xref: /freebsd/sys/dev/ath/if_ath.c (revision e1b5ab97e86ef4f7b4b9ebfcfe5a4393c006474f)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_beacon.h>
112 #include <dev/ath/if_athdfs.h>
113 
114 #ifdef ATH_TX99_DIAG
115 #include <dev/ath/ath_tx99/ath_tx99.h>
116 #endif
117 
118 #define	ATH_KTR_INTR	KTR_SPARE4
119 #define	ATH_KTR_ERR	KTR_SPARE3
120 
121 /*
122  * ATH_BCBUF determines the number of vap's that can transmit
123  * beacons and also (currently) the number of vap's that can
124  * have unique mac addresses/bssid.  When staggering beacons
125  * 4 is probably a good max as otherwise the beacons become
126  * very closely spaced and there is limited time for cab q traffic
127  * to go out.  You can burst beacons instead but that is not good
128  * for stations in power save and at some point you really want
129  * another radio (and channel).
130  *
131  * The limit on the number of mac addresses is tied to our use of
132  * the U/L bit and tracking addresses in a byte; it would be
133  * worthwhile to allow more for applications like proxy sta.
134  */
135 CTASSERT(ATH_BCBUF <= 8);
136 
137 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
138 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
139 		    const uint8_t [IEEE80211_ADDR_LEN],
140 		    const uint8_t [IEEE80211_ADDR_LEN]);
141 static void	ath_vap_delete(struct ieee80211vap *);
142 static void	ath_init(void *);
143 static void	ath_stop_locked(struct ifnet *);
144 static void	ath_stop(struct ifnet *);
145 static int	ath_reset_vap(struct ieee80211vap *, u_long);
146 static int	ath_media_change(struct ifnet *);
147 static void	ath_watchdog(void *);
148 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
149 static void	ath_fatal_proc(void *, int);
150 static void	ath_bmiss_vap(struct ieee80211vap *);
151 static void	ath_bmiss_proc(void *, int);
152 static void	ath_key_update_begin(struct ieee80211vap *);
153 static void	ath_key_update_end(struct ieee80211vap *);
154 static void	ath_update_mcast(struct ifnet *);
155 static void	ath_update_promisc(struct ifnet *);
156 static void	ath_updateslot(struct ifnet *);
157 static void	ath_bstuck_proc(void *, int);
158 static void	ath_reset_proc(void *, int);
159 static void	ath_descdma_cleanup(struct ath_softc *sc,
160 			struct ath_descdma *, ath_bufhead *);
161 static int	ath_desc_alloc(struct ath_softc *);
162 static void	ath_desc_free(struct ath_softc *);
163 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
164 			const uint8_t [IEEE80211_ADDR_LEN]);
165 static void	ath_node_cleanup(struct ieee80211_node *);
166 static void	ath_node_free(struct ieee80211_node *);
167 static void	ath_node_getsignal(const struct ieee80211_node *,
168 			int8_t *, int8_t *);
169 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
170 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
171 static int	ath_tx_setup(struct ath_softc *, int, int);
172 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
173 static void	ath_tx_cleanup(struct ath_softc *);
174 static void	ath_tx_proc_q0(void *, int);
175 static void	ath_tx_proc_q0123(void *, int);
176 static void	ath_tx_proc(void *, int);
177 static void	ath_txq_sched_tasklet(void *, int);
178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179 static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
180 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
181 static void	ath_scan_start(struct ieee80211com *);
182 static void	ath_scan_end(struct ieee80211com *);
183 static void	ath_set_channel(struct ieee80211com *);
184 #ifdef	ATH_ENABLE_11N
185 static void	ath_update_chw(struct ieee80211com *);
186 #endif	/* ATH_ENABLE_11N */
187 static void	ath_calibrate(void *);
188 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189 static void	ath_setup_stationkey(struct ieee80211_node *);
190 static void	ath_newassoc(struct ieee80211_node *, int);
191 static int	ath_setregdomain(struct ieee80211com *,
192 		    struct ieee80211_regdomain *, int,
193 		    struct ieee80211_channel []);
194 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
195 		    struct ieee80211_channel []);
196 static int	ath_getchannels(struct ath_softc *);
197 
198 static int	ath_rate_setup(struct ath_softc *, u_int mode);
199 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
200 
201 static void	ath_announce(struct ath_softc *);
202 
203 static void	ath_dfs_tasklet(void *, int);
204 
205 #ifdef IEEE80211_SUPPORT_TDMA
206 #include <dev/ath/if_ath_tdma.h>
207 #endif
208 
209 #if 0
210 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
211 #define	TDMA_LPF_LEN		6
212 #define	TDMA_DUMMY_MARKER	0x127
213 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
214 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
215 #define	TDMA_LPF(x, y, len) \
216     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
217 #define	TDMA_SAMPLE(x, y) do {					\
218 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
219 } while (0)
220 #define	TDMA_EP_RND(x,mul) \
221 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
222 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
223 #endif /* IEEE80211_SUPPORT_TDMA */
224 
225 SYSCTL_DECL(_hw_ath);
226 
227 /* XXX validate sysctl values */
228 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
229 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
230 	    0, "long chip calibration interval (secs)");
231 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
232 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
233 	    0, "short chip calibration interval (msecs)");
234 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
235 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
236 	    0, "reset chip calibration results (secs)");
237 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
238 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
239 	    0, "ANI calibration (msecs)");
240 
241 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
242 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
243 	    0, "rx buffers allocated");
244 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
245 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
247 	    0, "tx buffers allocated");
248 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
249 static	int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
250 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
251 	    0, "tx (mgmt) buffers allocated");
252 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
253 
254 int ath_bstuck_threshold = 4;		/* max missed beacons */
255 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
256 	    0, "max missed beacon xmits before chip reset");
257 
258 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
259 
260 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
261 #define	HAL_MODE_HT40 \
262 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
263 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
264 int
265 ath_attach(u_int16_t devid, struct ath_softc *sc)
266 {
267 	struct ifnet *ifp;
268 	struct ieee80211com *ic;
269 	struct ath_hal *ah = NULL;
270 	HAL_STATUS status;
271 	int error = 0, i;
272 	u_int wmodes;
273 	uint8_t macaddr[IEEE80211_ADDR_LEN];
274 	int rx_chainmask, tx_chainmask;
275 
276 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
277 
278 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
279 	if (ifp == NULL) {
280 		device_printf(sc->sc_dev, "can not if_alloc()\n");
281 		error = ENOSPC;
282 		goto bad;
283 	}
284 	ic = ifp->if_l2com;
285 
286 	/* set these up early for if_printf use */
287 	if_initname(ifp, device_get_name(sc->sc_dev),
288 		device_get_unit(sc->sc_dev));
289 
290 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
291 	    sc->sc_eepromdata, &status);
292 	if (ah == NULL) {
293 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
294 			status);
295 		error = ENXIO;
296 		goto bad;
297 	}
298 	sc->sc_ah = ah;
299 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
300 #ifdef	ATH_DEBUG
301 	sc->sc_debug = ath_debug;
302 #endif
303 
304 	/*
305 	 * Check if the MAC has multi-rate retry support.
306 	 * We do this by trying to setup a fake extended
307 	 * descriptor.  MAC's that don't have support will
308 	 * return false w/o doing anything.  MAC's that do
309 	 * support it will return true w/o doing anything.
310 	 */
311 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
312 
313 	/*
314 	 * Check if the device has hardware counters for PHY
315 	 * errors.  If so we need to enable the MIB interrupt
316 	 * so we can act on stat triggers.
317 	 */
318 	if (ath_hal_hwphycounters(ah))
319 		sc->sc_needmib = 1;
320 
321 	/*
322 	 * Get the hardware key cache size.
323 	 */
324 	sc->sc_keymax = ath_hal_keycachesize(ah);
325 	if (sc->sc_keymax > ATH_KEYMAX) {
326 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
327 			ATH_KEYMAX, sc->sc_keymax);
328 		sc->sc_keymax = ATH_KEYMAX;
329 	}
330 	/*
331 	 * Reset the key cache since some parts do not
332 	 * reset the contents on initial power up.
333 	 */
334 	for (i = 0; i < sc->sc_keymax; i++)
335 		ath_hal_keyreset(ah, i);
336 
337 	/*
338 	 * Collect the default channel list.
339 	 */
340 	error = ath_getchannels(sc);
341 	if (error != 0)
342 		goto bad;
343 
344 	/*
345 	 * Setup rate tables for all potential media types.
346 	 */
347 	ath_rate_setup(sc, IEEE80211_MODE_11A);
348 	ath_rate_setup(sc, IEEE80211_MODE_11B);
349 	ath_rate_setup(sc, IEEE80211_MODE_11G);
350 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
351 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
352 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
353 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
354 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
355 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
356 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
357 
358 	/* NB: setup here so ath_rate_update is happy */
359 	ath_setcurmode(sc, IEEE80211_MODE_11A);
360 
361 	/*
362 	 * Allocate tx+rx descriptors and populate the lists.
363 	 */
364 	error = ath_desc_alloc(sc);
365 	if (error != 0) {
366 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
367 		goto bad;
368 	}
369 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
370 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
371 
372 	ATH_TXBUF_LOCK_INIT(sc);
373 
374 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
375 		taskqueue_thread_enqueue, &sc->sc_tq);
376 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
377 		"%s taskq", ifp->if_xname);
378 
379 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
380 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
381 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
382 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
383 	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
384 	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
385 
386 	/*
387 	 * Allocate hardware transmit queues: one queue for
388 	 * beacon frames and one data queue for each QoS
389 	 * priority.  Note that the hal handles resetting
390 	 * these queues at the needed time.
391 	 *
392 	 * XXX PS-Poll
393 	 */
394 	sc->sc_bhalq = ath_beaconq_setup(ah);
395 	if (sc->sc_bhalq == (u_int) -1) {
396 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
397 		error = EIO;
398 		goto bad2;
399 	}
400 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
401 	if (sc->sc_cabq == NULL) {
402 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
403 		error = EIO;
404 		goto bad2;
405 	}
406 	/* NB: insure BK queue is the lowest priority h/w queue */
407 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
408 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
409 			ieee80211_wme_acnames[WME_AC_BK]);
410 		error = EIO;
411 		goto bad2;
412 	}
413 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
414 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
415 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
416 		/*
417 		 * Not enough hardware tx queues to properly do WME;
418 		 * just punt and assign them all to the same h/w queue.
419 		 * We could do a better job of this if, for example,
420 		 * we allocate queues when we switch from station to
421 		 * AP mode.
422 		 */
423 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
424 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
425 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
426 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
427 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
428 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
429 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
430 	}
431 
432 	/*
433 	 * Special case certain configurations.  Note the
434 	 * CAB queue is handled by these specially so don't
435 	 * include them when checking the txq setup mask.
436 	 */
437 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
438 	case 0x01:
439 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
440 		break;
441 	case 0x0f:
442 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
443 		break;
444 	default:
445 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
446 		break;
447 	}
448 
449 	/*
450 	 * Setup rate control.  Some rate control modules
451 	 * call back to change the anntena state so expose
452 	 * the necessary entry points.
453 	 * XXX maybe belongs in struct ath_ratectrl?
454 	 */
455 	sc->sc_setdefantenna = ath_setdefantenna;
456 	sc->sc_rc = ath_rate_attach(sc);
457 	if (sc->sc_rc == NULL) {
458 		error = EIO;
459 		goto bad2;
460 	}
461 
462 	/* Attach DFS module */
463 	if (! ath_dfs_attach(sc)) {
464 		device_printf(sc->sc_dev,
465 		    "%s: unable to attach DFS\n", __func__);
466 		error = EIO;
467 		goto bad2;
468 	}
469 
470 	/* Start DFS processing tasklet */
471 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
472 
473 	/* Configure LED state */
474 	sc->sc_blinking = 0;
475 	sc->sc_ledstate = 1;
476 	sc->sc_ledon = 0;			/* low true */
477 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
478 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
479 
480 	/*
481 	 * Don't setup hardware-based blinking.
482 	 *
483 	 * Although some NICs may have this configured in the
484 	 * default reset register values, the user may wish
485 	 * to alter which pins have which function.
486 	 *
487 	 * The reference driver attaches the MAC network LED to GPIO1 and
488 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
489 	 * NIC has these reversed.
490 	 */
491 	sc->sc_hardled = (1 == 0);
492 	sc->sc_led_net_pin = -1;
493 	sc->sc_led_pwr_pin = -1;
494 	/*
495 	 * Auto-enable soft led processing for IBM cards and for
496 	 * 5211 minipci cards.  Users can also manually enable/disable
497 	 * support with a sysctl.
498 	 */
499 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
500 	ath_led_config(sc);
501 	ath_hal_setledstate(ah, HAL_LED_INIT);
502 
503 	ifp->if_softc = sc;
504 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
505 	ifp->if_start = ath_start;
506 	ifp->if_ioctl = ath_ioctl;
507 	ifp->if_init = ath_init;
508 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
509 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
510 	IFQ_SET_READY(&ifp->if_snd);
511 
512 	ic->ic_ifp = ifp;
513 	/* XXX not right but it's not used anywhere important */
514 	ic->ic_phytype = IEEE80211_T_OFDM;
515 	ic->ic_opmode = IEEE80211_M_STA;
516 	ic->ic_caps =
517 		  IEEE80211_C_STA		/* station mode */
518 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
519 		| IEEE80211_C_HOSTAP		/* hostap mode */
520 		| IEEE80211_C_MONITOR		/* monitor mode */
521 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
522 		| IEEE80211_C_WDS		/* 4-address traffic works */
523 		| IEEE80211_C_MBSS		/* mesh point link mode */
524 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
525 		| IEEE80211_C_SHSLOT		/* short slot time supported */
526 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
527 #ifndef	ATH_ENABLE_11N
528 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
529 #endif
530 		| IEEE80211_C_TXFRAG		/* handle tx frags */
531 #ifdef	ATH_ENABLE_DFS
532 		| IEEE80211_C_DFS		/* Enable radar detection */
533 #endif
534 		;
535 	/*
536 	 * Query the hal to figure out h/w crypto support.
537 	 */
538 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
539 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
540 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
541 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
542 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
543 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
544 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
545 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
546 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
547 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
548 		/*
549 		 * Check if h/w does the MIC and/or whether the
550 		 * separate key cache entries are required to
551 		 * handle both tx+rx MIC keys.
552 		 */
553 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
554 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
555 		/*
556 		 * If the h/w supports storing tx+rx MIC keys
557 		 * in one cache slot automatically enable use.
558 		 */
559 		if (ath_hal_hastkipsplit(ah) ||
560 		    !ath_hal_settkipsplit(ah, AH_FALSE))
561 			sc->sc_splitmic = 1;
562 		/*
563 		 * If the h/w can do TKIP MIC together with WME then
564 		 * we use it; otherwise we force the MIC to be done
565 		 * in software by the net80211 layer.
566 		 */
567 		if (ath_hal_haswmetkipmic(ah))
568 			sc->sc_wmetkipmic = 1;
569 	}
570 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
571 	/*
572 	 * Check for multicast key search support.
573 	 */
574 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
575 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
576 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
577 	}
578 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
579 	/*
580 	 * Mark key cache slots associated with global keys
581 	 * as in use.  If we knew TKIP was not to be used we
582 	 * could leave the +32, +64, and +32+64 slots free.
583 	 */
584 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
585 		setbit(sc->sc_keymap, i);
586 		setbit(sc->sc_keymap, i+64);
587 		if (sc->sc_splitmic) {
588 			setbit(sc->sc_keymap, i+32);
589 			setbit(sc->sc_keymap, i+32+64);
590 		}
591 	}
592 	/*
593 	 * TPC support can be done either with a global cap or
594 	 * per-packet support.  The latter is not available on
595 	 * all parts.  We're a bit pedantic here as all parts
596 	 * support a global cap.
597 	 */
598 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
599 		ic->ic_caps |= IEEE80211_C_TXPMGT;
600 
601 	/*
602 	 * Mark WME capability only if we have sufficient
603 	 * hardware queues to do proper priority scheduling.
604 	 */
605 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
606 		ic->ic_caps |= IEEE80211_C_WME;
607 	/*
608 	 * Check for misc other capabilities.
609 	 */
610 	if (ath_hal_hasbursting(ah))
611 		ic->ic_caps |= IEEE80211_C_BURST;
612 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
613 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
614 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
615 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
616 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
617 	if (ath_hal_hasfastframes(ah))
618 		ic->ic_caps |= IEEE80211_C_FF;
619 	wmodes = ath_hal_getwirelessmodes(ah);
620 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
621 		ic->ic_caps |= IEEE80211_C_TURBOP;
622 #ifdef IEEE80211_SUPPORT_TDMA
623 	if (ath_hal_macversion(ah) > 0x78) {
624 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
625 		ic->ic_tdma_update = ath_tdma_update;
626 	}
627 #endif
628 
629 	/*
630 	 * TODO: enforce that at least this many frames are available
631 	 * in the txbuf list before allowing data frames (raw or
632 	 * otherwise) to be transmitted.
633 	 */
634 	sc->sc_txq_data_minfree = 10;
635 	/*
636 	 * Leave this as default to maintain legacy behaviour.
637 	 * Shortening the cabq/mcastq may end up causing some
638 	 * undesirable behaviour.
639 	 */
640 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
641 
642 	/*
643 	 * Allow the TX and RX chainmasks to be overridden by
644 	 * environment variables and/or device.hints.
645 	 *
646 	 * This must be done early - before the hardware is
647 	 * calibrated or before the 802.11n stream calculation
648 	 * is done.
649 	 */
650 	if (resource_int_value(device_get_name(sc->sc_dev),
651 	    device_get_unit(sc->sc_dev), "rx_chainmask",
652 	    &rx_chainmask) == 0) {
653 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
654 		    rx_chainmask);
655 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
656 	}
657 	if (resource_int_value(device_get_name(sc->sc_dev),
658 	    device_get_unit(sc->sc_dev), "tx_chainmask",
659 	    &tx_chainmask) == 0) {
660 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
661 		    tx_chainmask);
662 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
663 	}
664 
665 #ifdef	ATH_ENABLE_11N
666 	/*
667 	 * Query HT capabilities
668 	 */
669 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
670 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
671 		int rxs, txs;
672 
673 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
674 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
675 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
676 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
677 			    | IEEE80211_HTCAP_MAXAMSDU_3839
678 			    				/* max A-MSDU length */
679 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
680 			;
681 
682 		/*
683 		 * Enable short-GI for HT20 only if the hardware
684 		 * advertises support.
685 		 * Notably, anything earlier than the AR9287 doesn't.
686 		 */
687 		if ((ath_hal_getcapability(ah,
688 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
689 		    (wmodes & HAL_MODE_HT20)) {
690 			device_printf(sc->sc_dev,
691 			    "[HT] enabling short-GI in 20MHz mode\n");
692 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
693 		}
694 
695 		if (wmodes & HAL_MODE_HT40)
696 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
697 			    |  IEEE80211_HTCAP_SHORTGI40;
698 
699 		/*
700 		 * TX/RX streams need to be taken into account when
701 		 * negotiating which MCS rates it'll receive and
702 		 * what MCS rates are available for TX.
703 		 */
704 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
705 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
706 
707 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
708 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
709 
710 		ic->ic_txstream = txs;
711 		ic->ic_rxstream = rxs;
712 
713 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
714 		    &sc->sc_rts_aggr_limit);
715 		if (sc->sc_rts_aggr_limit != (64 * 1024))
716 			device_printf(sc->sc_dev,
717 			    "[HT] RTS aggregates limited to %d KiB\n",
718 			    sc->sc_rts_aggr_limit / 1024);
719 
720 		device_printf(sc->sc_dev,
721 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
722 	}
723 #endif
724 
725 	/*
726 	 * Check if the hardware requires PCI register serialisation.
727 	 * Some of the Owl based MACs require this.
728 	 */
729 	if (mp_ncpus > 1 &&
730 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
731 	     0, NULL) == HAL_OK) {
732 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
733 		device_printf(sc->sc_dev,
734 		    "Enabling register serialisation\n");
735 	}
736 
737 	/*
738 	 * Indicate we need the 802.11 header padded to a
739 	 * 32-bit boundary for 4-address and QoS frames.
740 	 */
741 	ic->ic_flags |= IEEE80211_F_DATAPAD;
742 
743 	/*
744 	 * Query the hal about antenna support.
745 	 */
746 	sc->sc_defant = ath_hal_getdefantenna(ah);
747 
748 	/*
749 	 * Not all chips have the VEOL support we want to
750 	 * use with IBSS beacons; check here for it.
751 	 */
752 	sc->sc_hasveol = ath_hal_hasveol(ah);
753 
754 	/* get mac address from hardware */
755 	ath_hal_getmac(ah, macaddr);
756 	if (sc->sc_hasbmask)
757 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
758 
759 	/* NB: used to size node table key mapping array */
760 	ic->ic_max_keyix = sc->sc_keymax;
761 	/* call MI attach routine. */
762 	ieee80211_ifattach(ic, macaddr);
763 	ic->ic_setregdomain = ath_setregdomain;
764 	ic->ic_getradiocaps = ath_getradiocaps;
765 	sc->sc_opmode = HAL_M_STA;
766 
767 	/* override default methods */
768 	ic->ic_newassoc = ath_newassoc;
769 	ic->ic_updateslot = ath_updateslot;
770 	ic->ic_wme.wme_update = ath_wme_update;
771 	ic->ic_vap_create = ath_vap_create;
772 	ic->ic_vap_delete = ath_vap_delete;
773 	ic->ic_raw_xmit = ath_raw_xmit;
774 	ic->ic_update_mcast = ath_update_mcast;
775 	ic->ic_update_promisc = ath_update_promisc;
776 	ic->ic_node_alloc = ath_node_alloc;
777 	sc->sc_node_free = ic->ic_node_free;
778 	ic->ic_node_free = ath_node_free;
779 	sc->sc_node_cleanup = ic->ic_node_cleanup;
780 	ic->ic_node_cleanup = ath_node_cleanup;
781 	ic->ic_node_getsignal = ath_node_getsignal;
782 	ic->ic_scan_start = ath_scan_start;
783 	ic->ic_scan_end = ath_scan_end;
784 	ic->ic_set_channel = ath_set_channel;
785 #ifdef	ATH_ENABLE_11N
786 	/* 802.11n specific - but just override anyway */
787 	sc->sc_addba_request = ic->ic_addba_request;
788 	sc->sc_addba_response = ic->ic_addba_response;
789 	sc->sc_addba_stop = ic->ic_addba_stop;
790 	sc->sc_bar_response = ic->ic_bar_response;
791 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
792 
793 	ic->ic_addba_request = ath_addba_request;
794 	ic->ic_addba_response = ath_addba_response;
795 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
796 	ic->ic_addba_stop = ath_addba_stop;
797 	ic->ic_bar_response = ath_bar_response;
798 
799 	ic->ic_update_chw = ath_update_chw;
800 #endif	/* ATH_ENABLE_11N */
801 
802 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
803 	/*
804 	 * There's one vendor bitmap entry in the RX radiotap
805 	 * header; make sure that's taken into account.
806 	 */
807 	ieee80211_radiotap_attachv(ic,
808 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
809 		ATH_TX_RADIOTAP_PRESENT,
810 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
811 		ATH_RX_RADIOTAP_PRESENT);
812 #else
813 	/*
814 	 * No vendor bitmap/extensions are present.
815 	 */
816 	ieee80211_radiotap_attach(ic,
817 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
818 		ATH_TX_RADIOTAP_PRESENT,
819 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
820 		ATH_RX_RADIOTAP_PRESENT);
821 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
822 
823 	/*
824 	 * Setup dynamic sysctl's now that country code and
825 	 * regdomain are available from the hal.
826 	 */
827 	ath_sysctlattach(sc);
828 	ath_sysctl_stats_attach(sc);
829 	ath_sysctl_hal_attach(sc);
830 
831 	if (bootverbose)
832 		ieee80211_announce(ic);
833 	ath_announce(sc);
834 	return 0;
835 bad2:
836 	ath_tx_cleanup(sc);
837 	ath_desc_free(sc);
838 bad:
839 	if (ah)
840 		ath_hal_detach(ah);
841 	if (ifp != NULL)
842 		if_free(ifp);
843 	sc->sc_invalid = 1;
844 	return error;
845 }
846 
847 int
848 ath_detach(struct ath_softc *sc)
849 {
850 	struct ifnet *ifp = sc->sc_ifp;
851 
852 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
853 		__func__, ifp->if_flags);
854 
855 	/*
856 	 * NB: the order of these is important:
857 	 * o stop the chip so no more interrupts will fire
858 	 * o call the 802.11 layer before detaching the hal to
859 	 *   insure callbacks into the driver to delete global
860 	 *   key cache entries can be handled
861 	 * o free the taskqueue which drains any pending tasks
862 	 * o reclaim the tx queue data structures after calling
863 	 *   the 802.11 layer as we'll get called back to reclaim
864 	 *   node state and potentially want to use them
865 	 * o to cleanup the tx queues the hal is called, so detach
866 	 *   it last
867 	 * Other than that, it's straightforward...
868 	 */
869 	ath_stop(ifp);
870 	ieee80211_ifdetach(ifp->if_l2com);
871 	taskqueue_free(sc->sc_tq);
872 #ifdef ATH_TX99_DIAG
873 	if (sc->sc_tx99 != NULL)
874 		sc->sc_tx99->detach(sc->sc_tx99);
875 #endif
876 	ath_rate_detach(sc->sc_rc);
877 
878 	ath_dfs_detach(sc);
879 	ath_desc_free(sc);
880 	ath_tx_cleanup(sc);
881 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
882 	if_free(ifp);
883 
884 	return 0;
885 }
886 
887 /*
888  * MAC address handling for multiple BSS on the same radio.
889  * The first vap uses the MAC address from the EEPROM.  For
890  * subsequent vap's we set the U/L bit (bit 1) in the MAC
891  * address and use the next six bits as an index.
892  */
893 static void
894 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
895 {
896 	int i;
897 
898 	if (clone && sc->sc_hasbmask) {
899 		/* NB: we only do this if h/w supports multiple bssid */
900 		for (i = 0; i < 8; i++)
901 			if ((sc->sc_bssidmask & (1<<i)) == 0)
902 				break;
903 		if (i != 0)
904 			mac[0] |= (i << 2)|0x2;
905 	} else
906 		i = 0;
907 	sc->sc_bssidmask |= 1<<i;
908 	sc->sc_hwbssidmask[0] &= ~mac[0];
909 	if (i == 0)
910 		sc->sc_nbssid0++;
911 }
912 
913 static void
914 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
915 {
916 	int i = mac[0] >> 2;
917 	uint8_t mask;
918 
919 	if (i != 0 || --sc->sc_nbssid0 == 0) {
920 		sc->sc_bssidmask &= ~(1<<i);
921 		/* recalculate bssid mask from remaining addresses */
922 		mask = 0xff;
923 		for (i = 1; i < 8; i++)
924 			if (sc->sc_bssidmask & (1<<i))
925 				mask &= ~((i<<2)|0x2);
926 		sc->sc_hwbssidmask[0] |= mask;
927 	}
928 }
929 
930 /*
931  * Assign a beacon xmit slot.  We try to space out
932  * assignments so when beacons are staggered the
933  * traffic coming out of the cab q has maximal time
934  * to go out before the next beacon is scheduled.
935  */
936 static int
937 assign_bslot(struct ath_softc *sc)
938 {
939 	u_int slot, free;
940 
941 	free = 0;
942 	for (slot = 0; slot < ATH_BCBUF; slot++)
943 		if (sc->sc_bslot[slot] == NULL) {
944 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
945 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
946 				return slot;
947 			free = slot;
948 			/* NB: keep looking for a double slot */
949 		}
950 	return free;
951 }
952 
953 static struct ieee80211vap *
954 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
955     enum ieee80211_opmode opmode, int flags,
956     const uint8_t bssid[IEEE80211_ADDR_LEN],
957     const uint8_t mac0[IEEE80211_ADDR_LEN])
958 {
959 	struct ath_softc *sc = ic->ic_ifp->if_softc;
960 	struct ath_vap *avp;
961 	struct ieee80211vap *vap;
962 	uint8_t mac[IEEE80211_ADDR_LEN];
963 	int needbeacon, error;
964 	enum ieee80211_opmode ic_opmode;
965 
966 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
967 	    M_80211_VAP, M_WAITOK | M_ZERO);
968 	needbeacon = 0;
969 	IEEE80211_ADDR_COPY(mac, mac0);
970 
971 	ATH_LOCK(sc);
972 	ic_opmode = opmode;		/* default to opmode of new vap */
973 	switch (opmode) {
974 	case IEEE80211_M_STA:
975 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
976 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
977 			goto bad;
978 		}
979 		if (sc->sc_nvaps) {
980 			/*
981 			 * With multiple vaps we must fall back
982 			 * to s/w beacon miss handling.
983 			 */
984 			flags |= IEEE80211_CLONE_NOBEACONS;
985 		}
986 		if (flags & IEEE80211_CLONE_NOBEACONS) {
987 			/*
988 			 * Station mode w/o beacons are implemented w/ AP mode.
989 			 */
990 			ic_opmode = IEEE80211_M_HOSTAP;
991 		}
992 		break;
993 	case IEEE80211_M_IBSS:
994 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
995 			device_printf(sc->sc_dev,
996 			    "only 1 ibss vap supported\n");
997 			goto bad;
998 		}
999 		needbeacon = 1;
1000 		break;
1001 	case IEEE80211_M_AHDEMO:
1002 #ifdef IEEE80211_SUPPORT_TDMA
1003 		if (flags & IEEE80211_CLONE_TDMA) {
1004 			if (sc->sc_nvaps != 0) {
1005 				device_printf(sc->sc_dev,
1006 				    "only 1 tdma vap supported\n");
1007 				goto bad;
1008 			}
1009 			needbeacon = 1;
1010 			flags |= IEEE80211_CLONE_NOBEACONS;
1011 		}
1012 		/* fall thru... */
1013 #endif
1014 	case IEEE80211_M_MONITOR:
1015 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1016 			/*
1017 			 * Adopt existing mode.  Adding a monitor or ahdemo
1018 			 * vap to an existing configuration is of dubious
1019 			 * value but should be ok.
1020 			 */
1021 			/* XXX not right for monitor mode */
1022 			ic_opmode = ic->ic_opmode;
1023 		}
1024 		break;
1025 	case IEEE80211_M_HOSTAP:
1026 	case IEEE80211_M_MBSS:
1027 		needbeacon = 1;
1028 		break;
1029 	case IEEE80211_M_WDS:
1030 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1031 			device_printf(sc->sc_dev,
1032 			    "wds not supported in sta mode\n");
1033 			goto bad;
1034 		}
1035 		/*
1036 		 * Silently remove any request for a unique
1037 		 * bssid; WDS vap's always share the local
1038 		 * mac address.
1039 		 */
1040 		flags &= ~IEEE80211_CLONE_BSSID;
1041 		if (sc->sc_nvaps == 0)
1042 			ic_opmode = IEEE80211_M_HOSTAP;
1043 		else
1044 			ic_opmode = ic->ic_opmode;
1045 		break;
1046 	default:
1047 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1048 		goto bad;
1049 	}
1050 	/*
1051 	 * Check that a beacon buffer is available; the code below assumes it.
1052 	 */
1053 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1054 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1055 		goto bad;
1056 	}
1057 
1058 	/* STA, AHDEMO? */
1059 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1060 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1061 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1062 	}
1063 
1064 	vap = &avp->av_vap;
1065 	/* XXX can't hold mutex across if_alloc */
1066 	ATH_UNLOCK(sc);
1067 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1068 	    bssid, mac);
1069 	ATH_LOCK(sc);
1070 	if (error != 0) {
1071 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1072 		    __func__, error);
1073 		goto bad2;
1074 	}
1075 
1076 	/* h/w crypto support */
1077 	vap->iv_key_alloc = ath_key_alloc;
1078 	vap->iv_key_delete = ath_key_delete;
1079 	vap->iv_key_set = ath_key_set;
1080 	vap->iv_key_update_begin = ath_key_update_begin;
1081 	vap->iv_key_update_end = ath_key_update_end;
1082 
1083 	/* override various methods */
1084 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1085 	vap->iv_recv_mgmt = ath_recv_mgmt;
1086 	vap->iv_reset = ath_reset_vap;
1087 	vap->iv_update_beacon = ath_beacon_update;
1088 	avp->av_newstate = vap->iv_newstate;
1089 	vap->iv_newstate = ath_newstate;
1090 	avp->av_bmiss = vap->iv_bmiss;
1091 	vap->iv_bmiss = ath_bmiss_vap;
1092 
1093 	/* Set default parameters */
1094 
1095 	/*
1096 	 * Anything earlier than some AR9300 series MACs don't
1097 	 * support a smaller MPDU density.
1098 	 */
1099 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1100 	/*
1101 	 * All NICs can handle the maximum size, however
1102 	 * AR5416 based MACs can only TX aggregates w/ RTS
1103 	 * protection when the total aggregate size is <= 8k.
1104 	 * However, for now that's enforced by the TX path.
1105 	 */
1106 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1107 
1108 	avp->av_bslot = -1;
1109 	if (needbeacon) {
1110 		/*
1111 		 * Allocate beacon state and setup the q for buffered
1112 		 * multicast frames.  We know a beacon buffer is
1113 		 * available because we checked above.
1114 		 */
1115 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1116 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1117 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1118 			/*
1119 			 * Assign the vap to a beacon xmit slot.  As above
1120 			 * this cannot fail to find a free one.
1121 			 */
1122 			avp->av_bslot = assign_bslot(sc);
1123 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1124 			    ("beacon slot %u not empty", avp->av_bslot));
1125 			sc->sc_bslot[avp->av_bslot] = vap;
1126 			sc->sc_nbcnvaps++;
1127 		}
1128 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1129 			/*
1130 			 * Multple vaps are to transmit beacons and we
1131 			 * have h/w support for TSF adjusting; enable
1132 			 * use of staggered beacons.
1133 			 */
1134 			sc->sc_stagbeacons = 1;
1135 		}
1136 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1137 	}
1138 
1139 	ic->ic_opmode = ic_opmode;
1140 	if (opmode != IEEE80211_M_WDS) {
1141 		sc->sc_nvaps++;
1142 		if (opmode == IEEE80211_M_STA)
1143 			sc->sc_nstavaps++;
1144 		if (opmode == IEEE80211_M_MBSS)
1145 			sc->sc_nmeshvaps++;
1146 	}
1147 	switch (ic_opmode) {
1148 	case IEEE80211_M_IBSS:
1149 		sc->sc_opmode = HAL_M_IBSS;
1150 		break;
1151 	case IEEE80211_M_STA:
1152 		sc->sc_opmode = HAL_M_STA;
1153 		break;
1154 	case IEEE80211_M_AHDEMO:
1155 #ifdef IEEE80211_SUPPORT_TDMA
1156 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1157 			sc->sc_tdma = 1;
1158 			/* NB: disable tsf adjust */
1159 			sc->sc_stagbeacons = 0;
1160 		}
1161 		/*
1162 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1163 		 * just ap mode.
1164 		 */
1165 		/* fall thru... */
1166 #endif
1167 	case IEEE80211_M_HOSTAP:
1168 	case IEEE80211_M_MBSS:
1169 		sc->sc_opmode = HAL_M_HOSTAP;
1170 		break;
1171 	case IEEE80211_M_MONITOR:
1172 		sc->sc_opmode = HAL_M_MONITOR;
1173 		break;
1174 	default:
1175 		/* XXX should not happen */
1176 		break;
1177 	}
1178 	if (sc->sc_hastsfadd) {
1179 		/*
1180 		 * Configure whether or not TSF adjust should be done.
1181 		 */
1182 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1183 	}
1184 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1185 		/*
1186 		 * Enable s/w beacon miss handling.
1187 		 */
1188 		sc->sc_swbmiss = 1;
1189 	}
1190 	ATH_UNLOCK(sc);
1191 
1192 	/* complete setup */
1193 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1194 	return vap;
1195 bad2:
1196 	reclaim_address(sc, mac);
1197 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1198 bad:
1199 	free(avp, M_80211_VAP);
1200 	ATH_UNLOCK(sc);
1201 	return NULL;
1202 }
1203 
1204 static void
1205 ath_vap_delete(struct ieee80211vap *vap)
1206 {
1207 	struct ieee80211com *ic = vap->iv_ic;
1208 	struct ifnet *ifp = ic->ic_ifp;
1209 	struct ath_softc *sc = ifp->if_softc;
1210 	struct ath_hal *ah = sc->sc_ah;
1211 	struct ath_vap *avp = ATH_VAP(vap);
1212 
1213 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1214 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1215 		/*
1216 		 * Quiesce the hardware while we remove the vap.  In
1217 		 * particular we need to reclaim all references to
1218 		 * the vap state by any frames pending on the tx queues.
1219 		 */
1220 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1221 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1222 		/* XXX Do all frames from all vaps/nodes need draining here? */
1223 		ath_stoprecv(sc, 1);		/* stop recv side */
1224 	}
1225 
1226 	ieee80211_vap_detach(vap);
1227 
1228 	/*
1229 	 * XXX Danger Will Robinson! Danger!
1230 	 *
1231 	 * Because ieee80211_vap_detach() can queue a frame (the station
1232 	 * diassociate message?) after we've drained the TXQ and
1233 	 * flushed the software TXQ, we will end up with a frame queued
1234 	 * to a node whose vap is about to be freed.
1235 	 *
1236 	 * To work around this, flush the hardware/software again.
1237 	 * This may be racy - the ath task may be running and the packet
1238 	 * may be being scheduled between sw->hw txq. Tsk.
1239 	 *
1240 	 * TODO: figure out why a new node gets allocated somewhere around
1241 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1242 	 * call!)
1243 	 */
1244 
1245 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1246 
1247 	ATH_LOCK(sc);
1248 	/*
1249 	 * Reclaim beacon state.  Note this must be done before
1250 	 * the vap instance is reclaimed as we may have a reference
1251 	 * to it in the buffer for the beacon frame.
1252 	 */
1253 	if (avp->av_bcbuf != NULL) {
1254 		if (avp->av_bslot != -1) {
1255 			sc->sc_bslot[avp->av_bslot] = NULL;
1256 			sc->sc_nbcnvaps--;
1257 		}
1258 		ath_beacon_return(sc, avp->av_bcbuf);
1259 		avp->av_bcbuf = NULL;
1260 		if (sc->sc_nbcnvaps == 0) {
1261 			sc->sc_stagbeacons = 0;
1262 			if (sc->sc_hastsfadd)
1263 				ath_hal_settsfadjust(sc->sc_ah, 0);
1264 		}
1265 		/*
1266 		 * Reclaim any pending mcast frames for the vap.
1267 		 */
1268 		ath_tx_draintxq(sc, &avp->av_mcastq);
1269 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1270 	}
1271 	/*
1272 	 * Update bookkeeping.
1273 	 */
1274 	if (vap->iv_opmode == IEEE80211_M_STA) {
1275 		sc->sc_nstavaps--;
1276 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1277 			sc->sc_swbmiss = 0;
1278 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1279 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1280 		reclaim_address(sc, vap->iv_myaddr);
1281 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1282 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1283 			sc->sc_nmeshvaps--;
1284 	}
1285 	if (vap->iv_opmode != IEEE80211_M_WDS)
1286 		sc->sc_nvaps--;
1287 #ifdef IEEE80211_SUPPORT_TDMA
1288 	/* TDMA operation ceases when the last vap is destroyed */
1289 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1290 		sc->sc_tdma = 0;
1291 		sc->sc_swbmiss = 0;
1292 	}
1293 #endif
1294 	free(avp, M_80211_VAP);
1295 
1296 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1297 		/*
1298 		 * Restart rx+tx machines if still running (RUNNING will
1299 		 * be reset if we just destroyed the last vap).
1300 		 */
1301 		if (ath_startrecv(sc) != 0)
1302 			if_printf(ifp, "%s: unable to restart recv logic\n",
1303 			    __func__);
1304 		if (sc->sc_beacons) {		/* restart beacons */
1305 #ifdef IEEE80211_SUPPORT_TDMA
1306 			if (sc->sc_tdma)
1307 				ath_tdma_config(sc, NULL);
1308 			else
1309 #endif
1310 				ath_beacon_config(sc, NULL);
1311 		}
1312 		ath_hal_intrset(ah, sc->sc_imask);
1313 	}
1314 	ATH_UNLOCK(sc);
1315 }
1316 
1317 void
1318 ath_suspend(struct ath_softc *sc)
1319 {
1320 	struct ifnet *ifp = sc->sc_ifp;
1321 	struct ieee80211com *ic = ifp->if_l2com;
1322 
1323 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1324 		__func__, ifp->if_flags);
1325 
1326 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1327 
1328 	ieee80211_suspend_all(ic);
1329 	/*
1330 	 * NB: don't worry about putting the chip in low power
1331 	 * mode; pci will power off our socket on suspend and
1332 	 * CardBus detaches the device.
1333 	 */
1334 
1335 	/*
1336 	 * XXX ensure none of the taskqueues are running
1337 	 * XXX ensure sc_invalid is 1
1338 	 * XXX ensure the calibration callout is disabled
1339 	 */
1340 
1341 	/* Disable the PCIe PHY, complete with workarounds */
1342 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1343 }
1344 
1345 /*
1346  * Reset the key cache since some parts do not reset the
1347  * contents on resume.  First we clear all entries, then
1348  * re-load keys that the 802.11 layer assumes are setup
1349  * in h/w.
1350  */
1351 static void
1352 ath_reset_keycache(struct ath_softc *sc)
1353 {
1354 	struct ifnet *ifp = sc->sc_ifp;
1355 	struct ieee80211com *ic = ifp->if_l2com;
1356 	struct ath_hal *ah = sc->sc_ah;
1357 	int i;
1358 
1359 	for (i = 0; i < sc->sc_keymax; i++)
1360 		ath_hal_keyreset(ah, i);
1361 	ieee80211_crypto_reload_keys(ic);
1362 }
1363 
1364 void
1365 ath_resume(struct ath_softc *sc)
1366 {
1367 	struct ifnet *ifp = sc->sc_ifp;
1368 	struct ieee80211com *ic = ifp->if_l2com;
1369 	struct ath_hal *ah = sc->sc_ah;
1370 	HAL_STATUS status;
1371 
1372 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1373 		__func__, ifp->if_flags);
1374 
1375 	/* Re-enable PCIe, re-enable the PCIe bus */
1376 	ath_hal_enablepcie(ah, 0, 0);
1377 
1378 	/*
1379 	 * Must reset the chip before we reload the
1380 	 * keycache as we were powered down on suspend.
1381 	 */
1382 	ath_hal_reset(ah, sc->sc_opmode,
1383 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1384 	    AH_FALSE, &status);
1385 	ath_reset_keycache(sc);
1386 
1387 	/* Let DFS at it in case it's a DFS channel */
1388 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1389 
1390 	/* Restore the LED configuration */
1391 	ath_led_config(sc);
1392 	ath_hal_setledstate(ah, HAL_LED_INIT);
1393 
1394 	if (sc->sc_resume_up)
1395 		ieee80211_resume_all(ic);
1396 
1397 	/* XXX beacons ? */
1398 }
1399 
1400 void
1401 ath_shutdown(struct ath_softc *sc)
1402 {
1403 	struct ifnet *ifp = sc->sc_ifp;
1404 
1405 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1406 		__func__, ifp->if_flags);
1407 
1408 	ath_stop(ifp);
1409 	/* NB: no point powering down chip as we're about to reboot */
1410 }
1411 
1412 /*
1413  * Interrupt handler.  Most of the actual processing is deferred.
1414  */
1415 void
1416 ath_intr(void *arg)
1417 {
1418 	struct ath_softc *sc = arg;
1419 	struct ifnet *ifp = sc->sc_ifp;
1420 	struct ath_hal *ah = sc->sc_ah;
1421 	HAL_INT status = 0;
1422 	uint32_t txqs;
1423 
1424 	/*
1425 	 * If we're inside a reset path, just print a warning and
1426 	 * clear the ISR. The reset routine will finish it for us.
1427 	 */
1428 	ATH_PCU_LOCK(sc);
1429 	if (sc->sc_inreset_cnt) {
1430 		HAL_INT status;
1431 		ath_hal_getisr(ah, &status);	/* clear ISR */
1432 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1433 		DPRINTF(sc, ATH_DEBUG_ANY,
1434 		    "%s: in reset, ignoring: status=0x%x\n",
1435 		    __func__, status);
1436 		ATH_PCU_UNLOCK(sc);
1437 		return;
1438 	}
1439 
1440 	if (sc->sc_invalid) {
1441 		/*
1442 		 * The hardware is not ready/present, don't touch anything.
1443 		 * Note this can happen early on if the IRQ is shared.
1444 		 */
1445 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1446 		ATH_PCU_UNLOCK(sc);
1447 		return;
1448 	}
1449 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1450 		ATH_PCU_UNLOCK(sc);
1451 		return;
1452 	}
1453 
1454 	if ((ifp->if_flags & IFF_UP) == 0 ||
1455 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1456 		HAL_INT status;
1457 
1458 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1459 			__func__, ifp->if_flags);
1460 		ath_hal_getisr(ah, &status);	/* clear ISR */
1461 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1462 		ATH_PCU_UNLOCK(sc);
1463 		return;
1464 	}
1465 
1466 	/*
1467 	 * Figure out the reason(s) for the interrupt.  Note
1468 	 * that the hal returns a pseudo-ISR that may include
1469 	 * bits we haven't explicitly enabled so we mask the
1470 	 * value to insure we only process bits we requested.
1471 	 */
1472 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1473 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1474 	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1475 #ifdef	ATH_KTR_INTR_DEBUG
1476 	CTR5(ATH_KTR_INTR,
1477 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1478 	    ah->ah_intrstate[0],
1479 	    ah->ah_intrstate[1],
1480 	    ah->ah_intrstate[2],
1481 	    ah->ah_intrstate[3],
1482 	    ah->ah_intrstate[6]);
1483 #endif
1484 
1485 	/* Squirrel away SYNC interrupt debugging */
1486 	if (ah->ah_syncstate != 0) {
1487 		int i;
1488 		for (i = 0; i < 32; i++)
1489 			if (ah->ah_syncstate & (i << i))
1490 				sc->sc_intr_stats.sync_intr[i]++;
1491 	}
1492 
1493 	status &= sc->sc_imask;			/* discard unasked for bits */
1494 
1495 	/* Short-circuit un-handled interrupts */
1496 	if (status == 0x0) {
1497 		ATH_PCU_UNLOCK(sc);
1498 		return;
1499 	}
1500 
1501 	/*
1502 	 * Take a note that we're inside the interrupt handler, so
1503 	 * the reset routines know to wait.
1504 	 */
1505 	sc->sc_intr_cnt++;
1506 	ATH_PCU_UNLOCK(sc);
1507 
1508 	/*
1509 	 * Handle the interrupt. We won't run concurrent with the reset
1510 	 * or channel change routines as they'll wait for sc_intr_cnt
1511 	 * to be 0 before continuing.
1512 	 */
1513 	if (status & HAL_INT_FATAL) {
1514 		sc->sc_stats.ast_hardware++;
1515 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1516 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1517 	} else {
1518 		if (status & HAL_INT_SWBA) {
1519 			/*
1520 			 * Software beacon alert--time to send a beacon.
1521 			 * Handle beacon transmission directly; deferring
1522 			 * this is too slow to meet timing constraints
1523 			 * under load.
1524 			 */
1525 #ifdef IEEE80211_SUPPORT_TDMA
1526 			if (sc->sc_tdma) {
1527 				if (sc->sc_tdmaswba == 0) {
1528 					struct ieee80211com *ic = ifp->if_l2com;
1529 					struct ieee80211vap *vap =
1530 					    TAILQ_FIRST(&ic->ic_vaps);
1531 					ath_tdma_beacon_send(sc, vap);
1532 					sc->sc_tdmaswba =
1533 					    vap->iv_tdma->tdma_bintval;
1534 				} else
1535 					sc->sc_tdmaswba--;
1536 			} else
1537 #endif
1538 			{
1539 				ath_beacon_proc(sc, 0);
1540 #ifdef IEEE80211_SUPPORT_SUPERG
1541 				/*
1542 				 * Schedule the rx taskq in case there's no
1543 				 * traffic so any frames held on the staging
1544 				 * queue are aged and potentially flushed.
1545 				 */
1546 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1547 #endif
1548 			}
1549 		}
1550 		if (status & HAL_INT_RXEOL) {
1551 			int imask;
1552 			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1553 			ATH_PCU_LOCK(sc);
1554 			/*
1555 			 * NB: the hardware should re-read the link when
1556 			 *     RXE bit is written, but it doesn't work at
1557 			 *     least on older hardware revs.
1558 			 */
1559 			sc->sc_stats.ast_rxeol++;
1560 			/*
1561 			 * Disable RXEOL/RXORN - prevent an interrupt
1562 			 * storm until the PCU logic can be reset.
1563 			 * In case the interface is reset some other
1564 			 * way before "sc_kickpcu" is called, don't
1565 			 * modify sc_imask - that way if it is reset
1566 			 * by a call to ath_reset() somehow, the
1567 			 * interrupt mask will be correctly reprogrammed.
1568 			 */
1569 			imask = sc->sc_imask;
1570 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1571 			ath_hal_intrset(ah, imask);
1572 			/*
1573 			 * Only blank sc_rxlink if we've not yet kicked
1574 			 * the PCU.
1575 			 *
1576 			 * This isn't entirely correct - the correct solution
1577 			 * would be to have a PCU lock and engage that for
1578 			 * the duration of the PCU fiddling; which would include
1579 			 * running the RX process. Otherwise we could end up
1580 			 * messing up the RX descriptor chain and making the
1581 			 * RX desc list much shorter.
1582 			 */
1583 			if (! sc->sc_kickpcu)
1584 				sc->sc_rxlink = NULL;
1585 			sc->sc_kickpcu = 1;
1586 			/*
1587 			 * Enqueue an RX proc, to handled whatever
1588 			 * is in the RX queue.
1589 			 * This will then kick the PCU.
1590 			 */
1591 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1592 			ATH_PCU_UNLOCK(sc);
1593 		}
1594 		if (status & HAL_INT_TXURN) {
1595 			sc->sc_stats.ast_txurn++;
1596 			/* bump tx trigger level */
1597 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1598 		}
1599 		if (status & HAL_INT_RX) {
1600 			sc->sc_stats.ast_rx_intr++;
1601 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1602 		}
1603 		if (status & HAL_INT_TX) {
1604 			sc->sc_stats.ast_tx_intr++;
1605 			/*
1606 			 * Grab all the currently set bits in the HAL txq bitmap
1607 			 * and blank them. This is the only place we should be
1608 			 * doing this.
1609 			 */
1610 			ATH_PCU_LOCK(sc);
1611 			txqs = 0xffffffff;
1612 			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1613 			sc->sc_txq_active |= txqs;
1614 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1615 			ATH_PCU_UNLOCK(sc);
1616 		}
1617 		if (status & HAL_INT_BMISS) {
1618 			sc->sc_stats.ast_bmiss++;
1619 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1620 		}
1621 		if (status & HAL_INT_GTT)
1622 			sc->sc_stats.ast_tx_timeout++;
1623 		if (status & HAL_INT_CST)
1624 			sc->sc_stats.ast_tx_cst++;
1625 		if (status & HAL_INT_MIB) {
1626 			sc->sc_stats.ast_mib++;
1627 			ATH_PCU_LOCK(sc);
1628 			/*
1629 			 * Disable interrupts until we service the MIB
1630 			 * interrupt; otherwise it will continue to fire.
1631 			 */
1632 			ath_hal_intrset(ah, 0);
1633 			/*
1634 			 * Let the hal handle the event.  We assume it will
1635 			 * clear whatever condition caused the interrupt.
1636 			 */
1637 			ath_hal_mibevent(ah, &sc->sc_halstats);
1638 			/*
1639 			 * Don't reset the interrupt if we've just
1640 			 * kicked the PCU, or we may get a nested
1641 			 * RXEOL before the rxproc has had a chance
1642 			 * to run.
1643 			 */
1644 			if (sc->sc_kickpcu == 0)
1645 				ath_hal_intrset(ah, sc->sc_imask);
1646 			ATH_PCU_UNLOCK(sc);
1647 		}
1648 		if (status & HAL_INT_RXORN) {
1649 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1650 			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1651 			sc->sc_stats.ast_rxorn++;
1652 		}
1653 	}
1654 	ATH_PCU_LOCK(sc);
1655 	sc->sc_intr_cnt--;
1656 	ATH_PCU_UNLOCK(sc);
1657 }
1658 
1659 static void
1660 ath_fatal_proc(void *arg, int pending)
1661 {
1662 	struct ath_softc *sc = arg;
1663 	struct ifnet *ifp = sc->sc_ifp;
1664 	u_int32_t *state;
1665 	u_int32_t len;
1666 	void *sp;
1667 
1668 	if_printf(ifp, "hardware error; resetting\n");
1669 	/*
1670 	 * Fatal errors are unrecoverable.  Typically these
1671 	 * are caused by DMA errors.  Collect h/w state from
1672 	 * the hal so we can diagnose what's going on.
1673 	 */
1674 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1675 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1676 		state = sp;
1677 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1678 		    state[0], state[1] , state[2], state[3],
1679 		    state[4], state[5]);
1680 	}
1681 	ath_reset(ifp, ATH_RESET_NOLOSS);
1682 }
1683 
1684 static void
1685 ath_bmiss_vap(struct ieee80211vap *vap)
1686 {
1687 	/*
1688 	 * Workaround phantom bmiss interrupts by sanity-checking
1689 	 * the time of our last rx'd frame.  If it is within the
1690 	 * beacon miss interval then ignore the interrupt.  If it's
1691 	 * truly a bmiss we'll get another interrupt soon and that'll
1692 	 * be dispatched up for processing.  Note this applies only
1693 	 * for h/w beacon miss events.
1694 	 */
1695 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1696 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1697 		struct ath_softc *sc = ifp->if_softc;
1698 		u_int64_t lastrx = sc->sc_lastrx;
1699 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1700 		/* XXX should take a locked ref to iv_bss */
1701 		u_int bmisstimeout =
1702 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1703 
1704 		DPRINTF(sc, ATH_DEBUG_BEACON,
1705 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1706 		    __func__, (unsigned long long) tsf,
1707 		    (unsigned long long)(tsf - lastrx),
1708 		    (unsigned long long) lastrx, bmisstimeout);
1709 
1710 		if (tsf - lastrx <= bmisstimeout) {
1711 			sc->sc_stats.ast_bmiss_phantom++;
1712 			return;
1713 		}
1714 	}
1715 	ATH_VAP(vap)->av_bmiss(vap);
1716 }
1717 
1718 static int
1719 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1720 {
1721 	uint32_t rsize;
1722 	void *sp;
1723 
1724 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1725 		return 0;
1726 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1727 	*hangs = *(uint32_t *)sp;
1728 	return 1;
1729 }
1730 
1731 static void
1732 ath_bmiss_proc(void *arg, int pending)
1733 {
1734 	struct ath_softc *sc = arg;
1735 	struct ifnet *ifp = sc->sc_ifp;
1736 	uint32_t hangs;
1737 
1738 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1739 
1740 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1741 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1742 		ath_reset(ifp, ATH_RESET_NOLOSS);
1743 	} else
1744 		ieee80211_beacon_miss(ifp->if_l2com);
1745 }
1746 
1747 /*
1748  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1749  * calcs together with WME.  If necessary disable the crypto
1750  * hardware and mark the 802.11 state so keys will be setup
1751  * with the MIC work done in software.
1752  */
1753 static void
1754 ath_settkipmic(struct ath_softc *sc)
1755 {
1756 	struct ifnet *ifp = sc->sc_ifp;
1757 	struct ieee80211com *ic = ifp->if_l2com;
1758 
1759 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1760 		if (ic->ic_flags & IEEE80211_F_WME) {
1761 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1762 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1763 		} else {
1764 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1765 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1766 		}
1767 	}
1768 }
1769 
1770 static void
1771 ath_init(void *arg)
1772 {
1773 	struct ath_softc *sc = (struct ath_softc *) arg;
1774 	struct ifnet *ifp = sc->sc_ifp;
1775 	struct ieee80211com *ic = ifp->if_l2com;
1776 	struct ath_hal *ah = sc->sc_ah;
1777 	HAL_STATUS status;
1778 
1779 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1780 		__func__, ifp->if_flags);
1781 
1782 	ATH_LOCK(sc);
1783 	/*
1784 	 * Stop anything previously setup.  This is safe
1785 	 * whether this is the first time through or not.
1786 	 */
1787 	ath_stop_locked(ifp);
1788 
1789 	/*
1790 	 * The basic interface to setting the hardware in a good
1791 	 * state is ``reset''.  On return the hardware is known to
1792 	 * be powered up and with interrupts disabled.  This must
1793 	 * be followed by initialization of the appropriate bits
1794 	 * and then setup of the interrupt mask.
1795 	 */
1796 	ath_settkipmic(sc);
1797 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1798 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1799 			status);
1800 		ATH_UNLOCK(sc);
1801 		return;
1802 	}
1803 	ath_chan_change(sc, ic->ic_curchan);
1804 
1805 	/* Let DFS at it in case it's a DFS channel */
1806 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1807 
1808 	/*
1809 	 * Likewise this is set during reset so update
1810 	 * state cached in the driver.
1811 	 */
1812 	sc->sc_diversity = ath_hal_getdiversity(ah);
1813 	sc->sc_lastlongcal = 0;
1814 	sc->sc_resetcal = 1;
1815 	sc->sc_lastcalreset = 0;
1816 	sc->sc_lastani = 0;
1817 	sc->sc_lastshortcal = 0;
1818 	sc->sc_doresetcal = AH_FALSE;
1819 	/*
1820 	 * Beacon timers were cleared here; give ath_newstate()
1821 	 * a hint that the beacon timers should be poked when
1822 	 * things transition to the RUN state.
1823 	 */
1824 	sc->sc_beacons = 0;
1825 
1826 	/*
1827 	 * Initial aggregation settings.
1828 	 */
1829 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
1830 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1831 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1832 
1833 	/*
1834 	 * Setup the hardware after reset: the key cache
1835 	 * is filled as needed and the receive engine is
1836 	 * set going.  Frame transmit is handled entirely
1837 	 * in the frame output path; there's nothing to do
1838 	 * here except setup the interrupt mask.
1839 	 */
1840 	if (ath_startrecv(sc) != 0) {
1841 		if_printf(ifp, "unable to start recv logic\n");
1842 		ATH_UNLOCK(sc);
1843 		return;
1844 	}
1845 
1846 	/*
1847 	 * Enable interrupts.
1848 	 */
1849 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1850 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1851 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1852 	/*
1853 	 * Enable MIB interrupts when there are hardware phy counters.
1854 	 * Note we only do this (at the moment) for station mode.
1855 	 */
1856 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1857 		sc->sc_imask |= HAL_INT_MIB;
1858 
1859 	/* Enable global TX timeout and carrier sense timeout if available */
1860 	if (ath_hal_gtxto_supported(ah))
1861 		sc->sc_imask |= HAL_INT_GTT;
1862 
1863 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1864 		__func__, sc->sc_imask);
1865 
1866 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1867 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1868 	ath_hal_intrset(ah, sc->sc_imask);
1869 
1870 	ATH_UNLOCK(sc);
1871 
1872 #ifdef ATH_TX99_DIAG
1873 	if (sc->sc_tx99 != NULL)
1874 		sc->sc_tx99->start(sc->sc_tx99);
1875 	else
1876 #endif
1877 	ieee80211_start_all(ic);		/* start all vap's */
1878 }
1879 
1880 static void
1881 ath_stop_locked(struct ifnet *ifp)
1882 {
1883 	struct ath_softc *sc = ifp->if_softc;
1884 	struct ath_hal *ah = sc->sc_ah;
1885 
1886 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1887 		__func__, sc->sc_invalid, ifp->if_flags);
1888 
1889 	ATH_LOCK_ASSERT(sc);
1890 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1891 		/*
1892 		 * Shutdown the hardware and driver:
1893 		 *    reset 802.11 state machine
1894 		 *    turn off timers
1895 		 *    disable interrupts
1896 		 *    turn off the radio
1897 		 *    clear transmit machinery
1898 		 *    clear receive machinery
1899 		 *    drain and release tx queues
1900 		 *    reclaim beacon resources
1901 		 *    power down hardware
1902 		 *
1903 		 * Note that some of this work is not possible if the
1904 		 * hardware is gone (invalid).
1905 		 */
1906 #ifdef ATH_TX99_DIAG
1907 		if (sc->sc_tx99 != NULL)
1908 			sc->sc_tx99->stop(sc->sc_tx99);
1909 #endif
1910 		callout_stop(&sc->sc_wd_ch);
1911 		sc->sc_wd_timer = 0;
1912 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1913 		if (!sc->sc_invalid) {
1914 			if (sc->sc_softled) {
1915 				callout_stop(&sc->sc_ledtimer);
1916 				ath_hal_gpioset(ah, sc->sc_ledpin,
1917 					!sc->sc_ledon);
1918 				sc->sc_blinking = 0;
1919 			}
1920 			ath_hal_intrset(ah, 0);
1921 		}
1922 		ath_draintxq(sc, ATH_RESET_DEFAULT);
1923 		if (!sc->sc_invalid) {
1924 			ath_stoprecv(sc, 1);
1925 			ath_hal_phydisable(ah);
1926 		} else
1927 			sc->sc_rxlink = NULL;
1928 		ath_beacon_free(sc);	/* XXX not needed */
1929 	}
1930 }
1931 
1932 #define	MAX_TXRX_ITERATIONS	1000
1933 static void
1934 ath_txrx_stop_locked(struct ath_softc *sc)
1935 {
1936 	int i = MAX_TXRX_ITERATIONS;
1937 
1938 	ATH_UNLOCK_ASSERT(sc);
1939 	ATH_PCU_LOCK_ASSERT(sc);
1940 
1941 	/*
1942 	 * Sleep until all the pending operations have completed.
1943 	 *
1944 	 * The caller must ensure that reset has been incremented
1945 	 * or the pending operations may continue being queued.
1946 	 */
1947 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1948 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1949 		if (i <= 0)
1950 			break;
1951 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1952 		i--;
1953 	}
1954 
1955 	if (i <= 0)
1956 		device_printf(sc->sc_dev,
1957 		    "%s: didn't finish after %d iterations\n",
1958 		    __func__, MAX_TXRX_ITERATIONS);
1959 }
1960 #undef	MAX_TXRX_ITERATIONS
1961 
1962 #if 0
1963 static void
1964 ath_txrx_stop(struct ath_softc *sc)
1965 {
1966 	ATH_UNLOCK_ASSERT(sc);
1967 	ATH_PCU_UNLOCK_ASSERT(sc);
1968 
1969 	ATH_PCU_LOCK(sc);
1970 	ath_txrx_stop_locked(sc);
1971 	ATH_PCU_UNLOCK(sc);
1972 }
1973 #endif
1974 
1975 static void
1976 ath_txrx_start(struct ath_softc *sc)
1977 {
1978 
1979 	taskqueue_unblock(sc->sc_tq);
1980 }
1981 
1982 /*
1983  * Grab the reset lock, and wait around until noone else
1984  * is trying to do anything with it.
1985  *
1986  * This is totally horrible but we can't hold this lock for
1987  * long enough to do TX/RX or we end up with net80211/ip stack
1988  * LORs and eventual deadlock.
1989  *
1990  * "dowait" signals whether to spin, waiting for the reset
1991  * lock count to reach 0. This should (for now) only be used
1992  * during the reset path, as the rest of the code may not
1993  * be locking-reentrant enough to behave correctly.
1994  *
1995  * Another, cleaner way should be found to serialise all of
1996  * these operations.
1997  */
1998 #define	MAX_RESET_ITERATIONS	10
1999 static int
2000 ath_reset_grablock(struct ath_softc *sc, int dowait)
2001 {
2002 	int w = 0;
2003 	int i = MAX_RESET_ITERATIONS;
2004 
2005 	ATH_PCU_LOCK_ASSERT(sc);
2006 	do {
2007 		if (sc->sc_inreset_cnt == 0) {
2008 			w = 1;
2009 			break;
2010 		}
2011 		if (dowait == 0) {
2012 			w = 0;
2013 			break;
2014 		}
2015 		ATH_PCU_UNLOCK(sc);
2016 		pause("ath_reset_grablock", 1);
2017 		i--;
2018 		ATH_PCU_LOCK(sc);
2019 	} while (i > 0);
2020 
2021 	/*
2022 	 * We always increment the refcounter, regardless
2023 	 * of whether we succeeded to get it in an exclusive
2024 	 * way.
2025 	 */
2026 	sc->sc_inreset_cnt++;
2027 
2028 	if (i <= 0)
2029 		device_printf(sc->sc_dev,
2030 		    "%s: didn't finish after %d iterations\n",
2031 		    __func__, MAX_RESET_ITERATIONS);
2032 
2033 	if (w == 0)
2034 		device_printf(sc->sc_dev,
2035 		    "%s: warning, recursive reset path!\n",
2036 		    __func__);
2037 
2038 	return w;
2039 }
2040 #undef MAX_RESET_ITERATIONS
2041 
2042 /*
2043  * XXX TODO: write ath_reset_releaselock
2044  */
2045 
2046 static void
2047 ath_stop(struct ifnet *ifp)
2048 {
2049 	struct ath_softc *sc = ifp->if_softc;
2050 
2051 	ATH_LOCK(sc);
2052 	ath_stop_locked(ifp);
2053 	ATH_UNLOCK(sc);
2054 }
2055 
2056 /*
2057  * Reset the hardware w/o losing operational state.  This is
2058  * basically a more efficient way of doing ath_stop, ath_init,
2059  * followed by state transitions to the current 802.11
2060  * operational state.  Used to recover from various errors and
2061  * to reset or reload hardware state.
2062  */
2063 int
2064 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2065 {
2066 	struct ath_softc *sc = ifp->if_softc;
2067 	struct ieee80211com *ic = ifp->if_l2com;
2068 	struct ath_hal *ah = sc->sc_ah;
2069 	HAL_STATUS status;
2070 	int i;
2071 
2072 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2073 
2074 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2075 	ATH_PCU_UNLOCK_ASSERT(sc);
2076 	ATH_UNLOCK_ASSERT(sc);
2077 
2078 	/* Try to (stop any further TX/RX from occuring */
2079 	taskqueue_block(sc->sc_tq);
2080 
2081 	ATH_PCU_LOCK(sc);
2082 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2083 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2084 	if (ath_reset_grablock(sc, 1) == 0) {
2085 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2086 		    __func__);
2087 	}
2088 	ATH_PCU_UNLOCK(sc);
2089 
2090 	/*
2091 	 * Should now wait for pending TX/RX to complete
2092 	 * and block future ones from occuring. This needs to be
2093 	 * done before the TX queue is drained.
2094 	 */
2095 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2096 
2097 	/*
2098 	 * Regardless of whether we're doing a no-loss flush or
2099 	 * not, stop the PCU and handle what's in the RX queue.
2100 	 * That way frames aren't dropped which shouldn't be.
2101 	 */
2102 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2103 	ath_rx_proc(sc, 0);
2104 
2105 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2106 	/* NB: indicate channel change so we do a full reset */
2107 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2108 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2109 			__func__, status);
2110 	sc->sc_diversity = ath_hal_getdiversity(ah);
2111 
2112 	/* Let DFS at it in case it's a DFS channel */
2113 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2114 
2115 	if (ath_startrecv(sc) != 0)	/* restart recv */
2116 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2117 	/*
2118 	 * We may be doing a reset in response to an ioctl
2119 	 * that changes the channel so update any state that
2120 	 * might change as a result.
2121 	 */
2122 	ath_chan_change(sc, ic->ic_curchan);
2123 	if (sc->sc_beacons) {		/* restart beacons */
2124 #ifdef IEEE80211_SUPPORT_TDMA
2125 		if (sc->sc_tdma)
2126 			ath_tdma_config(sc, NULL);
2127 		else
2128 #endif
2129 			ath_beacon_config(sc, NULL);
2130 	}
2131 
2132 	/*
2133 	 * Release the reset lock and re-enable interrupts here.
2134 	 * If an interrupt was being processed in ath_intr(),
2135 	 * it would disable interrupts at this point. So we have
2136 	 * to atomically enable interrupts and decrement the
2137 	 * reset counter - this way ath_intr() doesn't end up
2138 	 * disabling interrupts without a corresponding enable
2139 	 * in the rest or channel change path.
2140 	 */
2141 	ATH_PCU_LOCK(sc);
2142 	sc->sc_inreset_cnt--;
2143 	/* XXX only do this if sc_inreset_cnt == 0? */
2144 	ath_hal_intrset(ah, sc->sc_imask);
2145 	ATH_PCU_UNLOCK(sc);
2146 
2147 	/*
2148 	 * TX and RX can be started here. If it were started with
2149 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2150 	 * Thus if this is a nested call through the reset or
2151 	 * channel change code, TX completion will occur but
2152 	 * RX completion and ath_start / ath_tx_start will not
2153 	 * run.
2154 	 */
2155 
2156 	/* Restart TX/RX as needed */
2157 	ath_txrx_start(sc);
2158 
2159 	/* XXX Restart TX completion and pending TX */
2160 	if (reset_type == ATH_RESET_NOLOSS) {
2161 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2162 			if (ATH_TXQ_SETUP(sc, i)) {
2163 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2164 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2165 				ath_txq_sched(sc, &sc->sc_txq[i]);
2166 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2167 			}
2168 		}
2169 	}
2170 
2171 	/*
2172 	 * This may have been set during an ath_start() call which
2173 	 * set this once it detected a concurrent TX was going on.
2174 	 * So, clear it.
2175 	 */
2176 	IF_LOCK(&ifp->if_snd);
2177 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2178 	IF_UNLOCK(&ifp->if_snd);
2179 
2180 	/* Handle any frames in the TX queue */
2181 	/*
2182 	 * XXX should this be done by the caller, rather than
2183 	 * ath_reset() ?
2184 	 */
2185 	ath_start(ifp);			/* restart xmit */
2186 	return 0;
2187 }
2188 
2189 static int
2190 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2191 {
2192 	struct ieee80211com *ic = vap->iv_ic;
2193 	struct ifnet *ifp = ic->ic_ifp;
2194 	struct ath_softc *sc = ifp->if_softc;
2195 	struct ath_hal *ah = sc->sc_ah;
2196 
2197 	switch (cmd) {
2198 	case IEEE80211_IOC_TXPOWER:
2199 		/*
2200 		 * If per-packet TPC is enabled, then we have nothing
2201 		 * to do; otherwise we need to force the global limit.
2202 		 * All this can happen directly; no need to reset.
2203 		 */
2204 		if (!ath_hal_gettpc(ah))
2205 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2206 		return 0;
2207 	}
2208 	/* XXX? Full or NOLOSS? */
2209 	return ath_reset(ifp, ATH_RESET_FULL);
2210 }
2211 
2212 struct ath_buf *
2213 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2214 {
2215 	struct ath_buf *bf;
2216 
2217 	ATH_TXBUF_LOCK_ASSERT(sc);
2218 
2219 	if (btype == ATH_BUFTYPE_MGMT)
2220 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2221 	else
2222 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2223 
2224 	if (bf == NULL) {
2225 		sc->sc_stats.ast_tx_getnobuf++;
2226 	} else {
2227 		if (bf->bf_flags & ATH_BUF_BUSY) {
2228 			sc->sc_stats.ast_tx_getbusybuf++;
2229 			bf = NULL;
2230 		}
2231 	}
2232 
2233 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2234 		if (btype == ATH_BUFTYPE_MGMT)
2235 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2236 		else {
2237 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2238 			sc->sc_txbuf_cnt--;
2239 
2240 			/*
2241 			 * This shuldn't happen; however just to be
2242 			 * safe print a warning and fudge the txbuf
2243 			 * count.
2244 			 */
2245 			if (sc->sc_txbuf_cnt < 0) {
2246 				device_printf(sc->sc_dev,
2247 				    "%s: sc_txbuf_cnt < 0?\n",
2248 				    __func__);
2249 				sc->sc_txbuf_cnt = 0;
2250 			}
2251 		}
2252 	} else
2253 		bf = NULL;
2254 
2255 	if (bf == NULL) {
2256 		/* XXX should check which list, mgmt or otherwise */
2257 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2258 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2259 			"out of xmit buffers" : "xmit buffer busy");
2260 		return NULL;
2261 	}
2262 
2263 	/* XXX TODO: should do this at buffer list initialisation */
2264 	/* XXX (then, ensure the buffer has the right flag set) */
2265 	if (btype == ATH_BUFTYPE_MGMT)
2266 		bf->bf_flags |= ATH_BUF_MGMT;
2267 	else
2268 		bf->bf_flags &= (~ATH_BUF_MGMT);
2269 
2270 	/* Valid bf here; clear some basic fields */
2271 	bf->bf_next = NULL;	/* XXX just to be sure */
2272 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2273 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2274 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2275 
2276 	return bf;
2277 }
2278 
2279 /*
2280  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2281  * can't be thrown back on the queue as they could still be
2282  * in use by the hardware.
2283  *
2284  * This duplicates the buffer, or returns NULL.
2285  *
2286  * The descriptor is also copied but the link pointers and
2287  * the DMA segments aren't copied; this frame should thus
2288  * be again passed through the descriptor setup/chain routines
2289  * so the link is correct.
2290  *
2291  * The caller must free the buffer using ath_freebuf().
2292  *
2293  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2294  * XXX in the TX pathway when retries are needed.
2295  * XXX Figure out how to keep some buffers free, or factor the
2296  * XXX number of busy buffers into the xmit path (ath_start())
2297  * XXX so we don't over-commit.
2298  */
2299 struct ath_buf *
2300 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2301 {
2302 	struct ath_buf *tbf;
2303 
2304 	tbf = ath_getbuf(sc,
2305 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2306 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2307 	if (tbf == NULL)
2308 		return NULL;	/* XXX failure? Why? */
2309 
2310 	/* Copy basics */
2311 	tbf->bf_next = NULL;
2312 	tbf->bf_nseg = bf->bf_nseg;
2313 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2314 	tbf->bf_status = bf->bf_status;
2315 	tbf->bf_m = bf->bf_m;
2316 	tbf->bf_node = bf->bf_node;
2317 	/* will be setup by the chain/setup function */
2318 	tbf->bf_lastds = NULL;
2319 	/* for now, last == self */
2320 	tbf->bf_last = tbf;
2321 	tbf->bf_comp = bf->bf_comp;
2322 
2323 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2324 
2325 	/* The caller has to re-init the descriptor + links */
2326 
2327 	/* Copy state */
2328 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2329 
2330 	return tbf;
2331 }
2332 
2333 struct ath_buf *
2334 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2335 {
2336 	struct ath_buf *bf;
2337 
2338 	ATH_TXBUF_LOCK(sc);
2339 	bf = _ath_getbuf_locked(sc, btype);
2340 	/*
2341 	 * If a mgmt buffer was requested but we're out of those,
2342 	 * try requesting a normal one.
2343 	 */
2344 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2345 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2346 	ATH_TXBUF_UNLOCK(sc);
2347 	if (bf == NULL) {
2348 		struct ifnet *ifp = sc->sc_ifp;
2349 
2350 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2351 		sc->sc_stats.ast_tx_qstop++;
2352 		IF_LOCK(&ifp->if_snd);
2353 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2354 		IF_UNLOCK(&ifp->if_snd);
2355 	}
2356 	return bf;
2357 }
2358 
2359 void
2360 ath_start(struct ifnet *ifp)
2361 {
2362 	struct ath_softc *sc = ifp->if_softc;
2363 	struct ieee80211_node *ni;
2364 	struct ath_buf *bf;
2365 	struct mbuf *m, *next;
2366 	ath_bufhead frags;
2367 
2368 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2369 		return;
2370 
2371 	/* XXX is it ok to hold the ATH_LOCK here? */
2372 	ATH_PCU_LOCK(sc);
2373 	if (sc->sc_inreset_cnt > 0) {
2374 		device_printf(sc->sc_dev,
2375 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2376 		ATH_PCU_UNLOCK(sc);
2377 		IF_LOCK(&ifp->if_snd);
2378 		sc->sc_stats.ast_tx_qstop++;
2379 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2380 		IF_UNLOCK(&ifp->if_snd);
2381 		return;
2382 	}
2383 	sc->sc_txstart_cnt++;
2384 	ATH_PCU_UNLOCK(sc);
2385 
2386 	for (;;) {
2387 		ATH_TXBUF_LOCK(sc);
2388 		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2389 			/* XXX increment counter? */
2390 			ATH_TXBUF_UNLOCK(sc);
2391 			IF_LOCK(&ifp->if_snd);
2392 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2393 			IF_UNLOCK(&ifp->if_snd);
2394 			break;
2395 		}
2396 		ATH_TXBUF_UNLOCK(sc);
2397 
2398 		/*
2399 		 * Grab a TX buffer and associated resources.
2400 		 */
2401 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2402 		if (bf == NULL)
2403 			break;
2404 
2405 		IFQ_DEQUEUE(&ifp->if_snd, m);
2406 		if (m == NULL) {
2407 			ATH_TXBUF_LOCK(sc);
2408 			ath_returnbuf_head(sc, bf);
2409 			ATH_TXBUF_UNLOCK(sc);
2410 			break;
2411 		}
2412 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2413 		/*
2414 		 * Check for fragmentation.  If this frame
2415 		 * has been broken up verify we have enough
2416 		 * buffers to send all the fragments so all
2417 		 * go out or none...
2418 		 */
2419 		TAILQ_INIT(&frags);
2420 		if ((m->m_flags & M_FRAG) &&
2421 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2422 			DPRINTF(sc, ATH_DEBUG_XMIT,
2423 			    "%s: out of txfrag buffers\n", __func__);
2424 			sc->sc_stats.ast_tx_nofrag++;
2425 			ifp->if_oerrors++;
2426 			ath_freetx(m);
2427 			goto bad;
2428 		}
2429 		ifp->if_opackets++;
2430 	nextfrag:
2431 		/*
2432 		 * Pass the frame to the h/w for transmission.
2433 		 * Fragmented frames have each frag chained together
2434 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2435 		 * to send all the frags because of work done by
2436 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2437 		 * calling ath_tx_start so it can use it to extend the
2438 		 * the tx duration to cover the subsequent frag and
2439 		 * so it can reclaim all the mbufs in case of an error;
2440 		 * ath_tx_start clears m_nextpkt once it commits to
2441 		 * handing the frame to the hardware.
2442 		 */
2443 		next = m->m_nextpkt;
2444 		if (ath_tx_start(sc, ni, bf, m)) {
2445 	bad:
2446 			ifp->if_oerrors++;
2447 	reclaim:
2448 			bf->bf_m = NULL;
2449 			bf->bf_node = NULL;
2450 			ATH_TXBUF_LOCK(sc);
2451 			ath_returnbuf_head(sc, bf);
2452 			ath_txfrag_cleanup(sc, &frags, ni);
2453 			ATH_TXBUF_UNLOCK(sc);
2454 			if (ni != NULL)
2455 				ieee80211_free_node(ni);
2456 			continue;
2457 		}
2458 		if (next != NULL) {
2459 			/*
2460 			 * Beware of state changing between frags.
2461 			 * XXX check sta power-save state?
2462 			 */
2463 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2464 				DPRINTF(sc, ATH_DEBUG_XMIT,
2465 				    "%s: flush fragmented packet, state %s\n",
2466 				    __func__,
2467 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2468 				ath_freetx(next);
2469 				goto reclaim;
2470 			}
2471 			m = next;
2472 			bf = TAILQ_FIRST(&frags);
2473 			KASSERT(bf != NULL, ("no buf for txfrag"));
2474 			TAILQ_REMOVE(&frags, bf, bf_list);
2475 			goto nextfrag;
2476 		}
2477 
2478 		sc->sc_wd_timer = 5;
2479 	}
2480 
2481 	ATH_PCU_LOCK(sc);
2482 	sc->sc_txstart_cnt--;
2483 	ATH_PCU_UNLOCK(sc);
2484 }
2485 
2486 static int
2487 ath_media_change(struct ifnet *ifp)
2488 {
2489 	int error = ieee80211_media_change(ifp);
2490 	/* NB: only the fixed rate can change and that doesn't need a reset */
2491 	return (error == ENETRESET ? 0 : error);
2492 }
2493 
2494 /*
2495  * Block/unblock tx+rx processing while a key change is done.
2496  * We assume the caller serializes key management operations
2497  * so we only need to worry about synchronization with other
2498  * uses that originate in the driver.
2499  */
2500 static void
2501 ath_key_update_begin(struct ieee80211vap *vap)
2502 {
2503 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2504 	struct ath_softc *sc = ifp->if_softc;
2505 
2506 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2507 	taskqueue_block(sc->sc_tq);
2508 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2509 }
2510 
2511 static void
2512 ath_key_update_end(struct ieee80211vap *vap)
2513 {
2514 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2515 	struct ath_softc *sc = ifp->if_softc;
2516 
2517 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2518 	IF_UNLOCK(&ifp->if_snd);
2519 	taskqueue_unblock(sc->sc_tq);
2520 }
2521 
2522 static void
2523 ath_update_promisc(struct ifnet *ifp)
2524 {
2525 	struct ath_softc *sc = ifp->if_softc;
2526 	u_int32_t rfilt;
2527 
2528 	/* configure rx filter */
2529 	rfilt = ath_calcrxfilter(sc);
2530 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2531 
2532 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2533 }
2534 
2535 static void
2536 ath_update_mcast(struct ifnet *ifp)
2537 {
2538 	struct ath_softc *sc = ifp->if_softc;
2539 	u_int32_t mfilt[2];
2540 
2541 	/* calculate and install multicast filter */
2542 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2543 		struct ifmultiaddr *ifma;
2544 		/*
2545 		 * Merge multicast addresses to form the hardware filter.
2546 		 */
2547 		mfilt[0] = mfilt[1] = 0;
2548 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2549 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2550 			caddr_t dl;
2551 			u_int32_t val;
2552 			u_int8_t pos;
2553 
2554 			/* calculate XOR of eight 6bit values */
2555 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2556 			val = LE_READ_4(dl + 0);
2557 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2558 			val = LE_READ_4(dl + 3);
2559 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2560 			pos &= 0x3f;
2561 			mfilt[pos / 32] |= (1 << (pos % 32));
2562 		}
2563 		if_maddr_runlock(ifp);
2564 	} else
2565 		mfilt[0] = mfilt[1] = ~0;
2566 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2567 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2568 		__func__, mfilt[0], mfilt[1]);
2569 }
2570 
2571 void
2572 ath_mode_init(struct ath_softc *sc)
2573 {
2574 	struct ifnet *ifp = sc->sc_ifp;
2575 	struct ath_hal *ah = sc->sc_ah;
2576 	u_int32_t rfilt;
2577 
2578 	/* configure rx filter */
2579 	rfilt = ath_calcrxfilter(sc);
2580 	ath_hal_setrxfilter(ah, rfilt);
2581 
2582 	/* configure operational mode */
2583 	ath_hal_setopmode(ah);
2584 
2585 	/* handle any link-level address change */
2586 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2587 
2588 	/* calculate and install multicast filter */
2589 	ath_update_mcast(ifp);
2590 }
2591 
2592 /*
2593  * Set the slot time based on the current setting.
2594  */
2595 void
2596 ath_setslottime(struct ath_softc *sc)
2597 {
2598 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2599 	struct ath_hal *ah = sc->sc_ah;
2600 	u_int usec;
2601 
2602 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2603 		usec = 13;
2604 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2605 		usec = 21;
2606 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2607 		/* honor short/long slot time only in 11g */
2608 		/* XXX shouldn't honor on pure g or turbo g channel */
2609 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2610 			usec = HAL_SLOT_TIME_9;
2611 		else
2612 			usec = HAL_SLOT_TIME_20;
2613 	} else
2614 		usec = HAL_SLOT_TIME_9;
2615 
2616 	DPRINTF(sc, ATH_DEBUG_RESET,
2617 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2618 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2619 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2620 
2621 	ath_hal_setslottime(ah, usec);
2622 	sc->sc_updateslot = OK;
2623 }
2624 
2625 /*
2626  * Callback from the 802.11 layer to update the
2627  * slot time based on the current setting.
2628  */
2629 static void
2630 ath_updateslot(struct ifnet *ifp)
2631 {
2632 	struct ath_softc *sc = ifp->if_softc;
2633 	struct ieee80211com *ic = ifp->if_l2com;
2634 
2635 	/*
2636 	 * When not coordinating the BSS, change the hardware
2637 	 * immediately.  For other operation we defer the change
2638 	 * until beacon updates have propagated to the stations.
2639 	 */
2640 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2641 	    ic->ic_opmode == IEEE80211_M_MBSS)
2642 		sc->sc_updateslot = UPDATE;
2643 	else
2644 		ath_setslottime(sc);
2645 }
2646 
2647 /*
2648  * Append the contents of src to dst; both queues
2649  * are assumed to be locked.
2650  */
2651 void
2652 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2653 {
2654 
2655 	ATH_TXQ_LOCK_ASSERT(dst);
2656 	ATH_TXQ_LOCK_ASSERT(src);
2657 
2658 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2659 	dst->axq_link = src->axq_link;
2660 	src->axq_link = NULL;
2661 	dst->axq_depth += src->axq_depth;
2662 	dst->axq_aggr_depth += src->axq_aggr_depth;
2663 	src->axq_depth = 0;
2664 	src->axq_aggr_depth = 0;
2665 }
2666 
2667 /*
2668  * Reset the hardware, with no loss.
2669  *
2670  * This can't be used for a general case reset.
2671  */
2672 static void
2673 ath_reset_proc(void *arg, int pending)
2674 {
2675 	struct ath_softc *sc = arg;
2676 	struct ifnet *ifp = sc->sc_ifp;
2677 
2678 #if 0
2679 	if_printf(ifp, "%s: resetting\n", __func__);
2680 #endif
2681 	ath_reset(ifp, ATH_RESET_NOLOSS);
2682 }
2683 
2684 /*
2685  * Reset the hardware after detecting beacons have stopped.
2686  */
2687 static void
2688 ath_bstuck_proc(void *arg, int pending)
2689 {
2690 	struct ath_softc *sc = arg;
2691 	struct ifnet *ifp = sc->sc_ifp;
2692 	uint32_t hangs = 0;
2693 
2694 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2695 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2696 
2697 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2698 		sc->sc_bmisscount);
2699 	sc->sc_stats.ast_bstuck++;
2700 	/*
2701 	 * This assumes that there's no simultaneous channel mode change
2702 	 * occuring.
2703 	 */
2704 	ath_reset(ifp, ATH_RESET_NOLOSS);
2705 }
2706 
2707 static void
2708 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2709 {
2710 	bus_addr_t *paddr = (bus_addr_t*) arg;
2711 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2712 	*paddr = segs->ds_addr;
2713 }
2714 
2715 static int
2716 ath_descdma_setup(struct ath_softc *sc,
2717 	struct ath_descdma *dd, ath_bufhead *head,
2718 	const char *name, int nbuf, int ndesc)
2719 {
2720 #define	DS2PHYS(_dd, _ds) \
2721 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2722 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2723 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2724 	struct ifnet *ifp = sc->sc_ifp;
2725 	uint8_t *ds;
2726 	struct ath_buf *bf;
2727 	int i, bsize, error;
2728 	int desc_len;
2729 
2730 	desc_len = sizeof(struct ath_desc);
2731 
2732 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2733 	    __func__, name, nbuf, ndesc);
2734 
2735 	dd->dd_name = name;
2736 	dd->dd_desc_len = desc_len * nbuf * ndesc;
2737 
2738 	/*
2739 	 * Merlin work-around:
2740 	 * Descriptors that cross the 4KB boundary can't be used.
2741 	 * Assume one skipped descriptor per 4KB page.
2742 	 */
2743 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2744 		int numdescpage = 4096 / (desc_len * ndesc);
2745 		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
2746 	}
2747 
2748 	/*
2749 	 * Setup DMA descriptor area.
2750 	 */
2751 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2752 		       PAGE_SIZE, 0,		/* alignment, bounds */
2753 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2754 		       BUS_SPACE_MAXADDR,	/* highaddr */
2755 		       NULL, NULL,		/* filter, filterarg */
2756 		       dd->dd_desc_len,		/* maxsize */
2757 		       1,			/* nsegments */
2758 		       dd->dd_desc_len,		/* maxsegsize */
2759 		       BUS_DMA_ALLOCNOW,	/* flags */
2760 		       NULL,			/* lockfunc */
2761 		       NULL,			/* lockarg */
2762 		       &dd->dd_dmat);
2763 	if (error != 0) {
2764 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2765 		return error;
2766 	}
2767 
2768 	/* allocate descriptors */
2769 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2770 	if (error != 0) {
2771 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2772 			"error %u\n", dd->dd_name, error);
2773 		goto fail0;
2774 	}
2775 
2776 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2777 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2778 				 &dd->dd_dmamap);
2779 	if (error != 0) {
2780 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2781 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2782 		goto fail1;
2783 	}
2784 
2785 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2786 				dd->dd_desc, dd->dd_desc_len,
2787 				ath_load_cb, &dd->dd_desc_paddr,
2788 				BUS_DMA_NOWAIT);
2789 	if (error != 0) {
2790 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2791 			dd->dd_name, error);
2792 		goto fail2;
2793 	}
2794 
2795 	ds = (uint8_t *) dd->dd_desc;
2796 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2797 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2798 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2799 
2800 	/* allocate rx buffers */
2801 	bsize = sizeof(struct ath_buf) * nbuf;
2802 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2803 	if (bf == NULL) {
2804 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2805 			dd->dd_name, bsize);
2806 		goto fail3;
2807 	}
2808 	dd->dd_bufptr = bf;
2809 
2810 	TAILQ_INIT(head);
2811 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
2812 		bf->bf_desc = (struct ath_desc *) ds;
2813 		bf->bf_daddr = DS2PHYS(dd, ds);
2814 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
2815 			/*
2816 			 * Merlin WAR: Skip descriptor addresses which
2817 			 * cause 4KB boundary crossing along any point
2818 			 * in the descriptor.
2819 			 */
2820 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
2821 			     desc_len * ndesc)) {
2822 				/* Start at the next page */
2823 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
2824 				bf->bf_desc = (struct ath_desc *) ds;
2825 				bf->bf_daddr = DS2PHYS(dd, ds);
2826 			}
2827 		}
2828 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2829 				&bf->bf_dmamap);
2830 		if (error != 0) {
2831 			if_printf(ifp, "unable to create dmamap for %s "
2832 				"buffer %u, error %u\n", dd->dd_name, i, error);
2833 			ath_descdma_cleanup(sc, dd, head);
2834 			return error;
2835 		}
2836 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
2837 		TAILQ_INSERT_TAIL(head, bf, bf_list);
2838 	}
2839 	return 0;
2840 fail3:
2841 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2842 fail2:
2843 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2844 fail1:
2845 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2846 fail0:
2847 	bus_dma_tag_destroy(dd->dd_dmat);
2848 	memset(dd, 0, sizeof(*dd));
2849 	return error;
2850 #undef DS2PHYS
2851 #undef ATH_DESC_4KB_BOUND_CHECK
2852 }
2853 
2854 static void
2855 ath_descdma_cleanup(struct ath_softc *sc,
2856 	struct ath_descdma *dd, ath_bufhead *head)
2857 {
2858 	struct ath_buf *bf;
2859 	struct ieee80211_node *ni;
2860 
2861 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2862 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2863 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2864 	bus_dma_tag_destroy(dd->dd_dmat);
2865 
2866 	TAILQ_FOREACH(bf, head, bf_list) {
2867 		if (bf->bf_m) {
2868 			m_freem(bf->bf_m);
2869 			bf->bf_m = NULL;
2870 		}
2871 		if (bf->bf_dmamap != NULL) {
2872 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2873 			bf->bf_dmamap = NULL;
2874 		}
2875 		ni = bf->bf_node;
2876 		bf->bf_node = NULL;
2877 		if (ni != NULL) {
2878 			/*
2879 			 * Reclaim node reference.
2880 			 */
2881 			ieee80211_free_node(ni);
2882 		}
2883 	}
2884 
2885 	TAILQ_INIT(head);
2886 	free(dd->dd_bufptr, M_ATHDEV);
2887 	memset(dd, 0, sizeof(*dd));
2888 }
2889 
2890 static int
2891 ath_desc_alloc(struct ath_softc *sc)
2892 {
2893 	int error;
2894 
2895 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2896 			"rx", ath_rxbuf, 1);
2897 	if (error != 0)
2898 		return error;
2899 
2900 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2901 			"tx", ath_txbuf, ATH_TXDESC);
2902 	if (error != 0) {
2903 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2904 		return error;
2905 	}
2906 	sc->sc_txbuf_cnt = ath_txbuf;
2907 
2908 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
2909 			"tx_mgmt", ath_txbuf_mgmt, ATH_TXDESC);
2910 	if (error != 0) {
2911 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2912 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2913 		return error;
2914 	}
2915 
2916 	/*
2917 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
2918 	 * flag doesn't have to be set in ath_getbuf_locked().
2919 	 */
2920 
2921 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2922 			"beacon", ATH_BCBUF, 1);
2923 	if (error != 0) {
2924 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2925 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2926 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
2927 		    &sc->sc_txbuf_mgmt);
2928 		return error;
2929 	}
2930 	return 0;
2931 }
2932 
2933 static void
2934 ath_desc_free(struct ath_softc *sc)
2935 {
2936 
2937 	if (sc->sc_bdma.dd_desc_len != 0)
2938 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2939 	if (sc->sc_txdma.dd_desc_len != 0)
2940 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2941 	if (sc->sc_rxdma.dd_desc_len != 0)
2942 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2943 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
2944 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
2945 		    &sc->sc_txbuf_mgmt);
2946 }
2947 
2948 static struct ieee80211_node *
2949 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2950 {
2951 	struct ieee80211com *ic = vap->iv_ic;
2952 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2953 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2954 	struct ath_node *an;
2955 
2956 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2957 	if (an == NULL) {
2958 		/* XXX stat+msg */
2959 		return NULL;
2960 	}
2961 	ath_rate_node_init(sc, an);
2962 
2963 	/* Setup the mutex - there's no associd yet so set the name to NULL */
2964 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
2965 	    device_get_nameunit(sc->sc_dev), an);
2966 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
2967 
2968 	/* XXX setup ath_tid */
2969 	ath_tx_tid_init(sc, an);
2970 
2971 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2972 	return &an->an_node;
2973 }
2974 
2975 static void
2976 ath_node_cleanup(struct ieee80211_node *ni)
2977 {
2978 	struct ieee80211com *ic = ni->ni_ic;
2979 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2980 
2981 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
2982 	ath_tx_node_flush(sc, ATH_NODE(ni));
2983 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2984 	sc->sc_node_cleanup(ni);
2985 }
2986 
2987 static void
2988 ath_node_free(struct ieee80211_node *ni)
2989 {
2990 	struct ieee80211com *ic = ni->ni_ic;
2991 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2992 
2993 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2994 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
2995 	sc->sc_node_free(ni);
2996 }
2997 
2998 static void
2999 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3000 {
3001 	struct ieee80211com *ic = ni->ni_ic;
3002 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3003 	struct ath_hal *ah = sc->sc_ah;
3004 
3005 	*rssi = ic->ic_node_getrssi(ni);
3006 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3007 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3008 	else
3009 		*noise = -95;		/* nominally correct */
3010 }
3011 
3012 /*
3013  * Set the default antenna.
3014  */
3015 void
3016 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3017 {
3018 	struct ath_hal *ah = sc->sc_ah;
3019 
3020 	/* XXX block beacon interrupts */
3021 	ath_hal_setdefantenna(ah, antenna);
3022 	if (sc->sc_defant != antenna)
3023 		sc->sc_stats.ast_ant_defswitch++;
3024 	sc->sc_defant = antenna;
3025 	sc->sc_rxotherant = 0;
3026 }
3027 
3028 static void
3029 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3030 {
3031 	txq->axq_qnum = qnum;
3032 	txq->axq_ac = 0;
3033 	txq->axq_depth = 0;
3034 	txq->axq_aggr_depth = 0;
3035 	txq->axq_intrcnt = 0;
3036 	txq->axq_link = NULL;
3037 	txq->axq_softc = sc;
3038 	TAILQ_INIT(&txq->axq_q);
3039 	TAILQ_INIT(&txq->axq_tidq);
3040 	ATH_TXQ_LOCK_INIT(sc, txq);
3041 }
3042 
3043 /*
3044  * Setup a h/w transmit queue.
3045  */
3046 static struct ath_txq *
3047 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3048 {
3049 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3050 	struct ath_hal *ah = sc->sc_ah;
3051 	HAL_TXQ_INFO qi;
3052 	int qnum;
3053 
3054 	memset(&qi, 0, sizeof(qi));
3055 	qi.tqi_subtype = subtype;
3056 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3057 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3058 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3059 	/*
3060 	 * Enable interrupts only for EOL and DESC conditions.
3061 	 * We mark tx descriptors to receive a DESC interrupt
3062 	 * when a tx queue gets deep; otherwise waiting for the
3063 	 * EOL to reap descriptors.  Note that this is done to
3064 	 * reduce interrupt load and this only defers reaping
3065 	 * descriptors, never transmitting frames.  Aside from
3066 	 * reducing interrupts this also permits more concurrency.
3067 	 * The only potential downside is if the tx queue backs
3068 	 * up in which case the top half of the kernel may backup
3069 	 * due to a lack of tx descriptors.
3070 	 */
3071 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3072 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3073 	if (qnum == -1) {
3074 		/*
3075 		 * NB: don't print a message, this happens
3076 		 * normally on parts with too few tx queues
3077 		 */
3078 		return NULL;
3079 	}
3080 	if (qnum >= N(sc->sc_txq)) {
3081 		device_printf(sc->sc_dev,
3082 			"hal qnum %u out of range, max %zu!\n",
3083 			qnum, N(sc->sc_txq));
3084 		ath_hal_releasetxqueue(ah, qnum);
3085 		return NULL;
3086 	}
3087 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3088 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3089 		sc->sc_txqsetup |= 1<<qnum;
3090 	}
3091 	return &sc->sc_txq[qnum];
3092 #undef N
3093 }
3094 
3095 /*
3096  * Setup a hardware data transmit queue for the specified
3097  * access control.  The hal may not support all requested
3098  * queues in which case it will return a reference to a
3099  * previously setup queue.  We record the mapping from ac's
3100  * to h/w queues for use by ath_tx_start and also track
3101  * the set of h/w queues being used to optimize work in the
3102  * transmit interrupt handler and related routines.
3103  */
3104 static int
3105 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3106 {
3107 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3108 	struct ath_txq *txq;
3109 
3110 	if (ac >= N(sc->sc_ac2q)) {
3111 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3112 			ac, N(sc->sc_ac2q));
3113 		return 0;
3114 	}
3115 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3116 	if (txq != NULL) {
3117 		txq->axq_ac = ac;
3118 		sc->sc_ac2q[ac] = txq;
3119 		return 1;
3120 	} else
3121 		return 0;
3122 #undef N
3123 }
3124 
3125 /*
3126  * Update WME parameters for a transmit queue.
3127  */
3128 static int
3129 ath_txq_update(struct ath_softc *sc, int ac)
3130 {
3131 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3132 #define	ATH_TXOP_TO_US(v)		(v<<5)
3133 	struct ifnet *ifp = sc->sc_ifp;
3134 	struct ieee80211com *ic = ifp->if_l2com;
3135 	struct ath_txq *txq = sc->sc_ac2q[ac];
3136 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3137 	struct ath_hal *ah = sc->sc_ah;
3138 	HAL_TXQ_INFO qi;
3139 
3140 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3141 #ifdef IEEE80211_SUPPORT_TDMA
3142 	if (sc->sc_tdma) {
3143 		/*
3144 		 * AIFS is zero so there's no pre-transmit wait.  The
3145 		 * burst time defines the slot duration and is configured
3146 		 * through net80211.  The QCU is setup to not do post-xmit
3147 		 * back off, lockout all lower-priority QCU's, and fire
3148 		 * off the DMA beacon alert timer which is setup based
3149 		 * on the slot configuration.
3150 		 */
3151 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3152 			      | HAL_TXQ_TXERRINT_ENABLE
3153 			      | HAL_TXQ_TXURNINT_ENABLE
3154 			      | HAL_TXQ_TXEOLINT_ENABLE
3155 			      | HAL_TXQ_DBA_GATED
3156 			      | HAL_TXQ_BACKOFF_DISABLE
3157 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3158 			      ;
3159 		qi.tqi_aifs = 0;
3160 		/* XXX +dbaprep? */
3161 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3162 		qi.tqi_burstTime = qi.tqi_readyTime;
3163 	} else {
3164 #endif
3165 		/*
3166 		 * XXX shouldn't this just use the default flags
3167 		 * used in the previous queue setup?
3168 		 */
3169 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3170 			      | HAL_TXQ_TXERRINT_ENABLE
3171 			      | HAL_TXQ_TXDESCINT_ENABLE
3172 			      | HAL_TXQ_TXURNINT_ENABLE
3173 			      | HAL_TXQ_TXEOLINT_ENABLE
3174 			      ;
3175 		qi.tqi_aifs = wmep->wmep_aifsn;
3176 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3177 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3178 		qi.tqi_readyTime = 0;
3179 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3180 #ifdef IEEE80211_SUPPORT_TDMA
3181 	}
3182 #endif
3183 
3184 	DPRINTF(sc, ATH_DEBUG_RESET,
3185 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3186 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3187 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3188 
3189 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3190 		if_printf(ifp, "unable to update hardware queue "
3191 			"parameters for %s traffic!\n",
3192 			ieee80211_wme_acnames[ac]);
3193 		return 0;
3194 	} else {
3195 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3196 		return 1;
3197 	}
3198 #undef ATH_TXOP_TO_US
3199 #undef ATH_EXPONENT_TO_VALUE
3200 }
3201 
3202 /*
3203  * Callback from the 802.11 layer to update WME parameters.
3204  */
3205 int
3206 ath_wme_update(struct ieee80211com *ic)
3207 {
3208 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3209 
3210 	return !ath_txq_update(sc, WME_AC_BE) ||
3211 	    !ath_txq_update(sc, WME_AC_BK) ||
3212 	    !ath_txq_update(sc, WME_AC_VI) ||
3213 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3214 }
3215 
3216 /*
3217  * Reclaim resources for a setup queue.
3218  */
3219 static void
3220 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3221 {
3222 
3223 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3224 	ATH_TXQ_LOCK_DESTROY(txq);
3225 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3226 }
3227 
3228 /*
3229  * Reclaim all tx queue resources.
3230  */
3231 static void
3232 ath_tx_cleanup(struct ath_softc *sc)
3233 {
3234 	int i;
3235 
3236 	ATH_TXBUF_LOCK_DESTROY(sc);
3237 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3238 		if (ATH_TXQ_SETUP(sc, i))
3239 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3240 }
3241 
3242 /*
3243  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3244  * using the current rates in sc_rixmap.
3245  */
3246 int
3247 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3248 {
3249 	int rix = sc->sc_rixmap[rate];
3250 	/* NB: return lowest rix for invalid rate */
3251 	return (rix == 0xff ? 0 : rix);
3252 }
3253 
3254 static void
3255 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3256     struct ath_buf *bf)
3257 {
3258 	struct ieee80211_node *ni = bf->bf_node;
3259 	struct ifnet *ifp = sc->sc_ifp;
3260 	struct ieee80211com *ic = ifp->if_l2com;
3261 	int sr, lr, pri;
3262 
3263 	if (ts->ts_status == 0) {
3264 		u_int8_t txant = ts->ts_antenna;
3265 		sc->sc_stats.ast_ant_tx[txant]++;
3266 		sc->sc_ant_tx[txant]++;
3267 		if (ts->ts_finaltsi != 0)
3268 			sc->sc_stats.ast_tx_altrate++;
3269 		pri = M_WME_GETAC(bf->bf_m);
3270 		if (pri >= WME_AC_VO)
3271 			ic->ic_wme.wme_hipri_traffic++;
3272 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3273 			ni->ni_inact = ni->ni_inact_reload;
3274 	} else {
3275 		if (ts->ts_status & HAL_TXERR_XRETRY)
3276 			sc->sc_stats.ast_tx_xretries++;
3277 		if (ts->ts_status & HAL_TXERR_FIFO)
3278 			sc->sc_stats.ast_tx_fifoerr++;
3279 		if (ts->ts_status & HAL_TXERR_FILT)
3280 			sc->sc_stats.ast_tx_filtered++;
3281 		if (ts->ts_status & HAL_TXERR_XTXOP)
3282 			sc->sc_stats.ast_tx_xtxop++;
3283 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3284 			sc->sc_stats.ast_tx_timerexpired++;
3285 
3286 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3287 			sc->sc_stats.ast_tx_data_underrun++;
3288 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3289 			sc->sc_stats.ast_tx_delim_underrun++;
3290 
3291 		if (bf->bf_m->m_flags & M_FF)
3292 			sc->sc_stats.ast_ff_txerr++;
3293 	}
3294 	/* XXX when is this valid? */
3295 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3296 		sc->sc_stats.ast_tx_desccfgerr++;
3297 
3298 	sr = ts->ts_shortretry;
3299 	lr = ts->ts_longretry;
3300 	sc->sc_stats.ast_tx_shortretry += sr;
3301 	sc->sc_stats.ast_tx_longretry += lr;
3302 
3303 }
3304 
3305 /*
3306  * The default completion. If fail is 1, this means
3307  * "please don't retry the frame, and just return -1 status
3308  * to the net80211 stack.
3309  */
3310 void
3311 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3312 {
3313 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3314 	int st;
3315 
3316 	if (fail == 1)
3317 		st = -1;
3318 	else
3319 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3320 		    ts->ts_status : HAL_TXERR_XRETRY;
3321 
3322 	if (bf->bf_state.bfs_dobaw)
3323 		device_printf(sc->sc_dev,
3324 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3325 		    __func__,
3326 		    bf,
3327 		    SEQNO(bf->bf_state.bfs_seqno));
3328 	if (bf->bf_next != NULL)
3329 		device_printf(sc->sc_dev,
3330 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3331 		    __func__,
3332 		    bf,
3333 		    SEQNO(bf->bf_state.bfs_seqno));
3334 
3335 	/*
3336 	 * Do any tx complete callback.  Note this must
3337 	 * be done before releasing the node reference.
3338 	 * This will free the mbuf, release the net80211
3339 	 * node and recycle the ath_buf.
3340 	 */
3341 	ath_tx_freebuf(sc, bf, st);
3342 }
3343 
3344 /*
3345  * Update rate control with the given completion status.
3346  */
3347 void
3348 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3349     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3350     int nframes, int nbad)
3351 {
3352 	struct ath_node *an;
3353 
3354 	/* Only for unicast frames */
3355 	if (ni == NULL)
3356 		return;
3357 
3358 	an = ATH_NODE(ni);
3359 
3360 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3361 		ATH_NODE_LOCK(an);
3362 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3363 		ATH_NODE_UNLOCK(an);
3364 	}
3365 }
3366 
3367 /*
3368  * Update the busy status of the last frame on the free list.
3369  * When doing TDMA, the busy flag tracks whether the hardware
3370  * currently points to this buffer or not, and thus gated DMA
3371  * may restart by re-reading the last descriptor in this
3372  * buffer.
3373  *
3374  * This should be called in the completion function once one
3375  * of the buffers has been used.
3376  */
3377 static void
3378 ath_tx_update_busy(struct ath_softc *sc)
3379 {
3380 	struct ath_buf *last;
3381 
3382 	/*
3383 	 * Since the last frame may still be marked
3384 	 * as ATH_BUF_BUSY, unmark it here before
3385 	 * finishing the frame processing.
3386 	 * Since we've completed a frame (aggregate
3387 	 * or otherwise), the hardware has moved on
3388 	 * and is no longer referencing the previous
3389 	 * descriptor.
3390 	 */
3391 	ATH_TXBUF_LOCK_ASSERT(sc);
3392 	last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3393 	if (last != NULL)
3394 		last->bf_flags &= ~ATH_BUF_BUSY;
3395 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3396 	if (last != NULL)
3397 		last->bf_flags &= ~ATH_BUF_BUSY;
3398 }
3399 
3400 /*
3401  * Process completed xmit descriptors from the specified queue.
3402  * Kick the packet scheduler if needed. This can occur from this
3403  * particular task.
3404  */
3405 static int
3406 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3407 {
3408 	struct ath_hal *ah = sc->sc_ah;
3409 	struct ath_buf *bf;
3410 	struct ath_desc *ds;
3411 	struct ath_tx_status *ts;
3412 	struct ieee80211_node *ni;
3413 	struct ath_node *an;
3414 #ifdef	IEEE80211_SUPPORT_SUPERG
3415 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3416 #endif	/* IEEE80211_SUPPORT_SUPERG */
3417 	int nacked;
3418 	HAL_STATUS status;
3419 
3420 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3421 		__func__, txq->axq_qnum,
3422 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3423 		txq->axq_link);
3424 	nacked = 0;
3425 	for (;;) {
3426 		ATH_TXQ_LOCK(txq);
3427 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3428 		bf = TAILQ_FIRST(&txq->axq_q);
3429 		if (bf == NULL) {
3430 			ATH_TXQ_UNLOCK(txq);
3431 			break;
3432 		}
3433 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3434 		ts = &bf->bf_status.ds_txstat;
3435 		status = ath_hal_txprocdesc(ah, ds, ts);
3436 #ifdef ATH_DEBUG
3437 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3438 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3439 			    status == HAL_OK);
3440 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) {
3441 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3442 			    status == HAL_OK);
3443 		}
3444 #endif
3445 		if (status == HAL_EINPROGRESS) {
3446 			ATH_TXQ_UNLOCK(txq);
3447 			break;
3448 		}
3449 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3450 #ifdef IEEE80211_SUPPORT_TDMA
3451 		if (txq->axq_depth > 0) {
3452 			/*
3453 			 * More frames follow.  Mark the buffer busy
3454 			 * so it's not re-used while the hardware may
3455 			 * still re-read the link field in the descriptor.
3456 			 *
3457 			 * Use the last buffer in an aggregate as that
3458 			 * is where the hardware may be - intermediate
3459 			 * descriptors won't be "busy".
3460 			 */
3461 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3462 		} else
3463 #else
3464 		if (txq->axq_depth == 0)
3465 #endif
3466 			txq->axq_link = NULL;
3467 		if (bf->bf_state.bfs_aggr)
3468 			txq->axq_aggr_depth--;
3469 
3470 		ni = bf->bf_node;
3471 		/*
3472 		 * If unicast frame was ack'd update RSSI,
3473 		 * including the last rx time used to
3474 		 * workaround phantom bmiss interrupts.
3475 		 */
3476 		if (ni != NULL && ts->ts_status == 0 &&
3477 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3478 			nacked++;
3479 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3480 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3481 				ts->ts_rssi);
3482 		}
3483 		ATH_TXQ_UNLOCK(txq);
3484 
3485 		/* If unicast frame, update general statistics */
3486 		if (ni != NULL) {
3487 			an = ATH_NODE(ni);
3488 			/* update statistics */
3489 			ath_tx_update_stats(sc, ts, bf);
3490 		}
3491 
3492 		/*
3493 		 * Call the completion handler.
3494 		 * The completion handler is responsible for
3495 		 * calling the rate control code.
3496 		 *
3497 		 * Frames with no completion handler get the
3498 		 * rate control code called here.
3499 		 */
3500 		if (bf->bf_comp == NULL) {
3501 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3502 			    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3503 				/*
3504 				 * XXX assume this isn't an aggregate
3505 				 * frame.
3506 				 */
3507 				ath_tx_update_ratectrl(sc, ni,
3508 				     bf->bf_state.bfs_rc, ts,
3509 				    bf->bf_state.bfs_pktlen, 1,
3510 				    (ts->ts_status == 0 ? 0 : 1));
3511 			}
3512 			ath_tx_default_comp(sc, bf, 0);
3513 		} else
3514 			bf->bf_comp(sc, bf, 0);
3515 	}
3516 #ifdef IEEE80211_SUPPORT_SUPERG
3517 	/*
3518 	 * Flush fast-frame staging queue when traffic slows.
3519 	 */
3520 	if (txq->axq_depth <= 1)
3521 		ieee80211_ff_flush(ic, txq->axq_ac);
3522 #endif
3523 
3524 	/* Kick the TXQ scheduler */
3525 	if (dosched) {
3526 		ATH_TXQ_LOCK(txq);
3527 		ath_txq_sched(sc, txq);
3528 		ATH_TXQ_UNLOCK(txq);
3529 	}
3530 
3531 	return nacked;
3532 }
3533 
3534 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3535 
3536 /*
3537  * Deferred processing of transmit interrupt; special-cased
3538  * for a single hardware transmit queue (e.g. 5210 and 5211).
3539  */
3540 static void
3541 ath_tx_proc_q0(void *arg, int npending)
3542 {
3543 	struct ath_softc *sc = arg;
3544 	struct ifnet *ifp = sc->sc_ifp;
3545 	uint32_t txqs;
3546 
3547 	ATH_PCU_LOCK(sc);
3548 	sc->sc_txproc_cnt++;
3549 	txqs = sc->sc_txq_active;
3550 	sc->sc_txq_active &= ~txqs;
3551 	ATH_PCU_UNLOCK(sc);
3552 
3553 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3554 		/* XXX why is lastrx updated in tx code? */
3555 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3556 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3557 		ath_tx_processq(sc, sc->sc_cabq, 1);
3558 	IF_LOCK(&ifp->if_snd);
3559 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3560 	IF_UNLOCK(&ifp->if_snd);
3561 	sc->sc_wd_timer = 0;
3562 
3563 	if (sc->sc_softled)
3564 		ath_led_event(sc, sc->sc_txrix);
3565 
3566 	ATH_PCU_LOCK(sc);
3567 	sc->sc_txproc_cnt--;
3568 	ATH_PCU_UNLOCK(sc);
3569 
3570 	ath_tx_kick(sc);
3571 }
3572 
3573 /*
3574  * Deferred processing of transmit interrupt; special-cased
3575  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3576  */
3577 static void
3578 ath_tx_proc_q0123(void *arg, int npending)
3579 {
3580 	struct ath_softc *sc = arg;
3581 	struct ifnet *ifp = sc->sc_ifp;
3582 	int nacked;
3583 	uint32_t txqs;
3584 
3585 	ATH_PCU_LOCK(sc);
3586 	sc->sc_txproc_cnt++;
3587 	txqs = sc->sc_txq_active;
3588 	sc->sc_txq_active &= ~txqs;
3589 	ATH_PCU_UNLOCK(sc);
3590 
3591 	/*
3592 	 * Process each active queue.
3593 	 */
3594 	nacked = 0;
3595 	if (TXQACTIVE(txqs, 0))
3596 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3597 	if (TXQACTIVE(txqs, 1))
3598 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3599 	if (TXQACTIVE(txqs, 2))
3600 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3601 	if (TXQACTIVE(txqs, 3))
3602 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3603 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3604 		ath_tx_processq(sc, sc->sc_cabq, 1);
3605 	if (nacked)
3606 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3607 
3608 	IF_LOCK(&ifp->if_snd);
3609 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3610 	IF_UNLOCK(&ifp->if_snd);
3611 	sc->sc_wd_timer = 0;
3612 
3613 	if (sc->sc_softled)
3614 		ath_led_event(sc, sc->sc_txrix);
3615 
3616 	ATH_PCU_LOCK(sc);
3617 	sc->sc_txproc_cnt--;
3618 	ATH_PCU_UNLOCK(sc);
3619 
3620 	ath_tx_kick(sc);
3621 }
3622 
3623 /*
3624  * Deferred processing of transmit interrupt.
3625  */
3626 static void
3627 ath_tx_proc(void *arg, int npending)
3628 {
3629 	struct ath_softc *sc = arg;
3630 	struct ifnet *ifp = sc->sc_ifp;
3631 	int i, nacked;
3632 	uint32_t txqs;
3633 
3634 	ATH_PCU_LOCK(sc);
3635 	sc->sc_txproc_cnt++;
3636 	txqs = sc->sc_txq_active;
3637 	sc->sc_txq_active &= ~txqs;
3638 	ATH_PCU_UNLOCK(sc);
3639 
3640 	/*
3641 	 * Process each active queue.
3642 	 */
3643 	nacked = 0;
3644 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3645 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
3646 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
3647 	if (nacked)
3648 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3649 
3650 	/* XXX check this inside of IF_LOCK? */
3651 	IF_LOCK(&ifp->if_snd);
3652 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3653 	IF_UNLOCK(&ifp->if_snd);
3654 	sc->sc_wd_timer = 0;
3655 
3656 	if (sc->sc_softled)
3657 		ath_led_event(sc, sc->sc_txrix);
3658 
3659 	ATH_PCU_LOCK(sc);
3660 	sc->sc_txproc_cnt--;
3661 	ATH_PCU_UNLOCK(sc);
3662 
3663 	ath_tx_kick(sc);
3664 }
3665 #undef	TXQACTIVE
3666 
3667 /*
3668  * Deferred processing of TXQ rescheduling.
3669  */
3670 static void
3671 ath_txq_sched_tasklet(void *arg, int npending)
3672 {
3673 	struct ath_softc *sc = arg;
3674 	int i;
3675 
3676 	/* XXX is skipping ok? */
3677 	ATH_PCU_LOCK(sc);
3678 #if 0
3679 	if (sc->sc_inreset_cnt > 0) {
3680 		device_printf(sc->sc_dev,
3681 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3682 		ATH_PCU_UNLOCK(sc);
3683 		return;
3684 	}
3685 #endif
3686 	sc->sc_txproc_cnt++;
3687 	ATH_PCU_UNLOCK(sc);
3688 
3689 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3690 		if (ATH_TXQ_SETUP(sc, i)) {
3691 			ATH_TXQ_LOCK(&sc->sc_txq[i]);
3692 			ath_txq_sched(sc, &sc->sc_txq[i]);
3693 			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3694 		}
3695 	}
3696 
3697 	ATH_PCU_LOCK(sc);
3698 	sc->sc_txproc_cnt--;
3699 	ATH_PCU_UNLOCK(sc);
3700 }
3701 
3702 void
3703 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
3704 {
3705 
3706 	ATH_TXBUF_LOCK_ASSERT(sc);
3707 
3708 	if (bf->bf_flags & ATH_BUF_MGMT)
3709 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
3710 	else {
3711 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3712 		sc->sc_txbuf_cnt++;
3713 		if (sc->sc_txbuf_cnt > ath_txbuf) {
3714 			device_printf(sc->sc_dev,
3715 			    "%s: sc_txbuf_cnt > %d?\n",
3716 			    __func__,
3717 			    ath_txbuf);
3718 			sc->sc_txbuf_cnt = ath_txbuf;
3719 		}
3720 	}
3721 }
3722 
3723 void
3724 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
3725 {
3726 
3727 	ATH_TXBUF_LOCK_ASSERT(sc);
3728 
3729 	if (bf->bf_flags & ATH_BUF_MGMT)
3730 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
3731 	else {
3732 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
3733 		sc->sc_txbuf_cnt++;
3734 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
3735 			device_printf(sc->sc_dev,
3736 			    "%s: sc_txbuf_cnt > %d?\n",
3737 			    __func__,
3738 			    ATH_TXBUF);
3739 			sc->sc_txbuf_cnt = ATH_TXBUF;
3740 		}
3741 	}
3742 }
3743 
3744 /*
3745  * Return a buffer to the pool and update the 'busy' flag on the
3746  * previous 'tail' entry.
3747  *
3748  * This _must_ only be called when the buffer is involved in a completed
3749  * TX. The logic is that if it was part of an active TX, the previous
3750  * buffer on the list is now not involved in a halted TX DMA queue, waiting
3751  * for restart (eg for TDMA.)
3752  *
3753  * The caller must free the mbuf and recycle the node reference.
3754  */
3755 void
3756 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
3757 {
3758 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3759 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
3760 
3761 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
3762 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
3763 
3764 	ATH_TXBUF_LOCK(sc);
3765 	ath_tx_update_busy(sc);
3766 	ath_returnbuf_tail(sc, bf);
3767 	ATH_TXBUF_UNLOCK(sc);
3768 }
3769 
3770 /*
3771  * This is currently used by ath_tx_draintxq() and
3772  * ath_tx_tid_free_pkts().
3773  *
3774  * It recycles a single ath_buf.
3775  */
3776 void
3777 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
3778 {
3779 	struct ieee80211_node *ni = bf->bf_node;
3780 	struct mbuf *m0 = bf->bf_m;
3781 
3782 	bf->bf_node = NULL;
3783 	bf->bf_m = NULL;
3784 
3785 	/* Free the buffer, it's not needed any longer */
3786 	ath_freebuf(sc, bf);
3787 
3788 	if (ni != NULL) {
3789 		/*
3790 		 * Do any callback and reclaim the node reference.
3791 		 */
3792 		if (m0->m_flags & M_TXCB)
3793 			ieee80211_process_callback(ni, m0, status);
3794 		ieee80211_free_node(ni);
3795 	}
3796 	m_freem(m0);
3797 
3798 	/*
3799 	 * XXX the buffer used to be freed -after-, but the DMA map was
3800 	 * freed where ath_freebuf() now is. I've no idea what this
3801 	 * will do.
3802 	 */
3803 }
3804 
3805 void
3806 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3807 {
3808 #ifdef ATH_DEBUG
3809 	struct ath_hal *ah = sc->sc_ah;
3810 #endif
3811 	struct ath_buf *bf;
3812 	u_int ix;
3813 
3814 	/*
3815 	 * NB: this assumes output has been stopped and
3816 	 *     we do not need to block ath_tx_proc
3817 	 */
3818 	ATH_TXBUF_LOCK(sc);
3819 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3820 	if (bf != NULL)
3821 		bf->bf_flags &= ~ATH_BUF_BUSY;
3822 	bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3823 	if (bf != NULL)
3824 		bf->bf_flags &= ~ATH_BUF_BUSY;
3825 	ATH_TXBUF_UNLOCK(sc);
3826 
3827 	for (ix = 0;; ix++) {
3828 		ATH_TXQ_LOCK(txq);
3829 		bf = TAILQ_FIRST(&txq->axq_q);
3830 		if (bf == NULL) {
3831 			txq->axq_link = NULL;
3832 			ATH_TXQ_UNLOCK(txq);
3833 			break;
3834 		}
3835 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3836 		if (bf->bf_state.bfs_aggr)
3837 			txq->axq_aggr_depth--;
3838 #ifdef ATH_DEBUG
3839 		if (sc->sc_debug & ATH_DEBUG_RESET) {
3840 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3841 
3842 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
3843 				ath_hal_txprocdesc(ah, bf->bf_lastds,
3844 				    &bf->bf_status.ds_txstat) == HAL_OK);
3845 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
3846 			    bf->bf_m->m_len, 0, -1);
3847 		}
3848 #endif /* ATH_DEBUG */
3849 		/*
3850 		 * Since we're now doing magic in the completion
3851 		 * functions, we -must- call it for aggregation
3852 		 * destinations or BAW tracking will get upset.
3853 		 */
3854 		/*
3855 		 * Clear ATH_BUF_BUSY; the completion handler
3856 		 * will free the buffer.
3857 		 */
3858 		ATH_TXQ_UNLOCK(txq);
3859 		bf->bf_flags &= ~ATH_BUF_BUSY;
3860 		if (bf->bf_comp)
3861 			bf->bf_comp(sc, bf, 1);
3862 		else
3863 			ath_tx_default_comp(sc, bf, 1);
3864 	}
3865 
3866 	/*
3867 	 * Drain software queued frames which are on
3868 	 * active TIDs.
3869 	 */
3870 	ath_tx_txq_drain(sc, txq);
3871 }
3872 
3873 static void
3874 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3875 {
3876 	struct ath_hal *ah = sc->sc_ah;
3877 
3878 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3879 	    __func__, txq->axq_qnum,
3880 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3881 	    txq->axq_link);
3882 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3883 }
3884 
3885 static int
3886 ath_stoptxdma(struct ath_softc *sc)
3887 {
3888 	struct ath_hal *ah = sc->sc_ah;
3889 	int i;
3890 
3891 	/* XXX return value */
3892 	if (sc->sc_invalid)
3893 		return 0;
3894 
3895 	if (!sc->sc_invalid) {
3896 		/* don't touch the hardware if marked invalid */
3897 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3898 		    __func__, sc->sc_bhalq,
3899 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
3900 		    NULL);
3901 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3902 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3903 			if (ATH_TXQ_SETUP(sc, i))
3904 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3905 	}
3906 
3907 	return 1;
3908 }
3909 
3910 /*
3911  * Drain the transmit queues and reclaim resources.
3912  */
3913 static void
3914 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
3915 {
3916 #ifdef	ATH_DEBUG
3917 	struct ath_hal *ah = sc->sc_ah;
3918 #endif
3919 	struct ifnet *ifp = sc->sc_ifp;
3920 	int i;
3921 
3922 	(void) ath_stoptxdma(sc);
3923 
3924 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3925 		/*
3926 		 * XXX TODO: should we just handle the completed TX frames
3927 		 * here, whether or not the reset is a full one or not?
3928 		 */
3929 		if (ATH_TXQ_SETUP(sc, i)) {
3930 			if (reset_type == ATH_RESET_NOLOSS)
3931 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
3932 			else
3933 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
3934 		}
3935 	}
3936 #ifdef ATH_DEBUG
3937 	if (sc->sc_debug & ATH_DEBUG_RESET) {
3938 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
3939 		if (bf != NULL && bf->bf_m != NULL) {
3940 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
3941 				ath_hal_txprocdesc(ah, bf->bf_lastds,
3942 				    &bf->bf_status.ds_txstat) == HAL_OK);
3943 			ieee80211_dump_pkt(ifp->if_l2com,
3944 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
3945 			    0, -1);
3946 		}
3947 	}
3948 #endif /* ATH_DEBUG */
3949 	IF_LOCK(&ifp->if_snd);
3950 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3951 	IF_UNLOCK(&ifp->if_snd);
3952 	sc->sc_wd_timer = 0;
3953 }
3954 
3955 /*
3956  * Update internal state after a channel change.
3957  */
3958 static void
3959 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3960 {
3961 	enum ieee80211_phymode mode;
3962 
3963 	/*
3964 	 * Change channels and update the h/w rate map
3965 	 * if we're switching; e.g. 11a to 11b/g.
3966 	 */
3967 	mode = ieee80211_chan2mode(chan);
3968 	if (mode != sc->sc_curmode)
3969 		ath_setcurmode(sc, mode);
3970 	sc->sc_curchan = chan;
3971 }
3972 
3973 /*
3974  * Set/change channels.  If the channel is really being changed,
3975  * it's done by resetting the chip.  To accomplish this we must
3976  * first cleanup any pending DMA, then restart stuff after a la
3977  * ath_init.
3978  */
3979 static int
3980 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3981 {
3982 	struct ifnet *ifp = sc->sc_ifp;
3983 	struct ieee80211com *ic = ifp->if_l2com;
3984 	struct ath_hal *ah = sc->sc_ah;
3985 	int ret = 0;
3986 
3987 	/* Treat this as an interface reset */
3988 	ATH_PCU_UNLOCK_ASSERT(sc);
3989 	ATH_UNLOCK_ASSERT(sc);
3990 
3991 	/* (Try to) stop TX/RX from occuring */
3992 	taskqueue_block(sc->sc_tq);
3993 
3994 	ATH_PCU_LOCK(sc);
3995 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
3996 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
3997 	if (ath_reset_grablock(sc, 1) == 0) {
3998 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
3999 		    __func__);
4000 	}
4001 	ATH_PCU_UNLOCK(sc);
4002 
4003 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4004 	    __func__, ieee80211_chan2ieee(ic, chan),
4005 	    chan->ic_freq, chan->ic_flags);
4006 	if (chan != sc->sc_curchan) {
4007 		HAL_STATUS status;
4008 		/*
4009 		 * To switch channels clear any pending DMA operations;
4010 		 * wait long enough for the RX fifo to drain, reset the
4011 		 * hardware at the new frequency, and then re-enable
4012 		 * the relevant bits of the h/w.
4013 		 */
4014 #if 0
4015 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4016 #endif
4017 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4018 		/*
4019 		 * First, handle completed TX/RX frames.
4020 		 */
4021 		ath_rx_proc(sc, 0);
4022 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4023 		/*
4024 		 * Next, flush the non-scheduled frames.
4025 		 */
4026 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4027 
4028 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4029 			if_printf(ifp, "%s: unable to reset "
4030 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4031 			    __func__, ieee80211_chan2ieee(ic, chan),
4032 			    chan->ic_freq, chan->ic_flags, status);
4033 			ret = EIO;
4034 			goto finish;
4035 		}
4036 		sc->sc_diversity = ath_hal_getdiversity(ah);
4037 
4038 		/* Let DFS at it in case it's a DFS channel */
4039 		ath_dfs_radar_enable(sc, chan);
4040 
4041 		/*
4042 		 * Re-enable rx framework.
4043 		 */
4044 		if (ath_startrecv(sc) != 0) {
4045 			if_printf(ifp, "%s: unable to restart recv logic\n",
4046 			    __func__);
4047 			ret = EIO;
4048 			goto finish;
4049 		}
4050 
4051 		/*
4052 		 * Change channels and update the h/w rate map
4053 		 * if we're switching; e.g. 11a to 11b/g.
4054 		 */
4055 		ath_chan_change(sc, chan);
4056 
4057 		/*
4058 		 * Reset clears the beacon timers; reset them
4059 		 * here if needed.
4060 		 */
4061 		if (sc->sc_beacons) {		/* restart beacons */
4062 #ifdef IEEE80211_SUPPORT_TDMA
4063 			if (sc->sc_tdma)
4064 				ath_tdma_config(sc, NULL);
4065 			else
4066 #endif
4067 			ath_beacon_config(sc, NULL);
4068 		}
4069 
4070 		/*
4071 		 * Re-enable interrupts.
4072 		 */
4073 #if 0
4074 		ath_hal_intrset(ah, sc->sc_imask);
4075 #endif
4076 	}
4077 
4078 finish:
4079 	ATH_PCU_LOCK(sc);
4080 	sc->sc_inreset_cnt--;
4081 	/* XXX only do this if sc_inreset_cnt == 0? */
4082 	ath_hal_intrset(ah, sc->sc_imask);
4083 	ATH_PCU_UNLOCK(sc);
4084 
4085 	IF_LOCK(&ifp->if_snd);
4086 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4087 	IF_UNLOCK(&ifp->if_snd);
4088 	ath_txrx_start(sc);
4089 	/* XXX ath_start? */
4090 
4091 	return ret;
4092 }
4093 
4094 /*
4095  * Periodically recalibrate the PHY to account
4096  * for temperature/environment changes.
4097  */
4098 static void
4099 ath_calibrate(void *arg)
4100 {
4101 	struct ath_softc *sc = arg;
4102 	struct ath_hal *ah = sc->sc_ah;
4103 	struct ifnet *ifp = sc->sc_ifp;
4104 	struct ieee80211com *ic = ifp->if_l2com;
4105 	HAL_BOOL longCal, isCalDone;
4106 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4107 	int nextcal;
4108 
4109 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4110 		goto restart;
4111 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4112 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4113 	if (sc->sc_doresetcal)
4114 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4115 
4116 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4117 	if (aniCal) {
4118 		sc->sc_stats.ast_ani_cal++;
4119 		sc->sc_lastani = ticks;
4120 		ath_hal_ani_poll(ah, sc->sc_curchan);
4121 	}
4122 
4123 	if (longCal) {
4124 		sc->sc_stats.ast_per_cal++;
4125 		sc->sc_lastlongcal = ticks;
4126 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4127 			/*
4128 			 * Rfgain is out of bounds, reset the chip
4129 			 * to load new gain values.
4130 			 */
4131 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4132 				"%s: rfgain change\n", __func__);
4133 			sc->sc_stats.ast_per_rfgain++;
4134 			sc->sc_resetcal = 0;
4135 			sc->sc_doresetcal = AH_TRUE;
4136 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4137 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4138 			return;
4139 		}
4140 		/*
4141 		 * If this long cal is after an idle period, then
4142 		 * reset the data collection state so we start fresh.
4143 		 */
4144 		if (sc->sc_resetcal) {
4145 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4146 			sc->sc_lastcalreset = ticks;
4147 			sc->sc_lastshortcal = ticks;
4148 			sc->sc_resetcal = 0;
4149 			sc->sc_doresetcal = AH_TRUE;
4150 		}
4151 	}
4152 
4153 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4154 	if (shortCal || longCal) {
4155 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4156 			if (longCal) {
4157 				/*
4158 				 * Calibrate noise floor data again in case of change.
4159 				 */
4160 				ath_hal_process_noisefloor(ah);
4161 			}
4162 		} else {
4163 			DPRINTF(sc, ATH_DEBUG_ANY,
4164 				"%s: calibration of channel %u failed\n",
4165 				__func__, sc->sc_curchan->ic_freq);
4166 			sc->sc_stats.ast_per_calfail++;
4167 		}
4168 		if (shortCal)
4169 			sc->sc_lastshortcal = ticks;
4170 	}
4171 	if (!isCalDone) {
4172 restart:
4173 		/*
4174 		 * Use a shorter interval to potentially collect multiple
4175 		 * data samples required to complete calibration.  Once
4176 		 * we're told the work is done we drop back to a longer
4177 		 * interval between requests.  We're more aggressive doing
4178 		 * work when operating as an AP to improve operation right
4179 		 * after startup.
4180 		 */
4181 		sc->sc_lastshortcal = ticks;
4182 		nextcal = ath_shortcalinterval*hz/1000;
4183 		if (sc->sc_opmode != HAL_M_HOSTAP)
4184 			nextcal *= 10;
4185 		sc->sc_doresetcal = AH_TRUE;
4186 	} else {
4187 		/* nextcal should be the shortest time for next event */
4188 		nextcal = ath_longcalinterval*hz;
4189 		if (sc->sc_lastcalreset == 0)
4190 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4191 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4192 			sc->sc_resetcal = 1;	/* setup reset next trip */
4193 		sc->sc_doresetcal = AH_FALSE;
4194 	}
4195 	/* ANI calibration may occur more often than short/long/resetcal */
4196 	if (ath_anicalinterval > 0)
4197 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4198 
4199 	if (nextcal != 0) {
4200 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4201 		    __func__, nextcal, isCalDone ? "" : "!");
4202 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4203 	} else {
4204 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4205 		    __func__);
4206 		/* NB: don't rearm timer */
4207 	}
4208 }
4209 
4210 static void
4211 ath_scan_start(struct ieee80211com *ic)
4212 {
4213 	struct ifnet *ifp = ic->ic_ifp;
4214 	struct ath_softc *sc = ifp->if_softc;
4215 	struct ath_hal *ah = sc->sc_ah;
4216 	u_int32_t rfilt;
4217 
4218 	/* XXX calibration timer? */
4219 
4220 	ATH_LOCK(sc);
4221 	sc->sc_scanning = 1;
4222 	sc->sc_syncbeacon = 0;
4223 	rfilt = ath_calcrxfilter(sc);
4224 	ATH_UNLOCK(sc);
4225 
4226 	ATH_PCU_LOCK(sc);
4227 	ath_hal_setrxfilter(ah, rfilt);
4228 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4229 	ATH_PCU_UNLOCK(sc);
4230 
4231 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4232 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4233 }
4234 
4235 static void
4236 ath_scan_end(struct ieee80211com *ic)
4237 {
4238 	struct ifnet *ifp = ic->ic_ifp;
4239 	struct ath_softc *sc = ifp->if_softc;
4240 	struct ath_hal *ah = sc->sc_ah;
4241 	u_int32_t rfilt;
4242 
4243 	ATH_LOCK(sc);
4244 	sc->sc_scanning = 0;
4245 	rfilt = ath_calcrxfilter(sc);
4246 	ATH_UNLOCK(sc);
4247 
4248 	ATH_PCU_LOCK(sc);
4249 	ath_hal_setrxfilter(ah, rfilt);
4250 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4251 
4252 	ath_hal_process_noisefloor(ah);
4253 	ATH_PCU_UNLOCK(sc);
4254 
4255 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4256 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4257 		 sc->sc_curaid);
4258 }
4259 
4260 #ifdef	ATH_ENABLE_11N
4261 /*
4262  * For now, just do a channel change.
4263  *
4264  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4265  * control state and resetting the hardware without dropping frames out
4266  * of the queue.
4267  *
4268  * The unfortunate trouble here is making absolutely sure that the
4269  * channel width change has propagated enough so the hardware
4270  * absolutely isn't handed bogus frames for it's current operating
4271  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4272  * does occur in parallel, we need to make certain we've blocked
4273  * any further ongoing TX (and RX, that can cause raw TX)
4274  * before we do this.
4275  */
4276 static void
4277 ath_update_chw(struct ieee80211com *ic)
4278 {
4279 	struct ifnet *ifp = ic->ic_ifp;
4280 	struct ath_softc *sc = ifp->if_softc;
4281 
4282 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4283 	ath_set_channel(ic);
4284 }
4285 #endif	/* ATH_ENABLE_11N */
4286 
4287 static void
4288 ath_set_channel(struct ieee80211com *ic)
4289 {
4290 	struct ifnet *ifp = ic->ic_ifp;
4291 	struct ath_softc *sc = ifp->if_softc;
4292 
4293 	(void) ath_chan_set(sc, ic->ic_curchan);
4294 	/*
4295 	 * If we are returning to our bss channel then mark state
4296 	 * so the next recv'd beacon's tsf will be used to sync the
4297 	 * beacon timers.  Note that since we only hear beacons in
4298 	 * sta/ibss mode this has no effect in other operating modes.
4299 	 */
4300 	ATH_LOCK(sc);
4301 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4302 		sc->sc_syncbeacon = 1;
4303 	ATH_UNLOCK(sc);
4304 }
4305 
4306 /*
4307  * Walk the vap list and check if there any vap's in RUN state.
4308  */
4309 static int
4310 ath_isanyrunningvaps(struct ieee80211vap *this)
4311 {
4312 	struct ieee80211com *ic = this->iv_ic;
4313 	struct ieee80211vap *vap;
4314 
4315 	IEEE80211_LOCK_ASSERT(ic);
4316 
4317 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4318 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4319 			return 1;
4320 	}
4321 	return 0;
4322 }
4323 
4324 static int
4325 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4326 {
4327 	struct ieee80211com *ic = vap->iv_ic;
4328 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4329 	struct ath_vap *avp = ATH_VAP(vap);
4330 	struct ath_hal *ah = sc->sc_ah;
4331 	struct ieee80211_node *ni = NULL;
4332 	int i, error, stamode;
4333 	u_int32_t rfilt;
4334 	int csa_run_transition = 0;
4335 	static const HAL_LED_STATE leds[] = {
4336 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4337 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4338 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4339 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4340 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4341 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4342 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4343 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4344 	};
4345 
4346 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4347 		ieee80211_state_name[vap->iv_state],
4348 		ieee80211_state_name[nstate]);
4349 
4350 	/*
4351 	 * net80211 _should_ have the comlock asserted at this point.
4352 	 * There are some comments around the calls to vap->iv_newstate
4353 	 * which indicate that it (newstate) may end up dropping the
4354 	 * lock.  This and the subsequent lock assert check after newstate
4355 	 * are an attempt to catch these and figure out how/why.
4356 	 */
4357 	IEEE80211_LOCK_ASSERT(ic);
4358 
4359 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4360 		csa_run_transition = 1;
4361 
4362 	callout_drain(&sc->sc_cal_ch);
4363 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4364 
4365 	if (nstate == IEEE80211_S_SCAN) {
4366 		/*
4367 		 * Scanning: turn off beacon miss and don't beacon.
4368 		 * Mark beacon state so when we reach RUN state we'll
4369 		 * [re]setup beacons.  Unblock the task q thread so
4370 		 * deferred interrupt processing is done.
4371 		 */
4372 		ath_hal_intrset(ah,
4373 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4374 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4375 		sc->sc_beacons = 0;
4376 		taskqueue_unblock(sc->sc_tq);
4377 	}
4378 
4379 	ni = ieee80211_ref_node(vap->iv_bss);
4380 	rfilt = ath_calcrxfilter(sc);
4381 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4382 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4383 		   vap->iv_opmode == IEEE80211_M_IBSS);
4384 	if (stamode && nstate == IEEE80211_S_RUN) {
4385 		sc->sc_curaid = ni->ni_associd;
4386 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4387 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4388 	}
4389 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4390 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4391 	ath_hal_setrxfilter(ah, rfilt);
4392 
4393 	/* XXX is this to restore keycache on resume? */
4394 	if (vap->iv_opmode != IEEE80211_M_STA &&
4395 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4396 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4397 			if (ath_hal_keyisvalid(ah, i))
4398 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4399 	}
4400 
4401 	/*
4402 	 * Invoke the parent method to do net80211 work.
4403 	 */
4404 	error = avp->av_newstate(vap, nstate, arg);
4405 	if (error != 0)
4406 		goto bad;
4407 
4408 	/*
4409 	 * See above: ensure av_newstate() doesn't drop the lock
4410 	 * on us.
4411 	 */
4412 	IEEE80211_LOCK_ASSERT(ic);
4413 
4414 	if (nstate == IEEE80211_S_RUN) {
4415 		/* NB: collect bss node again, it may have changed */
4416 		ieee80211_free_node(ni);
4417 		ni = ieee80211_ref_node(vap->iv_bss);
4418 
4419 		DPRINTF(sc, ATH_DEBUG_STATE,
4420 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4421 		    "capinfo 0x%04x chan %d\n", __func__,
4422 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4423 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4424 
4425 		switch (vap->iv_opmode) {
4426 #ifdef IEEE80211_SUPPORT_TDMA
4427 		case IEEE80211_M_AHDEMO:
4428 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4429 				break;
4430 			/* fall thru... */
4431 #endif
4432 		case IEEE80211_M_HOSTAP:
4433 		case IEEE80211_M_IBSS:
4434 		case IEEE80211_M_MBSS:
4435 			/*
4436 			 * Allocate and setup the beacon frame.
4437 			 *
4438 			 * Stop any previous beacon DMA.  This may be
4439 			 * necessary, for example, when an ibss merge
4440 			 * causes reconfiguration; there will be a state
4441 			 * transition from RUN->RUN that means we may
4442 			 * be called with beacon transmission active.
4443 			 */
4444 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4445 
4446 			error = ath_beacon_alloc(sc, ni);
4447 			if (error != 0)
4448 				goto bad;
4449 			/*
4450 			 * If joining an adhoc network defer beacon timer
4451 			 * configuration to the next beacon frame so we
4452 			 * have a current TSF to use.  Otherwise we're
4453 			 * starting an ibss/bss so there's no need to delay;
4454 			 * if this is the first vap moving to RUN state, then
4455 			 * beacon state needs to be [re]configured.
4456 			 */
4457 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4458 			    ni->ni_tstamp.tsf != 0) {
4459 				sc->sc_syncbeacon = 1;
4460 			} else if (!sc->sc_beacons) {
4461 #ifdef IEEE80211_SUPPORT_TDMA
4462 				if (vap->iv_caps & IEEE80211_C_TDMA)
4463 					ath_tdma_config(sc, vap);
4464 				else
4465 #endif
4466 					ath_beacon_config(sc, vap);
4467 				sc->sc_beacons = 1;
4468 			}
4469 			break;
4470 		case IEEE80211_M_STA:
4471 			/*
4472 			 * Defer beacon timer configuration to the next
4473 			 * beacon frame so we have a current TSF to use
4474 			 * (any TSF collected when scanning is likely old).
4475 			 * However if it's due to a CSA -> RUN transition,
4476 			 * force a beacon update so we pick up a lack of
4477 			 * beacons from an AP in CAC and thus force a
4478 			 * scan.
4479 			 */
4480 			sc->sc_syncbeacon = 1;
4481 			if (csa_run_transition)
4482 				ath_beacon_config(sc, vap);
4483 			break;
4484 		case IEEE80211_M_MONITOR:
4485 			/*
4486 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4487 			 * transitions so we must re-enable interrupts here to
4488 			 * handle the case of a single monitor mode vap.
4489 			 */
4490 			ath_hal_intrset(ah, sc->sc_imask);
4491 			break;
4492 		case IEEE80211_M_WDS:
4493 			break;
4494 		default:
4495 			break;
4496 		}
4497 		/*
4498 		 * Let the hal process statistics collected during a
4499 		 * scan so it can provide calibrated noise floor data.
4500 		 */
4501 		ath_hal_process_noisefloor(ah);
4502 		/*
4503 		 * Reset rssi stats; maybe not the best place...
4504 		 */
4505 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4506 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4507 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4508 		/*
4509 		 * Finally, start any timers and the task q thread
4510 		 * (in case we didn't go through SCAN state).
4511 		 */
4512 		if (ath_longcalinterval != 0) {
4513 			/* start periodic recalibration timer */
4514 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4515 		} else {
4516 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4517 			    "%s: calibration disabled\n", __func__);
4518 		}
4519 		taskqueue_unblock(sc->sc_tq);
4520 	} else if (nstate == IEEE80211_S_INIT) {
4521 		/*
4522 		 * If there are no vaps left in RUN state then
4523 		 * shutdown host/driver operation:
4524 		 * o disable interrupts
4525 		 * o disable the task queue thread
4526 		 * o mark beacon processing as stopped
4527 		 */
4528 		if (!ath_isanyrunningvaps(vap)) {
4529 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4530 			/* disable interrupts  */
4531 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4532 			taskqueue_block(sc->sc_tq);
4533 			sc->sc_beacons = 0;
4534 		}
4535 #ifdef IEEE80211_SUPPORT_TDMA
4536 		ath_hal_setcca(ah, AH_TRUE);
4537 #endif
4538 	}
4539 bad:
4540 	ieee80211_free_node(ni);
4541 	return error;
4542 }
4543 
4544 /*
4545  * Allocate a key cache slot to the station so we can
4546  * setup a mapping from key index to node. The key cache
4547  * slot is needed for managing antenna state and for
4548  * compression when stations do not use crypto.  We do
4549  * it uniliaterally here; if crypto is employed this slot
4550  * will be reassigned.
4551  */
4552 static void
4553 ath_setup_stationkey(struct ieee80211_node *ni)
4554 {
4555 	struct ieee80211vap *vap = ni->ni_vap;
4556 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4557 	ieee80211_keyix keyix, rxkeyix;
4558 
4559 	/* XXX should take a locked ref to vap->iv_bss */
4560 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4561 		/*
4562 		 * Key cache is full; we'll fall back to doing
4563 		 * the more expensive lookup in software.  Note
4564 		 * this also means no h/w compression.
4565 		 */
4566 		/* XXX msg+statistic */
4567 	} else {
4568 		/* XXX locking? */
4569 		ni->ni_ucastkey.wk_keyix = keyix;
4570 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4571 		/* NB: must mark device key to get called back on delete */
4572 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4573 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4574 		/* NB: this will create a pass-thru key entry */
4575 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4576 	}
4577 }
4578 
4579 /*
4580  * Setup driver-specific state for a newly associated node.
4581  * Note that we're called also on a re-associate, the isnew
4582  * param tells us if this is the first time or not.
4583  */
4584 static void
4585 ath_newassoc(struct ieee80211_node *ni, int isnew)
4586 {
4587 	struct ath_node *an = ATH_NODE(ni);
4588 	struct ieee80211vap *vap = ni->ni_vap;
4589 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4590 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4591 
4592 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4593 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4594 
4595 	ath_rate_newassoc(sc, an, isnew);
4596 	if (isnew &&
4597 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4598 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4599 		ath_setup_stationkey(ni);
4600 }
4601 
4602 static int
4603 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4604 	int nchans, struct ieee80211_channel chans[])
4605 {
4606 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4607 	struct ath_hal *ah = sc->sc_ah;
4608 	HAL_STATUS status;
4609 
4610 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4611 	    "%s: rd %u cc %u location %c%s\n",
4612 	    __func__, reg->regdomain, reg->country, reg->location,
4613 	    reg->ecm ? " ecm" : "");
4614 
4615 	status = ath_hal_set_channels(ah, chans, nchans,
4616 	    reg->country, reg->regdomain);
4617 	if (status != HAL_OK) {
4618 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4619 		    __func__, status);
4620 		return EINVAL;		/* XXX */
4621 	}
4622 
4623 	return 0;
4624 }
4625 
4626 static void
4627 ath_getradiocaps(struct ieee80211com *ic,
4628 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4629 {
4630 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4631 	struct ath_hal *ah = sc->sc_ah;
4632 
4633 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4634 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4635 
4636 	/* XXX check return */
4637 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4638 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4639 
4640 }
4641 
4642 static int
4643 ath_getchannels(struct ath_softc *sc)
4644 {
4645 	struct ifnet *ifp = sc->sc_ifp;
4646 	struct ieee80211com *ic = ifp->if_l2com;
4647 	struct ath_hal *ah = sc->sc_ah;
4648 	HAL_STATUS status;
4649 
4650 	/*
4651 	 * Collect channel set based on EEPROM contents.
4652 	 */
4653 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4654 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4655 	if (status != HAL_OK) {
4656 		if_printf(ifp, "%s: unable to collect channel list from hal, "
4657 		    "status %d\n", __func__, status);
4658 		return EINVAL;
4659 	}
4660 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
4661 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
4662 	/* XXX map Atheros sku's to net80211 SKU's */
4663 	/* XXX net80211 types too small */
4664 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
4665 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
4666 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
4667 	ic->ic_regdomain.isocc[1] = ' ';
4668 
4669 	ic->ic_regdomain.ecm = 1;
4670 	ic->ic_regdomain.location = 'I';
4671 
4672 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4673 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
4674 	    __func__, sc->sc_eerd, sc->sc_eecc,
4675 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
4676 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
4677 	return 0;
4678 }
4679 
4680 static int
4681 ath_rate_setup(struct ath_softc *sc, u_int mode)
4682 {
4683 	struct ath_hal *ah = sc->sc_ah;
4684 	const HAL_RATE_TABLE *rt;
4685 
4686 	switch (mode) {
4687 	case IEEE80211_MODE_11A:
4688 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4689 		break;
4690 	case IEEE80211_MODE_HALF:
4691 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4692 		break;
4693 	case IEEE80211_MODE_QUARTER:
4694 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4695 		break;
4696 	case IEEE80211_MODE_11B:
4697 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4698 		break;
4699 	case IEEE80211_MODE_11G:
4700 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4701 		break;
4702 	case IEEE80211_MODE_TURBO_A:
4703 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
4704 		break;
4705 	case IEEE80211_MODE_TURBO_G:
4706 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4707 		break;
4708 	case IEEE80211_MODE_STURBO_A:
4709 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4710 		break;
4711 	case IEEE80211_MODE_11NA:
4712 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
4713 		break;
4714 	case IEEE80211_MODE_11NG:
4715 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
4716 		break;
4717 	default:
4718 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4719 			__func__, mode);
4720 		return 0;
4721 	}
4722 	sc->sc_rates[mode] = rt;
4723 	return (rt != NULL);
4724 }
4725 
4726 static void
4727 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4728 {
4729 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4730 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4731 	static const struct {
4732 		u_int		rate;		/* tx/rx 802.11 rate */
4733 		u_int16_t	timeOn;		/* LED on time (ms) */
4734 		u_int16_t	timeOff;	/* LED off time (ms) */
4735 	} blinkrates[] = {
4736 		{ 108,  40,  10 },
4737 		{  96,  44,  11 },
4738 		{  72,  50,  13 },
4739 		{  48,  57,  14 },
4740 		{  36,  67,  16 },
4741 		{  24,  80,  20 },
4742 		{  22, 100,  25 },
4743 		{  18, 133,  34 },
4744 		{  12, 160,  40 },
4745 		{  10, 200,  50 },
4746 		{   6, 240,  58 },
4747 		{   4, 267,  66 },
4748 		{   2, 400, 100 },
4749 		{   0, 500, 130 },
4750 		/* XXX half/quarter rates */
4751 	};
4752 	const HAL_RATE_TABLE *rt;
4753 	int i, j;
4754 
4755 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4756 	rt = sc->sc_rates[mode];
4757 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4758 	for (i = 0; i < rt->rateCount; i++) {
4759 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4760 		if (rt->info[i].phy != IEEE80211_T_HT)
4761 			sc->sc_rixmap[ieeerate] = i;
4762 		else
4763 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
4764 	}
4765 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4766 	for (i = 0; i < N(sc->sc_hwmap); i++) {
4767 		if (i >= rt->rateCount) {
4768 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4769 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4770 			continue;
4771 		}
4772 		sc->sc_hwmap[i].ieeerate =
4773 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4774 		if (rt->info[i].phy == IEEE80211_T_HT)
4775 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
4776 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4777 		if (rt->info[i].shortPreamble ||
4778 		    rt->info[i].phy == IEEE80211_T_OFDM)
4779 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4780 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
4781 		for (j = 0; j < N(blinkrates)-1; j++)
4782 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4783 				break;
4784 		/* NB: this uses the last entry if the rate isn't found */
4785 		/* XXX beware of overlow */
4786 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4787 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4788 	}
4789 	sc->sc_currates = rt;
4790 	sc->sc_curmode = mode;
4791 	/*
4792 	 * All protection frames are transmited at 2Mb/s for
4793 	 * 11g, otherwise at 1Mb/s.
4794 	 */
4795 	if (mode == IEEE80211_MODE_11G)
4796 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
4797 	else
4798 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
4799 	/* NB: caller is responsible for resetting rate control state */
4800 #undef N
4801 }
4802 
4803 static void
4804 ath_watchdog(void *arg)
4805 {
4806 	struct ath_softc *sc = arg;
4807 	int do_reset = 0;
4808 
4809 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
4810 		struct ifnet *ifp = sc->sc_ifp;
4811 		uint32_t hangs;
4812 
4813 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
4814 		    hangs != 0) {
4815 			if_printf(ifp, "%s hang detected (0x%x)\n",
4816 			    hangs & 0xff ? "bb" : "mac", hangs);
4817 		} else
4818 			if_printf(ifp, "device timeout\n");
4819 		do_reset = 1;
4820 		ifp->if_oerrors++;
4821 		sc->sc_stats.ast_watchdog++;
4822 	}
4823 
4824 	/*
4825 	 * We can't hold the lock across the ath_reset() call.
4826 	 *
4827 	 * And since this routine can't hold a lock and sleep,
4828 	 * do the reset deferred.
4829 	 */
4830 	if (do_reset) {
4831 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4832 	}
4833 
4834 	callout_schedule(&sc->sc_wd_ch, hz);
4835 }
4836 
4837 #ifdef ATH_DIAGAPI
4838 /*
4839  * Diagnostic interface to the HAL.  This is used by various
4840  * tools to do things like retrieve register contents for
4841  * debugging.  The mechanism is intentionally opaque so that
4842  * it can change frequently w/o concern for compatiblity.
4843  */
4844 static int
4845 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4846 {
4847 	struct ath_hal *ah = sc->sc_ah;
4848 	u_int id = ad->ad_id & ATH_DIAG_ID;
4849 	void *indata = NULL;
4850 	void *outdata = NULL;
4851 	u_int32_t insize = ad->ad_in_size;
4852 	u_int32_t outsize = ad->ad_out_size;
4853 	int error = 0;
4854 
4855 	if (ad->ad_id & ATH_DIAG_IN) {
4856 		/*
4857 		 * Copy in data.
4858 		 */
4859 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4860 		if (indata == NULL) {
4861 			error = ENOMEM;
4862 			goto bad;
4863 		}
4864 		error = copyin(ad->ad_in_data, indata, insize);
4865 		if (error)
4866 			goto bad;
4867 	}
4868 	if (ad->ad_id & ATH_DIAG_DYN) {
4869 		/*
4870 		 * Allocate a buffer for the results (otherwise the HAL
4871 		 * returns a pointer to a buffer where we can read the
4872 		 * results).  Note that we depend on the HAL leaving this
4873 		 * pointer for us to use below in reclaiming the buffer;
4874 		 * may want to be more defensive.
4875 		 */
4876 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4877 		if (outdata == NULL) {
4878 			error = ENOMEM;
4879 			goto bad;
4880 		}
4881 	}
4882 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4883 		if (outsize < ad->ad_out_size)
4884 			ad->ad_out_size = outsize;
4885 		if (outdata != NULL)
4886 			error = copyout(outdata, ad->ad_out_data,
4887 					ad->ad_out_size);
4888 	} else {
4889 		error = EINVAL;
4890 	}
4891 bad:
4892 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4893 		free(indata, M_TEMP);
4894 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4895 		free(outdata, M_TEMP);
4896 	return error;
4897 }
4898 #endif /* ATH_DIAGAPI */
4899 
4900 static int
4901 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4902 {
4903 #define	IS_RUNNING(ifp) \
4904 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4905 	struct ath_softc *sc = ifp->if_softc;
4906 	struct ieee80211com *ic = ifp->if_l2com;
4907 	struct ifreq *ifr = (struct ifreq *)data;
4908 	const HAL_RATE_TABLE *rt;
4909 	int error = 0;
4910 
4911 	switch (cmd) {
4912 	case SIOCSIFFLAGS:
4913 		ATH_LOCK(sc);
4914 		if (IS_RUNNING(ifp)) {
4915 			/*
4916 			 * To avoid rescanning another access point,
4917 			 * do not call ath_init() here.  Instead,
4918 			 * only reflect promisc mode settings.
4919 			 */
4920 			ath_mode_init(sc);
4921 		} else if (ifp->if_flags & IFF_UP) {
4922 			/*
4923 			 * Beware of being called during attach/detach
4924 			 * to reset promiscuous mode.  In that case we
4925 			 * will still be marked UP but not RUNNING.
4926 			 * However trying to re-init the interface
4927 			 * is the wrong thing to do as we've already
4928 			 * torn down much of our state.  There's
4929 			 * probably a better way to deal with this.
4930 			 */
4931 			if (!sc->sc_invalid)
4932 				ath_init(sc);	/* XXX lose error */
4933 		} else {
4934 			ath_stop_locked(ifp);
4935 #ifdef notyet
4936 			/* XXX must wakeup in places like ath_vap_delete */
4937 			if (!sc->sc_invalid)
4938 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
4939 #endif
4940 		}
4941 		ATH_UNLOCK(sc);
4942 		break;
4943 	case SIOCGIFMEDIA:
4944 	case SIOCSIFMEDIA:
4945 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4946 		break;
4947 	case SIOCGATHSTATS:
4948 		/* NB: embed these numbers to get a consistent view */
4949 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4950 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4951 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
4952 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
4953 #ifdef IEEE80211_SUPPORT_TDMA
4954 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
4955 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
4956 #endif
4957 		rt = sc->sc_currates;
4958 		sc->sc_stats.ast_tx_rate =
4959 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
4960 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
4961 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
4962 		return copyout(&sc->sc_stats,
4963 		    ifr->ifr_data, sizeof (sc->sc_stats));
4964 	case SIOCGATHAGSTATS:
4965 		return copyout(&sc->sc_aggr_stats,
4966 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
4967 	case SIOCZATHSTATS:
4968 		error = priv_check(curthread, PRIV_DRIVER);
4969 		if (error == 0) {
4970 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
4971 			memset(&sc->sc_aggr_stats, 0,
4972 			    sizeof(sc->sc_aggr_stats));
4973 			memset(&sc->sc_intr_stats, 0,
4974 			    sizeof(sc->sc_intr_stats));
4975 		}
4976 		break;
4977 #ifdef ATH_DIAGAPI
4978 	case SIOCGATHDIAG:
4979 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4980 		break;
4981 	case SIOCGATHPHYERR:
4982 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
4983 		break;
4984 #endif
4985 	case SIOCGIFADDR:
4986 		error = ether_ioctl(ifp, cmd, data);
4987 		break;
4988 	default:
4989 		error = EINVAL;
4990 		break;
4991 	}
4992 	return error;
4993 #undef IS_RUNNING
4994 }
4995 
4996 /*
4997  * Announce various information on device/driver attach.
4998  */
4999 static void
5000 ath_announce(struct ath_softc *sc)
5001 {
5002 	struct ifnet *ifp = sc->sc_ifp;
5003 	struct ath_hal *ah = sc->sc_ah;
5004 
5005 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5006 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5007 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5008 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5009 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5010 	if (bootverbose) {
5011 		int i;
5012 		for (i = 0; i <= WME_AC_VO; i++) {
5013 			struct ath_txq *txq = sc->sc_ac2q[i];
5014 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5015 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5016 		}
5017 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5018 			sc->sc_cabq->axq_qnum);
5019 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5020 	}
5021 	if (ath_rxbuf != ATH_RXBUF)
5022 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5023 	if (ath_txbuf != ATH_TXBUF)
5024 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5025 	if (sc->sc_mcastkey && bootverbose)
5026 		if_printf(ifp, "using multicast key search\n");
5027 }
5028 
5029 static void
5030 ath_dfs_tasklet(void *p, int npending)
5031 {
5032 	struct ath_softc *sc = (struct ath_softc *) p;
5033 	struct ifnet *ifp = sc->sc_ifp;
5034 	struct ieee80211com *ic = ifp->if_l2com;
5035 
5036 	/*
5037 	 * If previous processing has found a radar event,
5038 	 * signal this to the net80211 layer to begin DFS
5039 	 * processing.
5040 	 */
5041 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5042 		/* DFS event found, initiate channel change */
5043 		/*
5044 		 * XXX doesn't currently tell us whether the event
5045 		 * XXX was found in the primary or extension
5046 		 * XXX channel!
5047 		 */
5048 		IEEE80211_LOCK(ic);
5049 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5050 		IEEE80211_UNLOCK(ic);
5051 	}
5052 }
5053 
5054 MODULE_VERSION(if_ath, 1);
5055 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5056 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5057 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5058 #endif
5059