1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_ath_spectral.h> 115 #include <dev/ath/if_athdfs.h> 116 117 #ifdef ATH_TX99_DIAG 118 #include <dev/ath/ath_tx99/ath_tx99.h> 119 #endif 120 121 #ifdef ATH_DEBUG_ALQ 122 #include <dev/ath/if_ath_alq.h> 123 #endif 124 125 /* 126 * Only enable this if you're working on PS-POLL support. 127 */ 128 #undef ATH_SW_PSQ 129 130 /* 131 * ATH_BCBUF determines the number of vap's that can transmit 132 * beacons and also (currently) the number of vap's that can 133 * have unique mac addresses/bssid. When staggering beacons 134 * 4 is probably a good max as otherwise the beacons become 135 * very closely spaced and there is limited time for cab q traffic 136 * to go out. You can burst beacons instead but that is not good 137 * for stations in power save and at some point you really want 138 * another radio (and channel). 139 * 140 * The limit on the number of mac addresses is tied to our use of 141 * the U/L bit and tracking addresses in a byte; it would be 142 * worthwhile to allow more for applications like proxy sta. 143 */ 144 CTASSERT(ATH_BCBUF <= 8); 145 146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 147 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 148 const uint8_t [IEEE80211_ADDR_LEN], 149 const uint8_t [IEEE80211_ADDR_LEN]); 150 static void ath_vap_delete(struct ieee80211vap *); 151 static void ath_init(void *); 152 static void ath_stop_locked(struct ifnet *); 153 static void ath_stop(struct ifnet *); 154 static int ath_reset_vap(struct ieee80211vap *, u_long); 155 static void ath_start_queue(struct ifnet *ifp); 156 static int ath_media_change(struct ifnet *); 157 static void ath_watchdog(void *); 158 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 159 static void ath_fatal_proc(void *, int); 160 static void ath_bmiss_vap(struct ieee80211vap *); 161 static void ath_bmiss_proc(void *, int); 162 static void ath_key_update_begin(struct ieee80211vap *); 163 static void ath_key_update_end(struct ieee80211vap *); 164 static void ath_update_mcast(struct ifnet *); 165 static void ath_update_promisc(struct ifnet *); 166 static void ath_updateslot(struct ifnet *); 167 static void ath_bstuck_proc(void *, int); 168 static void ath_reset_proc(void *, int); 169 static int ath_desc_alloc(struct ath_softc *); 170 static void ath_desc_free(struct ath_softc *); 171 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 172 const uint8_t [IEEE80211_ADDR_LEN]); 173 static void ath_node_cleanup(struct ieee80211_node *); 174 static void ath_node_free(struct ieee80211_node *); 175 static void ath_node_getsignal(const struct ieee80211_node *, 176 int8_t *, int8_t *); 177 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 178 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 179 static int ath_tx_setup(struct ath_softc *, int, int); 180 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 181 static void ath_tx_cleanup(struct ath_softc *); 182 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 183 int dosched); 184 static void ath_tx_proc_q0(void *, int); 185 static void ath_tx_proc_q0123(void *, int); 186 static void ath_tx_proc(void *, int); 187 static void ath_txq_sched_tasklet(void *, int); 188 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_scan_start(struct ieee80211com *); 191 static void ath_scan_end(struct ieee80211com *); 192 static void ath_set_channel(struct ieee80211com *); 193 #ifdef ATH_ENABLE_11N 194 static void ath_update_chw(struct ieee80211com *); 195 #endif /* ATH_ENABLE_11N */ 196 static void ath_calibrate(void *); 197 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 198 static void ath_setup_stationkey(struct ieee80211_node *); 199 static void ath_newassoc(struct ieee80211_node *, int); 200 static int ath_setregdomain(struct ieee80211com *, 201 struct ieee80211_regdomain *, int, 202 struct ieee80211_channel []); 203 static void ath_getradiocaps(struct ieee80211com *, int, int *, 204 struct ieee80211_channel []); 205 static int ath_getchannels(struct ath_softc *); 206 207 static int ath_rate_setup(struct ath_softc *, u_int mode); 208 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 209 210 static void ath_announce(struct ath_softc *); 211 212 static void ath_dfs_tasklet(void *, int); 213 static void ath_node_powersave(struct ieee80211_node *, int); 214 static int ath_node_set_tim(struct ieee80211_node *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 #include <dev/ath/if_ath_tdma.h> 218 #endif 219 220 SYSCTL_DECL(_hw_ath); 221 222 /* XXX validate sysctl values */ 223 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 224 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 225 0, "long chip calibration interval (secs)"); 226 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 227 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 228 0, "short chip calibration interval (msecs)"); 229 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 231 0, "reset chip calibration results (secs)"); 232 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 234 0, "ANI calibration (msecs)"); 235 236 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 238 0, "rx buffers allocated"); 239 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 240 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 242 0, "tx buffers allocated"); 243 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 244 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 246 0, "tx (mgmt) buffers allocated"); 247 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 248 249 int ath_bstuck_threshold = 4; /* max missed beacons */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 251 0, "max missed beacon xmits before chip reset"); 252 253 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 254 255 void 256 ath_legacy_attach_comp_func(struct ath_softc *sc) 257 { 258 259 /* 260 * Special case certain configurations. Note the 261 * CAB queue is handled by these specially so don't 262 * include them when checking the txq setup mask. 263 */ 264 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 265 case 0x01: 266 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 267 break; 268 case 0x0f: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 270 break; 271 default: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 273 break; 274 } 275 } 276 277 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 278 #define HAL_MODE_HT40 \ 279 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 280 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 281 int 282 ath_attach(u_int16_t devid, struct ath_softc *sc) 283 { 284 struct ifnet *ifp; 285 struct ieee80211com *ic; 286 struct ath_hal *ah = NULL; 287 HAL_STATUS status; 288 int error = 0, i; 289 u_int wmodes; 290 uint8_t macaddr[IEEE80211_ADDR_LEN]; 291 int rx_chainmask, tx_chainmask; 292 293 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 294 295 CURVNET_SET(vnet0); 296 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 297 if (ifp == NULL) { 298 device_printf(sc->sc_dev, "can not if_alloc()\n"); 299 error = ENOSPC; 300 CURVNET_RESTORE(); 301 goto bad; 302 } 303 ic = ifp->if_l2com; 304 305 /* set these up early for if_printf use */ 306 if_initname(ifp, device_get_name(sc->sc_dev), 307 device_get_unit(sc->sc_dev)); 308 CURVNET_RESTORE(); 309 310 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 311 sc->sc_eepromdata, &status); 312 if (ah == NULL) { 313 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 314 status); 315 error = ENXIO; 316 goto bad; 317 } 318 sc->sc_ah = ah; 319 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 320 #ifdef ATH_DEBUG 321 sc->sc_debug = ath_debug; 322 #endif 323 324 /* 325 * Setup the DMA/EDMA functions based on the current 326 * hardware support. 327 * 328 * This is required before the descriptors are allocated. 329 */ 330 if (ath_hal_hasedma(sc->sc_ah)) { 331 sc->sc_isedma = 1; 332 ath_recv_setup_edma(sc); 333 ath_xmit_setup_edma(sc); 334 } else { 335 ath_recv_setup_legacy(sc); 336 ath_xmit_setup_legacy(sc); 337 } 338 339 /* 340 * Check if the MAC has multi-rate retry support. 341 * We do this by trying to setup a fake extended 342 * descriptor. MAC's that don't have support will 343 * return false w/o doing anything. MAC's that do 344 * support it will return true w/o doing anything. 345 */ 346 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 347 348 /* 349 * Check if the device has hardware counters for PHY 350 * errors. If so we need to enable the MIB interrupt 351 * so we can act on stat triggers. 352 */ 353 if (ath_hal_hwphycounters(ah)) 354 sc->sc_needmib = 1; 355 356 /* 357 * Get the hardware key cache size. 358 */ 359 sc->sc_keymax = ath_hal_keycachesize(ah); 360 if (sc->sc_keymax > ATH_KEYMAX) { 361 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 362 ATH_KEYMAX, sc->sc_keymax); 363 sc->sc_keymax = ATH_KEYMAX; 364 } 365 /* 366 * Reset the key cache since some parts do not 367 * reset the contents on initial power up. 368 */ 369 for (i = 0; i < sc->sc_keymax; i++) 370 ath_hal_keyreset(ah, i); 371 372 /* 373 * Collect the default channel list. 374 */ 375 error = ath_getchannels(sc); 376 if (error != 0) 377 goto bad; 378 379 /* 380 * Setup rate tables for all potential media types. 381 */ 382 ath_rate_setup(sc, IEEE80211_MODE_11A); 383 ath_rate_setup(sc, IEEE80211_MODE_11B); 384 ath_rate_setup(sc, IEEE80211_MODE_11G); 385 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 386 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 387 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 388 ath_rate_setup(sc, IEEE80211_MODE_11NA); 389 ath_rate_setup(sc, IEEE80211_MODE_11NG); 390 ath_rate_setup(sc, IEEE80211_MODE_HALF); 391 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 392 393 /* NB: setup here so ath_rate_update is happy */ 394 ath_setcurmode(sc, IEEE80211_MODE_11A); 395 396 /* 397 * Allocate TX descriptors and populate the lists. 398 */ 399 error = ath_desc_alloc(sc); 400 if (error != 0) { 401 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 402 error); 403 goto bad; 404 } 405 error = ath_txdma_setup(sc); 406 if (error != 0) { 407 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 408 error); 409 goto bad; 410 } 411 412 /* 413 * Allocate RX descriptors and populate the lists. 414 */ 415 error = ath_rxdma_setup(sc); 416 if (error != 0) { 417 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 418 error); 419 goto bad; 420 } 421 422 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 423 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 424 425 ATH_TXBUF_LOCK_INIT(sc); 426 427 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 428 taskqueue_thread_enqueue, &sc->sc_tq); 429 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 430 "%s taskq", ifp->if_xname); 431 432 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 433 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 434 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 435 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 436 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 437 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 438 439 /* XXX make this a higher priority taskqueue? */ 440 TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc); 441 442 /* 443 * Allocate hardware transmit queues: one queue for 444 * beacon frames and one data queue for each QoS 445 * priority. Note that the hal handles resetting 446 * these queues at the needed time. 447 * 448 * XXX PS-Poll 449 */ 450 sc->sc_bhalq = ath_beaconq_setup(sc); 451 if (sc->sc_bhalq == (u_int) -1) { 452 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 453 error = EIO; 454 goto bad2; 455 } 456 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 457 if (sc->sc_cabq == NULL) { 458 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 459 error = EIO; 460 goto bad2; 461 } 462 /* NB: insure BK queue is the lowest priority h/w queue */ 463 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 464 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 465 ieee80211_wme_acnames[WME_AC_BK]); 466 error = EIO; 467 goto bad2; 468 } 469 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 470 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 471 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 472 /* 473 * Not enough hardware tx queues to properly do WME; 474 * just punt and assign them all to the same h/w queue. 475 * We could do a better job of this if, for example, 476 * we allocate queues when we switch from station to 477 * AP mode. 478 */ 479 if (sc->sc_ac2q[WME_AC_VI] != NULL) 480 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 481 if (sc->sc_ac2q[WME_AC_BE] != NULL) 482 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 483 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 484 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 485 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 486 } 487 488 /* 489 * Attach the TX completion function. 490 * 491 * The non-EDMA chips may have some special case optimisations; 492 * this method gives everyone a chance to attach cleanly. 493 */ 494 sc->sc_tx.xmit_attach_comp_func(sc); 495 496 /* 497 * Setup rate control. Some rate control modules 498 * call back to change the anntena state so expose 499 * the necessary entry points. 500 * XXX maybe belongs in struct ath_ratectrl? 501 */ 502 sc->sc_setdefantenna = ath_setdefantenna; 503 sc->sc_rc = ath_rate_attach(sc); 504 if (sc->sc_rc == NULL) { 505 error = EIO; 506 goto bad2; 507 } 508 509 /* Attach DFS module */ 510 if (! ath_dfs_attach(sc)) { 511 device_printf(sc->sc_dev, 512 "%s: unable to attach DFS\n", __func__); 513 error = EIO; 514 goto bad2; 515 } 516 517 /* Attach spectral module */ 518 if (ath_spectral_attach(sc) < 0) { 519 device_printf(sc->sc_dev, 520 "%s: unable to attach spectral\n", __func__); 521 error = EIO; 522 goto bad2; 523 } 524 525 /* Start DFS processing tasklet */ 526 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 527 528 /* Configure LED state */ 529 sc->sc_blinking = 0; 530 sc->sc_ledstate = 1; 531 sc->sc_ledon = 0; /* low true */ 532 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 533 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 534 535 /* 536 * Don't setup hardware-based blinking. 537 * 538 * Although some NICs may have this configured in the 539 * default reset register values, the user may wish 540 * to alter which pins have which function. 541 * 542 * The reference driver attaches the MAC network LED to GPIO1 and 543 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 544 * NIC has these reversed. 545 */ 546 sc->sc_hardled = (1 == 0); 547 sc->sc_led_net_pin = -1; 548 sc->sc_led_pwr_pin = -1; 549 /* 550 * Auto-enable soft led processing for IBM cards and for 551 * 5211 minipci cards. Users can also manually enable/disable 552 * support with a sysctl. 553 */ 554 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 555 ath_led_config(sc); 556 ath_hal_setledstate(ah, HAL_LED_INIT); 557 558 ifp->if_softc = sc; 559 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 560 ifp->if_start = ath_start_queue; 561 ifp->if_ioctl = ath_ioctl; 562 ifp->if_init = ath_init; 563 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 564 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 565 IFQ_SET_READY(&ifp->if_snd); 566 567 ic->ic_ifp = ifp; 568 /* XXX not right but it's not used anywhere important */ 569 ic->ic_phytype = IEEE80211_T_OFDM; 570 ic->ic_opmode = IEEE80211_M_STA; 571 ic->ic_caps = 572 IEEE80211_C_STA /* station mode */ 573 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 574 | IEEE80211_C_HOSTAP /* hostap mode */ 575 | IEEE80211_C_MONITOR /* monitor mode */ 576 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 577 | IEEE80211_C_WDS /* 4-address traffic works */ 578 | IEEE80211_C_MBSS /* mesh point link mode */ 579 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 580 | IEEE80211_C_SHSLOT /* short slot time supported */ 581 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 582 #ifndef ATH_ENABLE_11N 583 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 584 #endif 585 | IEEE80211_C_TXFRAG /* handle tx frags */ 586 #ifdef ATH_ENABLE_DFS 587 | IEEE80211_C_DFS /* Enable radar detection */ 588 #endif 589 ; 590 /* 591 * Query the hal to figure out h/w crypto support. 592 */ 593 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 594 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 595 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 596 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 597 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 598 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 599 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 600 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 601 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 602 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 603 /* 604 * Check if h/w does the MIC and/or whether the 605 * separate key cache entries are required to 606 * handle both tx+rx MIC keys. 607 */ 608 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 609 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 610 /* 611 * If the h/w supports storing tx+rx MIC keys 612 * in one cache slot automatically enable use. 613 */ 614 if (ath_hal_hastkipsplit(ah) || 615 !ath_hal_settkipsplit(ah, AH_FALSE)) 616 sc->sc_splitmic = 1; 617 /* 618 * If the h/w can do TKIP MIC together with WME then 619 * we use it; otherwise we force the MIC to be done 620 * in software by the net80211 layer. 621 */ 622 if (ath_hal_haswmetkipmic(ah)) 623 sc->sc_wmetkipmic = 1; 624 } 625 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 626 /* 627 * Check for multicast key search support. 628 */ 629 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 630 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 631 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 632 } 633 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 634 /* 635 * Mark key cache slots associated with global keys 636 * as in use. If we knew TKIP was not to be used we 637 * could leave the +32, +64, and +32+64 slots free. 638 */ 639 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 640 setbit(sc->sc_keymap, i); 641 setbit(sc->sc_keymap, i+64); 642 if (sc->sc_splitmic) { 643 setbit(sc->sc_keymap, i+32); 644 setbit(sc->sc_keymap, i+32+64); 645 } 646 } 647 /* 648 * TPC support can be done either with a global cap or 649 * per-packet support. The latter is not available on 650 * all parts. We're a bit pedantic here as all parts 651 * support a global cap. 652 */ 653 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 654 ic->ic_caps |= IEEE80211_C_TXPMGT; 655 656 /* 657 * Mark WME capability only if we have sufficient 658 * hardware queues to do proper priority scheduling. 659 */ 660 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 661 ic->ic_caps |= IEEE80211_C_WME; 662 /* 663 * Check for misc other capabilities. 664 */ 665 if (ath_hal_hasbursting(ah)) 666 ic->ic_caps |= IEEE80211_C_BURST; 667 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 668 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 669 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 670 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 671 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 672 if (ath_hal_hasfastframes(ah)) 673 ic->ic_caps |= IEEE80211_C_FF; 674 wmodes = ath_hal_getwirelessmodes(ah); 675 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 676 ic->ic_caps |= IEEE80211_C_TURBOP; 677 #ifdef IEEE80211_SUPPORT_TDMA 678 if (ath_hal_macversion(ah) > 0x78) { 679 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 680 ic->ic_tdma_update = ath_tdma_update; 681 } 682 #endif 683 684 /* 685 * TODO: enforce that at least this many frames are available 686 * in the txbuf list before allowing data frames (raw or 687 * otherwise) to be transmitted. 688 */ 689 sc->sc_txq_data_minfree = 10; 690 /* 691 * Leave this as default to maintain legacy behaviour. 692 * Shortening the cabq/mcastq may end up causing some 693 * undesirable behaviour. 694 */ 695 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 696 697 /* 698 * Allow the TX and RX chainmasks to be overridden by 699 * environment variables and/or device.hints. 700 * 701 * This must be done early - before the hardware is 702 * calibrated or before the 802.11n stream calculation 703 * is done. 704 */ 705 if (resource_int_value(device_get_name(sc->sc_dev), 706 device_get_unit(sc->sc_dev), "rx_chainmask", 707 &rx_chainmask) == 0) { 708 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 709 rx_chainmask); 710 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 711 } 712 if (resource_int_value(device_get_name(sc->sc_dev), 713 device_get_unit(sc->sc_dev), "tx_chainmask", 714 &tx_chainmask) == 0) { 715 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 716 tx_chainmask); 717 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 718 } 719 720 /* 721 * Disable MRR with protected frames by default. 722 * Only 802.11n series NICs can handle this. 723 */ 724 sc->sc_mrrprot = 0; /* XXX should be a capability */ 725 726 /* 727 * Query the enterprise mode information the HAL. 728 */ 729 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 730 &sc->sc_ent_cfg) == HAL_OK) 731 sc->sc_use_ent = 1; 732 733 #ifdef ATH_ENABLE_11N 734 /* 735 * Query HT capabilities 736 */ 737 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 738 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 739 int rxs, txs; 740 741 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 742 743 sc->sc_mrrprot = 1; /* XXX should be a capability */ 744 745 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 746 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 747 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 748 | IEEE80211_HTCAP_MAXAMSDU_3839 749 /* max A-MSDU length */ 750 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 751 ; 752 753 /* 754 * Enable short-GI for HT20 only if the hardware 755 * advertises support. 756 * Notably, anything earlier than the AR9287 doesn't. 757 */ 758 if ((ath_hal_getcapability(ah, 759 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 760 (wmodes & HAL_MODE_HT20)) { 761 device_printf(sc->sc_dev, 762 "[HT] enabling short-GI in 20MHz mode\n"); 763 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 764 } 765 766 if (wmodes & HAL_MODE_HT40) 767 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 768 | IEEE80211_HTCAP_SHORTGI40; 769 770 /* 771 * TX/RX streams need to be taken into account when 772 * negotiating which MCS rates it'll receive and 773 * what MCS rates are available for TX. 774 */ 775 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 776 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 777 778 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 779 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 780 781 ic->ic_txstream = txs; 782 ic->ic_rxstream = rxs; 783 784 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 785 &sc->sc_rts_aggr_limit); 786 if (sc->sc_rts_aggr_limit != (64 * 1024)) 787 device_printf(sc->sc_dev, 788 "[HT] RTS aggregates limited to %d KiB\n", 789 sc->sc_rts_aggr_limit / 1024); 790 791 device_printf(sc->sc_dev, 792 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 793 } 794 #endif 795 796 /* 797 * Initial aggregation settings. 798 */ 799 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 800 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 801 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 802 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 803 sc->sc_delim_min_pad = 0; 804 805 /* 806 * Check if the hardware requires PCI register serialisation. 807 * Some of the Owl based MACs require this. 808 */ 809 if (mp_ncpus > 1 && 810 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 811 0, NULL) == HAL_OK) { 812 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 813 device_printf(sc->sc_dev, 814 "Enabling register serialisation\n"); 815 } 816 817 /* 818 * Indicate we need the 802.11 header padded to a 819 * 32-bit boundary for 4-address and QoS frames. 820 */ 821 ic->ic_flags |= IEEE80211_F_DATAPAD; 822 823 /* 824 * Query the hal about antenna support. 825 */ 826 sc->sc_defant = ath_hal_getdefantenna(ah); 827 828 /* 829 * Not all chips have the VEOL support we want to 830 * use with IBSS beacons; check here for it. 831 */ 832 sc->sc_hasveol = ath_hal_hasveol(ah); 833 834 /* get mac address from hardware */ 835 ath_hal_getmac(ah, macaddr); 836 if (sc->sc_hasbmask) 837 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 838 839 /* NB: used to size node table key mapping array */ 840 ic->ic_max_keyix = sc->sc_keymax; 841 /* call MI attach routine. */ 842 ieee80211_ifattach(ic, macaddr); 843 ic->ic_setregdomain = ath_setregdomain; 844 ic->ic_getradiocaps = ath_getradiocaps; 845 sc->sc_opmode = HAL_M_STA; 846 847 /* override default methods */ 848 ic->ic_newassoc = ath_newassoc; 849 ic->ic_updateslot = ath_updateslot; 850 ic->ic_wme.wme_update = ath_wme_update; 851 ic->ic_vap_create = ath_vap_create; 852 ic->ic_vap_delete = ath_vap_delete; 853 ic->ic_raw_xmit = ath_raw_xmit; 854 ic->ic_update_mcast = ath_update_mcast; 855 ic->ic_update_promisc = ath_update_promisc; 856 ic->ic_node_alloc = ath_node_alloc; 857 sc->sc_node_free = ic->ic_node_free; 858 ic->ic_node_free = ath_node_free; 859 sc->sc_node_cleanup = ic->ic_node_cleanup; 860 ic->ic_node_cleanup = ath_node_cleanup; 861 ic->ic_node_getsignal = ath_node_getsignal; 862 ic->ic_scan_start = ath_scan_start; 863 ic->ic_scan_end = ath_scan_end; 864 ic->ic_set_channel = ath_set_channel; 865 #ifdef ATH_ENABLE_11N 866 /* 802.11n specific - but just override anyway */ 867 sc->sc_addba_request = ic->ic_addba_request; 868 sc->sc_addba_response = ic->ic_addba_response; 869 sc->sc_addba_stop = ic->ic_addba_stop; 870 sc->sc_bar_response = ic->ic_bar_response; 871 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 872 873 ic->ic_addba_request = ath_addba_request; 874 ic->ic_addba_response = ath_addba_response; 875 ic->ic_addba_response_timeout = ath_addba_response_timeout; 876 ic->ic_addba_stop = ath_addba_stop; 877 ic->ic_bar_response = ath_bar_response; 878 879 ic->ic_update_chw = ath_update_chw; 880 #endif /* ATH_ENABLE_11N */ 881 882 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 883 /* 884 * There's one vendor bitmap entry in the RX radiotap 885 * header; make sure that's taken into account. 886 */ 887 ieee80211_radiotap_attachv(ic, 888 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 889 ATH_TX_RADIOTAP_PRESENT, 890 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 891 ATH_RX_RADIOTAP_PRESENT); 892 #else 893 /* 894 * No vendor bitmap/extensions are present. 895 */ 896 ieee80211_radiotap_attach(ic, 897 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 898 ATH_TX_RADIOTAP_PRESENT, 899 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 900 ATH_RX_RADIOTAP_PRESENT); 901 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 902 903 /* 904 * Setup the ALQ logging if required 905 */ 906 #ifdef ATH_DEBUG_ALQ 907 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 908 if_ath_alq_setcfg(&sc->sc_alq, 909 sc->sc_ah->ah_macVersion, 910 sc->sc_ah->ah_macRev, 911 sc->sc_ah->ah_phyRev, 912 sc->sc_ah->ah_magic); 913 #endif 914 915 /* 916 * Setup dynamic sysctl's now that country code and 917 * regdomain are available from the hal. 918 */ 919 ath_sysctlattach(sc); 920 ath_sysctl_stats_attach(sc); 921 ath_sysctl_hal_attach(sc); 922 923 if (bootverbose) 924 ieee80211_announce(ic); 925 ath_announce(sc); 926 return 0; 927 bad2: 928 ath_tx_cleanup(sc); 929 ath_desc_free(sc); 930 ath_txdma_teardown(sc); 931 ath_rxdma_teardown(sc); 932 bad: 933 if (ah) 934 ath_hal_detach(ah); 935 936 /* 937 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 938 */ 939 if (ifp != NULL && ifp->if_vnet) { 940 CURVNET_SET(ifp->if_vnet); 941 if_free(ifp); 942 CURVNET_RESTORE(); 943 } else if (ifp != NULL) 944 if_free(ifp); 945 sc->sc_invalid = 1; 946 return error; 947 } 948 949 int 950 ath_detach(struct ath_softc *sc) 951 { 952 struct ifnet *ifp = sc->sc_ifp; 953 954 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 955 __func__, ifp->if_flags); 956 957 /* 958 * NB: the order of these is important: 959 * o stop the chip so no more interrupts will fire 960 * o call the 802.11 layer before detaching the hal to 961 * insure callbacks into the driver to delete global 962 * key cache entries can be handled 963 * o free the taskqueue which drains any pending tasks 964 * o reclaim the tx queue data structures after calling 965 * the 802.11 layer as we'll get called back to reclaim 966 * node state and potentially want to use them 967 * o to cleanup the tx queues the hal is called, so detach 968 * it last 969 * Other than that, it's straightforward... 970 */ 971 ath_stop(ifp); 972 ieee80211_ifdetach(ifp->if_l2com); 973 taskqueue_free(sc->sc_tq); 974 #ifdef ATH_TX99_DIAG 975 if (sc->sc_tx99 != NULL) 976 sc->sc_tx99->detach(sc->sc_tx99); 977 #endif 978 ath_rate_detach(sc->sc_rc); 979 #ifdef ATH_DEBUG_ALQ 980 if_ath_alq_tidyup(&sc->sc_alq); 981 #endif 982 ath_spectral_detach(sc); 983 ath_dfs_detach(sc); 984 ath_desc_free(sc); 985 ath_txdma_teardown(sc); 986 ath_rxdma_teardown(sc); 987 ath_tx_cleanup(sc); 988 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 989 990 CURVNET_SET(ifp->if_vnet); 991 if_free(ifp); 992 CURVNET_RESTORE(); 993 994 return 0; 995 } 996 997 /* 998 * MAC address handling for multiple BSS on the same radio. 999 * The first vap uses the MAC address from the EEPROM. For 1000 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1001 * address and use the next six bits as an index. 1002 */ 1003 static void 1004 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1005 { 1006 int i; 1007 1008 if (clone && sc->sc_hasbmask) { 1009 /* NB: we only do this if h/w supports multiple bssid */ 1010 for (i = 0; i < 8; i++) 1011 if ((sc->sc_bssidmask & (1<<i)) == 0) 1012 break; 1013 if (i != 0) 1014 mac[0] |= (i << 2)|0x2; 1015 } else 1016 i = 0; 1017 sc->sc_bssidmask |= 1<<i; 1018 sc->sc_hwbssidmask[0] &= ~mac[0]; 1019 if (i == 0) 1020 sc->sc_nbssid0++; 1021 } 1022 1023 static void 1024 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1025 { 1026 int i = mac[0] >> 2; 1027 uint8_t mask; 1028 1029 if (i != 0 || --sc->sc_nbssid0 == 0) { 1030 sc->sc_bssidmask &= ~(1<<i); 1031 /* recalculate bssid mask from remaining addresses */ 1032 mask = 0xff; 1033 for (i = 1; i < 8; i++) 1034 if (sc->sc_bssidmask & (1<<i)) 1035 mask &= ~((i<<2)|0x2); 1036 sc->sc_hwbssidmask[0] |= mask; 1037 } 1038 } 1039 1040 /* 1041 * Assign a beacon xmit slot. We try to space out 1042 * assignments so when beacons are staggered the 1043 * traffic coming out of the cab q has maximal time 1044 * to go out before the next beacon is scheduled. 1045 */ 1046 static int 1047 assign_bslot(struct ath_softc *sc) 1048 { 1049 u_int slot, free; 1050 1051 free = 0; 1052 for (slot = 0; slot < ATH_BCBUF; slot++) 1053 if (sc->sc_bslot[slot] == NULL) { 1054 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1055 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1056 return slot; 1057 free = slot; 1058 /* NB: keep looking for a double slot */ 1059 } 1060 return free; 1061 } 1062 1063 static struct ieee80211vap * 1064 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1065 enum ieee80211_opmode opmode, int flags, 1066 const uint8_t bssid[IEEE80211_ADDR_LEN], 1067 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1068 { 1069 struct ath_softc *sc = ic->ic_ifp->if_softc; 1070 struct ath_vap *avp; 1071 struct ieee80211vap *vap; 1072 uint8_t mac[IEEE80211_ADDR_LEN]; 1073 int needbeacon, error; 1074 enum ieee80211_opmode ic_opmode; 1075 1076 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1077 M_80211_VAP, M_WAITOK | M_ZERO); 1078 needbeacon = 0; 1079 IEEE80211_ADDR_COPY(mac, mac0); 1080 1081 ATH_LOCK(sc); 1082 ic_opmode = opmode; /* default to opmode of new vap */ 1083 switch (opmode) { 1084 case IEEE80211_M_STA: 1085 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1086 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1087 goto bad; 1088 } 1089 if (sc->sc_nvaps) { 1090 /* 1091 * With multiple vaps we must fall back 1092 * to s/w beacon miss handling. 1093 */ 1094 flags |= IEEE80211_CLONE_NOBEACONS; 1095 } 1096 if (flags & IEEE80211_CLONE_NOBEACONS) { 1097 /* 1098 * Station mode w/o beacons are implemented w/ AP mode. 1099 */ 1100 ic_opmode = IEEE80211_M_HOSTAP; 1101 } 1102 break; 1103 case IEEE80211_M_IBSS: 1104 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1105 device_printf(sc->sc_dev, 1106 "only 1 ibss vap supported\n"); 1107 goto bad; 1108 } 1109 needbeacon = 1; 1110 break; 1111 case IEEE80211_M_AHDEMO: 1112 #ifdef IEEE80211_SUPPORT_TDMA 1113 if (flags & IEEE80211_CLONE_TDMA) { 1114 if (sc->sc_nvaps != 0) { 1115 device_printf(sc->sc_dev, 1116 "only 1 tdma vap supported\n"); 1117 goto bad; 1118 } 1119 needbeacon = 1; 1120 flags |= IEEE80211_CLONE_NOBEACONS; 1121 } 1122 /* fall thru... */ 1123 #endif 1124 case IEEE80211_M_MONITOR: 1125 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1126 /* 1127 * Adopt existing mode. Adding a monitor or ahdemo 1128 * vap to an existing configuration is of dubious 1129 * value but should be ok. 1130 */ 1131 /* XXX not right for monitor mode */ 1132 ic_opmode = ic->ic_opmode; 1133 } 1134 break; 1135 case IEEE80211_M_HOSTAP: 1136 case IEEE80211_M_MBSS: 1137 needbeacon = 1; 1138 break; 1139 case IEEE80211_M_WDS: 1140 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1141 device_printf(sc->sc_dev, 1142 "wds not supported in sta mode\n"); 1143 goto bad; 1144 } 1145 /* 1146 * Silently remove any request for a unique 1147 * bssid; WDS vap's always share the local 1148 * mac address. 1149 */ 1150 flags &= ~IEEE80211_CLONE_BSSID; 1151 if (sc->sc_nvaps == 0) 1152 ic_opmode = IEEE80211_M_HOSTAP; 1153 else 1154 ic_opmode = ic->ic_opmode; 1155 break; 1156 default: 1157 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1158 goto bad; 1159 } 1160 /* 1161 * Check that a beacon buffer is available; the code below assumes it. 1162 */ 1163 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1164 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1165 goto bad; 1166 } 1167 1168 /* STA, AHDEMO? */ 1169 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1170 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1171 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1172 } 1173 1174 vap = &avp->av_vap; 1175 /* XXX can't hold mutex across if_alloc */ 1176 ATH_UNLOCK(sc); 1177 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1178 bssid, mac); 1179 ATH_LOCK(sc); 1180 if (error != 0) { 1181 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1182 __func__, error); 1183 goto bad2; 1184 } 1185 1186 /* h/w crypto support */ 1187 vap->iv_key_alloc = ath_key_alloc; 1188 vap->iv_key_delete = ath_key_delete; 1189 vap->iv_key_set = ath_key_set; 1190 vap->iv_key_update_begin = ath_key_update_begin; 1191 vap->iv_key_update_end = ath_key_update_end; 1192 1193 /* override various methods */ 1194 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1195 vap->iv_recv_mgmt = ath_recv_mgmt; 1196 vap->iv_reset = ath_reset_vap; 1197 vap->iv_update_beacon = ath_beacon_update; 1198 avp->av_newstate = vap->iv_newstate; 1199 vap->iv_newstate = ath_newstate; 1200 avp->av_bmiss = vap->iv_bmiss; 1201 vap->iv_bmiss = ath_bmiss_vap; 1202 1203 avp->av_node_ps = vap->iv_node_ps; 1204 vap->iv_node_ps = ath_node_powersave; 1205 1206 avp->av_set_tim = vap->iv_set_tim; 1207 vap->iv_set_tim = ath_node_set_tim; 1208 1209 /* Set default parameters */ 1210 1211 /* 1212 * Anything earlier than some AR9300 series MACs don't 1213 * support a smaller MPDU density. 1214 */ 1215 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1216 /* 1217 * All NICs can handle the maximum size, however 1218 * AR5416 based MACs can only TX aggregates w/ RTS 1219 * protection when the total aggregate size is <= 8k. 1220 * However, for now that's enforced by the TX path. 1221 */ 1222 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1223 1224 avp->av_bslot = -1; 1225 if (needbeacon) { 1226 /* 1227 * Allocate beacon state and setup the q for buffered 1228 * multicast frames. We know a beacon buffer is 1229 * available because we checked above. 1230 */ 1231 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1232 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1233 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1234 /* 1235 * Assign the vap to a beacon xmit slot. As above 1236 * this cannot fail to find a free one. 1237 */ 1238 avp->av_bslot = assign_bslot(sc); 1239 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1240 ("beacon slot %u not empty", avp->av_bslot)); 1241 sc->sc_bslot[avp->av_bslot] = vap; 1242 sc->sc_nbcnvaps++; 1243 } 1244 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1245 /* 1246 * Multple vaps are to transmit beacons and we 1247 * have h/w support for TSF adjusting; enable 1248 * use of staggered beacons. 1249 */ 1250 sc->sc_stagbeacons = 1; 1251 } 1252 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1253 } 1254 1255 ic->ic_opmode = ic_opmode; 1256 if (opmode != IEEE80211_M_WDS) { 1257 sc->sc_nvaps++; 1258 if (opmode == IEEE80211_M_STA) 1259 sc->sc_nstavaps++; 1260 if (opmode == IEEE80211_M_MBSS) 1261 sc->sc_nmeshvaps++; 1262 } 1263 switch (ic_opmode) { 1264 case IEEE80211_M_IBSS: 1265 sc->sc_opmode = HAL_M_IBSS; 1266 break; 1267 case IEEE80211_M_STA: 1268 sc->sc_opmode = HAL_M_STA; 1269 break; 1270 case IEEE80211_M_AHDEMO: 1271 #ifdef IEEE80211_SUPPORT_TDMA 1272 if (vap->iv_caps & IEEE80211_C_TDMA) { 1273 sc->sc_tdma = 1; 1274 /* NB: disable tsf adjust */ 1275 sc->sc_stagbeacons = 0; 1276 } 1277 /* 1278 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1279 * just ap mode. 1280 */ 1281 /* fall thru... */ 1282 #endif 1283 case IEEE80211_M_HOSTAP: 1284 case IEEE80211_M_MBSS: 1285 sc->sc_opmode = HAL_M_HOSTAP; 1286 break; 1287 case IEEE80211_M_MONITOR: 1288 sc->sc_opmode = HAL_M_MONITOR; 1289 break; 1290 default: 1291 /* XXX should not happen */ 1292 break; 1293 } 1294 if (sc->sc_hastsfadd) { 1295 /* 1296 * Configure whether or not TSF adjust should be done. 1297 */ 1298 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1299 } 1300 if (flags & IEEE80211_CLONE_NOBEACONS) { 1301 /* 1302 * Enable s/w beacon miss handling. 1303 */ 1304 sc->sc_swbmiss = 1; 1305 } 1306 ATH_UNLOCK(sc); 1307 1308 /* complete setup */ 1309 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1310 return vap; 1311 bad2: 1312 reclaim_address(sc, mac); 1313 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1314 bad: 1315 free(avp, M_80211_VAP); 1316 ATH_UNLOCK(sc); 1317 return NULL; 1318 } 1319 1320 static void 1321 ath_vap_delete(struct ieee80211vap *vap) 1322 { 1323 struct ieee80211com *ic = vap->iv_ic; 1324 struct ifnet *ifp = ic->ic_ifp; 1325 struct ath_softc *sc = ifp->if_softc; 1326 struct ath_hal *ah = sc->sc_ah; 1327 struct ath_vap *avp = ATH_VAP(vap); 1328 1329 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1330 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1331 /* 1332 * Quiesce the hardware while we remove the vap. In 1333 * particular we need to reclaim all references to 1334 * the vap state by any frames pending on the tx queues. 1335 */ 1336 ath_hal_intrset(ah, 0); /* disable interrupts */ 1337 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1338 /* XXX Do all frames from all vaps/nodes need draining here? */ 1339 ath_stoprecv(sc, 1); /* stop recv side */ 1340 } 1341 1342 ieee80211_vap_detach(vap); 1343 1344 /* 1345 * XXX Danger Will Robinson! Danger! 1346 * 1347 * Because ieee80211_vap_detach() can queue a frame (the station 1348 * diassociate message?) after we've drained the TXQ and 1349 * flushed the software TXQ, we will end up with a frame queued 1350 * to a node whose vap is about to be freed. 1351 * 1352 * To work around this, flush the hardware/software again. 1353 * This may be racy - the ath task may be running and the packet 1354 * may be being scheduled between sw->hw txq. Tsk. 1355 * 1356 * TODO: figure out why a new node gets allocated somewhere around 1357 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1358 * call!) 1359 */ 1360 1361 ath_draintxq(sc, ATH_RESET_DEFAULT); 1362 1363 ATH_LOCK(sc); 1364 /* 1365 * Reclaim beacon state. Note this must be done before 1366 * the vap instance is reclaimed as we may have a reference 1367 * to it in the buffer for the beacon frame. 1368 */ 1369 if (avp->av_bcbuf != NULL) { 1370 if (avp->av_bslot != -1) { 1371 sc->sc_bslot[avp->av_bslot] = NULL; 1372 sc->sc_nbcnvaps--; 1373 } 1374 ath_beacon_return(sc, avp->av_bcbuf); 1375 avp->av_bcbuf = NULL; 1376 if (sc->sc_nbcnvaps == 0) { 1377 sc->sc_stagbeacons = 0; 1378 if (sc->sc_hastsfadd) 1379 ath_hal_settsfadjust(sc->sc_ah, 0); 1380 } 1381 /* 1382 * Reclaim any pending mcast frames for the vap. 1383 */ 1384 ath_tx_draintxq(sc, &avp->av_mcastq); 1385 } 1386 /* 1387 * Update bookkeeping. 1388 */ 1389 if (vap->iv_opmode == IEEE80211_M_STA) { 1390 sc->sc_nstavaps--; 1391 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1392 sc->sc_swbmiss = 0; 1393 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1394 vap->iv_opmode == IEEE80211_M_MBSS) { 1395 reclaim_address(sc, vap->iv_myaddr); 1396 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1397 if (vap->iv_opmode == IEEE80211_M_MBSS) 1398 sc->sc_nmeshvaps--; 1399 } 1400 if (vap->iv_opmode != IEEE80211_M_WDS) 1401 sc->sc_nvaps--; 1402 #ifdef IEEE80211_SUPPORT_TDMA 1403 /* TDMA operation ceases when the last vap is destroyed */ 1404 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1405 sc->sc_tdma = 0; 1406 sc->sc_swbmiss = 0; 1407 } 1408 #endif 1409 free(avp, M_80211_VAP); 1410 1411 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1412 /* 1413 * Restart rx+tx machines if still running (RUNNING will 1414 * be reset if we just destroyed the last vap). 1415 */ 1416 if (ath_startrecv(sc) != 0) 1417 if_printf(ifp, "%s: unable to restart recv logic\n", 1418 __func__); 1419 if (sc->sc_beacons) { /* restart beacons */ 1420 #ifdef IEEE80211_SUPPORT_TDMA 1421 if (sc->sc_tdma) 1422 ath_tdma_config(sc, NULL); 1423 else 1424 #endif 1425 ath_beacon_config(sc, NULL); 1426 } 1427 ath_hal_intrset(ah, sc->sc_imask); 1428 } 1429 ATH_UNLOCK(sc); 1430 } 1431 1432 void 1433 ath_suspend(struct ath_softc *sc) 1434 { 1435 struct ifnet *ifp = sc->sc_ifp; 1436 struct ieee80211com *ic = ifp->if_l2com; 1437 1438 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1439 __func__, ifp->if_flags); 1440 1441 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1442 1443 ieee80211_suspend_all(ic); 1444 /* 1445 * NB: don't worry about putting the chip in low power 1446 * mode; pci will power off our socket on suspend and 1447 * CardBus detaches the device. 1448 */ 1449 1450 /* 1451 * XXX ensure none of the taskqueues are running 1452 * XXX ensure sc_invalid is 1 1453 * XXX ensure the calibration callout is disabled 1454 */ 1455 1456 /* Disable the PCIe PHY, complete with workarounds */ 1457 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1458 } 1459 1460 /* 1461 * Reset the key cache since some parts do not reset the 1462 * contents on resume. First we clear all entries, then 1463 * re-load keys that the 802.11 layer assumes are setup 1464 * in h/w. 1465 */ 1466 static void 1467 ath_reset_keycache(struct ath_softc *sc) 1468 { 1469 struct ifnet *ifp = sc->sc_ifp; 1470 struct ieee80211com *ic = ifp->if_l2com; 1471 struct ath_hal *ah = sc->sc_ah; 1472 int i; 1473 1474 for (i = 0; i < sc->sc_keymax; i++) 1475 ath_hal_keyreset(ah, i); 1476 ieee80211_crypto_reload_keys(ic); 1477 } 1478 1479 /* 1480 * Fetch the current chainmask configuration based on the current 1481 * operating channel and options. 1482 */ 1483 static void 1484 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1485 { 1486 1487 /* 1488 * Set TX chainmask to the currently configured chainmask; 1489 * the TX chainmask depends upon the current operating mode. 1490 */ 1491 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1492 if (IEEE80211_IS_CHAN_HT(chan)) { 1493 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1494 } else { 1495 sc->sc_cur_txchainmask = 1; 1496 } 1497 } 1498 1499 void 1500 ath_resume(struct ath_softc *sc) 1501 { 1502 struct ifnet *ifp = sc->sc_ifp; 1503 struct ieee80211com *ic = ifp->if_l2com; 1504 struct ath_hal *ah = sc->sc_ah; 1505 HAL_STATUS status; 1506 1507 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1508 __func__, ifp->if_flags); 1509 1510 /* Re-enable PCIe, re-enable the PCIe bus */ 1511 ath_hal_enablepcie(ah, 0, 0); 1512 1513 /* 1514 * Must reset the chip before we reload the 1515 * keycache as we were powered down on suspend. 1516 */ 1517 ath_update_chainmasks(sc, 1518 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1519 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1520 sc->sc_cur_rxchainmask); 1521 ath_hal_reset(ah, sc->sc_opmode, 1522 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1523 AH_FALSE, &status); 1524 ath_reset_keycache(sc); 1525 1526 /* Let DFS at it in case it's a DFS channel */ 1527 ath_dfs_radar_enable(sc, ic->ic_curchan); 1528 1529 /* Let spectral at in case spectral is enabled */ 1530 ath_spectral_enable(sc, ic->ic_curchan); 1531 1532 /* Restore the LED configuration */ 1533 ath_led_config(sc); 1534 ath_hal_setledstate(ah, HAL_LED_INIT); 1535 1536 if (sc->sc_resume_up) 1537 ieee80211_resume_all(ic); 1538 1539 /* XXX beacons ? */ 1540 } 1541 1542 void 1543 ath_shutdown(struct ath_softc *sc) 1544 { 1545 struct ifnet *ifp = sc->sc_ifp; 1546 1547 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1548 __func__, ifp->if_flags); 1549 1550 ath_stop(ifp); 1551 /* NB: no point powering down chip as we're about to reboot */ 1552 } 1553 1554 /* 1555 * Interrupt handler. Most of the actual processing is deferred. 1556 */ 1557 void 1558 ath_intr(void *arg) 1559 { 1560 struct ath_softc *sc = arg; 1561 struct ifnet *ifp = sc->sc_ifp; 1562 struct ath_hal *ah = sc->sc_ah; 1563 HAL_INT status = 0; 1564 uint32_t txqs; 1565 1566 /* 1567 * If we're inside a reset path, just print a warning and 1568 * clear the ISR. The reset routine will finish it for us. 1569 */ 1570 ATH_PCU_LOCK(sc); 1571 if (sc->sc_inreset_cnt) { 1572 HAL_INT status; 1573 ath_hal_getisr(ah, &status); /* clear ISR */ 1574 ath_hal_intrset(ah, 0); /* disable further intr's */ 1575 DPRINTF(sc, ATH_DEBUG_ANY, 1576 "%s: in reset, ignoring: status=0x%x\n", 1577 __func__, status); 1578 ATH_PCU_UNLOCK(sc); 1579 return; 1580 } 1581 1582 if (sc->sc_invalid) { 1583 /* 1584 * The hardware is not ready/present, don't touch anything. 1585 * Note this can happen early on if the IRQ is shared. 1586 */ 1587 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1588 ATH_PCU_UNLOCK(sc); 1589 return; 1590 } 1591 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1592 ATH_PCU_UNLOCK(sc); 1593 return; 1594 } 1595 1596 if ((ifp->if_flags & IFF_UP) == 0 || 1597 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1598 HAL_INT status; 1599 1600 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1601 __func__, ifp->if_flags); 1602 ath_hal_getisr(ah, &status); /* clear ISR */ 1603 ath_hal_intrset(ah, 0); /* disable further intr's */ 1604 ATH_PCU_UNLOCK(sc); 1605 return; 1606 } 1607 1608 /* 1609 * Figure out the reason(s) for the interrupt. Note 1610 * that the hal returns a pseudo-ISR that may include 1611 * bits we haven't explicitly enabled so we mask the 1612 * value to insure we only process bits we requested. 1613 */ 1614 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1615 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1616 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1617 #ifdef ATH_DEBUG_ALQ 1618 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1619 ah->ah_syncstate); 1620 #endif /* ATH_DEBUG_ALQ */ 1621 #ifdef ATH_KTR_INTR_DEBUG 1622 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1623 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1624 ah->ah_intrstate[0], 1625 ah->ah_intrstate[1], 1626 ah->ah_intrstate[2], 1627 ah->ah_intrstate[3], 1628 ah->ah_intrstate[6]); 1629 #endif 1630 1631 /* Squirrel away SYNC interrupt debugging */ 1632 if (ah->ah_syncstate != 0) { 1633 int i; 1634 for (i = 0; i < 32; i++) 1635 if (ah->ah_syncstate & (i << i)) 1636 sc->sc_intr_stats.sync_intr[i]++; 1637 } 1638 1639 status &= sc->sc_imask; /* discard unasked for bits */ 1640 1641 /* Short-circuit un-handled interrupts */ 1642 if (status == 0x0) { 1643 ATH_PCU_UNLOCK(sc); 1644 return; 1645 } 1646 1647 /* 1648 * Take a note that we're inside the interrupt handler, so 1649 * the reset routines know to wait. 1650 */ 1651 sc->sc_intr_cnt++; 1652 ATH_PCU_UNLOCK(sc); 1653 1654 /* 1655 * Handle the interrupt. We won't run concurrent with the reset 1656 * or channel change routines as they'll wait for sc_intr_cnt 1657 * to be 0 before continuing. 1658 */ 1659 if (status & HAL_INT_FATAL) { 1660 sc->sc_stats.ast_hardware++; 1661 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1662 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1663 } else { 1664 if (status & HAL_INT_SWBA) { 1665 /* 1666 * Software beacon alert--time to send a beacon. 1667 * Handle beacon transmission directly; deferring 1668 * this is too slow to meet timing constraints 1669 * under load. 1670 */ 1671 #ifdef IEEE80211_SUPPORT_TDMA 1672 if (sc->sc_tdma) { 1673 if (sc->sc_tdmaswba == 0) { 1674 struct ieee80211com *ic = ifp->if_l2com; 1675 struct ieee80211vap *vap = 1676 TAILQ_FIRST(&ic->ic_vaps); 1677 ath_tdma_beacon_send(sc, vap); 1678 sc->sc_tdmaswba = 1679 vap->iv_tdma->tdma_bintval; 1680 } else 1681 sc->sc_tdmaswba--; 1682 } else 1683 #endif 1684 { 1685 ath_beacon_proc(sc, 0); 1686 #ifdef IEEE80211_SUPPORT_SUPERG 1687 /* 1688 * Schedule the rx taskq in case there's no 1689 * traffic so any frames held on the staging 1690 * queue are aged and potentially flushed. 1691 */ 1692 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1693 #endif 1694 } 1695 } 1696 if (status & HAL_INT_RXEOL) { 1697 int imask; 1698 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1699 ATH_PCU_LOCK(sc); 1700 /* 1701 * NB: the hardware should re-read the link when 1702 * RXE bit is written, but it doesn't work at 1703 * least on older hardware revs. 1704 */ 1705 sc->sc_stats.ast_rxeol++; 1706 /* 1707 * Disable RXEOL/RXORN - prevent an interrupt 1708 * storm until the PCU logic can be reset. 1709 * In case the interface is reset some other 1710 * way before "sc_kickpcu" is called, don't 1711 * modify sc_imask - that way if it is reset 1712 * by a call to ath_reset() somehow, the 1713 * interrupt mask will be correctly reprogrammed. 1714 */ 1715 imask = sc->sc_imask; 1716 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1717 ath_hal_intrset(ah, imask); 1718 /* 1719 * Only blank sc_rxlink if we've not yet kicked 1720 * the PCU. 1721 * 1722 * This isn't entirely correct - the correct solution 1723 * would be to have a PCU lock and engage that for 1724 * the duration of the PCU fiddling; which would include 1725 * running the RX process. Otherwise we could end up 1726 * messing up the RX descriptor chain and making the 1727 * RX desc list much shorter. 1728 */ 1729 if (! sc->sc_kickpcu) 1730 sc->sc_rxlink = NULL; 1731 sc->sc_kickpcu = 1; 1732 /* 1733 * Enqueue an RX proc, to handled whatever 1734 * is in the RX queue. 1735 * This will then kick the PCU. 1736 */ 1737 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1738 ATH_PCU_UNLOCK(sc); 1739 } 1740 if (status & HAL_INT_TXURN) { 1741 sc->sc_stats.ast_txurn++; 1742 /* bump tx trigger level */ 1743 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1744 } 1745 /* 1746 * Handle both the legacy and RX EDMA interrupt bits. 1747 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1748 */ 1749 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1750 sc->sc_stats.ast_rx_intr++; 1751 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1752 } 1753 if (status & HAL_INT_TX) { 1754 sc->sc_stats.ast_tx_intr++; 1755 /* 1756 * Grab all the currently set bits in the HAL txq bitmap 1757 * and blank them. This is the only place we should be 1758 * doing this. 1759 */ 1760 if (! sc->sc_isedma) { 1761 ATH_PCU_LOCK(sc); 1762 txqs = 0xffffffff; 1763 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1764 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1765 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1766 txqs, 1767 sc->sc_txq_active, 1768 sc->sc_txq_active | txqs); 1769 sc->sc_txq_active |= txqs; 1770 ATH_PCU_UNLOCK(sc); 1771 } 1772 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1773 } 1774 if (status & HAL_INT_BMISS) { 1775 sc->sc_stats.ast_bmiss++; 1776 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1777 } 1778 if (status & HAL_INT_GTT) 1779 sc->sc_stats.ast_tx_timeout++; 1780 if (status & HAL_INT_CST) 1781 sc->sc_stats.ast_tx_cst++; 1782 if (status & HAL_INT_MIB) { 1783 sc->sc_stats.ast_mib++; 1784 ATH_PCU_LOCK(sc); 1785 /* 1786 * Disable interrupts until we service the MIB 1787 * interrupt; otherwise it will continue to fire. 1788 */ 1789 ath_hal_intrset(ah, 0); 1790 /* 1791 * Let the hal handle the event. We assume it will 1792 * clear whatever condition caused the interrupt. 1793 */ 1794 ath_hal_mibevent(ah, &sc->sc_halstats); 1795 /* 1796 * Don't reset the interrupt if we've just 1797 * kicked the PCU, or we may get a nested 1798 * RXEOL before the rxproc has had a chance 1799 * to run. 1800 */ 1801 if (sc->sc_kickpcu == 0) 1802 ath_hal_intrset(ah, sc->sc_imask); 1803 ATH_PCU_UNLOCK(sc); 1804 } 1805 if (status & HAL_INT_RXORN) { 1806 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1807 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1808 sc->sc_stats.ast_rxorn++; 1809 } 1810 } 1811 ATH_PCU_LOCK(sc); 1812 sc->sc_intr_cnt--; 1813 ATH_PCU_UNLOCK(sc); 1814 } 1815 1816 static void 1817 ath_fatal_proc(void *arg, int pending) 1818 { 1819 struct ath_softc *sc = arg; 1820 struct ifnet *ifp = sc->sc_ifp; 1821 u_int32_t *state; 1822 u_int32_t len; 1823 void *sp; 1824 1825 if_printf(ifp, "hardware error; resetting\n"); 1826 /* 1827 * Fatal errors are unrecoverable. Typically these 1828 * are caused by DMA errors. Collect h/w state from 1829 * the hal so we can diagnose what's going on. 1830 */ 1831 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1832 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1833 state = sp; 1834 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1835 state[0], state[1] , state[2], state[3], 1836 state[4], state[5]); 1837 } 1838 ath_reset(ifp, ATH_RESET_NOLOSS); 1839 } 1840 1841 static void 1842 ath_bmiss_vap(struct ieee80211vap *vap) 1843 { 1844 /* 1845 * Workaround phantom bmiss interrupts by sanity-checking 1846 * the time of our last rx'd frame. If it is within the 1847 * beacon miss interval then ignore the interrupt. If it's 1848 * truly a bmiss we'll get another interrupt soon and that'll 1849 * be dispatched up for processing. Note this applies only 1850 * for h/w beacon miss events. 1851 */ 1852 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1853 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1854 struct ath_softc *sc = ifp->if_softc; 1855 u_int64_t lastrx = sc->sc_lastrx; 1856 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1857 /* XXX should take a locked ref to iv_bss */ 1858 u_int bmisstimeout = 1859 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1860 1861 DPRINTF(sc, ATH_DEBUG_BEACON, 1862 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1863 __func__, (unsigned long long) tsf, 1864 (unsigned long long)(tsf - lastrx), 1865 (unsigned long long) lastrx, bmisstimeout); 1866 1867 if (tsf - lastrx <= bmisstimeout) { 1868 sc->sc_stats.ast_bmiss_phantom++; 1869 return; 1870 } 1871 } 1872 ATH_VAP(vap)->av_bmiss(vap); 1873 } 1874 1875 static int 1876 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1877 { 1878 uint32_t rsize; 1879 void *sp; 1880 1881 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1882 return 0; 1883 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1884 *hangs = *(uint32_t *)sp; 1885 return 1; 1886 } 1887 1888 static void 1889 ath_bmiss_proc(void *arg, int pending) 1890 { 1891 struct ath_softc *sc = arg; 1892 struct ifnet *ifp = sc->sc_ifp; 1893 uint32_t hangs; 1894 1895 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1896 1897 /* 1898 * Do a reset upon any becaon miss event. 1899 * 1900 * It may be a non-recognised RX clear hang which needs a reset 1901 * to clear. 1902 */ 1903 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1904 ath_reset(ifp, ATH_RESET_NOLOSS); 1905 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1906 } else { 1907 ath_reset(ifp, ATH_RESET_NOLOSS); 1908 ieee80211_beacon_miss(ifp->if_l2com); 1909 } 1910 } 1911 1912 /* 1913 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1914 * calcs together with WME. If necessary disable the crypto 1915 * hardware and mark the 802.11 state so keys will be setup 1916 * with the MIC work done in software. 1917 */ 1918 static void 1919 ath_settkipmic(struct ath_softc *sc) 1920 { 1921 struct ifnet *ifp = sc->sc_ifp; 1922 struct ieee80211com *ic = ifp->if_l2com; 1923 1924 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1925 if (ic->ic_flags & IEEE80211_F_WME) { 1926 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1927 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1928 } else { 1929 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1930 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1931 } 1932 } 1933 } 1934 1935 static void 1936 ath_init(void *arg) 1937 { 1938 struct ath_softc *sc = (struct ath_softc *) arg; 1939 struct ifnet *ifp = sc->sc_ifp; 1940 struct ieee80211com *ic = ifp->if_l2com; 1941 struct ath_hal *ah = sc->sc_ah; 1942 HAL_STATUS status; 1943 1944 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1945 __func__, ifp->if_flags); 1946 1947 ATH_LOCK(sc); 1948 /* 1949 * Stop anything previously setup. This is safe 1950 * whether this is the first time through or not. 1951 */ 1952 ath_stop_locked(ifp); 1953 1954 /* 1955 * The basic interface to setting the hardware in a good 1956 * state is ``reset''. On return the hardware is known to 1957 * be powered up and with interrupts disabled. This must 1958 * be followed by initialization of the appropriate bits 1959 * and then setup of the interrupt mask. 1960 */ 1961 ath_settkipmic(sc); 1962 ath_update_chainmasks(sc, ic->ic_curchan); 1963 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1964 sc->sc_cur_rxchainmask); 1965 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1966 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1967 status); 1968 ATH_UNLOCK(sc); 1969 return; 1970 } 1971 ath_chan_change(sc, ic->ic_curchan); 1972 1973 /* Let DFS at it in case it's a DFS channel */ 1974 ath_dfs_radar_enable(sc, ic->ic_curchan); 1975 1976 /* Let spectral at in case spectral is enabled */ 1977 ath_spectral_enable(sc, ic->ic_curchan); 1978 1979 /* 1980 * Likewise this is set during reset so update 1981 * state cached in the driver. 1982 */ 1983 sc->sc_diversity = ath_hal_getdiversity(ah); 1984 sc->sc_lastlongcal = 0; 1985 sc->sc_resetcal = 1; 1986 sc->sc_lastcalreset = 0; 1987 sc->sc_lastani = 0; 1988 sc->sc_lastshortcal = 0; 1989 sc->sc_doresetcal = AH_FALSE; 1990 /* 1991 * Beacon timers were cleared here; give ath_newstate() 1992 * a hint that the beacon timers should be poked when 1993 * things transition to the RUN state. 1994 */ 1995 sc->sc_beacons = 0; 1996 1997 /* 1998 * Setup the hardware after reset: the key cache 1999 * is filled as needed and the receive engine is 2000 * set going. Frame transmit is handled entirely 2001 * in the frame output path; there's nothing to do 2002 * here except setup the interrupt mask. 2003 */ 2004 if (ath_startrecv(sc) != 0) { 2005 if_printf(ifp, "unable to start recv logic\n"); 2006 ATH_UNLOCK(sc); 2007 return; 2008 } 2009 2010 /* 2011 * Enable interrupts. 2012 */ 2013 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2014 | HAL_INT_RXEOL | HAL_INT_RXORN 2015 | HAL_INT_TXURN 2016 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2017 2018 /* 2019 * Enable RX EDMA bits. Note these overlap with 2020 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2021 */ 2022 if (sc->sc_isedma) 2023 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2024 2025 /* 2026 * Enable MIB interrupts when there are hardware phy counters. 2027 * Note we only do this (at the moment) for station mode. 2028 */ 2029 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2030 sc->sc_imask |= HAL_INT_MIB; 2031 2032 /* Enable global TX timeout and carrier sense timeout if available */ 2033 if (ath_hal_gtxto_supported(ah)) 2034 sc->sc_imask |= HAL_INT_GTT; 2035 2036 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2037 __func__, sc->sc_imask); 2038 2039 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2040 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2041 ath_hal_intrset(ah, sc->sc_imask); 2042 2043 ATH_UNLOCK(sc); 2044 2045 #ifdef ATH_TX99_DIAG 2046 if (sc->sc_tx99 != NULL) 2047 sc->sc_tx99->start(sc->sc_tx99); 2048 else 2049 #endif 2050 ieee80211_start_all(ic); /* start all vap's */ 2051 } 2052 2053 static void 2054 ath_stop_locked(struct ifnet *ifp) 2055 { 2056 struct ath_softc *sc = ifp->if_softc; 2057 struct ath_hal *ah = sc->sc_ah; 2058 2059 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2060 __func__, sc->sc_invalid, ifp->if_flags); 2061 2062 ATH_LOCK_ASSERT(sc); 2063 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2064 /* 2065 * Shutdown the hardware and driver: 2066 * reset 802.11 state machine 2067 * turn off timers 2068 * disable interrupts 2069 * turn off the radio 2070 * clear transmit machinery 2071 * clear receive machinery 2072 * drain and release tx queues 2073 * reclaim beacon resources 2074 * power down hardware 2075 * 2076 * Note that some of this work is not possible if the 2077 * hardware is gone (invalid). 2078 */ 2079 #ifdef ATH_TX99_DIAG 2080 if (sc->sc_tx99 != NULL) 2081 sc->sc_tx99->stop(sc->sc_tx99); 2082 #endif 2083 callout_stop(&sc->sc_wd_ch); 2084 sc->sc_wd_timer = 0; 2085 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2086 if (!sc->sc_invalid) { 2087 if (sc->sc_softled) { 2088 callout_stop(&sc->sc_ledtimer); 2089 ath_hal_gpioset(ah, sc->sc_ledpin, 2090 !sc->sc_ledon); 2091 sc->sc_blinking = 0; 2092 } 2093 ath_hal_intrset(ah, 0); 2094 } 2095 ath_draintxq(sc, ATH_RESET_DEFAULT); 2096 if (!sc->sc_invalid) { 2097 ath_stoprecv(sc, 1); 2098 ath_hal_phydisable(ah); 2099 } else 2100 sc->sc_rxlink = NULL; 2101 ath_beacon_free(sc); /* XXX not needed */ 2102 } 2103 } 2104 2105 #define MAX_TXRX_ITERATIONS 1000 2106 static void 2107 ath_txrx_stop_locked(struct ath_softc *sc) 2108 { 2109 int i = MAX_TXRX_ITERATIONS; 2110 2111 ATH_UNLOCK_ASSERT(sc); 2112 ATH_PCU_LOCK_ASSERT(sc); 2113 2114 /* 2115 * Sleep until all the pending operations have completed. 2116 * 2117 * The caller must ensure that reset has been incremented 2118 * or the pending operations may continue being queued. 2119 */ 2120 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2121 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2122 if (i <= 0) 2123 break; 2124 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2125 i--; 2126 } 2127 2128 if (i <= 0) 2129 device_printf(sc->sc_dev, 2130 "%s: didn't finish after %d iterations\n", 2131 __func__, MAX_TXRX_ITERATIONS); 2132 } 2133 #undef MAX_TXRX_ITERATIONS 2134 2135 #if 0 2136 static void 2137 ath_txrx_stop(struct ath_softc *sc) 2138 { 2139 ATH_UNLOCK_ASSERT(sc); 2140 ATH_PCU_UNLOCK_ASSERT(sc); 2141 2142 ATH_PCU_LOCK(sc); 2143 ath_txrx_stop_locked(sc); 2144 ATH_PCU_UNLOCK(sc); 2145 } 2146 #endif 2147 2148 static void 2149 ath_txrx_start(struct ath_softc *sc) 2150 { 2151 2152 taskqueue_unblock(sc->sc_tq); 2153 } 2154 2155 /* 2156 * Grab the reset lock, and wait around until noone else 2157 * is trying to do anything with it. 2158 * 2159 * This is totally horrible but we can't hold this lock for 2160 * long enough to do TX/RX or we end up with net80211/ip stack 2161 * LORs and eventual deadlock. 2162 * 2163 * "dowait" signals whether to spin, waiting for the reset 2164 * lock count to reach 0. This should (for now) only be used 2165 * during the reset path, as the rest of the code may not 2166 * be locking-reentrant enough to behave correctly. 2167 * 2168 * Another, cleaner way should be found to serialise all of 2169 * these operations. 2170 */ 2171 #define MAX_RESET_ITERATIONS 10 2172 static int 2173 ath_reset_grablock(struct ath_softc *sc, int dowait) 2174 { 2175 int w = 0; 2176 int i = MAX_RESET_ITERATIONS; 2177 2178 ATH_PCU_LOCK_ASSERT(sc); 2179 do { 2180 if (sc->sc_inreset_cnt == 0) { 2181 w = 1; 2182 break; 2183 } 2184 if (dowait == 0) { 2185 w = 0; 2186 break; 2187 } 2188 ATH_PCU_UNLOCK(sc); 2189 pause("ath_reset_grablock", 1); 2190 i--; 2191 ATH_PCU_LOCK(sc); 2192 } while (i > 0); 2193 2194 /* 2195 * We always increment the refcounter, regardless 2196 * of whether we succeeded to get it in an exclusive 2197 * way. 2198 */ 2199 sc->sc_inreset_cnt++; 2200 2201 if (i <= 0) 2202 device_printf(sc->sc_dev, 2203 "%s: didn't finish after %d iterations\n", 2204 __func__, MAX_RESET_ITERATIONS); 2205 2206 if (w == 0) 2207 device_printf(sc->sc_dev, 2208 "%s: warning, recursive reset path!\n", 2209 __func__); 2210 2211 return w; 2212 } 2213 #undef MAX_RESET_ITERATIONS 2214 2215 /* 2216 * XXX TODO: write ath_reset_releaselock 2217 */ 2218 2219 static void 2220 ath_stop(struct ifnet *ifp) 2221 { 2222 struct ath_softc *sc = ifp->if_softc; 2223 2224 ATH_LOCK(sc); 2225 ath_stop_locked(ifp); 2226 ATH_UNLOCK(sc); 2227 } 2228 2229 /* 2230 * Reset the hardware w/o losing operational state. This is 2231 * basically a more efficient way of doing ath_stop, ath_init, 2232 * followed by state transitions to the current 802.11 2233 * operational state. Used to recover from various errors and 2234 * to reset or reload hardware state. 2235 */ 2236 int 2237 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2238 { 2239 struct ath_softc *sc = ifp->if_softc; 2240 struct ieee80211com *ic = ifp->if_l2com; 2241 struct ath_hal *ah = sc->sc_ah; 2242 HAL_STATUS status; 2243 int i; 2244 2245 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2246 2247 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2248 ATH_PCU_UNLOCK_ASSERT(sc); 2249 ATH_UNLOCK_ASSERT(sc); 2250 2251 /* Try to (stop any further TX/RX from occuring */ 2252 taskqueue_block(sc->sc_tq); 2253 2254 ATH_PCU_LOCK(sc); 2255 ath_hal_intrset(ah, 0); /* disable interrupts */ 2256 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2257 if (ath_reset_grablock(sc, 1) == 0) { 2258 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2259 __func__); 2260 } 2261 ATH_PCU_UNLOCK(sc); 2262 2263 /* 2264 * Should now wait for pending TX/RX to complete 2265 * and block future ones from occuring. This needs to be 2266 * done before the TX queue is drained. 2267 */ 2268 ath_draintxq(sc, reset_type); /* stop xmit side */ 2269 2270 /* 2271 * Regardless of whether we're doing a no-loss flush or 2272 * not, stop the PCU and handle what's in the RX queue. 2273 * That way frames aren't dropped which shouldn't be. 2274 */ 2275 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2276 ath_rx_flush(sc); 2277 2278 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2279 /* NB: indicate channel change so we do a full reset */ 2280 ath_update_chainmasks(sc, ic->ic_curchan); 2281 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2282 sc->sc_cur_rxchainmask); 2283 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2284 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2285 __func__, status); 2286 sc->sc_diversity = ath_hal_getdiversity(ah); 2287 2288 /* Let DFS at it in case it's a DFS channel */ 2289 ath_dfs_radar_enable(sc, ic->ic_curchan); 2290 2291 /* Let spectral at in case spectral is enabled */ 2292 ath_spectral_enable(sc, ic->ic_curchan); 2293 2294 if (ath_startrecv(sc) != 0) /* restart recv */ 2295 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2296 /* 2297 * We may be doing a reset in response to an ioctl 2298 * that changes the channel so update any state that 2299 * might change as a result. 2300 */ 2301 ath_chan_change(sc, ic->ic_curchan); 2302 if (sc->sc_beacons) { /* restart beacons */ 2303 #ifdef IEEE80211_SUPPORT_TDMA 2304 if (sc->sc_tdma) 2305 ath_tdma_config(sc, NULL); 2306 else 2307 #endif 2308 ath_beacon_config(sc, NULL); 2309 } 2310 2311 /* 2312 * Release the reset lock and re-enable interrupts here. 2313 * If an interrupt was being processed in ath_intr(), 2314 * it would disable interrupts at this point. So we have 2315 * to atomically enable interrupts and decrement the 2316 * reset counter - this way ath_intr() doesn't end up 2317 * disabling interrupts without a corresponding enable 2318 * in the rest or channel change path. 2319 */ 2320 ATH_PCU_LOCK(sc); 2321 sc->sc_inreset_cnt--; 2322 /* XXX only do this if sc_inreset_cnt == 0? */ 2323 ath_hal_intrset(ah, sc->sc_imask); 2324 ATH_PCU_UNLOCK(sc); 2325 2326 /* 2327 * TX and RX can be started here. If it were started with 2328 * sc_inreset_cnt > 0, the TX and RX path would abort. 2329 * Thus if this is a nested call through the reset or 2330 * channel change code, TX completion will occur but 2331 * RX completion and ath_start / ath_tx_start will not 2332 * run. 2333 */ 2334 2335 /* Restart TX/RX as needed */ 2336 ath_txrx_start(sc); 2337 2338 /* Restart TX completion and pending TX */ 2339 if (reset_type == ATH_RESET_NOLOSS) { 2340 ATH_TX_LOCK(sc); 2341 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2342 if (ATH_TXQ_SETUP(sc, i)) { 2343 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2344 ath_txq_sched(sc, &sc->sc_txq[i]); 2345 } 2346 } 2347 ATH_TX_UNLOCK(sc); 2348 } 2349 2350 /* 2351 * This may have been set during an ath_start() call which 2352 * set this once it detected a concurrent TX was going on. 2353 * So, clear it. 2354 */ 2355 IF_LOCK(&ifp->if_snd); 2356 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2357 IF_UNLOCK(&ifp->if_snd); 2358 2359 /* Handle any frames in the TX queue */ 2360 /* 2361 * XXX should this be done by the caller, rather than 2362 * ath_reset() ? 2363 */ 2364 ath_tx_kick(sc); /* restart xmit */ 2365 return 0; 2366 } 2367 2368 static int 2369 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2370 { 2371 struct ieee80211com *ic = vap->iv_ic; 2372 struct ifnet *ifp = ic->ic_ifp; 2373 struct ath_softc *sc = ifp->if_softc; 2374 struct ath_hal *ah = sc->sc_ah; 2375 2376 switch (cmd) { 2377 case IEEE80211_IOC_TXPOWER: 2378 /* 2379 * If per-packet TPC is enabled, then we have nothing 2380 * to do; otherwise we need to force the global limit. 2381 * All this can happen directly; no need to reset. 2382 */ 2383 if (!ath_hal_gettpc(ah)) 2384 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2385 return 0; 2386 } 2387 /* XXX? Full or NOLOSS? */ 2388 return ath_reset(ifp, ATH_RESET_FULL); 2389 } 2390 2391 struct ath_buf * 2392 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2393 { 2394 struct ath_buf *bf; 2395 2396 ATH_TXBUF_LOCK_ASSERT(sc); 2397 2398 if (btype == ATH_BUFTYPE_MGMT) 2399 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2400 else 2401 bf = TAILQ_FIRST(&sc->sc_txbuf); 2402 2403 if (bf == NULL) { 2404 sc->sc_stats.ast_tx_getnobuf++; 2405 } else { 2406 if (bf->bf_flags & ATH_BUF_BUSY) { 2407 sc->sc_stats.ast_tx_getbusybuf++; 2408 bf = NULL; 2409 } 2410 } 2411 2412 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2413 if (btype == ATH_BUFTYPE_MGMT) 2414 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2415 else { 2416 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2417 sc->sc_txbuf_cnt--; 2418 2419 /* 2420 * This shuldn't happen; however just to be 2421 * safe print a warning and fudge the txbuf 2422 * count. 2423 */ 2424 if (sc->sc_txbuf_cnt < 0) { 2425 device_printf(sc->sc_dev, 2426 "%s: sc_txbuf_cnt < 0?\n", 2427 __func__); 2428 sc->sc_txbuf_cnt = 0; 2429 } 2430 } 2431 } else 2432 bf = NULL; 2433 2434 if (bf == NULL) { 2435 /* XXX should check which list, mgmt or otherwise */ 2436 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2437 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2438 "out of xmit buffers" : "xmit buffer busy"); 2439 return NULL; 2440 } 2441 2442 /* XXX TODO: should do this at buffer list initialisation */ 2443 /* XXX (then, ensure the buffer has the right flag set) */ 2444 if (btype == ATH_BUFTYPE_MGMT) 2445 bf->bf_flags |= ATH_BUF_MGMT; 2446 else 2447 bf->bf_flags &= (~ATH_BUF_MGMT); 2448 2449 /* Valid bf here; clear some basic fields */ 2450 bf->bf_next = NULL; /* XXX just to be sure */ 2451 bf->bf_last = NULL; /* XXX again, just to be sure */ 2452 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2453 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2454 2455 /* 2456 * Track the descriptor ID only if doing EDMA 2457 */ 2458 if (sc->sc_isedma) { 2459 bf->bf_descid = sc->sc_txbuf_descid; 2460 sc->sc_txbuf_descid++; 2461 } 2462 2463 return bf; 2464 } 2465 2466 /* 2467 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2468 * can't be thrown back on the queue as they could still be 2469 * in use by the hardware. 2470 * 2471 * This duplicates the buffer, or returns NULL. 2472 * 2473 * The descriptor is also copied but the link pointers and 2474 * the DMA segments aren't copied; this frame should thus 2475 * be again passed through the descriptor setup/chain routines 2476 * so the link is correct. 2477 * 2478 * The caller must free the buffer using ath_freebuf(). 2479 * 2480 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2481 * XXX in the TX pathway when retries are needed. 2482 * XXX Figure out how to keep some buffers free, or factor the 2483 * XXX number of busy buffers into the xmit path (ath_start()) 2484 * XXX so we don't over-commit. 2485 */ 2486 struct ath_buf * 2487 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2488 { 2489 struct ath_buf *tbf; 2490 2491 tbf = ath_getbuf(sc, 2492 (bf->bf_flags & ATH_BUF_MGMT) ? 2493 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2494 if (tbf == NULL) 2495 return NULL; /* XXX failure? Why? */ 2496 2497 /* Copy basics */ 2498 tbf->bf_next = NULL; 2499 tbf->bf_nseg = bf->bf_nseg; 2500 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2501 tbf->bf_status = bf->bf_status; 2502 tbf->bf_m = bf->bf_m; 2503 /* 2504 * XXX Copy the node reference, the caller is responsible 2505 * for deleting the node reference before it frees its 2506 * buffer. 2507 * 2508 * XXX It's done like this so we don't call the net80211 2509 * code whilst having active TX queue locks held. 2510 */ 2511 tbf->bf_node = bf->bf_node; 2512 /* will be setup by the chain/setup function */ 2513 tbf->bf_lastds = NULL; 2514 /* for now, last == self */ 2515 tbf->bf_last = tbf; 2516 tbf->bf_comp = bf->bf_comp; 2517 2518 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2519 2520 /* The caller has to re-init the descriptor + links */ 2521 2522 /* Copy state */ 2523 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2524 2525 return tbf; 2526 } 2527 2528 struct ath_buf * 2529 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2530 { 2531 struct ath_buf *bf; 2532 2533 ATH_TXBUF_LOCK(sc); 2534 bf = _ath_getbuf_locked(sc, btype); 2535 /* 2536 * If a mgmt buffer was requested but we're out of those, 2537 * try requesting a normal one. 2538 */ 2539 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2540 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2541 ATH_TXBUF_UNLOCK(sc); 2542 if (bf == NULL) { 2543 struct ifnet *ifp = sc->sc_ifp; 2544 2545 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2546 sc->sc_stats.ast_tx_qstop++; 2547 IF_LOCK(&ifp->if_snd); 2548 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2549 IF_UNLOCK(&ifp->if_snd); 2550 } 2551 return bf; 2552 } 2553 2554 static void 2555 ath_start_queue(struct ifnet *ifp) 2556 { 2557 struct ath_softc *sc = ifp->if_softc; 2558 2559 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start"); 2560 ath_tx_kick(sc); 2561 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished"); 2562 } 2563 2564 void 2565 ath_start_task(void *arg, int npending) 2566 { 2567 struct ath_softc *sc = (struct ath_softc *) arg; 2568 struct ifnet *ifp = sc->sc_ifp; 2569 2570 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2571 2572 /* XXX is it ok to hold the ATH_LOCK here? */ 2573 ATH_PCU_LOCK(sc); 2574 if (sc->sc_inreset_cnt > 0) { 2575 device_printf(sc->sc_dev, 2576 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2577 ATH_PCU_UNLOCK(sc); 2578 IF_LOCK(&ifp->if_snd); 2579 sc->sc_stats.ast_tx_qstop++; 2580 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2581 IF_UNLOCK(&ifp->if_snd); 2582 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2583 return; 2584 } 2585 sc->sc_txstart_cnt++; 2586 ATH_PCU_UNLOCK(sc); 2587 2588 ATH_TX_LOCK(sc); 2589 ath_start(sc->sc_ifp); 2590 ATH_TX_UNLOCK(sc); 2591 2592 ATH_PCU_LOCK(sc); 2593 sc->sc_txstart_cnt--; 2594 ATH_PCU_UNLOCK(sc); 2595 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2596 } 2597 2598 void 2599 ath_start(struct ifnet *ifp) 2600 { 2601 struct ath_softc *sc = ifp->if_softc; 2602 struct ieee80211_node *ni; 2603 struct ath_buf *bf; 2604 struct mbuf *m, *next; 2605 ath_bufhead frags; 2606 int npkts = 0; 2607 2608 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2609 return; 2610 2611 ATH_TX_LOCK_ASSERT(sc); 2612 2613 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called"); 2614 2615 for (;;) { 2616 ATH_TXBUF_LOCK(sc); 2617 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2618 /* XXX increment counter? */ 2619 ATH_TXBUF_UNLOCK(sc); 2620 IF_LOCK(&ifp->if_snd); 2621 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2622 IF_UNLOCK(&ifp->if_snd); 2623 break; 2624 } 2625 ATH_TXBUF_UNLOCK(sc); 2626 2627 /* 2628 * Grab a TX buffer and associated resources. 2629 */ 2630 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2631 if (bf == NULL) 2632 break; 2633 2634 IFQ_DEQUEUE(&ifp->if_snd, m); 2635 if (m == NULL) { 2636 ATH_TXBUF_LOCK(sc); 2637 ath_returnbuf_head(sc, bf); 2638 ATH_TXBUF_UNLOCK(sc); 2639 break; 2640 } 2641 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2642 npkts ++; 2643 /* 2644 * Check for fragmentation. If this frame 2645 * has been broken up verify we have enough 2646 * buffers to send all the fragments so all 2647 * go out or none... 2648 */ 2649 TAILQ_INIT(&frags); 2650 if ((m->m_flags & M_FRAG) && 2651 !ath_txfrag_setup(sc, &frags, m, ni)) { 2652 DPRINTF(sc, ATH_DEBUG_XMIT, 2653 "%s: out of txfrag buffers\n", __func__); 2654 sc->sc_stats.ast_tx_nofrag++; 2655 ifp->if_oerrors++; 2656 ath_freetx(m); 2657 goto bad; 2658 } 2659 ifp->if_opackets++; 2660 nextfrag: 2661 /* 2662 * Pass the frame to the h/w for transmission. 2663 * Fragmented frames have each frag chained together 2664 * with m_nextpkt. We know there are sufficient ath_buf's 2665 * to send all the frags because of work done by 2666 * ath_txfrag_setup. We leave m_nextpkt set while 2667 * calling ath_tx_start so it can use it to extend the 2668 * the tx duration to cover the subsequent frag and 2669 * so it can reclaim all the mbufs in case of an error; 2670 * ath_tx_start clears m_nextpkt once it commits to 2671 * handing the frame to the hardware. 2672 */ 2673 next = m->m_nextpkt; 2674 if (ath_tx_start(sc, ni, bf, m)) { 2675 bad: 2676 ifp->if_oerrors++; 2677 reclaim: 2678 bf->bf_m = NULL; 2679 bf->bf_node = NULL; 2680 ATH_TXBUF_LOCK(sc); 2681 ath_returnbuf_head(sc, bf); 2682 ath_txfrag_cleanup(sc, &frags, ni); 2683 ATH_TXBUF_UNLOCK(sc); 2684 /* 2685 * XXX todo, free the node outside of 2686 * the TX lock context! 2687 */ 2688 if (ni != NULL) 2689 ieee80211_free_node(ni); 2690 continue; 2691 } 2692 2693 /* 2694 * Check here if the node is in power save state. 2695 */ 2696 ath_tx_update_tim(sc, ni, 1); 2697 2698 if (next != NULL) { 2699 /* 2700 * Beware of state changing between frags. 2701 * XXX check sta power-save state? 2702 */ 2703 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2704 DPRINTF(sc, ATH_DEBUG_XMIT, 2705 "%s: flush fragmented packet, state %s\n", 2706 __func__, 2707 ieee80211_state_name[ni->ni_vap->iv_state]); 2708 ath_freetx(next); 2709 goto reclaim; 2710 } 2711 m = next; 2712 bf = TAILQ_FIRST(&frags); 2713 KASSERT(bf != NULL, ("no buf for txfrag")); 2714 TAILQ_REMOVE(&frags, bf, bf_list); 2715 goto nextfrag; 2716 } 2717 2718 sc->sc_wd_timer = 5; 2719 } 2720 ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts); 2721 } 2722 static int 2723 ath_media_change(struct ifnet *ifp) 2724 { 2725 int error = ieee80211_media_change(ifp); 2726 /* NB: only the fixed rate can change and that doesn't need a reset */ 2727 return (error == ENETRESET ? 0 : error); 2728 } 2729 2730 /* 2731 * Block/unblock tx+rx processing while a key change is done. 2732 * We assume the caller serializes key management operations 2733 * so we only need to worry about synchronization with other 2734 * uses that originate in the driver. 2735 */ 2736 static void 2737 ath_key_update_begin(struct ieee80211vap *vap) 2738 { 2739 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2740 struct ath_softc *sc = ifp->if_softc; 2741 2742 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2743 taskqueue_block(sc->sc_tq); 2744 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2745 } 2746 2747 static void 2748 ath_key_update_end(struct ieee80211vap *vap) 2749 { 2750 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2751 struct ath_softc *sc = ifp->if_softc; 2752 2753 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2754 IF_UNLOCK(&ifp->if_snd); 2755 taskqueue_unblock(sc->sc_tq); 2756 } 2757 2758 static void 2759 ath_update_promisc(struct ifnet *ifp) 2760 { 2761 struct ath_softc *sc = ifp->if_softc; 2762 u_int32_t rfilt; 2763 2764 /* configure rx filter */ 2765 rfilt = ath_calcrxfilter(sc); 2766 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2767 2768 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2769 } 2770 2771 static void 2772 ath_update_mcast(struct ifnet *ifp) 2773 { 2774 struct ath_softc *sc = ifp->if_softc; 2775 u_int32_t mfilt[2]; 2776 2777 /* calculate and install multicast filter */ 2778 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2779 struct ifmultiaddr *ifma; 2780 /* 2781 * Merge multicast addresses to form the hardware filter. 2782 */ 2783 mfilt[0] = mfilt[1] = 0; 2784 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2785 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2786 caddr_t dl; 2787 u_int32_t val; 2788 u_int8_t pos; 2789 2790 /* calculate XOR of eight 6bit values */ 2791 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2792 val = LE_READ_4(dl + 0); 2793 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2794 val = LE_READ_4(dl + 3); 2795 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2796 pos &= 0x3f; 2797 mfilt[pos / 32] |= (1 << (pos % 32)); 2798 } 2799 if_maddr_runlock(ifp); 2800 } else 2801 mfilt[0] = mfilt[1] = ~0; 2802 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2803 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2804 __func__, mfilt[0], mfilt[1]); 2805 } 2806 2807 void 2808 ath_mode_init(struct ath_softc *sc) 2809 { 2810 struct ifnet *ifp = sc->sc_ifp; 2811 struct ath_hal *ah = sc->sc_ah; 2812 u_int32_t rfilt; 2813 2814 /* configure rx filter */ 2815 rfilt = ath_calcrxfilter(sc); 2816 ath_hal_setrxfilter(ah, rfilt); 2817 2818 /* configure operational mode */ 2819 ath_hal_setopmode(ah); 2820 2821 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2822 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2823 __func__, 2824 ah, 2825 ifp, 2826 (ifp == NULL) ? NULL : ifp->if_addr); 2827 2828 /* handle any link-level address change */ 2829 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2830 2831 /* calculate and install multicast filter */ 2832 ath_update_mcast(ifp); 2833 } 2834 2835 /* 2836 * Set the slot time based on the current setting. 2837 */ 2838 void 2839 ath_setslottime(struct ath_softc *sc) 2840 { 2841 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2842 struct ath_hal *ah = sc->sc_ah; 2843 u_int usec; 2844 2845 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2846 usec = 13; 2847 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2848 usec = 21; 2849 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2850 /* honor short/long slot time only in 11g */ 2851 /* XXX shouldn't honor on pure g or turbo g channel */ 2852 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2853 usec = HAL_SLOT_TIME_9; 2854 else 2855 usec = HAL_SLOT_TIME_20; 2856 } else 2857 usec = HAL_SLOT_TIME_9; 2858 2859 DPRINTF(sc, ATH_DEBUG_RESET, 2860 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2861 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2862 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2863 2864 ath_hal_setslottime(ah, usec); 2865 sc->sc_updateslot = OK; 2866 } 2867 2868 /* 2869 * Callback from the 802.11 layer to update the 2870 * slot time based on the current setting. 2871 */ 2872 static void 2873 ath_updateslot(struct ifnet *ifp) 2874 { 2875 struct ath_softc *sc = ifp->if_softc; 2876 struct ieee80211com *ic = ifp->if_l2com; 2877 2878 /* 2879 * When not coordinating the BSS, change the hardware 2880 * immediately. For other operation we defer the change 2881 * until beacon updates have propagated to the stations. 2882 */ 2883 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2884 ic->ic_opmode == IEEE80211_M_MBSS) 2885 sc->sc_updateslot = UPDATE; 2886 else 2887 ath_setslottime(sc); 2888 } 2889 2890 /* 2891 * Append the contents of src to dst; both queues 2892 * are assumed to be locked. 2893 */ 2894 void 2895 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2896 { 2897 2898 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2899 dst->axq_link = src->axq_link; 2900 src->axq_link = NULL; 2901 dst->axq_depth += src->axq_depth; 2902 dst->axq_aggr_depth += src->axq_aggr_depth; 2903 src->axq_depth = 0; 2904 src->axq_aggr_depth = 0; 2905 } 2906 2907 /* 2908 * Reset the hardware, with no loss. 2909 * 2910 * This can't be used for a general case reset. 2911 */ 2912 static void 2913 ath_reset_proc(void *arg, int pending) 2914 { 2915 struct ath_softc *sc = arg; 2916 struct ifnet *ifp = sc->sc_ifp; 2917 2918 #if 0 2919 if_printf(ifp, "%s: resetting\n", __func__); 2920 #endif 2921 ath_reset(ifp, ATH_RESET_NOLOSS); 2922 } 2923 2924 /* 2925 * Reset the hardware after detecting beacons have stopped. 2926 */ 2927 static void 2928 ath_bstuck_proc(void *arg, int pending) 2929 { 2930 struct ath_softc *sc = arg; 2931 struct ifnet *ifp = sc->sc_ifp; 2932 uint32_t hangs = 0; 2933 2934 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2935 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2936 2937 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2938 sc->sc_bmisscount); 2939 sc->sc_stats.ast_bstuck++; 2940 /* 2941 * This assumes that there's no simultaneous channel mode change 2942 * occuring. 2943 */ 2944 ath_reset(ifp, ATH_RESET_NOLOSS); 2945 } 2946 2947 static void 2948 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2949 { 2950 bus_addr_t *paddr = (bus_addr_t*) arg; 2951 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2952 *paddr = segs->ds_addr; 2953 } 2954 2955 /* 2956 * Allocate the descriptors and appropriate DMA tag/setup. 2957 * 2958 * For some situations (eg EDMA TX completion), there isn't a requirement 2959 * for the ath_buf entries to be allocated. 2960 */ 2961 int 2962 ath_descdma_alloc_desc(struct ath_softc *sc, 2963 struct ath_descdma *dd, ath_bufhead *head, 2964 const char *name, int ds_size, int ndesc) 2965 { 2966 #define DS2PHYS(_dd, _ds) \ 2967 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2968 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2969 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2970 struct ifnet *ifp = sc->sc_ifp; 2971 int error; 2972 2973 dd->dd_descsize = ds_size; 2974 2975 DPRINTF(sc, ATH_DEBUG_RESET, 2976 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2977 __func__, name, ndesc, dd->dd_descsize); 2978 2979 dd->dd_name = name; 2980 dd->dd_desc_len = dd->dd_descsize * ndesc; 2981 2982 /* 2983 * Merlin work-around: 2984 * Descriptors that cross the 4KB boundary can't be used. 2985 * Assume one skipped descriptor per 4KB page. 2986 */ 2987 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2988 int numpages = dd->dd_desc_len / 4096; 2989 dd->dd_desc_len += ds_size * numpages; 2990 } 2991 2992 /* 2993 * Setup DMA descriptor area. 2994 */ 2995 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2996 PAGE_SIZE, 0, /* alignment, bounds */ 2997 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2998 BUS_SPACE_MAXADDR, /* highaddr */ 2999 NULL, NULL, /* filter, filterarg */ 3000 dd->dd_desc_len, /* maxsize */ 3001 1, /* nsegments */ 3002 dd->dd_desc_len, /* maxsegsize */ 3003 BUS_DMA_ALLOCNOW, /* flags */ 3004 NULL, /* lockfunc */ 3005 NULL, /* lockarg */ 3006 &dd->dd_dmat); 3007 if (error != 0) { 3008 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3009 return error; 3010 } 3011 3012 /* allocate descriptors */ 3013 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3014 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3015 &dd->dd_dmamap); 3016 if (error != 0) { 3017 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3018 "error %u\n", ndesc, dd->dd_name, error); 3019 goto fail1; 3020 } 3021 3022 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3023 dd->dd_desc, dd->dd_desc_len, 3024 ath_load_cb, &dd->dd_desc_paddr, 3025 BUS_DMA_NOWAIT); 3026 if (error != 0) { 3027 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3028 dd->dd_name, error); 3029 goto fail2; 3030 } 3031 3032 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3033 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3034 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3035 /*XXX*/ (u_long) dd->dd_desc_len); 3036 3037 return (0); 3038 3039 fail2: 3040 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3041 fail1: 3042 bus_dma_tag_destroy(dd->dd_dmat); 3043 memset(dd, 0, sizeof(*dd)); 3044 return error; 3045 #undef DS2PHYS 3046 #undef ATH_DESC_4KB_BOUND_CHECK 3047 } 3048 3049 int 3050 ath_descdma_setup(struct ath_softc *sc, 3051 struct ath_descdma *dd, ath_bufhead *head, 3052 const char *name, int ds_size, int nbuf, int ndesc) 3053 { 3054 #define DS2PHYS(_dd, _ds) \ 3055 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3056 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3057 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3058 struct ifnet *ifp = sc->sc_ifp; 3059 uint8_t *ds; 3060 struct ath_buf *bf; 3061 int i, bsize, error; 3062 3063 /* Allocate descriptors */ 3064 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3065 nbuf * ndesc); 3066 3067 /* Assume any errors during allocation were dealt with */ 3068 if (error != 0) { 3069 return (error); 3070 } 3071 3072 ds = (uint8_t *) dd->dd_desc; 3073 3074 /* allocate rx buffers */ 3075 bsize = sizeof(struct ath_buf) * nbuf; 3076 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3077 if (bf == NULL) { 3078 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3079 dd->dd_name, bsize); 3080 goto fail3; 3081 } 3082 dd->dd_bufptr = bf; 3083 3084 TAILQ_INIT(head); 3085 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3086 bf->bf_desc = (struct ath_desc *) ds; 3087 bf->bf_daddr = DS2PHYS(dd, ds); 3088 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3089 /* 3090 * Merlin WAR: Skip descriptor addresses which 3091 * cause 4KB boundary crossing along any point 3092 * in the descriptor. 3093 */ 3094 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3095 dd->dd_descsize)) { 3096 /* Start at the next page */ 3097 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3098 bf->bf_desc = (struct ath_desc *) ds; 3099 bf->bf_daddr = DS2PHYS(dd, ds); 3100 } 3101 } 3102 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3103 &bf->bf_dmamap); 3104 if (error != 0) { 3105 if_printf(ifp, "unable to create dmamap for %s " 3106 "buffer %u, error %u\n", dd->dd_name, i, error); 3107 ath_descdma_cleanup(sc, dd, head); 3108 return error; 3109 } 3110 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3111 TAILQ_INSERT_TAIL(head, bf, bf_list); 3112 } 3113 3114 /* 3115 * XXX TODO: ensure that ds doesn't overflow the descriptor 3116 * allocation otherwise weird stuff will occur and crash your 3117 * machine. 3118 */ 3119 return 0; 3120 /* XXX this should likely just call ath_descdma_cleanup() */ 3121 fail3: 3122 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3123 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3124 bus_dma_tag_destroy(dd->dd_dmat); 3125 memset(dd, 0, sizeof(*dd)); 3126 return error; 3127 #undef DS2PHYS 3128 #undef ATH_DESC_4KB_BOUND_CHECK 3129 } 3130 3131 /* 3132 * Allocate ath_buf entries but no descriptor contents. 3133 * 3134 * This is for RX EDMA where the descriptors are the header part of 3135 * the RX buffer. 3136 */ 3137 int 3138 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3139 struct ath_descdma *dd, ath_bufhead *head, 3140 const char *name, int nbuf, int rx_status_len) 3141 { 3142 struct ifnet *ifp = sc->sc_ifp; 3143 struct ath_buf *bf; 3144 int i, bsize, error; 3145 3146 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3147 __func__, name, nbuf); 3148 3149 dd->dd_name = name; 3150 /* 3151 * This is (mostly) purely for show. We're not allocating any actual 3152 * descriptors here as EDMA RX has the descriptor be part 3153 * of the RX buffer. 3154 * 3155 * However, dd_desc_len is used by ath_descdma_free() to determine 3156 * whether we have already freed this DMA mapping. 3157 */ 3158 dd->dd_desc_len = rx_status_len * nbuf; 3159 dd->dd_descsize = rx_status_len; 3160 3161 /* allocate rx buffers */ 3162 bsize = sizeof(struct ath_buf) * nbuf; 3163 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3164 if (bf == NULL) { 3165 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3166 dd->dd_name, bsize); 3167 error = ENOMEM; 3168 goto fail3; 3169 } 3170 dd->dd_bufptr = bf; 3171 3172 TAILQ_INIT(head); 3173 for (i = 0; i < nbuf; i++, bf++) { 3174 bf->bf_desc = NULL; 3175 bf->bf_daddr = 0; 3176 bf->bf_lastds = NULL; /* Just an initial value */ 3177 3178 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3179 &bf->bf_dmamap); 3180 if (error != 0) { 3181 if_printf(ifp, "unable to create dmamap for %s " 3182 "buffer %u, error %u\n", dd->dd_name, i, error); 3183 ath_descdma_cleanup(sc, dd, head); 3184 return error; 3185 } 3186 TAILQ_INSERT_TAIL(head, bf, bf_list); 3187 } 3188 return 0; 3189 fail3: 3190 memset(dd, 0, sizeof(*dd)); 3191 return error; 3192 } 3193 3194 void 3195 ath_descdma_cleanup(struct ath_softc *sc, 3196 struct ath_descdma *dd, ath_bufhead *head) 3197 { 3198 struct ath_buf *bf; 3199 struct ieee80211_node *ni; 3200 3201 if (dd->dd_dmamap != 0) { 3202 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3203 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3204 bus_dma_tag_destroy(dd->dd_dmat); 3205 } 3206 3207 if (head != NULL) { 3208 TAILQ_FOREACH(bf, head, bf_list) { 3209 if (bf->bf_m) { 3210 m_freem(bf->bf_m); 3211 bf->bf_m = NULL; 3212 } 3213 if (bf->bf_dmamap != NULL) { 3214 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3215 bf->bf_dmamap = NULL; 3216 } 3217 ni = bf->bf_node; 3218 bf->bf_node = NULL; 3219 if (ni != NULL) { 3220 /* 3221 * Reclaim node reference. 3222 */ 3223 ieee80211_free_node(ni); 3224 } 3225 } 3226 } 3227 3228 if (head != NULL) 3229 TAILQ_INIT(head); 3230 3231 if (dd->dd_bufptr != NULL) 3232 free(dd->dd_bufptr, M_ATHDEV); 3233 memset(dd, 0, sizeof(*dd)); 3234 } 3235 3236 static int 3237 ath_desc_alloc(struct ath_softc *sc) 3238 { 3239 int error; 3240 3241 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3242 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3243 if (error != 0) { 3244 return error; 3245 } 3246 sc->sc_txbuf_cnt = ath_txbuf; 3247 3248 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3249 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3250 ATH_TXDESC); 3251 if (error != 0) { 3252 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3253 return error; 3254 } 3255 3256 /* 3257 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3258 * flag doesn't have to be set in ath_getbuf_locked(). 3259 */ 3260 3261 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3262 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3263 if (error != 0) { 3264 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3265 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3266 &sc->sc_txbuf_mgmt); 3267 return error; 3268 } 3269 return 0; 3270 } 3271 3272 static void 3273 ath_desc_free(struct ath_softc *sc) 3274 { 3275 3276 if (sc->sc_bdma.dd_desc_len != 0) 3277 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3278 if (sc->sc_txdma.dd_desc_len != 0) 3279 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3280 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3281 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3282 &sc->sc_txbuf_mgmt); 3283 } 3284 3285 static struct ieee80211_node * 3286 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3287 { 3288 struct ieee80211com *ic = vap->iv_ic; 3289 struct ath_softc *sc = ic->ic_ifp->if_softc; 3290 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3291 struct ath_node *an; 3292 3293 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3294 if (an == NULL) { 3295 /* XXX stat+msg */ 3296 return NULL; 3297 } 3298 ath_rate_node_init(sc, an); 3299 3300 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3301 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3302 device_get_nameunit(sc->sc_dev), an); 3303 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3304 3305 /* XXX setup ath_tid */ 3306 ath_tx_tid_init(sc, an); 3307 3308 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3309 return &an->an_node; 3310 } 3311 3312 static void 3313 ath_node_cleanup(struct ieee80211_node *ni) 3314 { 3315 struct ieee80211com *ic = ni->ni_ic; 3316 struct ath_softc *sc = ic->ic_ifp->if_softc; 3317 3318 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3319 ath_tx_node_flush(sc, ATH_NODE(ni)); 3320 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3321 sc->sc_node_cleanup(ni); 3322 } 3323 3324 static void 3325 ath_node_free(struct ieee80211_node *ni) 3326 { 3327 struct ieee80211com *ic = ni->ni_ic; 3328 struct ath_softc *sc = ic->ic_ifp->if_softc; 3329 3330 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3331 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3332 sc->sc_node_free(ni); 3333 } 3334 3335 static void 3336 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3337 { 3338 struct ieee80211com *ic = ni->ni_ic; 3339 struct ath_softc *sc = ic->ic_ifp->if_softc; 3340 struct ath_hal *ah = sc->sc_ah; 3341 3342 *rssi = ic->ic_node_getrssi(ni); 3343 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3344 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3345 else 3346 *noise = -95; /* nominally correct */ 3347 } 3348 3349 /* 3350 * Set the default antenna. 3351 */ 3352 void 3353 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3354 { 3355 struct ath_hal *ah = sc->sc_ah; 3356 3357 /* XXX block beacon interrupts */ 3358 ath_hal_setdefantenna(ah, antenna); 3359 if (sc->sc_defant != antenna) 3360 sc->sc_stats.ast_ant_defswitch++; 3361 sc->sc_defant = antenna; 3362 sc->sc_rxotherant = 0; 3363 } 3364 3365 static void 3366 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3367 { 3368 txq->axq_qnum = qnum; 3369 txq->axq_ac = 0; 3370 txq->axq_depth = 0; 3371 txq->axq_aggr_depth = 0; 3372 txq->axq_intrcnt = 0; 3373 txq->axq_link = NULL; 3374 txq->axq_softc = sc; 3375 TAILQ_INIT(&txq->axq_q); 3376 TAILQ_INIT(&txq->axq_tidq); 3377 } 3378 3379 /* 3380 * Setup a h/w transmit queue. 3381 */ 3382 static struct ath_txq * 3383 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3384 { 3385 #define N(a) (sizeof(a)/sizeof(a[0])) 3386 struct ath_hal *ah = sc->sc_ah; 3387 HAL_TXQ_INFO qi; 3388 int qnum; 3389 3390 memset(&qi, 0, sizeof(qi)); 3391 qi.tqi_subtype = subtype; 3392 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3393 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3394 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3395 /* 3396 * Enable interrupts only for EOL and DESC conditions. 3397 * We mark tx descriptors to receive a DESC interrupt 3398 * when a tx queue gets deep; otherwise waiting for the 3399 * EOL to reap descriptors. Note that this is done to 3400 * reduce interrupt load and this only defers reaping 3401 * descriptors, never transmitting frames. Aside from 3402 * reducing interrupts this also permits more concurrency. 3403 * The only potential downside is if the tx queue backs 3404 * up in which case the top half of the kernel may backup 3405 * due to a lack of tx descriptors. 3406 */ 3407 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3408 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3409 if (qnum == -1) { 3410 /* 3411 * NB: don't print a message, this happens 3412 * normally on parts with too few tx queues 3413 */ 3414 return NULL; 3415 } 3416 if (qnum >= N(sc->sc_txq)) { 3417 device_printf(sc->sc_dev, 3418 "hal qnum %u out of range, max %zu!\n", 3419 qnum, N(sc->sc_txq)); 3420 ath_hal_releasetxqueue(ah, qnum); 3421 return NULL; 3422 } 3423 if (!ATH_TXQ_SETUP(sc, qnum)) { 3424 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3425 sc->sc_txqsetup |= 1<<qnum; 3426 } 3427 return &sc->sc_txq[qnum]; 3428 #undef N 3429 } 3430 3431 /* 3432 * Setup a hardware data transmit queue for the specified 3433 * access control. The hal may not support all requested 3434 * queues in which case it will return a reference to a 3435 * previously setup queue. We record the mapping from ac's 3436 * to h/w queues for use by ath_tx_start and also track 3437 * the set of h/w queues being used to optimize work in the 3438 * transmit interrupt handler and related routines. 3439 */ 3440 static int 3441 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3442 { 3443 #define N(a) (sizeof(a)/sizeof(a[0])) 3444 struct ath_txq *txq; 3445 3446 if (ac >= N(sc->sc_ac2q)) { 3447 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3448 ac, N(sc->sc_ac2q)); 3449 return 0; 3450 } 3451 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3452 if (txq != NULL) { 3453 txq->axq_ac = ac; 3454 sc->sc_ac2q[ac] = txq; 3455 return 1; 3456 } else 3457 return 0; 3458 #undef N 3459 } 3460 3461 /* 3462 * Update WME parameters for a transmit queue. 3463 */ 3464 static int 3465 ath_txq_update(struct ath_softc *sc, int ac) 3466 { 3467 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3468 #define ATH_TXOP_TO_US(v) (v<<5) 3469 struct ifnet *ifp = sc->sc_ifp; 3470 struct ieee80211com *ic = ifp->if_l2com; 3471 struct ath_txq *txq = sc->sc_ac2q[ac]; 3472 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3473 struct ath_hal *ah = sc->sc_ah; 3474 HAL_TXQ_INFO qi; 3475 3476 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3477 #ifdef IEEE80211_SUPPORT_TDMA 3478 if (sc->sc_tdma) { 3479 /* 3480 * AIFS is zero so there's no pre-transmit wait. The 3481 * burst time defines the slot duration and is configured 3482 * through net80211. The QCU is setup to not do post-xmit 3483 * back off, lockout all lower-priority QCU's, and fire 3484 * off the DMA beacon alert timer which is setup based 3485 * on the slot configuration. 3486 */ 3487 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3488 | HAL_TXQ_TXERRINT_ENABLE 3489 | HAL_TXQ_TXURNINT_ENABLE 3490 | HAL_TXQ_TXEOLINT_ENABLE 3491 | HAL_TXQ_DBA_GATED 3492 | HAL_TXQ_BACKOFF_DISABLE 3493 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3494 ; 3495 qi.tqi_aifs = 0; 3496 /* XXX +dbaprep? */ 3497 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3498 qi.tqi_burstTime = qi.tqi_readyTime; 3499 } else { 3500 #endif 3501 /* 3502 * XXX shouldn't this just use the default flags 3503 * used in the previous queue setup? 3504 */ 3505 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3506 | HAL_TXQ_TXERRINT_ENABLE 3507 | HAL_TXQ_TXDESCINT_ENABLE 3508 | HAL_TXQ_TXURNINT_ENABLE 3509 | HAL_TXQ_TXEOLINT_ENABLE 3510 ; 3511 qi.tqi_aifs = wmep->wmep_aifsn; 3512 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3513 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3514 qi.tqi_readyTime = 0; 3515 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3516 #ifdef IEEE80211_SUPPORT_TDMA 3517 } 3518 #endif 3519 3520 DPRINTF(sc, ATH_DEBUG_RESET, 3521 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3522 __func__, txq->axq_qnum, qi.tqi_qflags, 3523 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3524 3525 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3526 if_printf(ifp, "unable to update hardware queue " 3527 "parameters for %s traffic!\n", 3528 ieee80211_wme_acnames[ac]); 3529 return 0; 3530 } else { 3531 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3532 return 1; 3533 } 3534 #undef ATH_TXOP_TO_US 3535 #undef ATH_EXPONENT_TO_VALUE 3536 } 3537 3538 /* 3539 * Callback from the 802.11 layer to update WME parameters. 3540 */ 3541 int 3542 ath_wme_update(struct ieee80211com *ic) 3543 { 3544 struct ath_softc *sc = ic->ic_ifp->if_softc; 3545 3546 return !ath_txq_update(sc, WME_AC_BE) || 3547 !ath_txq_update(sc, WME_AC_BK) || 3548 !ath_txq_update(sc, WME_AC_VI) || 3549 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3550 } 3551 3552 /* 3553 * Reclaim resources for a setup queue. 3554 */ 3555 static void 3556 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3557 { 3558 3559 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3560 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3561 } 3562 3563 /* 3564 * Reclaim all tx queue resources. 3565 */ 3566 static void 3567 ath_tx_cleanup(struct ath_softc *sc) 3568 { 3569 int i; 3570 3571 ATH_TXBUF_LOCK_DESTROY(sc); 3572 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3573 if (ATH_TXQ_SETUP(sc, i)) 3574 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3575 } 3576 3577 /* 3578 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3579 * using the current rates in sc_rixmap. 3580 */ 3581 int 3582 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3583 { 3584 int rix = sc->sc_rixmap[rate]; 3585 /* NB: return lowest rix for invalid rate */ 3586 return (rix == 0xff ? 0 : rix); 3587 } 3588 3589 static void 3590 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3591 struct ath_buf *bf) 3592 { 3593 struct ieee80211_node *ni = bf->bf_node; 3594 struct ifnet *ifp = sc->sc_ifp; 3595 struct ieee80211com *ic = ifp->if_l2com; 3596 int sr, lr, pri; 3597 3598 if (ts->ts_status == 0) { 3599 u_int8_t txant = ts->ts_antenna; 3600 sc->sc_stats.ast_ant_tx[txant]++; 3601 sc->sc_ant_tx[txant]++; 3602 if (ts->ts_finaltsi != 0) 3603 sc->sc_stats.ast_tx_altrate++; 3604 pri = M_WME_GETAC(bf->bf_m); 3605 if (pri >= WME_AC_VO) 3606 ic->ic_wme.wme_hipri_traffic++; 3607 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3608 ni->ni_inact = ni->ni_inact_reload; 3609 } else { 3610 if (ts->ts_status & HAL_TXERR_XRETRY) 3611 sc->sc_stats.ast_tx_xretries++; 3612 if (ts->ts_status & HAL_TXERR_FIFO) 3613 sc->sc_stats.ast_tx_fifoerr++; 3614 if (ts->ts_status & HAL_TXERR_FILT) 3615 sc->sc_stats.ast_tx_filtered++; 3616 if (ts->ts_status & HAL_TXERR_XTXOP) 3617 sc->sc_stats.ast_tx_xtxop++; 3618 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3619 sc->sc_stats.ast_tx_timerexpired++; 3620 3621 if (bf->bf_m->m_flags & M_FF) 3622 sc->sc_stats.ast_ff_txerr++; 3623 } 3624 /* XXX when is this valid? */ 3625 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 3626 sc->sc_stats.ast_tx_desccfgerr++; 3627 /* 3628 * This can be valid for successful frame transmission! 3629 * If there's a TX FIFO underrun during aggregate transmission, 3630 * the MAC will pad the rest of the aggregate with delimiters. 3631 * If a BA is returned, the frame is marked as "OK" and it's up 3632 * to the TX completion code to notice which frames weren't 3633 * successfully transmitted. 3634 */ 3635 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 3636 sc->sc_stats.ast_tx_data_underrun++; 3637 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 3638 sc->sc_stats.ast_tx_delim_underrun++; 3639 3640 sr = ts->ts_shortretry; 3641 lr = ts->ts_longretry; 3642 sc->sc_stats.ast_tx_shortretry += sr; 3643 sc->sc_stats.ast_tx_longretry += lr; 3644 3645 } 3646 3647 /* 3648 * The default completion. If fail is 1, this means 3649 * "please don't retry the frame, and just return -1 status 3650 * to the net80211 stack. 3651 */ 3652 void 3653 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3654 { 3655 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3656 int st; 3657 3658 if (fail == 1) 3659 st = -1; 3660 else 3661 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3662 ts->ts_status : HAL_TXERR_XRETRY; 3663 3664 #if 0 3665 if (bf->bf_state.bfs_dobaw) 3666 device_printf(sc->sc_dev, 3667 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3668 __func__, 3669 bf, 3670 SEQNO(bf->bf_state.bfs_seqno)); 3671 #endif 3672 if (bf->bf_next != NULL) 3673 device_printf(sc->sc_dev, 3674 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3675 __func__, 3676 bf, 3677 SEQNO(bf->bf_state.bfs_seqno)); 3678 3679 /* 3680 * Check if the node software queue is empty; if so 3681 * then clear the TIM. 3682 * 3683 * This needs to be done before the buffer is freed as 3684 * otherwise the node reference will have been released 3685 * and the node may not actually exist any longer. 3686 * 3687 * XXX I don't like this belonging here, but it's cleaner 3688 * to do it here right now then all the other places 3689 * where ath_tx_default_comp() is called. 3690 * 3691 * XXX TODO: during drain, ensure that the callback is 3692 * being called so we get a chance to update the TIM. 3693 */ 3694 if (bf->bf_node) 3695 ath_tx_update_tim(sc, bf->bf_node, 0); 3696 3697 /* 3698 * Do any tx complete callback. Note this must 3699 * be done before releasing the node reference. 3700 * This will free the mbuf, release the net80211 3701 * node and recycle the ath_buf. 3702 */ 3703 ath_tx_freebuf(sc, bf, st); 3704 } 3705 3706 /* 3707 * Update rate control with the given completion status. 3708 */ 3709 void 3710 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3711 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3712 int nframes, int nbad) 3713 { 3714 struct ath_node *an; 3715 3716 /* Only for unicast frames */ 3717 if (ni == NULL) 3718 return; 3719 3720 an = ATH_NODE(ni); 3721 ATH_NODE_UNLOCK_ASSERT(an); 3722 3723 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3724 ATH_NODE_LOCK(an); 3725 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3726 ATH_NODE_UNLOCK(an); 3727 } 3728 } 3729 3730 /* 3731 * Update the busy status of the last frame on the free list. 3732 * When doing TDMA, the busy flag tracks whether the hardware 3733 * currently points to this buffer or not, and thus gated DMA 3734 * may restart by re-reading the last descriptor in this 3735 * buffer. 3736 * 3737 * This should be called in the completion function once one 3738 * of the buffers has been used. 3739 */ 3740 static void 3741 ath_tx_update_busy(struct ath_softc *sc) 3742 { 3743 struct ath_buf *last; 3744 3745 /* 3746 * Since the last frame may still be marked 3747 * as ATH_BUF_BUSY, unmark it here before 3748 * finishing the frame processing. 3749 * Since we've completed a frame (aggregate 3750 * or otherwise), the hardware has moved on 3751 * and is no longer referencing the previous 3752 * descriptor. 3753 */ 3754 ATH_TXBUF_LOCK_ASSERT(sc); 3755 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3756 if (last != NULL) 3757 last->bf_flags &= ~ATH_BUF_BUSY; 3758 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3759 if (last != NULL) 3760 last->bf_flags &= ~ATH_BUF_BUSY; 3761 } 3762 3763 /* 3764 * Process the completion of the given buffer. 3765 * 3766 * This calls the rate control update and then the buffer completion. 3767 * This will either free the buffer or requeue it. In any case, the 3768 * bf pointer should be treated as invalid after this function is called. 3769 */ 3770 void 3771 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3772 struct ath_tx_status *ts, struct ath_buf *bf) 3773 { 3774 struct ieee80211_node *ni = bf->bf_node; 3775 struct ath_node *an = NULL; 3776 3777 ATH_TX_UNLOCK_ASSERT(sc); 3778 3779 /* If unicast frame, update general statistics */ 3780 if (ni != NULL) { 3781 an = ATH_NODE(ni); 3782 /* update statistics */ 3783 ath_tx_update_stats(sc, ts, bf); 3784 } 3785 3786 /* 3787 * Call the completion handler. 3788 * The completion handler is responsible for 3789 * calling the rate control code. 3790 * 3791 * Frames with no completion handler get the 3792 * rate control code called here. 3793 */ 3794 if (bf->bf_comp == NULL) { 3795 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3796 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3797 /* 3798 * XXX assume this isn't an aggregate 3799 * frame. 3800 */ 3801 ath_tx_update_ratectrl(sc, ni, 3802 bf->bf_state.bfs_rc, ts, 3803 bf->bf_state.bfs_pktlen, 1, 3804 (ts->ts_status == 0 ? 0 : 1)); 3805 } 3806 ath_tx_default_comp(sc, bf, 0); 3807 } else 3808 bf->bf_comp(sc, bf, 0); 3809 } 3810 3811 3812 3813 /* 3814 * Process completed xmit descriptors from the specified queue. 3815 * Kick the packet scheduler if needed. This can occur from this 3816 * particular task. 3817 */ 3818 static int 3819 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3820 { 3821 struct ath_hal *ah = sc->sc_ah; 3822 struct ath_buf *bf; 3823 struct ath_desc *ds; 3824 struct ath_tx_status *ts; 3825 struct ieee80211_node *ni; 3826 #ifdef IEEE80211_SUPPORT_SUPERG 3827 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3828 #endif /* IEEE80211_SUPPORT_SUPERG */ 3829 int nacked; 3830 HAL_STATUS status; 3831 3832 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3833 __func__, txq->axq_qnum, 3834 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3835 txq->axq_link); 3836 3837 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3838 "ath_tx_processq: txq=%u head %p link %p depth %p", 3839 txq->axq_qnum, 3840 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3841 txq->axq_link, 3842 txq->axq_depth); 3843 3844 nacked = 0; 3845 for (;;) { 3846 ATH_TX_LOCK(sc); 3847 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3848 bf = TAILQ_FIRST(&txq->axq_q); 3849 if (bf == NULL) { 3850 ATH_TX_UNLOCK(sc); 3851 break; 3852 } 3853 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3854 ts = &bf->bf_status.ds_txstat; 3855 3856 status = ath_hal_txprocdesc(ah, ds, ts); 3857 #ifdef ATH_DEBUG 3858 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3859 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3860 status == HAL_OK); 3861 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3862 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3863 status == HAL_OK); 3864 #endif 3865 #ifdef ATH_DEBUG_ALQ 3866 if (if_ath_alq_checkdebug(&sc->sc_alq, 3867 ATH_ALQ_EDMA_TXSTATUS)) { 3868 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 3869 sc->sc_tx_statuslen, 3870 (char *) ds); 3871 } 3872 #endif 3873 3874 if (status == HAL_EINPROGRESS) { 3875 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3876 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3877 txq->axq_qnum, bf, ds); 3878 ATH_TX_UNLOCK(sc); 3879 break; 3880 } 3881 ATH_TXQ_REMOVE(txq, bf, bf_list); 3882 #ifdef IEEE80211_SUPPORT_TDMA 3883 if (txq->axq_depth > 0) { 3884 /* 3885 * More frames follow. Mark the buffer busy 3886 * so it's not re-used while the hardware may 3887 * still re-read the link field in the descriptor. 3888 * 3889 * Use the last buffer in an aggregate as that 3890 * is where the hardware may be - intermediate 3891 * descriptors won't be "busy". 3892 */ 3893 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3894 } else 3895 #else 3896 if (txq->axq_depth == 0) 3897 #endif 3898 txq->axq_link = NULL; 3899 if (bf->bf_state.bfs_aggr) 3900 txq->axq_aggr_depth--; 3901 3902 ni = bf->bf_node; 3903 3904 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3905 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3906 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3907 /* 3908 * If unicast frame was ack'd update RSSI, 3909 * including the last rx time used to 3910 * workaround phantom bmiss interrupts. 3911 */ 3912 if (ni != NULL && ts->ts_status == 0 && 3913 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3914 nacked++; 3915 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3916 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3917 ts->ts_rssi); 3918 } 3919 ATH_TX_UNLOCK(sc); 3920 3921 /* 3922 * Update statistics and call completion 3923 */ 3924 ath_tx_process_buf_completion(sc, txq, ts, bf); 3925 3926 /* XXX at this point, bf and ni may be totally invalid */ 3927 } 3928 #ifdef IEEE80211_SUPPORT_SUPERG 3929 /* 3930 * Flush fast-frame staging queue when traffic slows. 3931 */ 3932 if (txq->axq_depth <= 1) 3933 ieee80211_ff_flush(ic, txq->axq_ac); 3934 #endif 3935 3936 /* Kick the software TXQ scheduler */ 3937 if (dosched) { 3938 ATH_TX_LOCK(sc); 3939 ath_txq_sched(sc, txq); 3940 ATH_TX_UNLOCK(sc); 3941 } 3942 3943 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3944 "ath_tx_processq: txq=%u: done", 3945 txq->axq_qnum); 3946 3947 return nacked; 3948 } 3949 3950 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3951 3952 /* 3953 * Deferred processing of transmit interrupt; special-cased 3954 * for a single hardware transmit queue (e.g. 5210 and 5211). 3955 */ 3956 static void 3957 ath_tx_proc_q0(void *arg, int npending) 3958 { 3959 struct ath_softc *sc = arg; 3960 struct ifnet *ifp = sc->sc_ifp; 3961 uint32_t txqs; 3962 3963 ATH_PCU_LOCK(sc); 3964 sc->sc_txproc_cnt++; 3965 txqs = sc->sc_txq_active; 3966 sc->sc_txq_active &= ~txqs; 3967 ATH_PCU_UNLOCK(sc); 3968 3969 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3970 "ath_tx_proc_q0: txqs=0x%08x", txqs); 3971 3972 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3973 /* XXX why is lastrx updated in tx code? */ 3974 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3975 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3976 ath_tx_processq(sc, sc->sc_cabq, 1); 3977 IF_LOCK(&ifp->if_snd); 3978 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3979 IF_UNLOCK(&ifp->if_snd); 3980 sc->sc_wd_timer = 0; 3981 3982 if (sc->sc_softled) 3983 ath_led_event(sc, sc->sc_txrix); 3984 3985 ATH_PCU_LOCK(sc); 3986 sc->sc_txproc_cnt--; 3987 ATH_PCU_UNLOCK(sc); 3988 3989 ath_tx_kick(sc); 3990 } 3991 3992 /* 3993 * Deferred processing of transmit interrupt; special-cased 3994 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3995 */ 3996 static void 3997 ath_tx_proc_q0123(void *arg, int npending) 3998 { 3999 struct ath_softc *sc = arg; 4000 struct ifnet *ifp = sc->sc_ifp; 4001 int nacked; 4002 uint32_t txqs; 4003 4004 ATH_PCU_LOCK(sc); 4005 sc->sc_txproc_cnt++; 4006 txqs = sc->sc_txq_active; 4007 sc->sc_txq_active &= ~txqs; 4008 ATH_PCU_UNLOCK(sc); 4009 4010 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4011 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4012 4013 /* 4014 * Process each active queue. 4015 */ 4016 nacked = 0; 4017 if (TXQACTIVE(txqs, 0)) 4018 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4019 if (TXQACTIVE(txqs, 1)) 4020 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4021 if (TXQACTIVE(txqs, 2)) 4022 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4023 if (TXQACTIVE(txqs, 3)) 4024 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4025 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4026 ath_tx_processq(sc, sc->sc_cabq, 1); 4027 if (nacked) 4028 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4029 4030 IF_LOCK(&ifp->if_snd); 4031 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4032 IF_UNLOCK(&ifp->if_snd); 4033 sc->sc_wd_timer = 0; 4034 4035 if (sc->sc_softled) 4036 ath_led_event(sc, sc->sc_txrix); 4037 4038 ATH_PCU_LOCK(sc); 4039 sc->sc_txproc_cnt--; 4040 ATH_PCU_UNLOCK(sc); 4041 4042 ath_tx_kick(sc); 4043 } 4044 4045 /* 4046 * Deferred processing of transmit interrupt. 4047 */ 4048 static void 4049 ath_tx_proc(void *arg, int npending) 4050 { 4051 struct ath_softc *sc = arg; 4052 struct ifnet *ifp = sc->sc_ifp; 4053 int i, nacked; 4054 uint32_t txqs; 4055 4056 ATH_PCU_LOCK(sc); 4057 sc->sc_txproc_cnt++; 4058 txqs = sc->sc_txq_active; 4059 sc->sc_txq_active &= ~txqs; 4060 ATH_PCU_UNLOCK(sc); 4061 4062 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4063 4064 /* 4065 * Process each active queue. 4066 */ 4067 nacked = 0; 4068 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4069 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4070 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4071 if (nacked) 4072 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4073 4074 /* XXX check this inside of IF_LOCK? */ 4075 IF_LOCK(&ifp->if_snd); 4076 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4077 IF_UNLOCK(&ifp->if_snd); 4078 sc->sc_wd_timer = 0; 4079 4080 if (sc->sc_softled) 4081 ath_led_event(sc, sc->sc_txrix); 4082 4083 ATH_PCU_LOCK(sc); 4084 sc->sc_txproc_cnt--; 4085 ATH_PCU_UNLOCK(sc); 4086 4087 ath_tx_kick(sc); 4088 } 4089 #undef TXQACTIVE 4090 4091 /* 4092 * Deferred processing of TXQ rescheduling. 4093 */ 4094 static void 4095 ath_txq_sched_tasklet(void *arg, int npending) 4096 { 4097 struct ath_softc *sc = arg; 4098 int i; 4099 4100 /* XXX is skipping ok? */ 4101 ATH_PCU_LOCK(sc); 4102 #if 0 4103 if (sc->sc_inreset_cnt > 0) { 4104 device_printf(sc->sc_dev, 4105 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4106 ATH_PCU_UNLOCK(sc); 4107 return; 4108 } 4109 #endif 4110 sc->sc_txproc_cnt++; 4111 ATH_PCU_UNLOCK(sc); 4112 4113 ATH_TX_LOCK(sc); 4114 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4115 if (ATH_TXQ_SETUP(sc, i)) { 4116 ath_txq_sched(sc, &sc->sc_txq[i]); 4117 } 4118 } 4119 ATH_TX_UNLOCK(sc); 4120 4121 ATH_PCU_LOCK(sc); 4122 sc->sc_txproc_cnt--; 4123 ATH_PCU_UNLOCK(sc); 4124 } 4125 4126 void 4127 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4128 { 4129 4130 ATH_TXBUF_LOCK_ASSERT(sc); 4131 4132 if (bf->bf_flags & ATH_BUF_MGMT) 4133 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4134 else { 4135 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4136 sc->sc_txbuf_cnt++; 4137 if (sc->sc_txbuf_cnt > ath_txbuf) { 4138 device_printf(sc->sc_dev, 4139 "%s: sc_txbuf_cnt > %d?\n", 4140 __func__, 4141 ath_txbuf); 4142 sc->sc_txbuf_cnt = ath_txbuf; 4143 } 4144 } 4145 } 4146 4147 void 4148 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4149 { 4150 4151 ATH_TXBUF_LOCK_ASSERT(sc); 4152 4153 if (bf->bf_flags & ATH_BUF_MGMT) 4154 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4155 else { 4156 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4157 sc->sc_txbuf_cnt++; 4158 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4159 device_printf(sc->sc_dev, 4160 "%s: sc_txbuf_cnt > %d?\n", 4161 __func__, 4162 ATH_TXBUF); 4163 sc->sc_txbuf_cnt = ATH_TXBUF; 4164 } 4165 } 4166 } 4167 4168 /* 4169 * Return a buffer to the pool and update the 'busy' flag on the 4170 * previous 'tail' entry. 4171 * 4172 * This _must_ only be called when the buffer is involved in a completed 4173 * TX. The logic is that if it was part of an active TX, the previous 4174 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4175 * for restart (eg for TDMA.) 4176 * 4177 * The caller must free the mbuf and recycle the node reference. 4178 */ 4179 void 4180 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4181 { 4182 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4183 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4184 4185 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4186 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4187 4188 ATH_TXBUF_LOCK(sc); 4189 ath_tx_update_busy(sc); 4190 ath_returnbuf_tail(sc, bf); 4191 ATH_TXBUF_UNLOCK(sc); 4192 } 4193 4194 /* 4195 * This is currently used by ath_tx_draintxq() and 4196 * ath_tx_tid_free_pkts(). 4197 * 4198 * It recycles a single ath_buf. 4199 */ 4200 void 4201 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4202 { 4203 struct ieee80211_node *ni = bf->bf_node; 4204 struct mbuf *m0 = bf->bf_m; 4205 4206 bf->bf_node = NULL; 4207 bf->bf_m = NULL; 4208 4209 /* Free the buffer, it's not needed any longer */ 4210 ath_freebuf(sc, bf); 4211 4212 if (ni != NULL) { 4213 /* 4214 * Do any callback and reclaim the node reference. 4215 */ 4216 if (m0->m_flags & M_TXCB) 4217 ieee80211_process_callback(ni, m0, status); 4218 ieee80211_free_node(ni); 4219 } 4220 m_freem(m0); 4221 4222 /* 4223 * XXX the buffer used to be freed -after-, but the DMA map was 4224 * freed where ath_freebuf() now is. I've no idea what this 4225 * will do. 4226 */ 4227 } 4228 4229 void 4230 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4231 { 4232 #ifdef ATH_DEBUG 4233 struct ath_hal *ah = sc->sc_ah; 4234 #endif 4235 struct ath_buf *bf; 4236 u_int ix; 4237 4238 /* 4239 * NB: this assumes output has been stopped and 4240 * we do not need to block ath_tx_proc 4241 */ 4242 ATH_TXBUF_LOCK(sc); 4243 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4244 if (bf != NULL) 4245 bf->bf_flags &= ~ATH_BUF_BUSY; 4246 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4247 if (bf != NULL) 4248 bf->bf_flags &= ~ATH_BUF_BUSY; 4249 ATH_TXBUF_UNLOCK(sc); 4250 4251 for (ix = 0;; ix++) { 4252 ATH_TX_LOCK(sc); 4253 bf = TAILQ_FIRST(&txq->axq_q); 4254 if (bf == NULL) { 4255 txq->axq_link = NULL; 4256 /* 4257 * There's currently no flag that indicates 4258 * a buffer is on the FIFO. So until that 4259 * occurs, just clear the FIFO counter here. 4260 * 4261 * Yes, this means that if something in parallel 4262 * is pushing things onto this TXQ and pushing 4263 * _that_ into the hardware, things will get 4264 * very fruity very quickly. 4265 */ 4266 txq->axq_fifo_depth = 0; 4267 ATH_TX_UNLOCK(sc); 4268 break; 4269 } 4270 ATH_TXQ_REMOVE(txq, bf, bf_list); 4271 if (bf->bf_state.bfs_aggr) 4272 txq->axq_aggr_depth--; 4273 #ifdef ATH_DEBUG 4274 if (sc->sc_debug & ATH_DEBUG_RESET) { 4275 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4276 int status = 0; 4277 4278 /* 4279 * EDMA operation has a TX completion FIFO 4280 * separate from the TX descriptor, so this 4281 * method of checking the "completion" status 4282 * is wrong. 4283 */ 4284 if (! sc->sc_isedma) { 4285 status = (ath_hal_txprocdesc(ah, 4286 bf->bf_lastds, 4287 &bf->bf_status.ds_txstat) == HAL_OK); 4288 } 4289 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4290 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4291 bf->bf_m->m_len, 0, -1); 4292 } 4293 #endif /* ATH_DEBUG */ 4294 /* 4295 * Since we're now doing magic in the completion 4296 * functions, we -must- call it for aggregation 4297 * destinations or BAW tracking will get upset. 4298 */ 4299 /* 4300 * Clear ATH_BUF_BUSY; the completion handler 4301 * will free the buffer. 4302 */ 4303 ATH_TX_UNLOCK(sc); 4304 bf->bf_flags &= ~ATH_BUF_BUSY; 4305 if (bf->bf_comp) 4306 bf->bf_comp(sc, bf, 1); 4307 else 4308 ath_tx_default_comp(sc, bf, 1); 4309 } 4310 4311 /* 4312 * Drain software queued frames which are on 4313 * active TIDs. 4314 */ 4315 ath_tx_txq_drain(sc, txq); 4316 } 4317 4318 static void 4319 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4320 { 4321 struct ath_hal *ah = sc->sc_ah; 4322 4323 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4324 __func__, txq->axq_qnum, 4325 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4326 txq->axq_link); 4327 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4328 } 4329 4330 int 4331 ath_stoptxdma(struct ath_softc *sc) 4332 { 4333 struct ath_hal *ah = sc->sc_ah; 4334 int i; 4335 4336 /* XXX return value */ 4337 if (sc->sc_invalid) 4338 return 0; 4339 4340 if (!sc->sc_invalid) { 4341 /* don't touch the hardware if marked invalid */ 4342 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4343 __func__, sc->sc_bhalq, 4344 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4345 NULL); 4346 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4347 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4348 if (ATH_TXQ_SETUP(sc, i)) 4349 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4350 } 4351 4352 return 1; 4353 } 4354 4355 /* 4356 * Drain the transmit queues and reclaim resources. 4357 */ 4358 void 4359 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4360 { 4361 #ifdef ATH_DEBUG 4362 struct ath_hal *ah = sc->sc_ah; 4363 #endif 4364 struct ifnet *ifp = sc->sc_ifp; 4365 int i; 4366 4367 (void) ath_stoptxdma(sc); 4368 4369 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4370 /* 4371 * XXX TODO: should we just handle the completed TX frames 4372 * here, whether or not the reset is a full one or not? 4373 */ 4374 if (ATH_TXQ_SETUP(sc, i)) { 4375 if (reset_type == ATH_RESET_NOLOSS) 4376 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4377 else 4378 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4379 } 4380 } 4381 #ifdef ATH_DEBUG 4382 if (sc->sc_debug & ATH_DEBUG_RESET) { 4383 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4384 if (bf != NULL && bf->bf_m != NULL) { 4385 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4386 ath_hal_txprocdesc(ah, bf->bf_lastds, 4387 &bf->bf_status.ds_txstat) == HAL_OK); 4388 ieee80211_dump_pkt(ifp->if_l2com, 4389 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4390 0, -1); 4391 } 4392 } 4393 #endif /* ATH_DEBUG */ 4394 IF_LOCK(&ifp->if_snd); 4395 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4396 IF_UNLOCK(&ifp->if_snd); 4397 sc->sc_wd_timer = 0; 4398 } 4399 4400 /* 4401 * Update internal state after a channel change. 4402 */ 4403 static void 4404 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4405 { 4406 enum ieee80211_phymode mode; 4407 4408 /* 4409 * Change channels and update the h/w rate map 4410 * if we're switching; e.g. 11a to 11b/g. 4411 */ 4412 mode = ieee80211_chan2mode(chan); 4413 if (mode != sc->sc_curmode) 4414 ath_setcurmode(sc, mode); 4415 sc->sc_curchan = chan; 4416 } 4417 4418 /* 4419 * Set/change channels. If the channel is really being changed, 4420 * it's done by resetting the chip. To accomplish this we must 4421 * first cleanup any pending DMA, then restart stuff after a la 4422 * ath_init. 4423 */ 4424 static int 4425 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4426 { 4427 struct ifnet *ifp = sc->sc_ifp; 4428 struct ieee80211com *ic = ifp->if_l2com; 4429 struct ath_hal *ah = sc->sc_ah; 4430 int ret = 0; 4431 4432 /* Treat this as an interface reset */ 4433 ATH_PCU_UNLOCK_ASSERT(sc); 4434 ATH_UNLOCK_ASSERT(sc); 4435 4436 /* (Try to) stop TX/RX from occuring */ 4437 taskqueue_block(sc->sc_tq); 4438 4439 ATH_PCU_LOCK(sc); 4440 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4441 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4442 if (ath_reset_grablock(sc, 1) == 0) { 4443 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4444 __func__); 4445 } 4446 ATH_PCU_UNLOCK(sc); 4447 4448 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4449 __func__, ieee80211_chan2ieee(ic, chan), 4450 chan->ic_freq, chan->ic_flags); 4451 if (chan != sc->sc_curchan) { 4452 HAL_STATUS status; 4453 /* 4454 * To switch channels clear any pending DMA operations; 4455 * wait long enough for the RX fifo to drain, reset the 4456 * hardware at the new frequency, and then re-enable 4457 * the relevant bits of the h/w. 4458 */ 4459 #if 0 4460 ath_hal_intrset(ah, 0); /* disable interrupts */ 4461 #endif 4462 ath_stoprecv(sc, 1); /* turn off frame recv */ 4463 /* 4464 * First, handle completed TX/RX frames. 4465 */ 4466 ath_rx_flush(sc); 4467 ath_draintxq(sc, ATH_RESET_NOLOSS); 4468 /* 4469 * Next, flush the non-scheduled frames. 4470 */ 4471 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4472 4473 ath_update_chainmasks(sc, chan); 4474 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 4475 sc->sc_cur_rxchainmask); 4476 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4477 if_printf(ifp, "%s: unable to reset " 4478 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4479 __func__, ieee80211_chan2ieee(ic, chan), 4480 chan->ic_freq, chan->ic_flags, status); 4481 ret = EIO; 4482 goto finish; 4483 } 4484 sc->sc_diversity = ath_hal_getdiversity(ah); 4485 4486 /* Let DFS at it in case it's a DFS channel */ 4487 ath_dfs_radar_enable(sc, chan); 4488 4489 /* Let spectral at in case spectral is enabled */ 4490 ath_spectral_enable(sc, chan); 4491 4492 /* 4493 * Re-enable rx framework. 4494 */ 4495 if (ath_startrecv(sc) != 0) { 4496 if_printf(ifp, "%s: unable to restart recv logic\n", 4497 __func__); 4498 ret = EIO; 4499 goto finish; 4500 } 4501 4502 /* 4503 * Change channels and update the h/w rate map 4504 * if we're switching; e.g. 11a to 11b/g. 4505 */ 4506 ath_chan_change(sc, chan); 4507 4508 /* 4509 * Reset clears the beacon timers; reset them 4510 * here if needed. 4511 */ 4512 if (sc->sc_beacons) { /* restart beacons */ 4513 #ifdef IEEE80211_SUPPORT_TDMA 4514 if (sc->sc_tdma) 4515 ath_tdma_config(sc, NULL); 4516 else 4517 #endif 4518 ath_beacon_config(sc, NULL); 4519 } 4520 4521 /* 4522 * Re-enable interrupts. 4523 */ 4524 #if 0 4525 ath_hal_intrset(ah, sc->sc_imask); 4526 #endif 4527 } 4528 4529 finish: 4530 ATH_PCU_LOCK(sc); 4531 sc->sc_inreset_cnt--; 4532 /* XXX only do this if sc_inreset_cnt == 0? */ 4533 ath_hal_intrset(ah, sc->sc_imask); 4534 ATH_PCU_UNLOCK(sc); 4535 4536 IF_LOCK(&ifp->if_snd); 4537 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4538 IF_UNLOCK(&ifp->if_snd); 4539 ath_txrx_start(sc); 4540 /* XXX ath_start? */ 4541 4542 return ret; 4543 } 4544 4545 /* 4546 * Periodically recalibrate the PHY to account 4547 * for temperature/environment changes. 4548 */ 4549 static void 4550 ath_calibrate(void *arg) 4551 { 4552 struct ath_softc *sc = arg; 4553 struct ath_hal *ah = sc->sc_ah; 4554 struct ifnet *ifp = sc->sc_ifp; 4555 struct ieee80211com *ic = ifp->if_l2com; 4556 HAL_BOOL longCal, isCalDone = AH_TRUE; 4557 HAL_BOOL aniCal, shortCal = AH_FALSE; 4558 int nextcal; 4559 4560 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4561 goto restart; 4562 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4563 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4564 if (sc->sc_doresetcal) 4565 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4566 4567 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4568 if (aniCal) { 4569 sc->sc_stats.ast_ani_cal++; 4570 sc->sc_lastani = ticks; 4571 ath_hal_ani_poll(ah, sc->sc_curchan); 4572 } 4573 4574 if (longCal) { 4575 sc->sc_stats.ast_per_cal++; 4576 sc->sc_lastlongcal = ticks; 4577 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4578 /* 4579 * Rfgain is out of bounds, reset the chip 4580 * to load new gain values. 4581 */ 4582 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4583 "%s: rfgain change\n", __func__); 4584 sc->sc_stats.ast_per_rfgain++; 4585 sc->sc_resetcal = 0; 4586 sc->sc_doresetcal = AH_TRUE; 4587 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4588 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4589 return; 4590 } 4591 /* 4592 * If this long cal is after an idle period, then 4593 * reset the data collection state so we start fresh. 4594 */ 4595 if (sc->sc_resetcal) { 4596 (void) ath_hal_calreset(ah, sc->sc_curchan); 4597 sc->sc_lastcalreset = ticks; 4598 sc->sc_lastshortcal = ticks; 4599 sc->sc_resetcal = 0; 4600 sc->sc_doresetcal = AH_TRUE; 4601 } 4602 } 4603 4604 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4605 if (shortCal || longCal) { 4606 isCalDone = AH_FALSE; 4607 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4608 if (longCal) { 4609 /* 4610 * Calibrate noise floor data again in case of change. 4611 */ 4612 ath_hal_process_noisefloor(ah); 4613 } 4614 } else { 4615 DPRINTF(sc, ATH_DEBUG_ANY, 4616 "%s: calibration of channel %u failed\n", 4617 __func__, sc->sc_curchan->ic_freq); 4618 sc->sc_stats.ast_per_calfail++; 4619 } 4620 if (shortCal) 4621 sc->sc_lastshortcal = ticks; 4622 } 4623 if (!isCalDone) { 4624 restart: 4625 /* 4626 * Use a shorter interval to potentially collect multiple 4627 * data samples required to complete calibration. Once 4628 * we're told the work is done we drop back to a longer 4629 * interval between requests. We're more aggressive doing 4630 * work when operating as an AP to improve operation right 4631 * after startup. 4632 */ 4633 sc->sc_lastshortcal = ticks; 4634 nextcal = ath_shortcalinterval*hz/1000; 4635 if (sc->sc_opmode != HAL_M_HOSTAP) 4636 nextcal *= 10; 4637 sc->sc_doresetcal = AH_TRUE; 4638 } else { 4639 /* nextcal should be the shortest time for next event */ 4640 nextcal = ath_longcalinterval*hz; 4641 if (sc->sc_lastcalreset == 0) 4642 sc->sc_lastcalreset = sc->sc_lastlongcal; 4643 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4644 sc->sc_resetcal = 1; /* setup reset next trip */ 4645 sc->sc_doresetcal = AH_FALSE; 4646 } 4647 /* ANI calibration may occur more often than short/long/resetcal */ 4648 if (ath_anicalinterval > 0) 4649 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4650 4651 if (nextcal != 0) { 4652 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4653 __func__, nextcal, isCalDone ? "" : "!"); 4654 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4655 } else { 4656 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4657 __func__); 4658 /* NB: don't rearm timer */ 4659 } 4660 } 4661 4662 static void 4663 ath_scan_start(struct ieee80211com *ic) 4664 { 4665 struct ifnet *ifp = ic->ic_ifp; 4666 struct ath_softc *sc = ifp->if_softc; 4667 struct ath_hal *ah = sc->sc_ah; 4668 u_int32_t rfilt; 4669 4670 /* XXX calibration timer? */ 4671 4672 ATH_LOCK(sc); 4673 sc->sc_scanning = 1; 4674 sc->sc_syncbeacon = 0; 4675 rfilt = ath_calcrxfilter(sc); 4676 ATH_UNLOCK(sc); 4677 4678 ATH_PCU_LOCK(sc); 4679 ath_hal_setrxfilter(ah, rfilt); 4680 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4681 ATH_PCU_UNLOCK(sc); 4682 4683 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4684 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4685 } 4686 4687 static void 4688 ath_scan_end(struct ieee80211com *ic) 4689 { 4690 struct ifnet *ifp = ic->ic_ifp; 4691 struct ath_softc *sc = ifp->if_softc; 4692 struct ath_hal *ah = sc->sc_ah; 4693 u_int32_t rfilt; 4694 4695 ATH_LOCK(sc); 4696 sc->sc_scanning = 0; 4697 rfilt = ath_calcrxfilter(sc); 4698 ATH_UNLOCK(sc); 4699 4700 ATH_PCU_LOCK(sc); 4701 ath_hal_setrxfilter(ah, rfilt); 4702 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4703 4704 ath_hal_process_noisefloor(ah); 4705 ATH_PCU_UNLOCK(sc); 4706 4707 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4708 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4709 sc->sc_curaid); 4710 } 4711 4712 #ifdef ATH_ENABLE_11N 4713 /* 4714 * For now, just do a channel change. 4715 * 4716 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4717 * control state and resetting the hardware without dropping frames out 4718 * of the queue. 4719 * 4720 * The unfortunate trouble here is making absolutely sure that the 4721 * channel width change has propagated enough so the hardware 4722 * absolutely isn't handed bogus frames for it's current operating 4723 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4724 * does occur in parallel, we need to make certain we've blocked 4725 * any further ongoing TX (and RX, that can cause raw TX) 4726 * before we do this. 4727 */ 4728 static void 4729 ath_update_chw(struct ieee80211com *ic) 4730 { 4731 struct ifnet *ifp = ic->ic_ifp; 4732 struct ath_softc *sc = ifp->if_softc; 4733 4734 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4735 ath_set_channel(ic); 4736 } 4737 #endif /* ATH_ENABLE_11N */ 4738 4739 static void 4740 ath_set_channel(struct ieee80211com *ic) 4741 { 4742 struct ifnet *ifp = ic->ic_ifp; 4743 struct ath_softc *sc = ifp->if_softc; 4744 4745 (void) ath_chan_set(sc, ic->ic_curchan); 4746 /* 4747 * If we are returning to our bss channel then mark state 4748 * so the next recv'd beacon's tsf will be used to sync the 4749 * beacon timers. Note that since we only hear beacons in 4750 * sta/ibss mode this has no effect in other operating modes. 4751 */ 4752 ATH_LOCK(sc); 4753 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4754 sc->sc_syncbeacon = 1; 4755 ATH_UNLOCK(sc); 4756 } 4757 4758 /* 4759 * Walk the vap list and check if there any vap's in RUN state. 4760 */ 4761 static int 4762 ath_isanyrunningvaps(struct ieee80211vap *this) 4763 { 4764 struct ieee80211com *ic = this->iv_ic; 4765 struct ieee80211vap *vap; 4766 4767 IEEE80211_LOCK_ASSERT(ic); 4768 4769 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4770 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4771 return 1; 4772 } 4773 return 0; 4774 } 4775 4776 static int 4777 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4778 { 4779 struct ieee80211com *ic = vap->iv_ic; 4780 struct ath_softc *sc = ic->ic_ifp->if_softc; 4781 struct ath_vap *avp = ATH_VAP(vap); 4782 struct ath_hal *ah = sc->sc_ah; 4783 struct ieee80211_node *ni = NULL; 4784 int i, error, stamode; 4785 u_int32_t rfilt; 4786 int csa_run_transition = 0; 4787 4788 static const HAL_LED_STATE leds[] = { 4789 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4790 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4791 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4792 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4793 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4794 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4795 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4796 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4797 }; 4798 4799 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4800 ieee80211_state_name[vap->iv_state], 4801 ieee80211_state_name[nstate]); 4802 4803 /* 4804 * net80211 _should_ have the comlock asserted at this point. 4805 * There are some comments around the calls to vap->iv_newstate 4806 * which indicate that it (newstate) may end up dropping the 4807 * lock. This and the subsequent lock assert check after newstate 4808 * are an attempt to catch these and figure out how/why. 4809 */ 4810 IEEE80211_LOCK_ASSERT(ic); 4811 4812 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4813 csa_run_transition = 1; 4814 4815 callout_drain(&sc->sc_cal_ch); 4816 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4817 4818 if (nstate == IEEE80211_S_SCAN) { 4819 /* 4820 * Scanning: turn off beacon miss and don't beacon. 4821 * Mark beacon state so when we reach RUN state we'll 4822 * [re]setup beacons. Unblock the task q thread so 4823 * deferred interrupt processing is done. 4824 */ 4825 ath_hal_intrset(ah, 4826 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4827 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4828 sc->sc_beacons = 0; 4829 taskqueue_unblock(sc->sc_tq); 4830 } 4831 4832 ni = ieee80211_ref_node(vap->iv_bss); 4833 rfilt = ath_calcrxfilter(sc); 4834 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4835 vap->iv_opmode == IEEE80211_M_AHDEMO || 4836 vap->iv_opmode == IEEE80211_M_IBSS); 4837 if (stamode && nstate == IEEE80211_S_RUN) { 4838 sc->sc_curaid = ni->ni_associd; 4839 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4840 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4841 } 4842 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4843 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4844 ath_hal_setrxfilter(ah, rfilt); 4845 4846 /* XXX is this to restore keycache on resume? */ 4847 if (vap->iv_opmode != IEEE80211_M_STA && 4848 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4849 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4850 if (ath_hal_keyisvalid(ah, i)) 4851 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4852 } 4853 4854 /* 4855 * Invoke the parent method to do net80211 work. 4856 */ 4857 error = avp->av_newstate(vap, nstate, arg); 4858 if (error != 0) 4859 goto bad; 4860 4861 /* 4862 * See above: ensure av_newstate() doesn't drop the lock 4863 * on us. 4864 */ 4865 IEEE80211_LOCK_ASSERT(ic); 4866 4867 if (nstate == IEEE80211_S_RUN) { 4868 /* NB: collect bss node again, it may have changed */ 4869 ieee80211_free_node(ni); 4870 ni = ieee80211_ref_node(vap->iv_bss); 4871 4872 DPRINTF(sc, ATH_DEBUG_STATE, 4873 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4874 "capinfo 0x%04x chan %d\n", __func__, 4875 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4876 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4877 4878 switch (vap->iv_opmode) { 4879 #ifdef IEEE80211_SUPPORT_TDMA 4880 case IEEE80211_M_AHDEMO: 4881 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4882 break; 4883 /* fall thru... */ 4884 #endif 4885 case IEEE80211_M_HOSTAP: 4886 case IEEE80211_M_IBSS: 4887 case IEEE80211_M_MBSS: 4888 /* 4889 * Allocate and setup the beacon frame. 4890 * 4891 * Stop any previous beacon DMA. This may be 4892 * necessary, for example, when an ibss merge 4893 * causes reconfiguration; there will be a state 4894 * transition from RUN->RUN that means we may 4895 * be called with beacon transmission active. 4896 */ 4897 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4898 4899 error = ath_beacon_alloc(sc, ni); 4900 if (error != 0) 4901 goto bad; 4902 /* 4903 * If joining an adhoc network defer beacon timer 4904 * configuration to the next beacon frame so we 4905 * have a current TSF to use. Otherwise we're 4906 * starting an ibss/bss so there's no need to delay; 4907 * if this is the first vap moving to RUN state, then 4908 * beacon state needs to be [re]configured. 4909 */ 4910 if (vap->iv_opmode == IEEE80211_M_IBSS && 4911 ni->ni_tstamp.tsf != 0) { 4912 sc->sc_syncbeacon = 1; 4913 } else if (!sc->sc_beacons) { 4914 #ifdef IEEE80211_SUPPORT_TDMA 4915 if (vap->iv_caps & IEEE80211_C_TDMA) 4916 ath_tdma_config(sc, vap); 4917 else 4918 #endif 4919 ath_beacon_config(sc, vap); 4920 sc->sc_beacons = 1; 4921 } 4922 break; 4923 case IEEE80211_M_STA: 4924 /* 4925 * Defer beacon timer configuration to the next 4926 * beacon frame so we have a current TSF to use 4927 * (any TSF collected when scanning is likely old). 4928 * However if it's due to a CSA -> RUN transition, 4929 * force a beacon update so we pick up a lack of 4930 * beacons from an AP in CAC and thus force a 4931 * scan. 4932 * 4933 * And, there's also corner cases here where 4934 * after a scan, the AP may have disappeared. 4935 * In that case, we may not receive an actual 4936 * beacon to update the beacon timer and thus we 4937 * won't get notified of the missing beacons. 4938 */ 4939 sc->sc_syncbeacon = 1; 4940 #if 0 4941 if (csa_run_transition) 4942 #endif 4943 ath_beacon_config(sc, vap); 4944 4945 /* 4946 * PR: kern/175227 4947 * 4948 * Reconfigure beacons during reset; as otherwise 4949 * we won't get the beacon timers reprogrammed 4950 * after a reset and thus we won't pick up a 4951 * beacon miss interrupt. 4952 * 4953 * Hopefully we'll see a beacon before the BMISS 4954 * timer fires (too often), leading to a STA 4955 * disassociation. 4956 */ 4957 sc->sc_beacons = 1; 4958 break; 4959 case IEEE80211_M_MONITOR: 4960 /* 4961 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4962 * transitions so we must re-enable interrupts here to 4963 * handle the case of a single monitor mode vap. 4964 */ 4965 ath_hal_intrset(ah, sc->sc_imask); 4966 break; 4967 case IEEE80211_M_WDS: 4968 break; 4969 default: 4970 break; 4971 } 4972 /* 4973 * Let the hal process statistics collected during a 4974 * scan so it can provide calibrated noise floor data. 4975 */ 4976 ath_hal_process_noisefloor(ah); 4977 /* 4978 * Reset rssi stats; maybe not the best place... 4979 */ 4980 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4981 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4982 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4983 /* 4984 * Finally, start any timers and the task q thread 4985 * (in case we didn't go through SCAN state). 4986 */ 4987 if (ath_longcalinterval != 0) { 4988 /* start periodic recalibration timer */ 4989 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4990 } else { 4991 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4992 "%s: calibration disabled\n", __func__); 4993 } 4994 taskqueue_unblock(sc->sc_tq); 4995 } else if (nstate == IEEE80211_S_INIT) { 4996 /* 4997 * If there are no vaps left in RUN state then 4998 * shutdown host/driver operation: 4999 * o disable interrupts 5000 * o disable the task queue thread 5001 * o mark beacon processing as stopped 5002 */ 5003 if (!ath_isanyrunningvaps(vap)) { 5004 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5005 /* disable interrupts */ 5006 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5007 taskqueue_block(sc->sc_tq); 5008 sc->sc_beacons = 0; 5009 } 5010 #ifdef IEEE80211_SUPPORT_TDMA 5011 ath_hal_setcca(ah, AH_TRUE); 5012 #endif 5013 } 5014 bad: 5015 ieee80211_free_node(ni); 5016 return error; 5017 } 5018 5019 /* 5020 * Allocate a key cache slot to the station so we can 5021 * setup a mapping from key index to node. The key cache 5022 * slot is needed for managing antenna state and for 5023 * compression when stations do not use crypto. We do 5024 * it uniliaterally here; if crypto is employed this slot 5025 * will be reassigned. 5026 */ 5027 static void 5028 ath_setup_stationkey(struct ieee80211_node *ni) 5029 { 5030 struct ieee80211vap *vap = ni->ni_vap; 5031 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5032 ieee80211_keyix keyix, rxkeyix; 5033 5034 /* XXX should take a locked ref to vap->iv_bss */ 5035 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5036 /* 5037 * Key cache is full; we'll fall back to doing 5038 * the more expensive lookup in software. Note 5039 * this also means no h/w compression. 5040 */ 5041 /* XXX msg+statistic */ 5042 } else { 5043 /* XXX locking? */ 5044 ni->ni_ucastkey.wk_keyix = keyix; 5045 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5046 /* NB: must mark device key to get called back on delete */ 5047 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5048 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5049 /* NB: this will create a pass-thru key entry */ 5050 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5051 } 5052 } 5053 5054 /* 5055 * Setup driver-specific state for a newly associated node. 5056 * Note that we're called also on a re-associate, the isnew 5057 * param tells us if this is the first time or not. 5058 */ 5059 static void 5060 ath_newassoc(struct ieee80211_node *ni, int isnew) 5061 { 5062 struct ath_node *an = ATH_NODE(ni); 5063 struct ieee80211vap *vap = ni->ni_vap; 5064 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5065 const struct ieee80211_txparam *tp = ni->ni_txparms; 5066 5067 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5068 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5069 5070 ath_rate_newassoc(sc, an, isnew); 5071 if (isnew && 5072 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5073 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5074 ath_setup_stationkey(ni); 5075 } 5076 5077 static int 5078 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5079 int nchans, struct ieee80211_channel chans[]) 5080 { 5081 struct ath_softc *sc = ic->ic_ifp->if_softc; 5082 struct ath_hal *ah = sc->sc_ah; 5083 HAL_STATUS status; 5084 5085 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5086 "%s: rd %u cc %u location %c%s\n", 5087 __func__, reg->regdomain, reg->country, reg->location, 5088 reg->ecm ? " ecm" : ""); 5089 5090 status = ath_hal_set_channels(ah, chans, nchans, 5091 reg->country, reg->regdomain); 5092 if (status != HAL_OK) { 5093 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5094 __func__, status); 5095 return EINVAL; /* XXX */ 5096 } 5097 5098 return 0; 5099 } 5100 5101 static void 5102 ath_getradiocaps(struct ieee80211com *ic, 5103 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5104 { 5105 struct ath_softc *sc = ic->ic_ifp->if_softc; 5106 struct ath_hal *ah = sc->sc_ah; 5107 5108 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5109 __func__, SKU_DEBUG, CTRY_DEFAULT); 5110 5111 /* XXX check return */ 5112 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5113 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5114 5115 } 5116 5117 static int 5118 ath_getchannels(struct ath_softc *sc) 5119 { 5120 struct ifnet *ifp = sc->sc_ifp; 5121 struct ieee80211com *ic = ifp->if_l2com; 5122 struct ath_hal *ah = sc->sc_ah; 5123 HAL_STATUS status; 5124 5125 /* 5126 * Collect channel set based on EEPROM contents. 5127 */ 5128 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5129 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5130 if (status != HAL_OK) { 5131 if_printf(ifp, "%s: unable to collect channel list from hal, " 5132 "status %d\n", __func__, status); 5133 return EINVAL; 5134 } 5135 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5136 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5137 /* XXX map Atheros sku's to net80211 SKU's */ 5138 /* XXX net80211 types too small */ 5139 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5140 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5141 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5142 ic->ic_regdomain.isocc[1] = ' '; 5143 5144 ic->ic_regdomain.ecm = 1; 5145 ic->ic_regdomain.location = 'I'; 5146 5147 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5148 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5149 __func__, sc->sc_eerd, sc->sc_eecc, 5150 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5151 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5152 return 0; 5153 } 5154 5155 static int 5156 ath_rate_setup(struct ath_softc *sc, u_int mode) 5157 { 5158 struct ath_hal *ah = sc->sc_ah; 5159 const HAL_RATE_TABLE *rt; 5160 5161 switch (mode) { 5162 case IEEE80211_MODE_11A: 5163 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5164 break; 5165 case IEEE80211_MODE_HALF: 5166 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5167 break; 5168 case IEEE80211_MODE_QUARTER: 5169 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5170 break; 5171 case IEEE80211_MODE_11B: 5172 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5173 break; 5174 case IEEE80211_MODE_11G: 5175 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5176 break; 5177 case IEEE80211_MODE_TURBO_A: 5178 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5179 break; 5180 case IEEE80211_MODE_TURBO_G: 5181 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5182 break; 5183 case IEEE80211_MODE_STURBO_A: 5184 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5185 break; 5186 case IEEE80211_MODE_11NA: 5187 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5188 break; 5189 case IEEE80211_MODE_11NG: 5190 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5191 break; 5192 default: 5193 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5194 __func__, mode); 5195 return 0; 5196 } 5197 sc->sc_rates[mode] = rt; 5198 return (rt != NULL); 5199 } 5200 5201 static void 5202 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5203 { 5204 #define N(a) (sizeof(a)/sizeof(a[0])) 5205 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5206 static const struct { 5207 u_int rate; /* tx/rx 802.11 rate */ 5208 u_int16_t timeOn; /* LED on time (ms) */ 5209 u_int16_t timeOff; /* LED off time (ms) */ 5210 } blinkrates[] = { 5211 { 108, 40, 10 }, 5212 { 96, 44, 11 }, 5213 { 72, 50, 13 }, 5214 { 48, 57, 14 }, 5215 { 36, 67, 16 }, 5216 { 24, 80, 20 }, 5217 { 22, 100, 25 }, 5218 { 18, 133, 34 }, 5219 { 12, 160, 40 }, 5220 { 10, 200, 50 }, 5221 { 6, 240, 58 }, 5222 { 4, 267, 66 }, 5223 { 2, 400, 100 }, 5224 { 0, 500, 130 }, 5225 /* XXX half/quarter rates */ 5226 }; 5227 const HAL_RATE_TABLE *rt; 5228 int i, j; 5229 5230 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5231 rt = sc->sc_rates[mode]; 5232 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5233 for (i = 0; i < rt->rateCount; i++) { 5234 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5235 if (rt->info[i].phy != IEEE80211_T_HT) 5236 sc->sc_rixmap[ieeerate] = i; 5237 else 5238 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5239 } 5240 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5241 for (i = 0; i < N(sc->sc_hwmap); i++) { 5242 if (i >= rt->rateCount) { 5243 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5244 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5245 continue; 5246 } 5247 sc->sc_hwmap[i].ieeerate = 5248 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5249 if (rt->info[i].phy == IEEE80211_T_HT) 5250 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5251 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5252 if (rt->info[i].shortPreamble || 5253 rt->info[i].phy == IEEE80211_T_OFDM) 5254 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5255 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5256 for (j = 0; j < N(blinkrates)-1; j++) 5257 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5258 break; 5259 /* NB: this uses the last entry if the rate isn't found */ 5260 /* XXX beware of overlow */ 5261 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5262 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5263 } 5264 sc->sc_currates = rt; 5265 sc->sc_curmode = mode; 5266 /* 5267 * All protection frames are transmited at 2Mb/s for 5268 * 11g, otherwise at 1Mb/s. 5269 */ 5270 if (mode == IEEE80211_MODE_11G) 5271 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5272 else 5273 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5274 /* NB: caller is responsible for resetting rate control state */ 5275 #undef N 5276 } 5277 5278 static void 5279 ath_watchdog(void *arg) 5280 { 5281 struct ath_softc *sc = arg; 5282 int do_reset = 0; 5283 5284 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5285 struct ifnet *ifp = sc->sc_ifp; 5286 uint32_t hangs; 5287 5288 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5289 hangs != 0) { 5290 if_printf(ifp, "%s hang detected (0x%x)\n", 5291 hangs & 0xff ? "bb" : "mac", hangs); 5292 } else 5293 if_printf(ifp, "device timeout\n"); 5294 do_reset = 1; 5295 ifp->if_oerrors++; 5296 sc->sc_stats.ast_watchdog++; 5297 } 5298 5299 /* 5300 * We can't hold the lock across the ath_reset() call. 5301 * 5302 * And since this routine can't hold a lock and sleep, 5303 * do the reset deferred. 5304 */ 5305 if (do_reset) { 5306 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5307 } 5308 5309 callout_schedule(&sc->sc_wd_ch, hz); 5310 } 5311 5312 /* 5313 * Fetch the rate control statistics for the given node. 5314 */ 5315 static int 5316 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5317 { 5318 struct ath_node *an; 5319 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5320 struct ieee80211_node *ni; 5321 int error = 0; 5322 5323 /* Perform a lookup on the given node */ 5324 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5325 if (ni == NULL) { 5326 error = EINVAL; 5327 goto bad; 5328 } 5329 5330 /* Lock the ath_node */ 5331 an = ATH_NODE(ni); 5332 ATH_NODE_LOCK(an); 5333 5334 /* Fetch the rate control stats for this node */ 5335 error = ath_rate_fetch_node_stats(sc, an, rs); 5336 5337 /* No matter what happens here, just drop through */ 5338 5339 /* Unlock the ath_node */ 5340 ATH_NODE_UNLOCK(an); 5341 5342 /* Unref the node */ 5343 ieee80211_node_decref(ni); 5344 5345 bad: 5346 return (error); 5347 } 5348 5349 #ifdef ATH_DIAGAPI 5350 /* 5351 * Diagnostic interface to the HAL. This is used by various 5352 * tools to do things like retrieve register contents for 5353 * debugging. The mechanism is intentionally opaque so that 5354 * it can change frequently w/o concern for compatiblity. 5355 */ 5356 static int 5357 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5358 { 5359 struct ath_hal *ah = sc->sc_ah; 5360 u_int id = ad->ad_id & ATH_DIAG_ID; 5361 void *indata = NULL; 5362 void *outdata = NULL; 5363 u_int32_t insize = ad->ad_in_size; 5364 u_int32_t outsize = ad->ad_out_size; 5365 int error = 0; 5366 5367 if (ad->ad_id & ATH_DIAG_IN) { 5368 /* 5369 * Copy in data. 5370 */ 5371 indata = malloc(insize, M_TEMP, M_NOWAIT); 5372 if (indata == NULL) { 5373 error = ENOMEM; 5374 goto bad; 5375 } 5376 error = copyin(ad->ad_in_data, indata, insize); 5377 if (error) 5378 goto bad; 5379 } 5380 if (ad->ad_id & ATH_DIAG_DYN) { 5381 /* 5382 * Allocate a buffer for the results (otherwise the HAL 5383 * returns a pointer to a buffer where we can read the 5384 * results). Note that we depend on the HAL leaving this 5385 * pointer for us to use below in reclaiming the buffer; 5386 * may want to be more defensive. 5387 */ 5388 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5389 if (outdata == NULL) { 5390 error = ENOMEM; 5391 goto bad; 5392 } 5393 } 5394 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5395 if (outsize < ad->ad_out_size) 5396 ad->ad_out_size = outsize; 5397 if (outdata != NULL) 5398 error = copyout(outdata, ad->ad_out_data, 5399 ad->ad_out_size); 5400 } else { 5401 error = EINVAL; 5402 } 5403 bad: 5404 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5405 free(indata, M_TEMP); 5406 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5407 free(outdata, M_TEMP); 5408 return error; 5409 } 5410 #endif /* ATH_DIAGAPI */ 5411 5412 static int 5413 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5414 { 5415 #define IS_RUNNING(ifp) \ 5416 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5417 struct ath_softc *sc = ifp->if_softc; 5418 struct ieee80211com *ic = ifp->if_l2com; 5419 struct ifreq *ifr = (struct ifreq *)data; 5420 const HAL_RATE_TABLE *rt; 5421 int error = 0; 5422 5423 switch (cmd) { 5424 case SIOCSIFFLAGS: 5425 ATH_LOCK(sc); 5426 if (IS_RUNNING(ifp)) { 5427 /* 5428 * To avoid rescanning another access point, 5429 * do not call ath_init() here. Instead, 5430 * only reflect promisc mode settings. 5431 */ 5432 ath_mode_init(sc); 5433 } else if (ifp->if_flags & IFF_UP) { 5434 /* 5435 * Beware of being called during attach/detach 5436 * to reset promiscuous mode. In that case we 5437 * will still be marked UP but not RUNNING. 5438 * However trying to re-init the interface 5439 * is the wrong thing to do as we've already 5440 * torn down much of our state. There's 5441 * probably a better way to deal with this. 5442 */ 5443 if (!sc->sc_invalid) 5444 ath_init(sc); /* XXX lose error */ 5445 } else { 5446 ath_stop_locked(ifp); 5447 #ifdef notyet 5448 /* XXX must wakeup in places like ath_vap_delete */ 5449 if (!sc->sc_invalid) 5450 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5451 #endif 5452 } 5453 ATH_UNLOCK(sc); 5454 break; 5455 case SIOCGIFMEDIA: 5456 case SIOCSIFMEDIA: 5457 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5458 break; 5459 case SIOCGATHSTATS: 5460 /* NB: embed these numbers to get a consistent view */ 5461 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5462 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5463 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5464 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5465 #ifdef IEEE80211_SUPPORT_TDMA 5466 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5467 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5468 #endif 5469 rt = sc->sc_currates; 5470 sc->sc_stats.ast_tx_rate = 5471 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5472 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5473 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5474 return copyout(&sc->sc_stats, 5475 ifr->ifr_data, sizeof (sc->sc_stats)); 5476 case SIOCGATHAGSTATS: 5477 return copyout(&sc->sc_aggr_stats, 5478 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5479 case SIOCZATHSTATS: 5480 error = priv_check(curthread, PRIV_DRIVER); 5481 if (error == 0) { 5482 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5483 memset(&sc->sc_aggr_stats, 0, 5484 sizeof(sc->sc_aggr_stats)); 5485 memset(&sc->sc_intr_stats, 0, 5486 sizeof(sc->sc_intr_stats)); 5487 } 5488 break; 5489 #ifdef ATH_DIAGAPI 5490 case SIOCGATHDIAG: 5491 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5492 break; 5493 case SIOCGATHPHYERR: 5494 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5495 break; 5496 #endif 5497 case SIOCGATHSPECTRAL: 5498 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 5499 break; 5500 case SIOCGATHNODERATESTATS: 5501 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5502 break; 5503 case SIOCGIFADDR: 5504 error = ether_ioctl(ifp, cmd, data); 5505 break; 5506 default: 5507 error = EINVAL; 5508 break; 5509 } 5510 return error; 5511 #undef IS_RUNNING 5512 } 5513 5514 /* 5515 * Announce various information on device/driver attach. 5516 */ 5517 static void 5518 ath_announce(struct ath_softc *sc) 5519 { 5520 struct ifnet *ifp = sc->sc_ifp; 5521 struct ath_hal *ah = sc->sc_ah; 5522 5523 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5524 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5525 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5526 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5527 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5528 if (bootverbose) { 5529 int i; 5530 for (i = 0; i <= WME_AC_VO; i++) { 5531 struct ath_txq *txq = sc->sc_ac2q[i]; 5532 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5533 txq->axq_qnum, ieee80211_wme_acnames[i]); 5534 } 5535 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5536 sc->sc_cabq->axq_qnum); 5537 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5538 } 5539 if (ath_rxbuf != ATH_RXBUF) 5540 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5541 if (ath_txbuf != ATH_TXBUF) 5542 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5543 if (sc->sc_mcastkey && bootverbose) 5544 if_printf(ifp, "using multicast key search\n"); 5545 } 5546 5547 static void 5548 ath_dfs_tasklet(void *p, int npending) 5549 { 5550 struct ath_softc *sc = (struct ath_softc *) p; 5551 struct ifnet *ifp = sc->sc_ifp; 5552 struct ieee80211com *ic = ifp->if_l2com; 5553 5554 /* 5555 * If previous processing has found a radar event, 5556 * signal this to the net80211 layer to begin DFS 5557 * processing. 5558 */ 5559 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5560 /* DFS event found, initiate channel change */ 5561 /* 5562 * XXX doesn't currently tell us whether the event 5563 * XXX was found in the primary or extension 5564 * XXX channel! 5565 */ 5566 IEEE80211_LOCK(ic); 5567 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5568 IEEE80211_UNLOCK(ic); 5569 } 5570 } 5571 5572 /* 5573 * Enable/disable power save. This must be called with 5574 * no TX driver locks currently held, so it should only 5575 * be called from the RX path (which doesn't hold any 5576 * TX driver locks.) 5577 */ 5578 static void 5579 ath_node_powersave(struct ieee80211_node *ni, int enable) 5580 { 5581 #ifdef ATH_SW_PSQ 5582 struct ath_node *an = ATH_NODE(ni); 5583 struct ieee80211com *ic = ni->ni_ic; 5584 struct ath_softc *sc = ic->ic_ifp->if_softc; 5585 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5586 5587 ATH_NODE_UNLOCK_ASSERT(an); 5588 /* XXX and no TXQ locks should be held here */ 5589 5590 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5591 __func__, ni, enable); 5592 5593 /* Suspend or resume software queue handling */ 5594 if (enable) 5595 ath_tx_node_sleep(sc, an); 5596 else 5597 ath_tx_node_wakeup(sc, an); 5598 5599 /* Update net80211 state */ 5600 avp->av_node_ps(ni, enable); 5601 #else 5602 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5603 5604 /* Update net80211 state */ 5605 avp->av_node_ps(ni, enable); 5606 #endif/* ATH_SW_PSQ */ 5607 } 5608 5609 /* 5610 * Notification from net80211 that the powersave queue state has 5611 * changed. 5612 * 5613 * Since the software queue also may have some frames: 5614 * 5615 * + if the node software queue has frames and the TID state 5616 * is 0, we set the TIM; 5617 * + if the node and the stack are both empty, we clear the TIM bit. 5618 * + If the stack tries to set the bit, always set it. 5619 * + If the stack tries to clear the bit, only clear it if the 5620 * software queue in question is also cleared. 5621 * 5622 * TODO: this is called during node teardown; so let's ensure this 5623 * is all correctly handled and that the TIM bit is cleared. 5624 * It may be that the node flush is called _AFTER_ the net80211 5625 * stack clears the TIM. 5626 * 5627 * Here is the racy part. Since it's possible >1 concurrent, 5628 * overlapping TXes will appear complete with a TX completion in 5629 * another thread, it's possible that the concurrent TIM calls will 5630 * clash. We can't hold the node lock here because setting the 5631 * TIM grabs the net80211 comlock and this may cause a LOR. 5632 * The solution is either to totally serialise _everything_ at 5633 * this point (ie, all TX, completion and any reset/flush go into 5634 * one taskqueue) or a new "ath TIM lock" needs to be created that 5635 * just wraps the driver state change and this call to avp->av_set_tim(). 5636 * 5637 * The same race exists in the net80211 power save queue handling 5638 * as well. Since multiple transmitting threads may queue frames 5639 * into the driver, as well as ps-poll and the driver transmitting 5640 * frames (and thus clearing the psq), it's quite possible that 5641 * a packet entering the PSQ and a ps-poll being handled will 5642 * race, causing the TIM to be cleared and not re-set. 5643 */ 5644 static int 5645 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5646 { 5647 #ifdef ATH_SW_PSQ 5648 struct ieee80211com *ic = ni->ni_ic; 5649 struct ath_softc *sc = ic->ic_ifp->if_softc; 5650 struct ath_node *an = ATH_NODE(ni); 5651 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5652 int changed = 0; 5653 5654 ATH_NODE_UNLOCK_ASSERT(an); 5655 5656 /* 5657 * For now, just track and then update the TIM. 5658 */ 5659 ATH_NODE_LOCK(an); 5660 an->an_stack_psq = enable; 5661 5662 /* 5663 * This will get called for all operating modes, 5664 * even if avp->av_set_tim is unset. 5665 * It's currently set for hostap/ibss modes; but 5666 * the same infrastructure is used for both STA 5667 * and AP/IBSS node power save. 5668 */ 5669 if (avp->av_set_tim == NULL) { 5670 ATH_NODE_UNLOCK(an); 5671 return (0); 5672 } 5673 5674 /* 5675 * If setting the bit, always set it here. 5676 * If clearing the bit, only clear it if the 5677 * software queue is also empty. 5678 * 5679 * If the node has left power save, just clear the TIM 5680 * bit regardless of the state of the power save queue. 5681 * 5682 * XXX TODO: although atomics are used, it's quite possible 5683 * that a race will occur between this and setting/clearing 5684 * in another thread. TX completion will occur always in 5685 * one thread, however setting/clearing the TIM bit can come 5686 * from a variety of different process contexts! 5687 */ 5688 if (enable && an->an_tim_set == 1) { 5689 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5690 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5691 __func__, an, enable); 5692 ATH_NODE_UNLOCK(an); 5693 } else if (enable) { 5694 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5695 "%s: an=%p, enable=%d, enabling TIM\n", 5696 __func__, an, enable); 5697 an->an_tim_set = 1; 5698 ATH_NODE_UNLOCK(an); 5699 changed = avp->av_set_tim(ni, enable); 5700 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5701 /* disable */ 5702 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5703 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5704 __func__, an, enable); 5705 an->an_tim_set = 0; 5706 ATH_NODE_UNLOCK(an); 5707 changed = avp->av_set_tim(ni, enable); 5708 } else if (! an->an_is_powersave) { 5709 /* 5710 * disable regardless; the node isn't in powersave now 5711 */ 5712 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5713 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 5714 __func__, an, enable); 5715 an->an_tim_set = 0; 5716 ATH_NODE_UNLOCK(an); 5717 changed = avp->av_set_tim(ni, enable); 5718 } else { 5719 /* 5720 * psq disable, node is currently in powersave, node 5721 * software queue isn't empty, so don't clear the TIM bit 5722 * for now. 5723 */ 5724 ATH_NODE_UNLOCK(an); 5725 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5726 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 5727 __func__, enable); 5728 changed = 0; 5729 } 5730 5731 return (changed); 5732 #else 5733 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5734 5735 /* 5736 * Some operating modes don't set av_set_tim(), so don't 5737 * update it here. 5738 */ 5739 if (avp->av_set_tim == NULL) 5740 return (0); 5741 5742 return (avp->av_set_tim(ni, enable)); 5743 #endif /* ATH_SW_PSQ */ 5744 } 5745 5746 /* 5747 * Set or update the TIM from the software queue. 5748 * 5749 * Check the software queue depth before attempting to do lock 5750 * anything; that avoids trying to obtain the lock. Then, 5751 * re-check afterwards to ensure nothing has changed in the 5752 * meantime. 5753 * 5754 * set: This is designed to be called from the TX path, after 5755 * a frame has been queued; to see if the swq > 0. 5756 * 5757 * clear: This is designed to be called from the buffer completion point 5758 * (right now it's ath_tx_default_comp()) where the state of 5759 * a software queue has changed. 5760 * 5761 * It makes sense to place it at buffer free / completion rather 5762 * than after each software queue operation, as there's no real 5763 * point in churning the TIM bit as the last frames in the software 5764 * queue are transmitted. If they fail and we retry them, we'd 5765 * just be setting the TIM bit again anyway. 5766 */ 5767 void 5768 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 5769 int enable) 5770 { 5771 #ifdef ATH_SW_PSQ 5772 struct ath_node *an; 5773 struct ath_vap *avp; 5774 5775 /* Don't do this for broadcast/etc frames */ 5776 if (ni == NULL) 5777 return; 5778 5779 an = ATH_NODE(ni); 5780 avp = ATH_VAP(ni->ni_vap); 5781 5782 /* 5783 * And for operating modes without the TIM handler set, let's 5784 * just skip those. 5785 */ 5786 if (avp->av_set_tim == NULL) 5787 return; 5788 5789 ATH_NODE_UNLOCK_ASSERT(an); 5790 5791 if (enable) { 5792 /* 5793 * Don't bother grabbing the lock unless the queue is not 5794 * empty. 5795 */ 5796 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 5797 return; 5798 5799 ATH_NODE_LOCK(an); 5800 if (an->an_is_powersave && 5801 an->an_tim_set == 0 && 5802 atomic_load_acq_int(&an->an_swq_depth) != 0) { 5803 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5804 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 5805 __func__, an); 5806 an->an_tim_set = 1; 5807 ATH_NODE_UNLOCK(an); 5808 (void) avp->av_set_tim(ni, 1); 5809 } else { 5810 ATH_NODE_UNLOCK(an); 5811 } 5812 } else { 5813 /* 5814 * Don't bother grabbing the lock unless the queue is empty. 5815 */ 5816 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 5817 return; 5818 5819 ATH_NODE_LOCK(an); 5820 if (an->an_is_powersave && 5821 an->an_stack_psq == 0 && 5822 an->an_tim_set == 1 && 5823 atomic_load_acq_int(&an->an_swq_depth) == 0) { 5824 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5825 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 5826 " clear!\n", 5827 __func__, an); 5828 an->an_tim_set = 0; 5829 ATH_NODE_UNLOCK(an); 5830 (void) avp->av_set_tim(ni, 0); 5831 } else { 5832 ATH_NODE_UNLOCK(an); 5833 } 5834 } 5835 #else 5836 return; 5837 #endif /* ATH_SW_PSQ */ 5838 } 5839 5840 MODULE_VERSION(if_ath, 1); 5841 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5842 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5843 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5844 #endif 5845