_update_chainmasks(sc, ic->ic_curchan); 1993 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1994 sc->sc_cur_rxchainmask); 1995 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1996 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1997 status); 1998 ATH_UNLOCK(sc); 1999 return; 2000 } 2001 ath_chan_change(sc, ic->ic_curchan); 2002 2003 /* Let DFS at it in case it's a DFS channel */ 2004 ath_dfs_radar_enable(sc, ic->ic_curchan); 2005 2006 /* Let spectral at in case spectral is enabled */ 2007 ath_spectral_enable(sc, ic->ic_curchan); 2008 2009 /* 2010 * Likewise this is set during reset so update 2011 * state cached in the driver. 2012 */ 2013 sc->sc_diversity = ath_hal_getdiversity(ah); 2014 sc->sc_lastlongcal = 0; 2015 sc->sc_resetcal = 1; 2016 sc->sc_lastcalreset = 0; 2017 sc->sc_lastani = 0; 2018 sc->sc_lastshortcal = 0; 2019 sc->sc_doresetcal = AH_FALSE; 2020 /* 2021 * Beacon timers were cleared here; give ath_newstate() 2022 * a hint that the beacon timers should be poked when 2023 * things transition to the RUN state. 2024 */ 2025 sc->sc_beacons = 0; 2026 2027 /* 2028 * Setup the hardware after reset: the key cache 2029 * is filled as needed and the receive engine is 2030 * set going. Frame transmit is handled entirely 2031 * in the frame output path; there's nothing to do 2032 * here except setup the interrupt mask. 2033 */ 2034 if (ath_startrecv(sc) != 0) { 2035 if_printf(ifp, "unable to start recv logic\n"); 2036 ATH_UNLOCK(sc); 2037 return; 2038 } 2039 2040 /* 2041 * Enable interrupts. 2042 */ 2043 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2044 | HAL_INT_RXEOL | HAL_INT_RXORN 2045 | HAL_INT_TXURN 2046 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2047 2048 /* 2049 * Enable RX EDMA bits. Note these overlap with 2050 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2051 */ 2052 if (sc->sc_isedma) 2053 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2054 2055 /* 2056 * Enable MIB interrupts when there are hardware phy counters. 2057 * Note we only do this (at the moment) for station mode. 2058 */ 2059 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2060 sc->sc_imask |= HAL_INT_MIB; 2061 2062 /* Enable global TX timeout and carrier sense timeout if available */ 2063 if (ath_hal_gtxto_supported(ah)) 2064 sc->sc_imask |= HAL_INT_GTT; 2065 2066 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2067 __func__, sc->sc_imask); 2068 2069 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2070 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2071 ath_hal_intrset(ah, sc->sc_imask); 2072 2073 ATH_UNLOCK(sc); 2074 2075 #ifdef ATH_TX99_DIAG 2076 if (sc->sc_tx99 != NULL) 2077 sc->sc_tx99->start(sc->sc_tx99); 2078 else 2079 #endif 2080 ieee80211_start_all(ic); /* start all vap's */ 2081 } 2082 2083 static void 2084 ath_stop_locked(struct ifnet *ifp) 2085 { 2086 struct ath_softc *sc = ifp->if_softc; 2087 struct ath_hal *ah = sc->sc_ah; 2088 2089 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2090 __func__, sc->sc_invalid, ifp->if_flags); 2091 2092 ATH_LOCK_ASSERT(sc); 2093 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2094 /* 2095 * Shutdown the hardware and driver: 2096 * reset 802.11 state machine 2097 * turn off timers 2098 * disable interrupts 2099 * turn off the radio 2100 * clear transmit machinery 2101 * clear receive machinery 2102 * drain and release tx queues 2103 * reclaim beacon resources 2104 * power down hardware 2105 * 2106 * Note that some of this work is not possible if the 2107 * hardware is gone (invalid). 2108 */ 2109 #ifdef ATH_TX99_DIAG 2110 if (sc->sc_tx99 != NULL) 2111 sc->sc_tx99->stop(sc->sc_tx99); 2112 #endif 2113 callout_stop(&sc->sc_wd_ch); 2114 sc->sc_wd_timer = 0; 2115 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2116 if (!sc->sc_invalid) { 2117 if (sc->sc_softled) { 2118 callout_stop(&sc->sc_ledtimer); 2119 ath_hal_gpioset(ah, sc->sc_ledpin, 2120 !sc->sc_ledon); 2121 sc->sc_blinking = 0; 2122 } 2123 ath_hal_intrset(ah, 0); 2124 } 2125 ath_draintxq(sc, ATH_RESET_DEFAULT); 2126 if (!sc->sc_invalid) { 2127 ath_stoprecv(sc, 1); 2128 ath_hal_phydisable(ah); 2129 } else 2130 sc->sc_rxlink = NULL; 2131 ath_beacon_free(sc); /* XXX not needed */ 2132 } 2133 } 2134 2135 #define MAX_TXRX_ITERATIONS 1000 2136 static void 2137 ath_txrx_stop_locked(struct ath_softc *sc) 2138 { 2139 int i = MAX_TXRX_ITERATIONS; 2140 2141 ATH_UNLOCK_ASSERT(sc); 2142 ATH_PCU_LOCK_ASSERT(sc); 2143 2144 /* 2145 * Sleep until all the pending operations have completed. 2146 * 2147 * The caller must ensure that reset has been incremented 2148 * or the pending operations may continue being queued. 2149 */ 2150 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2151 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2152 if (i <= 0) 2153 break; 2154 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2155 i--; 2156 } 2157 2158 if (i <= 0) 2159 device_printf(sc->sc_dev, 2160 "%s: didn't finish after %d iterations\n", 2161 __func__, MAX_TXRX_ITERATIONS); 2162 } 2163 #undef MAX_TXRX_ITERATIONS 2164 2165 #if 0 2166 static void 2167 ath_txrx_stop(struct ath_softc *sc) 2168 { 2169 ATH_UNLOCK_ASSERT(sc); 2170 ATH_PCU_UNLOCK_ASSERT(sc); 2171 2172 ATH_PCU_LOCK(sc); 2173 ath_txrx_stop_locked(sc); 2174 ATH_PCU_UNLOCK(sc); 2175 } 2176 #endif 2177 2178 static void 2179 ath_txrx_start(struct ath_softc *sc) 2180 { 2181 2182 taskqueue_unblock(sc->sc_tq); 2183 } 2184 2185 /* 2186 * Grab the reset lock, and wait around until noone else 2187 * is trying to do anything with it. 2188 * 2189 * This is totally horrible but we can't hold this lock for 2190 * long enough to do TX/RX or we end up with net80211/ip stack 2191 * LORs and eventual deadlock. 2192 * 2193 * "dowait" signals whether to spin, waiting for the reset 2194 * lock count to reach 0. This should (for now) only be used 2195 * during the reset path, as the rest of the code may not 2196 * be locking-reentrant enough to behave correctly. 2197 * 2198 * Another, cleaner way should be found to serialise all of 2199 * these operations. 2200 */ 2201 #define MAX_RESET_ITERATIONS 10 2202 static int 2203 ath_reset_grablock(struct ath_softc *sc, int dowait) 2204 { 2205 int w = 0; 2206 int i = MAX_RESET_ITERATIONS; 2207 2208 ATH_PCU_LOCK_ASSERT(sc); 2209 do { 2210 if (sc->sc_inreset_cnt == 0) { 2211 w = 1; 2212 break; 2213 } 2214 if (dowait == 0) { 2215 w = 0; 2216 break; 2217 } 2218 ATH_PCU_UNLOCK(sc); 2219 pause("ath_reset_grablock", 1); 2220 i--; 2221 ATH_PCU_LOCK(sc); 2222 } while (i > 0); 2223 2224 /* 2225 * We always increment the refcounter, regardless 2226 * of whether we succeeded to get it in an exclusive 2227 * way. 2228 */ 2229 sc->sc_inreset_cnt++; 2230 2231 if (i <= 0) 2232 device_printf(sc->sc_dev, 2233 "%s: didn't finish after %d iterations\n", 2234 __func__, MAX_RESET_ITERATIONS); 2235 2236 if (w == 0) 2237 device_printf(sc->sc_dev, 2238 "%s: warning, recursive reset path!\n", 2239 __func__); 2240 2241 return w; 2242 } 2243 #undef MAX_RESET_ITERATIONS 2244 2245 /* 2246 * XXX TODO: write ath_reset_releaselock 2247 */ 2248 2249 static void 2250 ath_stop(struct ifnet *ifp) 2251 { 2252 struct ath_softc *sc = ifp->if_softc; 2253 2254 ATH_LOCK(sc); 2255 ath_stop_locked(ifp); 2256 ATH_UNLOCK(sc); 2257 } 2258 2259 /* 2260 * Reset the hardware w/o losing operational state. This is 2261 * basically a more efficient way of doing ath_stop, ath_init, 2262 * followed by state transitions to the current 802.11 2263 * operational state. Used to recover from various errors and 2264 * to reset or reload hardware state. 2265 */ 2266 int 2267 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2268 { 2269 struct ath_softc *sc = ifp->if_softc; 2270 struct ieee80211com *ic = ifp->if_l2com; 2271 struct ath_hal *ah = sc->sc_ah; 2272 HAL_STATUS status; 2273 int i; 2274 2275 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2276 2277 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2278 ATH_PCU_UNLOCK_ASSERT(sc); 2279 ATH_UNLOCK_ASSERT(sc); 2280 2281 /* Try to (stop any further TX/RX from occuring */ 2282 taskqueue_block(sc->sc_tq); 2283 2284 ATH_PCU_LOCK(sc); 2285 ath_hal_intrset(ah, 0); /* disable interrupts */ 2286 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2287 if (ath_reset_grablock(sc, 1) == 0) { 2288 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2289 __func__); 2290 } 2291 ATH_PCU_UNLOCK(sc); 2292 2293 /* 2294 * Should now wait for pending TX/RX to complete 2295 * and block future ones from occuring. This needs to be 2296 * done before the TX queue is drained. 2297 */ 2298 ath_draintxq(sc, reset_type); /* stop xmit side */ 2299 2300 /* 2301 * Regardless of whether we're doing a no-loss flush or 2302 * not, stop the PCU and handle what's in the RX queue. 2303 * That way frames aren't dropped which shouldn't be. 2304 */ 2305 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2306 ath_rx_flush(sc); 2307 2308 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2309 /* NB: indicate channel change so we do a full reset */ 2310 ath_update_chainmasks(sc, ic->ic_curchan); 2311 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2312 sc->sc_cur_rxchainmask); 2313 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2314 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2315 __func__, status); 2316 sc->sc_diversity = ath_hal_getdiversity(ah); 2317 2318 /* Let DFS at it in case it's a DFS channel */ 2319 ath_dfs_radar_enable(sc, ic->ic_curchan); 2320 2321 /* Let spectral at in case spectral is enabled */ 2322 ath_spectral_enable(sc, ic->ic_curchan); 2323 2324 if (ath_startrecv(sc) != 0) /* restart recv */ 2325 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2326 /* 2327 * We may be doing a reset in response to an ioctl 2328 * that changes the channel so update any state that 2329 * might change as a result. 2330 */ 2331 ath_chan_change(sc, ic->ic_curchan); 2332 if (sc->sc_beacons) { /* restart beacons */ 2333 #ifdef IEEE80211_SUPPORT_TDMA 2334 if (sc->sc_tdma) 2335 ath_tdma_config(sc, NULL); 2336 else 2337 #endif 2338 ath_beacon_config(sc, NULL); 2339 } 2340 2341 /* 2342 * Release the reset lock and re-enable interrupts here. 2343 * If an interrupt was being processed in ath_intr(), 2344 * it would disable interrupts at this point. So we have 2345 * to atomically enable interrupts and decrement the 2346 * reset counter - this way ath_intr() doesn't end up 2347 * disabling interrupts without a corresponding enable 2348 * in the rest or channel change path. 2349 */ 2350 ATH_PCU_LOCK(sc); 2351 sc->sc_inreset_cnt--; 2352 /* XXX only do this if sc_inreset_cnt == 0? */ 2353 ath_hal_intrset(ah, sc->sc_imask); 2354 ATH_PCU_UNLOCK(sc); 2355 2356 /* 2357 * TX and RX can be started here. If it were started with 2358 * sc_inreset_cnt > 0, the TX and RX path would abort. 2359 * Thus if this is a nested call through the reset or 2360 * channel change code, TX completion will occur but 2361 * RX completion and ath_start / ath_tx_start will not 2362 * run. 2363 */ 2364 2365 /* Restart TX/RX as needed */ 2366 ath_txrx_start(sc); 2367 2368 /* Restart TX completion and pending TX */ 2369 if (reset_type == ATH_RESET_NOLOSS) { 2370 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2371 if (ATH_TXQ_SETUP(sc, i)) { 2372 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2373 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2374 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2375 2376 ATH_TX_LOCK(sc); 2377 ath_txq_sched(sc, &sc->sc_txq[i]); 2378 ATH_TX_UNLOCK(sc); 2379 } 2380 } 2381 } 2382 2383 /* 2384 * This may have been set during an ath_start() call which 2385 * set this once it detected a concurrent TX was going on. 2386 * So, clear it. 2387 */ 2388 IF_LOCK(&ifp->if_snd); 2389 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2390 IF_UNLOCK(&ifp->if_snd); 2391 2392 /* Handle any frames in the TX queue */ 2393 /* 2394 * XXX should this be done by the caller, rather than 2395 * ath_reset() ? 2396 */ 2397 ath_tx_kick(sc); /* restart xmit */ 2398 return 0; 2399 } 2400 2401 static int 2402 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2403 { 2404 struct ieee80211com *ic = vap->iv_ic; 2405 struct ifnet *ifp = ic->ic_ifp; 2406 struct ath_softc *sc = ifp->if_softc; 2407 struct ath_hal *ah = sc->sc_ah; 2408 2409 switch (cmd) { 2410 case IEEE80211_IOC_TXPOWER: 2411 /* 2412 * If per-packet TPC is enabled, then we have nothing 2413 * to do; otherwise we need to force the global limit. 2414 * All this can happen directly; no need to reset. 2415 */ 2416 if (!ath_hal_gettpc(ah)) 2417 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2418 return 0; 2419 } 2420 /* XXX? Full or NOLOSS? */ 2421 return ath_reset(ifp, ATH_RESET_FULL); 2422 } 2423 2424 struct ath_buf * 2425 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2426 { 2427 struct ath_buf *bf; 2428 2429 ATH_TXBUF_LOCK_ASSERT(sc); 2430 2431 if (btype == ATH_BUFTYPE_MGMT) 2432 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2433 else 2434 bf = TAILQ_FIRST(&sc->sc_txbuf); 2435 2436 if (bf == NULL) { 2437 sc->sc_stats.ast_tx_getnobuf++; 2438 } else { 2439 if (bf->bf_flags & ATH_BUF_BUSY) { 2440 sc->sc_stats.ast_tx_getbusybuf++; 2441 bf = NULL; 2442 } 2443 } 2444 2445 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2446 if (btype == ATH_BUFTYPE_MGMT) 2447 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2448 else { 2449 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2450 sc->sc_txbuf_cnt--; 2451 2452 /* 2453 * This shuldn't happen; however just to be 2454 * safe print a warning and fudge the txbuf 2455 * count. 2456 */ 2457 if (sc->sc_txbuf_cnt < 0) { 2458 device_printf(sc->sc_dev, 2459 "%s: sc_txbuf_cnt < 0?\n", 2460 __func__); 2461 sc->sc_txbuf_cnt = 0; 2462 } 2463 } 2464 } else 2465 bf = NULL; 2466 2467 if (bf == NULL) { 2468 /* XXX should check which list, mgmt or otherwise */ 2469 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2470 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2471 "out of xmit buffers" : "xmit buffer busy"); 2472 return NULL; 2473 } 2474 2475 /* XXX TODO: should do this at buffer list initialisation */ 2476 /* XXX (then, ensure the buffer has the right flag set) */ 2477 bf->bf_flags = 0; 2478 if (btype == ATH_BUFTYPE_MGMT) 2479 bf->bf_flags |= ATH_BUF_MGMT; 2480 else 2481 bf->bf_flags &= (~ATH_BUF_MGMT); 2482 2483 /* Valid bf here; clear some basic fields */ 2484 bf->bf_next = NULL; /* XXX just to be sure */ 2485 bf->bf_last = NULL; /* XXX again, just to be sure */ 2486 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2487 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2488 2489 /* 2490 * Track the descriptor ID only if doing EDMA 2491 */ 2492 if (sc->sc_isedma) { 2493 bf->bf_descid = sc->sc_txbuf_descid; 2494 sc->sc_txbuf_descid++; 2495 } 2496 2497 return bf; 2498 } 2499 2500 /* 2501 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2502 * can't be thrown back on the queue as they could still be 2503 * in use by the hardware. 2504 * 2505 * This duplicates the buffer, or returns NULL. 2506 * 2507 * The descriptor is also copied but the link pointers and 2508 * the DMA segments aren't copied; this frame should thus 2509 * be again passed through the descriptor setup/chain routines 2510 * so the link is correct. 2511 * 2512 * The caller must free the buffer using ath_freebuf(). 2513 */ 2514 struct ath_buf * 2515 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 2516 { 2517 struct ath_buf *tbf; 2518 2519 tbf = ath_getbuf(sc, 2520 (bf->bf_flags & ATH_BUF_MGMT) ? 2521 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2522 if (tbf == NULL) 2523 return NULL; /* XXX failure? Why? */ 2524 2525 /* Copy basics */ 2526 tbf->bf_next = NULL; 2527 tbf->bf_nseg = bf->bf_nseg; 2528 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 2529 tbf->bf_status = bf->bf_status; 2530 tbf->bf_m = bf->bf_m; 2531 tbf->bf_node = bf->bf_node; 2532 /* will be setup by the chain/setup function */ 2533 tbf->bf_lastds = NULL; 2534 /* for now, last == self */ 2535 tbf->bf_last = tbf; 2536 tbf->bf_comp = bf->bf_comp; 2537 2538 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2539 2540 /* The caller has to re-init the descriptor + links */ 2541 2542 /* 2543 * Free the DMA mapping here, before we NULL the mbuf. 2544 * We must only call bus_dmamap_unload() once per mbuf chain 2545 * or behaviour is undefined. 2546 */ 2547 if (bf->bf_m != NULL) { 2548 /* 2549 * XXX is this POSTWRITE call required? 2550 */ 2551 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2552 BUS_DMASYNC_POSTWRITE); 2553 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2554 } 2555 2556 bf->bf_m = NULL; 2557 bf->bf_node = NULL; 2558 2559 /* Copy state */ 2560 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2561 2562 return tbf; 2563 } 2564 2565 struct ath_buf * 2566 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2567 { 2568 struct ath_buf *bf; 2569 2570 ATH_TXBUF_LOCK(sc); 2571 bf = _ath_getbuf_locked(sc, btype); 2572 /* 2573 * If a mgmt buffer was requested but we're out of those, 2574 * try requesting a normal one. 2575 */ 2576 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2577 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2578 ATH_TXBUF_UNLOCK(sc); 2579 if (bf == NULL) { 2580 struct ifnet *ifp = sc->sc_ifp; 2581 2582 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2583 sc->sc_stats.ast_tx_qstop++; 2584 IF_LOCK(&ifp->if_snd); 2585 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2586 IF_UNLOCK(&ifp->if_snd); 2587 } 2588 return bf; 2589 } 2590 2591 static void 2592 ath_start_queue(struct ifnet *ifp) 2593 { 2594 struct ath_softc *sc = ifp->if_softc; 2595 2596 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start"); 2597 ath_tx_kick(sc); 2598 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished"); 2599 } 2600 2601 void 2602 ath_start_task(void *arg, int npending) 2603 { 2604 struct ath_softc *sc = (struct ath_softc *) arg; 2605 struct ifnet *ifp = sc->sc_ifp; 2606 2607 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2608 2609 /* XXX is it ok to hold the ATH_LOCK here? */ 2610 ATH_PCU_LOCK(sc); 2611 if (sc->sc_inreset_cnt > 0) { 2612 device_printf(sc->sc_dev, 2613 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2614 ATH_PCU_UNLOCK(sc); 2615 IF_LOCK(&ifp->if_snd); 2616 sc->sc_stats.ast_tx_qstop++; 2617 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2618 IF_UNLOCK(&ifp->if_snd); 2619 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2620 return; 2621 } 2622 sc->sc_txstart_cnt++; 2623 ATH_PCU_UNLOCK(sc); 2624 2625 ATH_TX_LOCK(sc); 2626 ath_start(sc->sc_ifp); 2627 ATH_TX_UNLOCK(sc); 2628 2629 ATH_PCU_LOCK(sc); 2630 sc->sc_txstart_cnt--; 2631 ATH_PCU_UNLOCK(sc); 2632 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2633 } 2634 2635 void 2636 ath_start(struct ifnet *ifp) 2637 { 2638 struct ath_softc *sc = ifp->if_softc; 2639 struct ieee80211_node *ni; 2640 struct ath_buf *bf; 2641 struct mbuf *m, *next; 2642 ath_bufhead frags; 2643 int npkts = 0; 2644 2645 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2646 return; 2647 2648 ATH_TX_LOCK_ASSERT(sc); 2649 2650 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called"); 2651 2652 for (;;) { 2653 ATH_TXBUF_LOCK(sc); 2654 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2655 /* XXX increment counter? */ 2656 ATH_TXBUF_UNLOCK(sc); 2657 IF_LOCK(&ifp->if_snd); 2658 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2659 IF_UNLOCK(&ifp->if_snd); 2660 break; 2661 } 2662 ATH_TXBUF_UNLOCK(sc); 2663 2664 /* 2665 * Grab a TX buffer and associated resources. 2666 */ 2667 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2668 if (bf == NULL) 2669 break; 2670 2671 IFQ_DEQUEUE(&ifp->if_snd, m); 2672 if (m == NULL) { 2673 ATH_TXBUF_LOCK(sc); 2674 ath_returnbuf_head(sc, bf); 2675 ATH_TXBUF_UNLOCK(sc); 2676 break; 2677 } 2678 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2679 npkts ++; 2680 /* 2681 * Check for fragmentation. If this frame 2682 * has been broken up verify we have enough 2683 * buffers to send all the fragments so all 2684 * go out or none... 2685 */ 2686 TAILQ_INIT(&frags); 2687 if ((m->m_flags & M_FRAG) && 2688 !ath_txfrag_setup(sc, &frags, m, ni)) { 2689 DPRINTF(sc, ATH_DEBUG_XMIT, 2690 "%s: out of txfrag buffers\n", __func__); 2691 sc->sc_stats.ast_tx_nofrag++; 2692 ifp->if_oerrors++; 2693 ath_freetx(m); 2694 goto bad; 2695 } 2696 ifp->if_opackets++; 2697 nextfrag: 2698 /* 2699 * Pass the frame to the h/w for transmission. 2700 * Fragmented frames have each frag chained together 2701 * with m_nextpkt. We know there are sufficient ath_buf's 2702 * to send all the frags because of work done by 2703 * ath_txfrag_setup. We leave m_nextpkt set while 2704 * calling ath_tx_start so it can use it to extend the 2705 * the tx duration to cover the subsequent frag and 2706 * so it can reclaim all the mbufs in case of an error; 2707 * ath_tx_start clears m_nextpkt once it commits to 2708 * handing the frame to the hardware. 2709 */ 2710 next = m->m_nextpkt; 2711 if (ath_tx_start(sc, ni, bf, m)) { 2712 bad: 2713 ifp->if_oerrors++; 2714 reclaim: 2715 bf->bf_m = NULL; 2716 bf->bf_node = NULL; 2717 ATH_TXBUF_LOCK(sc); 2718 ath_returnbuf_head(sc, bf); 2719 ath_txfrag_cleanup(sc, &frags, ni); 2720 ATH_TXBUF_UNLOCK(sc); 2721 /* 2722 * XXX todo, free the node outside of 2723 * the TX lock context! 2724 */ 2725 if (ni != NULL) 2726 ieee80211_free_node(ni); 2727 continue; 2728 } 2729 2730 /* 2731 * Check here if the node is in power save state. 2732 */ 2733 ath_tx_update_tim(sc, ni, 1); 2734 2735 if (next != NULL) { 2736 /* 2737 * Beware of state changing between frags. 2738 * XXX check sta power-save state? 2739 */ 2740 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2741 DPRINTF(sc, ATH_DEBUG_XMIT, 2742 "%s: flush fragmented packet, state %s\n", 2743 __func__, 2744 ieee80211_state_name[ni->ni_vap->iv_state]); 2745 /* XXX dmamap */ 2746 ath_freetx(next); 2747 goto reclaim; 2748 } 2749 m = next; 2750 bf = TAILQ_FIRST(&frags); 2751 KASSERT(bf != NULL, ("no buf for txfrag")); 2752 TAILQ_REMOVE(&frags, bf, bf_list); 2753 goto nextfrag; 2754 } 2755 2756 sc->sc_wd_timer = 5; 2757 } 2758 ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts); 2759 } 2760 static int 2761 ath_media_change(struct ifnet *ifp) 2762 { 2763 int error = ieee80211_media_change(ifp); 2764 /* NB: only the fixed rate can change and that doesn't need a reset */ 2765 return (error == ENETRESET ? 0 : error); 2766 } 2767 2768 /* 2769 * Block/unblock tx+rx processing while a key change is done. 2770 * We assume the caller serializes key management operations 2771 * so we only need to worry about synchronization with other 2772 * uses that originate in the driver. 2773 */ 2774 static void 2775 ath_key_update_begin(struct ieee80211vap *vap) 2776 { 2777 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2778 struct ath_softc *sc = ifp->if_softc; 2779 2780 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2781 taskqueue_block(sc->sc_tq); 2782 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2783 } 2784 2785 static void 2786 ath_key_update_end(struct ieee80211vap *vap) 2787 { 2788 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2789 struct ath_softc *sc = ifp->if_softc; 2790 2791 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2792 IF_UNLOCK(&ifp->if_snd); 2793 taskqueue_unblock(sc->sc_tq); 2794 } 2795 2796 static void 2797 ath_update_promisc(struct ifnet *ifp) 2798 { 2799 struct ath_softc *sc = ifp->if_softc; 2800 u_int32_t rfilt; 2801 2802 /* configure rx filter */ 2803 rfilt = ath_calcrxfilter(sc); 2804 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2805 2806 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2807 } 2808 2809 static void 2810 ath_update_mcast(struct ifnet *ifp) 2811 { 2812 struct ath_softc *sc = ifp->if_softc; 2813 u_int32_t mfilt[2]; 2814 2815 /* calculate and install multicast filter */ 2816 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2817 struct ifmultiaddr *ifma; 2818 /* 2819 * Merge multicast addresses to form the hardware filter. 2820 */ 2821 mfilt[0] = mfilt[1] = 0; 2822 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2823 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2824 caddr_t dl; 2825 u_int32_t val; 2826 u_int8_t pos; 2827 2828 /* calculate XOR of eight 6bit values */ 2829 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2830 val = LE_READ_4(dl + 0); 2831 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2832 val = LE_READ_4(dl + 3); 2833 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2834 pos &= 0x3f; 2835 mfilt[pos / 32] |= (1 << (pos % 32)); 2836 } 2837 if_maddr_runlock(ifp); 2838 } else 2839 mfilt[0] = mfilt[1] = ~0; 2840 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2841 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2842 __func__, mfilt[0], mfilt[1]); 2843 } 2844 2845 void 2846 ath_mode_init(struct ath_softc *sc) 2847 { 2848 struct ifnet *ifp = sc->sc_ifp; 2849 struct ath_hal *ah = sc->sc_ah; 2850 u_int32_t rfilt; 2851 2852 /* configure rx filter */ 2853 rfilt = ath_calcrxfilter(sc); 2854 ath_hal_setrxfilter(ah, rfilt); 2855 2856 /* configure operational mode */ 2857 ath_hal_setopmode(ah); 2858 2859 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2860 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2861 __func__, 2862 ah, 2863 ifp, 2864 (ifp == NULL) ? NULL : ifp->if_addr); 2865 2866 /* handle any link-level address change */ 2867 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2868 2869 /* calculate and install multicast filter */ 2870 ath_update_mcast(ifp); 2871 } 2872 2873 /* 2874 * Set the slot time based on the current setting. 2875 */ 2876 void 2877 ath_setslottime(struct ath_softc *sc) 2878 { 2879 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2880 struct ath_hal *ah = sc->sc_ah; 2881 u_int usec; 2882 2883 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2884 usec = 13; 2885 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2886 usec = 21; 2887 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2888 /* honor short/long slot time only in 11g */ 2889 /* XXX shouldn't honor on pure g or turbo g channel */ 2890 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2891 usec = HAL_SLOT_TIME_9; 2892 else 2893 usec = HAL_SLOT_TIME_20; 2894 } else 2895 usec = HAL_SLOT_TIME_9; 2896 2897 DPRINTF(sc, ATH_DEBUG_RESET, 2898 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2899 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2900 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2901 2902 ath_hal_setslottime(ah, usec); 2903 sc->sc_updateslot = OK; 2904 } 2905 2906 /* 2907 * Callback from the 802.11 layer to update the 2908 * slot time based on the current setting. 2909 */ 2910 static void 2911 ath_updateslot(struct ifnet *ifp) 2912 { 2913 struct ath_softc *sc = ifp->if_softc; 2914 struct ieee80211com *ic = ifp->if_l2com; 2915 2916 /* 2917 * When not coordinating the BSS, change the hardware 2918 * immediately. For other operation we defer the change 2919 * until beacon updates have propagated to the stations. 2920 */ 2921 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2922 ic->ic_opmode == IEEE80211_M_MBSS) 2923 sc->sc_updateslot = UPDATE; 2924 else 2925 ath_setslottime(sc); 2926 } 2927 2928 /* 2929 * Append the contents of src to dst; both queues 2930 * are assumed to be locked. 2931 */ 2932 void 2933 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2934 { 2935 2936 ATH_TXQ_LOCK_ASSERT(src); 2937 ATH_TXQ_LOCK_ASSERT(dst); 2938 2939 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2940 dst->axq_link = src->axq_link; 2941 src->axq_link = NULL; 2942 dst->axq_depth += src->axq_depth; 2943 dst->axq_aggr_depth += src->axq_aggr_depth; 2944 src->axq_depth = 0; 2945 src->axq_aggr_depth = 0; 2946 } 2947 2948 /* 2949 * Reset the hardware, with no loss. 2950 * 2951 * This can't be used for a general case reset. 2952 */ 2953 static void 2954 ath_reset_proc(void *arg, int pending) 2955 { 2956 struct ath_softc *sc = arg; 2957 struct ifnet *ifp = sc->sc_ifp; 2958 2959 #if 0 2960 if_printf(ifp, "%s: resetting\n", __func__); 2961 #endif 2962 ath_reset(ifp, ATH_RESET_NOLOSS); 2963 } 2964 2965 /* 2966 * Reset the hardware after detecting beacons have stopped. 2967 */ 2968 static void 2969 ath_bstuck_proc(void *arg, int pending) 2970 { 2971 struct ath_softc *sc = arg; 2972 struct ifnet *ifp = sc->sc_ifp; 2973 uint32_t hangs = 0; 2974 2975 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2976 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2977 2978 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2979 sc->sc_bmisscount); 2980 sc->sc_stats.ast_bstuck++; 2981 /* 2982 * This assumes that there's no simultaneous channel mode change 2983 * occuring. 2984 */ 2985 ath_reset(ifp, ATH_RESET_NOLOSS); 2986 } 2987 2988 static void 2989 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2990 { 2991 bus_addr_t *paddr = (bus_addr_t*) arg; 2992 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2993 *paddr = segs->ds_addr; 2994 } 2995 2996 /* 2997 * Allocate the descriptors and appropriate DMA tag/setup. 2998 * 2999 * For some situations (eg EDMA TX completion), there isn't a requirement 3000 * for the ath_buf entries to be allocated. 3001 */ 3002 int 3003 ath_descdma_alloc_desc(struct ath_softc *sc, 3004 struct ath_descdma *dd, ath_bufhead *head, 3005 const char *name, int ds_size, int ndesc) 3006 { 3007 #define DS2PHYS(_dd, _ds) \ 3008 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3009 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3010 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3011 struct ifnet *ifp = sc->sc_ifp; 3012 int error; 3013 3014 dd->dd_descsize = ds_size; 3015 3016 DPRINTF(sc, ATH_DEBUG_RESET, 3017 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3018 __func__, name, ndesc, dd->dd_descsize); 3019 3020 dd->dd_name = name; 3021 dd->dd_desc_len = dd->dd_descsize * ndesc; 3022 3023 /* 3024 * Merlin work-around: 3025 * Descriptors that cross the 4KB boundary can't be used. 3026 * Assume one skipped descriptor per 4KB page. 3027 */ 3028 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3029 int numpages = dd->dd_desc_len / 4096; 3030 dd->dd_desc_len += ds_size * numpages; 3031 } 3032 3033 /* 3034 * Setup DMA descriptor area. 3035 * 3036 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3037 * buffers for the descriptors themselves. 3038 */ 3039 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3040 PAGE_SIZE, 0, /* alignment, bounds */ 3041 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3042 BUS_SPACE_MAXADDR, /* highaddr */ 3043 NULL, NULL, /* filter, filterarg */ 3044 dd->dd_desc_len, /* maxsize */ 3045 1, /* nsegments */ 3046 dd->dd_desc_len, /* maxsegsize */ 3047 0, /* flags */ 3048 NULL, /* lockfunc */ 3049 NULL, /* lockarg */ 3050 &dd->dd_dmat); 3051 if (error != 0) { 3052 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3053 return error; 3054 } 3055 3056 /* allocate descriptors */ 3057 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3058 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3059 &dd->dd_dmamap); 3060 if (error != 0) { 3061 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3062 "error %u\n", ndesc, dd->dd_name, error); 3063 goto fail1; 3064 } 3065 3066 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3067 dd->dd_desc, dd->dd_desc_len, 3068 ath_load_cb, &dd->dd_desc_paddr, 3069 BUS_DMA_NOWAIT); 3070 if (error != 0) { 3071 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3072 dd->dd_name, error); 3073 goto fail2; 3074 } 3075 3076 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3077 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3078 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3079 /*XXX*/ (u_long) dd->dd_desc_len); 3080 3081 return (0); 3082 3083 fail2: 3084 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3085 fail1: 3086 bus_dma_tag_destroy(dd->dd_dmat); 3087 memset(dd, 0, sizeof(*dd)); 3088 return error; 3089 #undef DS2PHYS 3090 #undef ATH_DESC_4KB_BOUND_CHECK 3091 } 3092 3093 int 3094 ath_descdma_setup(struct ath_softc *sc, 3095 struct ath_descdma *dd, ath_bufhead *head, 3096 const char *name, int ds_size, int nbuf, int ndesc) 3097 { 3098 #define DS2PHYS(_dd, _ds) \ 3099 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3100 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3101 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3102 struct ifnet *ifp = sc->sc_ifp; 3103 uint8_t *ds; 3104 struct ath_buf *bf; 3105 int i, bsize, error; 3106 3107 /* Allocate descriptors */ 3108 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3109 nbuf * ndesc); 3110 3111 /* Assume any errors during allocation were dealt with */ 3112 if (error != 0) { 3113 return (error); 3114 } 3115 3116 ds = (uint8_t *) dd->dd_desc; 3117 3118 /* allocate rx buffers */ 3119 bsize = sizeof(struct ath_buf) * nbuf; 3120 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3121 if (bf == NULL) { 3122 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3123 dd->dd_name, bsize); 3124 goto fail3; 3125 } 3126 dd->dd_bufptr = bf; 3127 3128 TAILQ_INIT(head); 3129 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3130 bf->bf_desc = (struct ath_desc *) ds; 3131 bf->bf_daddr = DS2PHYS(dd, ds); 3132 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3133 /* 3134 * Merlin WAR: Skip descriptor addresses which 3135 * cause 4KB boundary crossing along any point 3136 * in the descriptor. 3137 */ 3138 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3139 dd->dd_descsize)) { 3140 /* Start at the next page */ 3141 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3142 bf->bf_desc = (struct ath_desc *) ds; 3143 bf->bf_daddr = DS2PHYS(dd, ds); 3144 } 3145 } 3146 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3147 &bf->bf_dmamap); 3148 if (error != 0) { 3149 if_printf(ifp, "unable to create dmamap for %s " 3150 "buffer %u, error %u\n", dd->dd_name, i, error); 3151 ath_descdma_cleanup(sc, dd, head); 3152 return error; 3153 } 3154 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3155 TAILQ_INSERT_TAIL(head, bf, bf_list); 3156 } 3157 3158 /* 3159 * XXX TODO: ensure that ds doesn't overflow the descriptor 3160 * allocation otherwise weird stuff will occur and crash your 3161 * machine. 3162 */ 3163 return 0; 3164 /* XXX this should likely just call ath_descdma_cleanup() */ 3165 fail3: 3166 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3167 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3168 bus_dma_tag_destroy(dd->dd_dmat); 3169 memset(dd, 0, sizeof(*dd)); 3170 return error; 3171 #undef DS2PHYS 3172 #undef ATH_DESC_4KB_BOUND_CHECK 3173 } 3174 3175 /* 3176 * Allocate ath_buf entries but no descriptor contents. 3177 * 3178 * This is for RX EDMA where the descriptors are the header part of 3179 * the RX buffer. 3180 */ 3181 int 3182 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3183 struct ath_descdma *dd, ath_bufhead *head, 3184 const char *name, int nbuf, int rx_status_len) 3185 { 3186 struct ifnet *ifp = sc->sc_ifp; 3187 struct ath_buf *bf; 3188 int i, bsize, error; 3189 3190 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3191 __func__, name, nbuf); 3192 3193 dd->dd_name = name; 3194 /* 3195 * This is (mostly) purely for show. We're not allocating any actual 3196 * descriptors here as EDMA RX has the descriptor be part 3197 * of the RX buffer. 3198 * 3199 * However, dd_desc_len is used by ath_descdma_free() to determine 3200 * whether we have already freed this DMA mapping. 3201 */ 3202 dd->dd_desc_len = rx_status_len * nbuf; 3203 dd->dd_descsize = rx_status_len; 3204 3205 /* allocate rx buffers */ 3206 bsize = sizeof(struct ath_buf) * nbuf; 3207 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3208 if (bf == NULL) { 3209 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3210 dd->dd_name, bsize); 3211 error = ENOMEM; 3212 goto fail3; 3213 } 3214 dd->dd_bufptr = bf; 3215 3216 TAILQ_INIT(head); 3217 for (i = 0; i < nbuf; i++, bf++) { 3218 bf->bf_desc = NULL; 3219 bf->bf_daddr = 0; 3220 bf->bf_lastds = NULL; /* Just an initial value */ 3221 3222 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3223 &bf->bf_dmamap); 3224 if (error != 0) { 3225 if_printf(ifp, "unable to create dmamap for %s " 3226 "buffer %u, error %u\n", dd->dd_name, i, error); 3227 ath_descdma_cleanup(sc, dd, head); 3228 return error; 3229 } 3230 TAILQ_INSERT_TAIL(head, bf, bf_list); 3231 } 3232 return 0; 3233 fail3: 3234 memset(dd, 0, sizeof(*dd)); 3235 return error; 3236 } 3237 3238 void 3239 ath_descdma_cleanup(struct ath_softc *sc, 3240 struct ath_descdma *dd, ath_bufhead *head) 3241 { 3242 struct ath_buf *bf; 3243 struct ieee80211_node *ni; 3244 int do_warning = 0; 3245 3246 if (dd->dd_dmamap != 0) { 3247 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3248 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3249 bus_dma_tag_destroy(dd->dd_dmat); 3250 } 3251 3252 if (head != NULL) { 3253 TAILQ_FOREACH(bf, head, bf_list) { 3254 if (bf->bf_m) { 3255 /* 3256 * XXX warn if there's buffers here. 3257 * XXX it should have been freed by the 3258 * owner! 3259 */ 3260 3261 if (do_warning == 0) { 3262 do_warning = 1; 3263 device_printf(sc->sc_dev, 3264 "%s: %s: mbuf should've been" 3265 " unmapped/freed!\n", 3266 __func__, 3267 dd->dd_name); 3268 } 3269 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3270 BUS_DMASYNC_POSTREAD); 3271 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3272 m_freem(bf->bf_m); 3273 bf->bf_m = NULL; 3274 } 3275 if (bf->bf_dmamap != NULL) { 3276 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3277 bf->bf_dmamap = NULL; 3278 } 3279 ni = bf->bf_node; 3280 bf->bf_node = NULL; 3281 if (ni != NULL) { 3282 /* 3283 * Reclaim node reference. 3284 */ 3285 ieee80211_free_node(ni); 3286 } 3287 } 3288 } 3289 3290 if (head != NULL) 3291 TAILQ_INIT(head); 3292 3293 if (dd->dd_bufptr != NULL) 3294 free(dd->dd_bufptr, M_ATHDEV); 3295 memset(dd, 0, sizeof(*dd)); 3296 } 3297 3298 static int 3299 ath_desc_alloc(struct ath_softc *sc) 3300 { 3301 int error; 3302 3303 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3304 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3305 if (error != 0) { 3306 return error; 3307 } 3308 sc->sc_txbuf_cnt = ath_txbuf; 3309 3310 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3311 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3312 ATH_TXDESC); 3313 if (error != 0) { 3314 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3315 return error; 3316 } 3317 3318 /* 3319 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3320 * flag doesn't have to be set in ath_getbuf_locked(). 3321 */ 3322 3323 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3324 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3325 if (error != 0) { 3326 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3327 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3328 &sc->sc_txbuf_mgmt); 3329 return error; 3330 } 3331 return 0; 3332 } 3333 3334 static void 3335 ath_desc_free(struct ath_softc *sc) 3336 { 3337 3338 if (sc->sc_bdma.dd_desc_len != 0) 3339 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3340 if (sc->sc_txdma.dd_desc_len != 0) 3341 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3342 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3343 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3344 &sc->sc_txbuf_mgmt); 3345 } 3346 3347 static struct ieee80211_node * 3348 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3349 { 3350 struct ieee80211com *ic = vap->iv_ic; 3351 struct ath_softc *sc = ic->ic_ifp->if_softc; 3352 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3353 struct ath_node *an; 3354 3355 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3356 if (an == NULL) { 3357 /* XXX stat+msg */ 3358 return NULL; 3359 } 3360 ath_rate_node_init(sc, an); 3361 3362 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3363 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3364 device_get_nameunit(sc->sc_dev), an); 3365 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3366 3367 /* XXX setup ath_tid */ 3368 ath_tx_tid_init(sc, an); 3369 3370 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3371 return &an->an_node; 3372 } 3373 3374 static void 3375 ath_node_cleanup(struct ieee80211_node *ni) 3376 { 3377 struct ieee80211com *ic = ni->ni_ic; 3378 struct ath_softc *sc = ic->ic_ifp->if_softc; 3379 3380 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3381 ath_tx_node_flush(sc, ATH_NODE(ni)); 3382 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3383 sc->sc_node_cleanup(ni); 3384 } 3385 3386 static void 3387 ath_node_free(struct ieee80211_node *ni) 3388 { 3389 struct ieee80211com *ic = ni->ni_ic; 3390 struct ath_softc *sc = ic->ic_ifp->if_softc; 3391 3392 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3393 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3394 sc->sc_node_free(ni); 3395 } 3396 3397 static void 3398 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3399 { 3400 struct ieee80211com *ic = ni->ni_ic; 3401 struct ath_softc *sc = ic->ic_ifp->if_softc; 3402 struct ath_hal *ah = sc->sc_ah; 3403 3404 *rssi = ic->ic_node_getrssi(ni); 3405 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3406 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3407 else 3408 *noise = -95; /* nominally correct */ 3409 } 3410 3411 /* 3412 * Set the default antenna. 3413 */ 3414 void 3415 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3416 { 3417 struct ath_hal *ah = sc->sc_ah; 3418 3419 /* XXX block beacon interrupts */ 3420 ath_hal_setdefantenna(ah, antenna); 3421 if (sc->sc_defant != antenna) 3422 sc->sc_stats.ast_ant_defswitch++; 3423 sc->sc_defant = antenna; 3424 sc->sc_rxotherant = 0; 3425 } 3426 3427 static void 3428 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3429 { 3430 txq->axq_qnum = qnum; 3431 txq->axq_ac = 0; 3432 txq->axq_depth = 0; 3433 txq->axq_aggr_depth = 0; 3434 txq->axq_intrcnt = 0; 3435 txq->axq_link = NULL; 3436 txq->axq_softc = sc; 3437 TAILQ_INIT(&txq->axq_q); 3438 TAILQ_INIT(&txq->axq_tidq); 3439 TAILQ_INIT(&txq->fifo.axq_q); 3440 ATH_TXQ_LOCK_INIT(sc, txq); 3441 } 3442 3443 /* 3444 * Setup a h/w transmit queue. 3445 */ 3446 static struct ath_txq * 3447 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3448 { 3449 #define N(a) (sizeof(a)/sizeof(a[0])) 3450 struct ath_hal *ah = sc->sc_ah; 3451 HAL_TXQ_INFO qi; 3452 int qnum; 3453 3454 memset(&qi, 0, sizeof(qi)); 3455 qi.tqi_subtype = subtype; 3456 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3457 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3458 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3459 /* 3460 * Enable interrupts only for EOL and DESC conditions. 3461 * We mark tx descriptors to receive a DESC interrupt 3462 * when a tx queue gets deep; otherwise waiting for the 3463 * EOL to reap descriptors. Note that this is done to 3464 * reduce interrupt load and this only defers reaping 3465 * descriptors, never transmitting frames. Aside from 3466 * reducing interrupts this also permits more concurrency. 3467 * The only potential downside is if the tx queue backs 3468 * up in which case the top half of the kernel may backup 3469 * due to a lack of tx descriptors. 3470 */ 3471 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3472 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3473 if (qnum == -1) { 3474 /* 3475 * NB: don't print a message, this happens 3476 * normally on parts with too few tx queues 3477 */ 3478 return NULL; 3479 } 3480 if (qnum >= N(sc->sc_txq)) { 3481 device_printf(sc->sc_dev, 3482 "hal qnum %u out of range, max %zu!\n", 3483 qnum, N(sc->sc_txq)); 3484 ath_hal_releasetxqueue(ah, qnum); 3485 return NULL; 3486 } 3487 if (!ATH_TXQ_SETUP(sc, qnum)) { 3488 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3489 sc->sc_txqsetup |= 1<<qnum; 3490 } 3491 return &sc->sc_txq[qnum]; 3492 #undef N 3493 } 3494 3495 /* 3496 * Setup a hardware data transmit queue for the specified 3497 * access control. The hal may not support all requested 3498 * queues in which case it will return a reference to a 3499 * previously setup queue. We record the mapping from ac's 3500 * to h/w queues for use by ath_tx_start and also track 3501 * the set of h/w queues being used to optimize work in the 3502 * transmit interrupt handler and related routines. 3503 */ 3504 static int 3505 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3506 { 3507 #define N(a) (sizeof(a)/sizeof(a[0])) 3508 struct ath_txq *txq; 3509 3510 if (ac >= N(sc->sc_ac2q)) { 3511 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3512 ac, N(sc->sc_ac2q)); 3513 return 0; 3514 } 3515 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3516 if (txq != NULL) { 3517 txq->axq_ac = ac; 3518 sc->sc_ac2q[ac] = txq; 3519 return 1; 3520 } else 3521 return 0; 3522 #undef N 3523 } 3524 3525 /* 3526 * Update WME parameters for a transmit queue. 3527 */ 3528 static int 3529 ath_txq_update(struct ath_softc *sc, int ac) 3530 { 3531 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3532 #define ATH_TXOP_TO_US(v) (v<<5) 3533 struct ifnet *ifp = sc->sc_ifp; 3534 struct ieee80211com *ic = ifp->if_l2com; 3535 struct ath_txq *txq = sc->sc_ac2q[ac]; 3536 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3537 struct ath_hal *ah = sc->sc_ah; 3538 HAL_TXQ_INFO qi; 3539 3540 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3541 #ifdef IEEE80211_SUPPORT_TDMA 3542 if (sc->sc_tdma) { 3543 /* 3544 * AIFS is zero so there's no pre-transmit wait. The 3545 * burst time defines the slot duration and is configured 3546 * through net80211. The QCU is setup to not do post-xmit 3547 * back off, lockout all lower-priority QCU's, and fire 3548 * off the DMA beacon alert timer which is setup based 3549 * on the slot configuration. 3550 */ 3551 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3552 | HAL_TXQ_TXERRINT_ENABLE 3553 | HAL_TXQ_TXURNINT_ENABLE 3554 | HAL_TXQ_TXEOLINT_ENABLE 3555 | HAL_TXQ_DBA_GATED 3556 | HAL_TXQ_BACKOFF_DISABLE 3557 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3558 ; 3559 qi.tqi_aifs = 0; 3560 /* XXX +dbaprep? */ 3561 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3562 qi.tqi_burstTime = qi.tqi_readyTime; 3563 } else { 3564 #endif 3565 /* 3566 * XXX shouldn't this just use the default flags 3567 * used in the previous queue setup? 3568 */ 3569 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3570 | HAL_TXQ_TXERRINT_ENABLE 3571 | HAL_TXQ_TXDESCINT_ENABLE 3572 | HAL_TXQ_TXURNINT_ENABLE 3573 | HAL_TXQ_TXEOLINT_ENABLE 3574 ; 3575 qi.tqi_aifs = wmep->wmep_aifsn; 3576 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3577 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3578 qi.tqi_readyTime = 0; 3579 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3580 #ifdef IEEE80211_SUPPORT_TDMA 3581 } 3582 #endif 3583 3584 DPRINTF(sc, ATH_DEBUG_RESET, 3585 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3586 __func__, txq->axq_qnum, qi.tqi_qflags, 3587 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3588 3589 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3590 if_printf(ifp, "unable to update hardware queue " 3591 "parameters for %s traffic!\n", 3592 ieee80211_wme_acnames[ac]); 3593 return 0; 3594 } else { 3595 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3596 return 1; 3597 } 3598 #undef ATH_TXOP_TO_US 3599 #undef ATH_EXPONENT_TO_VALUE 3600 } 3601 3602 /* 3603 * Callback from the 802.11 layer to update WME parameters. 3604 */ 3605 int 3606 ath_wme_update(struct ieee80211com *ic) 3607 { 3608 struct ath_softc *sc = ic->ic_ifp->if_softc; 3609 3610 return !ath_txq_update(sc, WME_AC_BE) || 3611 !ath_txq_update(sc, WME_AC_BK) || 3612 !ath_txq_update(sc, WME_AC_VI) || 3613 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3614 } 3615 3616 /* 3617 * Reclaim resources for a setup queue. 3618 */ 3619 static void 3620 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3621 { 3622 3623 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3624 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3625 ATH_TXQ_LOCK_DESTROY(txq); 3626 } 3627 3628 /* 3629 * Reclaim all tx queue resources. 3630 */ 3631 static void 3632 ath_tx_cleanup(struct ath_softc *sc) 3633 { 3634 int i; 3635 3636 ATH_TXBUF_LOCK_DESTROY(sc); 3637 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3638 if (ATH_TXQ_SETUP(sc, i)) 3639 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3640 } 3641 3642 /* 3643 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3644 * using the current rates in sc_rixmap. 3645 */ 3646 int 3647 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3648 { 3649 int rix = sc->sc_rixmap[rate]; 3650 /* NB: return lowest rix for invalid rate */ 3651 return (rix == 0xff ? 0 : rix); 3652 } 3653 3654 static void 3655 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3656 struct ath_buf *bf) 3657 { 3658 struct ieee80211_node *ni = bf->bf_node; 3659 struct ifnet *ifp = sc->sc_ifp; 3660 struct ieee80211com *ic = ifp->if_l2com; 3661 int sr, lr, pri; 3662 3663 if (ts->ts_status == 0) { 3664 u_int8_t txant = ts->ts_antenna; 3665 sc->sc_stats.ast_ant_tx[txant]++; 3666 sc->sc_ant_tx[txant]++; 3667 if (ts->ts_finaltsi != 0) 3668 sc->sc_stats.ast_tx_altrate++; 3669 pri = M_WME_GETAC(bf->bf_m); 3670 if (pri >= WME_AC_VO) 3671 ic->ic_wme.wme_hipri_traffic++; 3672 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3673 ni->ni_inact = ni->ni_inact_reload; 3674 } else { 3675 if (ts->ts_status & HAL_TXERR_XRETRY) 3676 sc->sc_stats.ast_tx_xretries++; 3677 if (ts->ts_status & HAL_TXERR_FIFO) 3678 sc->sc_stats.ast_tx_fifoerr++; 3679 if (ts->ts_status & HAL_TXERR_FILT) 3680 sc->sc_stats.ast_tx_filtered++; 3681 if (ts->ts_status & HAL_TXERR_XTXOP) 3682 sc->sc_stats.ast_tx_xtxop++; 3683 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3684 sc->sc_stats.ast_tx_timerexpired++; 3685 3686 if (bf->bf_m->m_flags & M_FF) 3687 sc->sc_stats.ast_ff_txerr++; 3688 } 3689 /* XXX when is this valid? */ 3690 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 3691 sc->sc_stats.ast_tx_desccfgerr++; 3692 /* 3693 * This can be valid for successful frame transmission! 3694 * If there's a TX FIFO underrun during aggregate transmission, 3695 * the MAC will pad the rest of the aggregate with delimiters. 3696 * If a BA is returned, the frame is marked as "OK" and it's up 3697 * to the TX completion code to notice which frames weren't 3698 * successfully transmitted. 3699 */ 3700 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 3701 sc->sc_stats.ast_tx_data_underrun++; 3702 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 3703 sc->sc_stats.ast_tx_delim_underrun++; 3704 3705 sr = ts->ts_shortretry; 3706 lr = ts->ts_longretry; 3707 sc->sc_stats.ast_tx_shortretry += sr; 3708 sc->sc_stats.ast_tx_longretry += lr; 3709 3710 } 3711 3712 /* 3713 * The default completion. If fail is 1, this means 3714 * "please don't retry the frame, and just return -1 status 3715 * to the net80211 stack. 3716 */ 3717 void 3718 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3719 { 3720 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3721 int st; 3722 3723 if (fail == 1) 3724 st = -1; 3725 else 3726 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3727 ts->ts_status : HAL_TXERR_XRETRY; 3728 3729 #if 0 3730 if (bf->bf_state.bfs_dobaw) 3731 device_printf(sc->sc_dev, 3732 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3733 __func__, 3734 bf, 3735 SEQNO(bf->bf_state.bfs_seqno)); 3736 #endif 3737 if (bf->bf_next != NULL) 3738 device_printf(sc->sc_dev, 3739 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3740 __func__, 3741 bf, 3742 SEQNO(bf->bf_state.bfs_seqno)); 3743 3744 /* 3745 * Check if the node software queue is empty; if so 3746 * then clear the TIM. 3747 * 3748 * This needs to be done before the buffer is freed as 3749 * otherwise the node reference will have been released 3750 * and the node may not actually exist any longer. 3751 * 3752 * XXX I don't like this belonging here, but it's cleaner 3753 * to do it here right now then all the other places 3754 * where ath_tx_default_comp() is called. 3755 * 3756 * XXX TODO: during drain, ensure that the callback is 3757 * being called so we get a chance to update the TIM. 3758 */ 3759 if (bf->bf_node) 3760 ath_tx_update_tim(sc, bf->bf_node, 0); 3761 3762 /* 3763 * Do any tx complete callback. Note this must 3764 * be done before releasing the node reference. 3765 * This will free the mbuf, release the net80211 3766 * node and recycle the ath_buf. 3767 */ 3768 ath_tx_freebuf(sc, bf, st); 3769 } 3770 3771 /* 3772 * Update rate control with the given completion status. 3773 */ 3774 void 3775 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3776 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3777 int nframes, int nbad) 3778 { 3779 struct ath_node *an; 3780 3781 /* Only for unicast frames */ 3782 if (ni == NULL) 3783 return; 3784 3785 an = ATH_NODE(ni); 3786 ATH_NODE_UNLOCK_ASSERT(an); 3787 3788 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3789 ATH_NODE_LOCK(an); 3790 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3791 ATH_NODE_UNLOCK(an); 3792 } 3793 } 3794 3795 /* 3796 * Process the completion of the given buffer. 3797 * 3798 * This calls the rate control update and then the buffer completion. 3799 * This will either free the buffer or requeue it. In any case, the 3800 * bf pointer should be treated as invalid after this function is called. 3801 */ 3802 void 3803 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3804 struct ath_tx_status *ts, struct ath_buf *bf) 3805 { 3806 struct ieee80211_node *ni = bf->bf_node; 3807 struct ath_node *an = NULL; 3808 3809 ATH_TX_UNLOCK_ASSERT(sc); 3810 3811 /* If unicast frame, update general statistics */ 3812 if (ni != NULL) { 3813 an = ATH_NODE(ni); 3814 /* update statistics */ 3815 ath_tx_update_stats(sc, ts, bf); 3816 } 3817 3818 /* 3819 * Call the completion handler. 3820 * The completion handler is responsible for 3821 * calling the rate control code. 3822 * 3823 * Frames with no completion handler get the 3824 * rate control code called here. 3825 */ 3826 if (bf->bf_comp == NULL) { 3827 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3828 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3829 /* 3830 * XXX assume this isn't an aggregate 3831 * frame. 3832 */ 3833 ath_tx_update_ratectrl(sc, ni, 3834 bf->bf_state.bfs_rc, ts, 3835 bf->bf_state.bfs_pktlen, 1, 3836 (ts->ts_status == 0 ? 0 : 1)); 3837 } 3838 ath_tx_default_comp(sc, bf, 0); 3839 } else 3840 bf->bf_comp(sc, bf, 0); 3841 } 3842 3843 3844 3845 /* 3846 * Process completed xmit descriptors from the specified queue. 3847 * Kick the packet scheduler if needed. This can occur from this 3848 * particular task. 3849 */ 3850 static int 3851 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3852 { 3853 struct ath_hal *ah = sc->sc_ah; 3854 struct ath_buf *bf; 3855 struct ath_desc *ds; 3856 struct ath_tx_status *ts; 3857 struct ieee80211_node *ni; 3858 #ifdef IEEE80211_SUPPORT_SUPERG 3859 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3860 #endif /* IEEE80211_SUPPORT_SUPERG */ 3861 int nacked; 3862 HAL_STATUS status; 3863 3864 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3865 __func__, txq->axq_qnum, 3866 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3867 txq->axq_link); 3868 3869 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3870 "ath_tx_processq: txq=%u head %p link %p depth %p", 3871 txq->axq_qnum, 3872 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3873 txq->axq_link, 3874 txq->axq_depth); 3875 3876 nacked = 0; 3877 for (;;) { 3878 ATH_TXQ_LOCK(txq); 3879 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3880 bf = TAILQ_FIRST(&txq->axq_q); 3881 if (bf == NULL) { 3882 ATH_TXQ_UNLOCK(txq); 3883 break; 3884 } 3885 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3886 ts = &bf->bf_status.ds_txstat; 3887 3888 status = ath_hal_txprocdesc(ah, ds, ts); 3889 #ifdef ATH_DEBUG 3890 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3891 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3892 status == HAL_OK); 3893 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3894 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3895 status == HAL_OK); 3896 #endif 3897 #ifdef ATH_DEBUG_ALQ 3898 if (if_ath_alq_checkdebug(&sc->sc_alq, 3899 ATH_ALQ_EDMA_TXSTATUS)) { 3900 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 3901 sc->sc_tx_statuslen, 3902 (char *) ds); 3903 } 3904 #endif 3905 3906 if (status == HAL_EINPROGRESS) { 3907 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3908 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3909 txq->axq_qnum, bf, ds); 3910 ATH_TXQ_UNLOCK(txq); 3911 break; 3912 } 3913 ATH_TXQ_REMOVE(txq, bf, bf_list); 3914 if (txq->axq_depth > 0) { 3915 /* 3916 * More frames follow. Mark the buffer busy 3917 * so it's not re-used while the hardware may 3918 * still re-read the link field in the descriptor. 3919 * 3920 * Use the last buffer in an aggregate as that 3921 * is where the hardware may be - intermediate 3922 * descriptors won't be "busy". 3923 */ 3924 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3925 } else 3926 txq->axq_link = NULL; 3927 if (bf->bf_state.bfs_aggr) 3928 txq->axq_aggr_depth--; 3929 3930 ni = bf->bf_node; 3931 3932 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3933 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3934 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3935 /* 3936 * If unicast frame was ack'd update RSSI, 3937 * including the last rx time used to 3938 * workaround phantom bmiss interrupts. 3939 */ 3940 if (ni != NULL && ts->ts_status == 0 && 3941 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3942 nacked++; 3943 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3944 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3945 ts->ts_rssi); 3946 } 3947 ATH_TXQ_UNLOCK(txq); 3948 3949 /* 3950 * Update statistics and call completion 3951 */ 3952 ath_tx_process_buf_completion(sc, txq, ts, bf); 3953 3954 /* XXX at this point, bf and ni may be totally invalid */ 3955 } 3956 #ifdef IEEE80211_SUPPORT_SUPERG 3957 /* 3958 * Flush fast-frame staging queue when traffic slows. 3959 */ 3960 if (txq->axq_depth <= 1) 3961 ieee80211_ff_flush(ic, txq->axq_ac); 3962 #endif 3963 3964 /* Kick the software TXQ scheduler */ 3965 if (dosched) { 3966 ATH_TX_LOCK(sc); 3967 ath_txq_sched(sc, txq); 3968 ATH_TX_UNLOCK(sc); 3969 } 3970 3971 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3972 "ath_tx_processq: txq=%u: done", 3973 txq->axq_qnum); 3974 3975 return nacked; 3976 } 3977 3978 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3979 3980 /* 3981 * Deferred processing of transmit interrupt; special-cased 3982 * for a single hardware transmit queue (e.g. 5210 and 5211). 3983 */ 3984 static void 3985 ath_tx_proc_q0(void *arg, int npending) 3986 { 3987 struct ath_softc *sc = arg; 3988 struct ifnet *ifp = sc->sc_ifp; 3989 uint32_t txqs; 3990 3991 ATH_PCU_LOCK(sc); 3992 sc->sc_txproc_cnt++; 3993 txqs = sc->sc_txq_active; 3994 sc->sc_txq_active &= ~txqs; 3995 ATH_PCU_UNLOCK(sc); 3996 3997 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3998 "ath_tx_proc_q0: txqs=0x%08x", txqs); 3999 4000 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4001 /* XXX why is lastrx updated in tx code? */ 4002 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4003 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4004 ath_tx_processq(sc, sc->sc_cabq, 1); 4005 IF_LOCK(&ifp->if_snd); 4006 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4007 IF_UNLOCK(&ifp->if_snd); 4008 sc->sc_wd_timer = 0; 4009 4010 if (sc->sc_softled) 4011 ath_led_event(sc, sc->sc_txrix); 4012 4013 ATH_PCU_LOCK(sc); 4014 sc->sc_txproc_cnt--; 4015 ATH_PCU_UNLOCK(sc); 4016 4017 ath_tx_kick(sc); 4018 } 4019 4020 /* 4021 * Deferred processing of transmit interrupt; special-cased 4022 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4023 */ 4024 static void 4025 ath_tx_proc_q0123(void *arg, int npending) 4026 { 4027 struct ath_softc *sc = arg; 4028 struct ifnet *ifp = sc->sc_ifp; 4029 int nacked; 4030 uint32_t txqs; 4031 4032 ATH_PCU_LOCK(sc); 4033 sc->sc_txproc_cnt++; 4034 txqs = sc->sc_txq_active; 4035 sc->sc_txq_active &= ~txqs; 4036 ATH_PCU_UNLOCK(sc); 4037 4038 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4039 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4040 4041 /* 4042 * Process each active queue. 4043 */ 4044 nacked = 0; 4045 if (TXQACTIVE(txqs, 0)) 4046 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4047 if (TXQACTIVE(txqs, 1)) 4048 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4049 if (TXQACTIVE(txqs, 2)) 4050 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4051 if (TXQACTIVE(txqs, 3)) 4052 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4053 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4054 ath_tx_processq(sc, sc->sc_cabq, 1); 4055 if (nacked) 4056 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4057 4058 IF_LOCK(&ifp->if_snd); 4059 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4060 IF_UNLOCK(&ifp->if_snd); 4061 sc->sc_wd_timer = 0; 4062 4063 if (sc->sc_softled) 4064 ath_led_event(sc, sc->sc_txrix); 4065 4066 ATH_PCU_LOCK(sc); 4067 sc->sc_txproc_cnt--; 4068 ATH_PCU_UNLOCK(sc); 4069 4070 ath_tx_kick(sc); 4071 } 4072 4073 /* 4074 * Deferred processing of transmit interrupt. 4075 */ 4076 static void 4077 ath_tx_proc(void *arg, int npending) 4078 { 4079 struct ath_softc *sc = arg; 4080 struct ifnet *ifp = sc->sc_ifp; 4081 int i, nacked; 4082 uint32_t txqs; 4083 4084 ATH_PCU_LOCK(sc); 4085 sc->sc_txproc_cnt++; 4086 txqs = sc->sc_txq_active; 4087 sc->sc_txq_active &= ~txqs; 4088 ATH_PCU_UNLOCK(sc); 4089 4090 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4091 4092 /* 4093 * Process each active queue. 4094 */ 4095 nacked = 0; 4096 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4097 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4098 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4099 if (nacked) 4100 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4101 4102 /* XXX check this inside of IF_LOCK? */ 4103 IF_LOCK(&ifp->if_snd); 4104 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4105 IF_UNLOCK(&ifp->if_snd); 4106 sc->sc_wd_timer = 0; 4107 4108 if (sc->sc_softled) 4109 ath_led_event(sc, sc->sc_txrix); 4110 4111 ATH_PCU_LOCK(sc); 4112 sc->sc_txproc_cnt--; 4113 ATH_PCU_UNLOCK(sc); 4114 4115 ath_tx_kick(sc); 4116 } 4117 #undef TXQACTIVE 4118 4119 /* 4120 * Deferred processing of TXQ rescheduling. 4121 */ 4122 static void 4123 ath_txq_sched_tasklet(void *arg, int npending) 4124 { 4125 struct ath_softc *sc = arg; 4126 int i; 4127 4128 /* XXX is skipping ok? */ 4129 ATH_PCU_LOCK(sc); 4130 #if 0 4131 if (sc->sc_inreset_cnt > 0) { 4132 device_printf(sc->sc_dev, 4133 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4134 ATH_PCU_UNLOCK(sc); 4135 return; 4136 } 4137 #endif 4138 sc->sc_txproc_cnt++; 4139 ATH_PCU_UNLOCK(sc); 4140 4141 ATH_TX_LOCK(sc); 4142 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4143 if (ATH_TXQ_SETUP(sc, i)) { 4144 ath_txq_sched(sc, &sc->sc_txq[i]); 4145 } 4146 } 4147 ATH_TX_UNLOCK(sc); 4148 4149 ATH_PCU_LOCK(sc); 4150 sc->sc_txproc_cnt--; 4151 ATH_PCU_UNLOCK(sc); 4152 } 4153 4154 void 4155 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4156 { 4157 4158 ATH_TXBUF_LOCK_ASSERT(sc); 4159 4160 if (bf->bf_flags & ATH_BUF_MGMT) 4161 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4162 else { 4163 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4164 sc->sc_txbuf_cnt++; 4165 if (sc->sc_txbuf_cnt > ath_txbuf) { 4166 device_printf(sc->sc_dev, 4167 "%s: sc_txbuf_cnt > %d?\n", 4168 __func__, 4169 ath_txbuf); 4170 sc->sc_txbuf_cnt = ath_txbuf; 4171 } 4172 } 4173 } 4174 4175 void 4176 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4177 { 4178 4179 ATH_TXBUF_LOCK_ASSERT(sc); 4180 4181 if (bf->bf_flags & ATH_BUF_MGMT) 4182 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4183 else { 4184 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4185 sc->sc_txbuf_cnt++; 4186 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4187 device_printf(sc->sc_dev, 4188 "%s: sc_txbuf_cnt > %d?\n", 4189 __func__, 4190 ATH_TXBUF); 4191 sc->sc_txbuf_cnt = ATH_TXBUF; 4192 } 4193 } 4194 } 4195 4196 /* 4197 * Free the holding buffer if it exists 4198 */ 4199 void 4200 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4201 { 4202 ATH_TXBUF_LOCK_ASSERT(sc); 4203 4204 if (txq->axq_holdingbf == NULL) 4205 return; 4206 4207 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4208 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4209 txq->axq_holdingbf = NULL; 4210 } 4211 4212 /* 4213 * Add this buffer to the holding queue, freeing the previous 4214 * one if it exists. 4215 */ 4216 static void 4217 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4218 { 4219 struct ath_txq *txq; 4220 4221 ATH_TXBUF_LOCK_ASSERT(sc); 4222 4223 /* XXX assert ATH_BUF_BUSY is set */ 4224 4225 /* XXX assert the tx queue is under the max number */ 4226 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4227 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4228 __func__, 4229 bf, 4230 bf->bf_state.bfs_tx_queue); 4231 bf->bf_flags &= ~ATH_BUF_BUSY; 4232 ath_returnbuf_tail(sc, bf); 4233 return; 4234 } 4235 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4236 ath_txq_freeholdingbuf(sc, txq); 4237 txq->axq_holdingbf = bf; 4238 } 4239 4240 /* 4241 * Return a buffer to the pool and update the 'busy' flag on the 4242 * previous 'tail' entry. 4243 * 4244 * This _must_ only be called when the buffer is involved in a completed 4245 * TX. The logic is that if it was part of an active TX, the previous 4246 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4247 * for restart (eg for TDMA.) 4248 * 4249 * The caller must free the mbuf and recycle the node reference. 4250 */ 4251 void 4252 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4253 { 4254 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4255 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4256 4257 /* 4258 * If this buffer is busy, push it onto the holding queue 4259 */ 4260 if (bf->bf_flags & ATH_BUF_BUSY) { 4261 ATH_TXBUF_LOCK(sc); 4262 ath_txq_addholdingbuf(sc, bf); 4263 ATH_TXBUF_UNLOCK(sc); 4264 return; 4265 } 4266 4267 /* 4268 * Not a busy buffer, so free normally 4269 */ 4270 ATH_TXBUF_LOCK(sc); 4271 ath_returnbuf_tail(sc, bf); 4272 ATH_TXBUF_UNLOCK(sc); 4273 } 4274 4275 /* 4276 * This is currently used by ath_tx_draintxq() and 4277 * ath_tx_tid_free_pkts(). 4278 * 4279 * It recycles a single ath_buf. 4280 */ 4281 void 4282 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4283 { 4284 struct ieee80211_node *ni = bf->bf_node; 4285 struct mbuf *m0 = bf->bf_m; 4286 4287 /* 4288 * Make sure that we only sync/unload if there's an mbuf. 4289 * If not (eg we cloned a buffer), the unload will have already 4290 * occured. 4291 */ 4292 if (bf->bf_m != NULL) { 4293 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4294 BUS_DMASYNC_POSTWRITE); 4295 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4296 } 4297 4298 bf->bf_node = NULL; 4299 bf->bf_m = NULL; 4300 4301 /* Free the buffer, it's not needed any longer */ 4302 ath_freebuf(sc, bf); 4303 4304 if (ni != NULL) { 4305 /* 4306 * Do any callback and reclaim the node reference. 4307 */ 4308 if (m0->m_flags & M_TXCB) 4309 ieee80211_process_callback(ni, m0, status); 4310 ieee80211_free_node(ni); 4311 } 4312 4313 /* Finally, we don't need this mbuf any longer */ 4314 m_freem(m0); 4315 } 4316 4317 static struct ath_buf * 4318 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4319 { 4320 struct ath_buf *bf; 4321 4322 ATH_TXQ_LOCK_ASSERT(txq); 4323 4324 /* 4325 * Drain the FIFO queue first, then if it's 4326 * empty, move to the normal frame queue. 4327 */ 4328 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4329 if (bf != NULL) { 4330 /* 4331 * Is it the last buffer in this set? 4332 * Decrement the FIFO counter. 4333 */ 4334 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4335 if (txq->axq_fifo_depth == 0) { 4336 device_printf(sc->sc_dev, 4337 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4338 __func__, 4339 txq->axq_qnum, 4340 txq->fifo.axq_depth); 4341 } else 4342 txq->axq_fifo_depth--; 4343 } 4344 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4345 return (bf); 4346 } 4347 4348 /* 4349 * Debugging! 4350 */ 4351 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4352 device_printf(sc->sc_dev, 4353 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4354 __func__, 4355 txq->axq_qnum, 4356 txq->axq_fifo_depth, 4357 txq->fifo.axq_depth); 4358 } 4359 4360 /* 4361 * Now drain the pending queue. 4362 */ 4363 bf = TAILQ_FIRST(&txq->axq_q); 4364 if (bf == NULL) { 4365 txq->axq_link = NULL; 4366 return (NULL); 4367 } 4368 ATH_TXQ_REMOVE(txq, bf, bf_list); 4369 return (bf); 4370 } 4371 4372 void 4373 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4374 { 4375 #ifdef ATH_DEBUG 4376 struct ath_hal *ah = sc->sc_ah; 4377 #endif 4378 struct ath_buf *bf; 4379 u_int ix; 4380 4381 /* 4382 * NB: this assumes output has been stopped and 4383 * we do not need to block ath_tx_proc 4384 */ 4385 for (ix = 0;; ix++) { 4386 ATH_TXQ_LOCK(txq); 4387 bf = ath_tx_draintxq_get_one(sc, txq); 4388 if (bf == NULL) { 4389 ATH_TXQ_UNLOCK(txq); 4390 break; 4391 } 4392 if (bf->bf_state.bfs_aggr) 4393 txq->axq_aggr_depth--; 4394 #ifdef ATH_DEBUG 4395 if (sc->sc_debug & ATH_DEBUG_RESET) { 4396 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4397 int status = 0; 4398 4399 /* 4400 * EDMA operation has a TX completion FIFO 4401 * separate from the TX descriptor, so this 4402 * method of checking the "completion" status 4403 * is wrong. 4404 */ 4405 if (! sc->sc_isedma) { 4406 status = (ath_hal_txprocdesc(ah, 4407 bf->bf_lastds, 4408 &bf->bf_status.ds_txstat) == HAL_OK); 4409 } 4410 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4411 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4412 bf->bf_m->m_len, 0, -1); 4413 } 4414 #endif /* ATH_DEBUG */ 4415 /* 4416 * Since we're now doing magic in the completion 4417 * functions, we -must- call it for aggregation 4418 * destinations or BAW tracking will get upset. 4419 */ 4420 /* 4421 * Clear ATH_BUF_BUSY; the completion handler 4422 * will free the buffer. 4423 */ 4424 ATH_TXQ_UNLOCK(txq); 4425 bf->bf_flags &= ~ATH_BUF_BUSY; 4426 if (bf->bf_comp) 4427 bf->bf_comp(sc, bf, 1); 4428 else 4429 ath_tx_default_comp(sc, bf, 1); 4430 } 4431 4432 /* 4433 * Free the holding buffer if it exists 4434 */ 4435 ATH_TXBUF_LOCK(sc); 4436 ath_txq_freeholdingbuf(sc, txq); 4437 ATH_TXBUF_UNLOCK(sc); 4438 4439 /* 4440 * Drain software queued frames which are on 4441 * active TIDs. 4442 */ 4443 ath_tx_txq_drain(sc, txq); 4444 } 4445 4446 static void 4447 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4448 { 4449 struct ath_hal *ah = sc->sc_ah; 4450 4451 DPRINTF(sc, ATH_DEBUG_RESET, 4452 "%s: tx queue [%u] %p, flags 0x%08x, link %p\n", 4453 __func__, 4454 txq->axq_qnum, 4455 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4456 txq->axq_flags, 4457 txq->axq_link); 4458 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4459 } 4460 4461 int 4462 ath_stoptxdma(struct ath_softc *sc) 4463 { 4464 struct ath_hal *ah = sc->sc_ah; 4465 int i; 4466 4467 /* XXX return value */ 4468 if (sc->sc_invalid) 4469 return 0; 4470 4471 if (!sc->sc_invalid) { 4472 /* don't touch the hardware if marked invalid */ 4473 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4474 __func__, sc->sc_bhalq, 4475 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4476 NULL); 4477 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4478 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4479 if (ATH_TXQ_SETUP(sc, i)) 4480 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4481 } 4482 4483 return 1; 4484 } 4485 4486 /* 4487 * Drain the transmit queues and reclaim resources. 4488 */ 4489 void 4490 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4491 { 4492 #ifdef ATH_DEBUG 4493 struct ath_hal *ah = sc->sc_ah; 4494 #endif 4495 struct ifnet *ifp = sc->sc_ifp; 4496 int i; 4497 4498 (void) ath_stoptxdma(sc); 4499 4500 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4501 /* 4502 * XXX TODO: should we just handle the completed TX frames 4503 * here, whether or not the reset is a full one or not? 4504 */ 4505 if (ATH_TXQ_SETUP(sc, i)) { 4506 if (reset_type == ATH_RESET_NOLOSS) 4507 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4508 else 4509 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4510 } 4511 } 4512 #ifdef ATH_DEBUG 4513 if (sc->sc_debug & ATH_DEBUG_RESET) { 4514 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4515 if (bf != NULL && bf->bf_m != NULL) { 4516 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4517 ath_hal_txprocdesc(ah, bf->bf_lastds, 4518 &bf->bf_status.ds_txstat) == HAL_OK); 4519 ieee80211_dump_pkt(ifp->if_l2com, 4520 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4521 0, -1); 4522 } 4523 } 4524 #endif /* ATH_DEBUG */ 4525 IF_LOCK(&ifp->if_snd); 4526 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4527 IF_UNLOCK(&ifp->if_snd); 4528 sc->sc_wd_timer = 0; 4529 } 4530 4531 /* 4532 * Update internal state after a channel change. 4533 */ 4534 static void 4535 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4536 { 4537 enum ieee80211_phymode mode; 4538 4539 /* 4540 * Change channels and update the h/w rate map 4541 * if we're switching; e.g. 11a to 11b/g. 4542 */ 4543 mode = ieee80211_chan2mode(chan); 4544 if (mode != sc->sc_curmode) 4545 ath_setcurmode(sc, mode); 4546 sc->sc_curchan = chan; 4547 } 4548 4549 /* 4550 * Set/change channels. If the channel is really being changed, 4551 * it's done by resetting the chip. To accomplish this we must 4552 * first cleanup any pending DMA, then restart stuff after a la 4553 * ath_init. 4554 */ 4555 static int 4556 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4557 { 4558 struct ifnet *ifp = sc->sc_ifp; 4559 struct ieee80211com *ic = ifp->if_l2com; 4560 struct ath_hal *ah = sc->sc_ah; 4561 int ret = 0; 4562 4563 /* Treat this as an interface reset */ 4564 ATH_PCU_UNLOCK_ASSERT(sc); 4565 ATH_UNLOCK_ASSERT(sc); 4566 4567 /* (Try to) stop TX/RX from occuring */ 4568 taskqueue_block(sc->sc_tq); 4569 4570 ATH_PCU_LOCK(sc); 4571 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4572 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4573 if (ath_reset_grablock(sc, 1) == 0) { 4574 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4575 __func__); 4576 } 4577 ATH_PCU_UNLOCK(sc); 4578 4579 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4580 __func__, ieee80211_chan2ieee(ic, chan), 4581 chan->ic_freq, chan->ic_flags); 4582 if (chan != sc->sc_curchan) { 4583 HAL_STATUS status; 4584 /* 4585 * To switch channels clear any pending DMA operations; 4586 * wait long enough for the RX fifo to drain, reset the 4587 * hardware at the new frequency, and then re-enable 4588 * the relevant bits of the h/w. 4589 */ 4590 #if 0 4591 ath_hal_intrset(ah, 0); /* disable interrupts */ 4592 #endif 4593 ath_stoprecv(sc, 1); /* turn off frame recv */ 4594 /* 4595 * First, handle completed TX/RX frames. 4596 */ 4597 ath_rx_flush(sc); 4598 ath_draintxq(sc, ATH_RESET_NOLOSS); 4599 /* 4600 * Next, flush the non-scheduled frames. 4601 */ 4602 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4603 4604 ath_update_chainmasks(sc, chan); 4605 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 4606 sc->sc_cur_rxchainmask); 4607 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4608 if_printf(ifp, "%s: unable to reset " 4609 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4610 __func__, ieee80211_chan2ieee(ic, chan), 4611 chan->ic_freq, chan->ic_flags, status); 4612 ret = EIO; 4613 goto finish; 4614 } 4615 sc->sc_diversity = ath_hal_getdiversity(ah); 4616 4617 /* Let DFS at it in case it's a DFS channel */ 4618 ath_dfs_radar_enable(sc, chan); 4619 4620 /* Let spectral at in case spectral is enabled */ 4621 ath_spectral_enable(sc, chan); 4622 4623 /* 4624 * Re-enable rx framework. 4625 */ 4626 if (ath_startrecv(sc) != 0) { 4627 if_printf(ifp, "%s: unable to restart recv logic\n", 4628 __func__); 4629 ret = EIO; 4630 goto finish; 4631 } 4632 4633 /* 4634 * Change channels and update the h/w rate map 4635 * if we're switching; e.g. 11a to 11b/g. 4636 */ 4637 ath_chan_change(sc, chan); 4638 4639 /* 4640 * Reset clears the beacon timers; reset them 4641 * here if needed. 4642 */ 4643 if (sc->sc_beacons) { /* restart beacons */ 4644 #ifdef IEEE80211_SUPPORT_TDMA 4645 if (sc->sc_tdma) 4646 ath_tdma_config(sc, NULL); 4647 else 4648 #endif 4649 ath_beacon_config(sc, NULL); 4650 } 4651 4652 /* 4653 * Re-enable interrupts. 4654 */ 4655 #if 0 4656 ath_hal_intrset(ah, sc->sc_imask); 4657 #endif 4658 } 4659 4660 finish: 4661 ATH_PCU_LOCK(sc); 4662 sc->sc_inreset_cnt--; 4663 /* XXX only do this if sc_inreset_cnt == 0? */ 4664 ath_hal_intrset(ah, sc->sc_imask); 4665 ATH_PCU_UNLOCK(sc); 4666 4667 IF_LOCK(&ifp->if_snd); 4668 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4669 IF_UNLOCK(&ifp->if_snd); 4670 ath_txrx_start(sc); 4671 /* XXX ath_start? */ 4672 4673 return ret; 4674 } 4675 4676 /* 4677 * Periodically recalibrate the PHY to account 4678 * for temperature/environment changes. 4679 */ 4680 static void 4681 ath_calibrate(void *arg) 4682 { 4683 struct ath_softc *sc = arg; 4684 struct ath_hal *ah = sc->sc_ah; 4685 struct ifnet *ifp = sc->sc_ifp; 4686 struct ieee80211com *ic = ifp->if_l2com; 4687 HAL_BOOL longCal, isCalDone = AH_TRUE; 4688 HAL_BOOL aniCal, shortCal = AH_FALSE; 4689 int nextcal; 4690 4691 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4692 goto restart; 4693 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4694 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4695 if (sc->sc_doresetcal) 4696 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4697 4698 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4699 if (aniCal) { 4700 sc->sc_stats.ast_ani_cal++; 4701 sc->sc_lastani = ticks; 4702 ath_hal_ani_poll(ah, sc->sc_curchan); 4703 } 4704 4705 if (longCal) { 4706 sc->sc_stats.ast_per_cal++; 4707 sc->sc_lastlongcal = ticks; 4708 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4709 /* 4710 * Rfgain is out of bounds, reset the chip 4711 * to load new gain values. 4712 */ 4713 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4714 "%s: rfgain change\n", __func__); 4715 sc->sc_stats.ast_per_rfgain++; 4716 sc->sc_resetcal = 0; 4717 sc->sc_doresetcal = AH_TRUE; 4718 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4719 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4720 return; 4721 } 4722 /* 4723 * If this long cal is after an idle period, then 4724 * reset the data collection state so we start fresh. 4725 */ 4726 if (sc->sc_resetcal) { 4727 (void) ath_hal_calreset(ah, sc->sc_curchan); 4728 sc->sc_lastcalreset = ticks; 4729 sc->sc_lastshortcal = ticks; 4730 sc->sc_resetcal = 0; 4731 sc->sc_doresetcal = AH_TRUE; 4732 } 4733 } 4734 4735 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4736 if (shortCal || longCal) { 4737 isCalDone = AH_FALSE; 4738 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4739 if (longCal) { 4740 /* 4741 * Calibrate noise floor data again in case of change. 4742 */ 4743 ath_hal_process_noisefloor(ah); 4744 } 4745 } else { 4746 DPRINTF(sc, ATH_DEBUG_ANY, 4747 "%s: calibration of channel %u failed\n", 4748 __func__, sc->sc_curchan->ic_freq); 4749 sc->sc_stats.ast_per_calfail++; 4750 } 4751 if (shortCal) 4752 sc->sc_lastshortcal = ticks; 4753 } 4754 if (!isCalDone) { 4755 restart: 4756 /* 4757 * Use a shorter interval to potentially collect multiple 4758 * data samples required to complete calibration. Once 4759 * we're told the work is done we drop back to a longer 4760 * interval between requests. We're more aggressive doing 4761 * work when operating as an AP to improve operation right 4762 * after startup. 4763 */ 4764 sc->sc_lastshortcal = ticks; 4765 nextcal = ath_shortcalinterval*hz/1000; 4766 if (sc->sc_opmode != HAL_M_HOSTAP) 4767 nextcal *= 10; 4768 sc->sc_doresetcal = AH_TRUE; 4769 } else { 4770 /* nextcal should be the shortest time for next event */ 4771 nextcal = ath_longcalinterval*hz; 4772 if (sc->sc_lastcalreset == 0) 4773 sc->sc_lastcalreset = sc->sc_lastlongcal; 4774 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4775 sc->sc_resetcal = 1; /* setup reset next trip */ 4776 sc->sc_doresetcal = AH_FALSE; 4777 } 4778 /* ANI calibration may occur more often than short/long/resetcal */ 4779 if (ath_anicalinterval > 0) 4780 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4781 4782 if (nextcal != 0) { 4783 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4784 __func__, nextcal, isCalDone ? "" : "!"); 4785 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4786 } else { 4787 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4788 __func__); 4789 /* NB: don't rearm timer */ 4790 } 4791 } 4792 4793 static void 4794 ath_scan_start(struct ieee80211com *ic) 4795 { 4796 struct ifnet *ifp = ic->ic_ifp; 4797 struct ath_softc *sc = ifp->if_softc; 4798 struct ath_hal *ah = sc->sc_ah; 4799 u_int32_t rfilt; 4800 4801 /* XXX calibration timer? */ 4802 4803 ATH_LOCK(sc); 4804 sc->sc_scanning = 1; 4805 sc->sc_syncbeacon = 0; 4806 rfilt = ath_calcrxfilter(sc); 4807 ATH_UNLOCK(sc); 4808 4809 ATH_PCU_LOCK(sc); 4810 ath_hal_setrxfilter(ah, rfilt); 4811 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4812 ATH_PCU_UNLOCK(sc); 4813 4814 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4815 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4816 } 4817 4818 static void 4819 ath_scan_end(struct ieee80211com *ic) 4820 { 4821 struct ifnet *ifp = ic->ic_ifp; 4822 struct ath_softc *sc = ifp->if_softc; 4823 struct ath_hal *ah = sc->sc_ah; 4824 u_int32_t rfilt; 4825 4826 ATH_LOCK(sc); 4827 sc->sc_scanning = 0; 4828 rfilt = ath_calcrxfilter(sc); 4829 ATH_UNLOCK(sc); 4830 4831 ATH_PCU_LOCK(sc); 4832 ath_hal_setrxfilter(ah, rfilt); 4833 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4834 4835 ath_hal_process_noisefloor(ah); 4836 ATH_PCU_UNLOCK(sc); 4837 4838 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4839 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4840 sc->sc_curaid); 4841 } 4842 4843 #ifdef ATH_ENABLE_11N 4844 /* 4845 * For now, just do a channel change. 4846 * 4847 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4848 * control state and resetting the hardware without dropping frames out 4849 * of the queue. 4850 * 4851 * The unfortunate trouble here is making absolutely sure that the 4852 * channel width change has propagated enough so the hardware 4853 * absolutely isn't handed bogus frames for it's current operating 4854 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4855 * does occur in parallel, we need to make certain we've blocked 4856 * any further ongoing TX (and RX, that can cause raw TX) 4857 * before we do this. 4858 */ 4859 static void 4860 ath_update_chw(struct ieee80211com *ic) 4861 { 4862 struct ifnet *ifp = ic->ic_ifp; 4863 struct ath_softc *sc = ifp->if_softc; 4864 4865 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4866 ath_set_channel(ic); 4867 } 4868 #endif /* ATH_ENABLE_11N */ 4869 4870 static void 4871 ath_set_channel(struct ieee80211com *ic) 4872 { 4873 struct ifnet *ifp = ic->ic_ifp; 4874 struct ath_softc *sc = ifp->if_softc; 4875 4876 (void) ath_chan_set(sc, ic->ic_curchan); 4877 /* 4878 * If we are returning to our bss channel then mark state 4879 * so the next recv'd beacon's tsf will be used to sync the 4880 * beacon timers. Note that since we only hear beacons in 4881 * sta/ibss mode this has no effect in other operating modes. 4882 */ 4883 ATH_LOCK(sc); 4884 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4885 sc->sc_syncbeacon = 1; 4886 ATH_UNLOCK(sc); 4887 } 4888 4889 /* 4890 * Walk the vap list and check if there any vap's in RUN state. 4891 */ 4892 static int 4893 ath_isanyrunningvaps(struct ieee80211vap *this) 4894 { 4895 struct ieee80211com *ic = this->iv_ic; 4896 struct ieee80211vap *vap; 4897 4898 IEEE80211_LOCK_ASSERT(ic); 4899 4900 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4901 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4902 return 1; 4903 } 4904 return 0; 4905 } 4906 4907 static int 4908 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4909 { 4910 struct ieee80211com *ic = vap->iv_ic; 4911 struct ath_softc *sc = ic->ic_ifp->if_softc; 4912 struct ath_vap *avp = ATH_VAP(vap); 4913 struct ath_hal *ah = sc->sc_ah; 4914 struct ieee80211_node *ni = NULL; 4915 int i, error, stamode; 4916 u_int32_t rfilt; 4917 int csa_run_transition = 0; 4918 4919 static const HAL_LED_STATE leds[] = { 4920 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4921 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4922 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4923 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4924 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4925 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4926 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4927 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4928 }; 4929 4930 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4931 ieee80211_state_name[vap->iv_state], 4932 ieee80211_state_name[nstate]); 4933 4934 /* 4935 * net80211 _should_ have the comlock asserted at this point. 4936 * There are some comments around the calls to vap->iv_newstate 4937 * which indicate that it (newstate) may end up dropping the 4938 * lock. This and the subsequent lock assert check after newstate 4939 * are an attempt to catch these and figure out how/why. 4940 */ 4941 IEEE80211_LOCK_ASSERT(ic); 4942 4943 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4944 csa_run_transition = 1; 4945 4946 callout_drain(&sc->sc_cal_ch); 4947 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4948 4949 if (nstate == IEEE80211_S_SCAN) { 4950 /* 4951 * Scanning: turn off beacon miss and don't beacon. 4952 * Mark beacon state so when we reach RUN state we'll 4953 * [re]setup beacons. Unblock the task q thread so 4954 * deferred interrupt processing is done. 4955 */ 4956 ath_hal_intrset(ah, 4957 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4958 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4959 sc->sc_beacons = 0; 4960 taskqueue_unblock(sc->sc_tq); 4961 } 4962 4963 ni = ieee80211_ref_node(vap->iv_bss); 4964 rfilt = ath_calcrxfilter(sc); 4965 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4966 vap->iv_opmode == IEEE80211_M_AHDEMO || 4967 vap->iv_opmode == IEEE80211_M_IBSS); 4968 if (stamode && nstate == IEEE80211_S_RUN) { 4969 sc->sc_curaid = ni->ni_associd; 4970 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4971 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4972 } 4973 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4974 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4975 ath_hal_setrxfilter(ah, rfilt); 4976 4977 /* XXX is this to restore keycache on resume? */ 4978 if (vap->iv_opmode != IEEE80211_M_STA && 4979 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4980 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4981 if (ath_hal_keyisvalid(ah, i)) 4982 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4983 } 4984 4985 /* 4986 * Invoke the parent method to do net80211 work. 4987 */ 4988 error = avp->av_newstate(vap, nstate, arg); 4989 if (error != 0) 4990 goto bad; 4991 4992 /* 4993 * See above: ensure av_newstate() doesn't drop the lock 4994 * on us. 4995 */ 4996 IEEE80211_LOCK_ASSERT(ic); 4997 4998 if (nstate == IEEE80211_S_RUN) { 4999 /* NB: collect bss node again, it may have changed */ 5000 ieee80211_free_node(ni); 5001 ni = ieee80211_ref_node(vap->iv_bss); 5002 5003 DPRINTF(sc, ATH_DEBUG_STATE, 5004 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5005 "capinfo 0x%04x chan %d\n", __func__, 5006 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5007 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5008 5009 switch (vap->iv_opmode) { 5010 #ifdef IEEE80211_SUPPORT_TDMA 5011 case IEEE80211_M_AHDEMO: 5012 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5013 break; 5014 /* fall thru... */ 5015 #endif 5016 case IEEE80211_M_HOSTAP: 5017 case IEEE80211_M_IBSS: 5018 case IEEE80211_M_MBSS: 5019 /* 5020 * Allocate and setup the beacon frame. 5021 * 5022 * Stop any previous beacon DMA. This may be 5023 * necessary, for example, when an ibss merge 5024 * causes reconfiguration; there will be a state 5025 * transition from RUN->RUN that means we may 5026 * be called with beacon transmission active. 5027 */ 5028 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5029 5030 error = ath_beacon_alloc(sc, ni); 5031 if (error != 0) 5032 goto bad; 5033 /* 5034 * If joining an adhoc network defer beacon timer 5035 * configuration to the next beacon frame so we 5036 * have a current TSF to use. Otherwise we're 5037 * starting an ibss/bss so there's no need to delay; 5038 * if this is the first vap moving to RUN state, then 5039 * beacon state needs to be [re]configured. 5040 */ 5041 if (vap->iv_opmode == IEEE80211_M_IBSS && 5042 ni->ni_tstamp.tsf != 0) { 5043 sc->sc_syncbeacon = 1; 5044 } else if (!sc->sc_beacons) { 5045 #ifdef IEEE80211_SUPPORT_TDMA 5046 if (vap->iv_caps & IEEE80211_C_TDMA) 5047 ath_tdma_config(sc, vap); 5048 else 5049 #endif 5050 ath_beacon_config(sc, vap); 5051 sc->sc_beacons = 1; 5052 } 5053 break; 5054 case IEEE80211_M_STA: 5055 /* 5056 * Defer beacon timer configuration to the next 5057 * beacon frame so we have a current TSF to use 5058 * (any TSF collected when scanning is likely old). 5059 * However if it's due to a CSA -> RUN transition, 5060 * force a beacon update so we pick up a lack of 5061 * beacons from an AP in CAC and thus force a 5062 * scan. 5063 * 5064 * And, there's also corner cases here where 5065 * after a scan, the AP may have disappeared. 5066 * In that case, we may not receive an actual 5067 * beacon to update the beacon timer and thus we 5068 * won't get notified of the missing beacons. 5069 */ 5070 sc->sc_syncbeacon = 1; 5071 #if 0 5072 if (csa_run_transition) 5073 #endif 5074 ath_beacon_config(sc, vap); 5075 5076 /* 5077 * PR: kern/175227 5078 * 5079 * Reconfigure beacons during reset; as otherwise 5080 * we won't get the beacon timers reprogrammed 5081 * after a reset and thus we won't pick up a 5082 * beacon miss interrupt. 5083 * 5084 * Hopefully we'll see a beacon before the BMISS 5085 * timer fires (too often), leading to a STA 5086 * disassociation. 5087 */ 5088 sc->sc_beacons = 1; 5089 break; 5090 case IEEE80211_M_MONITOR: 5091 /* 5092 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5093 * transitions so we must re-enable interrupts here to 5094 * handle the case of a single monitor mode vap. 5095 */ 5096 ath_hal_intrset(ah, sc->sc_imask); 5097 break; 5098 case IEEE80211_M_WDS: 5099 break; 5100 default: 5101 break; 5102 } 5103 /* 5104 * Let the hal process statistics collected during a 5105 * scan so it can provide calibrated noise floor data. 5106 */ 5107 ath_hal_process_noisefloor(ah); 5108 /* 5109 * Reset rssi stats; maybe not the best place... 5110 */ 5111 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5112 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5113 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5114 /* 5115 * Finally, start any timers and the task q thread 5116 * (in case we didn't go through SCAN state). 5117 */ 5118 if (ath_longcalinterval != 0) { 5119 /* start periodic recalibration timer */ 5120 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5121 } else { 5122 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5123 "%s: calibration disabled\n", __func__); 5124 } 5125 taskqueue_unblock(sc->sc_tq); 5126 } else if (nstate == IEEE80211_S_INIT) { 5127 /* 5128 * If there are no vaps left in RUN state then 5129 * shutdown host/driver operation: 5130 * o disable interrupts 5131 * o disable the task queue thread 5132 * o mark beacon processing as stopped 5133 */ 5134 if (!ath_isanyrunningvaps(vap)) { 5135 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5136 /* disable interrupts */ 5137 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5138 taskqueue_block(sc->sc_tq); 5139 sc->sc_beacons = 0; 5140 } 5141 #ifdef IEEE80211_SUPPORT_TDMA 5142 ath_hal_setcca(ah, AH_TRUE); 5143 #endif 5144 } 5145 bad: 5146 ieee80211_free_node(ni); 5147 return error; 5148 } 5149 5150 /* 5151 * Allocate a key cache slot to the station so we can 5152 * setup a mapping from key index to node. The key cache 5153 * slot is needed for managing antenna state and for 5154 * compression when stations do not use crypto. We do 5155 * it uniliaterally here; if crypto is employed this slot 5156 * will be reassigned. 5157 */ 5158 static void 5159 ath_setup_stationkey(struct ieee80211_node *ni) 5160 { 5161 struct ieee80211vap *vap = ni->ni_vap; 5162 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5163 ieee80211_keyix keyix, rxkeyix; 5164 5165 /* XXX should take a locked ref to vap->iv_bss */ 5166 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5167 /* 5168 * Key cache is full; we'll fall back to doing 5169 * the more expensive lookup in software. Note 5170 * this also means no h/w compression. 5171 */ 5172 /* XXX msg+statistic */ 5173 } else { 5174 /* XXX locking? */ 5175 ni->ni_ucastkey.wk_keyix = keyix; 5176 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5177 /* NB: must mark device key to get called back on delete */ 5178 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5179 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5180 /* NB: this will create a pass-thru key entry */ 5181 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5182 } 5183 } 5184 5185 /* 5186 * Setup driver-specific state for a newly associated node. 5187 * Note that we're called also on a re-associate, the isnew 5188 * param tells us if this is the first time or not. 5189 */ 5190 static void 5191 ath_newassoc(struct ieee80211_node *ni, int isnew) 5192 { 5193 struct ath_node *an = ATH_NODE(ni); 5194 struct ieee80211vap *vap = ni->ni_vap; 5195 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5196 const struct ieee80211_txparam *tp = ni->ni_txparms; 5197 5198 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5199 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5200 5201 ath_rate_newassoc(sc, an, isnew); 5202 if (isnew && 5203 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5204 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5205 ath_setup_stationkey(ni); 5206 } 5207 5208 static int 5209 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5210 int nchans, struct ieee80211_channel chans[]) 5211 { 5212 struct ath_softc *sc = ic->ic_ifp->if_softc; 5213 struct ath_hal *ah = sc->sc_ah; 5214 HAL_STATUS status; 5215 5216 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5217 "%s: rd %u cc %u location %c%s\n", 5218 __func__, reg->regdomain, reg->country, reg->location, 5219 reg->ecm ? " ecm" : ""); 5220 5221 status = ath_hal_set_channels(ah, chans, nchans, 5222 reg->country, reg->regdomain); 5223 if (status != HAL_OK) { 5224 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5225 __func__, status); 5226 return EINVAL; /* XXX */ 5227 } 5228 5229 return 0; 5230 } 5231 5232 static void 5233 ath_getradiocaps(struct ieee80211com *ic, 5234 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5235 { 5236 struct ath_softc *sc = ic->ic_ifp->if_softc; 5237 struct ath_hal *ah = sc->sc_ah; 5238 5239 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5240 __func__, SKU_DEBUG, CTRY_DEFAULT); 5241 5242 /* XXX check return */ 5243 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5244 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5245 5246 } 5247 5248 static int 5249 ath_getchannels(struct ath_softc *sc) 5250 { 5251 struct ifnet *ifp = sc->sc_ifp; 5252 struct ieee80211com *ic = ifp->if_l2com; 5253 struct ath_hal *ah = sc->sc_ah; 5254 HAL_STATUS status; 5255 5256 /* 5257 * Collect channel set based on EEPROM contents. 5258 */ 5259 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5260 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5261 if (status != HAL_OK) { 5262 if_printf(ifp, "%s: unable to collect channel list from hal, " 5263 "status %d\n", __func__, status); 5264 return EINVAL; 5265 } 5266 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5267 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5268 /* XXX map Atheros sku's to net80211 SKU's */ 5269 /* XXX net80211 types too small */ 5270 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5271 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5272 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5273 ic->ic_regdomain.isocc[1] = ' '; 5274 5275 ic->ic_regdomain.ecm = 1; 5276 ic->ic_regdomain.location = 'I'; 5277 5278 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5279 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5280 __func__, sc->sc_eerd, sc->sc_eecc, 5281 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5282 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5283 return 0; 5284 } 5285 5286 static int 5287 ath_rate_setup(struct ath_softc *sc, u_int mode) 5288 { 5289 struct ath_hal *ah = sc->sc_ah; 5290 const HAL_RATE_TABLE *rt; 5291 5292 switch (mode) { 5293 case IEEE80211_MODE_11A: 5294 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5295 break; 5296 case IEEE80211_MODE_HALF: 5297 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5298 break; 5299 case IEEE80211_MODE_QUARTER: 5300 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5301 break; 5302 case IEEE80211_MODE_11B: 5303 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5304 break; 5305 case IEEE80211_MODE_11G: 5306 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5307 break; 5308 case IEEE80211_MODE_TURBO_A: 5309 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5310 break; 5311 case IEEE80211_MODE_TURBO_G: 5312 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5313 break; 5314 case IEEE80211_MODE_STURBO_A: 5315 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5316 break; 5317 case IEEE80211_MODE_11NA: 5318 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5319 break; 5320 case IEEE80211_MODE_11NG: 5321 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5322 break; 5323 default: 5324 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5325 __func__, mode); 5326 return 0; 5327 } 5328 sc->sc_rates[mode] = rt; 5329 return (rt != NULL); 5330 } 5331 5332 static void 5333 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5334 { 5335 #define N(a) (sizeof(a)/sizeof(a[0])) 5336 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5337 static const struct { 5338 u_int rate; /* tx/rx 802.11 rate */ 5339 u_int16_t timeOn; /* LED on time (ms) */ 5340 u_int16_t timeOff; /* LED off time (ms) */ 5341 } blinkrates[] = { 5342 { 108, 40, 10 }, 5343 { 96, 44, 11 }, 5344 { 72, 50, 13 }, 5345 { 48, 57, 14 }, 5346 { 36, 67, 16 }, 5347 { 24, 80, 20 }, 5348 { 22, 100, 25 }, 5349 { 18, 133, 34 }, 5350 { 12, 160, 40 }, 5351 { 10, 200, 50 }, 5352 { 6, 240, 58 }, 5353 { 4, 267, 66 }, 5354 { 2, 400, 100 }, 5355 { 0, 500, 130 }, 5356 /* XXX half/quarter rates */ 5357 }; 5358 const HAL_RATE_TABLE *rt; 5359 int i, j; 5360 5361 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5362 rt = sc->sc_rates[mode]; 5363 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5364 for (i = 0; i < rt->rateCount; i++) { 5365 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5366 if (rt->info[i].phy != IEEE80211_T_HT) 5367 sc->sc_rixmap[ieeerate] = i; 5368 else 5369 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5370 } 5371 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5372 for (i = 0; i < N(sc->sc_hwmap); i++) { 5373 if (i >= rt->rateCount) { 5374 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5375 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5376 continue; 5377 } 5378 sc->sc_hwmap[i].ieeerate = 5379 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5380 if (rt->info[i].phy == IEEE80211_T_HT) 5381 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5382 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5383 if (rt->info[i].shortPreamble || 5384 rt->info[i].phy == IEEE80211_T_OFDM) 5385 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5386 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5387 for (j = 0; j < N(blinkrates)-1; j++) 5388 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5389 break; 5390 /* NB: this uses the last entry if the rate isn't found */ 5391 /* XXX beware of overlow */ 5392 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5393 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5394 } 5395 sc->sc_currates = rt; 5396 sc->sc_curmode = mode; 5397 /* 5398 * All protection frames are transmited at 2Mb/s for 5399 * 11g, otherwise at 1Mb/s. 5400 */ 5401 if (mode == IEEE80211_MODE_11G) 5402 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5403 else 5404 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5405 /* NB: caller is responsible for resetting rate control state */ 5406 #undef N 5407 } 5408 5409 static void 5410 ath_watchdog(void *arg) 5411 { 5412 struct ath_softc *sc = arg; 5413 int do_reset = 0; 5414 5415 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5416 struct ifnet *ifp = sc->sc_ifp; 5417 uint32_t hangs; 5418 5419 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5420 hangs != 0) { 5421 if_printf(ifp, "%s hang detected (0x%x)\n", 5422 hangs & 0xff ? "bb" : "mac", hangs); 5423 } else 5424 if_printf(ifp, "device timeout\n"); 5425 do_reset = 1; 5426 ifp->if_oerrors++; 5427 sc->sc_stats.ast_watchdog++; 5428 } 5429 5430 /* 5431 * We can't hold the lock across the ath_reset() call. 5432 * 5433 * And since this routine can't hold a lock and sleep, 5434 * do the reset deferred. 5435 */ 5436 if (do_reset) { 5437 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5438 } 5439 5440 callout_schedule(&sc->sc_wd_ch, hz); 5441 } 5442 5443 /* 5444 * Fetch the rate control statistics for the given node. 5445 */ 5446 static int 5447 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5448 { 5449 struct ath_node *an; 5450 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5451 struct ieee80211_node *ni; 5452 int error = 0; 5453 5454 /* Perform a lookup on the given node */ 5455 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5456 if (ni == NULL) { 5457 error = EINVAL; 5458 goto bad; 5459 } 5460 5461 /* Lock the ath_node */ 5462 an = ATH_NODE(ni); 5463 ATH_NODE_LOCK(an); 5464 5465 /* Fetch the rate control stats for this node */ 5466 error = ath_rate_fetch_node_stats(sc, an, rs); 5467 5468 /* No matter what happens here, just drop through */ 5469 5470 /* Unlock the ath_node */ 5471 ATH_NODE_UNLOCK(an); 5472 5473 /* Unref the node */ 5474 ieee80211_node_decref(ni); 5475 5476 bad: 5477 return (error); 5478 } 5479 5480 #ifdef ATH_DIAGAPI 5481 /* 5482 * Diagnostic interface to the HAL. This is used by various 5483 * tools to do things like retrieve register contents for 5484 * debugging. The mechanism is intentionally opaque so that 5485 * it can change frequently w/o concern for compatiblity. 5486 */ 5487 static int 5488 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5489 { 5490 struct ath_hal *ah = sc->sc_ah; 5491 u_int id = ad->ad_id & ATH_DIAG_ID; 5492 void *indata = NULL; 5493 void *outdata = NULL; 5494 u_int32_t insize = ad->ad_in_size; 5495 u_int32_t outsize = ad->ad_out_size; 5496 int error = 0; 5497 5498 if (ad->ad_id & ATH_DIAG_IN) { 5499 /* 5500 * Copy in data. 5501 */ 5502 indata = malloc(insize, M_TEMP, M_NOWAIT); 5503 if (indata == NULL) { 5504 error = ENOMEM; 5505 goto bad; 5506 } 5507 error = copyin(ad->ad_in_data, indata, insize); 5508 if (error) 5509 goto bad; 5510 } 5511 if (ad->ad_id & ATH_DIAG_DYN) { 5512 /* 5513 * Allocate a buffer for the results (otherwise the HAL 5514 * returns a pointer to a buffer where we can read the 5515 * results). Note that we depend on the HAL leaving this 5516 * pointer for us to use below in reclaiming the buffer; 5517 * may want to be more defensive. 5518 */ 5519 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5520 if (outdata == NULL) { 5521 error = ENOMEM; 5522 goto bad; 5523 } 5524 } 5525 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5526 if (outsize < ad->ad_out_size) 5527 ad->ad_out_size = outsize; 5528 if (outdata != NULL) 5529 error = copyout(outdata, ad->ad_out_data, 5530 ad->ad_out_size); 5531 } else { 5532 error = EINVAL; 5533 } 5534 bad: 5535 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5536 free(indata, M_TEMP); 5537 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5538 free(outdata, M_TEMP); 5539 return error; 5540 } 5541 #endif /* ATH_DIAGAPI */ 5542 5543 static int 5544 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5545 { 5546 #define IS_RUNNING(ifp) \ 5547 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5548 struct ath_softc *sc = ifp->if_softc; 5549 struct ieee80211com *ic = ifp->if_l2com; 5550 struct ifreq *ifr = (struct ifreq *)data; 5551 const HAL_RATE_TABLE *rt; 5552 int error = 0; 5553 5554 switch (cmd) { 5555 case SIOCSIFFLAGS: 5556 ATH_LOCK(sc); 5557 if (IS_RUNNING(ifp)) { 5558 /* 5559 * To avoid rescanning another access point, 5560 * do not call ath_init() here. Instead, 5561 * only reflect promisc mode settings. 5562 */ 5563 ath_mode_init(sc); 5564 } else if (ifp->if_flags & IFF_UP) { 5565 /* 5566 * Beware of being called during attach/detach 5567 * to reset promiscuous mode. In that case we 5568 * will still be marked UP but not RUNNING. 5569 * However trying to re-init the interface 5570 * is the wrong thing to do as we've already 5571 * torn down much of our state. There's 5572 * probably a better way to deal with this. 5573 */ 5574 if (!sc->sc_invalid) 5575 ath_init(sc); /* XXX lose error */ 5576 } else { 5577 ath_stop_locked(ifp); 5578 #ifdef notyet 5579 /* XXX must wakeup in places like ath_vap_delete */ 5580 if (!sc->sc_invalid) 5581 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5582 #endif 5583 } 5584 ATH_UNLOCK(sc); 5585 break; 5586 case SIOCGIFMEDIA: 5587 case SIOCSIFMEDIA: 5588 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5589 break; 5590 case SIOCGATHSTATS: 5591 /* NB: embed these numbers to get a consistent view */ 5592 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5593 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5594 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5595 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5596 #ifdef IEEE80211_SUPPORT_TDMA 5597 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5598 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5599 #endif 5600 rt = sc->sc_currates; 5601 sc->sc_stats.ast_tx_rate = 5602 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5603 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5604 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5605 return copyout(&sc->sc_stats, 5606 ifr->ifr_data, sizeof (sc->sc_stats)); 5607 case SIOCGATHAGSTATS: 5608 return copyout(&sc->sc_aggr_stats, 5609 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5610 case SIOCZATHSTATS: 5611 error = priv_check(curthread, PRIV_DRIVER); 5612 if (error == 0) { 5613 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5614 memset(&sc->sc_aggr_stats, 0, 5615 sizeof(sc->sc_aggr_stats)); 5616 memset(&sc->sc_intr_stats, 0, 5617 sizeof(sc->sc_intr_stats)); 5618 } 5619 break; 5620 #ifdef ATH_DIAGAPI 5621 case SIOCGATHDIAG: 5622 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5623 break; 5624 case SIOCGATHPHYERR: 5625 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5626 break; 5627 #endif 5628 case SIOCGATHSPECTRAL: 5629 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 5630 break; 5631 case SIOCGATHNODERATESTATS: 5632 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5633 break; 5634 case SIOCGIFADDR: 5635 error = ether_ioctl(ifp, cmd, data); 5636 break; 5637 default: 5638 error = EINVAL; 5639 break; 5640 } 5641 return error; 5642 #undef IS_RUNNING 5643 } 5644 5645 /* 5646 * Announce various information on device/driver attach. 5647 */ 5648 static void 5649 ath_announce(struct ath_softc *sc) 5650 { 5651 struct ifnet *ifp = sc->sc_ifp; 5652 struct ath_hal *ah = sc->sc_ah; 5653 5654 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5655 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5656 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5657 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5658 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5659 if (bootverbose) { 5660 int i; 5661 for (i = 0; i <= WME_AC_VO; i++) { 5662 struct ath_txq *txq = sc->sc_ac2q[i]; 5663 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5664 txq->axq_qnum, ieee80211_wme_acnames[i]); 5665 } 5666 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5667 sc->sc_cabq->axq_qnum); 5668 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5669 } 5670 if (ath_rxbuf != ATH_RXBUF) 5671 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5672 if (ath_txbuf != ATH_TXBUF) 5673 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5674 if (sc->sc_mcastkey && bootverbose) 5675 if_printf(ifp, "using multicast key search\n"); 5676 } 5677 5678 static void 5679 ath_dfs_tasklet(void *p, int npending) 5680 { 5681 struct ath_softc *sc = (struct ath_softc *) p; 5682 struct ifnet *ifp = sc->sc_ifp; 5683 struct ieee80211com *ic = ifp->if_l2com; 5684 5685 /* 5686 * If previous processing has found a radar event, 5687 * signal this to the net80211 layer to begin DFS 5688 * processing. 5689 */ 5690 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5691 /* DFS event found, initiate channel change */ 5692 /* 5693 * XXX doesn't currently tell us whether the event 5694 * XXX was found in the primary or extension 5695 * XXX channel! 5696 */ 5697 IEEE80211_LOCK(ic); 5698 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5699 IEEE80211_UNLOCK(ic); 5700 } 5701 } 5702 5703 /* 5704 * Enable/disable power save. This must be called with 5705 * no TX driver locks currently held, so it should only 5706 * be called from the RX path (which doesn't hold any 5707 * TX driver locks.) 5708 */ 5709 static void 5710 ath_node_powersave(struct ieee80211_node *ni, int enable) 5711 { 5712 #ifdef ATH_SW_PSQ 5713 struct ath_node *an = ATH_NODE(ni); 5714 struct ieee80211com *ic = ni->ni_ic; 5715 struct ath_softc *sc = ic->ic_ifp->if_softc; 5716 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5717 5718 ATH_NODE_UNLOCK_ASSERT(an); 5719 /* XXX and no TXQ locks should be held here */ 5720 5721 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5722 __func__, ni, enable); 5723 5724 /* Suspend or resume software queue handling */ 5725 if (enable) 5726 ath_tx_node_sleep(sc, an); 5727 else 5728 ath_tx_node_wakeup(sc, an); 5729 5730 /* Update net80211 state */ 5731 avp->av_node_ps(ni, enable); 5732 #else 5733 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5734 5735 /* Update net80211 state */ 5736 avp->av_node_ps(ni, enable); 5737 #endif/* ATH_SW_PSQ */ 5738 } 5739 5740 /* 5741 * Notification from net80211 that the powersave queue state has 5742 * changed. 5743 * 5744 * Since the software queue also may have some frames: 5745 * 5746 * + if the node software queue has frames and the TID state 5747 * is 0, we set the TIM; 5748 * + if the node and the stack are both empty, we clear the TIM bit. 5749 * + If the stack tries to set the bit, always set it. 5750 * + If the stack tries to clear the bit, only clear it if the 5751 * software queue in question is also cleared. 5752 * 5753 * TODO: this is called during node teardown; so let's ensure this 5754 * is all correctly handled and that the TIM bit is cleared. 5755 * It may be that the node flush is called _AFTER_ the net80211 5756 * stack clears the TIM. 5757 * 5758 * Here is the racy part. Since it's possible >1 concurrent, 5759 * overlapping TXes will appear complete with a TX completion in 5760 * another thread, it's possible that the concurrent TIM calls will 5761 * clash. We can't hold the node lock here because setting the 5762 * TIM grabs the net80211 comlock and this may cause a LOR. 5763 * The solution is either to totally serialise _everything_ at 5764 * this point (ie, all TX, completion and any reset/flush go into 5765 * one taskqueue) or a new "ath TIM lock" needs to be created that 5766 * just wraps the driver state change and this call to avp->av_set_tim(). 5767 * 5768 * The same race exists in the net80211 power save queue handling 5769 * as well. Since multiple transmitting threads may queue frames 5770 * into the driver, as well as ps-poll and the driver transmitting 5771 * frames (and thus clearing the psq), it's quite possible that 5772 * a packet entering the PSQ and a ps-poll being handled will 5773 * race, causing the TIM to be cleared and not re-set. 5774 */ 5775 static int 5776 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5777 { 5778 #ifdef ATH_SW_PSQ 5779 struct ieee80211com *ic = ni->ni_ic; 5780 struct ath_softc *sc = ic->ic_ifp->if_softc; 5781 struct ath_node *an = ATH_NODE(ni); 5782 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5783 int changed = 0; 5784 5785 ATH_NODE_UNLOCK_ASSERT(an); 5786 5787 /* 5788 * For now, just track and then update the TIM. 5789 */ 5790 ATH_NODE_LOCK(an); 5791 an->an_stack_psq = enable; 5792 5793 /* 5794 * This will get called for all operating modes, 5795 * even if avp->av_set_tim is unset. 5796 * It's currently set for hostap/ibss modes; but 5797 * the same infrastructure is used for both STA 5798 * and AP/IBSS node power save. 5799 */ 5800 if (avp->av_set_tim == NULL) { 5801 ATH_NODE_UNLOCK(an); 5802 return (0); 5803 } 5804 5805 /* 5806 * If setting the bit, always set it here. 5807 * If clearing the bit, only clear it if the 5808 * software queue is also empty. 5809 * 5810 * If the node has left power save, just clear the TIM 5811 * bit regardless of the state of the power save queue. 5812 * 5813 * XXX TODO: although atomics are used, it's quite possible 5814 * that a race will occur between this and setting/clearing 5815 * in another thread. TX completion will occur always in 5816 * one thread, however setting/clearing the TIM bit can come 5817 * from a variety of different process contexts! 5818 */ 5819 if (enable && an->an_tim_set == 1) { 5820 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5821 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5822 __func__, an, enable); 5823 ATH_NODE_UNLOCK(an); 5824 } else if (enable) { 5825 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5826 "%s: an=%p, enable=%d, enabling TIM\n", 5827 __func__, an, enable); 5828 an->an_tim_set = 1; 5829 ATH_NODE_UNLOCK(an); 5830 changed = avp->av_set_tim(ni, enable); 5831 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5832 /* disable */ 5833 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5834 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5835 __func__, an, enable); 5836 an->an_tim_set = 0; 5837 ATH_NODE_UNLOCK(an); 5838 changed = avp->av_set_tim(ni, enable); 5839 } else if (! an->an_is_powersave) { 5840 /* 5841 * disable regardless; the node isn't in powersave now 5842 */ 5843 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5844 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 5845 __func__, an, enable); 5846 an->an_tim_set = 0; 5847 ATH_NODE_UNLOCK(an); 5848 changed = avp->av_set_tim(ni, enable); 5849 } else { 5850 /* 5851 * psq disable, node is currently in powersave, node 5852 * software queue isn't empty, so don't clear the TIM bit 5853 * for now. 5854 */ 5855 ATH_NODE_UNLOCK(an); 5856 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5857 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 5858 __func__, enable); 5859 changed = 0; 5860 } 5861 5862 return (changed); 5863 #else 5864 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5865 5866 /* 5867 * Some operating modes don't set av_set_tim(), so don't 5868 * update it here. 5869 */ 5870 if (avp->av_set_tim == NULL) 5871 return (0); 5872 5873 return (avp->av_set_tim(ni, enable)); 5874 #endif /* ATH_SW_PSQ */ 5875 } 5876 5877 /* 5878 * Set or update the TIM from the software queue. 5879 * 5880 * Check the software queue depth before attempting to do lock 5881 * anything; that avoids trying to obtain the lock. Then, 5882 * re-check afterwards to ensure nothing has changed in the 5883 * meantime. 5884 * 5885 * set: This is designed to be called from the TX path, after 5886 * a frame has been queued; to see if the swq > 0. 5887 * 5888 * clear: This is designed to be called from the buffer completion point 5889 * (right now it's ath_tx_default_comp()) where the state of 5890 * a software queue has changed. 5891 * 5892 * It makes sense to place it at buffer free / completion rather 5893 * than after each software queue operation, as there's no real 5894 * point in churning the TIM bit as the last frames in the software 5895 * queue are transmitted. If they fail and we retry them, we'd 5896 * just be setting the TIM bit again anyway. 5897 */ 5898 void 5899 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 5900 int enable) 5901 { 5902 #ifdef ATH_SW_PSQ 5903 struct ath_node *an; 5904 struct ath_vap *avp; 5905 5906 /* Don't do this for broadcast/etc frames */ 5907 if (ni == NULL) 5908 return; 5909 5910 an = ATH_NODE(ni); 5911 avp = ATH_VAP(ni->ni_vap); 5912 5913 /* 5914 * And for operating modes without the TIM handler set, let's 5915 * just skip those. 5916 */ 5917 if (avp->av_set_tim == NULL) 5918 return; 5919 5920 ATH_NODE_UNLOCK_ASSERT(an); 5921 5922 if (enable) { 5923 /* 5924 * Don't bother grabbing the lock unless the queue is not 5925 * empty. 5926 */ 5927 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 5928 return; 5929 5930 ATH_NODE_LOCK(an); 5931 if (an->an_is_powersave && 5932 an->an_tim_set == 0 && 5933 atomic_load_acq_int(&an->an_swq_depth) != 0) { 5934 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5935 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 5936 __func__, an); 5937 an->an_tim_set = 1; 5938 ATH_NODE_UNLOCK(an); 5939 (void) avp->av_set_tim(ni, 1); 5940 } else { 5941 ATH_NODE_UNLOCK(an); 5942 } 5943 } else { 5944 /* 5945 * Don't bother grabbing the lock unless the queue is empty. 5946 */ 5947 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 5948 return; 5949 5950 ATH_NODE_LOCK(an); 5951 if (an->an_is_powersave && 5952 an->an_stack_psq == 0 && 5953 an->an_tim_set == 1 && 5954 atomic_load_acq_int(&an->an_swq_depth) == 0) { 5955 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5956 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 5957 " clear!\n", 5958 __func__, an); 5959 an->an_tim_set = 0; 5960 ATH_NODE_UNLOCK(an); 5961 (void) avp->av_set_tim(ni, 0); 5962 } else { 5963 ATH_NODE_UNLOCK(an); 5964 } 5965 } 5966 #else 5967 return; 5968 #endif /* ATH_SW_PSQ */ 5969 } 5970 5971 MODULE_VERSION(if_ath, 1); 5972 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5973 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5974 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5975 #endif 5976