xref: /freebsd/sys/dev/ath/if_ath.c (revision dcc3a33188bceb5b6e819efdb9c5f72d059084b6)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/errno.h>
55 #include <sys/callout.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kthread.h>
59 #include <sys/taskqueue.h>
60 #include <sys/priv.h>
61 
62 #include <machine/bus.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_llc.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_regdomain.h>
74 #ifdef IEEE80211_SUPPORT_SUPERG
75 #include <net80211/ieee80211_superg.h>
76 #endif
77 #ifdef IEEE80211_SUPPORT_TDMA
78 #include <net80211/ieee80211_tdma.h>
79 #endif
80 
81 #include <net/bpf.h>
82 
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_ether.h>
86 #endif
87 
88 #include <dev/ath/if_athvar.h>
89 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
90 
91 #ifdef ATH_TX99_DIAG
92 #include <dev/ath/ath_tx99/ath_tx99.h>
93 #endif
94 
95 /*
96  * ATH_BCBUF determines the number of vap's that can transmit
97  * beacons and also (currently) the number of vap's that can
98  * have unique mac addresses/bssid.  When staggering beacons
99  * 4 is probably a good max as otherwise the beacons become
100  * very closely spaced and there is limited time for cab q traffic
101  * to go out.  You can burst beacons instead but that is not good
102  * for stations in power save and at some point you really want
103  * another radio (and channel).
104  *
105  * The limit on the number of mac addresses is tied to our use of
106  * the U/L bit and tracking addresses in a byte; it would be
107  * worthwhile to allow more for applications like proxy sta.
108  */
109 CTASSERT(ATH_BCBUF <= 8);
110 
111 /* unaligned little endian access */
112 #define LE_READ_2(p)							\
113 	((u_int16_t)							\
114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
115 #define LE_READ_4(p)							\
116 	((u_int32_t)							\
117 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
118 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
119 
120 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
121 		    const char name[IFNAMSIZ], int unit, int opmode,
122 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
123 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
124 static void	ath_vap_delete(struct ieee80211vap *);
125 static void	ath_init(void *);
126 static void	ath_stop_locked(struct ifnet *);
127 static void	ath_stop(struct ifnet *);
128 static void	ath_start(struct ifnet *);
129 static int	ath_reset(struct ifnet *);
130 static int	ath_reset_vap(struct ieee80211vap *, u_long);
131 static int	ath_media_change(struct ifnet *);
132 static void	ath_watchdog(void *);
133 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
134 static void	ath_fatal_proc(void *, int);
135 static void	ath_bmiss_vap(struct ieee80211vap *);
136 static void	ath_bmiss_proc(void *, int);
137 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
138 			struct ieee80211_node *);
139 static int	ath_key_alloc(struct ieee80211vap *,
140 			struct ieee80211_key *,
141 			ieee80211_keyix *, ieee80211_keyix *);
142 static int	ath_key_delete(struct ieee80211vap *,
143 			const struct ieee80211_key *);
144 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
145 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
146 static void	ath_key_update_begin(struct ieee80211vap *);
147 static void	ath_key_update_end(struct ieee80211vap *);
148 static void	ath_update_mcast(struct ifnet *);
149 static void	ath_update_promisc(struct ifnet *);
150 static void	ath_mode_init(struct ath_softc *);
151 static void	ath_setslottime(struct ath_softc *);
152 static void	ath_updateslot(struct ifnet *);
153 static int	ath_beaconq_setup(struct ath_hal *);
154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void	ath_beacon_update(struct ieee80211vap *, int item);
156 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
157 static void	ath_beacon_proc(void *, int);
158 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
159 			struct ieee80211vap *);
160 static void	ath_bstuck_proc(void *, int);
161 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
162 static void	ath_beacon_free(struct ath_softc *);
163 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
164 static void	ath_descdma_cleanup(struct ath_softc *sc,
165 			struct ath_descdma *, ath_bufhead *);
166 static int	ath_desc_alloc(struct ath_softc *);
167 static void	ath_desc_free(struct ath_softc *);
168 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
169 			const uint8_t [IEEE80211_ADDR_LEN]);
170 static void	ath_node_free(struct ieee80211_node *);
171 static void	ath_node_getsignal(const struct ieee80211_node *,
172 			int8_t *, int8_t *);
173 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
174 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
175 			int subtype, int rssi, int nf);
176 static void	ath_setdefantenna(struct ath_softc *, u_int);
177 static void	ath_rx_proc(void *, int);
178 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
179 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
180 static int	ath_tx_setup(struct ath_softc *, int, int);
181 static int	ath_wme_update(struct ieee80211com *);
182 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
183 static void	ath_tx_cleanup(struct ath_softc *);
184 static void	ath_freetx(struct mbuf *);
185 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
186 			     struct ath_buf *, struct mbuf *);
187 static void	ath_tx_proc_q0(void *, int);
188 static void	ath_tx_proc_q0123(void *, int);
189 static void	ath_tx_proc(void *, int);
190 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
191 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
192 static void	ath_draintxq(struct ath_softc *);
193 static void	ath_stoprecv(struct ath_softc *);
194 static int	ath_startrecv(struct ath_softc *);
195 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196 static void	ath_scan_start(struct ieee80211com *);
197 static void	ath_scan_end(struct ieee80211com *);
198 static void	ath_set_channel(struct ieee80211com *);
199 static void	ath_calibrate(void *);
200 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
201 static void	ath_setup_stationkey(struct ieee80211_node *);
202 static void	ath_newassoc(struct ieee80211_node *, int);
203 static int	ath_setregdomain(struct ieee80211com *,
204 		    struct ieee80211_regdomain *, int,
205 		    struct ieee80211_channel []);
206 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
207 		    struct ieee80211_channel []);
208 static int	ath_getchannels(struct ath_softc *);
209 static void	ath_led_event(struct ath_softc *, int);
210 
211 static int	ath_rate_setup(struct ath_softc *, u_int mode);
212 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
213 
214 static void	ath_sysctlattach(struct ath_softc *);
215 static int	ath_raw_xmit(struct ieee80211_node *,
216 			struct mbuf *, const struct ieee80211_bpf_params *);
217 static void	ath_announce(struct ath_softc *);
218 
219 #ifdef IEEE80211_SUPPORT_TDMA
220 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
221 		    u_int32_t bintval);
222 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
223 		    const struct ieee80211_tdma_state *tdma);
224 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
225 static void	ath_tdma_update(struct ieee80211_node *ni,
226 		    const struct ieee80211_tdma_param *tdma, int);
227 static void	ath_tdma_beacon_send(struct ath_softc *sc,
228 		    struct ieee80211vap *vap);
229 
230 static __inline void
231 ath_hal_setcca(struct ath_hal *ah, int ena)
232 {
233 	/*
234 	 * NB: fill me in; this is not provided by default because disabling
235 	 *     CCA in most locales violates regulatory.
236 	 */
237 }
238 
239 static __inline int
240 ath_hal_getcca(struct ath_hal *ah)
241 {
242 	u_int32_t diag;
243 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
244 		return 1;
245 	return ((diag & 0x500000) == 0);
246 }
247 
248 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
249 #define	TDMA_LPF_LEN		6
250 #define	TDMA_DUMMY_MARKER	0x127
251 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
252 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
253 #define	TDMA_LPF(x, y, len) \
254     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
255 #define	TDMA_SAMPLE(x, y) do {					\
256 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
257 } while (0)
258 #define	TDMA_EP_RND(x,mul) \
259 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
260 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
261 #endif /* IEEE80211_SUPPORT_TDMA */
262 
263 SYSCTL_DECL(_hw_ath);
264 
265 /* XXX validate sysctl values */
266 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
267 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
268 	    0, "long chip calibration interval (secs)");
269 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
270 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
271 	    0, "short chip calibration interval (msecs)");
272 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
273 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
274 	    0, "reset chip calibration results (secs)");
275 
276 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
277 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
278 	    0, "rx buffers allocated");
279 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
280 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
281 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
282 	    0, "tx buffers allocated");
283 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
284 
285 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
286 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
287 	    0, "max missed beacon xmits before chip reset");
288 
289 #ifdef ATH_DEBUG
290 enum {
291 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
292 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
293 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
294 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
295 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
296 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
297 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
298 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
299 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
300 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
301 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
302 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
303 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
304 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
305 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
306 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
307 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
308 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
309 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
310 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
311 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
312 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
313 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
314 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
315 	ATH_DEBUG_ANY		= 0xffffffff
316 };
317 static	int ath_debug = 0;
318 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
319 	    0, "control debugging printfs");
320 TUNABLE_INT("hw.ath.debug", &ath_debug);
321 
322 #define	IFF_DUMPPKTS(sc, m) \
323 	((sc->sc_debug & (m)) || \
324 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
325 #define	DPRINTF(sc, m, fmt, ...) do {				\
326 	if (sc->sc_debug & (m))					\
327 		printf(fmt, __VA_ARGS__);			\
328 } while (0)
329 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
330 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
331 		ath_keyprint(sc, __func__, ix, hk, mac);	\
332 } while (0)
333 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
334 	u_int ix, int);
335 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
336 	u_int qnum, u_int ix, int done);
337 #else
338 #define	IFF_DUMPPKTS(sc, m) \
339 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
340 #define	DPRINTF(sc, m, fmt, ...) do {				\
341 	(void) sc;						\
342 } while (0)
343 #define	KEYPRINTF(sc, k, ix, mac) do {				\
344 	(void) sc;						\
345 } while (0)
346 #endif
347 
348 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
349 
350 int
351 ath_attach(u_int16_t devid, struct ath_softc *sc)
352 {
353 	struct ifnet *ifp;
354 	struct ieee80211com *ic;
355 	struct ath_hal *ah = NULL;
356 	HAL_STATUS status;
357 	int error = 0, i;
358 	u_int wmodes;
359 	uint8_t macaddr[IEEE80211_ADDR_LEN];
360 
361 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
362 
363 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
364 	if (ifp == NULL) {
365 		device_printf(sc->sc_dev, "can not if_alloc()\n");
366 		error = ENOSPC;
367 		goto bad;
368 	}
369 	ic = ifp->if_l2com;
370 
371 	/* set these up early for if_printf use */
372 	if_initname(ifp, device_get_name(sc->sc_dev),
373 		device_get_unit(sc->sc_dev));
374 
375 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
376 	if (ah == NULL) {
377 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
378 			status);
379 		error = ENXIO;
380 		goto bad;
381 	}
382 	sc->sc_ah = ah;
383 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
384 #ifdef	ATH_DEBUG
385 	sc->sc_debug = ath_debug;
386 #endif
387 
388 	/*
389 	 * Check if the MAC has multi-rate retry support.
390 	 * We do this by trying to setup a fake extended
391 	 * descriptor.  MAC's that don't have support will
392 	 * return false w/o doing anything.  MAC's that do
393 	 * support it will return true w/o doing anything.
394 	 */
395 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
396 
397 	/*
398 	 * Check if the device has hardware counters for PHY
399 	 * errors.  If so we need to enable the MIB interrupt
400 	 * so we can act on stat triggers.
401 	 */
402 	if (ath_hal_hwphycounters(ah))
403 		sc->sc_needmib = 1;
404 
405 	/*
406 	 * Get the hardware key cache size.
407 	 */
408 	sc->sc_keymax = ath_hal_keycachesize(ah);
409 	if (sc->sc_keymax > ATH_KEYMAX) {
410 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
411 			ATH_KEYMAX, sc->sc_keymax);
412 		sc->sc_keymax = ATH_KEYMAX;
413 	}
414 	/*
415 	 * Reset the key cache since some parts do not
416 	 * reset the contents on initial power up.
417 	 */
418 	for (i = 0; i < sc->sc_keymax; i++)
419 		ath_hal_keyreset(ah, i);
420 
421 	/*
422 	 * Collect the default channel list.
423 	 */
424 	error = ath_getchannels(sc);
425 	if (error != 0)
426 		goto bad;
427 
428 	/*
429 	 * Setup rate tables for all potential media types.
430 	 */
431 	ath_rate_setup(sc, IEEE80211_MODE_11A);
432 	ath_rate_setup(sc, IEEE80211_MODE_11B);
433 	ath_rate_setup(sc, IEEE80211_MODE_11G);
434 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
435 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
436 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
437 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
438 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
439 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
440 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
441 
442 	/* NB: setup here so ath_rate_update is happy */
443 	ath_setcurmode(sc, IEEE80211_MODE_11A);
444 
445 	/*
446 	 * Allocate tx+rx descriptors and populate the lists.
447 	 */
448 	error = ath_desc_alloc(sc);
449 	if (error != 0) {
450 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
451 		goto bad;
452 	}
453 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
454 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
455 
456 	ATH_TXBUF_LOCK_INIT(sc);
457 
458 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
459 		taskqueue_thread_enqueue, &sc->sc_tq);
460 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
461 		"%s taskq", ifp->if_xname);
462 
463 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
464 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
465 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
466 
467 	/*
468 	 * Allocate hardware transmit queues: one queue for
469 	 * beacon frames and one data queue for each QoS
470 	 * priority.  Note that the hal handles reseting
471 	 * these queues at the needed time.
472 	 *
473 	 * XXX PS-Poll
474 	 */
475 	sc->sc_bhalq = ath_beaconq_setup(ah);
476 	if (sc->sc_bhalq == (u_int) -1) {
477 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
478 		error = EIO;
479 		goto bad2;
480 	}
481 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
482 	if (sc->sc_cabq == NULL) {
483 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
484 		error = EIO;
485 		goto bad2;
486 	}
487 	/* NB: insure BK queue is the lowest priority h/w queue */
488 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
489 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
490 			ieee80211_wme_acnames[WME_AC_BK]);
491 		error = EIO;
492 		goto bad2;
493 	}
494 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
495 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
496 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
497 		/*
498 		 * Not enough hardware tx queues to properly do WME;
499 		 * just punt and assign them all to the same h/w queue.
500 		 * We could do a better job of this if, for example,
501 		 * we allocate queues when we switch from station to
502 		 * AP mode.
503 		 */
504 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
505 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
506 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
507 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
508 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
509 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
510 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
511 	}
512 
513 	/*
514 	 * Special case certain configurations.  Note the
515 	 * CAB queue is handled by these specially so don't
516 	 * include them when checking the txq setup mask.
517 	 */
518 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
519 	case 0x01:
520 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
521 		break;
522 	case 0x0f:
523 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
524 		break;
525 	default:
526 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
527 		break;
528 	}
529 
530 	/*
531 	 * Setup rate control.  Some rate control modules
532 	 * call back to change the anntena state so expose
533 	 * the necessary entry points.
534 	 * XXX maybe belongs in struct ath_ratectrl?
535 	 */
536 	sc->sc_setdefantenna = ath_setdefantenna;
537 	sc->sc_rc = ath_rate_attach(sc);
538 	if (sc->sc_rc == NULL) {
539 		error = EIO;
540 		goto bad2;
541 	}
542 
543 	sc->sc_blinking = 0;
544 	sc->sc_ledstate = 1;
545 	sc->sc_ledon = 0;			/* low true */
546 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
547 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
548 	/*
549 	 * Auto-enable soft led processing for IBM cards and for
550 	 * 5211 minipci cards.  Users can also manually enable/disable
551 	 * support with a sysctl.
552 	 */
553 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
554 	if (sc->sc_softled) {
555 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
556 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
557 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
558 	}
559 
560 	ifp->if_softc = sc;
561 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
562 	ifp->if_start = ath_start;
563 	ifp->if_watchdog = NULL;
564 	ifp->if_ioctl = ath_ioctl;
565 	ifp->if_init = ath_init;
566 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
567 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
568 	IFQ_SET_READY(&ifp->if_snd);
569 
570 	ic->ic_ifp = ifp;
571 	/* XXX not right but it's not used anywhere important */
572 	ic->ic_phytype = IEEE80211_T_OFDM;
573 	ic->ic_opmode = IEEE80211_M_STA;
574 	ic->ic_caps =
575 		  IEEE80211_C_STA		/* station mode */
576 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
577 		| IEEE80211_C_HOSTAP		/* hostap mode */
578 		| IEEE80211_C_MONITOR		/* monitor mode */
579 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
580 		| IEEE80211_C_WDS		/* 4-address traffic works */
581 		| IEEE80211_C_MBSS		/* mesh point link mode */
582 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
583 		| IEEE80211_C_SHSLOT		/* short slot time supported */
584 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
585 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
586 		| IEEE80211_C_TXFRAG		/* handle tx frags */
587 		;
588 	/*
589 	 * Query the hal to figure out h/w crypto support.
590 	 */
591 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
592 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
593 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
594 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
595 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
596 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
597 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
598 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
599 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
600 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
601 		/*
602 		 * Check if h/w does the MIC and/or whether the
603 		 * separate key cache entries are required to
604 		 * handle both tx+rx MIC keys.
605 		 */
606 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
607 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
608 		/*
609 		 * If the h/w supports storing tx+rx MIC keys
610 		 * in one cache slot automatically enable use.
611 		 */
612 		if (ath_hal_hastkipsplit(ah) ||
613 		    !ath_hal_settkipsplit(ah, AH_FALSE))
614 			sc->sc_splitmic = 1;
615 		/*
616 		 * If the h/w can do TKIP MIC together with WME then
617 		 * we use it; otherwise we force the MIC to be done
618 		 * in software by the net80211 layer.
619 		 */
620 		if (ath_hal_haswmetkipmic(ah))
621 			sc->sc_wmetkipmic = 1;
622 	}
623 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
624 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
625 	/*
626 	 * Mark key cache slots associated with global keys
627 	 * as in use.  If we knew TKIP was not to be used we
628 	 * could leave the +32, +64, and +32+64 slots free.
629 	 */
630 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
631 		setbit(sc->sc_keymap, i);
632 		setbit(sc->sc_keymap, i+64);
633 		if (sc->sc_splitmic) {
634 			setbit(sc->sc_keymap, i+32);
635 			setbit(sc->sc_keymap, i+32+64);
636 		}
637 	}
638 	/*
639 	 * TPC support can be done either with a global cap or
640 	 * per-packet support.  The latter is not available on
641 	 * all parts.  We're a bit pedantic here as all parts
642 	 * support a global cap.
643 	 */
644 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
645 		ic->ic_caps |= IEEE80211_C_TXPMGT;
646 
647 	/*
648 	 * Mark WME capability only if we have sufficient
649 	 * hardware queues to do proper priority scheduling.
650 	 */
651 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
652 		ic->ic_caps |= IEEE80211_C_WME;
653 	/*
654 	 * Check for misc other capabilities.
655 	 */
656 	if (ath_hal_hasbursting(ah))
657 		ic->ic_caps |= IEEE80211_C_BURST;
658 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
659 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
660 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
661 	if (ath_hal_hasfastframes(ah))
662 		ic->ic_caps |= IEEE80211_C_FF;
663 	wmodes = ath_hal_getwirelessmodes(ah);
664 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
665 		ic->ic_caps |= IEEE80211_C_TURBOP;
666 #ifdef IEEE80211_SUPPORT_TDMA
667 	if (ath_hal_macversion(ah) > 0x78) {
668 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
669 		ic->ic_tdma_update = ath_tdma_update;
670 	}
671 #endif
672 	/*
673 	 * Indicate we need the 802.11 header padded to a
674 	 * 32-bit boundary for 4-address and QoS frames.
675 	 */
676 	ic->ic_flags |= IEEE80211_F_DATAPAD;
677 
678 	/*
679 	 * Query the hal about antenna support.
680 	 */
681 	sc->sc_defant = ath_hal_getdefantenna(ah);
682 
683 	/*
684 	 * Not all chips have the VEOL support we want to
685 	 * use with IBSS beacons; check here for it.
686 	 */
687 	sc->sc_hasveol = ath_hal_hasveol(ah);
688 
689 	/* get mac address from hardware */
690 	ath_hal_getmac(ah, macaddr);
691 	if (sc->sc_hasbmask)
692 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
693 
694 	/* NB: used to size node table key mapping array */
695 	ic->ic_max_keyix = sc->sc_keymax;
696 	/* call MI attach routine. */
697 	ieee80211_ifattach(ic, macaddr);
698 	ic->ic_setregdomain = ath_setregdomain;
699 	ic->ic_getradiocaps = ath_getradiocaps;
700 	sc->sc_opmode = HAL_M_STA;
701 
702 	/* override default methods */
703 	ic->ic_newassoc = ath_newassoc;
704 	ic->ic_updateslot = ath_updateslot;
705 	ic->ic_wme.wme_update = ath_wme_update;
706 	ic->ic_vap_create = ath_vap_create;
707 	ic->ic_vap_delete = ath_vap_delete;
708 	ic->ic_raw_xmit = ath_raw_xmit;
709 	ic->ic_update_mcast = ath_update_mcast;
710 	ic->ic_update_promisc = ath_update_promisc;
711 	ic->ic_node_alloc = ath_node_alloc;
712 	sc->sc_node_free = ic->ic_node_free;
713 	ic->ic_node_free = ath_node_free;
714 	ic->ic_node_getsignal = ath_node_getsignal;
715 	ic->ic_scan_start = ath_scan_start;
716 	ic->ic_scan_end = ath_scan_end;
717 	ic->ic_set_channel = ath_set_channel;
718 
719 	ieee80211_radiotap_attach(ic,
720 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
721 		ATH_TX_RADIOTAP_PRESENT,
722 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
723 		ATH_RX_RADIOTAP_PRESENT);
724 
725 	/*
726 	 * Setup dynamic sysctl's now that country code and
727 	 * regdomain are available from the hal.
728 	 */
729 	ath_sysctlattach(sc);
730 
731 	if (bootverbose)
732 		ieee80211_announce(ic);
733 	ath_announce(sc);
734 	return 0;
735 bad2:
736 	ath_tx_cleanup(sc);
737 	ath_desc_free(sc);
738 bad:
739 	if (ah)
740 		ath_hal_detach(ah);
741 	if (ifp != NULL)
742 		if_free(ifp);
743 	sc->sc_invalid = 1;
744 	return error;
745 }
746 
747 int
748 ath_detach(struct ath_softc *sc)
749 {
750 	struct ifnet *ifp = sc->sc_ifp;
751 
752 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
753 		__func__, ifp->if_flags);
754 
755 	/*
756 	 * NB: the order of these is important:
757 	 * o stop the chip so no more interrupts will fire
758 	 * o call the 802.11 layer before detaching the hal to
759 	 *   insure callbacks into the driver to delete global
760 	 *   key cache entries can be handled
761 	 * o free the taskqueue which drains any pending tasks
762 	 * o reclaim the tx queue data structures after calling
763 	 *   the 802.11 layer as we'll get called back to reclaim
764 	 *   node state and potentially want to use them
765 	 * o to cleanup the tx queues the hal is called, so detach
766 	 *   it last
767 	 * Other than that, it's straightforward...
768 	 */
769 	ath_stop(ifp);
770 	ieee80211_ifdetach(ifp->if_l2com);
771 	taskqueue_free(sc->sc_tq);
772 #ifdef ATH_TX99_DIAG
773 	if (sc->sc_tx99 != NULL)
774 		sc->sc_tx99->detach(sc->sc_tx99);
775 #endif
776 	ath_rate_detach(sc->sc_rc);
777 	ath_desc_free(sc);
778 	ath_tx_cleanup(sc);
779 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
780 	if_free(ifp);
781 
782 	return 0;
783 }
784 
785 /*
786  * MAC address handling for multiple BSS on the same radio.
787  * The first vap uses the MAC address from the EEPROM.  For
788  * subsequent vap's we set the U/L bit (bit 1) in the MAC
789  * address and use the next six bits as an index.
790  */
791 static void
792 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
793 {
794 	int i;
795 
796 	if (clone && sc->sc_hasbmask) {
797 		/* NB: we only do this if h/w supports multiple bssid */
798 		for (i = 0; i < 8; i++)
799 			if ((sc->sc_bssidmask & (1<<i)) == 0)
800 				break;
801 		if (i != 0)
802 			mac[0] |= (i << 2)|0x2;
803 	} else
804 		i = 0;
805 	sc->sc_bssidmask |= 1<<i;
806 	sc->sc_hwbssidmask[0] &= ~mac[0];
807 	if (i == 0)
808 		sc->sc_nbssid0++;
809 }
810 
811 static void
812 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
813 {
814 	int i = mac[0] >> 2;
815 	uint8_t mask;
816 
817 	if (i != 0 || --sc->sc_nbssid0 == 0) {
818 		sc->sc_bssidmask &= ~(1<<i);
819 		/* recalculate bssid mask from remaining addresses */
820 		mask = 0xff;
821 		for (i = 1; i < 8; i++)
822 			if (sc->sc_bssidmask & (1<<i))
823 				mask &= ~((i<<2)|0x2);
824 		sc->sc_hwbssidmask[0] |= mask;
825 	}
826 }
827 
828 /*
829  * Assign a beacon xmit slot.  We try to space out
830  * assignments so when beacons are staggered the
831  * traffic coming out of the cab q has maximal time
832  * to go out before the next beacon is scheduled.
833  */
834 static int
835 assign_bslot(struct ath_softc *sc)
836 {
837 	u_int slot, free;
838 
839 	free = 0;
840 	for (slot = 0; slot < ATH_BCBUF; slot++)
841 		if (sc->sc_bslot[slot] == NULL) {
842 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
843 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
844 				return slot;
845 			free = slot;
846 			/* NB: keep looking for a double slot */
847 		}
848 	return free;
849 }
850 
851 static struct ieee80211vap *
852 ath_vap_create(struct ieee80211com *ic,
853 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
854 	const uint8_t bssid[IEEE80211_ADDR_LEN],
855 	const uint8_t mac0[IEEE80211_ADDR_LEN])
856 {
857 	struct ath_softc *sc = ic->ic_ifp->if_softc;
858 	struct ath_vap *avp;
859 	struct ieee80211vap *vap;
860 	uint8_t mac[IEEE80211_ADDR_LEN];
861 	int ic_opmode, needbeacon, error;
862 
863 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
864 	    M_80211_VAP, M_WAITOK | M_ZERO);
865 	needbeacon = 0;
866 	IEEE80211_ADDR_COPY(mac, mac0);
867 
868 	ATH_LOCK(sc);
869 	ic_opmode = opmode;		/* default to opmode of new vap */
870 	switch (opmode) {
871 	case IEEE80211_M_STA:
872 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
873 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
874 			goto bad;
875 		}
876 		if (sc->sc_nvaps) {
877 			/*
878 			 * With multiple vaps we must fall back
879 			 * to s/w beacon miss handling.
880 			 */
881 			flags |= IEEE80211_CLONE_NOBEACONS;
882 		}
883 		if (flags & IEEE80211_CLONE_NOBEACONS) {
884 			/*
885 			 * Station mode w/o beacons are implemented w/ AP mode.
886 			 */
887 			ic_opmode = IEEE80211_M_HOSTAP;
888 		}
889 		break;
890 	case IEEE80211_M_IBSS:
891 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
892 			device_printf(sc->sc_dev,
893 			    "only 1 ibss vap supported\n");
894 			goto bad;
895 		}
896 		needbeacon = 1;
897 		break;
898 	case IEEE80211_M_AHDEMO:
899 #ifdef IEEE80211_SUPPORT_TDMA
900 		if (flags & IEEE80211_CLONE_TDMA) {
901 			if (sc->sc_nvaps != 0) {
902 				device_printf(sc->sc_dev,
903 				    "only 1 tdma vap supported\n");
904 				goto bad;
905 			}
906 			needbeacon = 1;
907 			flags |= IEEE80211_CLONE_NOBEACONS;
908 		}
909 		/* fall thru... */
910 #endif
911 	case IEEE80211_M_MONITOR:
912 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
913 			/*
914 			 * Adopt existing mode.  Adding a monitor or ahdemo
915 			 * vap to an existing configuration is of dubious
916 			 * value but should be ok.
917 			 */
918 			/* XXX not right for monitor mode */
919 			ic_opmode = ic->ic_opmode;
920 		}
921 		break;
922 	case IEEE80211_M_HOSTAP:
923 	case IEEE80211_M_MBSS:
924 		needbeacon = 1;
925 		break;
926 	case IEEE80211_M_WDS:
927 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
928 			device_printf(sc->sc_dev,
929 			    "wds not supported in sta mode\n");
930 			goto bad;
931 		}
932 		/*
933 		 * Silently remove any request for a unique
934 		 * bssid; WDS vap's always share the local
935 		 * mac address.
936 		 */
937 		flags &= ~IEEE80211_CLONE_BSSID;
938 		if (sc->sc_nvaps == 0)
939 			ic_opmode = IEEE80211_M_HOSTAP;
940 		else
941 			ic_opmode = ic->ic_opmode;
942 		break;
943 	default:
944 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
945 		goto bad;
946 	}
947 	/*
948 	 * Check that a beacon buffer is available; the code below assumes it.
949 	 */
950 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
951 		device_printf(sc->sc_dev, "no beacon buffer available\n");
952 		goto bad;
953 	}
954 
955 	/* STA, AHDEMO? */
956 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
957 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
958 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
959 	}
960 
961 	vap = &avp->av_vap;
962 	/* XXX can't hold mutex across if_alloc */
963 	ATH_UNLOCK(sc);
964 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
965 	    bssid, mac);
966 	ATH_LOCK(sc);
967 	if (error != 0) {
968 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
969 		    __func__, error);
970 		goto bad2;
971 	}
972 
973 	/* h/w crypto support */
974 	vap->iv_key_alloc = ath_key_alloc;
975 	vap->iv_key_delete = ath_key_delete;
976 	vap->iv_key_set = ath_key_set;
977 	vap->iv_key_update_begin = ath_key_update_begin;
978 	vap->iv_key_update_end = ath_key_update_end;
979 
980 	/* override various methods */
981 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
982 	vap->iv_recv_mgmt = ath_recv_mgmt;
983 	vap->iv_reset = ath_reset_vap;
984 	vap->iv_update_beacon = ath_beacon_update;
985 	avp->av_newstate = vap->iv_newstate;
986 	vap->iv_newstate = ath_newstate;
987 	avp->av_bmiss = vap->iv_bmiss;
988 	vap->iv_bmiss = ath_bmiss_vap;
989 
990 	avp->av_bslot = -1;
991 	if (needbeacon) {
992 		/*
993 		 * Allocate beacon state and setup the q for buffered
994 		 * multicast frames.  We know a beacon buffer is
995 		 * available because we checked above.
996 		 */
997 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
998 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
999 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1000 			/*
1001 			 * Assign the vap to a beacon xmit slot.  As above
1002 			 * this cannot fail to find a free one.
1003 			 */
1004 			avp->av_bslot = assign_bslot(sc);
1005 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1006 			    ("beacon slot %u not empty", avp->av_bslot));
1007 			sc->sc_bslot[avp->av_bslot] = vap;
1008 			sc->sc_nbcnvaps++;
1009 		}
1010 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1011 			/*
1012 			 * Multple vaps are to transmit beacons and we
1013 			 * have h/w support for TSF adjusting; enable
1014 			 * use of staggered beacons.
1015 			 */
1016 			sc->sc_stagbeacons = 1;
1017 		}
1018 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1019 	}
1020 
1021 	ic->ic_opmode = ic_opmode;
1022 	if (opmode != IEEE80211_M_WDS) {
1023 		sc->sc_nvaps++;
1024 		if (opmode == IEEE80211_M_STA)
1025 			sc->sc_nstavaps++;
1026 		if (opmode == IEEE80211_M_MBSS)
1027 			sc->sc_nmeshvaps++;
1028 	}
1029 	switch (ic_opmode) {
1030 	case IEEE80211_M_IBSS:
1031 		sc->sc_opmode = HAL_M_IBSS;
1032 		break;
1033 	case IEEE80211_M_STA:
1034 		sc->sc_opmode = HAL_M_STA;
1035 		break;
1036 	case IEEE80211_M_AHDEMO:
1037 #ifdef IEEE80211_SUPPORT_TDMA
1038 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1039 			sc->sc_tdma = 1;
1040 			/* NB: disable tsf adjust */
1041 			sc->sc_stagbeacons = 0;
1042 		}
1043 		/*
1044 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1045 		 * just ap mode.
1046 		 */
1047 		/* fall thru... */
1048 #endif
1049 	case IEEE80211_M_HOSTAP:
1050 	case IEEE80211_M_MBSS:
1051 		sc->sc_opmode = HAL_M_HOSTAP;
1052 		break;
1053 	case IEEE80211_M_MONITOR:
1054 		sc->sc_opmode = HAL_M_MONITOR;
1055 		break;
1056 	default:
1057 		/* XXX should not happen */
1058 		break;
1059 	}
1060 	if (sc->sc_hastsfadd) {
1061 		/*
1062 		 * Configure whether or not TSF adjust should be done.
1063 		 */
1064 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1065 	}
1066 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1067 		/*
1068 		 * Enable s/w beacon miss handling.
1069 		 */
1070 		sc->sc_swbmiss = 1;
1071 	}
1072 	ATH_UNLOCK(sc);
1073 
1074 	/* complete setup */
1075 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1076 	return vap;
1077 bad2:
1078 	reclaim_address(sc, mac);
1079 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1080 bad:
1081 	free(avp, M_80211_VAP);
1082 	ATH_UNLOCK(sc);
1083 	return NULL;
1084 }
1085 
1086 static void
1087 ath_vap_delete(struct ieee80211vap *vap)
1088 {
1089 	struct ieee80211com *ic = vap->iv_ic;
1090 	struct ifnet *ifp = ic->ic_ifp;
1091 	struct ath_softc *sc = ifp->if_softc;
1092 	struct ath_hal *ah = sc->sc_ah;
1093 	struct ath_vap *avp = ATH_VAP(vap);
1094 
1095 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1096 		/*
1097 		 * Quiesce the hardware while we remove the vap.  In
1098 		 * particular we need to reclaim all references to
1099 		 * the vap state by any frames pending on the tx queues.
1100 		 */
1101 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1102 		ath_draintxq(sc);		/* stop xmit side */
1103 		ath_stoprecv(sc);		/* stop recv side */
1104 	}
1105 
1106 	ieee80211_vap_detach(vap);
1107 	ATH_LOCK(sc);
1108 	/*
1109 	 * Reclaim beacon state.  Note this must be done before
1110 	 * the vap instance is reclaimed as we may have a reference
1111 	 * to it in the buffer for the beacon frame.
1112 	 */
1113 	if (avp->av_bcbuf != NULL) {
1114 		if (avp->av_bslot != -1) {
1115 			sc->sc_bslot[avp->av_bslot] = NULL;
1116 			sc->sc_nbcnvaps--;
1117 		}
1118 		ath_beacon_return(sc, avp->av_bcbuf);
1119 		avp->av_bcbuf = NULL;
1120 		if (sc->sc_nbcnvaps == 0) {
1121 			sc->sc_stagbeacons = 0;
1122 			if (sc->sc_hastsfadd)
1123 				ath_hal_settsfadjust(sc->sc_ah, 0);
1124 		}
1125 		/*
1126 		 * Reclaim any pending mcast frames for the vap.
1127 		 */
1128 		ath_tx_draintxq(sc, &avp->av_mcastq);
1129 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1130 	}
1131 	/*
1132 	 * Update bookkeeping.
1133 	 */
1134 	if (vap->iv_opmode == IEEE80211_M_STA) {
1135 		sc->sc_nstavaps--;
1136 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1137 			sc->sc_swbmiss = 0;
1138 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1139 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1140 		reclaim_address(sc, vap->iv_myaddr);
1141 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1142 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1143 			sc->sc_nmeshvaps--;
1144 	}
1145 	if (vap->iv_opmode != IEEE80211_M_WDS)
1146 		sc->sc_nvaps--;
1147 #ifdef IEEE80211_SUPPORT_TDMA
1148 	/* TDMA operation ceases when the last vap is destroyed */
1149 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1150 		sc->sc_tdma = 0;
1151 		sc->sc_swbmiss = 0;
1152 	}
1153 #endif
1154 	ATH_UNLOCK(sc);
1155 	free(avp, M_80211_VAP);
1156 
1157 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1158 		/*
1159 		 * Restart rx+tx machines if still running (RUNNING will
1160 		 * be reset if we just destroyed the last vap).
1161 		 */
1162 		if (ath_startrecv(sc) != 0)
1163 			if_printf(ifp, "%s: unable to restart recv logic\n",
1164 			    __func__);
1165 		if (sc->sc_beacons) {		/* restart beacons */
1166 #ifdef IEEE80211_SUPPORT_TDMA
1167 			if (sc->sc_tdma)
1168 				ath_tdma_config(sc, NULL);
1169 			else
1170 #endif
1171 				ath_beacon_config(sc, NULL);
1172 		}
1173 		ath_hal_intrset(ah, sc->sc_imask);
1174 	}
1175 }
1176 
1177 void
1178 ath_suspend(struct ath_softc *sc)
1179 {
1180 	struct ifnet *ifp = sc->sc_ifp;
1181 	struct ieee80211com *ic = ifp->if_l2com;
1182 
1183 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1184 		__func__, ifp->if_flags);
1185 
1186 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1187 	if (ic->ic_opmode == IEEE80211_M_STA)
1188 		ath_stop(ifp);
1189 	else
1190 		ieee80211_suspend_all(ic);
1191 	/*
1192 	 * NB: don't worry about putting the chip in low power
1193 	 * mode; pci will power off our socket on suspend and
1194 	 * cardbus detaches the device.
1195 	 */
1196 }
1197 
1198 /*
1199  * Reset the key cache since some parts do not reset the
1200  * contents on resume.  First we clear all entries, then
1201  * re-load keys that the 802.11 layer assumes are setup
1202  * in h/w.
1203  */
1204 static void
1205 ath_reset_keycache(struct ath_softc *sc)
1206 {
1207 	struct ifnet *ifp = sc->sc_ifp;
1208 	struct ieee80211com *ic = ifp->if_l2com;
1209 	struct ath_hal *ah = sc->sc_ah;
1210 	int i;
1211 
1212 	for (i = 0; i < sc->sc_keymax; i++)
1213 		ath_hal_keyreset(ah, i);
1214 	ieee80211_crypto_reload_keys(ic);
1215 }
1216 
1217 void
1218 ath_resume(struct ath_softc *sc)
1219 {
1220 	struct ifnet *ifp = sc->sc_ifp;
1221 	struct ieee80211com *ic = ifp->if_l2com;
1222 	struct ath_hal *ah = sc->sc_ah;
1223 	HAL_STATUS status;
1224 
1225 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1226 		__func__, ifp->if_flags);
1227 
1228 	/*
1229 	 * Must reset the chip before we reload the
1230 	 * keycache as we were powered down on suspend.
1231 	 */
1232 	ath_hal_reset(ah, sc->sc_opmode,
1233 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1234 	    AH_FALSE, &status);
1235 	ath_reset_keycache(sc);
1236 	if (sc->sc_resume_up) {
1237 		if (ic->ic_opmode == IEEE80211_M_STA) {
1238 			ath_init(sc);
1239 			/*
1240 			 * Program the beacon registers using the last rx'd
1241 			 * beacon frame and enable sync on the next beacon
1242 			 * we see.  This should handle the case where we
1243 			 * wakeup and find the same AP and also the case where
1244 			 * we wakeup and need to roam.  For the latter we
1245 			 * should get bmiss events that trigger a roam.
1246 			 */
1247 			ath_beacon_config(sc, NULL);
1248 			sc->sc_syncbeacon = 1;
1249 		} else
1250 			ieee80211_resume_all(ic);
1251 	}
1252 	if (sc->sc_softled) {
1253 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1254 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1255 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1256 	}
1257 }
1258 
1259 void
1260 ath_shutdown(struct ath_softc *sc)
1261 {
1262 	struct ifnet *ifp = sc->sc_ifp;
1263 
1264 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1265 		__func__, ifp->if_flags);
1266 
1267 	ath_stop(ifp);
1268 	/* NB: no point powering down chip as we're about to reboot */
1269 }
1270 
1271 /*
1272  * Interrupt handler.  Most of the actual processing is deferred.
1273  */
1274 void
1275 ath_intr(void *arg)
1276 {
1277 	struct ath_softc *sc = arg;
1278 	struct ifnet *ifp = sc->sc_ifp;
1279 	struct ath_hal *ah = sc->sc_ah;
1280 	HAL_INT status;
1281 
1282 	if (sc->sc_invalid) {
1283 		/*
1284 		 * The hardware is not ready/present, don't touch anything.
1285 		 * Note this can happen early on if the IRQ is shared.
1286 		 */
1287 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1288 		return;
1289 	}
1290 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1291 		return;
1292 	if ((ifp->if_flags & IFF_UP) == 0 ||
1293 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1294 		HAL_INT status;
1295 
1296 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1297 			__func__, ifp->if_flags);
1298 		ath_hal_getisr(ah, &status);	/* clear ISR */
1299 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1300 		return;
1301 	}
1302 	/*
1303 	 * Figure out the reason(s) for the interrupt.  Note
1304 	 * that the hal returns a pseudo-ISR that may include
1305 	 * bits we haven't explicitly enabled so we mask the
1306 	 * value to insure we only process bits we requested.
1307 	 */
1308 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1309 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1310 	status &= sc->sc_imask;			/* discard unasked for bits */
1311 	if (status & HAL_INT_FATAL) {
1312 		sc->sc_stats.ast_hardware++;
1313 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1314 		ath_fatal_proc(sc, 0);
1315 	} else {
1316 		if (status & HAL_INT_SWBA) {
1317 			/*
1318 			 * Software beacon alert--time to send a beacon.
1319 			 * Handle beacon transmission directly; deferring
1320 			 * this is too slow to meet timing constraints
1321 			 * under load.
1322 			 */
1323 #ifdef IEEE80211_SUPPORT_TDMA
1324 			if (sc->sc_tdma) {
1325 				if (sc->sc_tdmaswba == 0) {
1326 					struct ieee80211com *ic = ifp->if_l2com;
1327 					struct ieee80211vap *vap =
1328 					    TAILQ_FIRST(&ic->ic_vaps);
1329 					ath_tdma_beacon_send(sc, vap);
1330 					sc->sc_tdmaswba =
1331 					    vap->iv_tdma->tdma_bintval;
1332 				} else
1333 					sc->sc_tdmaswba--;
1334 			} else
1335 #endif
1336 			{
1337 				ath_beacon_proc(sc, 0);
1338 #ifdef IEEE80211_SUPPORT_SUPERG
1339 				/*
1340 				 * Schedule the rx taskq in case there's no
1341 				 * traffic so any frames held on the staging
1342 				 * queue are aged and potentially flushed.
1343 				 */
1344 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1345 #endif
1346 			}
1347 		}
1348 		if (status & HAL_INT_RXEOL) {
1349 			/*
1350 			 * NB: the hardware should re-read the link when
1351 			 *     RXE bit is written, but it doesn't work at
1352 			 *     least on older hardware revs.
1353 			 */
1354 			sc->sc_stats.ast_rxeol++;
1355 			sc->sc_rxlink = NULL;
1356 		}
1357 		if (status & HAL_INT_TXURN) {
1358 			sc->sc_stats.ast_txurn++;
1359 			/* bump tx trigger level */
1360 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1361 		}
1362 		if (status & HAL_INT_RX)
1363 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1364 		if (status & HAL_INT_TX)
1365 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1366 		if (status & HAL_INT_BMISS) {
1367 			sc->sc_stats.ast_bmiss++;
1368 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1369 		}
1370 		if (status & HAL_INT_MIB) {
1371 			sc->sc_stats.ast_mib++;
1372 			/*
1373 			 * Disable interrupts until we service the MIB
1374 			 * interrupt; otherwise it will continue to fire.
1375 			 */
1376 			ath_hal_intrset(ah, 0);
1377 			/*
1378 			 * Let the hal handle the event.  We assume it will
1379 			 * clear whatever condition caused the interrupt.
1380 			 */
1381 			ath_hal_mibevent(ah, &sc->sc_halstats);
1382 			ath_hal_intrset(ah, sc->sc_imask);
1383 		}
1384 		if (status & HAL_INT_RXORN) {
1385 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1386 			sc->sc_stats.ast_rxorn++;
1387 		}
1388 	}
1389 }
1390 
1391 static void
1392 ath_fatal_proc(void *arg, int pending)
1393 {
1394 	struct ath_softc *sc = arg;
1395 	struct ifnet *ifp = sc->sc_ifp;
1396 	u_int32_t *state;
1397 	u_int32_t len;
1398 	void *sp;
1399 
1400 	if_printf(ifp, "hardware error; resetting\n");
1401 	/*
1402 	 * Fatal errors are unrecoverable.  Typically these
1403 	 * are caused by DMA errors.  Collect h/w state from
1404 	 * the hal so we can diagnose what's going on.
1405 	 */
1406 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1407 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1408 		state = sp;
1409 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1410 		    state[0], state[1] , state[2], state[3],
1411 		    state[4], state[5]);
1412 	}
1413 	ath_reset(ifp);
1414 }
1415 
1416 static void
1417 ath_bmiss_vap(struct ieee80211vap *vap)
1418 {
1419 	/*
1420 	 * Workaround phantom bmiss interrupts by sanity-checking
1421 	 * the time of our last rx'd frame.  If it is within the
1422 	 * beacon miss interval then ignore the interrupt.  If it's
1423 	 * truly a bmiss we'll get another interrupt soon and that'll
1424 	 * be dispatched up for processing.  Note this applies only
1425 	 * for h/w beacon miss events.
1426 	 */
1427 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1428 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1429 		struct ath_softc *sc = ifp->if_softc;
1430 		u_int64_t lastrx = sc->sc_lastrx;
1431 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1432 		u_int bmisstimeout =
1433 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1434 
1435 		DPRINTF(sc, ATH_DEBUG_BEACON,
1436 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1437 		    __func__, (unsigned long long) tsf,
1438 		    (unsigned long long)(tsf - lastrx),
1439 		    (unsigned long long) lastrx, bmisstimeout);
1440 
1441 		if (tsf - lastrx <= bmisstimeout) {
1442 			sc->sc_stats.ast_bmiss_phantom++;
1443 			return;
1444 		}
1445 	}
1446 	ATH_VAP(vap)->av_bmiss(vap);
1447 }
1448 
1449 static int
1450 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1451 {
1452 	uint32_t rsize;
1453 	void *sp;
1454 
1455 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(&mask), &sp, &rsize))
1456 		return 0;
1457 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1458 	*hangs = *(uint32_t *)sp;
1459 	return 1;
1460 }
1461 
1462 static void
1463 ath_bmiss_proc(void *arg, int pending)
1464 {
1465 	struct ath_softc *sc = arg;
1466 	struct ifnet *ifp = sc->sc_ifp;
1467 	uint32_t hangs;
1468 
1469 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1470 
1471 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1472 		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1473 		ath_reset(ifp);
1474 	} else
1475 		ieee80211_beacon_miss(ifp->if_l2com);
1476 }
1477 
1478 /*
1479  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1480  * calcs together with WME.  If necessary disable the crypto
1481  * hardware and mark the 802.11 state so keys will be setup
1482  * with the MIC work done in software.
1483  */
1484 static void
1485 ath_settkipmic(struct ath_softc *sc)
1486 {
1487 	struct ifnet *ifp = sc->sc_ifp;
1488 	struct ieee80211com *ic = ifp->if_l2com;
1489 
1490 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1491 		if (ic->ic_flags & IEEE80211_F_WME) {
1492 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1493 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1494 		} else {
1495 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1496 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1497 		}
1498 	}
1499 }
1500 
1501 static void
1502 ath_init(void *arg)
1503 {
1504 	struct ath_softc *sc = (struct ath_softc *) arg;
1505 	struct ifnet *ifp = sc->sc_ifp;
1506 	struct ieee80211com *ic = ifp->if_l2com;
1507 	struct ath_hal *ah = sc->sc_ah;
1508 	HAL_STATUS status;
1509 
1510 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1511 		__func__, ifp->if_flags);
1512 
1513 	ATH_LOCK(sc);
1514 	/*
1515 	 * Stop anything previously setup.  This is safe
1516 	 * whether this is the first time through or not.
1517 	 */
1518 	ath_stop_locked(ifp);
1519 
1520 	/*
1521 	 * The basic interface to setting the hardware in a good
1522 	 * state is ``reset''.  On return the hardware is known to
1523 	 * be powered up and with interrupts disabled.  This must
1524 	 * be followed by initialization of the appropriate bits
1525 	 * and then setup of the interrupt mask.
1526 	 */
1527 	ath_settkipmic(sc);
1528 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1529 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1530 			status);
1531 		ATH_UNLOCK(sc);
1532 		return;
1533 	}
1534 	ath_chan_change(sc, ic->ic_curchan);
1535 
1536 	/*
1537 	 * Likewise this is set during reset so update
1538 	 * state cached in the driver.
1539 	 */
1540 	sc->sc_diversity = ath_hal_getdiversity(ah);
1541 	sc->sc_lastlongcal = 0;
1542 	sc->sc_resetcal = 1;
1543 	sc->sc_lastcalreset = 0;
1544 
1545 	/*
1546 	 * Setup the hardware after reset: the key cache
1547 	 * is filled as needed and the receive engine is
1548 	 * set going.  Frame transmit is handled entirely
1549 	 * in the frame output path; there's nothing to do
1550 	 * here except setup the interrupt mask.
1551 	 */
1552 	if (ath_startrecv(sc) != 0) {
1553 		if_printf(ifp, "unable to start recv logic\n");
1554 		ATH_UNLOCK(sc);
1555 		return;
1556 	}
1557 
1558 	/*
1559 	 * Enable interrupts.
1560 	 */
1561 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1562 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1563 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1564 	/*
1565 	 * Enable MIB interrupts when there are hardware phy counters.
1566 	 * Note we only do this (at the moment) for station mode.
1567 	 */
1568 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1569 		sc->sc_imask |= HAL_INT_MIB;
1570 
1571 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1572 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1573 	ath_hal_intrset(ah, sc->sc_imask);
1574 
1575 	ATH_UNLOCK(sc);
1576 
1577 #ifdef ATH_TX99_DIAG
1578 	if (sc->sc_tx99 != NULL)
1579 		sc->sc_tx99->start(sc->sc_tx99);
1580 	else
1581 #endif
1582 	ieee80211_start_all(ic);		/* start all vap's */
1583 }
1584 
1585 static void
1586 ath_stop_locked(struct ifnet *ifp)
1587 {
1588 	struct ath_softc *sc = ifp->if_softc;
1589 	struct ath_hal *ah = sc->sc_ah;
1590 
1591 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1592 		__func__, sc->sc_invalid, ifp->if_flags);
1593 
1594 	ATH_LOCK_ASSERT(sc);
1595 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1596 		/*
1597 		 * Shutdown the hardware and driver:
1598 		 *    reset 802.11 state machine
1599 		 *    turn off timers
1600 		 *    disable interrupts
1601 		 *    turn off the radio
1602 		 *    clear transmit machinery
1603 		 *    clear receive machinery
1604 		 *    drain and release tx queues
1605 		 *    reclaim beacon resources
1606 		 *    power down hardware
1607 		 *
1608 		 * Note that some of this work is not possible if the
1609 		 * hardware is gone (invalid).
1610 		 */
1611 #ifdef ATH_TX99_DIAG
1612 		if (sc->sc_tx99 != NULL)
1613 			sc->sc_tx99->stop(sc->sc_tx99);
1614 #endif
1615 		callout_stop(&sc->sc_wd_ch);
1616 		sc->sc_wd_timer = 0;
1617 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1618 		if (!sc->sc_invalid) {
1619 			if (sc->sc_softled) {
1620 				callout_stop(&sc->sc_ledtimer);
1621 				ath_hal_gpioset(ah, sc->sc_ledpin,
1622 					!sc->sc_ledon);
1623 				sc->sc_blinking = 0;
1624 			}
1625 			ath_hal_intrset(ah, 0);
1626 		}
1627 		ath_draintxq(sc);
1628 		if (!sc->sc_invalid) {
1629 			ath_stoprecv(sc);
1630 			ath_hal_phydisable(ah);
1631 		} else
1632 			sc->sc_rxlink = NULL;
1633 		ath_beacon_free(sc);	/* XXX not needed */
1634 	}
1635 }
1636 
1637 static void
1638 ath_stop(struct ifnet *ifp)
1639 {
1640 	struct ath_softc *sc = ifp->if_softc;
1641 
1642 	ATH_LOCK(sc);
1643 	ath_stop_locked(ifp);
1644 	ATH_UNLOCK(sc);
1645 }
1646 
1647 /*
1648  * Reset the hardware w/o losing operational state.  This is
1649  * basically a more efficient way of doing ath_stop, ath_init,
1650  * followed by state transitions to the current 802.11
1651  * operational state.  Used to recover from various errors and
1652  * to reset or reload hardware state.
1653  */
1654 static int
1655 ath_reset(struct ifnet *ifp)
1656 {
1657 	struct ath_softc *sc = ifp->if_softc;
1658 	struct ieee80211com *ic = ifp->if_l2com;
1659 	struct ath_hal *ah = sc->sc_ah;
1660 	HAL_STATUS status;
1661 
1662 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1663 	ath_draintxq(sc);		/* stop xmit side */
1664 	ath_stoprecv(sc);		/* stop recv side */
1665 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1666 	/* NB: indicate channel change so we do a full reset */
1667 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1668 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1669 			__func__, status);
1670 	sc->sc_diversity = ath_hal_getdiversity(ah);
1671 	if (ath_startrecv(sc) != 0)	/* restart recv */
1672 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1673 	/*
1674 	 * We may be doing a reset in response to an ioctl
1675 	 * that changes the channel so update any state that
1676 	 * might change as a result.
1677 	 */
1678 	ath_chan_change(sc, ic->ic_curchan);
1679 	if (sc->sc_beacons) {		/* restart beacons */
1680 #ifdef IEEE80211_SUPPORT_TDMA
1681 		if (sc->sc_tdma)
1682 			ath_tdma_config(sc, NULL);
1683 		else
1684 #endif
1685 			ath_beacon_config(sc, NULL);
1686 	}
1687 	ath_hal_intrset(ah, sc->sc_imask);
1688 
1689 	ath_start(ifp);			/* restart xmit */
1690 	return 0;
1691 }
1692 
1693 static int
1694 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1695 {
1696 	struct ieee80211com *ic = vap->iv_ic;
1697 	struct ifnet *ifp = ic->ic_ifp;
1698 	struct ath_softc *sc = ifp->if_softc;
1699 	struct ath_hal *ah = sc->sc_ah;
1700 
1701 	switch (cmd) {
1702 	case IEEE80211_IOC_TXPOWER:
1703 		/*
1704 		 * If per-packet TPC is enabled, then we have nothing
1705 		 * to do; otherwise we need to force the global limit.
1706 		 * All this can happen directly; no need to reset.
1707 		 */
1708 		if (!ath_hal_gettpc(ah))
1709 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1710 		return 0;
1711 	}
1712 	return ath_reset(ifp);
1713 }
1714 
1715 static struct ath_buf *
1716 _ath_getbuf_locked(struct ath_softc *sc)
1717 {
1718 	struct ath_buf *bf;
1719 
1720 	ATH_TXBUF_LOCK_ASSERT(sc);
1721 
1722 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1723 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1724 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1725 	else
1726 		bf = NULL;
1727 	if (bf == NULL) {
1728 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1729 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1730 			"out of xmit buffers" : "xmit buffer busy");
1731 	}
1732 	return bf;
1733 }
1734 
1735 static struct ath_buf *
1736 ath_getbuf(struct ath_softc *sc)
1737 {
1738 	struct ath_buf *bf;
1739 
1740 	ATH_TXBUF_LOCK(sc);
1741 	bf = _ath_getbuf_locked(sc);
1742 	if (bf == NULL) {
1743 		struct ifnet *ifp = sc->sc_ifp;
1744 
1745 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1746 		sc->sc_stats.ast_tx_qstop++;
1747 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1748 	}
1749 	ATH_TXBUF_UNLOCK(sc);
1750 	return bf;
1751 }
1752 
1753 /*
1754  * Cleanup driver resources when we run out of buffers
1755  * while processing fragments; return the tx buffers
1756  * allocated and drop node references.
1757  */
1758 static void
1759 ath_txfrag_cleanup(struct ath_softc *sc,
1760 	ath_bufhead *frags, struct ieee80211_node *ni)
1761 {
1762 	struct ath_buf *bf, *next;
1763 
1764 	ATH_TXBUF_LOCK_ASSERT(sc);
1765 
1766 	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
1767 		/* NB: bf assumed clean */
1768 		STAILQ_REMOVE_HEAD(frags, bf_list);
1769 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1770 		ieee80211_node_decref(ni);
1771 	}
1772 }
1773 
1774 /*
1775  * Setup xmit of a fragmented frame.  Allocate a buffer
1776  * for each frag and bump the node reference count to
1777  * reflect the held reference to be setup by ath_tx_start.
1778  */
1779 static int
1780 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1781 	struct mbuf *m0, struct ieee80211_node *ni)
1782 {
1783 	struct mbuf *m;
1784 	struct ath_buf *bf;
1785 
1786 	ATH_TXBUF_LOCK(sc);
1787 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1788 		bf = _ath_getbuf_locked(sc);
1789 		if (bf == NULL) {	/* out of buffers, cleanup */
1790 			ath_txfrag_cleanup(sc, frags, ni);
1791 			break;
1792 		}
1793 		ieee80211_node_incref(ni);
1794 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1795 	}
1796 	ATH_TXBUF_UNLOCK(sc);
1797 
1798 	return !STAILQ_EMPTY(frags);
1799 }
1800 
1801 static void
1802 ath_start(struct ifnet *ifp)
1803 {
1804 	struct ath_softc *sc = ifp->if_softc;
1805 	struct ieee80211_node *ni;
1806 	struct ath_buf *bf;
1807 	struct mbuf *m, *next;
1808 	ath_bufhead frags;
1809 
1810 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1811 		return;
1812 	for (;;) {
1813 		/*
1814 		 * Grab a TX buffer and associated resources.
1815 		 */
1816 		bf = ath_getbuf(sc);
1817 		if (bf == NULL)
1818 			break;
1819 
1820 		IFQ_DEQUEUE(&ifp->if_snd, m);
1821 		if (m == NULL) {
1822 			ATH_TXBUF_LOCK(sc);
1823 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1824 			ATH_TXBUF_UNLOCK(sc);
1825 			break;
1826 		}
1827 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1828 		/*
1829 		 * Check for fragmentation.  If this frame
1830 		 * has been broken up verify we have enough
1831 		 * buffers to send all the fragments so all
1832 		 * go out or none...
1833 		 */
1834 		STAILQ_INIT(&frags);
1835 		if ((m->m_flags & M_FRAG) &&
1836 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1837 			DPRINTF(sc, ATH_DEBUG_XMIT,
1838 			    "%s: out of txfrag buffers\n", __func__);
1839 			sc->sc_stats.ast_tx_nofrag++;
1840 			ifp->if_oerrors++;
1841 			ath_freetx(m);
1842 			goto bad;
1843 		}
1844 		ifp->if_opackets++;
1845 	nextfrag:
1846 		/*
1847 		 * Pass the frame to the h/w for transmission.
1848 		 * Fragmented frames have each frag chained together
1849 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1850 		 * to send all the frags because of work done by
1851 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1852 		 * calling ath_tx_start so it can use it to extend the
1853 		 * the tx duration to cover the subsequent frag and
1854 		 * so it can reclaim all the mbufs in case of an error;
1855 		 * ath_tx_start clears m_nextpkt once it commits to
1856 		 * handing the frame to the hardware.
1857 		 */
1858 		next = m->m_nextpkt;
1859 		if (ath_tx_start(sc, ni, bf, m)) {
1860 	bad:
1861 			ifp->if_oerrors++;
1862 	reclaim:
1863 			bf->bf_m = NULL;
1864 			bf->bf_node = NULL;
1865 			ATH_TXBUF_LOCK(sc);
1866 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1867 			ath_txfrag_cleanup(sc, &frags, ni);
1868 			ATH_TXBUF_UNLOCK(sc);
1869 			if (ni != NULL)
1870 				ieee80211_free_node(ni);
1871 			continue;
1872 		}
1873 		if (next != NULL) {
1874 			/*
1875 			 * Beware of state changing between frags.
1876 			 * XXX check sta power-save state?
1877 			 */
1878 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1879 				DPRINTF(sc, ATH_DEBUG_XMIT,
1880 				    "%s: flush fragmented packet, state %s\n",
1881 				    __func__,
1882 				    ieee80211_state_name[ni->ni_vap->iv_state]);
1883 				ath_freetx(next);
1884 				goto reclaim;
1885 			}
1886 			m = next;
1887 			bf = STAILQ_FIRST(&frags);
1888 			KASSERT(bf != NULL, ("no buf for txfrag"));
1889 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1890 			goto nextfrag;
1891 		}
1892 
1893 		sc->sc_wd_timer = 5;
1894 	}
1895 }
1896 
1897 static int
1898 ath_media_change(struct ifnet *ifp)
1899 {
1900 	int error = ieee80211_media_change(ifp);
1901 	/* NB: only the fixed rate can change and that doesn't need a reset */
1902 	return (error == ENETRESET ? 0 : error);
1903 }
1904 
1905 #ifdef ATH_DEBUG
1906 static void
1907 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1908 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1909 {
1910 	static const char *ciphers[] = {
1911 		"WEP",
1912 		"AES-OCB",
1913 		"AES-CCM",
1914 		"CKIP",
1915 		"TKIP",
1916 		"CLR",
1917 	};
1918 	int i, n;
1919 
1920 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1921 	for (i = 0, n = hk->kv_len; i < n; i++)
1922 		printf("%02x", hk->kv_val[i]);
1923 	printf(" mac %s", ether_sprintf(mac));
1924 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1925 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1926 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1927 			printf("%02x", hk->kv_mic[i]);
1928 		if (!sc->sc_splitmic) {
1929 			printf(" txmic ");
1930 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1931 				printf("%02x", hk->kv_txmic[i]);
1932 		}
1933 	}
1934 	printf("\n");
1935 }
1936 #endif
1937 
1938 /*
1939  * Set a TKIP key into the hardware.  This handles the
1940  * potential distribution of key state to multiple key
1941  * cache slots for TKIP.
1942  */
1943 static int
1944 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1945 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1946 {
1947 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1948 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1949 	struct ath_hal *ah = sc->sc_ah;
1950 
1951 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1952 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1953 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1954 		if (sc->sc_splitmic) {
1955 			/*
1956 			 * TX key goes at first index, RX key at the rx index.
1957 			 * The hal handles the MIC keys at index+64.
1958 			 */
1959 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1960 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1961 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1962 				return 0;
1963 
1964 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1965 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1966 			/* XXX delete tx key on failure? */
1967 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1968 		} else {
1969 			/*
1970 			 * Room for both TX+RX MIC keys in one key cache
1971 			 * slot, just set key at the first index; the hal
1972 			 * will handle the rest.
1973 			 */
1974 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1975 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1976 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1977 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1978 		}
1979 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1980 		if (sc->sc_splitmic) {
1981 			/*
1982 			 * NB: must pass MIC key in expected location when
1983 			 * the keycache only holds one MIC key per entry.
1984 			 */
1985 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1986 		} else
1987 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1988 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1989 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1990 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1991 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1992 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1993 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1994 	}
1995 	return 0;
1996 #undef IEEE80211_KEY_XR
1997 }
1998 
1999 /*
2000  * Set a net80211 key into the hardware.  This handles the
2001  * potential distribution of key state to multiple key
2002  * cache slots for TKIP with hardware MIC support.
2003  */
2004 static int
2005 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2006 	struct ieee80211_node *bss)
2007 {
2008 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2009 	static const u_int8_t ciphermap[] = {
2010 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2011 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2012 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2013 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2014 		(u_int8_t) -1,		/* 4 is not allocated */
2015 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2016 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2017 	};
2018 	struct ath_hal *ah = sc->sc_ah;
2019 	const struct ieee80211_cipher *cip = k->wk_cipher;
2020 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2021 	const u_int8_t *mac;
2022 	HAL_KEYVAL hk;
2023 
2024 	memset(&hk, 0, sizeof(hk));
2025 	/*
2026 	 * Software crypto uses a "clear key" so non-crypto
2027 	 * state kept in the key cache are maintained and
2028 	 * so that rx frames have an entry to match.
2029 	 */
2030 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2031 		KASSERT(cip->ic_cipher < N(ciphermap),
2032 			("invalid cipher type %u", cip->ic_cipher));
2033 		hk.kv_type = ciphermap[cip->ic_cipher];
2034 		hk.kv_len = k->wk_keylen;
2035 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2036 	} else
2037 		hk.kv_type = HAL_CIPHER_CLR;
2038 
2039 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2040 		/*
2041 		 * Group keys on hardware that supports multicast frame
2042 		 * key search use a mac that is the sender's address with
2043 		 * the high bit set instead of the app-specified address.
2044 		 */
2045 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2046 		gmac[0] |= 0x80;
2047 		mac = gmac;
2048 	} else
2049 		mac = k->wk_macaddr;
2050 
2051 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2052 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2053 		return ath_keyset_tkip(sc, k, &hk, mac);
2054 	} else {
2055 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2056 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2057 	}
2058 #undef N
2059 }
2060 
2061 /*
2062  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2063  * each key, one for decrypt/encrypt and the other for the MIC.
2064  */
2065 static u_int16_t
2066 key_alloc_2pair(struct ath_softc *sc,
2067 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2068 {
2069 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2070 	u_int i, keyix;
2071 
2072 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2073 	/* XXX could optimize */
2074 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2075 		u_int8_t b = sc->sc_keymap[i];
2076 		if (b != 0xff) {
2077 			/*
2078 			 * One or more slots in this byte are free.
2079 			 */
2080 			keyix = i*NBBY;
2081 			while (b & 1) {
2082 		again:
2083 				keyix++;
2084 				b >>= 1;
2085 			}
2086 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2087 			if (isset(sc->sc_keymap, keyix+32) ||
2088 			    isset(sc->sc_keymap, keyix+64) ||
2089 			    isset(sc->sc_keymap, keyix+32+64)) {
2090 				/* full pair unavailable */
2091 				/* XXX statistic */
2092 				if (keyix == (i+1)*NBBY) {
2093 					/* no slots were appropriate, advance */
2094 					continue;
2095 				}
2096 				goto again;
2097 			}
2098 			setbit(sc->sc_keymap, keyix);
2099 			setbit(sc->sc_keymap, keyix+64);
2100 			setbit(sc->sc_keymap, keyix+32);
2101 			setbit(sc->sc_keymap, keyix+32+64);
2102 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2103 				"%s: key pair %u,%u %u,%u\n",
2104 				__func__, keyix, keyix+64,
2105 				keyix+32, keyix+32+64);
2106 			*txkeyix = keyix;
2107 			*rxkeyix = keyix+32;
2108 			return 1;
2109 		}
2110 	}
2111 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2112 	return 0;
2113 #undef N
2114 }
2115 
2116 /*
2117  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2118  * each key, one for decrypt/encrypt and the other for the MIC.
2119  */
2120 static u_int16_t
2121 key_alloc_pair(struct ath_softc *sc,
2122 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2123 {
2124 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2125 	u_int i, keyix;
2126 
2127 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2128 	/* XXX could optimize */
2129 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2130 		u_int8_t b = sc->sc_keymap[i];
2131 		if (b != 0xff) {
2132 			/*
2133 			 * One or more slots in this byte are free.
2134 			 */
2135 			keyix = i*NBBY;
2136 			while (b & 1) {
2137 		again:
2138 				keyix++;
2139 				b >>= 1;
2140 			}
2141 			if (isset(sc->sc_keymap, keyix+64)) {
2142 				/* full pair unavailable */
2143 				/* XXX statistic */
2144 				if (keyix == (i+1)*NBBY) {
2145 					/* no slots were appropriate, advance */
2146 					continue;
2147 				}
2148 				goto again;
2149 			}
2150 			setbit(sc->sc_keymap, keyix);
2151 			setbit(sc->sc_keymap, keyix+64);
2152 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2153 				"%s: key pair %u,%u\n",
2154 				__func__, keyix, keyix+64);
2155 			*txkeyix = *rxkeyix = keyix;
2156 			return 1;
2157 		}
2158 	}
2159 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2160 	return 0;
2161 #undef N
2162 }
2163 
2164 /*
2165  * Allocate a single key cache slot.
2166  */
2167 static int
2168 key_alloc_single(struct ath_softc *sc,
2169 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2170 {
2171 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2172 	u_int i, keyix;
2173 
2174 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2175 	for (i = 0; i < N(sc->sc_keymap); i++) {
2176 		u_int8_t b = sc->sc_keymap[i];
2177 		if (b != 0xff) {
2178 			/*
2179 			 * One or more slots are free.
2180 			 */
2181 			keyix = i*NBBY;
2182 			while (b & 1)
2183 				keyix++, b >>= 1;
2184 			setbit(sc->sc_keymap, keyix);
2185 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2186 				__func__, keyix);
2187 			*txkeyix = *rxkeyix = keyix;
2188 			return 1;
2189 		}
2190 	}
2191 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2192 	return 0;
2193 #undef N
2194 }
2195 
2196 /*
2197  * Allocate one or more key cache slots for a uniacst key.  The
2198  * key itself is needed only to identify the cipher.  For hardware
2199  * TKIP with split cipher+MIC keys we allocate two key cache slot
2200  * pairs so that we can setup separate TX and RX MIC keys.  Note
2201  * that the MIC key for a TKIP key at slot i is assumed by the
2202  * hardware to be at slot i+64.  This limits TKIP keys to the first
2203  * 64 entries.
2204  */
2205 static int
2206 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2207 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2208 {
2209 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2210 
2211 	/*
2212 	 * Group key allocation must be handled specially for
2213 	 * parts that do not support multicast key cache search
2214 	 * functionality.  For those parts the key id must match
2215 	 * the h/w key index so lookups find the right key.  On
2216 	 * parts w/ the key search facility we install the sender's
2217 	 * mac address (with the high bit set) and let the hardware
2218 	 * find the key w/o using the key id.  This is preferred as
2219 	 * it permits us to support multiple users for adhoc and/or
2220 	 * multi-station operation.
2221 	 */
2222 	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||	/* global key */
2223 	    ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) {
2224 		if (!(&vap->iv_nw_keys[0] <= k &&
2225 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2226 			/* should not happen */
2227 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2228 				"%s: bogus group key\n", __func__);
2229 			return 0;
2230 		}
2231 		/*
2232 		 * XXX we pre-allocate the global keys so
2233 		 * have no way to check if they've already been allocated.
2234 		 */
2235 		*keyix = *rxkeyix = k - vap->iv_nw_keys;
2236 		return 1;
2237 	}
2238 
2239 	/*
2240 	 * We allocate two pair for TKIP when using the h/w to do
2241 	 * the MIC.  For everything else, including software crypto,
2242 	 * we allocate a single entry.  Note that s/w crypto requires
2243 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2244 	 * not support pass-through cache entries and we map all
2245 	 * those requests to slot 0.
2246 	 */
2247 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2248 		return key_alloc_single(sc, keyix, rxkeyix);
2249 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2250 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2251 		if (sc->sc_splitmic)
2252 			return key_alloc_2pair(sc, keyix, rxkeyix);
2253 		else
2254 			return key_alloc_pair(sc, keyix, rxkeyix);
2255 	} else {
2256 		return key_alloc_single(sc, keyix, rxkeyix);
2257 	}
2258 }
2259 
2260 /*
2261  * Delete an entry in the key cache allocated by ath_key_alloc.
2262  */
2263 static int
2264 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2265 {
2266 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2267 	struct ath_hal *ah = sc->sc_ah;
2268 	const struct ieee80211_cipher *cip = k->wk_cipher;
2269 	u_int keyix = k->wk_keyix;
2270 
2271 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2272 
2273 	ath_hal_keyreset(ah, keyix);
2274 	/*
2275 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2276 	 */
2277 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2278 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2279 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2280 	if (keyix >= IEEE80211_WEP_NKID) {
2281 		/*
2282 		 * Don't touch keymap entries for global keys so
2283 		 * they are never considered for dynamic allocation.
2284 		 */
2285 		clrbit(sc->sc_keymap, keyix);
2286 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2287 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2288 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2289 			if (sc->sc_splitmic) {
2290 				/* +32 for RX key, +32+64 for RX key MIC */
2291 				clrbit(sc->sc_keymap, keyix+32);
2292 				clrbit(sc->sc_keymap, keyix+32+64);
2293 			}
2294 		}
2295 	}
2296 	return 1;
2297 }
2298 
2299 /*
2300  * Set the key cache contents for the specified key.  Key cache
2301  * slot(s) must already have been allocated by ath_key_alloc.
2302  */
2303 static int
2304 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2305 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2306 {
2307 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2308 
2309 	return ath_keyset(sc, k, vap->iv_bss);
2310 }
2311 
2312 /*
2313  * Block/unblock tx+rx processing while a key change is done.
2314  * We assume the caller serializes key management operations
2315  * so we only need to worry about synchronization with other
2316  * uses that originate in the driver.
2317  */
2318 static void
2319 ath_key_update_begin(struct ieee80211vap *vap)
2320 {
2321 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2322 	struct ath_softc *sc = ifp->if_softc;
2323 
2324 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2325 	taskqueue_block(sc->sc_tq);
2326 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2327 }
2328 
2329 static void
2330 ath_key_update_end(struct ieee80211vap *vap)
2331 {
2332 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2333 	struct ath_softc *sc = ifp->if_softc;
2334 
2335 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2336 	IF_UNLOCK(&ifp->if_snd);
2337 	taskqueue_unblock(sc->sc_tq);
2338 }
2339 
2340 /*
2341  * Calculate the receive filter according to the
2342  * operating mode and state:
2343  *
2344  * o always accept unicast, broadcast, and multicast traffic
2345  * o accept PHY error frames when hardware doesn't have MIB support
2346  *   to count and we need them for ANI (sta mode only until recently)
2347  *   and we are not scanning (ANI is disabled)
2348  *   NB: older hal's add rx filter bits out of sight and we need to
2349  *	 blindly preserve them
2350  * o probe request frames are accepted only when operating in
2351  *   hostap, adhoc, mesh, or monitor modes
2352  * o enable promiscuous mode
2353  *   - when in monitor mode
2354  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2355  * o accept beacons:
2356  *   - when operating in station mode for collecting rssi data when
2357  *     the station is otherwise quiet, or
2358  *   - when operating in adhoc mode so the 802.11 layer creates
2359  *     node table entries for peers,
2360  *   - when scanning
2361  *   - when doing s/w beacon miss (e.g. for ap+sta)
2362  *   - when operating in ap mode in 11g to detect overlapping bss that
2363  *     require protection
2364  *   - when operating in mesh mode to detect neighbors
2365  * o accept control frames:
2366  *   - when in monitor mode
2367  * XXX BAR frames for 11n
2368  * XXX HT protection for 11n
2369  */
2370 static u_int32_t
2371 ath_calcrxfilter(struct ath_softc *sc)
2372 {
2373 	struct ifnet *ifp = sc->sc_ifp;
2374 	struct ieee80211com *ic = ifp->if_l2com;
2375 	u_int32_t rfilt;
2376 
2377 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2378 	if (!sc->sc_needmib && !sc->sc_scanning)
2379 		rfilt |= HAL_RX_FILTER_PHYERR;
2380 	if (ic->ic_opmode != IEEE80211_M_STA)
2381 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2382 	/* XXX ic->ic_monvaps != 0? */
2383 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2384 		rfilt |= HAL_RX_FILTER_PROM;
2385 	if (ic->ic_opmode == IEEE80211_M_STA ||
2386 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2387 	    sc->sc_swbmiss || sc->sc_scanning)
2388 		rfilt |= HAL_RX_FILTER_BEACON;
2389 	/*
2390 	 * NB: We don't recalculate the rx filter when
2391 	 * ic_protmode changes; otherwise we could do
2392 	 * this only when ic_protmode != NONE.
2393 	 */
2394 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2395 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2396 		rfilt |= HAL_RX_FILTER_BEACON;
2397 	if (sc->sc_nmeshvaps) {
2398 		rfilt |= HAL_RX_FILTER_BEACON;
2399 		if (sc->sc_hasbmatch)
2400 			rfilt |= HAL_RX_FILTER_BSSID;
2401 		else
2402 			rfilt |= HAL_RX_FILTER_PROM;
2403 	}
2404 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2405 		rfilt |= HAL_RX_FILTER_CONTROL;
2406 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2407 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2408 	return rfilt;
2409 }
2410 
2411 static void
2412 ath_update_promisc(struct ifnet *ifp)
2413 {
2414 	struct ath_softc *sc = ifp->if_softc;
2415 	u_int32_t rfilt;
2416 
2417 	/* configure rx filter */
2418 	rfilt = ath_calcrxfilter(sc);
2419 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2420 
2421 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2422 }
2423 
2424 static void
2425 ath_update_mcast(struct ifnet *ifp)
2426 {
2427 	struct ath_softc *sc = ifp->if_softc;
2428 	u_int32_t mfilt[2];
2429 
2430 	/* calculate and install multicast filter */
2431 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2432 		struct ifmultiaddr *ifma;
2433 		/*
2434 		 * Merge multicast addresses to form the hardware filter.
2435 		 */
2436 		mfilt[0] = mfilt[1] = 0;
2437 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2438 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2439 			caddr_t dl;
2440 			u_int32_t val;
2441 			u_int8_t pos;
2442 
2443 			/* calculate XOR of eight 6bit values */
2444 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2445 			val = LE_READ_4(dl + 0);
2446 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2447 			val = LE_READ_4(dl + 3);
2448 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2449 			pos &= 0x3f;
2450 			mfilt[pos / 32] |= (1 << (pos % 32));
2451 		}
2452 		if_maddr_runlock(ifp);
2453 	} else
2454 		mfilt[0] = mfilt[1] = ~0;
2455 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2456 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2457 		__func__, mfilt[0], mfilt[1]);
2458 }
2459 
2460 static void
2461 ath_mode_init(struct ath_softc *sc)
2462 {
2463 	struct ifnet *ifp = sc->sc_ifp;
2464 	struct ath_hal *ah = sc->sc_ah;
2465 	u_int32_t rfilt;
2466 
2467 	/* configure rx filter */
2468 	rfilt = ath_calcrxfilter(sc);
2469 	ath_hal_setrxfilter(ah, rfilt);
2470 
2471 	/* configure operational mode */
2472 	ath_hal_setopmode(ah);
2473 
2474 	/* handle any link-level address change */
2475 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2476 
2477 	/* calculate and install multicast filter */
2478 	ath_update_mcast(ifp);
2479 }
2480 
2481 /*
2482  * Set the slot time based on the current setting.
2483  */
2484 static void
2485 ath_setslottime(struct ath_softc *sc)
2486 {
2487 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2488 	struct ath_hal *ah = sc->sc_ah;
2489 	u_int usec;
2490 
2491 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2492 		usec = 13;
2493 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2494 		usec = 21;
2495 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2496 		/* honor short/long slot time only in 11g */
2497 		/* XXX shouldn't honor on pure g or turbo g channel */
2498 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2499 			usec = HAL_SLOT_TIME_9;
2500 		else
2501 			usec = HAL_SLOT_TIME_20;
2502 	} else
2503 		usec = HAL_SLOT_TIME_9;
2504 
2505 	DPRINTF(sc, ATH_DEBUG_RESET,
2506 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2507 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2508 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2509 
2510 	ath_hal_setslottime(ah, usec);
2511 	sc->sc_updateslot = OK;
2512 }
2513 
2514 /*
2515  * Callback from the 802.11 layer to update the
2516  * slot time based on the current setting.
2517  */
2518 static void
2519 ath_updateslot(struct ifnet *ifp)
2520 {
2521 	struct ath_softc *sc = ifp->if_softc;
2522 	struct ieee80211com *ic = ifp->if_l2com;
2523 
2524 	/*
2525 	 * When not coordinating the BSS, change the hardware
2526 	 * immediately.  For other operation we defer the change
2527 	 * until beacon updates have propagated to the stations.
2528 	 */
2529 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2530 	    ic->ic_opmode == IEEE80211_M_MBSS)
2531 		sc->sc_updateslot = UPDATE;
2532 	else
2533 		ath_setslottime(sc);
2534 }
2535 
2536 /*
2537  * Setup a h/w transmit queue for beacons.
2538  */
2539 static int
2540 ath_beaconq_setup(struct ath_hal *ah)
2541 {
2542 	HAL_TXQ_INFO qi;
2543 
2544 	memset(&qi, 0, sizeof(qi));
2545 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2546 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2547 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2548 	/* NB: for dynamic turbo, don't enable any other interrupts */
2549 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2550 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2551 }
2552 
2553 /*
2554  * Setup the transmit queue parameters for the beacon queue.
2555  */
2556 static int
2557 ath_beaconq_config(struct ath_softc *sc)
2558 {
2559 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2560 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2561 	struct ath_hal *ah = sc->sc_ah;
2562 	HAL_TXQ_INFO qi;
2563 
2564 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2565 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2566 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2567 		/*
2568 		 * Always burst out beacon and CAB traffic.
2569 		 */
2570 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2571 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2572 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2573 	} else {
2574 		struct wmeParams *wmep =
2575 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2576 		/*
2577 		 * Adhoc mode; important thing is to use 2x cwmin.
2578 		 */
2579 		qi.tqi_aifs = wmep->wmep_aifsn;
2580 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2581 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2582 	}
2583 
2584 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2585 		device_printf(sc->sc_dev, "unable to update parameters for "
2586 			"beacon hardware queue!\n");
2587 		return 0;
2588 	} else {
2589 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2590 		return 1;
2591 	}
2592 #undef ATH_EXPONENT_TO_VALUE
2593 }
2594 
2595 /*
2596  * Allocate and setup an initial beacon frame.
2597  */
2598 static int
2599 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2600 {
2601 	struct ieee80211vap *vap = ni->ni_vap;
2602 	struct ath_vap *avp = ATH_VAP(vap);
2603 	struct ath_buf *bf;
2604 	struct mbuf *m;
2605 	int error;
2606 
2607 	bf = avp->av_bcbuf;
2608 	if (bf->bf_m != NULL) {
2609 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2610 		m_freem(bf->bf_m);
2611 		bf->bf_m = NULL;
2612 	}
2613 	if (bf->bf_node != NULL) {
2614 		ieee80211_free_node(bf->bf_node);
2615 		bf->bf_node = NULL;
2616 	}
2617 
2618 	/*
2619 	 * NB: the beacon data buffer must be 32-bit aligned;
2620 	 * we assume the mbuf routines will return us something
2621 	 * with this alignment (perhaps should assert).
2622 	 */
2623 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2624 	if (m == NULL) {
2625 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2626 		sc->sc_stats.ast_be_nombuf++;
2627 		return ENOMEM;
2628 	}
2629 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2630 				     bf->bf_segs, &bf->bf_nseg,
2631 				     BUS_DMA_NOWAIT);
2632 	if (error != 0) {
2633 		device_printf(sc->sc_dev,
2634 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2635 		    __func__, error);
2636 		m_freem(m);
2637 		return error;
2638 	}
2639 
2640 	/*
2641 	 * Calculate a TSF adjustment factor required for staggered
2642 	 * beacons.  Note that we assume the format of the beacon
2643 	 * frame leaves the tstamp field immediately following the
2644 	 * header.
2645 	 */
2646 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2647 		uint64_t tsfadjust;
2648 		struct ieee80211_frame *wh;
2649 
2650 		/*
2651 		 * The beacon interval is in TU's; the TSF is in usecs.
2652 		 * We figure out how many TU's to add to align the timestamp
2653 		 * then convert to TSF units and handle byte swapping before
2654 		 * inserting it in the frame.  The hardware will then add this
2655 		 * each time a beacon frame is sent.  Note that we align vap's
2656 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2657 		 * timestamp in one beacon interval while the others get a
2658 		 * timstamp aligned to the next interval.
2659 		 */
2660 		tsfadjust = ni->ni_intval *
2661 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2662 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2663 
2664 		DPRINTF(sc, ATH_DEBUG_BEACON,
2665 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2666 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2667 		    avp->av_bslot, ni->ni_intval,
2668 		    (long long unsigned) le64toh(tsfadjust));
2669 
2670 		wh = mtod(m, struct ieee80211_frame *);
2671 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2672 	}
2673 	bf->bf_m = m;
2674 	bf->bf_node = ieee80211_ref_node(ni);
2675 
2676 	return 0;
2677 }
2678 
2679 /*
2680  * Setup the beacon frame for transmit.
2681  */
2682 static void
2683 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2684 {
2685 #define	USE_SHPREAMBLE(_ic) \
2686 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2687 		== IEEE80211_F_SHPREAMBLE)
2688 	struct ieee80211_node *ni = bf->bf_node;
2689 	struct ieee80211com *ic = ni->ni_ic;
2690 	struct mbuf *m = bf->bf_m;
2691 	struct ath_hal *ah = sc->sc_ah;
2692 	struct ath_desc *ds;
2693 	int flags, antenna;
2694 	const HAL_RATE_TABLE *rt;
2695 	u_int8_t rix, rate;
2696 
2697 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2698 		__func__, m, m->m_len);
2699 
2700 	/* setup descriptors */
2701 	ds = bf->bf_desc;
2702 
2703 	flags = HAL_TXDESC_NOACK;
2704 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2705 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2706 		flags |= HAL_TXDESC_VEOL;
2707 		/*
2708 		 * Let hardware handle antenna switching.
2709 		 */
2710 		antenna = sc->sc_txantenna;
2711 	} else {
2712 		ds->ds_link = 0;
2713 		/*
2714 		 * Switch antenna every 4 beacons.
2715 		 * XXX assumes two antenna
2716 		 */
2717 		if (sc->sc_txantenna != 0)
2718 			antenna = sc->sc_txantenna;
2719 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2720 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2721 		else
2722 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2723 	}
2724 
2725 	KASSERT(bf->bf_nseg == 1,
2726 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2727 	ds->ds_data = bf->bf_segs[0].ds_addr;
2728 	/*
2729 	 * Calculate rate code.
2730 	 * XXX everything at min xmit rate
2731 	 */
2732 	rix = 0;
2733 	rt = sc->sc_currates;
2734 	rate = rt->info[rix].rateCode;
2735 	if (USE_SHPREAMBLE(ic))
2736 		rate |= rt->info[rix].shortPreamble;
2737 	ath_hal_setuptxdesc(ah, ds
2738 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2739 		, sizeof(struct ieee80211_frame)/* header length */
2740 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2741 		, ni->ni_txpower		/* txpower XXX */
2742 		, rate, 1			/* series 0 rate/tries */
2743 		, HAL_TXKEYIX_INVALID		/* no encryption */
2744 		, antenna			/* antenna mode */
2745 		, flags				/* no ack, veol for beacons */
2746 		, 0				/* rts/cts rate */
2747 		, 0				/* rts/cts duration */
2748 	);
2749 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2750 	ath_hal_filltxdesc(ah, ds
2751 		, roundup(m->m_len, 4)		/* buffer length */
2752 		, AH_TRUE			/* first segment */
2753 		, AH_TRUE			/* last segment */
2754 		, ds				/* first descriptor */
2755 	);
2756 #if 0
2757 	ath_desc_swap(ds);
2758 #endif
2759 #undef USE_SHPREAMBLE
2760 }
2761 
2762 static void
2763 ath_beacon_update(struct ieee80211vap *vap, int item)
2764 {
2765 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2766 
2767 	setbit(bo->bo_flags, item);
2768 }
2769 
2770 /*
2771  * Append the contents of src to dst; both queues
2772  * are assumed to be locked.
2773  */
2774 static void
2775 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2776 {
2777 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2778 	dst->axq_link = src->axq_link;
2779 	src->axq_link = NULL;
2780 	dst->axq_depth += src->axq_depth;
2781 	src->axq_depth = 0;
2782 }
2783 
2784 /*
2785  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2786  * frame contents are done as needed and the slot time is
2787  * also adjusted based on current state.
2788  */
2789 static void
2790 ath_beacon_proc(void *arg, int pending)
2791 {
2792 	struct ath_softc *sc = arg;
2793 	struct ath_hal *ah = sc->sc_ah;
2794 	struct ieee80211vap *vap;
2795 	struct ath_buf *bf;
2796 	int slot, otherant;
2797 	uint32_t bfaddr;
2798 
2799 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2800 		__func__, pending);
2801 	/*
2802 	 * Check if the previous beacon has gone out.  If
2803 	 * not don't try to post another, skip this period
2804 	 * and wait for the next.  Missed beacons indicate
2805 	 * a problem and should not occur.  If we miss too
2806 	 * many consecutive beacons reset the device.
2807 	 */
2808 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2809 		sc->sc_bmisscount++;
2810 		DPRINTF(sc, ATH_DEBUG_BEACON,
2811 			"%s: missed %u consecutive beacons\n",
2812 			__func__, sc->sc_bmisscount);
2813 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2814 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2815 		return;
2816 	}
2817 	if (sc->sc_bmisscount != 0) {
2818 		DPRINTF(sc, ATH_DEBUG_BEACON,
2819 			"%s: resume beacon xmit after %u misses\n",
2820 			__func__, sc->sc_bmisscount);
2821 		sc->sc_bmisscount = 0;
2822 	}
2823 
2824 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2825 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2826 		uint32_t tsftu;
2827 
2828 		tsftu = ath_hal_gettsf32(ah) >> 10;
2829 		/* XXX lintval */
2830 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2831 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2832 		bfaddr = 0;
2833 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2834 			bf = ath_beacon_generate(sc, vap);
2835 			if (bf != NULL)
2836 				bfaddr = bf->bf_daddr;
2837 		}
2838 	} else {					/* burst'd beacons */
2839 		uint32_t *bflink = &bfaddr;
2840 
2841 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2842 			vap = sc->sc_bslot[slot];
2843 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2844 				bf = ath_beacon_generate(sc, vap);
2845 				if (bf != NULL) {
2846 					*bflink = bf->bf_daddr;
2847 					bflink = &bf->bf_desc->ds_link;
2848 				}
2849 			}
2850 		}
2851 		*bflink = 0;				/* terminate list */
2852 	}
2853 
2854 	/*
2855 	 * Handle slot time change when a non-ERP station joins/leaves
2856 	 * an 11g network.  The 802.11 layer notifies us via callback,
2857 	 * we mark updateslot, then wait one beacon before effecting
2858 	 * the change.  This gives associated stations at least one
2859 	 * beacon interval to note the state change.
2860 	 */
2861 	/* XXX locking */
2862 	if (sc->sc_updateslot == UPDATE) {
2863 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2864 		sc->sc_slotupdate = slot;
2865 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2866 		ath_setslottime(sc);		/* commit change to h/w */
2867 
2868 	/*
2869 	 * Check recent per-antenna transmit statistics and flip
2870 	 * the default antenna if noticeably more frames went out
2871 	 * on the non-default antenna.
2872 	 * XXX assumes 2 anntenae
2873 	 */
2874 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2875 		otherant = sc->sc_defant & 1 ? 2 : 1;
2876 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2877 			ath_setdefantenna(sc, otherant);
2878 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2879 	}
2880 
2881 	if (bfaddr != 0) {
2882 		/*
2883 		 * Stop any current dma and put the new frame on the queue.
2884 		 * This should never fail since we check above that no frames
2885 		 * are still pending on the queue.
2886 		 */
2887 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2888 			DPRINTF(sc, ATH_DEBUG_ANY,
2889 				"%s: beacon queue %u did not stop?\n",
2890 				__func__, sc->sc_bhalq);
2891 		}
2892 		/* NB: cabq traffic should already be queued and primed */
2893 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2894 		ath_hal_txstart(ah, sc->sc_bhalq);
2895 
2896 		sc->sc_stats.ast_be_xmit++;
2897 	}
2898 }
2899 
2900 static struct ath_buf *
2901 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2902 {
2903 	struct ath_vap *avp = ATH_VAP(vap);
2904 	struct ath_txq *cabq = sc->sc_cabq;
2905 	struct ath_buf *bf;
2906 	struct mbuf *m;
2907 	int nmcastq, error;
2908 
2909 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2910 	    ("not running, state %d", vap->iv_state));
2911 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2912 
2913 	/*
2914 	 * Update dynamic beacon contents.  If this returns
2915 	 * non-zero then we need to remap the memory because
2916 	 * the beacon frame changed size (probably because
2917 	 * of the TIM bitmap).
2918 	 */
2919 	bf = avp->av_bcbuf;
2920 	m = bf->bf_m;
2921 	nmcastq = avp->av_mcastq.axq_depth;
2922 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2923 		/* XXX too conservative? */
2924 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2925 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2926 					     bf->bf_segs, &bf->bf_nseg,
2927 					     BUS_DMA_NOWAIT);
2928 		if (error != 0) {
2929 			if_printf(vap->iv_ifp,
2930 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2931 			    __func__, error);
2932 			return NULL;
2933 		}
2934 	}
2935 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2936 		DPRINTF(sc, ATH_DEBUG_BEACON,
2937 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2938 		    __func__, nmcastq, cabq->axq_depth);
2939 		sc->sc_stats.ast_cabq_busy++;
2940 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2941 			/*
2942 			 * CABQ traffic from a previous vap is still pending.
2943 			 * We must drain the q before this beacon frame goes
2944 			 * out as otherwise this vap's stations will get cab
2945 			 * frames from a different vap.
2946 			 * XXX could be slow causing us to miss DBA
2947 			 */
2948 			ath_tx_draintxq(sc, cabq);
2949 		}
2950 	}
2951 	ath_beacon_setup(sc, bf);
2952 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2953 
2954 	/*
2955 	 * Enable the CAB queue before the beacon queue to
2956 	 * insure cab frames are triggered by this beacon.
2957 	 */
2958 	if (avp->av_boff.bo_tim[4] & 1) {
2959 		struct ath_hal *ah = sc->sc_ah;
2960 
2961 		/* NB: only at DTIM */
2962 		ATH_TXQ_LOCK(cabq);
2963 		ATH_TXQ_LOCK(&avp->av_mcastq);
2964 		if (nmcastq) {
2965 			struct ath_buf *bfm;
2966 
2967 			/*
2968 			 * Move frames from the s/w mcast q to the h/w cab q.
2969 			 * XXX MORE_DATA bit
2970 			 */
2971 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2972 			if (cabq->axq_link != NULL) {
2973 				*cabq->axq_link = bfm->bf_daddr;
2974 			} else
2975 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2976 					bfm->bf_daddr);
2977 			ath_txqmove(cabq, &avp->av_mcastq);
2978 
2979 			sc->sc_stats.ast_cabq_xmit += nmcastq;
2980 		}
2981 		/* NB: gated by beacon so safe to start here */
2982 		ath_hal_txstart(ah, cabq->axq_qnum);
2983 		ATH_TXQ_UNLOCK(cabq);
2984 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
2985 	}
2986 	return bf;
2987 }
2988 
2989 static void
2990 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
2991 {
2992 	struct ath_vap *avp = ATH_VAP(vap);
2993 	struct ath_hal *ah = sc->sc_ah;
2994 	struct ath_buf *bf;
2995 	struct mbuf *m;
2996 	int error;
2997 
2998 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2999 
3000 	/*
3001 	 * Update dynamic beacon contents.  If this returns
3002 	 * non-zero then we need to remap the memory because
3003 	 * the beacon frame changed size (probably because
3004 	 * of the TIM bitmap).
3005 	 */
3006 	bf = avp->av_bcbuf;
3007 	m = bf->bf_m;
3008 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3009 		/* XXX too conservative? */
3010 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3011 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3012 					     bf->bf_segs, &bf->bf_nseg,
3013 					     BUS_DMA_NOWAIT);
3014 		if (error != 0) {
3015 			if_printf(vap->iv_ifp,
3016 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3017 			    __func__, error);
3018 			return;
3019 		}
3020 	}
3021 	ath_beacon_setup(sc, bf);
3022 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3023 
3024 	/* NB: caller is known to have already stopped tx dma */
3025 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3026 	ath_hal_txstart(ah, sc->sc_bhalq);
3027 }
3028 
3029 /*
3030  * Reset the hardware after detecting beacons have stopped.
3031  */
3032 static void
3033 ath_bstuck_proc(void *arg, int pending)
3034 {
3035 	struct ath_softc *sc = arg;
3036 	struct ifnet *ifp = sc->sc_ifp;
3037 
3038 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3039 		sc->sc_bmisscount);
3040 	sc->sc_stats.ast_bstuck++;
3041 	ath_reset(ifp);
3042 }
3043 
3044 /*
3045  * Reclaim beacon resources and return buffer to the pool.
3046  */
3047 static void
3048 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3049 {
3050 
3051 	if (bf->bf_m != NULL) {
3052 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3053 		m_freem(bf->bf_m);
3054 		bf->bf_m = NULL;
3055 	}
3056 	if (bf->bf_node != NULL) {
3057 		ieee80211_free_node(bf->bf_node);
3058 		bf->bf_node = NULL;
3059 	}
3060 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3061 }
3062 
3063 /*
3064  * Reclaim beacon resources.
3065  */
3066 static void
3067 ath_beacon_free(struct ath_softc *sc)
3068 {
3069 	struct ath_buf *bf;
3070 
3071 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3072 		if (bf->bf_m != NULL) {
3073 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3074 			m_freem(bf->bf_m);
3075 			bf->bf_m = NULL;
3076 		}
3077 		if (bf->bf_node != NULL) {
3078 			ieee80211_free_node(bf->bf_node);
3079 			bf->bf_node = NULL;
3080 		}
3081 	}
3082 }
3083 
3084 /*
3085  * Configure the beacon and sleep timers.
3086  *
3087  * When operating as an AP this resets the TSF and sets
3088  * up the hardware to notify us when we need to issue beacons.
3089  *
3090  * When operating in station mode this sets up the beacon
3091  * timers according to the timestamp of the last received
3092  * beacon and the current TSF, configures PCF and DTIM
3093  * handling, programs the sleep registers so the hardware
3094  * will wakeup in time to receive beacons, and configures
3095  * the beacon miss handling so we'll receive a BMISS
3096  * interrupt when we stop seeing beacons from the AP
3097  * we've associated with.
3098  */
3099 static void
3100 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3101 {
3102 #define	TSF_TO_TU(_h,_l) \
3103 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3104 #define	FUDGE	2
3105 	struct ath_hal *ah = sc->sc_ah;
3106 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3107 	struct ieee80211_node *ni;
3108 	u_int32_t nexttbtt, intval, tsftu;
3109 	u_int64_t tsf;
3110 
3111 	if (vap == NULL)
3112 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3113 	ni = vap->iv_bss;
3114 
3115 	/* extract tstamp from last beacon and convert to TU */
3116 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3117 			     LE_READ_4(ni->ni_tstamp.data));
3118 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3119 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3120 		/*
3121 		 * For multi-bss ap/mesh support beacons are either staggered
3122 		 * evenly over N slots or burst together.  For the former
3123 		 * arrange for the SWBA to be delivered for each slot.
3124 		 * Slots that are not occupied will generate nothing.
3125 		 */
3126 		/* NB: the beacon interval is kept internally in TU's */
3127 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3128 		if (sc->sc_stagbeacons)
3129 			intval /= ATH_BCBUF;
3130 	} else {
3131 		/* NB: the beacon interval is kept internally in TU's */
3132 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3133 	}
3134 	if (nexttbtt == 0)		/* e.g. for ap mode */
3135 		nexttbtt = intval;
3136 	else if (intval)		/* NB: can be 0 for monitor mode */
3137 		nexttbtt = roundup(nexttbtt, intval);
3138 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3139 		__func__, nexttbtt, intval, ni->ni_intval);
3140 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3141 		HAL_BEACON_STATE bs;
3142 		int dtimperiod, dtimcount;
3143 		int cfpperiod, cfpcount;
3144 
3145 		/*
3146 		 * Setup dtim and cfp parameters according to
3147 		 * last beacon we received (which may be none).
3148 		 */
3149 		dtimperiod = ni->ni_dtim_period;
3150 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3151 			dtimperiod = 1;
3152 		dtimcount = ni->ni_dtim_count;
3153 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3154 			dtimcount = 0;		/* XXX? */
3155 		cfpperiod = 1;			/* NB: no PCF support yet */
3156 		cfpcount = 0;
3157 		/*
3158 		 * Pull nexttbtt forward to reflect the current
3159 		 * TSF and calculate dtim+cfp state for the result.
3160 		 */
3161 		tsf = ath_hal_gettsf64(ah);
3162 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3163 		do {
3164 			nexttbtt += intval;
3165 			if (--dtimcount < 0) {
3166 				dtimcount = dtimperiod - 1;
3167 				if (--cfpcount < 0)
3168 					cfpcount = cfpperiod - 1;
3169 			}
3170 		} while (nexttbtt < tsftu);
3171 		memset(&bs, 0, sizeof(bs));
3172 		bs.bs_intval = intval;
3173 		bs.bs_nexttbtt = nexttbtt;
3174 		bs.bs_dtimperiod = dtimperiod*intval;
3175 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3176 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3177 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3178 		bs.bs_cfpmaxduration = 0;
3179 #if 0
3180 		/*
3181 		 * The 802.11 layer records the offset to the DTIM
3182 		 * bitmap while receiving beacons; use it here to
3183 		 * enable h/w detection of our AID being marked in
3184 		 * the bitmap vector (to indicate frames for us are
3185 		 * pending at the AP).
3186 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3187 		 * XXX enable based on h/w rev for newer chips
3188 		 */
3189 		bs.bs_timoffset = ni->ni_timoff;
3190 #endif
3191 		/*
3192 		 * Calculate the number of consecutive beacons to miss
3193 		 * before taking a BMISS interrupt.
3194 		 * Note that we clamp the result to at most 10 beacons.
3195 		 */
3196 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3197 		if (bs.bs_bmissthreshold > 10)
3198 			bs.bs_bmissthreshold = 10;
3199 		else if (bs.bs_bmissthreshold <= 0)
3200 			bs.bs_bmissthreshold = 1;
3201 
3202 		/*
3203 		 * Calculate sleep duration.  The configuration is
3204 		 * given in ms.  We insure a multiple of the beacon
3205 		 * period is used.  Also, if the sleep duration is
3206 		 * greater than the DTIM period then it makes senses
3207 		 * to make it a multiple of that.
3208 		 *
3209 		 * XXX fixed at 100ms
3210 		 */
3211 		bs.bs_sleepduration =
3212 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3213 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3214 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3215 
3216 		DPRINTF(sc, ATH_DEBUG_BEACON,
3217 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3218 			, __func__
3219 			, tsf, tsftu
3220 			, bs.bs_intval
3221 			, bs.bs_nexttbtt
3222 			, bs.bs_dtimperiod
3223 			, bs.bs_nextdtim
3224 			, bs.bs_bmissthreshold
3225 			, bs.bs_sleepduration
3226 			, bs.bs_cfpperiod
3227 			, bs.bs_cfpmaxduration
3228 			, bs.bs_cfpnext
3229 			, bs.bs_timoffset
3230 		);
3231 		ath_hal_intrset(ah, 0);
3232 		ath_hal_beacontimers(ah, &bs);
3233 		sc->sc_imask |= HAL_INT_BMISS;
3234 		ath_hal_intrset(ah, sc->sc_imask);
3235 	} else {
3236 		ath_hal_intrset(ah, 0);
3237 		if (nexttbtt == intval)
3238 			intval |= HAL_BEACON_RESET_TSF;
3239 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3240 			/*
3241 			 * In IBSS mode enable the beacon timers but only
3242 			 * enable SWBA interrupts if we need to manually
3243 			 * prepare beacon frames.  Otherwise we use a
3244 			 * self-linked tx descriptor and let the hardware
3245 			 * deal with things.
3246 			 */
3247 			intval |= HAL_BEACON_ENA;
3248 			if (!sc->sc_hasveol)
3249 				sc->sc_imask |= HAL_INT_SWBA;
3250 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3251 				/*
3252 				 * Pull nexttbtt forward to reflect
3253 				 * the current TSF.
3254 				 */
3255 				tsf = ath_hal_gettsf64(ah);
3256 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3257 				do {
3258 					nexttbtt += intval;
3259 				} while (nexttbtt < tsftu);
3260 			}
3261 			ath_beaconq_config(sc);
3262 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3263 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3264 			/*
3265 			 * In AP/mesh mode we enable the beacon timers
3266 			 * and SWBA interrupts to prepare beacon frames.
3267 			 */
3268 			intval |= HAL_BEACON_ENA;
3269 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3270 			ath_beaconq_config(sc);
3271 		}
3272 		ath_hal_beaconinit(ah, nexttbtt, intval);
3273 		sc->sc_bmisscount = 0;
3274 		ath_hal_intrset(ah, sc->sc_imask);
3275 		/*
3276 		 * When using a self-linked beacon descriptor in
3277 		 * ibss mode load it once here.
3278 		 */
3279 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3280 			ath_beacon_start_adhoc(sc, vap);
3281 	}
3282 	sc->sc_syncbeacon = 0;
3283 #undef FUDGE
3284 #undef TSF_TO_TU
3285 }
3286 
3287 static void
3288 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3289 {
3290 	bus_addr_t *paddr = (bus_addr_t*) arg;
3291 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3292 	*paddr = segs->ds_addr;
3293 }
3294 
3295 static int
3296 ath_descdma_setup(struct ath_softc *sc,
3297 	struct ath_descdma *dd, ath_bufhead *head,
3298 	const char *name, int nbuf, int ndesc)
3299 {
3300 #define	DS2PHYS(_dd, _ds) \
3301 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3302 	struct ifnet *ifp = sc->sc_ifp;
3303 	struct ath_desc *ds;
3304 	struct ath_buf *bf;
3305 	int i, bsize, error;
3306 
3307 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3308 	    __func__, name, nbuf, ndesc);
3309 
3310 	dd->dd_name = name;
3311 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3312 
3313 	/*
3314 	 * Setup DMA descriptor area.
3315 	 */
3316 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3317 		       PAGE_SIZE, 0,		/* alignment, bounds */
3318 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3319 		       BUS_SPACE_MAXADDR,	/* highaddr */
3320 		       NULL, NULL,		/* filter, filterarg */
3321 		       dd->dd_desc_len,		/* maxsize */
3322 		       1,			/* nsegments */
3323 		       dd->dd_desc_len,		/* maxsegsize */
3324 		       BUS_DMA_ALLOCNOW,	/* flags */
3325 		       NULL,			/* lockfunc */
3326 		       NULL,			/* lockarg */
3327 		       &dd->dd_dmat);
3328 	if (error != 0) {
3329 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3330 		return error;
3331 	}
3332 
3333 	/* allocate descriptors */
3334 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3335 	if (error != 0) {
3336 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3337 			"error %u\n", dd->dd_name, error);
3338 		goto fail0;
3339 	}
3340 
3341 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3342 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3343 				 &dd->dd_dmamap);
3344 	if (error != 0) {
3345 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3346 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3347 		goto fail1;
3348 	}
3349 
3350 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3351 				dd->dd_desc, dd->dd_desc_len,
3352 				ath_load_cb, &dd->dd_desc_paddr,
3353 				BUS_DMA_NOWAIT);
3354 	if (error != 0) {
3355 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3356 			dd->dd_name, error);
3357 		goto fail2;
3358 	}
3359 
3360 	ds = dd->dd_desc;
3361 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3362 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3363 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3364 
3365 	/* allocate rx buffers */
3366 	bsize = sizeof(struct ath_buf) * nbuf;
3367 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3368 	if (bf == NULL) {
3369 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3370 			dd->dd_name, bsize);
3371 		goto fail3;
3372 	}
3373 	dd->dd_bufptr = bf;
3374 
3375 	STAILQ_INIT(head);
3376 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3377 		bf->bf_desc = ds;
3378 		bf->bf_daddr = DS2PHYS(dd, ds);
3379 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3380 				&bf->bf_dmamap);
3381 		if (error != 0) {
3382 			if_printf(ifp, "unable to create dmamap for %s "
3383 				"buffer %u, error %u\n", dd->dd_name, i, error);
3384 			ath_descdma_cleanup(sc, dd, head);
3385 			return error;
3386 		}
3387 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3388 	}
3389 	return 0;
3390 fail3:
3391 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3392 fail2:
3393 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3394 fail1:
3395 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3396 fail0:
3397 	bus_dma_tag_destroy(dd->dd_dmat);
3398 	memset(dd, 0, sizeof(*dd));
3399 	return error;
3400 #undef DS2PHYS
3401 }
3402 
3403 static void
3404 ath_descdma_cleanup(struct ath_softc *sc,
3405 	struct ath_descdma *dd, ath_bufhead *head)
3406 {
3407 	struct ath_buf *bf;
3408 	struct ieee80211_node *ni;
3409 
3410 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3411 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3412 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3413 	bus_dma_tag_destroy(dd->dd_dmat);
3414 
3415 	STAILQ_FOREACH(bf, head, bf_list) {
3416 		if (bf->bf_m) {
3417 			m_freem(bf->bf_m);
3418 			bf->bf_m = NULL;
3419 		}
3420 		if (bf->bf_dmamap != NULL) {
3421 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3422 			bf->bf_dmamap = NULL;
3423 		}
3424 		ni = bf->bf_node;
3425 		bf->bf_node = NULL;
3426 		if (ni != NULL) {
3427 			/*
3428 			 * Reclaim node reference.
3429 			 */
3430 			ieee80211_free_node(ni);
3431 		}
3432 	}
3433 
3434 	STAILQ_INIT(head);
3435 	free(dd->dd_bufptr, M_ATHDEV);
3436 	memset(dd, 0, sizeof(*dd));
3437 }
3438 
3439 static int
3440 ath_desc_alloc(struct ath_softc *sc)
3441 {
3442 	int error;
3443 
3444 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3445 			"rx", ath_rxbuf, 1);
3446 	if (error != 0)
3447 		return error;
3448 
3449 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3450 			"tx", ath_txbuf, ATH_TXDESC);
3451 	if (error != 0) {
3452 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3453 		return error;
3454 	}
3455 
3456 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3457 			"beacon", ATH_BCBUF, 1);
3458 	if (error != 0) {
3459 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3460 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3461 		return error;
3462 	}
3463 	return 0;
3464 }
3465 
3466 static void
3467 ath_desc_free(struct ath_softc *sc)
3468 {
3469 
3470 	if (sc->sc_bdma.dd_desc_len != 0)
3471 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3472 	if (sc->sc_txdma.dd_desc_len != 0)
3473 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3474 	if (sc->sc_rxdma.dd_desc_len != 0)
3475 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3476 }
3477 
3478 static struct ieee80211_node *
3479 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3480 {
3481 	struct ieee80211com *ic = vap->iv_ic;
3482 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3483 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3484 	struct ath_node *an;
3485 
3486 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3487 	if (an == NULL) {
3488 		/* XXX stat+msg */
3489 		return NULL;
3490 	}
3491 	ath_rate_node_init(sc, an);
3492 
3493 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3494 	return &an->an_node;
3495 }
3496 
3497 static void
3498 ath_node_free(struct ieee80211_node *ni)
3499 {
3500 	struct ieee80211com *ic = ni->ni_ic;
3501         struct ath_softc *sc = ic->ic_ifp->if_softc;
3502 
3503 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3504 
3505 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3506 	sc->sc_node_free(ni);
3507 }
3508 
3509 static void
3510 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3511 {
3512 	struct ieee80211com *ic = ni->ni_ic;
3513 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3514 	struct ath_hal *ah = sc->sc_ah;
3515 
3516 	*rssi = ic->ic_node_getrssi(ni);
3517 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3518 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3519 	else
3520 		*noise = -95;		/* nominally correct */
3521 }
3522 
3523 static int
3524 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3525 {
3526 	struct ath_hal *ah = sc->sc_ah;
3527 	int error;
3528 	struct mbuf *m;
3529 	struct ath_desc *ds;
3530 
3531 	m = bf->bf_m;
3532 	if (m == NULL) {
3533 		/*
3534 		 * NB: by assigning a page to the rx dma buffer we
3535 		 * implicitly satisfy the Atheros requirement that
3536 		 * this buffer be cache-line-aligned and sized to be
3537 		 * multiple of the cache line size.  Not doing this
3538 		 * causes weird stuff to happen (for the 5210 at least).
3539 		 */
3540 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3541 		if (m == NULL) {
3542 			DPRINTF(sc, ATH_DEBUG_ANY,
3543 				"%s: no mbuf/cluster\n", __func__);
3544 			sc->sc_stats.ast_rx_nombuf++;
3545 			return ENOMEM;
3546 		}
3547 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3548 
3549 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3550 					     bf->bf_dmamap, m,
3551 					     bf->bf_segs, &bf->bf_nseg,
3552 					     BUS_DMA_NOWAIT);
3553 		if (error != 0) {
3554 			DPRINTF(sc, ATH_DEBUG_ANY,
3555 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3556 			    __func__, error);
3557 			sc->sc_stats.ast_rx_busdma++;
3558 			m_freem(m);
3559 			return error;
3560 		}
3561 		KASSERT(bf->bf_nseg == 1,
3562 			("multi-segment packet; nseg %u", bf->bf_nseg));
3563 		bf->bf_m = m;
3564 	}
3565 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3566 
3567 	/*
3568 	 * Setup descriptors.  For receive we always terminate
3569 	 * the descriptor list with a self-linked entry so we'll
3570 	 * not get overrun under high load (as can happen with a
3571 	 * 5212 when ANI processing enables PHY error frames).
3572 	 *
3573 	 * To insure the last descriptor is self-linked we create
3574 	 * each descriptor as self-linked and add it to the end.  As
3575 	 * each additional descriptor is added the previous self-linked
3576 	 * entry is ``fixed'' naturally.  This should be safe even
3577 	 * if DMA is happening.  When processing RX interrupts we
3578 	 * never remove/process the last, self-linked, entry on the
3579 	 * descriptor list.  This insures the hardware always has
3580 	 * someplace to write a new frame.
3581 	 */
3582 	ds = bf->bf_desc;
3583 	ds->ds_link = bf->bf_daddr;	/* link to self */
3584 	ds->ds_data = bf->bf_segs[0].ds_addr;
3585 	ath_hal_setuprxdesc(ah, ds
3586 		, m->m_len		/* buffer size */
3587 		, 0
3588 	);
3589 
3590 	if (sc->sc_rxlink != NULL)
3591 		*sc->sc_rxlink = bf->bf_daddr;
3592 	sc->sc_rxlink = &ds->ds_link;
3593 	return 0;
3594 }
3595 
3596 /*
3597  * Extend 15-bit time stamp from rx descriptor to
3598  * a full 64-bit TSF using the specified TSF.
3599  */
3600 static __inline u_int64_t
3601 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3602 {
3603 	if ((tsf & 0x7fff) < rstamp)
3604 		tsf -= 0x8000;
3605 	return ((tsf &~ 0x7fff) | rstamp);
3606 }
3607 
3608 /*
3609  * Intercept management frames to collect beacon rssi data
3610  * and to do ibss merges.
3611  */
3612 static void
3613 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3614 	int subtype, int rssi, int nf)
3615 {
3616 	struct ieee80211vap *vap = ni->ni_vap;
3617 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3618 
3619 	/*
3620 	 * Call up first so subsequent work can use information
3621 	 * potentially stored in the node (e.g. for ibss merge).
3622 	 */
3623 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3624 	switch (subtype) {
3625 	case IEEE80211_FC0_SUBTYPE_BEACON:
3626 		/* update rssi statistics for use by the hal */
3627 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3628 		if (sc->sc_syncbeacon &&
3629 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3630 			/*
3631 			 * Resync beacon timers using the tsf of the beacon
3632 			 * frame we just received.
3633 			 */
3634 			ath_beacon_config(sc, vap);
3635 		}
3636 		/* fall thru... */
3637 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3638 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3639 		    vap->iv_state == IEEE80211_S_RUN) {
3640 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3641 			u_int64_t tsf = ath_extend_tsf(rstamp,
3642 				ath_hal_gettsf64(sc->sc_ah));
3643 			/*
3644 			 * Handle ibss merge as needed; check the tsf on the
3645 			 * frame before attempting the merge.  The 802.11 spec
3646 			 * says the station should change it's bssid to match
3647 			 * the oldest station with the same ssid, where oldest
3648 			 * is determined by the tsf.  Note that hardware
3649 			 * reconfiguration happens through callback to
3650 			 * ath_newstate as the state machine will go from
3651 			 * RUN -> RUN when this happens.
3652 			 */
3653 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3654 				DPRINTF(sc, ATH_DEBUG_STATE,
3655 				    "ibss merge, rstamp %u tsf %ju "
3656 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3657 				    (uintmax_t)ni->ni_tstamp.tsf);
3658 				(void) ieee80211_ibss_merge(ni);
3659 			}
3660 		}
3661 		break;
3662 	}
3663 }
3664 
3665 /*
3666  * Set the default antenna.
3667  */
3668 static void
3669 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3670 {
3671 	struct ath_hal *ah = sc->sc_ah;
3672 
3673 	/* XXX block beacon interrupts */
3674 	ath_hal_setdefantenna(ah, antenna);
3675 	if (sc->sc_defant != antenna)
3676 		sc->sc_stats.ast_ant_defswitch++;
3677 	sc->sc_defant = antenna;
3678 	sc->sc_rxotherant = 0;
3679 }
3680 
3681 static void
3682 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3683 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3684 {
3685 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3686 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3687 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3688 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3689 	struct ath_softc *sc = ifp->if_softc;
3690 	const HAL_RATE_TABLE *rt;
3691 	uint8_t rix;
3692 
3693 	rt = sc->sc_currates;
3694 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3695 	rix = rt->rateCodeToIndex[rs->rs_rate];
3696 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3697 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3698 #ifdef AH_SUPPORT_AR5416
3699 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3700 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3701 		struct ieee80211com *ic = ifp->if_l2com;
3702 
3703 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3704 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3705 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3706 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3707 		else
3708 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3709 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3710 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3711 	}
3712 #endif
3713 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3714 	if (rs->rs_status & HAL_RXERR_CRC)
3715 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3716 	/* XXX propagate other error flags from descriptor */
3717 	sc->sc_rx_th.wr_antnoise = nf;
3718 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3719 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3720 #undef CHAN_HT
3721 #undef CHAN_HT20
3722 #undef CHAN_HT40U
3723 #undef CHAN_HT40D
3724 }
3725 
3726 static void
3727 ath_handle_micerror(struct ieee80211com *ic,
3728 	struct ieee80211_frame *wh, int keyix)
3729 {
3730 	struct ieee80211_node *ni;
3731 
3732 	/* XXX recheck MIC to deal w/ chips that lie */
3733 	/* XXX discard MIC errors on !data frames */
3734 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3735 	if (ni != NULL) {
3736 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3737 		ieee80211_free_node(ni);
3738 	}
3739 }
3740 
3741 static void
3742 ath_rx_proc(void *arg, int npending)
3743 {
3744 #define	PA2DESC(_sc, _pa) \
3745 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3746 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3747 	struct ath_softc *sc = arg;
3748 	struct ath_buf *bf;
3749 	struct ifnet *ifp = sc->sc_ifp;
3750 	struct ieee80211com *ic = ifp->if_l2com;
3751 	struct ath_hal *ah = sc->sc_ah;
3752 	struct ath_desc *ds;
3753 	struct ath_rx_status *rs;
3754 	struct mbuf *m;
3755 	struct ieee80211_node *ni;
3756 	int len, type, ngood;
3757 	u_int phyerr;
3758 	HAL_STATUS status;
3759 	int16_t nf;
3760 	u_int64_t tsf;
3761 
3762 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3763 	ngood = 0;
3764 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3765 	sc->sc_stats.ast_rx_noise = nf;
3766 	tsf = ath_hal_gettsf64(ah);
3767 	do {
3768 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3769 		if (bf == NULL) {		/* NB: shouldn't happen */
3770 			if_printf(ifp, "%s: no buffer!\n", __func__);
3771 			break;
3772 		}
3773 		m = bf->bf_m;
3774 		if (m == NULL) {		/* NB: shouldn't happen */
3775 			/*
3776 			 * If mbuf allocation failed previously there
3777 			 * will be no mbuf; try again to re-populate it.
3778 			 */
3779 			/* XXX make debug msg */
3780 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3781 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3782 			goto rx_next;
3783 		}
3784 		ds = bf->bf_desc;
3785 		if (ds->ds_link == bf->bf_daddr) {
3786 			/* NB: never process the self-linked entry at the end */
3787 			break;
3788 		}
3789 		/* XXX sync descriptor memory */
3790 		/*
3791 		 * Must provide the virtual address of the current
3792 		 * descriptor, the physical address, and the virtual
3793 		 * address of the next descriptor in the h/w chain.
3794 		 * This allows the HAL to look ahead to see if the
3795 		 * hardware is done with a descriptor by checking the
3796 		 * done bit in the following descriptor and the address
3797 		 * of the current descriptor the DMA engine is working
3798 		 * on.  All this is necessary because of our use of
3799 		 * a self-linked list to avoid rx overruns.
3800 		 */
3801 		rs = &bf->bf_status.ds_rxstat;
3802 		status = ath_hal_rxprocdesc(ah, ds,
3803 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3804 #ifdef ATH_DEBUG
3805 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3806 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3807 #endif
3808 		if (status == HAL_EINPROGRESS)
3809 			break;
3810 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3811 		if (rs->rs_status != 0) {
3812 			if (rs->rs_status & HAL_RXERR_CRC)
3813 				sc->sc_stats.ast_rx_crcerr++;
3814 			if (rs->rs_status & HAL_RXERR_FIFO)
3815 				sc->sc_stats.ast_rx_fifoerr++;
3816 			if (rs->rs_status & HAL_RXERR_PHY) {
3817 				sc->sc_stats.ast_rx_phyerr++;
3818 				phyerr = rs->rs_phyerr & 0x1f;
3819 				sc->sc_stats.ast_rx_phy[phyerr]++;
3820 				goto rx_error;	/* NB: don't count in ierrors */
3821 			}
3822 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3823 				/*
3824 				 * Decrypt error.  If the error occurred
3825 				 * because there was no hardware key, then
3826 				 * let the frame through so the upper layers
3827 				 * can process it.  This is necessary for 5210
3828 				 * parts which have no way to setup a ``clear''
3829 				 * key cache entry.
3830 				 *
3831 				 * XXX do key cache faulting
3832 				 */
3833 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3834 					goto rx_accept;
3835 				sc->sc_stats.ast_rx_badcrypt++;
3836 			}
3837 			if (rs->rs_status & HAL_RXERR_MIC) {
3838 				sc->sc_stats.ast_rx_badmic++;
3839 				/*
3840 				 * Do minimal work required to hand off
3841 				 * the 802.11 header for notification.
3842 				 */
3843 				/* XXX frag's and qos frames */
3844 				len = rs->rs_datalen;
3845 				if (len >= sizeof (struct ieee80211_frame)) {
3846 					bus_dmamap_sync(sc->sc_dmat,
3847 					    bf->bf_dmamap,
3848 					    BUS_DMASYNC_POSTREAD);
3849 					ath_handle_micerror(ic,
3850 					    mtod(m, struct ieee80211_frame *),
3851 					    sc->sc_splitmic ?
3852 						rs->rs_keyix-32 : rs->rs_keyix);
3853 				}
3854 			}
3855 			ifp->if_ierrors++;
3856 rx_error:
3857 			/*
3858 			 * Cleanup any pending partial frame.
3859 			 */
3860 			if (sc->sc_rxpending != NULL) {
3861 				m_freem(sc->sc_rxpending);
3862 				sc->sc_rxpending = NULL;
3863 			}
3864 			/*
3865 			 * When a tap is present pass error frames
3866 			 * that have been requested.  By default we
3867 			 * pass decrypt+mic errors but others may be
3868 			 * interesting (e.g. crc).
3869 			 */
3870 			if (ieee80211_radiotap_active(ic) &&
3871 			    (rs->rs_status & sc->sc_monpass)) {
3872 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3873 				    BUS_DMASYNC_POSTREAD);
3874 				/* NB: bpf needs the mbuf length setup */
3875 				len = rs->rs_datalen;
3876 				m->m_pkthdr.len = m->m_len = len;
3877 				ath_rx_tap(ifp, m, rs, tsf, nf);
3878 				ieee80211_radiotap_rx_all(ic, m);
3879 			}
3880 			/* XXX pass MIC errors up for s/w reclaculation */
3881 			goto rx_next;
3882 		}
3883 rx_accept:
3884 		/*
3885 		 * Sync and unmap the frame.  At this point we're
3886 		 * committed to passing the mbuf somewhere so clear
3887 		 * bf_m; this means a new mbuf must be allocated
3888 		 * when the rx descriptor is setup again to receive
3889 		 * another frame.
3890 		 */
3891 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3892 		    BUS_DMASYNC_POSTREAD);
3893 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3894 		bf->bf_m = NULL;
3895 
3896 		len = rs->rs_datalen;
3897 		m->m_len = len;
3898 
3899 		if (rs->rs_more) {
3900 			/*
3901 			 * Frame spans multiple descriptors; save
3902 			 * it for the next completed descriptor, it
3903 			 * will be used to construct a jumbogram.
3904 			 */
3905 			if (sc->sc_rxpending != NULL) {
3906 				/* NB: max frame size is currently 2 clusters */
3907 				sc->sc_stats.ast_rx_toobig++;
3908 				m_freem(sc->sc_rxpending);
3909 			}
3910 			m->m_pkthdr.rcvif = ifp;
3911 			m->m_pkthdr.len = len;
3912 			sc->sc_rxpending = m;
3913 			goto rx_next;
3914 		} else if (sc->sc_rxpending != NULL) {
3915 			/*
3916 			 * This is the second part of a jumbogram,
3917 			 * chain it to the first mbuf, adjust the
3918 			 * frame length, and clear the rxpending state.
3919 			 */
3920 			sc->sc_rxpending->m_next = m;
3921 			sc->sc_rxpending->m_pkthdr.len += len;
3922 			m = sc->sc_rxpending;
3923 			sc->sc_rxpending = NULL;
3924 		} else {
3925 			/*
3926 			 * Normal single-descriptor receive; setup
3927 			 * the rcvif and packet length.
3928 			 */
3929 			m->m_pkthdr.rcvif = ifp;
3930 			m->m_pkthdr.len = len;
3931 		}
3932 
3933 		ifp->if_ipackets++;
3934 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3935 
3936 		/*
3937 		 * Populate the rx status block.  When there are bpf
3938 		 * listeners we do the additional work to provide
3939 		 * complete status.  Otherwise we fill in only the
3940 		 * material required by ieee80211_input.  Note that
3941 		 * noise setting is filled in above.
3942 		 */
3943 		if (ieee80211_radiotap_active(ic))
3944 			ath_rx_tap(ifp, m, rs, tsf, nf);
3945 
3946 		/*
3947 		 * From this point on we assume the frame is at least
3948 		 * as large as ieee80211_frame_min; verify that.
3949 		 */
3950 		if (len < IEEE80211_MIN_LEN) {
3951 			if (!ieee80211_radiotap_active(ic)) {
3952 				DPRINTF(sc, ATH_DEBUG_RECV,
3953 				    "%s: short packet %d\n", __func__, len);
3954 				sc->sc_stats.ast_rx_tooshort++;
3955 			} else {
3956 				/* NB: in particular this captures ack's */
3957 				ieee80211_radiotap_rx_all(ic, m);
3958 			}
3959 			m_freem(m);
3960 			goto rx_next;
3961 		}
3962 
3963 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3964 			const HAL_RATE_TABLE *rt = sc->sc_currates;
3965 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3966 
3967 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3968 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3969 		}
3970 
3971 		m_adj(m, -IEEE80211_CRC_LEN);
3972 
3973 		/*
3974 		 * Locate the node for sender, track state, and then
3975 		 * pass the (referenced) node up to the 802.11 layer
3976 		 * for its use.
3977 		 */
3978 		ni = ieee80211_find_rxnode_withkey(ic,
3979 			mtod(m, const struct ieee80211_frame_min *),
3980 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3981 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3982 		if (ni != NULL) {
3983 			/*
3984 			 * Sending station is known, dispatch directly.
3985 			 */
3986 			sc->sc_lastrs = rs;
3987 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
3988 			ieee80211_free_node(ni);
3989 			/*
3990 			 * Arrange to update the last rx timestamp only for
3991 			 * frames from our ap when operating in station mode.
3992 			 * This assumes the rx key is always setup when
3993 			 * associated.
3994 			 */
3995 			if (ic->ic_opmode == IEEE80211_M_STA &&
3996 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3997 				ngood++;
3998 		} else {
3999 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4000 		}
4001 		/*
4002 		 * Track rx rssi and do any rx antenna management.
4003 		 */
4004 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4005 		if (sc->sc_diversity) {
4006 			/*
4007 			 * When using fast diversity, change the default rx
4008 			 * antenna if diversity chooses the other antenna 3
4009 			 * times in a row.
4010 			 */
4011 			if (sc->sc_defant != rs->rs_antenna) {
4012 				if (++sc->sc_rxotherant >= 3)
4013 					ath_setdefantenna(sc, rs->rs_antenna);
4014 			} else
4015 				sc->sc_rxotherant = 0;
4016 		}
4017 		if (sc->sc_softled) {
4018 			/*
4019 			 * Blink for any data frame.  Otherwise do a
4020 			 * heartbeat-style blink when idle.  The latter
4021 			 * is mainly for station mode where we depend on
4022 			 * periodic beacon frames to trigger the poll event.
4023 			 */
4024 			if (type == IEEE80211_FC0_TYPE_DATA) {
4025 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4026 				ath_led_event(sc,
4027 				    rt->rateCodeToIndex[rs->rs_rate]);
4028 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4029 				ath_led_event(sc, 0);
4030 		}
4031 rx_next:
4032 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4033 	} while (ath_rxbuf_init(sc, bf) == 0);
4034 
4035 	/* rx signal state monitoring */
4036 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4037 	if (ngood)
4038 		sc->sc_lastrx = tsf;
4039 
4040 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4041 #ifdef IEEE80211_SUPPORT_SUPERG
4042 		ieee80211_ff_age_all(ic, 100);
4043 #endif
4044 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4045 			ath_start(ifp);
4046 	}
4047 #undef PA2DESC
4048 }
4049 
4050 static void
4051 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4052 {
4053 	txq->axq_qnum = qnum;
4054 	txq->axq_ac = 0;
4055 	txq->axq_depth = 0;
4056 	txq->axq_intrcnt = 0;
4057 	txq->axq_link = NULL;
4058 	STAILQ_INIT(&txq->axq_q);
4059 	ATH_TXQ_LOCK_INIT(sc, txq);
4060 }
4061 
4062 /*
4063  * Setup a h/w transmit queue.
4064  */
4065 static struct ath_txq *
4066 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4067 {
4068 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4069 	struct ath_hal *ah = sc->sc_ah;
4070 	HAL_TXQ_INFO qi;
4071 	int qnum;
4072 
4073 	memset(&qi, 0, sizeof(qi));
4074 	qi.tqi_subtype = subtype;
4075 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4076 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4077 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4078 	/*
4079 	 * Enable interrupts only for EOL and DESC conditions.
4080 	 * We mark tx descriptors to receive a DESC interrupt
4081 	 * when a tx queue gets deep; otherwise waiting for the
4082 	 * EOL to reap descriptors.  Note that this is done to
4083 	 * reduce interrupt load and this only defers reaping
4084 	 * descriptors, never transmitting frames.  Aside from
4085 	 * reducing interrupts this also permits more concurrency.
4086 	 * The only potential downside is if the tx queue backs
4087 	 * up in which case the top half of the kernel may backup
4088 	 * due to a lack of tx descriptors.
4089 	 */
4090 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4091 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4092 	if (qnum == -1) {
4093 		/*
4094 		 * NB: don't print a message, this happens
4095 		 * normally on parts with too few tx queues
4096 		 */
4097 		return NULL;
4098 	}
4099 	if (qnum >= N(sc->sc_txq)) {
4100 		device_printf(sc->sc_dev,
4101 			"hal qnum %u out of range, max %zu!\n",
4102 			qnum, N(sc->sc_txq));
4103 		ath_hal_releasetxqueue(ah, qnum);
4104 		return NULL;
4105 	}
4106 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4107 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4108 		sc->sc_txqsetup |= 1<<qnum;
4109 	}
4110 	return &sc->sc_txq[qnum];
4111 #undef N
4112 }
4113 
4114 /*
4115  * Setup a hardware data transmit queue for the specified
4116  * access control.  The hal may not support all requested
4117  * queues in which case it will return a reference to a
4118  * previously setup queue.  We record the mapping from ac's
4119  * to h/w queues for use by ath_tx_start and also track
4120  * the set of h/w queues being used to optimize work in the
4121  * transmit interrupt handler and related routines.
4122  */
4123 static int
4124 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4125 {
4126 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4127 	struct ath_txq *txq;
4128 
4129 	if (ac >= N(sc->sc_ac2q)) {
4130 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4131 			ac, N(sc->sc_ac2q));
4132 		return 0;
4133 	}
4134 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4135 	if (txq != NULL) {
4136 		txq->axq_ac = ac;
4137 		sc->sc_ac2q[ac] = txq;
4138 		return 1;
4139 	} else
4140 		return 0;
4141 #undef N
4142 }
4143 
4144 /*
4145  * Update WME parameters for a transmit queue.
4146  */
4147 static int
4148 ath_txq_update(struct ath_softc *sc, int ac)
4149 {
4150 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4151 #define	ATH_TXOP_TO_US(v)		(v<<5)
4152 	struct ifnet *ifp = sc->sc_ifp;
4153 	struct ieee80211com *ic = ifp->if_l2com;
4154 	struct ath_txq *txq = sc->sc_ac2q[ac];
4155 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4156 	struct ath_hal *ah = sc->sc_ah;
4157 	HAL_TXQ_INFO qi;
4158 
4159 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4160 #ifdef IEEE80211_SUPPORT_TDMA
4161 	if (sc->sc_tdma) {
4162 		/*
4163 		 * AIFS is zero so there's no pre-transmit wait.  The
4164 		 * burst time defines the slot duration and is configured
4165 		 * through net80211.  The QCU is setup to not do post-xmit
4166 		 * back off, lockout all lower-priority QCU's, and fire
4167 		 * off the DMA beacon alert timer which is setup based
4168 		 * on the slot configuration.
4169 		 */
4170 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4171 			      | HAL_TXQ_TXERRINT_ENABLE
4172 			      | HAL_TXQ_TXURNINT_ENABLE
4173 			      | HAL_TXQ_TXEOLINT_ENABLE
4174 			      | HAL_TXQ_DBA_GATED
4175 			      | HAL_TXQ_BACKOFF_DISABLE
4176 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4177 			      ;
4178 		qi.tqi_aifs = 0;
4179 		/* XXX +dbaprep? */
4180 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4181 		qi.tqi_burstTime = qi.tqi_readyTime;
4182 	} else {
4183 #endif
4184 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4185 			      | HAL_TXQ_TXERRINT_ENABLE
4186 			      | HAL_TXQ_TXDESCINT_ENABLE
4187 			      | HAL_TXQ_TXURNINT_ENABLE
4188 			      ;
4189 		qi.tqi_aifs = wmep->wmep_aifsn;
4190 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4191 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4192 		qi.tqi_readyTime = 0;
4193 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4194 #ifdef IEEE80211_SUPPORT_TDMA
4195 	}
4196 #endif
4197 
4198 	DPRINTF(sc, ATH_DEBUG_RESET,
4199 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4200 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4201 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4202 
4203 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4204 		if_printf(ifp, "unable to update hardware queue "
4205 			"parameters for %s traffic!\n",
4206 			ieee80211_wme_acnames[ac]);
4207 		return 0;
4208 	} else {
4209 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4210 		return 1;
4211 	}
4212 #undef ATH_TXOP_TO_US
4213 #undef ATH_EXPONENT_TO_VALUE
4214 }
4215 
4216 /*
4217  * Callback from the 802.11 layer to update WME parameters.
4218  */
4219 static int
4220 ath_wme_update(struct ieee80211com *ic)
4221 {
4222 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4223 
4224 	return !ath_txq_update(sc, WME_AC_BE) ||
4225 	    !ath_txq_update(sc, WME_AC_BK) ||
4226 	    !ath_txq_update(sc, WME_AC_VI) ||
4227 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4228 }
4229 
4230 /*
4231  * Reclaim resources for a setup queue.
4232  */
4233 static void
4234 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4235 {
4236 
4237 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4238 	ATH_TXQ_LOCK_DESTROY(txq);
4239 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4240 }
4241 
4242 /*
4243  * Reclaim all tx queue resources.
4244  */
4245 static void
4246 ath_tx_cleanup(struct ath_softc *sc)
4247 {
4248 	int i;
4249 
4250 	ATH_TXBUF_LOCK_DESTROY(sc);
4251 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4252 		if (ATH_TXQ_SETUP(sc, i))
4253 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4254 }
4255 
4256 /*
4257  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4258  * using the current rates in sc_rixmap.
4259  */
4260 static __inline int
4261 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4262 {
4263 	int rix = sc->sc_rixmap[rate];
4264 	/* NB: return lowest rix for invalid rate */
4265 	return (rix == 0xff ? 0 : rix);
4266 }
4267 
4268 /*
4269  * Reclaim mbuf resources.  For fragmented frames we
4270  * need to claim each frag chained with m_nextpkt.
4271  */
4272 static void
4273 ath_freetx(struct mbuf *m)
4274 {
4275 	struct mbuf *next;
4276 
4277 	do {
4278 		next = m->m_nextpkt;
4279 		m->m_nextpkt = NULL;
4280 		m_freem(m);
4281 	} while ((m = next) != NULL);
4282 }
4283 
4284 static int
4285 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4286 {
4287 	struct mbuf *m;
4288 	int error;
4289 
4290 	/*
4291 	 * Load the DMA map so any coalescing is done.  This
4292 	 * also calculates the number of descriptors we need.
4293 	 */
4294 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4295 				     bf->bf_segs, &bf->bf_nseg,
4296 				     BUS_DMA_NOWAIT);
4297 	if (error == EFBIG) {
4298 		/* XXX packet requires too many descriptors */
4299 		bf->bf_nseg = ATH_TXDESC+1;
4300 	} else if (error != 0) {
4301 		sc->sc_stats.ast_tx_busdma++;
4302 		ath_freetx(m0);
4303 		return error;
4304 	}
4305 	/*
4306 	 * Discard null packets and check for packets that
4307 	 * require too many TX descriptors.  We try to convert
4308 	 * the latter to a cluster.
4309 	 */
4310 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4311 		sc->sc_stats.ast_tx_linear++;
4312 		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4313 		if (m == NULL) {
4314 			ath_freetx(m0);
4315 			sc->sc_stats.ast_tx_nombuf++;
4316 			return ENOMEM;
4317 		}
4318 		m0 = m;
4319 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4320 					     bf->bf_segs, &bf->bf_nseg,
4321 					     BUS_DMA_NOWAIT);
4322 		if (error != 0) {
4323 			sc->sc_stats.ast_tx_busdma++;
4324 			ath_freetx(m0);
4325 			return error;
4326 		}
4327 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4328 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4329 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4330 		sc->sc_stats.ast_tx_nodata++;
4331 		ath_freetx(m0);
4332 		return EIO;
4333 	}
4334 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4335 		__func__, m0, m0->m_pkthdr.len);
4336 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4337 	bf->bf_m = m0;
4338 
4339 	return 0;
4340 }
4341 
4342 static void
4343 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4344 {
4345 	struct ath_hal *ah = sc->sc_ah;
4346 	struct ath_desc *ds, *ds0;
4347 	int i;
4348 
4349 	/*
4350 	 * Fillin the remainder of the descriptor info.
4351 	 */
4352 	ds0 = ds = bf->bf_desc;
4353 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4354 		ds->ds_data = bf->bf_segs[i].ds_addr;
4355 		if (i == bf->bf_nseg - 1)
4356 			ds->ds_link = 0;
4357 		else
4358 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4359 		ath_hal_filltxdesc(ah, ds
4360 			, bf->bf_segs[i].ds_len	/* segment length */
4361 			, i == 0		/* first segment */
4362 			, i == bf->bf_nseg - 1	/* last segment */
4363 			, ds0			/* first descriptor */
4364 		);
4365 		DPRINTF(sc, ATH_DEBUG_XMIT,
4366 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4367 			__func__, i, ds->ds_link, ds->ds_data,
4368 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4369 	}
4370 	/*
4371 	 * Insert the frame on the outbound list and pass it on
4372 	 * to the hardware.  Multicast frames buffered for power
4373 	 * save stations and transmit from the CAB queue are stored
4374 	 * on a s/w only queue and loaded on to the CAB queue in
4375 	 * the SWBA handler since frames only go out on DTIM and
4376 	 * to avoid possible races.
4377 	 */
4378 	ATH_TXQ_LOCK(txq);
4379 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4380 	     ("busy status 0x%x", bf->bf_flags));
4381 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4382 #ifdef IEEE80211_SUPPORT_TDMA
4383 		int qbusy;
4384 
4385 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4386 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4387 		if (txq->axq_link == NULL) {
4388 			/*
4389 			 * Be careful writing the address to TXDP.  If
4390 			 * the tx q is enabled then this write will be
4391 			 * ignored.  Normally this is not an issue but
4392 			 * when tdma is in use and the q is beacon gated
4393 			 * this race can occur.  If the q is busy then
4394 			 * defer the work to later--either when another
4395 			 * packet comes along or when we prepare a beacon
4396 			 * frame at SWBA.
4397 			 */
4398 			if (!qbusy) {
4399 				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4400 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4401 				DPRINTF(sc, ATH_DEBUG_XMIT,
4402 				    "%s: TXDP[%u] = %p (%p) depth %d\n",
4403 				    __func__, txq->axq_qnum,
4404 				    (caddr_t)bf->bf_daddr, bf->bf_desc,
4405 				    txq->axq_depth);
4406 			} else {
4407 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4408 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4409 				    "%s: Q%u busy, defer enable\n", __func__,
4410 				    txq->axq_qnum);
4411 			}
4412 		} else {
4413 			*txq->axq_link = bf->bf_daddr;
4414 			DPRINTF(sc, ATH_DEBUG_XMIT,
4415 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4416 			    txq->axq_qnum, txq->axq_link,
4417 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4418 			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
4419 				/*
4420 				 * The q was busy when we previously tried
4421 				 * to write the address of the first buffer
4422 				 * in the chain.  Since it's not busy now
4423 				 * handle this chore.  We are certain the
4424 				 * buffer at the front is the right one since
4425 				 * axq_link is NULL only when the buffer list
4426 				 * is/was empty.
4427 				 */
4428 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4429 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4430 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4431 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4432 				    "%s: Q%u restarted\n", __func__,
4433 				    txq->axq_qnum);
4434 			}
4435 		}
4436 #else
4437 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4438 		if (txq->axq_link == NULL) {
4439 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4440 			DPRINTF(sc, ATH_DEBUG_XMIT,
4441 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4442 			    __func__, txq->axq_qnum,
4443 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4444 			    txq->axq_depth);
4445 		} else {
4446 			*txq->axq_link = bf->bf_daddr;
4447 			DPRINTF(sc, ATH_DEBUG_XMIT,
4448 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4449 			    txq->axq_qnum, txq->axq_link,
4450 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4451 		}
4452 #endif /* IEEE80211_SUPPORT_TDMA */
4453 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4454 		ath_hal_txstart(ah, txq->axq_qnum);
4455 	} else {
4456 		if (txq->axq_link != NULL) {
4457 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4458 			struct ieee80211_frame *wh;
4459 
4460 			/* mark previous frame */
4461 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4462 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4463 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4464 			    BUS_DMASYNC_PREWRITE);
4465 
4466 			/* link descriptor */
4467 			*txq->axq_link = bf->bf_daddr;
4468 		}
4469 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4470 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4471 	}
4472 	ATH_TXQ_UNLOCK(txq);
4473 }
4474 
4475 static int
4476 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4477     struct mbuf *m0)
4478 {
4479 	struct ieee80211vap *vap = ni->ni_vap;
4480 	struct ath_vap *avp = ATH_VAP(vap);
4481 	struct ath_hal *ah = sc->sc_ah;
4482 	struct ifnet *ifp = sc->sc_ifp;
4483 	struct ieee80211com *ic = ifp->if_l2com;
4484 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4485 	int error, iswep, ismcast, isfrag, ismrr;
4486 	int keyix, hdrlen, pktlen, try0;
4487 	u_int8_t rix, txrate, ctsrate;
4488 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4489 	struct ath_desc *ds;
4490 	struct ath_txq *txq;
4491 	struct ieee80211_frame *wh;
4492 	u_int subtype, flags, ctsduration;
4493 	HAL_PKT_TYPE atype;
4494 	const HAL_RATE_TABLE *rt;
4495 	HAL_BOOL shortPreamble;
4496 	struct ath_node *an;
4497 	u_int pri;
4498 
4499 	wh = mtod(m0, struct ieee80211_frame *);
4500 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4501 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4502 	isfrag = m0->m_flags & M_FRAG;
4503 	hdrlen = ieee80211_anyhdrsize(wh);
4504 	/*
4505 	 * Packet length must not include any
4506 	 * pad bytes; deduct them here.
4507 	 */
4508 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4509 
4510 	if (iswep) {
4511 		const struct ieee80211_cipher *cip;
4512 		struct ieee80211_key *k;
4513 
4514 		/*
4515 		 * Construct the 802.11 header+trailer for an encrypted
4516 		 * frame. The only reason this can fail is because of an
4517 		 * unknown or unsupported cipher/key type.
4518 		 */
4519 		k = ieee80211_crypto_encap(ni, m0);
4520 		if (k == NULL) {
4521 			/*
4522 			 * This can happen when the key is yanked after the
4523 			 * frame was queued.  Just discard the frame; the
4524 			 * 802.11 layer counts failures and provides
4525 			 * debugging/diagnostics.
4526 			 */
4527 			ath_freetx(m0);
4528 			return EIO;
4529 		}
4530 		/*
4531 		 * Adjust the packet + header lengths for the crypto
4532 		 * additions and calculate the h/w key index.  When
4533 		 * a s/w mic is done the frame will have had any mic
4534 		 * added to it prior to entry so m0->m_pkthdr.len will
4535 		 * account for it. Otherwise we need to add it to the
4536 		 * packet length.
4537 		 */
4538 		cip = k->wk_cipher;
4539 		hdrlen += cip->ic_header;
4540 		pktlen += cip->ic_header + cip->ic_trailer;
4541 		/* NB: frags always have any TKIP MIC done in s/w */
4542 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4543 			pktlen += cip->ic_miclen;
4544 		keyix = k->wk_keyix;
4545 
4546 		/* packet header may have moved, reset our local pointer */
4547 		wh = mtod(m0, struct ieee80211_frame *);
4548 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4549 		/*
4550 		 * Use station key cache slot, if assigned.
4551 		 */
4552 		keyix = ni->ni_ucastkey.wk_keyix;
4553 		if (keyix == IEEE80211_KEYIX_NONE)
4554 			keyix = HAL_TXKEYIX_INVALID;
4555 	} else
4556 		keyix = HAL_TXKEYIX_INVALID;
4557 
4558 	pktlen += IEEE80211_CRC_LEN;
4559 
4560 	/*
4561 	 * Load the DMA map so any coalescing is done.  This
4562 	 * also calculates the number of descriptors we need.
4563 	 */
4564 	error = ath_tx_dmasetup(sc, bf, m0);
4565 	if (error != 0)
4566 		return error;
4567 	bf->bf_node = ni;			/* NB: held reference */
4568 	m0 = bf->bf_m;				/* NB: may have changed */
4569 	wh = mtod(m0, struct ieee80211_frame *);
4570 
4571 	/* setup descriptors */
4572 	ds = bf->bf_desc;
4573 	rt = sc->sc_currates;
4574 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4575 
4576 	/*
4577 	 * NB: the 802.11 layer marks whether or not we should
4578 	 * use short preamble based on the current mode and
4579 	 * negotiated parameters.
4580 	 */
4581 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4582 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4583 		shortPreamble = AH_TRUE;
4584 		sc->sc_stats.ast_tx_shortpre++;
4585 	} else {
4586 		shortPreamble = AH_FALSE;
4587 	}
4588 
4589 	an = ATH_NODE(ni);
4590 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4591 	ismrr = 0;				/* default no multi-rate retry*/
4592 	pri = M_WME_GETAC(m0);			/* honor classification */
4593 	/* XXX use txparams instead of fixed values */
4594 	/*
4595 	 * Calculate Atheros packet type from IEEE80211 packet header,
4596 	 * setup for rate calculations, and select h/w transmit queue.
4597 	 */
4598 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4599 	case IEEE80211_FC0_TYPE_MGT:
4600 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4601 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4602 			atype = HAL_PKT_TYPE_BEACON;
4603 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4604 			atype = HAL_PKT_TYPE_PROBE_RESP;
4605 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4606 			atype = HAL_PKT_TYPE_ATIM;
4607 		else
4608 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4609 		rix = an->an_mgmtrix;
4610 		txrate = rt->info[rix].rateCode;
4611 		if (shortPreamble)
4612 			txrate |= rt->info[rix].shortPreamble;
4613 		try0 = ATH_TXMGTTRY;
4614 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4615 		break;
4616 	case IEEE80211_FC0_TYPE_CTL:
4617 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4618 		rix = an->an_mgmtrix;
4619 		txrate = rt->info[rix].rateCode;
4620 		if (shortPreamble)
4621 			txrate |= rt->info[rix].shortPreamble;
4622 		try0 = ATH_TXMGTTRY;
4623 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4624 		break;
4625 	case IEEE80211_FC0_TYPE_DATA:
4626 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4627 		/*
4628 		 * Data frames: multicast frames go out at a fixed rate,
4629 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4630 		 * the rate control module for the rate to use.
4631 		 */
4632 		if (ismcast) {
4633 			rix = an->an_mcastrix;
4634 			txrate = rt->info[rix].rateCode;
4635 			if (shortPreamble)
4636 				txrate |= rt->info[rix].shortPreamble;
4637 			try0 = 1;
4638 		} else if (m0->m_flags & M_EAPOL) {
4639 			/* XXX? maybe always use long preamble? */
4640 			rix = an->an_mgmtrix;
4641 			txrate = rt->info[rix].rateCode;
4642 			if (shortPreamble)
4643 				txrate |= rt->info[rix].shortPreamble;
4644 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4645 		} else {
4646 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4647 				&rix, &try0, &txrate);
4648 			sc->sc_txrix = rix;		/* for LED blinking */
4649 			sc->sc_lastdatarix = rix;	/* for fast frames */
4650 			if (try0 != ATH_TXMAXTRY)
4651 				ismrr = 1;
4652 		}
4653 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4654 			flags |= HAL_TXDESC_NOACK;
4655 		break;
4656 	default:
4657 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4658 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4659 		/* XXX statistic */
4660 		ath_freetx(m0);
4661 		return EIO;
4662 	}
4663 	txq = sc->sc_ac2q[pri];
4664 
4665 	/*
4666 	 * When servicing one or more stations in power-save mode
4667 	 * (or) if there is some mcast data waiting on the mcast
4668 	 * queue (to prevent out of order delivery) multicast
4669 	 * frames must be buffered until after the beacon.
4670 	 */
4671 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4672 		txq = &avp->av_mcastq;
4673 
4674 	/*
4675 	 * Calculate miscellaneous flags.
4676 	 */
4677 	if (ismcast) {
4678 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4679 	} else if (pktlen > vap->iv_rtsthreshold &&
4680 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4681 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4682 		cix = rt->info[rix].controlRate;
4683 		sc->sc_stats.ast_tx_rts++;
4684 	}
4685 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4686 		sc->sc_stats.ast_tx_noack++;
4687 #ifdef IEEE80211_SUPPORT_TDMA
4688 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
4689 		DPRINTF(sc, ATH_DEBUG_TDMA,
4690 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
4691 		sc->sc_stats.ast_tdma_ack++;
4692 		ath_freetx(m0);
4693 		return EIO;
4694 	}
4695 #endif
4696 
4697 	/*
4698 	 * If 802.11g protection is enabled, determine whether
4699 	 * to use RTS/CTS or just CTS.  Note that this is only
4700 	 * done for OFDM unicast frames.
4701 	 */
4702 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4703 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4704 	    (flags & HAL_TXDESC_NOACK) == 0) {
4705 		/* XXX fragments must use CCK rates w/ protection */
4706 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4707 			flags |= HAL_TXDESC_RTSENA;
4708 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4709 			flags |= HAL_TXDESC_CTSENA;
4710 		if (isfrag) {
4711 			/*
4712 			 * For frags it would be desirable to use the
4713 			 * highest CCK rate for RTS/CTS.  But stations
4714 			 * farther away may detect it at a lower CCK rate
4715 			 * so use the configured protection rate instead
4716 			 * (for now).
4717 			 */
4718 			cix = rt->info[sc->sc_protrix].controlRate;
4719 		} else
4720 			cix = rt->info[sc->sc_protrix].controlRate;
4721 		sc->sc_stats.ast_tx_protect++;
4722 	}
4723 
4724 	/*
4725 	 * Calculate duration.  This logically belongs in the 802.11
4726 	 * layer but it lacks sufficient information to calculate it.
4727 	 */
4728 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4729 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4730 		u_int16_t dur;
4731 		if (shortPreamble)
4732 			dur = rt->info[rix].spAckDuration;
4733 		else
4734 			dur = rt->info[rix].lpAckDuration;
4735 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4736 			dur += dur;		/* additional SIFS+ACK */
4737 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4738 			/*
4739 			 * Include the size of next fragment so NAV is
4740 			 * updated properly.  The last fragment uses only
4741 			 * the ACK duration
4742 			 */
4743 			dur += ath_hal_computetxtime(ah, rt,
4744 					m0->m_nextpkt->m_pkthdr.len,
4745 					rix, shortPreamble);
4746 		}
4747 		if (isfrag) {
4748 			/*
4749 			 * Force hardware to use computed duration for next
4750 			 * fragment by disabling multi-rate retry which updates
4751 			 * duration based on the multi-rate duration table.
4752 			 */
4753 			ismrr = 0;
4754 			try0 = ATH_TXMGTTRY;	/* XXX? */
4755 		}
4756 		*(u_int16_t *)wh->i_dur = htole16(dur);
4757 	}
4758 
4759 	/*
4760 	 * Calculate RTS/CTS rate and duration if needed.
4761 	 */
4762 	ctsduration = 0;
4763 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4764 		/*
4765 		 * CTS transmit rate is derived from the transmit rate
4766 		 * by looking in the h/w rate table.  We must also factor
4767 		 * in whether or not a short preamble is to be used.
4768 		 */
4769 		/* NB: cix is set above where RTS/CTS is enabled */
4770 		KASSERT(cix != 0xff, ("cix not setup"));
4771 		ctsrate = rt->info[cix].rateCode;
4772 		/*
4773 		 * Compute the transmit duration based on the frame
4774 		 * size and the size of an ACK frame.  We call into the
4775 		 * HAL to do the computation since it depends on the
4776 		 * characteristics of the actual PHY being used.
4777 		 *
4778 		 * NB: CTS is assumed the same size as an ACK so we can
4779 		 *     use the precalculated ACK durations.
4780 		 */
4781 		if (shortPreamble) {
4782 			ctsrate |= rt->info[cix].shortPreamble;
4783 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4784 				ctsduration += rt->info[cix].spAckDuration;
4785 			ctsduration += ath_hal_computetxtime(ah,
4786 				rt, pktlen, rix, AH_TRUE);
4787 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4788 				ctsduration += rt->info[rix].spAckDuration;
4789 		} else {
4790 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4791 				ctsduration += rt->info[cix].lpAckDuration;
4792 			ctsduration += ath_hal_computetxtime(ah,
4793 				rt, pktlen, rix, AH_FALSE);
4794 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4795 				ctsduration += rt->info[rix].lpAckDuration;
4796 		}
4797 		/*
4798 		 * Must disable multi-rate retry when using RTS/CTS.
4799 		 */
4800 		ismrr = 0;
4801 		try0 = ATH_TXMGTTRY;		/* XXX */
4802 	} else
4803 		ctsrate = 0;
4804 
4805 	/*
4806 	 * At this point we are committed to sending the frame
4807 	 * and we don't need to look at m_nextpkt; clear it in
4808 	 * case this frame is part of frag chain.
4809 	 */
4810 	m0->m_nextpkt = NULL;
4811 
4812 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4813 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
4814 		    sc->sc_hwmap[rix].ieeerate, -1);
4815 
4816 	if (ieee80211_radiotap_active_vap(vap)) {
4817 		u_int64_t tsf = ath_hal_gettsf64(ah);
4818 
4819 		sc->sc_tx_th.wt_tsf = htole64(tsf);
4820 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4821 		if (iswep)
4822 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4823 		if (isfrag)
4824 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4825 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4826 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4827 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4828 
4829 		ieee80211_radiotap_tx(vap, m0);
4830 	}
4831 
4832 	/*
4833 	 * Determine if a tx interrupt should be generated for
4834 	 * this descriptor.  We take a tx interrupt to reap
4835 	 * descriptors when the h/w hits an EOL condition or
4836 	 * when the descriptor is specifically marked to generate
4837 	 * an interrupt.  We periodically mark descriptors in this
4838 	 * way to insure timely replenishing of the supply needed
4839 	 * for sending frames.  Defering interrupts reduces system
4840 	 * load and potentially allows more concurrent work to be
4841 	 * done but if done to aggressively can cause senders to
4842 	 * backup.
4843 	 *
4844 	 * NB: use >= to deal with sc_txintrperiod changing
4845 	 *     dynamically through sysctl.
4846 	 */
4847 	if (flags & HAL_TXDESC_INTREQ) {
4848 		txq->axq_intrcnt = 0;
4849 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4850 		flags |= HAL_TXDESC_INTREQ;
4851 		txq->axq_intrcnt = 0;
4852 	}
4853 
4854 	/*
4855 	 * Formulate first tx descriptor with tx controls.
4856 	 */
4857 	/* XXX check return value? */
4858 	ath_hal_setuptxdesc(ah, ds
4859 		, pktlen		/* packet length */
4860 		, hdrlen		/* header length */
4861 		, atype			/* Atheros packet type */
4862 		, ni->ni_txpower	/* txpower */
4863 		, txrate, try0		/* series 0 rate/tries */
4864 		, keyix			/* key cache index */
4865 		, sc->sc_txantenna	/* antenna mode */
4866 		, flags			/* flags */
4867 		, ctsrate		/* rts/cts rate */
4868 		, ctsduration		/* rts/cts duration */
4869 	);
4870 	bf->bf_txflags = flags;
4871 	/*
4872 	 * Setup the multi-rate retry state only when we're
4873 	 * going to use it.  This assumes ath_hal_setuptxdesc
4874 	 * initializes the descriptors (so we don't have to)
4875 	 * when the hardware supports multi-rate retry and
4876 	 * we don't use it.
4877 	 */
4878 	if (ismrr)
4879 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4880 
4881 	ath_tx_handoff(sc, txq, bf);
4882 	return 0;
4883 }
4884 
4885 /*
4886  * Process completed xmit descriptors from the specified queue.
4887  */
4888 static int
4889 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4890 {
4891 	struct ath_hal *ah = sc->sc_ah;
4892 	struct ifnet *ifp = sc->sc_ifp;
4893 	struct ieee80211com *ic = ifp->if_l2com;
4894 	struct ath_buf *bf, *last;
4895 	struct ath_desc *ds, *ds0;
4896 	struct ath_tx_status *ts;
4897 	struct ieee80211_node *ni;
4898 	struct ath_node *an;
4899 	int sr, lr, pri, nacked;
4900 	HAL_STATUS status;
4901 
4902 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4903 		__func__, txq->axq_qnum,
4904 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4905 		txq->axq_link);
4906 	nacked = 0;
4907 	for (;;) {
4908 		ATH_TXQ_LOCK(txq);
4909 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4910 		bf = STAILQ_FIRST(&txq->axq_q);
4911 		if (bf == NULL) {
4912 			ATH_TXQ_UNLOCK(txq);
4913 			break;
4914 		}
4915 		ds0 = &bf->bf_desc[0];
4916 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4917 		ts = &bf->bf_status.ds_txstat;
4918 		status = ath_hal_txprocdesc(ah, ds, ts);
4919 #ifdef ATH_DEBUG
4920 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4921 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4922 			    status == HAL_OK);
4923 #endif
4924 		if (status == HAL_EINPROGRESS) {
4925 			ATH_TXQ_UNLOCK(txq);
4926 			break;
4927 		}
4928 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4929 #ifdef IEEE80211_SUPPORT_TDMA
4930 		if (txq->axq_depth > 0) {
4931 			/*
4932 			 * More frames follow.  Mark the buffer busy
4933 			 * so it's not re-used while the hardware may
4934 			 * still re-read the link field in the descriptor.
4935 			 */
4936 			bf->bf_flags |= ATH_BUF_BUSY;
4937 		} else
4938 #else
4939 		if (txq->axq_depth == 0)
4940 #endif
4941 			txq->axq_link = NULL;
4942 		ATH_TXQ_UNLOCK(txq);
4943 
4944 		ni = bf->bf_node;
4945 		if (ni != NULL) {
4946 			an = ATH_NODE(ni);
4947 			if (ts->ts_status == 0) {
4948 				u_int8_t txant = ts->ts_antenna;
4949 				sc->sc_stats.ast_ant_tx[txant]++;
4950 				sc->sc_ant_tx[txant]++;
4951 				if (ts->ts_finaltsi != 0)
4952 					sc->sc_stats.ast_tx_altrate++;
4953 				pri = M_WME_GETAC(bf->bf_m);
4954 				if (pri >= WME_AC_VO)
4955 					ic->ic_wme.wme_hipri_traffic++;
4956 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4957 					ni->ni_inact = ni->ni_inact_reload;
4958 			} else {
4959 				if (ts->ts_status & HAL_TXERR_XRETRY)
4960 					sc->sc_stats.ast_tx_xretries++;
4961 				if (ts->ts_status & HAL_TXERR_FIFO)
4962 					sc->sc_stats.ast_tx_fifoerr++;
4963 				if (ts->ts_status & HAL_TXERR_FILT)
4964 					sc->sc_stats.ast_tx_filtered++;
4965 				if (bf->bf_m->m_flags & M_FF)
4966 					sc->sc_stats.ast_ff_txerr++;
4967 			}
4968 			sr = ts->ts_shortretry;
4969 			lr = ts->ts_longretry;
4970 			sc->sc_stats.ast_tx_shortretry += sr;
4971 			sc->sc_stats.ast_tx_longretry += lr;
4972 			/*
4973 			 * Hand the descriptor to the rate control algorithm.
4974 			 */
4975 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4976 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4977 				/*
4978 				 * If frame was ack'd update statistics,
4979 				 * including the last rx time used to
4980 				 * workaround phantom bmiss interrupts.
4981 				 */
4982 				if (ts->ts_status == 0) {
4983 					nacked++;
4984 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4985 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4986 						ts->ts_rssi);
4987 				}
4988 				ath_rate_tx_complete(sc, an, bf);
4989 			}
4990 			/*
4991 			 * Do any tx complete callback.  Note this must
4992 			 * be done before releasing the node reference.
4993 			 */
4994 			if (bf->bf_m->m_flags & M_TXCB)
4995 				ieee80211_process_callback(ni, bf->bf_m,
4996 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
4997 				        ts->ts_status : HAL_TXERR_XRETRY);
4998 			ieee80211_free_node(ni);
4999 		}
5000 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5001 		    BUS_DMASYNC_POSTWRITE);
5002 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5003 
5004 		m_freem(bf->bf_m);
5005 		bf->bf_m = NULL;
5006 		bf->bf_node = NULL;
5007 
5008 		ATH_TXBUF_LOCK(sc);
5009 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5010 		if (last != NULL)
5011 			last->bf_flags &= ~ATH_BUF_BUSY;
5012 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5013 		ATH_TXBUF_UNLOCK(sc);
5014 	}
5015 #ifdef IEEE80211_SUPPORT_SUPERG
5016 	/*
5017 	 * Flush fast-frame staging queue when traffic slows.
5018 	 */
5019 	if (txq->axq_depth <= 1)
5020 		ieee80211_ff_flush(ic, txq->axq_ac);
5021 #endif
5022 	return nacked;
5023 }
5024 
5025 static __inline int
5026 txqactive(struct ath_hal *ah, int qnum)
5027 {
5028 	u_int32_t txqs = 1<<qnum;
5029 	ath_hal_gettxintrtxqs(ah, &txqs);
5030 	return (txqs & (1<<qnum));
5031 }
5032 
5033 /*
5034  * Deferred processing of transmit interrupt; special-cased
5035  * for a single hardware transmit queue (e.g. 5210 and 5211).
5036  */
5037 static void
5038 ath_tx_proc_q0(void *arg, int npending)
5039 {
5040 	struct ath_softc *sc = arg;
5041 	struct ifnet *ifp = sc->sc_ifp;
5042 
5043 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5044 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5045 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5046 		ath_tx_processq(sc, sc->sc_cabq);
5047 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5048 	sc->sc_wd_timer = 0;
5049 
5050 	if (sc->sc_softled)
5051 		ath_led_event(sc, sc->sc_txrix);
5052 
5053 	ath_start(ifp);
5054 }
5055 
5056 /*
5057  * Deferred processing of transmit interrupt; special-cased
5058  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5059  */
5060 static void
5061 ath_tx_proc_q0123(void *arg, int npending)
5062 {
5063 	struct ath_softc *sc = arg;
5064 	struct ifnet *ifp = sc->sc_ifp;
5065 	int nacked;
5066 
5067 	/*
5068 	 * Process each active queue.
5069 	 */
5070 	nacked = 0;
5071 	if (txqactive(sc->sc_ah, 0))
5072 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5073 	if (txqactive(sc->sc_ah, 1))
5074 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5075 	if (txqactive(sc->sc_ah, 2))
5076 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5077 	if (txqactive(sc->sc_ah, 3))
5078 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5079 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5080 		ath_tx_processq(sc, sc->sc_cabq);
5081 	if (nacked)
5082 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5083 
5084 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5085 	sc->sc_wd_timer = 0;
5086 
5087 	if (sc->sc_softled)
5088 		ath_led_event(sc, sc->sc_txrix);
5089 
5090 	ath_start(ifp);
5091 }
5092 
5093 /*
5094  * Deferred processing of transmit interrupt.
5095  */
5096 static void
5097 ath_tx_proc(void *arg, int npending)
5098 {
5099 	struct ath_softc *sc = arg;
5100 	struct ifnet *ifp = sc->sc_ifp;
5101 	int i, nacked;
5102 
5103 	/*
5104 	 * Process each active queue.
5105 	 */
5106 	nacked = 0;
5107 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5108 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5109 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5110 	if (nacked)
5111 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5112 
5113 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5114 	sc->sc_wd_timer = 0;
5115 
5116 	if (sc->sc_softled)
5117 		ath_led_event(sc, sc->sc_txrix);
5118 
5119 	ath_start(ifp);
5120 }
5121 
5122 static void
5123 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5124 {
5125 #ifdef ATH_DEBUG
5126 	struct ath_hal *ah = sc->sc_ah;
5127 #endif
5128 	struct ieee80211_node *ni;
5129 	struct ath_buf *bf;
5130 	u_int ix;
5131 
5132 	/*
5133 	 * NB: this assumes output has been stopped and
5134 	 *     we do not need to block ath_tx_proc
5135 	 */
5136 	ATH_TXBUF_LOCK(sc);
5137 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5138 	if (bf != NULL)
5139 		bf->bf_flags &= ~ATH_BUF_BUSY;
5140 	ATH_TXBUF_UNLOCK(sc);
5141 	for (ix = 0;; ix++) {
5142 		ATH_TXQ_LOCK(txq);
5143 		bf = STAILQ_FIRST(&txq->axq_q);
5144 		if (bf == NULL) {
5145 			txq->axq_link = NULL;
5146 			ATH_TXQ_UNLOCK(txq);
5147 			break;
5148 		}
5149 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5150 		ATH_TXQ_UNLOCK(txq);
5151 #ifdef ATH_DEBUG
5152 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5153 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5154 
5155 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5156 				ath_hal_txprocdesc(ah, bf->bf_desc,
5157 				    &bf->bf_status.ds_txstat) == HAL_OK);
5158 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5159 			    bf->bf_m->m_len, 0, -1);
5160 		}
5161 #endif /* ATH_DEBUG */
5162 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5163 		ni = bf->bf_node;
5164 		bf->bf_node = NULL;
5165 		if (ni != NULL) {
5166 			/*
5167 			 * Do any callback and reclaim the node reference.
5168 			 */
5169 			if (bf->bf_m->m_flags & M_TXCB)
5170 				ieee80211_process_callback(ni, bf->bf_m, -1);
5171 			ieee80211_free_node(ni);
5172 		}
5173 		m_freem(bf->bf_m);
5174 		bf->bf_m = NULL;
5175 		bf->bf_flags &= ~ATH_BUF_BUSY;
5176 
5177 		ATH_TXBUF_LOCK(sc);
5178 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5179 		ATH_TXBUF_UNLOCK(sc);
5180 	}
5181 }
5182 
5183 static void
5184 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5185 {
5186 	struct ath_hal *ah = sc->sc_ah;
5187 
5188 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5189 	    __func__, txq->axq_qnum,
5190 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5191 	    txq->axq_link);
5192 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5193 }
5194 
5195 /*
5196  * Drain the transmit queues and reclaim resources.
5197  */
5198 static void
5199 ath_draintxq(struct ath_softc *sc)
5200 {
5201 	struct ath_hal *ah = sc->sc_ah;
5202 	struct ifnet *ifp = sc->sc_ifp;
5203 	int i;
5204 
5205 	/* XXX return value */
5206 	if (!sc->sc_invalid) {
5207 		/* don't touch the hardware if marked invalid */
5208 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5209 		    __func__, sc->sc_bhalq,
5210 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5211 		    NULL);
5212 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5213 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5214 			if (ATH_TXQ_SETUP(sc, i))
5215 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5216 	}
5217 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5218 		if (ATH_TXQ_SETUP(sc, i))
5219 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5220 #ifdef ATH_DEBUG
5221 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5222 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5223 		if (bf != NULL && bf->bf_m != NULL) {
5224 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5225 				ath_hal_txprocdesc(ah, bf->bf_desc,
5226 				    &bf->bf_status.ds_txstat) == HAL_OK);
5227 			ieee80211_dump_pkt(ifp->if_l2com,
5228 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5229 			    0, -1);
5230 		}
5231 	}
5232 #endif /* ATH_DEBUG */
5233 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5234 	sc->sc_wd_timer = 0;
5235 }
5236 
5237 /*
5238  * Disable the receive h/w in preparation for a reset.
5239  */
5240 static void
5241 ath_stoprecv(struct ath_softc *sc)
5242 {
5243 #define	PA2DESC(_sc, _pa) \
5244 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5245 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5246 	struct ath_hal *ah = sc->sc_ah;
5247 
5248 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5249 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5250 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5251 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5252 #ifdef ATH_DEBUG
5253 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5254 		struct ath_buf *bf;
5255 		u_int ix;
5256 
5257 		printf("%s: rx queue %p, link %p\n", __func__,
5258 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5259 		ix = 0;
5260 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5261 			struct ath_desc *ds = bf->bf_desc;
5262 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5263 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5264 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5265 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5266 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5267 			ix++;
5268 		}
5269 	}
5270 #endif
5271 	if (sc->sc_rxpending != NULL) {
5272 		m_freem(sc->sc_rxpending);
5273 		sc->sc_rxpending = NULL;
5274 	}
5275 	sc->sc_rxlink = NULL;		/* just in case */
5276 #undef PA2DESC
5277 }
5278 
5279 /*
5280  * Enable the receive h/w following a reset.
5281  */
5282 static int
5283 ath_startrecv(struct ath_softc *sc)
5284 {
5285 	struct ath_hal *ah = sc->sc_ah;
5286 	struct ath_buf *bf;
5287 
5288 	sc->sc_rxlink = NULL;
5289 	sc->sc_rxpending = NULL;
5290 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5291 		int error = ath_rxbuf_init(sc, bf);
5292 		if (error != 0) {
5293 			DPRINTF(sc, ATH_DEBUG_RECV,
5294 				"%s: ath_rxbuf_init failed %d\n",
5295 				__func__, error);
5296 			return error;
5297 		}
5298 	}
5299 
5300 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5301 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5302 	ath_hal_rxena(ah);		/* enable recv descriptors */
5303 	ath_mode_init(sc);		/* set filters, etc. */
5304 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5305 	return 0;
5306 }
5307 
5308 /*
5309  * Update internal state after a channel change.
5310  */
5311 static void
5312 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5313 {
5314 	enum ieee80211_phymode mode;
5315 
5316 	/*
5317 	 * Change channels and update the h/w rate map
5318 	 * if we're switching; e.g. 11a to 11b/g.
5319 	 */
5320 	mode = ieee80211_chan2mode(chan);
5321 	if (mode != sc->sc_curmode)
5322 		ath_setcurmode(sc, mode);
5323 	sc->sc_curchan = chan;
5324 }
5325 
5326 /*
5327  * Set/change channels.  If the channel is really being changed,
5328  * it's done by reseting the chip.  To accomplish this we must
5329  * first cleanup any pending DMA, then restart stuff after a la
5330  * ath_init.
5331  */
5332 static int
5333 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5334 {
5335 	struct ifnet *ifp = sc->sc_ifp;
5336 	struct ieee80211com *ic = ifp->if_l2com;
5337 	struct ath_hal *ah = sc->sc_ah;
5338 
5339 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5340 	    __func__, ieee80211_chan2ieee(ic, chan),
5341 	    chan->ic_freq, chan->ic_flags);
5342 	if (chan != sc->sc_curchan) {
5343 		HAL_STATUS status;
5344 		/*
5345 		 * To switch channels clear any pending DMA operations;
5346 		 * wait long enough for the RX fifo to drain, reset the
5347 		 * hardware at the new frequency, and then re-enable
5348 		 * the relevant bits of the h/w.
5349 		 */
5350 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5351 		ath_draintxq(sc);		/* clear pending tx frames */
5352 		ath_stoprecv(sc);		/* turn off frame recv */
5353 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5354 			if_printf(ifp, "%s: unable to reset "
5355 			    "channel %u (%u Mhz, flags 0x%x), hal status %u\n",
5356 			    __func__, ieee80211_chan2ieee(ic, chan),
5357 			    chan->ic_freq, chan->ic_flags, status);
5358 			return EIO;
5359 		}
5360 		sc->sc_diversity = ath_hal_getdiversity(ah);
5361 
5362 		/*
5363 		 * Re-enable rx framework.
5364 		 */
5365 		if (ath_startrecv(sc) != 0) {
5366 			if_printf(ifp, "%s: unable to restart recv logic\n",
5367 			    __func__);
5368 			return EIO;
5369 		}
5370 
5371 		/*
5372 		 * Change channels and update the h/w rate map
5373 		 * if we're switching; e.g. 11a to 11b/g.
5374 		 */
5375 		ath_chan_change(sc, chan);
5376 
5377 		/*
5378 		 * Re-enable interrupts.
5379 		 */
5380 		ath_hal_intrset(ah, sc->sc_imask);
5381 	}
5382 	return 0;
5383 }
5384 
5385 /*
5386  * Periodically recalibrate the PHY to account
5387  * for temperature/environment changes.
5388  */
5389 static void
5390 ath_calibrate(void *arg)
5391 {
5392 	struct ath_softc *sc = arg;
5393 	struct ath_hal *ah = sc->sc_ah;
5394 	struct ifnet *ifp = sc->sc_ifp;
5395 	struct ieee80211com *ic = ifp->if_l2com;
5396 	HAL_BOOL longCal, isCalDone;
5397 	int nextcal;
5398 
5399 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5400 		goto restart;
5401 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5402 	if (longCal) {
5403 		sc->sc_stats.ast_per_cal++;
5404 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5405 			/*
5406 			 * Rfgain is out of bounds, reset the chip
5407 			 * to load new gain values.
5408 			 */
5409 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5410 				"%s: rfgain change\n", __func__);
5411 			sc->sc_stats.ast_per_rfgain++;
5412 			ath_reset(ifp);
5413 		}
5414 		/*
5415 		 * If this long cal is after an idle period, then
5416 		 * reset the data collection state so we start fresh.
5417 		 */
5418 		if (sc->sc_resetcal) {
5419 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5420 			sc->sc_lastcalreset = ticks;
5421 			sc->sc_resetcal = 0;
5422 		}
5423 	}
5424 	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5425 		if (longCal) {
5426 			/*
5427 			 * Calibrate noise floor data again in case of change.
5428 			 */
5429 			ath_hal_process_noisefloor(ah);
5430 		}
5431 	} else {
5432 		DPRINTF(sc, ATH_DEBUG_ANY,
5433 			"%s: calibration of channel %u failed\n",
5434 			__func__, sc->sc_curchan->ic_freq);
5435 		sc->sc_stats.ast_per_calfail++;
5436 	}
5437 	if (!isCalDone) {
5438 restart:
5439 		/*
5440 		 * Use a shorter interval to potentially collect multiple
5441 		 * data samples required to complete calibration.  Once
5442 		 * we're told the work is done we drop back to a longer
5443 		 * interval between requests.  We're more aggressive doing
5444 		 * work when operating as an AP to improve operation right
5445 		 * after startup.
5446 		 */
5447 		nextcal = (1000*ath_shortcalinterval)/hz;
5448 		if (sc->sc_opmode != HAL_M_HOSTAP)
5449 			nextcal *= 10;
5450 	} else {
5451 		nextcal = ath_longcalinterval*hz;
5452 		sc->sc_lastlongcal = ticks;
5453 		if (sc->sc_lastcalreset == 0)
5454 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5455 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5456 			sc->sc_resetcal = 1;	/* setup reset next trip */
5457 	}
5458 
5459 	if (nextcal != 0) {
5460 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5461 		    __func__, nextcal, isCalDone ? "" : "!");
5462 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5463 	} else {
5464 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5465 		    __func__);
5466 		/* NB: don't rearm timer */
5467 	}
5468 }
5469 
5470 static void
5471 ath_scan_start(struct ieee80211com *ic)
5472 {
5473 	struct ifnet *ifp = ic->ic_ifp;
5474 	struct ath_softc *sc = ifp->if_softc;
5475 	struct ath_hal *ah = sc->sc_ah;
5476 	u_int32_t rfilt;
5477 
5478 	/* XXX calibration timer? */
5479 
5480 	sc->sc_scanning = 1;
5481 	sc->sc_syncbeacon = 0;
5482 	rfilt = ath_calcrxfilter(sc);
5483 	ath_hal_setrxfilter(ah, rfilt);
5484 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5485 
5486 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5487 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5488 }
5489 
5490 static void
5491 ath_scan_end(struct ieee80211com *ic)
5492 {
5493 	struct ifnet *ifp = ic->ic_ifp;
5494 	struct ath_softc *sc = ifp->if_softc;
5495 	struct ath_hal *ah = sc->sc_ah;
5496 	u_int32_t rfilt;
5497 
5498 	sc->sc_scanning = 0;
5499 	rfilt = ath_calcrxfilter(sc);
5500 	ath_hal_setrxfilter(ah, rfilt);
5501 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5502 
5503 	ath_hal_process_noisefloor(ah);
5504 
5505 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5506 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5507 		 sc->sc_curaid);
5508 }
5509 
5510 static void
5511 ath_set_channel(struct ieee80211com *ic)
5512 {
5513 	struct ifnet *ifp = ic->ic_ifp;
5514 	struct ath_softc *sc = ifp->if_softc;
5515 
5516 	(void) ath_chan_set(sc, ic->ic_curchan);
5517 	/*
5518 	 * If we are returning to our bss channel then mark state
5519 	 * so the next recv'd beacon's tsf will be used to sync the
5520 	 * beacon timers.  Note that since we only hear beacons in
5521 	 * sta/ibss mode this has no effect in other operating modes.
5522 	 */
5523 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5524 		sc->sc_syncbeacon = 1;
5525 }
5526 
5527 /*
5528  * Walk the vap list and check if there any vap's in RUN state.
5529  */
5530 static int
5531 ath_isanyrunningvaps(struct ieee80211vap *this)
5532 {
5533 	struct ieee80211com *ic = this->iv_ic;
5534 	struct ieee80211vap *vap;
5535 
5536 	IEEE80211_LOCK_ASSERT(ic);
5537 
5538 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5539 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5540 			return 1;
5541 	}
5542 	return 0;
5543 }
5544 
5545 static int
5546 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5547 {
5548 	struct ieee80211com *ic = vap->iv_ic;
5549 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5550 	struct ath_vap *avp = ATH_VAP(vap);
5551 	struct ath_hal *ah = sc->sc_ah;
5552 	struct ieee80211_node *ni = NULL;
5553 	int i, error, stamode;
5554 	u_int32_t rfilt;
5555 	static const HAL_LED_STATE leds[] = {
5556 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5557 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5558 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5559 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5560 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5561 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5562 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5563 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5564 	};
5565 
5566 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5567 		ieee80211_state_name[vap->iv_state],
5568 		ieee80211_state_name[nstate]);
5569 
5570 	callout_drain(&sc->sc_cal_ch);
5571 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5572 
5573 	if (nstate == IEEE80211_S_SCAN) {
5574 		/*
5575 		 * Scanning: turn off beacon miss and don't beacon.
5576 		 * Mark beacon state so when we reach RUN state we'll
5577 		 * [re]setup beacons.  Unblock the task q thread so
5578 		 * deferred interrupt processing is done.
5579 		 */
5580 		ath_hal_intrset(ah,
5581 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5582 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5583 		sc->sc_beacons = 0;
5584 		taskqueue_unblock(sc->sc_tq);
5585 	}
5586 
5587 	ni = vap->iv_bss;
5588 	rfilt = ath_calcrxfilter(sc);
5589 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5590 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5591 		   vap->iv_opmode == IEEE80211_M_IBSS);
5592 	if (stamode && nstate == IEEE80211_S_RUN) {
5593 		sc->sc_curaid = ni->ni_associd;
5594 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5595 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5596 	}
5597 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5598 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5599 	ath_hal_setrxfilter(ah, rfilt);
5600 
5601 	/* XXX is this to restore keycache on resume? */
5602 	if (vap->iv_opmode != IEEE80211_M_STA &&
5603 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5604 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5605 			if (ath_hal_keyisvalid(ah, i))
5606 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5607 	}
5608 
5609 	/*
5610 	 * Invoke the parent method to do net80211 work.
5611 	 */
5612 	error = avp->av_newstate(vap, nstate, arg);
5613 	if (error != 0)
5614 		goto bad;
5615 
5616 	if (nstate == IEEE80211_S_RUN) {
5617 		/* NB: collect bss node again, it may have changed */
5618 		ni = vap->iv_bss;
5619 
5620 		DPRINTF(sc, ATH_DEBUG_STATE,
5621 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5622 		    "capinfo 0x%04x chan %d\n", __func__,
5623 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5624 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5625 
5626 		switch (vap->iv_opmode) {
5627 #ifdef IEEE80211_SUPPORT_TDMA
5628 		case IEEE80211_M_AHDEMO:
5629 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5630 				break;
5631 			/* fall thru... */
5632 #endif
5633 		case IEEE80211_M_HOSTAP:
5634 		case IEEE80211_M_IBSS:
5635 		case IEEE80211_M_MBSS:
5636 			/*
5637 			 * Allocate and setup the beacon frame.
5638 			 *
5639 			 * Stop any previous beacon DMA.  This may be
5640 			 * necessary, for example, when an ibss merge
5641 			 * causes reconfiguration; there will be a state
5642 			 * transition from RUN->RUN that means we may
5643 			 * be called with beacon transmission active.
5644 			 */
5645 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5646 
5647 			error = ath_beacon_alloc(sc, ni);
5648 			if (error != 0)
5649 				goto bad;
5650 			/*
5651 			 * If joining an adhoc network defer beacon timer
5652 			 * configuration to the next beacon frame so we
5653 			 * have a current TSF to use.  Otherwise we're
5654 			 * starting an ibss/bss so there's no need to delay;
5655 			 * if this is the first vap moving to RUN state, then
5656 			 * beacon state needs to be [re]configured.
5657 			 */
5658 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5659 			    ni->ni_tstamp.tsf != 0) {
5660 				sc->sc_syncbeacon = 1;
5661 			} else if (!sc->sc_beacons) {
5662 #ifdef IEEE80211_SUPPORT_TDMA
5663 				if (vap->iv_caps & IEEE80211_C_TDMA)
5664 					ath_tdma_config(sc, vap);
5665 				else
5666 #endif
5667 					ath_beacon_config(sc, vap);
5668 				sc->sc_beacons = 1;
5669 			}
5670 			break;
5671 		case IEEE80211_M_STA:
5672 			/*
5673 			 * Defer beacon timer configuration to the next
5674 			 * beacon frame so we have a current TSF to use
5675 			 * (any TSF collected when scanning is likely old).
5676 			 */
5677 			sc->sc_syncbeacon = 1;
5678 			break;
5679 		case IEEE80211_M_MONITOR:
5680 			/*
5681 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5682 			 * transitions so we must re-enable interrupts here to
5683 			 * handle the case of a single monitor mode vap.
5684 			 */
5685 			ath_hal_intrset(ah, sc->sc_imask);
5686 			break;
5687 		case IEEE80211_M_WDS:
5688 			break;
5689 		default:
5690 			break;
5691 		}
5692 		/*
5693 		 * Let the hal process statistics collected during a
5694 		 * scan so it can provide calibrated noise floor data.
5695 		 */
5696 		ath_hal_process_noisefloor(ah);
5697 		/*
5698 		 * Reset rssi stats; maybe not the best place...
5699 		 */
5700 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5701 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5702 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5703 		/*
5704 		 * Finally, start any timers and the task q thread
5705 		 * (in case we didn't go through SCAN state).
5706 		 */
5707 		if (ath_longcalinterval != 0) {
5708 			/* start periodic recalibration timer */
5709 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5710 		} else {
5711 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5712 			    "%s: calibration disabled\n", __func__);
5713 		}
5714 		taskqueue_unblock(sc->sc_tq);
5715 	} else if (nstate == IEEE80211_S_INIT) {
5716 		/*
5717 		 * If there are no vaps left in RUN state then
5718 		 * shutdown host/driver operation:
5719 		 * o disable interrupts
5720 		 * o disable the task queue thread
5721 		 * o mark beacon processing as stopped
5722 		 */
5723 		if (!ath_isanyrunningvaps(vap)) {
5724 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5725 			/* disable interrupts  */
5726 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5727 			taskqueue_block(sc->sc_tq);
5728 			sc->sc_beacons = 0;
5729 		}
5730 #ifdef IEEE80211_SUPPORT_TDMA
5731 		ath_hal_setcca(ah, AH_TRUE);
5732 #endif
5733 	}
5734 bad:
5735 	return error;
5736 }
5737 
5738 /*
5739  * Allocate a key cache slot to the station so we can
5740  * setup a mapping from key index to node. The key cache
5741  * slot is needed for managing antenna state and for
5742  * compression when stations do not use crypto.  We do
5743  * it uniliaterally here; if crypto is employed this slot
5744  * will be reassigned.
5745  */
5746 static void
5747 ath_setup_stationkey(struct ieee80211_node *ni)
5748 {
5749 	struct ieee80211vap *vap = ni->ni_vap;
5750 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5751 	ieee80211_keyix keyix, rxkeyix;
5752 
5753 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5754 		/*
5755 		 * Key cache is full; we'll fall back to doing
5756 		 * the more expensive lookup in software.  Note
5757 		 * this also means no h/w compression.
5758 		 */
5759 		/* XXX msg+statistic */
5760 	} else {
5761 		/* XXX locking? */
5762 		ni->ni_ucastkey.wk_keyix = keyix;
5763 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5764 		/* NB: must mark device key to get called back on delete */
5765 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5766 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5767 		/* NB: this will create a pass-thru key entry */
5768 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5769 	}
5770 }
5771 
5772 /*
5773  * Setup driver-specific state for a newly associated node.
5774  * Note that we're called also on a re-associate, the isnew
5775  * param tells us if this is the first time or not.
5776  */
5777 static void
5778 ath_newassoc(struct ieee80211_node *ni, int isnew)
5779 {
5780 	struct ath_node *an = ATH_NODE(ni);
5781 	struct ieee80211vap *vap = ni->ni_vap;
5782 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5783 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5784 
5785 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5786 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5787 
5788 	ath_rate_newassoc(sc, an, isnew);
5789 	if (isnew &&
5790 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5791 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5792 		ath_setup_stationkey(ni);
5793 }
5794 
5795 static int
5796 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5797 	int nchans, struct ieee80211_channel chans[])
5798 {
5799 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5800 	struct ath_hal *ah = sc->sc_ah;
5801 	HAL_STATUS status;
5802 
5803 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5804 	    "%s: rd %u cc %u location %c%s\n",
5805 	    __func__, reg->regdomain, reg->country, reg->location,
5806 	    reg->ecm ? " ecm" : "");
5807 
5808 	status = ath_hal_set_channels(ah, chans, nchans,
5809 	    reg->country, reg->regdomain);
5810 	if (status != HAL_OK) {
5811 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5812 		    __func__, status);
5813 		return EINVAL;		/* XXX */
5814 	}
5815 	return 0;
5816 }
5817 
5818 static void
5819 ath_getradiocaps(struct ieee80211com *ic,
5820 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5821 {
5822 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5823 	struct ath_hal *ah = sc->sc_ah;
5824 
5825 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5826 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5827 
5828 	/* XXX check return */
5829 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5830 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5831 
5832 }
5833 
5834 static int
5835 ath_getchannels(struct ath_softc *sc)
5836 {
5837 	struct ifnet *ifp = sc->sc_ifp;
5838 	struct ieee80211com *ic = ifp->if_l2com;
5839 	struct ath_hal *ah = sc->sc_ah;
5840 	HAL_STATUS status;
5841 
5842 	/*
5843 	 * Collect channel set based on EEPROM contents.
5844 	 */
5845 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5846 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5847 	if (status != HAL_OK) {
5848 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5849 		    "status %d\n", __func__, status);
5850 		return EINVAL;
5851 	}
5852 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5853 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5854 	/* XXX map Atheros sku's to net80211 SKU's */
5855 	/* XXX net80211 types too small */
5856 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5857 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5858 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5859 	ic->ic_regdomain.isocc[1] = ' ';
5860 
5861 	ic->ic_regdomain.ecm = 1;
5862 	ic->ic_regdomain.location = 'I';
5863 
5864 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5865 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5866 	    __func__, sc->sc_eerd, sc->sc_eecc,
5867 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5868 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5869 	return 0;
5870 }
5871 
5872 static void
5873 ath_led_done(void *arg)
5874 {
5875 	struct ath_softc *sc = arg;
5876 
5877 	sc->sc_blinking = 0;
5878 }
5879 
5880 /*
5881  * Turn the LED off: flip the pin and then set a timer so no
5882  * update will happen for the specified duration.
5883  */
5884 static void
5885 ath_led_off(void *arg)
5886 {
5887 	struct ath_softc *sc = arg;
5888 
5889 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5890 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5891 }
5892 
5893 /*
5894  * Blink the LED according to the specified on/off times.
5895  */
5896 static void
5897 ath_led_blink(struct ath_softc *sc, int on, int off)
5898 {
5899 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5900 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5901 	sc->sc_blinking = 1;
5902 	sc->sc_ledoff = off;
5903 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5904 }
5905 
5906 static void
5907 ath_led_event(struct ath_softc *sc, int rix)
5908 {
5909 	sc->sc_ledevent = ticks;	/* time of last event */
5910 	if (sc->sc_blinking)		/* don't interrupt active blink */
5911 		return;
5912 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5913 }
5914 
5915 static int
5916 ath_rate_setup(struct ath_softc *sc, u_int mode)
5917 {
5918 	struct ath_hal *ah = sc->sc_ah;
5919 	const HAL_RATE_TABLE *rt;
5920 
5921 	switch (mode) {
5922 	case IEEE80211_MODE_11A:
5923 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5924 		break;
5925 	case IEEE80211_MODE_HALF:
5926 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5927 		break;
5928 	case IEEE80211_MODE_QUARTER:
5929 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5930 		break;
5931 	case IEEE80211_MODE_11B:
5932 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5933 		break;
5934 	case IEEE80211_MODE_11G:
5935 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5936 		break;
5937 	case IEEE80211_MODE_TURBO_A:
5938 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5939 		break;
5940 	case IEEE80211_MODE_TURBO_G:
5941 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5942 		break;
5943 	case IEEE80211_MODE_STURBO_A:
5944 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5945 		break;
5946 	case IEEE80211_MODE_11NA:
5947 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5948 		break;
5949 	case IEEE80211_MODE_11NG:
5950 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5951 		break;
5952 	default:
5953 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5954 			__func__, mode);
5955 		return 0;
5956 	}
5957 	sc->sc_rates[mode] = rt;
5958 	return (rt != NULL);
5959 }
5960 
5961 static void
5962 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5963 {
5964 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5965 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5966 	static const struct {
5967 		u_int		rate;		/* tx/rx 802.11 rate */
5968 		u_int16_t	timeOn;		/* LED on time (ms) */
5969 		u_int16_t	timeOff;	/* LED off time (ms) */
5970 	} blinkrates[] = {
5971 		{ 108,  40,  10 },
5972 		{  96,  44,  11 },
5973 		{  72,  50,  13 },
5974 		{  48,  57,  14 },
5975 		{  36,  67,  16 },
5976 		{  24,  80,  20 },
5977 		{  22, 100,  25 },
5978 		{  18, 133,  34 },
5979 		{  12, 160,  40 },
5980 		{  10, 200,  50 },
5981 		{   6, 240,  58 },
5982 		{   4, 267,  66 },
5983 		{   2, 400, 100 },
5984 		{   0, 500, 130 },
5985 		/* XXX half/quarter rates */
5986 	};
5987 	const HAL_RATE_TABLE *rt;
5988 	int i, j;
5989 
5990 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5991 	rt = sc->sc_rates[mode];
5992 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5993 	for (i = 0; i < rt->rateCount; i++) {
5994 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5995 		if (rt->info[i].phy != IEEE80211_T_HT)
5996 			sc->sc_rixmap[ieeerate] = i;
5997 		else
5998 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5999 	}
6000 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6001 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6002 		if (i >= rt->rateCount) {
6003 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6004 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6005 			continue;
6006 		}
6007 		sc->sc_hwmap[i].ieeerate =
6008 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6009 		if (rt->info[i].phy == IEEE80211_T_HT)
6010 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6011 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6012 		if (rt->info[i].shortPreamble ||
6013 		    rt->info[i].phy == IEEE80211_T_OFDM)
6014 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6015 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6016 		for (j = 0; j < N(blinkrates)-1; j++)
6017 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6018 				break;
6019 		/* NB: this uses the last entry if the rate isn't found */
6020 		/* XXX beware of overlow */
6021 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6022 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6023 	}
6024 	sc->sc_currates = rt;
6025 	sc->sc_curmode = mode;
6026 	/*
6027 	 * All protection frames are transmited at 2Mb/s for
6028 	 * 11g, otherwise at 1Mb/s.
6029 	 */
6030 	if (mode == IEEE80211_MODE_11G)
6031 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6032 	else
6033 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6034 	/* NB: caller is responsible for reseting rate control state */
6035 #undef N
6036 }
6037 
6038 #ifdef ATH_DEBUG
6039 static void
6040 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6041 	u_int ix, int done)
6042 {
6043 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6044 	struct ath_hal *ah = sc->sc_ah;
6045 	const struct ath_desc *ds;
6046 	int i;
6047 
6048 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6049 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6050 		       "      %08x %08x %08x %08x\n",
6051 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6052 		    ds->ds_link, ds->ds_data,
6053 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6054 		    ds->ds_ctl0, ds->ds_ctl1,
6055 		    ds->ds_hw[0], ds->ds_hw[1]);
6056 		if (ah->ah_magic == 0x20065416) {
6057 			printf("        %08x %08x %08x %08x %08x %08x %08x\n",
6058 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6059 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6060 			    ds->ds_hw[8]);
6061 		}
6062 	}
6063 }
6064 
6065 static void
6066 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6067 	u_int qnum, u_int ix, int done)
6068 {
6069 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6070 	struct ath_hal *ah = sc->sc_ah;
6071 	const struct ath_desc *ds;
6072 	int i;
6073 
6074 	printf("Q%u[%3u]", qnum, ix);
6075 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6076 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6077 		       "        %08x %08x %08x %08x %08x %08x\n",
6078 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6079 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6080 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6081 		    ds->ds_ctl0, ds->ds_ctl1,
6082 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6083 		if (ah->ah_magic == 0x20065416) {
6084 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6085 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6086 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6087 			    ds->ds_hw[10],ds->ds_hw[11]);
6088 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6089 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6090 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6091 			    ds->ds_hw[18], ds->ds_hw[19]);
6092 		}
6093 	}
6094 }
6095 #endif /* ATH_DEBUG */
6096 
6097 static void
6098 ath_watchdog(void *arg)
6099 {
6100 	struct ath_softc *sc = arg;
6101 
6102 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6103 		struct ifnet *ifp = sc->sc_ifp;
6104 		uint32_t hangs;
6105 
6106 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6107 		    hangs != 0) {
6108 			if_printf(ifp, "%s hang detected (0x%x)\n",
6109 			    hangs & 0xff ? "bb" : "mac", hangs);
6110 		} else
6111 			if_printf(ifp, "device timeout\n");
6112 		ath_reset(ifp);
6113 		ifp->if_oerrors++;
6114 		sc->sc_stats.ast_watchdog++;
6115 	}
6116 	callout_schedule(&sc->sc_wd_ch, hz);
6117 }
6118 
6119 #ifdef ATH_DIAGAPI
6120 /*
6121  * Diagnostic interface to the HAL.  This is used by various
6122  * tools to do things like retrieve register contents for
6123  * debugging.  The mechanism is intentionally opaque so that
6124  * it can change frequently w/o concern for compatiblity.
6125  */
6126 static int
6127 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6128 {
6129 	struct ath_hal *ah = sc->sc_ah;
6130 	u_int id = ad->ad_id & ATH_DIAG_ID;
6131 	void *indata = NULL;
6132 	void *outdata = NULL;
6133 	u_int32_t insize = ad->ad_in_size;
6134 	u_int32_t outsize = ad->ad_out_size;
6135 	int error = 0;
6136 
6137 	if (ad->ad_id & ATH_DIAG_IN) {
6138 		/*
6139 		 * Copy in data.
6140 		 */
6141 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6142 		if (indata == NULL) {
6143 			error = ENOMEM;
6144 			goto bad;
6145 		}
6146 		error = copyin(ad->ad_in_data, indata, insize);
6147 		if (error)
6148 			goto bad;
6149 	}
6150 	if (ad->ad_id & ATH_DIAG_DYN) {
6151 		/*
6152 		 * Allocate a buffer for the results (otherwise the HAL
6153 		 * returns a pointer to a buffer where we can read the
6154 		 * results).  Note that we depend on the HAL leaving this
6155 		 * pointer for us to use below in reclaiming the buffer;
6156 		 * may want to be more defensive.
6157 		 */
6158 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6159 		if (outdata == NULL) {
6160 			error = ENOMEM;
6161 			goto bad;
6162 		}
6163 	}
6164 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6165 		if (outsize < ad->ad_out_size)
6166 			ad->ad_out_size = outsize;
6167 		if (outdata != NULL)
6168 			error = copyout(outdata, ad->ad_out_data,
6169 					ad->ad_out_size);
6170 	} else {
6171 		error = EINVAL;
6172 	}
6173 bad:
6174 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6175 		free(indata, M_TEMP);
6176 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6177 		free(outdata, M_TEMP);
6178 	return error;
6179 }
6180 #endif /* ATH_DIAGAPI */
6181 
6182 static int
6183 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6184 {
6185 #define	IS_RUNNING(ifp) \
6186 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6187 	struct ath_softc *sc = ifp->if_softc;
6188 	struct ieee80211com *ic = ifp->if_l2com;
6189 	struct ifreq *ifr = (struct ifreq *)data;
6190 	const HAL_RATE_TABLE *rt;
6191 	int error = 0;
6192 
6193 	switch (cmd) {
6194 	case SIOCSIFFLAGS:
6195 		ATH_LOCK(sc);
6196 		if (IS_RUNNING(ifp)) {
6197 			/*
6198 			 * To avoid rescanning another access point,
6199 			 * do not call ath_init() here.  Instead,
6200 			 * only reflect promisc mode settings.
6201 			 */
6202 			ath_mode_init(sc);
6203 		} else if (ifp->if_flags & IFF_UP) {
6204 			/*
6205 			 * Beware of being called during attach/detach
6206 			 * to reset promiscuous mode.  In that case we
6207 			 * will still be marked UP but not RUNNING.
6208 			 * However trying to re-init the interface
6209 			 * is the wrong thing to do as we've already
6210 			 * torn down much of our state.  There's
6211 			 * probably a better way to deal with this.
6212 			 */
6213 			if (!sc->sc_invalid)
6214 				ath_init(sc);	/* XXX lose error */
6215 		} else {
6216 			ath_stop_locked(ifp);
6217 #ifdef notyet
6218 			/* XXX must wakeup in places like ath_vap_delete */
6219 			if (!sc->sc_invalid)
6220 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6221 #endif
6222 		}
6223 		ATH_UNLOCK(sc);
6224 		break;
6225 	case SIOCGIFMEDIA:
6226 	case SIOCSIFMEDIA:
6227 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6228 		break;
6229 	case SIOCGATHSTATS:
6230 		/* NB: embed these numbers to get a consistent view */
6231 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6232 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6233 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6234 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6235 #ifdef IEEE80211_SUPPORT_TDMA
6236 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6237 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6238 #endif
6239 		rt = sc->sc_currates;
6240 		/* XXX HT rates */
6241 		sc->sc_stats.ast_tx_rate =
6242 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6243 		return copyout(&sc->sc_stats,
6244 		    ifr->ifr_data, sizeof (sc->sc_stats));
6245 	case SIOCZATHSTATS:
6246 		error = priv_check(curthread, PRIV_DRIVER);
6247 		if (error == 0)
6248 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6249 		break;
6250 #ifdef ATH_DIAGAPI
6251 	case SIOCGATHDIAG:
6252 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6253 		break;
6254 #endif
6255 	case SIOCGIFADDR:
6256 		error = ether_ioctl(ifp, cmd, data);
6257 		break;
6258 	default:
6259 		error = EINVAL;
6260 		break;
6261 	}
6262 	return error;
6263 #undef IS_RUNNING
6264 }
6265 
6266 static int
6267 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6268 {
6269 	struct ath_softc *sc = arg1;
6270 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6271 	int error;
6272 
6273 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6274 	if (error || !req->newptr)
6275 		return error;
6276 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6277 }
6278 
6279 static int
6280 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6281 {
6282 	struct ath_softc *sc = arg1;
6283 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6284 	int error;
6285 
6286 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6287 	if (error || !req->newptr)
6288 		return error;
6289 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6290 }
6291 
6292 static int
6293 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6294 {
6295 	struct ath_softc *sc = arg1;
6296 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6297 	int error;
6298 
6299 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6300 	if (error || !req->newptr)
6301 		return error;
6302 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6303 }
6304 
6305 static int
6306 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6307 {
6308 	struct ath_softc *sc = arg1;
6309 	int softled = sc->sc_softled;
6310 	int error;
6311 
6312 	error = sysctl_handle_int(oidp, &softled, 0, req);
6313 	if (error || !req->newptr)
6314 		return error;
6315 	softled = (softled != 0);
6316 	if (softled != sc->sc_softled) {
6317 		if (softled) {
6318 			/* NB: handle any sc_ledpin change */
6319 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6320 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6321 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6322 				!sc->sc_ledon);
6323 		}
6324 		sc->sc_softled = softled;
6325 	}
6326 	return 0;
6327 }
6328 
6329 static int
6330 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6331 {
6332 	struct ath_softc *sc = arg1;
6333 	int ledpin = sc->sc_ledpin;
6334 	int error;
6335 
6336 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6337 	if (error || !req->newptr)
6338 		return error;
6339 	if (ledpin != sc->sc_ledpin) {
6340 		sc->sc_ledpin = ledpin;
6341 		if (sc->sc_softled) {
6342 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6343 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6344 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6345 				!sc->sc_ledon);
6346 		}
6347 	}
6348 	return 0;
6349 }
6350 
6351 static int
6352 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6353 {
6354 	struct ath_softc *sc = arg1;
6355 	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6356 	int error;
6357 
6358 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6359 	if (!error && req->newptr) {
6360 		/* XXX assumes 2 antenna ports */
6361 		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6362 			return EINVAL;
6363 		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6364 		/*
6365 		 * NB: with the switch locked this isn't meaningful,
6366 		 *     but set it anyway so things like radiotap get
6367 		 *     consistent info in their data.
6368 		 */
6369 		sc->sc_txantenna = txantenna;
6370 	}
6371 	return error;
6372 }
6373 
6374 static int
6375 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6376 {
6377 	struct ath_softc *sc = arg1;
6378 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6379 	int error;
6380 
6381 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6382 	if (!error && req->newptr)
6383 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6384 	return error;
6385 }
6386 
6387 static int
6388 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6389 {
6390 	struct ath_softc *sc = arg1;
6391 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6392 	int error;
6393 
6394 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6395 	if (error || !req->newptr)
6396 		return error;
6397 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6398 		return EINVAL;
6399 	sc->sc_diversity = diversity;
6400 	return 0;
6401 }
6402 
6403 static int
6404 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6405 {
6406 	struct ath_softc *sc = arg1;
6407 	u_int32_t diag;
6408 	int error;
6409 
6410 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6411 		return EINVAL;
6412 	error = sysctl_handle_int(oidp, &diag, 0, req);
6413 	if (error || !req->newptr)
6414 		return error;
6415 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6416 }
6417 
6418 static int
6419 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6420 {
6421 	struct ath_softc *sc = arg1;
6422 	struct ifnet *ifp = sc->sc_ifp;
6423 	u_int32_t scale;
6424 	int error;
6425 
6426 	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6427 	error = sysctl_handle_int(oidp, &scale, 0, req);
6428 	if (error || !req->newptr)
6429 		return error;
6430 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6431 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6432 }
6433 
6434 static int
6435 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6436 {
6437 	struct ath_softc *sc = arg1;
6438 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6439 	int error;
6440 
6441 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6442 	if (error || !req->newptr)
6443 		return error;
6444 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6445 }
6446 
6447 static int
6448 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6449 {
6450 	struct ath_softc *sc = arg1;
6451 	struct ifnet *ifp = sc->sc_ifp;
6452 	struct ath_hal *ah = sc->sc_ah;
6453 	u_int rfkill = ath_hal_getrfkill(ah);
6454 	int error;
6455 
6456 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6457 	if (error || !req->newptr)
6458 		return error;
6459 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6460 		return 0;
6461 	if (!ath_hal_setrfkill(ah, rfkill))
6462 		return EINVAL;
6463 	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6464 }
6465 
6466 static int
6467 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6468 {
6469 	struct ath_softc *sc = arg1;
6470 	u_int rfsilent;
6471 	int error;
6472 
6473 	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6474 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6475 	if (error || !req->newptr)
6476 		return error;
6477 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6478 		return EINVAL;
6479 	sc->sc_rfsilentpin = rfsilent & 0x1c;
6480 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6481 	return 0;
6482 }
6483 
6484 static int
6485 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6486 {
6487 	struct ath_softc *sc = arg1;
6488 	u_int32_t tpack;
6489 	int error;
6490 
6491 	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6492 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6493 	if (error || !req->newptr)
6494 		return error;
6495 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6496 }
6497 
6498 static int
6499 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6500 {
6501 	struct ath_softc *sc = arg1;
6502 	u_int32_t tpcts;
6503 	int error;
6504 
6505 	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6506 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6507 	if (error || !req->newptr)
6508 		return error;
6509 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6510 }
6511 
6512 static int
6513 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6514 {
6515 	struct ath_softc *sc = arg1;
6516 	int intmit, error;
6517 
6518 	intmit = ath_hal_getintmit(sc->sc_ah);
6519 	error = sysctl_handle_int(oidp, &intmit, 0, req);
6520 	if (error || !req->newptr)
6521 		return error;
6522 	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6523 }
6524 
6525 #ifdef IEEE80211_SUPPORT_TDMA
6526 static int
6527 ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6528 {
6529 	struct ath_softc *sc = arg1;
6530 	int setcca, error;
6531 
6532 	setcca = sc->sc_setcca;
6533 	error = sysctl_handle_int(oidp, &setcca, 0, req);
6534 	if (error || !req->newptr)
6535 		return error;
6536 	sc->sc_setcca = (setcca != 0);
6537 	return 0;
6538 }
6539 #endif /* IEEE80211_SUPPORT_TDMA */
6540 
6541 static void
6542 ath_sysctlattach(struct ath_softc *sc)
6543 {
6544 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6545 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6546 	struct ath_hal *ah = sc->sc_ah;
6547 
6548 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6549 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6550 		"EEPROM country code");
6551 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6552 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6553 		"EEPROM regdomain code");
6554 #ifdef	ATH_DEBUG
6555 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6556 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6557 		"control debugging printfs");
6558 #endif
6559 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6560 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6561 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6562 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6563 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6564 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6565 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6566 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6567 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6568 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6569 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6570 		ath_sysctl_softled, "I", "enable/disable software LED support");
6571 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6572 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6573 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6574 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6575 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6576 		"setting to turn LED on");
6577 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6578 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6579 		"idle time for inactivity LED (ticks)");
6580 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6581 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6582 		ath_sysctl_txantenna, "I", "antenna switch");
6583 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6584 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6585 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6586 	if (ath_hal_hasdiversity(ah))
6587 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6588 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6589 			ath_sysctl_diversity, "I", "antenna diversity");
6590 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6591 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6592 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6593 		"tx descriptor batching");
6594 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6595 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6596 		ath_sysctl_diag, "I", "h/w diagnostic control");
6597 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6598 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6599 		ath_sysctl_tpscale, "I", "tx power scaling");
6600 	if (ath_hal_hastpc(ah)) {
6601 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6602 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6603 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6604 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6605 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6606 			ath_sysctl_tpack, "I", "tx power for ack frames");
6607 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6608 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6609 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6610 	}
6611 	if (ath_hal_hasrfsilent(ah)) {
6612 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6613 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6614 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6615 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6616 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6617 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6618 	}
6619 	if (ath_hal_hasintmit(ah)) {
6620 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6621 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6622 			ath_sysctl_intmit, "I", "interference mitigation");
6623 	}
6624 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6625 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6626 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6627 		"mask of error frames to pass when monitoring");
6628 #ifdef IEEE80211_SUPPORT_TDMA
6629 	if (ath_hal_macversion(ah) > 0x78) {
6630 		sc->sc_tdmadbaprep = 2;
6631 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6632 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6633 			"TDMA DBA preparation time");
6634 		sc->sc_tdmaswbaprep = 10;
6635 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6636 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6637 			"TDMA SWBA preparation time");
6638 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6639 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6640 			"TDMA slot guard time");
6641 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6642 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6643 			"TDMA calculated super frame");
6644 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6645 			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6646 			ath_sysctl_setcca, "I", "enable CCA control");
6647 	}
6648 #endif
6649 }
6650 
6651 static int
6652 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6653 	struct ath_buf *bf, struct mbuf *m0,
6654 	const struct ieee80211_bpf_params *params)
6655 {
6656 	struct ifnet *ifp = sc->sc_ifp;
6657 	struct ieee80211com *ic = ifp->if_l2com;
6658 	struct ath_hal *ah = sc->sc_ah;
6659 	struct ieee80211vap *vap = ni->ni_vap;
6660 	int error, ismcast, ismrr;
6661 	int keyix, hdrlen, pktlen, try0, txantenna;
6662 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6663 	struct ieee80211_frame *wh;
6664 	u_int flags, ctsduration;
6665 	HAL_PKT_TYPE atype;
6666 	const HAL_RATE_TABLE *rt;
6667 	struct ath_desc *ds;
6668 	u_int pri;
6669 
6670 	wh = mtod(m0, struct ieee80211_frame *);
6671 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6672 	hdrlen = ieee80211_anyhdrsize(wh);
6673 	/*
6674 	 * Packet length must not include any
6675 	 * pad bytes; deduct them here.
6676 	 */
6677 	/* XXX honor IEEE80211_BPF_DATAPAD */
6678 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6679 
6680 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
6681 		const struct ieee80211_cipher *cip;
6682 		struct ieee80211_key *k;
6683 
6684 		/*
6685 		 * Construct the 802.11 header+trailer for an encrypted
6686 		 * frame. The only reason this can fail is because of an
6687 		 * unknown or unsupported cipher/key type.
6688 		 */
6689 		k = ieee80211_crypto_encap(ni, m0);
6690 		if (k == NULL) {
6691 			/*
6692 			 * This can happen when the key is yanked after the
6693 			 * frame was queued.  Just discard the frame; the
6694 			 * 802.11 layer counts failures and provides
6695 			 * debugging/diagnostics.
6696 			 */
6697 			ath_freetx(m0);
6698 			return EIO;
6699 		}
6700 		/*
6701 		 * Adjust the packet + header lengths for the crypto
6702 		 * additions and calculate the h/w key index.  When
6703 		 * a s/w mic is done the frame will have had any mic
6704 		 * added to it prior to entry so m0->m_pkthdr.len will
6705 		 * account for it. Otherwise we need to add it to the
6706 		 * packet length.
6707 		 */
6708 		cip = k->wk_cipher;
6709 		hdrlen += cip->ic_header;
6710 		pktlen += cip->ic_header + cip->ic_trailer;
6711 		/* NB: frags always have any TKIP MIC done in s/w */
6712 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
6713 			pktlen += cip->ic_miclen;
6714 		keyix = k->wk_keyix;
6715 
6716 		/* packet header may have moved, reset our local pointer */
6717 		wh = mtod(m0, struct ieee80211_frame *);
6718 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
6719 		/*
6720 		 * Use station key cache slot, if assigned.
6721 		 */
6722 		keyix = ni->ni_ucastkey.wk_keyix;
6723 		if (keyix == IEEE80211_KEYIX_NONE)
6724 			keyix = HAL_TXKEYIX_INVALID;
6725 	} else
6726 		keyix = HAL_TXKEYIX_INVALID;
6727 
6728 	error = ath_tx_dmasetup(sc, bf, m0);
6729 	if (error != 0)
6730 		return error;
6731 	m0 = bf->bf_m;				/* NB: may have changed */
6732 	wh = mtod(m0, struct ieee80211_frame *);
6733 	bf->bf_node = ni;			/* NB: held reference */
6734 
6735 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6736 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6737 	if (params->ibp_flags & IEEE80211_BPF_RTS)
6738 		flags |= HAL_TXDESC_RTSENA;
6739 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6740 		flags |= HAL_TXDESC_CTSENA;
6741 	/* XXX leave ismcast to injector? */
6742 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6743 		flags |= HAL_TXDESC_NOACK;
6744 
6745 	rt = sc->sc_currates;
6746 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6747 	rix = ath_tx_findrix(sc, params->ibp_rate0);
6748 	txrate = rt->info[rix].rateCode;
6749 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6750 		txrate |= rt->info[rix].shortPreamble;
6751 	sc->sc_txrix = rix;
6752 	try0 = params->ibp_try0;
6753 	ismrr = (params->ibp_try1 != 0);
6754 	txantenna = params->ibp_pri >> 2;
6755 	if (txantenna == 0)			/* XXX? */
6756 		txantenna = sc->sc_txantenna;
6757 	ctsduration = 0;
6758 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6759 		cix = ath_tx_findrix(sc, params->ibp_ctsrate);
6760 		ctsrate = rt->info[cix].rateCode;
6761 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6762 			ctsrate |= rt->info[cix].shortPreamble;
6763 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6764 				ctsduration += rt->info[cix].spAckDuration;
6765 			ctsduration += ath_hal_computetxtime(ah,
6766 				rt, pktlen, rix, AH_TRUE);
6767 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6768 				ctsduration += rt->info[rix].spAckDuration;
6769 		} else {
6770 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6771 				ctsduration += rt->info[cix].lpAckDuration;
6772 			ctsduration += ath_hal_computetxtime(ah,
6773 				rt, pktlen, rix, AH_FALSE);
6774 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6775 				ctsduration += rt->info[rix].lpAckDuration;
6776 		}
6777 		ismrr = 0;			/* XXX */
6778 	} else
6779 		ctsrate = 0;
6780 	pri = params->ibp_pri & 3;
6781 	/*
6782 	 * NB: we mark all packets as type PSPOLL so the h/w won't
6783 	 * set the sequence number, duration, etc.
6784 	 */
6785 	atype = HAL_PKT_TYPE_PSPOLL;
6786 
6787 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6788 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6789 		    sc->sc_hwmap[rix].ieeerate, -1);
6790 
6791 	if (ieee80211_radiotap_active_vap(vap)) {
6792 		u_int64_t tsf = ath_hal_gettsf64(ah);
6793 
6794 		sc->sc_tx_th.wt_tsf = htole64(tsf);
6795 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6796 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6797 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6798 		if (m0->m_flags & M_FRAG)
6799 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
6800 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6801 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6802 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6803 
6804 		ieee80211_radiotap_tx(vap, m0);
6805 	}
6806 
6807 	/*
6808 	 * Formulate first tx descriptor with tx controls.
6809 	 */
6810 	ds = bf->bf_desc;
6811 	/* XXX check return value? */
6812 	ath_hal_setuptxdesc(ah, ds
6813 		, pktlen		/* packet length */
6814 		, hdrlen		/* header length */
6815 		, atype			/* Atheros packet type */
6816 		, params->ibp_power	/* txpower */
6817 		, txrate, try0		/* series 0 rate/tries */
6818 		, keyix			/* key cache index */
6819 		, txantenna		/* antenna mode */
6820 		, flags			/* flags */
6821 		, ctsrate		/* rts/cts rate */
6822 		, ctsduration		/* rts/cts duration */
6823 	);
6824 	bf->bf_txflags = flags;
6825 
6826 	if (ismrr) {
6827 		rix = ath_tx_findrix(sc, params->ibp_rate1);
6828 		rate1 = rt->info[rix].rateCode;
6829 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6830 			rate1 |= rt->info[rix].shortPreamble;
6831 		if (params->ibp_try2) {
6832 			rix = ath_tx_findrix(sc, params->ibp_rate2);
6833 			rate2 = rt->info[rix].rateCode;
6834 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6835 				rate2 |= rt->info[rix].shortPreamble;
6836 		} else
6837 			rate2 = 0;
6838 		if (params->ibp_try3) {
6839 			rix = ath_tx_findrix(sc, params->ibp_rate3);
6840 			rate3 = rt->info[rix].rateCode;
6841 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6842 				rate3 |= rt->info[rix].shortPreamble;
6843 		} else
6844 			rate3 = 0;
6845 		ath_hal_setupxtxdesc(ah, ds
6846 			, rate1, params->ibp_try1	/* series 1 */
6847 			, rate2, params->ibp_try2	/* series 2 */
6848 			, rate3, params->ibp_try3	/* series 3 */
6849 		);
6850 	}
6851 
6852 	/* NB: no buffered multicast in power save support */
6853 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6854 	return 0;
6855 }
6856 
6857 static int
6858 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6859 	const struct ieee80211_bpf_params *params)
6860 {
6861 	struct ieee80211com *ic = ni->ni_ic;
6862 	struct ifnet *ifp = ic->ic_ifp;
6863 	struct ath_softc *sc = ifp->if_softc;
6864 	struct ath_buf *bf;
6865 	int error;
6866 
6867 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
6868 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
6869 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
6870 			"!running" : "invalid");
6871 		m_freem(m);
6872 		error = ENETDOWN;
6873 		goto bad;
6874 	}
6875 	/*
6876 	 * Grab a TX buffer and associated resources.
6877 	 */
6878 	bf = ath_getbuf(sc);
6879 	if (bf == NULL) {
6880 		sc->sc_stats.ast_tx_nobuf++;
6881 		m_freem(m);
6882 		error = ENOBUFS;
6883 		goto bad;
6884 	}
6885 
6886 	if (params == NULL) {
6887 		/*
6888 		 * Legacy path; interpret frame contents to decide
6889 		 * precisely how to send the frame.
6890 		 */
6891 		if (ath_tx_start(sc, ni, bf, m)) {
6892 			error = EIO;		/* XXX */
6893 			goto bad2;
6894 		}
6895 	} else {
6896 		/*
6897 		 * Caller supplied explicit parameters to use in
6898 		 * sending the frame.
6899 		 */
6900 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
6901 			error = EIO;		/* XXX */
6902 			goto bad2;
6903 		}
6904 	}
6905 	sc->sc_wd_timer = 5;
6906 	ifp->if_opackets++;
6907 	sc->sc_stats.ast_tx_raw++;
6908 
6909 	return 0;
6910 bad2:
6911 	ATH_TXBUF_LOCK(sc);
6912 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
6913 	ATH_TXBUF_UNLOCK(sc);
6914 bad:
6915 	ifp->if_oerrors++;
6916 	sc->sc_stats.ast_tx_raw_fail++;
6917 	ieee80211_free_node(ni);
6918 	return error;
6919 }
6920 
6921 /*
6922  * Announce various information on device/driver attach.
6923  */
6924 static void
6925 ath_announce(struct ath_softc *sc)
6926 {
6927 	struct ifnet *ifp = sc->sc_ifp;
6928 	struct ath_hal *ah = sc->sc_ah;
6929 
6930 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6931 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6932 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6933 	if (bootverbose) {
6934 		int i;
6935 		for (i = 0; i <= WME_AC_VO; i++) {
6936 			struct ath_txq *txq = sc->sc_ac2q[i];
6937 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6938 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6939 		}
6940 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6941 			sc->sc_cabq->axq_qnum);
6942 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6943 	}
6944 	if (ath_rxbuf != ATH_RXBUF)
6945 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6946 	if (ath_txbuf != ATH_TXBUF)
6947 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6948 }
6949 
6950 #ifdef IEEE80211_SUPPORT_TDMA
6951 static __inline uint32_t
6952 ath_hal_getnexttbtt(struct ath_hal *ah)
6953 {
6954 #define	AR_TIMER0	0x8028
6955 	return OS_REG_READ(ah, AR_TIMER0);
6956 }
6957 
6958 static __inline void
6959 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
6960 {
6961 	/* XXX handle wrap/overflow */
6962 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
6963 }
6964 
6965 static void
6966 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6967 {
6968 	struct ath_hal *ah = sc->sc_ah;
6969 	HAL_BEACON_TIMERS bt;
6970 
6971 	bt.bt_intval = bintval | HAL_BEACON_ENA;
6972 	bt.bt_nexttbtt = nexttbtt;
6973 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6974 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6975 	bt.bt_nextatim = nexttbtt+1;
6976 	ath_hal_beaconsettimers(ah, &bt);
6977 }
6978 
6979 /*
6980  * Calculate the beacon interval.  This is periodic in the
6981  * superframe for the bss.  We assume each station is configured
6982  * identically wrt transmit rate so the guard time we calculate
6983  * above will be the same on all stations.  Note we need to
6984  * factor in the xmit time because the hardware will schedule
6985  * a frame for transmit if the start of the frame is within
6986  * the burst time.  When we get hardware that properly kills
6987  * frames in the PCU we can reduce/eliminate the guard time.
6988  *
6989  * Roundup to 1024 is so we have 1 TU buffer in the guard time
6990  * to deal with the granularity of the nexttbtt timer.  11n MAC's
6991  * with 1us timer granularity should allow us to reduce/eliminate
6992  * this.
6993  */
6994 static void
6995 ath_tdma_bintvalsetup(struct ath_softc *sc,
6996 	const struct ieee80211_tdma_state *tdma)
6997 {
6998 	/* copy from vap state (XXX check all vaps have same value?) */
6999 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7000 
7001 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7002 		tdma->tdma_slotcnt, 1024);
7003 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7004 	if (sc->sc_tdmabintval & 1)
7005 		sc->sc_tdmabintval++;
7006 
7007 	if (tdma->tdma_slot == 0) {
7008 		/*
7009 		 * Only slot 0 beacons; other slots respond.
7010 		 */
7011 		sc->sc_imask |= HAL_INT_SWBA;
7012 		sc->sc_tdmaswba = 0;		/* beacon immediately */
7013 	} else {
7014 		/* XXX all vaps must be slot 0 or slot !0 */
7015 		sc->sc_imask &= ~HAL_INT_SWBA;
7016 	}
7017 }
7018 
7019 /*
7020  * Max 802.11 overhead.  This assumes no 4-address frames and
7021  * the encapsulation done by ieee80211_encap (llc).  We also
7022  * include potential crypto overhead.
7023  */
7024 #define	IEEE80211_MAXOVERHEAD \
7025 	(sizeof(struct ieee80211_qosframe) \
7026 	 + sizeof(struct llc) \
7027 	 + IEEE80211_ADDR_LEN \
7028 	 + IEEE80211_WEP_IVLEN \
7029 	 + IEEE80211_WEP_KIDLEN \
7030 	 + IEEE80211_WEP_CRCLEN \
7031 	 + IEEE80211_WEP_MICLEN \
7032 	 + IEEE80211_CRC_LEN)
7033 
7034 /*
7035  * Setup initially for tdma operation.  Start the beacon
7036  * timers and enable SWBA if we are slot 0.  Otherwise
7037  * we wait for slot 0 to arrive so we can sync up before
7038  * starting to transmit.
7039  */
7040 static void
7041 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7042 {
7043 	struct ath_hal *ah = sc->sc_ah;
7044 	struct ifnet *ifp = sc->sc_ifp;
7045 	struct ieee80211com *ic = ifp->if_l2com;
7046 	const struct ieee80211_txparam *tp;
7047 	const struct ieee80211_tdma_state *tdma = NULL;
7048 	int rix;
7049 
7050 	if (vap == NULL) {
7051 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7052 		if (vap == NULL) {
7053 			if_printf(ifp, "%s: no vaps?\n", __func__);
7054 			return;
7055 		}
7056 	}
7057 	tp = vap->iv_bss->ni_txparms;
7058 	/*
7059 	 * Calculate the guard time for each slot.  This is the
7060 	 * time to send a maximal-size frame according to the
7061 	 * fixed/lowest transmit rate.  Note that the interface
7062 	 * mtu does not include the 802.11 overhead so we must
7063 	 * tack that on (ath_hal_computetxtime includes the
7064 	 * preamble and plcp in it's calculation).
7065 	 */
7066 	tdma = vap->iv_tdma;
7067 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7068 		rix = ath_tx_findrix(sc, tp->ucastrate);
7069 	else
7070 		rix = ath_tx_findrix(sc, tp->mcastrate);
7071 	/* XXX short preamble assumed */
7072 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7073 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7074 
7075 	ath_hal_intrset(ah, 0);
7076 
7077 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7078 	if (sc->sc_setcca)
7079 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7080 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7081 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7082 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7083 	sc->sc_syncbeacon = 0;
7084 
7085 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7086 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7087 
7088 	ath_hal_intrset(ah, sc->sc_imask);
7089 
7090 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7091 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7092 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7093 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7094 	    sc->sc_tdmadbaprep);
7095 }
7096 
7097 /*
7098  * Update tdma operation.  Called from the 802.11 layer
7099  * when a beacon is received from the TDMA station operating
7100  * in the slot immediately preceding us in the bss.  Use
7101  * the rx timestamp for the beacon frame to update our
7102  * beacon timers so we follow their schedule.  Note that
7103  * by using the rx timestamp we implicitly include the
7104  * propagation delay in our schedule.
7105  */
7106 static void
7107 ath_tdma_update(struct ieee80211_node *ni,
7108 	const struct ieee80211_tdma_param *tdma, int changed)
7109 {
7110 #define	TSF_TO_TU(_h,_l) \
7111 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7112 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7113 	struct ieee80211vap *vap = ni->ni_vap;
7114 	struct ieee80211com *ic = ni->ni_ic;
7115 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7116 	struct ath_hal *ah = sc->sc_ah;
7117 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7118 	u_int64_t tsf, rstamp, nextslot;
7119 	u_int32_t txtime, nextslottu, timer0;
7120 	int32_t tudelta, tsfdelta;
7121 	const struct ath_rx_status *rs;
7122 	int rix;
7123 
7124 	sc->sc_stats.ast_tdma_update++;
7125 
7126 	/*
7127 	 * Check for and adopt configuration changes.
7128 	 */
7129 	if (changed != 0) {
7130 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7131 
7132 		ath_tdma_bintvalsetup(sc, ts);
7133 		if (changed & TDMA_UPDATE_SLOTLEN)
7134 			ath_wme_update(ic);
7135 
7136 		DPRINTF(sc, ATH_DEBUG_TDMA,
7137 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7138 		    "bintval %u TU\n", __func__,
7139 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7140 		    sc->sc_tdmabintval);
7141 
7142 		/* XXX right? */
7143 		ath_hal_intrset(ah, sc->sc_imask);
7144 		/* NB: beacon timers programmed below */
7145 	}
7146 
7147 	/* extend rx timestamp to 64 bits */
7148 	rs = sc->sc_lastrs;
7149 	tsf = ath_hal_gettsf64(ah);
7150 	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
7151 	/*
7152 	 * The rx timestamp is set by the hardware on completing
7153 	 * reception (at the point where the rx descriptor is DMA'd
7154 	 * to the host).  To find the start of our next slot we
7155 	 * must adjust this time by the time required to send
7156 	 * the packet just received.
7157 	 */
7158 	rix = rt->rateCodeToIndex[rs->rs_rate];
7159 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7160 	    rt->info[rix].shortPreamble);
7161 	/* NB: << 9 is to cvt to TU and /2 */
7162 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7163 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7164 
7165 	/*
7166 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7167 	 * to usecs and calculate the difference between what the
7168 	 * other station thinks and what we have programmed.  This
7169 	 * lets us figure how to adjust our timers to match.  The
7170 	 * adjustments are done by pulling the TSF forward and possibly
7171 	 * rewriting the beacon timers.
7172 	 */
7173 	timer0 = ath_hal_getnexttbtt(ah);
7174 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7175 
7176 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7177 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7178 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7179 
7180 	if (tsfdelta < 0) {
7181 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7182 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7183 		tsfdelta = -tsfdelta % 1024;
7184 		nextslottu++;
7185 	} else if (tsfdelta > 0) {
7186 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7187 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7188 		tsfdelta = 1024 - (tsfdelta % 1024);
7189 		nextslottu++;
7190 	} else {
7191 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7192 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7193 	}
7194 	tudelta = nextslottu - timer0;
7195 
7196 	/*
7197 	 * Copy sender's timetstamp into tdma ie so they can
7198 	 * calculate roundtrip time.  We submit a beacon frame
7199 	 * below after any timer adjustment.  The frame goes out
7200 	 * at the next TBTT so the sender can calculate the
7201 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7202 	 *
7203 	 * NB: This tstamp is subtlely preserved when
7204 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7205 	 *     slot position changes) because ieee80211_add_tdma
7206 	 *     skips over the data.
7207 	 */
7208 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7209 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7210 		&ni->ni_tstamp.data, 8);
7211 #if 0
7212 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7213 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7214 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7215 	    (int)(nextslot - tsf), tsfdelta,
7216 	    nextslottu, timer0, tudelta);
7217 #endif
7218 	/*
7219 	 * Adjust the beacon timers only when pulling them forward
7220 	 * or when going back by less than the beacon interval.
7221 	 * Negative jumps larger than the beacon interval seem to
7222 	 * cause the timers to stop and generally cause instability.
7223 	 * This basically filters out jumps due to missed beacons.
7224 	 */
7225 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7226 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7227 		sc->sc_stats.ast_tdma_timers++;
7228 	}
7229 	if (tsfdelta > 0) {
7230 		ath_hal_adjusttsf(ah, tsfdelta);
7231 		sc->sc_stats.ast_tdma_tsf++;
7232 	}
7233 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7234 #undef TU_TO_TSF
7235 #undef TSF_TO_TU
7236 }
7237 
7238 /*
7239  * Transmit a beacon frame at SWBA.  Dynamic updates
7240  * to the frame contents are done as needed.
7241  */
7242 static void
7243 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7244 {
7245 	struct ath_hal *ah = sc->sc_ah;
7246 	struct ath_buf *bf;
7247 	int otherant;
7248 
7249 	/*
7250 	 * Check if the previous beacon has gone out.  If
7251 	 * not don't try to post another, skip this period
7252 	 * and wait for the next.  Missed beacons indicate
7253 	 * a problem and should not occur.  If we miss too
7254 	 * many consecutive beacons reset the device.
7255 	 */
7256 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7257 		sc->sc_bmisscount++;
7258 		DPRINTF(sc, ATH_DEBUG_BEACON,
7259 			"%s: missed %u consecutive beacons\n",
7260 			__func__, sc->sc_bmisscount);
7261 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7262 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7263 		return;
7264 	}
7265 	if (sc->sc_bmisscount != 0) {
7266 		DPRINTF(sc, ATH_DEBUG_BEACON,
7267 			"%s: resume beacon xmit after %u misses\n",
7268 			__func__, sc->sc_bmisscount);
7269 		sc->sc_bmisscount = 0;
7270 	}
7271 
7272 	/*
7273 	 * Check recent per-antenna transmit statistics and flip
7274 	 * the default antenna if noticeably more frames went out
7275 	 * on the non-default antenna.
7276 	 * XXX assumes 2 anntenae
7277 	 */
7278 	if (!sc->sc_diversity) {
7279 		otherant = sc->sc_defant & 1 ? 2 : 1;
7280 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7281 			ath_setdefantenna(sc, otherant);
7282 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7283 	}
7284 
7285 	bf = ath_beacon_generate(sc, vap);
7286 	if (bf != NULL) {
7287 		/*
7288 		 * Stop any current dma and put the new frame on the queue.
7289 		 * This should never fail since we check above that no frames
7290 		 * are still pending on the queue.
7291 		 */
7292 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7293 			DPRINTF(sc, ATH_DEBUG_ANY,
7294 				"%s: beacon queue %u did not stop?\n",
7295 				__func__, sc->sc_bhalq);
7296 			/* NB: the HAL still stops DMA, so proceed */
7297 		}
7298 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7299 		ath_hal_txstart(ah, sc->sc_bhalq);
7300 
7301 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7302 
7303 		/*
7304 		 * Record local TSF for our last send for use
7305 		 * in arbitrating slot collisions.
7306 		 */
7307 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7308 	}
7309 }
7310 #endif /* IEEE80211_SUPPORT_TDMA */
7311