xref: /freebsd/sys/dev/ath/if_ath.c (revision e653b48c80fb85b2a10372d664a4b55dbdc51dae)
1 /*-
2  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72 
73 #include <net80211/ieee80211_var.h>
74 
75 #include <net/bpf.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #define	AR_DEBUG
83 #include <dev/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
86 
87 /* unalligned little endian access */
88 #define LE_READ_2(p)							\
89 	((u_int16_t)							\
90 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
91 #define LE_READ_4(p)							\
92 	((u_int32_t)							\
93 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
94 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
95 
96 static void	ath_init(void *);
97 static void	ath_stop_locked(struct ifnet *);
98 static void	ath_stop(struct ifnet *);
99 static void	ath_start(struct ifnet *);
100 static int	ath_reset(struct ifnet *);
101 static int	ath_media_change(struct ifnet *);
102 static void	ath_watchdog(struct ifnet *);
103 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
104 static void	ath_fatal_proc(void *, int);
105 static void	ath_rxorn_proc(void *, int);
106 static void	ath_bmiss_proc(void *, int);
107 static void	ath_initkeytable(struct ath_softc *);
108 static int	ath_key_alloc(struct ieee80211com *,
109 			const struct ieee80211_key *);
110 static int	ath_key_delete(struct ieee80211com *,
111 			const struct ieee80211_key *);
112 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
113 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
114 static void	ath_key_update_begin(struct ieee80211com *);
115 static void	ath_key_update_end(struct ieee80211com *);
116 static void	ath_mode_init(struct ath_softc *);
117 static void	ath_setslottime(struct ath_softc *);
118 static void	ath_updateslot(struct ifnet *);
119 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
120 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
121 static void	ath_beacon_proc(void *, int);
122 static void	ath_bstuck_proc(void *, int);
123 static void	ath_beacon_free(struct ath_softc *);
124 static void	ath_beacon_config(struct ath_softc *);
125 static void	ath_descdma_cleanup(struct ath_softc *sc,
126 			struct ath_descdma *, ath_bufhead *);
127 static int	ath_desc_alloc(struct ath_softc *);
128 static void	ath_desc_free(struct ath_softc *);
129 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
130 static void	ath_node_free(struct ieee80211_node *);
131 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
132 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
133 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
134 			struct ieee80211_node *ni,
135 			int subtype, int rssi, u_int32_t rstamp);
136 static void	ath_setdefantenna(struct ath_softc *, u_int);
137 static void	ath_rx_proc(void *, int);
138 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
139 static int	ath_tx_setup(struct ath_softc *, int, int);
140 static int	ath_wme_update(struct ieee80211com *);
141 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
142 static void	ath_tx_cleanup(struct ath_softc *);
143 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
144 			     struct ath_buf *, struct mbuf *);
145 static void	ath_tx_proc_q0(void *, int);
146 static void	ath_tx_proc_q0123(void *, int);
147 static void	ath_tx_proc(void *, int);
148 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
149 static void	ath_draintxq(struct ath_softc *);
150 static void	ath_stoprecv(struct ath_softc *);
151 static int	ath_startrecv(struct ath_softc *);
152 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
153 static void	ath_next_scan(void *);
154 static void	ath_calibrate(void *);
155 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
156 static void	ath_newassoc(struct ieee80211com *,
157 			struct ieee80211_node *, int);
158 static int	ath_getchannels(struct ath_softc *, u_int cc,
159 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
160 static void	ath_update_led(struct ath_softc *);
161 static void	ath_update_txpow(struct ath_softc *);
162 
163 static int	ath_rate_setup(struct ath_softc *, u_int mode);
164 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
165 
166 static void	ath_sysctlattach(struct ath_softc *);
167 static void	ath_bpfattach(struct ath_softc *);
168 static void	ath_announce(struct ath_softc *);
169 
170 SYSCTL_DECL(_hw_ath);
171 
172 /* XXX validate sysctl values */
173 static	int ath_dwelltime = 200;		/* 5 channels/second */
174 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
175 	    0, "channel dwell time (ms) for AP/station scanning");
176 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
177 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
178 	    0, "chip calibration interval (secs)");
179 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
180 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
181 	    0, "outdoor operation");
182 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
183 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
184 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
185 	    0, "extended channel mode");
186 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
187 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
188 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
189 	    0, "country code");
190 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
191 static	int ath_regdomain = 0;			/* regulatory domain */
192 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
193 	    0, "regulatory domain");
194 
195 #ifdef AR_DEBUG
196 static	int ath_debug = 0;
197 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
198 	    0, "control debugging printfs");
199 TUNABLE_INT("hw.ath.debug", &ath_debug);
200 enum {
201 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
202 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
203 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
204 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
205 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
206 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
207 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
208 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
209 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
210 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
211 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
212 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
213 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
214 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
215 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
216 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
217 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
218 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
219 	ATH_DEBUG_ANY		= 0xffffffff
220 };
221 #define	IFF_DUMPPKTS(sc, m) \
222 	((sc->sc_debug & m) || \
223 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
224 #define	DPRINTF(sc, m, fmt, ...) do {				\
225 	if (sc->sc_debug & m)					\
226 		printf(fmt, __VA_ARGS__);			\
227 } while (0)
228 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
229 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
230 		ath_keyprint(__func__, ix, hk, mac);		\
231 } while (0)
232 static	void ath_printrxbuf(struct ath_buf *bf, int);
233 static	void ath_printtxbuf(struct ath_buf *bf, int);
234 #else
235 #define	IFF_DUMPPKTS(sc, m) \
236 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
237 #define	DPRINTF(m, fmt, ...)
238 #define	KEYPRINTF(sc, k, ix, mac)
239 #endif
240 
241 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
242 
243 int
244 ath_attach(u_int16_t devid, struct ath_softc *sc)
245 {
246 	struct ifnet *ifp = &sc->sc_if;
247 	struct ieee80211com *ic = &sc->sc_ic;
248 	struct ath_hal *ah;
249 	HAL_STATUS status;
250 	int error = 0, i;
251 
252 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
253 
254 	/* set these up early for if_printf use */
255 	if_initname(ifp, device_get_name(sc->sc_dev),
256 		device_get_unit(sc->sc_dev));
257 
258 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
259 	if (ah == NULL) {
260 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
261 			status);
262 		error = ENXIO;
263 		goto bad;
264 	}
265 	if (ah->ah_abi != HAL_ABI_VERSION) {
266 		if_printf(ifp, "HAL ABI mismatch detected "
267 			"(HAL:0x%x != driver:0x%x)\n",
268 			ah->ah_abi, HAL_ABI_VERSION);
269 		error = ENXIO;
270 		goto bad;
271 	}
272 	sc->sc_ah = ah;
273 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
274 
275 	/*
276 	 * Check if the MAC has multi-rate retry support.
277 	 * We do this by trying to setup a fake extended
278 	 * descriptor.  MAC's that don't have support will
279 	 * return false w/o doing anything.  MAC's that do
280 	 * support it will return true w/o doing anything.
281 	 */
282 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
283 
284 	/*
285 	 * Check if the device has hardware counters for PHY
286 	 * errors.  If so we need to enable the MIB interrupt
287 	 * so we can act on stat triggers.
288 	 */
289 	if (ath_hal_hwphycounters(ah))
290 		sc->sc_needmib = 1;
291 
292 	/*
293 	 * Get the hardware key cache size.
294 	 */
295 	sc->sc_keymax = ath_hal_keycachesize(ah);
296 	if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
297 		if_printf(ifp,
298 			"Warning, using only %zu of %u key cache slots\n",
299 			sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
300 		sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
301 	}
302 	/*
303 	 * Reset the key cache since some parts do not
304 	 * reset the contents on initial power up.
305 	 */
306 	for (i = 0; i < sc->sc_keymax; i++)
307 		ath_hal_keyreset(ah, i);
308 	/*
309 	 * Mark key cache slots associated with global keys
310 	 * as in use.  If we knew TKIP was not to be used we
311 	 * could leave the +32, +64, and +32+64 slots free.
312 	 * XXX only for splitmic.
313 	 */
314 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
315 		setbit(sc->sc_keymap, i);
316 		setbit(sc->sc_keymap, i+32);
317 		setbit(sc->sc_keymap, i+64);
318 		setbit(sc->sc_keymap, i+32+64);
319 	}
320 
321 	/*
322 	 * Collect the channel list using the default country
323 	 * code and including outdoor channels.  The 802.11 layer
324 	 * is resposible for filtering this list based on settings
325 	 * like the phy mode.
326 	 */
327 	error = ath_getchannels(sc, ath_countrycode,
328 			ath_outdoor, ath_xchanmode);
329 	if (error != 0)
330 		goto bad;
331 	/*
332 	 * Setup dynamic sysctl's now that country code and
333 	 * regdomain are available from the hal.
334 	 */
335 	ath_sysctlattach(sc);
336 
337 	/*
338 	 * Setup rate tables for all potential media types.
339 	 */
340 	ath_rate_setup(sc, IEEE80211_MODE_11A);
341 	ath_rate_setup(sc, IEEE80211_MODE_11B);
342 	ath_rate_setup(sc, IEEE80211_MODE_11G);
343 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
344 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
345 	/* NB: setup here so ath_rate_update is happy */
346 	ath_setcurmode(sc, IEEE80211_MODE_11A);
347 
348 	/*
349 	 * Allocate tx+rx descriptors and populate the lists.
350 	 */
351 	error = ath_desc_alloc(sc);
352 	if (error != 0) {
353 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
354 		goto bad;
355 	}
356 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
357 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
358 
359 	ATH_TXBUF_LOCK_INIT(sc);
360 
361 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
362 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
363 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
364 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
365 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
366 
367 	/*
368 	 * Allocate hardware transmit queues: one queue for
369 	 * beacon frames and one data queue for each QoS
370 	 * priority.  Note that the hal handles reseting
371 	 * these queues at the needed time.
372 	 *
373 	 * XXX PS-Poll
374 	 */
375 	sc->sc_bhalq = ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, NULL);
376 	if (sc->sc_bhalq == (u_int) -1) {
377 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
378 		error = EIO;
379 		goto bad2;
380 	}
381 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
382 	if (sc->sc_cabq == NULL) {
383 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
384 		error = EIO;
385 		goto bad2;
386 	}
387 	/* NB: insure BK queue is the lowest priority h/w queue */
388 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
389 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
390 			ieee80211_wme_acnames[WME_AC_BK]);
391 		error = EIO;
392 		goto bad2;
393 	}
394 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
395 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
396 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
397 		/*
398 		 * Not enough hardware tx queues to properly do WME;
399 		 * just punt and assign them all to the same h/w queue.
400 		 * We could do a better job of this if, for example,
401 		 * we allocate queues when we switch from station to
402 		 * AP mode.
403 		 */
404 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
405 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
406 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
407 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
408 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
409 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
410 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
411 	}
412 
413 	/*
414 	 * Special case certain configurations.  Note the
415 	 * CAB queue is handled by these specially so don't
416 	 * include them when checking the txq setup mask.
417 	 */
418 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
419 	case 0x01:
420 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
421 		break;
422 	case 0x0f:
423 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
424 		break;
425 	default:
426 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
427 		break;
428 	}
429 
430 	/*
431 	 * Setup rate control.  Some rate control modules
432 	 * call back to change the anntena state so expose
433 	 * the necessary entry points.
434 	 * XXX maybe belongs in struct ath_ratectrl?
435 	 */
436 	sc->sc_setdefantenna = ath_setdefantenna;
437 	sc->sc_rc = ath_rate_attach(sc);
438 	if (sc->sc_rc == NULL) {
439 		error = EIO;
440 		goto bad2;
441 	}
442 
443 	sc->sc_ledstate = 1;
444 	/*
445 	 * Auto-enable soft led processing for IBM cards and for
446 	 * 5211 minipci cards.  Users can also manually enable/disable
447 	 * support with a sysctl.
448 	 */
449 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
450 	if (sc->sc_softled) {
451 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
452 		ath_hal_gpioset(ah, sc->sc_ledpin, 0);
453 	}
454 
455 	ifp->if_softc = sc;
456 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
457 	ifp->if_start = ath_start;
458 	ifp->if_watchdog = ath_watchdog;
459 	ifp->if_ioctl = ath_ioctl;
460 	ifp->if_init = ath_init;
461 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
462 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
463 	IFQ_SET_READY(&ifp->if_snd);
464 
465 	ic->ic_ifp = ifp;
466 	ic->ic_reset = ath_reset;
467 	ic->ic_newassoc = ath_newassoc;
468 	ic->ic_updateslot = ath_updateslot;
469 	ic->ic_wme.wme_update = ath_wme_update;
470 	/* XXX not right but it's not used anywhere important */
471 	ic->ic_phytype = IEEE80211_T_OFDM;
472 	ic->ic_opmode = IEEE80211_M_STA;
473 	ic->ic_caps =
474 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
475 		| IEEE80211_C_HOSTAP		/* hostap mode */
476 		| IEEE80211_C_MONITOR		/* monitor mode */
477 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
478 		| IEEE80211_C_SHSLOT		/* short slot time supported */
479 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
480 		;
481 	/*
482 	 * Query the hal to figure out h/w crypto support.
483 	 */
484 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
485 		ic->ic_caps |= IEEE80211_C_WEP;
486 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
487 		ic->ic_caps |= IEEE80211_C_AES;
488 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
489 		ic->ic_caps |= IEEE80211_C_AES_CCM;
490 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
491 		ic->ic_caps |= IEEE80211_C_CKIP;
492 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
493 		ic->ic_caps |= IEEE80211_C_TKIP;
494 		/*
495 		 * Check if h/w does the MIC and/or whether the
496 		 * separate key cache entries are required to
497 		 * handle both tx+rx MIC keys.
498 		 */
499 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
500 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
501 		if (ath_hal_tkipsplit(ah))
502 			sc->sc_splitmic = 1;
503 	}
504 	/*
505 	 * TPC support can be done either with a global cap or
506 	 * per-packet support.  The latter is not available on
507 	 * all parts.  We're a bit pedantic here as all parts
508 	 * support a global cap.
509 	 */
510 	sc->sc_hastpc = ath_hal_hastpc(ah);
511 	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
512 		ic->ic_caps |= IEEE80211_C_TXPMGT;
513 
514 	/*
515 	 * Mark WME capability only if we have sufficient
516 	 * hardware queues to do proper priority scheduling.
517 	 */
518 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
519 		ic->ic_caps |= IEEE80211_C_WME;
520 	/*
521 	 * Check for frame bursting capability.
522 	 */
523 	if (ath_hal_hasbursting(ah))
524 		ic->ic_caps |= IEEE80211_C_BURST;
525 
526 	/*
527 	 * Indicate we need the 802.11 header padded to a
528 	 * 32-bit boundary for 4-address and QoS frames.
529 	 */
530 	ic->ic_flags |= IEEE80211_F_DATAPAD;
531 
532 	/*
533 	 * Query the hal about antenna support.
534 	 */
535 	if (ath_hal_hasdiversity(ah)) {
536 		sc->sc_hasdiversity = 1;
537 		sc->sc_diversity = ath_hal_getdiversity(ah);
538 	}
539 	sc->sc_defant = ath_hal_getdefantenna(ah);
540 
541 	/*
542 	 * Not all chips have the VEOL support we want to
543 	 * use with IBSS beacons; check here for it.
544 	 */
545 	sc->sc_hasveol = ath_hal_hasveol(ah);
546 
547 	/* get mac address from hardware */
548 	ath_hal_getmac(ah, ic->ic_myaddr);
549 
550 	/* call MI attach routine. */
551 	ieee80211_ifattach(ic);
552 	/* override default methods */
553 	ic->ic_node_alloc = ath_node_alloc;
554 	sc->sc_node_free = ic->ic_node_free;
555 	ic->ic_node_free = ath_node_free;
556 	ic->ic_node_getrssi = ath_node_getrssi;
557 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
558 	ic->ic_recv_mgmt = ath_recv_mgmt;
559 	sc->sc_newstate = ic->ic_newstate;
560 	ic->ic_newstate = ath_newstate;
561 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
562 	ic->ic_crypto.cs_key_delete = ath_key_delete;
563 	ic->ic_crypto.cs_key_set = ath_key_set;
564 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
565 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
566 	/* complete initialization */
567 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
568 
569 	ath_bpfattach(sc);
570 
571 	if (bootverbose)
572 		ieee80211_announce(ic);
573 	ath_announce(sc);
574 	return 0;
575 bad2:
576 	ath_tx_cleanup(sc);
577 	ath_desc_free(sc);
578 bad:
579 	if (ah)
580 		ath_hal_detach(ah);
581 	sc->sc_invalid = 1;
582 	return error;
583 }
584 
585 int
586 ath_detach(struct ath_softc *sc)
587 {
588 	struct ifnet *ifp = &sc->sc_if;
589 
590 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
591 		__func__, ifp->if_flags);
592 
593 	ath_stop(ifp);
594 	bpfdetach(ifp);
595 	/*
596 	 * NB: the order of these is important:
597 	 * o call the 802.11 layer before detaching the hal to
598 	 *   insure callbacks into the driver to delete global
599 	 *   key cache entries can be handled
600 	 * o reclaim the tx queue data structures after calling
601 	 *   the 802.11 layer as we'll get called back to reclaim
602 	 *   node state and potentially want to use them
603 	 * o to cleanup the tx queues the hal is called, so detach
604 	 *   it last
605 	 * Other than that, it's straightforward...
606 	 */
607 	ieee80211_ifdetach(&sc->sc_ic);
608 	ath_rate_detach(sc->sc_rc);
609 	ath_desc_free(sc);
610 	ath_tx_cleanup(sc);
611 	ath_hal_detach(sc->sc_ah);
612 
613 	return 0;
614 }
615 
616 void
617 ath_suspend(struct ath_softc *sc)
618 {
619 	struct ifnet *ifp = &sc->sc_if;
620 
621 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
622 		__func__, ifp->if_flags);
623 
624 	ath_stop(ifp);
625 }
626 
627 void
628 ath_resume(struct ath_softc *sc)
629 {
630 	struct ifnet *ifp = &sc->sc_if;
631 
632 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
633 		__func__, ifp->if_flags);
634 
635 	if (ifp->if_flags & IFF_UP) {
636 		ath_init(ifp);
637 		if (ifp->if_flags & IFF_RUNNING)
638 			ath_start(ifp);
639 	}
640 }
641 
642 void
643 ath_shutdown(struct ath_softc *sc)
644 {
645 	struct ifnet *ifp = &sc->sc_if;
646 
647 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
648 		__func__, ifp->if_flags);
649 
650 	ath_stop(ifp);
651 }
652 
653 /*
654  * Interrupt handler.  Most of the actual processing is deferred.
655  */
656 void
657 ath_intr(void *arg)
658 {
659 	struct ath_softc *sc = arg;
660 	struct ifnet *ifp = &sc->sc_if;
661 	struct ath_hal *ah = sc->sc_ah;
662 	HAL_INT status;
663 
664 	if (sc->sc_invalid) {
665 		/*
666 		 * The hardware is not ready/present, don't touch anything.
667 		 * Note this can happen early on if the IRQ is shared.
668 		 */
669 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
670 		return;
671 	}
672 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
673 		return;
674 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
675 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
676 			__func__, ifp->if_flags);
677 		ath_hal_getisr(ah, &status);	/* clear ISR */
678 		ath_hal_intrset(ah, 0);		/* disable further intr's */
679 		return;
680 	}
681 	/*
682 	 * Figure out the reason(s) for the interrupt.  Note
683 	 * that the hal returns a pseudo-ISR that may include
684 	 * bits we haven't explicitly enabled so we mask the
685 	 * value to insure we only process bits we requested.
686 	 */
687 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
688 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
689 	status &= sc->sc_imask;			/* discard unasked for bits */
690 	if (status & HAL_INT_FATAL) {
691 		/*
692 		 * Fatal errors are unrecoverable.  Typically
693 		 * these are caused by DMA errors.  Unfortunately
694 		 * the exact reason is not (presently) returned
695 		 * by the hal.
696 		 */
697 		sc->sc_stats.ast_hardware++;
698 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
699 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
700 	} else if (status & HAL_INT_RXORN) {
701 		sc->sc_stats.ast_rxorn++;
702 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
703 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
704 	} else {
705 		if (status & HAL_INT_SWBA) {
706 			/*
707 			 * Software beacon alert--time to send a beacon.
708 			 * Handle beacon transmission directly; deferring
709 			 * this is too slow to meet timing constraints
710 			 * under load.
711 			 */
712 			ath_beacon_proc(sc, 0);
713 		}
714 		if (status & HAL_INT_RXEOL) {
715 			/*
716 			 * NB: the hardware should re-read the link when
717 			 *     RXE bit is written, but it doesn't work at
718 			 *     least on older hardware revs.
719 			 */
720 			sc->sc_stats.ast_rxeol++;
721 			sc->sc_rxlink = NULL;
722 		}
723 		if (status & HAL_INT_TXURN) {
724 			sc->sc_stats.ast_txurn++;
725 			/* bump tx trigger level */
726 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
727 		}
728 		if (status & HAL_INT_RX)
729 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
730 		if (status & HAL_INT_TX)
731 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
732 		if (status & HAL_INT_BMISS) {
733 			sc->sc_stats.ast_bmiss++;
734 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
735 		}
736 		if (status & HAL_INT_MIB) {
737 			sc->sc_stats.ast_mib++;
738 			/*
739 			 * Disable interrupts until we service the MIB
740 			 * interrupt; otherwise it will continue to fire.
741 			 */
742 			ath_hal_intrset(ah, 0);
743 			/*
744 			 * Let the hal handle the event.  We assume it will
745 			 * clear whatever condition caused the interrupt.
746 			 */
747 			ath_hal_mibevent(ah,
748 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
749 			ath_hal_intrset(ah, sc->sc_imask);
750 		}
751 	}
752 }
753 
754 static void
755 ath_fatal_proc(void *arg, int pending)
756 {
757 	struct ath_softc *sc = arg;
758 	struct ifnet *ifp = &sc->sc_if;
759 
760 	if_printf(ifp, "hardware error; resetting\n");
761 	ath_reset(ifp);
762 }
763 
764 static void
765 ath_rxorn_proc(void *arg, int pending)
766 {
767 	struct ath_softc *sc = arg;
768 	struct ifnet *ifp = &sc->sc_if;
769 
770 	if_printf(ifp, "rx FIFO overrun; resetting\n");
771 	ath_reset(ifp);
772 }
773 
774 static void
775 ath_bmiss_proc(void *arg, int pending)
776 {
777 	struct ath_softc *sc = arg;
778 	struct ieee80211com *ic = &sc->sc_ic;
779 
780 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
781 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
782 		("unexpect operating mode %u", ic->ic_opmode));
783 	if (ic->ic_state == IEEE80211_S_RUN) {
784 		/*
785 		 * Rather than go directly to scan state, try to
786 		 * reassociate first.  If that fails then the state
787 		 * machine will drop us into scanning after timing
788 		 * out waiting for a probe response.
789 		 */
790 		NET_LOCK_GIANT();
791 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
792 		NET_UNLOCK_GIANT();
793 	}
794 }
795 
796 static u_int
797 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
798 {
799 #define	N(a)	(sizeof(a) / sizeof(a[0]))
800 	static const u_int modeflags[] = {
801 		0,			/* IEEE80211_MODE_AUTO */
802 		CHANNEL_A,		/* IEEE80211_MODE_11A */
803 		CHANNEL_B,		/* IEEE80211_MODE_11B */
804 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
805 		0,			/* IEEE80211_MODE_FH */
806 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
807 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
808 	};
809 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
810 
811 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
812 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
813 	return modeflags[mode];
814 #undef N
815 }
816 
817 static void
818 ath_init(void *arg)
819 {
820 	struct ath_softc *sc = (struct ath_softc *) arg;
821 	struct ieee80211com *ic = &sc->sc_ic;
822 	struct ifnet *ifp = &sc->sc_if;
823 	struct ieee80211_node *ni;
824 	enum ieee80211_phymode mode;
825 	struct ath_hal *ah = sc->sc_ah;
826 	HAL_STATUS status;
827 
828 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
829 		__func__, ifp->if_flags);
830 
831 	ATH_LOCK(sc);
832 	/*
833 	 * Stop anything previously setup.  This is safe
834 	 * whether this is the first time through or not.
835 	 */
836 	ath_stop_locked(ifp);
837 
838 	/*
839 	 * The basic interface to setting the hardware in a good
840 	 * state is ``reset''.  On return the hardware is known to
841 	 * be powered up and with interrupts disabled.  This must
842 	 * be followed by initialization of the appropriate bits
843 	 * and then setup of the interrupt mask.
844 	 */
845 	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
846 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
847 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
848 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
849 			status);
850 		goto done;
851 	}
852 
853 	/*
854 	 * This is needed only to setup initial state
855 	 * but it's best done after a reset.
856 	 */
857 	ath_update_txpow(sc);
858 
859 	/*
860 	 * Setup the hardware after reset: the key cache
861 	 * is filled as needed and the receive engine is
862 	 * set going.  Frame transmit is handled entirely
863 	 * in the frame output path; there's nothing to do
864 	 * here except setup the interrupt mask.
865 	 */
866 	ath_initkeytable(sc);		/* XXX still needed? */
867 	if (ath_startrecv(sc) != 0) {
868 		if_printf(ifp, "unable to start recv logic\n");
869 		goto done;
870 	}
871 
872 	/*
873 	 * Enable interrupts.
874 	 */
875 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
876 		  | HAL_INT_RXEOL | HAL_INT_RXORN
877 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
878 	/*
879 	 * Enable MIB interrupts when there are hardware phy counters.
880 	 * Note we only do this (at the moment) for station mode.
881 	 */
882 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
883 		sc->sc_imask |= HAL_INT_MIB;
884 	ath_hal_intrset(ah, sc->sc_imask);
885 
886 	ifp->if_flags |= IFF_RUNNING;
887 	ic->ic_state = IEEE80211_S_INIT;
888 
889 	/*
890 	 * The hardware should be ready to go now so it's safe
891 	 * to kick the 802.11 state machine as it's likely to
892 	 * immediately call back to us to send mgmt frames.
893 	 */
894 	ni = ic->ic_bss;
895 	ni->ni_chan = ic->ic_ibss_chan;
896 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
897 	if (mode != sc->sc_curmode)
898 		ath_setcurmode(sc, mode);
899 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
900 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
901 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
902 	} else
903 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
904 done:
905 	ATH_UNLOCK(sc);
906 }
907 
908 static void
909 ath_stop_locked(struct ifnet *ifp)
910 {
911 	struct ath_softc *sc = ifp->if_softc;
912 	struct ieee80211com *ic = &sc->sc_ic;
913 	struct ath_hal *ah = sc->sc_ah;
914 
915 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
916 		__func__, sc->sc_invalid, ifp->if_flags);
917 
918 	ATH_LOCK_ASSERT(sc);
919 	if (ifp->if_flags & IFF_RUNNING) {
920 		/*
921 		 * Shutdown the hardware and driver:
922 		 *    reset 802.11 state machine
923 		 *    turn off timers
924 		 *    disable interrupts
925 		 *    turn off the radio
926 		 *    clear transmit machinery
927 		 *    clear receive machinery
928 		 *    drain and release tx queues
929 		 *    reclaim beacon resources
930 		 *    power down hardware
931 		 *
932 		 * Note that some of this work is not possible if the
933 		 * hardware is gone (invalid).
934 		 */
935 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
936 		ifp->if_flags &= ~IFF_RUNNING;
937 		ifp->if_timer = 0;
938 		if (!sc->sc_invalid) {
939 			if (sc->sc_softled)
940 				ath_hal_gpioset(ah, sc->sc_ledpin, 1);
941 			ath_hal_intrset(ah, 0);
942 		}
943 		ath_draintxq(sc);
944 		if (!sc->sc_invalid) {
945 			ath_stoprecv(sc);
946 			ath_hal_phydisable(ah);
947 		} else
948 			sc->sc_rxlink = NULL;
949 		IFQ_DRV_PURGE(&ifp->if_snd);
950 		ath_beacon_free(sc);
951 	}
952 }
953 
954 static void
955 ath_stop(struct ifnet *ifp)
956 {
957 	struct ath_softc *sc = ifp->if_softc;
958 
959 	ATH_LOCK(sc);
960 	ath_stop_locked(ifp);
961 	if (!sc->sc_invalid) {
962 		/*
963 		 * Set the chip in full sleep mode.  Note that we are
964 		 * careful to do this only when bringing the interface
965 		 * completely to a stop.  When the chip is in this state
966 		 * it must be carefully woken up or references to
967 		 * registers in the PCI clock domain may freeze the bus
968 		 * (and system).  This varies by chip and is mostly an
969 		 * issue with newer parts that go to sleep more quickly.
970 		 */
971 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
972 	}
973 	ATH_UNLOCK(sc);
974 }
975 
976 /*
977  * Reset the hardware w/o losing operational state.  This is
978  * basically a more efficient way of doing ath_stop, ath_init,
979  * followed by state transitions to the current 802.11
980  * operational state.  Used to recover from various errors and
981  * to reset or reload hardware state.
982  */
983 static int
984 ath_reset(struct ifnet *ifp)
985 {
986 	struct ath_softc *sc = ifp->if_softc;
987 	struct ieee80211com *ic = &sc->sc_ic;
988 	struct ath_hal *ah = sc->sc_ah;
989 	struct ieee80211_channel *c;
990 	HAL_STATUS status;
991 
992 	/*
993 	 * Convert to a HAL channel description with the flags
994 	 * constrained to reflect the current operating mode.
995 	 */
996 	c = ic->ic_ibss_chan;
997 	sc->sc_curchan.channel = c->ic_freq;
998 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
999 
1000 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1001 	ath_draintxq(sc);		/* stop xmit side */
1002 	ath_stoprecv(sc);		/* stop recv side */
1003 	/* NB: indicate channel change so we do a full reset */
1004 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1005 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1006 			__func__, status);
1007 	ath_update_txpow(sc);		/* update tx power state */
1008 	if (ath_startrecv(sc) != 0)	/* restart recv */
1009 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1010 	/*
1011 	 * We may be doing a reset in response to an ioctl
1012 	 * that changes the channel so update any state that
1013 	 * might change as a result.
1014 	 */
1015 	ath_chan_change(sc, c);
1016 	if (ic->ic_state == IEEE80211_S_RUN)
1017 		ath_beacon_config(sc);	/* restart beacons */
1018 	ath_hal_intrset(ah, sc->sc_imask);
1019 
1020 	ath_start(ifp);			/* restart xmit */
1021 	return 0;
1022 }
1023 
1024 static void
1025 ath_start(struct ifnet *ifp)
1026 {
1027 	struct ath_softc *sc = ifp->if_softc;
1028 	struct ath_hal *ah = sc->sc_ah;
1029 	struct ieee80211com *ic = &sc->sc_ic;
1030 	struct ieee80211_node *ni;
1031 	struct ath_buf *bf;
1032 	struct mbuf *m;
1033 	struct ieee80211_frame *wh;
1034 	struct ether_header *eh;
1035 
1036 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1037 		return;
1038 	for (;;) {
1039 		/*
1040 		 * Grab a TX buffer and associated resources.
1041 		 */
1042 		ATH_TXBUF_LOCK(sc);
1043 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1044 		if (bf != NULL)
1045 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1046 		ATH_TXBUF_UNLOCK(sc);
1047 		if (bf == NULL) {
1048 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1049 				__func__);
1050 			sc->sc_stats.ast_tx_qstop++;
1051 			ifp->if_flags |= IFF_OACTIVE;
1052 			break;
1053 		}
1054 		/*
1055 		 * Poll the management queue for frames; they
1056 		 * have priority over normal data frames.
1057 		 */
1058 		IF_DEQUEUE(&ic->ic_mgtq, m);
1059 		if (m == NULL) {
1060 			/*
1061 			 * No data frames go out unless we're associated.
1062 			 */
1063 			if (ic->ic_state != IEEE80211_S_RUN) {
1064 				DPRINTF(sc, ATH_DEBUG_ANY,
1065 					"%s: ignore data packet, state %u\n",
1066 					__func__, ic->ic_state);
1067 				sc->sc_stats.ast_tx_discard++;
1068 				ATH_TXBUF_LOCK(sc);
1069 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1070 				ATH_TXBUF_UNLOCK(sc);
1071 				break;
1072 			}
1073 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1074 			if (m == NULL) {
1075 				ATH_TXBUF_LOCK(sc);
1076 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1077 				ATH_TXBUF_UNLOCK(sc);
1078 				break;
1079 			}
1080 			/*
1081 			 * Find the node for the destination so we can do
1082 			 * things like power save and fast frames aggregation.
1083 			 */
1084 			if (m->m_len < sizeof(struct ether_header) &&
1085 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1086 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1087 				ni = NULL;
1088 				goto bad;
1089 			}
1090 			eh = mtod(m, struct ether_header *);
1091 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1092 			if (ni == NULL) {
1093 				/* NB: ieee80211_find_txnode does stat+msg */
1094 				goto bad;
1095 			}
1096 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1097 			    (m->m_flags & M_PWR_SAV) == 0) {
1098 				/*
1099 				 * Station in power save mode; pass the frame
1100 				 * to the 802.11 layer and continue.  We'll get
1101 				 * the frame back when the time is right.
1102 				 */
1103 				ieee80211_pwrsave(ic, ni, m);
1104 				goto reclaim;
1105 			}
1106 			/* calculate priority so we can find the tx queue */
1107 			if (ieee80211_classify(ic, m, ni)) {
1108 				DPRINTF(sc, ATH_DEBUG_XMIT,
1109 					"%s: discard, classification failure\n",
1110 					__func__);
1111 				goto bad;
1112 			}
1113 			ifp->if_opackets++;
1114 			BPF_MTAP(ifp, m);
1115 			/*
1116 			 * Encapsulate the packet in prep for transmission.
1117 			 */
1118 			m = ieee80211_encap(ic, m, ni);
1119 			if (m == NULL) {
1120 				DPRINTF(sc, ATH_DEBUG_ANY,
1121 					"%s: encapsulation failure\n",
1122 					__func__);
1123 				sc->sc_stats.ast_tx_encap++;
1124 				goto bad;
1125 			}
1126 		} else {
1127 			/*
1128 			 * Hack!  The referenced node pointer is in the
1129 			 * rcvif field of the packet header.  This is
1130 			 * placed there by ieee80211_mgmt_output because
1131 			 * we need to hold the reference with the frame
1132 			 * and there's no other way (other than packet
1133 			 * tags which we consider too expensive to use)
1134 			 * to pass it along.
1135 			 */
1136 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1137 			m->m_pkthdr.rcvif = NULL;
1138 
1139 			wh = mtod(m, struct ieee80211_frame *);
1140 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1141 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1142 				/* fill time stamp */
1143 				u_int64_t tsf;
1144 				u_int32_t *tstamp;
1145 
1146 				tsf = ath_hal_gettsf64(ah);
1147 				/* XXX: adjust 100us delay to xmit */
1148 				tsf += 100;
1149 				tstamp = (u_int32_t *)&wh[1];
1150 				tstamp[0] = htole32(tsf & 0xffffffff);
1151 				tstamp[1] = htole32(tsf >> 32);
1152 			}
1153 			sc->sc_stats.ast_tx_mgmt++;
1154 		}
1155 
1156 		if (ath_tx_start(sc, ni, bf, m)) {
1157 	bad:
1158 			ifp->if_oerrors++;
1159 	reclaim:
1160 			ATH_TXBUF_LOCK(sc);
1161 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1162 			ATH_TXBUF_UNLOCK(sc);
1163 			if (ni != NULL)
1164 				ieee80211_free_node(ni);
1165 			continue;
1166 		}
1167 
1168 		sc->sc_tx_timer = 5;
1169 		ifp->if_timer = 1;
1170 	}
1171 }
1172 
1173 static int
1174 ath_media_change(struct ifnet *ifp)
1175 {
1176 #define	IS_UP(ifp) \
1177 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1178 	int error;
1179 
1180 	error = ieee80211_media_change(ifp);
1181 	if (error == ENETRESET) {
1182 		if (IS_UP(ifp))
1183 			ath_init(ifp);		/* XXX lose error */
1184 		error = 0;
1185 	}
1186 	return error;
1187 #undef IS_UP
1188 }
1189 
1190 #ifdef AR_DEBUG
1191 static void
1192 ath_keyprint(const char *tag, u_int ix,
1193 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1194 {
1195 	static const char *ciphers[] = {
1196 		"WEP",
1197 		"AES-OCB",
1198 		"AES-CCM",
1199 		"CKIP",
1200 		"TKIP",
1201 		"CLR",
1202 	};
1203 	int i, n;
1204 
1205 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1206 	for (i = 0, n = hk->kv_len; i < n; i++)
1207 		printf("%02x", hk->kv_val[i]);
1208 	printf(" mac %s", ether_sprintf(mac));
1209 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1210 		printf(" mic ");
1211 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1212 			printf("%02x", hk->kv_mic[i]);
1213 	}
1214 	printf("\n");
1215 }
1216 #endif
1217 
1218 /*
1219  * Set a TKIP key into the hardware.  This handles the
1220  * potential distribution of key state to multiple key
1221  * cache slots for TKIP.
1222  */
1223 static int
1224 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1225 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1226 {
1227 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1228 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1229 	struct ath_hal *ah = sc->sc_ah;
1230 
1231 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1232 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1233 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1234 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1235 		/*
1236 		 * TX key goes at first index, RX key at +32.
1237 		 * The hal handles the MIC keys at index+64.
1238 		 */
1239 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1240 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1241 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1242 			return 0;
1243 
1244 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1245 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1246 		/* XXX delete tx key on failure? */
1247 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1248 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1249 		/*
1250 		 * TX/RX key goes at first index.
1251 		 * The hal handles the MIC keys are index+64.
1252 		 */
1253 		KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
1254 			("group key at index %u", k->wk_keyix));
1255 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1256 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1257 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1258 		return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
1259 	}
1260 	/* XXX key w/o xmit/recv; need this for compression? */
1261 	return 0;
1262 #undef IEEE80211_KEY_XR
1263 }
1264 
1265 /*
1266  * Set a net80211 key into the hardware.  This handles the
1267  * potential distribution of key state to multiple key
1268  * cache slots for TKIP with hardware MIC support.
1269  */
1270 static int
1271 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1272 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1273 {
1274 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1275 	static const u_int8_t ciphermap[] = {
1276 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1277 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1278 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1279 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1280 		(u_int8_t) -1,		/* 4 is not allocated */
1281 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1282 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1283 	};
1284 	struct ath_hal *ah = sc->sc_ah;
1285 	const struct ieee80211_cipher *cip = k->wk_cipher;
1286 	HAL_KEYVAL hk;
1287 
1288 	memset(&hk, 0, sizeof(hk));
1289 	/*
1290 	 * Software crypto uses a "clear key" so non-crypto
1291 	 * state kept in the key cache are maintained and
1292 	 * so that rx frames have an entry to match.
1293 	 */
1294 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1295 		KASSERT(cip->ic_cipher < N(ciphermap),
1296 			("invalid cipher type %u", cip->ic_cipher));
1297 		hk.kv_type = ciphermap[cip->ic_cipher];
1298 		hk.kv_len = k->wk_keylen;
1299 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1300 	} else
1301 		hk.kv_type = HAL_CIPHER_CLR;
1302 
1303 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1304 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1305 	    sc->sc_splitmic) {
1306 		return ath_keyset_tkip(sc, k, &hk, mac);
1307 	} else {
1308 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1309 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1310 	}
1311 #undef N
1312 }
1313 
1314 /*
1315  * Fill the hardware key cache with key entries.
1316  */
1317 static void
1318 ath_initkeytable(struct ath_softc *sc)
1319 {
1320 	struct ieee80211com *ic = &sc->sc_ic;
1321 	struct ifnet *ifp = &sc->sc_if;
1322 	struct ath_hal *ah = sc->sc_ah;
1323 	const u_int8_t *bssid;
1324 	int i;
1325 
1326 	/* XXX maybe should reset all keys when !PRIVACY */
1327 	if (ic->ic_state == IEEE80211_S_SCAN)
1328 		bssid = ifp->if_broadcastaddr;
1329 	else
1330 		bssid = ic->ic_bss->ni_bssid;
1331 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1332 		struct ieee80211_key *k = &ic->ic_nw_keys[i];
1333 
1334 		if (k->wk_keylen == 0) {
1335 			ath_hal_keyreset(ah, i);
1336 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
1337 				__func__, i);
1338 		} else {
1339 			ath_keyset(sc, k, bssid);
1340 		}
1341 	}
1342 }
1343 
1344 /*
1345  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1346  * each key, one for decrypt/encrypt and the other for the MIC.
1347  */
1348 static u_int16_t
1349 key_alloc_2pair(struct ath_softc *sc)
1350 {
1351 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1352 	u_int i, keyix;
1353 
1354 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1355 	/* XXX could optimize */
1356 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1357 		u_int8_t b = sc->sc_keymap[i];
1358 		if (b != 0xff) {
1359 			/*
1360 			 * One or more slots in this byte are free.
1361 			 */
1362 			keyix = i*NBBY;
1363 			while (b & 1) {
1364 		again:
1365 				keyix++;
1366 				b >>= 1;
1367 			}
1368 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1369 			if (isset(sc->sc_keymap, keyix+32) ||
1370 			    isset(sc->sc_keymap, keyix+64) ||
1371 			    isset(sc->sc_keymap, keyix+32+64)) {
1372 				/* full pair unavailable */
1373 				/* XXX statistic */
1374 				if (keyix == (i+1)*NBBY) {
1375 					/* no slots were appropriate, advance */
1376 					continue;
1377 				}
1378 				goto again;
1379 			}
1380 			setbit(sc->sc_keymap, keyix);
1381 			setbit(sc->sc_keymap, keyix+64);
1382 			setbit(sc->sc_keymap, keyix+32);
1383 			setbit(sc->sc_keymap, keyix+32+64);
1384 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1385 				"%s: key pair %u,%u %u,%u\n",
1386 				__func__, keyix, keyix+64,
1387 				keyix+32, keyix+32+64);
1388 			return keyix;
1389 		}
1390 	}
1391 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1392 	return IEEE80211_KEYIX_NONE;
1393 #undef N
1394 }
1395 
1396 /*
1397  * Allocate a single key cache slot.
1398  */
1399 static u_int16_t
1400 key_alloc_single(struct ath_softc *sc)
1401 {
1402 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1403 	u_int i, keyix;
1404 
1405 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1406 	for (i = 0; i < N(sc->sc_keymap); i++) {
1407 		u_int8_t b = sc->sc_keymap[i];
1408 		if (b != 0xff) {
1409 			/*
1410 			 * One or more slots are free.
1411 			 */
1412 			keyix = i*NBBY;
1413 			while (b & 1)
1414 				keyix++, b >>= 1;
1415 			setbit(sc->sc_keymap, keyix);
1416 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1417 				__func__, keyix);
1418 			return keyix;
1419 		}
1420 	}
1421 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1422 	return IEEE80211_KEYIX_NONE;
1423 #undef N
1424 }
1425 
1426 /*
1427  * Allocate one or more key cache slots for a uniacst key.  The
1428  * key itself is needed only to identify the cipher.  For hardware
1429  * TKIP with split cipher+MIC keys we allocate two key cache slot
1430  * pairs so that we can setup separate TX and RX MIC keys.  Note
1431  * that the MIC key for a TKIP key at slot i is assumed by the
1432  * hardware to be at slot i+64.  This limits TKIP keys to the first
1433  * 64 entries.
1434  */
1435 static int
1436 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1437 {
1438 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1439 
1440 	/*
1441 	 * We allocate two pair for TKIP when using the h/w to do
1442 	 * the MIC.  For everything else, including software crypto,
1443 	 * we allocate a single entry.  Note that s/w crypto requires
1444 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1445 	 * not support pass-through cache entries and we map all
1446 	 * those requests to slot 0.
1447 	 */
1448 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1449 		return key_alloc_single(sc);
1450 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1451 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1452 		return key_alloc_2pair(sc);
1453 	} else {
1454 		return key_alloc_single(sc);
1455 	}
1456 }
1457 
1458 /*
1459  * Delete an entry in the key cache allocated by ath_key_alloc.
1460  */
1461 static int
1462 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1463 {
1464 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1465 	struct ath_hal *ah = sc->sc_ah;
1466 	const struct ieee80211_cipher *cip = k->wk_cipher;
1467 	u_int keyix = k->wk_keyix;
1468 
1469 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1470 
1471 	ath_hal_keyreset(ah, keyix);
1472 	/*
1473 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1474 	 */
1475 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1476 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1477 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1478 	if (keyix >= IEEE80211_WEP_NKID) {
1479 		/*
1480 		 * Don't touch keymap entries for global keys so
1481 		 * they are never considered for dynamic allocation.
1482 		 */
1483 		clrbit(sc->sc_keymap, keyix);
1484 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1485 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1486 		    sc->sc_splitmic) {
1487 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1488 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1489 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1490 		}
1491 	}
1492 	return 1;
1493 }
1494 
1495 /*
1496  * Set the key cache contents for the specified key.  Key cache
1497  * slot(s) must already have been allocated by ath_key_alloc.
1498  */
1499 static int
1500 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1501 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1502 {
1503 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1504 
1505 	return ath_keyset(sc, k, mac);
1506 }
1507 
1508 /*
1509  * Block/unblock tx+rx processing while a key change is done.
1510  * We assume the caller serializes key management operations
1511  * so we only need to worry about synchronization with other
1512  * uses that originate in the driver.
1513  */
1514 static void
1515 ath_key_update_begin(struct ieee80211com *ic)
1516 {
1517 	struct ifnet *ifp = ic->ic_ifp;
1518 	struct ath_softc *sc = ifp->if_softc;
1519 
1520 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1521 #if 0
1522 	tasklet_disable(&sc->sc_rxtq);
1523 #endif
1524 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1525 }
1526 
1527 static void
1528 ath_key_update_end(struct ieee80211com *ic)
1529 {
1530 	struct ifnet *ifp = ic->ic_ifp;
1531 	struct ath_softc *sc = ifp->if_softc;
1532 
1533 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1534 	IF_UNLOCK(&ifp->if_snd);
1535 #if 0
1536 	tasklet_enable(&sc->sc_rxtq);
1537 #endif
1538 }
1539 
1540 /*
1541  * Calculate the receive filter according to the
1542  * operating mode and state:
1543  *
1544  * o always accept unicast, broadcast, and multicast traffic
1545  * o maintain current state of phy error reception (the hal
1546  *   may enable phy error frames for noise immunity work)
1547  * o probe request frames are accepted only when operating in
1548  *   hostap, adhoc, or monitor modes
1549  * o enable promiscuous mode according to the interface state
1550  * o accept beacons:
1551  *   - when operating in adhoc mode so the 802.11 layer creates
1552  *     node table entries for peers,
1553  *   - when operating in station mode for collecting rssi data when
1554  *     the station is otherwise quiet, or
1555  *   - when scanning
1556  */
1557 static u_int32_t
1558 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1559 {
1560 	struct ieee80211com *ic = &sc->sc_ic;
1561 	struct ath_hal *ah = sc->sc_ah;
1562 	struct ifnet *ifp = &sc->sc_if;
1563 	u_int32_t rfilt;
1564 
1565 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1566 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1567 	if (ic->ic_opmode != IEEE80211_M_STA)
1568 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1569 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1570 	    (ifp->if_flags & IFF_PROMISC))
1571 		rfilt |= HAL_RX_FILTER_PROM;
1572 	if (ic->ic_opmode == IEEE80211_M_STA ||
1573 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1574 	    state == IEEE80211_S_SCAN)
1575 		rfilt |= HAL_RX_FILTER_BEACON;
1576 	return rfilt;
1577 }
1578 
1579 static void
1580 ath_mode_init(struct ath_softc *sc)
1581 {
1582 	struct ieee80211com *ic = &sc->sc_ic;
1583 	struct ath_hal *ah = sc->sc_ah;
1584 	struct ifnet *ifp = &sc->sc_if;
1585 	u_int32_t rfilt, mfilt[2], val;
1586 	u_int8_t pos;
1587 	struct ifmultiaddr *ifma;
1588 
1589 	/* configure rx filter */
1590 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1591 	ath_hal_setrxfilter(ah, rfilt);
1592 
1593 	/* configure operational mode */
1594 	ath_hal_setopmode(ah);
1595 
1596 	/*
1597 	 * Handle any link-level address change.  Note that we only
1598 	 * need to force ic_myaddr; any other addresses are handled
1599 	 * as a byproduct of the ifnet code marking the interface
1600 	 * down then up.
1601 	 *
1602 	 * XXX should get from lladdr instead of arpcom but that's more work
1603 	 */
1604 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2AC(ifp)->ac_enaddr);
1605 	ath_hal_setmac(ah, ic->ic_myaddr);
1606 
1607 	/* calculate and install multicast filter */
1608 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1609 		mfilt[0] = mfilt[1] = 0;
1610 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1611 			caddr_t dl;
1612 
1613 			/* calculate XOR of eight 6bit values */
1614 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1615 			val = LE_READ_4(dl + 0);
1616 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1617 			val = LE_READ_4(dl + 3);
1618 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1619 			pos &= 0x3f;
1620 			mfilt[pos / 32] |= (1 << (pos % 32));
1621 		}
1622 	} else {
1623 		mfilt[0] = mfilt[1] = ~0;
1624 	}
1625 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1626 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1627 		__func__, rfilt, mfilt[0], mfilt[1]);
1628 }
1629 
1630 static void
1631 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1632 {
1633 	struct ath_buf *bf = arg;
1634 
1635 	KASSERT(nseg <= ATH_MAX_SCATTER,
1636 		("%s: too many DMA segments %u", __func__, nseg));
1637 	KASSERT(error == 0,
1638 		("%s: error %u on bus_dma callback", __func__, error));
1639 	bf->bf_mapsize = mapsize;
1640 	bf->bf_nseg = nseg;
1641 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1642 }
1643 
1644 /*
1645  * Set the slot time based on the current setting.
1646  */
1647 static void
1648 ath_setslottime(struct ath_softc *sc)
1649 {
1650 	struct ieee80211com *ic = &sc->sc_ic;
1651 	struct ath_hal *ah = sc->sc_ah;
1652 
1653 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1654 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1655 	else
1656 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1657 	sc->sc_updateslot = OK;
1658 }
1659 
1660 /*
1661  * Callback from the 802.11 layer to update the
1662  * slot time based on the current setting.
1663  */
1664 static void
1665 ath_updateslot(struct ifnet *ifp)
1666 {
1667 	struct ath_softc *sc = ifp->if_softc;
1668 	struct ieee80211com *ic = &sc->sc_ic;
1669 
1670 	/*
1671 	 * When not coordinating the BSS, change the hardware
1672 	 * immediately.  For other operation we defer the change
1673 	 * until beacon updates have propagated to the stations.
1674 	 */
1675 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1676 		sc->sc_updateslot = UPDATE;
1677 	else
1678 		ath_setslottime(sc);
1679 }
1680 
1681 /*
1682  * Allocate and setup an initial beacon frame.
1683  */
1684 static int
1685 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1686 {
1687 	struct ieee80211com *ic = ni->ni_ic;
1688 	struct ath_buf *bf;
1689 	struct mbuf *m;
1690 	int error;
1691 
1692 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1693 	if (bf == NULL) {
1694 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1695 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1696 		return ENOMEM;			/* XXX */
1697 	}
1698 	if (bf->bf_m != NULL) {
1699 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1700 		m_freem(bf->bf_m);
1701 		bf->bf_m = NULL;
1702 		bf->bf_node = NULL;
1703 	}
1704 	/*
1705 	 * NB: the beacon data buffer must be 32-bit aligned;
1706 	 * we assume the mbuf routines will return us something
1707 	 * with this alignment (perhaps should assert).
1708 	 */
1709 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1710 	if (m == NULL) {
1711 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1712 			__func__);
1713 		sc->sc_stats.ast_be_nombuf++;
1714 		return ENOMEM;
1715 	}
1716 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1717 				     ath_mbuf_load_cb, bf,
1718 				     BUS_DMA_NOWAIT);
1719 	if (error == 0) {
1720 		bf->bf_m = m;
1721 		bf->bf_node = ni;		/* NB: no held reference */
1722 	} else {
1723 		m_freem(m);
1724 	}
1725 	return error;
1726 }
1727 
1728 /*
1729  * Setup the beacon frame for transmit.
1730  */
1731 static void
1732 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1733 {
1734 #define	USE_SHPREAMBLE(_ic) \
1735 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1736 		== IEEE80211_F_SHPREAMBLE)
1737 	struct ieee80211_node *ni = bf->bf_node;
1738 	struct ieee80211com *ic = ni->ni_ic;
1739 	struct mbuf *m = bf->bf_m;
1740 	struct ath_hal *ah = sc->sc_ah;
1741 	struct ath_node *an = ATH_NODE(ni);
1742 	struct ath_desc *ds;
1743 	int flags, antenna;
1744 	u_int8_t rate;
1745 
1746 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1747 		__func__, m, m->m_len);
1748 
1749 	/* setup descriptors */
1750 	ds = bf->bf_desc;
1751 
1752 	flags = HAL_TXDESC_NOACK;
1753 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1754 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1755 		flags |= HAL_TXDESC_VEOL;
1756 		/*
1757 		 * Let hardware handle antenna switching.
1758 		 */
1759 		antenna = 0;
1760 	} else {
1761 		ds->ds_link = 0;
1762 		/*
1763 		 * Switch antenna every 4 beacons.
1764 		 * XXX assumes two antenna
1765 		 */
1766 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1767 	}
1768 
1769 	KASSERT(bf->bf_nseg == 1,
1770 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1771 	ds->ds_data = bf->bf_segs[0].ds_addr;
1772 	/*
1773 	 * Calculate rate code.
1774 	 * XXX everything at min xmit rate
1775 	 */
1776 	if (USE_SHPREAMBLE(ic))
1777 		rate = an->an_tx_mgtratesp;
1778 	else
1779 		rate = an->an_tx_mgtrate;
1780 	ath_hal_setuptxdesc(ah, ds
1781 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1782 		, sizeof(struct ieee80211_frame)/* header length */
1783 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1784 		, ni->ni_txpower		/* txpower XXX */
1785 		, rate, 1			/* series 0 rate/tries */
1786 		, HAL_TXKEYIX_INVALID		/* no encryption */
1787 		, antenna			/* antenna mode */
1788 		, flags				/* no ack, veol for beacons */
1789 		, 0				/* rts/cts rate */
1790 		, 0				/* rts/cts duration */
1791 	);
1792 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1793 	ath_hal_filltxdesc(ah, ds
1794 		, roundup(m->m_len, 4)		/* buffer length */
1795 		, AH_TRUE			/* first segment */
1796 		, AH_TRUE			/* last segment */
1797 		, ds				/* first descriptor */
1798 	);
1799 #undef USE_SHPREAMBLE
1800 }
1801 
1802 /*
1803  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1804  * frame contents are done as needed and the slot time is
1805  * also adjusted based on current state.
1806  */
1807 static void
1808 ath_beacon_proc(void *arg, int pending)
1809 {
1810 	struct ath_softc *sc = arg;
1811 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1812 	struct ieee80211_node *ni = bf->bf_node;
1813 	struct ieee80211com *ic = ni->ni_ic;
1814 	struct ath_hal *ah = sc->sc_ah;
1815 	struct mbuf *m;
1816 	int ncabq, error, otherant;
1817 
1818 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1819 		__func__, pending);
1820 
1821 	if (ic->ic_opmode == IEEE80211_M_STA ||
1822 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1823 	    bf == NULL || bf->bf_m == NULL) {
1824 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1825 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1826 		return;
1827 	}
1828 	/*
1829 	 * Check if the previous beacon has gone out.  If
1830 	 * not don't don't try to post another, skip this
1831 	 * period and wait for the next.  Missed beacons
1832 	 * indicate a problem and should not occur.  If we
1833 	 * miss too many consecutive beacons reset the device.
1834 	 */
1835 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1836 		sc->sc_bmisscount++;
1837 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1838 			"%s: missed %u consecutive beacons\n",
1839 			__func__, sc->sc_bmisscount);
1840 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1841 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1842 		return;
1843 	}
1844 	if (sc->sc_bmisscount != 0) {
1845 		DPRINTF(sc, ATH_DEBUG_BEACON,
1846 			"%s: resume beacon xmit after %u misses\n",
1847 			__func__, sc->sc_bmisscount);
1848 		sc->sc_bmisscount = 0;
1849 	}
1850 
1851 	/*
1852 	 * Update dynamic beacon contents.  If this returns
1853 	 * non-zero then we need to remap the memory because
1854 	 * the beacon frame changed size (probably because
1855 	 * of the TIM bitmap).
1856 	 */
1857 	m = bf->bf_m;
1858 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1859 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1860 		/* XXX too conservative? */
1861 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1862 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1863 					     ath_mbuf_load_cb, bf,
1864 					     BUS_DMA_NOWAIT);
1865 		if (error != 0) {
1866 			if_printf(ic->ic_ifp,
1867 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
1868 			    __func__, error);
1869 			return;
1870 		}
1871 	}
1872 
1873 	/*
1874 	 * Handle slot time change when a non-ERP station joins/leaves
1875 	 * an 11g network.  The 802.11 layer notifies us via callback,
1876 	 * we mark updateslot, then wait one beacon before effecting
1877 	 * the change.  This gives associated stations at least one
1878 	 * beacon interval to note the state change.
1879 	 */
1880 	/* XXX locking */
1881 	if (sc->sc_updateslot == UPDATE)
1882 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1883 	else if (sc->sc_updateslot == COMMIT)
1884 		ath_setslottime(sc);		/* commit change to h/w */
1885 
1886 	/*
1887 	 * Check recent per-antenna transmit statistics and flip
1888 	 * the default antenna if noticeably more frames went out
1889 	 * on the non-default antenna.
1890 	 * XXX assumes 2 anntenae
1891 	 */
1892 	otherant = sc->sc_defant & 1 ? 2 : 1;
1893 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1894 		ath_setdefantenna(sc, otherant);
1895 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1896 
1897 	/*
1898 	 * Construct tx descriptor.
1899 	 */
1900 	ath_beacon_setup(sc, bf);
1901 
1902 	/*
1903 	 * Stop any current dma and put the new frame on the queue.
1904 	 * This should never fail since we check above that no frames
1905 	 * are still pending on the queue.
1906 	 */
1907 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1908 		DPRINTF(sc, ATH_DEBUG_ANY,
1909 			"%s: beacon queue %u did not stop?\n",
1910 			__func__, sc->sc_bhalq);
1911 	}
1912 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1913 
1914 	/*
1915 	 * Enable the CAB queue before the beacon queue to
1916 	 * insure cab frames are triggered by this beacon.
1917 	 */
1918 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
1919 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
1920 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1921 	ath_hal_txstart(ah, sc->sc_bhalq);
1922 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1923 		"%s: TXDP[%u] = %p (%p)\n", __func__,
1924 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
1925 
1926 	sc->sc_stats.ast_be_xmit++;
1927 }
1928 
1929 /*
1930  * Reset the hardware after detecting beacons have stopped.
1931  */
1932 static void
1933 ath_bstuck_proc(void *arg, int pending)
1934 {
1935 	struct ath_softc *sc = arg;
1936 	struct ifnet *ifp = &sc->sc_if;
1937 
1938 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
1939 		sc->sc_bmisscount);
1940 	ath_reset(ifp);
1941 }
1942 
1943 /*
1944  * Reclaim beacon resources.
1945  */
1946 static void
1947 ath_beacon_free(struct ath_softc *sc)
1948 {
1949 	struct ath_buf *bf;
1950 
1951 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list)
1952 		if (bf->bf_m != NULL) {
1953 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1954 			m_freem(bf->bf_m);
1955 			bf->bf_m = NULL;
1956 			bf->bf_node = NULL;
1957 		}
1958 }
1959 
1960 /*
1961  * Configure the beacon and sleep timers.
1962  *
1963  * When operating as an AP this resets the TSF and sets
1964  * up the hardware to notify us when we need to issue beacons.
1965  *
1966  * When operating in station mode this sets up the beacon
1967  * timers according to the timestamp of the last received
1968  * beacon and the current TSF, configures PCF and DTIM
1969  * handling, programs the sleep registers so the hardware
1970  * will wakeup in time to receive beacons, and configures
1971  * the beacon miss handling so we'll receive a BMISS
1972  * interrupt when we stop seeing beacons from the AP
1973  * we've associated with.
1974  */
1975 static void
1976 ath_beacon_config(struct ath_softc *sc)
1977 {
1978 	struct ath_hal *ah = sc->sc_ah;
1979 	struct ieee80211com *ic = &sc->sc_ic;
1980 	struct ieee80211_node *ni = ic->ic_bss;
1981 	u_int32_t nexttbtt, intval;
1982 
1983 	nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
1984 	    (LE_READ_4(ni->ni_tstamp.data) >> 10);
1985 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u\n",
1986 		__func__, nexttbtt, ni->ni_intval);
1987 	nexttbtt += ni->ni_intval;
1988 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
1989 	if (ic->ic_opmode == IEEE80211_M_STA) {
1990 		HAL_BEACON_STATE bs;
1991 		u_int32_t bmisstime;
1992 
1993 		/* NB: no PCF support right now */
1994 		memset(&bs, 0, sizeof(bs));
1995 		/*
1996 		 * Reset our tsf so the hardware will update the
1997 		 * tsf register to reflect timestamps found in
1998 		 * received beacons.
1999 		 */
2000 		bs.bs_intval = intval | HAL_BEACON_RESET_TSF;
2001 		bs.bs_nexttbtt = nexttbtt;
2002 		bs.bs_dtimperiod = bs.bs_intval;
2003 		bs.bs_nextdtim = nexttbtt;
2004 		/*
2005 		 * The 802.11 layer records the offset to the DTIM
2006 		 * bitmap while receiving beacons; use it here to
2007 		 * enable h/w detection of our AID being marked in
2008 		 * the bitmap vector (to indicate frames for us are
2009 		 * pending at the AP).
2010 		 */
2011 		bs.bs_timoffset = ni->ni_timoff;
2012 		/*
2013 		 * Calculate the number of consecutive beacons to miss
2014 		 * before taking a BMISS interrupt.  The configuration
2015 		 * is specified in ms, so we need to convert that to
2016 		 * TU's and then calculate based on the beacon interval.
2017 		 * Note that we clamp the result to at most 10 beacons.
2018 		 */
2019 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
2020 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
2021 		if (bs.bs_bmissthreshold > 10)
2022 			bs.bs_bmissthreshold = 10;
2023 		else if (bs.bs_bmissthreshold <= 0)
2024 			bs.bs_bmissthreshold = 1;
2025 
2026 		/*
2027 		 * Calculate sleep duration.  The configuration is
2028 		 * given in ms.  We insure a multiple of the beacon
2029 		 * period is used.  Also, if the sleep duration is
2030 		 * greater than the DTIM period then it makes senses
2031 		 * to make it a multiple of that.
2032 		 *
2033 		 * XXX fixed at 100ms
2034 		 */
2035 		bs.bs_sleepduration =
2036 			roundup((100 * 1000) / 1024, bs.bs_intval);
2037 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2038 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2039 
2040 		DPRINTF(sc, ATH_DEBUG_BEACON,
2041 			"%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2042 			, __func__
2043 			, bs.bs_intval
2044 			, bs.bs_nexttbtt
2045 			, bs.bs_dtimperiod
2046 			, bs.bs_nextdtim
2047 			, bs.bs_bmissthreshold
2048 			, bs.bs_sleepduration
2049 			, bs.bs_cfpperiod
2050 			, bs.bs_cfpmaxduration
2051 			, bs.bs_cfpnext
2052 			, bs.bs_timoffset
2053 		);
2054 		ath_hal_intrset(ah, 0);
2055 		ath_hal_beacontimers(ah, &bs);
2056 		sc->sc_imask |= HAL_INT_BMISS;
2057 		ath_hal_intrset(ah, sc->sc_imask);
2058 	} else {
2059 		ath_hal_intrset(ah, 0);
2060 		if (nexttbtt == ni->ni_intval)
2061 			intval |= HAL_BEACON_RESET_TSF;
2062 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2063 			/*
2064 			 * In IBSS mode enable the beacon timers but only
2065 			 * enable SWBA interrupts if we need to manually
2066 			 * prepare beacon frames.  Otherwise we use a
2067 			 * self-linked tx descriptor and let the hardware
2068 			 * deal with things.
2069 			 */
2070 			intval |= HAL_BEACON_ENA;
2071 			if (!sc->sc_hasveol)
2072 				sc->sc_imask |= HAL_INT_SWBA;
2073 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2074 			/*
2075 			 * In AP mode we enable the beacon timers and
2076 			 * SWBA interrupts to prepare beacon frames.
2077 			 */
2078 			intval |= HAL_BEACON_ENA;
2079 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2080 		}
2081 		ath_hal_beaconinit(ah, nexttbtt, intval);
2082 		sc->sc_bmisscount = 0;
2083 		ath_hal_intrset(ah, sc->sc_imask);
2084 		/*
2085 		 * When using a self-linked beacon descriptor in
2086 		 * ibss mode load it once here.
2087 		 */
2088 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2089 			ath_beacon_proc(sc, 0);
2090 	}
2091 }
2092 
2093 static void
2094 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2095 {
2096 	bus_addr_t *paddr = (bus_addr_t*) arg;
2097 	KASSERT(error == 0,
2098 		("%s: error %u on bus_dma callback", __func__, error));
2099 	*paddr = segs->ds_addr;
2100 }
2101 
2102 static int
2103 ath_descdma_setup(struct ath_softc *sc,
2104 	struct ath_descdma *dd, ath_bufhead *head,
2105 	const char *name, int nbuf, int ndesc)
2106 {
2107 #define	DS2PHYS(_dd, _ds) \
2108 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2109 	struct ifnet *ifp = &sc->sc_if;
2110 	struct ath_desc *ds;
2111 	struct ath_buf *bf;
2112 	int i, bsize, error;
2113 
2114 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2115 	    __func__, name, nbuf, ndesc);
2116 
2117 	dd->dd_name = name;
2118 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2119 
2120 	/*
2121 	 * Setup DMA descriptor area.
2122 	 */
2123 	error = bus_dma_tag_create(NULL,	/* parent */
2124 		       PAGE_SIZE, 0,		/* alignment, bounds */
2125 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2126 		       BUS_SPACE_MAXADDR,	/* highaddr */
2127 		       NULL, NULL,		/* filter, filterarg */
2128 		       dd->dd_desc_len,		/* maxsize */
2129 		       1,			/* nsegments */
2130 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2131 		       BUS_DMA_ALLOCNOW,	/* flags */
2132 		       NULL,			/* lockfunc */
2133 		       NULL,			/* lockarg */
2134 		       &dd->dd_dmat);
2135 	if (error != 0) {
2136 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2137 		return error;
2138 	}
2139 
2140 	/* allocate descriptors */
2141 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2142 	if (error != 0) {
2143 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2144 			"error %u\n", dd->dd_name, error);
2145 		goto fail0;
2146 	}
2147 
2148 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2149 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2150 	if (error != 0) {
2151 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2152 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2153 		goto fail1;
2154 	}
2155 
2156 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2157 				dd->dd_desc, dd->dd_desc_len,
2158 				ath_load_cb, &dd->dd_desc_paddr,
2159 				BUS_DMA_NOWAIT);
2160 	if (error != 0) {
2161 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2162 			dd->dd_name, error);
2163 		goto fail2;
2164 	}
2165 
2166 	ds = dd->dd_desc;
2167 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2168 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2169 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2170 
2171 	/* allocate rx buffers */
2172 	bsize = sizeof(struct ath_buf) * nbuf;
2173 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2174 	if (bf == NULL) {
2175 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2176 			dd->dd_name, bsize);
2177 		goto fail3;
2178 	}
2179 	dd->dd_bufptr = bf;
2180 
2181 	STAILQ_INIT(head);
2182 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2183 		bf->bf_desc = ds;
2184 		bf->bf_daddr = DS2PHYS(dd, ds);
2185 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2186 				&bf->bf_dmamap);
2187 		if (error != 0) {
2188 			if_printf(ifp, "unable to create dmamap for %s "
2189 				"buffer %u, error %u\n", dd->dd_name, i, error);
2190 			ath_descdma_cleanup(sc, dd, head);
2191 			return error;
2192 		}
2193 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2194 	}
2195 	return 0;
2196 fail3:
2197 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2198 fail2:
2199 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2200 fail1:
2201 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2202 fail0:
2203 	bus_dma_tag_destroy(dd->dd_dmat);
2204 	memset(dd, 0, sizeof(*dd));
2205 	return error;
2206 #undef DS2PHYS
2207 }
2208 
2209 static void
2210 ath_descdma_cleanup(struct ath_softc *sc,
2211 	struct ath_descdma *dd, ath_bufhead *head)
2212 {
2213 	struct ath_buf *bf;
2214 	struct ieee80211_node *ni;
2215 
2216 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2217 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2218 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2219 	bus_dma_tag_destroy(dd->dd_dmat);
2220 
2221 	STAILQ_FOREACH(bf, head, bf_list) {
2222 		if (bf->bf_m) {
2223 			m_freem(bf->bf_m);
2224 			bf->bf_m = NULL;
2225 		}
2226 		if (bf->bf_dmamap != NULL) {
2227 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2228 			bf->bf_dmamap = NULL;
2229 		}
2230 		ni = bf->bf_node;
2231 		bf->bf_node = NULL;
2232 		if (ni != NULL) {
2233 			/*
2234 			 * Reclaim node reference.
2235 			 */
2236 			ieee80211_free_node(ni);
2237 		}
2238 	}
2239 
2240 	STAILQ_INIT(head);
2241 	free(dd->dd_bufptr, M_ATHDEV);
2242 	memset(dd, 0, sizeof(*dd));
2243 }
2244 
2245 static int
2246 ath_desc_alloc(struct ath_softc *sc)
2247 {
2248 	int error;
2249 
2250 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2251 			"rx", ATH_RXBUF, 1);
2252 	if (error != 0)
2253 		return error;
2254 
2255 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2256 			"tx", ATH_TXBUF, ATH_TXDESC);
2257 	if (error != 0) {
2258 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2259 		return error;
2260 	}
2261 
2262 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2263 			"beacon", 1, 1);
2264 	if (error != 0) {
2265 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2266 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2267 		return error;
2268 	}
2269 	return 0;
2270 }
2271 
2272 static void
2273 ath_desc_free(struct ath_softc *sc)
2274 {
2275 
2276 	if (sc->sc_bdma.dd_desc_len != 0)
2277 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2278 	if (sc->sc_txdma.dd_desc_len != 0)
2279 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2280 	if (sc->sc_rxdma.dd_desc_len != 0)
2281 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2282 }
2283 
2284 static struct ieee80211_node *
2285 ath_node_alloc(struct ieee80211_node_table *nt)
2286 {
2287 	struct ieee80211com *ic = nt->nt_ic;
2288 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2289 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2290 	struct ath_node *an;
2291 
2292 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2293 	if (an == NULL) {
2294 		/* XXX stat+msg */
2295 		return NULL;
2296 	}
2297 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2298 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2299 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2300 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2301 	ath_rate_node_init(sc, an);
2302 
2303 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2304 	return &an->an_node;
2305 }
2306 
2307 /*
2308  * Clear any references to a node in a transmit queue.
2309  * This happens when the node is cleaned so we don't
2310  * need to worry about the reference count going to zero;
2311  * we just reclaim the reference w/o dropping the txq lock.
2312  * Then we null the pointer and the right thing happens
2313  * when the buffer is cleaned in ath_tx_processq.
2314  */
2315 static void
2316 ath_tx_cleanq(struct ieee80211com *ic, struct ath_txq *txq,
2317 	struct ieee80211_node *ni)
2318 {
2319 	struct ath_buf *bf;
2320 
2321 	ATH_TXQ_LOCK(txq);
2322 	STAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
2323 		if (bf->bf_node == ni) {
2324 			/* NB: this clears the pointer too */
2325 			ieee80211_unref_node(&bf->bf_node);
2326 		}
2327 	}
2328 	ATH_TXQ_UNLOCK(txq);
2329 }
2330 
2331 static void
2332 ath_node_free(struct ieee80211_node *ni)
2333 {
2334 	struct ieee80211com *ic = ni->ni_ic;
2335         struct ath_softc *sc = ic->ic_ifp->if_softc;
2336 	int i;
2337 
2338 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2339 
2340 	/* XXX can this happen since refcnt must be zero for us to be called? */
2341 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
2342 		if (ATH_TXQ_SETUP(sc, i))
2343 			ath_tx_cleanq(ic, &sc->sc_txq[i], ni);
2344 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2345 	sc->sc_node_free(ni);
2346 }
2347 
2348 static u_int8_t
2349 ath_node_getrssi(const struct ieee80211_node *ni)
2350 {
2351 #define	HAL_EP_RND(x, mul) \
2352 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2353 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2354 	int32_t rssi;
2355 
2356 	/*
2357 	 * When only one frame is received there will be no state in
2358 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2359 	 */
2360 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2361 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2362 	else
2363 		rssi = ni->ni_rssi;
2364 	/* NB: theoretically we shouldn't need this, but be paranoid */
2365 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2366 #undef HAL_EP_RND
2367 }
2368 
2369 static int
2370 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2371 {
2372 	struct ath_hal *ah = sc->sc_ah;
2373 	int error;
2374 	struct mbuf *m;
2375 	struct ath_desc *ds;
2376 
2377 	m = bf->bf_m;
2378 	if (m == NULL) {
2379 		/*
2380 		 * NB: by assigning a page to the rx dma buffer we
2381 		 * implicitly satisfy the Atheros requirement that
2382 		 * this buffer be cache-line-aligned and sized to be
2383 		 * multiple of the cache line size.  Not doing this
2384 		 * causes weird stuff to happen (for the 5210 at least).
2385 		 */
2386 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2387 		if (m == NULL) {
2388 			DPRINTF(sc, ATH_DEBUG_ANY,
2389 				"%s: no mbuf/cluster\n", __func__);
2390 			sc->sc_stats.ast_rx_nombuf++;
2391 			return ENOMEM;
2392 		}
2393 		KASSERT(m->m_next == NULL, ("m_next %p (1)", m->m_next));
2394 		bf->bf_m = m;
2395 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2396 
2397 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2398 					     bf->bf_dmamap, m,
2399 					     ath_mbuf_load_cb, bf,
2400 					     BUS_DMA_NOWAIT);
2401 		if (error != 0) {
2402 			DPRINTF(sc, ATH_DEBUG_ANY,
2403 				"%s: bus_dmamap_load_mbuf failed; error %d\n",
2404 				__func__, error);
2405 			sc->sc_stats.ast_rx_busdma++;
2406 			return error;
2407 		}
2408 		KASSERT(bf->bf_nseg == 1, ("%s: multi-segment packet; nseg %u",
2409 			__func__, bf->bf_nseg));
2410 	}
2411 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2412 
2413 	/*
2414 	 * Setup descriptors.  For receive we always terminate
2415 	 * the descriptor list with a self-linked entry so we'll
2416 	 * not get overrun under high load (as can happen with a
2417 	 * 5212 when ANI processing enables PHY error frames).
2418 	 *
2419 	 * To insure the last descriptor is self-linked we create
2420 	 * each descriptor as self-linked and add it to the end.  As
2421 	 * each additional descriptor is added the previous self-linked
2422 	 * entry is ``fixed'' naturally.  This should be safe even
2423 	 * if DMA is happening.  When processing RX interrupts we
2424 	 * never remove/process the last, self-linked, entry on the
2425 	 * descriptor list.  This insures the hardware always has
2426 	 * someplace to write a new frame.
2427 	 */
2428 	ds = bf->bf_desc;
2429 	ds->ds_link = bf->bf_daddr;	/* link to self */
2430 	ds->ds_data = bf->bf_segs[0].ds_addr;
2431 	ath_hal_setuprxdesc(ah, ds
2432 		, m->m_len		/* buffer size */
2433 		, 0
2434 	);
2435 
2436 	if (sc->sc_rxlink != NULL)
2437 		*sc->sc_rxlink = bf->bf_daddr;
2438 	sc->sc_rxlink = &ds->ds_link;
2439 	return 0;
2440 }
2441 
2442 /*
2443  * Intercept management frames to collect beacon rssi data
2444  * and to do ibss merges.
2445  */
2446 static void
2447 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2448 	struct ieee80211_node *ni,
2449 	int subtype, int rssi, u_int32_t rstamp)
2450 {
2451 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2452 
2453 	/*
2454 	 * Call up first so subsequent work can use information
2455 	 * potentially stored in the node (e.g. for ibss merge).
2456 	 */
2457 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2458 	switch (subtype) {
2459 	case IEEE80211_FC0_SUBTYPE_BEACON:
2460 		/* update rssi statistics for use by the hal */
2461 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2462 		/* fall thru... */
2463 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2464 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2465 		    ic->ic_state == IEEE80211_S_RUN) {
2466 			struct ath_hal *ah = sc->sc_ah;
2467 			/* XXX extend rstamp */
2468 			u_int64_t tsf = ath_hal_gettsf64(ah);
2469 
2470 			/*
2471 			 * Handle ibss merge as needed; check the tsf on the
2472 			 * frame before attempting the merge.  The 802.11 spec
2473 			 * says the station should change it's bssid to match
2474 			 * the oldest station with the same ssid, where oldest
2475 			 * is determined by the tsf.
2476 			 */
2477 			if (le64toh(ni->ni_tstamp.tsf) >= tsf &&
2478 			    ieee80211_ibss_merge(ic, ni))
2479 				ath_hal_setassocid(ah, ic->ic_bss->ni_bssid, 0);
2480 		}
2481 		break;
2482 	}
2483 }
2484 
2485 /*
2486  * Set the default antenna.
2487  */
2488 static void
2489 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2490 {
2491 	struct ath_hal *ah = sc->sc_ah;
2492 
2493 	/* XXX block beacon interrupts */
2494 	ath_hal_setdefantenna(ah, antenna);
2495 	if (sc->sc_defant != antenna)
2496 		sc->sc_stats.ast_ant_defswitch++;
2497 	sc->sc_defant = antenna;
2498 	sc->sc_rxotherant = 0;
2499 }
2500 
2501 static void
2502 ath_rx_proc(void *arg, int npending)
2503 {
2504 #define	PA2DESC(_sc, _pa) \
2505 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2506 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2507 	struct ath_softc *sc = arg;
2508 	struct ath_buf *bf;
2509 	struct ieee80211com *ic = &sc->sc_ic;
2510 	struct ifnet *ifp = &sc->sc_if;
2511 	struct ath_hal *ah = sc->sc_ah;
2512 	struct ath_desc *ds;
2513 	struct mbuf *m;
2514 	struct ieee80211_node *ni;
2515 	struct ath_node *an;
2516 	int len;
2517 	u_int phyerr;
2518 	HAL_STATUS status;
2519 
2520 	NET_LOCK_GIANT();		/* XXX */
2521 
2522 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2523 	do {
2524 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2525 		if (bf == NULL) {		/* NB: shouldn't happen */
2526 			if_printf(ifp, "%s: no buffer!\n", __func__);
2527 			break;
2528 		}
2529 		ds = bf->bf_desc;
2530 		if (ds->ds_link == bf->bf_daddr) {
2531 			/* NB: never process the self-linked entry at the end */
2532 			break;
2533 		}
2534 		m = bf->bf_m;
2535 		if (m == NULL) {		/* NB: shouldn't happen */
2536 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2537 			continue;
2538 		}
2539 		/* XXX sync descriptor memory */
2540 		/*
2541 		 * Must provide the virtual address of the current
2542 		 * descriptor, the physical address, and the virtual
2543 		 * address of the next descriptor in the h/w chain.
2544 		 * This allows the HAL to look ahead to see if the
2545 		 * hardware is done with a descriptor by checking the
2546 		 * done bit in the following descriptor and the address
2547 		 * of the current descriptor the DMA engine is working
2548 		 * on.  All this is necessary because of our use of
2549 		 * a self-linked list to avoid rx overruns.
2550 		 */
2551 		status = ath_hal_rxprocdesc(ah, ds,
2552 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2553 #ifdef AR_DEBUG
2554 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2555 			ath_printrxbuf(bf, status == HAL_OK);
2556 #endif
2557 		if (status == HAL_EINPROGRESS)
2558 			break;
2559 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2560 		if (ds->ds_rxstat.rs_more) {
2561 			/*
2562 			 * Frame spans multiple descriptors; this
2563 			 * cannot happen yet as we don't support
2564 			 * jumbograms.  If not in monitor mode,
2565 			 * discard the frame.
2566 			 */
2567 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2568 				sc->sc_stats.ast_rx_toobig++;
2569 				goto rx_next;
2570 			}
2571 			/* fall thru for monitor mode handling... */
2572 		} else if (ds->ds_rxstat.rs_status != 0) {
2573 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2574 				sc->sc_stats.ast_rx_crcerr++;
2575 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2576 				sc->sc_stats.ast_rx_fifoerr++;
2577 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2578 				sc->sc_stats.ast_rx_phyerr++;
2579 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2580 				sc->sc_stats.ast_rx_phy[phyerr]++;
2581 				goto rx_next;
2582 			}
2583 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2584 				/*
2585 				 * Decrypt error.  If the error occurred
2586 				 * because there was no hardware key, then
2587 				 * let the frame through so the upper layers
2588 				 * can process it.  This is necessary for 5210
2589 				 * parts which have no way to setup a ``clear''
2590 				 * key cache entry.
2591 				 *
2592 				 * XXX do key cache faulting
2593 				 */
2594 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2595 					goto rx_accept;
2596 				sc->sc_stats.ast_rx_badcrypt++;
2597 			}
2598 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2599 				sc->sc_stats.ast_rx_badmic++;
2600 				/*
2601 				 * Do minimal work required to hand off
2602 				 * the 802.11 header for notifcation.
2603 				 */
2604 				/* XXX frag's and qos frames */
2605 				len = ds->ds_rxstat.rs_datalen;
2606 				if (len >= sizeof (struct ieee80211_frame)) {
2607 					bus_dmamap_sync(sc->sc_dmat,
2608 					    bf->bf_dmamap,
2609 					    BUS_DMASYNC_POSTREAD);
2610 					ieee80211_notify_michael_failure(ic,
2611 					    mtod(m, struct ieee80211_frame *),
2612 					    ds->ds_rxstat.rs_keyix);
2613 				}
2614 			}
2615 			ifp->if_ierrors++;
2616 			/*
2617 			 * Reject error frames, we normally don't want
2618 			 * to see them in monitor mode (in monitor mode
2619 			 * allow through packets that have crypto problems).
2620 			 */
2621 			if ((ds->ds_rxstat.rs_status &~
2622 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2623 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2624 				goto rx_next;
2625 		}
2626 rx_accept:
2627 		KASSERT(m->m_next == NULL, ("m_next %p (3)", m->m_next));
2628 		/*
2629 		 * Sync and unmap the frame.  At this point we're
2630 		 * committed to passing the mbuf somewhere so clear
2631 		 * bf_m; this means a new sk_buff must be allocated
2632 		 * when the rx descriptor is setup again to receive
2633 		 * another frame.
2634 		 */
2635 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2636 		    BUS_DMASYNC_POSTREAD);
2637 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2638 		bf->bf_m = NULL;
2639 
2640 		m->m_pkthdr.rcvif = ifp;
2641 		len = ds->ds_rxstat.rs_datalen;
2642 		m->m_pkthdr.len = m->m_len = len;
2643 
2644 		if (sc->sc_softled)
2645 			ath_update_led(sc);
2646 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2647 
2648 		if (sc->sc_drvbpf) {
2649 			/*
2650 			 * Discard anything shorter than an ack or cts.
2651 			 */
2652 			if (len < IEEE80211_ACK_LEN) {
2653 				DPRINTF(sc, ATH_DEBUG_RECV,
2654 					"%s: runt packet %d\n",
2655 					__func__, len);
2656 				sc->sc_stats.ast_rx_tooshort++;
2657 				m_freem(m);
2658 				goto rx_next;
2659 			}
2660 			sc->sc_rx_th.wr_rate =
2661 				sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2662 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2663 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2664 			/* XXX TSF */
2665 
2666 			bpf_mtap2(sc->sc_drvbpf,
2667 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2668 		}
2669 
2670 		/*
2671 		 * From this point on we assume the frame is at least
2672 		 * as large as ieee80211_frame_min; verify that.
2673 		 */
2674 		if (len < IEEE80211_MIN_LEN) {
2675 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2676 				__func__, len);
2677 			sc->sc_stats.ast_rx_tooshort++;
2678 			m_freem(m);
2679 			goto rx_next;
2680 		}
2681 
2682 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2683 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2684 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate],
2685 				   ds->ds_rxstat.rs_rssi);
2686 		}
2687 
2688 		m_adj(m, -IEEE80211_CRC_LEN);
2689 
2690 		/*
2691 		 * Locate the node for sender, track state, and then
2692 		 * pass the (referenced) node up to the 802.11 layer
2693 		 * for its use.
2694 		 */
2695 		ni = ieee80211_find_rxnode(ic,
2696 			mtod(m, const struct ieee80211_frame_min *));
2697 
2698 		/*
2699 		 * Track rx rssi and do any rx antenna management.
2700 		 */
2701 		an = ATH_NODE(ni);
2702 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2703 		if (sc->sc_diversity) {
2704 			/*
2705 			 * When using fast diversity, change the default rx
2706 			 * antenna if diversity chooses the other antenna 3
2707 			 * times in a row.
2708 			 */
2709 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2710 				if (++sc->sc_rxotherant >= 3)
2711 					ath_setdefantenna(sc,
2712 						ds->ds_rxstat.rs_antenna);
2713 			} else
2714 				sc->sc_rxotherant = 0;
2715 		}
2716 
2717 		/*
2718 		 * Send frame up for processing.
2719 		 */
2720 		ieee80211_input(ic, m, ni,
2721 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2722 
2723 		/*
2724 		 * Reclaim node reference.
2725 		 */
2726 		ieee80211_free_node(ni);
2727 rx_next:
2728 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2729 	} while (ath_rxbuf_init(sc, bf) == 0);
2730 
2731 	/* rx signal state monitoring */
2732 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2733 
2734 	NET_UNLOCK_GIANT();		/* XXX */
2735 #undef PA2DESC
2736 }
2737 
2738 /*
2739  * Setup a h/w transmit queue.
2740  */
2741 static struct ath_txq *
2742 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2743 {
2744 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2745 	struct ath_hal *ah = sc->sc_ah;
2746 	HAL_TXQ_INFO qi;
2747 	int qnum;
2748 
2749 	memset(&qi, 0, sizeof(qi));
2750 	qi.tqi_subtype = subtype;
2751 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2752 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2753 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2754 	/*
2755 	 * Enable interrupts only for EOL and DESC conditions.
2756 	 * We mark tx descriptors to receive a DESC interrupt
2757 	 * when a tx queue gets deep; otherwise waiting for the
2758 	 * EOL to reap descriptors.  Note that this is done to
2759 	 * reduce interrupt load and this only defers reaping
2760 	 * descriptors, never transmitting frames.  Aside from
2761 	 * reducing interrupts this also permits more concurrency.
2762 	 * The only potential downside is if the tx queue backs
2763 	 * up in which case the top half of the kernel may backup
2764 	 * due to a lack of tx descriptors.
2765 	 */
2766 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2767 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2768 	if (qnum == -1) {
2769 		/*
2770 		 * NB: don't print a message, this happens
2771 		 * ormally on parts with too few tx queues
2772 		 */
2773 		return NULL;
2774 	}
2775 	if (qnum >= N(sc->sc_txq)) {
2776 		device_printf(sc->sc_dev,
2777 			"hal qnum %u out of range, max %zu!\n",
2778 			qnum, N(sc->sc_txq));
2779 		ath_hal_releasetxqueue(ah, qnum);
2780 		return NULL;
2781 	}
2782 	if (!ATH_TXQ_SETUP(sc, qnum)) {
2783 		struct ath_txq *txq = &sc->sc_txq[qnum];
2784 
2785 		txq->axq_qnum = qnum;
2786 		txq->axq_depth = 0;
2787 		txq->axq_intrcnt = 0;
2788 		txq->axq_link = NULL;
2789 		STAILQ_INIT(&txq->axq_q);
2790 		ATH_TXQ_LOCK_INIT(sc, txq);
2791 		sc->sc_txqsetup |= 1<<qnum;
2792 	}
2793 	return &sc->sc_txq[qnum];
2794 #undef N
2795 }
2796 
2797 /*
2798  * Setup a hardware data transmit queue for the specified
2799  * access control.  The hal may not support all requested
2800  * queues in which case it will return a reference to a
2801  * previously setup queue.  We record the mapping from ac's
2802  * to h/w queues for use by ath_tx_start and also track
2803  * the set of h/w queues being used to optimize work in the
2804  * transmit interrupt handler and related routines.
2805  */
2806 static int
2807 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2808 {
2809 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2810 	struct ath_txq *txq;
2811 
2812 	if (ac >= N(sc->sc_ac2q)) {
2813 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2814 			ac, N(sc->sc_ac2q));
2815 		return 0;
2816 	}
2817 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2818 	if (txq != NULL) {
2819 		sc->sc_ac2q[ac] = txq;
2820 		return 1;
2821 	} else
2822 		return 0;
2823 #undef N
2824 }
2825 
2826 /*
2827  * Update WME parameters for a transmit queue.
2828  */
2829 static int
2830 ath_txq_update(struct ath_softc *sc, int ac)
2831 {
2832 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2833 #define	ATH_TXOP_TO_US(v)		(v<<5)
2834 	struct ieee80211com *ic = &sc->sc_ic;
2835 	struct ath_txq *txq = sc->sc_ac2q[ac];
2836 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2837 	struct ath_hal *ah = sc->sc_ah;
2838 	HAL_TXQ_INFO qi;
2839 
2840 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2841 	qi.tqi_aifs = wmep->wmep_aifsn;
2842 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2843 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2844 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2845 
2846 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
2847 		device_printf(sc->sc_dev, "unable to update hardware queue "
2848 			"parameters for %s traffic!\n",
2849 			ieee80211_wme_acnames[ac]);
2850 		return 0;
2851 	} else {
2852 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
2853 		return 1;
2854 	}
2855 #undef ATH_TXOP_TO_US
2856 #undef ATH_EXPONENT_TO_VALUE
2857 }
2858 
2859 /*
2860  * Callback from the 802.11 layer to update WME parameters.
2861  */
2862 static int
2863 ath_wme_update(struct ieee80211com *ic)
2864 {
2865 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2866 
2867 	return !ath_txq_update(sc, WME_AC_BE) ||
2868 	    !ath_txq_update(sc, WME_AC_BK) ||
2869 	    !ath_txq_update(sc, WME_AC_VI) ||
2870 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
2871 }
2872 
2873 /*
2874  * Reclaim resources for a setup queue.
2875  */
2876 static void
2877 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2878 {
2879 
2880 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2881 	ATH_TXQ_LOCK_DESTROY(txq);
2882 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2883 }
2884 
2885 /*
2886  * Reclaim all tx queue resources.
2887  */
2888 static void
2889 ath_tx_cleanup(struct ath_softc *sc)
2890 {
2891 	int i;
2892 
2893 	ATH_TXBUF_LOCK_DESTROY(sc);
2894 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
2895 		if (ATH_TXQ_SETUP(sc, i))
2896 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
2897 }
2898 
2899 static int
2900 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2901     struct mbuf *m0)
2902 {
2903 	struct ieee80211com *ic = &sc->sc_ic;
2904 	struct ath_hal *ah = sc->sc_ah;
2905 	struct ifnet *ifp = &sc->sc_if;
2906 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
2907 	u_int8_t rix, txrate, ctsrate;
2908 	u_int8_t cix = 0xff;		/* NB: silence compiler */
2909 	struct ath_desc *ds, *ds0;
2910 	struct ath_txq *txq;
2911 	struct mbuf *m;
2912 	struct ieee80211_frame *wh;
2913 	u_int subtype, flags, ctsduration;
2914 	HAL_PKT_TYPE atype;
2915 	const HAL_RATE_TABLE *rt;
2916 	HAL_BOOL shortPreamble;
2917 	struct ath_node *an;
2918 
2919 	wh = mtod(m0, struct ieee80211_frame *);
2920 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2921 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2922 	hdrlen = ieee80211_anyhdrsize(wh);
2923 	/*
2924 	 * Packet length must not include by any
2925 	 * pad bytes; deduct it here.
2926 	 */
2927 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
2928 
2929 	if (iswep) {
2930 		const struct ieee80211_cipher *cip;
2931 		struct ieee80211_key *k;
2932 
2933 		/*
2934 		 * Construct the 802.11 header+trailer for an encrypted
2935 		 * frame. The only reason this can fail is because of an
2936 		 * unknown or unsupported cipher/key type.
2937 		 */
2938 		k = ieee80211_crypto_encap(ic, ni, m0);
2939 		if (k == NULL) {
2940 			/*
2941 			 * This can happen when the key is yanked after the
2942 			 * frame was queued.  Just discard the frame; the
2943 			 * 802.11 layer counts failures and provides
2944 			 * debugging/diagnostics.
2945 			 */
2946 			return EIO;
2947 		}
2948 		/*
2949 		 * Adjust the packet + header lengths for the crypto
2950 		 * additions and calculate the h/w key index.  When
2951 		 * a s/w mic is done the frame will have had any mic
2952 		 * added to it prior to entry so skb->len above will
2953 		 * account for it. Otherwise we need to add it to the
2954 		 * packet length.
2955 		 */
2956 		cip = k->wk_cipher;
2957 		hdrlen += cip->ic_header;
2958 		pktlen += cip->ic_header + cip->ic_trailer;
2959 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
2960 			pktlen += cip->ic_miclen;
2961 		keyix = k->wk_keyix;
2962 
2963 		/* packet header may have moved, reset our local pointer */
2964 		wh = mtod(m0, struct ieee80211_frame *);
2965 	} else
2966 		keyix = HAL_TXKEYIX_INVALID;
2967 
2968 	pktlen += IEEE80211_CRC_LEN;
2969 
2970 	/*
2971 	 * Load the DMA map so any coalescing is done.  This
2972 	 * also calculates the number of descriptors we need.
2973 	 */
2974 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
2975 				     ath_mbuf_load_cb, bf,
2976 				     BUS_DMA_NOWAIT);
2977 	if (error == EFBIG) {
2978 		/* XXX packet requires too many descriptors */
2979 		bf->bf_nseg = ATH_TXDESC+1;
2980 	} else if (error != 0) {
2981 		sc->sc_stats.ast_tx_busdma++;
2982 		m_freem(m0);
2983 		return error;
2984 	}
2985 	/*
2986 	 * Discard null packets and check for packets that
2987 	 * require too many TX descriptors.  We try to convert
2988 	 * the latter to a cluster.
2989 	 */
2990 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
2991 		sc->sc_stats.ast_tx_linear++;
2992 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2993 		if (m == NULL) {
2994 			sc->sc_stats.ast_tx_nombuf++;
2995 			m_freem(m0);
2996 			return ENOMEM;
2997 		}
2998 		M_MOVE_PKTHDR(m, m0);
2999 		MCLGET(m, M_DONTWAIT);
3000 		if ((m->m_flags & M_EXT) == 0) {
3001 			sc->sc_stats.ast_tx_nomcl++;
3002 			m_freem(m0);
3003 			m_free(m);
3004 			return ENOMEM;
3005 		}
3006 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3007 		m_freem(m0);
3008 		m->m_len = m->m_pkthdr.len;
3009 		m0 = m;
3010 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3011 					     ath_mbuf_load_cb, bf,
3012 					     BUS_DMA_NOWAIT);
3013 		if (error != 0) {
3014 			sc->sc_stats.ast_tx_busdma++;
3015 			m_freem(m0);
3016 			return error;
3017 		}
3018 		KASSERT(bf->bf_nseg == 1,
3019 			("ath_tx_start: packet not one segment; nseg %u",
3020 			bf->bf_nseg));
3021 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3022 		sc->sc_stats.ast_tx_nodata++;
3023 		m_freem(m0);
3024 		return EIO;
3025 	}
3026 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3027 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3028 	bf->bf_m = m0;
3029 	bf->bf_node = ni;			/* NB: held reference */
3030 
3031 	/* setup descriptors */
3032 	ds = bf->bf_desc;
3033 	rt = sc->sc_currates;
3034 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3035 
3036 	/*
3037 	 * NB: the 802.11 layer marks whether or not we should
3038 	 * use short preamble based on the current mode and
3039 	 * negotiated parameters.
3040 	 */
3041 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3042 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3043 		shortPreamble = AH_TRUE;
3044 		sc->sc_stats.ast_tx_shortpre++;
3045 	} else {
3046 		shortPreamble = AH_FALSE;
3047 	}
3048 
3049 	an = ATH_NODE(ni);
3050 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3051 	/*
3052 	 * Calculate Atheros packet type from IEEE80211 packet header,
3053 	 * setup for rate calculations, and select h/w transmit queue.
3054 	 */
3055 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3056 	case IEEE80211_FC0_TYPE_MGT:
3057 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3058 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3059 			atype = HAL_PKT_TYPE_BEACON;
3060 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3061 			atype = HAL_PKT_TYPE_PROBE_RESP;
3062 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3063 			atype = HAL_PKT_TYPE_ATIM;
3064 		else
3065 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3066 		rix = 0;			/* XXX lowest rate */
3067 		try0 = ATH_TXMAXTRY;
3068 		if (shortPreamble)
3069 			txrate = an->an_tx_mgtratesp;
3070 		else
3071 			txrate = an->an_tx_mgtrate;
3072 		/* NB: force all management frames to highest queue */
3073 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3074 			/* NB: force all management frames to highest queue */
3075 			txq = sc->sc_ac2q[WME_AC_VO];
3076 		} else
3077 			txq = sc->sc_ac2q[WME_AC_BE];
3078 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3079 		break;
3080 	case IEEE80211_FC0_TYPE_CTL:
3081 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3082 		rix = 0;			/* XXX lowest rate */
3083 		try0 = ATH_TXMAXTRY;
3084 		if (shortPreamble)
3085 			txrate = an->an_tx_mgtratesp;
3086 		else
3087 			txrate = an->an_tx_mgtrate;
3088 		/* NB: force all ctl frames to highest queue */
3089 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3090 			/* NB: force all ctl frames to highest queue */
3091 			txq = sc->sc_ac2q[WME_AC_VO];
3092 		} else
3093 			txq = sc->sc_ac2q[WME_AC_BE];
3094 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3095 		break;
3096 	case IEEE80211_FC0_TYPE_DATA:
3097 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3098 		/*
3099 		 * Data frames; consult the rate control module.
3100 		 */
3101 		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3102 			&rix, &try0, &txrate);
3103 		/*
3104 		 * Default all non-QoS traffic to the background queue.
3105 		 */
3106 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3107 			u_int pri = M_WME_GETAC(m0);
3108 			txq = sc->sc_ac2q[pri];
3109 			if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[pri].wmep_noackPolicy)
3110 				 flags |= HAL_TXDESC_NOACK;
3111 		} else
3112 			txq = sc->sc_ac2q[WME_AC_BE];
3113 		break;
3114 	default:
3115 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3116 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3117 		/* XXX statistic */
3118 		m_freem(m0);
3119 		return EIO;
3120 	}
3121 
3122 	/*
3123 	 * When servicing one or more stations in power-save mode
3124 	 * multicast frames must be buffered until after the beacon.
3125 	 * We use the CAB queue for that.
3126 	 */
3127 	if (ismcast && ic->ic_ps_sta) {
3128 		txq = sc->sc_cabq;
3129 		/* XXX? more bit in 802.11 frame header */
3130 	}
3131 
3132 	/*
3133 	 * Calculate miscellaneous flags.
3134 	 */
3135 	if (ismcast) {
3136 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3137 		sc->sc_stats.ast_tx_noack++;
3138 	} else if (pktlen > ic->ic_rtsthreshold) {
3139 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3140 		cix = rt->info[rix].controlRate;
3141 		sc->sc_stats.ast_tx_rts++;
3142 	}
3143 
3144 	/*
3145 	 * If 802.11g protection is enabled, determine whether
3146 	 * to use RTS/CTS or just CTS.  Note that this is only
3147 	 * done for OFDM unicast frames.
3148 	 */
3149 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3150 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3151 	    (flags & HAL_TXDESC_NOACK) == 0) {
3152 		/* XXX fragments must use CCK rates w/ protection */
3153 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3154 			flags |= HAL_TXDESC_RTSENA;
3155 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3156 			flags |= HAL_TXDESC_CTSENA;
3157 		cix = rt->info[sc->sc_protrix].controlRate;
3158 		sc->sc_stats.ast_tx_protect++;
3159 	}
3160 
3161 	/*
3162 	 * Calculate duration.  This logically belongs in the 802.11
3163 	 * layer but it lacks sufficient information to calculate it.
3164 	 */
3165 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3166 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3167 		u_int16_t dur;
3168 		/*
3169 		 * XXX not right with fragmentation.
3170 		 */
3171 		if (shortPreamble)
3172 			dur = rt->info[rix].spAckDuration;
3173 		else
3174 			dur = rt->info[rix].lpAckDuration;
3175 		*(u_int16_t *)wh->i_dur = htole16(dur);
3176 	}
3177 
3178 	/*
3179 	 * Calculate RTS/CTS rate and duration if needed.
3180 	 */
3181 	ctsduration = 0;
3182 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3183 		/*
3184 		 * CTS transmit rate is derived from the transmit rate
3185 		 * by looking in the h/w rate table.  We must also factor
3186 		 * in whether or not a short preamble is to be used.
3187 		 */
3188 		/* NB: cix is set above where RTS/CTS is enabled */
3189 		KASSERT(cix != 0xff, ("cix not setup"));
3190 		ctsrate = rt->info[cix].rateCode;
3191 		/*
3192 		 * Compute the transmit duration based on the frame
3193 		 * size and the size of an ACK frame.  We call into the
3194 		 * HAL to do the computation since it depends on the
3195 		 * characteristics of the actual PHY being used.
3196 		 *
3197 		 * NB: CTS is assumed the same size as an ACK so we can
3198 		 *     use the precalculated ACK durations.
3199 		 */
3200 		if (shortPreamble) {
3201 			ctsrate |= rt->info[cix].shortPreamble;
3202 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3203 				ctsduration += rt->info[cix].spAckDuration;
3204 			ctsduration += ath_hal_computetxtime(ah,
3205 				rt, pktlen, rix, AH_TRUE);
3206 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3207 				ctsduration += rt->info[cix].spAckDuration;
3208 		} else {
3209 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3210 				ctsduration += rt->info[cix].lpAckDuration;
3211 			ctsduration += ath_hal_computetxtime(ah,
3212 				rt, pktlen, rix, AH_FALSE);
3213 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3214 				ctsduration += rt->info[cix].lpAckDuration;
3215 		}
3216 		/*
3217 		 * Must disable multi-rate retry when using RTS/CTS.
3218 		 */
3219 		try0 = ATH_TXMAXTRY;
3220 	} else
3221 		ctsrate = 0;
3222 
3223 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3224 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3225 			sc->sc_hwmap[txrate], -1);
3226 
3227 	if (ic->ic_rawbpf)
3228 		bpf_mtap(ic->ic_rawbpf, m0);
3229 	if (sc->sc_drvbpf) {
3230 		sc->sc_tx_th.wt_flags = 0;
3231 		if (shortPreamble)
3232 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3233 		if (iswep)
3234 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3235 		sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
3236 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3237 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3238 
3239 		bpf_mtap2(sc->sc_drvbpf,
3240 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3241 	}
3242 
3243 	/*
3244 	 * Determine if a tx interrupt should be generated for
3245 	 * this descriptor.  We take a tx interrupt to reap
3246 	 * descriptors when the h/w hits an EOL condition or
3247 	 * when the descriptor is specifically marked to generate
3248 	 * an interrupt.  We periodically mark descriptors in this
3249 	 * way to insure timely replenishing of the supply needed
3250 	 * for sending frames.  Defering interrupts reduces system
3251 	 * load and potentially allows more concurrent work to be
3252 	 * done but if done to aggressively can cause senders to
3253 	 * backup.
3254 	 *
3255 	 * NB: use >= to deal with sc_txintrperiod changing
3256 	 *     dynamically through sysctl.
3257 	 */
3258 	if (flags & HAL_TXDESC_INTREQ) {
3259 		txq->axq_intrcnt = 0;
3260 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3261 		flags |= HAL_TXDESC_INTREQ;
3262 		txq->axq_intrcnt = 0;
3263 	}
3264 
3265 	/*
3266 	 * Formulate first tx descriptor with tx controls.
3267 	 */
3268 	/* XXX check return value? */
3269 	ath_hal_setuptxdesc(ah, ds
3270 		, pktlen		/* packet length */
3271 		, hdrlen		/* header length */
3272 		, atype			/* Atheros packet type */
3273 		, ni->ni_txpower	/* txpower */
3274 		, txrate, try0		/* series 0 rate/tries */
3275 		, keyix			/* key cache index */
3276 		, sc->sc_txantenna	/* antenna mode */
3277 		, flags			/* flags */
3278 		, ctsrate		/* rts/cts rate */
3279 		, ctsduration		/* rts/cts duration */
3280 	);
3281 	/*
3282 	 * Setup the multi-rate retry state only when we're
3283 	 * going to use it.  This assumes ath_hal_setuptxdesc
3284 	 * initializes the descriptors (so we don't have to)
3285 	 * when the hardware supports multi-rate retry and
3286 	 * we don't use it.
3287 	 */
3288 	if (try0 != ATH_TXMAXTRY)
3289 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3290 
3291 	/*
3292 	 * Fillin the remainder of the descriptor info.
3293 	 */
3294 	ds0 = ds;
3295 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3296 		ds->ds_data = bf->bf_segs[i].ds_addr;
3297 		if (i == bf->bf_nseg - 1)
3298 			ds->ds_link = 0;
3299 		else
3300 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3301 		ath_hal_filltxdesc(ah, ds
3302 			, bf->bf_segs[i].ds_len	/* segment length */
3303 			, i == 0		/* first segment */
3304 			, i == bf->bf_nseg - 1	/* last segment */
3305 			, ds0			/* first descriptor */
3306 		);
3307 		DPRINTF(sc, ATH_DEBUG_XMIT,
3308 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3309 			__func__, i, ds->ds_link, ds->ds_data,
3310 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3311 	}
3312 #if 0
3313 	if ((flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) &&
3314   	    !ath_hal_updateCTSForBursting(ah, ds
3315 		     , txq->axq_linkbuf != NULL ?
3316 			txq->axq_linkbuf->bf_desc : NULL
3317 		     , txq->axq_lastdsWithCTS
3318 		     , txq->axq_gatingds
3319 		     , IEEE80211_TXOP_TO_US(ic->ic_chanParams.cap_wmeParams[skb->priority].wmep_txopLimit)
3320 		     , ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE))) {
3321 		ATH_TXQ_LOCK(txq);
3322 		txq->axq_lastdsWithCTS = ds;
3323 		/* set gating Desc to final desc */
3324 		txq->axq_gatingds = (struct ath_desc *)txq->axq_link;
3325 		ATH_TXQ_UNLOCK(txq);
3326 	}
3327 #endif
3328 	/*
3329 	 * Insert the frame on the outbound list and
3330 	 * pass it on to the hardware.
3331 	 */
3332 	ATH_TXQ_LOCK(txq);
3333 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3334 	if (txq->axq_link == NULL) {
3335 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3336 		DPRINTF(sc, ATH_DEBUG_XMIT,
3337 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3338 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3339 			txq->axq_depth);
3340 	} else {
3341 		*txq->axq_link = bf->bf_daddr;
3342 		DPRINTF(sc, ATH_DEBUG_XMIT,
3343 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3344 			txq->axq_qnum, txq->axq_link,
3345 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3346 	}
3347 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3348 	ATH_TXQ_UNLOCK(txq);
3349 
3350 	if (sc->sc_softled)
3351 		ath_update_led(sc);
3352 
3353 	/*
3354 	 * The CAB queue is started from the SWBA handler since
3355 	 * frames only go out on DTIM and to avoid possible races.
3356 	 */
3357 	if (txq != sc->sc_cabq)
3358 		ath_hal_txstart(ah, txq->axq_qnum);
3359 	return 0;
3360 }
3361 
3362 /*
3363  * Process completed xmit descriptors from the specified queue.
3364  */
3365 static void
3366 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3367 {
3368 	struct ath_hal *ah = sc->sc_ah;
3369 	struct ieee80211com *ic = &sc->sc_ic;
3370 	struct ath_buf *bf;
3371 	struct ath_desc *ds;
3372 	struct ieee80211_node *ni;
3373 	struct ath_node *an;
3374 	int sr, lr, pri;
3375 	HAL_STATUS status;
3376 
3377 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3378 		__func__, txq->axq_qnum,
3379 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3380 		txq->axq_link);
3381 	for (;;) {
3382 		ATH_TXQ_LOCK(txq);
3383 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3384 		bf = STAILQ_FIRST(&txq->axq_q);
3385 		if (bf == NULL) {
3386 			txq->axq_link = NULL;
3387 			ATH_TXQ_UNLOCK(txq);
3388 			break;
3389 		}
3390 		/* only the last descriptor is needed */
3391 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3392 		status = ath_hal_txprocdesc(ah, ds);
3393 #ifdef AR_DEBUG
3394 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3395 			ath_printtxbuf(bf, status == HAL_OK);
3396 #endif
3397 		if (status == HAL_EINPROGRESS) {
3398 			ATH_TXQ_UNLOCK(txq);
3399 			break;
3400 		}
3401 #if 0
3402 		if (bf->bf_desc == txq->axq_lastdsWithCTS)
3403 			txq->axq_lastdsWithCTS = NULL;
3404 		if (ds == txq->axq_gatingds)
3405 			txq->axq_gatingds = NULL;
3406 #endif
3407 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3408 		ATH_TXQ_UNLOCK(txq);
3409 
3410 		ni = bf->bf_node;
3411 		if (ni != NULL) {
3412 			an = ATH_NODE(ni);
3413 			if (ds->ds_txstat.ts_status == 0) {
3414 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3415 				sc->sc_stats.ast_ant_tx[txant]++;
3416 				sc->sc_ant_tx[txant]++;
3417 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3418 					sc->sc_stats.ast_tx_altrate++;
3419 				sc->sc_stats.ast_tx_rssi =
3420 					ds->ds_txstat.ts_rssi;
3421 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3422 					ds->ds_txstat.ts_rssi);
3423 				pri = M_WME_GETAC(bf->bf_m);
3424 				if (pri >= WME_AC_VO)
3425 					ic->ic_wme.wme_hipri_traffic++;
3426 				ni->ni_inact = ni->ni_inact_reload;
3427 			} else {
3428 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3429 					sc->sc_stats.ast_tx_xretries++;
3430 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3431 					sc->sc_stats.ast_tx_fifoerr++;
3432 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3433 					sc->sc_stats.ast_tx_filtered++;
3434 			}
3435 			sr = ds->ds_txstat.ts_shortretry;
3436 			lr = ds->ds_txstat.ts_longretry;
3437 			sc->sc_stats.ast_tx_shortretry += sr;
3438 			sc->sc_stats.ast_tx_longretry += lr;
3439 			/*
3440 			 * Hand the descriptor to the rate control algorithm.
3441 			 */
3442 			ath_rate_tx_complete(sc, an, ds);
3443 			/*
3444 			 * Reclaim reference to node.
3445 			 *
3446 			 * NB: the node may be reclaimed here if, for example
3447 			 *     this is a DEAUTH message that was sent and the
3448 			 *     node was timed out due to inactivity.
3449 			 */
3450 			ieee80211_free_node(ni);
3451 		}
3452 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3453 		    BUS_DMASYNC_POSTWRITE);
3454 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3455 		m_freem(bf->bf_m);
3456 		bf->bf_m = NULL;
3457 		bf->bf_node = NULL;
3458 
3459 		ATH_TXBUF_LOCK(sc);
3460 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3461 		ATH_TXBUF_UNLOCK(sc);
3462 	}
3463 }
3464 
3465 /*
3466  * Deferred processing of transmit interrupt; special-cased
3467  * for a single hardware transmit queue (e.g. 5210 and 5211).
3468  */
3469 static void
3470 ath_tx_proc_q0(void *arg, int npending)
3471 {
3472 	struct ath_softc *sc = arg;
3473 	struct ifnet *ifp = &sc->sc_if;
3474 
3475 	ath_tx_processq(sc, &sc->sc_txq[0]);
3476 	ath_tx_processq(sc, sc->sc_cabq);
3477 	ifp->if_flags &= ~IFF_OACTIVE;
3478 	sc->sc_tx_timer = 0;
3479 
3480 	ath_start(ifp);
3481 }
3482 
3483 /*
3484  * Deferred processing of transmit interrupt; special-cased
3485  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3486  */
3487 static void
3488 ath_tx_proc_q0123(void *arg, int npending)
3489 {
3490 	struct ath_softc *sc = arg;
3491 	struct ifnet *ifp = &sc->sc_if;
3492 
3493 	/*
3494 	 * Process each active queue.
3495 	 */
3496 	ath_tx_processq(sc, &sc->sc_txq[0]);
3497 	ath_tx_processq(sc, &sc->sc_txq[1]);
3498 	ath_tx_processq(sc, &sc->sc_txq[2]);
3499 	ath_tx_processq(sc, &sc->sc_txq[3]);
3500 	ath_tx_processq(sc, sc->sc_cabq);
3501 
3502 	ifp->if_flags &= ~IFF_OACTIVE;
3503 	sc->sc_tx_timer = 0;
3504 
3505 	ath_start(ifp);
3506 }
3507 
3508 /*
3509  * Deferred processing of transmit interrupt.
3510  */
3511 static void
3512 ath_tx_proc(void *arg, int npending)
3513 {
3514 	struct ath_softc *sc = arg;
3515 	struct ifnet *ifp = &sc->sc_if;
3516 	int i;
3517 
3518 	/*
3519 	 * Process each active queue.
3520 	 */
3521 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3522 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3523 		if (ATH_TXQ_SETUP(sc, i))
3524 			ath_tx_processq(sc, &sc->sc_txq[i]);
3525 
3526 	ifp->if_flags &= ~IFF_OACTIVE;
3527 	sc->sc_tx_timer = 0;
3528 
3529 	ath_start(ifp);
3530 }
3531 
3532 static void
3533 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3534 {
3535 	struct ath_hal *ah = sc->sc_ah;
3536 	struct ieee80211_node *ni;
3537 	struct ath_buf *bf;
3538 
3539 	/*
3540 	 * NB: this assumes output has been stopped and
3541 	 *     we do not need to block ath_tx_tasklet
3542 	 */
3543 	for (;;) {
3544 		ATH_TXQ_LOCK(txq);
3545 		bf = STAILQ_FIRST(&txq->axq_q);
3546 		if (bf == NULL) {
3547 			txq->axq_link = NULL;
3548 			ATH_TXQ_UNLOCK(txq);
3549 			break;
3550 		}
3551 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3552 		ATH_TXQ_UNLOCK(txq);
3553 #ifdef AR_DEBUG
3554 		if (sc->sc_debug & ATH_DEBUG_RESET)
3555 			ath_printtxbuf(bf,
3556 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3557 #endif /* AR_DEBUG */
3558 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3559 		m_freem(bf->bf_m);
3560 		bf->bf_m = NULL;
3561 		ni = bf->bf_node;
3562 		bf->bf_node = NULL;
3563 		if (ni != NULL) {
3564 			/*
3565 			 * Reclaim node reference.
3566 			 */
3567 			ieee80211_free_node(ni);
3568 		}
3569 		ATH_TXBUF_LOCK(sc);
3570 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3571 		ATH_TXBUF_UNLOCK(sc);
3572 	}
3573 }
3574 
3575 static void
3576 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3577 {
3578 	struct ath_hal *ah = sc->sc_ah;
3579 
3580 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3581 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3582 	    __func__, txq->axq_qnum,
3583 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3584 	    txq->axq_link);
3585 }
3586 
3587 /*
3588  * Drain the transmit queues and reclaim resources.
3589  */
3590 static void
3591 ath_draintxq(struct ath_softc *sc)
3592 {
3593 	struct ath_hal *ah = sc->sc_ah;
3594 	struct ifnet *ifp = &sc->sc_if;
3595 	int i;
3596 
3597 	/* XXX return value */
3598 	if (!sc->sc_invalid) {
3599 		/* don't touch the hardware if marked invalid */
3600 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3601 		DPRINTF(sc, ATH_DEBUG_RESET,
3602 		    "%s: beacon queue %p\n", __func__,
3603 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3604 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3605 			if (ATH_TXQ_SETUP(sc, i))
3606 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3607 	}
3608 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3609 		if (ATH_TXQ_SETUP(sc, i))
3610 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3611 	ifp->if_flags &= ~IFF_OACTIVE;
3612 	sc->sc_tx_timer = 0;
3613 }
3614 
3615 /*
3616  * Disable the receive h/w in preparation for a reset.
3617  */
3618 static void
3619 ath_stoprecv(struct ath_softc *sc)
3620 {
3621 #define	PA2DESC(_sc, _pa) \
3622 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3623 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3624 	struct ath_hal *ah = sc->sc_ah;
3625 
3626 	ath_hal_stoppcurecv(ah);	/* disable PCU */
3627 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3628 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3629 	DELAY(3000);			/* 3ms is long enough for 1 frame */
3630 #ifdef AR_DEBUG
3631 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3632 		struct ath_buf *bf;
3633 
3634 		printf("%s: rx queue %p, link %p\n", __func__,
3635 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3636 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3637 			struct ath_desc *ds = bf->bf_desc;
3638 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3639 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3640 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3641 				ath_printrxbuf(bf, status == HAL_OK);
3642 		}
3643 	}
3644 #endif
3645 	sc->sc_rxlink = NULL;		/* just in case */
3646 #undef PA2DESC
3647 }
3648 
3649 /*
3650  * Enable the receive h/w following a reset.
3651  */
3652 static int
3653 ath_startrecv(struct ath_softc *sc)
3654 {
3655 	struct ath_hal *ah = sc->sc_ah;
3656 	struct ath_buf *bf;
3657 
3658 	sc->sc_rxlink = NULL;
3659 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3660 		int error = ath_rxbuf_init(sc, bf);
3661 		if (error != 0) {
3662 			DPRINTF(sc, ATH_DEBUG_RECV,
3663 				"%s: ath_rxbuf_init failed %d\n",
3664 				__func__, error);
3665 			return error;
3666 		}
3667 	}
3668 
3669 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3670 	ath_hal_putrxbuf(ah, bf->bf_daddr);
3671 	ath_hal_rxena(ah);		/* enable recv descriptors */
3672 	ath_mode_init(sc);		/* set filters, etc. */
3673 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3674 	return 0;
3675 }
3676 
3677 /*
3678  * Update internal state after a channel change.
3679  */
3680 static void
3681 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3682 {
3683 	struct ieee80211com *ic = &sc->sc_ic;
3684 	enum ieee80211_phymode mode;
3685 
3686 	/*
3687 	 * Change channels and update the h/w rate map
3688 	 * if we're switching; e.g. 11a to 11b/g.
3689 	 */
3690 	mode = ieee80211_chan2mode(ic, chan);
3691 	if (mode != sc->sc_curmode)
3692 		ath_setcurmode(sc, mode);
3693 	/*
3694 	 * Update BPF state.
3695 	 */
3696 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3697 		htole16(chan->ic_freq);
3698 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3699 		htole16(chan->ic_flags);
3700 }
3701 
3702 /*
3703  * Set/change channels.  If the channel is really being changed,
3704  * it's done by reseting the chip.  To accomplish this we must
3705  * first cleanup any pending DMA, then restart stuff after a la
3706  * ath_init.
3707  */
3708 static int
3709 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3710 {
3711 	struct ath_hal *ah = sc->sc_ah;
3712 	struct ieee80211com *ic = &sc->sc_ic;
3713 	HAL_CHANNEL hchan;
3714 
3715 	/*
3716 	 * Convert to a HAL channel description with
3717 	 * the flags constrained to reflect the current
3718 	 * operating mode.
3719 	 */
3720 	hchan.channel = chan->ic_freq;
3721 	hchan.channelFlags = ath_chan2flags(ic, chan);
3722 
3723 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3724 	    __func__,
3725 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
3726 		sc->sc_curchan.channelFlags),
3727 	    	sc->sc_curchan.channel,
3728 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3729 	if (hchan.channel != sc->sc_curchan.channel ||
3730 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
3731 		HAL_STATUS status;
3732 
3733 		/*
3734 		 * To switch channels clear any pending DMA operations;
3735 		 * wait long enough for the RX fifo to drain, reset the
3736 		 * hardware at the new frequency, and then re-enable
3737 		 * the relevant bits of the h/w.
3738 		 */
3739 		ath_hal_intrset(ah, 0);		/* disable interrupts */
3740 		ath_draintxq(sc);		/* clear pending tx frames */
3741 		ath_stoprecv(sc);		/* turn off frame recv */
3742 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3743 			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
3744 				"channel %u (%u Mhz)\n",
3745 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3746 			return EIO;
3747 		}
3748 		sc->sc_curchan = hchan;
3749 		ath_update_txpow(sc);		/* update tx power state */
3750 
3751 		/*
3752 		 * Re-enable rx framework.
3753 		 */
3754 		if (ath_startrecv(sc) != 0) {
3755 			if_printf(ic->ic_ifp,
3756 				"ath_chan_set: unable to restart recv logic\n");
3757 			return EIO;
3758 		}
3759 
3760 		/*
3761 		 * Change channels and update the h/w rate map
3762 		 * if we're switching; e.g. 11a to 11b/g.
3763 		 */
3764 		ic->ic_ibss_chan = chan;
3765 		ath_chan_change(sc, chan);
3766 
3767 		/*
3768 		 * Re-enable interrupts.
3769 		 */
3770 		ath_hal_intrset(ah, sc->sc_imask);
3771 	}
3772 	return 0;
3773 }
3774 
3775 static void
3776 ath_next_scan(void *arg)
3777 {
3778 	struct ath_softc *sc = arg;
3779 	struct ieee80211com *ic = &sc->sc_ic;
3780 
3781 	if (ic->ic_state == IEEE80211_S_SCAN)
3782 		ieee80211_next_scan(ic);
3783 }
3784 
3785 /*
3786  * Periodically recalibrate the PHY to account
3787  * for temperature/environment changes.
3788  */
3789 static void
3790 ath_calibrate(void *arg)
3791 {
3792 	struct ath_softc *sc = arg;
3793 	struct ath_hal *ah = sc->sc_ah;
3794 
3795 	sc->sc_stats.ast_per_cal++;
3796 
3797 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
3798 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
3799 
3800 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3801 		/*
3802 		 * Rfgain is out of bounds, reset the chip
3803 		 * to load new gain values.
3804 		 */
3805 		sc->sc_stats.ast_per_rfgain++;
3806 		ath_reset(&sc->sc_if);
3807 	}
3808 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
3809 		DPRINTF(sc, ATH_DEBUG_ANY,
3810 			"%s: calibration of channel %u failed\n",
3811 			__func__, sc->sc_curchan.channel);
3812 		sc->sc_stats.ast_per_calfail++;
3813 	}
3814 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
3815 }
3816 
3817 static int
3818 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3819 {
3820 	struct ifnet *ifp = ic->ic_ifp;
3821 	struct ath_softc *sc = ifp->if_softc;
3822 	struct ath_hal *ah = sc->sc_ah;
3823 	struct ieee80211_node *ni;
3824 	int i, error;
3825 	const u_int8_t *bssid;
3826 	u_int32_t rfilt;
3827 	static const HAL_LED_STATE leds[] = {
3828 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
3829 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
3830 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
3831 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
3832 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
3833 	};
3834 
3835 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
3836 		ieee80211_state_name[ic->ic_state],
3837 		ieee80211_state_name[nstate]);
3838 
3839 	callout_stop(&sc->sc_scan_ch);
3840 	callout_stop(&sc->sc_cal_ch);
3841 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
3842 
3843 	if (nstate == IEEE80211_S_INIT) {
3844 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3845 		ath_hal_intrset(ah, sc->sc_imask);
3846 		/*
3847 		 * Notify the rate control algorithm.
3848 		 */
3849 		ath_rate_newstate(sc, nstate);
3850 		goto done;
3851 	}
3852 	ni = ic->ic_bss;
3853 	error = ath_chan_set(sc, ni->ni_chan);
3854 	if (error != 0)
3855 		goto bad;
3856 	rfilt = ath_calcrxfilter(sc, nstate);
3857 	if (nstate == IEEE80211_S_SCAN)
3858 		bssid = ifp->if_broadcastaddr;
3859 	else
3860 		bssid = ni->ni_bssid;
3861 	ath_hal_setrxfilter(ah, rfilt);
3862 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
3863 		 __func__, rfilt, ether_sprintf(bssid));
3864 
3865 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3866 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
3867 	else
3868 		ath_hal_setassocid(ah, bssid, 0);
3869 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3870 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
3871 			if (ath_hal_keyisvalid(ah, i))
3872 				ath_hal_keysetmac(ah, i, bssid);
3873 	}
3874 
3875 	/*
3876 	 * Notify the rate control algorithm so rates
3877 	 * are setup should ath_beacon_alloc be called.
3878 	 */
3879 	ath_rate_newstate(sc, nstate);
3880 
3881 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3882 		/* nothing to do */;
3883 	} else if (nstate == IEEE80211_S_RUN) {
3884 		DPRINTF(sc, ATH_DEBUG_STATE,
3885 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3886 			"capinfo=0x%04x chan=%d\n"
3887 			 , __func__
3888 			 , ic->ic_flags
3889 			 , ni->ni_intval
3890 			 , ether_sprintf(ni->ni_bssid)
3891 			 , ni->ni_capinfo
3892 			 , ieee80211_chan2ieee(ic, ni->ni_chan));
3893 
3894 		/*
3895 		 * Allocate and setup the beacon frame for AP or adhoc mode.
3896 		 */
3897 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3898 		    ic->ic_opmode == IEEE80211_M_IBSS) {
3899 			error = ath_beacon_alloc(sc, ni);
3900 			if (error != 0)
3901 				goto bad;
3902 		}
3903 
3904 		/*
3905 		 * Configure the beacon and sleep timers.
3906 		 */
3907 		ath_beacon_config(sc);
3908 	} else {
3909 		ath_hal_intrset(ah,
3910 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
3911 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3912 	}
3913 done:
3914 	/*
3915 	 * Invoke the parent method to complete the work.
3916 	 */
3917 	error = sc->sc_newstate(ic, nstate, arg);
3918 	/*
3919 	 * Finally, start any timers.
3920 	 */
3921 	if (nstate == IEEE80211_S_RUN) {
3922 		/* start periodic recalibration timer */
3923 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
3924 			ath_calibrate, sc);
3925 	} else if (nstate == IEEE80211_S_SCAN) {
3926 		/* start ap/neighbor scan timer */
3927 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
3928 			ath_next_scan, sc);
3929 	}
3930 bad:
3931 	return error;
3932 }
3933 
3934 /*
3935  * Setup driver-specific state for a newly associated node.
3936  * Note that we're called also on a re-associate, the isnew
3937  * param tells us if this is the first time or not.
3938  */
3939 static void
3940 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3941 {
3942 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3943 
3944 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
3945 }
3946 
3947 static int
3948 ath_getchannels(struct ath_softc *sc, u_int cc,
3949 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
3950 {
3951 	struct ieee80211com *ic = &sc->sc_ic;
3952 	struct ifnet *ifp = &sc->sc_if;
3953 	struct ath_hal *ah = sc->sc_ah;
3954 	HAL_CHANNEL *chans;
3955 	int i, ix, nchan;
3956 
3957 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3958 			M_TEMP, M_NOWAIT);
3959 	if (chans == NULL) {
3960 		if_printf(ifp, "unable to allocate channel table\n");
3961 		return ENOMEM;
3962 	}
3963 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3964 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
3965 		u_int32_t rd;
3966 
3967 		ath_hal_getregdomain(ah, &rd);
3968 		if_printf(ifp, "unable to collect channel list from hal; "
3969 			"regdomain likely %u country code %u\n", rd, cc);
3970 		free(chans, M_TEMP);
3971 		return EINVAL;
3972 	}
3973 
3974 	/*
3975 	 * Convert HAL channels to ieee80211 ones and insert
3976 	 * them in the table according to their channel number.
3977 	 */
3978 	for (i = 0; i < nchan; i++) {
3979 		HAL_CHANNEL *c = &chans[i];
3980 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3981 		if (ix > IEEE80211_CHAN_MAX) {
3982 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3983 				ix, c->channel, c->channelFlags);
3984 			continue;
3985 		}
3986 		/* NB: flags are known to be compatible */
3987 		if (ic->ic_channels[ix].ic_freq == 0) {
3988 			ic->ic_channels[ix].ic_freq = c->channel;
3989 			ic->ic_channels[ix].ic_flags = c->channelFlags;
3990 		} else {
3991 			/* channels overlap; e.g. 11g and 11b */
3992 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
3993 		}
3994 	}
3995 	free(chans, M_TEMP);
3996 	return 0;
3997 }
3998 
3999 static void
4000 ath_update_led(struct ath_softc *sc)
4001 {
4002 	struct ieee80211com *ic = &sc->sc_ic;
4003 	struct ath_hal *ah = sc->sc_ah;
4004 	u_int32_t threshold;
4005 
4006 	/*
4007 	 * When not associated, flash LED on for 5s, off for 200ms.
4008 	 * XXX this assumes 100ms beacon interval.
4009 	 */
4010 	if (ic->ic_state != IEEE80211_S_RUN) {
4011 		threshold = 2 + sc->sc_ledstate * 48;
4012 	} else {
4013 		threshold = 2 + sc->sc_ledstate * 18;
4014 	}
4015 	if (ic->ic_stats.is_rx_beacon - sc->sc_beacons >= threshold) {
4016 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
4017 		ath_hal_gpioset(ah, sc->sc_ledpin, sc->sc_ledstate);
4018 		sc->sc_ledstate ^= 1;
4019 		sc->sc_beacons = ic->ic_stats.is_rx_beacon;
4020 	}
4021 }
4022 
4023 static void
4024 ath_update_txpow(struct ath_softc *sc)
4025 {
4026 	struct ieee80211com *ic = &sc->sc_ic;
4027 	struct ath_hal *ah = sc->sc_ah;
4028 	u_int32_t txpow;
4029 
4030 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4031 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4032 		/* read back in case value is clamped */
4033 		ath_hal_gettxpowlimit(ah, &txpow);
4034 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4035 	}
4036 	/*
4037 	 * Fetch max tx power level for status requests.
4038 	 */
4039 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4040 	ic->ic_bss->ni_txpower = txpow;
4041 }
4042 
4043 static int
4044 ath_rate_setup(struct ath_softc *sc, u_int mode)
4045 {
4046 	struct ath_hal *ah = sc->sc_ah;
4047 	struct ieee80211com *ic = &sc->sc_ic;
4048 	const HAL_RATE_TABLE *rt;
4049 	struct ieee80211_rateset *rs;
4050 	int i, maxrates;
4051 
4052 	switch (mode) {
4053 	case IEEE80211_MODE_11A:
4054 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4055 		break;
4056 	case IEEE80211_MODE_11B:
4057 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4058 		break;
4059 	case IEEE80211_MODE_11G:
4060 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4061 		break;
4062 	case IEEE80211_MODE_TURBO_A:
4063 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4064 		break;
4065 	case IEEE80211_MODE_TURBO_G:
4066 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4067 		break;
4068 	default:
4069 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4070 			__func__, mode);
4071 		return 0;
4072 	}
4073 	rt = sc->sc_rates[mode];
4074 	if (rt == NULL)
4075 		return 0;
4076 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4077 		DPRINTF(sc, ATH_DEBUG_ANY,
4078 			"%s: rate table too small (%u > %u)\n",
4079 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4080 		maxrates = IEEE80211_RATE_MAXSIZE;
4081 	} else
4082 		maxrates = rt->rateCount;
4083 	rs = &ic->ic_sup_rates[mode];
4084 	for (i = 0; i < maxrates; i++)
4085 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4086 	rs->rs_nrates = maxrates;
4087 	return 1;
4088 }
4089 
4090 static void
4091 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4092 {
4093 	const HAL_RATE_TABLE *rt;
4094 	int i;
4095 
4096 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4097 	rt = sc->sc_rates[mode];
4098 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4099 	for (i = 0; i < rt->rateCount; i++)
4100 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4101 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4102 	for (i = 0; i < 32; i++) {
4103 		u_int8_t ix = rt->rateCodeToIndex[i];
4104 		if (ix != 0xff)
4105 			sc->sc_hwmap[i] = rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4106 	}
4107 	sc->sc_currates = rt;
4108 	sc->sc_curmode = mode;
4109 	/*
4110 	 * All protection frames are transmited at 2Mb/s for
4111 	 * 11g, otherwise at 1Mb/s.
4112 	 * XXX select protection rate index from rate table.
4113 	 */
4114 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4115 	/* NB: caller is responsible for reseting rate control state */
4116 }
4117 
4118 #ifdef AR_DEBUG
4119 static void
4120 ath_printrxbuf(struct ath_buf *bf, int done)
4121 {
4122 	struct ath_desc *ds;
4123 	int i;
4124 
4125 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4126 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4127 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4128 		    ds->ds_link, ds->ds_data,
4129 		    ds->ds_ctl0, ds->ds_ctl1,
4130 		    ds->ds_hw[0], ds->ds_hw[1],
4131 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4132 	}
4133 }
4134 
4135 static void
4136 ath_printtxbuf(struct ath_buf *bf, int done)
4137 {
4138 	struct ath_desc *ds;
4139 	int i;
4140 
4141 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4142 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4143 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4144 		    ds->ds_link, ds->ds_data,
4145 		    ds->ds_ctl0, ds->ds_ctl1,
4146 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4147 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4148 	}
4149 }
4150 #endif /* AR_DEBUG */
4151 
4152 static void
4153 ath_watchdog(struct ifnet *ifp)
4154 {
4155 	struct ath_softc *sc = ifp->if_softc;
4156 	struct ieee80211com *ic = &sc->sc_ic;
4157 
4158 	ifp->if_timer = 0;
4159 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4160 		return;
4161 	if (sc->sc_tx_timer) {
4162 		if (--sc->sc_tx_timer == 0) {
4163 			if_printf(ifp, "device timeout\n");
4164 			ath_reset(ifp);
4165 			ifp->if_oerrors++;
4166 			sc->sc_stats.ast_watchdog++;
4167 		} else
4168 			ifp->if_timer = 1;
4169 	}
4170 	ieee80211_watchdog(ic);
4171 }
4172 
4173 /*
4174  * Diagnostic interface to the HAL.  This is used by various
4175  * tools to do things like retrieve register contents for
4176  * debugging.  The mechanism is intentionally opaque so that
4177  * it can change frequently w/o concern for compatiblity.
4178  */
4179 static int
4180 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4181 {
4182 	struct ath_hal *ah = sc->sc_ah;
4183 	u_int id = ad->ad_id & ATH_DIAG_ID;
4184 	void *indata = NULL;
4185 	void *outdata = NULL;
4186 	u_int32_t insize = ad->ad_in_size;
4187 	u_int32_t outsize = ad->ad_out_size;
4188 	int error = 0;
4189 
4190 	if (ad->ad_id & ATH_DIAG_IN) {
4191 		/*
4192 		 * Copy in data.
4193 		 */
4194 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4195 		if (indata == NULL) {
4196 			error = ENOMEM;
4197 			goto bad;
4198 		}
4199 		error = copyin(ad->ad_in_data, indata, insize);
4200 		if (error)
4201 			goto bad;
4202 	}
4203 	if (ad->ad_id & ATH_DIAG_DYN) {
4204 		/*
4205 		 * Allocate a buffer for the results (otherwise the HAL
4206 		 * returns a pointer to a buffer where we can read the
4207 		 * results).  Note that we depend on the HAL leaving this
4208 		 * pointer for us to use below in reclaiming the buffer;
4209 		 * may want to be more defensive.
4210 		 */
4211 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4212 		if (outdata == NULL) {
4213 			error = ENOMEM;
4214 			goto bad;
4215 		}
4216 	}
4217 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4218 		if (outsize < ad->ad_out_size)
4219 			ad->ad_out_size = outsize;
4220 		if (outdata != NULL)
4221 			error = copyout(outdata, ad->ad_out_data,
4222 					ad->ad_out_size);
4223 	} else {
4224 		error = EINVAL;
4225 	}
4226 bad:
4227 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4228 		free(indata, M_TEMP);
4229 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4230 		free(outdata, M_TEMP);
4231 	return error;
4232 }
4233 
4234 static int
4235 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4236 {
4237 #define	IS_RUNNING(ifp) \
4238 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4239 	struct ath_softc *sc = ifp->if_softc;
4240 	struct ieee80211com *ic = &sc->sc_ic;
4241 	struct ifreq *ifr = (struct ifreq *)data;
4242 	int error = 0;
4243 
4244 	ATH_LOCK(sc);
4245 	switch (cmd) {
4246 	case SIOCSIFFLAGS:
4247 		if (IS_RUNNING(ifp)) {
4248 			/*
4249 			 * To avoid rescanning another access point,
4250 			 * do not call ath_init() here.  Instead,
4251 			 * only reflect promisc mode settings.
4252 			 */
4253 			ath_mode_init(sc);
4254 		} else if (ifp->if_flags & IFF_UP) {
4255 			/*
4256 			 * Beware of being called during attach/detach
4257 			 * to reset promiscuous mode.  In that case we
4258 			 * will still be marked UP but not RUNNING.
4259 			 * However trying to re-init the interface
4260 			 * is the wrong thing to do as we've already
4261 			 * torn down much of our state.  There's
4262 			 * probably a better way to deal with this.
4263 			 */
4264 			if (!sc->sc_invalid && ic->ic_bss != NULL)
4265 				ath_init(ifp);	/* XXX lose error */
4266 		} else
4267 			ath_stop_locked(ifp);
4268 		break;
4269 	case SIOCADDMULTI:
4270 	case SIOCDELMULTI:
4271 		/*
4272 		 * The upper layer has already installed/removed
4273 		 * the multicast address(es), just recalculate the
4274 		 * multicast filter for the card.
4275 		 */
4276 		if (ifp->if_flags & IFF_RUNNING)
4277 			ath_mode_init(sc);
4278 		break;
4279 	case SIOCGATHSTATS:
4280 		/* NB: embed these numbers to get a consistent view */
4281 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4282 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4283 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4284 		ATH_UNLOCK(sc);
4285 		/*
4286 		 * NB: Drop the softc lock in case of a page fault;
4287 		 * we'll accept any potential inconsisentcy in the
4288 		 * statistics.  The alternative is to copy the data
4289 		 * to a local structure.
4290 		 */
4291 		return copyout(&sc->sc_stats,
4292 				ifr->ifr_data, sizeof (sc->sc_stats));
4293 	case SIOCGATHDIAG:
4294 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4295 		break;
4296 	default:
4297 		error = ieee80211_ioctl(ic, cmd, data);
4298 		if (error == ENETRESET) {
4299 			if (IS_RUNNING(ifp) &&
4300 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4301 				ath_init(ifp);	/* XXX lose error */
4302 			error = 0;
4303 		}
4304 		if (error == ERESTART)
4305 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4306 		break;
4307 	}
4308 	ATH_UNLOCK(sc);
4309 	return error;
4310 #undef IS_UP
4311 }
4312 
4313 static int
4314 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4315 {
4316 	struct ath_softc *sc = arg1;
4317 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4318 	int error;
4319 
4320 	error = sysctl_handle_int(oidp, &slottime, 0, req);
4321 	if (error || !req->newptr)
4322 		return error;
4323 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4324 }
4325 
4326 static int
4327 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4328 {
4329 	struct ath_softc *sc = arg1;
4330 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4331 	int error;
4332 
4333 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4334 	if (error || !req->newptr)
4335 		return error;
4336 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4337 }
4338 
4339 static int
4340 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4341 {
4342 	struct ath_softc *sc = arg1;
4343 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4344 	int error;
4345 
4346 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4347 	if (error || !req->newptr)
4348 		return error;
4349 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4350 }
4351 
4352 static int
4353 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4354 {
4355 	struct ath_softc *sc = arg1;
4356 	int softled = sc->sc_softled;
4357 	int error;
4358 
4359 	error = sysctl_handle_int(oidp, &softled, 0, req);
4360 	if (error || !req->newptr)
4361 		return error;
4362 	if (softled > 1)
4363 		softled = 1;
4364 	if (softled != sc->sc_softled) {
4365 		if (softled)
4366 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4367 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !softled);
4368 		sc->sc_softled = softled;
4369 	}
4370 	return 0;
4371 }
4372 
4373 static int
4374 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4375 {
4376 	struct ath_softc *sc = arg1;
4377 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4378 	int error;
4379 
4380 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4381 	if (!error && req->newptr)
4382 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4383 	return error;
4384 }
4385 
4386 static int
4387 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4388 {
4389 	struct ath_softc *sc = arg1;
4390 	u_int diversity = sc->sc_diversity;
4391 	int error;
4392 
4393 	error = sysctl_handle_int(oidp, &diversity, 0, req);
4394 	if (error || !req->newptr)
4395 		return error;
4396 	sc->sc_diversity = diversity;
4397 	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4398 }
4399 
4400 static int
4401 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4402 {
4403 	struct ath_softc *sc = arg1;
4404 	u_int32_t diag;
4405 	int error;
4406 
4407 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4408 		return EINVAL;
4409 	error = sysctl_handle_int(oidp, &diag, 0, req);
4410 	if (error || !req->newptr)
4411 		return error;
4412 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4413 }
4414 
4415 static int
4416 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4417 {
4418 	struct ath_softc *sc = arg1;
4419 	struct ifnet *ifp = &sc->sc_if;
4420 	u_int32_t scale;
4421 	int error;
4422 
4423 	ath_hal_gettpscale(sc->sc_ah, &scale);
4424 	error = sysctl_handle_int(oidp, &scale, 0, req);
4425 	if (error || !req->newptr)
4426 		return error;
4427 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4428 }
4429 
4430 static int
4431 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4432 {
4433 	struct ath_softc *sc = arg1;
4434 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4435 	int error;
4436 
4437 	error = sysctl_handle_int(oidp, &tpc, 0, req);
4438 	if (error || !req->newptr)
4439 		return error;
4440 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4441 }
4442 
4443 static void
4444 ath_sysctlattach(struct ath_softc *sc)
4445 {
4446 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4447 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4448 
4449 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4450 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4451 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4452 		"EEPROM country code");
4453 	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4454 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4455 		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4456 		"EEPROM regdomain code");
4457 	sc->sc_debug = ath_debug;
4458 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4459 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4460 		"control debugging printfs");
4461 
4462 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4463 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4464 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4465 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4466 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4467 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4468 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4469 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4470 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4471 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4472 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4473 		ath_sysctl_softled, "I", "enable/disable software LED support");
4474 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4475 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4476 		"GPIO pin connected to LED");
4477 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4478 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4479 		"tx antenna (0=auto)");
4480 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4481 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4482 		ath_sysctl_rxantenna, "I", "default/rx antenna");
4483 	if (sc->sc_hasdiversity)
4484 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4485 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4486 			ath_sysctl_diversity, "I", "antenna diversity");
4487 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4488 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4489 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4490 		"tx descriptor batching");
4491 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4492 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4493 		ath_sysctl_diag, "I", "h/w diagnostic control");
4494 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4495 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4496 		ath_sysctl_tpscale, "I", "tx power scaling");
4497 	if (sc->sc_hastpc)
4498 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4499 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4500 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4501 }
4502 
4503 static void
4504 ath_bpfattach(struct ath_softc *sc)
4505 {
4506 	struct ifnet *ifp = &sc->sc_if;
4507 
4508 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4509 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4510 		&sc->sc_drvbpf);
4511 	/*
4512 	 * Initialize constant fields.
4513 	 * XXX make header lengths a multiple of 32-bits so subsequent
4514 	 *     headers are properly aligned; this is a kludge to keep
4515 	 *     certain applications happy.
4516 	 *
4517 	 * NB: the channel is setup each time we transition to the
4518 	 *     RUN state to avoid filling it in for each frame.
4519 	 */
4520 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4521 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4522 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4523 
4524 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4525 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4526 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4527 }
4528 
4529 /*
4530  * Announce various information on device/driver attach.
4531  */
4532 static void
4533 ath_announce(struct ath_softc *sc)
4534 {
4535 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4536 	struct ifnet *ifp = &sc->sc_if;
4537 	struct ath_hal *ah = sc->sc_ah;
4538 	u_int modes, cc;
4539 
4540 	if_printf(ifp, "mac %d.%d phy %d.%d",
4541 		ah->ah_macVersion, ah->ah_macRev,
4542 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4543 	/*
4544 	 * Print radio revision(s).  We check the wireless modes
4545 	 * to avoid falsely printing revs for inoperable parts.
4546 	 * Dual-band radio revs are returned in the 5Ghz rev number.
4547 	 */
4548 	ath_hal_getcountrycode(ah, &cc);
4549 	modes = ath_hal_getwirelessmodes(ah, cc);
4550 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4551 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4552 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4553 				ah->ah_analog5GhzRev >> 4,
4554 				ah->ah_analog5GhzRev & 0xf,
4555 				ah->ah_analog2GhzRev >> 4,
4556 				ah->ah_analog2GhzRev & 0xf);
4557 		else
4558 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4559 				ah->ah_analog5GhzRev & 0xf);
4560 	} else
4561 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4562 			ah->ah_analog5GhzRev & 0xf);
4563 	printf("\n");
4564 	if (bootverbose) {
4565 		int i;
4566 		for (i = 0; i <= WME_AC_VO; i++) {
4567 			struct ath_txq *txq = sc->sc_ac2q[i];
4568 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4569 				txq->axq_qnum, ieee80211_wme_acnames[i]);
4570 		}
4571 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4572 			sc->sc_cabq->axq_qnum);
4573 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4574 	}
4575 #undef HAL_MODE_DUALBAND
4576 }
4577